A new necessary condition for Turing instabilities.
Elragig, Aiman; Townley, Stuart
2012-09-01
Reactivity (a.k.a initial growth) is necessary for diffusion driven instability (Turing instability). Using a notion of common Lyapunov function we show that this necessary condition is a special case of a more powerful (i.e. tighter) necessary condition. Specifically, we show that if the linearised reaction matrix and the diffusion matrix share a common Lyapunov function, then Turing instability is not possible. The existence of common Lyapunov functions is readily checked using semi-definite programming. We apply this result to the Gierer-Meinhardt system modelling regenerative properties of Hydra, the Oregonator, to a host-parasite-hyperparasite system with diffusion and to a reaction-diffusion-chemotaxis model for a multi-species host-parasitoid community. Copyright © 2012 Elsevier Inc. All rights reserved.
A unified perspective on robot control - The energy Lyapunov function approach
NASA Technical Reports Server (NTRS)
Wen, John T.
1990-01-01
A unified framework for the stability analysis of robot tracking control is presented. By using an energy-motivated Lyapunov function candidate, the closed-loop stability is shown for a large family of control laws sharing a common structure of proportional and derivative feedback and a model-based feedforward. The feedforward can be zero, partial or complete linearized dynamics, partial or complete nonlinear dynamics, or linearized or nonlinear dynamics with parameter adaptation. As result, the dichotomous approaches to the robot control problem based on the open-loop linearization and nonlinear Lyapunov analysis are both included in this treatment. Furthermore, quantitative estimates of the trade-offs between different schemes in terms of the tracking performance, steady state error, domain of convergence, realtime computation load and required a prior model information are derived.
Lyapunov functions for a class of nonlinear systems using Caputo derivative
NASA Astrophysics Data System (ADS)
Fernandez-Anaya, G.; Nava-Antonio, G.; Jamous-Galante, J.; Muñoz-Vega, R.; Hernández-Martínez, E. G.
2017-02-01
This paper presents an extension of recent results that allow proving the stability of Caputo nonlinear and time-varying systems, by means of the fractional order Lyapunov direct method, using quadratic Lyapunov functions. This article introduces a new way of building polynomial Lyapunov functions of any positive integer order as a way of determining the stability of a greater variety of systems when the order of the derivative is 0 < α < 1. Some examples are given to validate these results.
Adaptive tracking control for a class of stochastic switched systems
NASA Astrophysics Data System (ADS)
Zhang, Hui; Xia, Yuanqing
2018-02-01
The problem of adaptive tracking is considered for a class of stochastic switched systems, in this paper. As preliminaries, the criterion of global asymptotical practical stability in probability is first presented by the aid of common Lyapunov function method. Based on the Lyapunov stability criterion, adaptive backstepping controllers are designed to guarantee that the closed-loop system has a unique global solution, which is globally asymptotically practically stable in probability, and the tracking error in the fourth moment converges to an arbitrarily small neighbourhood of zero. Simulation examples are given to demonstrate the efficiency of the proposed schemes.
Li, Huijuan; Liu, Anping; Zhang, Linli
2018-06-01
In this paper, we propose new sufficient criteria for input-to-state stability (ISS) of time-varying nonlinear discrete-time systems via indefinite difference Lyapunov functions. The proposed sufficient conditions for ISS of system are more relaxed than for ISS with respect to Lyapunov functions with negative definite difference. We prove system is ISS by two methods. The first way is to prove system is ISS by indefinite difference ISS Lyapunov functions. The second method is to prove system is ISS via introducing an auxiliary system and indefinite difference robust Lyapunov functions. The comparison of the sufficient conditions for ISS obtained via the two methods is discussed. The effectiveness of our results is illustrated by three numerical examples. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Dynamical behaviors determined by the Lyapunov function in competitive Lotka-Volterra systems.
Tang, Ying; Yuan, Ruoshi; Ma, Yian
2013-01-01
Dynamical behaviors of the competitive Lotka-Volterra system even for 3 species are not fully understood. In this paper, we study this problem from the perspective of the Lyapunov function. We construct explicitly the Lyapunov function using three examples of the competitive Lotka-Volterra system for the whole state space: (1) the general 2-species case, (2) a 3-species model, and (3) the model of May-Leonard. The basins of attraction for these examples are demonstrated, including cases with bistability and cyclical behavior. The first two examples are the generalized gradient system, where the energy dissipation may not follow the gradient of the Lyapunov function. In addition, under a new type of stochastic interpretation, the Lyapunov function also leads to the Boltzmann-Gibbs distribution on the final steady state when multiplicative noise is added.
Dynamical behaviors determined by the Lyapunov function in competitive Lotka-Volterra systems
NASA Astrophysics Data System (ADS)
Tang, Ying; Yuan, Ruoshi; Ma, Yian
2013-01-01
Dynamical behaviors of the competitive Lotka-Volterra system even for 3 species are not fully understood. In this paper, we study this problem from the perspective of the Lyapunov function. We construct explicitly the Lyapunov function using three examples of the competitive Lotka-Volterra system for the whole state space: (1) the general 2-species case, (2) a 3-species model, and (3) the model of May-Leonard. The basins of attraction for these examples are demonstrated, including cases with bistability and cyclical behavior. The first two examples are the generalized gradient system, where the energy dissipation may not follow the gradient of the Lyapunov function. In addition, under a new type of stochastic interpretation, the Lyapunov function also leads to the Boltzmann-Gibbs distribution on the final steady state when multiplicative noise is added.
Calculating Lyapunov Exponents: Applying Products and Evaluating Integrals
ERIC Educational Resources Information Center
McCartney, Mark
2010-01-01
Two common examples of one-dimensional maps (the tent map and the logistic map) are generalized to cases where they have more than one control parameter. In the case of the tent map, this still allows the global Lyapunov exponent to be found analytically, and permits various properties of the resulting global Lyapunov exponents to be investigated…
Lyapunov dimension formula for the global attractor of the Lorenz system
NASA Astrophysics Data System (ADS)
Leonov, G. A.; Kuznetsov, N. V.; Korzhemanova, N. A.; Kusakin, D. V.
2016-12-01
The exact Lyapunov dimension formula for the Lorenz system for a positive measure set of parameters, including classical values, was analytically obtained first by G.A. Leonov in 2002. Leonov used the construction technique of special Lyapunov-type functions, which was developed by him in 1991 year. Later it was shown that the consideration of larger class of Lyapunov-type functions permits proving the validity of this formula for all parameters, of the system, such that all the equilibria of the system are hyperbolically unstable. In the present work it is proved the validity of the formula for Lyapunov dimension for a wider variety of parameters values including all parameters, which satisfy the classical physical limitations.
A Spectral Lyapunov Function for Exponentially Stable LTV Systems
NASA Technical Reports Server (NTRS)
Zhu, J. Jim; Liu, Yong; Hang, Rui
2010-01-01
This paper presents the formulation of a Lyapunov function for an exponentially stable linear timevarying (LTV) system using a well-defined PD-spectrum and the associated PD-eigenvectors. It provides a bridge between the first and second methods of Lyapunov for stability assessment, and will find significant applications in the analysis and control law design for LTV systems and linearizable nonlinear time-varying systems.
Chaotic simulated annealing by a neural network with a variable delay: design and application.
Chen, Shyan-Shiou
2011-10-01
In this paper, we have three goals: the first is to delineate the advantages of a variably delayed system, the second is to find a more intuitive Lyapunov function for a delayed neural network, and the third is to design a delayed neural network for a quadratic cost function. For delayed neural networks, most researchers construct a Lyapunov function based on the linear matrix inequality (LMI) approach. However, that approach is not intuitive. We provide a alternative candidate Lyapunov function for a delayed neural network. On the other hand, if we are first given a quadratic cost function, we can construct a delayed neural network by suitably dividing the second-order term into two parts: a self-feedback connection weight and a delayed connection weight. To demonstrate the advantage of a variably delayed neural network, we propose a transiently chaotic neural network with variable delay and show numerically that the model should possess a better searching ability than Chen-Aihara's model, Wang's model, and Zhao's model. We discuss both the chaotic and the convergent phases. During the chaotic phase, we simply present bifurcation diagrams for a single neuron with a constant delay and with a variable delay. We show that the variably delayed model possesses the stochastic property and chaotic wandering. During the convergent phase, we not only provide a novel Lyapunov function for neural networks with a delay (the Lyapunov function is independent of the LMI approach) but also establish a correlation between the Lyapunov function for a delayed neural network and an objective function for the traveling salesman problem. © 2011 IEEE
The Lyapunov dimension and its estimation via the Leonov method
NASA Astrophysics Data System (ADS)
Kuznetsov, N. V.
2016-06-01
Along with widely used numerical methods for estimating and computing the Lyapunov dimension there is an effective analytical approach, proposed by G.A. Leonov in 1991. The Leonov method is based on the direct Lyapunov method with special Lyapunov-like functions. The advantage of the method is that it allows one to estimate the Lyapunov dimension of invariant sets without localization of the set in the phase space and, in many cases, to get effectively an exact Lyapunov dimension formula. In this work the invariance of the Lyapunov dimension with respect to diffeomorphisms and its connection with the Leonov method are discussed. For discrete-time dynamical systems an analog of Leonov method is suggested. In a simple but rigorous way, here it is presented the connection between the Leonov method and the key related works: Kaplan and Yorke (the concept of the Lyapunov dimension, 1979), Douady and Oesterlé (upper bounds of the Hausdorff dimension via the Lyapunov dimension of maps, 1980), Constantin, Eden, Foiaş, and Temam (upper bounds of the Hausdorff dimension via the Lyapunov exponents and Lyapunov dimension of dynamical systems, 1985-90), and the numerical calculation of the Lyapunov exponents and dimension.
Conditions for Stabilizability of Linear Switched Systems
NASA Astrophysics Data System (ADS)
Minh, Vu Trieu
2011-06-01
This paper investigates some conditions that can provide stabilizability for linear switched systems with polytopic uncertainties via their closed loop linear quadratic state feedback regulator. The closed loop switched systems can stabilize unstable open loop systems or stable open loop systems but in which there is no solution for a common Lyapunov matrix. For continuous time switched linear systems, we show that if there exists solution in an associated Riccati equation for the closed loop systems sharing one common Lyapunov matrix, the switched linear systems are stable. For the discrete time switched systems, we derive a Linear Matrix Inequality (LMI) to calculate a common Lyapunov matrix and solution for the stable closed loop feedback systems. These closed loop linear quadratic state feedback regulators guarantee the global asymptotical stability for any switched linear systems with any switching signal sequence.
Yu, Jue; Zhuang, Jian; Yu, Dehong
2015-01-01
This paper concerns a state feedback integral control using a Lyapunov function approach for a rotary direct drive servo valve (RDDV) while considering parameter uncertainties. Modeling of this RDDV servovalve reveals that its mechanical performance is deeply influenced by friction torques and flow torques; however, these torques are uncertain and mutable due to the nature of fluid flow. To eliminate load resistance and to achieve satisfactory position responses, this paper develops a state feedback control that integrates an integral action and a Lyapunov function. The integral action is introduced to address the nonzero steady-state error; in particular, the Lyapunov function is employed to improve control robustness by adjusting the varying parameters within their value ranges. This new controller also has the advantages of simple structure and ease of implementation. Simulation and experimental results demonstrate that the proposed controller can achieve higher control accuracy and stronger robustness. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Generalized decompositions of dynamic systems and vector Lyapunov functions
NASA Astrophysics Data System (ADS)
Ikeda, M.; Siljak, D. D.
1981-10-01
The notion of decomposition is generalized to provide more freedom in constructing vector Lyapunov functions for stability analysis of nonlinear dynamic systems. A generalized decomposition is defined as a disjoint decomposition of a system which is obtained by expanding the state-space of a given system. An inclusion principle is formulated for the solutions of the expansion to include the solutions of the original system, so that stability of the expansion implies stability of the original system. Stability of the expansion can then be established by standard disjoint decompositions and vector Lyapunov functions. The applicability of the new approach is demonstrated using the Lotka-Volterra equations.
NASA Astrophysics Data System (ADS)
Tognetti, Eduardo S.; Oliveira, Ricardo C. L. F.; Peres, Pedro L. D.
2015-01-01
The problem of state feedback control design for discrete-time Takagi-Sugeno (TS) (T-S) fuzzy systems is investigated in this paper. A Lyapunov function, which is quadratic in the state and presents a multi-polynomial dependence on the fuzzy weighting functions at the current and past instants of time, is proposed.This function contains, as particular cases, other previous Lyapunov functions already used in the literature, being able to provide less conservative conditions of control design for TS fuzzy systems. The structure of the proposed Lyapunov function also motivates the design of a new stabilising compensator for Takagi-Sugeno fuzzy systems. The main novelty of the proposed state feedback control law is that the gain is composed of matrices with multi-polynomial dependence on the fuzzy weighting functions at a set of past instants of time, including the current one. The conditions for the existence of a stabilising state feedback control law that minimises an upper bound to the ? or ? norms are given in terms of linear matrix inequalities. Numerical examples show that the approach can be less conservative and more efficient than other methods available in the literature.
Computation of non-monotonic Lyapunov functions for continuous-time systems
NASA Astrophysics Data System (ADS)
Li, Huijuan; Liu, AnPing
2017-09-01
In this paper, we propose two methods to compute non-monotonic Lyapunov functions for continuous-time systems which are asymptotically stable. The first method is to solve a linear optimization problem on a compact and bounded set. The proposed linear programming based algorithm delivers a CPA1
Fractional Hopfield Neural Networks: Fractional Dynamic Associative Recurrent Neural Networks.
Pu, Yi-Fei; Yi, Zhang; Zhou, Ji-Liu
2017-10-01
This paper mainly discusses a novel conceptual framework: fractional Hopfield neural networks (FHNN). As is commonly known, fractional calculus has been incorporated into artificial neural networks, mainly because of its long-term memory and nonlocality. Some researchers have made interesting attempts at fractional neural networks and gained competitive advantages over integer-order neural networks. Therefore, it is naturally makes one ponder how to generalize the first-order Hopfield neural networks to the fractional-order ones, and how to implement FHNN by means of fractional calculus. We propose to introduce a novel mathematical method: fractional calculus to implement FHNN. First, we implement fractor in the form of an analog circuit. Second, we implement FHNN by utilizing fractor and the fractional steepest descent approach, construct its Lyapunov function, and further analyze its attractors. Third, we perform experiments to analyze the stability and convergence of FHNN, and further discuss its applications to the defense against chip cloning attacks for anticounterfeiting. The main contribution of our work is to propose FHNN in the form of an analog circuit by utilizing a fractor and the fractional steepest descent approach, construct its Lyapunov function, prove its Lyapunov stability, analyze its attractors, and apply FHNN to the defense against chip cloning attacks for anticounterfeiting. A significant advantage of FHNN is that its attractors essentially relate to the neuron's fractional order. FHNN possesses the fractional-order-stability and fractional-order-sensitivity characteristics.
Nonlinear stability in reaction-diffusion systems via optimal Lyapunov functions
NASA Astrophysics Data System (ADS)
Lombardo, S.; Mulone, G.; Trovato, M.
2008-06-01
We define optimal Lyapunov functions to study nonlinear stability of constant solutions to reaction-diffusion systems. A computable and finite radius of attraction for the initial data is obtained. Applications are given to the well-known Brusselator model and a three-species model for the spatial spread of rabies among foxes.
Switching LPV Control with Double-Layer LPV Model for Aero-Engines
NASA Astrophysics Data System (ADS)
Tang, Lili; Huang, Jinquan; Pan, Muxuan
2017-11-01
To cover the whole range of operating conditions of aero-engine, a double-layer LPV model is built so as to take into account of the variability due to the flight altitude, Mach number and the rotational speed. With this framework, the problem of designing LPV state-feedback robust controller that guarantees desired bounds on both H_∞ and H_2 performances is considered. Besides this, to reduce the conservativeness caused by a single LPV controller of the whole flight envelope and the common Lyapunov function method, a new method is proposed to design a family of LPV switching controllers. The switching LPV controllers can ensure that the closed-loop system remains stable in the sense of Lyapunov under arbitrary switching logic. Meanwhile, the switching LPV controllers can ensure the parameters change smoothly. The validity and performance of the theoretical results are demonstrated through a numerical example.
Stabilisation of discrete-time polynomial fuzzy systems via a polynomial lyapunov approach
NASA Astrophysics Data System (ADS)
Nasiri, Alireza; Nguang, Sing Kiong; Swain, Akshya; Almakhles, Dhafer
2018-02-01
This paper deals with the problem of designing a controller for a class of discrete-time nonlinear systems which is represented by discrete-time polynomial fuzzy model. Most of the existing control design methods for discrete-time fuzzy polynomial systems cannot guarantee their Lyapunov function to be a radially unbounded polynomial function, hence the global stability cannot be assured. The proposed control design in this paper guarantees a radially unbounded polynomial Lyapunov functions which ensures global stability. In the proposed design, state feedback structure is considered and non-convexity problem is solved by incorporating an integrator into the controller. Sufficient conditions of stability are derived in terms of polynomial matrix inequalities which are solved via SOSTOOLS in MATLAB. A numerical example is presented to illustrate the effectiveness of the proposed controller.
Neural networks for tracking of unknown SISO discrete-time nonlinear dynamic systems.
Aftab, Muhammad Saleheen; Shafiq, Muhammad
2015-11-01
This article presents a Lyapunov function based neural network tracking (LNT) strategy for single-input, single-output (SISO) discrete-time nonlinear dynamic systems. The proposed LNT architecture is composed of two feedforward neural networks operating as controller and estimator. A Lyapunov function based back propagation learning algorithm is used for online adjustment of the controller and estimator parameters. The controller and estimator error convergence and closed-loop system stability analysis is performed by Lyapunov stability theory. Moreover, two simulation examples and one real-time experiment are investigated as case studies. The achieved results successfully validate the controller performance. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Cycle-expansion method for the Lyapunov exponent, susceptibility, and higher moments.
Charbonneau, Patrick; Li, Yue Cathy; Pfister, Henry D; Yaida, Sho
2017-09-01
Lyapunov exponents characterize the chaotic nature of dynamical systems by quantifying the growth rate of uncertainty associated with the imperfect measurement of initial conditions. Finite-time estimates of the exponent, however, experience fluctuations due to both the initial condition and the stochastic nature of the dynamical path. The scale of these fluctuations is governed by the Lyapunov susceptibility, the finiteness of which typically provides a sufficient condition for the law of large numbers to apply. Here, we obtain a formally exact expression for this susceptibility in terms of the Ruelle dynamical ζ function for one-dimensional systems. We further show that, for systems governed by sequences of random matrices, the cycle expansion of the ζ function enables systematic computations of the Lyapunov susceptibility and of its higher-moment generalizations. The method is here applied to a class of dynamical models that maps to static disordered spin chains with interactions stretching over a varying distance and is tested against Monte Carlo simulations.
Numerical simulation of a two-sex human papillomavirus (HPV) vaccination model
NASA Astrophysics Data System (ADS)
Suryani, I.; Adi-Kusumo, F.
2014-02-01
Human Papillomavirus (HPV) is a major cause of cervical cancer, precancerous lesions, cancer and other disease. HPV is the most common sexually transmitted infection. Although HPV virus primarily affects woman but it can also affects man because it cause of cancer of the anus, vulva, vagina, penis and some other cancers. HPV vaccines now used to prevent cervical cancer and genital warts because the vaccine protect against four types of HPV that most commonly cause disease are types 6, 11, 16, and 18. This paper is sequel work of Elbasha (2008). Difference with Elbasha (2008) are give alternative proof global stability, numerical simulation and interpretation. Global stability of the equilibrium on the model of a two-sex HPV vaccination were explored by using Lyapunov. Although we use the same lyapunov function, we use the largest invariant set to proof the global stability. The result show that the global stability of the equilibrium depends on the effective reproduction number (R). If R < 1 then the infection-free equilibrium is asymptotically stable globally. If R > 1 then endemic equilibrium have globally asymptotically stable properties. Then equilibrium proceed with the interpretation of numerical simulation.
NASA Technical Reports Server (NTRS)
Haddad, Wassim M.; Bernstein, Dennis S.
1991-01-01
Lyapunov function proofs of sufficient conditions for asymptotic stability are given for feedback interconnections of bounded real and positive real transfer functions. Two cases are considered: (1) a proper bounded real (resp., positive real) transfer function with a bounded real (resp., positive real) time-varying memoryless nonlinearity; and (2) two strictly proper bounded real (resp., positive real) transfer functions. A similar treatment is given for the circle and Popov theorems. Application of these results to robust stability with time-varying bounded real, positive real, and sector-bounded uncertainty is discussed.
Finite-time state feedback stabilisation of stochastic high-order nonlinear feedforward systems
NASA Astrophysics Data System (ADS)
Xie, Xue-Jun; Zhang, Xing-Hui; Zhang, Kemei
2016-07-01
This paper studies the finite-time state feedback stabilisation of stochastic high-order nonlinear feedforward systems. Based on the stochastic Lyapunov theorem on finite-time stability, by using the homogeneous domination method, the adding one power integrator and sign function method, constructing a ? Lyapunov function and verifying the existence and uniqueness of solution, a continuous state feedback controller is designed to guarantee the closed-loop system finite-time stable in probability.
Wei, Jianming; Zhang, Youan; Sun, Meimei; Geng, Baoliang
2017-09-01
This paper presents an adaptive iterative learning control scheme for a class of nonlinear systems with unknown time-varying delays and control direction preceded by unknown nonlinear backlash-like hysteresis. Boundary layer function is introduced to construct an auxiliary error variable, which relaxes the identical initial condition assumption of iterative learning control. For the controller design, integral Lyapunov function candidate is used, which avoids the possible singularity problem by introducing hyperbolic tangent funciton. After compensating for uncertainties with time-varying delays by combining appropriate Lyapunov-Krasovskii function with Young's inequality, an adaptive iterative learning control scheme is designed through neural approximation technique and Nussbaum function method. On the basis of the hyperbolic tangent function's characteristics, the system output is proved to converge to a small neighborhood of the desired trajectory by constructing Lyapunov-like composite energy function (CEF) in two cases, while keeping all the closed-loop signals bounded. Finally, a simulation example is presented to verify the effectiveness of the proposed approach. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Application of largest Lyapunov exponent analysis on the studies of dynamics under external forces
NASA Astrophysics Data System (ADS)
Odavić, Jovan; Mali, Petar; Tekić, Jasmina; Pantić, Milan; Pavkov-Hrvojević, Milica
2017-06-01
Dynamics of driven dissipative Frenkel-Kontorova model is examined by using largest Lyapunov exponent computational technique. Obtained results show that besides the usual way where behavior of the system in the presence of external forces is studied by analyzing its dynamical response function, the largest Lyapunov exponent analysis can represent a very convenient tool to examine system dynamics. In the dc driven systems, the critical depinning force for particular structure could be estimated by computing the largest Lyapunov exponent. In the dc+ac driven systems, if the substrate potential is the standard sinusoidal one, calculation of the largest Lyapunov exponent offers a more sensitive way to detect the presence of Shapiro steps. When the amplitude of the ac force is varied the behavior of the largest Lyapunov exponent in the pinned regime completely reflects the behavior of Shapiro steps and the critical depinning force, in particular, it represents the mirror image of the amplitude dependence of critical depinning force. This points out an advantage of this technique since by calculating the largest Lyapunov exponent in the pinned regime we can get an insight into the dynamics of the system when driving forces are applied. Additionally, the system is shown to be not chaotic even in the case of incommensurate structures and large amplitudes of external force, which is a consequence of overdampness of the model and the Middleton's no passing rule.
Uniqueness of thermodynamic projector and kinetic basis of molecular individualism
NASA Astrophysics Data System (ADS)
Gorban, Alexander N.; Karlin, Iliya V.
2004-05-01
Three results are presented: First, we solve the problem of persistence of dissipation for reduction of kinetic models. Kinetic equations with thermodynamic Lyapunov functions are studied. Uniqueness of the thermodynamic projector is proven: There exists only one projector which transforms any vector field equipped with the given Lyapunov function into a vector field with the same Lyapunov function for a given anzatz manifold which is not tangent to the Lyapunov function levels. Second, we use the thermodynamic projector for developing the short memory approximation and coarse-graining for general nonlinear dynamic systems. We prove that in this approximation the entropy production increases. ( The theorem about entropy overproduction.) In example, we apply the thermodynamic projector to derive the equations of reduced kinetics for the Fokker-Planck equation. A new class of closures is developed, the kinetic multipeak polyhedra. Distributions of this type are expected in kinetic models with multidimensional instability as universally as the Gaussian distribution appears for stable systems. The number of possible relatively stable states of a nonequilibrium system grows as 2 m, and the number of macroscopic parameters is in order mn, where n is the dimension of configuration space, and m is the number of independent unstable directions in this space. The elaborated class of closures and equations pretends to describe the effects of “molecular individualism”. This is the third result.
The use of Lyapunov differential inequalities for estimating the transients of mechanical systems
NASA Astrophysics Data System (ADS)
Alyshev, A. S.; Dudarenko, N. A.; Melnikov, V. G.; Melnikov, G. I.
2018-05-01
In this paper we consider an autonomous mechanical system in a finite neighborhood of the zero of the phase space of states. The system is given as a matrix differential equation in the Cauchy form with the right-hand side of the polynomial structure. We propose a method for constructing a sequence of linear inhomogeneous differential inequalities for Lyapunov functions. As a result, we obtain estimates of transient processes in the form of functional inequalities.
Parameter Transient Behavior Analysis on Fault Tolerant Control System
NASA Technical Reports Server (NTRS)
Belcastro, Christine (Technical Monitor); Shin, Jong-Yeob
2003-01-01
In a fault tolerant control (FTC) system, a parameter varying FTC law is reconfigured based on fault parameters estimated by fault detection and isolation (FDI) modules. FDI modules require some time to detect fault occurrences in aero-vehicle dynamics. This paper illustrates analysis of a FTC system based on estimated fault parameter transient behavior which may include false fault detections during a short time interval. Using Lyapunov function analysis, the upper bound of an induced-L2 norm of the FTC system performance is calculated as a function of a fault detection time and the exponential decay rate of the Lyapunov function.
NASA Astrophysics Data System (ADS)
Hu, D. L.; Liu, X. B.
Both periodic loading and random forces commonly co-exist in real engineering applications. However, the dynamic behavior, especially dynamic stability of systems under parametric periodic and random excitations has been reported little in the literature. In this study, the moment Lyapunov exponent and stochastic stability of binary airfoil under combined harmonic and non-Gaussian colored noise excitations are investigated. The noise is simplified to an Ornstein-Uhlenbeck process by applying the path-integral method. Via the singular perturbation method, the second-order expansions of the moment Lyapunov exponent are obtained, which agree well with the results obtained by the Monte Carlo simulation. Finally, the effects of the noise and parametric resonance (such as subharmonic resonance and combination additive resonance) on the stochastic stability of the binary airfoil system are discussed.
Chaotic itinerancy in the oscillator neural network without Lyapunov functions.
Uchiyama, Satoki; Fujisaka, Hirokazu
2004-09-01
Chaotic itinerancy (CI), which is defined as an incessant spontaneous switching phenomenon among attractor ruins in deterministic dynamical systems without Lyapunov functions, is numerically studied in the case of an oscillator neural network model. The model is the pseudoinverse-matrix version of the previous model [S. Uchiyama and H. Fujisaka, Phys. Rev. E 65, 061912 (2002)] that was studied theoretically with the aid of statistical neurodynamics. It is found that CI in neural nets can be understood as the intermittent dynamics of weakly destabilized chaotic retrieval solutions. Copyright 2004 American Institute of Physics
Asymptotic stability and instability of large-scale systems. [using vector Liapunov functions
NASA Technical Reports Server (NTRS)
Grujic, L. T.; Siljak, D. D.
1973-01-01
The purpose of this paper is to develop new methods for constructing vector Lyapunov functions and broaden the application of Lyapunov's theory to stability analysis of large-scale dynamic systems. The application, so far limited by the assumption that the large-scale systems are composed of exponentially stable subsystems, is extended via the general concept of comparison functions to systems which can be decomposed into asymptotically stable subsystems. Asymptotic stability of the composite system is tested by a simple algebraic criterion. By redefining interconnection functions among the subsystems according to interconnection matrices, the same mathematical machinery can be used to determine connective asymptotic stability of large-scale systems under arbitrary structural perturbations.
A new decentralised controller design method for a class of strongly interconnected systems
NASA Astrophysics Data System (ADS)
Duan, Zhisheng; Jiang, Zhong-Ping; Huang, Lin
2017-02-01
In this paper, two interconnected structures are first discussed, under which some closed-loop subsystems must be unstable to make the whole interconnected system stable, which can be viewed as a kind of strongly interconnected systems. Then, comparisons with small gain theorem are discussed and large gain interconnected characteristics are shown. A new approach for the design of decentralised controllers is presented by determining the Lyapunov function structure previously, which allows the existence of unstable subsystems. By fully utilising the orthogonal space information of input matrix, some new understandings are presented for the construction of Lyapunov matrix. This new method can deal with decentralised state feedback, static output feedback and dynamic output feedback controllers in a unified framework. Furthermore, in order to reduce the design conservativeness and deal with robustness, a new robust decentralised controller design method is given by combining with the parameter-dependent Lyapunov function method. Some basic rules are provided for the choice of initial variables in Lyapunov matrix or new introduced slack matrices. As byproducts, some linear matrix inequality based sufficient conditions are established for centralised static output feedback stabilisation. Effects of unstable subsystems in nonlinear Lur'e systems are further discussed. The corresponding decentralised controller design method is presented for absolute stability. The examples illustrate that the new method is significantly effective.
Continuation of probability density functions using a generalized Lyapunov approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baars, S., E-mail: s.baars@rug.nl; Viebahn, J.P., E-mail: viebahn@cwi.nl; Mulder, T.E., E-mail: t.e.mulder@uu.nl
Techniques from numerical bifurcation theory are very useful to study transitions between steady fluid flow patterns and the instabilities involved. Here, we provide computational methodology to use parameter continuation in determining probability density functions of systems of stochastic partial differential equations near fixed points, under a small noise approximation. Key innovation is the efficient solution of a generalized Lyapunov equation using an iterative method involving low-rank approximations. We apply and illustrate the capabilities of the method using a problem in physical oceanography, i.e. the occurrence of multiple steady states of the Atlantic Ocean circulation.
Lyapunov vector function method in the motion stabilisation problem for nonholonomic mobile robot
NASA Astrophysics Data System (ADS)
Andreev, Aleksandr; Peregudova, Olga
2017-07-01
In this paper we propose a sampled-data control law in the stabilisation problem of nonstationary motion of nonholonomic mobile robot. We assume that the robot moves on a horizontal surface without slipping. The dynamical model of a mobile robot is considered. The robot has one front free wheel and two rear wheels which are controlled by two independent electric motors. We assume that the controls are piecewise constant signals. Controller design relies on the backstepping procedure with the use of Lyapunov vector-function method. Theoretical considerations are verified by numerical simulation.
LPV Controller Interpolation for Improved Gain-Scheduling Control Performance
NASA Technical Reports Server (NTRS)
Wu, Fen; Kim, SungWan
2002-01-01
In this paper, a new gain-scheduling control design approach is proposed by combining LPV (linear parameter-varying) control theory with interpolation techniques. The improvement of gain-scheduled controllers can be achieved from local synthesis of Lyapunov functions and continuous construction of a global Lyapunov function by interpolation. It has been shown that this combined LPV control design scheme is capable of improving closed-loop performance derived from local performance improvement. The gain of the LPV controller will also change continuously across parameter space. The advantages of the newly proposed LPV control is demonstrated through a detailed AMB controller design example.
NASA Astrophysics Data System (ADS)
Zhang, Hai; Ye, Renyu; Liu, Song; Cao, Jinde; Alsaedi, Ahmad; Li, Xiaodi
2018-02-01
This paper is concerned with the asymptotic stability of the Riemann-Liouville fractional-order neural networks with discrete and distributed delays. By constructing a suitable Lyapunov functional, two sufficient conditions are derived to ensure that the addressed neural network is asymptotically stable. The presented stability criteria are described in terms of the linear matrix inequalities. The advantage of the proposed method is that one may avoid calculating the fractional-order derivative of the Lyapunov functional. Finally, a numerical example is given to show the validity and feasibility of the theoretical results.
Fast scrambling in holographic Einstein-Podolsky-Rosen pair
NASA Astrophysics Data System (ADS)
Murata, Keiju
2017-11-01
We demonstrate that a holographic model of the Einstein-Podolsky-Rosen pair exhibits fast scrambling. Strongly entangled quark and antiquark in N = 4 super Yang-Mills theory are considered. Their gravity dual is a fundamental string whose endpoints are uniformly accelerated in opposite direction. We slightly increase the acceleration of the endpoint and show that it quickly destroys the correlation between the quark and antiquark. The proper time scale of the destruction is τ ∗ ˜ β ln S where β is the inverse Unruh temperature and S is the entropy of the accelerating quark. We also evaluate the Lyapunov exponent from correlation function as λ L = 2 π/ β, which saturates the Lyapunov bound. Our results suggest that the fast scrambling or saturation of the Lyapunov bound do not directly imply the existence of an Einstein dual. When we slightly decrease the acceleration, the quark and antiquark are causally connected and an "one-way traversable wormhole" is created on the worldsheet. It causes the divergence of the correlation function between the quark and antiquark.
Development of Analysis Tools for Certification of Flight Control Laws
2009-03-31
In Proc. Conf. on Decision and Control, pages 881-886, Bahamas, 2004. [7] G. Chesi, A. Garulli, A. Tesi , and A. Vicino. LMI-based computation of...Minneapolis, MN, 2006, pp. 117-122. [10] G. Chesi, A. Garulli, A. Tesi . and A. Vicino, "LMI-based computation of optimal quadratic Lyapunov functions...Convex Optimization. Cambridge Univ. Press. Chesi, G., A. Garulli, A. Tesi and A. Vicino (2005). LMI-based computation of optimal quadratic Lyapunov
New class of control laws for robotic manipulators. I - Nonadaptive case. II - Adaptive case
NASA Technical Reports Server (NTRS)
Wen, John T.; Bayard, David S.
1988-01-01
A new class of exponentially stabilizing control laws for joint level control of robot arms is discussed. Closed-loop exponential stability has been demonstrated for both the set point and tracking control problems by a slight modification of the energy Lyapunov function and the use of a lemma which handles third-order terms in the Lyapunov function derivatives. In the second part, these control laws are adapted in a simple fashion to achieve asymptotically stable adaptive control. The analysis addresses the nonlinear dynamics directly without approximation, linearization, or ad hoc assumptions, and uses a parameterization based on physical (time-invariant) quantities.
Simple robust control laws for robot manipulators. Part 1: Non-adaptive case
NASA Technical Reports Server (NTRS)
Wen, J. T.; Bayard, D. S.
1987-01-01
A new class of exponentially stabilizing control laws for joint level control of robot arms is introduced. It has been recently recognized that the nonlinear dynamics associated with robotic manipulators have certain inherent passivity properties. More specifically, the derivation of the robotic dynamic equations from the Hamilton's principle gives rise to natural Lyapunov functions for control design based on total energy considerations. Through a slight modification of the energy Lyapunov function and the use of a convenient lemma to handle third order terms in the Lyapunov function derivatives, closed loop exponential stability for both the set point and tracking control problem is demonstrated. The exponential convergence property also leads to robustness with respect to frictions, bounded modeling errors and instrument noise. In one new design, the nonlinear terms are decoupled from real-time measurements which completely removes the requirement for on-line computation of nonlinear terms in the controller implementation. In general, the new class of control laws offers alternatives to the more conventional computed torque method, providing tradeoffs between robustness, computation and convergence properties. Furthermore, these control laws have the unique feature that they can be adapted in a very simple fashion to achieve asymptotically stable adaptive control.
NASA Technical Reports Server (NTRS)
Turso, James A.; Litt, Jonathan S.
2004-01-01
A method for accommodating engine deterioration via a scheduled Linear Parameter Varying Quadratic Lyapunov Function (LPVQLF)-Based controller is presented. The LPVQLF design methodology provides a means for developing unconditionally stable, robust control of Linear Parameter Varying (LPV) systems. The controller is scheduled on the Engine Deterioration Index, a function of estimated parameters that relate to engine health, and is computed using a multilayer feedforward neural network. Acceptable thrust response and tight control of exhaust gas temperature (EGT) is accomplished by adjusting the performance weights on these parameters for different levels of engine degradation. Nonlinear simulations demonstrate that the controller achieves specified performance objectives while being robust to engine deterioration as well as engine-to-engine variations.
Volterra-type Lyapunov functions for fractional-order epidemic systems
NASA Astrophysics Data System (ADS)
Vargas-De-León, Cruz
2015-07-01
In this paper we prove an elementary lemma which estimates fractional derivatives of Volterra-type Lyapunov functions in the sense Caputo when α ∈ (0, 1) . Moreover, by using this result, we study the uniform asymptotic stability of some Caputo-type epidemic systems with a pair of fractional-order differential equations. These epidemic systems are the Susceptible-Infected-Susceptible (SIS), Susceptible-Infected-Recovered (SIR) and Susceptible-Infected-Recovered-Susceptible (SIRS) models and Ross-Macdonald model for vector-borne diseases. We show that the unique endemic equilibrium is uniformly asymptotically stable if the basic reproductive number is greater than one. We illustrate our theoretical results with numerical simulations using the Adams-Bashforth-Moulton scheme implemented in the fde12 Matlab function.
Non Lyapunov stability of a constant spatially developing 2-D gas flow
NASA Astrophysics Data System (ADS)
Balint, Agneta M.; Balint, Stefan; Tanasie, Loredana
2017-01-01
Different types of stabilities (global, local) and instabilities (global absolute, local convective) of the constant spatially developing 2-D gas flow are analyzed in a particular phase space of continuously differentiable functions, endowed with the usual algebraic operations and the topology generated by the uniform convergence on the plane. For this purpose the Euler equations linearized at the constant flow are used. The Lyapunov stability analysis was presented in [1] and this paper is a continuation of [1].
Lyapunov exponent for aging process in induction motor
NASA Astrophysics Data System (ADS)
Bayram, Duygu; Ünnü, Sezen Yıdırım; Şeker, Serhat
2012-09-01
Nonlinear systems like electrical circuits and systems, mechanics, optics and even incidents in nature may pass through various bifurcations and steady states like equilibrium point, periodic, quasi-periodic, chaotic states. Although chaotic phenomena are widely observed in physical systems, it can not be predicted because of the nature of the system. On the other hand, it is known that, chaos is strictly dependent on initial conditions of the system [1-3]. There are several methods in order to define the chaos. Phase portraits, Poincaré maps, Lyapunov Exponents are the most common techniques. Lyapunov Exponents are the theoretical indicator of the chaos, named after the Russian mathematician Aleksandr Lyapunov (1857-1918). Lyapunov Exponents stand for the average exponential divergence or convergence of nearby system states, meaning estimating the quantitive measure of the chaotic attractor. Negative numbers of the exponents stand for a stable system whereas zero stands for quasi-periodic systems. On the other hand, at least if one of the exponents is positive, this situation is an indicator of the chaos. For estimating the exponents, the system should be modeled by differential equation but even in that case mathematical calculation of Lyapunov Exponents are not very practical and evaluation of these values requires a long signal duration [4-7]. For experimental data sets, it is not always possible to acquire the differential equations. There are several different methods in literature for determining the Lyapunov Exponents of the system [4, 5]. Induction motors are the most important tools for many industrial processes because they are cheap, robust, efficient and reliable. In order to have healthy processes in industrial applications, the conditions of the machines should be monitored and the different working conditions should be addressed correctly. To the best of our knowledge, researches related to Lyapunov exponents and electrical motors are mostly focused on the controlling the mechanical parameters of the electrical machines. Brushless DC motor (BLDCM) and the other general purpose permanent magnet (PM) motors are the most widely examined motors [1, 8, 9]. But the researches, about Lyapunov Exponent, subjected to the induction motors are mostly focused on the control theory of the motors. Flux estimation of rotor, external load disturbances and speed tracking and vector control position system are the main research areas for induction motors [10, 11, 12-14]. For all the data sets which can be collected from an induction motor, vibration data have the key role for understanding the mechanical behaviours like aging, bearing damage and stator insulation damage [15-18]. In this paper aging of an induction motor is investigated by using the vibration signals. The signals consist of new and aged motor data. These data are examined by their 2 dimensional phase portraits and the geometric interpretation is applied for detecting the Lyapunov Exponents. These values are compared in order to define the character and state estimation of the aging processes.
Synchronization of Lienard-Type Oscillators in Uniform Electrical Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinha, Mohit; Dorfler, Florian; Johnson, Brian B.
2016-08-01
This paper presents a condition for global asymptotic synchronization of Lienard-type nonlinear oscillators in uniform LTI electrical networks with series R-L circuits modeling interconnections. By uniform electrical networks, we mean that the per-unit-length impedances are identical for the interconnecting lines. We derive conditions for global asymptotic synchronization for a particular feedback architecture where the derivative of the oscillator output current supplements the innate current feedback induced by simply interconnecting the oscillator to the network. Our proof leverages a coordinate transformation to a set of differential coordinates that emphasizes signal differences and the particular form of feedback permits the formulation ofmore » a quadratic Lyapunov function for this class of networks. This approach is particularly interesting since synchronization conditions are difficult to obtain by means of quadratic Lyapunov functions when only current feedback is used and for networks composed of series R-L circuits. Our synchronization condition depends on the algebraic connectivity of the underlying network, and reiterates the conventional wisdom from Lyapunov- and passivity-based arguments that strong coupling is required to ensure synchronization.« less
Quenching rate for a nonlocal problem arising in the micro-electro mechanical system
NASA Astrophysics Data System (ADS)
Guo, Jong-Shenq; Hu, Bei
2018-03-01
In this paper, we study the quenching rate of the solution for a nonlocal parabolic problem which arises in the study of the micro-electro mechanical system. This question is equivalent to the stabilization of the solution to the transformed problem in self-similar variables. First, some a priori estimates are provided. In order to construct a Lyapunov function, due to the lack of time monotonicity property, we then derive some very useful and challenging estimates by a delicate analysis. Finally, with this Lyapunov function, we prove that the quenching rate is self-similar which is the same as the problem without the nonlocal term, except the constant limit depends on the solution itself.
Patterning in systems driven by nonlocal external forces.
Luneville, L; Mallick, K; Pontikis, V; Simeone, D
2016-11-01
This work focuses on systems displaying domain patterns resulting from competing external and internal dynamics. To this end, we introduce a Lyapunov functional capable of describing the steady states of systems subject to external forces, by adding nonlocal terms to the Landau Ginzburg free energy of the system. Thereby, we extend the existing methodology treating long-range order interactions, to the case of external nonlocal forces. By studying the quadratic term of this Lyapunov functional, we compute the phase diagram in the temperature versus external field and we determine all possible modulated phases (domain patterns) as a function of the external forces and the temperature. Finally, we investigate patterning in chemical reactive mixtures and binary mixtures under irradiation, and we show that the last case opens the path toward micro-structural engineering of materials.
Patterning in systems driven by nonlocal external forces
NASA Astrophysics Data System (ADS)
Luneville, L.; Mallick, K.; Pontikis, V.; Simeone, D.
2016-11-01
This work focuses on systems displaying domain patterns resulting from competing external and internal dynamics. To this end, we introduce a Lyapunov functional capable of describing the steady states of systems subject to external forces, by adding nonlocal terms to the Landau Ginzburg free energy of the system. Thereby, we extend the existing methodology treating long-range order interactions, to the case of external nonlocal forces. By studying the quadratic term of this Lyapunov functional, we compute the phase diagram in the temperature versus external field and we determine all possible modulated phases (domain patterns) as a function of the external forces and the temperature. Finally, we investigate patterning in chemical reactive mixtures and binary mixtures under irradiation, and we show that the last case opens the path toward micro-structural engineering of materials.
Li, Yongming; Sui, Shuai; Tong, Shaocheng
2017-02-01
This paper deals with the problem of adaptive fuzzy output feedback control for a class of stochastic nonlinear switched systems. The controlled system in this paper possesses unmeasured states, completely unknown nonlinear system functions, unmodeled dynamics, and arbitrary switchings. A state observer which does not depend on the switching signal is constructed to tackle the unmeasured states. Fuzzy logic systems are employed to identify the completely unknown nonlinear system functions. Based on the common Lyapunov stability theory and stochastic small-gain theorem, a new robust adaptive fuzzy backstepping stabilization control strategy is developed. The stability of the closed-loop system on input-state-practically stable in probability is proved. The simulation results are given to verify the efficiency of the proposed fuzzy adaptive control scheme.
Lyapunov exponents for one-dimensional aperiodic photonic bandgap structures
NASA Astrophysics Data System (ADS)
Kissel, Glen J.
2011-10-01
Existing in the "gray area" between perfectly periodic and purely randomized photonic bandgap structures are the socalled aperoidic structures whose layers are chosen according to some deterministic rule. We consider here a onedimensional photonic bandgap structure, a quarter-wave stack, with the layer thickness of one of the bilayers subject to being either thin or thick according to five deterministic sequence rules and binary random selection. To produce these aperiodic structures we examine the following sequences: Fibonacci, Thue-Morse, Period doubling, Rudin-Shapiro, as well as the triadic Cantor sequence. We model these structures numerically with a long chain (approximately 5,000,000) of transfer matrices, and then use the reliable algorithm of Wolf to calculate the (upper) Lyapunov exponent for the long product of matrices. The Lyapunov exponent is the statistically well-behaved variable used to characterize the Anderson localization effect (exponential confinement) when the layers are randomized, so its calculation allows us to more precisely compare the purely randomized structure with its aperiodic counterparts. It is found that the aperiodic photonic systems show much fine structure in their Lyapunov exponents as a function of frequency, and, in a number of cases, the exponents are quite obviously fractal.
Semenov, Mikhail A; Terkel, Dmitri A
2003-01-01
This paper analyses the convergence of evolutionary algorithms using a technique which is based on a stochastic Lyapunov function and developed within the martingale theory. This technique is used to investigate the convergence of a simple evolutionary algorithm with self-adaptation, which contains two types of parameters: fitness parameters, belonging to the domain of the objective function; and control parameters, responsible for the variation of fitness parameters. Although both parameters mutate randomly and independently, they converge to the "optimum" due to the direct (for fitness parameters) and indirect (for control parameters) selection. We show that the convergence velocity of the evolutionary algorithm with self-adaptation is asymptotically exponential, similar to the velocity of the optimal deterministic algorithm on the class of unimodal functions. Although some martingale inequalities have not be proved analytically, they have been numerically validated with 0.999 confidence using Monte-Carlo simulations.
NASA Astrophysics Data System (ADS)
Balint, Stefan; Balint, Agneta M.
2017-01-01
Different types of stabilities (global, local) and instabilities (global absolute, local convective) of the constant spatially developing 1-D gas flow are analyzed in the phase space of continuously differentiable functions, endowed with the usual algebraic operations and the topology generated by the uniform convergence on the real axis. For this purpose the Euler equations linearized at the constant flow are used. The Lyapunov stability analysis was presented in [1] and this paper is a continuation of [1].
A Lyapunov Function Based Remedial Action Screening Tool Using Real-Time Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitra, Joydeep; Ben-Idris, Mohammed; Faruque, Omar
This report summarizes the outcome of a research project that comprised the development of a Lyapunov function based remedial action screening tool using real-time data (L-RAS). The L-RAS is an advanced computational tool that is intended to assist system operators in making real-time redispatch decisions to preserve power grid stability. The tool relies on screening contingencies using a homotopy method based on Lyapunov functions to avoid, to the extent possible, the use of time domain simulations. This enables transient stability evaluation at real-time speed without the use of massively parallel computational resources. The project combined the following components. 1. Developmentmore » of a methodology for contingency screening using a homotopy method based on Lyapunov functions and real-time data. 2. Development of a methodology for recommending remedial actions based on the screening results. 3. Development of a visualization and operator interaction interface. 4. Testing of screening tool, validation of control actions, and demonstration of project outcomes on a representative real system simulated on a Real-Time Digital Simulator (RTDS) cluster. The project was led by Michigan State University (MSU), where the theoretical models including homotopy-based screening, trajectory correction using real-time data, and remedial action were developed and implemented in the form of research-grade software. Los Alamos National Laboratory (LANL) contributed to the development of energy margin sensitivity dynamics, which constituted a part of the remedial action portfolio. Florida State University (FSU) and Southern California Edison (SCE) developed a model of the SCE system that was implemented on FSU's RTDS cluster to simulate real-time data that was streamed over the internet to MSU where the L-RAS tool was executed and remedial actions were communicated back to FSU to execute stabilizing controls on the simulated system. LCG Consulting developed the visualization and operator interaction interface, based on specifications provided by MSU. The project was performed from October 2012 to December 2016, at the end of which the L-RAS tool, as described above, was completed and demonstrated. The project resulted in the following innovations and contributions: (a) the L-RAS software prototype, tested on a simulated system, vetted by utility personnel, and potentially ready for wider testing and commercialization; (b) an RTDS-based test bed that can be used for future research in the field; (c) a suite of breakthrough theoretical contributions to the field of power system stability and control; and (d) a new tool for visualization of power system stability margins. While detailed descriptions of the development and implementation of the various project components have been provided in the quarterly reports, this final report provides an overview of the complete project, and is demonstrated using public domain test systems commonly used in the literature. The SCE system, and demonstrations thereon, are not included in this report due to Critical Energy Infrastructure Information (CEII) restrictions.« less
Quantum synchronization in an optomechanical system based on Lyapunov control.
Li, Wenlin; Li, Chong; Song, Heshan
2016-06-01
We extend the concepts of quantum complete synchronization and phase synchronization, which were proposed in A. Mari et al., Phys. Rev. Lett. 111, 103605 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.103605, to more widespread quantum generalized synchronization. Generalized synchronization can be considered a necessary condition or a more flexible derivative of complete synchronization, and its criterion and synchronization measure are proposed and analyzed in this paper. As examples, we consider two typical generalized synchronizations in a designed optomechanical system. Unlike the effort to construct a special coupling synchronization system, we purposefully design extra control fields based on Lyapunov control theory. We find that the Lyapunov function can adapt to more flexible control objectives, which is more suitable for generalized synchronization control, and the control fields can be achieved simply with a time-variant voltage. Finally, the existence of quantum entanglement in different generalized synchronizations is also discussed.
NASA Astrophysics Data System (ADS)
Castellanos, Víctor; Castillo-Santos, Francisco Eduardo; Dela-Rosa, Miguel Angel; Loreto-Hernández, Iván
In this paper, we analyze the Hopf and Bautin bifurcation of a given system of differential equations, corresponding to a tritrophic food chain model with Holling functional response types III and IV for the predator and superpredator, respectively. We distinguish two cases, when the prey has linear or logistic growth. In both cases we guarantee the existence of a limit cycle bifurcating from an equilibrium point in the positive octant of ℝ3. In order to do so, for the Hopf bifurcation we compute explicitly the first Lyapunov coefficient, the transversality Hopf condition, and for the Bautin bifurcation we also compute the second Lyapunov coefficient and verify the regularity conditions.
Chaotic Bohmian trajectories for stationary states
NASA Astrophysics Data System (ADS)
Cesa, Alexandre; Martin, John; Struyve, Ward
2016-09-01
In Bohmian mechanics, the nodes of the wave function play an important role in the generation of chaos. However, so far, most of the attention has been on moving nodes; little is known about the possibility of chaos in the case of stationary nodes. We address this question by considering stationary states, which provide the simplest examples of wave functions with stationary nodes. We provide examples of stationary wave functions for which there is chaos, as demonstrated by numerical computations, for one particle moving in three spatial dimensions and for two and three entangled particles in two dimensions. Our conclusion is that the motion of the nodes is not necessary for the generation of chaos. What is important is the overall complexity of the wave function. That is, if the wave function, or rather its phase, has a complex spatial variation, it will lead to complex Bohmian trajectories and hence to chaos. Another aspect of our work concerns the average Lyapunov exponent, which quantifies the overall amount of chaos. Since it is very hard to evaluate the average Lyapunov exponent analytically, which is often computed numerically, it is useful to have simple quantities that agree well with the average Lyapunov exponent. We investigate possible correlations with quantities such as the participation ratio and different measures of entanglement, for different systems and different families of stationary wave functions. We find that these quantities often tend to correlate to the amount of chaos. However, the correlation is not perfect, because, in particular, these measures do not depend on the form of the basis states used to expand the wave function, while the amount of chaos does.
Continuous analog of multiplicative algebraic reconstruction technique for computed tomography
NASA Astrophysics Data System (ADS)
Tateishi, Kiyoko; Yamaguchi, Yusaku; Abou Al-Ola, Omar M.; Kojima, Takeshi; Yoshinaga, Tetsuya
2016-03-01
We propose a hybrid dynamical system as a continuous analog to the block-iterative multiplicative algebraic reconstruction technique (BI-MART), which is a well-known iterative image reconstruction algorithm for computed tomography. The hybrid system is described by a switched nonlinear system with a piecewise smooth vector field or differential equation and, for consistent inverse problems, the convergence of non-negatively constrained solutions to a globally stable equilibrium is guaranteed by the Lyapunov theorem. Namely, we can prove theoretically that a weighted Kullback-Leibler divergence measure can be a common Lyapunov function for the switched system. We show that discretizing the differential equation by using the first-order approximation (Euler's method) based on the geometric multiplicative calculus leads to the same iterative formula of the BI-MART with the scaling parameter as a time-step of numerical discretization. The present paper is the first to reveal that a kind of iterative image reconstruction algorithm is constructed by the discretization of a continuous-time dynamical system for solving tomographic inverse problems. Iterative algorithms with not only the Euler method but also the Runge-Kutta methods of lower-orders applied for discretizing the continuous-time system can be used for image reconstruction. A numerical example showing the characteristics of the discretized iterative methods is presented.
Construction of energy-stable projection-based reduced order models
Kalashnikova, Irina; Barone, Matthew F.; Arunajatesan, Srinivasan; ...
2014-12-15
Our paper aims to unify and extend several approaches for building stable projection-based reduced order models (ROMs) using the energy method and the concept of “energy-stability”. Attention is focused on linear time-invariant (LTI) systems. First, an approach for building energy stable Galerkin ROMs for linear hyperbolic or incompletely parabolic systems of partial differential equations (PDEs) using continuous projection is proposed. The key idea is to apply to the system a transformation induced by the Lyapunov function for the system, and to build the ROM in the transformed variables. The result of this procedure will be a ROM that is energy-stablemore » for any choice of reduced basis. It is shown that, for many PDE systems, the desired transformation is induced by a special inner product, termed the “symmetry inner product”. Next, attention is turned to building energy-stable ROMs via discrete projection. A discrete counterpart of the continuous symmetry inner product, termed the “Lyapunov inner product”, is derived. Moreover, it is shown that the Lyapunov inner product can be computed in a black-box fashion for a stable LTI system ari sing from the discretization of a system of PDEs in space. Projection in this inner product guarantees a ROM that is energy-stable, again for any choice of reduced basis. Connections between the Lyapunov inner product and the inner product induced by the balanced truncation algorithm are made. We also made comparisons between the symmetry inner product and the Lyapunov inner product. Performance of ROMs constructed using these inner products is evaluated on several benchmark test cases.« less
Active Nonlinear Feedback Control for Aerospace Systems. Processor
1990-12-01
relating to the role of nonlinearities in feedback control. These area include Lyapunov function theory, chaotic controllers, statistical energy analysis , phase robustness, and optimal nonlinear control theory.
Lyapunov Orbits in the Jupiter System Using Electrodynamic Tethers
NASA Technical Reports Server (NTRS)
Bokelmann, Kevin; Russell, Ryan P.; Lantoine, Gregory
2013-01-01
Various researchers have proposed the use of electrodynamic tethers for power generation and capture from interplanetary transfers. The effect of tether forces on periodic orbits in Jupiter-satellite systems are investigated. A perturbation force is added to the restricted three-body problem model and a series of simplifications allows development of a conservative system that retains the Jacobi integral. Expressions are developed to find modified locations of equilibrium positions. Modified families of Lyapunov orbits are generated as functions of tether size and Jacobi integral. Zero velocity curves and stability analyses are used to evaluate the dynamical properties of tether-modified orbits.
Global stability of plane Couette flow beyond the energy stability limit
NASA Astrophysics Data System (ADS)
Fuentes, Federico; Goluskin, David
2017-11-01
This talk will present computations verifying that the laminar state of plane Couette flow is nonlinearly stable to all perturbations. The Reynolds numbers up to which this globally stability is verified are larger than those at which stability can be proven by the energy method, which is the typical method for demonstrating nonlinear stability of a fluid flow. This improvement is achieved by constructing Lyapunov functions that are more general than the energy. These functions are not restricted to being quadratic, and they are allowed to depend explicitly on the spectrum of the velocity field in the eigenbasis of the energy stability operator. The optimal choice of such a Lyapunov function is a convex optimization problem, and it can be constructed with computer assistance by solving a semidefinite program. This general method will be described in a companion talk by David Goluskin; the present talk focuses on its application to plane Couette flow.
NASA Astrophysics Data System (ADS)
Chen, Chao; Liu, Qian; Zhao, Jun
2018-01-01
This paper studies the problem of stabilisation of switched nonlinear systems with output and input constraints. We propose a recursive approach to solve this issue. None of the subsystems are assumed to be stablisable while the switched system is stabilised by dual design of controllers for subsystems and a switching law. When only dealing with bounded input, we provide nested switching controllers using an extended backstepping procedure. If both input and output constraints are taken into consideration, a Barrier Lyapunov Function is employed during operation to construct multiple Lyapunov functions for switched nonlinear system in the backstepping procedure. As a practical example, the control design of an equilibrium manifold expansion model of aero-engine is given to demonstrate the effectiveness of the proposed design method.
Linear and nonlinear stability criteria for compressible MHD flows in a gravitational field
NASA Astrophysics Data System (ADS)
Moawad, S. M.; Moawad
2013-10-01
The equilibrium and stability properties of ideal magnetohydrodynamics (MHD) of compressible flow in a gravitational field with a translational symmetry are investigated. Variational principles for the steady-state equations are formulated. The MHD equilibrium equations are obtained as critical points of a conserved Lyapunov functional. This functional consists of the sum of the total energy, the mass, the circulation along field lines (cross helicity), the momentum, and the magnetic helicity. In the unperturbed case, the equilibrium states satisfy a nonlinear second-order partial differential equation (PDE) associated with hydrodynamic Bernoulli law. The PDE can be an elliptic or a parabolic equation depending on increasing the poloidal flow speed. Linear and nonlinear Lyapunov stability conditions under translational symmetric perturbations are established for the equilibrium states.
Scilab software package for the study of dynamical systems
NASA Astrophysics Data System (ADS)
Bordeianu, C. C.; Beşliu, C.; Jipa, Al.; Felea, D.; Grossu, I. V.
2008-05-01
This work presents a new software package for the study of chaotic flows and maps. The codes were written using Scilab, a software package for numerical computations providing a powerful open computing environment for engineering and scientific applications. It was found that Scilab provides various functions for ordinary differential equation solving, Fast Fourier Transform, autocorrelation, and excellent 2D and 3D graphical capabilities. The chaotic behaviors of the nonlinear dynamics systems were analyzed using phase-space maps, autocorrelation functions, power spectra, Lyapunov exponents and Kolmogorov-Sinai entropy. Various well known examples are implemented, with the capability of the users inserting their own ODE. Program summaryProgram title: Chaos Catalogue identifier: AEAP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAP_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 885 No. of bytes in distributed program, including test data, etc.: 5925 Distribution format: tar.gz Programming language: Scilab 3.1.1 Computer: PC-compatible running Scilab on MS Windows or Linux Operating system: Windows XP, Linux RAM: below 100 Megabytes Classification: 6.2 Nature of problem: Any physical model containing linear or nonlinear ordinary differential equations (ODE). Solution method: Numerical solving of ordinary differential equations. The chaotic behavior of the nonlinear dynamical system is analyzed using Poincaré sections, phase-space maps, autocorrelation functions, power spectra, Lyapunov exponents and Kolmogorov-Sinai entropies. Restrictions: The package routines are normally able to handle ODE systems of high orders (up to order twelve and possibly higher), depending on the nature of the problem. Running time: 10 to 20 seconds for problems that do not involve Lyapunov exponents calculation; 60 to 1000 seconds for problems that involve high orders ODE and Lyapunov exponents calculation.
Novel neural control for a class of uncertain pure-feedback systems.
Shen, Qikun; Shi, Peng; Zhang, Tianping; Lim, Cheng-Chew
2014-04-01
This paper is concerned with the problem of adaptive neural tracking control for a class of uncertain pure-feedback nonlinear systems. Using the implicit function theorem and backstepping technique, a practical robust adaptive neural control scheme is proposed to guarantee that the tracking error converges to an adjusted neighborhood of the origin by choosing appropriate design parameters. In contrast to conventional Lyapunov-based design techniques, an alternative Lyapunov function is constructed for the development of control law and learning algorithms. Differing from the existing results in the literature, the control scheme does not need to compute the derivatives of virtual control signals at each step in backstepping design procedures. Furthermore, the scheme requires the desired trajectory and its first derivative rather than its first n derivatives. In addition, the useful property of the basis function of the radial basis function, which will be used in control design, is explored. Simulation results illustrate the effectiveness of the proposed techniques.
Nonlinear stability and control of gliding vehicles
NASA Astrophysics Data System (ADS)
Bhatta, Pradeep
In this thesis we use nonlinear systems analysis to study dynamics and design control solutions for vehicles subject to hydrodynamic or aerodynamic forcing. Application of energy-based methods for such vehicles is challenging due to the presence of energy-conserving lift and side forces. We study how the lift force determines the geometric structure of vehicle dynamics. A Hamiltonian formulation of the integrable phugoid-mode equations provides a Lyapunov function candidate, which is used throughout the thesis for deriving equilibrium stability results and designing stabilizing control laws. A strong motivation for our work is the emergence of underwater gliders as an important observation platform for oceanography. Underwater gliders rely on buoyancy regulation and internal mass redistribution for motion control. These vehicles are attractive because they are designed to operate autonomously and continuously for several weeks. The results presented in this thesis contribute toward the development of systematic control design procedures for extending the range of provably stable maneuvers of the underwater glider. As the first major contribution we derive conditions for nonlinear stability of longitudinal steady gliding motions using singular perturbation theory. Stability is proved using a composite Lyapunov function, composed of individual Lyapunov functions that prove stability of rotational and translational subsystem equilibria. We use the composite Lyapunov function to design control laws for stabilizing desired relative equilibria in different actuation configurations for the underwater glider. We propose an approximate trajectory tracking method for an aircraft model. Our method uses exponential stability results of controllable steady gliding motions, derived by interpreting the aircraft dynamics as an interconnected system of rotational and translational subsystems. We prove bounded position error for tracking prescribed, straight-line trajectories, and demonstrate good performance in tracking unsteady trajectories in the longitudinal plane. We present all possible relative equilibrium motions for a rigid body moving in a fluid. Motion along a circular helix is a practical relative equilibrium for an underwater glider. We present a study of how internal mass distribution and buoyancy of the underwater glider influence the size of the steady circular helix, and the effect of a vehicle bottom-heaviness parameter on its stability.
Rogue waves driven by polarization instabilities in a long ring fiber oscillator
NASA Astrophysics Data System (ADS)
Kolpakov, S. A.; Kbashi, Hani; Sergeyev, Sergey
2017-05-01
We present an experimental and theoretical results of a study of a complex nonlinear polarization dynamics in a passively self-mode-locked erbium-doped fiber oscillator implemented in a ring configuration and operating near lasing threshold. The theoretical model consists of seven coupled non-linear equations and takes into account both orthogonal states of polarizations in the fiber. The experiment confirmed the existence of seven eigenfrequencies, predicted by the model due to polarization instability near lasing threshold. By adjusting the state of polarization of the pump and in-cavity birefringence we changed some eigenfrequencies from being different (non-degenerate state) to matching (degenerate state). The non-degenerate states of oscillator lead to the L-shaped probability distribution function and true rogue wave regime with a positive dominant Lyapunov exponent value between 1.4 and 2.6. Small detuning from partially degenerate case also leads to L-shaped probability distribution function with the tail trespassing eight standard deviations threshold, giving periodic patterns of pulses along with positive dominant Lyapunov exponent of a filtered signal between 0.6 and 3.2. The partial degeneration, in turn, guides to quasi-symmetric distribution and the value of dominant Lyapunov exponent of 42 which is a typical value for systems with a source of the strongly nonhomogeneous external noise.
NASA Astrophysics Data System (ADS)
Grzybowski, J. M. V.; Macau, E. E. N.; Yoneyama, T.
2017-05-01
This paper presents a self-contained framework for the stability assessment of isochronal synchronization in networks of chaotic and limit-cycle oscillators. The results were based on the Lyapunov-Krasovskii theorem and they establish a sufficient condition for local synchronization stability of as a function of the system and network parameters. With this in mind, a network of mutually delay-coupled oscillators subject to direct self-coupling is considered and then the resulting error equations are block-diagonalized for the purpose of studying their stability. These error equations are evaluated by means of analytical stability results derived from the Lyapunov-Krasovskii theorem. The proposed approach is shown to be a feasible option for the investigation of local stability of isochronal synchronization for a variety of oscillators coupled through linear functions of the state variables under a given undirected graph structure. This ultimately permits the systematic identification of stability regions within the high-dimensionality of the network parameter space. Examples of applications of the results to a number of networks of delay-coupled chaotic and limit-cycle oscillators are provided, such as Lorenz, Rössler, Cubic Chua's circuit, Van der Pol oscillator and the Hindmarsh-Rose neuron.
A new neural network model for solving random interval linear programming problems.
Arjmandzadeh, Ziba; Safi, Mohammadreza; Nazemi, Alireza
2017-05-01
This paper presents a neural network model for solving random interval linear programming problems. The original problem involving random interval variable coefficients is first transformed into an equivalent convex second order cone programming problem. A neural network model is then constructed for solving the obtained convex second order cone problem. Employing Lyapunov function approach, it is also shown that the proposed neural network model is stable in the sense of Lyapunov and it is globally convergent to an exact satisfactory solution of the original problem. Several illustrative examples are solved in support of this technique. Copyright © 2017 Elsevier Ltd. All rights reserved.
Exponential Boundary Observers for Pressurized Water Pipe
NASA Astrophysics Data System (ADS)
Hermine Som, Idellette Judith; Cocquempot, Vincent; Aitouche, Abdel
2015-11-01
This paper deals with state estimation on a pressurized water pipe modeled by nonlinear coupled distributed hyperbolic equations for non-conservative laws with three known boundary measures. Our objective is to estimate the fourth boundary variable, which will be useful for leakage detection. Two approaches are studied. Firstly, the distributed hyperbolic equations are discretized through a finite-difference scheme. By using the Lipschitz property of the nonlinear term and a Lyapunov function, the exponential stability of the estimation error is proven by solving Linear Matrix Inequalities (LMIs). Secondly, the distributed hyperbolic system is preserved for state estimation. After state transformations, a Luenberger-like PDE boundary observer based on backstepping mathematical tools is proposed. An exponential Lyapunov function is used to prove the stability of the resulted estimation error. The performance of the two observers are shown on a water pipe prototype simulated example.
Adaptive Fuzzy Output Feedback Control for Switched Nonlinear Systems With Unmodeled Dynamics.
Tong, Shaocheng; Li, Yongming
2017-02-01
This paper investigates a robust adaptive fuzzy control stabilization problem for a class of uncertain nonlinear systems with arbitrary switching signals that use an observer-based output feedback scheme. The considered switched nonlinear systems possess the unstructured uncertainties, unmodeled dynamics, and without requiring the states being available for measurement. A state observer which is independent of switching signals is designed to solve the problem of unmeasured states. Fuzzy logic systems are used to identify unknown lumped nonlinear functions so that the problem of unstructured uncertainties can be solved. By combining adaptive backstepping design principle and small-gain approach, a novel robust adaptive fuzzy output feedback stabilization control approach is developed. The stability of the closed-loop system is proved via the common Lyapunov function theory and small-gain theorem. Finally, the simulation results are given to demonstrate the validity and performance of the proposed control strategy.
Beaudette, Shawn M; Howarth, Samuel J; Graham, Ryan B; Brown, Stephen H M
2016-10-01
Several different state-space reconstruction methods have been employed to assess the local dynamic stability (LDS) of a 3D kinematic system. One common method is to use a Euclidean norm (N) transformation of three orthogonal x, y, and z time-series' followed by the calculation of the maximum finite-time Lyapunov exponent (λmax) from the resultant N waveform (using a time-delayed state space reconstruction technique). By essentially acting as a weighted average, N has been suggested to account for simultaneous expansion and contraction along separate degrees of freedom within a 3D system (e.g. the coupling of dynamic movements between orthogonal planes). However, when estimating LDS using N, non-linear transformations inherent within the calculation of N should be accounted for. Results demonstrate that the use of N on 3D time-series data with arbitrary magnitudes of relative bias and zero-crossings cause the introduction of error in estimates of λmax obtained through N. To develop a standard for the analysis of 3D dynamic kinematic waveforms, we suggest that all dimensions of a 3D signal be independently shifted to avoid the incidence of zero-crossings prior to the calculation of N and subsequent estimation of LDS through the use of λmax. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
He, Jianbin; Yu, Simin; Cai, Jianping
2016-12-01
Lyapunov exponent is an important index for describing chaotic systems behavior, and the largest Lyapunov exponent can be used to determine whether a system is chaotic or not. For discrete-time dynamical systems, the Lyapunov exponents are calculated by an eigenvalue method. In theory, according to eigenvalue method, the more accurate calculations of Lyapunov exponent can be obtained with the increment of iterations, and the limits also exist. However, due to the finite precision of computer and other reasons, the results will be numeric overflow, unrecognized, or inaccurate, which can be stated as follows: (1) The iterations cannot be too large, otherwise, the simulation result will appear as an error message of NaN or Inf; (2) If the error message of NaN or Inf does not appear, then with the increment of iterations, all Lyapunov exponents will get close to the largest Lyapunov exponent, which leads to inaccurate calculation results; (3) From the viewpoint of numerical calculation, obviously, if the iterations are too small, then the results are also inaccurate. Based on the analysis of Lyapunov-exponent calculation in discrete-time systems, this paper investigates two improved algorithms via QR orthogonal decomposition and SVD orthogonal decomposition approaches so as to solve the above-mentioned problems. Finally, some examples are given to illustrate the feasibility and effectiveness of the improved algorithms.
Aranda-Escolástico, Ernesto; Guinaldo, María; Gordillo, Francisco; Dormido, Sebastián
2016-11-01
In this paper, periodic event-triggered controllers are proposed for the rotary inverted pendulum. The control strategy is divided in two steps: swing-up and stabilization. In both cases, the system is sampled periodically but the control actions are only computed at certain instances of time (based on events), which are a subset of the sampling times. For the stabilization control, the asymptotic stability is guaranteed applying the Lyapunov-Razumikhin theorem for systems with delays. This result is applicable to general linear systems and not only to the inverted pendulum. For the swing-up control, a trigger function is provided from the derivative of the Lyapunov function for the swing-up control law. Experimental results show a significant improvement with respect to periodic control in the number of control actions. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
ul Amin, Rooh; Aijun, Li; Khan, Muhammad Umer; Shamshirband, Shahaboddin; Kamsin, Amirrudin
2017-01-01
In this paper, an adaptive trajectory tracking controller based on extended normalized radial basis function network (ENRBFN) is proposed for 3-degree-of-freedom four rotor hover vehicle subjected to external disturbance i.e. wind turbulence. Mathematical model of four rotor hover system is developed using equations of motions and a new computational intelligence based technique ENRBFN is introduced to approximate the unmodeled dynamics of the hover vehicle. The adaptive controller based on the Lyapunov stability approach is designed to achieve tracking of the desired attitude angles of four rotor hover vehicle in the presence of wind turbulence. The adaptive weight update based on the Levenberg-Marquardt algorithm is used to avoid weight drift in case the system is exposed to external disturbances. The closed-loop system stability is also analyzed using Lyapunov stability theory. Simulations and experimental results are included to validate the effectiveness of the proposed control scheme.
Synchronization Control of Neural Networks With State-Dependent Coefficient Matrices.
Zhang, Junfeng; Zhao, Xudong; Huang, Jun
2016-11-01
This brief is concerned with synchronization control of a class of neural networks with state-dependent coefficient matrices. Being different from the existing drive-response neural networks in the literature, a novel model of drive-response neural networks is established. The concepts of uniformly ultimately bounded (UUB) synchronization and convex hull Lyapunov function are introduced. Then, by using the convex hull Lyapunov function approach, the UUB synchronization design of the drive-response neural networks is proposed, and a delay-independent control law guaranteeing the bounded synchronization of the neural networks is constructed. All present conditions are formulated in terms of bilinear matrix inequalities. By comparison, it is shown that the neural networks obtained in this brief are less conservative than those ones in the literature, and the bounded synchronization is suitable for the novel drive-response neural networks. Finally, an illustrative example is given to verify the validity of the obtained results.
NASA Astrophysics Data System (ADS)
Zhu, Baolong; Zhang, Zhiping; Zhou, Ding; Ma, Jie; Li, Shunli
2017-08-01
This paper investigates the H∞ control problem of the attitude stabilisation of a rigid spacecraft with external disturbances using prediction-based sampled-data control strategy. Aiming to achieve a 'virtual' closed-loop system, a type of parameterised sampled-data controller is designed by introducing a prediction mechanism. The resultant closed-loop system is equivalent to a hybrid system featured by a continuous-time and an impulsive differential system. By using a time-varying Lyapunov functional, a generalised bounded real lemma (GBRL) is first established for a kind of impulsive differential system. Based on this GBRL and Lyapunov functional approach, a sufficient condition is derived to guarantee the closed-loop system to be asymptotically stable and to achieve a prescribed H∞ performance. In addition, the controller parameter tuning is cast into a convex optimisation problem. Simulation and comparative results are provided to illustrate the effectiveness of the developed control scheme.
Dwell time-based stabilisation of switched delay systems using free-weighting matrices
NASA Astrophysics Data System (ADS)
Koru, Ahmet Taha; Delibaşı, Akın; Özbay, Hitay
2018-01-01
In this paper, we present a quasi-convex optimisation method to minimise an upper bound of the dwell time for stability of switched delay systems. Piecewise Lyapunov-Krasovskii functionals are introduced and the upper bound for the derivative of Lyapunov functionals is estimated by free-weighting matrices method to investigate non-switching stability of each candidate subsystems. Then, a sufficient condition for the dwell time is derived to guarantee the asymptotic stability of the switched delay system. Once these conditions are represented by a set of linear matrix inequalities , dwell time optimisation problem can be formulated as a standard quasi-convex optimisation problem. Numerical examples are given to illustrate the improvements over previously obtained dwell time bounds. Using the results obtained in the stability case, we present a nonlinear minimisation algorithm to synthesise the dwell time minimiser controllers. The algorithm solves the problem with successive linearisation of nonlinear conditions.
[Cognitive advantages of the third age: a neural network model of brain aging].
Karpenko, M P; Kachalova, L M; Budilova, E V; Terekhin, A T
2009-01-01
We consider a neural network model of age-related cognitive changes in aging brain based on Hopfield network with a sigmoid function of neuron activation. Age is included in the activation function as a parameter in the form of exponential rate denominator, which makes it possible to take into account the weakening of interneuronal links really observed in the aging brain. Analysis of properties of the Lyapunov function associated with the network shows that, with increasing parameter of age, its relief becomes smoother and the number of local minima (network attractors) decreases. As a result, the network gets less frequently stuck in the nearest local minima of the Lyapunov function and reaches a global minimum corresponding to the most effective solution of the cognitive task. It is reasonable to assume that similar changes really occur in the aging brain. Phenomenologically, these changes can be manifested as emergence in aged people of a cognitive quality such as wisdom i.e. ability to find optimal decisions in difficult controversial situations, to distract from secondary aspects and to see the problem as a whole.
Relativistic chaos is coordinate invariant.
Motter, Adilson E
2003-12-05
The noninvariance of Lyapunov exponents in general relativity has led to the conclusion that chaos depends on the choice of the space-time coordinates. Strikingly, we uncover the transformation laws of Lyapunov exponents under general space-time transformations and we find that chaos, as characterized by positive Lyapunov exponents, is coordinate invariant. As a result, the previous conclusion regarding the noninvariance of chaos in cosmology, a major claim about chaos in general relativity, necessarily involves the violation of hypotheses required for a proper definition of the Lyapunov exponents.
Scalable analysis of nonlinear systems using convex optimization
NASA Astrophysics Data System (ADS)
Papachristodoulou, Antonis
In this thesis, we investigate how convex optimization can be used to analyze different classes of nonlinear systems at various scales algorithmically. The methodology is based on the construction of appropriate Lyapunov-type certificates using sum of squares techniques. After a brief introduction on the mathematical tools that we will be using, we turn our attention to robust stability and performance analysis of systems described by Ordinary Differential Equations. A general framework for constrained systems analysis is developed, under which stability of systems with polynomial, non-polynomial vector fields and switching systems, as well estimating the region of attraction and the L2 gain can be treated in a unified manner. We apply our results to examples from biology and aerospace. We then consider systems described by Functional Differential Equations (FDEs), i.e., time-delay systems. Their main characteristic is that they are infinite dimensional, which complicates their analysis. We first show how the complete Lyapunov-Krasovskii functional can be constructed algorithmically for linear time-delay systems. Then, we concentrate on delay-independent and delay-dependent stability analysis of nonlinear FDEs using sum of squares techniques. An example from ecology is given. The scalable stability analysis of congestion control algorithms for the Internet is investigated next. The models we use result in an arbitrary interconnection of FDE subsystems, for which we require that stability holds for arbitrary delays, network topologies and link capacities. Through a constructive proof, we develop a Lyapunov functional for FAST---a recently developed network congestion control scheme---so that the Lyapunov stability properties scale with the system size. We also show how other network congestion control schemes can be analyzed in the same way. Finally, we concentrate on systems described by Partial Differential Equations. We show that axially constant perturbations of the Navier-Stokes equations for Hagen-Poiseuille flow are globally stable, even though the background noise is amplified as R3 where R is the Reynolds number, giving a 'robust yet fragile' interpretation. We also propose a sum of squares methodology for the analysis of systems described by parabolic PDEs. We conclude this work with an account for future research.
NASA Astrophysics Data System (ADS)
Ataei-Esfahani, Armin
In this dissertation, we present algorithmic procedures for sum-of-squares based stability analysis and control design for uncertain nonlinear systems. In particular, we consider the case of robust aircraft control design for a hypersonic aircraft model subject to parametric uncertainties in its aerodynamic coefficients. In recent years, Sum-of-Squares (SOS) method has attracted increasing interest as a new approach for stability analysis and controller design of nonlinear dynamic systems. Through the application of SOS method, one can describe a stability analysis or control design problem as a convex optimization problem, which can efficiently be solved using Semidefinite Programming (SDP) solvers. For nominal systems, the SOS method can provide a reliable and fast approach for stability analysis and control design for low-order systems defined over the space of relatively low-degree polynomials. However, The SOS method is not well-suited for control problems relating to uncertain systems, specially those with relatively high number of uncertainties or those with non-affine uncertainty structure. In order to avoid issues relating to the increased complexity of the SOS problems for uncertain system, we present an algorithm that can be used to transform an SOS problem with uncertainties into a LMI problem with uncertainties. A new Probabilistic Ellipsoid Algorithm (PEA) is given to solve the robust LMI problem, which can guarantee the feasibility of a given solution candidate with an a-priori fixed probability of violation and with a fixed confidence level. We also introduce two approaches to approximate the robust region of attraction (RROA) for uncertain nonlinear systems with non-affine dependence on uncertainties. The first approach is based on a combination of PEA and SOS method and searches for a common Lyapunov function, while the second approach is based on the generalized Polynomial Chaos (gPC) expansion theorem combined with the SOS method and searches for parameter-dependent Lyapunov functions. The control design problem is investigated through a case study of a hypersonic aircraft model with parametric uncertainties. Through time-scale decomposition and a series of function approximations, the complexity of the aircraft model is reduced to fall within the capability of SDP solvers. The control design problem is then formulated as a convex problem using the dual of the Lyapunov theorem. A nonlinear robust controller is searched using the combined PEA/SOS method. The response of the uncertain aircraft model is evaluated for two sets of pilot commands. As the simulation results show, the aircraft remains stable under up to 50% uncertainty in aerodynamic coefficients and can follow the pilot commands.
Immortal homogeneous Ricci flows
NASA Astrophysics Data System (ADS)
Böhm, Christoph; Lafuente, Ramiro A.
2018-05-01
We show that for an immortal homogeneous Ricci flow solution any sequence of parabolic blow-downs subconverges to a homogeneous expanding Ricci soliton. This is established by constructing a new Lyapunov function based on curvature estimates which come from real geometric invariant theory.
Ghosh, Sayan; Das, Swagatam; Vasilakos, Athanasios V; Suresh, Kaushik
2012-02-01
Differential evolution (DE) is arguably one of the most powerful stochastic real-parameter optimization algorithms of current interest. Since its inception in the mid 1990s, DE has been finding many successful applications in real-world optimization problems from diverse domains of science and engineering. This paper takes a first significant step toward the convergence analysis of a canonical DE (DE/rand/1/bin) algorithm. It first deduces a time-recursive relationship for the probability density function (PDF) of the trial solutions, taking into consideration the DE-type mutation, crossover, and selection mechanisms. Then, by applying the concepts of Lyapunov stability theorems, it shows that as time approaches infinity, the PDF of the trial solutions concentrates narrowly around the global optimum of the objective function, assuming the shape of a Dirac delta distribution. Asymptotic convergence behavior of the population PDF is established by constructing a Lyapunov functional based on the PDF and showing that it monotonically decreases with time. The analysis is applicable to a class of continuous and real-valued objective functions that possesses a unique global optimum (but may have multiple local optima). Theoretical results have been substantiated with relevant computer simulations.
On the Nonlinear Stability of Plane Parallel Shear Flow in a Coplanar Magnetic Field
NASA Astrophysics Data System (ADS)
Xu, Lanxi; Lan, Wanli
2017-12-01
Lyapunov direct method has been used to study the nonlinear stability of laminar flow between two parallel planes in the presence of a coplanar magnetic field for streamwise perturbations with stress-free boundary planes. Two Lyapunov functions are defined. By means of the first, it is proved that the transverse components of the perturbations decay unconditionally and asymptotically to zero for all Reynolds numbers and magnetic Reynolds numbers. By means of the second, it is showed that the other components of the perturbations decay conditionally and exponentially to zero for all Reynolds numbers and the magnetic Reynolds numbers below π ^2/2M, where M is the maximum of the absolute value of the velocity field of the laminar flow.
Fault detection for discrete-time LPV systems using interval observers
NASA Astrophysics Data System (ADS)
Zhang, Zhi-Hui; Yang, Guang-Hong
2017-10-01
This paper is concerned with the fault detection (FD) problem for discrete-time linear parameter-varying systems subject to bounded disturbances. A parameter-dependent FD interval observer is designed based on parameter-dependent Lyapunov and slack matrices. The design method is presented by translating the parameter-dependent linear matrix inequalities (LMIs) into finite ones. In contrast to the existing results based on parameter-independent and diagonal Lyapunov matrices, the derived disturbance attenuation, fault sensitivity and nonnegative conditions lead to less conservative LMI characterisations. Furthermore, without the need to design the residual evaluation functions and thresholds, the residual intervals generated by the interval observers are used directly for FD decision. Finally, simulation results are presented for showing the effectiveness and superiority of the proposed method.
On nodes and modes in resting state fMRI
Friston, Karl J.; Kahan, Joshua; Razi, Adeel; Stephan, Klaas Enno; Sporns, Olaf
2014-01-01
This paper examines intrinsic brain networks in light of recent developments in the characterisation of resting state fMRI timeseries — and simulations of neuronal fluctuations based upon the connectome. Its particular focus is on patterns or modes of distributed activity that underlie functional connectivity. We first demonstrate that the eigenmodes of functional connectivity – or covariance among regions or nodes – are the same as the eigenmodes of the underlying effective connectivity, provided we limit ourselves to symmetrical connections. This symmetry constraint is motivated by appealing to proximity graphs based upon multidimensional scaling. Crucially, the principal modes of functional connectivity correspond to the dynamically unstable modes of effective connectivity that decay slowly and show long term memory. Technically, these modes have small negative Lyapunov exponents that approach zero from below. Interestingly, the superposition of modes – whose exponents are sampled from a power law distribution – produces classical 1/f (scale free) spectra. We conjecture that the emergence of dynamical instability – that underlies intrinsic brain networks – is inevitable in any system that is separated from external states by a Markov blanket. This conjecture appeals to a free energy formulation of nonequilibrium steady-state dynamics. The common theme that emerges from these theoretical considerations is that endogenous fluctuations are dominated by a small number of dynamically unstable modes. We use this as the basis of a dynamic causal model (DCM) of resting state fluctuations — as measured in terms of their complex cross spectra. In this model, effective connectivity is parameterised in terms of eigenmodes and their Lyapunov exponents — that can also be interpreted as locations in a multidimensional scaling space. Model inversion provides not only estimates of edges or connectivity but also the topography and dimensionality of the underlying scaling space. Here, we focus on conceptual issues with simulated fMRI data and provide an illustrative application using an empirical multi-region timeseries. PMID:24862075
Algebraic methods for the solution of some linear matrix equations
NASA Technical Reports Server (NTRS)
Djaferis, T. E.; Mitter, S. K.
1979-01-01
The characterization of polynomials whose zeros lie in certain algebraic domains (and the unification of the ideas of Hermite and Lyapunov) is the basis for developing finite algorithms for the solution of linear matrix equations. Particular attention is given to equations PA + A'P = Q (the Lyapunov equation) and P - A'PA = Q the (discrete Lyapunov equation). The Lyapunov equation appears in several areas of control theory such as stability theory, optimal control (evaluation of quadratic integrals), stochastic control (evaluation of covariance matrices) and in the solution of the algebraic Riccati equation using Newton's method.
Zhang, Xian-Ming; Han, Qing-Long; Ge, Xiaohua
2017-09-22
This paper is concerned with the problem of robust H∞ control of an uncertain discrete-time Takagi-Sugeno fuzzy system with an interval-like time-varying delay. A novel finite-sum inequality-based method is proposed to provide a tighter estimation on the forward difference of certain Lyapunov functional, leading to a less conservative result. First, an auxiliary vector function is used to establish two finite-sum inequalities, which can produce tighter bounds for the finite-sum terms appearing in the forward difference of the Lyapunov functional. Second, a matrix-based quadratic convex approach is employed to equivalently convert the original matrix inequality including a quadratic polynomial on the time-varying delay into two boundary matrix inequalities, which delivers a less conservative bounded real lemma (BRL) for the resultant closed-loop system. Third, based on the BRL, a novel sufficient condition on the existence of suitable robust H∞ fuzzy controllers is derived. Finally, two numerical examples and a computer-simulated truck-trailer system are provided to show the effectiveness of the obtained results.
Guaranteed cost control of polynomial fuzzy systems via a sum of squares approach.
Tanaka, Kazuo; Ohtake, Hiroshi; Wang, Hua O
2009-04-01
This paper presents the guaranteed cost control of polynomial fuzzy systems via a sum of squares (SOS) approach. First, we present a polynomial fuzzy model and controller that are more general representations of the well-known Takagi-Sugeno (T-S) fuzzy model and controller, respectively. Second, we derive a guaranteed cost control design condition based on polynomial Lyapunov functions. Hence, the design approach discussed in this paper is more general than the existing LMI approaches (to T-S fuzzy control system designs) based on quadratic Lyapunov functions. The design condition realizes a guaranteed cost control by minimizing the upper bound of a given performance function. In addition, the design condition in the proposed approach can be represented in terms of SOS and is numerically (partially symbolically) solved via the recent developed SOSTOOLS. To illustrate the validity of the design approach, two design examples are provided. The first example deals with a complicated nonlinear system. The second example presents micro helicopter control. Both the examples show that our approach provides more extensive design results for the existing LMI approach.
Li, Da-Peng; Li, Dong-Juan; Liu, Yan-Jun; Tong, Shaocheng; Chen, C L Philip
2017-10-01
This paper deals with the tracking control problem for a class of nonlinear multiple input multiple output unknown time-varying delay systems with full state constraints. To overcome the challenges which cause by the appearances of the unknown time-varying delays and full-state constraints simultaneously in the systems, an adaptive control method is presented for such systems for the first time. The appropriate Lyapunov-Krasovskii functions and a separation technique are employed to eliminate the effect of unknown time-varying delays. The barrier Lyapunov functions are employed to prevent the violation of the full state constraints. The singular problems are dealt with by introducing the signal function. Finally, it is proven that the proposed method can both guarantee the good tracking performance of the systems output, all states are remained in the constrained interval and all the closed-loop signals are bounded in the design process based on choosing appropriate design parameters. The practicability of the proposed control technique is demonstrated by a simulation study in this paper.
Riemannian theory of Hamiltonian chaos and Lyapunov exponents
NASA Astrophysics Data System (ADS)
Casetti, Lapo; Clementi, Cecilia; Pettini, Marco
1996-12-01
A nonvanishing Lyapunov exponent λ1 provides the very definition of deterministic chaos in the solutions of a dynamical system; however, no theoretical mean of predicting its value exists. This paper copes with the problem of analytically computing the largest Lyapunov exponent λ1 for many degrees of freedom Hamiltonian systems as a function of ɛ=E/N, the energy per degree of freedom. The functional dependence λ1(ɛ) is of great interest because, among other reasons, it detects the existence of weakly and strongly chaotic regimes. This aim, the analytic computation of λ1(ɛ), is successfully reached within a theoretical framework that makes use of a geometrization of Newtonian dynamics in the language of Riemannian differential geometry. An alternative point of view about the origin of chaos in these systems is obtained independently of the standard explanation based on homoclinic intersections. Dynamical instability (chaos) is here related to curvature fluctuations of the manifolds whose geodesics are natural motions and is described by means of the Jacobi-Levi-Civita equation (JLCE) for geodesic spread. In this paper it is shown how to derive from the JLCE an effective stability equation. Under general conditions, this effective equation formally describes a stochastic oscillator; an analytic formula for the instability growth rate of its solutions is worked out and applied to the Fermi-Pasta-Ulam β model and to a chain of coupled rotators. Excellent agreement is found between the theoretical prediction and numeric values of λ1(ɛ) for both models.
Nonlinear control of voltage source converters in AC-DC power system.
Dash, P K; Nayak, N
2014-07-01
This paper presents the design of a robust nonlinear controller for a parallel AC-DC power system using a Lyapunov function-based sliding mode control (LYPSMC) strategy. The inputs for the proposed control scheme are the DC voltage and reactive power errors at the converter station and the active and reactive power errors at the inverter station of the voltage-source converter-based high voltage direct current transmission (VSC-HVDC) link. The stability and robust tracking of the system parameters are ensured by applying the Lyapunov direct method. Also the gains of the sliding mode control (SMC) are made adaptive using the stability conditions of the Lyapunov function. The proposed control strategy offers invariant stability to a class of systems having modeling uncertainties due to parameter changes and exogenous inputs. Comprehensive computer simulations are carried out to verify the proposed control scheme under several system disturbances like changes in short-circuit ratio, converter parametric changes, and faults on the converter and inverter buses for single generating system connected to the power grid in a single machine infinite-bus AC-DC network and also for a 3-machine two-area power system. Furthermore, a second order super twisting sliding mode control scheme has been presented in this paper that provides a higher degree of nonlinearity than the LYPSMC and damps faster the converter and inverter voltage and power oscillations. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Small-world networks exhibit pronounced intermittent synchronization
NASA Astrophysics Data System (ADS)
Choudhary, Anshul; Mitra, Chiranjit; Kohar, Vivek; Sinha, Sudeshna; Kurths, Jürgen
2017-11-01
We report the phenomenon of temporally intermittently synchronized and desynchronized dynamics in Watts-Strogatz networks of chaotic Rössler oscillators. We consider topologies for which the master stability function (MSF) predicts stable synchronized behaviour, as the rewiring probability (p) is tuned from 0 to 1. MSF essentially utilizes the largest non-zero Lyapunov exponent transversal to the synchronization manifold in making stability considerations, thereby ignoring the other Lyapunov exponents. However, for an N-node networked dynamical system, we observe that the difference in its Lyapunov spectra (corresponding to the N - 1 directions transversal to the synchronization manifold) is crucial and serves as an indicator of the presence of intermittently synchronized behaviour. In addition to the linear stability-based (MSF) analysis, we further provide global stability estimate in terms of the fraction of state-space volume shared by the intermittently synchronized state, as p is varied from 0 to 1. This fraction becomes appreciably large in the small-world regime, which is surprising, since this limit has been otherwise considered optimal for synchronized dynamics. Finally, we characterize the nature of the observed intermittency and its dominance in state-space as network rewiring probability (p) is varied.
Lyapunov modes in extended systems.
Yang, Hong-Liu; Radons, Günter
2009-08-28
Hydrodynamic Lyapunov modes, which have recently been observed in many extended systems with translational symmetry, such as hard sphere systems, dynamic XY models or Lennard-Jones fluids, are nowadays regarded as fundamental objects connecting nonlinear dynamics and statistical physics. We review here our recent results on Lyapunov modes in extended system. The solution to one of the puzzles, the appearance of good and 'vague' modes, is presented for the model system of coupled map lattices. The structural properties of these modes are related to the phase space geometry, especially the angles between Oseledec subspaces, and to fluctuations of local Lyapunov exponents. In this context, we report also on the possible appearance of branches splitting in the Lyapunov spectra of diatomic systems, similar to acoustic and optical branches for phonons. The final part is devoted to the hyperbolicity of partial differential equations and the effective degrees of freedom of such infinite-dimensional systems.
Niu, Ben; Li, Lu
2018-06-01
This brief proposes a new neural-network (NN)-based adaptive output tracking control scheme for a class of disturbed multiple-input multiple-output uncertain nonlinear switched systems with input delays. By combining the universal approximation ability of radial basis function NNs and adaptive backstepping recursive design with an improved multiple Lyapunov function (MLF) scheme, a novel adaptive neural output tracking controller design method is presented for the switched system. The feature of the developed design is that different coordinate transformations are adopted to overcome the conservativeness caused by adopting a common coordinate transformation for all subsystems. It is shown that all the variables of the resulting closed-loop system are semiglobally uniformly ultimately bounded under a class of switching signals in the presence of MLF and that the system output can follow the desired reference signal. To demonstrate the practicability of the obtained result, an adaptive neural output tracking controller is designed for a mass-spring-damper system.
Senthilkumar, D V; Srinivasan, K; Thamilmaran, K; Lakshmanan, M
2008-12-01
We identify an unconventional route to the creation of a strange nonchaotic attractor (SNA) in a quasiperiodically forced electronic circuit with a nonsinusoidal (square wave) force as one of the quasiperiodic forces through numerical and experimental studies. We find that bubbles appear in the strands of the quasiperiodic attractor due to the instability induced by the additional square-wave-type force. The bubbles then enlarge and get increasingly wrinkled as a function of the control parameter. Finally, the bubbles get extremely wrinkled (while the remaining parts of the strands of the torus remain largely unaffected) resulting in the creation of the SNA; we term this the bubbling route to the SNA. We characterize and confirm this creation from both experimental and numerical data using maximal Lyapunov exponents and their variance, Poincaré maps, Fourier amplitude spectra, and spectral distribution functions. We also strongly confirm the creation of a SNA via the bubbling route by the distribution of the finite-time Lyapunov exponents.
Local synchronization of chaotic neural networks with sampled-data and saturating actuators.
Wu, Zheng-Guang; Shi, Peng; Su, Hongye; Chu, Jian
2014-12-01
This paper investigates the problem of local synchronization of chaotic neural networks with sampled-data and actuator saturation. A new time-dependent Lyapunov functional is proposed for the synchronization error systems. The advantage of the constructed Lyapunov functional lies in the fact that it is positive definite at sampling times but not necessarily between sampling times, and makes full use of the available information about the actual sampling pattern. A local stability condition of the synchronization error systems is derived, based on which a sampled-data controller with respect to the actuator saturation is designed to ensure that the master neural networks and slave neural networks are locally asymptotically synchronous. Two optimization problems are provided to compute the desired sampled-data controller with the aim of enlarging the set of admissible initial conditions or the admissible sampling upper bound ensuring the local synchronization of the considered chaotic neural networks. A numerical example is used to demonstrate the effectiveness of the proposed design technique.
Li, Xuanying; Li, Xiaotong; Hu, Cheng
2017-12-01
In this paper, without transforming the second order inertial neural networks into the first order differential systems by some variable substitutions, asymptotic stability and synchronization for a class of delayed inertial neural networks are investigated. Firstly, a new Lyapunov functional is constructed to directly propose the asymptotic stability of the inertial neural networks, and some new stability criteria are derived by means of Barbalat Lemma. Additionally, by designing a new feedback control strategy, the asymptotic synchronization of the addressed inertial networks is studied and some effective conditions are obtained. To reduce the control cost, an adaptive control scheme is designed to realize the asymptotic synchronization. It is noted that the dynamical behaviors of inertial neural networks are directly analyzed in this paper by constructing some new Lyapunov functionals, this is totally different from the traditional reduced-order variable substitution method. Finally, some numerical simulations are given to demonstrate the effectiveness of the derived theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sliding Mode Control for Discrete-Time Systems With Markovian Packet Dropouts.
Song, Heran; Chen, Shih-Chi; Yam, Yeung
2017-11-01
This paper presents the design of a sliding mode controller for networked control systems subject to successive Markovian packet dropouts. This paper adopts the Gilbert-Elliott channel model to describe the temporal correlation among packet losses, and proposes an update scheme to select the assumed available states for use in a sliding mode control law. A technique used in the theory of discrete-time Markov jump linear systems is applied to tackle the effect of the packet losses. This involves introducing a couple of Lyapunov functions dependent on the indicator functions of the instantaneous packet loss, and proving that the sliding mode controller is able to drive the system state trajectories into the neighborhood of the designed integral sliding surface in mean-square sense given that the corresponding Lyapunov inequalities are satisfied. The system is guaranteed thereafter to remain inside the neighborhood of the sliding surface. Simulated case studies are presented to illustrate the effectiveness of the control law.
Invariant graphs of a family of non-uniformly expanding skew products over Markov maps
NASA Astrophysics Data System (ADS)
Walkden, C. P.; Withers, T.
2018-06-01
We consider a family of skew-products of the form where T is a continuous, expanding, locally eventually onto Markov map and is a family of homeomorphisms of . A function is said to be an invariant graph if is an invariant set for the skew-product; equivalently, u(T(x)) = g x (u(x)). A well-studied problem is to consider the existence, regularity and dimension-theoretic properties of such functions, usually under strong contraction or expansion conditions (in terms of Lyapunov exponents or partial hyperbolicity) in the fibre direction. Here we consider such problems in a setting where the Lyapunov exponent in the fibre direction is zero on a set of periodic orbits but expands except on a neighbourhood of these periodic orbits. We prove that u either has the structure of a ‘quasi-graph’ (or ‘bony graph’) or is as smooth as the dynamics, and we give a criteria for this to happen.
The Multivariate Largest Lyapunov Exponent as an Age-Related Metric of Quiet Standing Balance
Liu, Kun; Wang, Hongrui; Xiao, Jinzhuang
2015-01-01
The largest Lyapunov exponent has been researched as a metric of the balance ability during human quiet standing. However, the sensitivity and accuracy of this measurement method are not good enough for clinical use. The present research proposes a metric of the human body's standing balance ability based on the multivariate largest Lyapunov exponent which can quantify the human standing balance. The dynamic multivariate time series of ankle, knee, and hip were measured by multiple electrical goniometers. Thirty-six normal people of different ages participated in the test. With acquired data, the multivariate largest Lyapunov exponent was calculated. Finally, the results of the proposed approach were analysed and compared with the traditional method, for which the largest Lyapunov exponent and power spectral density from the centre of pressure were also calculated. The following conclusions can be obtained. The multivariate largest Lyapunov exponent has a higher degree of differentiation in differentiating balance in eyes-closed conditions. The MLLE value reflects the overall coordination between multisegment movements. Individuals of different ages can be distinguished by their MLLE values. The standing stability of human is reduced with the increment of age. PMID:26064182
NASA Astrophysics Data System (ADS)
Wang, Qiqi; Rigas, Georgios; Esclapez, Lucas; Magri, Luca; Blonigan, Patrick
2016-11-01
Bluff body flows are of fundamental importance to many engineering applications involving massive flow separation and in particular the transport industry. Coherent flow structures emanating in the wake of three-dimensional bluff bodies, such as cars, trucks and lorries, are directly linked to increased aerodynamic drag, noise and structural fatigue. For low Reynolds laminar and transitional regimes, hydrodynamic stability theory has aided the understanding and prediction of the unstable dynamics. In the same framework, sensitivity analysis provides the means for efficient and optimal control, provided the unstable modes can be accurately predicted. However, these methodologies are limited to laminar regimes where only a few unstable modes manifest. Here we extend the stability analysis to low-dimensional chaotic regimes by computing the Lyapunov covariant vectors and their associated Lyapunov exponents. We compare them to eigenvectors and eigenvalues computed in traditional hydrodynamic stability analysis. Computing Lyapunov covariant vectors and Lyapunov exponents also enables the extension of sensitivity analysis to chaotic flows via the shadowing method. We compare the computed shadowing sensitivities to traditional sensitivity analysis. These Lyapunov based methodologies do not rely on mean flow assumptions, and are mathematically rigorous for calculating sensitivities of fully unsteady flow simulations.
A necessary condition for dispersal driven growth of populations with discrete patch dynamics.
Guiver, Chris; Packman, David; Townley, Stuart
2017-07-07
We revisit the question of when can dispersal-induced coupling between discrete sink populations cause overall population growth? Such a phenomenon is called dispersal driven growth and provides a simple explanation of how dispersal can allow populations to persist across discrete, spatially heterogeneous, environments even when individual patches are adverse or unfavourable. For two classes of mathematical models, one linear and one non-linear, we provide necessary conditions for dispersal driven growth in terms of the non-existence of a common linear Lyapunov function, which we describe. Our approach draws heavily upon the underlying positive dynamical systems structure. Our results apply to both discrete- and continuous-time models. The theory is illustrated with examples and both biological and mathematical conclusions are drawn. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Global stability and quadratic Hamiltonian structure in Lotka-Volterra and quasi-polynomial systems
NASA Astrophysics Data System (ADS)
Szederkényi, Gábor; Hangos, Katalin M.
2004-04-01
We show that the global stability of quasi-polynomial (QP) and Lotka-Volterra (LV) systems with the well-known logarithmic Lyapunov function is equivalent to the existence of a local generalized dissipative Hamiltonian description of the LV system with a diagonal quadratic form as a Hamiltonian function. The Hamiltonian function can be calculated and the quadratic dissipativity neighborhood of the origin can be estimated by solving linear matrix inequalities.
Large-deviation joint statistics of the finite-time Lyapunov spectrum in isotropic turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Perry L., E-mail: pjohns86@jhu.edu; Meneveau, Charles
2015-08-15
One of the hallmarks of turbulent flows is the chaotic behavior of fluid particle paths with exponentially growing separation among them while their distance does not exceed the viscous range. The maximal (positive) Lyapunov exponent represents the average strength of the exponential growth rate, while fluctuations in the rate of growth are characterized by the finite-time Lyapunov exponents (FTLEs). In the last decade or so, the notion of Lagrangian coherent structures (which are often computed using FTLEs) has gained attention as a tool for visualizing coherent trajectory patterns in a flow and distinguishing regions of the flow with different mixingmore » properties. A quantitative statistical characterization of FTLEs can be accomplished using the statistical theory of large deviations, based on the so-called Cramér function. To obtain the Cramér function from data, we use both the method based on measuring moments and measuring histograms and introduce a finite-size correction to the histogram-based method. We generalize the existing univariate formalism to the joint distributions of the two FTLEs needed to fully specify the Lyapunov spectrum in 3D flows. The joint Cramér function of turbulence is measured from two direct numerical simulation datasets of isotropic turbulence. Results are compared with joint statistics of FTLEs computed using only the symmetric part of the velocity gradient tensor, as well as with joint statistics of instantaneous strain-rate eigenvalues. When using only the strain contribution of the velocity gradient, the maximal FTLE nearly doubles in magnitude, highlighting the role of rotation in de-correlating the fluid deformations along particle paths. We also extend the large-deviation theory to study the statistics of the ratio of FTLEs. The most likely ratio of the FTLEs λ{sub 1} : λ{sub 2} : λ{sub 3} is shown to be about 4:1:−5, compared to about 8:3:−11 when using only the strain-rate tensor for calculating fluid volume deformations. The results serve to characterize the fundamental statistical and geometric structure of turbulence at small scales including cumulative, time integrated effects. These are important for deformable particles such as droplets and polymers advected by turbulence.« less
GPU and APU computations of Finite Time Lyapunov Exponent fields
NASA Astrophysics Data System (ADS)
Conti, Christian; Rossinelli, Diego; Koumoutsakos, Petros
2012-03-01
We present GPU and APU accelerated computations of Finite-Time Lyapunov Exponent (FTLE) fields. The calculation of FTLEs is a computationally intensive process, as in order to obtain the sharp ridges associated with the Lagrangian Coherent Structures an extensive resampling of the flow field is required. The computational performance of this resampling is limited by the memory bandwidth of the underlying computer architecture. The present technique harnesses data-parallel execution of many-core architectures and relies on fast and accurate evaluations of moment conserving functions for the mesh to particle interpolations. We demonstrate how the computation of FTLEs can be efficiently performed on a GPU and on an APU through OpenCL and we report over one order of magnitude improvements over multi-threaded executions in FTLE computations of bluff body flows.
Analysis of A Virus Dynamics Model
NASA Astrophysics Data System (ADS)
Zhang, Baolin; Li, Jianquan; Li, Jia; Zhao, Xin
2018-03-01
In order to more accurately characterize the virus infection in the host, a virus dynamics model with latency and virulence is established and analyzed in this paper. The positivity and boundedness of the solution are proved. After obtaining the basic reproduction number and the existence of infected equilibrium, the Lyapunov method and the LaSalle invariance principle are used to determine the stability of the uninfected equilibrium and infected equilibrium by constructing appropriate Lyapunov functions. We prove that, when the basic reproduction number does not exceed 1, the uninfected equilibrium is globally stable, the virus can be cleared eventually; when the basic reproduction number is more than 1, the infected equilibrium is globally stable, the virus will persist in the host at a certain level. The effect of virulence and latency on infection is also discussed.
Computational analysis of kidney scintigrams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vrincianu, D.; Puscasu, E.; Creanga, D.
The scintigraphic investigation of normal and pathological kidneys was carried out using specialized gamma-camera device from nuclear medicine hospital department. Technetium 90m isotope with gamma radiation emission, coupled with vector molecules for kidney tissues was introduced into the subject body, its dynamics being recorded as data source for kidney clearance capacity. Two representative data series were investigated, corresponding to healthy and pathological organs respectively. The semi-quantitative tests applied for the comparison of the two distinct medical situations were: the shape of probability distribution histogram, the power spectrum, the auto-correlation function and the Lyapunov exponent. While power spectrum led to similarmore » results in both cases, significant differences were revealed by means of distribution probability, Lyapunov exponent and correlation time, recommending these numerical tests as possible complementary tools in clinical diagnosis.« less
Regeneration cycle and the covariant Lyapunov vectors in a minimal wall turbulence.
Inubushi, Masanobu; Takehiro, Shin-ichi; Yamada, Michio
2015-08-01
Considering a wall turbulence as a chaotic dynamical system, we study regeneration cycles in a minimal wall turbulence from the viewpoint of orbital instability by employing the covariant Lyapunov analysis developed by [F. Ginelli et al. Phys. Rev. Lett. 99, 130601 (2007)]. We divide the regeneration cycle into two phases and characterize them with the local Lyapunov exponents and the covariant Lyapunov vectors of the Navier-Stokes turbulence. In particular, we show numerically that phase (i) is dominated by instabilities related to the sinuous mode and the streamwise vorticity, and there is no instability in phase (ii). Furthermore, we discuss a mechanism of the regeneration cycle, making use of an energy budget analysis.
Cultural propagation on social networks
NASA Astrophysics Data System (ADS)
Kuperman, M. N.
2006-04-01
In this work we present a model for the propagation of culture on networks of different topology and by considering different underlying dynamics. We extend a previous model proposed by Axelrod by letting a majority govern the dynamics of changes. This in turn allows us to define a Lyapunov functional for the system.
Construction of energy-stable Galerkin reduced order models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalashnikova, Irina; Barone, Matthew Franklin; Arunajatesan, Srinivasan
2013-05-01
This report aims to unify several approaches for building stable projection-based reduced order models (ROMs). Attention is focused on linear time-invariant (LTI) systems. The model reduction procedure consists of two steps: the computation of a reduced basis, and the projection of the governing partial differential equations (PDEs) onto this reduced basis. Two kinds of reduced bases are considered: the proper orthogonal decomposition (POD) basis and the balanced truncation basis. The projection step of the model reduction can be done in two ways: via continuous projection or via discrete projection. First, an approach for building energy-stable Galerkin ROMs for linear hyperbolicmore » or incompletely parabolic systems of PDEs using continuous projection is proposed. The idea is to apply to the set of PDEs a transformation induced by the Lyapunov function for the system, and to build the ROM in the transformed variables. The resulting ROM will be energy-stable for any choice of reduced basis. It is shown that, for many PDE systems, the desired transformation is induced by a special weighted L2 inner product, termed the %E2%80%9Csymmetry inner product%E2%80%9D. Attention is then turned to building energy-stable ROMs via discrete projection. A discrete counterpart of the continuous symmetry inner product, a weighted L2 inner product termed the %E2%80%9CLyapunov inner product%E2%80%9D, is derived. The weighting matrix that defines the Lyapunov inner product can be computed in a black-box fashion for a stable LTI system arising from the discretization of a system of PDEs in space. It is shown that a ROM constructed via discrete projection using the Lyapunov inner product will be energy-stable for any choice of reduced basis. Connections between the Lyapunov inner product and the inner product induced by the balanced truncation algorithm are made. Comparisons are also made between the symmetry inner product and the Lyapunov inner product. The performance of ROMs constructed using these inner products is evaluated on several benchmark test cases.« less
Exploring the Lyapunov instability properties of high-dimensional atmospheric and climate models
NASA Astrophysics Data System (ADS)
De Cruz, Lesley; Schubert, Sebastian; Demaeyer, Jonathan; Lucarini, Valerio; Vannitsem, Stéphane
2018-05-01
The stability properties of intermediate-order climate models are investigated by computing their Lyapunov exponents (LEs). The two models considered are PUMA (Portable University Model of the Atmosphere), a primitive-equation simple general circulation model, and MAOOAM (Modular Arbitrary-Order Ocean-Atmosphere Model), a quasi-geostrophic coupled ocean-atmosphere model on a β-plane. We wish to investigate the effect of the different levels of filtering on the instabilities and dynamics of the atmospheric flows. Moreover, we assess the impact of the oceanic coupling, the dissipation scheme, and the resolution on the spectra of LEs. The PUMA Lyapunov spectrum is computed for two different values of the meridional temperature gradient defining the Newtonian forcing to the temperature field. The increase in the gradient gives rise to a higher baroclinicity and stronger instabilities, corresponding to a larger dimension of the unstable manifold and a larger first LE. The Kaplan-Yorke dimension of the attractor increases as well. The convergence rate of the rate function for the large deviation law of the finite-time Lyapunov exponents (FTLEs) is fast for all exponents, which can be interpreted as resulting from the absence of a clear-cut atmospheric timescale separation in such a model. The MAOOAM spectra show that the dominant atmospheric instability is correctly represented even at low resolutions. However, the dynamics of the central manifold, which is mostly associated with the ocean dynamics, is not fully resolved because of its associated long timescales, even at intermediate orders. As expected, increasing the mechanical atmosphere-ocean coupling coefficient or introducing a turbulent diffusion parametrisation reduces the Kaplan-Yorke dimension and Kolmogorov-Sinai entropy. In all considered configurations, we are not yet in the regime in which one can robustly define large deviation laws describing the statistics of the FTLEs. This paper highlights the need to investigate the natural variability of the atmosphere-ocean coupled dynamics by associating rate of growth and decay of perturbations with the physical modes described using the formalism of the covariant Lyapunov vectors and considering long integrations in order to disentangle the dynamical processes occurring at all timescales.
Spatial variation of deterministic chaos in mean daily temperature and rainfall over Nigeria
NASA Astrophysics Data System (ADS)
Fuwape, I. A.; Ogunjo, S. T.; Oluyamo, S. S.; Rabiu, A. B.
2017-10-01
Daily rainfall and temperature data from 47 locations across Nigeria for the 36-year period 1979-2014 were treated to time series analysis technique to investigate some nonlinear trends in rainfall and temperature data. Some quantifiers such as Lyapunov exponents, correlation dimension, and entropy were obtained for the various locations. Positive Lyapunov exponents were obtained for the time series of mean daily rainfall for all locations in the southern part of Nigeria while negative Lyapunov exponents were obtained for all locations in the Northern part of Nigeria. The mean daily temperature had positive Lyapunov exponent values (0.35-1.6) for all the locations. Attempts were made in reconstructing the phase space of time series of rainfall and temperature.
On the asymptotic stability of nonlinear mechanical switched systems
NASA Astrophysics Data System (ADS)
Platonov, A. V.
2018-05-01
Some classes of switched mechanical systems with dissipative and potential forces are considered. The case, where either dissipative or potential forces are essentially nonlinear, is studied. It is assumed that the zero equilibrium position of the system is asymptotically stable at least for one operating mode. We will look for sufficient conditions which guarantee the preservation of asymptotic stability of the equilibrium position under the switching of modes. The Lyapunov direct method is used. A Lyapunov function for considered system is constructed, which satisfies the differential inequality of special form for every operating mode. This inequality is nonlinear for the chosen mode with asymptotically stable equilibrium position, and it is linear for the rest modes. The correlations between the intervals of activity of the pointed mode and the intervals of activity of the rest modes are obtained which guarantee the required properties.
Robust adaptive tracking control for nonholonomic mobile manipulator with uncertainties.
Peng, Jinzhu; Yu, Jie; Wang, Jie
2014-07-01
In this paper, mobile manipulator is divided into two subsystems, that is, nonholonomic mobile platform subsystem and holonomic manipulator subsystem. First, the kinematic controller of the mobile platform is derived to obtain a desired velocity. Second, regarding the coupling between the two subsystems as disturbances, Lyapunov functions of the two subsystems are designed respectively. Third, a robust adaptive tracking controller is proposed to deal with the unknown upper bounds of parameter uncertainties and disturbances. According to the Lyapunov stability theory, the derived robust adaptive controller guarantees global stability of the closed-loop system, and the tracking errors and adaptive coefficient errors are all bounded. Finally, simulation results show that the proposed robust adaptive tracking controller for nonholonomic mobile manipulator is effective and has good tracking capacity. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Mathematical modeling of aeroelastic systems
NASA Astrophysics Data System (ADS)
Velmisov, Petr A.; Ankilov, Andrey V.; Semenova, Elizaveta P.
2017-12-01
In the paper, the stability of elastic elements of a class of designs that are in interaction with a gas or liquid flow is investigated. The definition of the stability of an elastic body corresponds to the concept of stability of dynamical systems by Lyapunov. As examples the mathematical models of flowing channels (models of vibration devices) at a subsonic flow and the mathematical models of protective surface at a supersonic flow are considered. Models are described by the related systems of the partial differential equations. An analytic investigation of stability is carried out on the basis of the construction of Lyapunov-type functionals, a numerical investigation is carried out on the basis of the Galerkin method. The various models of the gas-liquid environment (compressed, incompressible) and the various models of a deformable body (elastic linear and elastic nonlinear) are considered.
Li, Chensong; Zhao, Jun
2017-01-01
In this work, we investigate the output synchronization problem for discrete-time dynamical networks with identical nodes. Firstly, if each node of a network is geometrically incrementally dissipative, the entire network can be viewed as a geometrically dissipative nonlinear system by choosing a particular input-output pair. Then, based on the geometrical dissipativity property, we consider two cases: output synchronization under arbitrary topology and switching topology, respectively. For the first case, we establish several criteria of output synchronization under arbitrary switching between a set of connection topologies by employing a common Lyapunov function. For the other case, we give the design method of a switching signal to achieve output synchronization even if all subnetworks are not synchronous. Finally, an example is provided to illustrate the effectiveness of the main results. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Cluster-modified function projective synchronisation of complex networks with asymmetric coupling
NASA Astrophysics Data System (ADS)
Wang, Shuguo
2018-02-01
This paper investigates the cluster-modified function projective synchronisation (CMFPS) of a generalised linearly coupled network with asymmetric coupling and nonidentical dynamical nodes. A novel synchronisation scheme is proposed to achieve CMFPS in community networks. We use adaptive control method to derive CMFPS criteria based on Lyapunov stability theory. Each cluster of networks is synchronised with target system by state transformation with scaling function matrix. Numerical simulation results are presented finally to illustrate the effectiveness of this method.
Lyapunov exponents of stochastic systems—from micro to macro
NASA Astrophysics Data System (ADS)
Laffargue, Tanguy; Tailleur, Julien; van Wijland, Frédéric
2016-03-01
Lyapunov exponents of dynamical systems are defined from the rates of divergence of nearby trajectories. For stochastic systems, one typically assumes that these trajectories are generated under the ‘same noise realization’. The purpose of this work is to critically examine what this expression means. For Brownian particles, we consider two natural interpretations of the noise: intrinsic to the particles or stemming from the fluctuations of the environment. We show how they lead to different distributions of the largest Lyapunov exponent as well as different fluctuating hydrodynamics for the collective density field. We discuss, both at microscopic and macroscopic levels, the limits in which these noise prescriptions become equivalent. We close this paper by providing an estimate of the largest Lyapunov exponent and of its fluctuations for interacting particles evolving with Dean-Kawasaki dynamics.
A survey of quantum Lyapunov control methods.
Cong, Shuang; Meng, Fangfang
2013-01-01
The condition of a quantum Lyapunov-based control which can be well used in a closed quantum system is that the method can make the system convergent but not just stable. In the convergence study of the quantum Lyapunov control, two situations are classified: nondegenerate cases and degenerate cases. For these two situations, respectively, in this paper the target state is divided into four categories: the eigenstate, the mixed state which commutes with the internal Hamiltonian, the superposition state, and the mixed state which does not commute with the internal Hamiltonian. For these four categories, the quantum Lyapunov control methods for the closed quantum systems are summarized and analyzed. Particularly, the convergence of the control system to the different target states is reviewed, and how to make the convergence conditions be satisfied is summarized and analyzed.
Neural networks applications to control and computations
NASA Technical Reports Server (NTRS)
Luxemburg, Leon A.
1994-01-01
Several interrelated problems in the area of neural network computations are described. First an interpolation problem is considered, then a control problem is reduced to a problem of interpolation by a neural network via Lyapunov function approach, and finally a new, faster method of learning as compared with the gradient descent method, was introduced.
NASA Astrophysics Data System (ADS)
Wang, Wei; Zeng, Hong-Bing; Teo, Kok-Lay
2017-10-01
Not Available Project supported by the National Natural Science Foundation of China (Grant No. 61304064), the Scientific Research Fund of Hunan Provincial Education Department, China (Grant Nos. 15B067 and 16C0475), and a Discovering Grant from Australian Research Council.
Coupled skinny baker's maps and the Kaplan-Yorke conjecture
NASA Astrophysics Data System (ADS)
Gröger, Maik; Hunt, Brian R.
2013-09-01
The Kaplan-Yorke conjecture states that for ‘typical’ dynamical systems with a physical measure, the information dimension and the Lyapunov dimension coincide. We explore this conjecture in a neighborhood of a system for which the two dimensions do not coincide because the system consists of two uncoupled subsystems. We are interested in whether coupling ‘typically’ restores the equality of the dimensions. The particular subsystems we consider are skinny baker's maps, and we consider uni-directional coupling. For coupling in one of the possible directions, we prove that the dimensions coincide for a prevalent set of coupling functions, but for coupling in the other direction we show that the dimensions remain unequal for all coupling functions. We conjecture that the dimensions prevalently coincide for bi-directional coupling. On the other hand, we conjecture that the phenomenon we observe for a particular class of systems with uni-directional coupling, where the information and Lyapunov dimensions differ robustly, occurs more generally for many classes of uni-directionally coupled systems (also called skew-product systems) in higher dimensions.
Lyapunov analysis: from dynamical systems theory to applications
NASA Astrophysics Data System (ADS)
Cencini, Massimo; Ginelli, Francesco
2013-06-01
The study of deterministic laws of evolution has characterized the development of science since Newton's times. Chaos, namely the manifestation of irregular and unpredictable dynamics (not random but look random [1]), entered the debate on determinism at the end of the 19th century with the discovery of sensitivity to initial conditions, meaning that small infinitesimal differences in the initial state might lead to dramatic differences at later times. Poincaré [2, 3] was the first to realize that solutions of the three-body problem are generically highly sensitive to initial conditions. At about the same time, this property was recognized in geodesic flows with negative curvature by Hadamard [4]. One of the first experimental observations of chaos, as understood much later, was when irregular noise was heard by Van der Pol in 1927 [5] while studying a periodically forced nonlinear oscillator. Nevertheless, it was only with the advent of digital computing that chaos started to attract the interest of the wider scientific community. After the pioneering investigation of ergodicity in a chain of nonlinear oscillators by Fermi, Pasta and Ulam in 1955 [6], it was in the early 1960s that the numerical studies of Lorenz [7] and Hénon and Heiles [8] revealed that irregular and unpredictable motions are a generic feature of low-dimensional nonlinear deterministic systems. The existence and onset of chaos was then rigorously analyzed in several systems. While an exhaustive list of such mathematical proofs is beyond the scope of this preface, one should mention the contributions of Kolmogorov [9, 10], Chirikov [11], Smale [12], Ruelle and Takens [13], Li and Yorke [14] and Feigenbaum [15]. The characteristic Lyapunov exponents introduced by Oseledets in 1968 [16] are the fundamental quantities for measuring the sensitivity to initial conditions. Oseledets' work generalized the concept of Lyapunov stability to irregular trajectories building upon earlier studies of Birkhoff [17], von Neumann [18], Krylov [19]3 and Asonov and Sinai [20] on ergodic theory. Lyapunov exponents quantify exponential sensitivity to initial conditions and provide direct access to the entropy production in ergodic systems via the Pesin theory [21]. Further advances have been made possible by the introduction of proper physical invariant measures for certain dissipative systems due to Sinai [22], Ruelle [23] and Bowen [24, 25]. However, it was necessary to wait until the end of the 1970s before the independent works of Shimada and Nagashima [26] and Benettin et al [27] introduced the numerical algorithms required to compute Lyapunov exponents beyond the largest one. The availability of such algorithms and also, at about the same time, of those necessary for the computation of fractal dimensions and entropies by Grassberger and Procaccia [28], made possible the study of chaotic behavior in physically relevant models. Lyapunov analysis, applied to experimental systems [29], was also made possible by a combination of these numerical methods with ideas from nonlinear time series analysis [30]. As a result, it is nowadays widely recognized that Lyapunov exponents are a central tool of chaos theory, crucial for characterizing a number of interesting physical properties including dynamical entropies and fractal dimensions [31]. Their pivotal role in modern dynamical systems theory has been established by a fruitful exchange between a rigorous (and beautiful) mathematical theory and the algorithmic approaches essential for understanding many physical phenomena. From the 1990s to the present, with the concomitant progress in both theoretical understanding and computer capabilities, there has been a progressive shift of interest from low dimensional towards high dimensional systems. This shift towards dynamics characterized by many degrees of freedom, possibly spatially organized and/or with several characteristic temporal scales, has been accompanied by the need for generalizations of the Lyapunov exponents. Moreover, further attention has also been paid to the so-called Lyapunov vectors, which provide information on geometrical properties of the tangent space characterizing stable and unstable directions [23]. This approach could prove extremely useful in systems with many degrees of freedom such as the models used, for instance, in atmospheric physics, where different forms of Lyapunov vectors (both infinitesimal and of finite size) have been proposed to generate suitable perturbations to be used for optimizing ensemble forecasting methods [32]. While some of these tools are routinely used in standard applications, a comprehensive understanding of Lyapunov vectors and their relation to different properties of spatiotemporal chaos is still lacking. From this brief and largely incomplete historical tour it should be clear that Lyapunov analysis has had and still has a great impact on both fundamental and applied approaches to deterministic dynamical systems. Furthermore, some recent results have generated renewed attention on certain aspects of Lyapunov analysis and related applications in a number of different research communities. For instance, different types of Lyapunov vectors are regularly employed in the most diverse applications from applied mathematics and physics to atmospheric sciences. Depending on the context, researchers use covariant Lyapunov vectors (CLVs), singular Lyapunov vectors, bred vectors, finite-time Lyapunov vectors, etc. Similarly, for the Lyapunov exponents several generalizations are possible to account for, e.g., the multifractal nature of the invariant measure, the local fluctuations of stretching rates (finite-time Lyapunov exponents), to characterize the nonlinear regime of perturbation evolution (finite-size Lyapunov exponents) or their spatiotemporal dynamics (co-moving Lyapunov exponents). All these quantities often have different physical interpretations, are characterized by different levels of mathematical development and only provide access to partial pieces of information. Moreover, the scattered state of the present literature, with key contributions published in journals read by different communities (mathematicians, nonlinear and statistical physicists, fluid dynamicists and geophysicists), makes it difficult to develop a general picture. This special issue aims to offer an up-to-date view of current research on Lyapunov analysis, discussing both its mathematical theory and its applications to a number of different problems. Moreover, in order to facilitate the comparison and exchange of ideas and tools among different fields of research, contributions (either original or topical reviews) from researchers working in different disciplines have been selected for this issue. After the compact review of the basic mathematical results on Lyapunov exponents by Lai-Sang Young, the special issue is organized into nine sections broadly focused on the following topics: Large deviations and rare trajectories. Lyapunov exponents are mean quantities which characterize the sensitivity to initial conditions of typical trajectories. A large deviation theory of their finite time fluctuations, however, is relevant for the construction of a thermodynamic formalism of deterministic chaos. Moreover, the weighted sampling of extreme fluctuations allows one to access rare trajectories and phase-space topological structures. Random matrices. Lyapunov exponents are suitable quantities to statistically characterize products of random matrices, with a number of applications to transfer matrix methods and, more generally, to the statistical mechanics of disordered systems. In particular, Lyapunov exponents have long played a central role in the theory of Anderson localization. These aspects are reviewed here, together with an original application to the transfer matrix. Covariant Lyapunov vectors: theory and applications. CLVs constitute an intrinsic tangent space decomposition into stable and unstable directions associated with Lyapunov exponents. Recently, novel and efficient algorithms for computing CLVs have become available, turning them into a practical tool for the study and characterization of chaotic dynamical systems, especially when many degrees of freedom are considered. Applications include—but are not limited to—the characterization of collective chaotic modes and the study of intermittency in shell models for turbulence. This section also includes a pedagogical discussion of CLVs in low dimensional Hamiltonian systems. Time series analysis. The computation of Lyapunov exponents from time series data is a very active field of research playing a crucial role in experimental studies, with applications ranging from nonlinear optics to neuroscience. The need to reconstruct a higher dimensional phase space from scalar or lower dimensional data poses fundamental issues, introducing spurious Lyapunov exponents and limiting the accuracy when quantities such as the Kaplan-Yorke-dimension or the Kolmogorov-Sinai entropy are concerned. Recent advances based on CLVs, however, may help in identifying such spurious exponents, increasing the accuracy of embedding techniques. Many-body systems. The study of many-body dynamical systems plays a fundamental role in the debate on the foundations of statistical physics. In this respect, the discovery of long wavelength tangent space modes associated with close-to-zero Lyapunov exponents, the so-called hydrodynamic Lyapunov modes, has raised hopes that a clear link could be established between hydrodynamic transport coefficients and microscopic dynamical properties. In this section, three contributions discuss Lyapunov analysis applied to many-body systems such as hard disks and lattices of interacting classical spins. Spatiotemporal chaos and hyperbolicity. Spatially extended chaotic systems pose a number of new issues when spatiotemporal chaos is considered, ranging from questions on its extensivity properties in the thermodynamic limit to the need for new tools to describe the spatial propagation of infinitesimal perturbations. Related questions are concerned with the geometrical structure of tangent space and the study of (local) violations of hyperbolicity, a key property for establishing rigorous mathematical results. This section, while far from being exhaustive, collects four different contributions representative of the current status of research in spatiotemporal chaos. Weakly chaotic systems. Hamiltonian systems typically display a complex interplay of chaotic and regular orbits. Moreover, for many orbits chaos can be very 'weak', characterized by small Lyapunov exponents and/or very slow decay of correlation functions. In such cases even the proper identification of the orbit character constitutes an issue. Additionally, in time-dependent Hamiltonian systems, orbit character may change with time. In all such situations Lyapunov analysis is severely challenged and requires suitable modifications, discussed here by means of an example from celestial mechanics. Predictability in geophysical and multi-scale systems. Multi-scale systems pose further challenges due to the interplay between different spatial and/or temporal scales. Many phenomena of interest in multi-scale systems involve finite amplitude perturbations, whose nonlinear evolution outside of tangent space may be described in terms of the finite-size Lyapunov exponent and bred vectors. The issue of predictability in these systems is of fundamental importance in geophysical applications, where ensemble forecasting and data assimilation techniques based on different kinds of Lyapunov vectors, both infinitesimal and of finite size, are routinely used. This section reviews some basic results in this field and presents two original contributions on Lyapunov vectors applied to atmospheric problems. Lagrangian coherent structures and transport in fluid flows. Lagrangian coherent structures are topological structures playing a prominent role in the studies, both theoretical and applied, of transport, stirring and mixing properties in fluid flows. This section contains two contributions, one more theoretical in nature and a second with biological applications, where Lagrangian coherent structures and their effect on transport and mixing are analyzed through finite-size Lyapunov exponents. While this special issue, in its very nature, cannot be fully exhaustive, we hope that it will provide a clear and up-to-date picture of the theory and applications of Lyapunov analysis, further stimulating fruitful debate across a number of related research fields. Acknowledgments We would like to acknowledge the Journal of Physics A editorial staff, in particular A Haywood, R Gillan and E O'Callaghan for their continuous assistance which made this special issue possible. References [1] Lorenz E 1993 The Essence of Chaos (Seattle, WA: University of Washington) [2] Poincaré H 1890 Acta Math. 13 1 [3] Poincaré H 1892 Les méthods nouvelles de la mécanique céleste vol 1 (Paris: Gauthier-Villars) Poincaré H 1893 Les méthods nouvelles de la mécanique céleste vol 2 (Paris: Gauthier-Villars) Poincaré H 1899 Les méthods nouvelles de la mécanique céleste vol 3 (Paris: Gauthier-Villars) Poincaré H 1992 New Methods of Celestial Mechanics (New York: American Institute of Physics) (Engl. transl.) [4] Hadamard J 1898 J. Math. Pures Appl. 4 27 [5] van der Pol B 1927 Phil. Mag. 3 65 [6] Fermi E, Pasta J and Ulam S 1955 Studies of nonlinear problems Technical Report LA-1940 (Los Alamos, NM: Los Alamos Scientific Laboratory) [7] Lorenz E N 1963 J. Atmos. Sci. 20 130 [8] Hénon M and Heiles C 1964 Astron. J. 69 73 [9] Kolmogorov A N 1958 Dokl. Akad. Nauk SSSR 119 861 [10] Kolmogorov A 1959 Dokl. Akad. Nauk SSSR 124 754 [11] Chirikov B 1959 At. Energ. 6 630 [12] Smale S 1967 Bull. Am. Math. Soc. 73 747 [13] Ruelle D and Takens F 1971 Commun. Math. Phys. 20 167 [14] Li T Y and Yorke J A 1975 Am. Math. Mon. 82 985 [15] Feigenbaum M J 1978 J. Stat. Phys. 19 25 [16] Oseledets V I 1968 Trans. Moscow Math. Soc. 19 197 [17] Birkhoff G D 1931 Proc. Natl Acad. Sci. USA 17 656 [18] von Neumann J 1932 Proc. Natl Acad. Sci. USA 18 70 [19] Krylov N S 1979 Works on the Foundations of Statistical Physics (Princeton, NJ: Princeton University Press) [20] Anosov D V and Sinai Y G 1967 Russ. Math. Surv. 22 103 [21] Pesin Y B 1976 Sov. Math. Dokl. 17 196 [22] Sinai Y G 1972 Russ. Math. Surv. 27 21 [23] Ruelle D 1979 Publ. Math. l'IHES 50 27 [24] Bowen R 1975 Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms (Lecture Notes in Mathematics vol 470) (Berlin: Springer) [25] Bowen R and Ruelle D 1975 Invent. Math. 29 181 [26] Shimada I and Nagashima T 1979 Prog. Theor. Phys. 61 1605 [27] Benettin G, Galgani L, Giorgilli A and Strelcyn J M 1980 Meccanica 15 9 [28] Grassberger P and Procaccia I 1984 Physica D 13 34 [29] Wolf A, Swift J B, Swinney H L and Vastano J A 1985 Physica D 16 285 [30] Takens F 1981 Detecting strange attractors in turbulence Dynamical Systems and Turbulence (Lecture Notes in Mathematics vol 898) ed D A Rand and L S Young (Berlin: Springer) p 366 [31] Eckmann J P and Ruelle D 1985 Rev. Mod. Phys. 57 617 [32] Legras B and Vautard R 1996 A guide to Lyapunov vectors Predictability (ECWF Seminar vol 1) ed T Palmer (Reading: ECMWF) p 141 3Prior to their publication in the West at the end of the 1970s, Krylov's results appeared in his PhD dissertation, published posthumously in 1950.
Stabilisation of time-varying linear systems via Lyapunov differential equations
NASA Astrophysics Data System (ADS)
Zhou, Bin; Cai, Guang-Bin; Duan, Guang-Ren
2013-02-01
This article studies stabilisation problem for time-varying linear systems via state feedback. Two types of controllers are designed by utilising solutions to Lyapunov differential equations. The first type of feedback controllers involves the unique positive-definite solution to a parametric Lyapunov differential equation, which can be solved when either the state transition matrix of the open-loop system is exactly known, or the future information of the system matrices are accessible in advance. Different from the first class of controllers which may be difficult to implement in practice, the second type of controllers can be easily implemented by solving a state-dependent Lyapunov differential equation with a given positive-definite initial condition. In both cases, explicit conditions are obtained to guarantee the exponentially asymptotic stability of the associated closed-loop systems. Numerical examples show the effectiveness of the proposed approaches.
OBSERVING LYAPUNOV EXPONENTS OF INFINITE-DIMENSIONAL DYNAMICAL SYSTEMS
OTT, WILLIAM; RIVAS, MAURICIO A.; WEST, JAMES
2016-01-01
Can Lyapunov exponents of infinite-dimensional dynamical systems be observed by projecting the dynamics into ℝN using a ‘typical’ nonlinear projection map? We answer this question affirmatively by developing embedding theorems for compact invariant sets associated with C1 maps on Hilbert spaces. Examples of such discrete-time dynamical systems include time-T maps and Poincaré return maps generated by the solution semigroups of evolution partial differential equations. We make every effort to place hypotheses on the projected dynamics rather than on the underlying infinite-dimensional dynamical system. In so doing, we adopt an empirical approach and formulate checkable conditions under which a Lyapunov exponent computed from experimental data will be a Lyapunov exponent of the infinite-dimensional dynamical system under study (provided the nonlinear projection map producing the data is typical in the sense of prevalence). PMID:28066028
A Survey of Quantum Lyapunov Control Methods
2013-01-01
The condition of a quantum Lyapunov-based control which can be well used in a closed quantum system is that the method can make the system convergent but not just stable. In the convergence study of the quantum Lyapunov control, two situations are classified: nondegenerate cases and degenerate cases. For these two situations, respectively, in this paper the target state is divided into four categories: the eigenstate, the mixed state which commutes with the internal Hamiltonian, the superposition state, and the mixed state which does not commute with the internal Hamiltonian. For these four categories, the quantum Lyapunov control methods for the closed quantum systems are summarized and analyzed. Particularly, the convergence of the control system to the different target states is reviewed, and how to make the convergence conditions be satisfied is summarized and analyzed. PMID:23766732
OBSERVING LYAPUNOV EXPONENTS OF INFINITE-DIMENSIONAL DYNAMICAL SYSTEMS.
Ott, William; Rivas, Mauricio A; West, James
2015-12-01
Can Lyapunov exponents of infinite-dimensional dynamical systems be observed by projecting the dynamics into ℝ N using a 'typical' nonlinear projection map? We answer this question affirmatively by developing embedding theorems for compact invariant sets associated with C 1 maps on Hilbert spaces. Examples of such discrete-time dynamical systems include time- T maps and Poincaré return maps generated by the solution semigroups of evolution partial differential equations. We make every effort to place hypotheses on the projected dynamics rather than on the underlying infinite-dimensional dynamical system. In so doing, we adopt an empirical approach and formulate checkable conditions under which a Lyapunov exponent computed from experimental data will be a Lyapunov exponent of the infinite-dimensional dynamical system under study (provided the nonlinear projection map producing the data is typical in the sense of prevalence).
Long, Lijun; Zhao, Jun
2017-07-01
In this paper, the problem of adaptive neural output-feedback control is addressed for a class of multi-input multioutput (MIMO) switched uncertain nonlinear systems with unknown control gains. Neural networks (NNs) are used to approximate unknown nonlinear functions. In order to avoid the conservativeness caused by adoption of a common observer for all subsystems, an MIMO NN switched observer is designed to estimate unmeasurable states. A new switched observer-based adaptive neural control technique for the problem studied is then provided by exploiting the classical average dwell time (ADT) method and the backstepping method and the Nussbaum gain technique. It effectively handles the obstacle about the coexistence of multiple Nussbaum-type function terms, and improves the classical ADT method, since the exponential decline property of Lyapunov functions for individual subsystems is no longer satisfied. It is shown that the technique proposed is able to guarantee semiglobal uniformly ultimately boundedness of all the signals in the closed-loop system under a class of switching signals with ADT, and the tracking errors converge to a small neighborhood of the origin. The effectiveness of the approach proposed is illustrated by its application to a two inverted pendulum system.
Optimizing Synchronization Stability of the Kuramoto Model in Complex Networks and Power Grids
NASA Astrophysics Data System (ADS)
Li, Bo; Wong, K. Y. Michael
Maintaining the stability of synchronization state is crucial for the functioning of many natural and artificial systems. For the Kuramoto model on general weighted networks, the synchronization stability, measured by the dominant Lyapunov exponent at the steady state, is shown to have intricate and nonlinear dependence on the network topology and the dynamical parameters. Specifically, the dominant Lyapunov exponent corresponds to the algebraic connectivity of a meta-graph whose edge weight depends nonlinearly on the steady states. In this study, we utilize the cut-set space (DC) approximation to estimate the nonlinear steady state and simplify the calculation of the stability measure, based on which we further derive efficient algorithms to optimize the synchronization stability. The properties of the optimized networks and application in power grid stability are also discussed. This work is supported by a Grant from the Research Grant Council of Hong Kong (Grant Numbers 605813 and 16322616).
A Lyapunov method for stability analysis of piecewise-affine systems over non-invariant domains
NASA Astrophysics Data System (ADS)
Rubagotti, Matteo; Zaccarian, Luca; Bemporad, Alberto
2016-05-01
This paper analyses stability of discrete-time piecewise-affine systems, defined on possibly non-invariant domains, taking into account the possible presence of multiple dynamics in each of the polytopic regions of the system. An algorithm based on linear programming is proposed, in order to prove exponential stability of the origin and to find a positively invariant estimate of its region of attraction. The results are based on the definition of a piecewise-affine Lyapunov function, which is in general discontinuous on the boundaries of the regions. The proposed method is proven to lead to feasible solutions in a broader range of cases as compared to a previously proposed approach. Two numerical examples are shown, among which a case where the proposed method is applied to a closed-loop system, to which model predictive control was applied without a-priori guarantee of stability.
Adaptive identifier for uncertain complex nonlinear systems based on continuous neural networks.
Alfaro-Ponce, Mariel; Cruz, Amadeo Argüelles; Chairez, Isaac
2014-03-01
This paper presents the design of a complex-valued differential neural network identifier for uncertain nonlinear systems defined in the complex domain. This design includes the construction of an adaptive algorithm to adjust the parameters included in the identifier. The algorithm is obtained based on a special class of controlled Lyapunov functions. The quality of the identification process is characterized using the practical stability framework. Indeed, the region where the identification error converges is derived by the same Lyapunov method. This zone is defined by the power of uncertainties and perturbations affecting the complex-valued uncertain dynamics. Moreover, this convergence zone is reduced to its lowest possible value using ideas related to the so-called ellipsoid methodology. Two simple but informative numerical examples are developed to show how the identifier proposed in this paper can be used to approximate uncertain nonlinear systems valued in the complex domain.
Robust stability of bidirectional associative memory neural networks with time delays
NASA Astrophysics Data System (ADS)
Park, Ju H.
2006-01-01
Based on the Lyapunov Krasovskii functionals combined with linear matrix inequality approach, a novel stability criterion is proposed for asymptotic stability of bidirectional associative memory neural networks with time delays. A novel delay-dependent stability criterion is given in terms of linear matrix inequalities, which can be solved easily by various optimization algorithms.
The stability of a class of synchronous generator damping model
NASA Astrophysics Data System (ADS)
Liu, Jun
2018-03-01
Electricity is indispensable to modern society and the most convenient energy, it can be easily transformed into other forms of energy, has been widely used in engineering, transportation and so on, this paper studied the generator model with damping machine, using the Lyapunov function method, we obtain sufficient conditions for the asymptotic stability of the model.
Active synchronization between two different chaotic dynamical system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maheri, M.; Arifin, N. Md; Ismail, F.
2015-05-15
In this paper we investigate on the synchronization problem between two different chaotic dynamical system based on the Lyapunov stability theorem by using nonlinear control functions. Active control schemes are used for synchronization Liu system as drive and Rossler system as response. Numerical simulation by using Maple software are used to show effectiveness of the proposed schemes.
NASA Astrophysics Data System (ADS)
Liu, Qun; Jiang, Daqing; Shi, Ningzhong; Hayat, Tasawar; Alsaedi, Ahmed
2017-03-01
In this paper, we develop a mathematical model for a tuberculosis model with constant recruitment and varying total population size by incorporating stochastic perturbations. By constructing suitable stochastic Lyapunov functions, we establish sufficient conditions for the existence of an ergodic stationary distribution as well as extinction of the disease to the stochastic system.
Modulational estimate for the maximal Lyapunov exponent in Fermi-Pasta-Ulam chains
NASA Astrophysics Data System (ADS)
Dauxois, Thierry; Ruffo, Stefano; Torcini, Alessandro
1997-12-01
In the framework of the Fermi-Pasta-Ulam (FPU) model, we show a simple method to give an accurate analytical estimation of the maximal Lyapunov exponent at high energy density. The method is based on the computation of the mean value of the modulational instability growth rates associated to unstable modes. Moreover, we show that the strong stochasticity threshold found in the β-FPU system is closely related to a transition in tangent space, the Lyapunov eigenvector being more localized in space at high energy.
Lyapunov-based control of limit cycle oscillations in uncertain aircraft systems
NASA Astrophysics Data System (ADS)
Bialy, Brendan
Store-induced limit cycle oscillations (LCO) affect several fighter aircraft and is expected to remain an issue for next generation fighters. LCO arises from the interaction of aerodynamic and structural forces, however the primary contributor to the phenomenon is still unclear. The practical concerns regarding this phenomenon include whether or not ordnance can be safely released and the ability of the aircrew to perform mission-related tasks while in an LCO condition. The focus of this dissertation is the development of control strategies to suppress LCO in aircraft systems. The first contribution of this work (Chapter 2) is the development of a controller consisting of a continuous Robust Integral of the Sign of the Error (RISE) feedback term with a neural network (NN) feedforward term to suppress LCO behavior in an uncertain airfoil system. The second contribution of this work (Chapter 3) is the extension of the development in Chapter 2 to include actuator saturation. Suppression of LCO behavior is achieved through the implementation of an auxiliary error system that features hyperbolic functions and a saturated RISE feedback control structure. Due to the lack of clarity regarding the driving mechanism behind LCO, common practice in literature and in Chapters 2 and 3 is to replicate the symptoms of LCO by including nonlinearities in the wing structure, typically a nonlinear torsional stiffness. To improve the accuracy of the system model a partial differential equation (PDE) model of a flexible wing is derived (see Appendix F) using Hamilton's principle. Chapters 4 and 5 are focused on developing boundary control strategies for regulating the bending and twisting deformations of the derived model. The contribution of Chapter 4 is the construction of a backstepping-based boundary control strategy for a linear PDE model of an aircraft wing. The backstepping-based strategy transforms the original system to a exponentially stable system. A Lyapunov-based stability analysis is then used to show boundedness of the wing bending dynamics. A Lyapunov-based boundary control strategy for an uncertain nonlinear PDE model of an aircraft wing is developed in Chapter 5. In this chapter, a proportional feedback term is coupled with an gradient-based adaptive update law to ensure asymptotic regulation of the flexible states.
Extracting Lyapunov exponents from the echo dynamics of Bose-Einstein condensates on a lattice
NASA Astrophysics Data System (ADS)
Tarkhov, Andrei E.; Wimberger, Sandro; Fine, Boris V.
2017-08-01
We propose theoretically an experimentally realizable method to demonstrate the Lyapunov instability and to extract the value of the largest Lyapunov exponent for a chaotic many-particle interacting system. The proposal focuses specifically on a lattice of coupled Bose-Einstein condensates in the classical regime describable by the discrete Gross-Pitaevskii equation. We suggest to use imperfect time reversal of the system's dynamics known as the Loschmidt echo, which can be realized experimentally by reversing the sign of the Hamiltonian of the system. The routine involves tracking and then subtracting the noise of virtually any observable quantity before and after the time reversal. We support the theoretical analysis by direct numerical simulations demonstrating that the largest Lyapunov exponent can indeed be extracted from the Loschmidt echo routine. We also discuss possible values of experimental parameters required for implementing this proposal.
Behaviour of Lyapunov exponents near crisis points in the dissipative standard map
NASA Astrophysics Data System (ADS)
Pompe, B.; Leven, R. W.
1988-11-01
We numerically study the behaviour of the largest Lyapunov characteristic exponent λ1 in dependence on a control parameter in the 2D standard map with dissipation. In order to investigate the system's motion in parameter intervals slightly above crisis points we introduce "partial" Lyapunov exponents which characterize the average exponential divergence of nearby orbits on a semi-attractor at a boundary crisis and on distinct parts of a "large" chaotic attractor near an interior crisis. In the former case we find no significant difference between λ1 in the pre-crisis regime and the partial Lyapunov exponent describing transient chaotic motions slightly above the crisis. For the latter case we give a quantitative description of the drastic increase of λ1. Moreover, a formula which connects the critical exponent of a chaotic transient above a boundary crisis with a pointwise dimension is derived.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, J.D.; Ott, E.; Yorke, J.A.
Dimension is perhaps the most basic property of an attractor. In this paper we discuss a variety of different definitions of dimension, compute their values for a typical example, and review previous work on the dimension of chaotic attractors. The relevant definitions of dimension are of two general types, those that depend only on metric properties, and those that depend on probabilistic properties (that is, they depend on the frequency with which a typical trajectory visits different regions of the attractor). Both our example and the previous work that we review support the conclusion that all of the probabilistic dimensionsmore » take on the same value, which we call the dimension of the natural measure, and all of the metric dimensions take on a common value, which we call the fractal dimension. Furthermore, the dimension of the natural measure is typically equal to the Lyapunov dimension, which is defined in terms of Lyapunov numbers, and thus is usually far easier to calculate than any other definition. Because it is computable and more physically relevant, we feel that the dimension of the natural measure is more important than the fractal dimension.« less
Discrete-time BAM neural networks with variable delays
NASA Astrophysics Data System (ADS)
Liu, Xin-Ge; Tang, Mei-Lan; Martin, Ralph; Liu, Xin-Bi
2007-07-01
This Letter deals with the global exponential stability of discrete-time bidirectional associative memory (BAM) neural networks with variable delays. Using a Lyapunov functional, and linear matrix inequality techniques (LMI), we derive a new delay-dependent exponential stability criterion for BAM neural networks with variable delays. As this criterion has no extra constraints on the variable delay functions, it can be applied to quite general BAM neural networks with a broad range of time delay functions. It is also easy to use in practice. An example is provided to illustrate the theoretical development.
Wang, Dongshu; Huang, Lihong; Tang, Longkun
2015-08-01
This paper is concerned with the synchronization dynamical behaviors for a class of delayed neural networks with discontinuous neuron activations. Continuous and discontinuous state feedback controller are designed such that the neural networks model can realize exponential complete synchronization in view of functional differential inclusions theory, Lyapunov functional method and inequality technique. The new proposed results here are very easy to verify and also applicable to neural networks with continuous activations. Finally, some numerical examples show the applicability and effectiveness of our main results.
Delay-slope-dependent stability results of recurrent neural networks.
Li, Tao; Zheng, Wei Xing; Lin, Chong
2011-12-01
By using the fact that the neuron activation functions are sector bounded and nondecreasing, this brief presents a new method, named the delay-slope-dependent method, for stability analysis of a class of recurrent neural networks with time-varying delays. This method includes more information on the slope of neuron activation functions and fewer matrix variables in the constructed Lyapunov-Krasovskii functional. Then some improved delay-dependent stability criteria with less computational burden and conservatism are obtained. Numerical examples are given to illustrate the effectiveness and the benefits of the proposed method.
Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data
NASA Astrophysics Data System (ADS)
Pathak, Jaideep; Lu, Zhixin; Hunt, Brian R.; Girvan, Michelle; Ott, Edward
2017-12-01
We use recent advances in the machine learning area known as "reservoir computing" to formulate a method for model-free estimation from data of the Lyapunov exponents of a chaotic process. The technique uses a limited time series of measurements as input to a high-dimensional dynamical system called a "reservoir." After the reservoir's response to the data is recorded, linear regression is used to learn a large set of parameters, called the "output weights." The learned output weights are then used to form a modified autonomous reservoir designed to be capable of producing an arbitrarily long time series whose ergodic properties approximate those of the input signal. When successful, we say that the autonomous reservoir reproduces the attractor's "climate." Since the reservoir equations and output weights are known, we can compute the derivatives needed to determine the Lyapunov exponents of the autonomous reservoir, which we then use as estimates of the Lyapunov exponents for the original input generating system. We illustrate the effectiveness of our technique with two examples, the Lorenz system and the Kuramoto-Sivashinsky (KS) equation. In the case of the KS equation, we note that the high dimensional nature of the system and the large number of Lyapunov exponents yield a challenging test of our method, which we find the method successfully passes.
L∞-gain adaptive fuzzy fault accommodation control design for nonlinear time-delay systems.
Wu, Huai-Ning; Qiang, Xiao-Hong; Guo, Lei
2011-06-01
In this paper, an adaptive fuzzy fault accommodation (FA) control design with a guaranteed L(∞)-gain performance is developed for a class of nonlinear time-delay systems with persistent bounded disturbances. Using the Lyapunov technique and the Razumikhin-type lemma, the existence condition of the L(∞) -gain adaptive fuzzy FA controllers is provided in terms of linear matrix inequalities (LMIs). In the proposed FA scheme, a fuzzy logic system is employed to approximate the unknown term in the derivative of the Lyapunov function due to the unknown fault function; a continuous-state feedback control strategy is adopted for the control design to avoid the undesirable chattering phenomenon. The resulting FA controllers can ensure that every response of the closed-loop system is uniformly ultimately bounded with a guaranteed L(∞)-gain performance in the presence of a fault. Moreover, by the existing LMI optimization technique, a suboptimal controller is obtained in the sense of minimizing an upper bound of the L(∞)-gain. Finally, the achieved simulation results on the FA control of a continuous stirred tank reactor (CSTR) show the effectiveness of the proposed design procedure.
Si, Wenjie; Dong, Xunde; Yang, Feifei
2018-03-01
This paper is concerned with the problem of decentralized adaptive backstepping state-feedback control for uncertain high-order large-scale stochastic nonlinear time-delay systems. For the control design of high-order large-scale nonlinear systems, only one adaptive parameter is constructed to overcome the over-parameterization, and neural networks are employed to cope with the difficulties raised by completely unknown system dynamics and stochastic disturbances. And then, the appropriate Lyapunov-Krasovskii functional and the property of hyperbolic tangent functions are used to deal with the unknown unmatched time-delay interactions of high-order large-scale systems for the first time. At last, on the basis of Lyapunov stability theory, the decentralized adaptive neural controller was developed, and it decreases the number of learning parameters. The actual controller can be designed so as to ensure that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded (SGUUB) and the tracking error converges in the small neighborhood of zero. The simulation example is used to further show the validity of the design method. Copyright © 2018 Elsevier Ltd. All rights reserved.
Extending the length and time scales of Gram-Schmidt Lyapunov vector computations
NASA Astrophysics Data System (ADS)
Costa, Anthony B.; Green, Jason R.
2013-08-01
Lyapunov vectors have found growing interest recently due to their ability to characterize systems out of thermodynamic equilibrium. The computation of orthogonal Gram-Schmidt vectors requires multiplication and QR decomposition of large matrices, which grow as N2 (with the particle count). This expense has limited such calculations to relatively small systems and short time scales. Here, we detail two implementations of an algorithm for computing Gram-Schmidt vectors. The first is a distributed-memory message-passing method using Scalapack. The second uses the newly-released MAGMA library for GPUs. We compare the performance of both codes for Lennard-Jones fluids from N=100 to 1300 between Intel Nahalem/Infiniband DDR and NVIDIA C2050 architectures. To our best knowledge, these are the largest systems for which the Gram-Schmidt Lyapunov vectors have been computed, and the first time their calculation has been GPU-accelerated. We conclude that Lyapunov vector calculations can be significantly extended in length and time by leveraging the power of GPU-accelerated linear algebra.
Universality in chaos: Lyapunov spectrum and random matrix theory.
Hanada, Masanori; Shimada, Hidehiko; Tezuka, Masaki
2018-02-01
We propose the existence of a new universality in classical chaotic systems when the number of degrees of freedom is large: the statistical property of the Lyapunov spectrum is described by random matrix theory. We demonstrate it by studying the finite-time Lyapunov exponents of the matrix model of a stringy black hole and the mass-deformed models. The massless limit, which has a dual string theory interpretation, is special in that the universal behavior can be seen already at t=0, while in other cases it sets in at late time. The same pattern is demonstrated also in the product of random matrices.
Universality in chaos: Lyapunov spectrum and random matrix theory
NASA Astrophysics Data System (ADS)
Hanada, Masanori; Shimada, Hidehiko; Tezuka, Masaki
2018-02-01
We propose the existence of a new universality in classical chaotic systems when the number of degrees of freedom is large: the statistical property of the Lyapunov spectrum is described by random matrix theory. We demonstrate it by studying the finite-time Lyapunov exponents of the matrix model of a stringy black hole and the mass-deformed models. The massless limit, which has a dual string theory interpretation, is special in that the universal behavior can be seen already at t =0 , while in other cases it sets in at late time. The same pattern is demonstrated also in the product of random matrices.
Exact solution of some linear matrix equations using algebraic methods
NASA Technical Reports Server (NTRS)
Djaferis, T. E.; Mitter, S. K.
1977-01-01
A study is done of solution methods for Linear Matrix Equations including Lyapunov's equation, using methods of modern algebra. The emphasis is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The action f sub BA is introduced a Basic Lemma is proven. The equation PA + BP = -C as well as the Lyapunov equation are analyzed. Algorithms are given for the solution of the Lyapunov and comment is given on its arithmetic complexity. The equation P - A'PA = Q is studied and numerical examples are given.
Optimization of inclusive fitness.
Grafen, Alan
2006-02-07
The first fully explicit argument is given that broadly supports a widespread belief among whole-organism biologists that natural selection tends to lead to organisms acting as if maximizing their inclusive fitness. The use of optimization programs permits a clear statement of what this belief should be understood to mean, in contradistinction to the common mathematical presumption that it should be formalized as some kind of Lyapunov or even potential function. The argument reveals new details and uncovers latent assumptions. A very general genetic architecture is allowed, and there is arbitrary uncertainty. However, frequency dependence of fitnesses is not permitted. The logic of inclusive fitness immediately draws together various kinds of intra-genomic conflict, and the concept of 'p-family' is introduced. Inclusive fitness is thus incorporated into the formal Darwinism project, which aims to link the mathematics of motion (difference and differential equations) used to describe gene frequency trajectories with the mathematics of optimization used to describe purpose and design. Important questions remain to be answered in the fundamental theory of inclusive fitness.
Adaptive Neural Tracking Control for Switched High-Order Stochastic Nonlinear Systems.
Zhao, Xudong; Wang, Xinyong; Zong, Guangdeng; Zheng, Xiaolong
2017-10-01
This paper deals with adaptive neural tracking control design for a class of switched high-order stochastic nonlinear systems with unknown uncertainties and arbitrary deterministic switching. The considered issues are: 1) completely unknown uncertainties; 2) stochastic disturbances; and 3) high-order nonstrict-feedback system structure. The considered mathematical models can represent many practical systems in the actual engineering. By adopting the approximation ability of neural networks, common stochastic Lyapunov function method together with adding an improved power integrator technique, an adaptive state feedback controller with multiple adaptive laws is systematically designed for the systems. Subsequently, a controller with only two adaptive laws is proposed to solve the problem of over parameterization. Under the designed controllers, all the signals in the closed-loop system are bounded-input bounded-output stable in probability, and the system output can almost surely track the target trajectory within a specified bounded error. Finally, simulation results are presented to show the effectiveness of the proposed approaches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hramov, Alexander E.; Saratov State Technical University, Politechnicheskaja str., 77, Saratov 410054; Koronovskii, Alexey A.
2012-08-15
The spectrum of Lyapunov exponents is powerful tool for the analysis of the complex system dynamics. In the general framework of nonlinear dynamics, a number of the numerical techniques have been developed to obtain the spectrum of Lyapunov exponents for the complex temporal behavior of the systems with a few degree of freedom. Unfortunately, these methods cannot be applied directly to analysis of complex spatio-temporal dynamics of plasma devices which are characterized by the infinite phase space, since they are the spatially extended active media. In the present paper, we propose the method for the calculation of the spectrum ofmore » the spatial Lyapunov exponents (SLEs) for the spatially extended beam-plasma systems. The calculation technique is applied to the analysis of chaotic spatio-temporal oscillations in three different beam-plasma model: (1) simple plasma Pierce diode, (2) coupled Pierce diodes, and (3) electron-wave system with backward electromagnetic wave. We find an excellent agreement between the system dynamics and the behavior of the spectrum of the spatial Lyapunov exponents. Along with the proposed method, the possible problems of SLEs calculation are also discussed. It is shown that for the wide class of the spatially extended systems, the set of quantities included in the system state for SLEs calculation can be reduced using the appropriate feature of the plasma systems.« less
On adaptive learning rate that guarantees convergence in feedforward networks.
Behera, Laxmidhar; Kumar, Swagat; Patnaik, Awhan
2006-09-01
This paper investigates new learning algorithms (LF I and LF II) based on Lyapunov function for the training of feedforward neural networks. It is observed that such algorithms have interesting parallel with the popular backpropagation (BP) algorithm where the fixed learning rate is replaced by an adaptive learning rate computed using convergence theorem based on Lyapunov stability theory. LF II, a modified version of LF I, has been introduced with an aim to avoid local minima. This modification also helps in improving the convergence speed in some cases. Conditions for achieving global minimum for these kind of algorithms have been studied in detail. The performances of the proposed algorithms are compared with BP algorithm and extended Kalman filtering (EKF) on three bench-mark function approximation problems: XOR, 3-bit parity, and 8-3 encoder. The comparisons are made in terms of number of learning iterations and computational time required for convergence. It is found that the proposed algorithms (LF I and II) are much faster in convergence than other two algorithms to attain same accuracy. Finally, the comparison is made on a complex two-dimensional (2-D) Gabor function and effect of adaptive learning rate for faster convergence is verified. In a nutshell, the investigations made in this paper help us better understand the learning procedure of feedforward neural networks in terms of adaptive learning rate, convergence speed, and local minima.
Bankole, Temitayo; Jones, Dustin; Bhattacharyya, Debangsu; ...
2017-11-03
In this study, a two-level control methodology consisting of an upper-level scheduler and a lower-level supervisory controller is proposed for an advanced load-following energy plant with CO 2 capture. With the use of an economic objective function that considers fluctuation in electricity demand and price at the upper level, optimal scheduling of energy plant electricity production and carbon capture with respect to several carbon tax scenarios is implemented. The optimal operational profiles are then passed down to corresponding lower-level supervisory controllers designed using a methodological approach that balances control complexity with performance. Finally, it is shown how optimal carbon capturemore » and electricity production rate profiles for an energy plant such as the integrated gasification combined cycle (IGCC) plant are affected by electricity demand and price fluctuations under different carbon tax scenarios. As a result, the paper also presents a Lyapunov stability analysis of the proposed scheme.« less
Dispersive Sachdev-Ye-Kitaev model: Band structure and quantum chaos
NASA Astrophysics Data System (ADS)
Zhang, Pengfei
2017-11-01
The Sachdev-Ye-Kitaev (SYK) model is a concrete model for a non-Fermi liquid with maximally chaotic behavior in (0 +1 ) dimensions. In order to gain some insights into real materials in higher dimensions where fermions could hop between different sites, here we consider coupling a SYK lattice by constant hopping. We call this the dispersive SYK model. Focusing on (1 +1 ) -dimensional homogeneous hopping, by either tuning the temperature or the relative strength of the random interaction (hopping) and constant hopping, we find a crossover between a dispersive metal to an incoherent metal, where the dynamic exponent z changes from 1 to ∞ . We study the crossover by calculating the spectral function, charge density correlator, and the Lyapunov exponent. We further find the Lyapunov exponent becomes larger when the chemical potential is tuned to approach a van Hove singularity because of the large density of states near the Fermi surface. The effect of the topological nontrivial bands is also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bankole, Temitayo; Jones, Dustin; Bhattacharyya, Debangsu
In this study, a two-level control methodology consisting of an upper-level scheduler and a lower-level supervisory controller is proposed for an advanced load-following energy plant with CO 2 capture. With the use of an economic objective function that considers fluctuation in electricity demand and price at the upper level, optimal scheduling of energy plant electricity production and carbon capture with respect to several carbon tax scenarios is implemented. The optimal operational profiles are then passed down to corresponding lower-level supervisory controllers designed using a methodological approach that balances control complexity with performance. Finally, it is shown how optimal carbon capturemore » and electricity production rate profiles for an energy plant such as the integrated gasification combined cycle (IGCC) plant are affected by electricity demand and price fluctuations under different carbon tax scenarios. As a result, the paper also presents a Lyapunov stability analysis of the proposed scheme.« less
Stochastic bifurcation in a model of love with colored noise
NASA Astrophysics Data System (ADS)
Yue, Xiaokui; Dai, Honghua; Yuan, Jianping
2015-07-01
In this paper, we wish to examine the stochastic bifurcation induced by multiplicative Gaussian colored noise in a dynamical model of love where the random factor is used to describe the complexity and unpredictability of psychological systems. First, the dynamics in deterministic love-triangle model are considered briefly including equilibrium points and their stability, chaotic behaviors and chaotic attractors. Then, the influences of Gaussian colored noise with different parameters are explored such as the phase plots, top Lyapunov exponents, stationary probability density function (PDF) and stochastic bifurcation. The stochastic P-bifurcation through a qualitative change of the stationary PDF will be observed and bifurcation diagram on parameter plane of correlation time and noise intensity is presented to find the bifurcation behaviors in detail. Finally, the top Lyapunov exponent is computed to determine the D-bifurcation when the noise intensity achieves to a critical value. By comparison, we find there is no connection between two kinds of stochastic bifurcation.
Dynamics of a stochastic HIV-1 infection model with logistic growth
NASA Astrophysics Data System (ADS)
Jiang, Daqing; Liu, Qun; Shi, Ningzhong; Hayat, Tasawar; Alsaedi, Ahmed; Xia, Peiyan
2017-03-01
This paper is concerned with a stochastic HIV-1 infection model with logistic growth. Firstly, by constructing suitable stochastic Lyapunov functions, we establish sufficient conditions for the existence of ergodic stationary distribution of the solution to the HIV-1 infection model. Then we obtain sufficient conditions for extinction of the infection. The stationary distribution shows that the infection can become persistent in vivo.
Phase transition in tumor growth: I avascular development
NASA Astrophysics Data System (ADS)
Izquierdo-Kulich, E.; Rebelo, I.; Tejera, E.; Nieto-Villar, J. M.
2013-12-01
We propose a mechanism for avascular tumor growth based on a simple chemical network. This model presents a logistic behavior and shows a “second order” phase transition. We prove the fractal origin of the empirical logistics and Gompertz constant and its relation to mitosis and apoptosis rate. Finally, the thermodynamics framework developed demonstrates the entropy production rate as a Lyapunov function during avascular tumor growth.
Equivalences between nonuniform exponential dichotomy and admissibility
NASA Astrophysics Data System (ADS)
Zhou, Linfeng; Lu, Kening; Zhang, Weinian
2017-01-01
Relationship between exponential dichotomies and admissibility of function classes is a significant problem for hyperbolic dynamical systems. It was proved that a nonuniform exponential dichotomy implies several admissible pairs of function classes and conversely some admissible pairs were found to imply a nonuniform exponential dichotomy. In this paper we find an appropriate admissible pair of classes of Lyapunov bounded functions which is equivalent to the existence of nonuniform exponential dichotomy on half-lines R± separately, on both half-lines R± simultaneously, and on the whole line R. Additionally, the maximal admissibility is proved in the case on both half-lines R± simultaneously.
A semi-analytical method for the computation of the Lyapunov exponents of fractional-order systems
NASA Astrophysics Data System (ADS)
Caponetto, Riccardo; Fazzino, Stefano
2013-01-01
Fractional-order differential equations are interesting for their applications in the construction of mathematical models in finance, materials science or diffusion. In this paper, an application of a well known transformation technique, Differential Transform Method (DTM), to the area of fractional differential equation is employed for calculating Lyapunov exponents of fractional order systems. It is known that the Lyapunov exponents, first introduced by Oseledec, play a crucial role in characterizing the behaviour of dynamical systems. They can be used to analyze the sensitive dependence on initial conditions and the presence of chaotic attractors. The results reveal that the proposed method is very effective and simple and leads to accurate, approximately convergent solutions.
Driving many distant atoms into high-fidelity steady state entanglement via Lyapunov control.
Li, Chuang; Song, Jie; Xia, Yan; Ding, Weiqiang
2018-01-22
Based on Lyapunov control theory in closed and open systems, we propose a scheme to generate W state of many distant atoms in the cavity-fiber-cavity system. In the closed system, the W state is generated successfully even when the coupling strength between the cavity and fiber is extremely weak. In the presence of atomic spontaneous emission or cavity and fiber decay, the photon-measurement and quantum feedback approaches are proposed to improve the fidelity, which enable efficient generation of high-fidelity W state in the case of large dissipation. Furthermore, the time-optimal Lyapunov control is investigated to shorten the evolution time and improve the fidelity in open systems.
Statistics of Lyapunov exponents of quasi-one-dimensional disordered systems
NASA Astrophysics Data System (ADS)
Zhang, Yan-Yang; Xiong, Shi-Jie
2005-10-01
Statistical properties of Lyapunov exponents (LE) are numerically calculated in a quasi-one-dimensional (1D) Anderson model, which is in a 2D or 3D lattice with a finite cross section. The single-parameter scaling (SPS) variable τ relating the Lyapunov exponents γ and their variances σ by τ≡σ2L/⟨γ⟩ is calculated for different lateral coupling t and disorder strength W . In a wide range of t , τ is approximately independent of W , but it has different values for LEs in different channels. For small t , the distribution of the smallest LE is non-Gaussian and τ strongly depends on W , remarkably different from the 1D SPS hypothesis.
An Isomorphism between Lyapunov Exponents and Shannon's Channel Capacity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedland, Gerald; Metere, Alfredo
We demonstrate that discrete Lyapunov exponents are isomorphic to numeric overflows of the capacity of an arbitrary noiseless and memoryless channel in a Shannon communication model with feedback. The isomorphism allows the understanding of Lyapunov exponents in terms of Information Theory, rather than the traditional definitions in chaos theory. The result also implies alternative approaches to the calculation of related quantities, such as the Kolmogorov Sinai entropy which has been linked to thermodynamic entropy. This work provides a bridge between fundamental physics and information theory. It suggests, among other things, that machine learning and other information theory methods can bemore » employed at the core of physics simulations.« less
NASA Astrophysics Data System (ADS)
Oliveira, José J.
2017-10-01
In this paper, we investigate the global convergence of solutions of non-autonomous Hopfield neural network models with discrete time-varying delays, infinite distributed delays, and possible unbounded coefficient functions. Instead of using Lyapunov functionals, we explore intrinsic features between the non-autonomous systems and their asymptotic systems to ensure the boundedness and global convergence of the solutions of the studied models. Our results are new and complement known results in the literature. The theoretical analysis is illustrated with some examples and numerical simulations.
Extending the length and time scales of Gram–Schmidt Lyapunov vector computations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costa, Anthony B., E-mail: acosta@northwestern.edu; Green, Jason R., E-mail: jason.green@umb.edu; Department of Chemistry, University of Massachusetts Boston, Boston, MA 02125
Lyapunov vectors have found growing interest recently due to their ability to characterize systems out of thermodynamic equilibrium. The computation of orthogonal Gram–Schmidt vectors requires multiplication and QR decomposition of large matrices, which grow as N{sup 2} (with the particle count). This expense has limited such calculations to relatively small systems and short time scales. Here, we detail two implementations of an algorithm for computing Gram–Schmidt vectors. The first is a distributed-memory message-passing method using Scalapack. The second uses the newly-released MAGMA library for GPUs. We compare the performance of both codes for Lennard–Jones fluids from N=100 to 1300 betweenmore » Intel Nahalem/Infiniband DDR and NVIDIA C2050 architectures. To our best knowledge, these are the largest systems for which the Gram–Schmidt Lyapunov vectors have been computed, and the first time their calculation has been GPU-accelerated. We conclude that Lyapunov vector calculations can be significantly extended in length and time by leveraging the power of GPU-accelerated linear algebra.« less
Generalized logistic map and its application in chaos based cryptography
NASA Astrophysics Data System (ADS)
Lawnik, M.
2017-12-01
The logistic map is commonly used in, for example, chaos based cryptography. However, its properties do not render a safe construction of encryption algorithms. Thus, the scope of the paper is a proposal of generalization of the logistic map by means of a wellrecognized family of chaotic maps. In the next step, an analysis of Lyapunov exponent and the distribution of the iterative variable are studied. The obtained results confirm that the analyzed model can safely and effectively replace a classic logistic map for applications involving chaotic cryptography.
Nonlinear Stability of MKdV Breathers
NASA Astrophysics Data System (ADS)
Alejo, Miguel A.; Muñoz, Claudio
2013-11-01
Breather solutions of the modified Korteweg-de Vries equation are shown to be globally stable in a natural H 2 topology. Our proof introduces a new Lyapunov functional, at the H 2 level, which allows to describe the dynamics of small perturbations, including oscillations induced by the periodicity of the solution, as well as a direct control of the corresponding instability modes. In particular, degenerate directions are controlled using low-regularity conservation laws.
Nonlinear stability of Gardner breathers
NASA Astrophysics Data System (ADS)
Alejo, Miguel A.
2018-01-01
We show that breather solutions of the Gardner equation, a natural generalization of the KdV and mKdV equations, are H2 (R) stable. Through a variational approach, we characterize Gardner breathers as minimizers of a new Lyapunov functional and we study the associated spectral problem, through (i) the analysis of the spectrum of explicit linear systems (spectral stability), and (ii) controlling degenerated directions by using low regularity conservation laws.
An adaptive robust controller for time delay maglev transportation systems
NASA Astrophysics Data System (ADS)
Milani, Reza Hamidi; Zarabadipour, Hassan; Shahnazi, Reza
2012-12-01
For engineering systems, uncertainties and time delays are two important issues that must be considered in control design. Uncertainties are often encountered in various dynamical systems due to modeling errors, measurement noises, linearization and approximations. Time delays have always been among the most difficult problems encountered in process control. In practical applications of feedback control, time delay arises frequently and can severely degrade closed-loop system performance and in some cases, drives the system to instability. Therefore, stability analysis and controller synthesis for uncertain nonlinear time-delay systems are important both in theory and in practice and many analytical techniques have been developed using delay-dependent Lyapunov function. In the past decade the magnetic and levitation (maglev) transportation system as a new system with high functionality has been the focus of numerous studies. However, maglev transportation systems are highly nonlinear and thus designing controller for those are challenging. The main topic of this paper is to design an adaptive robust controller for maglev transportation systems with time-delay, parametric uncertainties and external disturbances. In this paper, an adaptive robust control (ARC) is designed for this purpose. It should be noted that the adaptive gain is derived from Lyapunov-Krasovskii synthesis method, therefore asymptotic stability is guaranteed.
Differential flatness properties and multivariable adaptive control of ovarian system dynamics
NASA Astrophysics Data System (ADS)
Rigatos, Gerasimos
2016-12-01
The ovarian system exhibits nonlinear dynamics which is modeled by a set of coupled nonlinear differential equations. The paper proposes adaptive fuzzy control based on differential flatness theory for the complex dynamics of the ovarian system. It is proven that the dynamic model of the ovarian system, having as state variables the LH and the FSH hormones and their derivatives, is a differentially flat one. This means that all its state variables and its control inputs can be described as differential functions of the flat output. By exploiting differential flatness properties the system's dynamic model is written in the multivariable linear canonical (Brunovsky) form, for which the design of a state feedback controller becomes possible. After this transformation, the new control inputs of the system contain unknown nonlinear parts, which are identified with the use of neurofuzzy approximators. The learning procedure for these estimators is determined by the requirement the first derivative of the closed-loop's Lyapunov function to be a negative one. Moreover, Lyapunov stability analysis shows that H-infinity tracking performance is succeeded for the feedback control loop and this assures improved robustness to the aforementioned model uncertainty as well as to external perturbations. The efficiency of the proposed adaptive fuzzy control scheme is confirmed through simulation experiments.
Chaos in the brain: imaging via chaoticity of EEG/MEG signals
NASA Astrophysics Data System (ADS)
Kowalik, Zbigniew J.; Elbert, Thomas; Rockstroh, Brigitte; Hoke, Manfried
1995-03-01
Brain electro- (EEG) or magnetoencephalogram (MEG) can be analyzed by using methods of the nonlinear system theory. We show that even for very short and nonstationary time series it is possible to functionally differentiate various brain activities. Usually the analysis assumes that the analyzed signals are both long and stationary, so that the classic spectral methods can be used. Even more convincing results can be obtained under these circumstances when the dimensional analysis or estimation of the Kolmogorov entropy or the Lyapunov exponent are performed. When measuring the spontaneous activity of a human brain the assumption of stationarity is questionable and `static' methods (correlation dimension, entropy, etc.) are then not adequate. In this case `dynamic' methods like pointwise-D2 dimension or chaoticity measures should be applied. Predictability measures in the form of local Lyapunov exponents are capable of revealing directly the chaoticity of a given process, and can practically be applied for functional differentiation of brain activity. We exemplify these in cases of apallic syndrome, tinnitus and schizophrenia. We show that: the average chaoticity in apallic syndrome differentiates brain states both in space and time, chaoticity changes temporally in case of schizophrenia (critical jumps of chaoticity), chaoticity changes locally in space, i.e., in the cortex plane in case of tinnitus.
No ISCOs in Charged Myers Perry Spacetimes by Measuring Lyapunov Exponent
NASA Astrophysics Data System (ADS)
Pradhan, Parthapratim
2015-01-01
By computing coordinate time Lyapunov exponent, we prove that for more than four spacetime dimensions (N ≥ 3), there are no Innermost Stable Circular Orbit (ISCO) in charged Myers Perry blackhole spacetime.Using it, we show that the instability of equatorial circular geodesics, both massive and massless particles for such types of blackhole space-times.
Spectrum of Lyapunov exponents of non-smooth dynamical systems of integrate-and-fire type.
Zhou, Douglas; Sun, Yi; Rangan, Aaditya V; Cai, David
2010-04-01
We discuss how to characterize long-time dynamics of non-smooth dynamical systems, such as integrate-and-fire (I&F) like neuronal network, using Lyapunov exponents and present a stable numerical method for the accurate evaluation of the spectrum of Lyapunov exponents for this large class of dynamics. These dynamics contain (i) jump conditions as in the firing-reset dynamics and (ii) degeneracy such as in the refractory period in which voltage-like variables of the network collapse to a single constant value. Using the networks of linear I&F neurons, exponential I&F neurons, and I&F neurons with adaptive threshold, we illustrate our method and discuss the rich dynamics of these networks.
Robust uniform persistence in discrete and continuous dynamical systems using Lyapunov exponents.
Salceanu, Paul L
2011-07-01
This paper extends the work of Salceanu and Smith [12, 13] where Lyapunov exponents were used to obtain conditions for uniform persistence ina class of dissipative discrete-time dynamical systems on the positive orthant of R(m), generated by maps. Here a united approach is taken, for both discrete and continuous time, and the dissipativity assumption is relaxed. Sufficient conditions are given for compact subsets of an invariant part of the boundary of R(m+) to be robust uniform weak repellers. These conditions require Lyapunov exponents be positive on such sets. It is shown how this leads to robust uniform persistence. The results apply to the investigation of robust uniform persistence of the disease in host populations, as shown in an application.
Stability of discrete time recurrent neural networks and nonlinear optimization problems.
Singh, Jayant; Barabanov, Nikita
2016-02-01
We consider the method of Reduction of Dissipativity Domain to prove global Lyapunov stability of Discrete Time Recurrent Neural Networks. The standard and advanced criteria for Absolute Stability of these essentially nonlinear systems produce rather weak results. The method mentioned above is proved to be more powerful. It involves a multi-step procedure with maximization of special nonconvex functions over polytopes on every step. We derive conditions which guarantee an existence of at most one point of local maximum for such functions over every hyperplane. This nontrivial result is valid for wide range of neuron transfer functions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Design of asymptotic estimators: an approach based on neural networks and nonlinear programming.
Alessandri, Angelo; Cervellera, Cristiano; Sanguineti, Marcello
2007-01-01
A methodology to design state estimators for a class of nonlinear continuous-time dynamic systems that is based on neural networks and nonlinear programming is proposed. The estimator has the structure of a Luenberger observer with a linear gain and a parameterized (in general, nonlinear) function, whose argument is an innovation term representing the difference between the current measurement and its prediction. The problem of the estimator design consists in finding the values of the gain and of the parameters that guarantee the asymptotic stability of the estimation error. Toward this end, if a neural network is used to take on this function, the parameters (i.e., the neural weights) are chosen, together with the gain, by constraining the derivative of a quadratic Lyapunov function for the estimation error to be negative definite on a given compact set. It is proved that it is sufficient to impose the negative definiteness of such a derivative only on a suitably dense grid of sampling points. The gain is determined by solving a Lyapunov equation. The neural weights are searched for via nonlinear programming by minimizing a cost penalizing grid-point constraints that are not satisfied. Techniques based on low-discrepancy sequences are applied to deal with a small number of sampling points, and, hence, to reduce the computational burden required to optimize the parameters. Numerical results are reported and comparisons with those obtained by the extended Kalman filter are made.
Decentralized control algorithms of a group of vehicles in 2D space
NASA Astrophysics Data System (ADS)
Pshikhopov, V. K.; Medvedev, M. Y.; Fedorenko, R. V.; Gurenko, B. V.
2017-02-01
The problem of decentralized control of group of robots, described by kinematic and dynamic equations of motion in the plane, is considered. Group performs predetermined rectangular area passing at a fixed speed, keeping the line and a uniform distribution. The environment may contain a priori unknown moving or stationary obstacles. Decentralized control algorithms, based on the formation of repellers in the state space of robots, are proposed. These repellers form repulsive forces generated by dynamic subsystems that extend the state space of robots. These repulsive forces are dynamic functions of distances and velocities of robots in the area of operation of the group. The process of formation of repellers allows to take into account the dynamic properties of robots, such as the maximum speed and acceleration. The robots local control law formulas are derived based on positionally-trajectory control method, which allows to operate with non-linear models. Lyapunov function in the form of a quadratic function of the state variables is constructed to obtain a nonlinear closed-loop control system. Due to the fact that a closed system is decomposed into two independent subsystems Lyapunov function is also constructed as two independent functions. Numerical simulation of the motion of a group of five robots is presented. In this simulation obstacles are presented by the boundaries of working area and a movable object of a given radius, moving rectilinear and uniform. Obstacle speed is comparable to the speeds of the robots in a group. The advantage of the proposed method is ensuring the stability of the trajectories and consideration of the limitations on the speed and acceleration at the trajectory planning stage. Proposed approach can be used for more general robots' models, including robots in the three-dimensional environment.
Passivity of memristive BAM neural networks with leakage and additive time-varying delays
NASA Astrophysics Data System (ADS)
Wang, Weiping; Wang, Meiqi; Luo, Xiong; Li, Lixiang; Zhao, Wenbing; Liu, Linlin; Ping, Yuan
2018-02-01
This paper investigates the passivity of memristive bidirectional associate memory neural networks (MBAMNNs) with leakage and additive time-varying delays. Based on some useful inequalities and appropriate Lyapunov-Krasovskii functionals (LKFs), several delay-dependent conditions for passivity performance are obtained in linear matrix inequalities (LMIs). Moreover, the leakage delays as well as additive delays are considered separately. Finally, numerical simulations are provided to demonstrate the feasibility of the theoretical results.
Improved result on stability analysis of discrete stochastic neural networks with time delay
NASA Astrophysics Data System (ADS)
Wu, Zhengguang; Su, Hongye; Chu, Jian; Zhou, Wuneng
2009-04-01
This Letter investigates the problem of exponential stability for discrete stochastic time-delay neural networks. By defining a novel Lyapunov functional, an improved delay-dependent exponential stability criterion is established in terms of linear matrix inequality (LMI) approach. Meanwhile, the computational complexity of the newly established stability condition is reduced because less variables are involved. Numerical example is given to illustrate the effectiveness and the benefits of the proposed method.
Theory, Methods, and Applications of Nonlinear Control
2012-08-29
an application to Lotka - Volterra systems,” in Proceedings of the American Control Conference (St. Louis, MO, 10-12 June 2009), pp. 96-101. [MM10a...Mazenc, F., and M. Malisoff, “Strict Lyapunov function constructions under LaSalle conditions with an application to Lotka - Volterra systems,” IEEE...the tracking dynamics, (d) the applicability of the theory to a very general class of reference trajectories, and (e) the use of input-to-state
NASA Astrophysics Data System (ADS)
Wilkinson, Michael; Grant, John
2018-03-01
We consider a stochastic process in which independent identically distributed random matrices are multiplied and where the Lyapunov exponent of the product is positive. We continue multiplying the random matrices as long as the norm, ɛ, of the product is less than unity. If the norm is greater than unity we reset the matrix to a multiple of the identity and then continue the multiplication. We address the problem of determining the probability density function of the norm, \
2014-03-01
to determine if a system is stabilizable with feedback. 12 that asymptotic stability is guaranteed by Lyapunov theory. The advantage of this method are...discretized dynamics are a sufficient representation of the continuous system . Given these assumptions, the optimal control problem for minimum transit time is...tion (APF) guidance performance when applied to systems with limited control au- thority in a dynamic environment and then to use the findings to
Systematic Design of High-performance Hybrid Feedback Algorithms
2015-06-24
Automatic Control, vol. 59, no. 9, pp. 2426- 2441 , 2014. J6. Liberzon, D.; Nešić, D.; Teel, A.R., “Lyapunov-based small-gain theorems for hybrid...on Automatic Control, vol. 59, no. 9, pp. 2426- 2441 , 2014. J6. Liberzon, D.; Nešić, D.; Teel, A.R., “Lyapunov-based small-gain theorems for hybrid
Multi-Strain Deterministic Chaos in Dengue Epidemiology, A Challenge for Computational Mathematics
NASA Astrophysics Data System (ADS)
Aguiar, Maíra; Kooi, Bob W.; Stollenwerk, Nico
2009-09-01
Recently, we have analysed epidemiological models of competing strains of pathogens and hence differences in transmission for first versus secondary infection due to interaction of the strains with previously aquired immunities, as has been described for dengue fever, known as antibody dependent enhancement (ADE). These models show a rich variety of dynamics through bifurcations up to deterministic chaos. Including temporary cross-immunity even enlarges the parameter range of such chaotic attractors, and also gives rise to various coexisting attractors, which are difficult to identify by standard numerical bifurcation programs using continuation methods. A combination of techniques, including classical bifurcation plots and Lyapunov exponent spectra has to be applied in comparison to get further insight into such dynamical structures. Especially, Lyapunov spectra, which quantify the predictability horizon in the epidemiological system, are computationally very demanding. We show ways to speed up computations of such Lyapunov spectra by a factor of more than ten by parallelizing previously used sequential C programs. Such fast computations of Lyapunov spectra will be especially of use in future investigations of seasonally forced versions of the present models, as they are needed for data analysis.
A finite-time exponent for random Ehrenfest gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moudgalya, Sanjay; Chandra, Sarthak; Jain, Sudhir R., E-mail: srjain@barc.gov.in
2015-10-15
We consider the motion of a system of free particles moving on a plane with regular hard polygonal scatterers arranged in a random manner. Calling this the Ehrenfest gas, which is known to have a zero Lyapunov exponent, we propose a finite-time exponent to characterize its dynamics. As the number of sides of the polygon goes to infinity, when polygon tends to a circle, we recover the usual Lyapunov exponent for the Lorentz gas from the exponent proposed here. To obtain this result, we generalize the reflection law of a beam of rays incident on a polygonal scatterer in amore » way that the formula for the circular scatterer is recovered in the limit of infinite number of vertices. Thus, chaos emerges from pseudochaos in an appropriate limit. - Highlights: • We present a finite-time exponent for particles moving in a plane containing polygonal scatterers. • The exponent found recovers the Lyapunov exponent in the limit of the polygon becoming a circle. • Our findings unify pseudointegrable and chaotic scattering via a generalized collision rule. • Stretch and fold:shuffle and cut :: Lyapunov:finite-time exponent :: fluid:granular mixing.« less
Qi, Donglian; Liu, Meiqin; Qiu, Meikang; Zhang, Senlin
2010-08-01
This brief studies exponential H(infinity) synchronization of a class of general discrete-time chaotic neural networks with external disturbance. On the basis of the drive-response concept and H(infinity) control theory, and using Lyapunov-Krasovskii (or Lyapunov) functional, state feedback controllers are established to not only guarantee exponential stable synchronization between two general chaotic neural networks with or without time delays, but also reduce the effect of external disturbance on the synchronization error to a minimal H(infinity) norm constraint. The proposed controllers can be obtained by solving the convex optimization problems represented by linear matrix inequalities. Most discrete-time chaotic systems with or without time delays, such as Hopfield neural networks, cellular neural networks, bidirectional associative memory networks, recurrent multilayer perceptrons, Cohen-Grossberg neural networks, Chua's circuits, etc., can be transformed into this general chaotic neural network to be H(infinity) synchronization controller designed in a unified way. Finally, some illustrated examples with their simulations have been utilized to demonstrate the effectiveness of the proposed methods.
CLFs-based optimization control for a class of constrained visual servoing systems.
Song, Xiulan; Miaomiao, Fu
2017-03-01
In this paper, we use the control Lyapunov function (CLF) technique to present an optimized visual servo control method for constrained eye-in-hand robot visual servoing systems. With the knowledge of camera intrinsic parameters and depth of target changes, visual servo control laws (i.e. translation speed) with adjustable parameters are derived by image point features and some known CLF of the visual servoing system. The Fibonacci method is employed to online compute the optimal value of those adjustable parameters, which yields an optimized control law to satisfy constraints of the visual servoing system. The Lyapunov's theorem and the properties of CLF are used to establish stability of the constrained visual servoing system in the closed-loop with the optimized control law. One merit of the presented method is that there is no requirement of online calculating the pseudo-inverse of the image Jacobian's matrix and the homography matrix. Simulation and experimental results illustrated the effectiveness of the method proposed here. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Zhang, Zhi-Hui; Yang, Guang-Hong
2017-05-01
This paper provides a novel event-triggered fault detection (FD) scheme for discrete-time linear systems. First, an event-triggered interval observer is proposed to generate the upper and lower residuals by taking into account the influence of the disturbances and the event error. Second, the robustness of the residual interval against the disturbances and the fault sensitivity are improved by introducing l 1 and H ∞ performances. Third, dilated linear matrix inequalities are used to decouple the Lyapunov matrices from the system matrices. The nonnegative conditions for the estimation error variables are presented with the aid of the slack matrix variables. This technique allows considering a more general Lyapunov function. Furthermore, the FD decision scheme is proposed by monitoring whether the zero value belongs to the residual interval. It is shown that the information communication burden is reduced by designing the event-triggering mechanism, while the FD performance can still be guaranteed. Finally, simulation results demonstrate the effectiveness of the proposed method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Nonlinear stability research on the hydraulic system of double-side rolling shear.
Wang, Jun; Huang, Qingxue; An, Gaocheng; Qi, Qisong; Sun, Binyu
2015-10-01
This paper researches the stability of the nonlinear system taking the hydraulic system of double-side rolling shear as an example. The hydraulic system of double-side rolling shear uses unsymmetrical electro-hydraulic proportional servo valve to control the cylinder with single piston rod, which can make best use of the space and reduce reversing shock. It is a typical nonlinear structure. The nonlinear state-space equations of the unsymmetrical valve controlling cylinder system are built first, and the second Lyapunov method is used to evaluate its stability. Second, the software AMEsim is applied to simulate the nonlinear system, and the results indicate that the system is stable. At last, the experimental results show that the system unsymmetrical valve controlling the cylinder with single piston rod is stable and conforms to what is deduced by theoretical analysis and simulation. The construction and application of Lyapunov function not only provide the theoretical basis for using of unsymmetrical valve controlling cylinder with single piston rod but also develop a new thought for nonlinear stability evaluation.
Nonlinear stability research on the hydraulic system of double-side rolling shear
NASA Astrophysics Data System (ADS)
Wang, Jun; Huang, Qingxue; An, Gaocheng; Qi, Qisong; Sun, Binyu
2015-10-01
This paper researches the stability of the nonlinear system taking the hydraulic system of double-side rolling shear as an example. The hydraulic system of double-side rolling shear uses unsymmetrical electro-hydraulic proportional servo valve to control the cylinder with single piston rod, which can make best use of the space and reduce reversing shock. It is a typical nonlinear structure. The nonlinear state-space equations of the unsymmetrical valve controlling cylinder system are built first, and the second Lyapunov method is used to evaluate its stability. Second, the software AMEsim is applied to simulate the nonlinear system, and the results indicate that the system is stable. At last, the experimental results show that the system unsymmetrical valve controlling the cylinder with single piston rod is stable and conforms to what is deduced by theoretical analysis and simulation. The construction and application of Lyapunov function not only provide the theoretical basis for using of unsymmetrical valve controlling cylinder with single piston rod but also develop a new thought for nonlinear stability evaluation.
NASA Astrophysics Data System (ADS)
Drid, S.; Nait-Said, M.-S.; Tadjine, M.; Makouf, A.
2008-06-01
There is an increasing interest in electric vehicles due to environmental concerns. Recent efforts are directed toward developing an improved propulsion system for electric vehicles applications with minimal power losses. This paper deals with the high efficient vector control for the reduction of copper losses of the doubly fed motor. Firstly, the feedback linearization control based on Lyapunov approach is employed to design the underlying controller achieving the double fluxes orientation. The fluxes controllers are designed independently of the speed. The speed controller is designed using the Lyapunov method especially employed to the unknown load torques. The global asymptotic stability of the overall system is theoretically proven. Secondly, a new Torque Copper Losses Factor is proposed to deal with the problem of the machine copper losses. Its main function is to optimize the torque in keeping the machine saturation at an acceptable level. This leads to a reduction in machine currents and therefore their accompanied copper losses guaranteeing improved machine efficiency. The simulation results in comparative presentation confirm largely the effectiveness of the proposed DFIM control with a very interesting energy saving contribution.
A novel neural network for variational inequalities with linear and nonlinear constraints.
Gao, Xing-Bao; Liao, Li-Zhi; Qi, Liqun
2005-11-01
Variational inequality is a uniform approach for many important optimization and equilibrium problems. Based on the sufficient and necessary conditions of the solution, this paper presents a novel neural network model for solving variational inequalities with linear and nonlinear constraints. Three sufficient conditions are provided to ensure that the proposed network with an asymmetric mapping is stable in the sense of Lyapunov and converges to an exact solution of the original problem. Meanwhile, the proposed network with a gradient mapping is also proved to be stable in the sense of Lyapunov and to have a finite-time convergence under some mild condition by using a new energy function. Compared with the existing neural networks, the new model can be applied to solve some nonmonotone problems, has no adjustable parameter, and has lower complexity. Thus, the structure of the proposed network is very simple. Since the proposed network can be used to solve a broad class of optimization problems, it has great application potential. The validity and transient behavior of the proposed neural network are demonstrated by several numerical examples.
NASA Astrophysics Data System (ADS)
Fernandez, P.; Wang, Q.
2017-12-01
We investigate the impact of numerical discretization on the Lyapunov spectrum of separated flow simulations. The two-dimensional chaotic flow around the NACA 0012 airfoil at a low Reynolds number and large angle of attack is considered to that end. Time, space and accuracy-order refinement studies are performed to examine each of these effects separately. Numerical results show that the time discretization has a small impact on the dynamics of the system, whereas the spatial discretization can dramatically change them. Also, the finite-time Lyapunov exponents associated to unstable modes are shown to be positively skewed, and quasi-homoclinic tangencies are observed in the attractor of the system. The implications of these results on flow physics and sensitivity analysis of chaotic flows are discussed.
Global exponential stability analysis on impulsive BAM neural networks with distributed delays
NASA Astrophysics Data System (ADS)
Li, Yao-Tang; Yang, Chang-Bo
2006-12-01
Using M-matrix and topological degree tool, sufficient conditions are obtained for the existence, uniqueness and global exponential stability of the equilibrium point of bidirectional associative memory (BAM) neural networks with distributed delays and subjected to impulsive state displacements at fixed instants of time by constructing a suitable Lyapunov functional. The results remove the usual assumptions that the boundedness, monotonicity, and differentiability of the activation functions. It is shown that in some cases, the stability criteria can be easily checked. Finally, an illustrative example is given to show the effectiveness of the presented criteria.
Lyapunov stability and its application to systems of ordinary differential equations
NASA Technical Reports Server (NTRS)
Kennedy, E. W.
1979-01-01
An outline and a brief introduction to some of the concepts and implications of Lyapunov stability theory are presented. Various aspects of the theory are illustrated by the inclusion of eight examples, including the Cartesian coordinate equations of the two-body problem, linear and nonlinear (Van der Pol's equation) oscillatory systems, and the linearized Kustaanheimo-Stiefel element equations for the unperturbed two-body problem.
Phase space reconstruction and estimation of the largest Lyapunov exponent for gait kinematic data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Josiński, Henryk; Świtoński, Adam; Silesian University of Technology, Akademicka 16, 44-100 Gliwice
The authors describe an example of application of nonlinear time series analysis directed at identifying the presence of deterministic chaos in human motion data by means of the largest Lyapunov exponent. The method was previously verified on the basis of a time series constructed from the numerical solutions of both the Lorenz and the Rössler nonlinear dynamical systems.
Zou, An-Min; Kumar, Krishna Dev
2012-07-01
This brief considers the attitude coordination control problem for spacecraft formation flying when only a subset of the group members has access to the common reference attitude. A quaternion-based distributed attitude coordination control scheme is proposed with consideration of the input saturation and with the aid of the sliding-mode observer, separation principle theorem, Chebyshev neural networks, smooth projection algorithm, and robust control technique. Using graph theory and a Lyapunov-based approach, it is shown that the distributed controller can guarantee the attitude of all spacecraft to converge to a common time-varying reference attitude when the reference attitude is available only to a portion of the group of spacecraft. Numerical simulations are presented to demonstrate the performance of the proposed distributed controller.
Flocking particles in a non-Newtonian shear thickening fluid
NASA Astrophysics Data System (ADS)
Mucha, Piotr B.; Peszek, Jan; Pokorný, Milan
2018-06-01
We prove the existence of strong solutions to the Cucker–Smale flocking model coupled with an incompressible viscous non-Newtonian fluid with the stress tensor of a power–law structure for . The fluid part of the system admits strong solutions while the solutions to the CS part are weak. The coupling is performed through a drag force on a periodic spatial domain . Additionally, we construct a Lyapunov functional determining the large time behavior of solutions to the system.
Coordination of fractional-order nonlinear multi-agent systems via distributed impulsive control
NASA Astrophysics Data System (ADS)
Ma, Tiedong; Li, Teng; Cui, Bing
2018-01-01
The coordination of fractional-order nonlinear multi-agent systems via distributed impulsive control method is studied in this paper. Based on the theory of impulsive differential equations, algebraic graph theory, Lyapunov stability theory and Mittag-Leffler function, two novel sufficient conditions for achieving the cooperative control of a class of fractional-order nonlinear multi-agent systems are derived. Finally, two numerical simulations are verified to illustrate the effectiveness and feasibility of the proposed method.
Propellant-free Spacecraft Relative Maneuvering via Atmospheric Differential Drag
2015-07-06
functions is a challenge that varies from problem to problem, and a widely studied theory exists (see [5-7]). In this work, a quadratic Lyapunov...with respect to the duration of the maneuvers. Thus, it is assumed the drag surfaces deploy/retract instantly, generating a bang -off- bang control...It should be noted that the adaptations occur every 10 minutes and that that for a bang -off- bang control the Δt from Equations (10) and (13) is
A map for heavy inertial particles in fluid flows
NASA Astrophysics Data System (ADS)
Vilela, Rafael D.; de Oliveira, Vitor M.
2017-06-01
We introduce a map which reproduces qualitatively many fundamental properties of the dynamics of heavy particles in fluid flows. These include a uniform rate of decrease of volume in phase space, a slow-manifold effective dynamics when the single parameter s (analogous of the Stokes number) approaches zero, the possibility of fold caustics in the "velocity field", and a minimum, as a function of s, of the Lyapunov (Kaplan-Yorke) dimension of the attractor where particles accumulate.
Global attractivity of an almost periodic N-species nonlinear ecological competitive model
NASA Astrophysics Data System (ADS)
Xia, Yonghui; Han, Maoan; Huang, Zhenkun
2008-01-01
By using comparison theorem and constructing suitable Lyapunov functional, we study the following almost periodic nonlinear N-species competitive Lotka-Volterra model: A set of sufficient conditions is obtained for the existence and global attractivity of a unique positive almost periodic solution of the above model. As applications, some special competition models are studied again, our new results improve and generalize former results. Examples and their simulations show the feasibility of our main results.
Zero-lag synchronization in coupled time-delayed piecewise linear electronic circuits
NASA Astrophysics Data System (ADS)
Suresh, R.; Srinivasan, K.; Senthilkumar, D. V.; Raja Mohamed, I.; Murali, K.; Lakshmanan, M.; Kurths, J.
2013-07-01
We investigate and report an experimental confirmation of zero-lag synchronization (ZLS) in a system of three coupled time-delayed piecewise linear electronic circuits via dynamical relaying with different coupling configurations, namely mutual and subsystem coupling configurations. We have observed that when there is a feedback between the central unit (relay unit) and at least one of the outer units, ZLS occurs in the two outer units whereas the central and outer units exhibit inverse phase synchronization (IPS). We find that in the case of mutual coupling configuration ZLS occurs both in periodic and hyperchaotic regimes, while in the subsystem coupling configuration it occurs only in the hyperchaotic regime. Snapshots of the time evolution of outer circuits as observed from the oscilloscope confirm the occurrence of ZLS experimentally. The quality of ZLS is numerically verified by correlation coefficient and similarity function measures. Further, the transition to ZLS is verified from the changes in the largest Lyapunov exponents and the correlation coefficient as a function of the coupling strength. IPS is experimentally confirmed using time series plots and also can be visualized using the concept of localized sets which are also corroborated by numerical simulations. In addition, we have calculated the correlation of probability of recurrence to quantify the phase coherence. We have also analytically derived a sufficient condition for the stability of ZLS using the Krasovskii-Lyapunov theory.
Liu, Yan-Jun; Tong, Shaocheng; Chen, C L Philip; Li, Dong-Juan
2017-11-01
A neural network (NN) adaptive control design problem is addressed for a class of uncertain multi-input-multi-output (MIMO) nonlinear systems in block-triangular form. The considered systems contain uncertainty dynamics and their states are enforced to subject to bounded constraints as well as the couplings among various inputs and outputs are inserted in each subsystem. To stabilize this class of systems, a novel adaptive control strategy is constructively framed by using the backstepping design technique and NNs. The novel integral barrier Lyapunov functionals (BLFs) are employed to overcome the violation of the full state constraints. The proposed strategy can not only guarantee the boundedness of the closed-loop system and the outputs are driven to follow the reference signals, but also can ensure all the states to remain in the predefined compact sets. Moreover, the transformed constraints on the errors are used in the previous BLF, and accordingly it is required to determine clearly the bounds of the virtual controllers. Thus, it can relax the conservative limitations in the traditional BLF-based controls for the full state constraints. This conservatism can be solved in this paper and it is for the first time to control this class of MIMO systems with the full state constraints. The performance of the proposed control strategy can be verified through a simulation example.
Conditioning of the Stable, Discrete-time Lyapunov Operator
NASA Technical Reports Server (NTRS)
Tippett, Michael K.; Cohn, Stephen E.; Todling, Ricardo; Marchesin, Dan
2000-01-01
The Schatten p-norm condition of the discrete-time Lyapunov operator L(sub A) defined on matrices P is identical with R(sup n X n) by L(sub A) P is identical with P - APA(sup T) is studied for stable matrices A is a member of R(sup n X n). Bounds are obtained for the norm of L(sub A) and its inverse that depend on the spectrum, singular values and radius of stability of A. Since the solution P of the the discrete-time algebraic Lyapunov equation (DALE) L(sub A)P = Q can be ill-conditioned only when either L(sub A) or Q is ill-conditioned, these bounds are useful in determining whether P admits a low-rank approximation, which is important in the numerical solution of the DALE for large n.
NASA Technical Reports Server (NTRS)
Nese, Jon M.
1989-01-01
A dynamical systems approach is used to quantify the instantaneous and time-averaged predictability of a low-order moist general circulation model. Specifically, the effects on predictability of incorporating an active ocean circulation, implementing annual solar forcing, and asynchronously coupling the ocean and atmosphere are evaluated. The predictability and structure of the model attractors is compared using the Lyapunov exponents, the local divergence rates, and the correlation, fractal, and Lyapunov dimensions. The Lyapunov exponents measure the average rate of growth of small perturbations on an attractor, while the local divergence rates quantify phase-spatial variations of predictability. These local rates are exploited to efficiently identify and distinguish subtle differences in predictability among attractors. In addition, the predictability of monthly averaged and yearly averaged states is investigated by using attractor reconstruction techniques.
Nonlinear Dynamics Used to Classify Effects of Mild Traumatic Brain Injury
2012-01-11
evaluate random fractal characteristics, and scale-dependent Lyapunov exponents (SDLE) to evaluate chaotic characteristics. Both Shannon and Renyi entropy...fluctuation analysis to evaluate random fractal characteristics, and scale-dependent Lyapunov exponents (SDLE) to evaluate chaotic characteristics. Both...often called the Hurst parameter [32]. When the scaling law described by Eq. (2) holds, the September 2011 I Volume 6 I Issue 9 I e24446 -Q.384
Control algorithms for aerobraking in the Martian atmosphere
NASA Technical Reports Server (NTRS)
Ward, Donald T.; Shipley, Buford W., Jr.
1991-01-01
The Analytic Predictor Corrector (APC) and Energy Controller (EC) atmospheric guidance concepts were adapted to control an interplanetary vehicle aerobraking in the Martian atmosphere. Changes are made to the APC to improve its robustness to density variations. These changes include adaptation of a new exit phase algorithm, an adaptive transition velocity to initiate the exit phase, refinement of the reference dynamic pressure calculation and two improved density estimation techniques. The modified controller with the hybrid density estimation technique is called the Mars Hybrid Predictor Corrector (MHPC), while the modified controller with a polynomial density estimator is called the Mars Predictor Corrector (MPC). A Lyapunov Steepest Descent Controller (LSDC) is adapted to control the vehicle. The LSDC lacked robustness, so a Lyapunov tracking exit phase algorithm is developed to guide the vehicle along a reference trajectory. This algorithm, when using the hybrid density estimation technique to define the reference path, is called the Lyapunov Hybrid Tracking Controller (LHTC). With the polynomial density estimator used to define the reference trajectory, the algorithm is called the Lyapunov Tracking Controller (LTC). These four new controllers are tested using a six degree of freedom computer simulation to evaluate their robustness. The MHPC, MPC, LHTC, and LTC show dramatic improvements in robustness over the APC and EC.
Functional Based Adaptive and Fuzzy Sliding Controller for Non-Autonomous Active Suspension System
NASA Astrophysics Data System (ADS)
Huang, Shiuh-Jer; Chen, Hung-Yi
In this paper, an adaptive sliding controller is developed for controlling a vehicle active suspension system. The functional approximation technique is employed to substitute the unknown non-autonomous functions of the suspension system and release the model-based requirement of sliding mode control algorithm. In order to improve the control performance and reduce the implementation problem, a fuzzy strategy with online learning ability is added to compensate the functional approximation error. The update laws of the functional approximation coefficients and the fuzzy tuning parameters are derived from the Lyapunov theorem to guarantee the system stability. The proposed controller is implemented on a quarter-car hydraulic actuating active suspension system test-rig. The experimental results show that the proposed controller suppresses the oscillation amplitude of the suspension system effectively.
Periodic bidirectional associative memory neural networks with distributed delays
NASA Astrophysics Data System (ADS)
Chen, Anping; Huang, Lihong; Liu, Zhigang; Cao, Jinde
2006-05-01
Some sufficient conditions are obtained for the existence and global exponential stability of a periodic solution to the general bidirectional associative memory (BAM) neural networks with distributed delays by using the continuation theorem of Mawhin's coincidence degree theory and the Lyapunov functional method and the Young's inequality technique. These results are helpful for designing a globally exponentially stable and periodic oscillatory BAM neural network, and the conditions can be easily verified and be applied in practice. An example is also given to illustrate our results.
Global exponential stability of BAM neural networks with time-varying delays: The discrete-time case
NASA Astrophysics Data System (ADS)
Raja, R.; Marshal Anthoni, S.
2011-02-01
This paper deals with the problem of stability analysis for a class of discrete-time bidirectional associative memory (BAM) neural networks with time-varying delays. By employing the Lyapunov functional and linear matrix inequality (LMI) approach, a new sufficient conditions is proposed for the global exponential stability of discrete-time BAM neural networks. The proposed LMI based results can be easily checked by LMI control toolbox. Moreover, an example is also provided to demonstrate the effectiveness of the proposed method.
Huang, Tingwen; Li, Chuandong; Duan, Shukai; Starzyk, Janusz A
2012-06-01
This paper focuses on the hybrid effects of parameter uncertainty, stochastic perturbation, and impulses on global stability of delayed neural networks. By using the Ito formula, Lyapunov function, and Halanay inequality, we established several mean-square stability criteria from which we can estimate the feasible bounds of impulses, provided that parameter uncertainty and stochastic perturbations are well-constrained. Moreover, the present method can also be applied to general differential systems with stochastic perturbation and impulses.
NASA Astrophysics Data System (ADS)
Ali, M. Syed; Zhu, Quanxin; Pavithra, S.; Gunasekaran, N.
2018-03-01
This study examines the problem of dissipative synchronisation of coupled reaction-diffusion neural networks with time-varying delays. This paper proposes a complex dynamical network consisting of N linearly and diffusively coupled identical reaction-diffusion neural networks. By constructing a suitable Lyapunov-Krasovskii functional (LKF), utilisation of Jensen's inequality and reciprocally convex combination (RCC) approach, strictly ?-dissipative conditions of the addressed systems are derived. Finally, a numerical example is given to show the effectiveness of the theoretical results.
Zhao, Kaihong
2018-12-01
In this paper, we study the n-species impulsive Gilpin-Ayala competition model with discrete and distributed time delays. The existence of positive periodic solution is proved by employing the fixed point theorem on cones. By constructing appropriate Lyapunov functional, we also obtain the global exponential stability of the positive periodic solution of this system. As an application, an interesting example is provided to illustrate the validity of our main results.
Maldacena, Juan; Shenker, Stephen H.; Stanford, Douglas
2016-08-17
We conjecture a sharp bound on the rate of growth of chaos in thermal quantum systems with a large number of degrees of freedom. Chaos can be diagnosed using an out-of-time-order correlation function closely related to the commutator of operators separated in time. We conjecture that the influence of chaos on this correlator can develop no faster than exponentially, with Lyapunov exponent λ L ≤ 2πk B T/ℏ. We give a precise mathematical argument, based on plausible physical assumptions, establishing this conjecture.
NASA Astrophysics Data System (ADS)
Wang, Qingzhi; Tan, Guanzheng; He, Yong; Wu, Min
2017-10-01
This paper considers a stability analysis issue of piecewise non-linear systems and applies it to intermittent synchronisation of chaotic systems. First, based on piecewise Lyapunov function methods, more general and less conservative stability criteria of piecewise non-linear systems in periodic and aperiodic cases are presented, respectively. Next, intermittent synchronisation conditions of chaotic systems are derived which extend existing results. Finally, Chua's circuit is taken as an example to verify the validity of our methods.
Kuntanapreeda, S; Fullmer, R R
1996-01-01
A training method for a class of neural network controllers is presented which guarantees closed-loop system stability. The controllers are assumed to be nonlinear, feedforward, sampled-data, full-state regulators implemented as single hidden-layer neural networks. The controlled systems must be locally hermitian and observable. Stability of the closed-loop system is demonstrated by determining a Lyapunov function, which can be used to identify a finite stability region about the regulator point.
Control and synchronisation of a novel seven-dimensional hyperchaotic system with active control
NASA Astrophysics Data System (ADS)
Varan, Metin; Akgul, Akif
2018-04-01
In this work, active control method is proposed for controlling and synchronising seven-dimensional (7D) hyperchaotic systems. The seven-dimensional hyperchaotic system is considered for the implementation. Seven-dimensional hyperchaotic system is also investigated via time series, phase portraits and bifurcation diagrams. For understanding the impact of active controllers on global asymptotic stability of synchronisation and control errors, the Lyapunov function is used. Numerical analysis is done to reveal the effectiveness of applied active control method and the results are discussed.
The generalized quadratic knapsack problem. A neuronal network approach.
Talaván, Pedro M; Yáñez, Javier
2006-05-01
The solution of an optimization problem through the continuous Hopfield network (CHN) is based on some energy or Lyapunov function, which decreases as the system evolves until a local minimum value is attained. A new energy function is proposed in this paper so that any 0-1 linear constrains programming with quadratic objective function can be solved. This problem, denoted as the generalized quadratic knapsack problem (GQKP), includes as particular cases well-known problems such as the traveling salesman problem (TSP) and the quadratic assignment problem (QAP). This new energy function generalizes those proposed by other authors. Through this energy function, any GQKP can be solved with an appropriate parameter setting procedure, which is detailed in this paper. As a particular case, and in order to test this generalized energy function, some computational experiments solving the traveling salesman problem are also included.
Lyapunov exponent and criticality in the Hamiltonian mean field model
NASA Astrophysics Data System (ADS)
Filho, L. H. Miranda; Amato, M. A.; Rocha Filho, T. M.
2018-03-01
We investigate the dependence of the largest Lyapunov exponent (LLE) of an N-particle self-gravitating ring model at equilibrium with respect to the number of particles and its dependence on energy. This model has a continuous phase-transition from a ferromagnetic to homogeneous phase, and we numerically confirm with large scale simulations the existence of a critical exponent associated to the LLE, although at variance with the theoretical estimate. The existence of strong chaos in the magnetized state evidenced by a positive Lyapunov exponent is explained by the coupling of individual particle oscillations to the diffusive motion of the center of mass of the system and also results in a change of the scaling of the LLE with the number of particles. We also discuss thoroughly for the model the validity and limits of the approximations made by a geometrical model for their analytic estimate.
NASA Astrophysics Data System (ADS)
Balcerzak, Marek; Dąbrowski, Artur; Pikunov, Danylo
2018-01-01
This paper presents a practical application of a new, simplified method of Lyapunov exponents estimation. The method has been applied to optimization of a real, nonlinear inverted pendulum system. Authors presented how the algorithm of the Largest Lyapunov Exponent (LLE) estimation can be applied to evaluate control systems performance. The new LLE-based control performance index has been proposed. Equations of the inverted pendulum system of the fourth order have been found. The nonlinear friction of the regulation object has been identified by means of the nonlinear least squares method. Three different friction models have been tested: linear, cubic and Coulomb model. The Differential Evolution (DE) algorithm has been used to search for the best set of parameters of the general linear regulator. This work proves that proposed method is efficient and results in faster perturbation rejection, especially when disturbances are significant.
Lyapunov Stability of Fuzzy Discrete Event Systems
NASA Astrophysics Data System (ADS)
Liu, Fuchun; Qiu, Daowen
Fuzzy discrete event systems (FDESs) as a generalization of (crisp) discrete event systems (DESs) may better deal with the problems of fuzziness, impreciseness, and subjectivity. Qiu, Cao and Ying, Liu and Qiu interestingly developed the theory of FDESs. As a continuation of Qiu's work, this paper is to deal with the Lyapunov stability of FDESs, some main results of crisp DESs are generalized. We formalize the notions of the reachability of fuzzy states defined on a metric space. A linear algorithm of computing the r-reachable fuzzy state set is presented. Then we introduce the definitions of stability and asymptotical stability in the sense of Lyapunov to guarantee the convergence of the behaviors of fuzzy automaton to the desired fuzzy states when system engages in some illegal behaviors which can be tolerated. In particular, we present a necessary and sufficient condition for stability and another for asymptotical stability of FDESs.
NASA Astrophysics Data System (ADS)
Fan, Meng; Ye, Dan
2005-09-01
This paper studies the dynamics of a system of retarded functional differential equations (i.e., RF=Es), which generalize the Hopfield neural network models, the bidirectional associative memory neural networks, the hybrid network models of the cellular neural network type, and some population growth model. Sufficient criteria are established for the globally exponential stability and the existence and uniqueness of pseudo almost periodic solution. The approaches are based on constructing suitable Lyapunov functionals and the well-known Banach contraction mapping principle. The paper ends with some applications of the main results to some neural network models and population growth models and numerical simulations.
A robust nonlinear stabilizer as a controller for improving transient stability in micro-grids.
Azimi, Seyed Mohammad; Afsharnia, Saeed
2017-01-01
This paper proposes a parametric-Lyapunov approach to the design of a stabilizer aimed at improving the transient stability of micro-grids (MGs). This strategy is applied to electronically-interfaced distributed resources (EI-DRs) operating with a unified control configuration applicable to all operational modes (i.e. grid-connected mode, islanded mode, and mode transitions). The proposed approach employs a simple structure compared with other nonlinear controllers, allowing ready implementation of the stabilizer. A new parametric-Lyapunov function is proposed rendering the proposed stabilizer more effective in damping system transition transients. The robustness of the proposed stabilizer is also verified based on both time-domain simulations and mathematical proofs, and an ultimate bound has been derived for the frequency transition transients. The proposed stabilizer operates by deploying solely local information and there are no needs for communication links. The deteriorating effects of the primary resource delays on the transient stability are also treated analytically. Finally, the effectiveness of the proposed stabilizer is evaluated through time-domain simulations and compared with the recently-developed stabilizers performed on a multi-resource MG. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Chaos in a spatially-developing plane mixing layer
NASA Technical Reports Server (NTRS)
Broze, J. G.; Hussain, Fazle; Buell, J. C.
1988-01-01
A spatially-developing plane mixing layer was analyzed for chaotic behavior. A direct numerical simulation of the Navier-Stokes equations in a 2-D domain infinite in y and having inflow-outflow boundary conditions in x was used for data. Spectra, correlation dimension and the largest Lyapunov exponent were computed as functions of downstream distance x. When forced at a single (fundamental) frequency with maximum amplitude, the flow is periodic at the inflow but becomes aperiodic with increasing x. The aperiodic behavior is caused by the presence of a noisy subharmonic caused by the feedback between the necessarily nonphysical inflow and outflow boundary conditions. In order to overshadow this noise the flow was also studied with the same fundamental forcing and added random forcing of amplitude upsilon prime sub R/delta U = 0.01 at the inlet. Results were qualitatively the same in both cases: for small x, spectral peaks were sharp and dimension was nearly 1, but as x increased a narrowband spectral peak grew, spectra decayed exponentially at high frequencies and dimension increased to greater than 3. Based on these results, the flow appears to exhibit deterministic chaos. However, at no location was the largest Lyapunov exponent found to be significantly greater than zero.
EYE MOVEMENT RECORDING AND NONLINEAR DYNAMICS ANALYSIS – THE CASE OF SACCADES#
Aştefănoaei, Corina; Pretegiani, Elena; Optican, L.M.; Creangă, Dorina; Rufa, Alessandra
2015-01-01
Evidence of a chaotic behavioral trend in eye movement dynamics was examined in the case of a saccadic temporal series collected from a healthy human subject. Saccades are highvelocity eye movements of very short duration, their recording being relatively accessible, so that the resulting data series could be studied computationally for understanding the neural processing in a motor system. The aim of this study was to assess the complexity degree in the eye movement dynamics. To do this we analyzed the saccadic temporal series recorded with an infrared camera eye tracker from a healthy human subject in a special experimental arrangement which provides continuous records of eye position, both saccades (eye shifting movements) and fixations (focusing over regions of interest, with rapid, small fluctuations). The semi-quantitative approach used in this paper in studying the eye functioning from the viewpoint of non-linear dynamics was accomplished by some computational tests (power spectrum, portrait in the state space and its fractal dimension, Hurst exponent and largest Lyapunov exponent) derived from chaos theory. A high complexity dynamical trend was found. Lyapunov largest exponent test suggested bi-stability of cellular membrane resting potential during saccadic experiment. PMID:25698889
A new version of Scilab software package for the study of dynamical systems
NASA Astrophysics Data System (ADS)
Bordeianu, C. C.; Felea, D.; Beşliu, C.; Jipa, Al.; Grossu, I. V.
2009-11-01
This work presents a new version of a software package for the study of chaotic flows, maps and fractals [1]. The codes were written using Scilab, a software package for numerical computations providing a powerful open computing environment for engineering and scientific applications. It was found that Scilab provides various functions for ordinary differential equation solving, Fast Fourier Transform, autocorrelation, and excellent 2D and 3D graphical capabilities. The chaotic behaviors of the nonlinear dynamics systems were analyzed using phase-space maps, autocorrelation functions, power spectra, Lyapunov exponents and Kolmogorov-Sinai entropy. Various well-known examples are implemented, with the capability of the users inserting their own ODE or iterative equations. New version program summaryProgram title: Chaos v2.0 Catalogue identifier: AEAP_v2_0 Program summary URL:
Spectral Approaches to Learning Predictive Representations
2012-09-01
conclusions contained in this document are those of the author and should not be interpreted as representing the official policies, either expressed...to the mean to form an initial prediction of x̂(ht). Similarly, Equation 2.3b can be interpreted as using the dynamics matrix A and error covarianceQ...in the sense of Lyapunov if its dynamics matrix A is. Thus, the Lyapunov criterion can be interpreted as holding for an LDS if, for a given covariance
A heuristic method for identifying chaos from frequency content.
Wiebe, R; Virgin, L N
2012-03-01
The sign of the largest Lyapunov exponent is the fundamental indicator of chaos in a dynamical system. However, although the extraction of Lyapunov exponents can be accomplished with (necessarily noisy) the experimental data, this is still a relatively data-intensive and sensitive endeavor. This paper presents an alternative pragmatic approach to identifying chaos using response frequency characteristics and extending the concept of the spectrogram. The method is shown to work well on both experimental and simulated time series.
NASA Astrophysics Data System (ADS)
Song, Qiankun; Cao, Jinde
2007-05-01
A bidirectional associative memory neural network model with distributed delays is considered. By constructing a new Lyapunov functional, employing the homeomorphism theory, M-matrix theory and the inequality (a[greater-or-equal, slanted]0,bk[greater-or-equal, slanted]0,qk>0 with , and r>1), a sufficient condition is obtained to ensure the existence, uniqueness and global exponential stability of the equilibrium point for the model. Moreover, the exponential converging velocity index is estimated, which depends on the delay kernel functions and the system parameters. The results generalize and improve the earlier publications, and remove the usual assumption that the activation functions are bounded . Two numerical examples are given to show the effectiveness of the obtained results.
New exponential stability criteria for stochastic BAM neural networks with impulses
NASA Astrophysics Data System (ADS)
Sakthivel, R.; Samidurai, R.; Anthoni, S. M.
2010-10-01
In this paper, we study the global exponential stability of time-delayed stochastic bidirectional associative memory neural networks with impulses and Markovian jumping parameters. A generalized activation function is considered, and traditional assumptions on the boundedness, monotony and differentiability of activation functions are removed. We obtain a new set of sufficient conditions in terms of linear matrix inequalities, which ensures the global exponential stability of the unique equilibrium point for stochastic BAM neural networks with impulses. The Lyapunov function method with the Itô differential rule is employed for achieving the required result. Moreover, a numerical example is provided to show that the proposed result improves the allowable upper bound of delays over some existing results in the literature.
NASA Astrophysics Data System (ADS)
Liu, Qun; Jiang, Daqing; Hayat, Tasawar; Alsaedi, Ahmed
2018-01-01
In this paper, we develop and study a stochastic predator-prey model with stage structure for predator and Holling type II functional response. First of all, by constructing a suitable stochastic Lyapunov function, we establish sufficient conditions for the existence and uniqueness of an ergodic stationary distribution of the positive solutions to the model. Then, we obtain sufficient conditions for extinction of the predator populations in two cases, that is, the first case is that the prey population survival and the predator populations extinction; the second case is that all the prey and predator populations extinction. The existence of a stationary distribution implies stochastic weak stability. Numerical simulations are carried out to demonstrate the analytical results.
NASA Astrophysics Data System (ADS)
Liu, Qun; Jiang, Daqing; Hayat, Tasawar; Alsaedi, Ahmed
2018-06-01
In this paper, we develop and study a stochastic predator-prey model with stage structure for predator and Holling type II functional response. First of all, by constructing a suitable stochastic Lyapunov function, we establish sufficient conditions for the existence and uniqueness of an ergodic stationary distribution of the positive solutions to the model. Then, we obtain sufficient conditions for extinction of the predator populations in two cases, that is, the first case is that the prey population survival and the predator populations extinction; the second case is that all the prey and predator populations extinction. The existence of a stationary distribution implies stochastic weak stability. Numerical simulations are carried out to demonstrate the analytical results.
Characterization of time dynamical evolution of electroencephalographic epileptic records
NASA Astrophysics Data System (ADS)
Rosso, Osvaldo A.; Mairal, María. Liliana
2002-09-01
Since traditional electrical brain signal analysis is mostly qualitative, the development of new quantitative methods is crucial for restricting the subjectivity in the study of brain signals. These methods are particularly fruitful when they are strongly correlated with intuitive physical concepts that allow a better understanding of the brain dynamics. The processing of information by the brain is reflected in dynamical changes of the electrical activity in time, frequency, and space. Therefore, the concomitant studies require methods capable of describing the qualitative variation of the signal in both time and frequency. The entropy defined from the wavelet functions is a measure of the order/disorder degree present in a time series. In consequence, this entropy evaluates over EEG time series gives information about the underlying dynamical process in the brain, more specifically of the synchrony of the group cells involved in the different neural responses. The total wavelet entropy results independent of the signal energy and becomes a good tool for detecting dynamical changes in the system behavior. In addition the total wavelet entropy has advantages over the Lyapunov exponents, because it is parameter free and independent of the stationarity of the time series. In this work we compared the results of the time evolution of the chaoticity (Lyapunov exponent as a function of time) with the corresponding time evolution of the total wavelet entropy in two different EEG records, one provide by depth electrodes and other by scalp ones.
Sharp Estimates in Ruelle Theorems for Matrix Transfer Operators
NASA Astrophysics Data System (ADS)
Campbell, J.; Latushkin, Y.
A matrix coefficient transfer operator , on the space of -sections of an m-dimensional vector bundle over n-dimensional compact manifold is considered. The spectral radius of is estimated bya; and the essential spectral radius by
Dynamics of the stochastic low concentration trimolecular oscillatory chemical system with jumps
NASA Astrophysics Data System (ADS)
Wei, Yongchang; Yang, Qigui
2018-06-01
This paper is devoted to discern long time dynamics through the stochastic low concentration trimolecular oscillatory chemical system with jumps. By Lyapunov technique, this system is proved to have a unique global positive solution, and the asymptotic stability in mean square of such model is further established. Moreover, the existence of random attractor and Lyapunov exponents are obtained for the stochastic homeomorphism flow generated by the corresponding global positive solution. And some numerical simulations are given to illustrate the presented results.
Lyapunov stability analysis for the generalized Kapitza pendulum
NASA Astrophysics Data System (ADS)
Druzhinina, O. V.; Sevastianov, L. A.; Vasilyev, S. A.; Vasilyeva, D. G.
2017-12-01
In this work generalization of Kapitza pendulum whose suspension point moves in the vertical and horizontal planes is made. Lyapunov stability analysis of the motion for this pendulum subjected to excitation of periodic driving forces and stochastic driving forces that act in the vertical and horizontal planes has been studied. The numerical study of the random motion for generalized Kapitza pendulum under stochastic driving forces has made. It is shown the existence of stable quasi-periodic motion for this pendulum.
Stabilisation of perturbed chains of integrators using Lyapunov-based homogeneous controllers
NASA Astrophysics Data System (ADS)
Harmouche, Mohamed; Laghrouche, Salah; Chitour, Yacine; Hamerlain, Mustapha
2017-12-01
In this paper, we present a Lyapunov-based homogeneous controller for the stabilisation of a perturbed chain of integrators of arbitrary order r ≥ 1. The proposed controller is based on homogeneous controller for stabilisation of pure chain of integrators. The control of homogeneity degree is also introduced and various controllers are designed using this concept, namely a bounded-controller with minimum amplitude of discontinuous control and a controller with globally fixed-time convergence. The performance of the controller is validated through simulations.
NASA Astrophysics Data System (ADS)
Clempner, Julio B.
2017-01-01
This paper presents a novel analytical method for soundness verification of workflow nets and reset workflow nets, using the well-known stability results of Lyapunov for Petri nets. We also prove that the soundness property is decidable for workflow nets and reset workflow nets. In addition, we provide evidence of several outcomes related with properties such as boundedness, liveness, reversibility and blocking using stability. Our approach is validated theoretically and by a numerical example related to traffic signal-control synchronisation.
2010-05-14
and Coulomb friction. We consider a simple mass spring system submitted to an external force and constrained to remain in a half -space. The contact of... the mass with the boundary of the half -space is assumed to hold with Coulomb friction. The unilateral contact and Coulomb friction laws are strict...Lyapunov frequently discussed this problem with Henry Poincare (1854-1912) and George Darwin (1845 - 1912). They both considered the "pear-form" figure as
NASA Astrophysics Data System (ADS)
Pazó, Diego; Rodríguez, Miguel A.; López, Juan M.
2010-05-01
We study the evolution of finite perturbations in the Lorenz ‘96 model, a meteorological toy model of the atmosphere. The initial perturbations are chosen to be aligned along different dynamic vectors: bred, Lyapunov, and singular vectors. Using a particular vector determines not only the amplification rate of the perturbation but also the spatial structure of the perturbation and its stability under the evolution of the flow. The evolution of perturbations is systematically studied by means of the so-called mean-variance of logarithms diagram that provides in a very compact way the basic information to analyse the spatial structure. We discuss the corresponding advantages of using those different vectors for preparing initial perturbations to be used in ensemble prediction systems, focusing on key properties: dynamic adaptation to the flow, robustness, equivalence between members of the ensemble, etc. Among all the vectors considered here, the so-called characteristic Lyapunov vectors are possibly optimal, in the sense that they are both perfectly adapted to the flow and extremely robust.
NASA Astrophysics Data System (ADS)
Pazó, Diego; Rodríguez, Miguel A.; López, Juan M.
2010-01-01
We study the evolution of finite perturbations in the Lorenz `96 model, a meteorological toy model of the atmosphere. The initial perturbations are chosen to be aligned along different dynamic vectors: bred, Lyapunov, and singular vectors. Using a particular vector determines not only the amplification rate of the perturbation but also the spatial structure of the perturbation and its stability under the evolution of the flow. The evolution of perturbations is systematically studied by means of the so-called mean-variance of logarithms diagram that provides in a very compact way the basic information to analyse the spatial structure. We discuss the corresponding advantages of using those different vectors for preparing initial perturbations to be used in ensemble prediction systems, focusing on key properties: dynamic adaptation to the flow, robustness, equivalence between members of the ensemble, etc. Among all the vectors considered here, the so-called characteristic Lyapunov vectors are possibly optimal, in the sense that they are both perfectly adapted to the flow and extremely robust.
Stretching Diagnostics and Mixing Properties In The Stratosphere
NASA Astrophysics Data System (ADS)
Legras, B.; Shuckburgh, E.
The "finite size Lyapunov exponent" and the "effective diffusivity" are two diagnos- tics of mixing which have been recently introduced to investigate atmospheric flows. Both have been used to successfully identify the barriers to transport, for instance at the edge of the stratospheric polar vortex. Here we compare the two diagnostics in detail. The equivalent length has the advantage of arising as a mixing quantification from a rigid theoretical framework, however it has the disadvantage of being an aver- age quantity (the average around a tracer contour). The finite size Lyapunov exponent may be defined at any point in the flow, and quantifies the stretching properties expe- rienced by a fluid parcel both in its past and future evolution. In particular, the lines of maximum stretching at any time delineate the building blocks of the chaotic stirring. However the interpretation of the finite size Lyapunov exponent as a mixing time is less direct and depends on the alignment of tracer contours with the stretching lines.
Passivity/Lyapunov based controller design for trajectory tracking of flexible joint manipulators
NASA Technical Reports Server (NTRS)
Sicard, Pierre; Wen, John T.; Lanari, Leonardo
1992-01-01
A passivity and Lyapunov based approach for the control design for the trajectory tracking problem of flexible joint robots is presented. The basic structure of the proposed controller is the sum of a model-based feedforward and a model-independent feedback. Feedforward selection and solution is analyzed for a general model for flexible joints, and for more specific and practical model structures. Passivity theory is used to design a motor state-based controller in order to input-output stabilize the error system formed by the feedforward. Observability conditions for asymptotic stability are stated and verified. In order to accommodate for modeling uncertainties and to allow for the implementation of a simplified feedforward compensation, the stability of the system is analyzed in presence of approximations in the feedforward by using a Lyapunov based robustness analysis. It is shown that under certain conditions, e.g., the desired trajectory is varying slowly enough, stability is maintained for various approximations of a canonical feedforward.
Stochastic analysis of a novel nonautonomous periodic SIRI epidemic system with random disturbances
NASA Astrophysics Data System (ADS)
Zhang, Weiwei; Meng, Xinzhu
2018-02-01
In this paper, a new stochastic nonautonomous SIRI epidemic model is formulated. Given that the incidence rates of diseases may change with the environment, we propose a novel type of transmission function. The main aim of this paper is to obtain the thresholds of the stochastic SIRI epidemic model. To this end, we investigate the dynamics of the stochastic system and establish the conditions for extinction and persistence in mean of the disease by constructing some suitable Lyapunov functions and using stochastic analysis technique. Furthermore, we show that the stochastic system has at least one nontrivial positive periodic solution. Finally, numerical simulations are introduced to illustrate our results.
NASA Astrophysics Data System (ADS)
Kenné, Godpromesse; Fotso, Armel Simo; Lamnabhi-Lagarrigue, Françoise
2017-04-01
In this paper, a new hybrid method which combines radial basis function (RBF) neural network with a sliding-mode technique to take advantage of their common features is used to control a class of nonlinear systems. A real-time dynamic nonlinear learning law of the weight vector is synthesized and the closed-loop stability has been demonstrated using Lyapunov theory. The solution presented in this work does not need the knowledge of the perturbation bounds, neither the knowledge of the full state of the nonlinear system. In addition, the bounds of the nonlinear functions are assumed to be unknown and the proposed RBF structure uses reduced number of hidden units. This hybrid control strategy is applied to extract the maximum available energy from a stand-alone self-excited variable low-wind speed energy conversion system and design the dc-voltage and rotor flux controllers as well as the load-side frequency and voltage regulators assuming that the measured outputs are the rotor speed, stator currents, load-side currents and voltages despite large variation of the rotor resistance and uncertainties on the inductances. Finally, simulation results compared with those obtained using the well-known second-order sliding-mode controller are given to show the effectiveness and feasibility of the proposed approach.
An algorithm for control system design via parameter optimization. M.S. Thesis
NASA Technical Reports Server (NTRS)
Sinha, P. K.
1972-01-01
An algorithm for design via parameter optimization has been developed for linear-time-invariant control systems based on the model reference adaptive control concept. A cost functional is defined to evaluate the system response relative to nominal, which involves in general the error between the system and nominal response, its derivatives and the control signals. A program for the practical implementation of this algorithm has been developed, with the computational scheme for the evaluation of the performance index based on Lyapunov's theorem for stability of linear invariant systems.
Stability analysis of gyroscopic systems with delay via decomposition
NASA Astrophysics Data System (ADS)
Aleksandrov, A. Yu.; Zhabko, A. P.; Chen, Y.
2018-05-01
A mechanical system describing by the second order linear differential equations with a positive parameter at the velocity forces and with time delay in the positional forces is studied. Using the decomposition method and Lyapunov-Krasovskii functionals, conditions are obtained under which from the asymptotic stability of two auxiliary first order subsystems it follows that, for sufficiently large values of the parameter, the original system is also asymptotically stable. Moreover, it is shown that the proposed approach can be applied to the stability investigation of linear gyroscopic systems with switched positional forces.
Local synchronization of a complex network model.
Yu, Wenwu; Cao, Jinde; Chen, Guanrong; Lü, Jinhu; Han, Jian; Wei, Wei
2009-02-01
This paper introduces a novel complex network model to evaluate the reputation of virtual organizations. By using the Lyapunov function and linear matrix inequality approaches, the local synchronization of the proposed model is further investigated. Here, the local synchronization is defined by the inner synchronization within a group which does not mean the synchronization between different groups. Moreover, several sufficient conditions are derived to ensure the local synchronization of the proposed network model. Finally, several representative examples are given to show the effectiveness of the proposed methods and theories.
Structured output-feedback controller synthesis with design specifications
NASA Astrophysics Data System (ADS)
Hao, Yuqing; Duan, Zhisheng
2017-03-01
This paper considers the problem of structured output-feedback controller synthesis with finite frequency specifications. Based on the orthogonal space information of input matrix, an improved parameter-dependent Lyapunov function method is first proposed. Then, a two-stage construction method is designed, which depends on an initial centralised controller. Corresponding design conditions for three types of output-feedback controllers are presented in terms of unified representations. Moreover, heuristic algorithms are provided to explore the desirable controllers. Finally, the effectiveness of these proposed methods is illustrated via some practical examples.
Dynamics of a Class of HIV Infection Models with Cure of Infected Cells in Eclipse Stage.
Maziane, Mehdi; Lotfi, El Mehdi; Hattaf, Khalid; Yousfi, Noura
2015-12-01
In this paper, we propose two HIV infection models with specific nonlinear incidence rate by including a class of infected cells in the eclipse phase. The first model is described by ordinary differential equations (ODEs) and generalizes a set of previously existing models and their results. The second model extends our ODE model by taking into account the diffusion of virus. Furthermore, the global stability of both models is investigated by constructing suitable Lyapunov functionals. Finally, we check our theoretical results with numerical simulations.
Synchronization of chaotic and nonchaotic oscillators: Application to bipolar disorder
NASA Astrophysics Data System (ADS)
Nono Dueyou Buckjohn, C.; Siewe Siewe, M.; Tchawoua, C.; Kofane, T. C.
2010-08-01
In this Letter, we use a synchronization scheme on two bipolar disorder models consisting of a strong nonlinear system with multiplicative excitation and a nonlinear oscillator without parametric harmonic forcing. The stability condition following our control function is analytically demonstrated using the Lyapunov theory and Routh-Hurwitz criteria, we then have the condition for the existence of a feedback gain matrix. A convenient demonstration of the accuracy of the method is complemented by the numerical simulations from which we illustrate the synchronized dynamics between the two non-identical bipolar disorder patients.
NASA Astrophysics Data System (ADS)
Cai, Xiushan; Meng, Lingxin; Zhang, Wei; Liu, Leipo
2018-03-01
We establish robustness of the predictor feedback control law to perturbations appearing at the system input for affine nonlinear systems with time-varying input delay and additive disturbances. Furthermore, it is shown that it is inverse optimal with respect to a differential game problem. All of the stability and inverse optimality proofs are based on the infinite-dimensional backstepping transformation and an appropriate Lyapunov functional. A single-link manipulator subject to input delays and disturbances is given to illustrate the validity of the proposed method.
Pinning synchronization of delayed complex dynamical networks with nonlinear coupling
NASA Astrophysics Data System (ADS)
Cheng, Ranran; Peng, Mingshu; Yu, Weibin
2014-11-01
In this paper, we find that complex networks with the Watts-Strogatz or scale-free BA random topological architecture can be synchronized more easily by pin-controlling fewer nodes than regular systems. Theoretical analysis is included by means of Lyapunov functions and linear matrix inequalities (LMI) to make all nodes reach complete synchronization. Numerical examples are also provided to illustrate the importance of our theoretical analysis, which implies that there exists a gap between the theoretical prediction and numerical results about the minimum number of pinning controlled nodes.
Passive synchronization for Markov jump genetic oscillator networks with time-varying delays.
Lu, Li; He, Bing; Man, Chuntao; Wang, Shun
2015-04-01
In this paper, the synchronization problem of coupled Markov jump genetic oscillator networks with time-varying delays and external disturbances is investigated. By introducing the drive-response concept, a novel mode-dependent control scheme is proposed, which guarantees that the synchronization can be achieved. By applying the Lyapunov-Krasovskii functional method and stochastic analysis, sufficient conditions are established based on passivity theory in terms of linear matrix inequalities. A numerical example is provided to demonstrate the effectiveness of our theoretical results. Copyright © 2015 Elsevier Inc. All rights reserved.
Ren, Shanjing
In this paper, an SEIR epidemic model for an imperfect treatment disease with age-dependent latency and relapse is proposed. The model is well-suited to model tuberculosis. The basic reproduction number R0 is calculated. We obtain the global behavior of the model in terms of R0. If R0< 1, the disease-free equilibrium is globally asymptotically stable, whereas if R0>1, a Lyapunov functional is used to show that the endemic equilibrium is globally stable amongst solutions for which the disease is present.
NASA Astrophysics Data System (ADS)
Zhao, Wencai; Li, Juan; Zhang, Tongqian; Meng, Xinzhu; Zhang, Tonghua
2017-07-01
Taking into account of both white and colored noises, a stochastic mathematical model with impulsive toxicant input is formulated. Based on this model, we investigate dynamics, such as the persistence and ergodicity, of plant infectious disease model with Markov conversion in a polluted environment. The thresholds of extinction and persistence in mean are obtained. By using Lyapunov functions, we prove that the system is ergodic and has a stationary distribution under certain sufficient conditions. Finally, numerical simulations are employed to illustrate our theoretical analysis.
Wu, Yuanyuan; Cao, Jinde; Li, Qingbo; Alsaedi, Ahmed; Alsaadi, Fuad E
2017-01-01
This paper deals with the finite-time synchronization problem for a class of uncertain coupled switched neural networks under asynchronous switching. By constructing appropriate Lyapunov-like functionals and using the average dwell time technique, some sufficient criteria are derived to guarantee the finite-time synchronization of considered uncertain coupled switched neural networks. Meanwhile, the asynchronous switching feedback controller is designed to finite-time synchronize the concerned networks. Finally, two numerical examples are introduced to show the validity of the main results. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, L. L.; Jin, C. L.; Ge, X.
2018-01-01
In this paper, the output regulation problem with dissipative property for a class of switched stochastic delay systems is investigated, based on an error-dependent switching law. Under the assumption that none subsystem is solvable for the problem, a sufficient condition is derived by structuring multiple Lyapunov-Krasovskii functionals with respect to multiple supply rates, via designing error feedback regulators. The condition is also established when dissipative property reduces to passive property. Finally, two numerical examples are given to demonstrate the feasibility and efficiency of the present method.
Dynamics of a stochastic cell-to-cell HIV-1 model with distributed delay
NASA Astrophysics Data System (ADS)
Ji, Chunyan; Liu, Qun; Jiang, Daqing
2018-02-01
In this paper, we consider a stochastic cell-to-cell HIV-1 model with distributed delay. Firstly, we show that there is a global positive solution of this model before exploring its long-time behavior. Then sufficient conditions for extinction of the disease are established. Moreover, we obtain sufficient conditions for the existence of an ergodic stationary distribution of the model by constructing a suitable stochastic Lyapunov function. The stationary distribution implies that the disease is persistent in the mean. Finally, we provide some numerical examples to illustrate theoretical results.
NASA Astrophysics Data System (ADS)
Lv, Cuifang; Huang, Lihong; Yuan, Zhaohui
2014-01-01
In this paper, an HIV-1 infection model with Beddington-DeAngelis incidence rate and CTL immune response is investigated. One main feature of this model is that an eclipse stage for the infected cells is included and a portion of these cells is reverted to uninfected cells. We derive the basic reproduction number R1 and the immune response reproduction number R2 for the HIV-1 infection model. By constructing Lyapunov functions, the global stabilities for the equilibria have been analyzed.
Modelling the effect of immigration on drinking behaviour.
Xiang, Hong; Zhu, Cheng-Cheng; Huo, Hai-Feng
2017-12-01
A drinking model with immigration is constructed. For the model with problem drinking immigration, the model admits only one problem drinking equilibrium. For the model without problem drinking immigration, the model has two equilibria, one is problem drinking-free equilibrium and the other is problem drinking equilibrium. By employing the method of Lyapunov function, stability of all kinds of equilibria is obtained. Numerical simulations are also provided to illustrate our analytical results. Our results show that alcohol immigrants increase the difficulty of the temperance work of the region.
LMI-based adaptive reliable H∞ static output feedback control against switched actuator failures
NASA Astrophysics Data System (ADS)
An, Liwei; Zhai, Ding; Dong, Jiuxiang; Zhang, Qingling
2017-08-01
This paper investigates the H∞ static output feedback (SOF) control problem for switched linear system under arbitrary switching, where the actuator failure models are considered to depend on switching signal. An active reliable control scheme is developed by combination of linear matrix inequality (LMI) method and adaptive mechanism. First, by exploiting variable substitution and Finsler's lemma, new LMI conditions are given for designing the SOF controller. Compared to the existing results, the proposed design conditions are more relaxed and can be applied to a wider class of no-fault linear systems. Then a novel adaptive mechanism is established, where the inverses of switched failure scaling factors are estimated online to accommodate the effects of actuator failure on systems. Two main difficulties arise: first is how to design the switched adaptive laws to prevent the missing of estimating information due to switching; second is how to construct a common Lyapunov function based on a switched estimate error term. It is shown that the new method can give less conservative results than that for the traditional control design with fixed gain matrices. Finally, simulation results on the HiMAT aircraft are given to show the effectiveness of the proposed approaches.
Hopfield, J J
2008-05-01
The algorithms that simple feedback neural circuits representing a brain area can rapidly carry out are often adequate to solve easy problems but for more difficult problems can return incorrect answers. A new excitatory-inhibitory circuit model of associative memory displays the common human problem of failing to rapidly find a memory when only a small clue is present. The memory model and a related computational network for solving Sudoku puzzles produce answers that contain implicit check bits in the representation of information across neurons, allowing a rapid evaluation of whether the putative answer is correct or incorrect through a computation related to visual pop-out. This fact may account for our strong psychological feeling of right or wrong when we retrieve a nominal memory from a minimal clue. This information allows more difficult computations or memory retrievals to be done in a serial fashion by using the fast but limited capabilities of a computational module multiple times. The mathematics of the excitatory-inhibitory circuits for associative memory and for Sudoku, both of which are understood in terms of energy or Lyapunov functions, is described in detail.
Wang, Jinling; Jiang, Haijun; Ma, Tianlong; Hu, Cheng
2018-05-01
This paper considers the delay-dependent stability of memristive complex-valued neural networks (MCVNNs). A novel linear mapping function is presented to transform the complex-valued system into the real-valued system. Under such mapping function, both continuous-time and discrete-time MCVNNs are analyzed in this paper. Firstly, when activation functions are continuous but not Lipschitz continuous, an extended matrix inequality is proved to ensure the stability of continuous-time MCVNNs. Furthermore, if activation functions are discontinuous, a discontinuous adaptive controller is designed to acquire its stability by applying Lyapunov-Krasovskii functionals. Secondly, compared with techniques in continuous-time MCVNNs, the Halanay-type inequality and comparison principle are firstly used to exploit the dynamical behaviors of discrete-time MCVNNs. Finally, the effectiveness of theoretical results is illustrated through numerical examples. Copyright © 2018 Elsevier Ltd. All rights reserved.
Bifurcation Analysis of a Predator-Prey System with Ratio-Dependent Functional Response
NASA Astrophysics Data System (ADS)
Jiang, Xin; She, Zhikun; Feng, Zhaosheng; Zheng, Xiuliang
2017-12-01
In this paper, we are concerned with the structural stability of a density dependent predator-prey system with ratio-dependent functional response. Starting with the geometrical analysis of hyperbolic curves, we obtain that the system has one or two positive equilibria under various conditions. Inspired by the S-procedure and semi-definite programming, we use the sum of squares decomposition based method to ensure the global asymptotic stability of the positive equilibrium through the associated polynomial Lyapunov functions. By exploring the monotonic property of the trace of the Jacobian matrix with respect to r under the given different conditions, we analytically verify that there is a corresponding unique r∗ such that the trace is equal to zero and prove the existence of Hopf bifurcation, respectively.
NASA Astrophysics Data System (ADS)
Wang, Yan; Jiang, Daqing; Alsaedi, Ahmed; Hayat, Tasawar
2018-07-01
A stochastic HIV viral model with both logistic target cell growth and nonlinear immune response function is formulated to investigate the effect of white noise on each population. The existence of the global solution is verified. By employing a novel combination of Lyapunov functions, we obtain the existence of the unique stationary distribution for small white noises. We also derive the extinction of the virus for large white noises. Numerical simulations are performed to highlight the effect of white noises on model dynamic behaviour under the realistic parameters. It is found that the small intensities of white noises can keep the irregular blips of HIV virus and CTL immune response, while the larger ones force the virus infection and immune response to lose efficacy.
Variable Neural Adaptive Robust Control: A Switched System Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lian, Jianming; Hu, Jianghai; Zak, Stanislaw H.
2015-05-01
Variable neural adaptive robust control strategies are proposed for the output tracking control of a class of multi-input multi-output uncertain systems. The controllers incorporate a variable-structure radial basis function (RBF) network as the self-organizing approximator for unknown system dynamics. The variable-structure RBF network solves the problem of structure determination associated with fixed-structure RBF networks. It can determine the network structure on-line dynamically by adding or removing radial basis functions according to the tracking performance. The structure variation is taken into account in the stability analysis of the closed-loop system using a switched system approach with the aid of the piecewisemore » quadratic Lyapunov function. The performance of the proposed variable neural adaptive robust controllers is illustrated with simulations.« less
2007-06-30
fractal dimensions and Lyapunov exponents . Fractal dimensions characterize geometri- cal complexity of dynamics (e.g., spatial distribution of points along...ant classi3ers (e.g., Lyapunov exponents , and fractal dimensions). The 3rst three steps show how chaotic systems may be separated from stochastic...correlated random walk in which a ¼ 2H, where H is the Hurst exponen interval 0pHp1 with the case H ¼ 0:5 corresponding to a simple rando This model has been
NASA Astrophysics Data System (ADS)
Tariba, N.; Bouknadel, A.; Haddou, A.; Ikken, N.; Omari, Hafsa El; Omari, Hamid El
2017-01-01
The Photovoltaic Generator have a nonlinear characteristic function relating the intensity at the voltage I = f (U) and depend on the variation of solar irradiation and temperature, In addition, its point of operation depends directly on the load that it supplies. To fix this drawback, and to extract the maximum power available to the terminal of the generator, an adaptation stage is introduced between the generator and the load to couple the two elements as perfectly as possible. The adaptation stage is associated with a command called MPPT MPPT (Maximum Power Point Tracker) whose is used to force the PVG to operate at the MPP (Maximum Power Point) under variation of climatic conditions and load variation. This paper presents a comparative study between the adaptive controller for PV Systems using MIT rules and Lyapunov method to regulate the PV voltage. The Incremental Conductance (IC) algorithm is used to extract the maximum power from the PVG by calculating the voltage Vref, and the adaptive controller is used to regulate and track quickly the PV voltage. The two methods of the adaptive controller will be compared to prove their performance by using the PSIM tools and experimental test, and the mathematical model of step-up with PVG model will be presented.
Neural adaptive control for vibration suppression in composite fin-tip of aircraft.
Suresh, S; Kannan, N; Sundararajan, N; Saratchandran, P
2008-06-01
In this paper, we present a neural adaptive control scheme for active vibration suppression of a composite aircraft fin tip. The mathematical model of a composite aircraft fin tip is derived using the finite element approach. The finite element model is updated experimentally to reflect the natural frequencies and mode shapes very accurately. Piezo-electric actuators and sensors are placed at optimal locations such that the vibration suppression is a maximum. Model-reference direct adaptive neural network control scheme is proposed to force the vibration level within the minimum acceptable limit. In this scheme, Gaussian neural network with linear filters is used to approximate the inverse dynamics of the system and the parameters of the neural controller are estimated using Lyapunov based update law. In order to reduce the computational burden, which is critical for real-time applications, the number of hidden neurons is also estimated in the proposed scheme. The global asymptotic stability of the overall system is ensured using the principles of Lyapunov approach. Simulation studies are carried-out using sinusoidal force functions of varying frequency. Experimental results show that the proposed neural adaptive control scheme is capable of providing significant vibration suppression in the multiple bending modes of interest. The performance of the proposed scheme is better than the H(infinity) control scheme.
NASA Astrophysics Data System (ADS)
Tiwari, Shivendra N.; Padhi, Radhakant
2018-01-01
Following the philosophy of adaptive optimal control, a neural network-based state feedback optimal control synthesis approach is presented in this paper. First, accounting for a nominal system model, a single network adaptive critic (SNAC) based multi-layered neural network (called as NN1) is synthesised offline. However, another linear-in-weight neural network (called as NN2) is trained online and augmented to NN1 in such a manner that their combined output represent the desired optimal costate for the actual plant. To do this, the nominal model needs to be updated online to adapt to the actual plant, which is done by synthesising yet another linear-in-weight neural network (called as NN3) online. Training of NN3 is done by utilising the error information between the nominal and actual states and carrying out the necessary Lyapunov stability analysis using a Sobolev norm based Lyapunov function. This helps in training NN2 successfully to capture the required optimal relationship. The overall architecture is named as 'Dynamically Re-optimised single network adaptive critic (DR-SNAC)'. Numerical results for two motivating illustrative problems are presented, including comparison studies with closed form solution for one problem, which clearly demonstrate the effectiveness and benefit of the proposed approach.
Long-run growth rate in a random multiplicative model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pirjol, Dan
2014-08-01
We consider the long-run growth rate of the average value of a random multiplicative process x{sub i+1} = a{sub i}x{sub i} where the multipliers a{sub i}=1+ρexp(σW{sub i}₋1/2 σ²t{sub i}) have Markovian dependence given by the exponential of a standard Brownian motion W{sub i}. The average value (x{sub n}) is given by the grand partition function of a one-dimensional lattice gas with two-body linear attractive interactions placed in a uniform field. We study the Lyapunov exponent λ=lim{sub n→∞}1/n log(x{sub n}), at fixed β=1/2 σ²t{sub n}n, and show that it is given by the equation of state of the lattice gas inmore » thermodynamical equilibrium. The Lyapunov exponent has discontinuous partial derivatives along a curve in the (ρ, β) plane ending at a critical point (ρ{sub C}, β{sub C}) which is related to a phase transition in the equivalent lattice gas. Using the equivalence of the lattice gas with a bosonic system, we obtain the exact solution for the equation of state in the thermodynamical limit n → ∞.« less
Earthquake-like dynamics in Myxococcus xanthus social motility
Gibiansky, Maxsim L.; Hu, Wei; Dahmen, Karin A.; Shi, Wenyuan; Wong, Gerard C. L.
2013-01-01
Myxococcus xanthus is a bacterium capable of complex social organization. Its characteristic social (“S”)-motility mechanism is mediated by type IV pili (TFP), linear actuator appendages that propel the bacterium along a surface. TFP are known to bind to secreted exopolysaccharides (EPS), but it is unclear how M. xanthus manages to use the TFP-EPS technology common to many bacteria to achieve its unique coordinated multicellular movements. We examine M. xanthus S-motility, using high-resolution particle-tracking algorithms, and observe aperiodic stick–slip movements. We show that they are not due to chemotaxis, but are instead consistent with a constant TFP-generated force interacting with EPS, which functions both as a glue and as a lubricant. These movements are quantitatively homologous to the dynamics of earthquakes and other crackling noise systems. These systems exhibit critical behavior, which is characterized by a statistical hierarchy of discrete “avalanche” motions described by a power law distribution. The measured critical exponents from M. xanthus are consistent with mean field theoretical models and with other crackling noise systems, and the measured Lyapunov exponent suggests the existence of highly branched EPS. Such molecular architectures, which are common for efficient lubricants but rare in bacterial EPS, may be necessary for S-motility: We show that the TFP of leading “locomotive” cells initiate the collective motion of follower cells, indicating that lubricating EPS may alleviate the force generation requirements on the lead cell and thus make S-motility possible. PMID:23341622
Global asymptotic stability for HIV-1 dynamics with two distributed delays.
Wang, Jinliang; Huang, Gang; Takeuchi, Yasuhiro
2012-09-01
Based on the drugs treatment to control HIV-1 infection and viral replication, we express the intracellular eclipse phase of virions in host cell as distributed delays because of pharmacological actions. In present paper, we investigate a class of HIV-1 infection dynamical model with two distributed delays. One of them describes the period between the time that HIV virion enters (infects) target cell and the time that the infected cell starts to produce new viral particles. The other describes the time for the virion maturation process. They are both allowed to tend to be infinite because of drugs resistent strains. By the Lyapunov direct method of and utilizing the technology of constructing Lyapunov functionals, we identify the basic reproduction number R(0) as a threshold quantity for the stability of equilibria. More precisely, if R(0) ≤ 1, the infection-free equilibrium is globally asymptotically stable; on the contrary, if R(0) > 1, then an infected equilibrium appears which is globally asymptotically stable. The dynamical results indicate that time delays have effect on the global stability of two equilibria through threshold value R(0), which is a decreasing function of delays. The biological meanings imply that any drugs that can prolong the time of viral reproduction through slowing down the reverse transcription of HIV in host and virus maturation process may also help control the HIV-1 infection and virus loads. Another way to increase the efficacy of the protease inhibitor and the reverse transcriptase inhibitor (i.e. increasing n(p) and n(rt)) is also desirable treatment strategies.
Far-from-equilibrium attractors and nonlinear dynamical systems approach to the Gubser flow
NASA Astrophysics Data System (ADS)
Behtash, Alireza; Cruz-Camacho, C. N.; Martinez, M.
2018-02-01
The nonequilibrium attractors of systems undergoing Gubser flow within relativistic kinetic theory are studied. In doing so we employ well-established methods of nonlinear dynamical systems which rely on finding the fixed points, investigating the structure of the flow diagrams of the evolution equations, and characterizing the basin of attraction using a Lyapunov function near the stable fixed points. We obtain the attractors of anisotropic hydrodynamics, Israel-Stewart (IS) and transient fluid (DNMR) theories and show that they are indeed nonplanar and the basin of attraction is essentially three dimensional. The attractors of each hydrodynamical model are compared with the one obtained from the exact Gubser solution of the Boltzmann equation within the relaxation time approximation. We observe that the anisotropic hydrodynamics is able to match up to high numerical accuracy the attractor of the exact solution while the second-order hydrodynamical theories fail to describe it. We show that the IS and DNMR asymptotic series expansions diverge and use resurgence techniques to perform the resummation of these divergences. We also comment on a possible link between the manifold of steepest descent paths in path integrals and the basin of attraction for the attractors via Lyapunov functions that opens a new horizon toward an effective field theory description of hydrodynamics. Our findings indicate that the reorganization of the expansion series carried out by anisotropic hydrodynamics resums the Knudsen and inverse Reynolds numbers to all orders and thus, it can be understood as an effective theory for the far-from-equilibrium fluid dynamics.
NASA Astrophysics Data System (ADS)
Soriano, Diogo C.; Santos, Odair V. dos; Suyama, Ricardo; Fazanaro, Filipe I.; Attux, Romis
2018-03-01
This work has a twofold aim: (a) to analyze an alternative approach for computing the conditional Lyapunov exponent (λcmax) aiming to evaluate the synchronization stability between nonlinear oscillators without solving the classical variational equations for the synchronization error dynamical system. In this first framework, an analytic reference value for λcmax is also provided in the context of Duffing master-slave scenario and precisely evaluated by the proposed numerical approach; (b) to apply this technique to the study of synchronization stability in chaotic Hindmarsh-Rose (HR) neuronal models under uni- and bi-directional resistive coupling and different excitation bias, which also considered the root mean square synchronization error, information theoretic measures and asymmetric transfer entropy in order to offer a better insight of the synchronization phenomenon. In particular, statistical and information theoretical measures were able to capture similarity increase between the neuronal oscillators just after a critical coupling value in accordance to the largest conditional Lyapunov exponent behavior. On the other hand, transfer entropy was able to detect neuronal emitter influence even in a weak coupling condition, i.e. under the increase of conditional Lyapunov exponent and apparently desynchronization tendency. In the performed set of numerical simulations, the synchronization measures were also evaluated for a two-dimensional parameter space defined by the neuronal coupling (emitter to a receiver neuron) and the (receiver) excitation current. Such analysis is repeated for different feedback couplings as well for different (emitter) excitation currents, revealing interesting characteristics of the attained synchronization region and conditions that facilitate the emergence of the synchronous behavior. These results provide a more detailed numerical insight of the underlying behavior of a HR in the excitation and coupling space, being in accordance with some general findings concerning HR coupling topologies. As a perspective, besides the synchronization overview from different standpoints, we hope that the proposed numerical approach for conditional Lyapunov exponent evaluation could outline a valuable strategy for studying neuronal stability, especially when realistic models are considered, in which analytical or even Jacobian evaluation could define a laborious or impracticable task.
A Self-Check System for Mental Health Care based on Nonlinear and Chaos Analysis
NASA Astrophysics Data System (ADS)
Oyama-Higa, Mayumi; Miao, Tiejun; Cheng, Huaichang; Tang, Yuan Guang
2007-11-01
We applied nonlinear and chaos analysis to fingertip pulse wave data. The largest Lyapunov exponent, a measure of the "divergence" of the trajectory of the attractor in phase space, was found to be a useful index of mental health in humans, particularly for the early detection of dementia and depressive psychosis, and for monitoring mental changes in healthy persons. Most of the methods used for assessing mental health are subjective. A few of existing objective methods, such as those using EEG and ECG, for example, are not simple to use and expansive. Therefore, we developed an easy-to-use economical device, a PC mouse with an integrated sensor for measuring the pulse waves, and its required software, to make the measurements. After about 1 min of measurement, the Lyapunov exponent is calculated and displayed as a graph on the PC. An advantage of this system is that the measurements can be made very easily, and hence mental health can be assessed during operating a PC using the pulse wave mouse. Moreover, the measured data can be saved according to the time and date, so diurnal changes and changes over longer time periods can be monitored as a time series and history. At the time the pulse waves are measured, we ask the subject about his or her physical health and mood, and use their responses, along with the Lyapunov exponents, as factors causing variation in the divergence. The changes in the Lyapunov exponent are displayed on the PC as constellation graphs, which we developed to facilitate simpler self-diagnosis and problem resolution.
Weierstrass traveling wave solutions for dissipative Benjamin, Bona, and Mahony (BBM) equation
NASA Astrophysics Data System (ADS)
Mancas, Stefan C.; Spradlin, Greg; Khanal, Harihar
2013-08-01
In this paper the effect of a small dissipation on waves is included to find exact solutions to the modified Benjamin, Bona, and Mahony (BBM) equation by viscosity. Using Lyapunov functions and dynamical systems theory, we prove that when viscosity is added to the BBM equation, in certain regions there still exist bounded traveling wave solutions in the form of solitary waves, periodic, and elliptic functions. By using the canonical form of Abel equation, the polynomial Appell invariant makes the equation integrable in terms of Weierstrass ℘ functions. We will use a general formalism based on Ince's transformation to write the general solution of dissipative BBM in terms of ℘ functions, from which all the other known solutions can be obtained via simplifying assumptions. Using ODE (ordinary differential equations) analysis we show that the traveling wave speed is a bifurcation parameter that makes transition between different classes of waves.
Narimani, Mohammand; Lam, H K; Dilmaghani, R; Wolfe, Charles
2011-06-01
Relaxed linear-matrix-inequality-based stability conditions for fuzzy-model-based control systems with imperfect premise matching are proposed. First, the derivative of the Lyapunov function, containing the product terms of the fuzzy model and fuzzy controller membership functions, is derived. Then, in the partitioned operating domain of the membership functions, the relations between the state variables and the mentioned product terms are represented by approximated polynomials in each subregion. Next, the stability conditions containing the information of all subsystems and the approximated polynomials are derived. In addition, the concept of the S-procedure is utilized to release the conservativeness caused by considering the whole operating region for approximated polynomials. It is shown that the well-known stability conditions can be special cases of the proposed stability conditions. Simulation examples are given to illustrate the validity of the proposed approach.
Xie, Xiangpeng; Yue, Dong; Zhang, Huaguang; Xue, Yusheng
2016-03-01
This paper deals with the problem of control synthesis of discrete-time Takagi-Sugeno fuzzy systems by employing a novel multiinstant homogenous polynomial approach. A new multiinstant fuzzy control scheme and a new class of fuzzy Lyapunov functions, which are homogenous polynomially parameter-dependent on both the current-time normalized fuzzy weighting functions and the past-time normalized fuzzy weighting functions, are proposed for implementing the object of relaxed control synthesis. Then, relaxed stabilization conditions are derived with less conservatism than existing ones. Furthermore, the relaxation quality of obtained stabilization conditions is further ameliorated by developing an efficient slack variable approach, which presents a multipolynomial dependence on the normalized fuzzy weighting functions at the current and past instants of time. Two simulation examples are given to demonstrate the effectiveness and benefits of the results developed in this paper.
On Growth Rates of Subadditive Functions for Semiflows
NASA Astrophysics Data System (ADS)
Schreiber, Sebastian J.
1998-09-01
Letφ: X×T+→Xbe a semiflow on a compact metric spaceX. A functionF: X×T+→Xis subadditive with respect toφifF(x, t+s)⩽F(x, t)+F(φ(x, t),nbsp;s). We define the maximal growth rate ofFto be supx∈X lim supt→∞(1/t) F(x, t). This growth rate is shown to equal the maximal growth rate of the subadditive function restricted to the minimal center of attraction of the semiflow. Applications to Birkhoff sums, characteristic exponents of linear skew-product semiflows on Banach bundles, and average Lyapunov functions are developed. In particular, a relationship between the dynamical spectrum and the measurable spectrum of a linear skew-product flow established by R. A. Johnson, K. J. Palmer, and G. R. Sell (SIAM J. Math. Anal.18, 1987, 1-33) is extended to semiflows in an infinite dimensional setting.
Numerical bifurcation analysis of two coupled FitzHugh-Nagumo oscillators
NASA Astrophysics Data System (ADS)
Hoff, Anderson; dos Santos, Juliana V.; Manchein, Cesar; Albuquerque, Holokx A.
2014-07-01
The behavior of neurons can be modeled by the FitzHugh-Nagumo oscillator model, consisting of two nonlinear differential equations, which simulates the behavior of nerve impulse conduction through the neuronal membrane. In this work, we numerically study the dynamical behavior of two coupled FitzHugh-Nagumo oscillators. We consider unidirectional and bidirectional couplings, for which Lyapunov and isoperiodic diagrams were constructed calculating the Lyapunov exponents and the number of the local maxima of a variable in one period interval of the time-series, respectively. By numerical continuation method the bifurcation curves are also obtained for both couplings. The dynamics of the networks here investigated are presented in terms of the variation between the coupling strength of the oscillators and other parameters of the system. For the network of two oscillators unidirectionally coupled, the results show the existence of Arnold tongues, self-organized sequentially in a branch of a Stern-Brocot tree and by the bifurcation curves it became evident the connection between these Arnold tongues with other periodic structures in Lyapunov diagrams. That system also presents multistability shown in the planes of the basin of attractions.
Evaluation of nonlinear properties of epileptic activity using largest Lyapunov exponent
NASA Astrophysics Data System (ADS)
Medvedeva, Tatiana M.; Lüttjohann, Annika; van Luijtelaar, Gilles; Sysoev, Ilya V.
2016-04-01
Absence seizures are known to be highly non-linear large amplitude oscillations with a well pronounced main time scale. Whilst the appearance of the main frequency is usually considered as a transition from noisy complex dynamics of baseline EEG to more regular absence activity, the dynamical properties of this type of epileptiformic activity in genetic absence models was not studied precisely. Here, the estimation of the largest Lyapunov exponent from intracranial EEGs of 10 WAG/Rij rats (genetic model of absence epilepsy) was performed. Fragments of 10 seizures and 10 episodes of on-going EEG each of 4 s length were used for each animal, 3 cortical and 2 thalamic channels were analysed. The method adapted for short noisy data was implemented. The positive values of the largest Lyapunov exponent were found as for baseline as for spike wave discharges (SWDs), with values for SWDs being significantly less than for on-going activity. Current findings may indicate that SWD is a chaotic process with a well pronounced main timescale rather than a periodic regime. Also, the absence activity was shown to be less chaotic than the baseline one.
Singular Behavior of the Leading Lyapunov Exponent of a Product of Random {2 × 2} Matrices
NASA Astrophysics Data System (ADS)
Genovese, Giuseppe; Giacomin, Giambattista; Greenblatt, Rafael Leon
2017-05-01
We consider a certain infinite product of random {2 × 2} matrices appearing in the solution of some 1 and 1 + 1 dimensional disordered models in statistical mechanics, which depends on a parameter ɛ > 0 and on a real random variable with distribution {μ}. For a large class of {μ}, we prove the prediction by Derrida and Hilhorst (J Phys A 16:2641, 1983) that the Lyapunov exponent behaves like {C ɛ^{2 α}} in the limit {ɛ \\searrow 0}, where {α \\in (0,1)} and {C > 0} are determined by {μ}. Derrida and Hilhorst performed a two-scale analysis of the integral equation for the invariant distribution of the Markov chain associated to the matrix product and obtained a probability measure that is expected to be close to the invariant one for small {ɛ}. We introduce suitable norms and exploit contractivity properties to show that such a probability measure is indeed close to the invariant one in a sense that implies a suitable control of the Lyapunov exponent.
Lyapunov-Based Sensor Failure Detection And Recovery For The Reverse Water Gas Shift Process
NASA Technical Reports Server (NTRS)
Haralambous, Michael G.
2001-01-01
Livingstone, a model-based AI software system, is planned for use in the autonomous fault diagnosis, reconfiguration, and control of the oxygen-producing reverse water gas shift (RWGS) process test-bed located in the Applied Chemistry Laboratory at KSC. In this report the RWGS process is first briefly described and an overview of Livingstone is given. Next, a Lyapunov-based approach for detecting and recovering from sensor failures, differing significantly from that used by Livingstone, is presented. In this new method, models used are in terms of the defining differential equations of system components, thus differing from the qualitative, static models used by Livingstone. An easily computed scalar inequality constraint, expressed in terms of sensed system variables, is used to determine the existence of sensor failures. In the event of sensor failure, an observer/estimator is used for determining which sensors have failed. The theory underlying the new approach is developed. Finally, a recommendation is made to use the Lyapunov-based approach to complement the capability of Livingstone and to use this combination in the RWGS process.
LYAPUNOV-Based Sensor Failure Detection and Recovery for the Reverse Water Gas Shift Process
NASA Technical Reports Server (NTRS)
Haralambous, Michael G.
2002-01-01
Livingstone, a model-based AI software system, is planned for use in the autonomous fault diagnosis, reconfiguration, and control of the oxygen-producing reverse water gas shift (RWGS) process test-bed located in the Applied Chemistry Laboratory at KSC. In this report the RWGS process is first briefly described and an overview of Livingstone is given. Next, a Lyapunov-based approach for detecting and recovering from sensor failures, differing significantly from that used by Livingstone, is presented. In this new method, models used are in t e m of the defining differential equations of system components, thus differing from the qualitative, static models used by Livingstone. An easily computed scalar inequality constraint, expressed in terms of sensed system variables, is used to determine the existence of sensor failures. In the event of sensor failure, an observer/estimator is used for determining which sensors have failed. The theory underlying the new approach is developed. Finally, a recommendation is made to use the Lyapunov-based approach to complement the capability of Livingstone and to use this combination in the RWGS process.
On the approximation of Lyapunov exponents and a question suggested by Anatole Katok
NASA Astrophysics Data System (ADS)
Dai, Xiongping
2010-03-01
Let \\mathcal {F}\\colon X\\times\\mathbb{Z}_+\\rightarrow \\rm{GL}(n,\\mathbb{R}) be a Hölder-continuous linear cocycle whose driving semiflow f\\colon X\\times\\mathbb{Z}_+\\rightarrow X preserves a probability μ on a compact metric space X. Using the concept of two-sided quasi-Pesin orbits introduced in this paper, we show that the Lyapunov characteristic spectrum of μ can be approached arbitrarily by that of periodic points of f. So, if all periodic points of f have only positive Lyapunov exponents and such exponents are uniformly bounded away from zero, then μ also has only positive exponents. In our arguments, the exponential closing property of the driving semiflow is a basic condition, and it is easy to check that every C1-expanding map of a closed manifold obeys this closing property. Consequently, if f is a C1+Hölder local diffeomorphism of a closed manifold and if it is Hölder conjugated to some C1-expanding map, then f is itself expanding. This gives a positive answer to a question suggested by Anatole Katok.
On the nonlinear stability of mKdV breathers
NASA Astrophysics Data System (ADS)
Alejo, Miguel A.; Muñoz, Claudio
2012-11-01
Breather modes of the mKdV equation on the real line are known to be elastic under collisions with other breathers and solitons. This fact indicates very strong stability properties of breathers. In this communication we describe a rigorous, mathematical proof of the stability of breathers under a class of small perturbations. Our proof involves the existence of a nonlinear equation satisfied by all breather profiles, and a new Lyapunov functional which controls the dynamics of small perturbations and instability modes. In order to construct such a functional, we work in a subspace of the energy one. However, our proof introduces new ideas in order to attack the corresponding stability problem in the energy space. Some remarks about the sine-Gordon case are also considered.
Homogenous polynomially parameter-dependent H∞ filter designs of discrete-time fuzzy systems.
Zhang, Huaguang; Xie, Xiangpeng; Tong, Shaocheng
2011-10-01
This paper proposes a novel H(∞) filtering technique for a class of discrete-time fuzzy systems. First, a novel kind of fuzzy H(∞) filter, which is homogenous polynomially parameter dependent on membership functions with an arbitrary degree, is developed to guarantee the asymptotic stability and a prescribed H(∞) performance of the filtering error system. Second, relaxed conditions for H(∞) performance analysis are proposed by using a new fuzzy Lyapunov function and the Finsler lemma with homogenous polynomial matrix Lagrange multipliers. Then, based on a new kind of slack variable technique, relaxed linear matrix inequality-based H(∞) filtering conditions are proposed. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed approach.
H∞ control problem of linear periodic piecewise time-delay systems
NASA Astrophysics Data System (ADS)
Xie, Xiaochen; Lam, James; Li, Panshuo
2018-04-01
This paper investigates the H∞ control problem based on exponential stability and weighted L2-gain analyses for a class of continuous-time linear periodic piecewise systems with time delay. A periodic piecewise Lyapunov-Krasovskii functional is developed by integrating a discontinuous time-varying matrix function with two global terms. By applying the improved constraints to the stability and L2-gain analyses, sufficient delay-dependent exponential stability and weighted L2-gain criteria are proposed for the periodic piecewise time-delay system. Based on these analyses, an H∞ control scheme is designed under the considerations of periodic state feedback control input and iterative optimisation. Finally, numerical examples are presented to illustrate the effectiveness of our proposed conditions.
Stability of a general delayed virus dynamics model with humoral immunity and cellular infection
NASA Astrophysics Data System (ADS)
Elaiw, A. M.; Raezah, A. A.; Alofi, A. S.
2017-06-01
In this paper, we investigate the dynamical behavior of a general nonlinear model for virus dynamics with virus-target and infected-target incidences. The model incorporates humoral immune response and distributed time delays. The model is a four dimensional system of delay differential equations where the production and removal rates of the virus and cells are given by general nonlinear functions. We derive the basic reproduction parameter R˜0 G and the humoral immune response activation number R˜1 G and establish a set of conditions on the general functions which are sufficient to determine the global dynamics of the models. We use suitable Lyapunov functionals and apply LaSalle's invariance principle to prove the global asymptotic stability of the all equilibria of the model. We confirm the theoretical results by numerical simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Y. S.; Cai, F.; Xu, W. M.
2011-09-28
The ship motion equation with a cosine wave excitement force describes the slip moments in regular waves. A new kind of wave excitement force model, with the form as sums of cosine functions was proposed to describe ship rolling in irregular waves. Ship rolling time series were obtained by solving the ship motion equation with the fourth-order-Runger-Kutta method. These rolling time series were synthetically analyzed with methods of phase-space track, power spectrum, primary component analysis, and the largest Lyapunove exponent. Simulation results show that ship rolling presents some chaotic characteristic when the wave excitement force was applied by sums ofmore » cosine functions. The result well explains the course of ship rolling's chaotic mechanism and is useful for ship hydrodynamic study.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angelin Jeba, K.; Latha, M. M., E-mail: lathaisaac@yahoo.com; Jain, Sudhir R.
2015-11-15
The nonlinear dynamics of intra- and inter-spine interaction models of alpha-helical proteins is investigated by proposing a Hamiltonian using the first quantized operators. Hamilton's equations of motion are derived, and the dynamics is studied by constructing the trajectories and phase space plots in both cases. The phase space plots display a chaotic behaviour in the dynamics, which opens questions about the relationship between the chaos and exciton-exciton and exciton-phonon interactions. This is verified by plotting the Lyapunov characteristic exponent curves.
Investigation of Lyapunov stability of a central configuration in the restricted four-body problem
NASA Astrophysics Data System (ADS)
Bardin, B. S.; Esipov, P. A.
2018-05-01
The restricted planar four-body problem is considered. It is supposed that one of four bodies has infinitesimal mass and does not affect on motions of three other bodies. If two bodies have equal masses then there exists a central configuration such that three bodies are located in vertex of an equilateral triangle and the fourth body having infinitesimal mass is located in perpendicular bisector of the triangle. By using the method of normal forms and KAM theory stability of the above configuration is studied in the sense of Lyapunov.
An implicit iterative algorithm with a tuning parameter for Itô Lyapunov matrix equations
NASA Astrophysics Data System (ADS)
Zhang, Ying; Wu, Ai-Guo; Sun, Hui-Jie
2018-01-01
In this paper, an implicit iterative algorithm is proposed for solving a class of Lyapunov matrix equations arising in Itô stochastic linear systems. A tuning parameter is introduced in this algorithm, and thus the convergence rate of the algorithm can be changed. Some conditions are presented such that the developed algorithm is convergent. In addition, an explicit expression is also derived for the optimal tuning parameter, which guarantees that the obtained algorithm achieves its fastest convergence rate. Finally, numerical examples are employed to illustrate the effectiveness of the given algorithm.
Lyapunov exponents for infinite dimensional dynamical systems
NASA Technical Reports Server (NTRS)
Mhuiris, Nessan Mac Giolla
1987-01-01
Classically it was held that solutions to deterministic partial differential equations (i.e., ones with smooth coefficients and boundary data) could become random only through one mechanism, namely by the activation of more and more of the infinite number of degrees of freedom that are available to such a system. It is only recently that researchers have come to suspect that many infinite dimensional nonlinear systems may in fact possess finite dimensional chaotic attractors. Lyapunov exponents provide a tool for probing the nature of these attractors. This paper examines how these exponents might be measured for infinite dimensional systems.
Dynamic stability analysis of fractional order leaky integrator echo state neural networks
NASA Astrophysics Data System (ADS)
Pahnehkolaei, Seyed Mehdi Abedi; Alfi, Alireza; Tenreiro Machado, J. A.
2017-06-01
The Leaky integrator echo state neural network (Leaky-ESN) is an improved model of the recurrent neural network (RNN) and adopts an interconnected recurrent grid of processing neurons. This paper presents a new proof for the convergence of a Lyapunov candidate function to zero when time tends to infinity by means of the Caputo fractional derivative with order lying in the range (0, 1). The stability of Fractional-Order Leaky-ESN (FO Leaky-ESN) is then analyzed, and the existence, uniqueness and stability of the equilibrium point are provided. A numerical example demonstrates the feasibility of the proposed method.
Finite-time synchronization control of a class of memristor-based recurrent neural networks.
Jiang, Minghui; Wang, Shuangtao; Mei, Jun; Shen, Yanjun
2015-03-01
This paper presents a global and local finite-time synchronization control law for memristor neural networks. By utilizing the drive-response concept, differential inclusions theory, and Lyapunov functional method, we establish several sufficient conditions for finite-time synchronization between the master and corresponding slave memristor-based neural network with the designed controller. In comparison with the existing results, the proposed stability conditions are new, and the obtained results extend some previous works on conventional recurrent neural networks. Two numerical examples are provided to illustrate the effective of the design method. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fault detection for piecewise affine systems with application to ship propulsion systems.
Yang, Ying; Linlin, Li; Ding, Steven X; Qiu, Jianbin; Peng, Kaixiang
2017-09-09
In this paper, the design approach of non-synchronized diagnostic observer-based fault detection (FD) systems is investigated for piecewise affine processes via continuous piecewise Lyapunov functions. Considering that the dynamics of piecewise affine systems in different regions can be considerably different, the weighting matrices are used to weight the residual of each region, so as to optimize the fault detectability. A numerical example and a case study on a ship propulsion system are presented in the end to demonstrate the effectiveness of the proposed results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Cao, Boqiang; Zhang, Qimin; Ye, Ming
2016-11-29
We present a mean-square exponential stability analysis for impulsive stochastic genetic regulatory networks (GRNs) with time-varying delays and reaction-diffusion driven by fractional Brownian motion (fBm). By constructing a Lyapunov functional and using linear matrix inequality for stochastic analysis we derive sufficient conditions to guarantee the exponential stability of the stochastic model of impulsive GRNs in the mean-square sense. Meanwhile, the corresponding results are obtained for the GRNs with constant time delays and standard Brownian motion. Finally, an example is presented to illustrate our results of the mean-square exponential stability analysis.
Dynamics and circuit of a chaotic system with a curve of equilibrium points
NASA Astrophysics Data System (ADS)
Pham, Viet-Thanh; Volos, Christos; Kapitaniak, Tomasz; Jafari, Sajad; Wang, Xiong
2018-03-01
Although chaotic systems have been intensively studied since the 1960s, new systems with mysterious features are still of interest. A novel chaotic system including hyperbolic functions is proposed in this work. Especially, the system has an infinite number of equilibrium points. Dynamics of the system are investigated by using non-linear tools such as phase portrait, bifurcation diagram, and Lyapunov exponent. It is interesting that the system can display coexisting chaotic attractors. An electronic circuit for realising the chaotic system has been implemented. Experimental results show a good agreement with theoretical ones.
On the extensible viscoelastic beam
NASA Astrophysics Data System (ADS)
Giorgi, Claudio; Pata, Vittorino; Vuk, Elena
2008-04-01
This work is focused on the equation \\[ \\begin{eqnarray*}\\fl {\\partial_{tt}} u+\\partial_{xxxx}u +\\int_0^\\infty \\mu(s) \\partial_{xxxx}[u(t)-u(t-s)]\\,\\rmd s\\\\ - \\big(\\beta+\\|\\partial_x u\\|_{L^2(0,1)}^2\\big)\\partial_{xx}u= f\\end{eqnarray*} \\] describing the motion of an extensible viscoelastic beam. Under suitable boundary conditions, the related dynamical system in the history space framework is shown to possess a global attractor of optimal regularity. The result is obtained by exploiting an appropriate decomposition of the solution semigroup, together with the existence of a Lyapunov functional.
Manifestation of resonance-related chaos in coupled Josephson junctions
NASA Astrophysics Data System (ADS)
Shukrinov, Yu. M.; Hamdipour, M.; Kolahchi, M. R.; Botha, A. E.; Suzuki, M.
2012-11-01
Manifestation of chaos in the temporal dependence of the electric charge is demonstrated through the calculation of the maximal Lyapunov exponent, phase-charge and charge-charge Lissajous diagrams and correlation functions. It is found that the number of junctions in the stack strongly influences the fine structure in the current-voltage characteristics and a strong proximity effect results from the nonperiodic boundary conditions. The observed resonance-related chaos exhibits intermittency. The criteria for a breakpoint region with no chaos are obtained. Such criteria could clarify recent experimental observations of variations in the power output from intrinsic Josephson junctions in high temperature superconductors.
NASA Astrophysics Data System (ADS)
Li, Dong; Guo, Shangjiang
Chemotaxis is an observed phenomenon in which a biological individual moves preferentially toward a relatively high concentration, which is contrary to the process of natural diffusion. In this paper, we study a reaction-diffusion model with chemotaxis and nonlocal delay effect under Dirichlet boundary condition by using Lyapunov-Schmidt reduction and the implicit function theorem. The existence, multiplicity, stability and Hopf bifurcation of spatially nonhomogeneous steady state solutions are investigated. Moreover, our results are illustrated by an application to the model with a logistic source, homogeneous kernel and one-dimensional spatial domain.
On the magnetic attitude control for spacecraft via the ɛ-strategies method
NASA Astrophysics Data System (ADS)
Smirnov, Georgi V.; Ovchinnikov, Mikhail; Miranda, Francisco
2008-09-01
We develop a new approach to stabilization problems based on a combination of the Lyapunov functions method with local controllability properties. The stabilizability is understood in the sense of ɛ-strategies introduced by Pontryagin in the frame of differential games theory. To illustrate the possibilities of our approach we consider a satellite with two magnetic coils directed along its principal inertia axes. Its circular orbit is neither polar nor equatorial. We show that there exists an ɛ-strategy stabilizing an Earth pointing satellite, whenever the deviations from the equilibrium position are small enough.
Short-time Lyapunov exponent analysis and the transition to chaos in Taylor-Couette flow
NASA Technical Reports Server (NTRS)
Vastano, John A.; Moser, Robert D.
1991-01-01
The physical mechanism driving the weakly chaotic Taylor-Couette flow is investigated using the short-time Liapunov exponent analysis. In this procedure, the transition from quasi-periodicity to chaos is studied using direct numerical 3D simulations of axially periodic Taylor-Couette flow, and a partial Liapunov exponent spectrum for the flow is computed by simultaneously advancing the full solution and a set of perturbations. It is shown that the short-time Liapunov exponent analysis yields more information on the exponents and dimension than that obtained from the common Liapunov exponent calculations. Results show that the chaotic state studied here is caused by a Kelvin-Helmholtz-type instability of the outflow boundary jet of Taylor vortices.
Resonances in a Chaotic Attractor Crisis of the Lorenz Flow
NASA Astrophysics Data System (ADS)
Tantet, Alexis; Lucarini, Valerio; Dijkstra, Henk A.
2018-02-01
Local bifurcations of stationary points and limit cycles have successfully been characterized in terms of the critical exponents of these solutions. Lyapunov exponents and their associated covariant Lyapunov vectors have been proposed as tools for supporting the understanding of critical transitions in chaotic dynamical systems. However, it is in general not clear how the statistical properties of dynamical systems change across a boundary crisis during which a chaotic attractor collides with a saddle. This behavior is investigated here for a boundary crisis in the Lorenz flow, for which neither the Lyapunov exponents nor the covariant Lyapunov vectors provide a criterion for the crisis. Instead, the convergence of the time evolution of probability densities to the invariant measure, governed by the semigroup of transfer operators, is expected to slow down at the approach of the crisis. Such convergence is described by the eigenvalues of the generator of this semigroup, which can be divided into two families, referred to as the stable and unstable Ruelle-Pollicott resonances, respectively. The former describes the convergence of densities to the attractor (or escape from a repeller) and is estimated from many short time series sampling the state space. The latter is responsible for the decay of correlations, or mixing, and can be estimated from a long times series, invoking ergodicity. It is found numerically for the Lorenz flow that the stable resonances do approach the imaginary axis during the crisis, as is indicative of the loss of global stability of the attractor. On the other hand, the unstable resonances, and a fortiori the decay of correlations, do not flag the proximity of the crisis, thus questioning the usual design of early warning indicators of boundary crises of chaotic attractors and the applicability of response theory close to such crises.
Resonances in a Chaotic Attractor Crisis of the Lorenz Flow
NASA Astrophysics Data System (ADS)
Tantet, Alexis; Lucarini, Valerio; Dijkstra, Henk A.
2017-12-01
Local bifurcations of stationary points and limit cycles have successfully been characterized in terms of the critical exponents of these solutions. Lyapunov exponents and their associated covariant Lyapunov vectors have been proposed as tools for supporting the understanding of critical transitions in chaotic dynamical systems. However, it is in general not clear how the statistical properties of dynamical systems change across a boundary crisis during which a chaotic attractor collides with a saddle. This behavior is investigated here for a boundary crisis in the Lorenz flow, for which neither the Lyapunov exponents nor the covariant Lyapunov vectors provide a criterion for the crisis. Instead, the convergence of the time evolution of probability densities to the invariant measure, governed by the semigroup of transfer operators, is expected to slow down at the approach of the crisis. Such convergence is described by the eigenvalues of the generator of this semigroup, which can be divided into two families, referred to as the stable and unstable Ruelle-Pollicott resonances, respectively. The former describes the convergence of densities to the attractor (or escape from a repeller) and is estimated from many short time series sampling the state space. The latter is responsible for the decay of correlations, or mixing, and can be estimated from a long times series, invoking ergodicity. It is found numerically for the Lorenz flow that the stable resonances do approach the imaginary axis during the crisis, as is indicative of the loss of global stability of the attractor. On the other hand, the unstable resonances, and a fortiori the decay of correlations, do not flag the proximity of the crisis, thus questioning the usual design of early warning indicators of boundary crises of chaotic attractors and the applicability of response theory close to such crises.
Lam, H K; Leung, Frank H F
2007-10-01
This correspondence presents the stability analysis and performance design of the continuous-time fuzzy-model-based control systems. The idea of the nonparallel-distributed-compensation (non-PDC) control laws is extended to the continuous-time fuzzy-model-based control systems. A nonlinear controller with non-PDC control laws is proposed to stabilize the continuous-time nonlinear systems in Takagi-Sugeno's form. To produce the stability-analysis result, a parameter-dependent Lyapunov function (PDLF) is employed. However, two difficulties are usually encountered: 1) the time-derivative terms produced by the PDLF will complicate the stability analysis and 2) the stability conditions are not in the form of linear-matrix inequalities (LMIs) that aid the design of feedback gains. To tackle the first difficulty, the time-derivative terms are represented by some weighted-sum terms in some existing approaches, which will increase the number of stability conditions significantly. In view of the second difficulty, some positive-definitive terms are added in order to cast the stability conditions into LMIs. In this correspondence, the favorable properties of the membership functions and nonlinear control laws, which allow the introduction of some free matrices, are employed to alleviate the two difficulties while retaining the favorable properties of PDLF-based approach. LMI-based stability conditions are derived to ensure the system stability. Furthermore, based on a common scalar performance index, LMI-based performance conditions are derived to guarantee the system performance. Simulation examples are given to illustrate the effectiveness of the proposed approach.
NASA Astrophysics Data System (ADS)
Das, Amiya; Ganguly, Asish
2017-07-01
The paper deals with Kadomtsev-Petviashvili (KP) equation in presence of a small dispersion effect. The nature of solutions are examined under the dispersion effect by using Lyapunov function and dynamical system theory. We prove that when dispersion is added to the KP equation, in certain regions, yet there exist bounded traveling wave solutions in the form of solitary waves, periodic and elliptic functions. The general solution of the equation with or without the dispersion effect are obtained in terms of Weirstrass ℘ functions and Jacobi elliptic functions. New form of kink-type solutions are established by exploring a new technique based on factorization method, use of functional transformation and the Abel's first order nonlinear equation. Furthermore, the stability analysis of the dispersive solutions are examined which shows that the traveling wave velocity is a bifurcation parameter which governs between different classes of waves. We use the phase plane analysis and show that at a critical velocity, the solution has a transcritical bifurcation.
Ergodicity of Truncated Stochastic Navier Stokes with Deterministic Forcing and Dispersion
NASA Astrophysics Data System (ADS)
Majda, Andrew J.; Tong, Xin T.
2016-10-01
Turbulence in idealized geophysical flows is a very rich and important topic. The anisotropic effects of explicit deterministic forcing, dispersive effects from rotation due to the β -plane and F-plane, and topography together with random forcing all combine to produce a remarkable number of realistic phenomena. These effects have been studied through careful numerical experiments in the truncated geophysical models. These important results include transitions between coherent jets and vortices, and direct and inverse turbulence cascades as parameters are varied, and it is a contemporary challenge to explain these diverse statistical predictions. Here we contribute to these issues by proving with full mathematical rigor that for any values of the deterministic forcing, the β - and F-plane effects and topography, with minimal stochastic forcing, there is geometric ergodicity for any finite Galerkin truncation. This means that there is a unique smooth invariant measure which attracts all statistical initial data at an exponential rate. In particular, this rigorous statistical theory guarantees that there are no bifurcations to multiple stable and unstable statistical steady states as geophysical parameters are varied in contrast to claims in the applied literature. The proof utilizes a new statistical Lyapunov function to account for enstrophy exchanges between the statistical mean and the variance fluctuations due to the deterministic forcing. It also requires careful proofs of hypoellipticity with geophysical effects and uses geometric control theory to establish reachability. To illustrate the necessity of these conditions, a two-dimensional example is developed which has the square of the Euclidean norm as the Lyapunov function and is hypoelliptic with nonzero noise forcing, yet fails to be reachable or ergodic.
Stability analysis of hybrid-driven underwater glider
NASA Astrophysics Data System (ADS)
Niu, Wen-dong; Wang, Shu-xin; Wang, Yan-hui; Song, Yang; Zhu, Ya-qiang
2017-10-01
Hybrid-driven underwater glider is a new type of unmanned underwater vehicle, which combines the advantages of autonomous underwater vehicles and traditional underwater gliders. The autonomous underwater vehicles have good maneuverability and can travel with a high speed, while the traditional underwater gliders are highlighted by low power consumption, long voyage, long endurance and good stealth characteristics. The hybrid-driven underwater gliders can realize variable motion profiles by their own buoyancy-driven and propeller propulsion systems. Stability of the mechanical system determines the performance of the system. In this paper, the Petrel-II hybrid-driven underwater glider developed by Tianjin University is selected as the research object and the stability of hybrid-driven underwater glider unitedly controlled by buoyancy and propeller has been targeted and evidenced. The dimensionless equations of the hybrid-driven underwater glider are obtained when the propeller is working. Then, the steady speed and steady glide path angle under steady-state motion have also been achieved. The steady-state operating conditions can be calculated when the hybrid-driven underwater glider reaches the desired steady-state motion. And the steadystate operating conditions are relatively conservative at the lower bound of the velocity range compared with the range of the velocity derived from the method of the composite Lyapunov function. By calculating the hydrodynamic coefficients of the Petrel-II hybrid-driven underwater glider, the simulation analysis has been conducted. In addition, the results of the field trials conducted in the South China Sea and the Danjiangkou Reservoir of China have been presented to illustrate the validity of the analysis and simulation, and to show the feasibility of the method of the composite Lyapunov function which verifies the stability of the Petrel-II hybrid-driven underwater glider.
Sensorless sliding mode observer for a five-phase permanent magnet synchronous motor drive.
Hosseyni, Anissa; Trabelsi, Ramzi; Mimouni, Med Faouzi; Iqbal, Atif; Alammari, Rashid
2015-09-01
This paper deals with the sensorless vector controlled five-phase permanent magnet synchronous motor (PMSM) drive based on a sliding mode observer (SMO). The observer is designed considering the back electromotive force (EMF) of five-phase permanent magnet synchronous motor. The SMO structure and design are illustrated. Stability of the proposed observer is demonstrated using Lyapunov stability criteria. The proposed strategy is asymptotically stable in the context of Lyapunov theory. Simulated results on a five-phase PMSM drive are displayed to validate the feasibility and the effectiveness of the proposed control strategy. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Vaidyanathan, S.; Sambas, A.; Sukono; Mamat, M.; Gundara, G.; Mada Sanjaya, W. S.; Subiyanto
2018-03-01
A 3-D new chaotic attractor with two quadratic nonlinearities is proposed in this paper. The dynamical properties of the new chaotic system are described in terms of phase portraits, equilibrium points, Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, etc. We show that the new chaotic system has three unstable equilibrium points. The new chaotic attractor is dissipative in nature. As an engineering application, adaptive synchronization of identical new chaotic attractors is designed via nonlinear control and Lyapunov stability theory. Furthermore, an electronic circuit realization of the new chaotic attractor is presented in detail to confirm the feasibility of the theoretical chaotic attractor model.
A novel double-convection chaotic attractor, its adaptive control and circuit simulation
NASA Astrophysics Data System (ADS)
Mamat, M.; Vaidyanathan, S.; Sambas, A.; Mujiarto; Sanjaya, W. S. M.; Subiyanto
2018-03-01
A 3-D novel double-convection chaotic system with three nonlinearities is proposed in this research work. The dynamical properties of the new chaotic system are described in terms of phase portraits, Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, stability analysis of equilibria, etc. Adaptive control and synchronization of the new chaotic system with unknown parameters are achieved via nonlinear controllers and the results are established using Lyapunov stability theory. Furthermore, an electronic circuit realization of the new 3-D novel chaotic system is presented in detail. Finally, the circuit experimental results of the 3-D novel chaotic attractor show agreement with the numerical simulations.
Output Feedback Slewing Control of Flewible Spacecraft by
NASA Astrophysics Data System (ADS)
Kim, Daesik; Kim, Chun-Hwey; Bang, Hyochoong
1997-12-01
Slewing maneuver and vibration suppression control of flexible spacecraft model by Lyapunov stability theory are considered. The specific model considered in this paper consists of a rigid hub with an elastic appendage attached to the central hub and tip mass. Attitude control to point and stabilize single axis using reaction wheel type device is tested. To control all flexible modes is so critical to designing an active control law. We therefore considered an direct output feeback control design by using Lyapunov stability theory. It is shown that the ouput feedback control law design with proposed configuration gives satisfactory result in slewing performance and vibration suppression control.
Manifold angles, the concept of self-similarity, and angle-enhanced bifurcation diagrams
Beims, Marcus W.; Gallas, Jason A. C.
2016-01-01
Chaos and regularity are routinely discriminated by using Lyapunov exponents distilled from the norm of orthogonalized Lyapunov vectors, propagated during the temporal evolution of the dynamics. Such exponents are mean-field-like averages that, for each degree of freedom, squeeze the whole temporal evolution complexity into just a single number. However, Lyapunov vectors also contain a step-by-step record of what exactly happens with the angles between stable and unstable manifolds during the whole evolution, a big-data information permanently erased by repeated orthogonalizations. Here, we study changes of angles between invariant subspaces as observed during temporal evolution of Hénon’s system. Such angles are calculated numerically and analytically and used to characterize self-similarity of a chaotic attractor. In addition, we show how standard tools of dynamical systems may be angle-enhanced by dressing them with informations not difficult to extract. Such angle-enhanced tools reveal unexpected and practical facts that are described in detail. For instance, we present a video showing an angle-enhanced bifurcation diagram that exposes from several perspectives the complex geometrical features underlying the attractors. We believe such findings to be generic for extended classes of systems. PMID:26732416
Manifold angles, the concept of self-similarity, and angle-enhanced bifurcation diagrams
NASA Astrophysics Data System (ADS)
Beims, Marcus W.; Gallas, Jason A. C.
2016-01-01
Chaos and regularity are routinely discriminated by using Lyapunov exponents distilled from the norm of orthogonalized Lyapunov vectors, propagated during the temporal evolution of the dynamics. Such exponents are mean-field-like averages that, for each degree of freedom, squeeze the whole temporal evolution complexity into just a single number. However, Lyapunov vectors also contain a step-by-step record of what exactly happens with the angles between stable and unstable manifolds during the whole evolution, a big-data information permanently erased by repeated orthogonalizations. Here, we study changes of angles between invariant subspaces as observed during temporal evolution of Hénon’s system. Such angles are calculated numerically and analytically and used to characterize self-similarity of a chaotic attractor. In addition, we show how standard tools of dynamical systems may be angle-enhanced by dressing them with informations not difficult to extract. Such angle-enhanced tools reveal unexpected and practical facts that are described in detail. For instance, we present a video showing an angle-enhanced bifurcation diagram that exposes from several perspectives the complex geometrical features underlying the attractors. We believe such findings to be generic for extended classes of systems.
Lyapunov exponents and phase diagrams reveal multi-factorial control over TRAIL-induced apoptosis
Aldridge, Bree B; Gaudet, Suzanne; Lauffenburger, Douglas A; Sorger, Peter K
2011-01-01
Receptor-mediated apoptosis proceeds via two pathways: one requiring only a cascade of initiator and effector caspases (type I behavior) and the second requiring an initiator–effector caspase cascade and mitochondrial outer membrane permeabilization (type II behavior). Here, we investigate factors controlling type I versus II phenotypes by performing Lyapunov exponent analysis of an ODE-based model of cell death. The resulting phase diagrams predict that the ratio of XIAP to pro-caspase-3 concentrations plays a key regulatory role: type I behavior predominates when the ratio is low and type II behavior when the ratio is high. Cell-to-cell variability in phenotype is observed when the ratio is close to the type I versus II boundary. By positioning multiple tumor cell lines on the phase diagram we confirm these predictions. We also extend phase space analysis to mutations affecting the rate of caspase-3 ubiquitylation by XIAP, predicting and showing that such mutations abolish all-or-none control over activation of effector caspases. Thus, phase diagrams derived from Lyapunov exponent analysis represent a means to study multi-factorial control over a complex biochemical pathway. PMID:22108795
Chaos and generalised multistability in a mesoscopic model of the electroencephalogram
NASA Astrophysics Data System (ADS)
Dafilis, Mathew P.; Frascoli, Federico; Cadusch, Peter J.; Liley, David T. J.
2009-06-01
We present evidence for chaos and generalised multistability in a mesoscopic model of the electroencephalogram (EEG). Two limit cycle attractors and one chaotic attractor were found to coexist in a two-dimensional plane of the ten-dimensional volume of initial conditions. The chaotic attractor was found to have a moderate value of the largest Lyapunov exponent (3.4 s -1 base e) with an associated Kaplan-Yorke (Lyapunov) dimension of 2.086. There are two different limit cycles appearing in conjunction with this particular chaotic attractor: one multiperiodic low amplitude limit cycle whose largest spectral peak is within the alpha band (8-13 Hz) of the EEG; and another multiperiodic large-amplitude limit cycle which may correspond to epilepsy. The cause of the coexistence of these structures is explained with a one-parameter bifurcation analysis. Each attractor has a basin of differing complexity: the large-amplitude limit cycle has a basin relatively uncomplicated in its structure while the small-amplitude limit cycle and chaotic attractor each have much more finely structured basins of attraction, but none of the basin boundaries appear to be fractal. The basins of attraction for the chaotic and small-amplitude limit cycle dynamics apparently reside within each other. We briefly discuss the implications of these findings in the context of theoretical attempts to understand the dynamics of brain function and behaviour.
Zhang, Zhengqiu; Liu, Wenbin; Zhou, Dongming
2012-01-01
In this paper, we first discuss the existence of a unique equilibrium point of a generalized Cohen-Grossberg BAM neural networks of neutral type delays by means of the Homeomorphism theory and inequality technique. Then, by applying the existence result of an equilibrium point and constructing a Lyapunov functional, we study the global asymptotic stability of the equilibrium solution to the above Cohen-Grossberg BAM neural networks of neutral type. In our results, the hypothesis for boundedness in the existing paper, which discussed Cohen-Grossberg neural networks of neutral type on the activation functions, are removed. Finally, we give an example to demonstrate the validity of our global asymptotic stability result for the above neural networks. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Shaohua, E-mail: hua66com@163.com; School of Automation, Chongqing University, Chongqing 400044; Hou, Zhiwei
2015-12-15
In this paper, chaos control is proposed for the output- constrained system with uncertain control gain and time delay and is applied to the brushless DC motor. Using the dynamic surface technology, the controller overcomes the repetitive differentiation of backstepping and boundedness hypothesis of pre-determined control gain by incorporating radial basis function neural network and adaptive technology. The tangent barrier Lyapunov function is employed for time-delay chaotic system to prevent constraint violation. It is proved that the proposed control approach can guarantee asymptotically stable in the sense of uniformly ultimate boundedness without constraint violation. Finally, the effectiveness of the proposedmore » approach is demonstrated on the brushless DC motor example.« less
Li, Yongming; Tong, Shaocheng
2017-12-01
In this paper, an adaptive fuzzy output constrained control design approach is addressed for multi-input multioutput uncertain stochastic nonlinear systems in nonstrict-feedback form. The nonlinear systems addressed in this paper possess unstructured uncertainties, unknown gain functions and unknown stochastic disturbances. Fuzzy logic systems are utilized to tackle the problem of unknown nonlinear uncertainties. The barrier Lyapunov function technique is employed to solve the output constrained problem. In the framework of backstepping design, an adaptive fuzzy control design scheme is constructed. All the signals in the closed-loop system are proved to be bounded in probability and the system outputs are constrained in a given compact set. Finally, the applicability of the proposed controller is well carried out by a simulation example.
NASA Astrophysics Data System (ADS)
Sumantri, Bambang; Uchiyama, Naoki; Sano, Shigenori
2016-01-01
In this paper, a new control structure for a quad-rotor helicopter that employs the least squares method is introduced. This proposed algorithm solves the overdetermined problem of the control input for the translational motion of a quad-rotor helicopter. The algorithm allows all six degrees of freedom to be considered to calculate the control input. The sliding mode controller is applied to achieve robust tracking and stabilization. A saturation function is designed around a boundary layer to reduce the chattering phenomenon that is a common problem in sliding mode control. In order to improve the tracking performance, an integral sliding surface is designed. An energy saving effect because of chattering reduction is also evaluated. First, the dynamics of the quad-rotor helicopter is derived by the Newton-Euler formulation for a rigid body. Second, a constant plus proportional reaching law is introduced to increase the reaching rate of the sliding mode controller. Global stability of the proposed control strategy is guaranteed based on the Lyapunov's stability theory. Finally, the robustness and effectiveness of the proposed control system are demonstrated experimentally under wind gusts, and are compared with a regular sliding mode controller, a proportional-differential controller, and a proportional-integral-differential controller.
NASA Technical Reports Server (NTRS)
Wen, John T.; Kreutz-Delgado, Kenneth; Bayard, David S.
1992-01-01
A new class of joint level control laws for all-revolute robot arms is introduced. The analysis is similar to a recently proposed energy-like Liapunov function approach, except that the closed-loop potential function is shaped in accordance with the underlying joint space topology. This approach gives way to a much simpler analysis and leads to a new class of control designs which guarantee both global asymptotic stability and local exponential stability. When Coulomb and viscous friction and parameter uncertainty are present as model perturbations, a sliding mode-like modification of the control law results in a robustness-enhancing outer loop. Adaptive control is formulated within the same framework. A linear-in-the-parameters formulation is adopted and globally asymptotically stable adaptive control laws are derived by simply replacing unknown model parameters by their estimates (i.e., certainty equivalence adaptation).
Wu, Wei; Wang, Jin
2013-09-28
We established a potential and flux field landscape theory to quantify the global stability and dynamics of general spatially dependent non-equilibrium deterministic and stochastic systems. We extended our potential and flux landscape theory for spatially independent non-equilibrium stochastic systems described by Fokker-Planck equations to spatially dependent stochastic systems governed by general functional Fokker-Planck equations as well as functional Kramers-Moyal equations derived from master equations. Our general theory is applied to reaction-diffusion systems. For equilibrium spatially dependent systems with detailed balance, the potential field landscape alone, defined in terms of the steady state probability distribution functional, determines the global stability and dynamics of the system. The global stability of the system is closely related to the topography of the potential field landscape in terms of the basins of attraction and barrier heights in the field configuration state space. The effective driving force of the system is generated by the functional gradient of the potential field alone. For non-equilibrium spatially dependent systems, the curl probability flux field is indispensable in breaking detailed balance and creating non-equilibrium condition for the system. A complete characterization of the non-equilibrium dynamics of the spatially dependent system requires both the potential field and the curl probability flux field. While the non-equilibrium potential field landscape attracts the system down along the functional gradient similar to an electron moving in an electric field, the non-equilibrium flux field drives the system in a curly way similar to an electron moving in a magnetic field. In the small fluctuation limit, the intrinsic potential field as the small fluctuation limit of the potential field for spatially dependent non-equilibrium systems, which is closely related to the steady state probability distribution functional, is found to be a Lyapunov functional of the deterministic spatially dependent system. Therefore, the intrinsic potential landscape can characterize the global stability of the deterministic system. The relative entropy functional of the stochastic spatially dependent non-equilibrium system is found to be the Lyapunov functional of the stochastic dynamics of the system. Therefore, the relative entropy functional quantifies the global stability of the stochastic system with finite fluctuations. Our theory offers an alternative general approach to other field-theoretic techniques, to study the global stability and dynamics of spatially dependent non-equilibrium field systems. It can be applied to many physical, chemical, and biological spatially dependent non-equilibrium systems.
The Existence and Stability Analysis of the Equilibria in Dengue Disease Infection Model
NASA Astrophysics Data System (ADS)
Anggriani, N.; Supriatna, A. K.; Soewono, E.
2015-06-01
In this paper we formulate an SIR (Susceptible - Infective - Recovered) model of Dengue fever transmission with constant recruitment. We found a threshold parameter K0, known as the Basic Reproduction Number (BRN). This model has two equilibria, disease-free equilibrium and endemic equilibrium. By constructing suitable Lyapunov function, we show that the disease- free equilibrium is globally asymptotic stable whenever BRN is less than one and when it is greater than one, the endemic equilibrium is globally asymptotic stable. Numerical result shows the dynamic of each compartment together with effect of multiple bio-agent intervention as a control to the dengue transmission.
Method of controlling chaos in laser equations
NASA Astrophysics Data System (ADS)
Duong-van, Minh
1993-01-01
A method of controlling chaotic to laminar flows in the Lorenz equations using fixed points dictated by minimizing the Lyapunov functional was proposed by Singer, Wang, and Bau [Phys. Rev. Lett. 66, 1123 (1991)]. Using different fixed points, we find that the solutions in a chaotic regime can also be periodic. Since the laser equations are isomorphic to the Lorenz equations we use this method to control chaos when the laser is operated over the pump threshold. Furthermore, by solving the laser equations with an occasional proportional feedback mechanism, we recover the essential laser controlling features experimentally discovered by Roy, Murphy, Jr., Maier, Gills, and Hunt [Phys. Rev. Lett. 68, 1259 (1992)].
Event-triggered consensus tracking of multi-agent systems with Lur'e nonlinear dynamics
NASA Astrophysics Data System (ADS)
Huang, Na; Duan, Zhisheng; Wen, Guanghui; Zhao, Yu
2016-05-01
In this paper, distributed consensus tracking problem for networked Lur'e systems is investigated based on event-triggered information interactions. An event-triggered control algorithm is designed with the advantages of reducing controller update frequency and sensor energy consumption. By using tools of ?-procedure and Lyapunov functional method, some sufficient conditions are derived to guarantee that consensus tracking is achieved under a directed communication topology. Meanwhile, it is shown that Zeno behaviour of triggering time sequences is excluded for the proposed event-triggered rule. Finally, some numerical simulations on coupled Chua's circuits are performed to illustrate the effectiveness of the theoretical algorithms.
NASA Astrophysics Data System (ADS)
Zhao, Hui; Zheng, Mingwen; Li, Shudong; Wang, Weiping
2018-03-01
Some existing papers focused on finite-time parameter identification and synchronization, but provided incomplete theoretical analyses. Such works incorporated conflicting constraints for parameter identification, therefore, the practical significance could not be fully demonstrated. To overcome such limitations, the underlying paper presents new results of parameter identification and synchronization for uncertain complex dynamical networks with impulsive effect and stochastic perturbation based on finite-time stability theory. Novel results of parameter identification and synchronization control criteria are obtained in a finite time by utilizing Lyapunov function and linear matrix inequality respectively. Finally, numerical examples are presented to illustrate the effectiveness of our theoretical results.
Finite-time stabilisation of a class of switched nonlinear systems with state constraints
NASA Astrophysics Data System (ADS)
Huang, Shipei; Xiang, Zhengrong
2018-06-01
This paper investigates the finite-time stabilisation for a class of switched nonlinear systems with state constraints. Some power orders of the system are allowed to be ratios of positive even integers over odd integers. A Barrier Lyapunov function is introduced to guarantee that the state constraint is not violated at any time. Using the convex combination method and a recursive design approach, a state-dependent switching law and state feedback controllers of individual subsystems are constructed such that the closed-loop system is finite-time stable without violation of the state constraint. Two examples are provided to show the effectiveness of the proposed method.
Persistent stability of a chaotic system
NASA Astrophysics Data System (ADS)
Huber, Greg; Pradas, Marc; Pumir, Alain; Wilkinson, Michael
2018-02-01
We report that trajectories of a one-dimensional model for inertial particles in a random velocity field can remain stable for a surprisingly long time, despite the fact that the system is chaotic. We provide a detailed quantitative description of this effect by developing the large-deviation theory for fluctuations of the finite-time Lyapunov exponent of this system. Specifically, the determination of the entropy function for the distribution reduces to the analysis of a Schrödinger equation, which is tackled by semi-classical methods. The system has 'generic' instability properties, and we consider the broader implications of our observation of long-term stability in chaotic systems.
Closed-form estimates of the domain of attraction for nonlinear systems via fuzzy-polynomial models.
Pitarch, José Luis; Sala, Antonio; Ariño, Carlos Vicente
2014-04-01
In this paper, the domain of attraction of the origin of a nonlinear system is estimated in closed form via level sets with polynomial boundaries, iteratively computed. In particular, the domain of attraction is expanded from a previous estimate, such as a classical Lyapunov level set. With the use of fuzzy-polynomial models, the domain of attraction analysis can be carried out via sum of squares optimization and an iterative algorithm. The result is a function that bounds the domain of attraction, free from the usual restriction of being positive and decrescent in all the interior of its level sets.
A recurrent neural network for solving bilevel linear programming problem.
He, Xing; Li, Chuandong; Huang, Tingwen; Li, Chaojie; Huang, Junjian
2014-04-01
In this brief, based on the method of penalty functions, a recurrent neural network (NN) modeled by means of a differential inclusion is proposed for solving the bilevel linear programming problem (BLPP). Compared with the existing NNs for BLPP, the model has the least number of state variables and simple structure. Using nonsmooth analysis, the theory of differential inclusions, and Lyapunov-like method, the equilibrium point sequence of the proposed NNs can approximately converge to an optimal solution of BLPP under certain conditions. Finally, the numerical simulations of a supply chain distribution model have shown excellent performance of the proposed recurrent NNs.
Zhang, Guodong; Zeng, Zhigang; Hu, Junhao
2018-01-01
This paper is concerned with the global exponential dissipativity of memristive inertial neural networks with discrete and distributed time-varying delays. By constructing appropriate Lyapunov-Krasovskii functionals, some new sufficient conditions ensuring global exponential dissipativity of memristive inertial neural networks are derived. Moreover, the globally exponential attractive sets and positive invariant sets are also presented here. In addition, the new proposed results here complement and extend the earlier publications on conventional or memristive neural network dynamical systems. Finally, numerical simulations are given to illustrate the effectiveness of obtained results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Xu, Changjin; Li, Peiluan; Pang, Yicheng
2016-12-01
In this letter, we deal with a class of memristor-based neural networks with distributed leakage delays. By applying a new Lyapunov function method, we obtain some sufficient conditions that ensure the existence, uniqueness, and global exponential stability of almost periodic solutions of neural networks. We apply the results of this solution to prove the existence and stability of periodic solutions for this delayed neural network with periodic coefficients. We then provide an example to illustrate the effectiveness of the theoretical results. Our results are completely new and complement the previous studies Chen, Zeng, and Jiang ( 2014 ) and Jiang, Zeng, and Chen ( 2015 ).
Zhang, Xinxin; Niu, Peifeng; Ma, Yunpeng; Wei, Yanqiao; Li, Guoqiang
2017-10-01
This paper is concerned with the stability analysis issue of fractional-order impulsive neural networks. Under the one-side Lipschitz condition or the linear growth condition of activation function, the existence of solution is analyzed respectively. In addition, the existence, uniqueness and global Mittag-Leffler stability of equilibrium point of the fractional-order impulsive neural networks with one-side Lipschitz condition are investigated by the means of contraction mapping principle and Lyapunov direct method. Finally, an example with numerical simulation is given to illustrate the validity and feasibility of the proposed results. Copyright © 2017 Elsevier Ltd. All rights reserved.
On the Geometry of Chemical Reaction Networks: Lyapunov Function and Large Deviations
NASA Astrophysics Data System (ADS)
Agazzi, A.; Dembo, A.; Eckmann, J.-P.
2018-04-01
In an earlier paper, we proved the validity of large deviations theory for the particle approximation of quite general chemical reaction networks. In this paper, we extend its scope and present a more geometric insight into the mechanism of that proof, exploiting the notion of spherical image of the reaction polytope. This allows to view the asymptotic behavior of the vector field describing the mass-action dynamics of chemical reactions as the result of an interaction between the faces of this polytope in different dimensions. We also illustrate some local aspects of the problem in a discussion of Wentzell-Freidlin theory, together with some examples.
Competitions hatch butterfly attractors in foreign exchange markets
NASA Astrophysics Data System (ADS)
Jin, Yu Ying
2005-03-01
Chaos in foreign exchange markets is a common issue of concern in the study of economic dynamics. In this work, we mainly investigate the competition effect on chaos in foreign exchange markets. As one of the main economic structures in the globalization process, competition between two target exchange rates with the same base currency forms a simple competitive exchange rate relation, where each exchange rate follows the chaotic model of De Grauwe (Exchange Rate Theory-Chaotic Models of Foreign Exchange Markets, Blackwell, Oxford, Cambridge, MA, 1993). The main discovery is, while each exchange rate is in its non-chaotic parameter regions, the effect of competition will “hatch” butterfly-like chaotic attractors in the competitive market. The positive Lyapunov exponent in the market explains the reason why chaos occurs.
Hybrid Chaos Synchronization of Four-Scroll Systems via Active Control
NASA Astrophysics Data System (ADS)
Karthikeyan, Rajagopal; Sundarapandian, Vaidyanathan
2014-03-01
This paper investigates the hybrid chaos synchronization of identical Wang four-scroll systems (Wang, 2009), identical Liu-Chen four-scroll systems (Liu and Chen, 2004) and non-identical Wang and Liu-Chen four-scroll systems. Active control method is the method adopted to achieve the hybrid chaos synchronization of the four-scroll chaotic systems addressed in this paper and our synchronization results are established using Lyapunov stability theory. Since the Lyapunov exponents are not required for these calculations, the active control method is effective and convenient to hybrid synchronize identical and different Wang and Liu-Chen four-scroll chaotic systems. Numerical simulations are also shown to illustrate and validate the hybrid synchronization results derived in this paper.
NASA Astrophysics Data System (ADS)
Hajipour, Ahmad; Tavakoli, Hamidreza
2017-12-01
In this study, the dynamic behavior and chaos control of a chaotic fractional incommensurate-order financial system are investigated. Using well-known tools of nonlinear theory, i.e. Lyapunov exponents, phase diagrams and bifurcation diagrams, we observe some interesting phenomena, e.g. antimonotonicity, crisis phenomena and route to chaos through a period doubling sequence. Adopting largest Lyapunov exponent criteria, we find that the system yields chaos at the lowest order of 2.15. Next, in order to globally stabilize the chaotic fractional incommensurate order financial system with uncertain dynamics, an adaptive fractional sliding mode controller is designed. Numerical simulations are used to demonstrate the effectiveness of the proposed control method.
A Very Simple Method to Calculate the (Positive) Largest Lyapunov Exponent Using Interval Extensions
NASA Astrophysics Data System (ADS)
Mendes, Eduardo M. A. M.; Nepomuceno, Erivelton G.
2016-12-01
In this letter, a very simple method to calculate the positive Largest Lyapunov Exponent (LLE) based on the concept of interval extensions and using the original equations of motion is presented. The exponent is estimated from the slope of the line derived from the lower bound error when considering two interval extensions of the original system. It is shown that the algorithm is robust, fast and easy to implement and can be considered as alternative to other algorithms available in the literature. The method has been successfully tested in five well-known systems: Logistic, Hénon, Lorenz and Rössler equations and the Mackey-Glass system.
Stochastic stability properties of jump linear systems
NASA Technical Reports Server (NTRS)
Feng, Xiangbo; Loparo, Kenneth A.; Ji, Yuandong; Chizeck, Howard J.
1992-01-01
Jump linear systems are defined as a family of linear systems with randomly jumping parameters (usually governed by a Markov jump process) and are used to model systems subject to failures or changes in structure. The authors study stochastic stability properties in jump linear systems and the relationship among various moment and sample path stability properties. It is shown that all second moment stability properties are equivalent and are sufficient for almost sure sample path stability, and a testable necessary and sufficient condition for second moment stability is derived. The Lyapunov exponent method for the study of almost sure sample stability is discussed, and a theorem which characterizes the Lyapunov exponents of jump linear systems is presented.
NASA Astrophysics Data System (ADS)
Jitomirskaya, S.; Marx, C. A.
2012-11-01
We show how to extend (and with what limitations) Avila's global theory of analytic SL(2,C) cocycles to families of cocycles with singularities. This allows us to develop a strategy to determine the Lyapunov exponent for the extended Harper's model, for all values of parameters and all irrational frequencies. In particular, this includes the self-dual regime for which even heuristic results did not previously exist in physics literature. The extension of Avila's global theory is also shown to imply continuous behavior of the LE on the space of analytic {M_2({C})}-cocycles. This includes rational approximation of the frequency, which so far has not been available.
Gross-Pitaevski map as a chaotic dynamical system.
Guarneri, Italo
2017-03-01
The Gross-Pitaevski map is a discrete time, split-operator version of the Gross-Pitaevski dynamics in the circle, for which exponential instability has been recently reported. Here it is studied as a classical dynamical system in its own right. A systematic analysis of Lyapunov exponents exposes strongly chaotic behavior. Exponential growth of energy is then shown to be a direct consequence of rotational invariance and for stationary solutions the full spectrum of Lyapunov exponents is analytically computed. The present analysis includes the "resonant" case, when the free rotation period is commensurate to 2π, and the map has countably many constants of the motion. Except for lowest-order resonances, this case exhibits an integrable-chaotic transition.
Characterization of nonstationary chaotic systems
NASA Astrophysics Data System (ADS)
Serquina, Ruth; Lai, Ying-Cheng; Chen, Qingfei
2008-02-01
Nonstationary dynamical systems arise in applications, but little has been done in terms of the characterization of such systems, as most standard notions in nonlinear dynamics such as the Lyapunov exponents and fractal dimensions are developed for stationary dynamical systems. We propose a framework to characterize nonstationary dynamical systems. A natural way is to generate and examine ensemble snapshots using a large number of trajectories, which are capable of revealing the underlying fractal properties of the system. By defining the Lyapunov exponents and the fractal dimension based on a proper probability measure from the ensemble snapshots, we show that the Kaplan-Yorke formula, which is fundamental in nonlinear dynamics, remains valid most of the time even for nonstationary dynamical systems.
Wang, Chunhua; Liu, Xiaoming; Xia, Hu
2017-03-01
In this paper, two kinds of novel ideal active flux-controlled smooth multi-piecewise quadratic nonlinearity memristors with multi-piecewise continuous memductance function are presented. The pinched hysteresis loop characteristics of the two memristor models are verified by building a memristor emulator circuit. Using the two memristor models establish a new memristive multi-scroll Chua's circuit, which can generate 2N-scroll and 2N+1-scroll chaotic attractors without any other ordinary nonlinear function. Furthermore, coexisting multi-scroll chaotic attractors are found in the proposed memristive multi-scroll Chua's circuit. Phase portraits, Lyapunov exponents, bifurcation diagrams, and equilibrium point analysis have been used to research the basic dynamics of the memristive multi-scroll Chua's circuit. The consistency of circuit implementation and numerical simulation verifies the effectiveness of the system design.
NASA Astrophysics Data System (ADS)
Edalati, L.; Khaki Sedigh, A.; Aliyari Shooredeli, M.; Moarefianpour, A.
2018-02-01
This paper deals with the design of adaptive fuzzy dynamic surface control for uncertain strict-feedback nonlinear systems with asymmetric time-varying output constraints in the presence of input saturation. To approximate the unknown nonlinear functions and overcome the problem of explosion of complexity, a Fuzzy logic system is combined with the dynamic surface control in the backstepping design technique. To ensure the output constraints satisfaction, an asymmetric time-varying Barrier Lyapunov Function (BLF) is used. Moreover, by applying the minimal learning parameter technique, the number of the online parameters update for each subsystem is reduced to 2. Hence, the semi-globally uniformly ultimately boundedness (SGUUB) of all the closed-loop signals with appropriate tracking error convergence is guaranteed. The effectiveness of the proposed control is demonstrated by two simulation examples.
Design and implementation of grid multi-scroll fractional-order chaotic attractors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Liping, E-mail: lip-chenhut@126.com; Pan, Wei; Wu, Ranchao
2016-08-15
This paper proposes a novel approach for generating multi-scroll chaotic attractors in multi-directions for fractional-order (FO) systems. The stair nonlinear function series and the saturated nonlinear function are combined to extend equilibrium points with index 2 in a new FO linear system. With the help of stability theory of FO systems, stability of its equilibrium points is analyzed, and the chaotic behaviors are validated through phase portraits, Lyapunov exponents, and Poincaré section. Choosing the order 0.96 as an example, a circuit for generating 2-D grid multiscroll chaotic attractors is designed, and 2-D 9 × 9 grid FO attractors are observed at most.more » Numerical simulations and circuit experimental results show that the method is feasible and the designed circuit is correct.« less
Dynamical analysis of continuous higher-order hopfield networks for combinatorial optimization.
Atencia, Miguel; Joya, Gonzalo; Sandoval, Francisco
2005-08-01
In this letter, the ability of higher-order Hopfield networks to solve combinatorial optimization problems is assessed by means of a rigorous analysis of their properties. The stability of the continuous network is almost completely clarified: (1) hyperbolic interior equilibria, which are unfeasible, are unstable; (2) the state cannot escape from the unitary hypercube; and (3) a Lyapunov function exists. Numerical methods used to implement the continuous equation on a computer should be designed with the aim of preserving these favorable properties. The case of nonhyperbolic fixed points, which occur when the Hessian of the target function is the null matrix, requires further study. We prove that these nonhyperbolic interior fixed points are unstable in networks with three neurons and order two. The conjecture that interior equilibria are unstable in the general case is left open.
Memory feedback PID control for exponential synchronisation of chaotic Lur'e systems
NASA Astrophysics Data System (ADS)
Zhang, Ruimei; Zeng, Deqiang; Zhong, Shouming; Shi, Kaibo
2017-09-01
This paper studies the problem of exponential synchronisation of chaotic Lur'e systems (CLSs) via memory feedback proportional-integral-derivative (PID) control scheme. First, a novel augmented Lyapunov-Krasovskii functional (LKF) is constructed, which can make full use of the information on time delay and activation function. Second, improved synchronisation criteria are obtained by using new integral inequalities, which can provide much tighter bounds than what the existing integral inequalities can produce. In comparison with existing results, in which only proportional control or proportional derivative (PD) control is used, less conservative results are derived for CLSs by PID control. Third, the desired memory feedback controllers are designed in terms of the solution to linear matrix inequalities. Finally, numerical simulations of Chua's circuit and neural network are provided to show the effectiveness and advantages of the proposed results.
Robust passivity analysis for discrete-time recurrent neural networks with mixed delays
NASA Astrophysics Data System (ADS)
Huang, Chuan-Kuei; Shu, Yu-Jeng; Chang, Koan-Yuh; Shou, Ho-Nien; Lu, Chien-Yu
2015-02-01
This article considers the robust passivity analysis for a class of discrete-time recurrent neural networks (DRNNs) with mixed time-delays and uncertain parameters. The mixed time-delays that consist of both the discrete time-varying and distributed time-delays in a given range are presented, and the uncertain parameters are norm-bounded. The activation functions are assumed to be globally Lipschitz continuous. Based on new bounding technique and appropriate type of Lyapunov functional, a sufficient condition is investigated to guarantee the existence of the desired robust passivity condition for the DRNNs, which can be derived in terms of a family of linear matrix inequality (LMI). Some free-weighting matrices are introduced to reduce the conservatism of the criterion by using the bounding technique. A numerical example is given to illustrate the effectiveness and applicability.
Wang, Jianlin; Xu, Dan; Zhou, Huan; Zhou, Tao
2018-01-01
In this paper, an adaptive fractional order sliding mode control (AFSMC) scheme is designed for the current tracking control of the Boost-type converter in a Battery/Supercapacitor hybrid energy storage system (HESS). In order to stabilize the current, the adaptation rules based on state-observer and Lyapunov function are being designed. A fractional order sliding surface function is defined based on the tracking current error and adaptive rules. Furthermore, through fractional order analysis, the stability of the fractional order control system is proven, and the value of the fractional order (λ) is being investigated. In addition, the effectiveness of the proposed AFSMC strategy is being verified by numerical simulations. The advantages of good transient response and robustness to uncertainty are being indicated by this design, when compared with a conventional integer order sliding mode control system.
Stability of uncertain systems. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Blankenship, G. L.
1971-01-01
The asymptotic properties of feedback systems are discussed, containing uncertain parameters and subjected to stochastic perturbations. The approach is functional analytic in flavor and thereby avoids the use of Markov techniques and auxiliary Lyapunov functionals characteristic of the existing work in this area. The results are given for the probability distributions of the accessible signals in the system and are proved using the Prohorov theory of the convergence of measures. For general nonlinear systems, a result similar to the small loop-gain theorem of deterministic stability theory is given. Boundedness is a property of the induced distributions of the signals and not the usual notion of boundedness in norm. For the special class of feedback systems formed by the cascade of a white noise, a sector nonlinearity and convolution operator conditions are given to insure the total boundedness of the overall feedback system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kravtsov, V.E., E-mail: kravtsov@ictp.it; Landau Institute for Theoretical Physics, 2 Kosygina st., 117940 Moscow; Yudson, V.I., E-mail: yudson@isan.troitsk.ru
Highlights: > Statistics of normalized eigenfunctions in one-dimensional Anderson localization at E = 0 is studied. > Moments of inverse participation ratio are calculated. > Equation for generating function is derived at E = 0. > An exact solution for generating function at E = 0 is obtained. > Relation of the generating function to the phase distribution function is established. - Abstract: The one-dimensional (1d) Anderson model (AM), i.e. a tight-binding chain with random uncorrelated on-site energies, has statistical anomalies at any rational point f=(2a)/({lambda}{sub E}) , where a is the lattice constant and {lambda}{sub E} is the demore » Broglie wavelength. We develop a regular approach to anomalous statistics of normalized eigenfunctions {psi}(r) at such commensurability points. The approach is based on an exact integral transfer-matrix equation for a generating function {Phi}{sub r}(u, {phi}) (u and {phi} have a meaning of the squared amplitude and phase of eigenfunctions, r is the position of the observation point). This generating function can be used to compute local statistics of eigenfunctions of 1d AM at any disorder and to address the problem of higher-order anomalies at f=p/q with q > 2. The descender of the generating function P{sub r}({phi}){identical_to}{Phi}{sub r}(u=0,{phi}) is shown to be the distribution function of phase which determines the Lyapunov exponent and the local density of states. In the leading order in the small disorder we derived a second-order partial differential equation for the r-independent ('zero-mode') component {Phi}(u, {phi}) at the E = 0 (f=1/2 ) anomaly. This equation is nonseparable in variables u and {phi}. Yet, we show that due to a hidden symmetry, it is integrable and we construct an exact solution for {Phi}(u, {phi}) explicitly in quadratures. Using this solution we computed moments I{sub m} = N< vertical bar {psi} vertical bar {sup 2m}> (m {>=} 1) for a chain of the length N {yields} {infinity} and found an essential difference between their m-behavior in the center-of-band anomaly and for energies outside this anomaly. Outside the anomaly the 'extrinsic' localization length defined from the Lyapunov exponent coincides with that defined from the inverse participation ratio ('intrinsic' localization length). This is not the case at the E = 0 anomaly where the extrinsic localization length is smaller than the intrinsic one. At E = 0 one also observes an anomalous enhancement of large moments compatible with existence of yet another, much smaller characteristic length scale.« less
NASA Astrophysics Data System (ADS)
Tsallis, Constantino
2006-03-01
Boltzmann-Gibbs ( BG) statistical mechanics is, since well over one century, successfully used for many nonlinear dynamical systems which, in one way or another, exhibit strong chaos. A typical case is a classical many-body short-range-interacting Hamiltonian system (e.g., the Lennard-Jones model for a real gas at moderately high temperature). Its Lyapunov spectrum (which characterizes the sensitivity to initial conditions) includes positive values. This leads to ergodicity, the stationary state being thermal equilibrium, hence standard applicability of the BG theory is verified. The situation appears to be of a different nature for various phenomena occurring in living organisms. Indeed, such systems exhibit a complexity which does not really accommodate with this standard dynamical behavior. Life appears to emerge and evolve in a kind of delicate situation, at the frontier between large order (low adaptability and long memory; typically characterized by regular dynamics, hence only nonpositive Lyapunov exponents) and large disorder (high adaptability and short memory; typically characterized by strong chaos, hence at least one positive Lyapunov exponent). Along this frontier, the maximal relevant Lyapunov exponents are either zero or close to that, characterizing what is currently referred to as weak chaos. This type of situation is shared by a great variety of similar complex phenomena in economics, linguistics, to cite but a few. BG statistical mechanics is built upon the entropy S=-k∑plnp. A generalization of this form, S=k(1-∑piq)/(q-1) (with S=S), has been proposed in 1988 as a basis for formulating what is nowadays currently called nonextensive statistical mechanics. This theory appears to be particularly adapted for nonlinear dynamical systems exhibiting, precisely, weak chaos. Here, we briefly review the theory, its dynamical foundation, its applications in a variety of disciplines (with special emphasis to living systems), and its connections with the ubiquitous scale-free networks.
Quantification of chaotic strength and mixing in a micro fluidic system
NASA Astrophysics Data System (ADS)
Kim, Ho Jun; Beskok, Ali
2007-11-01
Comparative studies of five different techniques commonly employed to identify the chaotic strength and mixing efficiency in micro fluidic systems are presented to demonstrate the competitive advantages and shortcomings of each method. The 'chaotic electroosmotic stirrer' of Qian and Bau (2002 Anal. Chem. 74 3616-25) is utilized as the benchmark case due to its well-defined flow kinematics. Lagrangian particle tracking methods are utilized to study particle dispersion in the conceptual device using spectral element and fourth-order Runge-Kutta discretizations in space and time, respectively. Stirring efficiency is predicted using the stirring index based on the box counting method, and Poincaré sections are utilized to identify the chaotic and regular regions under various actuation conditions. Finite time Lyapunov exponents are calculated to quantify the chaotic strength, while the probability density function of the stretching field is utilized as an alternative method to demonstrate the statistical analysis of chaotic and partially chaotic cases. Mixing index inverse, based on the standard deviation of scalar species distribution, is utilized as a metric to quantify the mixing efficiency. Series of numerical simulations are performed by varying the Peclet number (Pe) at fixed kinematic conditions. The mixing time (tm) is characterized as a function of the Pe number, and tm ~ ln(Pe) scaling is demonstrated for fully chaotic cases, while tm ~ Peα scaling with α ≈ 0.33 and α = 0.5 are observed for partially chaotic and regular cases, respectively. Employing the aforementioned techniques, optimum kinematic conditions and the actuation frequency of the stirrer that result in the highest mixing/stirring efficiency are identified.
Local quenches and quantum chaos from higher spin perturbations
NASA Astrophysics Data System (ADS)
David, Justin R.; Khetrapal, Surbhi; Kumar, S. Prem
2017-10-01
We study local quenches in 1+1 dimensional conformal field theories at large- c by operators carrying higher spin charge. Viewing such states as solutions in Chern-Simons theory, representing infalling massive particles with spin-three charge in the BTZ back-ground, we use the Wilson line prescription to compute the single-interval entanglement entropy (EE) and scrambling time following the quench. We find that the change in EE is finite (and real) only if the spin-three charge q is bounded by the energy of the perturbation E, as | q| /c < E 2 /c 2. We show that the Wilson line/EE correlator deep in the quenched regime and its expansion for small quench widths overlaps with the Regge limit for chaos of the out-of-time-ordered correlator. We further find that the scrambling time for the two-sided mutual information between two intervals in the thermofield double state increases with increasing spin-three charge, diverging when the bound is saturated. For larger values of the charge, the scrambling time is shorter than for pure gravity and controlled by the spin-three Lyapunov exponent 4 π/β. In a CFT with higher spin chemical potential, dual to a higher spin black hole, we find that the chemical potential must be bounded to ensure that the mutual information is a concave function of time and entanglement speed is less than the speed of light. In this case, a quench with zero higher spin charge yields the same Lyapunov exponent as pure Einstein gravity.
Flatness-based adaptive fuzzy control of chaotic finance dynamics
NASA Astrophysics Data System (ADS)
Rigatos, G.; Siano, P.; Loia, V.; Tommasetti, A.; Troisi, O.
2017-11-01
A flatness-based adaptive fuzzy control is applied to the problem of stabilization of the dynamics of a chaotic finance system, describing interaction between the interest rate, the investment demand and the price exponent. By proving that the system is differentially flat and by applying differential flatness diffeomorphisms, its transformation to the linear canonical (Brunovsky) is performed. For the latter description of the system, the design of a stabilizing state feedback controller becomes possible. A first problem in the design of such a controller is that the dynamic model of the finance system is unknown and thus it has to be identified with the use neurofuzzy approximators. The estimated dynamics provided by the approximators is used in the computation of the control input, thus establishing an indirect adaptive control scheme. The learning rate of the approximators is chosen from the requirement the system's Lyapunov function to have always a negative first-order derivative. Another problem that has to be dealt with is that the control loop is implemented only with the use of output feedback. To estimate the non-measurable state vector elements of the finance system, a state observer is implemented in the control loop. The computation of the feedback control signal requires the solution of two algebraic Riccati equations at each iteration of the control algorithm. Lyapunov stability analysis demonstrates first that an H-infinity tracking performance criterion is satisfied. This signifies elevated robustness against modelling errors and external perturbations. Moreover, the global asymptotic stability is proven for the control loop.
A perturbation method to the tent map based on Lyapunov exponent and its application
NASA Astrophysics Data System (ADS)
Cao, Lv-Chen; Luo, Yu-Ling; Qiu, Sen-Hui; Liu, Jun-Xiu
2015-10-01
Perturbation imposed on a chaos system is an effective way to maintain its chaotic features. A novel parameter perturbation method for the tent map based on the Lyapunov exponent is proposed in this paper. The pseudo-random sequence generated by the tent map is sent to another chaos function — the Chebyshev map for the post processing. If the output value of the Chebyshev map falls into a certain range, it will be sent back to replace the parameter of the tent map. As a result, the parameter of the tent map keeps changing dynamically. The statistical analysis and experimental results prove that the disturbed tent map has a highly random distribution and achieves good cryptographic properties of a pseudo-random sequence. As a result, it weakens the phenomenon of strong correlation caused by the finite precision and effectively compensates for the digital chaos system dynamics degradation. Project supported by the Guangxi Provincial Natural Science Foundation, China (Grant No. 2014GXNSFBA118271), the Research Project of Guangxi University, China (Grant No. ZD2014022), the Fund from Guangxi Provincial Key Laboratory of Multi-source Information Mining & Security, China (Grant No. MIMS14-04), the Fund from the Guangxi Provincial Key Laboratory of Wireless Wideband Communication & Signal Processing, China (Grant No. GXKL0614205), the Education Development Foundation and the Doctoral Research Foundation of Guangxi Normal University, the State Scholarship Fund of China Scholarship Council (Grant No. [2014]3012), and the Innovation Project of Guangxi Graduate Education, China (Grant No. YCSZ2015102).
Approximate Dynamic Programming: Combining Regional and Local State Following Approximations.
Deptula, Patryk; Rosenfeld, Joel A; Kamalapurkar, Rushikesh; Dixon, Warren E
2018-06-01
An infinite-horizon optimal regulation problem for a control-affine deterministic system is solved online using a local state following (StaF) kernel and a regional model-based reinforcement learning (R-MBRL) method to approximate the value function. Unlike traditional methods such as R-MBRL that aim to approximate the value function over a large compact set, the StaF kernel approach aims to approximate the value function in a local neighborhood of the state that travels within a compact set. In this paper, the value function is approximated using a state-dependent convex combination of the StaF-based and the R-MBRL-based approximations. As the state enters a neighborhood containing the origin, the value function transitions from being approximated by the StaF approach to the R-MBRL approach. Semiglobal uniformly ultimately bounded (SGUUB) convergence of the system states to the origin is established using a Lyapunov-based analysis. Simulation results are provided for two, three, six, and ten-state dynamical systems to demonstrate the scalability and performance of the developed method.
Computation of entropy and Lyapunov exponent by a shift transform.
Matsuoka, Chihiro; Hiraide, Koichi
2015-10-01
We present a novel computational method to estimate the topological entropy and Lyapunov exponent of nonlinear maps using a shift transform. Unlike the computation of periodic orbits or the symbolic dynamical approach by the Markov partition, the method presented here does not require any special techniques in computational and mathematical fields to calculate these quantities. In spite of its simplicity, our method can accurately capture not only the chaotic region but also the non-chaotic region (window region) such that it is important physically but the (Lebesgue) measure zero and usually hard to calculate or observe. Furthermore, it is shown that the Kolmogorov-Sinai entropy of the Sinai-Ruelle-Bowen measure (the physical measure) coincides with the topological entropy.
Estructura espacial de las órbitas caóticas en un modelo autoconsistente de galaxia elíptica
NASA Astrophysics Data System (ADS)
Muzzio, J. C.
Hemos logrado construir modelos autoconsistentes de sistemas estelares utilizando una aproximación cuadrupolar para el potencial. Esto nos permite determinar órbitas y exponentes de Lyapunov de objetos que tienen posiciones y velocidades equivalentes a las que se obtienen de la funcón de distribución del sistema. La distribución espacial de las órbitas caóticas exhibe considerable estructura y, lo que es más importante aún, los valores de los exponentes de Lyapunov calculados sobre intervalos finitos de tiempo, muestran una fuerte correlación con el comportamiento de la órbita en esos mismos intervalos, por lo que permiten reconocer distintos subsistemas con diferentes distribuciones espaciales.
NASA Technical Reports Server (NTRS)
Yedavalli, R. K.
1992-01-01
The problem of analyzing and designing controllers for linear systems subject to real parameter uncertainty is considered. An elegant, unified theory for robust eigenvalue placement is presented for a class of D-regions defined by algebraic inequalities by extending the nominal matrix root clustering theory of Gutman and Jury (1981) to linear uncertain time systems. The author presents explicit conditions for matrix root clustering for different D-regions and establishes the relationship between the eigenvalue migration range and the parameter range. The bounds are all obtained by one-shot computation in the matrix domain and do not need any frequency sweeping or parameter gridding. The method uses the generalized Lyapunov theory for getting the bounds.
NASA Astrophysics Data System (ADS)
Lien, C.-H.; Vaidyanathan, S.; Sambas, A.; Sukono; Mamat, M.; Sanjaya, W. S. M.; Subiyanto
2018-03-01
A 3-D new two-scroll chaotic attractor with three quadratic nonlinearities is investigated in this paper. First, the qualitative and dynamical properties of the new two-scroll chaotic system are described in terms of phase portraits, equilibrium points, Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, etc. We show that the new two-scroll dissipative chaotic system has three unstable equilibrium points. As an engineering application, global chaos control of the new two-scroll chaotic system with unknown system parameters is designed via adaptive feedback control and Lyapunov stability theory. Furthermore, an electronic circuit realization of the new chaotic attractor is presented in detail to confirm the feasibility of the theoretical chaotic two-scroll attractor model.
Computation of entropy and Lyapunov exponent by a shift transform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuoka, Chihiro, E-mail: matsuoka.chihiro.mm@ehime-u.ac.jp; Hiraide, Koichi
2015-10-15
We present a novel computational method to estimate the topological entropy and Lyapunov exponent of nonlinear maps using a shift transform. Unlike the computation of periodic orbits or the symbolic dynamical approach by the Markov partition, the method presented here does not require any special techniques in computational and mathematical fields to calculate these quantities. In spite of its simplicity, our method can accurately capture not only the chaotic region but also the non-chaotic region (window region) such that it is important physically but the (Lebesgue) measure zero and usually hard to calculate or observe. Furthermore, it is shown thatmore » the Kolmogorov-Sinai entropy of the Sinai-Ruelle-Bowen measure (the physical measure) coincides with the topological entropy.« less
Study of chaos in chaotic satellite systems
NASA Astrophysics Data System (ADS)
Khan, Ayub; Kumar, Sanjay
2018-01-01
In this paper, we study the qualitative behaviour of satellite systems using bifurcation diagrams, Poincaré section, Lyapunov exponents, dissipation, equilibrium points, Kaplan-Yorke dimension etc. Bifurcation diagrams with respect to the known parameters of satellite systems are analysed. Poincaré sections with different sowing axes of the satellite are drawn. Eigenvalues of Jacobian matrices for the satellite system at different equilibrium points are calculated to justify the unstable regions. Lyapunov exponents are estimated. From these studies, chaos in satellite system has been established. Solution of equations of motion of the satellite system are drawn in the form of three-dimensional, two-dimensional and time series phase portraits. Phase portraits and time series display the chaotic nature of the considered system.
Steering Quantum Dynamics of a Two-Qubit System via Optimal Bang-Bang Control
NASA Astrophysics Data System (ADS)
Hu, Juju; Ke, Qiang; Ji, Yinghua
2018-02-01
The optimization of control time for quantum systems has been an important field of control science attracting decades of focus, which is beneficial for efficiency improvement and decoherence suppression caused by the environment. Based on analyzing the advantages and disadvantages of the existing Lyapunov control, using a bang-bang optimal control technique, we investigate the fast state control in a closed two-qubit quantum system, and give three optimized control field design methods. Numerical simulation experiments indicate the effectiveness of the methods. Compared to the standard Lyapunov control or standard bang-bang control method, the optimized control field design methods effectively shorten the state control time and avoid high-frequency oscillation that occurs in bang-bang control.
NASA Astrophysics Data System (ADS)
Sepehrinia, Reza; Niry, M. D.; Bozorg, B.; Tabar, M. Reza Rahimi; Sahimi, Muhammad
2008-03-01
A mapping is developed between the linearized equation of motion for the dynamics of the transverse modes at T=0 of the Heisenberg-Mattis model of one-dimensional (1D) spin glasses and the (discretized) random wave equation. The mapping is used to derive an exact expression for the Lyapunov exponent (LE) of the magnon modes of spin glasses and to show that it follows anomalous scaling at low magnon frequencies. In addition, through numerical simulations, the differences between the LE and the density of states of the wave equation in a discrete 1D model of randomly disordered media (those with a finite correlation length) and that of continuous media (with a zero correlation length) are demonstrated and emphasized.
Tahoun, A H
2017-01-01
In this paper, the stabilization problem of actuators saturation in uncertain chaotic systems is investigated via an adaptive PID control method. The PID control parameters are auto-tuned adaptively via adaptive control laws. A multi-level augmented error is designed to account for the extra terms appearing due to the use of PID and saturation. The proposed control technique uses both the state-feedback and the output-feedback methodologies. Based on Lyapunov׳s stability theory, new anti-windup adaptive controllers are proposed. Demonstrative examples with MATLAB simulations are studied. The simulation results show the efficiency of the proposed adaptive PID controllers. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Kernel machines for epilepsy diagnosis via EEG signal classification: a comparative study.
Lima, Clodoaldo A M; Coelho, André L V
2011-10-01
We carry out a systematic assessment on a suite of kernel-based learning machines while coping with the task of epilepsy diagnosis through automatic electroencephalogram (EEG) signal classification. The kernel machines investigated include the standard support vector machine (SVM), the least squares SVM, the Lagrangian SVM, the smooth SVM, the proximal SVM, and the relevance vector machine. An extensive series of experiments was conducted on publicly available data, whose clinical EEG recordings were obtained from five normal subjects and five epileptic patients. The performance levels delivered by the different kernel machines are contrasted in terms of the criteria of predictive accuracy, sensitivity to the kernel function/parameter value, and sensitivity to the type of features extracted from the signal. For this purpose, 26 values for the kernel parameter (radius) of two well-known kernel functions (namely, Gaussian and exponential radial basis functions) were considered as well as 21 types of features extracted from the EEG signal, including statistical values derived from the discrete wavelet transform, Lyapunov exponents, and combinations thereof. We first quantitatively assess the impact of the choice of the wavelet basis on the quality of the features extracted. Four wavelet basis functions were considered in this study. Then, we provide the average accuracy (i.e., cross-validation error) values delivered by 252 kernel machine configurations; in particular, 40%/35% of the best-calibrated models of the standard and least squares SVMs reached 100% accuracy rate for the two kernel functions considered. Moreover, we show the sensitivity profiles exhibited by a large sample of the configurations whereby one can visually inspect their levels of sensitiveness to the type of feature and to the kernel function/parameter value. Overall, the results evidence that all kernel machines are competitive in terms of accuracy, with the standard and least squares SVMs prevailing more consistently. Moreover, the choice of the kernel function and parameter value as well as the choice of the feature extractor are critical decisions to be taken, albeit the choice of the wavelet family seems not to be so relevant. Also, the statistical values calculated over the Lyapunov exponents were good sources of signal representation, but not as informative as their wavelet counterparts. Finally, a typical sensitivity profile has emerged among all types of machines, involving some regions of stability separated by zones of sharp variation, with some kernel parameter values clearly associated with better accuracy rates (zones of optimality). Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ren, Fengli; Cao, Jinde
2007-03-01
In this paper, several sufficient conditions are obtained ensuring existence, global attractivity and global asymptotic stability of the periodic solution for the higher-order bidirectional associative memory neural networks with periodic coefficients and delays by using the continuation theorem of Mawhin's coincidence degree theory, the Lyapunov functional and the non-singular M-matrix. Two examples are exploited to illustrate the effectiveness of the proposed criteria. These results are more effective than the ones in the literature for some neural networks, and can be applied to the design of globally attractive or globally asymptotically stable networks and thus have important significance in both theory and applications.
Robust stability for uncertain stochastic fuzzy BAM neural networks with time-varying delays
NASA Astrophysics Data System (ADS)
Syed Ali, M.; Balasubramaniam, P.
2008-07-01
In this Letter, by utilizing the Lyapunov functional and combining with the linear matrix inequality (LMI) approach, we analyze the global asymptotic stability of uncertain stochastic fuzzy Bidirectional Associative Memory (BAM) neural networks with time-varying delays which are represented by the Takagi-Sugeno (TS) fuzzy models. A new class of uncertain stochastic fuzzy BAM neural networks with time varying delays has been studied and sufficient conditions have been derived to obtain conservative result in stochastic settings. The developed results are more general than those reported in the earlier literatures. In addition, the numerical examples are provided to illustrate the applicability of the result using LMI toolbox in MATLAB.
Stability analysis for stochastic BAM nonlinear neural network with delays
NASA Astrophysics Data System (ADS)
Lv, Z. W.; Shu, H. S.; Wei, G. L.
2008-02-01
In this paper, stochastic bidirectional associative memory neural networks with constant or time-varying delays is considered. Based on a Lyapunov-Krasovskii functional and the stochastic stability analysis theory, we derive several sufficient conditions in order to guarantee the global asymptotically stable in the mean square. Our investigation shows that the stochastic bidirectional associative memory neural networks are globally asymptotically stable in the mean square if there are solutions to some linear matrix inequalities(LMIs). Hence, the global asymptotic stability of the stochastic bidirectional associative memory neural networks can be easily checked by the Matlab LMI toolbox. A numerical example is given to demonstrate the usefulness of the proposed global asymptotic stability criteria.
A new class of finite-time nonlinear consensus protocols for multi-agent systems
NASA Astrophysics Data System (ADS)
Zuo, Zongyu; Tie, Lin
2014-02-01
This paper is devoted to investigating the finite-time consensus problem for a multi-agent system in networks with undirected topology. A new class of global continuous time-invariant consensus protocols is constructed for each single-integrator agent dynamics with the aid of Lyapunov functions. In particular, it is shown that the settling time of the proposed new class of finite-time consensus protocols is upper bounded for arbitrary initial conditions. This makes it possible for network consensus problems that the convergence time is designed and estimated offline for a given undirected information flow and a group volume of agents. Finally, a numerical simulation example is presented as a proof of concept.
Distributed robust finite-time nonlinear consensus protocols for multi-agent systems
NASA Astrophysics Data System (ADS)
Zuo, Zongyu; Tie, Lin
2016-04-01
This paper investigates the robust finite-time consensus problem of multi-agent systems in networks with undirected topology. Global nonlinear consensus protocols augmented with a variable structure are constructed with the aid of Lyapunov functions for each single-integrator agent dynamics in the presence of external disturbances. In particular, it is shown that the finite settling time of the proposed general framework for robust consensus design is upper bounded for any initial condition. This makes it possible for network consensus problems to design and estimate the convergence time offline for a multi-agent team with a given undirected information flow. Finally, simulation results are presented to demonstrate the performance and effectiveness of our finite-time protocols.
Phase definition to assess synchronization quality of nonlinear oscillators
NASA Astrophysics Data System (ADS)
Freitas, Leandro; Torres, Leonardo A. B.; Aguirre, Luis A.
2018-05-01
This paper proposes a phase definition, named the vector field phase, which can be defined for systems with arbitrary finite dimension and is a monotonically increasing function of time. The proposed definition can properly quantify the dynamics in the flow direction, often associated with the null Lyapunov exponent. Numerical examples that use benchmark periodic and chaotic oscillators are discussed to illustrate some of the main features of the definition, which are that (i) phase information can be obtained either from the vector field or from a time series, (ii) it permits not only detection of phase synchronization but also quantification of it, and (iii) it can be used in the phase synchronization of very different oscillators.
The Enskog Equation for Confined Elastic Hard Spheres
NASA Astrophysics Data System (ADS)
Maynar, P.; García de Soria, M. I.; Brey, J. Javier
2018-03-01
A kinetic equation for a system of elastic hard spheres or disks confined by a hard wall of arbitrary shape is derived. It is a generalization of the modified Enskog equation in which the effects of the confinement are taken into account and it is supposed to be valid up to moderate densities. From the equation, balance equations for the hydrodynamic fields are derived, identifying the collisional transfer contributions to the pressure tensor and heat flux. A Lyapunov functional, H[f], is identified. For any solution of the kinetic equation, H decays monotonically in time until the system reaches the inhomogeneous equilibrium distribution, that is a Maxwellian distribution with a density field consistent with equilibrium statistical mechanics.
NASA Astrophysics Data System (ADS)
Yan, Yifang; Yang, Chunyu; Ma, Xiaoping; Zhou, Linna
2018-02-01
In this paper, sampled-data H∞ filtering problem is considered for Markovian jump singularly perturbed systems with time-varying delay and missing measurements. The sampled-data system is represented by a time-delay system, and the missing measurement phenomenon is described by an independent Bernoulli random process. By constructing an ɛ-dependent stochastic Lyapunov-Krasovskii functional, delay-dependent sufficient conditions are derived such that the filter error system satisfies the prescribed H∞ performance for all possible missing measurements. Then, an H∞ filter design method is proposed in terms of linear matrix inequalities. Finally, numerical examples are given to illustrate the feasibility and advantages of the obtained results.
Phase definition to assess synchronization quality of nonlinear oscillators.
Freitas, Leandro; Torres, Leonardo A B; Aguirre, Luis A
2018-05-01
This paper proposes a phase definition, named the vector field phase, which can be defined for systems with arbitrary finite dimension and is a monotonically increasing function of time. The proposed definition can properly quantify the dynamics in the flow direction, often associated with the null Lyapunov exponent. Numerical examples that use benchmark periodic and chaotic oscillators are discussed to illustrate some of the main features of the definition, which are that (i) phase information can be obtained either from the vector field or from a time series, (ii) it permits not only detection of phase synchronization but also quantification of it, and (iii) it can be used in the phase synchronization of very different oscillators.
Synchronization stability of memristor-based complex-valued neural networks with time delays.
Liu, Dan; Zhu, Song; Ye, Er
2017-12-01
This paper focuses on the dynamical property of a class of memristor-based complex-valued neural networks (MCVNNs) with time delays. By constructing the appropriate Lyapunov functional and utilizing the inequality technique, sufficient conditions are proposed to guarantee exponential synchronization of the coupled systems based on drive-response concept. The proposed results are very easy to verify, and they also extend some previous related works on memristor-based real-valued neural networks. Meanwhile, the obtained sufficient conditions of this paper may be conducive to qualitative analysis of some complex-valued nonlinear delayed systems. A numerical example is given to demonstrate the effectiveness of our theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zheng, Mingwen; Li, Lixiang; Peng, Haipeng; Xiao, Jinghua; Yang, Yixian; Zhang, Yanping; Zhao, Hui
2018-01-01
This paper mainly studies the globally fixed-time synchronization of a class of coupled neutral-type neural networks with mixed time-varying delays via discontinuous feedback controllers. Compared with the traditional neutral-type neural network model, the model in this paper is more general. A class of general discontinuous feedback controllers are designed. With the help of the definition of fixed-time synchronization, the upper right-hand derivative and a defined simple Lyapunov function, some easily verifiable and extensible synchronization criteria are derived to guarantee the fixed-time synchronization between the drive and response systems. Finally, two numerical simulations are given to verify the correctness of the results.
2018-01-01
This paper mainly studies the globally fixed-time synchronization of a class of coupled neutral-type neural networks with mixed time-varying delays via discontinuous feedback controllers. Compared with the traditional neutral-type neural network model, the model in this paper is more general. A class of general discontinuous feedback controllers are designed. With the help of the definition of fixed-time synchronization, the upper right-hand derivative and a defined simple Lyapunov function, some easily verifiable and extensible synchronization criteria are derived to guarantee the fixed-time synchronization between the drive and response systems. Finally, two numerical simulations are given to verify the correctness of the results. PMID:29370248
Decentralized adaptive control of robot manipulators with robust stabilization design
NASA Technical Reports Server (NTRS)
Yuan, Bau-San; Book, Wayne J.
1988-01-01
Due to geometric nonlinearities and complex dynamics, a decentralized technique for adaptive control for multilink robot arms is attractive. Lyapunov-function theory for stability analysis provides an approach to robust stabilization. Each joint of the arm is treated as a component subsystem. The adaptive controller is made locally stable with servo signals including proportional and integral gains. This results in the bound on the dynamical interactions with other subsystems. A nonlinear controller which stabilizes the system with uniform boundedness is used to improve the robustness properties of the overall system. As a result, the robot tracks the reference trajectories with convergence. This strategy makes computation simple and therefore facilitates real-time implementation.
Collective dynamics in heterogeneous networks of neuronal cellular automata
NASA Astrophysics Data System (ADS)
Manchanda, Kaustubh; Bose, Amitabha; Ramaswamy, Ramakrishna
2017-12-01
We examine the collective dynamics of heterogeneous random networks of model neuronal cellular automata. Each automaton has b active states, a single silent state and r - b - 1 refractory states, and can show 'spiking' or 'bursting' behavior, depending on the values of b. We show that phase transitions that occur in the dynamical activity can be related to phase transitions in the structure of Erdõs-Rényi graphs as a function of edge probability. Different forms of heterogeneity allow distinct structural phase transitions to become relevant. We also show that the dynamics on the network can be described by a semi-annealed process and, as a result, can be related to the Boolean Lyapunov exponent.
Ji, Yu
2015-06-01
In this paper, the dynamical behavior of a viral infection model with general incidence rate and two time delays is studied. By using the Lyapunov functional and LaSalle invariance principle, the global stabilities of the infection-free equilibrium and the endemic equilibrium are obtained. We obtain a threshold of the global stability for the uninfected equilibrium, which means the disease will be under control eventually. These results can be applied to a variety of viral infections of disease that would make it possible to devise optimal treatment strategies. Numerical simulations with application to HIV infection are given to verify the analytical results.
Multigroup SIR epidemic model with stochastic perturbation
NASA Astrophysics Data System (ADS)
Ji, Chunyan; Jiang, Daqing; Shi, Ningzhong
2011-05-01
In this paper, we discuss a multigroup SIR model with stochastic perturbation. We deduce the globally asymptotic stability of the disease-free equilibrium when R0≤1, which means the disease will die out. On the other hand, when R0>1, we derive the disease will prevail, which is measured through the difference between the solution and the endemic equilibrium of the deterministic model in time average. Furthermore, we prove the system is persistent in the mean which also reflects the disease will prevail. The key to our analysis is choosing appropriate Lyapunov functions. Finally, we illustrate the dynamic behavior of the model with n=2 and their approximations via a range of numerical experiments.
Zhai, Di-Hua; Xia, Yuanqing
2018-02-01
This paper addresses the adaptive control for task-space teleoperation systems with constrained predefined synchronization error, where a novel switched control framework is investigated. Based on multiple Lyapunov-Krasovskii functionals method, the stability of the resulting closed-loop system is established in the sense of state-independent input-to-output stability. Compared with previous work, the developed method can simultaneously handle the unknown kinematics/dynamics, asymmetric varying time delays, and prescribed performance control in a unified framework. It is shown that the developed controller can guarantee the prescribed transient-state and steady-state synchronization performances between the master and slave robots, which is demonstrated by the simulation study.
NASA Astrophysics Data System (ADS)
Anttila, Jani; Annila, Arto
2011-10-01
A course of a game is formulated as a physical process that will consume free energy in the least time. Accordingly, the rate of entropy increase is the payoff function that will subsume all forms of free energy that motivate diverse decisions. Also other concepts of game theory are related to their profound physical counterparts. When the physical portrayal of behavior is mathematically analyzed, the course of a game is found to be inherently unpredictable because each move affects motives in the future. Despite the non-holonomic character of the natural process, the objective of consuming free energy in the least time will direct an extensive-form game toward a Lyapunov-stable point that satisfies the minimax theorem.
Uniform Persistence and Global Stability for a Brain Tumor and Immune System Interaction
NASA Astrophysics Data System (ADS)
Khajanchi, Subhas
This paper describes the synergistic interaction between the growth of malignant gliomas and the immune system interactions using a system of coupled ordinary differential equations (ODEs). The proposed mathematical model comprises the interaction of glioma cells, macrophages, activated Cytotoxic T-Lymphocytes (CTLs), the immunosuppressive factor TGF-β and the immuno-stimulatory factor IFN-γ. The dynamical behavior of the proposed system both analytically and numerically is investigated from the point of view of stability. By constructing Lyapunov functions, the global behavior of the glioma-free and the interior equilibrium point have been analyzed under some assumptions. Finally, we perform numerical simulations in order to illustrate our analytical findings by varying the system parameters.
Impact of seasonality upon the dynamics of a novel pathogen in a seabird colony
NASA Astrophysics Data System (ADS)
O'Regan, S. M.
2008-11-01
A seasonally perturbed variant of the basic Susceptible-Infected-Recovered (SIR) model in epidemiology is considered in this paper. The effect of seasonality on an IR system of ordinary differential equations describing the dynamics of a novel pathogen, e.g., highly pathogenic avian influenza, in a seabird colony is investigated. The method of Lyapunov functions is used to determine the long-term behaviour of this system. Numerical simulations of the seasonally perturbed IR system indicate that the system exhibits complex dynamics as the amplitude of the seasonal perturbation term is increased. These findings suggest that seasonality may exert a considerable effect on the dynamics of epidemics in a seabird colony.
Neural Network Based Modeling and Analysis of LP Control Surface Allocation
NASA Technical Reports Server (NTRS)
Langari, Reza; Krishnakumar, Kalmanje; Gundy-Burlet, Karen
2003-01-01
This paper presents an approach to interpretive modeling of LP based control allocation in intelligent flight control. The emphasis is placed on a nonlinear interpretation of the LP allocation process as a static map to support analytical study of the resulting closed loop system, albeit in approximate form. The approach makes use of a bi-layer neural network to capture the essential functioning of the LP allocation process. It is further shown via Lyapunov based analysis that under certain relatively mild conditions the resulting closed loop system is stable. Some preliminary conclusions from a study at Ames are stated and directions for further research are given at the conclusion of the paper.
Hu, Jin; Zeng, Chunna
2017-02-01
The complex-valued Cohen-Grossberg neural network is a special kind of complex-valued neural network. In this paper, the synchronization problem of a class of complex-valued Cohen-Grossberg neural networks with known and unknown parameters is investigated. By using Lyapunov functionals and the adaptive control method based on parameter identification, some adaptive feedback schemes are proposed to achieve synchronization exponentially between the drive and response systems. The results obtained in this paper have extended and improved some previous works on adaptive synchronization of Cohen-Grossberg neural networks. Finally, two numerical examples are given to demonstrate the effectiveness of the theoretical results. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yang, Shiju; Li, Chuandong; Huang, Tingwen
2016-03-01
The problem of exponential stabilization and synchronization for fuzzy model of memristive neural networks (MNNs) is investigated by using periodically intermittent control in this paper. Based on the knowledge of memristor and recurrent neural network, the model of MNNs is formulated. Some novel and useful stabilization criteria and synchronization conditions are then derived by using the Lyapunov functional and differential inequality techniques. It is worth noting that the methods used in this paper are also applied to fuzzy model for complex networks and general neural networks. Numerical simulations are also provided to verify the effectiveness of theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.
Global exponential stability for switched memristive neural networks with time-varying delays.
Xin, Youming; Li, Yuxia; Cheng, Zunshui; Huang, Xia
2016-08-01
This paper considers the problem of exponential stability for switched memristive neural networks (MNNs) with time-varying delays. Different from most of the existing papers, we model a memristor as a continuous system, and view switched MNNs as switched neural networks with uncertain time-varying parameters. Based on average dwell time technique, mode-dependent average dwell time technique and multiple Lyapunov-Krasovskii functional approach, two conditions are derived to design the switching signal and guarantee the exponential stability of the considered neural networks, which are delay-dependent and formulated by linear matrix inequalities (LMIs). Finally, the effectiveness of the theoretical results is demonstrated by two numerical examples. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Wanli; Li, Chuandong; Huang, Tingwen; Huang, Junjian
2018-02-01
This paper investigates the fixed-time synchronization of complex networks (CNs) with nonidentical nodes and stochastic noise perturbations. By designing new controllers, constructing Lyapunov functions and using the properties of Weiner process, different synchronization criteria are derived according to whether the node systems in the CNs or the goal system satisfies the corresponding conditions. Moreover, the role of the designed controllers is analyzed in great detail by constructing a suitable comparison system and a new method is presented to estimate the settling time by utilizing the comparison system. Results of this paper can be applied to both directed and undirected weighted networks. Numerical simulations are offered to verify the effectiveness of our new results.
Low-Dimensional Chaos in an Instance of Epilepsy
NASA Astrophysics Data System (ADS)
Babloyantz, A.; Destexhe, A.
1986-05-01
Using a time series obtained from the electroencephalogram recording of a human epileptic seizure, we show the existence of a chaotic attractor, the latter being the direct consequence of the deterministic nature of brain activity. This result is compared with other attractors seen in normal human brain dynamics. A sudden jump is observed between the dimensionalities of these brain attractors 4.05 ± 0.05 for deep sleep) and the very low dimensionality of the epileptic state (2.05 ± 0.09). The evaluation of the autocorrelation function and of the largest Lyapunov exponent allows us to sharpen further the main features of underlying dynamics. Possible implications in biological and medical research are briefly discussed.
A class of convergent neural network dynamics
NASA Astrophysics Data System (ADS)
Fiedler, Bernold; Gedeon, Tomáš
1998-01-01
We consider a class of systems of differential equations in Rn which exhibits convergent dynamics. We find a Lyapunov function and show that every bounded trajectory converges to the set of equilibria. Our result generalizes the results of Cohen and Grossberg (1983) for convergent neural networks. It replaces the symmetry assumption on the matrix of weights by the assumption on the structure of the connections in the neural network. We prove the convergence result also for a large class of Lotka-Volterra systems. These are naturally defined on the closed positive orthant. We show that there are no heteroclinic cycles on the boundary of the positive orthant for the systems in this class.
Asymptotic behavior of a stochastic delayed HIV-1 infection model with nonlinear incidence
NASA Astrophysics Data System (ADS)
Liu, Qun; Jiang, Daqing; Hayat, Tasawar; Ahmad, Bashir
2017-11-01
In this paper, a stochastic delayed HIV-1 infection model with nonlinear incidence is proposed and investigated. First of all, we prove that there is a unique global positive solution as desired in any population dynamics. Then by constructing some suitable Lyapunov functions, we show that if the basic reproduction number R0 ≤ 1, then the solution of the stochastic system oscillates around the infection-free equilibrium E0, while if R0 > 1, then the solution of the stochastic system fluctuates around the infective equilibrium E∗. Sufficient conditions of these results are established. Finally, we give some examples and a series of numerical simulations to illustrate the analytical results.
Modeling and vibration control of the flapping-wing robotic aircraft with output constraint
NASA Astrophysics Data System (ADS)
He, Wei; Mu, Xinxing; Chen, Yunan; He, Xiuyu; Yu, Yao
2018-06-01
In this paper, we propose the boundary control for undesired vibrations suppression with output constraint of the flapping-wing robotic aircraft (FWRA). We also present the dynamics of the flexible wing of FWRA with governing equations and boundary conditions, which are partial differential equations (PDEs) and ordinary differential equations (ODEs), respectively. An energy-based barrier Lyapunov function is introduced to analyze the system stability and prevent violation of output constraint. With the effect of the proposed boundary controller, distributed states of the system remain in the constrained spaces. Then the IBLF-based boundary controls are proposed to assess the stability of the FWRA in the presence of output constraint.
Zha, Wenting; Zhai, Junyong; Fei, Shumin
2013-07-01
This paper investigates the problem of output feedback stabilization for a class of high-order feedforward nonlinear systems with time-varying input delay. First, a scaling gain is introduced into the system under a set of coordinate transformations. Then, the authors construct an observer and controller to make the nominal system globally asymptotically stable. Based on homogeneous domination approach and Lyapunov-Krasovskii functional, it is shown that the closed-loop system can be rendered globally asymptotically stable by the scaling gain. Finally, two simulation examples are provided to illustrate the effectiveness of the proposed scheme. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Razumikhin-Type Stability Criteria for Differential Equations with Delayed Impulses.
Wang, Qing; Zhu, Quanxin
2013-01-01
This paper studies stability problems of general impulsive differential equations where time delays occur in both differential and difference equations. Based on the method of Lyapunov functions, Razumikhin technique and mathematical induction, several stability criteria are obtained for differential equations with delayed impulses. Our results show that some systems with delayed impulses may be exponentially stabilized by impulses even if the system matrices are unstable. Some less restrictive sufficient conditions are also given to keep the good stability property of systems subject to certain type of impulsive perturbations. Examples with numerical simulations are discussed to illustrate the theorems. Our results may be applied to complex problems where impulses depend on both current and past states.
Observer-based distributed adaptive iterative learning control for linear multi-agent systems
NASA Astrophysics Data System (ADS)
Li, Jinsha; Liu, Sanyang; Li, Junmin
2017-10-01
This paper investigates the consensus problem for linear multi-agent systems from the viewpoint of two-dimensional systems when the state information of each agent is not available. Observer-based fully distributed adaptive iterative learning protocol is designed in this paper. A local observer is designed for each agent and it is shown that without using any global information about the communication graph, all agents achieve consensus perfectly for all undirected connected communication graph when the number of iterations tends to infinity. The Lyapunov-like energy function is employed to facilitate the learning protocol design and property analysis. Finally, simulation example is given to illustrate the theoretical analysis.
Phase transitions in tumor growth: V what can be expected from cancer glycolytic oscillations?
NASA Astrophysics Data System (ADS)
Martin, R. R.; Montero, S.; Silva, E.; Bizzarri, M.; Cocho, G.; Mansilla, R.; Nieto-Villar, J. M.
2017-11-01
Experimental evidence confirms the existence of glycolytic oscillations in cancer, which allows it to self-organize in time and space far from thermodynamic equilibrium, and provides it with high robustness, complexity and adaptability. A kinetic model is proposed for HeLa tumor cells grown in hypoxia conditions. It shows oscillations in a wide range of parameters. Two control parameters (glucose and inorganic phosphate concentration) were varied to explore the phase space, showing also the presence of limit cycles and bifurcations. The complexity of the system was evaluated by focusing on stationary state stability and Lempel-Ziv complexity. Moreover, the calculated entropy production rate was demonstrated behaving as a Lyapunov function.
Robust adaptive cruise control of high speed trains.
Faieghi, Mohammadreza; Jalali, Aliakbar; Mashhadi, Seyed Kamal-e-ddin Mousavi
2014-03-01
The cruise control problem of high speed trains in the presence of unknown parameters and external disturbances is considered. In particular a Lyapunov-based robust adaptive controller is presented to achieve asymptotic tracking and disturbance rejection. The system under consideration is nonlinear, MIMO and non-minimum phase. To deal with the limitations arising from the unstable zero-dynamics we do an output redefinition such that the zero-dynamics with respect to new outputs becomes stable. Rigorous stability analyses are presented which establish the boundedness of all the internal states and simultaneously asymptotic stability of the tracking error dynamics. The results are presented for two common configurations of high speed trains, i.e. the DD and PPD designs, based on the multi-body model and are verified by several numerical simulations. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chakraborty, A.; Narayan, A.
2018-03-01
The existence and linear stability of the planar equilibrium points for photogravitational elliptical restricted three body problem is investigated in this paper. Assuming that the primaries, one of which is radiating are rotating in an elliptical orbit around their common center of mass. The effect of the radiation pressure, forces due to stellar wind and Poynting-Robertson drag on the dust particles are considered. The location of the five equilibrium points are found using analytical methods. It is observed that the collinear equilibrium points L 1, L 2 and L 3 do not lie on the line joining the primaries but are shifted along the y-coordinate. The instability of the libration points due to the presence of the drag forces is demonstrated by Lyapunov's first method of stability.
Minimal-Approximation-Based Decentralized Backstepping Control of Interconnected Time-Delay Systems.
Choi, Yun Ho; Yoo, Sung Jin
2016-12-01
A decentralized adaptive backstepping control design using minimal function approximators is proposed for nonlinear large-scale systems with unknown unmatched time-varying delayed interactions and unknown backlash-like hysteresis nonlinearities. Compared with existing decentralized backstepping methods, the contribution of this paper is to design a simple local control law for each subsystem, consisting of an actual control with one adaptive function approximator, without requiring the use of multiple function approximators and regardless of the order of each subsystem. The virtual controllers for each subsystem are used as intermediate signals for designing a local actual control at the last step. For each subsystem, a lumped unknown function including the unknown nonlinear terms and the hysteresis nonlinearities is derived at the last step and is estimated by one function approximator. Thus, the proposed approach only uses one function approximator to implement each local controller, while existing decentralized backstepping control methods require the number of function approximators equal to the order of each subsystem and a calculation of virtual controllers to implement each local actual controller. The stability of the total controlled closed-loop system is analyzed using the Lyapunov stability theorem.
NASA Astrophysics Data System (ADS)
Vadivel, P.; Sakthivel, R.; Mathiyalagan, K.; Arunkumar, A.
2013-09-01
This paper addresses the issue of robust state estimation for a class of fuzzy bidirectional associative memory (BAM) neural networks with time-varying delays and parameter uncertainties. By constructing the Lyapunov-Krasovskii functional, which contains the triple-integral term and using the free-weighting matrix technique, a set of sufficient conditions are derived in terms of linear matrix inequalities (LMIs) to estimate the neuron states through available output measurements such that the dynamics of the estimation error system is robustly asymptotically stable. In particular, we consider a generalized activation function in which the traditional assumptions on the boundedness, monotony and differentiability of the activation functions are removed. More precisely, the design of the state estimator for such BAM neural networks can be obtained by solving some LMIs, which are dependent on the size of the time derivative of the time-varying delays. Finally, a numerical example with simulation result is given to illustrate the obtained theoretical results.
Quantization-Based Adaptive Actor-Critic Tracking Control With Tracking Error Constraints.
Fan, Quan-Yong; Yang, Guang-Hong; Ye, Dan
2018-04-01
In this paper, the problem of adaptive actor-critic (AC) tracking control is investigated for a class of continuous-time nonlinear systems with unknown nonlinearities and quantized inputs. Different from the existing results based on reinforcement learning, the tracking error constraints are considered and new critic functions are constructed to improve the performance further. To ensure that the tracking errors keep within the predefined time-varying boundaries, a tracking error transformation technique is used to constitute an augmented error system. Specific critic functions, rather than the long-term cost function, are introduced to supervise the tracking performance and tune the weights of the AC neural networks (NNs). A novel adaptive controller with a special structure is designed to reduce the effect of the NN reconstruction errors, input quantization, and disturbances. Based on the Lyapunov stability theory, the boundedness of the closed-loop signals and the desired tracking performance can be guaranteed. Finally, simulations on two connected inverted pendulums are given to illustrate the effectiveness of the proposed method.
Choi, Yun Ho; Yoo, Sung Jin
2017-03-28
A minimal-approximation-based distributed adaptive consensus tracking approach is presented for strict-feedback multiagent systems with unknown heterogeneous nonlinearities and control directions under a directed network. Existing approximation-based consensus results for uncertain nonlinear multiagent systems in lower-triangular form have used multiple function approximators in each local controller to approximate unmatched nonlinearities of each follower. Thus, as the follower's order increases, the number of the approximators used in its local controller increases. However, the proposed approach employs only one function approximator to construct the local controller of each follower regardless of the order of the follower. The recursive design methodology using a new error transformation is derived for the proposed minimal-approximation-based design. Furthermore, a bounding lemma on parameters of Nussbaum functions is presented to handle the unknown control direction problem in the minimal-approximation-based distributed consensus tracking framework and the stability of the overall closed-loop system is rigorously analyzed in the Lyapunov sense.
Automated path planning of the Payload Inspection and Processing System
NASA Technical Reports Server (NTRS)
Byers, Robert M.
1994-01-01
The Payload Changeout Room Inspection and Processing System (PIPS) is a highly redundant manipulator intended for performing tasks in the crowded and sensitive environment of the Space Shuttle Orbiter payload bay. Its dexterity will be exploited to maneuver the end effector in a workspace populated with obstacles. A method is described by which the end effector of a highly redundant manipulator is directed toward a target via a Lyapunov stability function. A cost function is constructed which represents the distance from the manipulator links to obstacles. Obstacles are avoided by causing the vector of joint parameters to move orthogonally to the gradient of the workspace cost function. A C language program implements the algorithm to generate a joint history. The resulting motion is graphically displayed using the Interactive Graphical Robot Instruction Program (IGRIP) produced by Deneb Robotics. The graphical simulation has the potential to be a useful tool in path planning for the PIPS in the Shuttle Payload Bay environment.
NASA Astrophysics Data System (ADS)
Huard, B.; Easton, J. F.; Angelova, M.
2015-09-01
In this paper, a two-delay model for the ultradian oscillatory behaviour of the glucose-insulin regulation system is studied. Hill functions are introduced to model nonlinear physiological interactions within this system and ranges on parameters reproducing biological oscillations are determined on the basis of analytical and numerical considerations. Local and global stability are investigated and delay-dependent conditions are obtained through the construction of Lyapunov-Krasovskii functionals. The effect of Hill parameters on these conditions, as well as the boundary of the stability region in the delay domain, are established for the first time. Numerical simulations demonstrate that the model with Hill functions represents well the oscillatory behaviour of the system with the advantage of incorporating new meaningful parameters. The influence of the time delays on the period of oscillations and the sensitivity of the latter to model parameters, in particular glucose infusion, are investigated. The model can contribute to the better understanding and treatment of diabetes.
Adaptive Tracking Control for Robots With an Interneural Computing Scheme.
Tsai, Feng-Sheng; Hsu, Sheng-Yi; Shih, Mau-Hsiang
2018-04-01
Adaptive tracking control of mobile robots requires the ability to follow a trajectory generated by a moving target. The conventional analysis of adaptive tracking uses energy minimization to study the convergence and robustness of the tracking error when the mobile robot follows a desired trajectory. However, in the case that the moving target generates trajectories with uncertainties, a common Lyapunov-like function for energy minimization may be extremely difficult to determine. Here, to solve the adaptive tracking problem with uncertainties, we wish to implement an interneural computing scheme in the design of a mobile robot for behavior-based navigation. The behavior-based navigation adopts an adaptive plan of behavior patterns learning from the uncertainties of the environment. The characteristic feature of the interneural computing scheme is the use of neural path pruning with rewards and punishment interacting with the environment. On this basis, the mobile robot can be exploited to change its coupling weights in paths of neural connections systematically, which can then inhibit or enhance the effect of flow elimination in the dynamics of the evolutionary neural network. Such dynamical flow translation ultimately leads to robust sensory-to-motor transformations adapting to the uncertainties of the environment. A simulation result shows that the mobile robot with the interneural computing scheme can perform fault-tolerant behavior of tracking by maintaining suitable behavior patterns at high frequency levels.
Parallel Optimization of Polynomials for Large-scale Problems in Stability and Control
NASA Astrophysics Data System (ADS)
Kamyar, Reza
In this thesis, we focus on some of the NP-hard problems in control theory. Thanks to the converse Lyapunov theory, these problems can often be modeled as optimization over polynomials. To avoid the problem of intractability, we establish a trade off between accuracy and complexity. In particular, we develop a sequence of tractable optimization problems --- in the form of Linear Programs (LPs) and/or Semi-Definite Programs (SDPs) --- whose solutions converge to the exact solution of the NP-hard problem. However, the computational and memory complexity of these LPs and SDPs grow exponentially with the progress of the sequence - meaning that improving the accuracy of the solutions requires solving SDPs with tens of thousands of decision variables and constraints. Setting up and solving such problems is a significant challenge. The existing optimization algorithms and software are only designed to use desktop computers or small cluster computers --- machines which do not have sufficient memory for solving such large SDPs. Moreover, the speed-up of these algorithms does not scale beyond dozens of processors. This in fact is the reason we seek parallel algorithms for setting-up and solving large SDPs on large cluster- and/or super-computers. We propose parallel algorithms for stability analysis of two classes of systems: 1) Linear systems with a large number of uncertain parameters; 2) Nonlinear systems defined by polynomial vector fields. First, we develop a distributed parallel algorithm which applies Polya's and/or Handelman's theorems to some variants of parameter-dependent Lyapunov inequalities with parameters defined over the standard simplex. The result is a sequence of SDPs which possess a block-diagonal structure. We then develop a parallel SDP solver which exploits this structure in order to map the computation, memory and communication to a distributed parallel environment. Numerical tests on a supercomputer demonstrate the ability of the algorithm to efficiently utilize hundreds and potentially thousands of processors, and analyze systems with 100+ dimensional state-space. Furthermore, we extend our algorithms to analyze robust stability over more complicated geometries such as hypercubes and arbitrary convex polytopes. Our algorithms can be readily extended to address a wide variety of problems in control such as Hinfinity synthesis for systems with parametric uncertainty and computing control Lyapunov functions.
Lyapunov exponents from CHUA's circuit time series using artificial neural networks
NASA Technical Reports Server (NTRS)
Gonzalez, J. Jesus; Espinosa, Ismael E.; Fuentes, Alberto M.
1995-01-01
In this paper we present the general problem of identifying if a nonlinear dynamic system has a chaotic behavior. If the answer is positive the system will be sensitive to small perturbations in the initial conditions which will imply that there is a chaotic attractor in its state space. A particular problem would be that of identifying a chaotic oscillator. We present an example of three well known different chaotic oscillators where we have knowledge of the equations that govern the dynamical systems and from there we can obtain the corresponding time series. In a similar example we assume that we only know the time series and, finally, in another example we have to take measurements in the Chua's circuit to obtain sample points of the time series. With the knowledge about the time series the phase plane portraits are plotted and from them, by visual inspection, it is concluded whether or not the system is chaotic. This method has the problem of uncertainty and subjectivity and for that reason a different approach is needed. A quantitative approach is the computation of the Lyapunov exponents. We describe several methods for obtaining them and apply a little known method of artificial neural networks to the different examples mentioned above. We end the paper discussing the importance of the Lyapunov exponents in the interpretation of the dynamic behavior of biological neurons and biological neural networks.
Event-based cluster synchronization of coupled genetic regulatory networks
NASA Astrophysics Data System (ADS)
Yue, Dandan; Guan, Zhi-Hong; Li, Tao; Liao, Rui-Quan; Liu, Feng; Lai, Qiang
2017-09-01
In this paper, the cluster synchronization of coupled genetic regulatory networks with a directed topology is studied by using the event-based strategy and pinning control. An event-triggered condition with a threshold consisting of the neighbors' discrete states at their own event time instants and a state-independent exponential decay function is proposed. The intra-cluster states information and extra-cluster states information are involved in the threshold in different ways. By using the Lyapunov function approach and the theories of matrices and inequalities, we establish the cluster synchronization criterion. It is shown that both the avoidance of continuous transmission of information and the exclusion of the Zeno behavior are ensured under the presented triggering condition. Explicit conditions on the parameters in the threshold are obtained for synchronization. The stability criterion of a single GRN is also given under the reduced triggering condition. Numerical examples are provided to validate the theoretical results.
Image texture segmentation using a neural network
NASA Astrophysics Data System (ADS)
Sayeh, Mohammed R.; Athinarayanan, Ragu; Dhali, Pushpuak
1992-09-01
In this paper we use a neural network called the Lyapunov associative memory (LYAM) system to segment image texture into different categories or clusters. The LYAM system is constructed by a set of ordinary differential equations which are simulated on a digital computer. The clustering can be achieved by using a single tuning parameter in the simplest model. Pattern classes are represented by the stable equilibrium states of the system. Design of the system is based on synthesizing two local energy functions, namely, the learning and recall energy functions. Before the implementation of the segmentation process, a Gauss-Markov random field (GMRF) model is applied to the raw image. This application suitably reduces the image data and prepares the texture information for the neural network process. We give a simple image example illustrating the capability of the technique. The GMRF-generated features are also used for a clustering, based on the Euclidean distance.
Real-time dynamics of matrix quantum mechanics beyond the classical approximation
NASA Astrophysics Data System (ADS)
Buividovich, Pavel; Hanada, Masanori; Schäfer, Andreas
2018-03-01
We describe a numerical method which allows to go beyond the classical approximation for the real-time dynamics of many-body systems by approximating the many-body Wigner function by the most general Gaussian function with time-dependent mean and dispersion. On a simple example of a classically chaotic system with two degrees of freedom we demonstrate that this Gaussian state approximation is accurate for significantly smaller field strengths and longer times than the classical one. Applying this approximation to matrix quantum mechanics, we demonstrate that the quantum Lyapunov exponents are in general smaller than their classical counterparts, and even seem to vanish below some temperature. This behavior resembles the finite-temperature phase transition which was found for this system in Monte-Carlo simulations, and ensures that the system does not violate the Maldacena-Shenker-Stanford bound λL < 2πT, which inevitably happens for classical dynamics at sufficiently small temperatures.
Neural network-based optimal adaptive output feedback control of a helicopter UAV.
Nodland, David; Zargarzadeh, Hassan; Jagannathan, Sarangapani
2013-07-01
Helicopter unmanned aerial vehicles (UAVs) are widely used for both military and civilian operations. Because the helicopter UAVs are underactuated nonlinear mechanical systems, high-performance controller design for them presents a challenge. This paper introduces an optimal controller design via an output feedback for trajectory tracking of a helicopter UAV, using a neural network (NN). The output-feedback control system utilizes the backstepping methodology, employing kinematic and dynamic controllers and an NN observer. The online approximator-based dynamic controller learns the infinite-horizon Hamilton-Jacobi-Bellman equation in continuous time and calculates the corresponding optimal control input by minimizing a cost function, forward-in-time, without using the value and policy iterations. Optimal tracking is accomplished by using a single NN utilized for the cost function approximation. The overall closed-loop system stability is demonstrated using Lyapunov analysis. Finally, simulation results are provided to demonstrate the effectiveness of the proposed control design for trajectory tracking.
Wei, Yanling; Park, Ju H; Karimi, Hamid Reza; Tian, Yu-Chu; Jung, Hoyoul; Yanling Wei; Park, Ju H; Karimi, Hamid Reza; Yu-Chu Tian; Hoyoul Jung; Tian, Yu-Chu; Wei, Yanling; Jung, Hoyoul; Karimi, Hamid Reza; Park, Ju H
2018-06-01
Continuous-time semi-Markovian jump neural networks (semi-MJNNs) are those MJNNs whose transition rates are not constant but depend on the random sojourn time. Addressing stochastic synchronization of semi-MJNNs with time-varying delay, an improved stochastic stability criterion is derived in this paper to guarantee stochastic synchronization of the response systems with the drive systems. This is achieved through constructing a semi-Markovian Lyapunov-Krasovskii functional together as well as making use of a novel integral inequality and the characteristics of cumulative distribution functions. Then, with a linearization procedure, controller synthesis is carried out for stochastic synchronization of the drive-response systems. The desired state-feedback controller gains can be determined by solving a linear matrix inequality-based optimization problem. Simulation studies are carried out to demonstrate the effectiveness and less conservatism of the presented approach.
Ren, Jun-Jie; Liu, Yan-Cheng; Wang, Ning; Liu, Si-Yuan
2015-01-01
This paper proposes a sensorless speed control strategy for ship propulsion interior permanent magnet synchronous motor (IPMSM) based on a new sliding-mode observer (SMO). In the SMO the low-pass filter and the method of arc-tangent calculation of extended electromotive force (EMF) or phase-locked loop (PLL) technique are not used. The calculation of the rotor speed is deduced from the Lyapunov function stability analysis. In order to reduce system chattering, sigmoid functions with switching gains being adaptively updated by fuzzy logic systems are innovatively incorporated into the SMO. Finally, simulation results for a 4.088 MW ship propulsion IPMSM and experimental results from a 7.5 kW IPMSM drive are provided to verify the effectiveness of the proposed SMO method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Optimal coordination and control of posture and movements.
Johansson, Rolf; Fransson, Per-Anders; Magnusson, Måns
2009-01-01
This paper presents a theoretical model of stability and coordination of posture and locomotion, together with algorithms for continuous-time quadratic optimization of motion control. Explicit solutions to the Hamilton-Jacobi equation for optimal control of rigid-body motion are obtained by solving an algebraic matrix equation. The stability is investigated with Lyapunov function theory and it is shown that global asymptotic stability holds. It is also shown how optimal control and adaptive control may act in concert in the case of unknown or uncertain system parameters. The solution describes motion strategies of minimum effort and variance. The proposed optimal control is formulated to be suitable as a posture and movement model for experimental validation and verification. The combination of adaptive and optimal control makes this algorithm a candidate for coordination and control of functional neuromuscular stimulation as well as of prostheses. Validation examples with experimental data are provided.
Bănaru, Daniela; Harmelin-Vivien, Mireille; Boudouresque, Charles F
2010-05-01
The present study shows how marine commercial fish food webs dramatically changed in the north-western Black Sea on both pelagic and benthic environments. Fisheries landings, diversity and equitability strongly decreased between 1965-1970 and 2001-2005. Fishes adapted their feeding behaviour to the increasingly low species diversity of the Black Sea communities. Their food web became poor and simplified following the loss of many top predator species and their trophic links. Linkage density, connectivity and Lyapunov stability proxy strongly decreased. The north-western Black Sea system switched from a complex top-down and bottom-up functioning pattern to a dominantly bottom-up functioning pattern. This study contributes to a better understanding of these transformations within the Danube-Black Sea system in the last decades. An attempt is made to relate these changes with river inputs, fisheries and coastal pollution. Copyright 2009 Elsevier Ltd. All rights reserved.
Xu, Dan; Zhou, Huan; Zhou, Tao
2018-01-01
In this paper, an adaptive fractional order sliding mode control (AFSMC) scheme is designed for the current tracking control of the Boost-type converter in a Battery/Supercapacitor hybrid energy storage system (HESS). In order to stabilize the current, the adaptation rules based on state-observer and Lyapunov function are being designed. A fractional order sliding surface function is defined based on the tracking current error and adaptive rules. Furthermore, through fractional order analysis, the stability of the fractional order control system is proven, and the value of the fractional order (λ) is being investigated. In addition, the effectiveness of the proposed AFSMC strategy is being verified by numerical simulations. The advantages of good transient response and robustness to uncertainty are being indicated by this design, when compared with a conventional integer order sliding mode control system. PMID:29702696
Distributed Adaptive Fuzzy Control for Nonlinear Multiagent Systems Via Sliding Mode Observers.
Shen, Qikun; Shi, Peng; Shi, Yan
2016-12-01
In this paper, the problem of distributed adaptive fuzzy control is investigated for high-order uncertain nonlinear multiagent systems on directed graph with a fixed topology. It is assumed that only the outputs of each follower and its neighbors are available in the design of its distributed controllers. Equivalent output injection sliding mode observers are proposed for each follower to estimate the states of itself and its neighbors, and an observer-based distributed adaptive controller is designed for each follower to guarantee that it asymptotically synchronizes to a leader with tracking errors being semi-globally uniform ultimate bounded, in which fuzzy logic systems are utilized to approximate unknown functions. Based on algebraic graph theory and Lyapunov function approach, using Filippov-framework, the closed-loop system stability analysis is conducted. Finally, numerical simulations are provided to illustrate the effectiveness and potential of the developed design techniques.
Neural network L1 adaptive control of MIMO systems with nonlinear uncertainty.
Zhen, Hong-tao; Qi, Xiao-hui; Li, Jie; Tian, Qing-min
2014-01-01
An indirect adaptive controller is developed for a class of multiple-input multiple-output (MIMO) nonlinear systems with unknown uncertainties. This control system is comprised of an L 1 adaptive controller and an auxiliary neural network (NN) compensation controller. The L 1 adaptive controller has guaranteed transient response in addition to stable tracking. In this architecture, a low-pass filter is adopted to guarantee fast adaptive rate without generating high-frequency oscillations in control signals. The auxiliary compensation controller is designed to approximate the unknown nonlinear functions by MIMO RBF neural networks to suppress the influence of uncertainties. NN weights are tuned on-line with no prior training and the project operator ensures the weights bounded. The global stability of the closed-system is derived based on the Lyapunov function. Numerical simulations of an MIMO system coupled with nonlinear uncertainties are used to illustrate the practical potential of our theoretical results.
Investigation of chaos and its control in a Duffing-type nano beam model
NASA Astrophysics Data System (ADS)
Jha, Abhishek Kumar; Dasgupta, Sovan Sundar
2018-04-01
The prediction of chaos of a nano beam with harmonic excitation is investigated. Using the Galerkin method the nonlinear lumped model of a clamped-clamped nano beam with nonlinear cubic stiffness is obtained. This is a Duffing system with hardening type of nonlinearity. Based on the energy function and the phase portrait of the system, the resonator dynamics is categorized into four situations in which Using Malnikov function, an analytical criterion for homoclinic intersection in the form of inequality is written in terms of the system parameters. A numerical study including largest lyapunov exponent, Poincare diagram and phase portrait confirm the analytical prediction of chaos and effect of forcing amplitude. Subsequently, a linear velocity feedback controller is introduced into the system to successfully control the chaotic motion of the system at a faster rate at larger value of gain parameter.
Li, Hongfei; Jiang, Haijun; Hu, Cheng
2016-03-01
In this paper, we investigate a class of memristor-based BAM neural networks with time-varying delays. Under the framework of Filippov solutions, boundedness and ultimate boundedness of solutions of memristor-based BAM neural networks are guaranteed by Chain rule and inequalities technique. Moreover, a new method involving Yoshizawa-like theorem is favorably employed to acquire the existence of periodic solution. By applying the theory of set-valued maps and functional differential inclusions, an available Lyapunov functional and some new testable algebraic criteria are derived for ensuring the uniqueness and global exponential stability of periodic solution of memristor-based BAM neural networks. The obtained results expand and complement some previous work on memristor-based BAM neural networks. Finally, a numerical example is provided to show the applicability and effectiveness of our theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.
Event-Triggered Adaptive Dynamic Programming for Continuous-Time Systems With Control Constraints.
Dong, Lu; Zhong, Xiangnan; Sun, Changyin; He, Haibo
2016-08-31
In this paper, an event-triggered near optimal control structure is developed for nonlinear continuous-time systems with control constraints. Due to the saturating actuators, a nonquadratic cost function is introduced and the Hamilton-Jacobi-Bellman (HJB) equation for constrained nonlinear continuous-time systems is formulated. In order to solve the HJB equation, an actor-critic framework is presented. The critic network is used to approximate the cost function and the action network is used to estimate the optimal control law. In addition, in the proposed method, the control signal is transmitted in an aperiodic manner to reduce the computational and the transmission cost. Both the networks are only updated at the trigger instants decided by the event-triggered condition. Detailed Lyapunov analysis is provided to guarantee that the closed-loop event-triggered system is ultimately bounded. Three case studies are used to demonstrate the effectiveness of the proposed method.
Adaptive Neural Control of Uncertain MIMO Nonlinear Systems With State and Input Constraints.
Chen, Ziting; Li, Zhijun; Chen, C L Philip
2017-06-01
An adaptive neural control strategy for multiple input multiple output nonlinear systems with various constraints is presented in this paper. To deal with the nonsymmetric input nonlinearity and the constrained states, the proposed adaptive neural control is combined with the backstepping method, radial basis function neural network, barrier Lyapunov function (BLF), and disturbance observer. By ensuring the boundedness of the BLF of the closed-loop system, it is demonstrated that the output tracking is achieved with all states remaining in the constraint sets and the general assumption on nonsingularity of unknown control coefficient matrices has been eliminated. The constructed adaptive neural control has been rigorously proved that it can guarantee the semiglobally uniformly ultimate boundedness of all signals in the closed-loop system. Finally, the simulation studies on a 2-DOF robotic manipulator system indicate that the designed adaptive control is effective.
Li, Yongming; Ma, Zhiyao; Tong, Shaocheng
2017-09-01
The problem of adaptive fuzzy output-constrained tracking fault-tolerant control (FTC) is investigated for the large-scale stochastic nonlinear systems of pure-feedback form. The nonlinear systems considered in this paper possess the unstructured uncertainties, unknown interconnected terms and unknown nonaffine nonlinear faults. The fuzzy logic systems are employed to identify the unknown lumped nonlinear functions so that the problems of structured uncertainties can be solved. An adaptive fuzzy state observer is designed to solve the nonmeasurable state problem. By combining the barrier Lyapunov function theory, adaptive decentralized and stochastic control principles, a novel fuzzy adaptive output-constrained FTC approach is constructed. All the signals in the closed-loop system are proved to be bounded in probability and the system outputs are constrained in a given compact set. Finally, the applicability of the proposed controller is well carried out by a simulation example.
Network-induced chaos in integrate-and-fire neuronal ensembles.
Zhou, Douglas; Rangan, Aaditya V; Sun, Yi; Cai, David
2009-09-01
It has been shown that a single standard linear integrate-and-fire (IF) neuron under a general time-dependent stimulus cannot possess chaotic dynamics despite the firing-reset discontinuity. Here we address the issue of whether conductance-based, pulsed-coupled network interactions can induce chaos in an IF neuronal ensemble. Using numerical methods, we demonstrate that all-to-all, homogeneously pulse-coupled IF neuronal networks can indeed give rise to chaotic dynamics under an external periodic current drive. We also provide a precise characterization of the largest Lyapunov exponent for these high dimensional nonsmooth dynamical systems. In addition, we present a stable and accurate numerical algorithm for evaluating the largest Lyapunov exponent, which can overcome difficulties encountered by traditional methods for these nonsmooth dynamical systems with degeneracy induced by, e.g., refractoriness of neurons.
The generalized Lyapunov theorem and its application to quantum channels
NASA Astrophysics Data System (ADS)
Burgarth, Daniel; Giovannetti, Vittorio
2007-05-01
We give a simple and physically intuitive necessary and sufficient condition for a map acting on a compact metric space to be mixing (i.e. infinitely many applications of the map transfer any input into a fixed convergency point). This is a generalization of the 'Lyapunov direct method'. First we prove this theorem in topological spaces and for arbitrary continuous maps. Finally we apply our theorem to maps which are relevant in open quantum systems and quantum information, namely quantum channels. In this context, we also discuss the relations between mixing and ergodicity (i.e. the property that there exists only a single input state which is left invariant by a single application of the map) showing that the two are equivalent when the invariant point of the ergodic map is pure.
[Analysis of the heart sound with arrhythmia based on nonlinear chaos theory].
Ding, Xiaorong; Guo, Xingming; Zhong, Lisha; Xiao, Shouzhong
2012-10-01
In this paper, a new method based on the nonlinear chaos theory was proposed to study the arrhythmia with the combination of the correlation dimension and largest Lyapunov exponent, through computing and analyzing these two parameters of 30 cases normal heart sound and 30 cases with arrhythmia. The results showed that the two parameters of the heart sounds with arrhythmia were higher than those with the normal, and there was significant difference between these two kinds of heart sounds. That is probably due to the irregularity of the arrhythmia which causes the decrease of predictability, and it's more complex than the normal heart sound. Therefore, the correlation dimension and the largest Lyapunov exponent can be used to analyze the arrhythmia and for its feature extraction.
The potential and flux landscape theory of evolution.
Zhang, Feng; Xu, Li; Zhang, Kun; Wang, Erkang; Wang, Jin
2012-08-14
We established the potential and flux landscape theory for evolution. We found explicitly the conventional Wright's gradient adaptive landscape based on the mean fitness is inadequate to describe the general evolutionary dynamics. We show the intrinsic potential as being Lyapunov function(monotonically decreasing in time) does exist and can define the adaptive landscape for general evolution dynamics for studying global stability. The driving force determining the dynamics can be decomposed into gradient of potential landscape and curl probability flux. Non-zero flux causes detailed balance breaking and measures how far the evolution from equilibrium state. The gradient of intrinsic potential and curl flux are perpendicular to each other in zero fluctuation limit resembling electric and magnetic forces on electrons. We quantified intrinsic energy, entropy and free energy of evolution and constructed non-equilibrium thermodynamics. The intrinsic non-equilibrium free energy is a Lyapunov function. Both intrinsic potential and free energy can be used to quantify the global stability and robustness of evolution. We investigated an example of three allele evolutionary dynamics with frequency dependent selection (detailed balance broken). We uncovered the underlying single, triple, and limit cycle attractor landscapes. We found quantitative criterions for stability through landscape topography. We also quantified evolution pathways and found paths do not follow potential gradient and are irreversible due to non-zero flux. We generalized the original Fisher's fundamental theorem to the general (i.e., frequency dependent selection) regime of evolution by linking the adaptive rate with not only genetic variance related to the potential but also the flux. We show there is an optimum potential where curl flux resulting from biotic interactions of individuals within a species or between species can sustain an endless evolution even if the physical environment is unchanged. We offer a theoretical basis for explaining the corresponding Red Queen hypothesis proposed by Van Valen. Our work provides a theoretical foundation for evolutionary dynamics.
Adaptive critic autopilot design of bank-to-turn missiles using fuzzy basis function networks.
Lin, Chuan-Kai
2005-04-01
A new adaptive critic autopilot design for bank-to-turn missiles is presented. In this paper, the architecture of adaptive critic learning scheme contains a fuzzy-basis-function-network based associative search element (ASE), which is employed to approximate nonlinear and complex functions of bank-to-turn missiles, and an adaptive critic element (ACE) generating the reinforcement signal to tune the associative search element. In the design of the adaptive critic autopilot, the control law receives signals from a fixed gain controller, an ASE and an adaptive robust element, which can eliminate approximation errors and disturbances. Traditional adaptive critic reinforcement learning is the problem faced by an agent that must learn behavior through trial-and-error interactions with a dynamic environment, however, the proposed tuning algorithm can significantly shorten the learning time by online tuning all parameters of fuzzy basis functions and weights of ASE and ACE. Moreover, the weight updating law derived from the Lyapunov stability theory is capable of guaranteeing both tracking performance and stability. Computer simulation results confirm the effectiveness of the proposed adaptive critic autopilot.
Bagheri, Pedram; Sun, Qiao
2016-07-01
In this paper, a novel synthesis of Nussbaum-type functions, and an adaptive radial-basis function neural network is proposed to design controllers for variable-speed, variable-pitch wind turbines. Dynamic equations of the wind turbine are highly nonlinear, uncertain, and affected by unknown disturbance sources. Furthermore, the dynamic equations are non-affine with respect to the pitch angle, which is a control input. To address these problems, a Nussbaum-type function, along with a dynamic control law are adopted to resolve the non-affine nature of the equations. Moreover, an adaptive radial-basis function neural network is designed to approximate non-parametric uncertainties. Further, the closed-loop system is made robust to unknown disturbance sources, where no prior knowledge of disturbance bound is assumed in advance. Finally, the Lyapunov stability analysis is conducted to show the stability of the entire closed-loop system. In order to verify analytical results, a simulation is presented and the results are compared to both a PI and an existing adaptive controllers. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Parabolic Anderson Model in a Dynamic Random Environment: Random Conductances
NASA Astrophysics Data System (ADS)
Erhard, D.; den Hollander, F.; Maillard, G.
2016-06-01
The parabolic Anderson model is defined as the partial differential equation ∂ u( x, t)/ ∂ t = κ Δ u( x, t) + ξ( x, t) u( x, t), x ∈ ℤ d , t ≥ 0, where κ ∈ [0, ∞) is the diffusion constant, Δ is the discrete Laplacian, and ξ is a dynamic random environment that drives the equation. The initial condition u( x, 0) = u 0( x), x ∈ ℤ d , is typically taken to be non-negative and bounded. The solution of the parabolic Anderson equation describes the evolution of a field of particles performing independent simple random walks with binary branching: particles jump at rate 2 d κ, split into two at rate ξ ∨ 0, and die at rate (- ξ) ∨ 0. In earlier work we looked at the Lyapunov exponents λ p(κ ) = limlimits _{tto ∞} 1/t log {E} ([u(0,t)]p)^{1/p}, quad p in {N} , qquad λ 0(κ ) = limlimits _{tto ∞} 1/2 log u(0,t). For the former we derived quantitative results on the κ-dependence for four choices of ξ : space-time white noise, independent simple random walks, the exclusion process and the voter model. For the latter we obtained qualitative results under certain space-time mixing conditions on ξ. In the present paper we investigate what happens when κΔ is replaced by Δ𝓚, where 𝓚 = {𝓚( x, y) : x, y ∈ ℤ d , x ˜ y} is a collection of random conductances between neighbouring sites replacing the constant conductances κ in the homogeneous model. We show that the associated annealed Lyapunov exponents λ p (𝓚), p ∈ ℕ, are given by the formula λ p({K} ) = {sup} {λ p(κ ) : κ in {Supp} ({K} )}, where, for a fixed realisation of 𝓚, Supp(𝓚) is the set of values taken by the 𝓚-field. We also show that for the associated quenched Lyapunov exponent λ 0(𝓚) this formula only provides a lower bound, and we conjecture that an upper bound holds when Supp(𝓚) is replaced by its convex hull. Our proof is valid for three classes of reversible ξ, and for all 𝓚 satisfying a certain clustering property, namely, there are arbitrarily large balls where 𝓚 is almost constant and close to any value in Supp(𝓚). What our result says is that the annealed Lyapunov exponents are controlled by those pockets of 𝓚 where the conductances are close to the value that maximises the growth in the homogeneous setting. In contrast our conjecture says that the quenched Lyapunov exponent is controlled by a mixture of pockets of 𝓚 where the conductances are nearly constant. Our proof is based on variational representations and confinement arguments.
Mehdi, Niaz; Rehan, Muhammad; Malik, Fahad Mumtaz; Bhatti, Aamer Iqbal; Tufail, Muhammad
2014-05-01
This paper describes the anti-windup compensator (AWC) design methodologies for stable and unstable cascade plants with cascade controllers facing actuator saturation. Two novel full-order decoupling AWC architectures, based on equivalence of the overall closed-loop system, are developed to deal with windup effects. The decoupled architectures have been developed, to formulate the AWC synthesis problem, by assuring equivalence of the coupled and the decoupled architectures, instead of using an analogy, for cascade control systems. A comparison of both AWC architectures from application point of view is provided to consolidate their utilities. Mainly, one of the architecture is better in terms of computational complexity for implementation, while the other is suitable for unstable cascade systems. On the basis of the architectures for cascade systems facing stability and performance degradation problems in the event of actuator saturation, the global AWC design methodologies utilizing linear matrix inequalities (LMIs) are developed. These LMIs are synthesized by application of the Lyapunov theory, the global sector condition and the ℒ2 gain reduction of the uncertain decoupled nonlinear component of the decoupled architecture. Further, an LMI-based local AWC design methodology is derived by utilizing a local sector condition by means of a quadratic Lyapunov function to resolve the windup problem for unstable cascade plants under saturation. To demonstrate effectiveness of the proposed AWC schemes, an underactuated mechanical system, the ball-and-beam system, is considered, and details of the simulation and practical implementation results are described. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Fast chemical reaction in two-dimensional Navier-Stokes flow: initial regime.
Ait-Chaalal, Farid; Bourqui, Michel S; Bartello, Peter
2012-04-01
This paper studies an infinitely fast bimolecular chemical reaction in a two-dimensional biperiodic Navier-Stokes flow. The reactants in stoichiometric quantities are initially segregated by infinite gradients. The focus is placed on the initial stage of the reaction characterized by a well-defined one-dimensional material contact line between the reactants. Particular attention is given to the effect of the diffusion κ of the reactants. This study is an idealized framework for isentropic mixing in the lower stratosphere and is motivated by the need to better understand the effect of resolution on stratospheric chemistry in climate-chemistry models. Adopting a Lagrangian straining theory approach, we relate theoretically the ensemble mean of the length of the contact line, of the gradients along it, and of the modulus of the time derivative of the space-average reactant concentrations (here called the chemical speed) to the joint probability density function of the finite-time Lyapunov exponent λ with two times τ and τ[over ̃]. The time 1/λ measures the stretching time scale of a Lagrangian parcel on a chaotic orbit up to a finite time t, while τ measures it in the recent past before t, and τ[over ̃] in the early part of the trajectory. We show that the chemical speed scales like κ(1/2) and that its time evolution is determined by rare large events in the finite-time Lyapunov exponent distribution. The case of smooth initial gradients is also discussed. The theoretical results are tested with an ensemble of direct numerical simulations (DNSs) using a pseudospectral model.
Cartes, David A; Ray, Laura R; Collier, Robert D
2002-04-01
An adaptive leaky normalized least-mean-square (NLMS) algorithm has been developed to optimize stability and performance of active noise cancellation systems. The research addresses LMS filter performance issues related to insufficient excitation, nonstationary noise fields, and time-varying signal-to-noise ratio. The adaptive leaky NLMS algorithm is based on a Lyapunov tuning approach in which three candidate algorithms, each of which is a function of the instantaneous measured reference input, measurement noise variance, and filter length, are shown to provide varying degrees of tradeoff between stability and noise reduction performance. Each algorithm is evaluated experimentally for reduction of low frequency noise in communication headsets, and stability and noise reduction performance are compared with that of traditional NLMS and fixed-leakage NLMS algorithms. Acoustic measurements are made in a specially designed acoustic test cell which is based on the original work of Ryan et al. ["Enclosure for low frequency assessment of active noise reducing circumaural headsets and hearing protection," Can. Acoust. 21, 19-20 (1993)] and which provides a highly controlled and uniform acoustic environment. The stability and performance of the active noise reduction system, including a prototype communication headset, are investigated for a variety of noise sources ranging from stationary tonal noise to highly nonstationary measured F-16 aircraft noise over a 20 dB dynamic range. Results demonstrate significant improvements in stability of Lyapunov-tuned LMS algorithms over traditional leaky or nonleaky normalized algorithms, while providing noise reduction performance equivalent to that of the NLMS algorithm for idealized noise fields.
Development of fault tolerant adaptive control laws for aerospace systems
NASA Astrophysics Data System (ADS)
Perez Rocha, Andres E.
The main topic of this dissertation is the design, development and implementation of intelligent adaptive control techniques designed to maintain healthy performance of aerospace systems subjected to malfunctions, external parameter changes and/or unmodeled dynamics. The dissertation is focused on the development of novel adaptive control configurations that rely on non-linear functions that appear in the immune system of living organisms as main source of adaptation. One of the main goals of this dissertation is to demonstrate that these novel adaptive control architectures are able to improve overall performance and protect the system while reducing control effort and maintaining adequate operation outside bounds of nominal design. This research effort explores several phases, ranging from theoretical stability analysis, simulation and hardware implementation on different types of aerospace systems including spacecraft, aircraft and quadrotor vehicles. The results presented in this dissertation are focused on two main adaptivity approaches, the first one is intended for aerospace systems that do not attain large angles and use exact feedback linearization of Euler angle kinematics. A proof of stability is presented by means of the circle Criterion and Lyapunov's direct method. The second approach is intended for aerospace systems that can attain large attitude angles (e.g. space systems in gravity-less environments), the adaptation is incorporated on a baseline architecture that uses partial feedback linearization of quaternions kinematics. In this case, the closed loop stability was analyzed using Lyapunov's direct method and Barbalat's Lemma. It is expected that some results presented in this dissertation can contribute towards the validation and certification of direct adaptive controllers.
NASA Astrophysics Data System (ADS)
Cao, Zhengcai; Yin, Longjie; Fu, Yili
2013-01-01
Vision-based pose stabilization of nonholonomic mobile robots has received extensive attention. At present, most of the solutions of the problem do not take the robot dynamics into account in the controller design, so that these controllers are difficult to realize satisfactory control in practical application. Besides, many of the approaches suffer from the initial speed and torque jump which are not practical in the real world. Considering the kinematics and dynamics, a two-stage visual controller for solving the stabilization problem of a mobile robot is presented, applying the integration of adaptive control, sliding-mode control, and neural dynamics. In the first stage, an adaptive kinematic stabilization controller utilized to generate the command of velocity is developed based on Lyapunov theory. In the second stage, adopting the sliding-mode control approach, a dynamic controller with a variable speed function used to reduce the chattering is designed, which is utilized to generate the command of torque to make the actual velocity of the mobile robot asymptotically reach the desired velocity. Furthermore, to handle the speed and torque jump problems, the neural dynamics model is integrated into the above mentioned controllers. The stability of the proposed control system is analyzed by using Lyapunov theory. Finally, the simulation of the control law is implemented in perturbed case, and the results show that the control scheme can solve the stabilization problem effectively. The proposed control law can solve the speed and torque jump problems, overcome external disturbances, and provide a new solution for the vision-based stabilization of the mobile robot.
Analysis of Decentralized Variable Structure Control for Collective Search by Mobile Robots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feddema, J.; Goldsmith, S.; Robinett, R.
1998-11-04
This paper presents an analysis of a decentralized coordination strategy for organizing and controlling a team of mobile robots performing collective search. The alpha-beta coordination strategy is a family of collective search algorithms that allow teams of communicating robots to implicitly coordinate their search activities through a division of labor based on self-selected roIes. In an alpha-beta team. alpha agents are motivated to improve their status by exploring new regions of the search space. Beta a~ents are conservative, and reiy on the alpha agents to provide advanced information on favorable regions of the search space. An agent selects its currentmore » role dynamically based on its current status value relative to the current status values of the other team members. Status is determined by some function of the agent's sensor readings, and is generally a measurement of source intensity at the agent's current location. Variations on the decision rules determining alpha and beta behavior produce different versions of the algorithm that lead to different global properties. The alpha-beta strategy is based on a simple finite-state machine that implements a form of Variable Structure Control (VSC). The VSC system changes the dynamics of the collective system by abruptly switching at defined states to alternative control laws . In VSC, Lyapunov's direct method is often used to design control surfaces which guide the system to a given goal. We introduce the alpha-beta aIgorithm and present an analysis of the equilibrium point and the global stability of the alpha-beta algorithm based on Lyapunov's method.« less
Analysis of decentralized variable structure control for collective search by mobile robots
NASA Astrophysics Data System (ADS)
Goldsmith, Steven Y.; Feddema, John T.; Robinett, Rush D., III
1998-10-01
This paper presents an analysis of a decentralized coordination strategy for organizing and controlling a team of mobile robots performing collective search. The alpha- beta coordination strategy is a family of collective search algorithms that allow teams of communicating robots to implicitly coordinate their search activities through a division of labor based on self-selected roles. In an alpha- beta team, alpha agents are motivated to improve their status by exploring new regions of the search space. Beta agents are conservative, and rely on the alpha agents to provide advanced information on favorable regions of the search space. An agent selects its current role dynamically based on its current status value relative to the current status values of the other team members. Status is determined by some function of the agent's sensor readings, and is generally a measurement of source intensity at the agent's current location. Variations on the decision rules determining alpha and beta behavior produce different versions of the algorithm that lead to different global properties. The alpha-beta strategy is based on a simple finite-state machine that implements a form of Variable Structure Control (VSC). The VSC system changes the dynamics of the collective system by abruptly switching at defined states to alternative control laws. In VSC, Lyapunov's direct method is often used to design control surfaces which guide the system to a given goal. We introduce the alpha- beta algorithm and present an analysis of the equilibrium point and the global stability of the alpha-beta algorithm based on Lyapunov's method.
Robust stability for stochastic bidirectional associative memory neural networks with time delays
NASA Astrophysics Data System (ADS)
Shu, H. S.; Lv, Z. W.; Wei, G. L.
2008-02-01
In this paper, the asymptotic stability is considered for a class of uncertain stochastic bidirectional associative memory neural networks with time delays and parameter uncertainties. The delays are time-invariant and the uncertainties are norm-bounded that enter into all network parameters. The aim of this paper is to establish easily verifiable conditions under which the delayed neural network is robustly asymptotically stable in the mean square for all admissible parameter uncertainties. By employing a Lyapunov-Krasovskii functional and conducting the stochastic analysis, a linear matrix inequality matrix inequality (LMI) approach is developed to derive the stability criteria. The proposed criteria can be easily checked by the Matlab LMI toolbox. A numerical example is given to demonstrate the usefulness of the proposed criteria.
NASA Astrophysics Data System (ADS)
Duong-van, Minh
1993-11-01
A method of controlling chaotic to laminar flows in the Lorenz equations using fixed points dictated by minimizing the Lyapunov functional was proposed by Singer, Wang and Bau. Using different fixed points, we find that the solutions in a chaotic regime can also be periodic. Since the lasers equations are isomorphic to the Lorenz equations, we use this new method to control chaos when the laser is operated over the pump threshold. Furthermore, by solving the laser equations with an occasional proportional feedback mechanism, we recover the essential lasers controlling features experimentally discovered by Roy, Murphy, Jr., Maier, Gills and Hunt. This method of control chaos is now extended to various medical and biological systems.
Adaptive control of an exoskeleton robot with uncertainties on kinematics and dynamics.
Brahmi, Brahim; Saad, Maarouf; Ochoa-Luna, Cristobal; Rahman, Mohammad H
2017-07-01
In this paper, we propose a new adaptive control technique based on nonlinear sliding mode control (JSTDE) taking into account kinematics and dynamics uncertainties. This approach is applied to an exoskeleton robot with uncertain kinematics and dynamics. The adaptation design is based on Time Delay Estimation (TDE). The proposed strategy does not necessitate the well-defined dynamic and kinematic models of the system robot. The updated laws are designed using Lyapunov-function to solve the adaptation problem systematically, proving the close loop stability and ensuring the convergence asymptotically of the outputs tracking errors. Experiments results show the effectiveness and feasibility of JSTDE technique to deal with the variation of the unknown nonlinear dynamics and kinematics of the exoskeleton model.
NASA Astrophysics Data System (ADS)
Sui, Xin; Yang, Yongqing; Xu, Xianyun; Zhang, Shuai; Zhang, Lingzhong
2018-02-01
This paper investigates the consensus of multi-agent systems with probabilistic time-varying delays and packet losses via sampled-data control. On the one hand, a Bernoulli-distributed white sequence is employed to model random packet losses among agents. On the other hand, a switched system is used to describe packet dropouts in a deterministic way. Based on the special property of the Laplacian matrix, the consensus problem can be converted into a stabilization problem of a switched system with lower dimensions. Some mean square consensus criteria are derived in terms of constructing an appropriate Lyapunov function and using linear matrix inequalities (LMIs). Finally, two numerical examples are given to show the effectiveness of the proposed method.
Global stability of a two-mediums rumor spreading model with media coverage
NASA Astrophysics Data System (ADS)
Huo, Liang'an; Wang, Li; Song, Guoxiang
2017-09-01
Rumor spreading is a typical form of social communication and plays a significant role in social life, and media coverage has a great influence on the spread of rumor. In this paper, we present a new model with two media coverage to investigate the impact of the different mediums on rumor spreading. Then, we calculate the equilibria of the model and construct the reproduction number ℜ0. And we prove the global asymptotic stability of equilibria by using Lyapunov functions. Finally, we can conclude that the transition rate of the ignorants between two mediums has a direct effect on the scale of spreaders, and different media coverage has significant effects on the dynamics behaviors of rumor spreading.
Precision pointing of scientific instruments on space station: The LFGGREC perspective
NASA Technical Reports Server (NTRS)
Blackwell, C. C.; Sirlin, S. W.; Laskin, R. A.
1988-01-01
An application of Lyapunov function-gradient-generated robustness-enhancing control (LFGGREC) is explored. The attention is directed to a reduced-complexity representation of the pointing problem presented by the system composed of the Space Infrared Telescope Facility gimbaled to a space station configuration. Uncertainties include disturbance forces applied in the crew compartment area and control moments applied to adjacent scientific payloads (modeled as disturbance moments). Also included are uncertainties in gimbal friction and in the structural component of the system, as reflected in the inertia matrix, the damping matrix, and the stiffness matrix, and the effect of the ignored vibrational dynamics of the structure. The emphasis is on the adaptation of LFGGREC to this particular configuration and on the robustness analysis.
Bounded parametric control of plane motions of space tethered system
NASA Astrophysics Data System (ADS)
Bezglasnyi, S. P.; Mukhametzyanova, A. A.
2018-05-01
This paper is focused on the problem of control of plane motions of a space tethered system (STS). The STS is modeled as a heavy rod with two point masses. Point masses are fixed on the rod. A third point mass can move along the rod. The control is realized as a continuous change of the distance from the centre of mass of the tethered system to the movable mass. New limited control laws processes of excitation and damping are built. Diametric reorientation and gravitational stabilization to the local vertical of an STS were obtained. The problem is solved by the method of Lyapunov's functions of the classical theory of stability. The theoretical results are confirmed by numerical calculations.
NASA Astrophysics Data System (ADS)
Hassan Asemani, Mohammad; Johari Majd, Vahid
2015-12-01
This paper addresses a robust H∞ fuzzy observer-based tracking design problem for uncertain Takagi-Sugeno fuzzy systems with external disturbances. To have a practical observer-based controller, the premise variables of the system are assumed to be not measurable in general, which leads to a more complex design process. The tracker is synthesised based on a fuzzy Lyapunov function approach and non-parallel distributed compensation (non-PDC) scheme. Using the descriptor redundancy approach, the robust stability conditions are derived in the form of strict linear matrix inequalities (LMIs) even in the presence of uncertainties in the system, input, and output matrices simultaneously. Numerical simulations are provided to show the effectiveness of the proposed method.
Tracking control of a marine surface vessel with full-state constraints
NASA Astrophysics Data System (ADS)
Yin, Zhao; He, Wei; Yang, Chenguang
2017-02-01
In this paper, a trajectory tracking control law is proposed for a class of marine surface vessels in the presence of full-state constraints and dynamics uncertainties. A barrier Lyapunov function (BLF) based control is employed to prevent states from violating the constraints. Neural networks are used to approximate the system uncertainties in the control design, and the control law is designed by using the Moore-Penrose inverse. The proposed control is able to compensate for the effects of full-state constraints. Meanwhile, the signals in the closed-loop system are guaranteed to be semiglobally uniformly bounded, with the asymptotic tracking being achieved. Finally, the performance of the proposed control has been tested and verified by simulation studies.
NASA Astrophysics Data System (ADS)
Han, Xiaobao; Li, Huacong; Jia, Qiusheng
2017-12-01
For dynamic decoupling of polynomial linear parameter varying(PLPV) system, a robust dominance pre-compensator design method is given. The parameterized precompensator design problem is converted into an optimal problem constrained with parameterized linear matrix inequalities(PLMI) by using the conception of parameterized Lyapunov function(PLF). To solve the PLMI constrained optimal problem, the precompensator design problem is reduced into a normal convex optimization problem with normal linear matrix inequalities (LMI) constraints on a new constructed convex polyhedron. Moreover, a parameter scheduling pre-compensator is achieved, which satisfies robust performance and decoupling performances. Finally, the feasibility and validity of the robust diagonal dominance pre-compensator design method are verified by the numerical simulation on a turbofan engine PLPV model.
Taheri, Mehdi; Sheikholeslam, Farid; Najafi, Majddedin; Zekri, Maryam
2017-07-01
In this paper, consensus problem is considered for second order multi-agent systems with unknown nonlinear dynamics under undirected graphs. A novel distributed control strategy is suggested for leaderless systems based on adaptive fuzzy wavelet networks. Adaptive fuzzy wavelet networks are employed to compensate for the effect of unknown nonlinear dynamics. Moreover, the proposed method is developed for leader following systems and leader following systems with state time delays. Lyapunov functions are applied to prove uniformly ultimately bounded stability of closed loop systems and to obtain adaptive laws. Three simulation examples are presented to illustrate the effectiveness of the proposed control algorithms. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
DC servomechanism parameter identification: a Closed Loop Input Error approach.
Garrido, Ruben; Miranda, Roger
2012-01-01
This paper presents a Closed Loop Input Error (CLIE) approach for on-line parametric estimation of a continuous-time model of a DC servomechanism functioning in closed loop. A standard Proportional Derivative (PD) position controller stabilizes the loop without requiring knowledge on the servomechanism parameters. The analysis of the identification algorithm takes into account the control law employed for closing the loop. The model contains four parameters that depend on the servo inertia, viscous, and Coulomb friction as well as on a constant disturbance. Lyapunov stability theory permits assessing boundedness of the signals associated to the identification algorithm. Experiments on a laboratory prototype allows evaluating the performance of the approach. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
On Extended Dissipativity of Discrete-Time Neural Networks With Time Delay.
Feng, Zhiguang; Zheng, Wei Xing
2015-12-01
In this brief, the problem of extended dissipativity analysis for discrete-time neural networks with time-varying delay is investigated. The definition of extended dissipativity of discrete-time neural networks is proposed, which unifies several performance measures, such as the H∞ performance, passivity, l2 - l∞ performance, and dissipativity. By introducing a triple-summable term in Lyapunov function, the reciprocally convex approach is utilized to bound the forward difference of the triple-summable term and then the extended dissipativity criterion for discrete-time neural networks with time-varying delay is established. The derived condition guarantees not only the extended dissipativity but also the stability of the neural networks. Two numerical examples are given to demonstrate the reduced conservatism and effectiveness of the obtained results.
A new delay-independent condition for global robust stability of neural networks with time delays.
Samli, Ruya
2015-06-01
This paper studies the problem of robust stability of dynamical neural networks with discrete time delays under the assumptions that the network parameters of the neural system are uncertain and norm-bounded, and the activation functions are slope-bounded. By employing the results of Lyapunov stability theory and matrix theory, new sufficient conditions for the existence, uniqueness and global asymptotic stability of the equilibrium point for delayed neural networks are presented. The results reported in this paper can be easily tested by checking some special properties of symmetric matrices associated with the parameter uncertainties of neural networks. We also present a numerical example to show the effectiveness of the proposed theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cluster synchronization induced by one-node clusters in networks with asymmetric negative couplings
NASA Astrophysics Data System (ADS)
Zhang, Jianbao; Ma, Zhongjun; Zhang, Gang
2013-12-01
This paper deals with the problem of cluster synchronization in networks with asymmetric negative couplings. By decomposing the coupling matrix into three matrices, and employing Lyapunov function method, sufficient conditions are derived for cluster synchronization. The conditions show that the couplings of multi-node clusters from one-node clusters have beneficial effects on cluster synchronization. Based on the effects of the one-node clusters, an effective and universal control scheme is put forward for the first time. The obtained results may help us better understand the relation between cluster synchronization and cluster structures of the networks. The validity of the control scheme is confirmed through two numerical simulations, in a network with no cluster structure and in a scale-free network.
Finite-time stability of neutral-type neural networks with random time-varying delays
NASA Astrophysics Data System (ADS)
Ali, M. Syed; Saravanan, S.; Zhu, Quanxin
2017-11-01
This paper is devoted to the finite-time stability analysis of neutral-type neural networks with random time-varying delays. The randomly time-varying delays are characterised by Bernoulli stochastic variable. This result can be extended to analysis and design for neutral-type neural networks with random time-varying delays. On the basis of this paper, we constructed suitable Lyapunov-Krasovskii functional together and established a set of sufficient linear matrix inequalities approach to guarantee the finite-time stability of the system concerned. By employing the Jensen's inequality, free-weighting matrix method and Wirtinger's double integral inequality, the proposed conditions are derived and two numerical examples are addressed for the effectiveness of the developed techniques.
NASA Astrophysics Data System (ADS)
Liu, Zeyu; Xia, Tiecheng; Wang, Jinbo
2018-03-01
We propose a new fractional two-dimensional triangle function combination discrete chaotic map (2D-TFCDM) with the discrete fractional difference. Moreover, the chaos behaviors of the proposed map are observed and the bifurcation diagrams, the largest Lyapunov exponent plot, and the phase portraits are derived, respectively. Finally, with the secret keys generated by Menezes–Vanstone elliptic curve cryptosystem, we apply the discrete fractional map into color image encryption. After that, the image encryption algorithm is analyzed in four aspects and the result indicates that the proposed algorithm is more superior than the other algorithms. Project supported by the National Natural Science Foundation of China (Grant Nos. 61072147 and 11271008).
Discrete and continuum links to a nonlinear coupled transport problem of interacting populations
NASA Astrophysics Data System (ADS)
Duong, M. H.; Muntean, A.; Richardson, O. M.
2017-07-01
We are interested in exploring interacting particle systems that can be seen as microscopic models for a particular structure of coupled transport flux arising when different populations are jointly evolving. The scenarios we have in mind are inspired by the dynamics of pedestrian flows in open spaces and are intimately connected to cross-diffusion and thermo-diffusion problems holding a variational structure. The tools we use include a suitable structure of the relative entropy controlling TV-norms, the construction of Lyapunov functionals and particular closed-form solutions to nonlinear transport equations, a hydrodynamics limiting procedure due to Philipowski, as well as the construction of numerical approximates to both the continuum limit problem in 2D and to the original interacting particle systems.
Aeroassisted orbital maneuvering using Lyapunov optimal feedback control
NASA Technical Reports Server (NTRS)
Grantham, Walter J.; Lee, Byoung-Soo
1987-01-01
A Liapunov optimal feedback controller incorporating a preferred direction of motion at each state of the system which is opposite to the gradient of a specified descent function is developed for aeroassisted orbital transfer from high-earth orbit to LEO. The performances of the Liapunov controller and a calculus-of-variations open-loop minimum-fuel controller, both of which are based on the 1962 U.S. Standard Atmosphere, are simulated using both the 1962 U.S. Standard Atmosphere and an atmosphere corresponding to the STS-6 Space Shuttle flight. In the STS-6 atmosphere, the calculus-of-variations open-loop controller fails to exit the atmosphere, while the Liapunov controller achieves the optimal minimum-fuel conditions, despite the + or - 40 percent fluctuations in the STS-6 atmosphere.
Sensorless position estimator applied to nonlinear IPMC model
NASA Astrophysics Data System (ADS)
Bernat, Jakub; Kolota, Jakub
2016-11-01
This paper addresses the issue of estimating position for an ionic polymer metal composite (IPMC) known as electro active polymer (EAP). The key step is the construction of a sensorless mode considering only current feedback. This work takes into account nonlinearities caused by electrochemical effects in the material. Owing to the recent observer design technique, the authors obtained both Lyapunov function based estimation law as well as sliding mode observer. To accomplish the observer design, the IPMC model was identified through a series of experiments. The research comprises time domain measurements. The identification process was completed by means of geometric scaling of three test samples. In the proposed design, the estimated position accurately tracks the polymer position, which is illustrated by the experiments.
Yang, Wengui; Yu, Wenwu; Cao, Jinde; Alsaadi, Fuad E; Hayat, Tasawar
2018-02-01
This paper investigates the stability and lag synchronization for memristor-based fuzzy Cohen-Grossberg bidirectional associative memory (BAM) neural networks with mixed delays (asynchronous time delays and continuously distributed delays) and impulses. By applying the inequality analysis technique, homeomorphism theory and some suitable Lyapunov-Krasovskii functionals, some new sufficient conditions for the uniqueness and global exponential stability of equilibrium point are established. Furthermore, we obtain several sufficient criteria concerning globally exponential lag synchronization for the proposed system based on the framework of Filippov solution, differential inclusion theory and control theory. In addition, some examples with numerical simulations are given to illustrate the feasibility and validity of obtained results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sliding mode fault tolerant control dealing with modeling uncertainties and actuator faults.
Wang, Tao; Xie, Wenfang; Zhang, Youmin
2012-05-01
In this paper, two sliding mode control algorithms are developed for nonlinear systems with both modeling uncertainties and actuator faults. The first algorithm is developed under an assumption that the uncertainty bounds are known. Different design parameters are utilized to deal with modeling uncertainties and actuator faults, respectively. The second algorithm is an adaptive version of the first one, which is developed to accommodate uncertainties and faults without utilizing exact bounds information. The stability of the overall control systems is proved by using a Lyapunov function. The effectiveness of the developed algorithms have been verified on a nonlinear longitudinal model of Boeing 747-100/200. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Optimal second order sliding mode control for nonlinear uncertain systems.
Das, Madhulika; Mahanta, Chitralekha
2014-07-01
In this paper, a chattering free optimal second order sliding mode control (OSOSMC) method is proposed to stabilize nonlinear systems affected by uncertainties. The nonlinear optimal control strategy is based on the control Lyapunov function (CLF). For ensuring robustness of the optimal controller in the presence of parametric uncertainty and external disturbances, a sliding mode control scheme is realized by combining an integral and a terminal sliding surface. The resulting second order sliding mode can effectively reduce chattering in the control input. Simulation results confirm the supremacy of the proposed optimal second order sliding mode control over some existing sliding mode controllers in controlling nonlinear systems affected by uncertainty. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Jian; Hu, Qinglei; Xie, Wenbo
2017-11-01
This paper investigates the attitude coordinated tracking control for a group of rigid spacecraft under directed communication topology, in which inertia uncertainties, external disturbances, input saturation and constant time-delays between the formation members are handled. Initially, the nominal system with communication delays is studied. A delay-dependent controller is proposed by using Lyapunov-Krasovskii function and sufficient condition for system stability is derived. Then, an integral sliding manifold is designed and adaptive control approach is employed to deal with the total perturbation. Meanwhile, the boundary layer method is introduced to alleviate the unexpected chattering as system trajectories cross the switching surface. Finally, numerical simulation results are presented to validate the effectiveness and robustness of the proposed control strategy.
Stability analysis for uncertain switched neural networks with time-varying delay.
Shen, Wenwen; Zeng, Zhigang; Wang, Leimin
2016-11-01
In this paper, stability for a class of uncertain switched neural networks with time-varying delay is investigated. By exploring the mode-dependent properties of each subsystem, all the subsystems are categorized into stable and unstable ones. Based on Lyapunov-like function method and average dwell time technique, some delay-dependent sufficient conditions are derived to guarantee the exponential stability of considered uncertain switched neural networks. Compared with general results, our proposed approach distinguishes the stable and unstable subsystems rather than viewing all subsystems as being stable, thus getting less conservative criteria. Finally, two numerical examples are provided to show the validity and the advantages of the obtained results. Copyright © 2016 Elsevier Ltd. All rights reserved.
Switching LPV Control for High Performance Tactical Aircraft
NASA Technical Reports Server (NTRS)
Lu, Bei; Wu, Fen; Kim, SungWan
2004-01-01
This paper examines a switching Linear Parameter-Varying (LPV) control approach to determine if it is practical to use for flight control designs within a wide angle of attack region. The approach is based on multiple parameter-dependent Lyapunov functions. The full parameter space is partitioned into overlapping subspaces and a family of LPV controllers are designed, each suitable for a specific parameter subspace. The hysteresis switching logic is used to accomplish the transition among different parameter subspaces. The proposed switching LPV control scheme is applied to an F-16 aircraft model with different actuator dynamics in low and high angle of attack regions. The nonlinear simulation results show that the aircraft performs well when switching among different angle of attack regions.
Nonlinear dynamics of mini-satellite respinup by weak internal controllable torques
NASA Astrophysics Data System (ADS)
Somov, Yevgeny
2014-12-01
Contemporary space engineering advanced new problem before theoretical mechanics and motion control theory: a spacecraft directed respinup by the weak restricted control internal forces. The paper presents some results on this problem, which is very actual for energy supply of information mini-satellites (for communication, geodesy, radio- and opto-electronic observation of the Earth et al.) with electro-reaction plasma thrusters and gyro moment cluster based on the reaction wheels or the control moment gyros. The solution achieved is based on the methods for synthesis of nonlinear robust control and on rigorous analytical proof for the required spacecraft rotation stability by Lyapunov function method. These results were verified by a computer simulation of strongly nonlinear oscillatory processes at respinuping of a flexible spacecraft.
Characterization of intermittency in renewal processes: Application to earthquakes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akimoto, Takuma; Hasumi, Tomohiro; Aizawa, Yoji
2010-03-15
We construct a one-dimensional piecewise linear intermittent map from the interevent time distribution for a given renewal process. Then, we characterize intermittency by the asymptotic behavior near the indifferent fixed point in the piecewise linear intermittent map. Thus, we provide a framework to understand a unified characterization of intermittency and also present the Lyapunov exponent for renewal processes. This method is applied to the occurrence of earthquakes using the Japan Meteorological Agency and the National Earthquake Information Center catalog. By analyzing the return map of interevent times, we find that interevent times are not independent and identically distributed random variablesmore » but that the conditional probability distribution functions in the tail obey the Weibull distribution.« less
Wang, Min; Ge, Shuzhi Sam; Hong, Keum-Shik
2010-11-01
This paper presents adaptive neural tracking control for a class of non-affine pure-feedback systems with multiple unknown state time-varying delays. To overcome the design difficulty from non-affine structure of pure-feedback system, mean value theorem is exploited to deduce affine appearance of state variables x(i) as virtual controls α(i), and of the actual control u. The separation technique is introduced to decompose unknown functions of all time-varying delayed states into a series of continuous functions of each delayed state. The novel Lyapunov-Krasovskii functionals are employed to compensate for the unknown functions of current delayed state, which is effectively free from any restriction on unknown time-delay functions and overcomes the circular construction of controller caused by the neural approximation of a function of u and [Formula: see text] . Novel continuous functions are introduced to overcome the design difficulty deduced from the use of one adaptive parameter. To achieve uniformly ultimate boundedness of all the signals in the closed-loop system and tracking performance, control gains are effectively modified as a dynamic form with a class of even function, which makes stability analysis be carried out at the present of multiple time-varying delays. Simulation studies are provided to demonstrate the effectiveness of the proposed scheme.
Liu, Zhi; Chen, Ci; Zhang, Yun; Chen, C L P
2015-03-01
To achieve an excellent dual-arm coordination of the humanoid robot, it is essential to deal with the nonlinearities existing in the system dynamics. The literatures so far on the humanoid robot control have a common assumption that the problem of output hysteresis could be ignored. However, in the practical applications, the output hysteresis is widely spread; and its existing limits the motion/force performances of the robotic system. In this paper, an adaptive neural control scheme, which takes the unknown output hysteresis and computational efficiency into account, is presented and investigated. In the controller design, the prior knowledge of system dynamics is assumed to be unknown. The motion error is guaranteed to converge to a small neighborhood of the origin by Lyapunov's stability theory. Simultaneously, the internal force is kept bounded and its error can be made arbitrarily small.
Importance sampling with imperfect cloning for the computation of generalized Lyapunov exponents
NASA Astrophysics Data System (ADS)
Anteneodo, Celia; Camargo, Sabrina; Vallejos, Raúl O.
2017-12-01
We revisit the numerical calculation of generalized Lyapunov exponents, L (q ) , in deterministic dynamical systems. The standard method consists of adding noise to the dynamics in order to use importance sampling algorithms. Then L (q ) is obtained by taking the limit noise-amplitude → 0 after the calculation. We focus on a particular method that involves periodic cloning and pruning of a set of trajectories. However, instead of considering a noisy dynamics, we implement an imperfect (noisy) cloning. This alternative method is compared with the standard one and, when possible, with analytical results. As a workbench we use the asymmetric tent map, the standard map, and a system of coupled symplectic maps. The general conclusion of this study is that the imperfect-cloning method performs as well as the standard one, with the advantage of preserving the deterministic dynamics.
Dynamics of a New 5D Hyperchaotic System of Lorenz Type
NASA Astrophysics Data System (ADS)
Zhang, Fuchen; Chen, Rui; Wang, Xingyuan; Chen, Xiusu; Mu, Chunlai; Liao, Xiaofeng
Ultimate boundedness of chaotic dynamical systems is one of the fundamental concepts in dynamical systems, which plays an important role in investigating the stability of the equilibrium, estimating the Lyapunov dimension of attractors and the Hausdorff dimension of attractors, the existence of periodic solutions, chaos control, chaos synchronization. However, it is often difficult to obtain the bounds of the hyperchaotic systems due to the complex algebraic structure of the hyperchaotic systems. This paper has investigated the boundedness of solutions of a nonlinear hyperchaotic system. We have obtained the global exponential attractive set and the ultimate bound set for this system. To obtain the ellipsoidal ultimate bound, the ultimate bound of the proposed system is theoretically estimated using Lagrange multiplier method, Lyapunov stability theory and optimization theory. To show the ultimate bound region, numerical simulations are provided.
Christman, Stephen D; Weaver, Ryan
2008-05-01
The nature of temporal variability during speeded finger tapping was examined using linear (standard deviation) and non-linear (Lyapunov exponent) measures. Experiment 1 found that right hand tapping was characterised by lower amounts of both linear and non-linear measures of variability than left hand tapping, and that linear and non-linear measures of variability were often negatively correlated with one another. Experiment 2 found that increased non-linear variability was associated with relatively enhanced performance on a closed-loop motor task (mirror tracing) and relatively impaired performance on an open-loop motor task (pointing in a dark room), especially for left hand performance. The potential uses and significance of measures of non-linear variability are discussed.
NASA Astrophysics Data System (ADS)
Liu, Chuang; Ye, Dong; Shi, Keke; Sun, Zhaowei
2017-07-01
A novel improved mixed H2/H∞ control technique combined with poles assignment theory is presented to achieve attitude stabilization and vibration suppression simultaneously for flexible spacecraft in this paper. The flexible spacecraft dynamics system is described and transformed into corresponding state space form. Based on linear matrix inequalities (LMIs) scheme and poles assignment theory, the improved mixed H2/H∞ controller does not restrict the equivalence of the two Lyapunov variables involved in H2 and H∞ performance, which can reduce conservatives compared with traditional mixed H2/H∞ controller. Moreover, it can eliminate the coupling of Lyapunov matrix variables and system matrices by introducing slack variable that provides additional degree of freedom. Several simulations are performed to demonstrate the effectiveness and feasibility of the proposed method in this paper.
Numerical integration and optimization of motions for multibody dynamic systems
NASA Astrophysics Data System (ADS)
Aguilar Mayans, Joan
This thesis considers the optimization and simulation of motions involving rigid body systems. It does so in three distinct parts, with the following topics: optimization and analysis of human high-diving motions, efficient numerical integration of rigid body dynamics with contacts, and motion optimization of a two-link robot arm using Finite-Time Lyapunov Analysis. The first part introduces the concept of eigenpostures, which we use to simulate and analyze human high-diving motions. Eigenpostures are used in two different ways: first, to reduce the complexity of the optimal control problem that we solve to obtain such motions, and second, to generate an eigenposture space to which we map existing real world motions to better analyze them. The benefits of using eigenpostures are showcased through different examples. The second part reviews an extensive list of integration algorithms used for the integration of rigid body dynamics. We analyze the accuracy and stability of the different integrators in the three-dimensional space and the rotation space SO(3). Integrators with an accuracy higher than first order perform more efficiently than integrators with first order accuracy, even in the presence of contacts. The third part uses Finite-time Lyapunov Analysis to optimize motions for a two-link robot arm. Finite-Time Lyapunov Analysis diagnoses the presence of time-scale separation in the dynamics of the optimized motion and provides the information and methodology for obtaining an accurate approximation to the optimal solution, avoiding the complications that timescale separation causes for alternative solution methods.
Fuzzy chaos control for vehicle lateral dynamics based on active suspension system
NASA Astrophysics Data System (ADS)
Huang, Chen; Chen, Long; Jiang, Haobin; Yuan, Chaochun; Xia, Tian
2014-07-01
The existing research of the active suspension system (ASS) mainly focuses on the different evaluation indexes and control strategies. Among the different components, the nonlinear characteristics of practical systems and control are usually not considered for vehicle lateral dynamics. But the vehicle model has some shortages on tyre model with side-slip angle, road adhesion coefficient, vertical load and velocity. In this paper, the nonlinear dynamic model of lateral system is considered and also the adaptive neural network of tire is introduced. By nonlinear analysis methods, such as the bifurcation diagram and Lyapunov exponent, it has shown that the lateral dynamics exhibits complicated motions with the forward speed. Then, a fuzzy control method is applied to the lateral system aiming to convert chaos into periodic motion using the linear-state feedback of an available lateral force with changing tire load. Finally, the rapid control prototyping is built to conduct the real vehicle test. By comparison of time response diagram, phase portraits and Lyapunov exponents at different work conditions, the results on step input and S-shaped road indicate that the slip angle and yaw velocity of lateral dynamics enter into stable domain and the results of test are consistent to the simulation and verified the correctness of simulation. And the Lyapunov exponents of the closed-loop system are becoming from positive to negative. This research proposes a fuzzy control method which has sufficient suppress chaotic motions as an effective active suspension system.
DiBona, G F; Jones, S Y; Sawin, L L
2000-09-01
Nonlinear dynamic analysis was used to examine the chaotic behavior of renal sympathetic nerve activity in conscious rats subjected to either complete baroreceptor denervation (sinoaortic and cardiac baroreceptor denervation) or induction of congestive heart failure (CHF). The peak interval sequence of synchronized renal sympathetic nerve discharge was extracted and used for analysis. In control rats, this yielded a system whose correlation dimension converged to a low value over the embedding dimension range of 10-15 and whose greatest Lyapunov exponent was positive. Complete baroreceptor denervation was associated with a decrease in the correlation dimension of the system (before 2.65 +/- 0.27, after 1.64 +/- 0.17; P < 0.01) and a reduction in chaotic behavior (greatest Lyapunov exponent: 0.201 +/- 0.008 bits/data point before, 0.177 +/- 0.004 bits/data point after, P < 0.02). CHF, a state characterized by impaired sinoaortic and cardiac baroreceptor regulation of renal sympathetic nerve activity, was associated with a similar decrease in the correlation dimension (control 3.41 +/- 0.23, CHF 2.62 +/- 0.26; P < 0.01) and a reduction in chaotic behavior (greatest Lyapunov exponent: 0.205 +/- 0.048 bits/data point control, 0.136 +/- 0.033 bits/data point CHF, P < 0.02). These results indicate that removal of sinoaortic and cardiac baroreceptor regulation of renal sympathetic nerve activity, occurring either physiologically or pathophysiologically, is associated with a decrease in the correlation dimensions of the system and a reduction in chaotic behavior.
Local Stability of the Trunk in Patients with Degenerative Cerebellar Ataxia During Walking.
Chini, Giorgia; Ranavolo, Alberto; Draicchio, Francesco; Casali, Carlo; Conte, Carmela; Martino, Giovanni; Leonardi, Luca; Padua, Luca; Coppola, Gianluca; Pierelli, Francesco; Serrao, Mariano
2017-02-01
This study aims to evaluate trunk local stability in a group of patients with degenerative primary cerebellar ataxia and to correlate it with spatio-temporal parameters, clinical variables, and history of falls. Sixteen patients affected by degenerative cerebellar ataxia and 16 gender- and age-matched healthy adults were studied by means of an inertial sensor to measure trunk kinematics and spatio-temporal parameters during over-ground walking. Trunk local dynamic stability was quantified by the maximum Lyapunov exponent with short data series of the acceleration data. According to this index, low values indicate more stable trunk dynamics, while high values denote less stable trunk dynamics. Disease severity was assessed by means of International Cooperative Ataxia Rating Scale (ICARS) according to which higher values correspond to more severe disease, while lower values correspond to less severe disease.Patients displayed a higher short-term maximum Lyapunov exponent than controls in all three spatial planes, which was correlated with the age, onset of the disease, and history of falls. Furthermore, the maximum Lyapunov exponent was negatively correlated with ICARS balance, ICARS posture, and ICARS total scores.These findings indicate that trunk local stability during gait is lower in patients with cerebellar degenerative ataxia than that in healthy controls and that this may increase the risk of falls. Local dynamic stability of the trunk seems to be an important aspect in patients with ataxia and could be a useful tool in the evaluation of rehabilitative and pharmacological treatment outcomes.
Liu, Derong; Wang, Ding; Wang, Fei-Yue; Li, Hongliang; Yang, Xiong
2014-12-01
In this paper, the infinite horizon optimal robust guaranteed cost control of continuous-time uncertain nonlinear systems is investigated using neural-network-based online solution of Hamilton-Jacobi-Bellman (HJB) equation. By establishing an appropriate bounded function and defining a modified cost function, the optimal robust guaranteed cost control problem is transformed into an optimal control problem. It can be observed that the optimal cost function of the nominal system is nothing but the optimal guaranteed cost of the original uncertain system. A critic neural network is constructed to facilitate the solution of the modified HJB equation corresponding to the nominal system. More importantly, an additional stabilizing term is introduced for helping to verify the stability, which reinforces the updating process of the weight vector and reduces the requirement of an initial stabilizing control. The uniform ultimate boundedness of the closed-loop system is analyzed by using the Lyapunov approach as well. Two simulation examples are provided to verify the effectiveness of the present control approach.
Talaei, Behzad; Jagannathan, Sarangapani; Singler, John
2018-04-01
In this paper, neurodynamic programming-based output feedback boundary control of distributed parameter systems governed by uncertain coupled semilinear parabolic partial differential equations (PDEs) under Neumann or Dirichlet boundary control conditions is introduced. First, Hamilton-Jacobi-Bellman (HJB) equation is formulated in the original PDE domain and the optimal control policy is derived using the value functional as the solution of the HJB equation. Subsequently, a novel observer is developed to estimate the system states given the uncertain nonlinearity in PDE dynamics and measured outputs. Consequently, the suboptimal boundary control policy is obtained by forward-in-time estimation of the value functional using a neural network (NN)-based online approximator and estimated state vector obtained from the NN observer. Novel adaptive tuning laws in continuous time are proposed for learning the value functional online to satisfy the HJB equation along system trajectories while ensuring the closed-loop stability. Local uniformly ultimate boundedness of the closed-loop system is verified by using Lyapunov theory. The performance of the proposed controller is verified via simulation on an unstable coupled diffusion reaction process.
Global exponential stability of octonion-valued neural networks with leakage delay and mixed delays.
Popa, Călin-Adrian
2018-06-08
This paper discusses octonion-valued neural networks (OVNNs) with leakage delay, time-varying delays, and distributed delays, for which the states, weights, and activation functions belong to the normed division algebra of octonions. The octonion algebra is a nonassociative and noncommutative generalization of the complex and quaternion algebras, but does not belong to the category of Clifford algebras, which are associative. In order to avoid the nonassociativity of the octonion algebra and also the noncommutativity of the quaternion algebra, the Cayley-Dickson construction is used to decompose the OVNNs into 4 complex-valued systems. By using appropriate Lyapunov-Krasovskii functionals, with double and triple integral terms, the free weighting matrix method, and simple and double integral Jensen inequalities, delay-dependent criteria are established for the exponential stability of the considered OVNNs. The criteria are given in terms of complex-valued linear matrix inequalities, for two types of Lipschitz conditions which are assumed to be satisfied by the octonion-valued activation functions. Finally, two numerical examples illustrate the feasibility, effectiveness, and correctness of the theoretical results. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sun, Zhijian; Zhang, Guoqing; Lu, Yu; Zhang, Weidong
2018-01-01
This paper studies the leader-follower formation control of underactuated surface vehicles with model uncertainties and environmental disturbances. A parameter estimation and upper bound estimation based sliding mode control scheme is proposed to solve the problem of the unknown plant parameters and environmental disturbances. For each of these leader-follower formation systems, the dynamic equations of position and attitude are analyzed using coordinate transformation with the aid of the backstepping technique. All the variables are guaranteed to be uniformly ultimately bounded stable in the closed-loop system, which is proven by the distribution design Lyapunov function synthesis. The main advantages of this approach are that: first, parameter estimation based sliding mode control can enhance the robustness of the closed-loop system in presence of model uncertainties and environmental disturbances; second, a continuous function is developed to replace the signum function in the design of sliding mode scheme, which devotes to reduce the chattering of the control system. Finally, numerical simulations are given to demonstrate the effectiveness of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
A Lyapunov and Sacker–Sell spectral stability theory for one-step methods
Steyer, Andrew J.; Van Vleck, Erik S.
2018-04-13
Approximation theory for Lyapunov and Sacker–Sell spectra based upon QR techniques is used to analyze the stability of a one-step method solving a time-dependent (nonautonomous) linear ordinary differential equation (ODE) initial value problem in terms of the local error. Integral separation is used to characterize the conditioning of stability spectra calculations. The stability of the numerical solution by a one-step method of a nonautonomous linear ODE using real-valued, scalar, nonautonomous linear test equations is justified. This analysis is used to approximate exponential growth/decay rates on finite and infinite time intervals and establish global error bounds for one-step methods approximating uniformly,more » exponentially stable trajectories of nonautonomous and nonlinear ODEs. A time-dependent stiffness indicator and a one-step method that switches between explicit and implicit Runge–Kutta methods based upon time-dependent stiffness are developed based upon the theoretical results.« less
Lagrangian Coherent Structures, Hyperbolicity, and Lyapunov Exponents
NASA Astrophysics Data System (ADS)
Haller, George
2010-05-01
We review the fundamental physical motivation behind the definition of Lagrangian Coherent Structures (LCS) and show how it leads to the concept of finite-time hyperbolicity in non-autonomous dynamical systems. Using this concept of hyperbolicity, we obtain a self-consistent criterion for the existence of attracting and repelling material surfaces in unsteady fluid flows, such as those in the atmosphere and the ocean. The existence of LCS is often postulated in terms of features of the Finite-Time Lyapunov Exponent (FTLE) field associated with the system. As simple examples show, however, the FTLE field does not necessarily highlight LCS, or may ighlight structures that are not LCS. Under appropriate nondegeneracy conditions, we show that ridges of the FTLE field indeed coincide with LCS in volume-preserving flows. For general flows, we obtain a more general scalar field whose ridges correspond to LCS. We finally review recent applications of LCS techniques to flight safety analysis at Hong Kong International Airport.
NASA Astrophysics Data System (ADS)
Tsionas, Mike G.; Michaelides, Panayotis G.
2017-09-01
We use a novel Bayesian inference procedure for the Lyapunov exponent in the dynamical system of returns and their unobserved volatility. In the dynamical system, computation of largest Lyapunov exponent by traditional methods is impossible as the stochastic nature has to be taken explicitly into account due to unobserved volatility. We apply the new techniques to daily stock return data for a group of six countries, namely USA, UK, Switzerland, Netherlands, Germany and France, from 2003 to 2014, by means of Sequential Monte Carlo for Bayesian inference. The evidence points to the direction that there is indeed noisy chaos both before and after the recent financial crisis. However, when a much simpler model is examined where the interaction between returns and volatility is not taken into consideration jointly, the hypothesis of chaotic dynamics does not receive much support by the data ("neglected chaos").
NASA Astrophysics Data System (ADS)
Guo, Xiaoxiang; Xie, Xie; Ren, Jingli; Laktionova, Marina; Tabachnikova, Elena; Yu, Liping; Cheung, Wing-Sum; Dahmen, Karin A.; Liaw, Peter K.
2017-12-01
This study investigates the plastic behavior of the Al0.5CoCrCuFeNi high-entropy alloy at cryogenic temperatures. The samples are uniaxially compressed at 4.2 K, 7.5 K, and 9 K. A jerky evolution of stress and stair-like fluctuation of strain are observed during plastic deformation. A scaling relationship is detected between the released elastic energy and strain-jump sizes. Furthermore, the dynamical evolution of serrations is characterized by the largest Lyapunov exponent. The largest Lyapunov exponents of the serrations at the three temperatures are all negative, which indicates that the dynamical regime is non-chaotic. This trend reflects an ordered slip process, and this ordered slip process exhibits a more disordered slip process, as the temperature decreases from 9 K to 4.2 K or 7.5 K.
Periodic orbits of solar sail equipped with reflectance control device in Earth-Moon system
NASA Astrophysics Data System (ADS)
Yuan, Jianping; Gao, Chen; Zhang, Junhua
2018-02-01
In this paper, families of Lyapunov and halo orbits are presented with a solar sail equipped with a reflectance control device in the Earth-Moon system. System dynamical model is established considering solar sail acceleration, and four solar sail steering laws and two initial Sun-sail configurations are introduced. The initial natural periodic orbits with suitable periods are firstly identified. Subsequently, families of solar sail Lyapunov and halo orbits around the L1 and L2 points are designed with fixed solar sail characteristic acceleration and varying reflectivity rate and pitching angle by the combination of the modified differential correction method and continuation approach. The linear stabilities of solar sail periodic orbits are investigated, and a nonlinear sliding model controller is designed for station keeping. In addition, orbit transfer between the same family of solar sail orbits is investigated preliminarily to showcase reflectance control device solar sail maneuver capability.