Sample records for common mathematical framework

  1. The Alberta K-9 Mathematics Program of Studies with Achievement Indicators

    ERIC Educational Resources Information Center

    Alberta Education, 2007

    2007-01-01

    The "Alberta K-9 Mathematics Program of Studies with Achievement Indicators" has been derived from "The Common Curriculum Framework for K-9 Mathematics: Western and Northern Canadian Protocol," May 2006 (the Common Curriculum Framework). The program of studies incorporates the conceptual framework for Kindergarten to Grade 9…

  2. Reaching the Mountaintop: Addressing the Common Core Standards in Mathematics for Students with Mathematics Difficulties

    ERIC Educational Resources Information Center

    Powell, Sarah R.; Fuchs, Lynn S.; Fuchs, Doug

    2013-01-01

    The Common Core State Standards provide teachers with a framework of necessary mathematics skills across grades K-12, which vary considerably from previous mathematics standards. In this article, we discuss concerns about the implications of the Common Core for students with mathematics difficulties (MD), given that students with MD, by…

  3. A Framework for Authenticity in the Mathematics and Statistics Classroom

    ERIC Educational Resources Information Center

    Garrett, Lauretta; Huang, Li; Charleton, Maria Calhoun

    2016-01-01

    Authenticity is a term commonly used in reference to pedagogical and curricular qualities of mathematics teaching and learning, but its use lacks a coherent framework. The work of researchers in engineering education provides such a framework. Authentic qualities of mathematics teaching and learning are fit within a model described by Strobel,…

  4. Depth of Teachers' Knowledge: Frameworks for Teachers' Knowledge of Mathematics

    ERIC Educational Resources Information Center

    Holmes, Vicki-Lynn

    2012-01-01

    This article describes seven teacher knowledge frameworks and relates these frameworks to the teaching and assessment of elementary teacher's mathematics knowledge. The frameworks classify teachers' knowledge and provide a vocabulary and common language through which knowledge can be discussed and assessed. These frameworks are categorized into…

  5. Mathematics-Literacy Checklists: A Pedagogical Innovation to Support Teachers as They Implement the Common Core

    ERIC Educational Resources Information Center

    del Prado Hill, Pixita; Friedland, Ellen S.; McMillen, Susan

    2016-01-01

    This article presents two innovative tools--the Mathematics-Literacy Planning Framework and Mathematics-Literacy Implementation Checklist--which are designed to help instructional coaches and specialists support teachers to meet the challenges of the mathematics-literacy integration goals of the Common Core. Developed with teacher input, these…

  6. CCSSM: Teaching in Grades 3 and 4

    ERIC Educational Resources Information Center

    Barlow, Angela T.; Harmon, Shannon

    2012-01-01

    Common Core State Standards for Mathematics (CCSSM) is different from the objectives that many teachers have previously experienced in their state frameworks. Although the mathematical topics of the two may be the same, the mathematical expectations within the Standards require a deeper understanding by teachers and students. In this article, the…

  7. Mathematical Working Spaces through Networking Lens

    ERIC Educational Resources Information Center

    Artigue, Michèle

    2016-01-01

    This issue of "ZDM" collects research works sharing a common reference to the theoretical framework of Mathematical Working Spaces (MWS), a construction which emerged about one decade ago, and has progressively found its way in the mathematics education community, thanks to the collaborative work of an international group of researchers.…

  8. A Study of the Alignment between the NAEP Mathematics Framework and the Common Core State Standards for Mathematics (CCSS-M)

    ERIC Educational Resources Information Center

    Hughes, Gerunda B.; Daro, Phil; Holtzman, Deborah; Middleton, Kyndra

    2013-01-01

    Introduction: For decades, prior to the inception of the Common Core State Standards (CCSS), the National Assessment of Educational Progress (NAEP) was the only vehicle through which states could assess the progress of their students using a common metric. Now, 45 states, 4 U.S. territories, and the District of Columbia have adopted the CCSS to…

  9. A Mathematical Framework for Image Analysis

    DTIC Science & Technology

    1991-08-01

    The results reported here were derived from the research project ’A Mathematical Framework for Image Analysis ’ supported by the Office of Naval...Research, contract N00014-88-K-0289 to Brown University. A common theme for the work reported is the use of probabilistic methods for problems in image ... analysis and image reconstruction. Five areas of research are described: rigid body recognition using a decision tree/combinatorial approach; nonrigid

  10. The Development and Scaling of the easyCBM CCSS Middle School Mathematics Measures. Technical Report #1207

    ERIC Educational Resources Information Center

    Anderson, Daniel; Irvin, P. Shawn; Patarapichayatham, Chalie; Alonzo, Julie; Tindal, Gerald

    2012-01-01

    In the following technical report, we describe the development and scaling of the easyCBM CCSS middle school mathematics measures, designed for use within a response to intervention framework. All items were developed in collaboration with experienced middle school mathematics teachers and were written to align with the Common Core State…

  11. A Framework for Mathematics Graphical Tasks: The Influence of the Graphic Element on Student Sense Making

    ERIC Educational Resources Information Center

    Lowrie, Tom; Diezmann, Carmel M.; Logan, Tracy

    2012-01-01

    Graphical tasks have become a prominent aspect of mathematics assessment. From a conceptual stance, the purpose of this study was to better understand the composition of graphical tasks commonly used to assess students' mathematics understandings. Through an iterative design, the investigation described the sense making of 11-12-year-olds as they…

  12. Prospective elementary teachers' conceptions of multidigit number: exemplifying a replication framework for mathematics education

    NASA Astrophysics Data System (ADS)

    Jacobson, Erik; Simpson, Amber

    2018-04-01

    Replication studies play a critical role in scientific accumulation of knowledge, yet replication studies in mathematics education are rare. In this study, the authors replicated Thanheiser's (Educational Studies in Mathematics 75:241-251, 2010) study of prospective elementary teachers' conceptions of multidigit number and examined the main claim that most elementary pre-service teachers think about digits incorrectly at least some of the time. Results indicated no statistically significant difference in the distribution of conceptions between the original and replication samples and, moreover, no statistically significant differences in the distribution of sub-conceptions among prospective teachers with the most common conception. These results suggest confidence is warranted both in the generality of the main claim and in the utility of the conceptions framework for describing prospective elementary teachers' conceptions of multidigit number. The report further contributes a framework for replication of mathematics education research adapted from the field of psychology.

  13. Research Findings' Impact on the Representation of Proportional Reasoning in Swedish Mathematics Textbooks

    ERIC Educational Resources Information Center

    Ahl, Linda Marie

    2016-01-01

    This article investigates the impact of research findings on the representation of proportional reasoning in two commonly used Swedish mathematics textbook series for grades 7-9. A research-based framework that identifies five learning goals for understanding of proportional reasoning was used to analyse the textbooks. The results brought to…

  14. JSEM: A Framework for Identifying and Evaluating Indicators.

    ERIC Educational Resources Information Center

    Hyman, Jeffrey B.; Leibowitz, Scott G.

    2001-01-01

    Presents an approach to identifying and evaluating combinations of indicators when the mathematical relationships between the indicators and an endpoint may not be quantified, a limitation common to many ecological assessments. Uses the framework of Structural Equation Modeling (SEM), which combines path analysis with measurement model, to…

  15. Quantifying heterogeneity attributable to polythetic diagnostic criteria: theoretical framework and empirical application.

    PubMed

    Olbert, Charles M; Gala, Gary J; Tupler, Larry A

    2014-05-01

    Heterogeneity within psychiatric disorders is both theoretically and practically problematic: For many disorders, it is possible for 2 individuals to share very few or even no symptoms in common yet share the same diagnosis. Polythetic diagnostic criteria have long been recognized to contribute to this heterogeneity, yet no unified theoretical understanding of the coherence of symptom criteria sets currently exists. A general framework for analyzing the logical and mathematical structure, coherence, and diversity of Diagnostic and Statistical Manual diagnostic categories (DSM-5 and DSM-IV-TR) is proposed, drawing from combinatorial mathematics, set theory, and information theory. Theoretical application of this framework to 18 diagnostic categories indicates that in most categories, 2 individuals with the same diagnosis may share no symptoms in common, and that any 2 theoretically possible symptom combinations will share on average less than half their symptoms. Application of this framework to 2 large empirical datasets indicates that patients who meet symptom criteria for major depressive disorder and posttraumatic stress disorder tend to share approximately three-fifths of symptoms in common. For both disorders in each of the datasets, pairs of individuals who shared no common symptoms were observed. Any 2 individuals with either diagnosis were unlikely to exhibit identical symptomatology. The theoretical and empirical results stemming from this approach have substantive implications for etiological research into, and measurement of, psychiatric disorders.

  16. towards a theory-based multi-dimensional framework for assessment in mathematics: The "SEA" framework

    NASA Astrophysics Data System (ADS)

    Anku, Sitsofe E.

    1997-09-01

    Using the reform documents of the National Council of Teachers of Mathematics (NCTM) (NCTM, 1989, 1991, 1995), a theory-based multi-dimensional assessment framework (the "SEA" framework) which should help expand the scope of assessment in mathematics is proposed. This framework uses a context based on mathematical reasoning and has components that comprise mathematical concepts, mathematical procedures, mathematical communication, mathematical problem solving, and mathematical disposition.

  17. A general modeling framework for describing spatially structured population dynamics

    USGS Publications Warehouse

    Sample, Christine; Fryxell, John; Bieri, Joanna; Federico, Paula; Earl, Julia; Wiederholt, Ruscena; Mattsson, Brady; Flockhart, Tyler; Nicol, Sam; Diffendorfer, James E.; Thogmartin, Wayne E.; Erickson, Richard A.; Norris, D. Ryan

    2017-01-01

    Variation in movement across time and space fundamentally shapes the abundance and distribution of populations. Although a variety of approaches model structured population dynamics, they are limited to specific types of spatially structured populations and lack a unifying framework. Here, we propose a unified network-based framework sufficiently novel in its flexibility to capture a wide variety of spatiotemporal processes including metapopulations and a range of migratory patterns. It can accommodate different kinds of age structures, forms of population growth, dispersal, nomadism and migration, and alternative life-history strategies. Our objective was to link three general elements common to all spatially structured populations (space, time and movement) under a single mathematical framework. To do this, we adopt a network modeling approach. The spatial structure of a population is represented by a weighted and directed network. Each node and each edge has a set of attributes which vary through time. The dynamics of our network-based population is modeled with discrete time steps. Using both theoretical and real-world examples, we show how common elements recur across species with disparate movement strategies and how they can be combined under a unified mathematical framework. We illustrate how metapopulations, various migratory patterns, and nomadism can be represented with this modeling approach. We also apply our network-based framework to four organisms spanning a wide range of life histories, movement patterns, and carrying capacities. General computer code to implement our framework is provided, which can be applied to almost any spatially structured population. This framework contributes to our theoretical understanding of population dynamics and has practical management applications, including understanding the impact of perturbations on population size, distribution, and movement patterns. By working within a common framework, there is less chance that comparative analyses are colored by model details rather than general principles

  18. Mathematical Models of Breast and Ovarian Cancers

    PubMed Central

    Botesteanu, Dana-Adriana; Lipkowitz, Stanley; Lee, Jung-Min; Levy, Doron

    2016-01-01

    Women constitute the majority of the aging United States (US) population, and this has substantial implications on cancer population patterns and management practices. Breast cancer is the most common women's malignancy, while ovarian cancer is the most fatal gynecological malignancy in the US. In this review we focus on these subsets of women's cancers, seen more commonly in postmenopausal and elderly women. In order to systematically investigate the complexity of cancer progression and response to treatment in breast and ovarian malignancies, we assert that integrated mathematical modeling frameworks viewed from a systems biology perspective are needed. Such integrated frameworks could offer innovative contributions to the clinical women's cancers community, since answers to clinical questions cannot always be reached with contemporary clinical and experimental tools. Here, we recapitulate clinically known data regarding the progression and treatment of the breast and ovarian cancers. We compare and contrast the two malignancies whenever possible, in order to emphasize areas where substantial contributions could be made by clinically inspired and validated mathematical modeling. We show how current paradigms in the mathematical oncology community focusing on the two malignancies do not make comprehensive use of, nor substantially reflect existing clinical data, and we highlight the modeling areas in most critical need of clinical data integration. We emphasize that the primary goal of any mathematical study of women's cancers should be to address clinically relevant questions. PMID:27259061

  19. Neuromorphic log-domain silicon synapse circuits obey bernoulli dynamics: a unifying tutorial analysis

    PubMed Central

    Papadimitriou, Konstantinos I.; Liu, Shih-Chii; Indiveri, Giacomo; Drakakis, Emmanuel M.

    2014-01-01

    The field of neuromorphic silicon synapse circuits is revisited and a parsimonious mathematical framework able to describe the dynamics of this class of log-domain circuits in the aggregate and in a systematic manner is proposed. Starting from the Bernoulli Cell Formalism (BCF), originally formulated for the modular synthesis and analysis of externally linear, time-invariant logarithmic filters, and by means of the identification of new types of Bernoulli Cell (BC) operators presented here, a generalized formalism (GBCF) is established. The expanded formalism covers two new possible and practical combinations of a MOS transistor (MOST) and a linear capacitor. The corresponding mathematical relations codifying each case are presented and discussed through the tutorial treatment of three well-known transistor-level examples of log-domain neuromorphic silicon synapses. The proposed mathematical tool unifies past analysis approaches of the same circuits under a common theoretical framework. The speed advantage of the proposed mathematical framework as an analysis tool is also demonstrated by a compelling comparative circuit analysis example of high order, where the GBCF and another well-known log-domain circuit analysis method are used for the determination of the input-output transfer function of the high (4th) order topology. PMID:25653579

  20. Neuromorphic log-domain silicon synapse circuits obey bernoulli dynamics: a unifying tutorial analysis.

    PubMed

    Papadimitriou, Konstantinos I; Liu, Shih-Chii; Indiveri, Giacomo; Drakakis, Emmanuel M

    2014-01-01

    The field of neuromorphic silicon synapse circuits is revisited and a parsimonious mathematical framework able to describe the dynamics of this class of log-domain circuits in the aggregate and in a systematic manner is proposed. Starting from the Bernoulli Cell Formalism (BCF), originally formulated for the modular synthesis and analysis of externally linear, time-invariant logarithmic filters, and by means of the identification of new types of Bernoulli Cell (BC) operators presented here, a generalized formalism (GBCF) is established. The expanded formalism covers two new possible and practical combinations of a MOS transistor (MOST) and a linear capacitor. The corresponding mathematical relations codifying each case are presented and discussed through the tutorial treatment of three well-known transistor-level examples of log-domain neuromorphic silicon synapses. The proposed mathematical tool unifies past analysis approaches of the same circuits under a common theoretical framework. The speed advantage of the proposed mathematical framework as an analysis tool is also demonstrated by a compelling comparative circuit analysis example of high order, where the GBCF and another well-known log-domain circuit analysis method are used for the determination of the input-output transfer function of the high (4(th)) order topology.

  1. A phase space model of Fourier ptychographic microscopy

    PubMed Central

    Horstmeyer, Roarke; Yang, Changhuei

    2014-01-01

    A new computational imaging technique, termed Fourier ptychographic microscopy (FPM), uses a sequence of low-resolution images captured under varied illumination to iteratively converge upon a high-resolution complex sample estimate. Here, we propose a mathematical model of FPM that explicitly connects its operation to conventional ptychography, a common procedure applied to electron and X-ray diffractive imaging. Our mathematical framework demonstrates that under ideal illumination conditions, conventional ptychography and FPM both produce datasets that are mathematically linked by a linear transformation. We hope this finding encourages the future cross-pollination of ideas between two otherwise unconnected experimental imaging procedures. In addition, the coherence state of the illumination source used by each imaging platform is critical to successful operation, yet currently not well understood. We apply our mathematical framework to demonstrate that partial coherence uniquely alters both conventional ptychography’s and FPM’s captured data, but up to a certain threshold can still lead to accurate resolution-enhanced imaging through appropriate computational post-processing. We verify this theoretical finding through simulation and experiment. PMID:24514995

  2. How Business Leaders Can Support College and Career-Readiness: Staying the Course on Common Core. White Paper

    ERIC Educational Resources Information Center

    Meyer, Lori

    2014-01-01

    For the first time in the nation's history, a majority of students in the United States are learning based on a common set of standards for mathematics and English language arts (ELA) that will prepare them for the demands of the 21st century. The Common Core State Standards (CCSS) provide a clear, consistent framework for what students should…

  3. Common foundations of optimal control across the sciences: evidence of a free lunch

    NASA Astrophysics Data System (ADS)

    Russell, Benjamin; Rabitz, Herschel

    2017-03-01

    A common goal in the sciences is optimization of an objective function by selecting control variables such that a desired outcome is achieved. This scenario can be expressed in terms of a control landscape of an objective considered as a function of the control variables. At the most basic level, it is known that the vast majority of quantum control landscapes possess no traps, whose presence would hinder reaching the objective. This paper reviews and extends the quantum control landscape assessment, presenting evidence that the same highly favourable landscape features exist in many other domains of science. The implications of this broader evidence are discussed. Specifically, control landscape examples from quantum mechanics, chemistry and evolutionary biology are presented. Despite the obvious differences, commonalities between these areas are highlighted within a unified mathematical framework. This mathematical framework is driven by the wide-ranging experimental evidence on the ease of finding optimal controls (in terms of the required algorithmic search effort beyond the laboratory set-up overhead). The full scope and implications of this observed common control behaviour pose an open question for assessment in further work. This article is part of the themed issue 'Horizons of cybernetical physics'.

  4. Property-Based Software Engineering Measurement

    NASA Technical Reports Server (NTRS)

    Briand, Lionel; Morasca, Sandro; Basili, Victor R.

    1995-01-01

    Little theory exists in the field of software system measurement. Concepts such as complexity, coupling, cohesion or even size are very often subject to interpretation and appear to have inconsistent definitions in the literature. As a consequence, there is little guidance provided to the analyst attempting to define proper measures for specific problems. Many controversies in the literature are simply misunderstandings and stem from the fact that some people talk about different measurement concepts under the same label (complexity is the most common case). There is a need to define unambiguously the most important measurement concepts used in the measurement of software products. One way of doing so is to define precisely what mathematical properties characterize these concepts regardless of the specific software artifacts to which these concepts are applied. Such a mathematical framework could generate a consensus in the software engineering community and provide a means for better communication among researchers, better guidelines for analysis, and better evaluation methods for commercial static analyzers for practitioners. In this paper, we propose a mathematical framework which is generic, because it is not specific to any particular software artifact, and rigorous, because it is based on precise mathematical concepts. This framework defines several important measurement concepts (size, length, complexity, cohesion, coupling). It is not intended to be complete or fully objective; other frameworks could have been proposed and different choices could have been made. However, we believe that the formalism and properties we introduce are convenient and intuitive. In addition, we have reviewed the literature on this subject and compared it with our work. This framework contributes constructively to a firmer theoretical ground of software measurement.

  5. Property-Based Software Engineering Measurement

    NASA Technical Reports Server (NTRS)

    Briand, Lionel C.; Morasca, Sandro; Basili, Victor R.

    1997-01-01

    Little theory exists in the field of software system measurement. Concepts such as complexity, coupling, cohesion or even size are very often subject to interpretation and appear to have inconsistent definitions in the literature. As a consequence, there is little guidance provided to the analyst attempting to define proper measures for specific problems. Many controversies in the literature are simply misunderstandings and stem from the fact that some people talk about different measurement concepts under the same label (complexity is the most common case). There is a need to define unambiguously the most important measurement concepts used in the measurement of software products. One way of doing so is to define precisely what mathematical properties characterize these concepts, regardless of the specific software artifacts to which these concepts are applied. Such a mathematical framework could generate a consensus in the software engineering community and provide a means for better communication among researchers, better guidelines for analysts, and better evaluation methods for commercial static analyzers for practitioners. In this paper, we propose a mathematical framework which is generic, because it is not specific to any particular software artifact and rigorous, because it is based on precise mathematical concepts. We use this framework to propose definitions of several important measurement concepts (size, length, complexity, cohesion, coupling). It does not intend to be complete or fully objective; other frameworks could have been proposed and different choices could have been made. However, we believe that the formalisms and properties we introduce are convenient and intuitive. This framework contributes constructively to a firmer theoretical ground of software measurement.

  6. A Categorization Model for Educational Values of the History of Mathematics. An Empirical Study

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-qin; Qi, Chun-yan; Wang, Ke

    2017-11-01

    There is not a clear consensus on the categorization framework of the educational values of the history of mathematics. By analyzing 20 Chinese teaching cases on integrating the history of mathematics into mathematics teaching based on the relevant literature, this study examined a new categorization framework of the educational values of the history of mathematics by combining the objectives of high school mathematics curriculum in China. This framework includes six dimensions: the harmony of knowledge, the beauty of ideas or methods, the pleasure of inquiries, the improvement of capabilities, the charm of cultures, and the availability of moral education. The results show that this framework better explained the all-educational values of the history of mathematics that all teaching cases showed. Therefore, the framework can guide teachers to better integrate the history of mathematics into teaching.

  7. A Framework for Examining Teachers' Noticing of Mathematical Cognitive Technologies

    ERIC Educational Resources Information Center

    Smith, Ryan; Shin, Dongjo; Kim, Somin

    2017-01-01

    In this paper, we propose the mathematical cognitive technology noticing framework for examining how mathematics teachers evaluate, select, and modify mathematical cognitive technology to use in their classrooms. Our framework is based on studies of professional and curricular noticing and data collected in a study that explored how secondary…

  8. Automatic Item Generation of Probability Word Problems

    ERIC Educational Resources Information Center

    Holling, Heinz; Bertling, Jonas P.; Zeuch, Nina

    2009-01-01

    Mathematical word problems represent a common item format for assessing student competencies. Automatic item generation (AIG) is an effective way of constructing many items with predictable difficulties, based on a set of predefined task parameters. The current study presents a framework for the automatic generation of probability word problems…

  9. The Development of a Professional Statistics Teaching Identity

    ERIC Educational Resources Information Center

    Whitaker, Douglas

    2016-01-01

    Motivated by the increased statistics expectations for students and their teachers because of the widespread adoption of the Common Core State Standards for Mathematics, this study explores exemplary, in-service statistics teachers' professional identities using a theoretical framework informed by Gee (2000) and communities of practice (Lave &…

  10. Measuring the Mathematical Quality of Instruction

    ERIC Educational Resources Information Center

    Journal of Mathematics Teacher Education, 2011

    2011-01-01

    In this article, we describe a framework and instrument for measuring the mathematical quality of mathematics instruction. In describing this framework, we argue for the separation of the "mathematical quality of instruction" (MQI), such as the absence of mathematical errors and the presence of sound mathematical reasoning, from pedagogical…

  11. Massachusetts Adult Basic Education Curriculum Framework for Mathematics and Numeracy

    ERIC Educational Resources Information Center

    Massachusetts Department of Education, 2005

    2005-01-01

    Over the past number of years, several initiatives have set the stage for writing the Massachusetts ABE (Adult Basic Education) Curriculum Frameworks for Mathematics and Numeracy. This current version of the "Massachusetts ABE Mathematics Curriculum Frameworks" is a second revision of that first framework, but it is heavily influenced by…

  12. Protocol Analysis of Group Problem Solving in Mathematics: A Cognitive-Metacognitive Framework for Assessment.

    ERIC Educational Resources Information Center

    Artzt, Alice F.; Armour-Thomas, Eleanor

    The roles of cognition and metacognition were examined in the mathematical problem-solving behaviors of students as they worked in small groups. As an outcome, a framework that links the literature of cognitive science and mathematical problem solving was developed for protocol analysis of mathematical problem solving. Within this framework, each…

  13. STATISTICAL ESTIMATES OF VARIANCE FOR 15N ISOTOPE DILUTION MEASUREMENTS OF GROSS RATES OF NITROGEN CYCLE PROCESSES

    EPA Science Inventory

    It has been fifty years since Kirkham and Bartholmew (1954) presented the conceptual framework and derived the mathematical equations that formed the basis of the now commonly employed method of 15N isotope dilution. Although many advances in methodology and analysis have been ma...

  14. Criticising with Foucault: Towards a Guiding Framework for Socio-Political Studies in Mathematics Education

    ERIC Educational Resources Information Center

    Kollosche, David

    2016-01-01

    Socio-political studies in mathematics education often touch complex fields of interaction between education, mathematics and the political. In this paper I present a Foucault-based framework for socio-political studies in mathematics education which may guide research in that area. In order to show the potential of such a framework, I discuss the…

  15. Enhancing student engagement to positively impact mathematics anxiety, confidence and achievement for interdisciplinary science subjects

    NASA Astrophysics Data System (ADS)

    Everingham, Yvette L.; Gyuris, Emma; Connolly, Sean R.

    2017-11-01

    Contemporary science educators must equip their students with the knowledge and practical know-how to connect multiple disciplines like mathematics, computing and the natural sciences to gain a richer and deeper understanding of a scientific problem. However, many biology and earth science students are prejudiced against mathematics due to negative emotions like high mathematical anxiety and low mathematical confidence. Here, we present a theoretical framework that investigates linkages between student engagement, mathematical anxiety, mathematical confidence, student achievement and subject mastery. We implement this framework in a large, first-year interdisciplinary science subject and monitor its impact over several years from 2010 to 2015. The implementation of the framework coincided with an easing of anxiety and enhanced confidence, as well as higher student satisfaction, retention and achievement. The framework offers interdisciplinary science educators greater flexibility and confidence in their approach to designing and delivering subjects that rely on mathematical concepts and practices.

  16. Valuing hydrological alteration in multi-objective water resources management

    NASA Astrophysics Data System (ADS)

    Bizzi, Simone; Pianosi, Francesca; Soncini-Sessa, Rodolfo

    2012-11-01

    SummaryThe management of water through the impoundment of rivers by dams and reservoirs is necessary to support key human activities such as hydropower production, agriculture and flood risk mitigation. Advances in multi-objective optimization techniques and ever growing computing power make it possible to design reservoir operating policies that represent Pareto-optimal tradeoffs between multiple interests. On the one hand, such optimization methods can enhance performances of commonly targeted objectives (such as hydropower production or water supply), on the other hand they risk strongly penalizing all the interests not directly (i.e. mathematically) included in the optimization algorithm. The alteration of the downstream hydrological regime is a well established cause of ecological degradation and its evaluation and rehabilitation is commonly required by recent legislation (as the Water Framework Directive in Europe). However, it is rarely embedded in reservoir optimization routines and, even when explicitly considered, the criteria adopted for its evaluation are doubted and not commonly trusted, undermining the possibility of real implementation of environmentally friendly policies. The main challenges in defining and assessing hydrological alterations are: how to define a reference state (referencing); how to define criteria upon which to build mathematical indicators of alteration (measuring); and finally how to aggregate the indicators in a single evaluation index (valuing) that can serve as objective function in the optimization problem. This paper aims to address these issues by: (i) discussing the benefits and constrains of different approaches to referencing, measuring and valuing hydrological alteration; (ii) testing two alternative indices of hydrological alteration, one based on the established framework of Indicators of Hydrological Alteration (Richter et al., 1996), and one satisfying the mathematical properties required by widely used optimization methods based on dynamic programming; (iii) demonstrating and discussing these indices by application River Ticino, in Italy; (iv) providing a framework to effectively include hydrological alteration within reservoir operation optimization.

  17. TIMSS Advanced 2008 Assessment Frameworks

    ERIC Educational Resources Information Center

    Garden, Robert A.; Lie, Svein; Robitaille, David F.; Angell, Carl; Martin, Michael O.; Mullis, Ina V.S.; Foy, Pierre; Arora, Alka

    2006-01-01

    Developing the Trends in International Mathematics and Science Study (TIMSS) Advanced 2008 Assessment Frameworks was a collaborative venture involving mathematics and physics experts from around the world. The document contains two frameworks for implementing TIMSS Advanced 2008--one for advanced mathematics and one for physics. It also contains…

  18. A Framework for Examining How Mathematics Teachers Evaluate Technology

    ERIC Educational Resources Information Center

    Smith, Ryan C.; Shin, Dongjo; Kim, Somin

    2016-01-01

    Our mathematics cognitive technology noticing framework is based on professional noticing and curricular noticing frameworks and data collected in a study that explored how secondary mathematics teachers evaluate technology. Our participants displayed three categories of noticing: attention to features of technology, interpretation of the…

  19. Communicational Perspectives on Learning and Teaching Mathematics: Prologue

    ERIC Educational Resources Information Center

    Tabach, Michal; Nachlieli, Talli

    2016-01-01

    This special issue comprises five studies which vary in their focus and mathematical content, yet they all share an underlying communicational theoretical framework--commognition. Within this framework, learning mathematics is defined as a change in one's mathematical discourse, that is, in the form of communication known as mathematical. Teaching…

  20. Science, Engineering, Mathematics and Aerospace Academy

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Science, Engineering, Mathematics and Aerospace Academy (SEMAA) was established in September, 1993, by Cuyahoga Community College and the NASA Lewis Research Center. Funding for SEMAA was provided by NASA Headquarters' Office of Equal Employment Opportunities. SEMAA brought together five preexisting youth programs at Cuyahoga Community College. All the programs shared the common goals of 1) Increasing the participation of underrepresented/underserved groups in science, mathematics and engineering and technology careers. 2) Increasing "success" rates of all students interested in science and mathematics. 3) Developing partnerships to recognize and support students interested in these fields. 4) Supporting continued success of highly successful students. The framework for each preexisting program allowed SEMAA to have a student population ranging from kindergarten through the twelfth-grade. This connectivness was the foundation for the many decisions which would make SEMAA a truly innovative program.

  1. Metacognition, Positioning and Emotions in Mathematical Activities

    ERIC Educational Resources Information Center

    Daher, Wajeeh; Anabousy, Ahlam; Jabarin, Roqaya

    2018-01-01

    Researchers of mathematics education have been paying attention to the affective aspect of learning mathematics for more than one decade. Different theoretical frameworks have been suggested to analyze this aspect, where we utilize in the present research the discursive framework of Evans, Morgan and Tsatsaroni. This framework enables to link…

  2. The Dependence on Mathematical Theory in TIMSS, PISA and TIMSS Advanced Test Items and Its Relation to Student Achievement

    ERIC Educational Resources Information Center

    Hole, Arne; Grønmo, Liv Sissel; Onstad, Torgeir

    2018-01-01

    Background: This paper discusses a framework for analyzing the dependence on mathematical theory in test items, that is, a framework for discussing to what extent knowledge of mathematical theory is helpful for the student in solving the item. The framework can be applied to any test in which some knowledge of mathematical theory may be useful,…

  3. Multiphysics Simulations: Challenges and Opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keyes, David; McInnes, Lois C.; Woodward, Carol

    2013-02-12

    We consider multiphysics applications from algorithmic and architectural perspectives, where ‘‘algorithmic’’ includes both mathematical analysis and computational complexity, and ‘‘architectural’’ includes both software and hardware environments. Many diverse multiphysics applications can be reduced, en route to their computational simulation, to a common algebraic coupling paradigm. Mathematical analysis of multiphysics coupling in this form is not always practical for realistic applications, but model problems representative of applications discussed herein can provide insight. A variety of software frameworks for multiphysics applications have been constructed and refined within disciplinary communities and executed on leading-edge computer systems. We examine several of these, expose somemore » commonalities among them, and attempt to extrapolate best practices to future systems. From our study, we summarize challenges and forecast opportunities.« less

  4. A Reconceptualized Framework for "Opportunity to Learn" in School Mathematics

    ERIC Educational Resources Information Center

    Walkowiak, Temple A.; Pinter, Holly H.; Berry, Robert Q.

    2017-01-01

    We present a reconceptualized framework for opportunity to learn (OTL) in school mathematics that builds on previous conceptualizations of OTL and includes features related to both quantity (i.e., time) and quality. Our framework draws on existing literature and on our own observational research of mathematics teaching practices. Through the…

  5. TIMSS 2007 Assessment Frameworks

    ERIC Educational Resources Information Center

    Mullis, Ina V. S.; Martin, Michael O.; Ruddock, Graham J.; O'Sullivan, Christine Y.; Arora, Alka; Erberber, Ebru

    2005-01-01

    Developing the Trends in International Mathematics and Science Study (TIMSS) 2007 Assessment Frameworks represents an extensive collaborative effort involving individuals and expert groups from more than 60 countries around the world. The document contains three frameworks for implementing TIMSS 2007--the Mathematics Framework, the Science…

  6. A cognitive framework for analyzing and describing introductory students' use and understanding of mathematics in physics

    NASA Astrophysics Data System (ADS)

    Tuminaro, Jonathan

    Many introductory, algebra-based physics students perform poorly on mathematical problem solving tasks in physics. There are at least two possible, distinct reasons for this poor performance: (1) students simply lack the mathematical skills needed to solve problems in physics, or (2) students do not know how to apply the mathematical skills they have to particular problem situations in physics. While many students do lack the requisite mathematical skills, a major finding from this work is that the majority of students possess the requisite mathematical skills, yet fail to use or interpret them in the context of physics. In this thesis I propose a theoretical framework to analyze and describe students' mathematical thinking in physics. In particular, I attempt to answer two questions. What are the cognitive tools involved in formal mathematical thinking in physics? And, why do students make the kinds of mistakes they do when using mathematics in physics? According to the proposed theoretical framework there are three major theoretical constructs: mathematical resources, which are the knowledge elements that are activated in mathematical thinking and problem solving; epistemic games, which are patterns of activities that use particular kinds of knowledge to create new knowledge or solve a problem; and frames, which are structures of expectations that determine how individuals interpret situations or events. The empirical basis for this study comes from videotaped sessions of college students solving homework problems. The students are enrolled in an algebra-based introductory physics course. The videotapes were transcribed and analyzed using the aforementioned theoretical framework. Two important results from this work are: (1) the construction of a theoretical framework that offers researchers a vocabulary (ontological classification of cognitive structures) and grammar (relationship between the cognitive structures) for understanding the nature and origin of mathematical use in the context physics, and (2) a detailed understanding, in terms of the proposed theoretical framework, of the errors that students make when using mathematics in the context of physics.

  7. Mathematical Problem Solving Ability of Junior High School Students through Ang’s Framework for Mathematical Modelling Instruction

    NASA Astrophysics Data System (ADS)

    Fasni, N.; Turmudi, T.; Kusnandi, K.

    2017-09-01

    This research background of this research is the importance of student problem solving abilities. The purpose of this study is to find out whether there are differences in the ability to solve mathematical problems between students who have learned mathematics using Ang’s Framework for Mathematical Modelling Instruction (AFFMMI) and students who have learned using scientific approach (SA). The method used in this research is a quasi-experimental method with pretest-postest control group design. Data analysis of mathematical problem solving ability using Indepent Sample Test. The results showed that there was a difference in the ability to solve mathematical problems between students who received learning with Ang’s Framework for Mathematical Modelling Instruction and students who received learning with a scientific approach. AFFMMI focuses on mathematical modeling. This modeling allows students to solve problems. The use of AFFMMI is able to improve the solving ability.

  8. Improving English Language Arts and Mathematics Teachers' Capabilities for Teaching Integrated Information Literacy Skills

    ERIC Educational Resources Information Center

    Ballard, Kevin

    2013-01-01

    Teachers in a large Illinois suburban school district will soon have to integrate the teaching of the Common Core State Standards into their content classes and may not feel prepared to do this effectively. Stephenson's definition of capability was used as the conceptual framework for this study, which holds that capable teachers are those who…

  9. Teachers' Use of a Pedagogical Framework for Improvement in Mathematics Teaching: Case Studies from YuMi Deadly Maths

    ERIC Educational Resources Information Center

    Carter, Merilyn; Cooper, Tom; Anderson, Robyn

    2016-01-01

    This paper describes the pedagogical framework used by YuMi Deadly Maths, a school change process used to improve mathematics teaching and thus enhance employment and life chances for socially disadvantaged students. The framework, called the RAMR cycle, is capable of being used by mathematics teachers for planning and delivering lessons and units…

  10. How Do Mathematicians Learn Math?: Resources and Acts for Constructing and Understanding Mathematics

    ERIC Educational Resources Information Center

    Wilkerson-Jerde, Michelle H.; Wilensky, Uri J.

    2011-01-01

    In this paper, we present an analytic framework for investigating expert mathematical learning as the process of building a "network of mathematical resources" by establishing relationships between different components and properties of mathematical ideas. We then use this framework to analyze the reasoning of ten mathematicians and mathematics…

  11. A Framework for Describing Mathematics Discourse in Instruction and Interpreting Differences in Teaching

    ERIC Educational Resources Information Center

    Adler, Jill; Ronda, Erlina

    2015-01-01

    We describe and use an analytical framework to document mathematics discourse in instruction (MDI), and interpret differences in mathematics teaching. MDI is characterised by four interacting components in the teaching of a mathematics lesson: exemplification (occurring through a sequence of examples and related tasks), explanatory talk (talk that…

  12. Growth in Mathematical Understanding While Learning How To Teach: A Theoretical Perspective.

    ERIC Educational Resources Information Center

    Cavey, Laurie O.

    This theoretical paper outlines a conceptual framework for examining growth in prospective teachers' mathematical understanding as they engage in thinking about and planning for the mathematical learning of others. The framework is based on the Pirie-Kieren (1994) Dynamical Theory for the Growth of Mathematical Understanding and extends into the…

  13. RT-18: Value of Flexibility. Phase 1

    DTIC Science & Technology

    2010-09-25

    an analytical framework based on sound mathematical constructs. A review of the current state-of-the-art showed that there is little unifying theory...framework that is mathematically consistent, domain independent and applicable under varying information levels. This report presents our advances in...During this period, we also explored the development of an analytical framework based on sound mathematical constructs. A review of the current state

  14. Unraveling the Mystery of the Origin of Mathematical Problems: Using a Problem-Posing Framework with Prospective Mathematics Teachers

    ERIC Educational Resources Information Center

    Contreras, Jose

    2007-01-01

    In this article, I model how a problem-posing framework can be used to enhance our abilities to systematically generate mathematical problems by modifying the attributes of a given problem. The problem-posing model calls for the application of the following fundamental mathematical processes: proving, reversing, specializing, generalizing, and…

  15. A Framework for Proofs and Refutations in School Mathematics: Increasing Content by Deductive Guessing

    ERIC Educational Resources Information Center

    Komatsu, Kotaro

    2016-01-01

    The process of proofs and refutations described by Lakatos is essential in school mathematics to provide students with an opportunity to experience how mathematical knowledge develops dynamically within the discipline of mathematics. In this paper, a framework for describing student processes of proofs and refutations is constructed using a set of…

  16. A Categorization Model for Educational Values of the History of Mathematics: An Empirical Study

    ERIC Educational Resources Information Center

    Wang, Xiao-qin; Qi, Chun-yan; Wang, Ke

    2017-01-01

    There is not a clear consensus on the categorization framework of the educational values of the history of mathematics. By analyzing 20 Chinese teaching cases on integrating the history of mathematics into mathematics teaching based on the relevant literature, this study examined a new categorization framework of the educational values of the…

  17. A Method for Evaluating Information Security Governance (ISG) Components in Banking Environment

    NASA Astrophysics Data System (ADS)

    Ula, M.; Ula, M.; Fuadi, W.

    2017-02-01

    As modern banking increasingly relies on the internet and computer technologies to operate their businesses and market interactions, the threats and security breaches have highly increased in recent years. Insider and outsider attacks have caused global businesses lost trillions of Dollars a year. Therefore, that is a need for a proper framework to govern the information security in the banking system. The aim of this research is to propose and design an enhanced method to evaluate information security governance (ISG) implementation in banking environment. This research examines and compares the elements from the commonly used information security governance frameworks, standards and best practices. Their strength and weakness are considered in its approaches. The initial framework for governing the information security in banking system was constructed from document review. The framework was categorized into three levels which are Governance level, Managerial level, and technical level. The study further conducts an online survey for banking security professionals to get their professional judgment about the ISG most critical components and the importance for each ISG component that should be implemented in banking environment. Data from the survey was used to construct a mathematical model for ISG evaluation, component importance data used as weighting coefficient for the related component in the mathematical model. The research further develops a method for evaluating ISG implementation in banking based on the mathematical model. The proposed method was tested through real bank case study in an Indonesian local bank. The study evidently proves that the proposed method has sufficient coverage of ISG in banking environment and effectively evaluates the ISG implementation in banking environment.

  18. ELPSA as a Lesson Design Framework

    ERIC Educational Resources Information Center

    Lowrie, Tom; Patahuddin, Sitti Maesuri

    2015-01-01

    This paper offers a framework for a mathematics lesson design that is consistent with the way we learn about, and discover, most things in life. In addition, the framework provides a structure for identifying how mathematical concepts and understanding are acquired and developed. This framework is called ELPSA and represents five learning…

  19. Rapid Communication: Quasi-gedanken experiment challenging the no-signalling theorem

    NASA Astrophysics Data System (ADS)

    Kalamidas, Demetrios A.

    2018-01-01

    Kennedy ( Philos. Sci. 62, 4 (1995)) has argued that the various quantum mechanical no-signalling proofs formulated thus far share a common mathematical framework, are circular in nature, and do not preclude the construction of empirically testable schemes wherein superluminal exchange of information can occur. In light of this thesis, we present a potentially feasible quantum-optical scheme that purports to enable superluminal signalling.

  20. Leading a New Pedagogical Approach to Australian Curriculum Mathematics: Using the Dual Mathematical Modelling Cycle Framework

    ERIC Educational Resources Information Center

    Lamb, Janeen; Kawakami, Takashi; Saeki, Akihiko; Matsuzaki, Akio

    2014-01-01

    The aim of this study was to investigate the use of the "dual mathematical modelling cycle framework" as one way to meet the espoused goals of the Australian Curriculum Mathematics. This study involved 23 Year 6 students from one Australian primary school who engaged in an "Oil Tank Task" that required them to develop two…

  1. Mathematics Education as Sociopolitical: Prospective Teachers' Views of the What, Who, and How

    ERIC Educational Resources Information Center

    Felton-Koestler, Mathew D.

    2017-01-01

    In this article, I introduce a framework--the What, Who, and How of mathematics--that emerged from studying my teaching of prospective teachers and their views of the social and political dimensions of mathematics teaching and learning. The What, Who, How framework asks us to consider What messages we send about mathematics and the world, Whose…

  2. Curriculum Framework (CF) Implementation Conference. Report of the Regional Educational Laboratory Network Program and the National Network of Eisenhower Mathematics and Science Regional Consortia (Hilton Head Island, South Carolina, January 26-27, 1995).

    ERIC Educational Resources Information Center

    Palmer, Jackie; Powell, Mary Jo

    The Laboratory Network Program and the National Network of Eisenhower Mathematics and Science Regional Consortia, operating as the Curriculum Frameworks Task Force, jointly convened a group of educators involved in implementing state-level mathematics or science curriculum frameworks (CF). The Hilton Head (South Carolina) conference had a dual…

  3. A framework for predicting impacts on ecosystem services ...

    EPA Pesticide Factsheets

    Protection of ecosystem services is increasingly emphasized as a risk-assessment goal, but there are wide gaps between current ecological risk-assessment endpoints and potential effects on services provided by ecosystems. The authors present a framework that links common ecotoxicological endpoints to chemical impacts on populations and communities and the ecosystem services that they provide. This framework builds on considerable advances in mechanistic effects models designed to span multiple levels of biological organization and account for various types of biological interactions and feedbacks. For illustration, the authors introduce 2 case studies that employ well-developed and validated mechanistic effects models: the inSTREAM individual-based model for fish populations and the AQUATOX ecosystem model. They also show how dynamic energy budget theory can provide a common currency for interpreting organism-level toxicity. They suggest that a framework based on mechanistic models that predict impacts on ecosystem services resulting from chemical exposure, combined with economic valuation, can provide a useful approach for informing environmental management. The authors highlight the potential benefits of using this framework as well as the challenges that will need to be addressed in future work. The framework introduced here represents an ongoing initiative supported by the National Institute of Mathematical and Biological Synthesis (NIMBioS; http://www.nimbi

  4. Mathematical Tasks as a Framework for Reflection: From Research To Practice.

    ERIC Educational Resources Information Center

    Stein, Mary Kay; Smith, Margaret Schwan

    1998-01-01

    Describes the Quantitative Understanding: Amplifying Student Achievement and Reasoning (QUASAR) national reform project aimed at studying and fostering the development and implementation of enhanced mathematics instructional programs. It is a framework for reflection based on mathematical tasks used during classroom instruction and the ways in…

  5. A Framework for Understanding Whiteness in Mathematics Education

    ERIC Educational Resources Information Center

    Battey, Dan; Leyva, Luis A.

    2016-01-01

    In this article, the authors provide a framework for understanding whiteness in mathematics education. While whiteness is receiving more attention in the broader education literature, only a handful of scholars address whiteness in mathematics education in any form. This lack of attention to whiteness leaves it invisible and neutral in documenting…

  6. A Framework of Mathematics Inductive Reasoning

    ERIC Educational Resources Information Center

    Christou, Constantinos; Papageorgiou, Eleni

    2007-01-01

    Based on a synthesis of the literature in inductive reasoning, a framework for prescribing and assessing mathematics inductive reasoning of primary school students was formulated and validated. The major constructs incorporated in this framework were students' cognitive abilities of finding similarities and/or dissimilarities among attributes and…

  7. Four (Algorithms) in One (Bag): An Integrative Framework of Knowledge for Teaching the Standard Algorithms of the Basic Arithmetic Operations

    ERIC Educational Resources Information Center

    Raveh, Ira; Koichu, Boris; Peled, Irit; Zaslavsky, Orit

    2016-01-01

    In this article we present an integrative framework of knowledge for teaching the standard algorithms of the four basic arithmetic operations. The framework is based on a mathematical analysis of the algorithms, a connectionist perspective on teaching mathematics and an analogy with previous frameworks of knowledge for teaching arithmetic…

  8. A Framework for Analyzing the Collaborative Construction of Arguments and Its Interplay with Agency

    ERIC Educational Resources Information Center

    Mueller, Mary; Yankelewitz, Dina; Maher, Carolyn

    2012-01-01

    In this report, we offer a framework for analyzing the ways in which collaboration influences learners' building of mathematical arguments and thus promotes mathematical understanding. Building on a previous model used to analyze discursive practices of students engaged in mathematical problem solving, we introduce three types of collaboration and…

  9. A Framework for Mathematical Thinking: The Case of Linear Algebra

    ERIC Educational Resources Information Center

    Stewart, Sepideh; Thomas, Michael O. J.

    2009-01-01

    Linear algebra is one of the unavoidable advanced courses that many mathematics students encounter at university level. The research reported here was part of the first author's recent PhD study, where she created and applied a theoretical framework combining the strengths of two major mathematics education theories in order to investigate the…

  10. The Importance of Theoretical Frameworks and Mathematical Constructs in Designing Digital Tools

    ERIC Educational Resources Information Center

    Trinter, Christine

    2016-01-01

    The increase in availability of educational technologies over the past few decades has not only led to new practice in teaching mathematics but also to new perspectives in research, methodologies, and theoretical frameworks within mathematics education. Hence, the amalgamation of theoretical and pragmatic considerations in digital tool design…

  11. Teaching Multidigit Multiplication: Combining Multiple Frameworks to Analyse a Class Episode

    ERIC Educational Resources Information Center

    Clivaz, Stéphane

    2017-01-01

    This paper provides an analysis of a teaching episode of the multidigit algorithm for multiplication, with a focus on the influence of the teacher's mathematical knowledge on their teaching. The theoretical framework uses Mathematical Knowledge for Teaching, mathematical pertinence of the teacher and structuration of the milieu in a descending and…

  12. Theoretical Framework of Researcher Knowledge Development in Mathematics Education

    ERIC Educational Resources Information Center

    Kontorovich, Igor'

    2016-01-01

    The goal of this paper is to present a framework of researcher knowledge development in conducting a study in mathematics education. The key components of the framework are: knowledge germane to conducting a particular study, processes of knowledge accumulation, and catalyzing filters that influence a researcher's decision making. The components…

  13. Identifying and Using Picture Books with Quality Mathematical Content: Moving beyond "Counting on Frank" and "The Very Hungry Caterpillar"

    ERIC Educational Resources Information Center

    Marston, Jennie

    2014-01-01

    This article by Jennie Marston provides a framework to assist you in selecting appropriate picture books to present mathematical content. Jennie demonstrates the framework by applying three specific examples of picture books to the framework along with examples of activities.

  14. Breaking the Constraints of Modernist Psychologizing: Mathematics Education Flirts with the Postmodern

    ERIC Educational Resources Information Center

    Peck, Frederick; Sriraman, Bharath

    2017-01-01

    Mathematics education emerged as a field in the height of modernism in science and mathematics. For decades, modernist psychology provided the dominant framework for inquiry in the field. Recently, this framework has started to sustain questions, leading to an ongoing conversation in the literature about the identity of the field. We join this…

  15. University Students' Metacognitive Failures in Mathematical Proving Investigated Based on the Framework of Assimilation and Accommodation

    ERIC Educational Resources Information Center

    Huda, Nizlel; Subanji; Nusantar, Toto; Susiswo; Sutawidjaja, Akbar; Rahardjo, Swasono

    2016-01-01

    This study aimed to determine students' metacognitive failure in Mathematics Education Program of FKIP in Jambi University investigated based on assimilation and accommodation Mathematical framework. There were 35 students, five students did not answer the question, three students completed the questions correctly and 27 students tried to solve…

  16. An Exploratory Framework for Handling the Complexity of Mathematical Problem Posing in Small Groups

    ERIC Educational Resources Information Center

    Kontorovich, Igor; Koichu, Boris; Leikin, Roza; Berman, Avi

    2012-01-01

    The paper introduces an exploratory framework for handling the complexity of students' mathematical problem posing in small groups. The framework integrates four facets known from past research: task organization, students' knowledge base, problem-posing heuristics and schemes, and group dynamics and interactions. In addition, it contains a new…

  17. Problem Solving Frameworks for Mathematics and Software Development

    ERIC Educational Resources Information Center

    McMaster, Kirby; Sambasivam, Samuel; Blake, Ashley

    2012-01-01

    In this research, we examine how problem solving frameworks differ between Mathematics and Software Development. Our methodology is based on the assumption that the words used frequently in a book indicate the mental framework of the author. We compared word frequencies in a sample of 139 books that discuss problem solving. The books were grouped…

  18. Modelling Common Agricultural Policy-Water Framework Directive interactions and cost-effectiveness of measures to reduce nitrogen pollution.

    PubMed

    Mouratiadou, Ioanna; Russell, Graham; Topp, Cairistiona; Louhichi, Kamel; Moran, Dominic

    2010-01-01

    Selecting cost-effective measures to regulate agricultural water pollution to conform to the Water Framework Directive presents multiple challenges. A bio-economic modelling approach is presented that has been used to explore the water quality and economic effects of the 2003 Common Agricultural Policy Reform and to assess the cost-effectiveness of input quotas and emission standards against nitrate leaching, in a representative case study catchment in Scotland. The approach combines a biophysical model (NDICEA) with a mathematical programming model (FSSIM-MP). The results indicate only small changes due to the Reform, with the main changes in farmers' decision making and the associated economic and water quality indicators depending on crop price changes, and suggest the use of target fertilisation in relation to crop and soil requirements, as opposed to measures targeting farm total or average nitrogen use.

  19. Quantum Chemistry in Great Britain: Developing a Mathematical Framework for Quantum Chemistry

    NASA Astrophysics Data System (ADS)

    Simões, Ana; Gavroglu, Kostas

    By 1935 quantum chemistry was already delineated as a distinct sub-discipline due to the contributions of Fritz London, Walter Heitler, Friedrich Hund, Erich Hückel, Robert Mulliken, Linus Pauling, John van Vleck and John Slater. These people are credited with showing that the application of quantum mechanics to the solution of chemical problems was, indeed, possible, especially so after the introduction of a number of new concepts and the adoption of certain approximation methods. And though a number of chemists had started talking of the formation of theoretical or, even, mathematical chemistry, a fully developed mathematical framework of quantum chemistry was still wanting. The work of three persons in particular-of John E. Lennard-Jones, Douglas R. Hartree, and Charles Alfred Coulson-has been absolutely crucial in the development of such a framework. In this paper we shall discuss the work of these three researchers who started their careers in the Cambridge tradition of mathematical physics and who at some point of their careers all became professors of applied mathematics. We shall argue that their work consisted of decisive contributions to the development of such a mathematical framework for quantum chemistry.

  20. A Higher-Order Generalized Singular Value Decomposition for Comparison of Global mRNA Expression from Multiple Organisms

    PubMed Central

    Ponnapalli, Sri Priya; Saunders, Michael A.; Van Loan, Charles F.; Alter, Orly

    2011-01-01

    The number of high-dimensional datasets recording multiple aspects of a single phenomenon is increasing in many areas of science, accompanied by a need for mathematical frameworks that can compare multiple large-scale matrices with different row dimensions. The only such framework to date, the generalized singular value decomposition (GSVD), is limited to two matrices. We mathematically define a higher-order GSVD (HO GSVD) for N≥2 matrices , each with full column rank. Each matrix is exactly factored as Di = UiΣiVT, where V, identical in all factorizations, is obtained from the eigensystem SV = VΛ of the arithmetic mean S of all pairwise quotients of the matrices , i≠j. We prove that this decomposition extends to higher orders almost all of the mathematical properties of the GSVD. The matrix S is nondefective with V and Λ real. Its eigenvalues satisfy λk≥1. Equality holds if and only if the corresponding eigenvector vk is a right basis vector of equal significance in all matrices Di and Dj, that is σi,k/σj,k = 1 for all i and j, and the corresponding left basis vector ui,k is orthogonal to all other vectors in Ui for all i. The eigenvalues λk = 1, therefore, define the “common HO GSVD subspace.” We illustrate the HO GSVD with a comparison of genome-scale cell-cycle mRNA expression from S. pombe, S. cerevisiae and human. Unlike existing algorithms, a mapping among the genes of these disparate organisms is not required. We find that the approximately common HO GSVD subspace represents the cell-cycle mRNA expression oscillations, which are similar among the datasets. Simultaneous reconstruction in the common subspace, therefore, removes the experimental artifacts, which are dissimilar, from the datasets. In the simultaneous sequence-independent classification of the genes of the three organisms in this common subspace, genes of highly conserved sequences but significantly different cell-cycle peak times are correctly classified. PMID:22216090

  1. Towards a Socio-Cultural Framework for the Analysis of Joint Student-Teacher Development over Technology-Based Mathematics Lessons

    ERIC Educational Resources Information Center

    Monaghan, John

    2013-01-01

    This paper offers a framework, an extension of Valsiner's "zone theory", for the analysis of joint student-teacher development over a series of technology-based mathematics lessons. The framework is suitable for developing research studies over a moderately long period of time and considers interrelated student-teacher development as…

  2. Mathematical Frameworks for Diagnostics, Prognostics and Condition Based Maintenance Problems

    DTIC Science & Technology

    2008-08-15

    REPORT Mathematical Frameworks for Diagnostics, Prognostics and Condition Based Maintenance Problems (W911NF-05-1-0426) 14. ABSTRACT 16. SECURITY ...other documentation. 12. DISTRIBUTION AVAILIBILITY STATEMENT Approved for Public Release; Distribution Unlimited 9. SPONSORING/MONITORING AGENCY NAME...parallel and distributed computing environment were researched. In support of the Condition Based Maintenance (CBM) philosophy, a theoretical framework

  3. A general consumer-resource population model

    USGS Publications Warehouse

    Lafferty, Kevin D.; DeLeo, Giulio; Briggs, Cheryl J.; Dobson, Andrew P.; Gross, Thilo; Kuris, Armand M.

    2015-01-01

    Food-web dynamics arise from predator-prey, parasite-host, and herbivore-plant interactions. Models for such interactions include up to three consumer activity states (questing, attacking, consuming) and up to four resource response states (susceptible, exposed, ingested, resistant). Articulating these states into a general model allows for dissecting, comparing, and deriving consumer-resource models. We specify this general model for 11 generic consumer strategies that group mathematically into predators, parasites, and micropredators and then derive conditions for consumer success, including a universal saturating functional response. We further show how to use this framework to create simple models with a common mathematical lineage and transparent assumptions. Underlying assumptions, missing elements, and composite parameters are revealed when classic consumer-resource models are derived from the general model.

  4. Valuing hydrological alteration in Multi-Objective reservoir management

    NASA Astrophysics Data System (ADS)

    Bizzi, S.; Pianosi, F.; Soncini-Sessa, R.

    2012-04-01

    Water management through dams and reservoirs is worldwide necessary to support key human-related activities ranging from hydropower production to water allocation for agricultural production, and flood risk mitigation. Advances in multi-objectives (MO) optimization techniques and ever growing computing power make it possible to design reservoir operating policies that represent Pareto-optimal tradeoffs between the multiple interests analysed. These progresses if on one hand are likely to enhance performances of commonly targeted objectives (such as hydropower production or water supply), on the other risk to strongly penalize all the interests not directly (i.e. mathematically) optimized within the MO algorithm. Alteration of hydrological regime, although is a well established cause of ecological degradation and its evaluation and rehabilitation are commonly required by recent legislation (as the Water Framework Directive in Europe), is rarely embedded as an objective in MO planning of optimal releases from reservoirs. Moreover, even when it is explicitly considered, the criteria adopted for its evaluation are doubted and not commonly trusted, undermining the possibility of real implementation of environmentally friendly policies. The main challenges in defining and assessing hydrological alterations are: how to define a reference state (referencing); how to define criteria upon which to build mathematical indicators of alteration (measuring); and finally how to aggregate the indicators in a single evaluation index that can be embedded in a MO optimization problem (valuing). This paper aims to address these issues by: i) discussing benefits and constrains of different approaches to referencing, measuring and valuing hydrological alteration; ii) testing two alternative indices of hydrological alteration in the context of MO problems, one based on the established framework of Indices of Hydrological Alteration (IHA, Richter et al., 1996), and a novel satisfying the mathematical properties required by widely used optimization methods based on dynamic programming; iii) discussing the ranking provided by the proposed indices for a case study in Italy where different operating policies were designed using a MO algorithm, taking into account hydropower production, irrigation supply and flood mitigation and imposing different type of minimum environmental flow; iv) providing a framework to effectively include hydrological alteration within MO problem of reservoir management. Richter, B.D., Baumgartner, J.V., Powell, J., Braun, D.P., 1996, A Method for Assessing Hydrologic Alteration within Ecosystems, Conservation Biology, 10(4), 1163-1174.

  5. Creating opportunities to learn in mathematics education: a sociocultural perspective

    NASA Astrophysics Data System (ADS)

    Goos, Merrilyn

    2014-09-01

    The notion of `opportunities to learn in mathematics education' is open to interpretation from multiple theoretical perspectives, where the focus may be on cognitive, social or affective dimensions of learning, curriculum and assessment design, issues of equity and access, or the broad policy and political contexts of learning and teaching. In this paper, I conceptualise opportunities to learn from a sociocultural perspective. Beginning with my own research on the learning of students and teachers of mathematics, I sketch out two theoretical frameworks for understanding this learning. One framework extends Valsiner's zone theory of child development, and the other draws on Wenger's ideas about communities of practice. My aim is then to suggest how these two frameworks might help us understand the learning of others who have an interest in mathematics education, such as mathematics teacher educator-researchers and mathematicians. In doing so, I attempt to move towards a synthesis of ideas to inform mathematics education research and development.

  6. A framework for biodynamic feedthrough analysis--part I: theoretical foundations.

    PubMed

    Venrooij, Joost; van Paassen, Marinus M; Mulder, Mark; Abbink, David A; Mulder, Max; van der Helm, Frans C T; Bulthoff, Heinrich H

    2014-09-01

    Biodynamic feedthrough (BDFT) is a complex phenomenon, which has been studied for several decades. However, there is little consensus on how to approach the BDFT problem in terms of definitions, nomenclature, and mathematical descriptions. In this paper, a framework for biodynamic feedthrough analysis is presented. The goal of this framework is two-fold. First, it provides some common ground between the seemingly large range of different approaches existing in the BDFT literature. Second, the framework itself allows for gaining new insights into BDFT phenomena. It will be shown how relevant signals can be obtained from measurement, how different BDFT dynamics can be derived from them, and how these different dynamics are related. Using the framework, BDFT can be dissected into several dynamical relationships, each relevant in understanding BDFT phenomena in more detail. The presentation of the BDFT framework is divided into two parts. This paper, Part I, addresses the theoretical foundations of the framework. Part II, which is also published in this issue, addresses the validation of the framework. The work is presented in two separate papers to allow for a detailed discussion of both the framework's theoretical background and its validation.

  7. Analytical solutions for sequentially coupled one-dimensional reactive transport problems Part I: Mathematical derivations

    NASA Astrophysics Data System (ADS)

    Srinivasan, V.; Clement, T. P.

    2008-02-01

    Multi-species reactive transport equations coupled through sorption and sequential first-order reactions are commonly used to model sites contaminated with radioactive wastes, chlorinated solvents and nitrogenous species. Although researchers have been attempting to solve various forms of these reactive transport equations for over 50 years, a general closed-form analytical solution to this problem is not available in the published literature. In Part I of this two-part article, we derive a closed-form analytical solution to this problem for spatially-varying initial conditions. The proposed solution procedure employs a combination of Laplace and linear transform methods to uncouple and solve the system of partial differential equations. Two distinct solutions are derived for Dirichlet and Cauchy boundary conditions each with Bateman-type source terms. We organize and present the final solutions in a common format that represents the solutions to both boundary conditions. In addition, we provide the mathematical concepts for deriving the solution within a generic framework that can be used for solving similar transport problems.

  8. The Material Supply Adjustment Process in RAMF-SM, Step 2

    DTIC Science & Technology

    2016-06-01

    contain. The Risk Assessment and Mitigation Framework for Strategic Materials (RAMF-SM) is a suite of mathematical models and databases that has been...Risk Assessment and Mitigation Framework for Strategic Materials (RAMF-SM) is a suite of mathematical models and databases used to support the...and computes material shortfalls.1 Several mathematical models and dozens of databases, encompassing thousands of data items, support the

  9. Value of Flexibility - Phase 1

    DTIC Science & Technology

    2010-09-25

    weaknesses of each approach. During this period, we also explored the development of an analytical framework based on sound mathematical constructs... mathematical constructs. A review of the current state-of-the-art showed that there is little unifying theory or guidance on best approaches to...research activities is in developing a coherent value based definition of flexibility that is based on an analytical framework that is mathematically

  10. The (Mathematical) Modeling Process in Biosciences.

    PubMed

    Torres, Nestor V; Santos, Guido

    2015-01-01

    In this communication, we introduce a general framework and discussion on the role of models and the modeling process in the field of biosciences. The objective is to sum up the common procedures during the formalization and analysis of a biological problem from the perspective of Systems Biology, which approaches the study of biological systems as a whole. We begin by presenting the definitions of (biological) system and model. Particular attention is given to the meaning of mathematical model within the context of biology. Then, we present the process of modeling and analysis of biological systems. Three stages are described in detail: conceptualization of the biological system into a model, mathematical formalization of the previous conceptual model and optimization and system management derived from the analysis of the mathematical model. All along this work the main features and shortcomings of the process are analyzed and a set of rules that could help in the task of modeling any biological system are presented. Special regard is given to the formative requirements and the interdisciplinary nature of this approach. We conclude with some general considerations on the challenges that modeling is posing to current biology.

  11. Modelling Framework and Assistive Device for Peripheral Intravenous Injections

    NASA Astrophysics Data System (ADS)

    Kam, Kin F.; Robinson, Martin P.; Gilbert, Mathew A.; Pelah, Adar

    2016-02-01

    Intravenous access for blood sampling or drug administration that requires peripheral venepuncture is perhaps the most common invasive procedure practiced in hospitals, clinics and general practice surgeries.We describe an idealised mathematical framework for modelling the dynamics of the peripheral venepuncture process. Basic assumptions of the model are confirmed through motion analysis of needle trajectories during venepuncture, taken from video recordings of a skilled practitioner injecting into a practice kit. The framework is also applied to the design and construction of a proposed device for accurate needle guidance during venepuncture administration, assessed as consistent and repeatable in application and does not lead to over puncture. The study provides insights into the ubiquitous peripheral venepuncture process and may contribute to applications in training and in the design of new devices, including for use in robotic automation.

  12. TIMSS Advanced 2015 Assessment Frameworks

    ERIC Educational Resources Information Center

    Mullis, Ina V. S., Ed.; Martin, Michael O., Ed.

    2014-01-01

    The "TIMSS Advanced 2015 Assessment Frameworks" provides the foundation for the two international assessments to take place as part of the International Association for the Evaluation of Educational Achievement's TIMSS (Trends in International Mathematics and Science Study) Advanced 2015--Advanced Mathematics and Physics. Chapter 1 (Liv…

  13. New tools for investigating student learning in upper-division electrostatics

    NASA Astrophysics Data System (ADS)

    Wilcox, Bethany R.

    Student learning in upper-division physics courses is a growing area of research in the field of Physics Education. Developing effective new curricular materials and pedagogical techniques to improve student learning in upper-division courses requires knowledge of both what material students struggle with and what curricular approaches help to overcome these struggles. To facilitate the course transformation process for one specific content area --- upper-division electrostatics --- this thesis presents two new methodological tools: (1) an analytical framework designed to investigate students' struggles with the advanced physics content and mathematically sophisticated tools/techniques required at the junior and senior level, and (2) a new multiple-response conceptual assessment designed to measure student learning and assess the effectiveness of different curricular approaches. We first describe the development and theoretical grounding of a new analytical framework designed to characterize how students use mathematical tools and techniques during physics problem solving. We apply this framework to investigate student difficulties with three specific mathematical tools used in upper-division electrostatics: multivariable integration in the context of Coulomb's law, the Dirac delta function in the context of expressing volume charge densities, and separation of variables as a technique to solve Laplace's equation. We find a number of common themes in students' difficulties around these mathematical tools including: recognizing when a particular mathematical tool is appropriate for a given physics problem, mapping between the specific physical context and the formal mathematical structures, and reflecting spontaneously on the solution to a physics problem to gain physical insight or ensure consistency with expected results. We then describe the development of a novel, multiple-response version of an existing conceptual assessment in upper-division electrostatics courses. The goal of this new version is to provide an easily-graded electrostatics assessment that can potentially be implemented to investigate student learning on a large scale. We show that student performance on the new multiple-response version exhibits a significant degree of consistency with performance on the free-response version, and that it continues to provide significant insight into student reasoning and student difficulties. Moreover, we demonstrate that the new assessment is both valid and reliable using data from upper-division physics students at multiple institutions. Overall, the work described in this thesis represents a significant contribution to the methodological tools available to researchers and instructors interested in improving student learning at the upper-division level.

  14. TIMSS Advanced 2015 and Advanced Placement Calculus & Physics. A Framework Analysis. Research in Review 2016-1

    ERIC Educational Resources Information Center

    Lazzaro, Christopher; Jones, Lee; Webb, David C.; Grover, Ryan; Di Giacomo, F. Tony; Marino, Katherine Adele

    2016-01-01

    This report will determine to what degree the AP Physics 1 and 2 and AP Calculus AB and BC frameworks are aligned with the Trends in International Mathematics and Science Study (TIMSS) Advanced Physics and Mathematics frameworks. This will enable an exploration of any differences in content coverage and levels of complexity, and will set the stage…

  15. Defining as a Mathematical Activity: A Framework for Characterizing Progress from Informal to More Formal Ways of Reasoning

    ERIC Educational Resources Information Center

    Zandieh, Michelle; Rasmussen, Chris

    2010-01-01

    The purpose of this paper is to further the notion of defining as a mathematical activity by elaborating a framework that structures the role of defining in student progress from informal to more formal ways of reasoning. The framework is the result of a retrospective account of a significant learning experience that occurred in an undergraduate…

  16. National Advisory Groups and their role in immunization policy-making processes in European countries.

    PubMed

    Nohynek, H; Wichmann, O; D Ancona, F

    2013-12-01

    During the twenty-first century, the development of national immunization programmes (NIP) has matured into robust processes where evidence-based methodologies and frameworks have increasingly been adopted. A key role in the decision-making and recommending processes is played by National Immunization Technical Advisory Groups (NITAGs). In a survey performed among European Union member states, Norway and Iceland, in February 2013, 85% of the 27 responding countries reported having established a NITAG, and of these, 45% have formal frameworks in place for the systematic development of vaccination recommendations. Independent of whether a formal framework is in place, common key factors are addressed by all NITAGs and also in countries without NITAGs. The four main factors addressed by all were: disease burden in the country, severity of the disease, vaccine effectiveness or efficacy, and vaccine safety at population level. Mathematical modelling and cost-effectiveness analyses are still not common tools. Differences in the relative weighting of these key factors, differences in data or assumptions on country-specific key factors, and differences in existing vaccination systems and financing, are likely to be reasons for differences in NITAG recommendations, and eventually NIPs, across Europe. Even if harmonization of NIPs is presently not a reasonable aim, systematic reviews and the development of mathematical/economic models could be performed at supranational level, thus sharing resources and easing the present work-load of NITAGs. Nevertheless, it has been argued that harmonization would ease central purchase of vaccines, thus reducing the price and increasing access to new vaccines. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  17. Schema building profiles among elementary school students in solving problems related to operations of addition to fractions on the basis of mathematic abilities

    NASA Astrophysics Data System (ADS)

    Gembong, S.; Suwarsono, S. T.; Prabowo

    2018-03-01

    Schema in the current study refers to a set of action, process, object and other schemas already possessed to build an individual’s ways of thinking to solve a given problem. The current study aims to investigate the schemas built among elementary school students in solving problems related to operations of addition to fractions. The analyses of the schema building were done qualitatively on the basis of the analytical framework of the APOS theory (Action, Process, Object, and Schema). Findings show that the schemas built on students of high and middle ability indicate the following. In the action stage, students were able to add two fractions by way of drawing a picture or procedural way. In the Stage of process, they could add two and three fractions. In the stage of object, they could explain the steps of adding two fractions and change a fraction into addition of fractions. In the last stage, schema, they could add fractions by relating them to another schema they have possessed i.e. the least common multiple. Those of high and middle mathematic abilities showed that their schema building in solving problems related to operations odd addition to fractions worked in line with the framework of the APOS theory. Those of low mathematic ability, however, showed that their schema on each stage did not work properly.

  18. Mathematics education for social justice

    NASA Astrophysics Data System (ADS)

    Suhendra

    2016-02-01

    Mathematics often perceived as a difficult subject with many students failing to understand why they learn mathematics. This situation has been further aggravated by the teaching and learning processes used, which is mechanistic without considering students' needs. The learning of mathematics tends to be just a compulsory subject, in which all students have to attend its classes. Social justice framework facilitates individuals or groups as a whole and provides equitable approaches to achieving equitable outcomes by recognising disadvantage. Applying social justice principles in educational context is related to how the teachers treat their students, dictates that all students the right to equal treatment regardless of their background and completed with applying social justice issues integrated with the content of the subject in order to internalise the principles of social justice simultaneously the concepts of the subject. The study examined the usefulness of implementing the social justice framework as a means of improving the quality of mathematics teaching in Indonesia involved four teacher-participants and their mathematics classes. The study used action research as the research methodology in which the teachers implemented and evaluated their use of social justice framework in their teaching. The data were collected using multiple research methods while analysis and interpretation of the data were carried out throughout the study. The findings of the study indicated that there were a number of challengesrelated to the implementation of the social justice framework. The findings also indicated that, the teachers were provided with a comprehensive guide that they could draw on to make decisions about how they could improve their lessons. The interactions among students and between the teachers and the students improved, they became more involved in teaching and learning process. Using social justice framework helped the teachers to make mathematics more relevant to students. This increased relevance led to increasing students' engagement in the teaching and learning process and becoming more accessible to all students. Additionally, the findings have the potential to make a contribution to those seeking to reform mathematics teaching in Indonesia. The results could inform policy makers and professional development providers about how social justice framework might contribute to the educational reform in Indonesia.

  19. Knowledge of Curriculum Embedded Mathematics: Exploring a Critical Domain of Teaching

    ERIC Educational Resources Information Center

    Remillard, Janine; Kim, Ok-Kyeong

    2017-01-01

    This paper proposes a framework for identifying the mathematical knowledge teachers activate when using curriculum resources. We use the term "knowledge of curriculum embedded mathematics" (KCEM) to refer to the mathematics knowledge activated by teachers when reading and interpreting mathematical tasks, instructional designs, and…

  20. ECOLOGICAL THEORY. A general consumer-resource population model.

    PubMed

    Lafferty, Kevin D; DeLeo, Giulio; Briggs, Cheryl J; Dobson, Andrew P; Gross, Thilo; Kuris, Armand M

    2015-08-21

    Food-web dynamics arise from predator-prey, parasite-host, and herbivore-plant interactions. Models for such interactions include up to three consumer activity states (questing, attacking, consuming) and up to four resource response states (susceptible, exposed, ingested, resistant). Articulating these states into a general model allows for dissecting, comparing, and deriving consumer-resource models. We specify this general model for 11 generic consumer strategies that group mathematically into predators, parasites, and micropredators and then derive conditions for consumer success, including a universal saturating functional response. We further show how to use this framework to create simple models with a common mathematical lineage and transparent assumptions. Underlying assumptions, missing elements, and composite parameters are revealed when classic consumer-resource models are derived from the general model. Copyright © 2015, American Association for the Advancement of Science.

  1. Mathematics Framework for California Public Schools, Kindergarten Through Grade Twelve.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento.

    This report, prepared by a statewide Mathematics Advisory Committee, revises the framework in the Second Strands Report of 1972, expanding it to encompass kindergarten through grade 12. Strands for kindergarten through grade 8 are: arithmetic, numbers, and operations; geometry; measurement, problem solving/ applications; probability and…

  2. Assessing Mathematics: 1. APU Framework and Modes of Assessment.

    ERIC Educational Resources Information Center

    Foxman, Derek; Mitchell, Peter

    1983-01-01

    The "what" and "how" of the Assessment of Performance Unit surveys of the mathematics performance of 11- and 15-year-olds in England, Wales, and Northern Ireland are explained. The framework and forms of assessment are detailed, and the experience of the testers noted. (MNS)

  3. Adapting Technological Pedagogical Content Knowledge Framework to Teach Mathematics

    ERIC Educational Resources Information Center

    Getenet, Seyum Tekeher

    2017-01-01

    The technological pedagogical content knowledge framework is increasingly in use by educational technology researcher as a generic description of the knowledge requirements for teachers using technology in all subjects. This study describes the development of a mathematics specific variety of the technological pedagogical content knowledge…

  4. Helping Children Learn Mathematics through Multiple Intelligences and Standards for School Mathematics.

    ERIC Educational Resources Information Center

    Adams, Thomasenia Lott

    2001-01-01

    Focuses on the National Council of Teachers of Mathematics 2000 process-oriented standards of problem solving, reasoning and proof, communication, connections, and representation as providing a framework for using the multiple intelligences that children bring to mathematics learning. Presents ideas for mathematics lessons and activities to…

  5. Manipulatives and problem situations as escalators for students' geometric understanding: a semiotic analysis

    NASA Astrophysics Data System (ADS)

    Daher, Wajeeh M.

    2014-04-01

    Mathematical learning and teaching are increasingly seen as a multimodal experience involved in cultural and social semiotic registers and means, and as such social-cultural semiotic analysis is expected to shed light on learning and teaching processes occurring in the mathematics classroom. In this research, three social-cultural semiotic frameworks were utilised to analyse elementary school students' learning of a geometric relation: the semiotic bundle, the space of action, production and communication and the theoretical framework of attention, awareness and objectification. Educational mathematical situations are described, in addition to semiotic sets, registers and means emerging in the different mathematical situations and that are relevant to the three social-cultural semiotic frameworks which the current research utilizes. Further, the students, as a consequence of (1) their multimodal experience, (2) their connecting between the different mathematical situations and semiotic registers, and (3) the teacher's questions and tasks, could objectify the geometric relation between the lengths of the triangle's edges.

  6. Four Factors to Consider in Helping Low Achievers in Mathematics

    ERIC Educational Resources Information Center

    Leong, Yew Hoong; Yap, Sook Fwe; Tay, Eng Guan

    2013-01-01

    In this paper, we propose and describe in some detail a framework for helping low achievers in mathematics that attends to the following areas: Mathematical content resources, Problem Solving disposition, Feelings towards the learning of mathematics, and Study habits.

  7. Promoting Student Learning and Productive Persistence in Developmental Mathematics: Research Frameworks Informing the Carnegie Pathways

    ERIC Educational Resources Information Center

    Edwards, Ann R.; Beattie, Rachel L.

    2016-01-01

    This paper focuses on two research-based frameworks that inform the design of instruction and promote student success in accelerated, developmental mathematics pathways. These are Learning Opportunities--productive struggle on challenging and relevant tasks, deliberate practice, and explicit connections, and Productive Persistence--promoting…

  8. Making Shifts toward Proficiency

    ERIC Educational Resources Information Center

    McGatha, Maggie B.; Bay-Williams, Jennifer M.

    2013-01-01

    The Leading for Mathematical Proficiency (LMP) Framework (Bay-Williams et al.) has three components: (1) The Standards for Mathematical Practice; (2) Shifts in classroom practice; and (3) Teaching skills. This article briefly describes each component of the LMP framework and then focuses more in depth on the second component, the shifts in…

  9. The Conceptual Framework for the Development of a Mathematics Performance Assessment Instrument.

    ERIC Educational Resources Information Center

    Lane, Suzanne

    1993-01-01

    A conceptual framework is presented for the development of the Quantitative Understanding: Amplifying Student Achievement and Reasoning (QUASAR) Cognitive Assessment Instrument (QCAI) that focuses on the ability of middle-school students to problem solve, reason, and communicate mathematically. The instrument will provide programatic rather than…

  10. Ratio Analysis: Where Investments Meet Mathematics.

    ERIC Educational Resources Information Center

    Barton, Susan D.; Woodbury, Denise

    2002-01-01

    Discusses ratio analysis by which investments may be evaluated. Requires the use of fundamental mathematics, problem solving, and a comparison of the mathematical results within the framework of industry. (Author/NB)

  11. A comparison of item response models for accuracy and speed of item responses with applications to adaptive testing.

    PubMed

    van Rijn, Peter W; Ali, Usama S

    2017-05-01

    We compare three modelling frameworks for accuracy and speed of item responses in the context of adaptive testing. The first framework is based on modelling scores that result from a scoring rule that incorporates both accuracy and speed. The second framework is the hierarchical modelling approach developed by van der Linden (2007, Psychometrika, 72, 287) in which a regular item response model is specified for accuracy and a log-normal model for speed. The third framework is the diffusion framework in which the response is assumed to be the result of a Wiener process. Although the three frameworks differ in the relation between accuracy and speed, one commonality is that the marginal model for accuracy can be simplified to the two-parameter logistic model. We discuss both conditional and marginal estimation of model parameters. Models from all three frameworks were fitted to data from a mathematics and spelling test. Furthermore, we applied a linear and adaptive testing mode to the data off-line in order to determine differences between modelling frameworks. It was found that a model from the scoring rule framework outperformed a hierarchical model in terms of model-based reliability, but the results were mixed with respect to correlations with external measures. © 2017 The British Psychological Society.

  12. Modeling Synergistic Drug Inhibition of Mycobacterium tuberculosis Growth in Murine Macrophages

    DTIC Science & Technology

    2011-01-01

    important application of metabolic network modeling is the ability to quantitatively model metabolic enzyme inhibition and predict bacterial growth...describe the extensions of this framework to model drug- induced growth inhibition of M. tuberculosis in macrophages.39 Mathematical framework Fig. 1 shows...starting point, we used the previously developed iNJ661v model to represent the metabolic Fig. 1 Mathematical framework: a set of coupled models used to

  13. Middle School Mathematics Teachers Panel Perspectives of Instructional Practicess

    ERIC Educational Resources Information Center

    Ziegler, Cindy

    2017-01-01

    In a local middle school, students were not meeting standards on the state mathematics tests. The purpose of this qualitative study was to explore mathematics teachers' perspectives on effective mathematics instruction vis-a-vis the principles of the National Council of Teachers of Mathematics (NCTM). Within this framework, the 6 principles in the…

  14. MOOSE: A PARALLEL COMPUTATIONAL FRAMEWORK FOR COUPLED SYSTEMS OF NONLINEAR EQUATIONS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. Hansen; C. Newman; D. Gaston

    Systems of coupled, nonlinear partial di?erential equations often arise in sim- ulation of nuclear processes. MOOSE: Multiphysics Ob ject Oriented Simulation Environment, a parallel computational framework targeted at solving these systems is presented. As opposed to traditional data / ?ow oriented com- putational frameworks, MOOSE is instead founded on mathematics based on Jacobian-free Newton Krylov (JFNK). Utilizing the mathematical structure present in JFNK, physics are modularized into “Kernels” allowing for rapid production of new simulation tools. In addition, systems are solved fully cou- pled and fully implicit employing physics based preconditioning allowing for a large amount of ?exibility even withmore » large variance in time scales. Background on the mathematics, an inspection of the structure of MOOSE and several rep- resentative solutions from applications built on the framework are presented.« less

  15. MOOSE: A parallel computational framework for coupled systems of nonlinear equations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derek Gaston; Chris Newman; Glen Hansen

    Systems of coupled, nonlinear partial differential equations (PDEs) often arise in simulation of nuclear processes. MOOSE: Multiphysics Object Oriented Simulation Environment, a parallel computational framework targeted at the solution of such systems, is presented. As opposed to traditional data-flow oriented computational frameworks, MOOSE is instead founded on the mathematical principle of Jacobian-free Newton-Krylov (JFNK) solution methods. Utilizing the mathematical structure present in JFNK, physics expressions are modularized into `Kernels,'' allowing for rapid production of new simulation tools. In addition, systems are solved implicitly and fully coupled, employing physics based preconditioning, which provides great flexibility even with large variance in timemore » scales. A summary of the mathematics, an overview of the structure of MOOSE, and several representative solutions from applications built on the framework are presented.« less

  16. Motivation and engagement in mathematics: a qualitative framework for teacher-student interactions

    NASA Astrophysics Data System (ADS)

    Durksen, Tracy L.; Way, Jennifer; Bobis, Janette; Anderson, Judy; Skilling, Karen; Martin, Andrew J.

    2017-02-01

    We started with a classic research question (How do teachers motivate and engage middle year students in mathematics?) that is solidly underpinned and guided by an integration of two theoretical and multidimensional models. In particular, the current study illustrates how theory is important for guiding qualitative analytical approaches to motivation and engagement in mathematics. With little research on how teachers of mathematics are able to maintain high levels of student motivation and engagement, we focused on developing a qualitative framework that highlights the influence of teacher-student interactions. Participants were six teachers (upper primary and secondary) that taught students with higher-than-average levels of motivation and engagement in mathematics. Data sources included one video-recorded lesson and associated transcripts from pre- and post-lesson interviews with each teacher. Overall, effective classroom organisation stood out as a priority when promoting motivation and engagement in mathematics. Results on classroom organisation revealed four key indicators within teacher-student interactions deemed important for motivation and engagement in mathematics—confidence, climate, contact, and connection. Since much of the effect of teachers on student learning relies on interactions, and given the universal trend of declining mathematical performance during the middle years of schooling, future research and intervention studies might be assisted by our qualitative framework.

  17. Contemplating Symbolic Literacy of First Year Mathematics Students

    ERIC Educational Resources Information Center

    Bardini, Caroline; Pierce, Robyn; Vincent, Jill

    2015-01-01

    Analysis of mathematical notations must consider both syntactical aspects of symbols and the underpinning mathematical concept(s) conveyed. We argue that the construct of "syntax template" provides a theoretical framework to analyse undergraduate mathematics students' written solutions, where we have identified several types of…

  18. Predicting disease progression from short biomarker series using expert advice algorithm

    NASA Astrophysics Data System (ADS)

    Morino, Kai; Hirata, Yoshito; Tomioka, Ryota; Kashima, Hisashi; Yamanishi, Kenji; Hayashi, Norihiro; Egawa, Shin; Aihara, Kazuyuki

    2015-05-01

    Well-trained clinicians may be able to provide diagnosis and prognosis from very short biomarker series using information and experience gained from previous patients. Although mathematical methods can potentially help clinicians to predict the progression of diseases, there is no method so far that estimates the patient state from very short time-series of a biomarker for making diagnosis and/or prognosis by employing the information of previous patients. Here, we propose a mathematical framework for integrating other patients' datasets to infer and predict the state of the disease in the current patient based on their short history. We extend a machine-learning framework of ``prediction with expert advice'' to deal with unstable dynamics. We construct this mathematical framework by combining expert advice with a mathematical model of prostate cancer. Our model predicted well the individual biomarker series of patients with prostate cancer that are used as clinical samples.

  19. Predicting disease progression from short biomarker series using expert advice algorithm.

    PubMed

    Morino, Kai; Hirata, Yoshito; Tomioka, Ryota; Kashima, Hisashi; Yamanishi, Kenji; Hayashi, Norihiro; Egawa, Shin; Aihara, Kazuyuki

    2015-05-20

    Well-trained clinicians may be able to provide diagnosis and prognosis from very short biomarker series using information and experience gained from previous patients. Although mathematical methods can potentially help clinicians to predict the progression of diseases, there is no method so far that estimates the patient state from very short time-series of a biomarker for making diagnosis and/or prognosis by employing the information of previous patients. Here, we propose a mathematical framework for integrating other patients' datasets to infer and predict the state of the disease in the current patient based on their short history. We extend a machine-learning framework of "prediction with expert advice" to deal with unstable dynamics. We construct this mathematical framework by combining expert advice with a mathematical model of prostate cancer. Our model predicted well the individual biomarker series of patients with prostate cancer that are used as clinical samples.

  20. A simple and accurate rule-based modeling framework for simulation of autocrine/paracrine stimulation of glioblastoma cell motility and proliferation by L1CAM in 2-D culture.

    PubMed

    Caccavale, Justin; Fiumara, David; Stapf, Michael; Sweitzer, Liedeke; Anderson, Hannah J; Gorky, Jonathan; Dhurjati, Prasad; Galileo, Deni S

    2017-12-11

    Glioblastoma multiforme (GBM) is a devastating brain cancer for which there is no known cure. Its malignancy is due to rapid cell division along with high motility and invasiveness of cells into the brain tissue. Simple 2-dimensional laboratory assays (e.g., a scratch assay) commonly are used to measure the effects of various experimental perturbations, such as treatment with chemical inhibitors. Several mathematical models have been developed to aid the understanding of the motile behavior and proliferation of GBM cells. However, many are mathematically complicated, look at multiple interdependent phenomena, and/or use modeling software not freely available to the research community. These attributes make the adoption of models and simulations of even simple 2-dimensional cell behavior an uncommon practice by cancer cell biologists. Herein, we developed an accurate, yet simple, rule-based modeling framework to describe the in vitro behavior of GBM cells that are stimulated by the L1CAM protein using freely available NetLogo software. In our model L1CAM is released by cells to act through two cell surface receptors and a point of signaling convergence to increase cell motility and proliferation. A simple graphical interface is provided so that changes can be made easily to several parameters controlling cell behavior, and behavior of the cells is viewed both pictorially and with dedicated graphs. We fully describe the hierarchical rule-based modeling framework, show simulation results under several settings, describe the accuracy compared to experimental data, and discuss the potential usefulness for predicting future experimental outcomes and for use as a teaching tool for cell biology students. It is concluded that this simple modeling framework and its simulations accurately reflect much of the GBM cell motility behavior observed experimentally in vitro in the laboratory. Our framework can be modified easily to suit the needs of investigators interested in other similar intrinsic or extrinsic stimuli that influence cancer or other cell behavior. This modeling framework of a commonly used experimental motility assay (scratch assay) should be useful to both researchers of cell motility and students in a cell biology teaching laboratory.

  1. The (Mathematical) Modeling Process in Biosciences

    PubMed Central

    Torres, Nestor V.; Santos, Guido

    2015-01-01

    In this communication, we introduce a general framework and discussion on the role of models and the modeling process in the field of biosciences. The objective is to sum up the common procedures during the formalization and analysis of a biological problem from the perspective of Systems Biology, which approaches the study of biological systems as a whole. We begin by presenting the definitions of (biological) system and model. Particular attention is given to the meaning of mathematical model within the context of biology. Then, we present the process of modeling and analysis of biological systems. Three stages are described in detail: conceptualization of the biological system into a model, mathematical formalization of the previous conceptual model and optimization and system management derived from the analysis of the mathematical model. All along this work the main features and shortcomings of the process are analyzed and a set of rules that could help in the task of modeling any biological system are presented. Special regard is given to the formative requirements and the interdisciplinary nature of this approach. We conclude with some general considerations on the challenges that modeling is posing to current biology. PMID:26734063

  2. A Role for Language Analysis in Mathematics Textbook Analysis

    ERIC Educational Resources Information Center

    O'Keeffe, Lisa; O'Donoghue, John

    2015-01-01

    In current textbook analysis research, there is a strong focus on the content, structure and expectation presented by the textbook as elements for analysis. This research moves beyond such foci and proposes a framework for textbook language analysis which is intended to be integrated into an overall framework for mathematics textbook analysis. The…

  3. Developing and Validating a Competence Framework for Secondary Mathematics Student Teachers through a Delphi Method

    ERIC Educational Resources Information Center

    Muñiz-Rodríguez, Laura; Alonso, Pedro; Rodríguez-Muñiz, Luis J.; Valcke, Martin

    2017-01-01

    Initial teacher education programmes provide student teachers with the desired competences to develop themselves as teachers. Although a generic framework for teaching competences is available covering all school subjects in Spain, the initial teacher education programmes curriculum does not specify which competences secondary mathematics student…

  4. Pedagogies of Practice and Opportunities to Learn about Classroom Mathematics Discussions

    ERIC Educational Resources Information Center

    Ghousseini, Hala; Herbst, Patricio

    2016-01-01

    In this paper, we argue that to prepare pre-service teachers for doing complex work of teaching like leading classroom mathematics discussions requires an implementation of different pedagogies of teacher education in deliberate ways. In supporting our argument, we use two frameworks: one curricular and one pedagogical. The curricular framework is…

  5. Development of a Framework for Teaching Mathematics in Depth

    ERIC Educational Resources Information Center

    LaFramenta, Joanne Jensen

    2011-01-01

    This study illuminates the practice of teaching mathematics in depth by developing a framework to serve practicing teachers and those who educate teachers. A thorough reading of the literature that began with all of the volumes in the decades since the publication of the Standards (1989) identified six elements that were profitable for effective…

  6. Negotiating Meaning in Cross-National Studies of Mathematics Teaching: Kissing Frogs to Find Princes

    ERIC Educational Resources Information Center

    Andrews, Paul

    2007-01-01

    This paper outlines the iterative processes by which a multinational team of researchers developed a low-inference framework for the analysis of video recordings of mathematics lessons drawn from Flemish Belgium, England, Finland, Hungary and Spain. Located within a theoretical framework concerning learning as the negotiation of meaning, we…

  7. Mathematical Abstraction: Constructing Concept of Parallel Coordinates

    NASA Astrophysics Data System (ADS)

    Nurhasanah, F.; Kusumah, Y. S.; Sabandar, J.; Suryadi, D.

    2017-09-01

    Mathematical abstraction is an important process in teaching and learning mathematics so pre-service mathematics teachers need to understand and experience this process. One of the theoretical-methodological frameworks for studying this process is Abstraction in Context (AiC). Based on this framework, abstraction process comprises of observable epistemic actions, Recognition, Building-With, Construction, and Consolidation called as RBC + C model. This study investigates and analyzes how pre-service mathematics teachers constructed and consolidated concept of Parallel Coordinates in a group discussion. It uses AiC framework for analyzing mathematical abstraction of a group of pre-service teachers consisted of four students in learning Parallel Coordinates concepts. The data were collected through video recording, students’ worksheet, test, and field notes. The result shows that the students’ prior knowledge related to concept of the Cartesian coordinate has significant role in the process of constructing Parallel Coordinates concept as a new knowledge. The consolidation process is influenced by the social interaction between group members. The abstraction process taken place in this group were dominated by empirical abstraction that emphasizes on the aspect of identifying characteristic of manipulated or imagined object during the process of recognizing and building-with.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keyes, D.; McInnes, L. C.; Woodward, C.

    This report is an outcome of the workshop Multiphysics Simulations: Challenges and Opportunities, sponsored by the Institute of Computing in Science (ICiS). Additional information about the workshop, including relevant reading and presentations on multiphysics issues in applications, algorithms, and software, is available via https://sites.google.com/site/icismultiphysics2011/. We consider multiphysics applications from algorithmic and architectural perspectives, where 'algorithmic' includes both mathematical analysis and computational complexity and 'architectural' includes both software and hardware environments. Many diverse multiphysics applications can be reduced, en route to their computational simulation, to a common algebraic coupling paradigm. Mathematical analysis of multiphysics coupling in this form is not alwaysmore » practical for realistic applications, but model problems representative of applications discussed herein can provide insight. A variety of software frameworks for multiphysics applications have been constructed and refined within disciplinary communities and executed on leading-edge computer systems. We examine several of these, expose some commonalities among them, and attempt to extrapolate best practices to future systems. From our study, we summarize challenges and forecast opportunities. We also initiate a modest suite of test problems encompassing features present in many applications.« less

  9. Understanding the Chinese Approach to Creative Teaching in Mathematics Classrooms

    ERIC Educational Resources Information Center

    Niu, Weihua; Zhou, Zheng; Zhou, Xinlin

    2017-01-01

    Using Amabile's componential theory of creativity as a framework, this paper analyzes how Chinese mathematics teachers achieve creative teaching through acquiring in-depth domain-specific knowledge in mathematics, developing creativity-related skills, as well as stimulating student interest in learning mathematics, through well-crafted,…

  10. "Mathematics Is Just 1 + 1 = 2, What Is There to Argue About?": Developing a Framework for Argument-Based Mathematical Inquiry

    ERIC Educational Resources Information Center

    Fielding-Wells, Jill

    2016-01-01

    One potential means to develop students' contextual and conceptual understanding of mathematics is through Inquiry Learning. However, introducing a problem context can distract from mathematical content. Incorporating argumentation practices into Inquiry may address this through providing a stronger reliance on mathematical evidence and reasoning.…

  11. In the Middle of Nowhere: How a Textbook Can Position the Mathematics Learner

    ERIC Educational Resources Information Center

    Herbel-Eisenmann, Beth; Wagner, David

    2005-01-01

    We outline a framework for investigating how a mathematics textbook positions the mathematics learner. We use tools and concepts from discourse analysis, a field of linguistic scholarship, to illustrate the ways in which a textbook can position people in relation to mathematics and how the text can position the mathematics learner in relation to…

  12. Skeptical notes on a physics of passage.

    PubMed

    Huggett, Nick

    2014-10-01

    This paper investigates the mathematical representation of time in physics. In existing theories, time is represented by the real numbers, hence their formal properties represent properties of time: these are surveyed. The central question of the paper is whether the existing representation of time is adequate, or whether it can or should be supplemented: especially, do we need a physics incorporating some kind of "dynamical passage" of time? The paper argues that the existing mathematical framework is resistant to such changes, and might have to be rejected by anyone seeking a physics of passage. Then it rebuts two common arguments for incorporating passage into physics, especially the claim that it is an element of experience. Finally, the paper investigates whether, as has been claimed, causal set theory provides a physics of passage. © 2014 New York Academy of Sciences.

  13. Achieving Quality Mathematics Classroom Instruction through Productive Pedagogies

    ERIC Educational Resources Information Center

    Bature, Iliya Joseph; Atweh, Bill

    2016-01-01

    This paper seeks to investigate the implementation of the Productive Pedagogies Framework in Nigerian mathematics classroom setting. The researcher adopted a qualitative case study approach to seeking data for the three research questions postulated for the study. Three mathematics teachers taught mathematics in two secondary schools in two…

  14. Saussurian Linguistics Revisited: Can It Inform Our Interpretation of Mathematical Activity?.

    ERIC Educational Resources Information Center

    McNamara, O.

    1995-01-01

    Examines the basic notions of Ferdinand de Saussure and proposes that language is fundamental to the process of learning mathematics. Investigates possible mathematical perspectives upon Saussure's ideas and explores the contribution his work can offer to enhance and enrich the interpretive framework through which mathematical activity is observed…

  15. Learning Mathematical Concepts through Authentic Learning

    ERIC Educational Resources Information Center

    Koh, Noi Keng; Low, Hwee Kian

    2010-01-01

    This paper explores the infusion of financial literacy into the Mathematics curriculum in a secondary school in Singapore. By infusing financial literacy, a core theme in the 21st century framework, into mathematics education, this study investigated the impact of using financial literacy-rich mathematics lessons by using validated learning…

  16. Mathematics University Teachers' Perception of Pedagogical Content Knowledge (PCK)

    ERIC Educational Resources Information Center

    Khakbaz, Azimehsadat

    2016-01-01

    Teaching mathematics in university levels is one of the most important fields of research in the area of mathematics education. Nevertheless, there is little information about teaching knowledge of mathematics university teachers. Pedagogical content knowledge (PCK) provides a suitable framework to study knowledge of teachers. The purpose of this…

  17. Mathematics, Programming, and STEM

    ERIC Educational Resources Information Center

    Yeh, Andy; Chandra, Vinesh

    2015-01-01

    Learning mathematics is a complex and dynamic process. In this paper, the authors adopt a semiotic framework (Yeh & Nason, 2004) and highlight programming as one of the main aspects of the semiosis or meaning-making for the learning of mathematics. During a 10- week teaching experiment, mathematical meaning-making was enriched when primary…

  18. Measuring Mathematics Teacher Educators' Knowledge of Technology Integrated Teaching: Instrument Development

    ERIC Educational Resources Information Center

    Getenet, Seyum Tekeher; Beswick, Kim

    2013-01-01

    This study describes the construction of a questionnaire instrument to measure mathematics teacher educators' knowledge for technology integrated mathematics teaching. The study was founded on a reconceptualisation of the generic Technological Pedagogical Content Knowledge framework in the specific context of mathematics teaching. Steps in the…

  19. The Impact of a "Framework"-Aligned Science Professional Development Program on Literacy and Mathematics Achievement of K-3 Students

    ERIC Educational Resources Information Center

    Paprzycki, Peter; Tuttle, Nicole; Czerniak, Charlene M.; Molitor, Scott; Kadervaek, Joan; Mendenhall, Robert

    2017-01-01

    This study investigates the effect of a Framework-aligned professional development program at the PreK-3 level. The NSF funded program integrated science with literacy and mathematics learning and provided teacher professional development, along with materials and programming for parents to encourage science investigations and discourse around…

  20. Using a Framework for Three Levels of Sense Making in a Mathematics Classroom

    ERIC Educational Resources Information Center

    Moss, Diana L.; Lamberg, Teruni

    2016-01-01

    This discussion-based lesson is designed to support Year 6 students in their initial understanding of using letters to represent numbers, expressions, and equations in algebra. The three level framework is designed for: (1) making thinking explicit, (2) exploring each other's solutions, and (3) developing new mathematical insights. In each level…

  1. Playing with Maths: Implications for Early Childhood Mathematics Teaching from an Implementation Study in Melbourne, Australia

    ERIC Educational Resources Information Center

    Cohrssen, Caroline; Tayler, Collette; Cloney, Dan

    2015-01-01

    The Early Years Learning Framework for Australia governs early childhood education in the years before school in Australia. Since this framework is not a curriculum, early childhood educators report uncertainty regarding what mathematical concepts to teach and how to teach them. This implementation study, positioned within the broader E4Kids…

  2. Evidence-Based Practices: Applications of Concrete Representational Abstract Framework across Math Concepts for Students with Mathematics Disabilities

    ERIC Educational Resources Information Center

    Agrawal, Jugnu; Morin, Lisa L.

    2016-01-01

    Students with mathematics disabilities (MD) experience difficulties with both conceptual and procedural knowledge of different math concepts across grade levels. Research shows that concrete representational abstract framework of instruction helps to bridge this gap for students with MD. In this article, we provide an overview of this strategy…

  3. Summative and Formative Assessments in Mathematics Supporting the Goals of the Common Core Standards

    ERIC Educational Resources Information Center

    Schoenfeld, Alan H.

    2015-01-01

    Being proficient in mathematics involves having rich and connected mathematical knowledge, being a strategic and reflective thinker and problem solver, and having productive mathematical beliefs and dispositions. This broad set of mathematics goals is central to the Common Core State Standards for Mathematics. High-stakes testing often drives…

  4. NASA Astrophysics Data System (ADS)

    2018-05-01

    Eigenvalues and eigenvectors, together, constitute the eigenstructure of the system. The design of vibrating systems aimed at satisfying specifications on eigenvalues and eigenvectors, which is commonly known as eigenstructure assignment, has drawn increasing interest over the recent years. The most natural mathematical framework for such problems is constituted by the inverse eigenproblems, which consist in the determination of the system model that features a desired set of eigenvalues and eigenvectors. Although such a problem is intrinsically challenging, several solutions have been proposed in the literature. The approaches to eigenstructure assignment can be basically divided into passive control and active control.

  5. Vision for the College, Career, and Civic Life (C3) Framework for Inquiry in Social Studies State Standards: Guidance for States to Use in Enhancing Their Standards for Rigor in Civics, Economics, Geography, and History in K-12 Schools

    ERIC Educational Resources Information Center

    Council of Chief State School Officers, 2012

    2012-01-01

    In the advent of the development and mass adoption of the common core state standards for English language arts and mathematics, state and local agencies have now expressed a need to the Council of Chief State School Officers (CCSSO or the Council) for assistance as they upgrade existing social studies standards to meet the practical goal of…

  6. Communication and Academic Vocabulary in Mathematics: A Content Analysis of Prompts Eliciting Written Responses in Two Elementary Mathematics Textbooks

    ERIC Educational Resources Information Center

    Joseph, Christine M.

    2012-01-01

    The purpose of this study was to investigate how writing in mathematics is treated in one 4th grade National Science Foundation (NSF)-funded mathematics textbook titled "Everyday Mathematics" and one publisher-generated textbook titled "enVision MATH." The developed framework provided categories to support each of the research…

  7. Developing a Leveling Framework of Mathematical Belief and Mathematical Knowledge for Teaching of Indonesian Pre-Service Teachers

    ERIC Educational Resources Information Center

    Novikasari, Ifada; Darhim, Didi Suryadi

    2015-01-01

    This study explored the characteristics of pre-service primary teachers (PSTs) influenced by mathematical belief and mathematical knowledge for teaching (MKT) PSTs'. A qualitative approach was used to investigate the levels of PSTs on mathematical belief and MKT. The two research instruments used in this study were an interview-based task and a…

  8. A Core Curriculum: Making Mathematics Count for Everyone. Curriculum and Evaluation Standards for School Mathematics Addenda Series, Grades 9-12.

    ERIC Educational Resources Information Center

    Meiring, Steven P.; And Others

    The 1989 document, "Curriculum and Evaluation Standards for School Mathematics," provides a vision and a framework for revising and strengthening the K-12 mathematics curriculum in North American schools and for evaluating both the mathematics curriculum and students' progress. When completed, it is expected that the Addenda Series will…

  9. Vicious Cycles of Identifying and Mathematizing: A Case Study of the Development of Mathematical Failure

    ERIC Educational Resources Information Center

    Heyd-Metzuyanim, Einat

    2015-01-01

    This study uses a new communicational lens that conceptualizes the activity of learning mathematics as interplay between mathematizing and identifying in order to study how the emotional, social, and cognitive aspects of learning mathematics interact with one another. The proposed framework is used to analyze the case of Idit, a girl who started…

  10. Literacy in Language and Mathematics: More in Common Than You Think

    ERIC Educational Resources Information Center

    Thompson, Denisse R.; Rubenstein, Rheta N.

    2014-01-01

    This paper shares perspectives on literacy in mathematics, particularly highlighting commonalities with literacy in language arts. We discuss levels of language development appropriate for the mathematics classroom, issues related to mathematical definitions, implied meanings in many mathematics concepts, and the importance of justification. We…

  11. Preservice Secondary Teachers Perceptions of College-Level Mathematics Content Connections with the Common Core State Standards for Mathematics

    ERIC Educational Resources Information Center

    Olson, Travis A.

    2016-01-01

    Preservice Secondary Mathematics Teachers (PSMTs) were surveyed to identify if they could connect early-secondary mathematics content (Grades 7-9) in the Common Core State Standards for Mathematics (CCSSM) with mathematics content studied in content courses for certification in secondary teacher preparation programs. Respondents were asked to…

  12. Understanding Understanding Mathematics. Artificial Intelligence Memo No. 488.

    ERIC Educational Resources Information Center

    Michener, Edwina Rissland

    This document is concerned with the important extra-logical knowledge that is often outside of traditional discussions in mathematics, and looks at some of the ingredients and processes involved in the understanding of mathematics. The goal is to develop a conceptual framework in which to talk about mathematical knowledge and to understand the…

  13. Mathematical String Sculptures: A Case Study in Computationally-Enhanced Mathematical Crafts

    ERIC Educational Resources Information Center

    Eisenberg, Michael

    2007-01-01

    Mathematical string sculptures constitute an extremely beautiful realm of mathematical crafts. This snapshot begins with a description of a marvelous (and no longer manufactured) toy called Space Spider, which provided a framework with which children could experiment with string sculptures. Using a computer-controlled laser cutter to create frames…

  14. A Conceptual Metaphor Framework for the Teaching of Mathematics

    ERIC Educational Resources Information Center

    Danesi, Marcel

    2007-01-01

    Word problems in mathematics seem to constantly pose learning difficulties for all kinds of students. Recent work in math education (for example, [Lakoff, G. & Nunez, R. E. (2000). "Where mathematics comes from: How the embodied mind brings mathematics into being." New York: Basic Books]) suggests that the difficulties stem from an…

  15. On the mathematical modeling of wound healing angiogenesis in skin as a reaction-transport process.

    PubMed

    Flegg, Jennifer A; Menon, Shakti N; Maini, Philip K; McElwain, D L Sean

    2015-01-01

    Over the last 30 years, numerous research groups have attempted to provide mathematical descriptions of the skin wound healing process. The development of theoretical models of the interlinked processes that underlie the healing mechanism has yielded considerable insight into aspects of this critical phenomenon that remain difficult to investigate empirically. In particular, the mathematical modeling of angiogenesis, i.e., capillary sprout growth, has offered new paradigms for the understanding of this highly complex and crucial step in the healing pathway. With the recent advances in imaging and cell tracking, the time is now ripe for an appraisal of the utility and importance of mathematical modeling in wound healing angiogenesis research. The purpose of this review is to pedagogically elucidate the conceptual principles that have underpinned the development of mathematical descriptions of wound healing angiogenesis, specifically those that have utilized a continuum reaction-transport framework, and highlight the contribution that such models have made toward the advancement of research in this field. We aim to draw attention to the common assumptions made when developing models of this nature, thereby bringing into focus the advantages and limitations of this approach. A deeper integration of mathematical modeling techniques into the practice of wound healing angiogenesis research promises new perspectives for advancing our knowledge in this area. To this end we detail several open problems related to the understanding of wound healing angiogenesis, and outline how these issues could be addressed through closer cross-disciplinary collaboration.

  16. On the mathematical modeling of wound healing angiogenesis in skin as a reaction-transport process

    PubMed Central

    Flegg, Jennifer A.; Menon, Shakti N.; Maini, Philip K.; McElwain, D. L. Sean

    2015-01-01

    Over the last 30 years, numerous research groups have attempted to provide mathematical descriptions of the skin wound healing process. The development of theoretical models of the interlinked processes that underlie the healing mechanism has yielded considerable insight into aspects of this critical phenomenon that remain difficult to investigate empirically. In particular, the mathematical modeling of angiogenesis, i.e., capillary sprout growth, has offered new paradigms for the understanding of this highly complex and crucial step in the healing pathway. With the recent advances in imaging and cell tracking, the time is now ripe for an appraisal of the utility and importance of mathematical modeling in wound healing angiogenesis research. The purpose of this review is to pedagogically elucidate the conceptual principles that have underpinned the development of mathematical descriptions of wound healing angiogenesis, specifically those that have utilized a continuum reaction-transport framework, and highlight the contribution that such models have made toward the advancement of research in this field. We aim to draw attention to the common assumptions made when developing models of this nature, thereby bringing into focus the advantages and limitations of this approach. A deeper integration of mathematical modeling techniques into the practice of wound healing angiogenesis research promises new perspectives for advancing our knowledge in this area. To this end we detail several open problems related to the understanding of wound healing angiogenesis, and outline how these issues could be addressed through closer cross-disciplinary collaboration. PMID:26483695

  17. The Good, the Bad, and the Ugly: A Theoretical Framework for the Assessment of Continuous Colormaps.

    PubMed

    Bujack, Roxana; Turton, Terece L; Samsel, Francesca; Ware, Colin; Rogers, David H; Ahrens, James

    2018-01-01

    A myriad of design rules for what constitutes a "good" colormap can be found in the literature. Some common rules include order, uniformity, and high discriminative power. However, the meaning of many of these terms is often ambiguous or open to interpretation. At times, different authors may use the same term to describe different concepts or the same rule is described by varying nomenclature. These ambiguities stand in the way of collaborative work, the design of experiments to assess the characteristics of colormaps, and automated colormap generation. In this paper, we review current and historical guidelines for colormap design. We propose a specified taxonomy and provide unambiguous mathematical definitions for the most common design rules.

  18. Text + Book = Textbook? Development of a Conceptual Framework for Non-Textual Elements in Middle School Mathematics Textbooks

    ERIC Educational Resources Information Center

    Kim, Rae Young

    2009-01-01

    This study is an initial analytic attempt to iteratively develop a conceptual framework informed by both theoretical and practical perspectives that may be used to analyze non-textual elements in mathematics textbooks. Despite the importance of visual representations in teaching and learning, little effort has been made to specify in any…

  19. Comparing the Similarities and Differences of PISA 2003 and TIMSS. OECD Education Working Papers, No. 32

    ERIC Educational Resources Information Center

    Wu, Margaret

    2010-01-01

    This paper makes an in-depth comparison of the PISA (OECD) and TIMSS (IEA) mathematics assessments conducted in 2003. First, a comparison of survey methodologies is presented, followed by an examination of the mathematics frameworks in the two studies. The methodologies and the frameworks in the two studies form the basis for providing…

  20. The Pedagogy of Primary Historical Sources in Mathematics: Classroom Practice Meets Theoretical Frameworks

    ERIC Educational Resources Information Center

    Barnett, Janet Heine; Lodder, Jerry; Pengelley, David

    2014-01-01

    We analyze our method of teaching with primary historical sources within the context of theoretical frameworks for the role of history in teaching mathematics developed by Barbin, Fried, Jahnke, Jankvist, and Kjeldsen and Blomhøj, and more generally from the perspective of Sfard's theory of learning as communication. We present case studies…

  1. Mathematical Writing Errors in Expository Writings of College Mathematics Students

    ERIC Educational Resources Information Center

    Guce, Ivee K.

    2017-01-01

    Despite the efforts to confirm the effectiveness of writing in learning mathematics, analysis on common errors in mathematical writings has not received sufficient attention. This study aimed to provide an account of the students' procedural explanations in terms of their commonly committed errors in mathematical writing. Nine errors in…

  2. Mathematical Education for Geographers

    ERIC Educational Resources Information Center

    Wilson, Alan

    1978-01-01

    Outlines mathematical topics of use to college geography students identifies teaching methods for mathematical techniques in geography at the University of Leeds; and discusses problem of providing students with a framework for synthesizing all content of geography education. For journal availability, see SO 506 593. (Author/AV)

  3. A Framework for Teachers' Knowledge of Mathematical Reasoning

    ERIC Educational Resources Information Center

    Herbert, Sandra

    2014-01-01

    Exploring and developing primary teachers' understanding of mathematical reasoning was the focus of the "Mathematical Reasoning Professional Learning Research Program." Twenty-four primary teachers were interviewed after engagement in the first stage of the program incorporating demonstration lessons focused on reasoning conducted in…

  4. Public Conceptions of Algorithms and Representations in the Common Core State Standards for Mathematics

    ERIC Educational Resources Information Center

    Nanna, Robert J.

    2016-01-01

    Algorithms and representations have been an important aspect of the work of mathematics, especially for understanding concepts and communicating ideas about concepts and mathematical relationships. They have played a key role in various mathematics standards documents, including the Common Core State Standards for Mathematics. However, there have…

  5. Proofs and Refutations in the Undergraduate Mathematics Classroom

    ERIC Educational Resources Information Center

    Larsen, Sean; Zandieh, Michelle

    2008-01-01

    In his 1976 book, "Proofs and Refutations," Lakatos presents a collection of case studies to illustrate methods of mathematical discovery in the history of mathematics. In this paper, we reframe these methods in ways that we have found make them more amenable for use as a framework for research on learning and teaching mathematics. We present an…

  6. Language and Thought in Mathematics Staff Development: A Problem Probing Protocol

    ERIC Educational Resources Information Center

    Kabasakalian, Rita

    2007-01-01

    Background/Context: The theoretical framework of the paper comes from research on problem solving, considered by many to be the essence of mathematics; research on the importance of oral language in learning mathematics; and on the importance of the teacher as the primary instrument of learning mathematics for most students. As a nation, we are…

  7. Using CAS to Solve a Mathematics Task: A Deconstruction

    ERIC Educational Resources Information Center

    Berger, Margot

    2010-01-01

    I investigate how and whether a heterogeneous group of first-year university mathematics students in South Africa harness the potential power of a computer algebra system (CAS) when doing a specific mathematics task. In order to do this, I develop a framework for deconstructing a mathematics task requiring the use of CAS, into its primary…

  8. Applying a Universal Design for Learning Framework to Mediate the Language Demands of Mathematics

    ERIC Educational Resources Information Center

    Thomas, Cathy Newman; Van Garderen, Delinda; Scheuermann, Amy; Lee, Eun Ju

    2015-01-01

    This article provides information about the relationship between mathematics, language, and literacy and describes the difficulties faced by students with disabilities with math content based on the language demands of mathematics. We conceptualize mathematics language as a mode of discourse for math learning that can be thought of as receptive…

  9. Mathematics Education in Singapore--An Insider's Perspective

    ERIC Educational Resources Information Center

    Kaur, Berinderjeet

    2014-01-01

    Singapore's Education System has evolved over time and so has Mathematics Education in Singapore. The present day School Mathematics Curricula can best be described as one that caters for the needs of every child in school. It is based on a framework that has mathematical problem solving as its primary focus. The developments from 1946 to 2012…

  10. Understanding the Technological, Pedagogical, and Mathematical Issues That Emerge as Secondary Mathematics Teachers Design Lessons That Integrate Technology

    ERIC Educational Resources Information Center

    Gonzalez, Marggie Denise

    2016-01-01

    This multiple case study examines four groups of secondary mathematics teachers engaged in a Lesson Study approach to professional development where they planned and taught lessons that integrate technology. Informed by current literature, a framework was developed to focus on the dimensions of teacher's knowledge to teach mathematics with…

  11. Data Analysis and Statistics across the Curriculum. Curriculum and Evaluation Standards for School Mathematics Addenda Series. Grades 9-12.

    ERIC Educational Resources Information Center

    Burrill, Gail; And Others

    The 1989 document, "Curriculum and Evaluation Standards for School Mathematics" (the "Standards"), provides a vision and a framework for revising and strengthening the K-12 mathematics curriculum in North American schools and for evaluating both the mathematics curriculum and students' progress. When completed, it is expected…

  12. Automatising the analysis of stochastic biochemical time-series

    PubMed Central

    2015-01-01

    Background Mathematical and computational modelling of biochemical systems has seen a lot of effort devoted to the definition and implementation of high-performance mechanistic simulation frameworks. Within these frameworks it is possible to analyse complex models under a variety of configurations, eventually selecting the best setting of, e.g., parameters for a target system. Motivation This operational pipeline relies on the ability to interpret the predictions of a model, often represented as simulation time-series. Thus, an efficient data analysis pipeline is crucial to automatise time-series analyses, bearing in mind that errors in this phase might mislead the modeller's conclusions. Results For this reason we have developed an intuitive framework-independent Python tool to automate analyses common to a variety of modelling approaches. These include assessment of useful non-trivial statistics for simulation ensembles, e.g., estimation of master equations. Intuitive and domain-independent batch scripts will allow the researcher to automatically prepare reports, thus speeding up the usual model-definition, testing and refinement pipeline. PMID:26051821

  13. A Conceptual Framework for Digital Libraries for K-12 Mathematics Education: Part 1, Information Organization, Information Literacy, and Integrated Learning

    ERIC Educational Resources Information Center

    Chen, Hsin-liang; Doty, Philip

    2005-01-01

    This article is the first of two that present a six-part conceptual framework for the design and evaluation of digital libraries meant to support mathematics education in K-12 settings (see also pt. 2). This first article concentrates on (1) information organization, (2) information literacy, and (3) integrated learning with multimedia materials.…

  14. Use of Interactive Whiteboard in the Mathematics Classroom: Students' Perceptions within the Framework of the Technology Acceptance Model

    ERIC Educational Resources Information Center

    Önal, Nezih

    2017-01-01

    The purpose of the present research was to reveal students' perceptions regarding the use of the interactive whiteboard in the mathematics classroom within the framework of the Technology Acceptance Model. Semi-structured interviews were performed with 58 secondary school students (5th, 6th, 7th, and 8th grades) to collect data. The data obtained…

  15. A mathematical applications into the cells.

    PubMed

    Tiwari, Manjul

    2012-01-01

    Biology has become the new "physics" of mathematics, one of the areas of greatest mathematical applications. In turn, mathematics has provided powerful tools and metaphors to approach the astonishing complexity of biological systems. This has allowed the development of sound theoretical frameworks. Here, in this review article, some of the most significant contributions of mathematics to biology, ranging from population genetics, to developmental biology, and to networks of species interactions are summarized.

  16. Stochastic and Deterministic Models for the Metastatic Emission Process: Formalisms and Crosslinks.

    PubMed

    Gomez, Christophe; Hartung, Niklas

    2018-01-01

    Although the detection of metastases radically changes prognosis of and treatment decisions for a cancer patient, clinically undetectable micrometastases hamper a consistent classification into localized or metastatic disease. This chapter discusses mathematical modeling efforts that could help to estimate the metastatic risk in such a situation. We focus on two approaches: (1) a stochastic framework describing metastatic emission events at random times, formalized via Poisson processes, and (2) a deterministic framework describing the micrometastatic state through a size-structured density function in a partial differential equation model. Three aspects are addressed in this chapter. First, a motivation for the Poisson process framework is presented and modeling hypotheses and mechanisms are introduced. Second, we extend the Poisson model to account for secondary metastatic emission. Third, we highlight an inherent crosslink between the stochastic and deterministic frameworks and discuss its implications. For increased accessibility the chapter is split into an informal presentation of the results using a minimum of mathematical formalism and a rigorous mathematical treatment for more theoretically interested readers.

  17. University students' achievement goals and approaches to learning in mathematics.

    PubMed

    Cano, Francisco; Berbén, A B G

    2009-03-01

    Achievement goals (AG) and students' approaches to learning (SAL) are two research perspectives on student motivation and learning in higher education that have until now been pursued quite independently. This study sets out: (a) to explore the relationship between the most representative variables of SAL and AG; (b) to identify subgroups (clusters) of students with multiple AG; and (c) to examine the differences between these clusters with respect to various SAL and AG characteristics. The participants were 680 male and female 1st year university students studying different subjects (e.g. mathematics, physics, economics) but all enrolled on mathematics courses (e.g. algebra, calculus). Participants completed a series of questionnaires that measured their conceptions of mathematics, approaches to learning, course experience, personal 2 x 2 AG, and perceived AG. SAL and AG variables were moderately associated and related to both the way students perceived their academic environment and the way they conceived of the nature of mathematics (i.e. the perceptual-cognitive framework). Four clusters of students with distinctive multiple AG were identified and when the differences between clusters were analysed, we were able to attribute them to various constructs including perceptual-cognitive framework, learning approaches, and academic performance. This study reveals a consistent pattern of relationships between SAL and AG perspectives across different methods of analysis, supports the relevance of the 2 x 2 AG framework in a mathematics learning context and suggests that AG and SAL may be intertwined aspects of students' experience of learning mathematics at university.

  18. Mathematics Framework, Kindergarten-Grade 12.

    ERIC Educational Resources Information Center

    Texas Education Agency, Austin.

    This publication should help educators provide a mathematics program that emphasizes productive time on task and active involvement of students in mathematics activities. The focus on problem solving is stressed. Time allotments are stated, followed by descriptions of essential elements for kindergarten through grade 8: understanding numbers and…

  19. Connecting Mathematics Learning through Spatial Reasoning

    ERIC Educational Resources Information Center

    Mulligan, Joanne; Woolcott, Geoffrey; Mitchelmore, Michael; Davis, Brent

    2018-01-01

    Spatial reasoning, an emerging transdisciplinary area of interest to mathematics education research, is proving integral to all human learning. It is particularly critical to science, technology, engineering and mathematics (STEM) fields. This project will create an innovative knowledge framework based on spatial reasoning that identifies new…

  20. Considering Indigenous Knowledges and Mathematics Curriculum

    ERIC Educational Resources Information Center

    Sterenberg, Gladys

    2013-01-01

    Across Canada, significant program changes in school mathematics have been made that encourage teachers to consider Aboriginal perspectives. In this article, I investigate one Aboriginal teacher's approaches to integrating Indigenous knowledges and the mandated mathematics curriculum in a Blackfoot First Nation school. Using a framework that…

  1. Promoting Mathematical Connections Using Three-Dimensional Manipulatives

    ERIC Educational Resources Information Center

    Safi, Farshid; Desai, Siddhi

    2017-01-01

    "Principles to Actions: Ensuring Mathematical Success for All" (NCTM 2014) gives teachers access to an insightful, research-informed framework that outlines ways to promote reasoning and sense making. Specifically, as students transition on their mathematical journey through middle school and beyond, their knowledge and use of…

  2. Can We Really Count on Frank?

    ERIC Educational Resources Information Center

    Marston, Jennifer L.; Muir, Tracey; Livy, Sharyn

    2013-01-01

    The National Council of Teachers of Mathematics (NCTM) and the Australian National Curriculum encourage the integration of literacy and numeracy, and "Teaching Children Mathematics" ("TCM") regularly includes articles on incorporating picture books into the mathematics program. Marston has developed a new framework (2010) to assist teachers in…

  3. A mathematical framework for the selection of an optimal set of peptides for epitope-based vaccines.

    PubMed

    Toussaint, Nora C; Dönnes, Pierre; Kohlbacher, Oliver

    2008-12-01

    Epitope-based vaccines (EVs) have a wide range of applications: from therapeutic to prophylactic approaches, from infectious diseases to cancer. The development of an EV is based on the knowledge of target-specific antigens from which immunogenic peptides, so-called epitopes, are derived. Such epitopes form the key components of the EV. Due to regulatory, economic, and practical concerns the number of epitopes that can be included in an EV is limited. Furthermore, as the major histocompatibility complex (MHC) binding these epitopes is highly polymorphic, every patient possesses a set of MHC class I and class II molecules of differing specificities. A peptide combination effective for one person can thus be completely ineffective for another. This renders the optimal selection of these epitopes an important and interesting optimization problem. In this work we present a mathematical framework based on integer linear programming (ILP) that allows the formulation of various flavors of the vaccine design problem and the efficient identification of optimal sets of epitopes. Out of a user-defined set of predicted or experimentally determined epitopes, the framework selects the set with the maximum likelihood of eliciting a broad and potent immune response. Our ILP approach allows an elegant and flexible formulation of numerous variants of the EV design problem. In order to demonstrate this, we show how common immunological requirements for a good EV (e.g., coverage of epitopes from each antigen, coverage of all MHC alleles in a set, or avoidance of epitopes with high mutation rates) can be translated into constraints or modifications of the objective function within the ILP framework. An implementation of the algorithm outperforms a simple greedy strategy as well as a previously suggested evolutionary algorithm and has runtimes on the order of seconds for typical problem sizes.

  4. Comparison of Virginia's 2009 Mathematics Standards of Learning with the Common Core State Standards for Mathematics

    ERIC Educational Resources Information Center

    Virginia Department of Education, 2011

    2011-01-01

    This first draft of the "Comparison of Virginia's 2009 Mathematics Standards of Learning (SOL) with the Common Core State Standards (CCSS) for Mathematics" provides a side-by-side overview demonstrating how the 2009 Mathematics SOL are aligned to the CCSS. The comparison was made using Virginia's complete standards program for supporting…

  5. Policy Building Blocks: Helping Policymakers Determine Policy Staging for the Development of Distributed PV Markets: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doris, E.

    2012-04-01

    There is a growing body of qualitative and a limited body of quantitative literature supporting the common assertion that policy drives development of clean energy resources. Recent work in this area indicates that the impact of policy depends on policy type, length of time in place, and economic and social contexts of implementation. This work aims to inform policymakers about the impact of different policy types and to assist in the staging of those policies to maximize individual policy effectiveness and development of the market. To do so, this paper provides a framework for policy development to support the marketmore » for distributed photovoltaic systems. Next steps include mathematical validation of the framework and development of specific policy pathways given state economic and resource contexts.« less

  6. From data to the decision: A software architecture to integrate predictive modelling in clinical settings.

    PubMed

    Martinez-Millana, A; Fernandez-Llatas, C; Sacchi, L; Segagni, D; Guillen, S; Bellazzi, R; Traver, V

    2015-08-01

    The application of statistics and mathematics over large amounts of data is providing healthcare systems with new tools for screening and managing multiple diseases. Nonetheless, these tools have many technical and clinical limitations as they are based on datasets with concrete characteristics. This proposition paper describes a novel architecture focused on providing a validation framework for discrimination and prediction models in the screening of Type 2 diabetes. For that, the architecture has been designed to gather different data sources under a common data structure and, furthermore, to be controlled by a centralized component (Orchestrator) in charge of directing the interaction flows among data sources, models and graphical user interfaces. This innovative approach aims to overcome the data-dependency of the models by providing a validation framework for the models as they are used within clinical settings.

  7. Comparison of Virginia's College and Career Ready Mathematics Performance Expectations with the Common Core State Standards for Mathematics

    ERIC Educational Resources Information Center

    Virginia Department of Education, 2010

    2010-01-01

    This paper presents a comparison of Virginia's mathematics performance expectations with the common core state standards for mathematics. The comparison focuses on number and quantity, algebra, functions, geometry, and statistics and probability. (Contains 1 footnote.)

  8. An initial framework for the language of higher-order thinking mathematics practices

    NASA Astrophysics Data System (ADS)

    Staples, Megan E.; Truxaw, Mary P.

    2012-09-01

    This article presents an examination of the language demands of cognitively demanding tasks and proposes an initial framework for the language demands of higher-order mathematics thinking practices. We articulate four categories for this framework: language of generalisation, language of comparison, language of proportional reasoning, and language of analysing impact. These categories were developed out of our collaborative work to design and implement higher-order thinking tasks with a group of Grade 9 (14- and 15-year-olds) teachers teaching in a linguistically diverse setting; analyses of student work samples on these tasks; and our knowledge of the literature. We describe each type of language demand and then analyse student work in each category to reveal linguistic challenges facing students as they engage these mathematical tasks. Implications for teaching and professional development are discussed.

  9. An Examination of the Levels of Cognitive Demand Required by Probability Tasks in Middle Grades Mathematics Textbooks

    ERIC Educational Resources Information Center

    Jones, Dustin L.; Tarr, James E.

    2007-01-01

    We analyze probability content within middle grades (6, 7, and 8) mathematics textbooks from a historical perspective. Two series, one popular and the other alternative, from four recent eras of mathematics education (New Math, Back to Basics, Problem Solving, and Standards) were analyzed using the Mathematical Tasks Framework (Stein, Smith,…

  10. Exploring the Impact of a Standards-Based Mathematics and Pedagogy Class on Preservice Teachers' Beliefs and Subject Matter Knowledge

    ERIC Educational Resources Information Center

    Stohlmann, Micah Stephen

    2012-01-01

    This case study explored the impact of a standards-based mathematics and pedagogy class on preservice elementary teachers' beliefs and conceptual subject matter knowledge of linear functions. The framework for the standards-based mathematics and pedagogy class in this study involved the National Council of Teachers of Mathematics Standards,…

  11. "Let's Count": Improving Community Approaches to Early Years Mathematics Learning, Teaching and Dispositions through Noticing, Exploring and Talking about Mathematics

    ERIC Educational Resources Information Center

    Perry, Bob; Hampshire, Ann; Gervaxoni, Ann; O'Neill, Will

    2016-01-01

    "Let's Count" is a preschool mathematics intervention implemented by The Smith Family from 2012 to the present in "disdvantaged" communities across Australia. It is based on current mathematics and early childhood education research and aligns with the Early Years Learning Framework. Let's Count has been shown to be effective…

  12. Status of Teachers' Proficiency in Mathematical Knowledge for Teaching at Secondary School Level in Kenya

    ERIC Educational Resources Information Center

    Miheso-O'Connor Khakasa, Marguerite; Berger, Margot

    2016-01-01

    Mathematical knowledge for teaching (MKT), defined by Ball ("Elementary Journal," 93, 373-397, 1993) as knowledge that is needed to teach mathematics, has been used as a framework by researchers to interrogate various aspects of teaching and learning mathematics. In this article, which draws from a larger study, we show how an in-depth…

  13. An Emergent Framework: Views of Mathematical Processes

    ERIC Educational Resources Information Center

    Sanchez, Wendy B.; Lischka, Alyson E.; Edenfield, Kelly W.; Gammill, Rebecca

    2015-01-01

    The findings reported in this paper were generated from a case study of teacher leaders at a state-level mathematics conference. Investigation focused on how participants viewed the mathematical processes of communication, connections, representations, problem solving, and reasoning and proof. Purposeful sampling was employed to select nine…

  14. Reconstructing Mathematics Pedagogy from a Constructivist Perspective.

    ERIC Educational Resources Information Center

    Simon, Martin A.

    1995-01-01

    Begins with an overview of the constructivist perspective and the pedagogical theory development upon which a constructivist teaching experiment with 20 prospective elementary teachers was based. Derives a theoretical framework for mathematics pedagogy with a focus on decisions about content and mathematical tasks. (49 references) (Author/DDD)

  15. Mathematical Problem Solving through Sequential Process Analysis

    ERIC Educational Resources Information Center

    Codina, A.; Cañadas, M. C.; Castro, E.

    2015-01-01

    Introduction: The macroscopic perspective is one of the frameworks for research on problem solving in mathematics education. Coming from this perspective, our study addresses the stages of thought in mathematical problem solving, offering an innovative approach because we apply sequential relations and global interrelations between the different…

  16. The Rights of the Learner: A Framework for Promoting Equity through Formative Assessment in Mathematics Education

    ERIC Educational Resources Information Center

    Kalinec-Craig, Crystal A.

    2017-01-01

    An elementary mathematics teacher once argued that she and her students held four Rights of the Learner in the classroom: (1) the right to be confused; (2) the right to claim a mistake; (3) the right to speak, listen and be heard; and (4) the right to write, do, and represent only what makes sense. Written as an emerging framework to promote…

  17. A Mathematical Framework for the Complex System Approach to Group Dynamics: The Case of Recovery House Social Integration.

    PubMed

    Light, John M; Jason, Leonard A; Stevens, Edward B; Callahan, Sarah; Stone, Ariel

    2016-03-01

    The complex system conception of group social dynamics often involves not only changing individual characteristics, but also changing within-group relationships. Recent advances in stochastic dynamic network modeling allow these interdependencies to be modeled from data. This methodology is discussed within a context of other mathematical and statistical approaches that have been or could be applied to study the temporal evolution of relationships and behaviors within small- to medium-sized groups. An example model is presented, based on a pilot study of five Oxford House recovery homes, sober living environments for individuals following release from acute substance abuse treatment. This model demonstrates how dynamic network modeling can be applied to such systems, examines and discusses several options for pooling, and shows how results are interpreted in line with complex system concepts. Results suggest that this approach (a) is a credible modeling framework for studying group dynamics even with limited data, (b) improves upon the most common alternatives, and (c) is especially well-suited to complex system conceptions. Continuing improvements in stochastic models and associated software may finally lead to mainstream use of these techniques for the study of group dynamics, a shift already occurring in related fields of behavioral science.

  18. Grade Expectations for Vermont's Framework of Standards and Learning Opportunities, Spring 2004 (Mathematics, Reading and Writing)

    ERIC Educational Resources Information Center

    Vermont Department of Education, 2004

    2004-01-01

    This document, "Grade Expectations for Vermont's Framework of Standards and Learning Opportunities" (hereafter "Vermont's Grade Expectations"), is an important companion to "Vermont's Framework." These Grade Expectations (GEs) serve the same purposes as "Vermont's Framework," but articulate learning…

  19. Estimating the dilemma strength for game systems. Comment on "Universal scaling for the dilemma strength in evolutionary games", by Z. Wang et al.

    NASA Astrophysics Data System (ADS)

    Chen, Xiaojie

    2015-09-01

    The puzzle of cooperation exists widely in the realistic world, including biological, social, and engineering systems. How to solve the cooperation puzzle has received considerable attention in recent years [1]. Evolutionary game theory provides a common mathematical framework to study the problem of cooperation. In principle, these practical biological, social, or engineering systems can be described by complex game models composed of multiple autonomous individuals with mutual interactions. And generally there exists a dilemma for the evolution of cooperation in the game systems.

  20. Structurally Sound Statistics Instruction

    ERIC Educational Resources Information Center

    Casey, Stephanie A.; Bostic, Jonathan D.

    2016-01-01

    The Common Core's Standards for Mathematical Practice (SMP) call for all K-grade 12 students to develop expertise in the processes and proficiencies of doing mathematics. However, the Common Core State Standards for Mathematics (CCSSM) (CCSSI 2010) as a whole addresses students' learning of not only mathematics but also statistics. This situation…

  1. MONTO: A Machine-Readable Ontology for Teaching Word Problems in Mathematics

    ERIC Educational Resources Information Center

    Lalingkar, Aparna; Ramnathan, Chandrashekar; Ramani, Srinivasan

    2015-01-01

    The Indian National Curriculum Framework has as one of its objectives the development of mathematical thinking and problem solving ability. However, recent studies conducted in Indian metros have expressed concern about students' mathematics learning. Except in some private coaching academies, regular classroom teaching does not include problem…

  2. Techno-Mathematical Discourse: A Conceptual Framework for Analyzing Classroom Discussions

    ERIC Educational Resources Information Center

    Anderson-Pence, Katie L.

    2017-01-01

    Extensive research has been published on the nature of classroom mathematical discourse and on the impact of technology tools, such as virtual manipulatives (VM), on students' learning, while less research has focused on how technology tools facilitate that mathematical discourse. This paper presents an emerging construct, the Techno-Mathematical…

  3. Circles, Materiality and Movement

    ERIC Educational Resources Information Center

    Chorney, Sean

    2017-01-01

    This paper approaches the concept of the circle through the framework of mathematics-as-becoming. This paper focuses specifically on how a concept can be thought of as a process, and on the implications that this might have for mathematics learning. Contrary to long-standing assumptions about mathematical concepts as ideal, inert, Platonic forms,…

  4. A Reflection Framework for Teaching Mathematics

    ERIC Educational Resources Information Center

    Merritt, Eileen G.; Rimm-Kaufman, Sara E.; Berry, Robert Q., III; Walkowiak, Temple A.; McCracken, Erin R.

    2010-01-01

    Mathematics teachers confront dozens of daily decisions about how to instruct students. It is well established that high-quality instruction provides benefits for students with diverse learning and family backgrounds. However, it is often difficult for teachers to identify the critical aspects of a successful mathematics lesson as they strive to…

  5. Raising Concerns about Sharing and Reusing Large-Scale Mathematics Classroom Observation Video Data

    ERIC Educational Resources Information Center

    Ing, Marsha; Samkian, Artineh

    2018-01-01

    There are great opportunities and challenges to sharing large-scale mathematics classroom observation data. This Research Commentary describes the methodological opportunities and challenges and provides a specific example from a mathematics education research project to illustrate how the research questions and framework drove observational…

  6. Commognitive Analysis of Undergraduate Mathematics Students' First Encounter with the Subgroup Test

    ERIC Educational Resources Information Center

    Ioannou, Marios

    2018-01-01

    This study analyses learning aspects of undergraduate mathematics students' first encounter with the subgroup test, using the commognitive theoretical framework. It focuses on students' difficulties as these are related to the object-level and metalevel mathematical learning in group theory, and, when possible, highlights any commognitive…

  7. Children's Mathematical Knowledge Prior to Starting School

    ERIC Educational Resources Information Center

    Gervasoni, Ann; Perry, Bob

    2013-01-01

    The introduction of the "Early Years Learning Framework and the Australian Curriculum-Mathematics" in Australian preschools and primary schools has caused early childhood educators to reconsider what may be appropriate levels of mathematics knowledge to expect from children as they start school. This paper reports on initial data from an…

  8. Mathematics Framework for the 2011 National Assessment of Educational Progress

    ERIC Educational Resources Information Center

    National Assessment Governing Board, 2010

    2010-01-01

    Since 1973, the National Assessment of Educational Progress (NAEP) has gathered information about student achievement in mathematics. Results of these periodic assessments, produced in print and web-based formats, provide valuable information to a wide variety of audiences. The NAEP Assessment in mathematics has two components that differ in…

  9. Mathematical Literacy of School Leaving Pupils in South Africa

    ERIC Educational Resources Information Center

    Howie, S.; Plomp, T.

    2002-01-01

    This paper discusses some results of South African (SA) grade 12 pupils on an international test of mathematical literacy, administered in the framework of the Third International Mathematics and Science Study (TIMSS) under the auspices of the International Association for the Evaluation of Educational Achievement (IEA). Three questions are…

  10. Psychological Aspects of Genetic Approach to Teaching Mathematics

    ERIC Educational Resources Information Center

    Safuanov, Ildar S.

    2004-01-01

    In this theoretical essay the psychological aspects of genetic approach to teaching mathematics (mainly at universities) are discussed. Analysis of the history and modern state of genetic teaching shows that its psychological aspects may be explained using both Vygotskian and Piagetian frameworks. Experience of practice of mathematical education…

  11. Novice Mathematics Teachers Create Themselves

    ERIC Educational Resources Information Center

    Schatz Oppenheimer, Orna; Dvir, Nurit

    2018-01-01

    This study presents a qualitative research based on three narratives written by novice mathematics teachers. We examine their unique professional world during their first year of work. The methodology of narrative framework, on which this article is based, helps to gain better understanding of the need for novice mathematics teachers to have…

  12. The Pedagogy of Primary Historical Sources in Mathematics: Classroom Practice Meets Theoretical Frameworks

    NASA Astrophysics Data System (ADS)

    Barnett, Janet Heine; Lodder, Jerry; Pengelley, David

    2014-01-01

    We analyze our method of teaching with primary historical sources within the context of theoretical frameworks for the role of history in teaching mathematics developed by Barbin, Fried, Jahnke, Jankvist, and Kjeldsen and Blomhøj, and more generally from the perspective of Sfard's theory of learning as communication. We present case studies for two of our guided student modules that are built around sequences of primary sources and are intended for learning core curricular material, one on logical implication, the other on the concept of a group. Additionally, we propose some conclusions about the advantages and challenges of using primary sources in teaching mathematics.

  13. A simple theoretical framework for understanding heterogeneous differentiation of CD4+ T cells

    PubMed Central

    2012-01-01

    Background CD4+ T cells have several subsets of functional phenotypes, which play critical yet diverse roles in the immune system. Pathogen-driven differentiation of these subsets of cells is often heterogeneous in terms of the induced phenotypic diversity. In vitro recapitulation of heterogeneous differentiation under homogeneous experimental conditions indicates some highly regulated mechanisms by which multiple phenotypes of CD4+ T cells can be generated from a single population of naïve CD4+ T cells. Therefore, conceptual understanding of induced heterogeneous differentiation will shed light on the mechanisms controlling the response of populations of CD4+ T cells under physiological conditions. Results We present a simple theoretical framework to show how heterogeneous differentiation in a two-master-regulator paradigm can be governed by a signaling network motif common to all subsets of CD4+ T cells. With this motif, a population of naïve CD4+ T cells can integrate the signals from their environment to generate a functionally diverse population with robust commitment of individual cells. Notably, two positive feedback loops in this network motif govern three bistable switches, which in turn, give rise to three types of heterogeneous differentiated states, depending upon particular combinations of input signals. We provide three prototype models illustrating how to use this framework to explain experimental observations and make specific testable predictions. Conclusions The process in which several types of T helper cells are generated simultaneously to mount complex immune responses upon pathogenic challenges can be highly regulated, and a simple signaling network motif can be responsible for generating all possible types of heterogeneous populations with respect to a pair of master regulators controlling CD4+ T cell differentiation. The framework provides a mathematical basis for understanding the decision-making mechanisms of CD4+ T cells, and it can be helpful for interpreting experimental results. Mathematical models based on the framework make specific testable predictions that may improve our understanding of this differentiation system. PMID:22697466

  14. The Science behind Curriculum Development and Evaluation: Taking a Design Science Approach in the Production of a Tier 2 Mathematics Curriculum

    ERIC Educational Resources Information Center

    Doabler, Christian T.; Clarke, Ben; Fien, Hank; Baker, Scott K.; Kosty, Derek B.; Cary, Mari Strand

    2015-01-01

    The production of an effective mathematics curriculum begins with a scientific development, evaluation, and revision framework. The purpose of this study was to conduct an initial investigation of a recently developed Tier 2 mathematics curriculum designed to improve the outcomes of first grade students at risk for mathematics difficulties (MD).…

  15. What the United States Can Learn From Singapore's World-Class Mathematics System (and What Singapore Can Learn from the United States): An Exploratory Study

    ERIC Educational Resources Information Center

    Ginsburg, Alan; Leinwand, Steven; Anstrom, Terry; Pollock, Elizabeth

    2005-01-01

    This exploratory study compares key features of the Singapore and U.S. mathematics systems in the primary grades, when students need to build a strong mathematics foundation. It identifies major differences between the mathematics frameworks, textbooks, assessments, and teachers in Singapore and the United States. It also presents initial results…

  16. The Nature of Scaffolding in Undergraduate Students' Transition to Mathematical Proof

    ERIC Educational Resources Information Center

    Blanton, Maria L.; Stylianou, Despina A.; David, Maria Manuela

    2003-01-01

    This paper explores the role of instructional scaffolding in the development of undergraduate students' understanding of mathematical proof during a one-year discrete mathematics course. We describe here the framework adapted for the analysis of whole-class discussion and examine how the teacher scaffolded students' thinking. Results suggest that…

  17. Mathematics Teaching as Problem Solving: A Framework for Studying Teacher Metacognition Underlying Instructional Practice in Mathematics.

    ERIC Educational Resources Information Center

    Artzt, Alice F.; Armour-Thomas, Eleanor

    1998-01-01

    Uses a "teaching as problem solving" perspective to examine the components of metacognition underlying the instructional practice of seven experienced and seven beginning secondary-school mathematics teachers. Data analysis of observations, lesson plans, videotapes, and audiotapes of structured interviews suggests that the metacognition of…

  18. Early Career Elementary Mathematics Teachers' Noticing Related to Language and Language Learners

    ERIC Educational Resources Information Center

    Turner, Erin Elizabeth; McDuffie, Amy Roth; Sugimoto, Amanda Tori; Stoehr, Kathleen Jablon; Witters, Angela; Aguirre, Julia; Bartell, Tonya; Drake, Corey; Foote, Mary Q.

    2016-01-01

    There has been limited attention to early career teachers' (ECTs) understandings and practices related to language in teaching and learning mathematics. In this qualitative case study, we drew upon frameworks for teacher noticing to study the language practices of six early career elementary and middle school mathematics teachers. We describe…

  19. Conceptualizing Mathematics as Discourse in Different Educational Settings

    ERIC Educational Resources Information Center

    Güçler, Beste; Wang, Sasha; Kim, Dong-Joong

    2015-01-01

    In this work, we focus on a relatively new theory in mathematics education research, which views thinking as communication and characterizes mathematics as a form of discourse. We discuss how this framework can be utilized in different educational settings by giving examples from our own research to highlight the insights it provides in the…

  20. A Framework for Re-Envisioning Mathematics Instruction for English Language Learners

    ERIC Educational Resources Information Center

    Council of the Great City Schools, 2016

    2016-01-01

    The overarching purpose of this document is to define a new vision for mathematics instruction that explicitly attends to the needs of English Language Learners (ELLs), addressing the interdependence of language and mathematics. The sections in this report are devoted to (1) making clear that the grade-level college- and career-readiness…

  1. Family Involvement in Children's Mathematics Education Experiences: Voices of Immigrant Chinese American Students and Their Parents

    ERIC Educational Resources Information Center

    Liang, Senfeng

    2013-01-01

    This study examines ways in which Chinese immigrant families are involved in their children's mathematics education, particularly focusing on how different types of families utilize different forms of capital to support their children's mathematics education. The theoretical framework defines four types of Chinese immigrant families--working…

  2. Mathematics Lectures as Narratives: Insights from Network Graph Methodology

    ERIC Educational Resources Information Center

    Weinberg, Aaron; Wiesner, Emilie; Fukawa-Connelly, Tim

    2016-01-01

    Although lecture is the traditional method of university mathematics instruction, there has been little empirical research that describes the general structure of lectures. In this paper, we adapt ideas from narrative analysis and apply them to an upper-level mathematics lecture. We develop a framework that enables us to conceptualize the lecture…

  3. STEM and Model-Eliciting Activities: Responsive Professional Development for K-8 Mathematics Coaches

    ERIC Educational Resources Information Center

    Baker, Courtney; Galanti, Terrie; Birkhead, Sara

    2017-01-01

    This research highlights a university-school division collaboration to pilot a professional development framework for integrating STEM in K-8 mathematics classrooms. The university researchers worked with mathematics coaches to construct a realistic and reasonable vision of STEM integration built upon the design principles of model-eliciting…

  4. A Comparison of Geometry Problems in Middle-Grade Mathematics Textbooks from Taiwan, Singapore, Finland, and the United States

    ERIC Educational Resources Information Center

    Yang, Der-Ching; Tseng, Yi-Kuan; Wang, Tzu-Ling

    2017-01-01

    This study analyzed geometry problems in four middle-grade mathematics textbook series from Taiwan, Singapore, Finland, and the United States, while exploring the expectations for students' learning experiences with these problems. An analytical framework developed for mathematics textbook problem analysis had three dimensions: representation…

  5. Mathematics Teachers' Knowledge of Student Thinking and Its Evidences in Their Instruction

    ERIC Educational Resources Information Center

    Çelik, Aytug Özaltun; Güzel, Esra Bukova

    2017-01-01

    The aim of this case study is to examine mathematics teachers' knowledge of students' thinking and its evidences in their teaching. The participants were three secondary mathematics teachers. Data were gathered from interviews and observations. While analyzing the data, the framework about teachers' knowledge of students' thinking was used. The…

  6. Procedural Explanations in Mathematics Writing: A Framework for Understanding College Students' Effective Communication Practices

    ERIC Educational Resources Information Center

    Kline, Susan L.; Ishii, Drew K.

    2008-01-01

    This study analyzes the procedural explanations written by remedial college mathematics students. Relevant literatures suggest that six communication activities might be key in effective procedural explanations in mathematics writing: (a) orienting the learner, (b) providing kernels or definitions of concepts and procedures, (c) using exemplars or…

  7. Mathematical Practices in a Technological Workplace: The Role of Tools

    ERIC Educational Resources Information Center

    Triantafillou, Chrissavgi; Potari, Despina

    2010-01-01

    This paper investigates the role of tools in the formation of mathematical practices and the construction of mathematical meanings in the setting of a telecommunication organization through the actions undertaken by a group of technicians in their working activity. The theoretical and analytical framework is guided by the first-generation activity…

  8. Students' Mathematical Work on Absolute Value: Focusing on Conceptions, Errors and Obstacles

    ERIC Educational Resources Information Center

    Elia, Iliada; Özel, Serkan; Gagatsis, Athanasios; Panaoura, Areti; Özel, Zeynep Ebrar Yetkiner

    2016-01-01

    This study investigates students' conceptions of absolute value (AV), their performance in various items on AV, their errors in these items and the relationships between students' conceptions and their performance and errors. The Mathematical Working Space (MWS) is used as a framework for studying students' mathematical work on AV and the…

  9. Dynamic and Interactive Mathematics Learning Environments: The Case of Teaching the Limit Concept

    ERIC Educational Resources Information Center

    Martinovic, Dragana; Karadag, Zekeriya

    2012-01-01

    This theoretical study is an attempt to explore the potential of the dynamic and interactive mathematics learning environments (DIMLE) in relation to the technological pedagogical content knowledge (TPACK) framework. DIMLE are developed with intent to support learning mathematics through free exploration in a less constrained environment. A…

  10. Modellus: Learning Physics with Mathematical Modelling

    NASA Astrophysics Data System (ADS)

    Teodoro, Vitor

    Computers are now a major tool in research and development in almost all scientific and technological fields. Despite recent developments, this is far from true for learning environments in schools and most undergraduate studies. This thesis proposes a framework for designing curricula where computers, and computer modelling in particular, are a major tool for learning. The framework, based on research on learning science and mathematics and on computer user interface, assumes that: 1) learning is an active process of creating meaning from representations; 2) learning takes place in a community of practice where students learn both from their own effort and from external guidance; 3) learning is a process of becoming familiar with concepts, with links between concepts, and with representations; 4) direct manipulation user interfaces allow students to explore concrete-abstract objects such as those of physics and can be used by students with minimal computer knowledge. Physics is the science of constructing models and explanations about the physical world. And mathematical models are an important type of models that are difficult for many students. These difficulties can be rooted in the fact that most students do not have an environment where they can explore functions, differential equations and iterations as primary objects that model physical phenomena--as objects-to-think-with, reifying the formal objects of physics. The framework proposes that students should be introduced to modelling in a very early stage of learning physics and mathematics, two scientific areas that must be taught in very closely related way, as they were developed since Galileo and Newton until the beginning of our century, before the rise of overspecialisation in science. At an early stage, functions are the main type of objects used to model real phenomena, such as motions. At a later stage, rates of change and equations with rates of change play an important role. This type of equations--differential equations--are the most important mathematical objects used for modelling Natural phenomena. In traditional approaches, they are introduced only at advanced level, because it takes a long time for students to be introduced to the fundamental principles of Calculus. With the new proposed approach, rates of change can be introduced also at early stages on learning if teachers stress semi-quantitative reasoning and use adequate computer tools. In this thesis, there is also presented Modellus, a computer tool for modelling and experimentation. This computer tool has a user interface that allows students to start doing meaningful conceptual and empirical experiments without the need to learn new syntax, as is usual with established tools. The different steps in the process of constructing and exploring models can be done with Modellus, both from physical points of view and from mathematical points of view. Modellus activities show how mathematics and physics have a unity that is very difficult to see with traditional approaches. Mathematical models are treated as concrete-abstract objects: concrete in the sense that they can be manipulated directly with a computer and abstract in the sense that they are representations of relations between variables. Data gathered from two case studies, one with secondary school students and another with first year undergraduate students support the main ideas of the thesis. Also data gathered from teachers (from college and secondary schools), mainly through an email structured questionnaire, shows that teachers agree on the potential of modelling in the learning of physics (and mathematics) and of the most important aspects of the proposed framework to integrate modelling as an essential component of the curriculum. Schools, as all institutions, change at a very slow rate. There are a multitude of reasons for this. And traditional curricula, where the emphasis is on rote learning of facts, can only be changed if schools have access to new and powerful views of learning and to new tools, that support meaningful conceptual learning and are as common and easy to use as pencil and paper.

  11. Saussurian linguistics revisited: Can it inform our interpretation of mathematical activity?

    NASA Astrophysics Data System (ADS)

    McNamara, O.

    1995-07-01

    This paper examines the basic notions of Ferdinand de Saussure (1857 1913) who was a preeminent figure in the development of linguistics and the foundation of structuralism. It suggests that a key aspect of twentieth century thought has been the growing recognition that the study of language can offer a framework through which we can develop an understanding of our world. It thus proposes that language is fundamental to the process of learning mathematics on every level whether it be through classroom discussion, group exploration, teacher exposition or individual interaction with printed material. Ensuing from this the paper investigates possible mathematical perspectives upon Saussure's ideas and explores what contribution his work can offer to enhance and enrich the interpretive framework through which we observe mathematical activity in the classroom. It takes as an example a mathematical investigation carried out by a group of 12 year old girls and develops the analysis from a Saussurian stance. The paper concludes that language is the medium through which, and in which, mathematical ideas are formed and exchanged.

  12. The Co-Construction of Learning Difficulties in Mathematics--Teacher-Student Interactions and Their Role in the Development of a Disabled Mathematical Identity

    ERIC Educational Resources Information Center

    Heyd-Metzuyanim, Einat

    2013-01-01

    Leaning on a communicational framework for studying social, affective, and cognitive aspects of learning, the present study offers a new look at the construction of an identity of failure in mathematics as it occurs through teaching-learning interactions. Using the case of Dana, an extremely low-achieving student in 7th grade mathematics, I…

  13. The Common Core Mathematics Companion: The Standards Decoded, High School

    ERIC Educational Resources Information Center

    National Council of Teachers of Mathematics, 2017

    2017-01-01

    When it comes to mathematics, standards aligned is achievement aligned… In the short time since "The Common Core Mathematics Companions" for grades K-2, 3-5 and 6-8 burst on the scene, they have been lauded as the best resources for making critical mathematics ideas easy to teach. With this brand-new volume, high school mathematics…

  14. Preservice Secondary Teachers' Conceptions from a Mathematical Modeling Activity and Connections to the Common Core State Standards

    ERIC Educational Resources Information Center

    Stohlmann, Micah; Maiorca, Cathrine; Olson, Travis A.

    2015-01-01

    Mathematical modeling is an essential integrated piece of the Common Core State Standards. However, researchers have shown that mathematical modeling activities can be difficult for teachers to implement. Teachers are more likely to implement mathematical modeling activities if they have their own successful experiences with such activities. This…

  15. Incorporating the Common Core's Problem Solving Standard for Mathematical Practice into an Early Elementary Inclusive Classroom

    ERIC Educational Resources Information Center

    Fletcher, Nicole

    2014-01-01

    Mathematics curriculum designers and policy decision makers are beginning to recognize the importance of problem solving, even at the earliest stages of mathematics learning. The Common Core includes sense making and perseverance in solving problems in its standards for mathematical practice for students at all grade levels. Incorporating problem…

  16. Promoting Access to Common Core Mathematics for Students with Severe Disabilities through Mathematical Problem Solving

    ERIC Educational Resources Information Center

    Spooner, Fred; Saunders, Alicia; Root, Jenny; Brosh, Chelsi

    2017-01-01

    There is a need to teach the pivotal skill of mathematical problem solving to students with severe disabilities, moving beyond basic skills like computation to higher level thinking skills. Problem solving is emphasized as a Standard for Mathematical Practice in the Common Core State Standards across grade levels. This article describes a…

  17. A Systems Engineering Process for Selecting Technologies to Mitigate the Risk of Operating Rotorcraft in Degraded Visual Environments

    DTIC Science & Technology

    2013-09-30

    combining their know-how into a mathematical framework that properly captures their intent. Leveraging this framework is the final step by which all...into quantifiable and measureable concepts. The prior phase identified the capability gaps as the highest level goals and a series of DVE mitigation...gapy and s, is the level of satisfaction of said function as mathematically defined below. Similarly, the relationship between technology and

  18. The transition to formal thinking in mathematics

    NASA Astrophysics Data System (ADS)

    Tall, David

    2008-09-01

    This paper focuses on the changes in thinking involved in the transition from school mathematics to formal proof in pure mathematics at university. School mathematics is seen as a combination of visual representations, including geometry and graphs, together with symbolic calculations and manipulations. Pure mathematics in university shifts towards a formal framework of axiomatic systems and mathematical proof. In this paper, the transition in thinking is formulated within a framework of `three worlds of mathematics'- the `conceptual-embodied' world based on perception, action and thought experiment, the `proceptual-symbolic' world of calculation and algebraic manipulation compressing processes such as counting into concepts such as number, and the `axiomatic-formal' world of set-theoretic concept definitions and mathematical proof. Each `world' has its own sequence of development and its own forms of proof that may be blended together to give a rich variety of ways of thinking mathematically. This reveals mathematical thinking as a blend of differing knowledge structures; for instance, the real numbers blend together the embodied number line, symbolic decimal arithmetic and the formal theory of a complete ordered field. Theoretical constructs are introduced to describe how genetic structures set before birth enable the development of mathematical thinking, and how experiences that the individual has met before affect their personal growth. These constructs are used to consider how students negotiate the transition from school to university mathematics as embodiment and symbolism are blended with formalism. At a higher level, structure theorems proved in axiomatic theories link back to more sophisticated forms of embodiment and symbolism, revealing the intimate relationship between the three worlds.

  19. Teaching Equivalent Fractions to Secondary Students with Disabilities via the Virtual-Representational-Abstract Instructional Sequence

    ERIC Educational Resources Information Center

    Bouck, Emily C.; Bassette, Laura; Shurr, Jordan; Park, Jiyoon; Kerr, Jackie; Whorley, Abbie

    2017-01-01

    Fractions are an important mathematical concept; however, fractions are also a struggle for many students with disabilities. This study explored a new framework adapted from the evidence-based concrete-representational-abstract framework: the virtual-representational-abstract (VRA) framework. The VRA framework involves teaching students to solve…

  20. Measuring and factors influencing mathematics teachers' technological pedagogical and content knowledge (TPACK) in three southernmost provinces, Thailand

    NASA Astrophysics Data System (ADS)

    Adulyasas, Lilla

    2017-08-01

    Technology becomes an important role in teaching and learning mathematics nowadays. Integrating technology in the classroom helps students have better understanding in many of mathematics concepts. One of the major framework for assessing the knowledge of integrating technology with the pedagogy and content in the classroom is Technological Pedagogical and Content Knowledge (TPACK) framework. This study aimed to measure mathematics teachers' TPACK in three southernmost provinces, Thailand and to study on factors influencing their TPACK. A quantitative study was carried out with 210 secondary level mathematics teachers in the three southernmost provinces, Thailand which were random by two stage sampling technique. Data were collected by using a questionnaire to identify the level of mathematics teachers' TPACK and the factors influencing their TPACK. Descriptive statistics, Pearson product moment correlation and multiple regression analysis were used for analysing data. Findings reveal that the mean score of mathematics teachers' TPACK is 3.33 which is in the medium level and the three factors which have positive correlation at .05 level of significant with the level of TPACK are teaching experience factor, individual specialization factor and personal & organization factor. However, there are only two factors influencing mathematics teachers' TPACK. The two factors are individual specialization factor and personal & organization factors. These give better understanding on mathematics teachers' knowledge in integrating technology with the pedagogy and content which will be the important information for improving mathematics teachers' TPACK.

  1. Meta Didactic-Mathematical Knowledge of Teachers: Criteria for the Reflection and Assessment on Teaching Practice

    ERIC Educational Resources Information Center

    Breda, Adriana; Pino-Fan, Luis Roberto; Font, Vicenç

    2017-01-01

    The objective of this study is to demonstrate that the criteria of didactical suitability, proposed by the theoretical framework known as the Onto-Semiotic Approach (OSA) of mathematical knowledge and instruction, are powerful tools for organizing the reflection and assessment of instruction processes carried out by mathematics teachers. To this…

  2. Becoming a Reflective Mathematics Teacher: A Guide for Observations and Self-Assessment. Studies in Mathematical Thinking and Learning Series.

    ERIC Educational Resources Information Center

    Artzt, Alice F.; Armour-Thomas, Eleanor

    This activity-oriented book for preservice mathematics teachers who are taking methods courses or who have been student teaching offers a framework for teacher reflection and self- assessment. It supplies detailed observation instruments for observing other teachers, reflective activities, and guidelines and instruments for supervisors. There are…

  3. Towards the Construction of a Framework to Deal with Routine Problems to Foster Mathematical Inquiry

    ERIC Educational Resources Information Center

    Santos-Trigo, Manuel; Camacho-Machin, Matias

    2009-01-01

    To what extent does the process of solving textbook problems help students develop a way of thinking that is consistent with mathematical practice? Can routine problems be transformed into problem solving activities that promote students' mathematical reflection? These questions are used to outline and discuss features of an inquiry framework…

  4. A Mathematical Experience Involving Defining Processes: In-Action Definitions and Zero-Definitions

    ERIC Educational Resources Information Center

    Ouvrier-Buffet, Cecile

    2011-01-01

    In this paper, a focus is made on defining processes at stake in an unfamiliar situation coming from discrete mathematics which brings surprising mathematical results. The epistemological framework of Lakatos is questioned and used for the design and the analysis of the situation. The cognitive background of Vergnaud's approach enriches the study…

  5. An Iceberg Model for Improving Mathematical Understanding and Mindset or Disposition: An Individualized Summer Intervention Program

    ERIC Educational Resources Information Center

    Westensko, Arla; Moyer-Packenham, Patricia S.; Child, Barbara

    2017-01-01

    This study describes 3 years of mathematics intervention research examining the effectiveness of a summer individualized tutoring program for rising fourth-, fifth-, and sixth-grade students with low mathematics achievement. Based on an iceberg model of learning, an instructional framework was developed that identified and targeted students'…

  6. A Case Study of Pedagogy of Mathematics Support Tutors without a Background in Mathematics Education

    ERIC Educational Resources Information Center

    Walsh, Richard

    2017-01-01

    This study investigates the pedagogical skills and knowledge of three tertiary-level mathematics support tutors in a large group classroom setting. This is achieved through the use of video analysis and a theoretical framework comprising Rowland's Knowledge Quartet and general pedagogical knowledge. The study reports on the findings in relation to…

  7. Perspectives on Equity and Access in Mathematics and Science for a 21st-Century Democracy: Re-Visioning Our Gaze

    ERIC Educational Resources Information Center

    Williams, Brian A.; Lemons-Smith, Shonda

    2009-01-01

    In 1996, the National Research Council (NRC) published the "National Science Education Standards." Similarly in 2000, the National Council of Teachers of Mathematics (NCTM) published the "Principles and Standards for School Mathematics." These standards provided the nation with a framework for conceptualizing what and how…

  8. Developing a Framework for the Evaluation of Picturebooks That Support Kindergartners' Learning of Mathematics

    ERIC Educational Resources Information Center

    van den Heuvel-Panhuizen, Marja; Elia, Iliada

    2012-01-01

    The purpose of this study was to investigate what experts in the use of picturebooks in mathematics education consider powerful characteristics of such books in the support of young children's learning of mathematics. The study started by investigating experts' views of such characteristics, as reflected in academic and professional publications…

  9. Becoming Mathematicians: Women and Students of Color Choosing and Leaving Doctoral Mathematics

    ERIC Educational Resources Information Center

    Herzig, Abbe H.

    2004-01-01

    Few women and even fewer African Americans, Latinos, and Native Americans complete doctoral degrees in mathematics in the United States. This article proposes a framework for understanding the small numbers of women and students of color who persist in doctoral mathematics based on the notion that academic and social integration are critical to…

  10. Mathematics Teacher Education Quality in TEDS-M: Globalizing the Views of Future Teachers and Teacher Educators

    ERIC Educational Resources Information Center

    Hsieh, Feng-Jui; Law, Chiu-Keung; Shy, Haw-Yaw; Wang, Ting-Ying; Hsieh, Chia-Jui; Tang, Shu-Jyh

    2011-01-01

    The Teacher Education and Development Study in Mathematics, sponsored by the International Association for the Evaluation of Educational Achievement, is the first data-based study about mathematics teacher education with large-scale samples; this article is based on its data but develops a stand-alone conceptual framework to investigate the…

  11. Integrating STEM in Elementary Classrooms Using Model-Eliciting Activities: Responsive Professional Development for Mathematics Coaches and Teachers

    ERIC Educational Resources Information Center

    Baker, Courtney K.; Galanti, Terrie M.

    2017-01-01

    Background: This research highlights a school-university collaboration to pilot a professional development framework for integrating STEM in K-6 mathematics classrooms in a mid-Atlantic suburban school division. Because mathematics within STEM integration is often characterized as the calculations or the data representations in science classrooms,…

  12. Validity-Supporting Evidence of the Self-Efficacy for Teaching Mathematics Instrument

    ERIC Educational Resources Information Center

    McGee, Jennifer R.; Wang, Chuang

    2014-01-01

    The purpose of this study is to provide evidence of reliability and validity of the Self-Efficacy for Teaching Mathematics Instrument (SETMI). Self-efficacy, as defined by Bandura, was the theoretical framework for the development of the instrument. The complex belief systems of mathematics teachers, as touted by Ernest provided insights into the…

  13. Modelling the Intention to Use Technology for Teaching Mathematics among Pre-Service Teachers in Serbia

    ERIC Educational Resources Information Center

    Teo, Timothy; Milutinovic, Verica

    2015-01-01

    This study aims to examine the variables that influence Serbian pre-service teachers' intention to use technology to teach mathematics. Using the technology acceptance model (TAM) as the framework, we developed a research model to include subjective norm, knowledge of mathematics, and facilitating conditions as external variables to the TAM. In…

  14. Mathematics Teachers' Visualization of Complex Number Multiplication and the Roots of Unity in a Dynamic Geometry Environment

    ERIC Educational Resources Information Center

    Caglayan, Gunhan

    2016-01-01

    This qualitative research, drawing on the theoretical frameworks by Even (1990, 1993) and Sfard (2007), investigated five high school mathematics teachers' geometric interpretations of complex number multiplication along with the roots of unity. The main finding was that mathematics teachers constructed the modulus, the argument, and the conjugate…

  15. Understanding and Supporting Teacher Horizon Knowledge around Limits: A Framework for Evaluating Textbooks for Teachers

    ERIC Educational Resources Information Center

    Kajander, Ann; Lovric, Miroslav

    2017-01-01

    As part of recent scrutiny of teacher capacity, the question of teachers' content knowledge of higher level mathematics emerges as important to the field of mathematics education. Elementary teachers in North America and some other countries tend to be subject generalists, yet it appears that some higher level mathematics background may be…

  16. Robust and Fragile Mathematical Identities: A Framework for Exploring Racialized Experiences and High Achievement among Black College Students

    ERIC Educational Resources Information Center

    McGee, Ebony O.

    2015-01-01

    I introduce the construct of fragile and robust identities for the purpose of exploring the experiences that influenced the mathematical and racial identities of high-achieving Black college students in mathematics and engineering. These students maintained high levels of academic achievement in these fields while enduring marginalization,…

  17. Using the Scientific Method to Engage Mathematical Modeling: An Investigation of pi

    ERIC Educational Resources Information Center

    Archer, Lester A. C.; Ng, Karen E.

    2016-01-01

    The purpose of this paper is to explain how to use the scientific method as the framework to introduce mathematical model. Two interdisciplinary activities, targeted for students in grade 6 or grade 7, are explained to show the application of the scientific method while building a mathematical model to investigate the relationship between the…

  18. The Implementation of APIQ Creative Mathematics Game Method in the Subject Matter of Greatest Common Factor and Least Common Multiple in Elementary School

    NASA Astrophysics Data System (ADS)

    Rahman, Abdul; Saleh Ahmar, Ansari; Arifin, A. Nurani M.; Upu, Hamzah; Mulbar, Usman; Alimuddin; Arsyad, Nurdin; Ruslan; Rusli; Djadir; Sutamrin; Hamda; Minggi, Ilham; Awi; Zaki, Ahmad; Ahmad, Asdar; Ihsan, Hisyam

    2018-01-01

    One of causal factors for uninterested feeling of the students in learning mathematics is a monotonous learning method, like in traditional learning method. One of the ways for motivating students to learn mathematics is by implementing APIQ (Aritmetika Plus Intelegensi Quantum) creative mathematics game method. The purposes of this research are (1) to describe students’ responses toward the implementation of APIQ creative mathematics game method on the subject matter of Greatest Common Factor (GCF) and Least Common Multiple (LCM) and (2) to find out whether by implementing this method, the student’s learning completeness will improve or not. Based on the results of this research, it is shown that the responses of the students toward the implementation of APIQ creative mathematics game method in the subject matters of GCF and LCM were good. It is seen in the percentage of the responses were between 76-100%. (2) The implementation of APIQ creative mathematics game method on the subject matters of GCF and LCM improved the students’ learning.

  19. Interactions Between Mathematics and Physics: The History of the Concept of Function—Teaching with and About Nature of Mathematics

    NASA Astrophysics Data System (ADS)

    Kjeldsen, Tinne Hoff; Lützen, Jesper

    2015-07-01

    In this paper, we discuss the history of the concept of function and emphasize in particular how problems in physics have led to essential changes in its definition and application in mathematical practices. Euler defined a function as an analytic expression, whereas Dirichlet defined it as a variable that depends in an arbitrary manner on another variable. The change was required when mathematicians discovered that analytic expressions were not sufficient to represent physical phenomena such as the vibration of a string (Euler) and heat conduction (Fourier and Dirichlet). The introduction of generalized functions or distributions is shown to stem partly from the development of new theories of physics such as electrical engineering and quantum mechanics that led to the use of improper functions such as the delta function that demanded a proper foundation. We argue that the development of student understanding of mathematics and its nature is enhanced by embedding mathematical concepts and theories, within an explicit-reflective framework, into a rich historical context emphasizing its interaction with other disciplines such as physics. Students recognize and become engaged with meta-discursive rules governing mathematics. Mathematics teachers can thereby teach inquiry in mathematics as it occurs in the sciences, as mathematical practice aimed at obtaining new mathematical knowledge. We illustrate such a historical teaching and learning of mathematics within an explicit and reflective framework by two examples of student-directed, problem-oriented project work following the Roskilde Model, in which the connection to physics is explicit and provides a learning space where the nature of mathematics and mathematical practices are linked to natural science.

  20. A web-server of cell type discrimination system.

    PubMed

    Wang, Anyou; Zhong, Yan; Wang, Yanhua; He, Qianchuan

    2014-01-01

    Discriminating cell types is a daily request for stem cell biologists. However, there is not a user-friendly system available to date for public users to discriminate the common cell types, embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and somatic cells (SCs). Here, we develop WCTDS, a web-server of cell type discrimination system, to discriminate the three cell types and their subtypes like fetal versus adult SCs. WCTDS is developed as a top layer application of our recent publication regarding cell type discriminations, which employs DNA-methylation as biomarkers and machine learning models to discriminate cell types. Implemented by Django, Python, R, and Linux shell programming, run under Linux-Apache web server, and communicated through MySQL, WCTDS provides a friendly framework to efficiently receive the user input and to run mathematical models for analyzing data and then to present results to users. This framework is flexible and easy to be expended for other applications. Therefore, WCTDS works as a user-friendly framework to discriminate cell types and subtypes and it can also be expended to detect other cell types like cancer cells.

  1. A Web-Server of Cell Type Discrimination System

    PubMed Central

    Zhong, Yan

    2014-01-01

    Discriminating cell types is a daily request for stem cell biologists. However, there is not a user-friendly system available to date for public users to discriminate the common cell types, embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and somatic cells (SCs). Here, we develop WCTDS, a web-server of cell type discrimination system, to discriminate the three cell types and their subtypes like fetal versus adult SCs. WCTDS is developed as a top layer application of our recent publication regarding cell type discriminations, which employs DNA-methylation as biomarkers and machine learning models to discriminate cell types. Implemented by Django, Python, R, and Linux shell programming, run under Linux-Apache web server, and communicated through MySQL, WCTDS provides a friendly framework to efficiently receive the user input and to run mathematical models for analyzing data and then to present results to users. This framework is flexible and easy to be expended for other applications. Therefore, WCTDS works as a user-friendly framework to discriminate cell types and subtypes and it can also be expended to detect other cell types like cancer cells. PMID:24578634

  2. Mathematical marriages: intercourse between mathematics and Semiotic choice.

    PubMed

    Wagner, Roy

    2009-04-01

    This paper examines the interaction between Semiotic choices and the presentation and solution of a family of contemporary mathematical problems centred around the so-called 'stable marriage problem'. I investigate how a socially restrictive choice of signs impacts mathematical production both in terms of problem formation and of solutions. I further note how the choice of gendered language ends up constructing a reality, which duplicates the very structural framework that it imported into mathematical analysis in the first place. I go on to point out some semiotic lines of flight from this interlocking grip of mathematics and gendered language.

  3. Growing a National Learning Environments and Resources Network for Science, Mathematics, Engineering, and Technology Education: Current Issues and Opportunities for the NSDL Program; Open Linking in the Scholarly Information Environment Using the OpenURL Framework; The HeadLine Personal Information Environment: Evaluation Phase One.

    ERIC Educational Resources Information Center

    Zia, Lee L.; Van de Sompel, Herbert; Beit-Arie, Oren; Gambles, Anne

    2001-01-01

    Includes three articles that discuss the National Science Foundation's National Science, Mathematics, Engineering, and Technology Education Digital Library (NSDL) program; the OpenURL framework for open reference linking in the Web-based scholarly information environment; and HeadLine (Hybrid Electronic Access and Delivery in the Library Networked…

  4. Multiscale Mathematics for Biomass Conversion to Renewable Hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsoulakis, Markos

    2014-08-09

    Our two key accomplishments in the first three years were towards the development of, (1) a mathematically rigorous and at the same time computationally flexible framework for parallelization of Kinetic Monte Carlo methods, and its implementation on GPUs, and (2) spatial multilevel coarse-graining methods for Monte Carlo sampling and molecular simulation. A common underlying theme in both these lines of our work is the development of numerical methods which are at the same time both computationally efficient and reliable, the latter in the sense that they provide controlled-error approximations for coarse observables of the simulated molecular systems. Finally, our keymore » accomplishment in the last year of the grant is that we started developing (3) pathwise information theory-based and goal-oriented sensitivity analysis and parameter identification methods for complex high-dimensional dynamics and in particular of nonequilibrium extended (high-dimensional) systems. We discuss these three research directions in some detail below, along with the related publications.« less

  5. Teaching and Learning Numerical Analysis and Optimization: A Didactic Framework and Applications of Inquiry-Based Learning

    ERIC Educational Resources Information Center

    Lappas, Pantelis Z.; Kritikos, Manolis N.

    2018-01-01

    The main objective of this paper is to propose a didactic framework for teaching Applied Mathematics in higher education. After describing the structure of the framework, several applications of inquiry-based learning in teaching numerical analysis and optimization are provided to illustrate the potential of the proposed framework. The framework…

  6. Information theoretic quantification of diagnostic uncertainty.

    PubMed

    Westover, M Brandon; Eiseman, Nathaniel A; Cash, Sydney S; Bianchi, Matt T

    2012-01-01

    Diagnostic test interpretation remains a challenge in clinical practice. Most physicians receive training in the use of Bayes' rule, which specifies how the sensitivity and specificity of a test for a given disease combine with the pre-test probability to quantify the change in disease probability incurred by a new test result. However, multiple studies demonstrate physicians' deficiencies in probabilistic reasoning, especially with unexpected test results. Information theory, a branch of probability theory dealing explicitly with the quantification of uncertainty, has been proposed as an alternative framework for diagnostic test interpretation, but is even less familiar to physicians. We have previously addressed one key challenge in the practical application of Bayes theorem: the handling of uncertainty in the critical first step of estimating the pre-test probability of disease. This essay aims to present the essential concepts of information theory to physicians in an accessible manner, and to extend previous work regarding uncertainty in pre-test probability estimation by placing this type of uncertainty within a principled information theoretic framework. We address several obstacles hindering physicians' application of information theoretic concepts to diagnostic test interpretation. These include issues of terminology (mathematical meanings of certain information theoretic terms differ from clinical or common parlance) as well as the underlying mathematical assumptions. Finally, we illustrate how, in information theoretic terms, one can understand the effect on diagnostic uncertainty of considering ranges instead of simple point estimates of pre-test probability.

  7. Magnetic storms and solar flares: can be analysed within similar mathematical framework with other extreme events?

    NASA Astrophysics Data System (ADS)

    Balasis, Georgios; Potirakis, Stelios M.; Papadimitriou, Constantinos; Zitis, Pavlos I.; Eftaxias, Konstantinos

    2015-04-01

    The field of study of complex systems considers that the dynamics of complex systems are founded on universal principles that may be used to describe a great variety of scientific and technological approaches of different types of natural, artificial, and social systems. We apply concepts of the nonextensive statistical physics, on time-series data of observable manifestations of the underlying complex processes ending up to different extreme events, in order to support the suggestion that a dynamical analogy characterizes the generation of a single magnetic storm, solar flare, earthquake (in terms of pre-seismic electromagnetic signals) , epileptic seizure, and economic crisis. The analysis reveals that all the above mentioned different extreme events can be analyzed within similar mathematical framework. More precisely, we show that the populations of magnitudes of fluctuations included in all the above mentioned pulse-like-type time series follow the traditional Gutenberg-Richter law as well as a nonextensive model for earthquake dynamics, with similar nonextensive q-parameter values. Moreover, based on a multidisciplinary statistical analysis we show that the extreme events are characterized by crucial common symptoms, namely: (i) high organization, high compressibility, low complexity, high information content; (ii) strong persistency; and (iii) existence of clear preferred direction of emerged activities. These symptoms clearly discriminate the appearance of the extreme events under study from the corresponding background noise.

  8. An Open Source Simulation Model for Soil and Sediment Bioturbation

    PubMed Central

    Schiffers, Katja; Teal, Lorna Rachel; Travis, Justin Mark John; Solan, Martin

    2011-01-01

    Bioturbation is one of the most widespread forms of ecological engineering and has significant implications for the structure and functioning of ecosystems, yet our understanding of the processes involved in biotic mixing remains incomplete. One reason is that, despite their value and utility, most mathematical models currently applied to bioturbation data tend to neglect aspects of the natural complexity of bioturbation in favour of mathematical simplicity. At the same time, the abstract nature of these approaches limits the application of such models to a limited range of users. Here, we contend that a movement towards process-based modelling can improve both the representation of the mechanistic basis of bioturbation and the intuitiveness of modelling approaches. In support of this initiative, we present an open source modelling framework that explicitly simulates particle displacement and a worked example to facilitate application and further development. The framework combines the advantages of rule-based lattice models with the application of parameterisable probability density functions to generate mixing on the lattice. Model parameters can be fitted by experimental data and describe particle displacement at the spatial and temporal scales at which bioturbation data is routinely collected. By using the same model structure across species, but generating species-specific parameters, a generic understanding of species-specific bioturbation behaviour can be achieved. An application to a case study and comparison with a commonly used model attest the predictive power of the approach. PMID:22162997

  9. An open source simulation model for soil and sediment bioturbation.

    PubMed

    Schiffers, Katja; Teal, Lorna Rachel; Travis, Justin Mark John; Solan, Martin

    2011-01-01

    Bioturbation is one of the most widespread forms of ecological engineering and has significant implications for the structure and functioning of ecosystems, yet our understanding of the processes involved in biotic mixing remains incomplete. One reason is that, despite their value and utility, most mathematical models currently applied to bioturbation data tend to neglect aspects of the natural complexity of bioturbation in favour of mathematical simplicity. At the same time, the abstract nature of these approaches limits the application of such models to a limited range of users. Here, we contend that a movement towards process-based modelling can improve both the representation of the mechanistic basis of bioturbation and the intuitiveness of modelling approaches. In support of this initiative, we present an open source modelling framework that explicitly simulates particle displacement and a worked example to facilitate application and further development. The framework combines the advantages of rule-based lattice models with the application of parameterisable probability density functions to generate mixing on the lattice. Model parameters can be fitted by experimental data and describe particle displacement at the spatial and temporal scales at which bioturbation data is routinely collected. By using the same model structure across species, but generating species-specific parameters, a generic understanding of species-specific bioturbation behaviour can be achieved. An application to a case study and comparison with a commonly used model attest the predictive power of the approach.

  10. The Open-Ended Approach Framework

    ERIC Educational Resources Information Center

    Munroe, Lloyd

    2015-01-01

    This paper describes a pedagogical framework that teachers can use to support students who are engaged in solving open-ended problems, by explaining how two Japanese expert teachers successfully apply open-ended problems in their mathematics class. The Open-Ended Approach (OPA) framework consists of two main sections: Understanding Mathematical…

  11. SURF's Up: An Outline of an Innovative Framework for Teaching Mental Computation to Students in the Early Years of Schooling

    ERIC Educational Resources Information Center

    Russo, James

    2015-01-01

    In this article James Russo presents the Strategies, Understanding, Reading and Fast Facts Framework (SURF) for mental computation. He explains how this framework can be used to deepen mathematical understanding and build mental flexibility.

  12. A Didactical Framework for Studying Students' and Teachers' Activities when Learning and Teaching Mathematics

    ERIC Educational Resources Information Center

    Robert, Aline

    2012-01-01

    This paper draws an Activity Theoretical frame specific to mathematics at school with reference to both Vygotskian and Piagetian approaches. At a local point of view, the frame is oriented toward analysis of students' mathematical activities in the classroom. This local point of view is extended to a global point of view, to gain access to what…

  13. Universal Basic Education and the Provision of Quality Mathematics in Southern Africa

    ERIC Educational Resources Information Center

    Kazima, Mercy

    2014-01-01

    In this paper, I discuss Universal Basic Education (UBE) in relation to the teaching and learning of mathematics in Southern Africa. I present the status of UBE for all countries in the region and then use 3 selected examples: Botswana, Malawi, and Zambia, to illustrate the provision of mathematics in the general framework of UBE in the countries.…

  14. Prospective Teachers' Perspectives on Mathematics Teaching and Learning: Lens for Interpreting Experiences in a Standards-Based Mathematics Course

    ERIC Educational Resources Information Center

    Chamberlin, Michelle T.

    2013-01-01

    In a mathematics course for prospective elementary teachers, we strove to model standards-based pedagogy. However, an end-of-class reflection revealed the prospective teachers were considering incorporating standards-based strategies in their future classrooms in ways different from our intent. Thus, we drew upon the framework presented by Simon,…

  15. Engaging Pre-Service Middle-School Teacher-Education Students in Mathematical Problem Posing: Development of an Active Learning Framework

    ERIC Educational Resources Information Center

    Ellerton, Nerida F.

    2013-01-01

    Although official curriculum documents make cursory mention of the need for problem posing in school mathematics, problem posing rarely becomes part of the implemented or assessed curriculum. This paper provides examples of how problem posing can be made an integral part of mathematics teacher education programs. It is argued that such programs…

  16. Mathematics Teachers' Learning: A Conceptual Framework and Synthesis of Research

    ERIC Educational Resources Information Center

    Goldsmith, Lynn T.; Doerr, Helen M.; Lewis, Catherine C.

    2014-01-01

    How do practicing mathematics teachers continue to develop the knowledge and habits of mind that enable them to teach well and to improve their teaching over time? The question of how (and what) teachers learn lies at the crux of any effort to provide high-quality mathematics teaching for all students. This article reviews 106 articles written…

  17. Examining the Impact of a Framework to Support Prospective Secondary Teachers' Transition from 'Doer' to 'Teacher' of Mathematics

    ERIC Educational Resources Information Center

    Lee, Hea-Jin; Özgün-Koca, S. Asli; Meagher, Michael; Edwards, Michael Todd

    2018-01-01

    A transition from "doer" to "teacher" for prospective teachers requires them to reorient from thinking about how they do mathematics to engaging with students and their work, understanding student representations, and planning instruction accordingly. To scaffold a transition, we developed a five-step mathematics as teacher…

  18. The Relevance of Mathematics: Leaders and Teachers as Gatekeeper for Queensland Senior Calculus Mathematics

    ERIC Educational Resources Information Center

    Easey, Michael; Gleeson, Jim

    2016-01-01

    The aim of the larger study, of which this paper is a part, is to investigate the decline in Year 10 male students' participation in senior calculus mathematics courses at an independent boys' school located in metropolitan Queensland. This paper draws on Sealey and Noyes's (2010) relevance framework to conduct document analysis and interviews…

  19. Developing a Framework of Outcomes for Mathematics Teacher Learning: Three Mathematics Educators Engage in Collaborative Self-Study

    ERIC Educational Resources Information Center

    Bahr, Damon L.; Monroe, Eula Ewing; Mantilla, Jodi

    2018-01-01

    This article synthesizes the literature on what it means to teach mathematics and science to ELLs and abstract from it a set of knowledge and skills teachers might need to teach ELLs effectively. To this end, the article brings together the sociocultural and linguistic perspectives identifying three areas of effective teaching practice. One…

  20. Toward a mathematical formalism of performance, task difficulty, and activation

    NASA Technical Reports Server (NTRS)

    Samaras, George M.

    1988-01-01

    The rudiments of a mathematical formalism for handling operational, physiological, and psychological concepts are developed for use by the man-machine system design engineer. The formalism provides a framework for developing a structured, systematic approach to the interface design problem, using existing mathematical tools, and simplifying the problem of telling a machine how to measure and use performance.

  1. Preparing Special Education Teachers for Teaching Mathematics and Science with Technology by Integrating the TPACK Framework into the Curriculum: A Study of Teachers' Perceptions

    ERIC Educational Resources Information Center

    Tournaki, Nelly; Lyublinskaya, Irina

    2014-01-01

    This study examined the development of Technological Pedagogical And Content Knowledge (TPACK) in mathematics and science of pre-service special education teachers via one course. The course focused on the three domains of knowledge related specifically to integrating instructional technology into mathematics and science teaching and learning…

  2. A Framework to Guide the Development of a Teaching Mathematics with Technology Massive Open Online Course for Educators (MOOC-Ed)

    ERIC Educational Resources Information Center

    Hollebrands, Karen F.

    2017-01-01

    Mathematics teacher educators face a challenge of preparing teachers to use technology that is rapidly changing and easily available. Teachers have access to thousands of digital tools to use with students and need guidance about how to critically choose and use tools to support students' mathematics learning. Research provides guidance to…

  3. The Influences of Middle School Mathematics Teachers' Practical Rationality on Instructional Decision Making Regarding the Common Core State Standards for Mathematical Practices

    ERIC Educational Resources Information Center

    Sobolewski-McMahon, Lauren M.

    2017-01-01

    The purpose of this study was to examine the influences of various facets of middle school mathematics teachers' practical rationality on their instructional decision making as they plan to enact the Common Core State Standards for Mathematical Practice, CCSS-MP1 (perseverance in problem solving) and CCSS-MP3 (communicating and critiquing). The…

  4. Promoting Mathematical Argumentation

    ERIC Educational Resources Information Center

    Rumsey, Chepina; Langrall, Cynthia W.

    2016-01-01

    The Standards for Mathematical Practice (SMP) in the Common Core State Standards for Mathematics (CCSSM) (CCSSI 2010) highlight the mathematical habits that educators should be fostering in mathematics classrooms throughout K-grade 12 education. That argumentation and discourse are important components of developing mathematically proficient…

  5. A domain-knowledge-inspired mathematical framework for the description and classification of H&E stained histopathology images.

    PubMed

    Massar, Melody L; Bhagavatula, Ramamurthy; Ozolek, John A; Castro, Carlos A; Fickus, Matthew; Kovačević, Jelena

    2011-10-19

    We present the current state of our work on a mathematical framework for identification and delineation of histopathology images-local histograms and occlusion models. Local histograms are histograms computed over defined spatial neighborhoods whose purpose is to characterize an image locally. This unit of description is augmented by our occlusion models that describe a methodology for image formation. In the context of this image formation model, the power of local histograms with respect to appropriate families of images will be shown through various proved statements about expected performance. We conclude by presenting a preliminary study to demonstrate the power of the framework in the context of histopathology image classification tasks that, while differing greatly in application, both originate from what is considered an appropriate class of images for this framework.

  6. A Framework for Assessing Reading Comprehension of Geometric Construction Texts

    ERIC Educational Resources Information Center

    Yang, Kai-Lin; Li, Jian-Lin

    2018-01-01

    This study investigates one issue related to reading mathematical texts by presenting a two-dimensional framework for assessing reading comprehension of geometric construction texts. The two dimensions of the framework were formulated by modifying categories of reading literacy and drawing on key elements of geometric construction texts. Three…

  7. Translation Accommodations Framework for Testing English Language Learners in Mathematics

    ERIC Educational Resources Information Center

    Solano-Flores, Guillermo

    2012-01-01

    The present framework is developed under contract with the Smarter Balanced Assessment Consortium (SBAC) as a conceptual and methodological tool for guiding the reasonings and actions of contractors in charge of developing and providing test translation accommodations for English language learners. The framework addresses important challenges in…

  8. Connecting mathematics learning through spatial reasoning

    NASA Astrophysics Data System (ADS)

    Mulligan, Joanne; Woolcott, Geoffrey; Mitchelmore, Michael; Davis, Brent

    2018-03-01

    Spatial reasoning, an emerging transdisciplinary area of interest to mathematics education research, is proving integral to all human learning. It is particularly critical to science, technology, engineering and mathematics (STEM) fields. This project will create an innovative knowledge framework based on spatial reasoning that identifies new pathways for mathematics learning, pedagogy and curriculum. Novel analytical tools will map the unknown complex systems linking spatial and mathematical concepts. It will involve the design, implementation and evaluation of a Spatial Reasoning Mathematics Program (SRMP) in Grades 3 to 5. Benefits will be seen through development of critical spatial skills for students, increased teacher capability and informed policy and curriculum across STEM education.

  9. Utilizing the National Research Council's (NRC) Conceptual Framework for the Next Generation Science Standards (NGSS): A Self-Study in My Science, Engineering, and Mathematics Classroom

    NASA Astrophysics Data System (ADS)

    Corvo, Arthur Francis

    Given the reality that active and competitive participation in the 21 st century requires American students to deepen their scientific and mathematical knowledge base, the National Research Council (NRC) proposed a new conceptual framework for K--12 science education. The framework consists of an integration of what the NRC report refers to as the three dimensions: scientific and engineering practices, crosscutting concepts, and core ideas in four disciplinary areas (physical, life and earth/spaces sciences, and engineering/technology). The Next Generation Science Standards (NGSS ), which are derived from this new framework, were released in April 2013 and have implications on teacher learning and development in Science, Technology, Engineering, and Mathematics (STEM). Given the NGSS's recent introduction, there is little research on how teachers can prepare for its release. To meet this research need, I implemented a self-study aimed at examining my teaching practices and classroom outcomes through the lens of the NRC's conceptual framework and the NGSS. The self-study employed design-based research (DBR) methods to investigate what happened in my secondary classroom when I designed, enacted, and reflected on units of study for my science, engineering, and mathematics classes. I utilized various best practices including Learning for Use (LfU) and Understanding by Design (UbD) models for instructional design, talk moves as a tool for promoting discourse, and modeling instruction for these designed units of study. The DBR strategy was chosen to promote reflective cycles, which are consistent with and in support of the self-study framework. A multiple case, mixed-methods approach was used for data collection and analysis. The findings in the study are reported by study phase in terms of unit planning, unit enactment, and unit reflection. The findings have implications for science teaching, teacher professional development, and teacher education.

  10. A guide to phylogenetic metrics for conservation, community ecology and macroecology.

    PubMed

    Tucker, Caroline M; Cadotte, Marc W; Carvalho, Silvia B; Davies, T Jonathan; Ferrier, Simon; Fritz, Susanne A; Grenyer, Rich; Helmus, Matthew R; Jin, Lanna S; Mooers, Arne O; Pavoine, Sandrine; Purschke, Oliver; Redding, David W; Rosauer, Dan F; Winter, Marten; Mazel, Florent

    2017-05-01

    The use of phylogenies in ecology is increasingly common and has broadened our understanding of biological diversity. Ecological sub-disciplines, particularly conservation, community ecology and macroecology, all recognize the value of evolutionary relationships but the resulting development of phylogenetic approaches has led to a proliferation of phylogenetic diversity metrics. The use of many metrics across the sub-disciplines hampers potential meta-analyses, syntheses, and generalizations of existing results. Further, there is no guide for selecting the appropriate metric for a given question, and different metrics are frequently used to address similar questions. To improve the choice, application, and interpretation of phylo-diversity metrics, we organize existing metrics by expanding on a unifying framework for phylogenetic information. Generally, questions about phylogenetic relationships within or between assemblages tend to ask three types of question: how much; how different; or how regular? We show that these questions reflect three dimensions of a phylogenetic tree: richness, divergence, and regularity. We classify 70 existing phylo-diversity metrics based on their mathematical form within these three dimensions and identify 'anchor' representatives: for α-diversity metrics these are PD (Faith's phylogenetic diversity), MPD (mean pairwise distance), and VPD (variation of pairwise distances). By analysing mathematical formulae and using simulations, we use this framework to identify metrics that mix dimensions, and we provide a guide to choosing and using the most appropriate metrics. We show that metric choice requires connecting the research question with the correct dimension of the framework and that there are logical approaches to selecting and interpreting metrics. The guide outlined herein will help researchers navigate the current jungle of indices. © 2016 The Authors. Biological Reviews published by John Wiley © Sons Ltd on behalf of Cambridge Philosophical Society.

  11. A guide to phylogenetic metrics for conservation, community ecology and macroecology

    PubMed Central

    Cadotte, Marc W.; Carvalho, Silvia B.; Davies, T. Jonathan; Ferrier, Simon; Fritz, Susanne A.; Grenyer, Rich; Helmus, Matthew R.; Jin, Lanna S.; Mooers, Arne O.; Pavoine, Sandrine; Purschke, Oliver; Redding, David W.; Rosauer, Dan F.; Winter, Marten; Mazel, Florent

    2016-01-01

    ABSTRACT The use of phylogenies in ecology is increasingly common and has broadened our understanding of biological diversity. Ecological sub‐disciplines, particularly conservation, community ecology and macroecology, all recognize the value of evolutionary relationships but the resulting development of phylogenetic approaches has led to a proliferation of phylogenetic diversity metrics. The use of many metrics across the sub‐disciplines hampers potential meta‐analyses, syntheses, and generalizations of existing results. Further, there is no guide for selecting the appropriate metric for a given question, and different metrics are frequently used to address similar questions. To improve the choice, application, and interpretation of phylo‐diversity metrics, we organize existing metrics by expanding on a unifying framework for phylogenetic information. Generally, questions about phylogenetic relationships within or between assemblages tend to ask three types of question: how much; how different; or how regular? We show that these questions reflect three dimensions of a phylogenetic tree: richness, divergence, and regularity. We classify 70 existing phylo‐diversity metrics based on their mathematical form within these three dimensions and identify ‘anchor’ representatives: for α‐diversity metrics these are PD (Faith's phylogenetic diversity), MPD (mean pairwise distance), and VPD (variation of pairwise distances). By analysing mathematical formulae and using simulations, we use this framework to identify metrics that mix dimensions, and we provide a guide to choosing and using the most appropriate metrics. We show that metric choice requires connecting the research question with the correct dimension of the framework and that there are logical approaches to selecting and interpreting metrics. The guide outlined herein will help researchers navigate the current jungle of indices. PMID:26785932

  12. Mathematical Research in Materials Science: Opportunities and Perspectives. Part 2

    DTIC Science & Technology

    1993-01-01

    spheres and Lennard - Jones potentials , but have not been extended to a general framework that will allow input from more complicated interatomic...focuses on directions for potentially promising collaboration between materials scientists and mathematical scientists, and encourages both communities...interface between the mathematical sciences and other fields. The purpose of this report is not only to focus on directions for potentially promising

  13. Perspectives of Pre-Service Middle and Secondary Mathematics Teachers on the Use of Webquests in Teaching and Learning Geometry

    ERIC Educational Resources Information Center

    Halat, Erdogan

    2009-01-01

    The aim of this study was to examine the views of pre-service mathematics teachers on the use of webquests in teaching and learning geometry with reference to a theoretical framework developed by Dodge in 1995. For this study the researcher identified four groups containing nineteen pre-service mathematics teachers, which were then assigned to…

  14. Standards-Based Reform in the United States: History, Research, and Future Directions

    DTIC Science & Technology

    2008-12-01

    conducted by professional organizations such as the National Council of Teachers of Mathematics . Although notions of what constitutes effective SBR have...some states and by various professional organizations, such as the curriculum standards developed by the National Council of Teachers of Mathematics ... NCTM ). The mathematics content frameworks developed in California in the 1980s and the 1989 NCTMCurriculum and Evaluation Standards for School

  15. REASON: A Self-Instruction Strategy for Twice-Exceptional Learners Struggling With Common Core Mathematics

    ERIC Educational Resources Information Center

    Van Boxtel, Joanne M.

    2016-01-01

    Educators across the nation are now well under way in implementing the Common Core State Standards (CCSS; National Governors Association Center for Best Practices & Council of Chief State School Officers [NGA & CCSSO], 2010) for mathematics. The emerging literature regarding CCSS mathematics instruction for students with disabilities urges…

  16. Solving Common Mathematical Problems

    NASA Technical Reports Server (NTRS)

    Luz, Paul L.

    2005-01-01

    Mathematical Solutions Toolset is a collection of five software programs that rapidly solve some common mathematical problems. The programs consist of a set of Microsoft Excel worksheets. The programs provide for entry of input data and display of output data in a user-friendly, menu-driven format, and for automatic execution once the input data has been entered.

  17. Modeling in the Common Core State Standards

    ERIC Educational Resources Information Center

    Tam, Kai Chung

    2011-01-01

    The inclusion of modeling and applications into the mathematics curriculum has proven to be a challenging task over the last fifty years. The Common Core State Standards (CCSS) has made mathematical modeling both one of its Standards for Mathematical Practice and one of its Conceptual Categories. This article discusses the need for mathematical…

  18. Mathematical Rigor in the Common Core

    ERIC Educational Resources Information Center

    Hull, Ted H.; Balka, Don S.; Miles, Ruth Harbin

    2013-01-01

    A whirlwind of activity surrounds the topic of teaching and learning mathematics. The driving forces are a combination of changes in assessment and advances in technology that are being spurred on by the introduction of content in the Common Core State Standards for Mathematical Practice. Although the issues are certainly complex, the same forces…

  19. Generalization across Domains: The Relating-Forming-Extending Generalization Framework

    ERIC Educational Resources Information Center

    Ellis, Amy; Tillema, Erik; Lockwood, Elise; Moore, Kevin

    2017-01-01

    Generalization is a critical aspect of doing mathematics, with policy makers recommending that it be a central component of mathematics instruction at all levels. This recommendation poses serious challenges, however, given researchers consistently identifying students' difficulties in creating and expressing normative mathematical…

  20. TIMSS 2011 Assessment Frameworks

    ERIC Educational Resources Information Center

    Mullis, Ina V. S.; Martin, Michael O.; Ruddock, Graham J.; O'Sullivan, Christine Y.; Preuschoff, Corinna

    2009-01-01

    Because of the educational importance of mathematics and science, IEA's (International Association for the Evaluation of Educational Achievement) Trends in International Mathematics and Science Study, widely known as TIMSS, is dedicated to providing countries with information to improve teaching and learning in these curriculum areas. Conducted…

  1. The Spin-Orbit Resonances of the Solar System: A Mathematical Treatment Matching Physical Data

    NASA Astrophysics Data System (ADS)

    Antognini, Francesco; Biasco, Luca; Chierchia, Luigi

    2014-06-01

    In the mathematical framework of a restricted, slightly dissipative spin-orbit model, we prove the existence of periodic orbits for astronomical parameter values corresponding to all satellites of the Solar System observed in exact spin-orbit resonance.

  2. On the complex interaction between mathematics and the sciences of living systems. Comment on "Move me, astonish me...delight my eyes and brain: The Vienna Integrated Model of top-down and bottom-up processes in Art Perception (VIMAP) and corresponding affective, evaluative, and neurophysiological correlates" by Matthew Pelowski et al.

    NASA Astrophysics Data System (ADS)

    Bellomo, Nicola; Outada, Nisrine

    2017-07-01

    Cultural framework: Our comment looks at the general framework given by the interactions between the so-called ;soft; and ;hard; sciences. Specifically, it looks at the development of a mathematics for living systems. Our comment aims at showing how the interesting survey [11] can contribute to the aforementioned challenging task.

  3. Implications of Informal Education Experiences for Mathematics Teachers' Ability to Make Connections beyond Formal Classroom

    ERIC Educational Resources Information Center

    Popovic, Gorjana; Lederman, Judith S.

    2015-01-01

    The Common Core Standard for Mathematical Practice 4: Model with Mathematics specifies that mathematically proficient students are able to make connections between school mathematics and its applications to solving real-world problems. Hence, mathematics teachers are expected to incorporate connections between mathematical concepts they teach and…

  4. Robustness of movement models: can models bridge the gap between temporal scales of data sets and behavioural processes?

    PubMed

    Schlägel, Ulrike E; Lewis, Mark A

    2016-12-01

    Discrete-time random walks and their extensions are common tools for analyzing animal movement data. In these analyses, resolution of temporal discretization is a critical feature. Ideally, a model both mirrors the relevant temporal scale of the biological process of interest and matches the data sampling rate. Challenges arise when resolution of data is too coarse due to technological constraints, or when we wish to extrapolate results or compare results obtained from data with different resolutions. Drawing loosely on the concept of robustness in statistics, we propose a rigorous mathematical framework for studying movement models' robustness against changes in temporal resolution. In this framework, we define varying levels of robustness as formal model properties, focusing on random walk models with spatially-explicit component. With the new framework, we can investigate whether models can validly be applied to data across varying temporal resolutions and how we can account for these different resolutions in statistical inference results. We apply the new framework to movement-based resource selection models, demonstrating both analytical and numerical calculations, as well as a Monte Carlo simulation approach. While exact robustness is rare, the concept of approximate robustness provides a promising new direction for analyzing movement models.

  5. A Tensor-Product-Kernel Framework for Multiscale Neural Activity Decoding and Control

    PubMed Central

    Li, Lin; Brockmeier, Austin J.; Choi, John S.; Francis, Joseph T.; Sanchez, Justin C.; Príncipe, José C.

    2014-01-01

    Brain machine interfaces (BMIs) have attracted intense attention as a promising technology for directly interfacing computers or prostheses with the brain's motor and sensory areas, thereby bypassing the body. The availability of multiscale neural recordings including spike trains and local field potentials (LFPs) brings potential opportunities to enhance computational modeling by enriching the characterization of the neural system state. However, heterogeneity on data type (spike timing versus continuous amplitude signals) and spatiotemporal scale complicates the model integration of multiscale neural activity. In this paper, we propose a tensor-product-kernel-based framework to integrate the multiscale activity and exploit the complementary information available in multiscale neural activity. This provides a common mathematical framework for incorporating signals from different domains. The approach is applied to the problem of neural decoding and control. For neural decoding, the framework is able to identify the nonlinear functional relationship between the multiscale neural responses and the stimuli using general purpose kernel adaptive filtering. In a sensory stimulation experiment, the tensor-product-kernel decoder outperforms decoders that use only a single neural data type. In addition, an adaptive inverse controller for delivering electrical microstimulation patterns that utilizes the tensor-product kernel achieves promising results in emulating the responses to natural stimulation. PMID:24829569

  6. Unresolved issues in theories of autoimmune disease using myocarditis as a framework

    PubMed Central

    Root-Bernstein, Robert; Fairweather, DeLisa

    2014-01-01

    Many theories of autoimmune disease have been proposed since the discovery that the immune system can attack the body. These theories include the hidden or cryptic antigen theory, modified antigen theory, T cell bypass, T cell-B cell mismatch, epitope spread or drift, the bystander effect, molecular mimicry, anti-idiotype theory, antigenic complementarity, and dual-affinity T cell receptors. We critically review these theories and relevant mathematical models as they apply to autoimmune myocarditis. All theories share the common assumption that autoimmune diseases are triggered by environmental factors such as infections or chemical exposure. Most, but not all, theories and mathematical models are unifactorial assuming single-agent causation of disease. Experimental and clinical evidence and mathematical models exist to support some aspects of most theories, but evidence/models that support one theory almost invariably supports other theories as well. More importantly, every theory (and every model) lacks the ability to account for some key autoimmune disease phenomena such as the fundamental roles of innate immunity, sex differences in disease susceptibility, the necessity for adjuvants in experimental animal models, and the often paradoxical effect of exposure timing and dose on disease induction. We argue that a more comprehensive and integrated theory of autoimmunity associated with new mathematical models is needed and suggest specific experimental and clinical tests for each major theory that might help to clarify how they relate to clinical disease and reveal how theories are related. PMID:25484004

  7. Unresolved issues in theories of autoimmune disease using myocarditis as a framework.

    PubMed

    Root-Bernstein, Robert; Fairweather, DeLisa

    2015-06-21

    Many theories of autoimmune disease have been proposed since the discovery that the immune system can attack the body. These theories include the hidden or cryptic antigen theory, modified antigen theory, T cell bypass, T cell-B cell mismatch, epitope spread or drift, the bystander effect, molecular mimicry, anti-idiotype theory, antigenic complementarity, and dual-affinity T cell receptors. We critically review these theories and relevant mathematical models as they apply to autoimmune myocarditis. All theories share the common assumption that autoimmune diseases are triggered by environmental factors such as infections or chemical exposure. Most, but not all, theories and mathematical models are unifactorial assuming single-agent causation of disease. Experimental and clinical evidence and mathematical models exist to support some aspects of most theories, but evidence/models that support one theory almost invariably supports other theories as well. More importantly, every theory (and every model) lacks the ability to account for some key autoimmune disease phenomena such as the fundamental roles of innate immunity, sex differences in disease susceptibility, the necessity for adjuvants in experimental animal models, and the often paradoxical effect of exposure timing and dose on disease induction. We argue that a more comprehensive and integrated theory of autoimmunity associated with new mathematical models is needed and suggest specific experimental and clinical tests for each major theory that might help to clarify how they relate to clinical disease and reveal how theories are related. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. The Cyclic Nature of Problem Solving: An Emergent Multidimensional Problem-Solving Framework

    ERIC Educational Resources Information Center

    Carlson, Marilyn P.; Bloom, Irene

    2005-01-01

    This paper describes the problem-solving behaviors of 12 mathematicians as they completed four mathematical tasks. The emergent problem-solving framework draws on the large body of research, as grounded by and modified in response to our close observations of these mathematicians. The resulting "Multidimensional Problem-Solving Framework" has four…

  9. Early Learning Foundations. Indiana's Early Learning Development Framework Aligned to the Indiana Academic Standards, 2014

    ERIC Educational Resources Information Center

    Indiana Department of Education, 2015

    2015-01-01

    The "Foundations" (English/language arts, mathematics, social emotional skills, approaches to play and learning, science, social studies, creative arts, and physical health and growth) are Indiana's early learning development framework and are aligned to the 2014 Indiana Academic Standards. This framework provides core elements that…

  10. Aspects of Theories, Frameworks and Paradigms in Mathematics Education Research

    ERIC Educational Resources Information Center

    Stoilescu, Dorian

    2016-01-01

    This article discusses major theoretical debates and paradigms from the last decades in general education and their specific influences in mathematics education contexts. Behaviourism, cognitive science, constructivism, situated cognition, critical theory, place-based learning, postmodernism and poststructuralism and their significant aspects in…

  11. Mathematics. Exceptional Child Education Curriculum K-12.

    ERIC Educational Resources Information Center

    Jordon, Thelma; And Others

    The mathematics curriculum provides a framework of instruction for exceptional child education in grades K-12. Content areas include: numeration, whole numbers, rational numbers, real/complex numbers, calculator literacy, measurement, geometry, statistics, functions/relations, computer literacy, and pre-algebra. The guide is organized by content…

  12. Irish Mathematics Teachers' Attitudes towards Inclusion

    ERIC Educational Resources Information Center

    Whitty, Elaine; Clarke, Marie

    2012-01-01

    This paper through the theoretical framework of constructive attitude theory explores mathematics teachers' attitudes and pedagogical strategies with reference to inclusive practice. The authors argue that though teachers may have formed positive inclusive attitudes, the translation of these into practice does not always occur and poses…

  13. Curricular Coherence and the Common Core State Standards for Mathematics

    ERIC Educational Resources Information Center

    Schmidt, William H.; Houang, Richard T.

    2012-01-01

    In this work, we explored the relationship of the Common Core State Standards in Mathematics (CCSSM) to student achievement. Building on techniques developed for the Third International Mathematics and Science Study (TIMSS), we found a very high degree of similarity between CCSSM and the standards of the highest-achieving nations on the 1995…

  14. Mathematical Modeling, Sense Making, and the Common Core State Standards

    ERIC Educational Resources Information Center

    Schoenfeld, Alan H.

    2013-01-01

    On October 14, 2013 the Mathematics Education Department at Teachers College hosted a full-day conference focused on the Common Core Standards Mathematical Modeling requirements to be implemented in September 2014 and in honor of Professor Henry Pollak's 25 years of service to the school. This article is adapted from my talk at this conference…

  15. Teacher Concerns and the Enacted Curriculum of the Common Core State Standards in High School Mathematics

    ERIC Educational Resources Information Center

    Diletti, Jeri S.

    2017-01-01

    The Common Core State Standards for Mathematics (CCSSM) highlight the importance of students' conceptual understanding, mathematical reasoning, and problem solving in order to prepare students for college and careers. However, the success of this reform effort largely depends on how teachers actually design and implement instruction based on the…

  16. Slope across the Curriculum: Principles and Standards for School Mathematics and Common Core State Standards

    ERIC Educational Resources Information Center

    Nagle, Courtney; Moore-Russo, Deborah

    2014-01-01

    This article provides an initial comparison of the Principles and Standards for School Mathematics and the Common Core State Standards for Mathematics by examining the fundamental notion of slope. Each set of standards is analyzed using eleven previously identified conceptualizations of slope. Both sets of standards emphasize Functional Property,…

  17. Linking Literacy and Mathematics: The Support for Common Core Standards for Mathematical Practice

    ERIC Educational Resources Information Center

    Swanson, Mary; Parrott, Martha

    2013-01-01

    In a new era of Common Core State Standards (CCSS), teachers are expected to provide more rigorous, coherent, and focused curriculum at every grade level. To respond to the call for higher expectations across the curriculum and certainly within reading, writing, and mathematics, educators should work closely together to create mathematically…

  18. Transitioning to the Common Core State Standards for Mathematics: A Mixed Methods Study of Elementary Teachers' Experiences and Perspectives

    ERIC Educational Resources Information Center

    Swars, Susan Lee; Chestnutt, Cliff

    2016-01-01

    This mixed methods study explored elementary teachers' (n = 73) experiences with and perspectives on the recently implemented Common Core State Standards for Mathematics (CCSS-Mathematics) at a high-needs, urban school. Analysis of the survey, questionnaire, and interview data reveals the findings cluster around: familiarity with and preparation…

  19. Assessing the Quality of the Common Core State Standards for Mathematics

    ERIC Educational Resources Information Center

    Cobb, Paul; Jackson, Kara

    2011-01-01

    The authors comment on Porter, McMaken, Hwang, and Yang's recent analysis of the Common Core State Standards for Mathematics by critiquing their measures of the focus of the standards and the absence of an assessment of coherence. The authors then consider whether the standards are an improvement over most state mathematics standards by discussing…

  20. Impacts of Professional Development on High School Mathematics Teachers as They Implement Common Core State Standards

    ERIC Educational Resources Information Center

    Saucedo, Ana A.

    2017-01-01

    The purpose of this qualitative study was to understand the perceptions of high school mathematics teachers regarding the support provided through professional development (PD) as they engage in the implementation of the Common Core State Standards (CCSS). By means of a qualitative instrumental case study, eight high school mathematics teachers…

  1. Using Covariation Reasoning to Support Mathematical Modeling

    ERIC Educational Resources Information Center

    Jacobson, Erik

    2014-01-01

    For many students, making connections between mathematical ideas and the real world is one of the most intriguing and rewarding aspects of the study of mathematics. In the Common Core State Standards for Mathematics (CCSSI 2010), mathematical modeling is highlighted as a mathematical practice standard for all grades. To engage in mathematical…

  2. Dynamics of Zika virus outbreaks: an overview of mathematical modeling approaches.

    PubMed

    Wiratsudakul, Anuwat; Suparit, Parinya; Modchang, Charin

    2018-01-01

    The Zika virus was first discovered in 1947. It was neglected until a major outbreak occurred on Yap Island, Micronesia, in 2007. Teratogenic effects resulting in microcephaly in newborn infants is the greatest public health threat. In 2016, the Zika virus epidemic was declared as a Public Health Emergency of International Concern (PHEIC). Consequently, mathematical models were constructed to explicitly elucidate related transmission dynamics. In this review article, two steps of journal article searching were performed. First, we attempted to identify mathematical models previously applied to the study of vector-borne diseases using the search terms "dynamics," "mathematical model," "modeling," and "vector-borne" together with the names of vector-borne diseases including chikungunya, dengue, malaria, West Nile, and Zika. Then the identified types of model were further investigated. Second, we narrowed down our survey to focus on only Zika virus research. The terms we searched for were "compartmental," "spatial," "metapopulation," "network," "individual-based," "agent-based" AND "Zika." All relevant studies were included regardless of the year of publication. We have collected research articles that were published before August 2017 based on our search criteria. In this publication survey, we explored the Google Scholar and PubMed databases. We found five basic model architectures previously applied to vector-borne virus studies, particularly in Zika virus simulations. These include compartmental, spatial, metapopulation, network, and individual-based models. We found that Zika models carried out for early epidemics were mostly fit into compartmental structures and were less complicated compared to the more recent ones. Simple models are still commonly used for the timely assessment of epidemics. Nevertheless, due to the availability of large-scale real-world data and computational power, recently there has been growing interest in more complex modeling frameworks. Mathematical models are employed to explore and predict how an infectious disease spreads in the real world, evaluate the disease importation risk, and assess the effectiveness of intervention strategies. As the trends in modeling of infectious diseases have been shifting towards data-driven approaches, simple and complex models should be exploited differently. Simple models can be produced in a timely fashion to provide an estimation of the possible impacts. In contrast, complex models integrating real-world data require more time to develop but are far more realistic. The preparation of complicated modeling frameworks prior to the outbreaks is recommended, including the case of future Zika epidemic preparation.

  3. Bridging History of the Concept of Function with Learning of Mathematics: Students' Meta-Discursive Rules, Concept Formation and Historical Awareness

    ERIC Educational Resources Information Center

    Kjeldsen, Tinne Hoff; Petersen, Pernille Hviid

    2014-01-01

    In this paper we present a matrix-organised implementation of an experimental course in the history of the concept of a function. The course was implemented in a Danish high school. One of the aims was to bridge history of mathematics with the teaching and learning of mathematics. The course was designed using the theoretical frameworks of a…

  4. From Specific Information Extraction to Inferences: A Hierarchical Framework of Graph Comprehension

    DTIC Science & Technology

    2004-09-01

    The skill to interpret the information displayed in graphs is so important to have, the National Council of Teachers of Mathematics has created...guidelines to ensure that students learn these skills ( NCTM : Standards for Mathematics , 2003). These guidelines are based primarily on the extraction of...graphical perception. Human Computer Interaction, 8, 353-388. NCTM : Standards for Mathematics . (2003, 2003). Peebles, D., & Cheng, P. C.-H. (2002

  5. Model-Based Policymaking: A Framework to Promote Ethical "Good Practice" in Mathematical Modeling for Public Health Policymaking.

    PubMed

    Boden, Lisa A; McKendrick, Iain J

    2017-01-01

    Mathematical models are increasingly relied upon as decision support tools, which estimate risks and generate recommendations to underpin public health policies. However, there are no formal agreements about what constitutes professional competencies or duties in mathematical modeling for public health. In this article, we propose a framework to evaluate whether mathematical models that assess human and animal disease risks and control strategies meet standards consistent with ethical "good practice" and are thus "fit for purpose" as evidence in support of policy. This framework is derived from principles of biomedical ethics: independence, transparency (autonomy), beneficence/non-maleficence, and justice. We identify ethical risks associated with model development and implementation and consider the extent to which scientists are accountable for the translation and communication of model results to policymakers so that the strengths and weaknesses of the scientific evidence base and any socioeconomic and ethical impacts of biased or uncertain predictions are clearly understood. We propose principles to operationalize a framework for ethically sound model development and risk communication between scientists and policymakers. These include the creation of science-policy partnerships to mutually define policy questions and communicate results; development of harmonized international standards for model development; and data stewardship and improvement of the traceability and transparency of models via a searchable archive of policy-relevant models. Finally, we suggest that bespoke ethical advisory groups, with relevant expertise and access to these resources, would be beneficial as a bridge between science and policy, advising modelers of potential ethical risks and providing overview of the translation of modeling advice into policy.

  6. Orientations toward Mathematical Processes of Prospective Secondary Mathematics Teachers as Related to Work with Tasks

    ERIC Educational Resources Information Center

    Cannon, Tenille

    2016-01-01

    Mathematics can be conceptualized in different ways. Policy documents such as the National Council of Teachers of Mathematics (NCTM) (2000) and the Common Core State Standards Initiative (CCSSI) (2010), classify mathematics in terms of mathematical content (e.g., quadratic functions, Pythagorean theorem) and mathematical activity in the form of…

  7. REVIEW ARTICLE: Oscillations and temporal signalling in cells

    NASA Astrophysics Data System (ADS)

    Tiana, G.; Krishna, S.; Pigolotti, S.; Jensen, M. H.; Sneppen, K.

    2007-06-01

    The development of new techniques to quantitatively measure gene expression in cells has shed light on a number of systems that display oscillations in protein concentration. Here we review the different mechanisms which can produce oscillations in gene expression or protein concentration using a framework of simple mathematical models. We focus on three eukaryotic genetic regulatory networks which show 'ultradian' oscillations, with a time period of the order of hours, and involve, respectively, proteins important for development (Hes1), apoptosis (p53) and immune response (NF-κB). We argue that underlying all three is a common design consisting of a negative feedback loop with time delay which is responsible for the oscillatory behaviour.

  8. Towards a Framework for Making Effective Computational Choices: A "Very Big Idea" of Mathematics

    ERIC Educational Resources Information Center

    Hurst, Chris

    2016-01-01

    It is important for students to make informed decisions about computation. This article highlights this importance and develops a framework which may assist teachers to help students to make effective computational choices.

  9. Percolation on shopping and cashback electronic commerce networks

    NASA Astrophysics Data System (ADS)

    Fu, Tao; Chen, Yini; Qin, Zhen; Guo, Liping

    2013-06-01

    Many realistic networks live in the form of multiple networks, including interacting networks and interdependent networks. Here we study percolation properties of a special kind of interacting networks, namely Shopping and Cashback Electronic Commerce Networks (SCECNs). We investigate two actual SCECNs to extract their structural properties, and develop a mathematical framework based on generating functions for analyzing directed interacting networks. Then we derive the necessary and sufficient condition for the absence of the system-wide giant in- and out- component, and propose arithmetic to calculate the corresponding structural measures in the sub-critical and supercritical regimes. We apply our mathematical framework and arithmetic to those two actual SCECNs to observe its accuracy, and give some explanations on the discrepancies. We show those structural measures based on our mathematical framework and arithmetic are useful to appraise the status of SCECNs. We also find that the supercritical regime of the whole network is maintained mainly by hyperlinks between different kinds of websites, while those hyperlinks between the same kinds of websites can only enlarge the sizes of in-components and out-components.

  10. Intuitive Interference in Probabilistic Reasoning

    ERIC Educational Resources Information Center

    Babai, Reuven; Brecher, Tali; Stavy, Ruth; Tirosh, Dina

    2006-01-01

    One theoretical framework which addresses students' conceptions and reasoning processes in mathematics and science education is the intuitive rules theory. According to this theory, students' reasoning is affected by intuitive rules when they solve a wide variety of conceptually non-related mathematical and scientific tasks that share some common…

  11. The Value of Information in Distributed Decision Networks

    DTIC Science & Technology

    2016-03-04

    formulation, and then we describe the various results at- tained. 1 Mathematical description of Distributed Decision Network un- der Information...Constraints We now define a mathematical framework for networks. Let G = (V,E) be an undirected random network (graph) drawn from a known distribution pG, 1

  12. Weaving Mathematical Instructional Strategies into Inclusive Settings.

    ERIC Educational Resources Information Center

    Karp, Karen S.; Voltz, Deborah L.

    2000-01-01

    This article describes a framework that allows teachers in inclusive elementary settings to interweave instructional strategies from a variety of paradigms to meet individual learning needs in inclusive mathematics classes. Factors to be considered are highlighted and an instructional continuum from more teacher-centered strategies to more…

  13. Understanding Mathematics Teachers' Beliefs about Professional Learning Communities and Professional Development

    ERIC Educational Resources Information Center

    Garner, Arthur L., Jr.

    2011-01-01

    This ethnographic study utilized the theoretical frameworks of constructivism, cognitivism, and socio-cultural theories to examine how professional learning communities influenced the professional development of mathematics teacher knowledge and student achievement. This study sought to comprehend and interpret the behaviors, beliefs and values of…

  14. Techtalk: Mobile Apps and College Mathematics

    ERIC Educational Resources Information Center

    Hoang, Theresa V.; Caverly, David C.

    2013-01-01

    In this column, the authors discuss apps useful in developing mathematical reasoning. They place these into a theoretical framework, suggesting how they could be used in an instructional model such as the Algorithmic Instructional Technique (AIT) developed by Vasquez (2003). This model includes four stages: modeling, practice, transition, and…

  15. Improving College Students' Attitudes toward Mathematics

    ERIC Educational Resources Information Center

    Hodges, Charles B.; Kim, ChanMin

    2013-01-01

    This study was conducted to investigate the effectiveness of a treatment designed to improve college algebra students' attitudes toward mathematics. Keller's ARCS motivational design model was used as a guiding framework for the development of a motivational video, which was delivered online. The application of motivational design to improve…

  16. Unveiling the South African Official Primary Mathematics Teacher Pedagogic Identity

    ERIC Educational Resources Information Center

    Pausigere, Peter; Graven, Mellony

    2013-01-01

    This article is theoretically informed by Bernstein's (2000) notion of pedagogic identity, supplemented by Tyler's (1999) elaboration of Bernstein's theory into an analytical framework that describes four possible identity positions relating to classification and framing properties. The article analyses key primary mathematics curriculum policy…

  17. Documenting Collective Development in Online Settings

    ERIC Educational Resources Information Center

    Dean, Chrystal; Silverman, Jason

    2015-01-01

    In this paper the authors explored the question of collective understanding in online mathematics education settings and presented a brief overview of traditional methods for documenting norms and collective mathematical practices. A method for documenting collective development was proposed that builds on existing methods and frameworks yet is…

  18. Holographic space and time: Emergent in what sense?

    NASA Astrophysics Data System (ADS)

    Vistarini, Tiziana

    2017-08-01

    This paper proposes a metaphysics for holographic duality. In addition to the AdS/CFT correspondence I also consider the dS/CFT conjecture of duality. Both involve non-perturbative string theory and both are exact dualities. But while the AdS/CFT keeps time at the margins of the story, the dS/CFT conjecture gives to time the "space" it deserves by presenting an interesting holographic model of it. My goals in this paper can be summarized in the following way. First, I argue that the formal structure and physical content of the duality do not support the standard philosophical reading of the relation in terms of grounding. Second, I put forward a philosophical scheme mainly extrapolated from the double aspect monism theory. I read holographic duality in this framework as it seems to fit the mathematical and physical structure of the duality smoothly. Inside this framework I propose a notion of spacetime emergence alternative to those ones commonly debated in the AdS/CFT physics and philosophy circles.

  19. NIRP Core Software Suite v. 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitener, Dustin Heath; Folz, Wesley; Vo, Duong

    The NIRP Core Software Suite is a core set of code that supports multiple applications. It includes miscellaneous base code for data objects, mathematic equations, and user interface components; and the framework includes several fully-developed software applications that exist as stand-alone tools to compliment other applications. The stand-alone tools are described below. Analyst Manager: An application to manage contact information for people (analysts) that use the software products. This information is often included in generated reports and may be used to identify the owners of calculations. Radionuclide Viewer: An application for viewing the DCFPAK radiological data. Compliments the Mixture Managermore » tool. Mixture Manager: An application to create and manage radionuclides mixtures that are commonly used in other applications. High Explosive Manager: An application to manage explosives and their properties. Chart Viewer: An application to view charts of data (e.g. meteorology charts). Other applications may use this framework to create charts specific to their data needs.« less

  20. An Investigation of Mathematical Modeling with Pre-Service Secondary Mathematics Teachers

    ERIC Educational Resources Information Center

    Thrasher, Emily Plunkett

    2016-01-01

    The goal of this thesis was to investigate and enhance our understanding of what occurs while pre-service mathematics teachers engage in a mathematical modeling unit that is broadly based upon mathematical modeling as defined by the Common Core State Standards for Mathematics (National Governors Association Center for Best Practices & Council…

  1. Phoenix Rising: Bringing the Common Core State Mathematics Standards to Life

    ERIC Educational Resources Information Center

    Wu, Hung-Hsi

    2011-01-01

    Many sets of state and national mathematics standards have come and gone in the past two decades. The Common Core State Mathematics Standards (CCSMS), which were released in June of 2010, have been adopted by almost all states and will be phased in across the nation in 2014. The main difference between these standards and most of the others is…

  2. Solving the Common Core Equation: Teaching Mathematics CCSS to Students with Moderate and Severe Disabilities

    ERIC Educational Resources Information Center

    Saunders, Alicia F.; Bethune, Keri S.; Spooner, Fred; Browder, Diane

    2013-01-01

    The Common Core State Standards (CCSS) in mathematics were created to help all students become prepared for the demands of future careers and life in an age of technology. Similarly, students with moderate and severe disability will need these skills to meet these changing expectations. Although mathematics instruction could focus on a few of the…

  3. "Better to Be a Pessimist": A Narrative Inquiry into Mathematics Teachers' Experience of the Transition to the Common Core

    ERIC Educational Resources Information Center

    Martinie, Sherri L.; Kim, Jeong-Hee; Abernathy, Deborah

    2016-01-01

    The Common Core State Standards (CCSS) are a focus of state education policy today influencing curriculum implementation and assessment in public schools. The purpose of this narrative inquiry is to understand how high school mathematics teachers experience the transition period. Based on interviews with mathematics teachers in a high school in…

  4. Mathematics Formative Assessment System--Common Core State Standards: A Randomized Field Trial in Kindergarten and First Grade

    ERIC Educational Resources Information Center

    Lang, Laura B.; Schoen, Robert R.; LaVenia, Mark; Oberlin, Maureen

    2014-01-01

    The Florida Center for Research in Science, Technology, Engineering and Mathematics (FCR-STEM) was awarded a grant by the Florida Department of Education to develop a Mathematics Formative Assessment System (MFAS) aligned with the Common Core State Standards (CCSS). Intended for both teachers and students, formative assessment is a process that…

  5. Teacher Identity and Numeracy: Developing an Analytic Lens for Understanding Numeracy Teacher Identity

    ERIC Educational Resources Information Center

    Bennison, Anne; Goos, Merrilyn

    2013-01-01

    This paper reviews recent literature on teacher identity in order to propose an operational framework that can be used to investigate the formation and development of numeracy teacher identities. The proposed framework is based on Van Zoest and Bohl's (2005) framework for mathematics teacher identity with a focus on those characteristics thought…

  6. Experiencing Mathematics for Connected Understanding: Using the RAMR Framework for Accelerating Students' Learning

    ERIC Educational Resources Information Center

    Nutchey, David; Grant, Edlyn; English, Lyn

    2016-01-01

    This paper reports on the use of the RAMR framework within a curriculum project. Description of the RAMR framework's theoretical bases is followed by two descriptions of students' learning in the classroom. Implications include the need for the teacher to connect student activities in a structured sequence, although this may be predicated on the…

  7. Use of mathematical modelling to assess the impact of vaccines on antibiotic resistance.

    PubMed

    Atkins, Katherine E; Lafferty, Erin I; Deeny, Sarah R; Davies, Nicholas G; Robotham, Julie V; Jit, Mark

    2018-06-01

    Antibiotic resistance is a major global threat to the provision of safe and effective health care. To control antibiotic resistance, vaccines have been proposed as an essential intervention, complementing improvements in diagnostic testing, antibiotic stewardship, and drug pipelines. The decision to introduce or amend vaccination programmes is routinely based on mathematical modelling. However, few mathematical models address the impact of vaccination on antibiotic resistance. We reviewed the literature using PubMed to identify all studies that used an original mathematical model to quantify the impact of a vaccine on antibiotic resistance transmission within a human population. We reviewed the models from the resulting studies in the context of a new framework to elucidate the pathways through which vaccination might impact antibiotic resistance. We identified eight mathematical modelling studies; the state of the literature highlighted important gaps in our understanding. Notably, studies are limited in the range of pathways represented, their geographical scope, and the vaccine-pathogen combinations assessed. Furthermore, to translate model predictions into public health decision making, more work is needed to understand how model structure and parameterisation affects model predictions and how to embed these predictions within economic frameworks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Comparing the Common Core State Standards in Mathematics and NCTM's "Curriculum Focal Points". Achieving the Common Core

    ERIC Educational Resources Information Center

    Achieve, Inc., 2010

    2010-01-01

    Through the Common Core State Standards (CCSS) Initiative, states and territories have collaborated in the development of a common core of standards in English Language Arts and mathematics for grades kindergarten through twelve that are now being adopted by states. Designed not only for the purpose of providing strong, shared expectations, the…

  9. North American Chapter of the International Group for the Psychology of Mathematics Education, Proceedings of the Annual Meeting (13th, Blacksburg, Virginia, October 16-19, 1991). Volumes 1 and 2.

    ERIC Educational Resources Information Center

    Underhill, Robert G., Ed.

    This document, presented in two volumes, reports on a psychology of mathematics education conference, the theme of which was "Theoretical and Conceptual Frameworks in Mathematics Education." The two volumes include 58 papers, descriptions of 4 poster and 2 video presentations, and reports of and reactions to 2 plenary sessions presented…

  10. A log-linear model approach to estimation of population size using the line-transect sampling method

    USGS Publications Warehouse

    Anderson, D.R.; Burnham, K.P.; Crain, B.R.

    1978-01-01

    The technique of estimating wildlife population size and density using the belt or line-transect sampling method has been used in many past projects, such as the estimation of density of waterfowl nestling sites in marshes, and is being used currently in such areas as the assessment of Pacific porpoise stocks in regions of tuna fishing activity. A mathematical framework for line-transect methodology has only emerged in the last 5 yr. In the present article, we extend this mathematical framework to a line-transect estimator based upon a log-linear model approach.

  11. Fisher information theory for parameter estimation in single molecule microscopy: tutorial

    PubMed Central

    Chao, Jerry; Ward, E. Sally; Ober, Raimund J.

    2016-01-01

    Estimation of a parameter of interest from image data represents a task that is commonly carried out in single molecule microscopy data analysis. The determination of the positional coordinates of a molecule from its image, for example, forms the basis of standard applications such as single molecule tracking and localization-based superresolution image reconstruction. Assuming that the estimator used recovers, on average, the true value of the parameter, its accuracy, or standard deviation, is then at best equal to the square root of the Cramér-Rao lower bound. The Cramér-Rao lower bound can therefore be used as a benchmark in the evaluation of the accuracy of an estimator. Additionally, as its value can be computed and assessed for different experimental settings, it is useful as an experimental design tool. This tutorial demonstrates a mathematical framework that has been specifically developed to calculate the Cramér-Rao lower bound for estimation problems in single molecule microscopy and, more broadly, fluorescence microscopy. The material includes a presentation of the photon detection process that underlies all image data, various image data models that describe images acquired with different detector types, and Fisher information expressions that are necessary for the calculation of the lower bound. Throughout the tutorial, examples involving concrete estimation problems are used to illustrate the effects of various factors on the accuracy of parameter estimation, and more generally, to demonstrate the flexibility of the mathematical framework. PMID:27409706

  12. Rival framings: A framework for discovering how problem formulation uncertainties shape risk management trade-offs in water resources systems

    NASA Astrophysics Data System (ADS)

    Quinn, J. D.; Reed, P. M.; Giuliani, M.; Castelletti, A.

    2017-08-01

    Managing water resources systems requires coordinated operation of system infrastructure to mitigate the impacts of hydrologic extremes while balancing conflicting multisectoral demands. Traditionally, recommended management strategies are derived by optimizing system operations under a single problem framing that is assumed to accurately represent the system objectives, tacitly ignoring the myriad of effects that could arise from simplifications and mathematical assumptions made when formulating the problem. This study illustrates the benefits of a rival framings framework in which analysts instead interrogate multiple competing hypotheses of how complex water management problems should be formulated. Analyzing rival framings helps discover unintended consequences resulting from inherent biases of alternative problem formulations. We illustrate this on the monsoonal Red River basin in Vietnam by optimizing operations of the system's four largest reservoirs under several different multiobjective problem framings. In each rival framing, we specify different quantitative representations of the system's objectives related to hydropower production, agricultural water supply, and flood protection of the capital city of Hanoi. We find that some formulations result in counterintuitive behavior. In particular, policies designed to minimize expected flood damages inadvertently increase the risk of catastrophic flood events in favor of hydropower production, while min-max objectives commonly used in robust optimization provide poor representations of system tradeoffs due to their instability. This study highlights the importance of carefully formulating and evaluating alternative mathematical abstractions of stakeholder objectives describing the multisectoral water demands and risks associated with hydrologic extremes.

  13. Formalizing Probabilistic Safety Claims

    NASA Technical Reports Server (NTRS)

    Herencia-Zapana, Heber; Hagen, George E.; Narkawicz, Anthony J.

    2011-01-01

    A safety claim for a system is a statement that the system, which is subject to hazardous conditions, satisfies a given set of properties. Following work by John Rushby and Bev Littlewood, this paper presents a mathematical framework that can be used to state and formally prove probabilistic safety claims. It also enables hazardous conditions, their uncertainties, and their interactions to be integrated into the safety claim. This framework provides a formal description of the probabilistic composition of an arbitrary number of hazardous conditions and their effects on system behavior. An example is given of a probabilistic safety claim for a conflict detection algorithm for aircraft in a 2D airspace. The motivation for developing this mathematical framework is that it can be used in an automated theorem prover to formally verify safety claims.

  14. Community Elders, Traditional Knowledge, and a Mathematics Curriculum Framework.

    ERIC Educational Resources Information Center

    Yamamura, Brian; Netser, Saimanaaq; Qanatsiaq, Nunia

    2003-01-01

    In Nunavut, where most residents are Inuit, Inuit elders are helping develop a new mathematics curriculum based on Inuit philosophy. Students will be involved in cultural, experiential activities during on-the-land trips. Such trips involve other community members, and the resulting interactions and informal teaching by individuals other than…

  15. Negotiating Identity: A Look at the Educational Experiences of Black Undergraduates in Stem Disciplines

    ERIC Educational Resources Information Center

    McClain, Oren L.

    2014-01-01

    The purpose of this qualitative study is to investigate the mathematics educational experiences of Black undergraduate students majoring in science, technology, engineering, and mathematics disciplines at the University of Virginia. Using Murrell's (2009) situated-mediated identity theory as the theoretical framework, this study examines factors…

  16. Argumentative Knowledge Construction in an Online Graduate Mathematics Course: A Case Study

    ERIC Educational Resources Information Center

    Bayazit, Nermin; Clarke, Pier Angeli Junor; Vidakovic, Draga

    2018-01-01

    The authors report on three students' argumentative knowledge construction in an asynchronous online graduate level geometry course designed for in-service secondary mathematics (ISM) teachers. Using Weinberger and Fischer's framework, they analyzed the ISM teachers' (a) geometry autobiography and (b) discussion board posts (both comments and…

  17. Community Colleges Giving Students a Framework for STEM Careers

    ERIC Educational Resources Information Center

    Musante, Susan

    2012-01-01

    Over the coming decade, America will need one million more science, technology, engineering, and mathematics (STEM) professionals than was originally projected. This is the conclusion of a February 2012 report, "Engage to Excel: Producing One Million Additional College Graduates with Degrees in Science, Technology, Engineering, and Mathematics".…

  18. Adapting the Mathematical Task Framework to Design Online Didactic Objects

    ERIC Educational Resources Information Center

    Bowers, Janet; Bezuk, Nadine; Aguilar, Karen

    2011-01-01

    Designing didactic objects involves imagining how students can conceive of specific mathematical topics and then imagining what types of classroom discussions could support these mental constructions. This study investigated whether it was possible to design Java applets that might serve as didactic objects to support online learning where…

  19. Foundation Content Knowledge: What Do Pre-Service Teachers Need to Know?

    ERIC Educational Resources Information Center

    Linsell, Chris; Anakin, Megan

    2013-01-01

    The mathematics content knowledge of pre-service teachers is a growing area of inquiry. This topic requires further theoretical development due to the limited applicability of current cognitive and practice-oriented frameworks of mathematics content knowledge to beginning pre-service teachers. Foundation content knowledge is an integrated,…

  20. Student and Teacher Interventions: A Framework for Analysing Mathematical Discourse in the Classroom

    ERIC Educational Resources Information Center

    Drageset, Ove Gunnar

    2015-01-01

    Mathematical discourse in the classroom has been conceptualised in several ways, from relatively general patterns such as initiation-response-evaluation (Cazden in "Classroom discourse: the language of teaching and learning," Heinemann, London, 1988; Mehan in "Learning lessons: social organization in the classroom." Cambridge,…

  1. Towards a Framework for Developing Students' Fraction Proficiency

    ERIC Educational Resources Information Center

    Tsai, Tsung-Lung; Li, Hui-Chuan

    2017-01-01

    The importance of the knowledge of fractions in mathematical learning, coupled with the difficulties students have with them, has prompted researchers to focus on this particular area of mathematics. The term "fraction proficiency" used in this article refers to a person's conceptual comprehension, procedural skills and the ability to…

  2. TIMMS Advanced 2015 Assessment Frameworks

    ERIC Educational Resources Information Center

    Mullis, Ina V. S., Ed.; Martin, Michael O., Ed.

    2014-01-01

    It is critical for countries to ensure that capable secondary school students receive further preparation in advanced mathematics and science, so that they are ready to enter challenging university-level studies that prepare them for careers in science, technology, engineering, and mathematics (STEM) fields. This group of students will become the…

  3. Mathematics Framework for the 2013 National Assessment of Educational Progress

    ERIC Educational Resources Information Center

    National Assessment Governing Board, 2012

    2012-01-01

    Since 1973, the National Assessment of Educational Progress (NAEP) has gathered information about student achievement in mathematics. Results of these periodic assessments, produced in print and web-based formats, provide valuable information to a wide variety of audiences. They inform citizens about the nature of students' comprehension of the…

  4. Mathematics Education and Manipulatives: Which, When, How?

    ERIC Educational Resources Information Center

    Larkin, Kevin

    2016-01-01

    This article proposes a framework for classroom teachers to use in making pedagogical decisions regarding which mathematical materials (concrete and digital) to use, when they might be most appropriately used, and why. Two iPad apps ("Area of Shapes (Parallelogram)" and "Area of Parallelogram") are also evaluated to demonstrate…

  5. Characterising the Perceived Value of Mathematics Educational Apps in Preservice Teachers

    ERIC Educational Resources Information Center

    Handal, Boris; Campbell, Chris; Cavanagh, Michael; Petocz, Peter

    2016-01-01

    This study validated the semantic items of three related scales aimed at characterising the perceived worth of mathematics-education-related mobile applications (apps). The technological pedagogical content knowledge (TPACK) model was used as the conceptual framework for the analysis. Three hundred and seventy-three preservice students studying…

  6. Guiding Preservice Teachers to Adapt Mathematics Word Problems through Interactions with ELLs

    ERIC Educational Resources Information Center

    Kurz, Terri L.; Gómez, Conrado; Jimenez-Silva, Margarita

    2017-01-01

    In this article, the authors present a framework for guiding elementary preservice teachers in adapting mathematics word problems to better meet English language learners' (ELLs) needs. They analyze preservice teachers' ELL adaptations implemented in a one-on-one setting. Through qualitative methods, four themes regarding implemented adaptations…

  7. From Mathematics to Mathematics-with-ICT

    ERIC Educational Resources Information Center

    Timotheus, Jay

    2009-01-01

    In this article, the author suggests a framework for developing lesson ideas involving variation. This idea was demonstrated by Rebecca Davey at a conference bringing together teachers from the seven schools participating in the TI-"n"spire pilot research project overseen by Alison Clark-Wilson of the University of Chichester. It uses information…

  8. Establishing an Explanatory Model for Mathematics Identity

    ERIC Educational Resources Information Center

    Cribbs, Jennifer D.; Hazari, Zahra; Sonnert, Gerhard; Sadler, Philip M.

    2015-01-01

    This article empirically tests a previously developed theoretical framework for mathematics identity based on students' beliefs. The study employs data from more than 9,000 college calculus students across the United States to build a robust structural equation model. While it is generally thought that students' beliefs about their own competence…

  9. Harmony Theory: A Mathematical Framework for Stochastic Parallel Processing.

    ERIC Educational Resources Information Center

    Smolensky, Paul

    This paper presents preliminary results of research founded on the hypothesis that in real environments there exist regularities that can be idealized as mathematical structures that are simple enough to be analyzed. The author considered three steps in analyzing the encoding of modularity of the environment. First, a general information…

  10. Teachers' Perceptions of Examining Students' Thinking: Changing Mathematics Instructional Practice

    ERIC Educational Resources Information Center

    Anderson-Pence, Katie L.

    2015-01-01

    This paper seeks to illuminate teachers' perceptions of the challenges and benefits of systematically examining students' thinking as part of a professional development program in elementary mathematics education. Using a framework of models of conceptual change and principles of discomfort, three elementary teachers' perceptions of their…

  11. The Impact of Conflicting Goals on Mathematical Teaching Decisions

    ERIC Educational Resources Information Center

    Thomas, Mike; Yoon, Caroline

    2014-01-01

    This paper describes part of an international project considering graphical construction of antiderivative functions in the secondary mathematics classroom. We use Schoenfeld's resources, orientations, and goals (ROGs) framework to analyse the decisions made by a teacher, Adam, during a lesson on graphical antiderivatives. We present details…

  12. Pre-Service Teacher Training on Game-Enhanced Mathematics Teaching and Learning

    ERIC Educational Resources Information Center

    Meletiou-Mavrotheris, Maria; Prodromou, Theodosia

    2016-01-01

    The paper reports the main insights from a study aimed at equipping a group of pre-service teachers with the knowledge, skills, and practical experience required to effectively integrate educational games within the mathematics curriculum. An instructional intervention based on the Technological Pedagogical and Content Knowledge framework was…

  13. A Curriculum Innovation Framework for Science, Technology and Mathematics Education

    ERIC Educational Resources Information Center

    Tytler, Russell; Symington, David; Smith, Craig

    2011-01-01

    There is growing concern about falling levels of student engagement with school science, as evidenced by studies of student attitudes, and decreasing participation at the post compulsory level. One major response to this, the Australian School Innovation in Science, Technology and Mathematics (ASISTM) initiative, involves partnerships between…

  14. Values and Norms of Proof for Mathematicians and Students

    ERIC Educational Resources Information Center

    Dawkins, Paul Christian; Weber, Keith

    2017-01-01

    In this theoretical paper, we present a framework for conceptualizing proof in terms of mathematical values, as well as the norms that uphold those values. In particular, proofs adhere to the values of establishing a priori truth, employing decontextualized reasoning, increasing mathematical understanding, and maintaining consistent standards for…

  15. Exploring the Educative Power of an Experienced Mathematics Teacher Educator-Researcher

    ERIC Educational Resources Information Center

    Yang, Kai-Lin; Hsu, Hui-Yu; Lin, Fou-Lai; Chen, Jian-Cheng; Cheng, Ying-Hao

    2015-01-01

    This paper aims to explore the educative power of an experienced mathematics teacher educator-researcher (MTE-R) who displayed his insights and strategies in teacher professional development (TPD) programs. To this end, we propose a framework by first conceptualizing educative power based on three constructs--communication, reasoning, and…

  16. Examining Individual and Collective Level Mathematical Progress

    ERIC Educational Resources Information Center

    Rasmussen, Chris; Wawro, Megan; Zandieh, Michelle

    2015-01-01

    A challenge in mathematics education research is to coordinate different analyses to develop a more comprehensive account of teaching and learning. We contribute to these efforts by expanding the constructs in Cobb and Yackel's (Educational Psychologist 31:175-190, 1996) interpretive framework that allow for coordinating social and individual…

  17. Mapping Children's Understanding of Mathematical Equivalence

    ERIC Educational Resources Information Center

    Taylor, Roger S.; Rittle-Johnson, Bethany; Matthews, Percival G.; McEldoon, Katherine L.

    2009-01-01

    The focus of this research is to develop an initial framework for assessing and interpreting students' level of understanding of mathematical equivalence. Although this topic has been studied for many years, there has been no systematic development or evaluation of a valid measure of equivalence knowledge. A powerful method for accomplishing this…

  18. The Relationship of Drawing and Mathematical Problem Solving: "Draw for Math" Tasks

    ERIC Educational Resources Information Center

    Edens, Kellah; Potter, Ellen

    2007-01-01

    This study examines a series of children's drawings ("Draw for Math" tasks) to determine the relationship of students' spatial understanding and mathematical problem solving. Level of spatial understanding was assessed by applying the framework of central conceptual structures suggested by Case (1996), a cognitive developmental researcher.…

  19. Mathematical Modeling and Pure Mathematics

    ERIC Educational Resources Information Center

    Usiskin, Zalman

    2015-01-01

    Common situations, like planning air travel, can become grist for mathematical modeling and can promote the mathematical ideas of variables, formulas, algebraic expressions, functions, and statistics. The purpose of this article is to illustrate how the mathematical modeling that is present in everyday situations can be naturally embedded in…

  20. Launching a Discourse-Rich Mathematics Lesson

    ERIC Educational Resources Information Center

    Trocki, Aaron; Taylor, Christine; Starling, Tina; Sztajn, Paola; Heck, Daniel

    2014-01-01

    The idea of elementary school students working together on mathematical tasks is not new, but recent attention to creating purposeful discourse in mathematics classrooms prompts teachers to revisit discourse-promoting strategies for mathematics lessons. The Common Core's Standards for Mathematical Practice (CCSSI 2010) encourage teachers to…

  1. Does Time Matter in Improving Mathematical Discussions? The Influence of Mathematical Autonomy

    ERIC Educational Resources Information Center

    Kosko, Karl W.; Wilkins, Jesse L. M.

    2015-01-01

    Facilitating students' transition from less to more mathematically productive engagement in discussions is an important area of investigation. Research on mathematical whole-class discussions has consistently identified facilitating students' mathematical autonomy as a central component of this transition. Additionally, research commonly infers…

  2. Teaching Statistics with Technology

    ERIC Educational Resources Information Center

    Prodromou, Theodosia

    2015-01-01

    The Technological Pedagogical Content Knowledge (TPACK) conceptual framework for teaching mathematics, developed by Mishra and Koehler (2006), emphasises the importance of developing integrated and interdependent understanding of three primary forms of knowledge: technology, pedagogy, and content. The TPACK conceptual framework is based upon the…

  3. "My favourite subject is maths. For some reason no-one really agrees with me": student perspectives of mathematics teaching and learning in the upper primary classroom

    NASA Astrophysics Data System (ADS)

    Attard, Catherine

    2011-09-01

    The levels of engagement in mathematics experienced by students during the middle years of schooling (Years 5 to 8 in New South Wales) has been of concern in Australia for some years. Lowered engagement in school has been attributed to factors such as inappropriate teaching strategies, curricula that is unchallenging and irrelevant, and cultural and technological conditions that continue to evolve (Sullivan et al. Australian Journal of Education 53(2):176-191, 2009). There is currently a gap in this field of research in terms of a lack of longitudinal studies conducted in an Australian context that feature students' voices and their perceptions of mathematics teaching and learning during the middle years. As part of a qualitative longitudinal case study spanning 3 school years, 20 students in their final year of primary school (aged between 11 and 12 years) were asked to provide their views on mathematics teaching and learning. The aim of the study was to explore the students' perspectives of mathematics teaching and learning to discover pedagogies that engage the students. During focus group discussions and individual interviews the students discussed qualities of a "good" mathematics teacher and aspects of "good" lessons. These were found to resonate well with current Australian quality teaching frameworks. The findings of this study indicate that students in the middle years are critically aware of pedagogies that lead to engagement in mathematics, and existing standards and frameworks should be used as a starting point for quality teaching of mathematics.

  4. Learning to Assess and Assessing to Learn: A Descriptive Study of a District-Wide Mathematics Assessment Implementation

    ERIC Educational Resources Information Center

    Ringer, Catharina W.

    2013-01-01

    In today's mathematics education, there is an increasing emphasis on students' understanding of the mathematics set forth in standards documents such as the "Principles and Standards for School Mathematics" (National Council of Teachers of Mathematics, 2000) and, most recently, the "Common Core State Standards for Mathematics"…

  5. Common Core State Standards in the Middle Grades: What's New in the Geometry Domain and How Can Teachers Support Student Learning?

    ERIC Educational Resources Information Center

    Teuscher, Dawn; Tran, Dung; Reys, Barbara J.

    2015-01-01

    The Common Core State Standards for Mathematics (CCSSM) is a primary focus of attention for many stakeholders' (e.g., teachers, district mathematics leaders, and curriculum developers) intent on improving mathematics education. This article reports on specific content shifts related to the geometry domain in the middle grades (6-8)…

  6. Teachers' Evaluations and Use of Web-Based Curriculum Resources in Relation to the Common Core State Standards for Mathematics

    ERIC Educational Resources Information Center

    Webel, Corey; Krupa, Erin E.; McManus, Jason

    2015-01-01

    This study examines patterns in how a group of fifth- and sixth-grade teachers evaluated and reported using different types of curriculum resources to support their teaching in relation to the mathematical concepts outlined in the Common Core State Standards for Mathematics. In particular, it explores the use of resources that were available to…

  7. Making Sense of Mathematics

    ERIC Educational Resources Information Center

    Umphrey, Jan

    2011-01-01

    The National Council of Teachers of Mathematics (NCTM) is a voice and advocate for mathematics educators, working to ensure that all students receive equitable mathematics learning of the highest quality. To help teachers and school leaders understand the Common Core State Standards for Mathematics (CCSSM) and to point out how the CCSSM can be…

  8. Mathematical Modeling: A Structured Process

    ERIC Educational Resources Information Center

    Anhalt, Cynthia Oropesa; Cortez, Ricardo

    2015-01-01

    Mathematical modeling, in which students use mathematics to explain or interpret physical, social, or scientific phenomena, is an essential component of the high school curriculum. The Common Core State Standards for Mathematics (CCSSM) classify modeling as a K-12 standard for mathematical practice and as a conceptual category for high school…

  9. Teachers' Conceptions of Mathematical Modeling

    ERIC Educational Resources Information Center

    Gould, Heather

    2013-01-01

    The release of the "Common Core State Standards for Mathematics" in 2010 resulted in a new focus on mathematical modeling in United States curricula. Mathematical modeling represents a way of doing and understanding mathematics new to most teachers. The purpose of this study was to determine the conceptions and misconceptions held by…

  10. Pre-Service Teachers' Mathematics Content Knowledge: Implications for How Mathematics Is Taught in Higher Education

    ERIC Educational Resources Information Center

    Lowrie, Tom; Jorgensen, Robyn

    2016-01-01

    This investigation explored pre-service teachers' mathematics content knowledge (MCK) and beliefs associated with mathematics education practices. An Exploratory Factor Analysis, conducted on a beliefs and attitudes questionnaire, produced three common attitude factors associated with (1) inquiry-based teaching; (2) how mathematics knowledge is…

  11. The Common Core State Standards for Mathematics

    ERIC Educational Resources Information Center

    Akkus, Murat

    2016-01-01

    The Common Core State Standards for Mathematics (CCSSM) was published in 2010 and includes a complete collection of standards that are published and reviewed as a "common core" in which math skills have been extensively adopted. The recommendations provided have been entirely or partially adapted by more than 47 states of the US.…

  12. Remembering the hindu festivities mathematically by the balinese using integer operations and least common multiple

    NASA Astrophysics Data System (ADS)

    Budi Darmayasa, Jero; Wahyudin; Mulyana, Tatang; Subali Noto, Muchamad

    2018-04-01

    Ethnomathematicsis considered as a new study in mathematic education. As a study, numerous regions in this world starts to explore through ethnomathematics, including Indonesia. As the intersection between mathematics and mathematical modelling and culture, ethnomathematics exists in various society’s cultural elements, including in the Balinese Hindus’ festivities. To find the mathematical concept used in determining the festivity days, the researcher(s) conducted ethnographic research in Bali Mula society in Kintamani District, Bali. Participation observation, in-depth interview, and literature and documentation were used in collecting the data. As the result, the researcher(s) revealed that the mathematical concept used is integer operations, least common multiple, mixed fraction, and number sequences. Since it contains mathematical concept used in junior high, thus ethnomathematics of “4-hindu’s festivities” may be used as context in mathematics learning. By using ethnomathematics as the context, the researcher(s) expect that it will help teachers in motivation their students to learn mathematics.

  13. Consequences, Characteristics, and Causes of Mathematical Learning Disabilities and Persistent Low Achievement in Mathematics

    PubMed Central

    Geary, David C.

    2011-01-01

    Objective The goals of the review are threefold; a) to highlight the educational and employment consequences of poorly developed mathematical competencies; b) overview the characteristics of the children with persistently low achievement in mathematics; and c) provide a primer on cognitive science research that is aimed at identifying the cognitive mechanisms underlying these learning disabilities and associated cognitive interventions. Method Literatures on the educational and economic consequences of poor mathematics achievement were reviewed and integrated with reviews of epidemiological, behavioral genetic, and cognitive science studies of poor mathematics achievement. Results Poor mathematical competencies are common among adults and result in employment difficulties and difficulties in many common day-to-day activities. Among students, about 7% of children and adolescents have a mathematical learning disability (MLD) and another 10% show persistent low achievement (LA) in mathematics despite average abilities in most other areas. Children with MLD and their LA peers have deficits in understanding and representing numerical magnitude, difficulties retrieving basic arithmetic facts from long-term memory, and delays in learning mathematical procedures. These deficits and delays cannot be attributed to intelligence, but are related to working memory deficits for children with MLD, but not LA children. Interventions that target these cognitive deficits are in development and preliminary results are promising. Conclusion Mathematical learning disabilities and learning difficulties associated with persistent low achievement in mathematics are common and not attributable to intelligence. These individuals have identifiable number and memory delays and deficits that appear to be specific to mathematics learning. The most promising interventions are those that target these specific deficits and, in addition, for children with MLD interventions that target their low working memory capacity. PMID:21285895

  14. Automated numerical simulation of biological pattern formation based on visual feedback simulation framework

    PubMed Central

    Sun, Mingzhu; Xu, Hui; Zeng, Xingjuan; Zhao, Xin

    2017-01-01

    There are various fantastic biological phenomena in biological pattern formation. Mathematical modeling using reaction-diffusion partial differential equation systems is employed to study the mechanism of pattern formation. However, model parameter selection is both difficult and time consuming. In this paper, a visual feedback simulation framework is proposed to calculate the parameters of a mathematical model automatically based on the basic principle of feedback control. In the simulation framework, the simulation results are visualized, and the image features are extracted as the system feedback. Then, the unknown model parameters are obtained by comparing the image features of the simulation image and the target biological pattern. Considering two typical applications, the visual feedback simulation framework is applied to fulfill pattern formation simulations for vascular mesenchymal cells and lung development. In the simulation framework, the spot, stripe, labyrinthine patterns of vascular mesenchymal cells, the normal branching pattern and the branching pattern lacking side branching for lung branching are obtained in a finite number of iterations. The simulation results indicate that it is easy to achieve the simulation targets, especially when the simulation patterns are sensitive to the model parameters. Moreover, this simulation framework can expand to other types of biological pattern formation. PMID:28225811

  15. Automated numerical simulation of biological pattern formation based on visual feedback simulation framework.

    PubMed

    Sun, Mingzhu; Xu, Hui; Zeng, Xingjuan; Zhao, Xin

    2017-01-01

    There are various fantastic biological phenomena in biological pattern formation. Mathematical modeling using reaction-diffusion partial differential equation systems is employed to study the mechanism of pattern formation. However, model parameter selection is both difficult and time consuming. In this paper, a visual feedback simulation framework is proposed to calculate the parameters of a mathematical model automatically based on the basic principle of feedback control. In the simulation framework, the simulation results are visualized, and the image features are extracted as the system feedback. Then, the unknown model parameters are obtained by comparing the image features of the simulation image and the target biological pattern. Considering two typical applications, the visual feedback simulation framework is applied to fulfill pattern formation simulations for vascular mesenchymal cells and lung development. In the simulation framework, the spot, stripe, labyrinthine patterns of vascular mesenchymal cells, the normal branching pattern and the branching pattern lacking side branching for lung branching are obtained in a finite number of iterations. The simulation results indicate that it is easy to achieve the simulation targets, especially when the simulation patterns are sensitive to the model parameters. Moreover, this simulation framework can expand to other types of biological pattern formation.

  16. Model-Based Policymaking: A Framework to Promote Ethical “Good Practice” in Mathematical Modeling for Public Health Policymaking

    PubMed Central

    Boden, Lisa A.; McKendrick, Iain J.

    2017-01-01

    Mathematical models are increasingly relied upon as decision support tools, which estimate risks and generate recommendations to underpin public health policies. However, there are no formal agreements about what constitutes professional competencies or duties in mathematical modeling for public health. In this article, we propose a framework to evaluate whether mathematical models that assess human and animal disease risks and control strategies meet standards consistent with ethical “good practice” and are thus “fit for purpose” as evidence in support of policy. This framework is derived from principles of biomedical ethics: independence, transparency (autonomy), beneficence/non-maleficence, and justice. We identify ethical risks associated with model development and implementation and consider the extent to which scientists are accountable for the translation and communication of model results to policymakers so that the strengths and weaknesses of the scientific evidence base and any socioeconomic and ethical impacts of biased or uncertain predictions are clearly understood. We propose principles to operationalize a framework for ethically sound model development and risk communication between scientists and policymakers. These include the creation of science–policy partnerships to mutually define policy questions and communicate results; development of harmonized international standards for model development; and data stewardship and improvement of the traceability and transparency of models via a searchable archive of policy-relevant models. Finally, we suggest that bespoke ethical advisory groups, with relevant expertise and access to these resources, would be beneficial as a bridge between science and policy, advising modelers of potential ethical risks and providing overview of the translation of modeling advice into policy. PMID:28424768

  17. Listening Responsively

    ERIC Educational Resources Information Center

    Callahan, Kadian M.

    2011-01-01

    Standards documents, such as the Common Core State Standards for Mathematics and "Principles and Standards for School Mathematics", expect teachers to foster mathematics learning by engaging students in meaningful mathematical discourse to expose students to different ways of thinking about and solving problems and positively influence their…

  18. The Use of Applets for Developing Understanding in Mathematics: A Case Study Using Maplets for Calculus with Continuity Concepts

    ERIC Educational Resources Information Center

    Patenaude, Raymond E.

    2013-01-01

    The Common Core State Standards for Mathematics (CCSSM) are founded on a long history of mathematics education research emphasizing the importance of teaching mathematics for understanding. The CCSSM along with the National Council of Teachers of Mathematics (NCTM) recommend the use of technology in the teaching of mathematics. New mobile…

  19. Math in Common. Taking Stock of Common Core Math Implementation: Supporting Teachers to Shift Instruction. Insights from the Math in Common 2015 Baseline Survey of Teachers and Administrators. Formative Evaluation Cycle Report for the Math in Common Initiative: Volume 3

    ERIC Educational Resources Information Center

    Perry, Rebecca R.; Finkelstein, Neal D.; Seago, Nanette; Heredia, Alberto; Sobolew-Shubin, Sandy; Carroll, Cathy

    2015-01-01

    Math in Common® (MiC) is a five-year initiative that supports a formal network of 10 California school districts as they implement the Common Core State Standards in Mathematics (CCSS-M) across grades K-8. In spring 2015, WestEd administered surveys to understand the perspectives on Common Core State Standards-Mathematics (CCSS-M) implementation…

  20. Children thinking mathematically beyond authoritative identities

    NASA Astrophysics Data System (ADS)

    MacMillan, Agnes

    1995-10-01

    A study into the mathematics-related interactions and developing attitudes of young children during the transition period between pre-school and school is reported. Transcripts of interactions during a six-week observation period in one of two preschool sites are coded according to the classifications defined within a theoretical framework. Two separate episodes of construction play were analysed and one of these is used to examine the mathematical nature of the children's interactions within an emerging model of autonomous learning. The results of the analysis indicate that access to self-regulatory social relations is very closely linked to the accessibility of mathematical meanings.

  1. Preserving Pelicans with Models That Make Sense

    ERIC Educational Resources Information Center

    Moore, Tamara J.; Doerr, Helen M.; Glancy, Aran W.; Ntow, Forster D.

    2015-01-01

    Getting students to think deeply about mathematical concepts is not an easy job, which is why we often use problem-solving tasks to engage students in higher-level mathematical thinking. Mathematical modeling, one of the mathematical practices found in the Common Core State Standards for Mathematics (CCSSM), is a type of problem solving that can…

  2. Leaning on Mathematical Habits of Mind

    ERIC Educational Resources Information Center

    Sword, Sarah; Matsuura, Ryota; Cuoco, Al; Kang, Jane; Gates, Miriam

    2018-01-01

    Mathematical modeling has taken on increasing curricular importance in the past decade due in no small measure to the Common Core State Standards in Mathematics (CCSSM) identifying modeling as one of the Standards for Mathematical Practice (SMP 4, CCSSI 2010, p. 7). Although researchers have worked on mathematical modeling (Lesh and Doerr 2003;…

  3. Examining Validity of Sources of Mathematics Self-Efficacy Scale in Turkey

    ERIC Educational Resources Information Center

    Kandemir, Mehmet Ali; Akbas-Perkmen, Rahile

    2017-01-01

    The main purpose of the current study is to examine the construct, convergent and discriminant validity of the Sources of Mathematics Self-Efficacy Scale (Usher & Pajares, 2009) in a Turkish sample. Bandura's Social Cognitive Theory (1986) served as the theoretical framework for the current study. According to Bandura (1986), people's…

  4. Teachers' Professional Practice Conducting Mathematical Discussions

    ERIC Educational Resources Information Center

    da Ponte, João Pedro; Quaresma, Marisa

    2016-01-01

    This paper seeks to identify actions that can be regarded as building elements of teachers' classroom practice in mathematical discussion and how these actions may be combined to provide fruitful learning opportunities for students. It stands on a framework that focuses on two key elements of teaching practice: the tasks that teachers propose to…

  5. Tracking Effects Depend on Tracking Type: An International Comparison of Students' Mathematics Self-Concept

    ERIC Educational Resources Information Center

    Chmielewski, Anna K.; Dumont, Hanna; Trautwein, Ulrich

    2013-01-01

    The aim of the present study was to examine how different types of tracking--between-school streaming, within-school streaming, and course-by-course tracking--shape students' mathematics self-concept. This was done in an internationally comparative framework using data from the Programme for International Student Assessment (PISA). After…

  6. Negotiating Meaning: A Case of Teachers Discussing Mathematical Abstraction in the Blogosphere

    ERIC Educational Resources Information Center

    Larsen, Judy

    2016-01-01

    Many mathematics teachers engage in the practice of blogging. Although they are separated geographically, they are able to discuss teaching-related issues. In an effort to better understand the nature of these discussions, this paper presents an analysis of one particular episode of such a discussion. Wenger's theoretical framework of communities…

  7. Responding to Children's Mathematical Thinking in the Moment: An Emerging Framework of Teaching Moves

    ERIC Educational Resources Information Center

    Jacobs, Victoria R.; Empson, Susan B.

    2016-01-01

    This case study contributes to efforts to characterize teaching that is responsive to children's mathematical thinking. We conceptualize "responsive teaching" as a type of teaching in which teachers' instructional decisions about what to pursue and how to pursue it are continually adjusted during instruction in response to children's…

  8. The New Technologies in Mathematics: A Personal History of 30 Years

    ERIC Educational Resources Information Center

    de la Villa, Agustín; García, Alfonsa; García, Francisco; Rodríguez, Gerardo

    2017-01-01

    A personal overview about the use of new technologies for teaching and learning mathematics is given in this paper. We analyse the introduction of Computer Algebra Systems with learning purposes, reviewing different frameworks and didactical resources, some of them generated according the philosophy of the European Area of Higher Education.…

  9. A Living Metaphor of Differentiation: A Meta-Ethnography of Cognitively Guided Instruction in the Elementary Classroom

    ERIC Educational Resources Information Center

    Baker, Katherine; Harter, Meghan Evelynne

    2015-01-01

    This meta-ethnography explores qualitative studies around the Cognitively Guided Instruction (CGI) framework of mathematics and illustrates how CGI epitomizes differentiation. The meta-ethnographic process is used to synthesize CGI as differentiation, specifically within the elementary mathematics classroom. Thomas P. Carpenter is credited as one…

  10. Programming-Languages as a Conceptual Framework for Teaching Mathematics

    ERIC Educational Resources Information Center

    Feurzeig, Wallace; Papert, Seymour A.

    2011-01-01

    Formal mathematical methods remain, for most high school students, mysterious, artificial and not a part of their regular intuitive thinking. The authors develop some themes that could lead to a radically new approach. According to this thesis, the teaching of programming languages as a regular part of academic progress can contribute effectively…

  11. TIMSS 2015 Assessment Frameworks

    ERIC Educational Resources Information Center

    Mullis, Ina V. S., Ed.; Martin, Michael O., Ed.

    2013-01-01

    Now entering into its 20th year of data collection, Trends in International Mathematics and Science Study, (TIMSS) is an international assessment of mathematics and science at the fourth and eighth grades. TIMSS 2015 is the most recent in the TIMSS series, which began with the first assessments in 1995 and has continued every four years--1999,…

  12. Initial Understandings of Fraction Concepts Evidenced by Students with Mathematics Learning Disabilities and Difficulties: A Framework

    ERIC Educational Resources Information Center

    Hunt, Jessica H.; Welch-Ptak, Jasmine J.; Silva, Juanita M.

    2016-01-01

    Documenting how students with learning disabilities (LD) initially conceive of fractional quantities, and how their understandings may align with or differ from students with mathematics difficulties, is necessary to guide development of assessments and interventions that attach to unique ways of thinking or inherent difficulties these students…

  13. Meanings at Hand: Coordinating Semiotic Resources in Explaining Mathematical Terms in Classroom Discourse

    ERIC Educational Resources Information Center

    Heller, Vivien

    2016-01-01

    The article examines how diverse semiotic resources are made available for explaining mathematical terms in a fifth-grade classroom. Situated within the methodological framework developed by conversation analysis and the analysis of embodiment-in-interaction, the study deals with two instances of a classroom episode in each of which participants…

  14. Characterizing Instructor Gestures in a Lecture in a Proof-Based Mathematics Class

    ERIC Educational Resources Information Center

    Weinberg, Aaron; Fukawa-Connelly, Tim; Wiesner, Emilie

    2015-01-01

    Researchers have increasingly focused on how gestures in mathematics aid in thinking and communication. This paper builds on Arzarello's (2006) idea of a "semiotic bundle" and several frameworks for describing individual gestures and applies these ideas to a case study of an instructor's gestures in an undergraduate abstract algebra…

  15. Self-Determination Theory and Middle School Mathematics Teachers: Understanding the Motivation to Attain Professional Development

    ERIC Educational Resources Information Center

    Crawford, Amy K.

    2017-01-01

    The purpose of this phenomenological research study was to use Self-Determination Theory as a framework to analyze middle school mathematics teachers' motivation to attain effective professional development concerning Ohio's Learning Standards as well as other instructional aspects that affect the classroom. Teachers are exceptionally busy meeting…

  16. The Characterization of Cognitive Processes Involved in Chemical Kinetics Using a Blended Processing Framework

    ERIC Educational Resources Information Center

    Bain, Kinsey; Rodriguez, Jon-Marc G.; Moon, Alena; Towns, Marcy H.

    2018-01-01

    Chemical kinetics is a highly quantitative content area that involves the use of multiple mathematical representations to model processes and is a context that is under-investigated in the literature. This qualitative study explored undergraduate student integration of chemistry and mathematics during problem solving in the context of chemical…

  17. Identity as a Nexus of Affect and Discourse in Mathematical Learning

    ERIC Educational Resources Information Center

    Heyd-Metzuyanim, Einhat

    2017-01-01

    This theoretical paper suggests identity as a nexus of research on affect and discourse in mathematical learning. It broadens Sfard and Prusak's (2005) discursive definition of identity by building on an analytical framework that examines positioning of students at three levels: the objects described, the interactions achieved, and the alignment…

  18. Investigating the Knowledge Needed for Teaching Mathematics: An Exploratory Validation Study Focusing on Teaching Practices

    ERIC Educational Resources Information Center

    Charalambous, Charalambos Y.

    2016-01-01

    Central in the frameworks proposed to capture the knowledge needed for teaching mathematics is the assumption that teachers need more than pure subject-matter knowledge. Validation studies exploring this assumption by recruiting contrasting populations are relatively scarce. Drawing on a sample of 644 Greek-Cypriots preservice and inservice…

  19. Quality Teaching Rounds in Mathematics Teacher Education

    ERIC Educational Resources Information Center

    Prieto, Elena; Howley, Peter; Holmes, Kathryn; Osborn, Judy-anne; Roberts, Malcolm; Kepert, Andrew

    2015-01-01

    The purpose of the study reported in this paper is to evaluate the effectiveness of an implementation of teaching rounds as a practice-based approach to pre-service teacher education in mathematics. The teaching rounds implemented in the study utilised the NSW Quality Teaching model pedagogical framework as a tool for learning about and reflecting…

  20. Elementary Teachers' Learning to Construct High-Quality Mathematics Lesson Plans: A Use of the IES Recommendations

    ERIC Educational Resources Information Center

    Ding, Meixia; Carlson, Mary Alice

    2013-01-01

    This study explored a group of elementary teachers' ("n" = 35) learning to construct high-quality lesson plans that foster student understanding of fundamental mathematical ideas. The conceptual framework for this study was gleaned from the recently released Institute of Education Sciences (IES) recommendations, including (a)…

  1. Mathematics Content Standards Benchmarks and Performance Standards

    ERIC Educational Resources Information Center

    New Mexico Public Education Department, 2008

    2008-01-01

    New Mexico Mathematics Content Standards, Benchmarks, and Performance Standards identify what students should know and be able to do across all grade levels, forming a spiraling framework in the sense that many skills, once introduced, develop over time. While the Performance Standards are set forth at grade-specific levels, they do not exist as…

  2. Increasing Students' Involvement in Technology-Supported Mathematics Lesson Sequences

    ERIC Educational Resources Information Center

    Prodromou, Theodosia; Lavicza, Zsolt; Koren, Balazs

    2015-01-01

    This article aims to report on a pilot or proof of concept study with experienced Hungarian teachers who introduced mathematical concepts through a sequence of lessons utilising a pedagogical framework (Lavicza, Hohenwarter, Jones, Lu and Dawes, 2009a and Lavicza, Hohenwarter and Lu 2009b) for general technology integration. Our aim was to examine…

  3. Teaching Mathematics Vocabulary with an Interactive Signing Math Dictionary

    ERIC Educational Resources Information Center

    Vesel, Judy; Robillard, Tara

    2013-01-01

    State frameworks and national standards are explicit about the mathematics content that students must master at each grade level. Although the Individuals with Disabilities Education Act and the No Child Left Behind Act mandate that students who are deaf or hard of hearing and communicate in sign language have access to this content, evidence…

  4. Developing Prospective Elementary Teachers' Abilities to Identify Evidence of Student Mathematical Achievement

    ERIC Educational Resources Information Center

    Spitzer, Sandy M.; Phelps, Christine M.; Beyers, James E. R.; Johnson, Delayne Y.; Sieminski, Elizabeth M.

    2011-01-01

    This study investigated the effects of a classroom intervention on prospective elementary teachers' ability to evaluate evidence of student achievement of mathematical learning goals. The intervention was informed by a framework for teacher education which aims to provide prospective teachers (PTs) with the skills needed to systematically learn…

  5. The Social Construction of Authority among Peers and Its Implications for Collaborative Mathematics Problem Solving

    ERIC Educational Resources Information Center

    Langer-Osuna, Jennifer M.

    2016-01-01

    This article describes a study of how students construct relations of authority during dyadic mathematical work and how teachers' interactions with students during small group conferences affect subsequent student dynamics. Drawing on the influence framework (Engle, Langer-Osuna, & McKinney de Royston, 2014), I examined interactions when…

  6. Accommodation in the Formal World of Mathematical Thinking

    ERIC Educational Resources Information Center

    Stewart, Sepideh; Schmidt, Ralf

    2017-01-01

    In this study, we examined a mathematician and one of his students' teaching journals and thought processes concurrently as the class was moving towards the proof of the Fundamental Theorem of Galois Theory. We employed Tall's framework of three worlds of mathematical thinking as well as Piaget's notion of accommodation to theoretically study the…

  7. Epistemic Schemes and Epistemic States. a Study of Mathematics Convincement in Elementary School Classes

    ERIC Educational Resources Information Center

    Rigo-Lemini, Mirela

    2013-01-01

    The paper introduces an interpretative framework that contains a characterization of "epistemic schemes" (constructs that are used to explain how class agents themselves are able to gain convincement in or promote convincement of mathematical statements) and "epistemic states" (a person's internal states, such as…

  8. Science, technology, engineering, mathematics (STEM) as mathematics learning approach in 21st century

    NASA Astrophysics Data System (ADS)

    Milaturrahmah, Naila; Mardiyana, Pramudya, Ikrar

    2017-08-01

    This 21st century demands competent human resources in science, technology, engineering design and mathematics so that education is expected to integrate the four disciplines. This paper aims to describe the importance of STEM as mathematics learning approach in Indonesia in the 21st century. This paper uses a descriptive analysis research method, and the method reveals that STEM education growing in developed countries today can be a framework for innovation mathematics in Indonesia in the 21st century. STEM education integrate understanding of science, math skills, and the available technology with the ability to perform engineering design process. Implementation of mathematics learning with STEM approach makes graduates trained in using of mathematics knowledge that they have to create innovative products that are able to solve the problems that exist in society.

  9. A Computational Framework for Bioimaging Simulation.

    PubMed

    Watabe, Masaki; Arjunan, Satya N V; Fukushima, Seiya; Iwamoto, Kazunari; Kozuka, Jun; Matsuoka, Satomi; Shindo, Yuki; Ueda, Masahiro; Takahashi, Koichi

    2015-01-01

    Using bioimaging technology, biologists have attempted to identify and document analytical interpretations that underlie biological phenomena in biological cells. Theoretical biology aims at distilling those interpretations into knowledge in the mathematical form of biochemical reaction networks and understanding how higher level functions emerge from the combined action of biomolecules. However, there still remain formidable challenges in bridging the gap between bioimaging and mathematical modeling. Generally, measurements using fluorescence microscopy systems are influenced by systematic effects that arise from stochastic nature of biological cells, the imaging apparatus, and optical physics. Such systematic effects are always present in all bioimaging systems and hinder quantitative comparison between the cell model and bioimages. Computational tools for such a comparison are still unavailable. Thus, in this work, we present a computational framework for handling the parameters of the cell models and the optical physics governing bioimaging systems. Simulation using this framework can generate digital images of cell simulation results after accounting for the systematic effects. We then demonstrate that such a framework enables comparison at the level of photon-counting units.

  10. STEM Gives Meaning to Mathematics

    ERIC Educational Resources Information Center

    Hefty, Lukas J.

    2015-01-01

    The National Council of Teachers of Mathematics' (NCTM's) "Principles and Standards for School Mathematics" (2000) outlines fi ve Process Standards that are essential for developing deep understanding of mathematics: (1) Problem Solving; (2) Reasoning and Proof; (3) Communication; (4) Connections; and (5) Representation. The Common Core…

  11. Professional Noticing: Developing Responsive Mathematics Teaching

    ERIC Educational Resources Information Center

    Thomas, Jonathan N.; Eisenhardt, Sara; Fisher, Molly H.; Schack, Edna O.; Tassell, Janet; Yoder, Margaret

    2014-01-01

    Thoughtful implementation of the Common Core State Standards for Mathematics (CCSSM) (CCSSI 2010) presents an opportunity for increased emphasis on the development of mathematical understanding among students. Granted, ascertaining the mathematical understanding of an individual student is highly complex work and often exceedingly difficult.…

  12. A Parallel Framework with Block Matrices of a Discrete Fourier Transform for Vector-Valued Discrete-Time Signals.

    PubMed

    Soto-Quiros, Pablo

    2015-01-01

    This paper presents a parallel implementation of a kind of discrete Fourier transform (DFT): the vector-valued DFT. The vector-valued DFT is a novel tool to analyze the spectra of vector-valued discrete-time signals. This parallel implementation is developed in terms of a mathematical framework with a set of block matrix operations. These block matrix operations contribute to analysis, design, and implementation of parallel algorithms in multicore processors. In this work, an implementation and experimental investigation of the mathematical framework are performed using MATLAB with the Parallel Computing Toolbox. We found that there is advantage to use multicore processors and a parallel computing environment to minimize the high execution time. Additionally, speedup increases when the number of logical processors and length of the signal increase.

  13. Optimal moment determination in POME-copula based hydrometeorological dependence modelling

    NASA Astrophysics Data System (ADS)

    Liu, Dengfeng; Wang, Dong; Singh, Vijay P.; Wang, Yuankun; Wu, Jichun; Wang, Lachun; Zou, Xinqing; Chen, Yuanfang; Chen, Xi

    2017-07-01

    Copula has been commonly applied in multivariate modelling in various fields where marginal distribution inference is a key element. To develop a flexible, unbiased mathematical inference framework in hydrometeorological multivariate applications, the principle of maximum entropy (POME) is being increasingly coupled with copula. However, in previous POME-based studies, determination of optimal moment constraints has generally not been considered. The main contribution of this study is the determination of optimal moments for POME for developing a coupled optimal moment-POME-copula framework to model hydrometeorological multivariate events. In this framework, margins (marginals, or marginal distributions) are derived with the use of POME, subject to optimal moment constraints. Then, various candidate copulas are constructed according to the derived margins, and finally the most probable one is determined, based on goodness-of-fit statistics. This optimal moment-POME-copula framework is applied to model the dependence patterns of three types of hydrometeorological events: (i) single-site streamflow-water level; (ii) multi-site streamflow; and (iii) multi-site precipitation, with data collected from Yichang and Hankou in the Yangtze River basin, China. Results indicate that the optimal-moment POME is more accurate in margin fitting and the corresponding copulas reflect a good statistical performance in correlation simulation. Also, the derived copulas, capturing more patterns which traditional correlation coefficients cannot reflect, provide an efficient way in other applied scenarios concerning hydrometeorological multivariate modelling.

  14. When to Renew Software Licences at HPC Centres? A Mathematical Analysis

    NASA Astrophysics Data System (ADS)

    Baolai, Ge; MacIsaac, Allan B.

    2010-11-01

    In this paper we study a common problem faced by many high performance computing (HPC) centres: When and how to renew commercial software licences. Software vendors often sell perpetual licences along with forward update and support contracts at an additional, annual cost. Every year or so, software support personnel and the budget units of HPC centres are required to make the decision of whether or not to renew such support, and usually such decisions are made intuitively. The total cost for a continuing support contract can, however, be costly. One might therefore want a rational answer to the question of whether the option for a renewal should be exercised and when. In an attempt to study this problem within a market framework, we present the mathematical problem derived for the day to day operation of a hypothetical HPC centre that charges for the use of software packages. In the mathematical model, we assume that the uncertainty comes from the demand, number of users using the packages, as well as the price. Further we assume the availability of up to date software versions may also affect the demand. We develop a renewal strategy that aims to maximize the expected profit from the use the software under consideration. The derived problem involves a decision tree, which constitutes a numerical procedure that can be processed in parallel.

  15. Stability analysis of host dynamics for hiv

    NASA Astrophysics Data System (ADS)

    Geetha, V.; Balamuralitharan, S.

    2018-04-01

    The phenomenon of disease modeling can be easily accomplished through mathematical framework. In this paper the transmission of disease in human is represented mathematically as a nonlinear system. We think about the components of the Human Immunodeficiency Virus (HIV) among the beginning periods of illness. Throughout this paper we have determined those logical representation of a three-compartmental HIV demonstrate for their stability evaluation. We tend to likewise explore the stimulating behavior of the model and acquire those Steady states for the disease-free and the endemic agreement. The framework can be evaluated by reproduction number R0. We additionally clarify the numerical recreation and their outcomes.

  16. Entering into dialogue about the mathematical value of contextual mathematising tasks

    NASA Astrophysics Data System (ADS)

    Yoon, Caroline; Chin, Sze Looi; Moala, John Griffith; Choy, Ban Heng

    2018-03-01

    Our project seeks to draw attention to the rich mathematical thinking that is generated when students work on contextual mathematising tasks. We use a design-based research approach to create ways of reporting that raise the visibility of this rich mathematical thinking while retaining and respecting its complexity. These reports will be aimed for three classroom stakeholders: (1) students, who wish to reflect on and enhance their mathematical learning; (2) teachers, who wish to integrate contextual mathematising tasks into their teaching practice and (3) researchers, who seek rich tasks for generating observable instances of mathematical thinking and learning. We anticipate that these reports and the underlying theoretical framework for creating them will contribute to greater awareness of and appreciation for the mathematical value of contextual mathematising tasks in learning, teaching and research.

  17. Establishing an Explanatory Model for Mathematics Identity.

    PubMed

    Cribbs, Jennifer D; Hazari, Zahra; Sonnert, Gerhard; Sadler, Philip M

    2015-04-01

    This article empirically tests a previously developed theoretical framework for mathematics identity based on students' beliefs. The study employs data from more than 9,000 college calculus students across the United States to build a robust structural equation model. While it is generally thought that students' beliefs about their own competence in mathematics directly impact their identity as a "math person," findings indicate that students' self-perceptions related to competence and performance have an indirect effect on their mathematics identity, primarily by association with students' interest and external recognition in mathematics. Thus, the model indicates that students' competence and performance beliefs are not sufficient for their mathematics identity development, and it highlights the roles of interest and recognition. © 2015 The Authors. Child Development © 2015 Society for Research in Child Development, Inc.

  18. Integrated Pest Management in a Predator-Prey System with Allee Effects.

    PubMed

    Costa, M I S; dos Anjos, L

    2015-08-01

    A commonly used biocontrol strategy to control invasive pests with Allee effects consists of the deliberate introduction of natural enemies. To enhance the effectiveness of this strategy, several tactics of control of invasive species (e.g., mass-trapping, manual removal of individuals, and pesticide spraying) are combined so as to impair pest outbreaks. This combination of strategies to control pest species dynamics are usually named integrated pest management (IPM). In this work, we devise a predator-prey dynamical model in order to assess the influence of the intensity of chemical killing on the success of an IPM. The biological and mathematical framework presented in this study can also be analyzed in the light of species conservation and food web dynamics theory.

  19. The dynamics of hydroponic crops for simulation studies of the CELSS initial reference configurations

    NASA Technical Reports Server (NTRS)

    Volk, Tyler

    1992-01-01

    The goal of this research is to develop a progressive series of mathematical models for the CELSS hydroponic crops. These models will systematize the experimental findings from the crop researchers in the CELSS Program into a form useful to investigate system-level considerations, for example, dynamic studies of the CELSS Initial Reference Configurations. The crop models will organize data from different crops into a common modeling framework. This is the fifth semiannual report for this project. The following topics are discussed: (1) use of field crop models to explore phasic control of CELSS crops for optimizing yield; (2) seminar presented at Purdue CELSS NSCORT; and (3) paper submitted on analysis of bioprocessing of inedible plant materials.

  20. Oki-Doku: Number Puzzles

    ERIC Educational Resources Information Center

    Gomez, Cristina; Novak, Dani

    2014-01-01

    The Common Core State Standards for Mathematics (CCSSM) (CCSSI 2010) emphasize the Standards for Mathematical Practice (SMP) that describe processes and proficiencies included in the NCTM Process Standards (NCTM 2000) and in the Strands for Mathematical Proficiency (NRC 2001). The development of these mathematical practices should happen in…

  1. Modeling of processing technologies in food industry

    NASA Astrophysics Data System (ADS)

    Korotkov, V. G.; Sagitov, R. F.; Popov, V. P.; Bachirov, V. D.; Akhmadieva, Z. R.; TSirkaeva, E. A.

    2018-03-01

    Currently, the society is facing an urgent need to solve the problems of nutrition (products with increased nutrition value) and to develop energy-saving technologies for food products. A mathematical modeling of heat and mass transfer of polymer materials in the extruder is rather successful these days. Mathematical description of movement and heat exchange during extrusion of gluten-protein-starch-containing material similar to pasta dough in its structure, were taken as a framework for the mathematical model presented in this paper.

  2. Increasing Mathematics and Science Achievement for Culturally Diverse Students through Teaching Training

    NASA Technical Reports Server (NTRS)

    Mahon, Lee

    1997-01-01

    The purpose of this proposal was to field test and evaluate a Teacher Training program that would prepare teachers to increase the motivation and achievement of culturally diverse students in the areas of science and mathematics. Designed as a three year program, this report covers the first two years of the training program at the Ronald McNair School in the Ravenswood School district, using the resources of the NASA Ames Research Center and the California Framework for Mathematics and Science.

  3. Developing a Theoretical Framework to Inform the Design of a Teacher Professional Development Program to Enable Foundation to Year 2 Teachers of Mathematics to Build on Indigenous and Low-SES Students' Cultural Capital

    ERIC Educational Resources Information Center

    Anderson, Robyn; Stütz, Alexander; Cooper, Tom; Nason, Rod

    2017-01-01

    This paper reports on the early stages of the conceptualisation and implementation of the Accelerated Inclusive Mathematics-Early Understandings (AIM EU) project, a project whose major goals are to advance theory and practice in the improvement of Foundation to Year 2 (F-2) teachers' capacity to teach mathematics and through this to enhance F-2…

  4. Exploring Yellowstone National Park with Mathematical Modeling

    ERIC Educational Resources Information Center

    Wickstrom, Megan H.; Carr, Ruth; Lackey, Dacia

    2017-01-01

    Mathematical modeling, a practice standard in the Common Core State Standards for Mathematics (CCSSM) (CCSSI 2010), is a process by which students develop and use mathematics as a tool to make sense of the world around them. Students investigate a real-world situation by asking mathematical questions; along the way, they need to decide how to use…

  5. A Cognitive Analysis of Students’ Mathematical Problem Solving Ability on Geometry

    NASA Astrophysics Data System (ADS)

    Rusyda, N. A.; Kusnandi, K.; Suhendra, S.

    2017-09-01

    The purpose of this research is to analyze of mathematical problem solving ability of students in one of secondary school on geometry. This research was conducted by using quantitative approach with descriptive method. Population in this research was all students of that school and the sample was twenty five students that was chosen by purposive sampling technique. Data of mathematical problem solving were collected through essay test. The results showed the percentage of achievement of mathematical problem solving indicators of students were: 1) solve closed mathematical problems with context in math was 50%; 2) solve the closed mathematical problems with the context beyond mathematics was 24%; 3) solving open mathematical problems with contexts in mathematics was 35%; And 4) solving open mathematical problems with contexts outside mathematics was 44%. Based on the percentage, it can be concluded that the level of achievement of mathematical problem solving ability in geometry still low. This is because students are not used to solving problems that measure mathematical problem solving ability, weaknesses remember previous knowledge, and lack of problem solving framework. So the students’ ability of mathematical problems solving need to be improved with implement appropriate learning strategy.

  6. Rule-based graph theory to enable exploration of the space system architecture design space

    NASA Astrophysics Data System (ADS)

    Arney, Dale Curtis

    The primary goal of this research is to improve upon system architecture modeling in order to enable the exploration of design space options. A system architecture is the description of the functional and physical allocation of elements and the relationships, interactions, and interfaces between those elements necessary to satisfy a set of constraints and requirements. The functional allocation defines the functions that each system (element) performs, and the physical allocation defines the systems required to meet those functions. Trading the functionality between systems leads to the architecture-level design space that is available to the system architect. The research presents a methodology that enables the modeling of complex space system architectures using a mathematical framework. To accomplish the goal of improved architecture modeling, the framework meets five goals: technical credibility, adaptability, flexibility, intuitiveness, and exhaustiveness. The framework is technically credible, in that it produces an accurate and complete representation of the system architecture under consideration. The framework is adaptable, in that it provides the ability to create user-specified locations, steady states, and functions. The framework is flexible, in that it allows the user to model system architectures to multiple destinations without changing the underlying framework. The framework is intuitive for user input while still creating a comprehensive mathematical representation that maintains the necessary information to completely model complex system architectures. Finally, the framework is exhaustive, in that it provides the ability to explore the entire system architecture design space. After an extensive search of the literature, graph theory presents a valuable mechanism for representing the flow of information or vehicles within a simple mathematical framework. Graph theory has been used in developing mathematical models of many transportation and network flow problems in the past, where nodes represent physical locations and edges represent the means by which information or vehicles travel between those locations. In space system architecting, expressing the physical locations (low-Earth orbit, low-lunar orbit, etc.) and steady states (interplanetary trajectory) as nodes and the different means of moving between the nodes (propulsive maneuvers, etc.) as edges formulates a mathematical representation of this design space. The selection of a given system architecture using graph theory entails defining the paths that the systems take through the space system architecture graph. A path through the graph is defined as a list of edges that are traversed, which in turn defines functions performed by the system. A structure to compactly represent this information is a matrix, called the system map, in which the column indices are associated with the systems that exist and row indices are associated with the edges, or functions, to which each system has access. Several contributions have been added to the state of the art in space system architecture analysis. The framework adds the capability to rapidly explore the design space without the need to limit trade options or the need for user interaction during the exploration process. The unique mathematical representation of a system architecture, through the use of the adjacency, incidence, and system map matrices, enables automated design space exploration using stochastic optimization processes. The innovative rule-based graph traversal algorithm ensures functional feasibility of each system architecture that is analyzed, and the automatic generation of the system hierarchy eliminates the need for the user to manually determine the relationships between systems during or before the design space exploration process. Finally, the rapid evaluation of system architectures for various mission types enables analysis of the system architecture design space for multiple destinations within an evolutionary exploration program. (Abstract shortened by UMI.).

  7. Empowering Mathematical Practices

    ERIC Educational Resources Information Center

    Coomes, Jacqueline; Lee, Hyung Sook

    2017-01-01

    Mathematics teachers want to empower students as mathematical thinkers and doers (NCTM 2000). Specific ways of thinking and doing mathematics were described in the Process Standards (NCTM 2000); they were further characterized as habits of mind (Mark, Goldenberg, and Sword 2010); and more recently, they were detailed in the Common Core's Standards…

  8. Mathematics and General Education. Stirling Seminar Papers No. 2.

    ERIC Educational Resources Information Center

    Ruthven, Kenneth

    1979-01-01

    Despite the development of a common mathematics course, and the raising of the school leaving age, Scotland's mathematics curriculum is still designed for specialization. A general education perspective suggests that the curriculum should enable students to relate mathematics to everyday life (f=fiche number). (Author/CP)

  9. Technology Focus: Enhancing Conceptual Knowledge of Linear Programming with a Flash Tool

    ERIC Educational Resources Information Center

    Garofalo, Joe; Cory, Beth

    2007-01-01

    Mathematical knowledge can be categorized in different ways. One commonly used way is to distinguish between procedural mathematical knowledge and conceptual mathematical knowledge. Procedural knowledge of mathematics refers to formal language, symbols, algorithms, and rules. Conceptual knowledge is essential for meaningful understanding of…

  10. Early Mathematics Fluency with CCSSM

    ERIC Educational Resources Information Center

    Matney, Gabriel T.

    2014-01-01

    To develop second-grade students' confidence and ease, this author presents examples of learning tasks (Number of the Day, Word Problem Solving, and Modeling New Mathematical Ideas) that align with Common Core State Standards for Mathematics and that build mathematical fluency to promote students' creative expression of mathematical…

  11. Equity and Access: All Students Are Mathematical Problem Solvers

    ERIC Educational Resources Information Center

    Franz, Dana Pompkyl; Ivy, Jessica; McKissick, Bethany R.

    2016-01-01

    Often mathematical instruction for students with disabilities, especially those with learning disabilities, includes an overabundance of instruction on mathematical computation and does not include high-quality instruction on mathematical reasoning and problem solving. In fact, it is a common misconception that students with learning disabilities…

  12. Listening to their voices: Exploring mathematics-science identity development of African American males in an urban school community

    NASA Astrophysics Data System (ADS)

    Wilson, Kimi Leemar

    National data continues to show an underrepresentation of African American males pursuing science, technology, engineering and mathematics (STEM) majors, careers and professions in the United States. Whites and Asian Americans are continuously positioned as the face of STEM education and participation. And while research has provided ways to support mathematics and science learning for African American males, there still remains a gap in understanding how their formed mathematics-science identities in K-12 public schooling influences STEM participation. The research undertaken in this study explores this gap, and uses an integrative identity framework to understand mathematics-science identity development which goes beyond personal identity, and explores the relational, collective and material components of identity. Specifically, this research seeks to answer the following research questions: What are the shared lived experiences that exist between a group of African American male students developing a mathematics-science identity, and how these shared lived experiences shape their mathematics-science identity development? Therefore, by analyzing African American males lived experiences employing an integrative identity framework fosters a greater understanding of how mathematics-science identity is formed in K-12 public schools, which impacts STEM education and participation. The high school aged youth featured in this study consist of four African American males, who live in a moderate size city in California. Data for this study consists of observations, phenomenological interviews, and policy document analysis that took place over six months. Data has been analyzed to describe and interpret the young men's mathematics and science experiences, as revealed in their K-12 public school education. This inquiry sought to make meaning of how African American males experience mathematics and science teaching and learning within K-12 public schooling and how these experiences impact mathematics-science identity development. The goal of the study seeks to inform educational, psychological and sociological theory about how urban adolescent African American males understand, develop and make use of their mathematics and science knowledge. Finally, this work seeks to inform mathematics and science educational research to include identity theory, beyond a personal or individual identity perspective, but also to include relational, collective, and material identity components to understand how the culture of mathematics and science within and outside of K-12 public schooling impacts African American males in an endeavor to become learners of mathematics and science.

  13. Problem Solving in Physics: Undergraduates' Framing, Procedures, and Decision Making

    NASA Astrophysics Data System (ADS)

    Modir, Bahar

    In this dissertation I will start with the broad research question of what does problem solving in upper division physics look like? My focus in this study is on students' problem solving in physics theory courses. Some mathematical formalisms are common across all physics core courses such as using the process of separation of variables, doing Taylor series, or using the orthogonality properties of mathematical functions to set terms equal to zero. However, there are slight differences in their use of these mathematical formalisms across different courses, possibly because of how students map different physical systems to these processes. Thus, my first main research question aims to answer how students perform these recurring processes across upper division physics courses. I break this broad question into three particular research questions: What knowledge pieces do students use to make connections between physics and procedural math? How do students use their knowledge pieces coherently to provide reasoning strategies in estimation problems? How do students look ahead into the problem to read the information out of the physical scenario to align their use of math in physics? Building on the previous body of the literature, I will use the theory family of Knowledge in Pieces and provide evidence to expand this theoretical foundation. I will compare my study with previous studies and provide suggestions on how to generalize these theory expansions for future use. My experimental data mostly come from video-based classroom data. Students in groups of 2-4 students solve in-class problems in quantum mechanics and electromagnetic fields 1 courses collaboratively. In addition, I will analyze clinical interviews to demonstrate how a single case study student plays an epistemic game to estimate the total energy in a hurricane. My second research question is more focused on a particular instructional context. How do students frame problem solving in quantum mechanics? I will lay out a new theoretical framework based in epistemic framing that separates the problem solving space into four frames divided along two axes. The first axis models students' framing in math and physics, expanded through the second axis of conceptual problem solving and algorithmic problem solving. I use this framework to show how students navigate problem solving. Lastly, I will use this developed framework to interpret existing difficulties in quantum mechanics.

  14. Mathematics-for-Teaching: What Can Be Learned from the Ethnopoetics of Teachers' Stories?

    ERIC Educational Resources Information Center

    Oslund, Joy A.

    2012-01-01

    The purpose of this article is to consider what methods from ethnopoetics--a field at the intersection of linguistics and anthropology--may add to narrative inquiry in mathematics education. I build a theoretical framework to argue for the use of narrative inquiry and ethnopoetics in studies of teacher knowledge. I report ethnopoetic analyses of…

  15. Studying Challenges in Integrating Technology in Secondary Mathematics with Technological Pedagogical and Content Knowledge (TPACK)

    ERIC Educational Resources Information Center

    Stoilescu, Dorian

    2014-01-01

    This paper describes challenges encountered by two secondary mathematics teachers when they try to integrate ICT devices in their classes. These findings are based on using the Technological Pedagogical and Content Knowledge (TPACK) context, the four dimension framework developed by Niess: 1) overarching conceptions of integrating ICT, 2)…

  16. Analysis the Competences and Contents of "Mathematics and Environmental Exploration" Subject Syllabus for Preparatory Grade

    ERIC Educational Resources Information Center

    Dulama, Maria Eliza; Magda?, Ioana

    2014-01-01

    In this paper, we analyze some aspects related to "Mathematics and Environmental Exploration" subject syllabus for preparatory grade approved by Minister of National Education of Romania. The analysis aim the place of the subject syllabus into the Framework Plan; the syllabus structure and the argumentation of studying this subject; the…

  17. Challenges in Mathematics and Statistics Teaching Underpinned by Student-Lecturer Expectations

    ERIC Educational Resources Information Center

    Parashar, Deepak

    2014-01-01

    This study is motivated by the desire to address some of the enormous challenges faced by the students as well as the lecturer in fulfilling their respective expectations and duties demanded by the process of learning--teaching of mathematics and statistics within the framework of the constraining schedules laid down by the academic institutions…

  18. Young-Age Gender Differences in Mathematics Mediated by Independent Control or Uncontrollability

    ERIC Educational Resources Information Center

    Zirk-Sadowski, Jan; Lamptey, Charlotte; Devine, Amy; Haggard, Mark; Szucs, Dénes

    2014-01-01

    We studied whether the origins of math anxiety can be related to a biologically supported framework of stress induction: (un)controllability perception, here indicated by self-reported independent efforts in mathematics. Math anxiety was tested in 182 children (8- to 11-year-olds). "Latent factor modeling" was used to test hypotheses on…

  19. A Multilevel Analysis of Japanese Middle School Student and School Socioeconomic Status Influence on Mathematics Achievement

    ERIC Educational Resources Information Center

    Takashiro, Naomi

    2017-01-01

    The author examined the simultaneous influence of Japanese middle school student and school socioeconomic status (SES) on student math achievement with two-level multilevel analysis models by utilizing the Trends in International Mathematics and Science Study (TIMSS) Japan data sets. The theoretical framework used in this study was…

  20. Fostering Mathematical Creativity through Problem Posing and Modeling Using Dynamic Geometry: Viviani's Problem in the Classroom

    ERIC Educational Resources Information Center

    Contreras, José N.

    2013-01-01

    This paper discusses a classroom experience in which a group of prospective secondary mathematics teachers were asked to create, cooperatively (in class) and individually, problems related to Viviani's problem using a problem-posing framework. When appropriate, students used Sketchpad to explore the problem to better understand its attributes…

  1. Gender Differences in Mathematics Achievement in Jordan: A Differential Item Functioning Analysis of the 2015 TIMSS

    ERIC Educational Resources Information Center

    Innabi, Hanan; Dodeen, Hamzeh

    2018-01-01

    This study is within the framework of the United Nations sustainable development goals related to equitable quality education. The total score on the 2015 Trends in International Mathematics and Science Study that indicated eighth-grade girls in Jordan significantly outperformed boys is hiding many details related to the quality of mathematics…

  2. Head Start Program Quality: Examination of Classroom Quality and Parent Involvement in Predicting Children's Vocabulary, Literacy, and Mathematics Achievement Trajectories

    ERIC Educational Resources Information Center

    Wen, Xiaoli; Bulotsky-Shearer, Rebecca J.; Hahs-Vaughn, Debbie L.; Korfmacher, Jon

    2012-01-01

    Guided by a developmental-ecological framework and Head Start's two-generational approach, this study examined two dimensions of Head Start program quality, classroom quality and parent involvement and their unique and interactive contribution to children's vocabulary, literacy, and mathematics skills growth from the beginning of Head Start…

  3. Do Students Trust in Mathematics or Intuition during Physics Problem Solving? An Epistemic Game Perspective

    ERIC Educational Resources Information Center

    Yavuz, Ahmet

    2015-01-01

    This study aims to investigate (1) students' trust in mathematics calculation versus intuition in a physics problem solving and (2) whether this trust is related to achievement in physics in the context of epistemic game theoretical framework. To achieve this research objective, paper-pencil and interview sessions were conducted. A paper-pencil…

  4. The Embodiment of Cases as Alternative Perspective in a Mathematics Hypermedia Learning Environment

    ERIC Educational Resources Information Center

    Valentine, Keri D.; Kopcha, Theodore J.

    2016-01-01

    This paper presents a design framework for cases as alternative perspectives (Jonassen in Learning to solve problems: a handbook for designing problem-solving learning environments, 2011a) in the context of K-12 mathematics. Using the design-based research strategy of conjecture mapping, the design of cases for a hypermedia site is described…

  5. A Survey of Mathematics Education Technology Dissertation Scope and Quality: 1968-2009

    ERIC Educational Resources Information Center

    Ronau, Robert N.; Rakes, Christopher R.; Bush, Sarah B.; Driskell, Shannon O.; Niess, Margaret L.; Pugalee, David K.

    2014-01-01

    We examined 480 dissertations on the use of technology in mathematics education and developed a Quality Framework (QF) that provided structure to consistently define and measure quality. Dissertation studies earned an average of 64.4% of the possible quality points across all methodology types, compared to studies in journals that averaged 47.2%.…

  6. A Critical Examination of the Technological Pedagogical Content Knowledge Framework: Secondary School Mathematics Teachers Integrating Technology

    ERIC Educational Resources Information Center

    Stoilescu, Dorian

    2015-01-01

    This study explores the Technological Pedagogical Content Knowledge (TPACK) for three experienced mathematics secondary teachers from a Toronto public school. By using a multiple case study, teachers' attitudes, skills, and approaches toward the use of Information and Communications Technology (ICT) in classrooms are described. By being aware of…

  7. The Effect of an Experiential Learning Program on Middle School Students' Motivation toward Mathematics and Science

    ERIC Educational Resources Information Center

    Weinberg, Andrea E.; Basile, Carole G.; Albright, Leonard

    2011-01-01

    A mixed methods design was used to evaluate the effects of four experiential learning programs on the interest and motivation of middle school students toward mathematics and science. The Expectancy-Value model provided a theoretical framework for the exploration of 336 middle school student participants. Initially, participants were generally…

  8. Pedagogical Approaches for ICT Integration into Primary School English and Mathematics: A Singapore Case Study

    ERIC Educational Resources Information Center

    Tay, Lee Yong; Lim, Siew Khiaw; Lim, Cher Ping; Koh, Joyce Hwee Ling

    2012-01-01

    This case study research attempts to examine the pedagogical approaches for the teaching of English and mathematics with information communication technology (ICT) in a primary school in Singapore. The study uses the learning "with" and learning "from" ICT framework in reporting and analysing how ICT has been used in the…

  9. Learning Mathematics in a CAS Environment: The Genesis of a Reflection about Instrumentation and the Dialectics between Technical and Conceptual Work.

    ERIC Educational Resources Information Center

    Artigue, Michele

    2002-01-01

    Presents an anthropological approach used in French research and the theory of instrumentation developed in cognitive ergonomics. Shows how these frameworks allow an approach to the educational use of CAS technology, focusing on the unexpected complexity of instrumental genesis, mathematical needs of instrumentation, status of instrumented…

  10. How Can One Learn Mathematical Word Problems in a Second Language? A Cognitive Load Perspective

    ERIC Educational Resources Information Center

    Moussa-Inaty, Jase; Causapin, Mark; Groombridge, Timothy

    2015-01-01

    Language may ordinarily account for difficulties in solving word problems and this is particularly true if mathematical word problems are taught in a language other than one's native language. Research into cognitive load may offer a clear theoretical framework when investigating word problems because memory, specifically working memory, plays a…

  11. Examining the Impact of Critical Feedback on Learner Engagement in Secondary Mathematics Classrooms: A Multi-Level Analysis

    ERIC Educational Resources Information Center

    Kearney, W. Sean; Webb, Michael; Goldhorn, Jeff; Peters, Michelle L.

    2013-01-01

    This article presents a quantitative study utilizing HLM to analyze classroom walkthrough data completed by principals within 87 secondary mathematics classrooms across 9 public schools in Texas. This research is based on the theoretical framework of learner engagement as established by Argryis & Schon (1996), and refined by Marks (2000). It…

  12. A Comparison of General Diagnostic Models (GDM) and Bayesian Networks Using a Middle School Mathematics Test

    ERIC Educational Resources Information Center

    Wu, Haiyan

    2013-01-01

    General diagnostic models (GDMs) and Bayesian networks are mathematical frameworks that cover a wide variety of psychometric models. Both extend latent class models, and while GDMs also extend item response theory (IRT) models, Bayesian networks can be parameterized using discretized IRT. The purpose of this study is to examine similarities and…

  13. A Framework for Problem-Based Learning: Teaching Mathematics with a Relational Problem-Based Pedagogy

    ERIC Educational Resources Information Center

    Schettino, Carmel

    2016-01-01

    One recommendation for encouraging young women and other underrepresented students in their mathematical studies is to find instructional methods, such as problem-based learning (PBL), that allow them to feel included in the learning process. Using a more relationally centered pedagogy along with more inclusive instructional methods may be a way…

  14. Integrated Spreadsheets as a Paradigm of Type II Technology Applications in Mathematics Teacher Education

    ERIC Educational Resources Information Center

    Abramovich, Sergei

    2016-01-01

    The paper presents the use of spreadsheets integrated with digital tools capable of symbolic computations and graphic constructions in a master's level capstone course for secondary mathematics teachers. Such use of spreadsheets is congruent with the Type II technology applications framework aimed at the development of conceptual knowledge in the…

  15. Project-Based Social Justice Mathematics: A Case Study of Five 6th Grade Students

    ERIC Educational Resources Information Center

    McHugh, Maighread L.

    2015-01-01

    The purpose of this qualitative multiple case study was to explore how five sixth grade female students navigated the process of project-based learning as they designed and implemented their own project centered on mathematics while using a social justice lens. The theoretical frameworks of Authentic Intellectual Work and Social Justice…

  16. Motivation and Mathematics Achievement: A Comparative Study of Asian-American, Caucasian-American, and East Asian High School Students.

    ERIC Educational Resources Information Center

    Chen, Chuansheng; Stevenson, Harold W.

    1995-01-01

    Examined academic achievement under a cultural motivational framework. Asian American students' performance in mathematics was found to be between that of Chinese and Japanese students and that of Caucasian Americans. Suggests that academic achievement reflects a cultural heritage that emphasizes education and the ability of all persons to benefit…

  17. Interdisciplinary Mathematics-Physics Approaches to Teaching the Concept of Angle in Elementary School

    ERIC Educational Resources Information Center

    Munier, Valerie; Merle, Helene

    2009-01-01

    The present study takes an interdisciplinary mathematics-physics approach to the acquisition of the concept of angle by children in Grades 3-5. This paper first presents the theoretical framework we developed, then we analyse the concept of angle and the difficulties pupils have with it. Finally, we report three experimental physics-based teaching…

  18. Students' Mathematics Word Problem-Solving Achievement in a Computer-Based Story

    ERIC Educational Resources Information Center

    Gunbas, N.

    2015-01-01

    The purpose of this study was to investigate the effect of a computer-based story, which was designed in anchored instruction framework, on sixth-grade students' mathematics word problem-solving achievement. Problems were embedded in a story presented on a computer as computer story, and then compared with the paper-based version of the same story…

  19. A Framework for Understanding and Cultivating the Transition from Arithmetic to Algebraic Reasoning

    ERIC Educational Resources Information Center

    Nathan, Mitchell J.; Koellner, Karen

    2007-01-01

    Algebraic reasoning stands as a formidable gatekeeper for students in their efforts to progress in mathematics and science, and to obtain economic opportunities (Ladson-Billings, 1998; RAND, 2003). Currently, mathematics education research has focused on algebra in order to provide access and opportunities for more students. There is now a growing…

  20. Using Technology to Explore Mathematical Relationships: A Framework for Orienting Mathematics Courses for Prospective Teachers

    ERIC Educational Resources Information Center

    Bowers, Janet S.; Stephens, Becky

    2011-01-01

    The technological revolution that has finally permeated K-12 education has direct implications for modern teacher educators whose "Hippocratic oath" is to best prepare future teachers for twenty-first-century classrooms. The goal of this article is to suggest that the heart of sound technological implementation is to encourage students to use…

  1. Reorganizing Freshman Business Mathematics I: Background and Philosophy

    ERIC Educational Resources Information Center

    Green, Kris; Emerson, Allen

    2008-01-01

    This article is the first of the two-part discussion of the development of a new Freshman Business Mathematics (FBM) course at our college. Part I of the article describes the background and history behind the course, and provides a theoretical framework for the design of the course. This design involves students in learning and applying…

  2. Construing Mathematics-Containing Activities in Adults' Workplace Competences: Analysis of Institutional and Multimodal Aspects

    ERIC Educational Resources Information Center

    Björklund Boistrup, Lisa; Gustafsson, Lars

    2014-01-01

    In this paper we propose and discuss a framework for analysing adults' work competences while construing mathematics-containing "themes" in two workplace settings: road haulage and nursing. The data consist of videos and transcribed interviews from the work of two lorryloaders, and a nurses' aide at an orthopaedic department. In the…

  3. The development of a digital logic concept inventory

    NASA Astrophysics Data System (ADS)

    Herman, Geoffrey Lindsay

    Instructors in electrical and computer engineering and in computer science have developed innovative methods to teach digital logic circuits. These methods attempt to increase student learning, satisfaction, and retention. Although there are readily accessible and accepted means for measuring satisfaction and retention, there are no widely accepted means for assessing student learning. Rigorous assessment of learning is elusive because differences in topic coverage, curriculum and course goals, and exam content prevent direct comparison of two teaching methods when using tools such as final exam scores or course grades. Because of these difficulties, computing educators have issued a general call for the adoption of assessment tools to critically evaluate and compare the various teaching methods. Science, Technology, Engineering, and Mathematics (STEM) education researchers commonly measure students' conceptual learning to compare how much different pedagogies improve learning. Conceptual knowledge is often preferred because all engineering courses should teach a fundamental set of concepts even if they emphasize design or analysis to different degrees. Increasing conceptual learning is also important, because students who can organize facts and ideas within a consistent conceptual framework are able to learn new information quickly and can apply what they know in new situations. If instructors can accurately assess their students' conceptual knowledge, they can target instructional interventions to remedy common problems. To properly assess conceptual learning, several researchers have developed concept inventories (CIs) for core subjects in engineering sciences. CIs are multiple-choice assessment tools that evaluate how well a student's conceptual framework matches the accepted conceptual framework of a discipline or common faulty conceptual frameworks. We present how we created and evaluated the digital logic concept inventory (DLCI).We used a Delphi process to identify the important and difficult concepts to include on the DLCI. To discover and describe common student misconceptions, we interviewed students who had completed a digital logic course. Students vocalized their thoughts as they solved digital logic problems. We analyzed the interview data using a qualitative grounded theory approach. We have administered the DLCI at several institutions and have checked the validity, reliability, and bias of the DLCI with classical testing theory procedures. These procedures consisted of follow-up interviews with students, analysis of administration results with statistical procedures, and expert feedback. We discuss these results and present the DLCI's potential for providing a meaningful tool for comparing student learning at different institutions.

  4. What Should Common Core Assessments Measure?

    ERIC Educational Resources Information Center

    Chandler, Kayla; Fortune, Nicholas; Lovett, Jennifer N.; Scherrer, Jimmy

    2016-01-01

    The Common Core State Standards for mathematics promote ideals about learning mathematics by providing specific standards focused on conceptual understanding and incorporating practices in which students must participate to develop conceptual understanding. Thus, how we define learning is pivotal because our current definition isn't aligned with…

  5. Rigorous Measures of Implementation: A Methodological Framework for Evaluating Innovative STEM Programs

    ERIC Educational Resources Information Center

    Cassata-Widera, Amy; Century, Jeanne; Kim, Dae Y.

    2011-01-01

    The practical need for multidimensional measures of fidelity of implementation (FOI) of reform-based science, technology, engineering, and mathematics (STEM) instructional materials, combined with a theoretical need in the field for a shared conceptual framework that could support accumulating knowledge on specific enacted program elements across…

  6. Perspectives on Pre-Service Teacher Knowledge for Teaching Early Algebra

    ERIC Educational Resources Information Center

    McAuliffe, Sharon; Lubben, Fred

    2013-01-01

    This paper examines a pre-service teacher's content knowledge for teaching early algebra from two perspectives, i.e. using "Rowland's Knowledge Quartet" theory and "Ball's framework for Mathematical Knowledge for Testing" (MKfT). The study intends to examine the differences between the influences using each framework and to…

  7. Personal, Expository, Critical, and Creative: Using Writing in Mathematics Courses

    ERIC Educational Resources Information Center

    Braun, Benjamin

    2014-01-01

    This article provides a framework for creating and using writing assignments based on four types of writing: personal, expository, critical, and creative. This framework includes specific areas of student growth affected by these writing styles. Illustrative sample assignments are given throughout for each type of writing and various combinations…

  8. Student Errors in Dynamic Mathematical Environments

    ERIC Educational Resources Information Center

    Brown, Molly; Bossé, Michael J.; Chandler, Kayla

    2016-01-01

    This study investigates the nature of student errors in the context of problem solving and Dynamic Math Environments. This led to the development of the Problem Solving Action Identification Framework; this framework captures and defines all activities and errors associated with problem solving in a dynamic math environment. Found are three…

  9. Analysing the implemented curriculum of mathematics in preschool education

    NASA Astrophysics Data System (ADS)

    Zacharos, Konstantinos; Koustourakis, Gerasimos; Papadimitriou, Konstantina

    2014-06-01

    The purpose of this paper is to contribute to development of research tools for observation and analysis of educational practices used by teachers in preschool classrooms. More specifically, we approached the implemented curriculum of mathematics in Greek preschool education. We analysed the recorded data from a week of teaching practices in eight classrooms of Greek public kindergartens, based on Bernstein's theoretical framework on pedagogic discourse. The results showed that the actual educational practices in the observed classrooms deviated from the objectives of the official new cross-thematic curriculum for teaching mathematics in Greek kindergarten in terms of the form of transmitted mathematical knowledge, the instructional rules and strategies that teachers adopted for teaching mathematics, and the teaching-interactive relationships between preschool teachers and students.

  10. Mathematics Education in Europe: Common Challenges and National Policies

    ERIC Educational Resources Information Center

    Parveva, Teodora; Noorani, Sogol; Ranguelov, Stanislav; Motiejunaite, Akvile; Kerpanova, Viera

    2011-01-01

    Competence in mathematics is integral to a wide range of disciplines, professions and areas of life. This Eurydice report reveals crucial elements of the policies and practices that shape mathematics instruction in European education systems, focusing on reforms of mathematics curricula, teaching and assessment methods, as well as teacher…

  11. Core-Plus Mathematics. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2010

    2010-01-01

    "Core-Plus Mathematics" is a four-year curriculum that replaces the traditional sequence with courses that each feature interwoven strands of algebra and functions, statistics and probability, geometry and trigonometry, and discrete mathematics. The first three courses in the series provide a common core of broadly useful mathematics,…

  12. Second-Graders' Mathematical Practices for Solving Fraction Tasks

    ERIC Educational Resources Information Center

    Moyer-Packenham, Patricia S.; Bolyard, Johnna J.; Tucker, Stephen I.

    2014-01-01

    Recently, over 40 states in the United States adopted the Common Core State Standards for Mathematics (CCSSM) which include standards for content and eight standards for mathematical practices. The purpose of this study was to better understand the nature of young children's mathematical practices through an exploratory examination of the…

  13. A Primer for Mathematical Modeling

    ERIC Educational Resources Information Center

    Sole, Marla

    2013-01-01

    With the implementation of the National Council of Teachers of Mathematics recommendations and the adoption of the Common Core State Standards for Mathematics, modeling has moved to the forefront of K-12 education. Modeling activities not only reinforce purposeful problem-solving skills, they also connect the mathematics students learn in school…

  14. Ways That Preservice Teachers Integrate Children's Literature into Mathematics Lessons

    ERIC Educational Resources Information Center

    Rogers, Rachelle Meyer; Cooper, Sandi; Nesmith, Suzanne M.; Purdum-Cassidy, Barbara

    2015-01-01

    Children's literature involving mathematics provides a common, natural context for the sharing of mathematics. To learn more about how preservice teachers included children's literature in their mathematics lessons, a study was conducted over two semesters during a required field experience component of an undergraduate teacher education program.…

  15. Fostering Student Engagement with the Flip

    ERIC Educational Resources Information Center

    Moore, Amanda J.; Gillett, Matthew R.; Steele, Michael D.

    2014-01-01

    The Common Core Standards for Mathematical Practice (CCSSI 2010) and NCTM's "Focus in High School Mathematics: Reasoning and Sense Making" (2009) present a vision of high school classrooms in which the majority of the activity involves students working on rich mathematical problems and engaging in mathematical discourse. This model…

  16. Missing the Promise of Mathematical Modeling

    ERIC Educational Resources Information Center

    Meyer, Dan

    2015-01-01

    The Common Core State Standards for Mathematics (CCSSM) have exerted enormous pressure on every participant in a child's education. Students are struggling to meet new standards for mathematics learning, and parents are struggling to understand how to help them. Teachers are growing in their capacity to develop new mathematical competencies, and…

  17. U.S. Middle School Mathematics Teachers' Perceptions of the Standards for Mathematical Practice by Textbook Type

    ERIC Educational Resources Information Center

    Davis, Jon D.; Choppin, Jeffrey; Drake, Corey; Roth McDuffie, Amy; Carson, Cynthia

    2018-01-01

    An important component of the Common Core State Standards for Mathematics (CCSSM), used by the majority of states in the U.S., has the eight standards for mathematical practice (SMPs). While surveys have investigated teachers' perceptions of the CCSSM few have investigated middle school mathematics teachers' (MSMTs') (grades 6-8) perceptions of…

  18. Body mass evolution and diversification within horses (family Equidae).

    PubMed

    Shoemaker, Lauren; Clauset, Aaron

    2014-02-01

    Horses (family Equidae) are a classic example of adaptive radiation, exhibiting a nearly 60-fold increase in maximum body mass and a peak taxonomic diversity of nearly 100 species across four continents. Such patterns are commonly attributed to niche competition, in which increased taxonomic diversity drives increased size disparity. However, neutral processes, such as macroevolutionary 'diffusion', can produce similar increases in disparity without increased diversity. Using a comprehensive database of Equidae species size estimates and a common mathematical framework, we measure the contributions of diversity-driven and diffusion-driven mechanisms for increased disparity during the Equidae radiation. We find that more than 90% of changes in size disparity are attributable to diffusion alone. These results clarify the role of species competition in body size evolution, indicate that morphological disparity and species diversity may be only weakly coupled in general, and demonstrate that large species may evolve from neutral macroevolutionary diffusion processes alone. © 2013 John Wiley & Sons Ltd/CNRS.

  19. Dynamics of Zika virus outbreaks: an overview of mathematical modeling approaches

    PubMed Central

    Wiratsudakul, Anuwat; Suparit, Parinya

    2018-01-01

    Background The Zika virus was first discovered in 1947. It was neglected until a major outbreak occurred on Yap Island, Micronesia, in 2007. Teratogenic effects resulting in microcephaly in newborn infants is the greatest public health threat. In 2016, the Zika virus epidemic was declared as a Public Health Emergency of International Concern (PHEIC). Consequently, mathematical models were constructed to explicitly elucidate related transmission dynamics. Survey Methodology In this review article, two steps of journal article searching were performed. First, we attempted to identify mathematical models previously applied to the study of vector-borne diseases using the search terms “dynamics,” “mathematical model,” “modeling,” and “vector-borne” together with the names of vector-borne diseases including chikungunya, dengue, malaria, West Nile, and Zika. Then the identified types of model were further investigated. Second, we narrowed down our survey to focus on only Zika virus research. The terms we searched for were “compartmental,” “spatial,” “metapopulation,” “network,” “individual-based,” “agent-based” AND “Zika.” All relevant studies were included regardless of the year of publication. We have collected research articles that were published before August 2017 based on our search criteria. In this publication survey, we explored the Google Scholar and PubMed databases. Results We found five basic model architectures previously applied to vector-borne virus studies, particularly in Zika virus simulations. These include compartmental, spatial, metapopulation, network, and individual-based models. We found that Zika models carried out for early epidemics were mostly fit into compartmental structures and were less complicated compared to the more recent ones. Simple models are still commonly used for the timely assessment of epidemics. Nevertheless, due to the availability of large-scale real-world data and computational power, recently there has been growing interest in more complex modeling frameworks. Discussion Mathematical models are employed to explore and predict how an infectious disease spreads in the real world, evaluate the disease importation risk, and assess the effectiveness of intervention strategies. As the trends in modeling of infectious diseases have been shifting towards data-driven approaches, simple and complex models should be exploited differently. Simple models can be produced in a timely fashion to provide an estimation of the possible impacts. In contrast, complex models integrating real-world data require more time to develop but are far more realistic. The preparation of complicated modeling frameworks prior to the outbreaks is recommended, including the case of future Zika epidemic preparation. PMID:29593941

  20. From puddles to planet: modeling approaches to vector-borne diseases at varying resolution and scale.

    PubMed

    Eckhoff, Philip A; Bever, Caitlin A; Gerardin, Jaline; Wenger, Edward A; Smith, David L

    2015-08-01

    Since the original Ross-Macdonald formulations of vector-borne disease transmission, there has been a broad proliferation of mathematical models of vector-borne disease, but many of these models retain most to all of the simplifying assumptions of the original formulations. Recently, there has been a new expansion of mathematical frameworks that contain explicit representations of the vector life cycle including aquatic stages, multiple vector species, host heterogeneity in biting rate, realistic vector feeding behavior, and spatial heterogeneity. In particular, there are now multiple frameworks for spatially explicit dynamics with movements of vector, host, or both. These frameworks are flexible and powerful, but require additional data to take advantage of these features. For a given question posed, utilizing a range of models with varying complexity and assumptions can provide a deeper understanding of the answers derived from models. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

Top