Sample records for common path phase-measuring

  1. Near-common-path interferometer for imaging Fourier-transform spectroscopy in wide-field microscopy

    PubMed Central

    Wadduwage, Dushan N.; Singh, Vijay Raj; Choi, Heejin; Yaqoob, Zahid; Heemskerk, Hans; Matsudaira, Paul; So, Peter T. C.

    2017-01-01

    Imaging Fourier-transform spectroscopy (IFTS) is a powerful method for biological hyperspectral analysis based on various imaging modalities, such as fluorescence or Raman. Since the measurements are taken in the Fourier space of the spectrum, it can also take advantage of compressed sensing strategies. IFTS has been readily implemented in high-throughput, high-content microscope systems based on wide-field imaging modalities. However, there are limitations in existing wide-field IFTS designs. Non-common-path approaches are less phase-stable. Alternatively, designs based on the common-path Sagnac interferometer are stable, but incompatible with high-throughput imaging. They require exhaustive sequential scanning over large interferometric path delays, making compressive strategic data acquisition impossible. In this paper, we present a novel phase-stable, near-common-path interferometer enabling high-throughput hyperspectral imaging based on strategic data acquisition. Our results suggest that this approach can improve throughput over those of many other wide-field spectral techniques by more than an order of magnitude without compromising phase stability. PMID:29392168

  2. Reflection-induced linear polarization rotation and phase modulation between orthogonal waves for refractive index variation measurement.

    PubMed

    Twu, Ruey-Ching; Wang, Jhao-Sheng

    2016-04-01

    An optical phase interrogation is proposed to study reflection-induced linear polarization rotation in a common-path homodyne interferometer. This optical methodology can also be applied to the measurement of the refractive index variation of a liquid solution. The performance of the refractive index sensing structure is discussed theoretically, and the experimental results demonstrated a very good ability based on the proposed schemes. Compared with a conventional common-path heterodyne interferometer, the proposed homodyne interferometer with only a single channel reduced the usage of optic elements.

  3. A common-path phase-shift interferometry surface plasmon imaging system

    NASA Astrophysics Data System (ADS)

    Su, Y.-T.; Chen, Shean-Jen; Yeh, T.-L.

    2005-03-01

    A biosensing imaging system is proposed based on the integration of surface plasmon resonance (SPR) and common-path phase-shift interferometry (PSI) techniques to measure the two-dimensional spatial phase variation caused by biomolecular interactions upon a sensing chip. The SPR phase imaging system can offer high resolution and high-throughout screening capabilities to analyze microarray biomolecular interaction without the need for additional labeling. With the long-term stability advantage of the common-path PSI technique even with external disturbances such as mechanical vibration, buffer flow noise, and laser unstable issue, the system can match the demand of real-time kinetic study for biomolecular interaction analysis (BIA). The SPR-PSI imaging system has achieved a detection limit of 2×10-7 refraction index change, a long-term phase stability of 2.5x10-4π rms over four hours, and a spatial phase resolution of 10-3 π with a lateral resolution of 100μm.

  4. Digital micromirror device-based common-path quantitative phase imaging.

    PubMed

    Zheng, Cheng; Zhou, Renjie; Kuang, Cuifang; Zhao, Guangyuan; Yaqoob, Zahid; So, Peter T C

    2017-04-01

    We propose a novel common-path quantitative phase imaging (QPI) method based on a digital micromirror device (DMD). The DMD is placed in a plane conjugate to the objective back-aperture plane for the purpose of generating two plane waves that illuminate the sample. A pinhole is used in the detection arm to filter one of the beams after sample to create a reference beam. Additionally, a transmission-type liquid crystal device, placed at the objective back-aperture plane, eliminates the specular reflection noise arising from all the "off" state DMD micromirrors, which is common in all DMD-based illuminations. We have demonstrated high sensitivity QPI, which has a measured spatial and temporal noise of 4.92 nm and 2.16 nm, respectively. Experiments with calibrated polystyrene beads illustrate the desired phase measurement accuracy. In addition, we have measured the dynamic height maps of red blood cell membrane fluctuations, showing the efficacy of the proposed system for live cell imaging. Most importantly, the DMD grants the system convenience in varying the interference fringe period on the camera to easily satisfy the pixel sampling conditions. This feature also alleviates the pinhole alignment complexity. We envision that the proposed DMD-based common-path QPI system will allow for system miniaturization and automation for a broader adaption.

  5. Digital micromirror device-based common-path quantitative phase imaging

    PubMed Central

    Zheng, Cheng; Zhou, Renjie; Kuang, Cuifang; Zhao, Guangyuan; Yaqoob, Zahid; So, Peter T. C.

    2017-01-01

    We propose a novel common-path quantitative phase imaging (QPI) method based on a digital micromirror device (DMD). The DMD is placed in a plane conjugate to the objective back-aperture plane for the purpose of generating two plane waves that illuminate the sample. A pinhole is used in the detection arm to filter one of the beams after sample to create a reference beam. Additionally, a transmission-type liquid crystal device, placed at the objective back-aperture plane, eliminates the specular reflection noise arising from all the “off” state DMD micromirrors, which is common in all DMD-based illuminations. We have demonstrated high sensitivity QPI, which has a measured spatial and temporal noise of 4.92 nm and 2.16 nm, respectively. Experiments with calibrated polystyrene beads illustrate the desired phase measurement accuracy. In addition, we have measured the dynamic height maps of red blood cell membrane fluctuations, showing the efficacy of the proposed system for live cell imaging. Most importantly, the DMD grants the system convenience in varying the interference fringe period on the camera to easily satisfy the pixel sampling conditions. This feature also alleviates the pinhole alignment complexity. We envision that the proposed DMD-based common-path QPI system will allow for system miniaturization and automation for a broader adaption. PMID:28362789

  6. Dual-wavelength common-path digital holographic microscopy for quantitative phase imaging of biological cells

    NASA Astrophysics Data System (ADS)

    Di, Jianglei; Song, Yu; Xi, Teli; Zhang, Jiwei; Li, Ying; Ma, Chaojie; Wang, Kaiqiang; Zhao, Jianlin

    2017-11-01

    Biological cells are usually transparent with a small refractive index gradient. Digital holographic interferometry can be used in the measurement of biological cells. We propose a dual-wavelength common-path digital holographic microscopy for the quantitative phase imaging of biological cells. In the proposed configuration, a parallel glass plate is inserted in the light path to create the lateral shearing, and two lasers with different wavelengths are used as the light source to form the dual-wavelength composite digital hologram. The information of biological cells for different wavelengths is separated and extracted in the Fourier domain of the hologram, and then combined to a shorter wavelength in the measurement process. This method could improve the system's temporal stability and reduce speckle noises simultaneously. Mouse osteoblastic cells and peony pollens are measured to show the feasibility of this method.

  7. Interferometer for Measuring Displacement to Within 20 pm

    NASA Technical Reports Server (NTRS)

    Zhao, Feng

    2003-01-01

    An optical heterodyne interferometer that can be used to measure linear displacements with an error <=20 pm has been developed. The remarkable accuracy of this interferometer is achieved through a design that includes (1) a wavefront split that reduces (relative to amplitude splits used in other interferometers) self interference and (2) a common-optical-path configuration that affords common-mode cancellation of the interference effects of thermal-expansion changes in optical-path lengths. The most popular method of displacement- measuring interferometry involves two beams, the polarizations of which are meant to be kept orthogonal upstream of the final interference location, where the difference between the phases of the two beams is measured. Polarization leakages (deviations from the desired perfect orthogonality) contaminate the phase measurement with periodic nonlinear errors. In commercial interferometers, these phase-measurement errors result in displacement errors in the approximate range of 1 to 10 nm. Moreover, because prior interferometers lack compensation for thermal-expansion changes in optical-path lengths, they are subject to additional displacement errors characterized by a temperature sensitivity of about 100 nm/K. Because the present interferometer does not utilize polarization in the separation and combination of the two interfering beams and because of the common-mode cancellation of thermal-expansion effects, the periodic nonlinear errors and the sensitivity to temperature changes are much smaller than in other interferometers

  8. HAI, a new airborne, absolute, twin dual-channel, multi-phase TDLAS-hygrometer: background, design, setup, and first flight data

    NASA Astrophysics Data System (ADS)

    Buchholz, Bernhard; Afchine, Armin; Klein, Alexander; Schiller, Cornelius; Krämer, Martina; Ebert, Volker

    2017-01-01

    The novel Hygrometer for Atmospheric Investigation (HAI) realizes a unique concept for simultaneous gas-phase and total (gas-phase + evaporated cloud particles) water measurements. It has been developed and successfully deployed for the first time on the German HALO research aircraft. This new instrument combines direct tunable diode laser absorption spectroscopy (dTDLAS) with a first-principle evaluation method to allow absolute water vapor measurements without any initial or repetitive sensor calibration using a reference gas or a reference humidity generator. HAI contains two completely independent dual-channel (closed-path, open-path) spectrometers, one at 1.4 and one at 2.6 µm, which together allow us to cover the entire atmospheric H2O range from 1 to 40 000 ppmv with a single instrument. Both spectrometers each comprise a separate, wavelength-individual extractive, closed-path cell for total water (ice and gas-phase) measurements. Additionally, both spectrometers couple light into a common open-path cell outside of the aircraft fuselage for a direct, sampling-free, and contactless determination of the gas-phase water content. This novel twin dual-channel setup allows for the first time multiple self-validation functions, in particular a reliable, direct, in-flight validation of the open-path channels. During the first field campaigns, the in-flight deviations between the independent and calibration-free channels (i.e., closed-path to closed-path and open-path to closed-path) were on average in the 2 % range. Further, the fully autonomous HAI hygrometer allows measurements up to 240 Hz with a minimal integration time of 1.4 ms. The best precision is achieved by the 1.4 µm closed-path cell at 3.8 Hz (0.18 ppmv) and by the 2.6 µm closed-path cell at 13 Hz (0.055 ppmv). The requirements, design, operation principle, and first in-flight performance of the hygrometer are described and discussed in this work.

  9. Common-path digital holographic microscopy based on a beam displacer unit

    NASA Astrophysics Data System (ADS)

    Di, Jianglei; Zhang, Jiwei; Song, Yu; Wang, Kaiqiang; Wei, Kun; Zhao, Jianlin

    2018-02-01

    Digital holographic microscopy (DHM) has become a novel tool with advantages of full field, non-destructive, high-resolution and 3D imaging, which captures the quantitative amplitude and phase information of microscopic specimens. It's a well-established method for digital recording and numerical reconstructing the full complex field of wavefront of the samples with a diffraction-limited lateral resolution down to 0.3 μm depending on the numerical aperture of microscope objective. Meanwhile, its axial resolution through axial direction is less than 10 nm due to the interferometric nature in phase imaging. Compared with the typical optical configurations such as Mach-Zehnder interferometer and Michelson interferometer, the common-path DHM has the advantages of simple and compact configuration, high stability, and so on. Here, a simple, compact, and low-cost common-path DHM based on a beam displacer unit is proposed for quantitative phase imaging of biological cells. The beam displacer unit is completely compatible with commercial microscope and can be easily set up in the output port of the microscope as a compact independent device. This technique can be used to achieve the quantitative phase measurement of biological cells with an excellent temporal stability of 0.51 nm, which makes it having a good prospect in the fields of biological and medical science. Living mouse osteoblastic cells are quantitatively measured with the system to demonstrate its capability and applicability.

  10. Optical phase nanoscopy in red blood cells using low-coherence spectroscopy.

    PubMed

    Shock, Itay; Barbul, Alexander; Girshovitz, Pinhas; Nevo, Uri; Korenstein, Rafi; Shaked, Natan T

    2012-10-01

    We propose a low-coherence spectral-domain phase microscopy (SDPM) system for accurate quantitative phase measurements in red blood cells (RBCs) for the prognosis and monitoring of disease conditions that affect the visco-elastic properties of RBCs. Using the system, we performed time-recordings of cell membrane fluctuations, and compared the nano-scale fluctuation dynamics of healthy and glutaraldehyde-treated RBCs. Glutaraldehyde-treated RBCs possess lower amplitudes of fluctuations, reflecting an increased membrane stiffness. To demonstrate the ability of our system to measure fluctuations of lower amplitudes than those measured by the commonly used holographic phase microscopy techniques, we also constructed wide-field digital interferometry (WFDI) system and compared the performances of both systems. Due to its common-path geometry, the optical-path-delay stability of SDPM was found to be less than 0.3 nm in liquid environment, at least three times better than WFDI under the same conditions. In addition, due to the compactness of SDPM and its inexpensive and robust design, the system possesses a high potential for clinical applications.

  11. Low cost label-free live cell imaging for biological samples

    NASA Astrophysics Data System (ADS)

    Seniya, C.; Towers, C. E.; Towers, D. P.

    2017-02-01

    This paper reports the progress to develop a practical phase measuring microscope offering new capabilities in terms of phase measurement accuracy and quantification of cell:cell interactions over the longer term. A novel, low cost phase interference microscope for imaging live cells (label-free) is described. The method combines the Zernike phase contrast approach with a dual mirror design to enable phase modulation between the scattered and un-scattered optical fields. Two designs are proposed and demonstrated, one of which retains the common path nature of Zernike's original microscopy concept. In both setups the phase shift is simple to control via a piezoelectric driven mirror in the back focal plane of the imaging system. The approach is significantly cheaper to implement than those based on spatial light modulators (SLM) at approximately 20% of the cost. A quantitative assessment of the performance of a set of phase shifting algorithms is also presented, specifically with regard to broad bandwidth illumination in phase contrast microscopy. The simulation results show that the phase measurement accuracy is strongly dependent on the algorithm selected and the optical path difference in the sample.

  12. Novel Diffusivity Measurement Technique

    NASA Technical Reports Server (NTRS)

    Rashidnia, Nasser

    2001-01-01

    A common-path interferometer (CPI) system was developed to measure the diffusivity of liquid pairs. The CPI is an optical technique that can be used to measure changes in the gradient of the refraction index of transparent materials. This system uses a shearing interferometer that shares the same optical path from a laser light source to the final imaging plane. Hence, the molecular diffusion coefficient of liquids can be determined using the physical relations between changes in the optical path length and the liquid phase properties. The data obtained with this interferometer were compared with similar results from other techniques and demonstrated that the instrument is superior in measuring the diffusivity of miscible liquids while keeping the system very compact and robust. CPI can also be used for studies in interface dynamics and other diffusion-dominated-process applications.

  13. HAI: A novel airborne multi-channel hygrometer for fast multi-phase H2O quantification: Performance of the HAI instrument during the first flights on the German HALO aircraft

    NASA Astrophysics Data System (ADS)

    Buchholz, B.; Ebert, V.; Kraemer, M.; Afchine, A.

    2014-12-01

    Common gas phase H2O measurements on fast airborne platforms e.g. using backward facing or "Rosemount"-inlets can lead to a high risk of ice and droplets contamination. In addition, currently no single hygrometer exists that allows a simultaneous, high-speed measurement of all phases (gas, liquid, ice) with the same detection principle. In the rare occasions multi-phase measurements are realized, gas-and condensed-phase observations rely on different methods, instruments and calibration strategies so that precision and accuracy levels are quite difficult to quantify. This is effectively avoided by the novel TDLAS instrument, HAI, Hygrometer for Atmospheric Investigation, which allows a simultaneous, high speed, multi-phase detection without any sensor calibration in a unique "2+2" channel concept. Hai combines two independent wavelength channels, at 1.4 µm and at 2.6 µm, for a wide dynamic range from 1 to 30 000 ppmv, with a simultaneous closed path (extractive) and open path detection. Thus, "Total", i.e. gas-phase plus condensed-phase water is measured by sampling via a forward facing inlet into "closed-path" extractive cells. A selective, sampling-free, high speed gas phase detection is realized via a dual-wavelength "open-path" cell placed outside of the aircraft fuselage. All channels can be sampled with 120 Hz (measurement cycle time Dt=1.6 ms) allowing an unprecedented spatial resolution of 30 cm at 900 km/h. The evaluation of the individual multi-channel raw-data is done post flight, without any channel interdependencies, in calibration-free mode, thus allowing fast, accurate and precise multi-phase water detection in flight. The performance could be shown in more than 200 net flights hours in three scientific flight campaigns (TACTS, ESMVal, ML-CIRRUS) on the new German HALO aircraft. In addition the level of the accuracy of the calibration free evaluation was evaluated at the German national primary water vapor standard.

  14. Interferometric weak measurement of photon polarization

    NASA Astrophysics Data System (ADS)

    Iinuma, Masataka; Suzuki, Yutaro; Taguchi, Gen; Kadoya, Yutaka; Hofmann, Holger F.

    2011-10-01

    We realize a minimum back-action quantum non-demolition measurement of variable strength on photon polarization in the diagonal(PM) basis by two-mode path interference. This method uses the phase difference between the positive (P) and negative (M) superpositions in the interference between the horizontal (H) and vertical (V) polarized paths in the input beam. Although the interference can not occur when the H and V polarizations are distinguishable, a well-controlled amount of interference is induced by erasing the H and V information using a coherent rotation of polarization toward a common diagonal polarization. This method is particularly suitable for the realization of weak measurements, where the control of the back-action is essential.

  15. Common mode noise rejection properties of amplitude and phase noise in a heterodyne interferometer.

    PubMed

    Hechenblaikner, Gerald

    2013-05-01

    High precision metrology systems based on heterodyne interferometry can measure the position and attitude of objects to accuracies of picometer and nanorad, respectively. A frequently found feature of the general system design is the subtraction of a reference phase from the phase of the position interferometer, which suppresses low frequency common mode amplitude and phase fluctuations occurring in volatile optical path sections shared by both the position and reference interferometer. Spectral components of the noise at frequencies around or higher than the heterodyne frequency, however, are generally transmitted into the measurement band and may limit the measurement accuracy. Detailed analytical calculations complemented with Monte Carlo simulations show that high frequency noise components may also be entirely suppressed, depending on the relative difference of measurement and reference phase, which may be exploited by corresponding design provisions. While these results are applicable to any heterodyne interferometer with certain design characteristics, specific calculations and related discussions are given for the example of the optical metrology system of the LISA Pathfinder mission to space.

  16. Surface plasmon holographic microscopy for near-field refractive index detection and thin film mapping

    NASA Astrophysics Data System (ADS)

    Zhao, Jianlin; Zhang, Jiwei; Dai, Siqing; Di, Jianglei; Xi, Teli

    2018-02-01

    Surface plasmon microscopy (SPM) is widely applied for label-free detection of changes of refractive index and concentration, as well as mapping thin films in near field. Traditionally, the SPM systems are based on the detection of light intensity or phase changes. Here, we present two kinds of surface plasmon holographic microscopy (SPHM) systems for amplitude- and phase-contrast imaging simultaneously. Through recording off-axis holograms and numerical reconstruction, the complex amplitude distributions of surface plasmon resonance (SPR) images can be obtained. According to the Fresnel's formula, in a prism/ gold/ dielectric structure, the reflection phase shift is uniquely decided by refractive index of the dielectric. By measuring the phase shift difference of the reflected light exploiting prism-coupling SPHM system based on common-path interference configuration, monitoring tiny refractive index variation and imaging biological tissue are performed. Furthermore, to characterize the thin film thickness in near field, we employ a four-layer SPR model in which the third film layer is within the evanescent field. The complex reflection coefficient, including the reflectivity and reflection phase shift, is uniquely decided by the film thickness. By measuring the complex amplitude distributions of the SPR images exploiting objective-coupling SPHM system based on common-path interference configuration, the thickness distributions of thin films are mapped with sub-nanometer resolution theoretically. Owing to its high temporal stability, the recommended SPHMs show great potentials for monitoring tiny refractive index variations, imaging biological tissues and mapping thin films in near field with dynamic, nondestructive and full-field measurement capabilities in chemistry, biomedicine field, etc.

  17. Heterodyne interferometry method for calibration of a Soleil-Babinet compensator.

    PubMed

    Zhang, Wenjing; Zhang, Zhiwei

    2016-05-20

    A method based on the common-path heterodyne interferometer system is proposed for the calibration of a Soleil-Babinet compensator. In this heterodyne interferometer system, which consists of two acousto-optic modulators, the compensator being calibrated is inserted into the signal path. By using the reference beam as the benchmark and a lock-in amplifier (SR844) as the phase retardation collector, retardations of 0 and λ (one wavelength) can be located accurately, and an arbitrary retardation between 0 and λ can also be measured accurately and continuously. By fitting a straight line to the experimental data, we obtained a linear correlation coefficient (R) of 0.995, which indicates that this system is capable of linear phase detection. The experimental results demonstrate determination accuracies of 0.212° and 0.26° and measurement precisions of 0.054° and 0.608° for retardations of 0 and λ, respectively.

  18. The Abcd Formula of Phase Definition in Optical Interferometry: Combined Effect of Air Dispersion and Broad Passband

    NASA Astrophysics Data System (ADS)

    Mathar, Richard J.

    Long-baseline interferometry detects fringes created by superposition of two beams of light collected by two telescopes pointing into a common direction. The external path difference is commonly compensated by adding a variable optical path length (delay) through air for one beam such that the optical path difference between the beams remains close to zero near the detector. The ABCD formula assigns a (wrapped) phase to the signals A to D of an interference pattern shifted by multiples of 90 degrees in phase. We study the interplay between a broad spectral passband of the optics and the dispersion of the air in the compensating delay, which leads to small deviations between the ABCD phase and the reduced, monochromatic group-delay representation of the wave packets. This adds dispersion to the effects that have been discussed for evacuated interferometers before (Milman 2005).

  19. The study on RBC characteristic in paroxysmal nocturnal hemoglobinuria (PNH) patients using common path interferometric quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Park, Byung Jun; Won, Youngjae; Kim, Byungyeon; Lee, Seungrag

    2016-03-01

    We have studied the RBC membrane properties between a normal RBC and a RBC in Paroxysrnal nocturnal hemoglobinuria (PNH) patient using common path interferometric quantitative phase microscopy (CPIQPM). CPIQPM system has provided the subnanometer optical path length sensitivity on a millisecond. We have measured the dynamic thickness fluctuations of a normal RBC membrane and a RBC membrane in PNH patient over the whole cell surface with CPIQPM. PNH is a rare and serious disease of blood featured by destruction of red blood cells (RBCs). This destruction happens since RBCs show the defect of protein which protects RBCs from the immune system. We have applied CPIQPM to study the characteristic of RBC membrane in PNH patient. We have shown the morphological shape, volume, and projected surface for both different RBC types. The results have showed both RBCs had the similar shape with donut, but membrane fluctuations in PNH patient was shown to reveal the difference of temporal properties compared with a normal RBC. In order to demonstrate the practical tool of the CPIQPM technique, we have also obtained the time series thickness fluctuation outside a cell.

  20. Correction of phase-shifting error in wavelength scanning digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolei; Wang, Jie; Zhang, Xiangchao; Xu, Min; Zhang, Hao; Jiang, Xiangqian

    2018-05-01

    Digital holographic microscopy is a promising method for measuring complex micro-structures with high slopes. A quasi-common path interferometric apparatus is adopted to overcome environmental disturbances, and an acousto-optic tunable filter is used to obtain multi-wavelength holograms. However, the phase shifting error caused by the acousto-optic tunable filter reduces the measurement accuracy and, in turn, the reconstructed topographies are erroneous. In this paper, an accurate reconstruction approach is proposed. It corrects the phase-shifting errors by minimizing the difference between the ideal interferograms and the recorded ones. The restriction on the step number and uniformity of the phase shifting is relaxed in the interferometry, and the measurement accuracy for complex surfaces can also be improved. The universality and superiority of the proposed method are demonstrated by practical experiments and comparison to other measurement methods.

  1. Deformation mode and strain path dependence of martensite phase transformation in a medium manganese TRIP steel

    DOE PAGES

    Wu, Wei; Wang, Yu-wei; Makrygiannis, Panagiotis; ...

    2017-11-06

    The martensite phase transformation dependence upon deformation modes and strain paths in a medium manganese (10 wt%) TRIP steel stamped into a T-shape panel was quantified through combination of 3D digital image correlation and synchrotron X-ray diffraction. The T-shape emulates a portion of a common anti-intrusion component. The stamping speed was kept intentionally slow (1 mm/s) so as to avoid excessive heat generation. The steel, which belongs to the third generation advanced high strength steel (3GAHSS) family, was chosen for two reasons: (1) it is two-phase, i.e. austenite and ferrite, with martensite resulting from deformation-induced phase transformation; (2) the 66more » vol.% initial retained austenite volume fraction (RAVF) enabled a thorough examination of the martensite phase transformation at large deformation levels without exhaustion. Strain fields were coupled with measured RAVF values of small specimens extracted from specific locations on a formed T-shape panel. This enabled an exploration of the effects of linear, bilinear, and non-linear strain paths as well as deformation modes such as tension, plane strain, biaxial tension, and equibiaxial tension. Results suggest a significant martensite phase transformation dependence on deformation mode and strain path in the absence of fracture and when martensite phase transformation is unaffected by heat generated during forming. In general, the uniaxial and biaxial tension deformation modes facilitate the martensite phase transformation, while the smallest amount of martensite phase transformation occurs under plane strain. Some discussion as to further application of the experimental methods detailed in this study to other 3GAHSS and the effects of fracture on martensite phase transformation is provided.« less

  2. Deformation mode and strain path dependence of martensite phase transformation in a medium manganese TRIP steel

    DOE PAGES

    Wu, Wei; Wang, Yu -Wei; Makrygiannis, Panagiotis; ...

    2017-11-06

    The martensite phase transformation dependence upon deformation modes and strain paths in a medium manganese (10 wt%) TRIP steel stamped into a T-shape panel was quantified through combination of 3D digital image correlation and synchrotron X-ray diffraction. The T-shape emulates a portion of a common anti-intrusion component. The stamping speed was kept intentionally slow (1 mm/s) so as to avoid excessive heat generation. The steel, which belongs to the third generation advanced high strength steel (3GAHSS) family, was chosen for two reasons: (1) it is two-phase, i.e. austenite and ferrite, with martensite resulting from deformation-induced phase transformation; (2) the 66more » vol.% initial retained austenite volume fraction (RAVF) enabled a thorough examination of the martensite phase transformation at large deformation levels without exhaustion. Strain fields were coupled with measured RAVF values of small specimens extracted from specific locations on a formed T-shape panel. This enabled an exploration of the effects of linear, bilinear, and non-linear strain paths as well as deformation modes such as tension, plane strain, biaxial tension, and equibiaxial tension. Results suggest a significant martensite phase transformation dependence on deformation mode and strain path in the absence of fracture and when martensite phase transformation is unaffected by heat generated during forming. In general, the uniaxial and biaxial tension deformation modes facilitate the martensite phase transformation, while the smallest amount of martensite phase transformation occurs under plane strain. In conclusion, some discussion as to further application of the experimental methods detailed in this study to other 3GAHSS and the effects of fracture on martensite phase transformation is provided.« less

  3. Deformation mode and strain path dependence of martensite phase transformation in a medium manganese TRIP steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Wei; Wang, Yu -Wei; Makrygiannis, Panagiotis

    The martensite phase transformation dependence upon deformation modes and strain paths in a medium manganese (10 wt%) TRIP steel stamped into a T-shape panel was quantified through combination of 3D digital image correlation and synchrotron X-ray diffraction. The T-shape emulates a portion of a common anti-intrusion component. The stamping speed was kept intentionally slow (1 mm/s) so as to avoid excessive heat generation. The steel, which belongs to the third generation advanced high strength steel (3GAHSS) family, was chosen for two reasons: (1) it is two-phase, i.e. austenite and ferrite, with martensite resulting from deformation-induced phase transformation; (2) the 66more » vol.% initial retained austenite volume fraction (RAVF) enabled a thorough examination of the martensite phase transformation at large deformation levels without exhaustion. Strain fields were coupled with measured RAVF values of small specimens extracted from specific locations on a formed T-shape panel. This enabled an exploration of the effects of linear, bilinear, and non-linear strain paths as well as deformation modes such as tension, plane strain, biaxial tension, and equibiaxial tension. Results suggest a significant martensite phase transformation dependence on deformation mode and strain path in the absence of fracture and when martensite phase transformation is unaffected by heat generated during forming. In general, the uniaxial and biaxial tension deformation modes facilitate the martensite phase transformation, while the smallest amount of martensite phase transformation occurs under plane strain. In conclusion, some discussion as to further application of the experimental methods detailed in this study to other 3GAHSS and the effects of fracture on martensite phase transformation is provided.« less

  4. Deformation mode and strain path dependence of martensite phase transformation in a medium manganese TRIP steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Wei; Wang, Yu-wei; Makrygiannis, Panagiotis

    The martensite phase transformation dependence upon deformation modes and strain paths in a medium manganese (10 wt%) TRIP steel stamped into a T-shape panel was quantified through combination of 3D digital image correlation and synchrotron X-ray diffraction. The T-shape emulates a portion of a common anti-intrusion component. The stamping speed was kept intentionally slow (1 mm/s) so as to avoid excessive heat generation. The steel, which belongs to the third generation advanced high strength steel (3GAHSS) family, was chosen for two reasons: (1) it is two-phase, i.e. austenite and ferrite, with martensite resulting from deformation-induced phase transformation; (2) the 66more » vol.% initial retained austenite volume fraction (RAVF) enabled a thorough examination of the martensite phase transformation at large deformation levels without exhaustion. Strain fields were coupled with measured RAVF values of small specimens extracted from specific locations on a formed T-shape panel. This enabled an exploration of the effects of linear, bilinear, and non-linear strain paths as well as deformation modes such as tension, plane strain, biaxial tension, and equibiaxial tension. Results suggest a significant martensite phase transformation dependence on deformation mode and strain path in the absence of fracture and when martensite phase transformation is unaffected by heat generated during forming. In general, the uniaxial and biaxial tension deformation modes facilitate the martensite phase transformation, while the smallest amount of martensite phase transformation occurs under plane strain. Some discussion as to further application of the experimental methods detailed in this study to other 3GAHSS and the effects of fracture on martensite phase transformation is provided.« less

  5. Spectrally controlled interferometry for measurements of flat and spherical optics

    NASA Astrophysics Data System (ADS)

    Salsbury, Chase; Olszak, Artur G.

    2017-10-01

    Conventional interferometry is widely used to measure spherical and at surfaces with nanometer level precision but is plagued by back reflections. We describe a new method of isolating the measurement surface by controlling spectral properties of the source (Spectrally Controlled Interferometry - SCI). Using spectral modulation of the interferometer's source enables formation of localized fringes where the optical path difference is non-zero. As a consequence it becomes possible to form white-light like fringes in common path interferometers, such as the Fizeau. The proposed setup does not require mechanical phase shifting, resulting in simpler instruments and the ability to upgrade existing interferometers. Furthermore, it allows absolute measurement of distance, including radius of curvature of lenses in a single setup with possibility of improving the throughput and removing some modes of failure.

  6. Polarization interferometry for real-time spectroscopic plasmonic sensing.

    PubMed

    Otto, Lauren M; Mohr, Daniel A; Johnson, Timothy W; Oh, Sang-Hyun; Lindquist, Nathan C

    2015-03-07

    We present quantitative, spectroscopic polarization interferometry phase measurements on plasmonic surfaces for sensing applications. By adding a liquid crystal variable wave plate in our beam path, we are able to measure phase shifts due to small refractive index changes on the sensor surface. By scanning in a quick sequence, our technique is extended to demonstrate real-time measurements. While this optical technique is applicable to different sensor geometries-e.g., nanoparticles, nanogratings, or nanoapertures-the plasmonic sensors we use here consist of an ultrasmooth gold layer with buried linear gratings. Using these devices and our phase measurement technique, we calculate a figure of merit that shows improvement over measuring only surface plasmon resonance shifts from a reflected intensity spectrum. To demonstrate the general-purpose versatility of our phase-resolved measurements, we also show numerical simulations with another common device architecture: periodic plasmonic slits. Since our technique inherently measures both the intensity and phase of the reflected or transmitted light simultaneously, quantitative sensor device characterization is possible.

  7. Optoelectronic System Measures Distances to Multiple Targets

    NASA Technical Reports Server (NTRS)

    Liebe, Carl Christian; Abramovici, Alexander; Bartman, Randall; Chapsky, Jacob; Schmalz, John; Coste, Keith; Litty, Edward; Lam, Raymond; Jerebets, Sergei

    2007-01-01

    An optoelectronic metrology apparatus now at the laboratory-prototype stage of development is intended to repeatedly determine distances of as much as several hundred meters, at submillimeter accuracy, to multiple targets in rapid succession. The underlying concept of optoelectronic apparatuses that can measure distances to targets is not new; such apparatuses are commonly used in general surveying and machining. However, until now such apparatuses have been, variously, constrained to (1) a single target or (2) multiple targets with a low update rate and a requirement for some a priori knowledge of target geometry. When fully developed, the present apparatus would enable measurement of distances to more than 50 targets at an update rate greater than 10 Hz, without a requirement for a priori knowledge of target geometry. The apparatus (see figure) includes a laser ranging unit (LRU) that includes an electronic camera (photo receiver), the field of view of which contains all relevant targets. Each target, mounted at a fiducial position on an object of interest, consists of a small lens at the output end of an optical fiber that extends from the object of interest back to the LRU. For each target and its optical fiber, there is a dedicated laser that is used to illuminate the target via the optical fiber. The targets are illuminated, one at a time, with laser light that is modulated at a frequency of 10.01 MHz. The modulated laser light is emitted by the target, from where it returns to the camera (photodetector), where it is detected. Both the outgoing and incoming 10.01-MHz laser signals are mixed with a 10-MHz local-oscillator to obtain beat notes at 10 kHz, and the difference between the phases of the beat notes is measured by a phase meter. This phase difference serves as a measure of the total length of the path traveled by light going out through the optical fiber and returning to the camera (photodetector) through free space. Because the portion of the path length inside the optical fiber is not ordinarily known and can change with temperature, it is also necessary to measure the phase difference associated with this portion and subtract it from the aforementioned overall phase difference to obtain the phase difference proportional to only the free-space path length, which is the distance that one seeks to measure. Therefore, the apparatus includes a photodiode and a circulator that enable measurement of the phase difference associated with propagation from the LRU inside the fiber to the target, reflection from the fiber end, and propagation back inside the fiber to the LRU. Because this phase difference represents twice the optical path length of the fiber, this phase difference is divided in two before subtraction from the aforementioned total-path-length phase difference. Radiation-induced changes in the photodetectors in this apparatus can affect the measurements. To enable calibration for the purpose of compensation for these changes, the apparatus includes an additional target at a known short distance, located inside the camera. If the measured distance to this target changes, then the change is applied to the other targets.

  8. Fundamental performance determining factors of the ultrahigh-precision space-borne optical metrology system for the LISA Pathfinder mission

    NASA Astrophysics Data System (ADS)

    Hechenblaikner, Gerald; Flatscher, Reinhold

    2013-05-01

    The LISA Pathfinder mission to space employs an optical metrology system (OMS) at its core to measure the distance and attitude between two freely floating test-masses to picometer and nanorad accuracy, respectively, within the measurement band of [1 mHz, 30 mHz]. The OMS is based upon an ultra-stable optical bench with 4 heterodyne interferometers from which interference signals are read-out and processed by a digital phase-meter. Laser frequency noise, power fluctuations and optical path-length variations are suppressed to uncritical levels by dedicated control loops so that the measurement performance approaches the sensor limit imposed by the phasemeter. The system design is such that low frequency common mode noise which affects the read-out phase of all four interferometers is generally well suppressed by subtraction of a reference phase from the other interferometer signals. However, high frequency noise directly affects measurement performance and its common mode rejection depends strongly on the relative signal phases. We discuss how the data from recent test campaigns point towards high frequency phase noise as a likely performance limiting factor which explains some important performance features.

  9. Beam masking to reduce cyclic error in beam launcher of interferometer

    NASA Technical Reports Server (NTRS)

    Ames, Lawrence L. (Inventor); Bell, Raymond Mark (Inventor); Dutta, Kalyan (Inventor)

    2005-01-01

    Embodiments of the present invention are directed to reducing cyclic error in the beam launcher of an interferometer. In one embodiment, an interferometry apparatus comprises a reference beam directed along a reference path, and a measurement beam spatially separated from the reference beam and being directed along a measurement path contacting a measurement object. The reference beam and the measurement beam have a single frequency. At least a portion of the reference beam and at least a portion of the measurement beam overlapping along a common path. One or more masks are disposed in the common path or in the reference path and the measurement path to spatially isolate the reference beam and the measurement beam from one another.

  10. Improved phase sensitivity in spectral domain phase microscopy using line-field illumination and self phase-referencing

    PubMed Central

    Yaqoob, Zahid; Choi, Wonshik; Oh, Seungeun; Lue, Niyom; Park, Yongkeun; Fang-Yen, Christopher; Dasari, Ramachandra R.; Badizadegan, Kamran; Feld, Michael S.

    2010-01-01

    We report a quantitative phase microscope based on spectral domain optical coherence tomography and line-field illumination. The line illumination allows self phase-referencing method to reject common-mode phase noise. The quantitative phase microscope also features a separate reference arm, permitting the use of high numerical aperture (NA > 1) microscope objectives for high resolution phase measurement at multiple points along the line of illumination. We demonstrate that the path-length sensitivity of the instrument can be as good as 41 pm/Hz, which makes it suitable for nanometer scale study of cell motility. We present the detection of natural motions of cell surface and two-dimensional surface profiling of a HeLa cell. PMID:19550464

  11. Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy

    NASA Astrophysics Data System (ADS)

    Choma, Michael A.; Ellerbee, Audrey K.; Yazdanfar, Siavash; Izatt, Joseph A.

    2006-03-01

    Spectral domain phase microscopy (SDPM) is a function extension of spectral domain optical coherence tomography. SDPM achieves exquisite levels of phase stability by employing common-path interferometry. We discuss the theory and limitations of Doppler flow imaging using SDPM, demonstrate monitoring the thermal contraction of a glass sample with nanometer per second velocity sensitivity, and apply this technique to measurement of cytoplasmic streaming in an Amoeba proteus pseudopod. We observe reversal of cytoplasmic flow induced by extracellular CaCl2, and report results that suggest parabolic flow of cytoplasm in the A. proteus pseudopod.

  12. Microscopic optical path length difference and polarization measurement system for cell analysis

    NASA Astrophysics Data System (ADS)

    Satake, H.; Ikeda, K.; Kowa, H.; Hoshiba, T.; Watanabe, E.

    2018-03-01

    In recent years, noninvasive, nonstaining, and nondestructive quantitative cell measurement techniques have become increasingly important in the medical field. These cell measurement techniques enable the quantitative analysis of living cells, and are therefore applied to various cell identification processes, such as those determining the passage number limit during cell culturing in regenerative medicine. To enable cell measurement, we developed a quantitative microscopic phase imaging system based on a Mach-Zehnder interferometer that measures the optical path length difference distribution without phase unwrapping using optical phase locking. The applicability of our phase imaging system was demonstrated by successful identification of breast cancer cells amongst normal cells. However, the cell identification method using this phase imaging system exhibited a false identification rate of approximately 7%. In this study, we implemented a polarimetric imaging system by introducing a polarimetric module to one arm of the Mach-Zehnder interferometer of our conventional phase imaging system. This module was comprised of a quarter wave plate and a rotational polarizer on the illumination side of the sample, and a linear polarizer on the optical detector side. In addition, we developed correction methods for the measurement errors of the optical path length and birefringence phase differences that arose through the influence of elements other than cells, such as the Petri dish. As the Petri dish holding the fluid specimens was transparent, it did not affect the amplitude information; however, the optical path length and birefringence phase differences were affected. Therefore, we proposed correction of the optical path length and birefringence phase for the influence of elements other than cells, as a prerequisite for obtaining highly precise phase and polarimetric images.

  13. Interstation phase speed and amplitude measurements of surface waves with nonlinear waveform fitting: application to USArray

    NASA Astrophysics Data System (ADS)

    Hamada, K.; Yoshizawa, K.

    2015-09-01

    A new method of fully nonlinear waveform fitting to measure interstation phase speeds and amplitude ratios is developed and applied to USArray. The Neighbourhood Algorithm is used as a global optimizer, which efficiently searches for model parameters that fit two observed waveforms on a common great-circle path by modulating the phase and amplitude terms of the fundamental-mode surface waves. We introduce the reliability parameter that represents how well the waveforms at two stations can be fitted in a time-frequency domain, which is used as a data selection criterion. The method is applied to observed waveforms of USArray for seismic events in the period from 2007 to 2010 with moment magnitude greater than 6.0. We collect a large number of phase speed data (about 75 000 for Rayleigh and 20 000 for Love) and amplitude ratio data (about 15 000 for Rayleigh waves) in a period range from 30 to 130 s. The majority of the interstation distances of measured dispersion data is less than 1000 km, which is much shorter than the typical average path-length of the conventional single-station measurements for source-receiver pairs. The phase speed models for Rayleigh and Love waves show good correlations on large scales with the recent tomographic maps derived from different approaches for phase speed mapping; for example, significant slow anomalies in volcanic regions in the western Unites States and fast anomalies in the cratonic region. Local-scale phase speed anomalies corresponding to the major tectonic features in the western United States, such as Snake River Plains, Basin and Range, Colorado Plateau and Rio Grande Rift have also been identified clearly in the phase speed models. The short-path information derived from our interstation measurements helps to increase the achievable horizontal resolution. We have also performed joint inversions for phase speed maps using the measured phase and amplitude ratio data of vertical component Rayleigh waves. These maps exhibit better recovery of phase speed perturbations, particularly where the strong lateral velocity gradient exists in which the effects of elastic focussing can be significant; that is, the Yellowstone hotspot, Snake River Plains, and Rio Grande Rift. The enhanced resolution of the phase speed models derived from the interstation phase and amplitude measurements will be of use for the better seismological constraint on the lithospheric structure, in combination with dense broad-band seismic arrays.

  14. Amplitude and Phase Characteristics of Signals at the Output of Spatially Separated Antennas for Paths with Scattering

    NASA Astrophysics Data System (ADS)

    Anikin, A. S.

    2018-06-01

    Conditional statistical characteristics of the phase difference are considered depending on the ratio of instantaneous output signal amplitudes of spatially separated weakly directional antennas for the normal field model for paths with radio-wave scattering. The dependences obtained are related to the physical processes on the radio-wave propagation path. The normal model parameters are established at which the statistical characteristics of the phase difference depend on the ratio of the instantaneous amplitudes and hence can be used to measure the phase difference. Using Shannon's formula, the amount of information on the phase difference of signals contained in the ratio of their amplitudes is calculated depending on the parameters of the normal field model. Approaches are suggested to reduce the shift of phase difference measured for paths with radio-wave scattering. A comparison with results of computer simulation by the Monte Carlo method is performed.

  15. Non-Conventional Techniques for the Study of Phase Transitions in NiTi-Based Alloys

    NASA Astrophysics Data System (ADS)

    Nespoli, Adelaide; Villa, Elena; Passaretti, Francesca; Albertini, Franca; Cabassi, Riccardo; Pasquale, Massimo; Sasso, Carlo Paolo; Coïsson, Marco

    2014-07-01

    Differential scanning calorimetry and electrical resistance measurements are the two most common techniques for the study of the phase transition path and temperatures of shape memory alloys (SMA) in stress-free condition. Besides, it is well known that internal friction measurements are also useful for this purpose. There are indeed some further techniques which are seldom used for the basic characterization of SMA transition: dilatometric analysis, magnetic measurements, and Seebeck coefficient study. In this work, we discuss the attitude of these techniques for the study of NiTi-based phase transition. Measurements were conducted on several fully annealed Ni50- x Ti50Cu x samples ranging from 3 to 10 at.% in Cu content, fully annealed at 850 °C for 1 h in vacuum and quenched in water at room temperature. Results show that all these techniques are sensitive to phase transition, and they provide significant information about the existence of intermediate phases.

  16. Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging.

    PubMed

    Jung, Jae-Hwang; Jang, Jaeduck; Park, Yongkeun

    2013-11-05

    We present a novel spectroscopic quantitative phase imaging technique with a wavelength swept-source, referred to as swept-source diffraction phase microscopy (ssDPM), for quantifying the optical dispersion of microscopic individual samples. Employing the swept-source and the principle of common-path interferometry, ssDPM measures the multispectral full-field quantitative phase imaging and spectroscopic microrefractometry of transparent microscopic samples in the visible spectrum with a wavelength range of 450-750 nm and a spectral resolution of less than 8 nm. With unprecedented precision and sensitivity, we demonstrate the quantitative spectroscopic microrefractometry of individual polystyrene beads, 30% bovine serum albumin solution, and healthy human red blood cells.

  17. Demonstration of an ultrasensitive refractive-index plasmonic sensor by enabling its quadrupole resonance in phase interrogation.

    PubMed

    Lee, Hsin-Cheng; Li, Chung-Tien; Chen, How-Foo; Yen, Ta-Jen

    2015-11-15

    We present an ultrasensitive plasmonic sensing system by introducing a nanostructured X-shaped plasmonic sensor (XPS) and measuring its localized optical properties in phase interrogation. Our tailored XPS exhibits two major resonant modes of a low-order dipole and a high-order quadrupole, between which the quadrupole resonance allows an ultrahigh sensitivity, due to its higher quality factor. Furthermore, we design an in-house common-path phase-interrogation system, in contrast to conventional wavelength-interrogation methods, to achieve greater sensing capability. The experimental measurement shows that the sensing resolution of the XPS reaches 1.15×10(-6) RIU, not only two orders of magnitude greater than the result of the controlled extinction measurement (i.e., 9.90×10(-5) RIU), but also superior than current reported plasmonic sensors.

  18. Quantitative phase imaging of biological cells and tissues using singleshot white light interference microscopy and phase subtraction method for extended range of measurement

    NASA Astrophysics Data System (ADS)

    Mehta, Dalip Singh; Sharma, Anuradha; Dubey, Vishesh; Singh, Veena; Ahmad, Azeem

    2016-03-01

    We present a single-shot white light interference microscopy for the quantitative phase imaging (QPI) of biological cells and tissues. A common path white light interference microscope is developed and colorful white light interferogram is recorded by three-chip color CCD camera. The recorded white light interferogram is decomposed into the red, green and blue color wavelength component interferograms and processed it to find out the RI for different color wavelengths. The decomposed interferograms are analyzed using local model fitting (LMF)" algorithm developed for reconstructing the phase map from single interferogram. LMF is slightly off-axis interferometric QPI method which is a single-shot method that employs only a single image, so it is fast and accurate. The present method is very useful for dynamic process where path-length changes at millisecond level. From the single interferogram a wavelength-dependent quantitative phase imaging of human red blood cells (RBCs) are reconstructed and refractive index is determined. The LMF algorithm is simple to implement and is efficient in computation. The results are compared with the conventional phase shifting interferometry and Hilbert transform techniques.

  19. Common-Path Interferometric Wavefront Sensing for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Wallace, James Kent

    2011-01-01

    This paper presents an optical configuration for a common-path phase-shifting interferometric wavefront sensor.1 2 This sensor has a host of attractive features which make it well suited for space-based adaptive optics. First, it is strictly reflective and therefore operates broadband, second it is common mode and therefore does not suffer from systematic errors (like vibration) that are typical in other interferometers, third it is a phase-shifting interferometer and therefore benefits from both the sensitivity of interferometric sensors as well as the noise rejection afforded by synchronous detection. Unlike the Shack-Hartman wavefront sensor, it has nearly uniform sensitivity to all pupil modes. Optical configuration, theory and simulations for such a system will be discussed along with predicted performance.

  20. Observations of tropospheric phase scintillations at 5 GHz on vertical paths

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.; Sramek, R. A.

    1982-01-01

    The article presents observations of turbulence-induced tropospheric phase fluctuations measured at 5 GHz on the near-vertical paths relevant to many astronomical and geophysical measurements. The data are summarized as phase power spectra, structure functions, and Allan variances. Comparisons to other microwave observations indicate relatively good agreement in both the level and shape of the power spectrum of these tropospheric phase fluctuations. Implications for precision Doppler tracking of spacecraft and geodesy/radio interferometry are discussed.

  1. Role of misalignment-induced angular chirp in the electro-optic detection of THz waves.

    PubMed

    Walsh, D A; Cliffe, M J; Pan, R; Snedden, E W; Graham, D M; Gillespie, W A; Jamison, S P

    2014-05-19

    A general description of electro-optic detection including non-collinear phase matching and finite transverse beam profiles is presented. It is shown theoretically and experimentally that non-collinear phase matching in ZnTe (and similar materials) produces an angular chirp in the χ(2)-generated optical signal. Due to this, in non-collinear THz and probe arrangements such as single-shot THz measurements or through accidental misalignment, measurement of an undistorted THz signal is critically dependent on having sufficient angular acceptance in the optical probe path. The associated spatial walk-off can also preclude the phase retardation approximation used in THz-TDS. The rate of misalignment-induced chirping in commonly used ZnTe and GaP schemes is tabulated, allowing ready analysis of a detection system.

  2. Integration of polarization-multiplexing and phase-shifting in nanometric two dimensional self-mixing measurement.

    PubMed

    Tao, Yufeng; Xia, Wei; Wang, Ming; Guo, Dongmei; Hao, Hui

    2017-02-06

    Integration of phase manipulation and polarization multiplexing was introduced to self-mixing interferometry (SMI) for high-sensitive measurement. Light polarizations were used to increase measuring path number and predict manifold merits for potential applications. Laser source was studied as a microwave-photonic resonator optically-injected by double reflected lights on a two-feedback-factor analytical model. Independent external paths exploited magnesium-oxide doped lithium niobate crystals at perpendicular polarizations to transfer interferometric phases into amplitudes of harmonics. Theoretical resolutions reached angstrom level. By integrating two techniques, this SMI outperformed the conventional single-path SMIs by simultaneous dual-targets measurement on single laser tube with high sensitivity and low speckle noise. In experimental demonstration, by nonlinear filtering method, a custom-made phase-resolved algorithm real-time figured out instantaneous two-dimensional displacements with nanometer resolution. Experimental comparisons to lock-in technique and a commercial Ploytec-5000 laser Doppler velocity meter validated this two-path SMI in micron range without optical cross-talk. Moreover, accuracy subjected to slewing rates of crystals could be flexibly adjusted.

  3. Broadband Phase Spectroscopy over Turbulent Air Paths

    NASA Astrophysics Data System (ADS)

    Giorgetta, Fabrizio R.; Rieker, Gregory B.; Baumann, Esther; Swann, William C.; Sinclair, Laura C.; Kofler, Jon; Coddington, Ian; Newbury, Nathan R.

    2015-09-01

    Broadband atmospheric phase spectra are acquired with a phase-sensitive dual-frequency-comb spectrometer by implementing adaptive compensation for the strong decoherence from atmospheric turbulence. The compensation is possible due to the pistonlike behavior of turbulence across a single spatial-mode path combined with the intrinsic frequency stability and high sampling speed associated with dual-comb spectroscopy. The atmospheric phase spectrum is measured across 2 km of air at each of the 70 000 comb teeth spanning 233 cm-1 across hundreds of near-infrared rovibrational resonances of CO2 , CH4 , and H2O with submilliradian uncertainty, corresponding to a 10-13 refractive index sensitivity. Trace gas concentrations extracted directly from the phase spectrum reach 0.7 ppm uncertainty, demonstrated here for CO2 . While conventional broadband spectroscopy only measures intensity absorption, this approach enables measurement of the full complex susceptibility even in practical open path sensing.

  4. A Path to Successful Energy Retrofits: Early Collaboration through Integrated Project Delivery Teams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parrish, Kristen

    2012-10-01

    This document guides you through a process for the early design phases of retrofit projects to help you mitigate frustrations commonly experienced by building owners and designers. It outlines the value of forming an integrated project delivery team and developing a communication and information-sharing infrastructure that fosters collaboration. This guide does not present a complete process for designing an energy retrofit for a building. Instead, it focuses on the early design phase tasks related to developing and selecting energy efficiency measures (EEMs) that benefit from collaboration, and highlights the resulting advantages.

  5. Holographic 3D imaging through diffuse media by compressive sampling of the mutual intensity

    NASA Astrophysics Data System (ADS)

    Falldorf, Claas; Klein, Thorsten; Agour, Mostafa; Bergmann, Ralf B.

    2017-05-01

    We present a method for holographic imaging through a volume scattering material, which is based on selfreference and light with good spatial but limited temporal coherence. In contrast to existing techniques, we do not require a separate reference wave, thus our approach provides great advantages towards the flexibility of the measurement system. The main applications are remote sensing and investigation of moving objects through gaseous streams, bubbles or foggy water for example. Furthermore, due to the common path nature, the system is also insensitive to mechanical disturbances. The measurement result is a complex amplitude which is comparable to a phase shifted digital hologramm and therefore allows 3D imaging, numerical refocusing and quantitative phase contrast imaging. As an example of application, we present measurements of the quantitative phase contrast of the epidermis of an onion through a volume scattering material.

  6. White-light diffraction phase microscopy at doubled space-bandwidth product.

    PubMed

    Shan, Mingguang; Kandel, Mikhail E; Majeed, Hassaan; Nastasa, Viorel; Popescu, Gabriel

    2016-12-12

    White light diffraction microscopy (wDPM) is a quantitative phase imaging method that benefits from both temporal and spatial phase sensitivity, granted, respectively, by the common-path geometry and white light illumination. However, like all off-axis quantitative phase imaging methods, wDPM is characterized by a reduced space-bandwidth product compared to phase shifting approaches. This happens essentially because the ultimate resolution of the image is governed by the period of the interferogram and not just the diffraction limit. As a result, off-axis techniques generates single-shot, i.e., high time-bandwidth, phase measurements, at the expense of either spatial resolution or field of view. Here, we show that combining phase-shifting and off-axis, the original space-bandwidth is preserved. Specifically, we developed phase-shifting diffraction phase microscopy with white light, in which we measure and combine two phase shifted interferograms. Due to the white light illumination, the phase images are characterized by low spatial noise, i.e., <1nm pathlength. We illustrate the operation of the instrument with test samples, blood cells, and unlabeled prostate tissue biopsy.

  7. Motion detection, novelty filtering, and target tracking using an interferometric technique with GaAs phase conjugate mirror

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen (Inventor); Liu, Tsuen-Hsi (Inventor)

    1991-01-01

    A method and apparatus for detecting and tracking moving objects in a noise environment cluttered with fast- and slow-moving objects and other time-varying background. A pair of phase conjugate light beams carrying the same spatial information commonly cancel each other out through an image subtraction process in a phase conjugate interferometer, wherein gratings are formed in a fast photorefractive phase conjugate mirror material. In the steady state, there is no output. When the optical path of one of the two phase conjugate beams is suddenly changed, the return beam loses its phase conjugate nature and the interferometer is out of balance, resulting in an observable output. The observable output lasts until the phase conjugate nature of the beam has recovered. The observable time of the output signal is roughly equal to the formation time of the grating. If the optical path changing time is slower than the formation time, the change of optical path becomes unobservable, because the index grating can follow the change. Thus, objects traveling at speeds which result in a path changing time which is slower than the formation time are not observable and do not clutter the output image view.

  8. Non-contact measurement of electrical activity in neurons using magnified image spatial spectrum (MISS) microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Majeed, Hassaan; Lee, Young J.; Best-Popescu, Catherine; Popescu, Gabriel; Jang, Sung-Soo; Chung, Hee Jung

    2017-02-01

    Traditionally the measurement of electrical activity in neurons has been carried out using microelectrode arrays that require the conducting elements to be in contact with the neuronal network. This method, also referred to as "electrophysiology", while being excellent in terms of temporal resolution is limited in spatial resolution and is invasive. An optical microscopy method for measuring electrical activity is thus highly desired. Common-path quantitative phase imaging (QPI) systems are good candidates for such investigations as they provide high sensitivity (on the order of nanometers) to the plasma membrane fluctuations that can be linked to electrical activity in a neuronal circuit. In this work we measured electrical activity in a culture of rat cortical neurons using MISS microscopy, a high-speed common-path QPI technique having an axial resolution of around 1 nm in optical path-length, which we introduced at PW BIOS 2016. Specifically, we measured the vesicular cycling (endocytosis and exocytosis) occurring at axon terminals of the neurons due to electrical activity caused by adding a high K+ solution to the cell culture. The axon terminals were localized using a micro-fluidic device that separated them from the rest of the culture. Stacks of images of these terminals were acquired at 826 fps both before and after K+ excitation and the temporal standard deviation maps for the two cases were compared to measure the membrane fluctuations. Concurrently, the existence of vesicular cycling was confirmed through fluorescent tagging and imaging of the vesicles at and around the axon terminals.

  9. Process and apparatus for measuring degree of polarization and angle of major axis of polarized beam of light

    DOEpatents

    Decker, Derek E.; Toeppen, John S.

    1994-01-01

    Apparatus and process are disclosed for calibrating measurements of the phase of the polarization of a polarized beam and the angle of the polarized optical beam's major axis of polarization at a diagnostic point with measurements of the same parameters at a point of interest along the polarized beam path prior to the diagnostic point. The process is carried out by measuring the phase angle of the polarization of the beam and angle of the major axis at the point of interest, using a rotatable polarizer and a detector, and then measuring these parameters again at a diagnostic point where a compensation apparatus, including a partial polarizer, which may comprise a stack of glass plates, is disposed normal to the beam path between a rotatable polarizer and a detector. The partial polarizer is then rotated both normal to the beam path and around the axis of the beam path until the detected phase of the beam polarization equals the phase measured at the point of interest. The rotatable polarizer at the diagnostic point may then be rotated manually to determine the angle of the major axis of the beam and this is compared with the measured angle of the major axis of the beam at the point of interest during calibration. Thereafter, changes in the polarization phase, and in the angle of the major axis, at the point of interest can be monitored by measuring the changes in these same parameters at the diagnostic point.

  10. Spectral domain phase microscopy: a new tool for measuring cellular dynamics and cytoplasmic flow

    NASA Astrophysics Data System (ADS)

    McDowell, Emily J.; Choma, Michael A.; Ellerbee, Audrey K.; Izatt, Joseph A.

    2005-03-01

    Broadband interferometry is an attractive technique for the detection of cellular motions because it provides depth-resolved interferometric phase information via coherence gating. Here a phase sensitive technique called spectral domain phase microscopy (SDPM) is presented. SDPM is a functional extension of spectral domain optical coherence tomography that allows for the detection of cellular motions and dynamics with nanometer-scale sensitivity. This sensitivity is made possible by the inherent phase stability of spectral domain OCT combined with common-path interferometry. The theory that underlies this technique is presented, the sensitivity of the technique is demonstrated by the measurement of the thermal expansion coefficient of borosilicate glass, and the response of an Amoeba proteus to puncture of its cell membrane is measured. We also exploit the phase stability of SDPM to perform Doppler flow imaging of cytoplasmic streaming in A. proteus. We show reversal of cytoplasmic flow in response to stimuli, and we show that the cytoplasmic flow is laminar (i.e. parabolic) in nature. We are currently investigating the use of SDPM in a variety of different cell types.

  11. Simultaneous phase-shifting interferometry study based on the common-path Fizeau interferometer

    NASA Astrophysics Data System (ADS)

    Liu, Feng-wei; Wu, Yong-qian

    2014-09-01

    A simultaneous phase-shifting interferometry(SPSI) based on the common-path Fizeau interferometer has been discussed.In this system,two orthogonal polarized beams, using as the reference beam and test beam ,are detached by a particular Wollaston prism at a very small angle,then four equal sub-beams are achieved by a combination of three non-polarizing beam splitters(NPBS),and the phase shifts are introduced by four polarizers whose polarization azimuths are 0°, 45°, 90°, 135° with the horizontal direction respectively,the four phase shift interferograms are collected simultaneously by controlling the CCDs working at the same time .The SPSI principle is studied at first,then is the error analysis, finally we emulate the process of surface recovery by four steps phase shifts algorithm,the results indicate that, to ensure the feasibility of the SPSI system, we have to control the polarization azimuth error of the polarizer in +/- 0.5°.

  12. Low-common-mode differential amplifier

    NASA Technical Reports Server (NTRS)

    Morrison, S.

    1980-01-01

    Outputs of differential amplifier are excellently matched in phase and amplitude over wide range of frequencies. Common mode feedback loop offsets differences between two signal paths. Possible applications of circuit are in oscilloscopes, integrated circuit logic tester, and other self contained instruments.

  13. The CHARA array adaptive optics I: common-path optical and mechanical design, and preliminary on-sky results

    NASA Astrophysics Data System (ADS)

    Che, Xiao; Sturmann, Laszlo; Monnier, John D.; ten Brummelaar, Theo A.; Sturmann, Judit; Ridgway, Stephen T.; Ireland, Michael J.; Turner, Nils H.; McAlister, Harold A.

    2014-07-01

    The CHARA array is an optical interferometer with six 1-meter diameter telescopes, providing baselines from 33 to 331 meters. With sub-milliarcsecond angular resolution, its versatile visible and near infrared combiners offer a unique angle of studying nearby stellar systems by spatially resolving their detailed structures. To improve the sensitivity and scientific throughput, the CHARA array was funded by NSF-ATI in 2011 to install adaptive optics (AO) systems on all six telescopes. The initial grant covers Phase I of the AO systems, which includes on-telescope Wavefront Sensors (WFS) and non-common-path (NCP) error correction. Meanwhile we are seeking funding for Phase II which will add large Deformable Mirrors on telescopes to close the full AO loop. The corrections of NCP error and static aberrations in the optical system beyond the WFS are described in the second paper of this series. This paper describes the design of the common-path optical system and the on-telescope WFS, and shows the on-sky commissioning results.

  14. Proof of concept demonstration for coherent beam pattern measurements of KID detectors

    NASA Astrophysics Data System (ADS)

    Davis, Kristina K.; Baryshev, Andrey M.; Jellema, Willem; Yates, Stephen J. C.; Ferrari, Lorenza; Baselmans, Jochem J. A.

    2016-07-01

    Here we summarize the initial results from a complex field radiation pattern measurement of a kinetic inductance detector instrument. These detectors are phase insensitive and have thus been limited to scalar, or amplitude-only, beam measurements. Vector beam scans, of both amplitude and phase, double the information received in comparison to scalar beam scans. Scalar beam measurements require multiple scans at varying distances along the optical path of the receiver to fully constrain the divergence angle of the optical system and locate the primary focus. Vector scans provide this information with a single scan, reducing the total measurement time required for new systems and also limiting the influence of system instabilities. The vector scan can be taken at any point along the optical axis of the system including the near-field, which makes beam measurements possible for large systems at high frequencies where these measurements may be inconceivable to be tested in-situ. Therefore, the methodology presented here should enable common heterodyne analysis for direct detector instruments. In principle, this coherent measurement strategy allows phase dependent analysis to be performed on any direct-detect receiver instrument.

  15. Motion detection, novelty filtering, and target tracking using an interferometric technique with a GaAs phase conjugate mirror

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen (Inventor); Liu, Tsuen-Hsi (Inventor)

    1990-01-01

    A method and apparatus is disclosed for detecting and tracking moving objects in a noise environment cluttered with fast-and slow-moving objects and other time-varying background. A pair of phase conjugate light beams carrying the same spatial information commonly cancel each other out through an image subtraction process in a phase conjugate interferometer, wherein gratings are formed in a fast photo-refractive phase conjugate mirror material. In the steady state, there is no output. When the optical path of one of the two phase conjugate beams is suddenly changed, the return beam loses its phase conjugate nature and the inter-ferometer is out of balance, resulting in an observable output. The observable output lasts until the phase conjugate nature of the beam has recovered. The observable time of the output signal is roughly equal to the formation time of the grating. If the optical path changing time is slower than the formation time, the change of optical path becomes unobservable, because the index grating can follow the change. Thus, objects traveling at speeds which result in a path changing time which is slower than the formation time are not observable and do not clutter the output image view.

  16. Fizeau simultaneous phase-shifting interferometry based on extended source

    NASA Astrophysics Data System (ADS)

    Wang, Shanshan; Zhu, Qiudong; Hou, Yinlong; Cao, Zheng

    2016-09-01

    Coaxial Fizeau simultaneous phase-shifting interferometer plays an important role in many fields for its characteristics of long optical path, miniaturization, and elimination of reference surface high-frequency error. Based on the matching of coherence between extended source and interferometer, orthogonal polarization reference wave and measurement wave can be obtained by Fizeau interferometry with Michelson interferometer preposed. Through matching spatial coherence length between preposed interferometer and primary interferometer, high contrast interference fringes can be obtained and additional interference fringes can be eliminated. Thus, the problem of separation of measurement and reference surface in the common optical path Fizeau interferometer is solved. Numerical simulation and principle experiment is conducted to verify the feasibility of extended source interferometer. Simulation platform is established by using the communication technique of DDE (dynamic data exchange) to connect Zemax and Matlab. The modeling of the extended source interferometer is realized by using Zemax. Matlab codes are programmed to automatically rectify the field parameters of the optical system and conveniently calculate the visibility of interference fringes. Combined with the simulation, the experimental platform of the extended source interferometer is established. After experimental research on the influence law of scattering screen granularity to interference fringes, the granularity of scattering screen is determined. Based on the simulation platform and experimental platform, the impacts on phase measurement accuracy of the imaging system aberration and collimation system aberration of the interferometer are analyzed. Compared the visibility relation curves between experimental measurement and simulation result, the experimental result is in line with the theoretical result.

  17. Phase conjugate digital inline holography (PCDIH)

    DOE PAGES

    Guildenbecher, Daniel Robert; Hoffmeister, Kathryn N. Gabet; Kunzler, William Marley; ...

    2018-01-12

    We report digital inline holography (DIH) provides instantaneous three-dimensional (3D) measurements of diffracting objects; however, phase disturbances in the beam path can distort the imaging. In this Letter, a phase conjugate digital inline holography (PCDIH) configuration is proposed for removal of phase disturbances. Brillouin-enhanced four-wave mixing produces a phase conjugate signal that back propagates along the DIH beam path. Finally, the results demonstrate the removal of distortions caused by gas-phase shocks to recover 3D images of diffracting objects.

  18. Phase conjugate digital inline holography (PCDIH)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guildenbecher, Daniel Robert; Hoffmeister, Kathryn N. Gabet; Kunzler, William Marley

    We report digital inline holography (DIH) provides instantaneous three-dimensional (3D) measurements of diffracting objects; however, phase disturbances in the beam path can distort the imaging. In this Letter, a phase conjugate digital inline holography (PCDIH) configuration is proposed for removal of phase disturbances. Brillouin-enhanced four-wave mixing produces a phase conjugate signal that back propagates along the DIH beam path. Finally, the results demonstrate the removal of distortions caused by gas-phase shocks to recover 3D images of diffracting objects.

  19. Identification of atmospheric structure by coherent microwave sounding

    NASA Technical Reports Server (NTRS)

    Birkemeier, W. P.

    1969-01-01

    Two atmospheric probing experiments involving beyond-the-horizon propagation of microwave signals are reported. In the first experiment, Doppler-shift caused by the cross path wind is measured by a phase lock receiver with the common volume displaced in azimuth from the great circle. Variations in the measured Doppler shift values are explained in terms of variations in atmospheric structure. The second experiment makes use of the pseudorandom sounding signal used in a RAKE communication system. Both multipath delay and Doppler shift are provided by the receiver, permitting the cross section of the atmospheric layer structure to be deduced.

  20. Common path point diffraction interferometer using liquid crystal phase shifting

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R. (Inventor)

    1997-01-01

    A common path point diffraction interferometer uses dyed, parallel nematic liquid crystals which surround an optically transparent microsphere. Coherent, collimated and polarized light is focused on the microsphere at a diameter larger than that of the microsphere. A portion of the focused light passes through the microsphere to form a spherical wavefront reference beam and the rest of the light is attenuated by the dyed liquid crystals to form an object beam. The two beams form an interferogram which is imaged by a lens onto an electronic array sensor and into a computer which determines the wavefront of the object beam. The computer phase shifts the interferogram by stepping up an AC voltage applied across the liquid crystals without affecting the reference beam.

  1. Nondestructive measurement of an optical fiber refractive-index profile by a transmitted-light differential interference contact microscope.

    PubMed

    Liu, Zhongyao; Dong, Xiaoman; Chen, Qianghua; Yin, Chunyong; Xu, Yuxian; Zheng, Yingjun

    2004-03-01

    A novel transmitted-light differential interference contrast (DIC) system is used for nondestructive measurement of the refractive-index profile (RIP) of an optical fiber. By means of this system the phase of a measured light beam can be modulated with an analyzer, and the phase distribution of a fiber is obtained by calculation of the various interference patterns. The measurement theory and structure and some typical applications of this system are demonstrated. The results of measuring RIPs in graded-index fiber are presented. Both the experimental results and theoretical analysis show that the system takes the advantage of high index resolution and of sufficient measurement accuracy for measuring the refractive index of the optical fiber. The system has strong ability to overcome environmental disturbance because of its common-path design. Moreover, one can use the system to measure the RIP along the fiber axis and acquire an image of the three-dimensional RIP of the fiber.

  2. Cross-Polarization Optical Coherence Tomography with Active Maintenance of the Circular Polarization of a Sounding Wave in a Common Path System

    NASA Astrophysics Data System (ADS)

    Gelikonov, V. M.; Romashov, V. N.; Shabanov, D. V.; Ksenofontov, S. Yu.; Terpelov, D. A.; Shilyagin, P. A.; Gelikonov, G. V.; Vitkin, I. A.

    2018-05-01

    We consider a cross-polarization optical coherence tomography system with a common path for the sounding and reference waves and active maintenance of the circular polarization of a sounding wave. The system is based on the formation of birefringent characteristics of the total optical path, which are equivalent to a quarter-wave plate with a 45° orientation of its optical axes with respect to the linearly polarized reference wave. Conditions under which any light-polarization state can be obtained using a two-element phase controller are obtained. The dependence of the local cross-scattering coefficient of light in a model medium and biological tissue on the sounding-wave polarization state is demonstrated. The necessity of active maintenance of the circular polarization of a sounding wave in this common path system (including a flexible probe) is shown to realize uniform optimal conditions for cross-polarization studies of biological tissue.

  3. Phase-Shifting Liquid Crystal Point-Diffraction Interferometry

    NASA Technical Reports Server (NTRS)

    Griffin, DeVon W.; Marshall, Kenneth L.; Mercer, Carolyn R.

    2000-01-01

    Microgravity fluid physics experiments frequently measure concentration and temperature. Interferometers such as the Twyman Green illustrated have performed full-field measurement of these quantities. As with most such devices, this interferometer uses a reference path that is not common with the path through the test section. Recombination of the test and reference wavefronts produces interference fringes. Unfortunately, in order to obtain stable fringes, the alignment of both the test and reference paths must be maintained to within a fraction of the wavelength of the light being used for the measurement. Otherwise, the fringes will shift and may disappear. Because these interferometers are extremely sensitive to bumping, jarring and transmitted vibration, they are typically mounted on optical isolation tables. Schlieren deflectometers or the more recent Shack-Hartmann wavefront sensors also measure concentration and temperature in laboratory fluid flows. Ray optics describe the operation of both devices. In a schlieren system, an expanded, collimated beam passes through a test section where refractive index gradients deflect rays. A lens focuses the beam to a filter placed in the rear focal plane of the decollimating lens. In a quantitative color schlieren system, gradients in the index of refraction appear as colors in the field of view due to the action of the color filter. Since sensitivity is a function of the focal length of the decollimating lens, these systems are rather long and filter fabrication and calibration is rather difficult. A Shack-Hartmann wavefront sensor is an array of small lenslets. Typical diameters are on the order of a few hundred microns. Since these lenslets divide the test section into resolution elements, the spatial resolution can be no smaller than an individual lenslet. Such a device was recently used to perform high-speed tomography of heated air exiting a 1.27 cm diameter nozzle. While these wavefront sensors are very compact, the limited spatial resolution and the methods required for data reduction suggest that a more useful instrument needs to be developed. The category of interferometers known as common path interferometers can eliminate much of the vibration sensitivity associated with traditional interferometry as described above. In these devices, division of the amplitude of the wavefront following the test section produces the reference beam. Examples of these instruments include shearing and point diffraction interferometers. In the latter case, shown schematically, a lens focuses light passing through the test section onto a small diffracting object. Such objects are typically either a circle of material on a high quality glass plate or a small sphere in a glass cell. The size of the focused spot is several times larger than the object so that the light not intercepted by the diffracting object forms the test beam while the diffracted light generates a spherical reference beam. While this configuration is mechanically stable, phase shifting one beam with respect to the other is difficult due to the common path. Phase shifting enables extremely accurate measurements of the phase of the interferogram using only gray scale intensity measurements and is the de facto standard of industry. Mercer and Creath 2 demonstrated phase shifting in a point diffraction interferometer using a spherical spacer in a liquid crystal cell as the diffracting object. By changing the voltage across the cell, they were able to shift the phase of the undiffracted beam relative to the reference beam generated by diffraction from the sphere. While they applied this technology to fluid measurements, the device shifted phase so slowly that it was not useful for studying transient phenomena. We have identified several technical problems that precluded operation of the device at video frame rates and intend to solve them to produce a phase-shifting liquid crystal point-diffraction interferometer operating at video frame rates. The first task is to produce high contrast fringes. Since the diffracted beam is much weaker than the transmitted beam, interferograms have poor contrast unless a dye is added to the liquid crystal to reduce the intensity of the undiffracted light. Dyes previously used were not rigorously characterized and suffered from hysteresis in both the initial alignment state of the device and the electro-optic switching characteristics. Hence, our initial effort will identify and characterize dyes that do not suffer from these difficulties and are readily soluble in the liquid crystal host. Since the ultimate goal of this research is to produce interferometers capable of phase shifting at video frame rates, we will quantify the difference in switching times between ferroelectric and nematic liquid crystals. While we have more experience with nematic crystals, they typically switch more slowly than ferroelectric cells. As part of that effort, we will investigate the difference in the modulation of the interferograms as a function of the type of liquid crystal in the cell. Because the temporal switching response of a liquid crystal cell is directly related its thickness, we intend to explore techniques required to produce cells that are as thin as possible. However, the cells must still produce a total phase shift of two pi radians.

  4. Surface characterization and testing II; Proceedings of the Meeting, San Diego, CA, Aug. 10, 11, 1989

    NASA Technical Reports Server (NTRS)

    Greivenkamp, John E. (Editor); Young, Matt (Editor)

    1989-01-01

    Various papers on surface characterization and testing are presented. Individual topics addressed include: simple Hartmann test data interpretation, optimum configuration of the Offner null corrector, system for phase-shifting interferometry in the presence of vibration, fringe variation and visibility in speckle-shearing interferometry, functional integral representation of rough surfaces, calibration of surface heights in an interferometric optical profiler, image formation in common path differential profilometers, SEM of optical surfaces, measuring surface profiles with scanning tunneling microscopes, surface profile measurements of curved parts, high-resolution optical profiler, scanning heterodyne interferometer with immunity from microphonics, real-time crystal axis measurements of semiconductor materials, radial metrology with a panoramic annular lens, surface analysis for the characterization of defects in thin-film processes, Spacelab Optical Viewport glass assembly optical test program for the Starlab mission, scanning differential intensity and phase system for optical metrology.

  5. Statistical estimation of ultrasonic propagation path parameters for aberration correction.

    PubMed

    Waag, Robert C; Astheimer, Jeffrey P

    2005-05-01

    Parameters in a linear filter model for ultrasonic propagation are found using statistical estimation. The model uses an inhomogeneous-medium Green's function that is decomposed into a homogeneous-transmission term and a path-dependent aberration term. Power and cross-power spectra of random-medium scattering are estimated over the frequency band of the transmit-receive system by using closely situated scattering volumes. The frequency-domain magnitude of the aberration is obtained from a normalization of the power spectrum. The corresponding phase is reconstructed from cross-power spectra of subaperture signals at adjacent receive positions by a recursion. The subapertures constrain the receive sensitivity pattern to eliminate measurement system phase contributions. The recursion uses a Laplacian-based algorithm to obtain phase from phase differences. Pulse-echo waveforms were acquired from a point reflector and a tissue-like scattering phantom through a tissue-mimicking aberration path from neighboring volumes having essentially the same aberration path. Propagation path aberration parameters calculated from the measurements of random scattering through the aberration phantom agree with corresponding parameters calculated for the same aberrator and array position by using echoes from the point reflector. The results indicate the approach describes, in addition to time shifts, waveform amplitude and shape changes produced by propagation through distributed aberration under realistic conditions.

  6. Phase-Shifted Laser Feedback Interferometry

    NASA Technical Reports Server (NTRS)

    Ovryn, Benjie

    1999-01-01

    Phase-shifted, laser feedback interferometry is a new diagnostic tool developed at the NASA Lewis Research Center under the Advanced Technology Development (ATD) Program directed by NASA Headquarters Microgravity Research Division. It combines the principles of phase-shifting interferometry (PSI) and laser-feedback interferometry (LFI) to produce an instrument that can quantify both optical path length changes and sample reflectivity variations. In a homogenous medium, the optical path length between two points is the product of the index of refraction and the geometric distance between the two points. LFI differs from other forms of interferometry by using the laser as both the source and the phase detector. In LFI, coherent feedback of the incident light either reflected directly from a surface or reflected after transmission through a region of interest will modulate the output intensity of the laser. The combination of PSI and LFI has produced a robust instrument, based on a low-power helium-neon (HeNe) gas laser, with a high dynamic range that can be used to measure either static or oscillatory changes of the optical path length. Small changes in optical path length are limited by the fraction of a fringe that can be measured; we can measure nonoscillatory changes with a root mean square (rms) error of the wavelength/1000 without averaging.

  7. Ultrasound as a Noninvasive Method to Assess Changes of Intracranial Volume and Pressure During Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Murthy, G.; Yost, W. T.; Ballard, R. E.; Watenpaugh, D. E.; Kawai, Y.; Hargens, A. R.

    1994-01-01

    Headaches are commonly experienced by astronauts in microgravity and by subjects undergoing head-down tilt (simulated microgravity on Earth). Exposure to microgravity probably elevates blood pressure and flow in the head which may increase intracranial volume (ICV) and pressure (ICP) and in turn cause headache. Due to the slightly compliant nature of the cranial vault and the encasement of brain and its vasculature within this vault, any increase of ICV will increase ICP and slightly distend the cranium. Previous studies document perivascular edema and increased ICP in rhesus monkeys during head-down tilt. Elevated ICP has also been reported in humans during head-down tilt. ICP measurements in healthy humans are rare because of the invasiveness of currently-available measurement techniques. Therefore, we proposed a noninvasive ultrasound technique to assess changes of ICV and JCP. The ultrasound principle is based on compliance of the cranial vault. A 450 kHz ultrasound stimulus is transmitted through the cranium by a transducer every 7.5-10 msec. The ultrasound wave enters the brain tissue, reflects off the opposite side of the cranium and is received by the same transducer. The detected wave is compared for phase quadrature (90 deg.to transmitted wave). Because the electronic circuitry of the device maintains a 90 deg. phase (phi), any alterations in the detected wave caused by an increase of ICV and ICP will be reflected as a change in the wave frequency. Phase shift is directly proportional to path length of the wave, DELTA x, which is expressed as DELTA x = phi lambda/2 pi where lambda is wavelength. Elevated ICV and ICP expand the cranial vault and increase path length of the wave (a measure of intracranial distance). Increased path length equals reduced frequency of the detected wave. Reduced frequency is then related to elevated ICP. This technique has potential uses for ICP studies of astronauts in space and head trauma patients on Earth.

  8. Resolving multiple propagation paths in time of flight range cameras using direct and global separation methods

    NASA Astrophysics Data System (ADS)

    Whyte, Refael; Streeter, Lee; Cree, Michael J.; Dorrington, Adrian A.

    2015-11-01

    Time of flight (ToF) range cameras illuminate the scene with an amplitude-modulated continuous wave light source and measure the returning modulation envelopes: phase and amplitude. The phase change of the modulation envelope encodes the distance travelled. This technology suffers from measurement errors caused by multiple propagation paths from the light source to the receiving pixel. The multiple paths can be represented as the summation of a direct return, which is the return from the shortest path length, and a global return, which includes all other returns. We develop the use of a sinusoidal pattern from which a closed form solution for the direct and global returns can be computed in nine frames with the constraint that the global return is a spatially lower frequency than the illuminated pattern. In a demonstration on a scene constructed to have strong multipath interference, we find the direct return is not significantly different from the ground truth in 33/136 pixels tested; where for the full-field measurement, it is significantly different for every pixel tested. The variance in the estimated direct phase and amplitude increases by a factor of eight compared with the standard time of flight range camera technique.

  9. Heterodyne common-path grating interferometer with Littrow configuration.

    PubMed

    Wu, Chyan-Chyi; Hsu, Cheng-Chih; Lee, Ju-Yi; Chen, Yan-Zou

    2013-06-03

    This paper presents a heterodyne common-path grating interferometer with Littrow configuration (HCGIL). The HCGIL can effectively overcome environmental disturbance effect and the DC offset and the amplitude variation of the measurement signals. Experimental results match well with the HP5529A results for long-range measurements. Results also show that the estimated measurement resolution is 0.15 ± 0.027 nm. The stability of the HCGIL is -0.41 ± 0.23 nm. Therefore, the HCGIL has potential for subnanometer resolution and long-range applications.

  10. Near common-path optical fiber interferometer for potentially fast on-line microscale-nanoscale surface measurement

    NASA Astrophysics Data System (ADS)

    Jiang, Xiangqian; Wang, Kaiwei; Martin, Haydn

    2006-12-01

    We introduce a new surface measurement method for potential online application. Compared with our previous research, the new design is a significant improvement. It also features high stability because it uses a near common-path configuration. The method should be of great benefit to advanced manufacturing, especially for quality and process control in ultraprecision manufacturing and on the production line. Proof-of-concept experiments have been successfully conducted by measuring the system repeatability and the displacements of a mirror surface.

  11. Measurement technology based on laser internal/external cavity tuning

    NASA Astrophysics Data System (ADS)

    Zhang, Shulian

    2011-08-01

    For an ordinary laser with two cavity mirrors, if the length of laser cavity changes half wavelength the laser frequency changes one longitudinal mode separation. For a laser with three cavity mirrors, in which a feedback mirror is used to feed part of the laser output beam back into the laser cavity, the external cavity length changes half wavelength the laser intensity fluctuates one period. This presentation gives some research results in measurement field based on changing (tuning) the length of laser internal/external cavity, including 1) HeNe laser cavity-tuning nanometer displacement measurement instruments (laser nanometer rulers), 2) HeNe laser feedback displacement measurement, 3) Nd:YAG laser feedback nanometer displacement measurement, 4) benchmark of waveplate phase retardation measurement based on laser frequency splitting, 5) in-site waveplate phase retardation measurement instruments based on laser feedback and polarization hopping, 6) quasi-common-path microchip Nd:YAG laser feedback interferometer, 7) non-contact Nd:YAG laser feedback surface profile measurement. Some of these instruments have been put into application and display some irreplaceable advantages.

  12. Quantum robots and environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benioff, P.

    1998-08-01

    Quantum robots and their interactions with environments of quantum systems are described, and their study justified. A quantum robot is a mobile quantum system that includes an on-board quantum computer and needed ancillary systems. Quantum robots carry out tasks whose goals include specified changes in the state of the environment, or carrying out measurements on the environment. Each task is a sequence of alternating computation and action phases. Computation phase activites include determination of the action to be carried out in the next phase, and recording of information on neighborhood environmental system states. Action phase activities include motion of themore » quantum robot and changes in the neighborhood environment system states. Models of quantum robots and their interactions with environments are described using discrete space and time. A unitary step operator T that gives the single time step dynamics is associated with each task. T=T{sub a}+T{sub c} is a sum of action phase and computation phase step operators. Conditions that T{sub a} and T{sub c} should satisfy are given along with a description of the evolution as a sum over paths of completed phase input and output states. A simple example of a task{emdash}carrying out a measurement on a very simple environment{emdash}is analyzed in detail. A decision tree for the task is presented and discussed in terms of the sums over phase paths. It is seen that no definite times or durations are associated with the phase steps in the tree, and that the tree describes the successive phase steps in each path in the sum over phase paths. {copyright} {ital 1998} {ital The American Physical Society}« less

  13. Morphotropic phase boundary of heterovalent perovskite solid solutions: Experimental and theoretical investigation of PbSc{sub 1/2}Nb{sub 1/2}O{sub 3}-PbTiO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haumont, R.; Al-Barakaty, A.; Dkhil, B.

    2005-03-01

    X-ray and neutron diffraction techniques are combined with first-principles-based simulations to derive and understand the structural properties of Pb(Sc,Nb,Ti)O{sub 3} (PSN-PT) near its morphotropic phase boundary (MPB). An analysis of our measurements yields, at room and low temperatures, an overall tetragonal T--monoclinic M{sub C}--monoclinic M{sub B}--rhombohedral R path (when adopting the notations of Vanderbilt and Cohen, Phys. Rev. B 63, 94108 (2001) for the monoclinic phases) as the Ti composition decreases across the MPB. A composition- and temperature-dependent significant mixing between some of these phases is also measured and reported here. The overall T-M{sub C}-M{sub B}-R path, which has alsomore » been proposed for Pb(Mg,Nb,Ti)O{sub 3} [A. K. Singh and D. Pandey, Phys. Rev. B 67, 64102 (2003)] is rather complex since it involves a change in the polarization path: this polarization first rotates in a (100) plane for the T-M{sub C} part of the path and then in a (1-10) plane for the M{sub B}-R part of the path. Moreover, a comparison between these measurements and first-principles-based calculations raises the possibility that this complex path, and the associated M{sub C} and M{sub B} phases, can only occur if the samples exhibit a deviation from a perfectly homogeneous and disordered situation, e.g. possess nanoscale chemically-ordered regions. If not, homogeneously disordered PSN-PT is predicted to exhibit at low temperature the same polarization path as Pb(Zr,Ti)O{sub 3}, that is T-monoclinic M{sub A}-R which involves a 'single' polarization rotation in a (1-10) plane. Nanoscale inhomogeneity may thus play a key role on the macroscopic properties of PSN-PT, in particular, and of other heterovalent complex solid solutions, in general, near their MPB.« less

  14. Universal photonic quantum gates assisted by ancilla diamond nitrogen-vacancy centers coupled to resonators

    NASA Astrophysics Data System (ADS)

    Wei, Hai-Rui; Long, Gui Lu

    2015-03-01

    We propose two compact, economic, and scalable schemes for implementing optical controlled-phase-flip and controlled-controlled-phase-flip gates by using the input-output process of a single-sided cavity strongly coupled to a single nitrogen-vacancy-center defect in diamond. Additional photonic qubits, necessary for procedures based on the parity-check measurement or controlled-path and merging gates, are not employed in our schemes. In the controlled-path gate, the paths of the target photon are conditionally controlled by the control photon, and these two paths can be merged back into one by using a merging gate. Only one half-wave plate is employed in our scheme for the controlled-phase-flip gate. Compared with the conventional synthesis procedures for constructing a controlled-controlled-phase-flip gate, the cost of which is two controlled-path gates and two merging gates, or six controlled-not gates, our scheme is more compact and simpler. Our schemes could be performed with a high fidelity and high efficiency with current achievable experimental techniques.

  15. Experimental cancellation of aberrations in intensity correlation in classical optics

    NASA Astrophysics Data System (ADS)

    Jesus-Silva, A. J.; Silva, Juarez G.; Monken, C. H.; Fonseca, E. J. S.

    2018-01-01

    We study the classical correlation function of spatially incoherent beams with a phase aberration in the beam path. On the basis of our experimental measurements and in the optical coherence theory, we show that the effects of phase disturbances, independently of their kind and without need of coordinate inversion, can be canceled out if the same phase is aligned in the signal and reference beam path. These results can be useful for imaging and microscopy through random media.

  16. Short non-coding RNAs as bacteria species identifiers detected by surface plasmon resonance enhanced common path interferometry

    NASA Astrophysics Data System (ADS)

    Greef, Charles; Petropavlovskikh, Viatcheslav; Nilsen, Oyvind; Khattatov, Boris; Plam, Mikhail; Gardner, Patrick; Hall, John

    2008-04-01

    Small non-coding RNA sequences have recently been discovered as unique identifiers of certain bacterial species, raising the possibility that they can be used as highly specific Biowarfare Agent detection markers in automated field deployable integrated detection systems. Because they are present in high abundance they could allow genomic based bacterial species identification without the need for pre-assay amplification. Further, a direct detection method would obviate the need for chemical labeling, enabling a rapid, efficient, high sensitivity mechanism for bacterial detection. Surface Plasmon Resonance enhanced Common Path Interferometry (SPR-CPI) is a potentially market disruptive, high sensitivity dual technology that allows real-time direct multiplex measurement of biomolecule interactions, including small molecules, nucleic acids, proteins, and microbes. SPR-CPI measures differences in phase shift of reflected S and P polarized light under Total Internal Reflection (TIR) conditions at a surface, caused by changes in refractive index induced by biomolecular interactions within the evanescent field at the TIR interface. The measurement is performed on a microarray of discrete 2-dimensional areas functionalized with biomolecule capture reagents, allowing simultaneous measurement of up to 100 separate analytes. The optical beam encompasses the entire microarray, allowing a solid state detector system with no scanning requirement. Output consists of simultaneous voltage measurements proportional to the phase differences resulting from the refractive index changes from each microarray feature, and is automatically processed and displayed graphically or delivered to a decision making algorithm, enabling a fully automatic detection system capable of rapid detection and quantification of small nucleic acids at extremely sensitive levels. Proof-of-concept experiments on model systems and cell culture samples have demonstrated utility of the system, and efforts are in progress for full development and deployment of the device. The technology has broad applicability as a universal detection platform for BWA detection, medical diagnostics, and drug discovery research, and represents a new class of instrumentation as a rapid, high sensitivity, label-free methodology.

  17. Computerized X-ray Microtomography Observations and Fluid Flow Measurements of the Effect of Effective Stress on Fractured Reservoir Seal Shale

    NASA Astrophysics Data System (ADS)

    Welch, N.; Crawshaw, J.; Boek, E.

    2014-12-01

    The successful storage of carbon dioxide in geologic formations requires an in-depth understanding of all reservoir characteristics and morphologies. An intact and substantial seal formation above a storage reservoir is required for a significant portion of the initial sealing mechanisms believed to occur during carbon dioxide storage operations. Shales are a common seal formation rock types found above numerous hydrocarbon reservoirs, as well as potential saline aquifer storage locations. Shales commonly have very low permeability, however they also have the tendency to be quite fissile, and the formation of fractures within these seals can have a significant detrimental effect on the sealing potential of a reservoir and amount to large areas of high permeability and low capillary pressures compared to the surrounding intact rock. Fractured shales also have an increased current interest due to the increasing development of shale gas reservoirs using hydraulic fracturing techniques. This work shows the observed changes that occur within fractured pieces of reservoir seal shale samples, along with quarry analogues, using an in-situ micro-CT fluid flow imaging apparatus with a Hassler type core holder. Changes within the preferential flow path under different stress regimes as well as physical changes to the fracture geometry are reported. Lattice Boltzmann flow simulations were then performed on the extracted flow paths and compared to experiment permeability measurements. The preferential flow path of carbon dioxide through the fracture network is also observed and compared to the results two-phase Lattice Boltzmann fluid flow simulations.

  18. Adaptive optics self-calibration using differential OTF (dOTF)

    NASA Astrophysics Data System (ADS)

    Rodack, Alexander T.; Knight, Justin M.; Codona, Johanan L.; Miller, Kelsey L.; Guyon, Olivier

    2015-09-01

    We demonstrate self-calibration of an adaptive optical system using differential OTF [Codona, JL; Opt. Eng. 0001; 52(9):097105-097105. doi:10.1117/1.OE.52.9.097105]. We use a deformable mirror (DM) along with science camera focal plane images to implement a closed-loop servo that both flattens the DM and corrects for non-common-path aberrations within the telescope. The pupil field modification required for dOTF measurement is introduced by displacing actuators near the edge of the illuminated pupil. Simulations were used to develop methods to retrieve the phase from the complex amplitude dOTF measurements for both segmented and continuous sheet MEMS DMs and tests were performed using a Boston Micromachines continuous sheet DM for verification. We compute the actuator correction updates directly from the phase of the dOTF measurements, reading out displacements and/or slopes at segment and actuator positions. Through simulation, we also explore the effectiveness of these techniques for a variety of photons collected in each dOTF exposure pair.

  19. Use of (N-1)-D expansions for N-D phase unwrapping in MRI

    NASA Astrophysics Data System (ADS)

    Bones, Philip J.; King, Laura J.; Millane, Rick P.

    2017-09-01

    In MRI the presence of metal implants causes severe artifacts in images and interferes with the usual techniques used to separate fat signals from other tissues. In the Dixon method, three images are acquired at different echo times to enable the variation in the magnetic field to be estimated. However, the estimate is represented as the phase of a complex quantity and therefore suffers from wrapping. High field gradients near the metal mean that the phase estimate is undersampled and therefore challenging to unwrap. We have developed POP, phase estimation by onion peeling, an algorithm which unwraps the phase along 1-D paths for a 2-D image obtained with the Dixon method. The unwrapping is initially performed along a closed path enclosing the implant and well separated from it. The recovered phase is expanded using a smooth periodic basis along the path. Then, path-by-path, the estimate is applied to the next path and then the expansion coefficients are estimated to best fit the wrapped measurements. We have successfully tested POP on MRI images of specially constructed phantoms and on a group of patients with hip implants. In principle, POP can be extended to 3-D imaging. In that case, POP would entail representing phase with a suitably smooth basis over a series of surfaces enclosing the implant (the "onion skins"), again beginning the phase estimation well away from the implant. An approach for this is proposed. Results are presented for fat and water separation for 2-D images of phantoms and actual patients. The practicality of the method and its employment in clinical MRI are discussed.

  20. A New Interferometer for Monitoring Atmospheric Phase Fluctuations

    NASA Technical Reports Server (NTRS)

    Lay, Oliver

    2000-01-01

    Water vapor in the Earth's troposphere introduces an extra electrical path in the propagation of radio signals through the atmosphere. The distribution of water vapor is irregular and distorts the wavefronts of incoming radio waves, limiting the angular resolution that can be achieved with ground-based telescopes. The level of fluctuations depends both on the location of the site ,and on the prevailing atmospheric conditions. The ability to measure the fluctuations is therefore important when choosing a site for a new instrument, and for scheduling observations of existing telescopes. Existing phase monitors are radio interferometers that monitor monochromatic beacon tones from geostationary communications satellites at a frequency of about 12 GHz. They have a classical heterodyne design based on two satellite receiving antennas; each has a front-end for amplifying and down-converting the incoming signals using a local oscillator that is phase-locked to a common reference frequency. In addition to multiple phase-locked loops these instruments require expensive phase-stable cabling to reduce the effects of thermal drift. The new system uses two consumer 18" digital satellite TV dishes to monitor satellite TV broadcast signals over a bandwidth of 500 MHz (12.2 to 12.7 GHz). The novel design eliminates the need for phase-locked loops and thermally stable components, and uses a pair of Gilbert Cell multipliers to perform the broadband correlation. A phase monitor has been been built and deployed at the site of the Berkeley-Illinois-Maryland Association Millimeter Array in Northern California, and has been operating successfully since June 1998, measuring the difference in electrical path length for parallel lines of sight to the satellite separated by a baseline of 100 m. With a hardware cost of approximately $4000, it is much cheaper than previous instruments, and the low power requirements and high reliability make the system suitable for site testing in remote locations.

  1. Interferometer with Continuously Varying Path Length Measured in Wavelengths to the Reference Mirror

    NASA Technical Reports Server (NTRS)

    Ohara, Tetsuo (Inventor)

    2016-01-01

    An interferometer in which the path length of the reference beam, measured in wavelengths, is continuously changing in sinusoidal fashion and the interference signal created by combining the measurement beam and the reference beam is processed in real time to obtain the physical distance along the measurement beam between the measured surface and a spatial reference frame such as the beam splitter. The processing involves analyzing the Fourier series of the intensity signal at one or more optical detectors in real time and using the time-domain multi-frequency harmonic signals to extract the phase information independently at each pixel position of one or more optical detectors and converting the phase information to distance information.

  2. Influence of OPD in wavelength-shifting interferometry

    NASA Astrophysics Data System (ADS)

    Wang, Hongjun; Tian, Ailing; Liu, Bingcai; Dang, Juanjuan

    2009-12-01

    Phase-shifting interferometry is a powerful tool for high accuracy optical measurement. It operates by change the optical path length in the reference arm or test arm. This method practices by move optical device. So it has much problem when the optical device is very large and heavy. For solve this problem, the wavelength-shifting interferometry was put forwarded. In wavelength-shifting interferometry, the phase shifting angle was achieved by change the wavelength of optical source. The phase shifting angle was decided by wavelength and OPD (Optical Path Difference) between test and reference wavefront. So the OPD is an important factor to measure results. But in measurement, because the positional error and profile error of under testing optical element is exist, the phase shifting angle is different in different test point when wavelength scanning, it will introduce phase shifting angle error, so it will introduce optical surface measure error. For analysis influence of OPD on optical surface error, the relation between surface error and OPD was researched. By simulation, the relation between phase shifting error and OPD was established. By analysis, the error compensation method was put forward. After error compensation, the measure results can be improved to great extend.

  3. Influence of OPD in wavelength-shifting interferometry

    NASA Astrophysics Data System (ADS)

    Wang, Hongjun; Tian, Ailing; Liu, Bingcai; Dang, Juanjuan

    2010-03-01

    Phase-shifting interferometry is a powerful tool for high accuracy optical measurement. It operates by change the optical path length in the reference arm or test arm. This method practices by move optical device. So it has much problem when the optical device is very large and heavy. For solve this problem, the wavelength-shifting interferometry was put forwarded. In wavelength-shifting interferometry, the phase shifting angle was achieved by change the wavelength of optical source. The phase shifting angle was decided by wavelength and OPD (Optical Path Difference) between test and reference wavefront. So the OPD is an important factor to measure results. But in measurement, because the positional error and profile error of under testing optical element is exist, the phase shifting angle is different in different test point when wavelength scanning, it will introduce phase shifting angle error, so it will introduce optical surface measure error. For analysis influence of OPD on optical surface error, the relation between surface error and OPD was researched. By simulation, the relation between phase shifting error and OPD was established. By analysis, the error compensation method was put forward. After error compensation, the measure results can be improved to great extend.

  4. Controlling geometric phase optically in a single spin in diamond

    NASA Astrophysics Data System (ADS)

    Yale, Christopher G.

    Geometric phase, or Berry phase, is an intriguing quantum mechanical phenomenon that arises from the cyclic evolution of a quantum state. Unlike dynamical phases, which rely on the time and energetics of the interaction, the geometric phase is determined solely by the geometry of the path travelled in parameter space. As such, it is robust to certain types of noise that preserve the area enclosed by the path, and shows promise for the development of fault-tolerant logic gates. Here, we demonstrate the optical control of geometric phase within a solid-state spin qubit, the nitrogen-vacancy center in diamond. Using stimulated Raman adiabatic passage (STIRAP), we evolve a coherent dark state along `tangerine slice' trajectories on the Bloch sphere and probe these paths through time-resolved state tomography. We then measure the accumulated geometric phase through phase reference to a third ground spin state. In addition, we examine the limits of this control due to adiabatic breakdown as well as the longer timescale effect of far-detuned optical fields. Finally, we intentionally introduce noise into the experimental control parameters, and measure the distributions of the resulting phases to probe the resilience of the phase to differing types of noise. We also examine this robustness as a function of traversal time as well as the noise amplitude. Through these studies, we demonstrate that geometric phase is a promising route toward fault-tolerant quantum information processing. This work is supported by the AFOSR, the NSF, and the German Research Foundation.

  5. A proposed method for wind velocity measurement from space

    NASA Technical Reports Server (NTRS)

    Censor, D.; Levine, D. M.

    1980-01-01

    An investigation was made of the feasibility of making wind velocity measurements from space by monitoring the apparent change in the refractive index of the atmosphere induced by motion of the air. The physical principle is the same as that resulting in the phase changes measured in the Fizeau experiment. It is proposed that this phase change could be measured using a three cornered arrangement of satellite borne source and reflectors, around which two laser beams propagate in opposite directions. It is shown that even though the velocity of the satellites is much larger than the wind velocity, factors such as change in satellite position and Doppler shifts can be taken into account in a reasonable manner and the Fizeau phase measured. This phase measurement yields an average wind velocity along the ray path through the atmosphere. The method requires neither high accuracy for satellite position or velocity, nor precise knowledge of the refractive index or its gradient in the atmosphere. However, the method intrinsically yields wind velocity integrated along the ray path; hence to obtain higher spatial resolution, inversion techniques are required.

  6. Swept Frequency Laser Metrology System

    NASA Technical Reports Server (NTRS)

    Zhao, Feng (Inventor)

    2010-01-01

    A swept frequency laser ranging system having sub-micron accuracy that employs multiple common-path heterodyne interferometers, one coupled to a calibrated delay-line for use as an absolute reference for the ranging system. An exemplary embodiment uses two laser heterodyne interferometers to create two laser beams at two different frequencies to measure distance and motions of target(s). Heterodyne fringes generated from reflections off a reference fiducial X(sub R) and measurement (or target) fiducial X(sub M) are reflected back and are then detected by photodiodes. The measured phase changes Delta phi(sub R) and Delta phi (sub m) resulting from the laser frequency swept gives target position. The reference delay-line is the only absolute reference needed in the metrology system and this provides an ultra-stable reference and simple/economical system.

  7. Routing optimization in networks based on traffic gravitational field model

    NASA Astrophysics Data System (ADS)

    Liu, Longgeng; Luo, Guangchun

    2017-04-01

    For research on the gravitational field routing mechanism on complex networks, we further analyze the gravitational effect of paths. In this study, we introduce the concept of path confidence degree to evaluate the unblocked reliability of paths that it takes the traffic state of all nodes on the path into account from the overall. On the basis of this, we propose an improved gravitational field routing protocol considering all the nodes’ gravities on the path and the path confidence degree. In order to evaluate the transmission performance of the routing strategy, an order parameter is introduced to measure the network throughput by the critical value of phase transition from a free-flow phase to a jammed phase, and the betweenness centrality is used to evaluate the transmission performance and traffic congestion of the network. Simulation results show that compared with the shortest-path routing strategy and the previous gravitational field routing strategy, the proposed algorithm improves the network throughput considerably and effectively balances the traffic load within the network, and all nodes in the network are utilized high efficiently. As long as γ ≥ α, the transmission performance can reach the maximum and remains unchanged for different α and γ, which ensures that the proposed routing protocol is high efficient and stable.

  8. System and Method for Measuring the Transfer Function of a Guided Wave Device

    NASA Technical Reports Server (NTRS)

    Froggatt, Mark E. (Inventor); Erdogan, Turan (Inventor)

    2002-01-01

    A method/system are provided for measuring the NxN scalar transfer function elements for an N-port guided wave device. Optical energy of a selected wavelength is generated at a source and directed along N reference optical paths having N reference path lengths. Each reference optical path terminates in one of N detectors such that N reference signals are produced at the N detectors. The reference signals are indicative of amplitude, phase and frequency of the optical energy carried along the N reference optical paths. The optical energy from the source is also directed to the N-ports of the guided wave device and then on to each of the N detectors such that N measurement optical paths are defined between the source and each of the N detectors. A portion of the optical energy is modified in terms of at least one of the amplitude and phase to produce N modified signals at each of the N detectors. At each of the N detectors, each of the N modified signals is combined with a corresponding one of the N reference signals to produce corresponding N combined signals at each of the N detectors. A total of N(sup 2) measurement signals are generated by the N detectors. Each of the N(sup 2) measurement signals is sampled at a wave number increment (Delta)k so that N(sup 2) sampled signals are produced. The NxN transfer function elements are generated using the N(sup 2) sampled signals. Reference and measurement path length constraints are defined such that the N combined signals at each of the N detectors are spatially separated from one another in the time domain.

  9. Solar flare induced ionospheric D-region enhancements from VLF phase and amplitude observations

    NASA Astrophysics Data System (ADS)

    McRae, Wayne M.; Thomson, Neil R.

    2004-01-01

    Ionospheric perturbations due to solar flares, measured at VLF in both phase and amplitude on long subionospheric paths, are used to determine the accompanying D-region electron density enhancements as a function of the flare X-ray fluxes measured by the GOES satellites. The electron densities are characterised by the two traditional parameters, H' and β (being measures of the ionospheric height and the rate of increase of electron density with height, respectively), found by computational modelling of the observed phases and amplitudes using the NOSC Earth-ionosphere waveguide programs (LWPC and ModeFinder) over a wide range of VLF frequencies, 10.2-24.8kHz, along a number of transequatorial paths across the Pacific Ocean to Dunedin, New Zealand. The transmitters monitored include Omega Japan, Omega Hawaii, NPM in Hawaii, and NLK near Seattle, USA, for which the paths range in length from 8.1 to 12.3Mm. The observations include flares up to a magnitude of about X5(5×10-4Wm-2 at 0.1-0.8nm). These gave VLF phase delay reductions of up to about 52μs and amplitude enhancements up to nearly 10dB for the 12.3Mm NLK to Dunedin path on 24.8kHz which corresponded, under low to medium solar cycle conditions (1994-1998), to a reduction in H' from about 71km down to about 58km and an increase in β from about 0.39km-1 up to a definite `saturation' level of about 0.52km-1. These experimentally determined values of H' and β were then used in LWPC to predict flare-induced VLF phase and amplitude perturbations over a wider range of frequencies than were actually available for observation.

  10. Design of geometric phase measurement in EAST Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan, T.; Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031; Liu, H. Q., E-mail: hqliu@ipp.ac.cn

    2016-07-15

    The optimum scheme for geometric phase measurement in EAST Tokamak is proposed in this paper. The theoretical values of geometric phase for the probe beams of EAST Polarimeter-Interferometer (POINT) system are calculated by path integration in parameter space. Meanwhile, the influences of some controllable parameters on geometric phase are evaluated. The feasibility and challenge of distinguishing geometric effect in the POINT signal are also assessed in detail.

  11. Weighted least-square approach for simultaneous measurement of multiple reflective surfaces

    NASA Astrophysics Data System (ADS)

    Tang, Shouhong; Bills, Richard E.; Freischlad, Klaus

    2007-09-01

    Phase shifting interferometry (PSI) is a highly accurate method for measuring the nanometer-scale relative surface height of a semi-reflective test surface. PSI is effectively used in conjunction with Fizeau interferometers for optical testing, hard disk inspection, and semiconductor wafer flatness. However, commonly-used PSI algorithms are unable to produce an accurate phase measurement if more than one reflective surface is present in the Fizeau interferometer test cavity. Examples of test parts that fall into this category include lithography mask blanks and their protective pellicles, and plane parallel optical beam splitters. The plane parallel surfaces of these parts generate multiple interferograms that are superimposed in the recording plane of the Fizeau interferometer. When using wavelength shifting in PSI the phase shifting speed of each interferogram is proportional to the optical path difference (OPD) between the two reflective surfaces. The proposed method is able to differentiate each underlying interferogram from each other in an optimal manner. In this paper, we present a method for simultaneously measuring the multiple test surfaces of all underlying interferograms from these superimposed interferograms through the use of a weighted least-square fitting technique. The theoretical analysis of weighted least-square technique and the measurement results will be described in this paper.

  12. Circular common-path point diffraction interferometer.

    PubMed

    Du, Yongzhao; Feng, Guoying; Li, Hongru; Vargas, J; Zhou, Shouhuan

    2012-10-01

    A simple and compact point-diffraction interferometer with circular common-path geometry configuration is developed. The interferometer is constructed by a beam-splitter, two reflection mirrors, and a telescope system composed by two lenses. The signal and reference waves travel along the same path. Furthermore, an opaque mask containing a reference pinhole and a test object holder or test window is positioned in the common focal plane of the telescope system. The object wave is divided into two beams that take opposite paths along the interferometer. The reference wave is filtered by the reference pinhole, while the signal wave is transmitted through the object holder. The reference and signal waves are combined again in the beam-splitter and their interference is imaged in the CCD. The new design is compact, vibration insensitive, and suitable for the measurement of moving objects or dynamic processes.

  13. Path Length Fluctuations Derived from Site Testing Interferometer Data

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto J.; Nessel, James A.; Morse, Jacquelynne R.

    2010-01-01

    To evaluate possible sites for NASA's proposed Ka-band antenna array, the NASA Glenn Research Center has constructed atmospheric phase monitors (APM) which directly measure the tropospheric phase stability. These instruments observe an unmodulated 20.2 GHz beacon signal broadcast from a geostationary satellite (Anik F2) and measure the phase difference between the signals received by the two antennas. Two APM's have been deployed, one at the NASA Deep Space Network (DSN) Tracking Complex in Goldstone, California, and the other at the NASA White Sands Complex, in Las Cruces, New Mexico. Two station-years of atmospheric phase fluctuation data have been collected at Goldstone since operations commenced in May 2007 and 0.5 station-years of data have been collected at White Sands since operations began February 2009. With identical instruments operating simultaneously, we can directly compare the phase stability at the two sites. Phase stability is analyzed statistically in terms of the root-mean-square (rms) of the tropospheric path length fluctuations over 10 min blocks. Correlation between surface wind speed and relative humidity with interferometer phase are discussed. For 2 years, the path length fluctuations at the DSN site in Goldstone, California, have been better than 757 micrometer (with reference to a 300 m baseline and to Zenith) for 90 percent of the time. For the 6 months of data collected at White Sands, New Mexico, the path length fluctuations have been better than 830 micrometers (with reference to a 300 m baseline and to Zenith) for 90 percent of the time. This type of data analysis, as well as many other site quality characteristics (e.g., rain attenuation, infrastructure, etc.), will be used to determine the suitability of both sites for NASA s future communication services at Ka-band using an array of antennas.

  14. Quantitative Interferometry in the Severe Acoustic Environment of Resonant Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Raman, Ganesh

    1999-01-01

    Understanding fundamental fluidic dynamic and acoustic processes in high-speed jets requires quantitative velocity, density and temperature measurements. In this paper we demonstrate a new, robust Liquid Crystal Point Diffraction Interferometer (LCPDI) that includes phase stepping and can provide accurate data even in the presence of intense acoustic fields. This novel common path interferometer (LCPDI) was developed to overcome difficulties with the Mach Zehnder interferometer in vibratory environments and is applied here to the case of a supersonic shock- containing jet. The environmentally insensitive LCPDI that is easy to align and capable of measuring optical wavefronts with high accuracy is briefly described, then integrated line of sight density data from the LCPDI for two underexpanded jets are presented.

  15. Observations of precipitable water vapor fluctuations in convective boundary layer via microwave interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, X.M.; Carlos, R.C.; Kirkland, M.W.

    1999-07-01

    At microwave frequencies, each centimeter of precipitable water vapor (PWV) causes about 6.45 cm of extra electrical path length relative to the {open_quotes}dry{close_quotes} air. The fluctuations of the water vapor dominate the changes of the effective path length through the atmosphere in a relatively short time period of a few hours. In this paper we describe a microwave interferometer developed for water vapor investigations and present the observation results. The interferometer consists of 10 antennas along two orthogonal 400-m arms that form many baselines (antenna pairs) ranging from 100 to 400 m. All the antennas receive a common CW signalmore » (11.7 GHz) from a geostationary television satellite, and phase differences between pairs of antennas are measured. The phase differences reflect the column-integrated water vapor differences from the top of the atmosphere to the spatially separated antennas at the ground. The interferometric, baseline-differential measurements allow us to study the statistical properties of the PWV fluctuations, as well as the turbulent activity of the convective boundary layer (CBL). Structure function analysis of the interferometer measurements shows good agreement with results obtained from the Very Large Array (VLA) and with a theoretical model developed for radio astronomical very long baseline interferometry (VLBI), reported previously by other investigators. The diurnally varying structure constant correlates remarkably well with the combination of the latent and sensible heat fluxes measured simultaneously from a 10-m meteorological tower. The average drift velocity of the PWV over the interferometer was also derived from the measurements. The derived velocity agrees well during the morning hours with the wind measured by an anemometer at the center of the interferometer. {copyright} 1999 American Geophysical Union« less

  16. Collinear interferometer with variable delay for carrier-envelope offset frequency measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pawlowska, Monika; Ozimek, Filip; Fita, Piotr

    2009-08-15

    We demonstrate a novel scheme for measuring the carrier-envelope offset frequency in a femtosecond optical frequency comb. Our method is based on a common-path interferometer with a calcite Babinet-Soleil compensator employed to control the delay between the two interfering beams of pulses. The large delay range (up to 8 ps) of our device is sufficient for systems that rely on spectral broadening in microstructured fibers. We show an experimental proof that the stability of a common-path arrangement is superior to that of the standard interferometers.

  17. Collinear interferometer with variable delay for carrier-envelope offset frequency measurement

    NASA Astrophysics Data System (ADS)

    Pawłowska, Monika; Ozimek, Filip; Fita, Piotr; Radzewicz, Czesław

    2009-08-01

    We demonstrate a novel scheme for measuring the carrier-envelope offset frequency in a femtosecond optical frequency comb. Our method is based on a common-path interferometer with a calcite Babinet-Soleil compensator employed to control the delay between the two interfering beams of pulses. The large delay range (up to 8 ps) of our device is sufficient for systems that rely on spectral broadening in microstructured fibers. We show an experimental proof that the stability of a common-path arrangement is superior to that of the standard interferometers.

  18. Depth-encoded dual beam phase-resolved Doppler OCT for Doppler-angle-independent flow velocity measurement

    NASA Astrophysics Data System (ADS)

    Qian, Jie; Cheng, Wei; Cao, Zhaoyuan; Chen, Xinjian; Mo, Jianhua

    2017-02-01

    Phase-resolved Doppler optical coherence tomography (PR-D-OCT) is a functional OCT imaging technique that can provide high-speed and high-resolution depth-resolved measurement on flow in biological materials. However, a common problem with conventional PR-D-OCT is that this technique often measures the flow motion projected onto the OCT beam path. In other words, it needs the projection angle to extract the absolute velocity from PR-D-OCT measurement. In this paper, we proposed a novel dual-beam PR-D-OCT method to measure absolute flow velocity without separate measurement on the projection angle. Two parallel light beams are created in sample arm and focused into the sample at two different incident angles. The images produced by these two beams are encoded to different depths in single B-scan. Then the Doppler signals picked up by the two beams together with the incident angle difference can be used to calculate the absolute velocity. We validated our approach in vitro on an artificial flow phantom with our home-built 1060 nm swept source OCT. Experimental results demonstrated that our method can provide an accurate measurement of absolute flow velocity with independency on the projection angle.

  19. Development of optical surface-profiling instrumentation

    NASA Astrophysics Data System (ADS)

    Lin, Yao; Takacs, Peter Z.; Tsang, Thomas; Furenlid, Karen; Wang, Runwen

    1992-12-01

    A novel non-contact optical profiler described in this paper is designed and made for measuring the surface characteristics of optical parts. Measurements are based on a combination of an optical heterodyne technique and a precise phase measurement procedure without the need of a reference surface. A Zeeman-split He-Ne laser is employed as the light source which offers two common-path polarized beams. The frequency difference between the beams is 1.8 MHz. A special optical head is designed and fashioned as a beam splitter which contains a birefringent lens and an objective. The whole optical system is completely common- path. This allows the optical common-mode rejection technique to be applied in the system for minimizing the environmental effects in measurements such as air turbulence, vibrations and temperature variations. To keep the sample surface focused on the ordinary rays in the optical head, an astigmatic autofocus system is employed. A stepping micro-stepping system can move the optical head in the range of 25 mm with 0.1 micrometers resolution. A data acquisition system is made to control the auto-focus system, data receiving and analyses. This makes the measurement automatically while the sample is being scanned. The characteristics of the surface can be displayed on the computer screen. The theoretical and experimental analyses of the profiler are completed. The profiler measures samples with 1.1 angstroms height accuracy and 4 micrometers lateral resolution when a 40X objective is used in the optical head. The accuracy comparisons of the profiler with different objectives 5X, 10X, 20X, and 40X are shown in good agreement. The advantages of the present profiler are presented. Based on the autofocus system, the profiler optical system will be designed to mount on a large linear air-bearing slide, so that it is capable of scanning over a distance covering from 4 micrometers to 1 m.

  20. USING TUNABLE DIODE LASERS TO MEASURE EMISSIONS FROM ANIMAL HOUSING AND WASTE LAGOONS

    EPA Science Inventory

    Open-path optical spectroscopy has been applied to several fugitive sources by scientists at the EPA National Risk Management Research Laboratory for more than a decade. Open-path Fourier transform infrared (OP-FTIR) was used during the initial research phase because of the abil...

  1. Reply to ‘Comment on Relativistic theory of the falling cube gravimeter’

    NASA Astrophysics Data System (ADS)

    Ashby, Neil

    2018-04-01

    The comment (Křen and Pálinkás 2017 Metrologia 55 314-5) claims that the paper Relativistic theory of the falling cube gravimeter (Ashby 2017 Metrologia 55 1-10) is incorrect. The authors of this comment assert that optical paths in the two interferometer arms of an absolute gravimeter shift only the absolute phase difference between interferometer arms and therefore cannot affect the measured value of g, and that the only needed relativistic correction is the commonly applied ‘speed of light correction’. Neither claim stands up to scrutiny. Work of the U.S. government, not subject to copyright.

  2. Two-path plasmonic interferometer with integrated detector

    DOEpatents

    Dyer, Gregory Conrad; Shaner, Eric A.; Aizin, Gregory

    2016-03-29

    An electrically tunable terahertz two-path plasmonic interferometer with an integrated detection element can down convert a terahertz field to a rectified DC signal. The integrated detector utilizes a resonant plasmonic homodyne mixing mechanism that measures the component of the plasma waves in-phase with an excitation field that functions as the local oscillator in the mixer. The plasmonic interferometer comprises two independently tuned electrical paths. The plasmonic interferometer enables a spectrometer-on-a-chip where the tuning of electrical path length plays an analogous role to that of physical path length in macroscopic Fourier transform interferometers.

  3. Arctic Mixed-phase Clouds Simulated by a Cloud-Resolving Model: Comparison with ARM Observations and Sensitivity to Microphysics Parameterizations

    NASA Technical Reports Server (NTRS)

    Xu, Kuan-Man; Luo, Yali; Morrison, Hugh; Mcfarquhar, G.M.

    2008-01-01

    Single-layer mixed-phase stratiform (MPS) Arctic clouds, which formed under conditions of large surface heat flux combined with general subsidence during a subperiod of the Atmospheric Radiation Measurement (ARM) Program Mixed-Phase Arctic Cloud Experiment (M-PACE), are simulated with a cloud resolving model (CRM). The CRM is implemented with either an advanced two-moment (M05) or a commonly used one-moment (L83) bulk microphysics scheme and a state-of-the-art radiative transfer scheme. The CONTROL simulation, that uses the M05 scheme and observed aerosol size distribution and ice nulei (IN) number concentration, reproduces the magnitudes and vertical structures of cloud liquid water content (LWC), total ice water content (IWC), number concentration and effective radius of cloud droplets as suggested by the M-PACE observations. It underestimates ice crystal number concentrations by an order of magnitude and overestimates effective radius of ice crystals by a factor of 2-3. The OneM experiment, that uses the L83 scheme, produces values of liquid water path (LWP) and ice plus snow water path (ISWP) that were about 30% and 4 times, respectively, of those produced by the CONTROL. Its vertical profile of IWC exhibits a bimodal distribution in contrast to the constant distribution of IWC produced in the CONTROL and observations.

  4. Intercomparison study and optical asphericity measurements of small ice particles in the CERN CLOUD experiment

    NASA Astrophysics Data System (ADS)

    Nichman, Leonid; Järvinen, Emma; Dorsey, James; Connolly, Paul; Duplissy, Jonathan; Fuchs, Claudia; Ignatius, Karoliina; Sengupta, Kamalika; Stratmann, Frank; Möhler, Ottmar; Schnaiter, Martin; Gallagher, Martin

    2017-09-01

    Optical probes are frequently used for the detection of microphysical cloud particle properties such as liquid and ice phase, size and morphology. These properties can eventually influence the angular light scattering properties of cirrus clouds as well as the growth and accretion mechanisms of single cloud particles. In this study we compare four commonly used optical probes to examine their response to small cloud particles of different phase and asphericity. Cloud simulation experiments were conducted at the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber at European Organisation for Nuclear Research (CERN). The chamber was operated in a series of multi-step adiabatic expansions to produce growth and sublimation of ice particles at super- and subsaturated ice conditions and for initial temperatures of -30, -40 and -50 °C. The experiments were performed for ice cloud formation via homogeneous ice nucleation. We report the optical observations of small ice particles in deep convection and in situ cirrus simulations. Ice crystal asphericity deduced from measurements of spatially resolved single particle light scattering patterns by the Particle Phase Discriminator mark 2 (PPD-2K, Karlsruhe edition) were compared with Cloud and Aerosol Spectrometer with Polarisation (CASPOL) measurements and image roundness captured by the 3View Cloud Particle Imager (3V-CPI). Averaged path light scattering properties of the simulated ice clouds were measured using the Scattering Intensity Measurements for the Optical detectioN of icE (SIMONE) and single particle scattering properties were measured by the CASPOL. We show the ambiguity of several optical measurements in ice fraction determination of homogeneously frozen ice in the case where sublimating quasi-spherical ice particles are present. Moreover, most of the instruments have difficulties of producing reliable ice fraction if small aspherical ice particles are present, and all of the instruments cannot separate perfectly spherical ice particles from supercooled droplets. Correlation analysis of bulk averaged path depolarisation measurements and single particle measurements of these clouds showed higher R2 values at high concentrations and small diameters, but these results require further confirmation. We find that none of these instruments were able to determine unambiguously the phase of the small particles. These results have implications for the interpretation of atmospheric measurements and parametrisations for modelling, particularly for low particle number concentration clouds.

  5. Protonospheric columnar electron content determination. I - Analysis.

    NASA Technical Reports Server (NTRS)

    Almeida, O. G.

    1973-01-01

    A combination of phase-path length difference and Faraday rotation angle data obtained from geostationary satellite transmissions is used to determine the integration constant necessary to convert phase-path length difference information into absolute values of total slant columnar electron content. The total content thus determined, which is the sum of the ionospheric and protonospheric contents, is measured with uncertainties about one order of magnitude smaller than the value of the protonospheric content. It is thus, in principle, possible to determine the latter by subtracting from the measurement the so-called 'Faraday content.' This idea, proposed by several authors in the past, is critically examined in the present paper. It is impossible to totally eliminate the ionospheric contribution to the measurements; however, it is shown that the degree of elimination depends on the type of distribution of the longitudinal component of the geomagnetic field along the path of observation. Satisfactory minimization of the ionospheric contribution can be accomplished only under certain geometries of observation.

  6. Transverse Pupil Shifts for Adaptive Optics Non-Common Path Calibration

    NASA Technical Reports Server (NTRS)

    Bloemhof, Eric E.

    2011-01-01

    A simple new way of obtaining absolute wavefront measurements with a laboratory Fizeau interferometer was recently devised. In that case, the observed wavefront map is the difference of two cavity surfaces, those of the mirror under test and of an unknown reference surface on the Fizeau s transmission flat. The absolute surface of each can be determined by applying standard wavefront reconstruction techniques to two grids of absolute surface height differences of the mirror under test, obtained from pairs of measurements made with slight transverse shifts in X and Y. Adaptive optics systems typically provide an actuated periscope between wavefront sensor (WFS) and commonmode optics, used for lateral registration of deformable mirror (DM) to WFS. This periscope permits independent adjustment of either pupil or focal spot incident on the WFS. It would be used to give the required lateral pupil motion between common and non-common segments, analogous to the lateral shifts of the two phase contributions in the lab Fizeau. The technique is based on a completely new approach to calibration of phase. It offers unusual flexibility with regard to the transverse spatial frequency scales probed, and will give results quite quickly, making use of no auxiliary equipment other than that built into the adaptive optics system. The new technique may be applied to provide novel calibration information about other optical systems in which the beam may be shifted transversely in a controlled way.

  7. Opto-electronic device for frequency standard generation and terahertz-range optical demodulation based on quantum interference

    DOEpatents

    Georgiades, Nikos P.; Polzik, Eugene S.; Kimble, H. Jeff

    1999-02-02

    An opto-electronic system and technique for comparing laser frequencies with large frequency separations, establishing new frequency standards, and achieving phase-sensitive detection at ultra high frequencies. Light responsive materials with multiple energy levels suitable for multi-photon excitation are preferably used for nonlinear mixing via quantum interference of different excitation paths affecting a common energy level. Demodulation of a carrier with a demodulation frequency up to 100's THZ can be achieved for frequency comparison and phase-sensitive detection. A large number of materials can be used to cover a wide spectral range including the ultra violet, visible and near infrared regions. In particular, absolute frequency measurement in a spectrum from 1.25 .mu.m to 1.66 .mu.m for fiber optics can be accomplished with a nearly continuous frequency coverage.

  8. James Webb Space Telescope segment phasing using differential optical transfer functions

    PubMed Central

    Codona, Johanan L.; Doble, Nathan

    2015-01-01

    Differential optical transfer function (dOTF) is an image-based, noniterative wavefront sensing method that uses two star images with a single small change in the pupil. We describe two possible methods for introducing the required pupil modification to the James Webb Space Telescope, one using a small (<λ/4) displacement of a single segment's actuator and another that uses small misalignments of the NIRCam's filter wheel. While both methods should work with NIRCam, the actuator method will allow both MIRI and NIRISS to be used for segment phasing, which is a new functionality. Since the actuator method requires only small displacements, it should provide a fast and safe phasing alternative that reduces the mission risk and can be performed frequently for alignment monitoring and maintenance. Since a single actuator modification can be seen by all three cameras, it should be possible to calibrate the non-common-path aberrations between them. Large segment discontinuities can be measured using dOTFs in two filter bands. Using two images of a star field, aberrations along multiple lines of sight through the telescope can be measured simultaneously. Also, since dOTF gives the pupil field amplitude as well as the phase, it could provide a first approximation or constraint to the planned iterative phase retrieval algorithms. PMID:27042684

  9. Predicting diffusion paths and interface motion in gamma/gamma + beta, Ni-Cr-Al diffusion couples

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.; Heckel, R. W.

    1987-01-01

    A simplified model has been developed to predict Beta recession and diffusion paths in ternary gamma/gamma + beta diffusion couples (gamma:fcc, beta: NiAl structure). The model was tested by predicting beta recession and diffusion paths for four gamma/gamma + beta, Ni-Cr-Al couples annealed for 100 hours at 1200 C. The model predicted beta recession within 20 percent of that measured for each of the couples. The model also predicted shifts in the concentration of the gamma phase at the gamma/gamma + beta interface within 2 at. pct Al and 6 at. pct Cr of that measured in each of the couples. A qualitative explanation based on simple kinetic and mass balance arguments has been given which demonstrates the necessity for diffusion in the two-phase region of certain gamma/gamma + beta, Ni-Cr-Al couples.

  10. Radiometric correction of atmospheric path length fluctuations in interferometric experiments. [in radio astronomy

    NASA Technical Reports Server (NTRS)

    Resch, G. M.; Hogg, D. E.; Napier, P. J.

    1984-01-01

    To support very long baseline interferometric experiments, a system has been developed for estimating atmospheric water vapor path delay. The system consists of dual microwave radiometers, one operating at 20.7 GHz and the other at 31.4 GHz. The measured atmospheric brightness temperatures at these two frequencies yield the estimate of the precipitable water present in both vapor and droplets. To determine the accuracy of the system, a series of observations were undertaken, comparing the outputs of two water vapor radiometers with the phase variation observed with two connected elements of the very large array (VLA). The results show that: (1) water vapor fluctuations dominate the residual VLA phase and (2) the microwave radiometers can measure and correct these effects. The rms phase error after correction is typically 15 deg at a wavelength of 6 cm, corresponding to an uncertainty in the path delay of 0.25 cm. The residual uncertainty is consistent with the stability of the microwave radiometer but is still considerably larger than the stability of the VLA. The technique is less successful under conditions of heavy cloud.

  11. Simultaneous two-wavelength tri-window common-path digital holography

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Shan, Mingguang; Zhong, Zhi

    2018-06-01

    Two-wavelength common-path off-axis digital holography is proposed with a tri-window in a single shot. It is established using a standard 4f optical image system with a 2D Ronchi grating placed outside the Fourier plane. The input plane consists of three windows: one for the object and the other two for reference. Aided by a spatial filter together with two orthogonal linear polarizers in the Fourier plane, the two-wavelength information is encoded into a multiplexed hologram with two orthogonal spatial frequencies that enable full separation of spectral information in the digital Fourier space without resolution loss. Theoretical analysis and experimental results illustrate that our approach can simultaneously perform quantitative phase imaging at two wavelengths.

  12. Seafloor age dependence of Rayleigh wave phase velocities in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Godfrey, Karen E.; Dalton, Colleen A.; Ritsema, Jeroen

    2017-05-01

    Variations in the phase velocity of fundamental-mode Rayleigh waves across the Indian Ocean are determined using two inversion approaches. First, variations in phase velocity as a function of seafloor age are estimated using a pure-path age-dependent inversion method. Second, a two-dimensional parameterization is used to solve for phase velocity within 1.25° × 1.25° grid cells. Rayleigh wave travel time delays have been measured between periods of 38 and 200 s. The number of measurements in the study area ranges between 4139 paths at a period of 200 s and 22,272 paths at a period of 40 s. At periods < 100 s, the phase velocity variations are strongly controlled by seafloor age and shown to be consistent with temperature variations predicted by the half-space-cooling model for a mantle potential temperature of 1400°C. The inferred thermal structure beneath the Indian Ocean is most similar to the structure of the Pacific upper mantle, where phase velocities can also be explained by a half-space-cooling model. The thermal structure is not consistent with that of the Atlantic upper mantle, which is best fit by a plate-cooling model and requires a thin plate. Removing age-dependent phase velocity from the 2-D maps of the Indian Ocean highlights anomalously high velocities at the Rodriguez Triple Junction and the Australian-Antarctic Discordance and anomalously low velocities immediately to the west of the Central Indian Ridge.

  13. Earth-Space Link Attenuation Estimation via Ground Radar Kdp

    NASA Technical Reports Server (NTRS)

    Bolen, Steven M.; Benjamin, Andrew L.; Chandrasekar, V.

    2003-01-01

    A method of predicting attenuation on microwave Earth/spacecraft communication links, over wide areas and under various atmospheric conditions, has been developed. In the area around the ground station locations, a nearly horizontally aimed polarimetric S-band ground radar measures the specific differential phase (Kdp) along the Earth-space path. The specific attenuation along a path of interest is then computed by use of a theoretical model of the relationship between the measured S-band specific differential phase and the specific attenuation at the frequency to be used on the communication link. The model includes effects of rain, wet ice, and other forms of precipitation. The attenuation on the path of interest is then computed by integrating the specific attenuation over the length of the path. This method can be used to determine statistics of signal degradation on Earth/spacecraft communication links. It can also be used to obtain real-time estimates of attenuation along multiple Earth/spacecraft links that are parts of a communication network operating within the radar coverage area, thereby enabling better management of the network through appropriate dynamic routing along the best combination of links.

  14. Tunable quantum interference in a 3D integrated circuit.

    PubMed

    Chaboyer, Zachary; Meany, Thomas; Helt, L G; Withford, Michael J; Steel, M J

    2015-04-27

    Integrated photonics promises solutions to questions of stability, complexity, and size in quantum optics. Advances in tunable and non-planar integrated platforms, such as laser-inscribed photonics, continue to bring the realisation of quantum advantages in computation and metrology ever closer, perhaps most easily seen in multi-path interferometry. Here we demonstrate control of two-photon interference in a chip-scale 3D multi-path interferometer, showing a reduced periodicity and enhanced visibility compared to single photon measurements. Observed non-classical visibilities are widely tunable, and explained well by theoretical predictions based on classical measurements. With these predictions we extract Fisher information approaching a theoretical maximum. Our results open a path to quantum enhanced phase measurements.

  15. Experiments and error analysis of laser ranging based on frequency-sweep polarization modulation

    NASA Astrophysics Data System (ADS)

    Gao, Shuyuan; Ji, Rongyi; Li, Yao; Cheng, Zhi; Zhou, Weihu

    2016-11-01

    Frequency-sweep polarization modulation ranging uses a polarization-modulated laser beam to determine the distance to the target, the modulation frequency is swept and frequency values are measured when transmitted and received signals are in phase, thus the distance can be calculated through these values. This method gets much higher theoretical measuring accuracy than phase difference method because of the prevention of phase measurement. However, actual accuracy of the system is limited since additional phase retardation occurs in the measuring optical path when optical elements are imperfectly processed and installed. In this paper, working principle of frequency sweep polarization modulation ranging method is analyzed, transmission model of polarization state in light path is built based on the theory of Jones Matrix, additional phase retardation of λ/4 wave plate and PBS, their impact on measuring performance is analyzed. Theoretical results show that wave plate's azimuth error dominates the limitation of ranging accuracy. According to the system design index, element tolerance and error correcting method of system is proposed, ranging system is built and ranging experiment is performed. Experiential results show that with proposed tolerance, the system can satisfy the accuracy requirement. The present work has a guide value for further research about system design and error distribution.

  16. Feynman formulae and phase space Feynman path integrals for tau-quantization of some Lévy-Khintchine type Hamilton functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butko, Yana A., E-mail: yanabutko@yandex.ru, E-mail: kinderknecht@math.uni-sb.de; Grothaus, Martin, E-mail: grothaus@mathematik.uni-kl.de; Smolyanov, Oleg G., E-mail: Smolyanov@yandex.ru

    2016-02-15

    Evolution semigroups generated by pseudo-differential operators are considered. These operators are obtained by different (parameterized by a number τ) procedures of quantization from a certain class of functions (or symbols) defined on the phase space. This class contains Hamilton functions of particles with variable mass in magnetic and potential fields and more general symbols given by the Lévy-Khintchine formula. The considered semigroups are represented as limits of n-fold iterated integrals when n tends to infinity. Such representations are called Feynman formulae. Some of these representations are constructed with the help of another pseudo-differential operator, obtained by the same procedure ofmore » quantization; such representations are called Hamiltonian Feynman formulae. Some representations are based on integral operators with elementary kernels; these are called Lagrangian Feynman formulae. Langrangian Feynman formulae provide approximations of evolution semigroups, suitable for direct computations and numerical modeling of the corresponding dynamics. Hamiltonian Feynman formulae allow to represent the considered semigroups by means of Feynman path integrals. In the article, a family of phase space Feynman pseudomeasures corresponding to different procedures of quantization is introduced. The considered evolution semigroups are represented as phase space Feynman path integrals with respect to these Feynman pseudomeasures, i.e., different quantizations correspond to Feynman path integrals with the same integrand but with respect to different pseudomeasures. This answers Berezin’s problem of distinguishing a procedure of quantization on the language of Feynman path integrals. Moreover, the obtained Lagrangian Feynman formulae allow also to calculate these phase space Feynman path integrals and to connect them with some functional integrals with respect to probability measures.« less

  17. Langevin Dynamics, Large Deviations and Instantons for the Quasi-Geostrophic Model and Two-Dimensional Euler Equations

    NASA Astrophysics Data System (ADS)

    Bouchet, Freddy; Laurie, Jason; Zaboronski, Oleg

    2014-09-01

    We investigate a class of simple models for Langevin dynamics of turbulent flows, including the one-layer quasi-geostrophic equation and the two-dimensional Euler equations. Starting from a path integral representation of the transition probability, we compute the most probable fluctuation paths from one attractor to any state within its basin of attraction. We prove that such fluctuation paths are the time reversed trajectories of the relaxation paths for a corresponding dual dynamics, which are also within the framework of quasi-geostrophic Langevin dynamics. Cases with or without detailed balance are studied. We discuss a specific example for which the stationary measure displays either a second order (continuous) or a first order (discontinuous) phase transition and a tricritical point. In situations where a first order phase transition is observed, the dynamics are bistable. Then, the transition paths between two coexisting attractors are instantons (fluctuation paths from an attractor to a saddle), which are related to the relaxation paths of the corresponding dual dynamics. For this example, we show how one can analytically determine the instantons and compute the transition probabilities for rare transitions between two attractors.

  18. VHF/UHF technique for the determination of the columnar electron contents of the plasmasphere and of the protonosphere using geostationary satellite transmission: Observations during magnetic storms

    NASA Technical Reports Server (NTRS)

    Almeida, O. G.

    1972-01-01

    Measurements of the total electron content of the plasmasphere up to geostationary heights were made using the beacon transmitters aboard the satellite ATS-3. The technique employed is a combination of the phase-path length difference and the Faraday rotation angle methods. Such a combination permits very accurate determination of the integration constant necessary to convert phase-path length difference data into information about the absolute value of the columnar content.

  19. Large-mirror testing facility at the National Optical Astronomy Observatories

    NASA Astrophysics Data System (ADS)

    Coudé du Foresto, V.; Fox, J.; Poczulp, G. A.; Richardson, J.; Roddier, Claude; Roddier, Francois; Barr, L. D.

    1991-09-01

    A method for testing the surfaces of large mirrors has been developed to be used even when conditions of vibration and thermal turbulence in the light path cannot be eliminated. The full aperture of the mirror under test is examined by means of a scatterplate interferometer that has the property of being a quasi-common-path method, although any means for obtaining interference fringes can be used. By operating the test equipment remotely, the optician does not cause unnecessary vibrations or heat in the testing area. The typical test is done with a camera exposure of about a millisecond to 'freeze' the fringe pattern on the detector. Averaging up to 10 separate exposures effectively eliminates the turbulence effects. From the intensity information, a phase map of the wavefront reflected from the surface is obtained using a phase-unwrapping technique. The method provides the optician with complete numerical information and visual plots for the surface under test and the diffracted image the method will produce to an accuracy of 0.01 micron measured peak-to-valley. The method has been extensively used for a variety of test of a 1.8-m-diam borosilicate-glass honeycomb mirror, where the method was shown to have a sensitivity equal to a Foucault test.

  20. Propagation Diagnostic Simulations Using High-Resolution Equatorial Plasma Bubble Simulations

    NASA Astrophysics Data System (ADS)

    Rino, C. L.; Carrano, C. S.; Yokoyama, T.

    2017-12-01

    In a recent paper, under review, equatorial-plasma-bubble (EPB) simulations were used to conduct a comparative analysis of the EPB spectra characteristics with high-resolution in-situ measurements from the C/NOFS satellite. EPB realizations sampled in planes perpendicular to magnetic field lines provided well-defined EPB structure at altitudes penetrating both high and low-density regions. The average C/NOFS structure in highly disturbed regions showed nearly identical two-component inverse-power-law spectral characteristics as the measured EPB structure. This paper describes the results of PWE simulations using the same two-dimensional cross-field EPB realizations. New Irregularity Parameter Estimation (IPE) diagnostics, which are based on two-dimensional equivalent-phase-screen theory [A theory of scintillation for two-component power law irregularity spectra: Overview and numerical results, by Charles Carrano and Charles Rino, DOI: 10.1002/2015RS005903], have been successfully applied to extract two-component inverse-power-law parameters from measured intensity spectra. The EPB simulations [Low and Midlatitude Ionospheric Plasma DensityIrregularities and Their Effects on Geomagnetic Field, by Tatsuhiro Yokoyama and Claudia Stolle, DOI 10.1007/s11214-016-0295-7] have sufficient resolution to populate the structure scales (tens of km to hundreds of meters) that cause strong scintillation at GPS frequencies. The simulations provide an ideal geometry whereby the ramifications of varying structure along the propagation path can be investigated. It is well known path-integrated one-dimensional spectra increase the one-dimensional index by one. The relation requires decorrelation along the propagation path. Correlated structure would be interpreted as stochastic total-electron-content (TEC). The simulations are performed with unmodified structure. Because the EPB structure is confined to the central region of the sample planes, edge effects are minimized. Consequently, the propagated signal phase can be comparted to path-integrated phase for evaluating TEC extraction. Only the frequency dependence of phase scintillation distinguishes phase scintillation. The simulations allow scale-dependent exploration of remote-sensing diagnostics.

  1. RF kicker cavity to increase control in common transport lines

    DOEpatents

    Douglas, David R.; Ament, Lucas J. P.

    2017-04-18

    A method of controlling e-beam transport where electron bunches with different characteristics travel through the same beam pipe. An RF kicker cavity is added at the beginning of the common transport pipe or at various locations along the common transport path to achieve independent control of different bunch types. RF energy is applied by the kicker cavity kicks some portion of the electron bunches, separating the bunches in phase space to allow independent control via optics, or separating bunches into different beam pipes. The RF kicker cavity is operated at a specific frequency to enable kicking of different types of bunches in different directions. The phase of the cavity is set such that the selected type of bunch passes through the cavity when the RF field is at a node, leaving that type of bunch unaffected. Beam optics may be added downstream of the kicker cavity to cause a further separation in phase space.

  2. The Gemini Planet Imager Calibration Wavefront Sensor Instrument

    NASA Technical Reports Server (NTRS)

    Wallace, J. Kent; Burruss, Rick S.; Bartos, Randall D.; Trinh, Thang Q.; Pueyo, Laurent A.; Fregoso, Santos F.; Angione, John R.; Shelton, J. Chris

    2010-01-01

    The Gemini Planet Imager is an extreme adaptive optics system that will employ an apodized-pupil coronagraph to make direct detections of faint companions of nearby stars to a contrast level of the 10(exp -7) within a few lambda/D of the parent star. Such high contrasts from the ground require exquisite wavefront sensing and control both for the AO system as well as for the coronagraph. Un-sensed non-common path phase and amplitude errors after the wavefront sensor dichroic but before the coronagraph would lead to speckles which would ultimately limit the contrast. The calibration wavefront system for GPI will measure the complex wavefront at the system pupil before the apodizer and provide slow phase corrections to the AO system to mitigate errors that would cause a loss in contrast. The calibration wavefront sensor instrument for GPI has been built. We will describe the instrument and its performance.

  3. Opto-electronic device for frequency standard generation and terahertz-range optical demodulation based on quantum interference

    DOEpatents

    Georgiades, N.P.; Polzik, E.S.; Kimble, H.J.

    1999-02-02

    An opto-electronic system and technique for comparing laser frequencies with large frequency separations, establishing new frequency standards, and achieving phase-sensitive detection at ultra high frequencies are disclosed. Light responsive materials with multiple energy levels suitable for multi-photon excitation are preferably used for nonlinear mixing via quantum interference of different excitation paths affecting a common energy level. Demodulation of a carrier with a demodulation frequency up to 100`s THZ can be achieved for frequency comparison and phase-sensitive detection. A large number of materials can be used to cover a wide spectral range including the ultra violet, visible and near infrared regions. In particular, absolute frequency measurement in a spectrum from 1.25 {micro}m to 1.66 {micro}m for fiber optics can be accomplished with a nearly continuous frequency coverage. 7 figs.

  4. Combining control input with flight path data to evaluate pilot performance in transport aircraft.

    PubMed

    Ebbatson, Matt; Harris, Don; Huddlestone, John; Sears, Rodney

    2008-11-01

    When deriving an objective assessment of piloting performance from flight data records, it is common to employ metrics which purely evaluate errors in flight path parameters. The adequacy of pilot performance is evaluated from the flight path of the aircraft. However, in large jet transport aircraft these measures may be insensitive and require supplementing with frequency-based measures of control input parameters. Flight path and control input data were collected from pilots undertaking a jet transport aircraft conversion course during a series of symmetric and asymmetric approaches in a flight simulator. The flight path data were analyzed for deviations around the optimum flight path while flying an instrument landing approach. Manipulation of the flight controls was subject to analysis using a series of power spectral density measures. The flight path metrics showed no significant differences in performance between the symmetric and asymmetric approaches. However, control input frequency domain measures revealed that the pilots employed highly different control strategies in the pitch and yaw axes. The results demonstrate that to evaluate pilot performance fully in large aircraft, it is necessary to employ performance metrics targeted at both the outer control loop (flight path) and the inner control loop (flight control) parameters in parallel, evaluating both the product and process of a pilot's performance.

  5. Nonadiabatic quantum path analysis of high-order harmonic generation: Role of the carrier-envelope phase on short and long paths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sansone, G.; Stagira, S.; Nisoli, M.

    2004-07-01

    High-order harmonic generation process in the few- and multiple-optical-cycle regime is theoretically investigated, using the saddle-point method generalized to account for nonadiabatic effects. The influence of the carrier-envelope phase of the driving pulses on the various electron quantum paths is analyzed. We demonstrate that the short and long quantum paths are influenced in different ways by the carrier-envelope phase. In particular, we show that clear phase effects are visible on the long quantum paths even in the multiple-optical-cycle regime, while the short quantum paths are significantly influenced by the carrier-envelope phase only in the few-optical-cycle regime.

  6. Dispersible oxygen microsensors map oxygen gradients in three-dimensional cell cultures.

    PubMed

    Lesher-Pérez, Sasha Cai; Kim, Ge-Ah; Kuo, Chuan-Hsien; Leung, Brendan M; Mong, Sanda; Kojima, Taisuke; Moraes, Christopher; Thouless, M D; Luker, Gary D; Takayama, Shuichi

    2017-09-26

    Phase fluorimetry, unlike the more commonly used intensity-based measurement, is not affected by differences in light paths from culture vessels or by optical attenuation through dense 3D cell cultures and hydrogels thereby minimizing dependence on signal intensity for accurate measurements. This work describes the use of phase fluorimetry on oxygen-sensor microbeads to perform oxygen measurements in different microtissue culture environments. In one example, cell spheroids were observed to deplete oxygen from the cell-culture medium filling the bottom of conventional microwells within minutes, whereas oxygen concentrations remained close to ambient levels for several days in hanging-drop cultures. By dispersing multiple oxygen microsensors in cell-laden hydrogels, we also mapped cell-generated oxygen gradients. The spatial oxygen mapping was sufficiently precise to enable the use of computational models of oxygen diffusion and uptake to give estimates of the cellular oxygen uptake rate and the half-saturation constant. The results show the importance of integrated design and analysis of 3D cell cultures from both biomaterial and oxygen supply aspects. While this paper specifically tests spheroids and cell-laden gel cultures, the described methods should be useful for measuring pericellular oxygen concentrations in a variety of biomaterials and culture formats.

  7. Phase-front measurements of an injection-locked AlGaAs laser-diode array

    NASA Technical Reports Server (NTRS)

    Cornwell, Donald M., Jr.; Rall, Jonathan A. R.; Abshire, James B.

    1989-01-01

    The phase-front quality of the primary spatial lobe emitted from an injection-locked gain-guided AlGaAs laser-diode array is measured by using an equal-path, phase-shifting Mach-Zehnder interferometer. Root-mean-square phase errors of 0.037 + or - 0.003 wave are measured for the single spatial lobe, which contained 240-mW cw output power in a single longitudinal mode. This phase-front quality corresponds to a Strehl ratio of S = 0.947, which results in a 0.23-dB power loss from the single lobe's ideal diffraction-limited power. These values are comparable with those measured for single-stripe index-guided AlGaAs lasers.

  8. High-speed measurement of an air transect's temperature shift heated by laser beam

    NASA Astrophysics Data System (ADS)

    Li, WenYu; Jiang, ZongFu; Xi, Fengjie; Li, Qiang; Xie, Wenke

    2005-02-01

    Laser beam heat the air on the optic path, Beam-deflection optical tomography is a non-intrusive method to measure the 2-dimension temperature distribution in the transect. By means of linear Hartmann Sensor at the rate of 27kHz, the optic path was heated by a 2.7μm HF laser, continuous and high time resolution gradients of optic phase were obtained. the result of analysing and calculation showed the temperament shift in the heated beam path was not higher than 50K when the HF laser power was 9W. The experiment showed that it is a practical non-intrusive temperature shift measurement method for a small area aero-optical medium.

  9. Iodine-frequency-stabilized laser diode and displacement-measuring interferometer based on sinusoidal phase modulation

    NASA Astrophysics Data System (ADS)

    Duong, Quang Anh; Vu, Thanh Tung; Higuchi, Masato; Wei, Dong; Aketagawa, Masato

    2018-06-01

    We propose a sinusoidal phase modulation method to achieve both the frequency stabilization of an external-cavity laser diode (ECLD) to an 127I2 saturated absorption transition near 633 nm and displacement measurement using a Mach–Zehnder interferometer. First, the frequency of the ECLD is stabilized to the b 21 hyperfine component of the P(33) 6-3 transition of 127I2 by combining sinusoidal phase modulation by an electro-optic modulator and frequency modulation spectroscopy by chopping the pump beam using an acousto-optic modulator. Even though a small modulation index of m  =  3.768 rad is utilized, a relative frequency stability of 10‑11 order is obtained over a sampling time of 400 s. Secondly, the frequency-stabilized ECLD is applied as a light source to a Mach–Zehnder interferometer. From the two consecutive modulation harmonics (second and third orders) involved in the interferometer signal, the displacement of the moving mirror is determined for four optical path differences (L 0  =  100, 200, 500, and 1000 mm). The measured modulation indexes for the four optical path differences coincide with the designated value (3.768 rad) within 0.5%. Compared with the sinusoidal frequency modulation Michelson interferometer (Vu et al 2016 Meas. Sci. Technol. 27 105201) which was demonstrated by some of the same authors of this paper, the phase modulation Mach–Zhender interferometer could fix the modulation index to a constant value for the four optical path differences. In this report, we discuss the measurement principle, experimental system, and results.

  10. Common-path biodynamic imaging for dynamic fluctuation spectroscopy of 3D living tissue

    NASA Astrophysics Data System (ADS)

    Li, Zhe; Turek, John; Nolte, David D.

    2017-03-01

    Biodynamic imaging is a novel 3D optical imaging technology based on short-coherence digital holography that measures intracellular motions of cells inside their natural microenvironments. Here both common-path and Mach-Zehnder designs are presented. Biological tissues such as tumor spheroids and ex vivo biopsies are used as targets, and backscattered light is collected as signal. Drugs are applied to samples, and their effects are evaluated by identifying biomarkers that capture intracellular dynamics from the reconstructed holograms. Through digital holography and coherence gating, information from different depths of the samples can be extracted, enabling the deep-tissue measurement of the responses to drugs.

  11. Apparatus and method for performing two-frequency interferometry

    DOEpatents

    Johnston, Roger G.

    1990-01-01

    The present apparatus includes a two-frequency, Zeeman-effect laser and matched, doubly refracting crystals in the construction of an accurate interferometer. Unlike other interferometric devices, the subject invention exhibits excellent phase stability owing to the use of single piece means for producing parallel interferometer arms, making the interferometer relatively insensitive to thermal and mechanical instabilities. Interferometers respond to differences in optical path length between their two arms. Unlike many interferometric techniques, which require the measurement of the location of interference fringes in a brightly illuminated background, the present invention permits the determination of the optical path length difference by measuring the phase of an electronic sine wave. The present apparatus is demonstrated as a differential thermooptic spectrometer for measuring differential optical absorption simply and accurately which is but one of many applications therefor. The relative intensities of the heating beams along each arm of the interferometer can be easily adjusted by observing a zero phase difference with identical samples when this condition is obtained.

  12. Apparatus and method for performing two-frequency interferometry

    DOEpatents

    Johnston, R.G.

    1988-01-25

    The present apparatus includes a two-frequency, Zeeman Effect laser and matched, doubly refracting crystals in the construction of an accurate interferometer. Unlike other interferometric devices, the subject invention exhibits excellent phase stability owing to the use of single piece means for producing parallel interferometer arms, making the interferometer relatively insensitive to thermal and mechanical instabilities. Interferometers respond to differences in optical path length between their two arms. Unlike many interferometric techniques, which require the measurement of the location of interference fringes in a brightly illuminated background, the present invention permits the determination of the optical path length difference by measuring the phase of an electronic sine wave. The present apparatus is demonstrated as a differential thermooptic spectrometer for measuring differential optical absorption simply and accurately which is but one of many applications therefor. The relative intensities of the heating beams along each arm of the interferometer can be easily adjusted by observing a zero phase difference with identical samples when this condition is obtained. 6 figs.

  13. Midlatitude ionospheric D region: Height, sharpness, and solar zenith angle

    NASA Astrophysics Data System (ADS)

    Thomson, Neil R.; Clilverd, Mark A.; Rodger, Craig J.

    2017-08-01

    VLF radio amplitude and phase measurements are used to find the height and sharpness of the D region of the ionosphere at a mid to high geomagnetic dip latitude of 52.5°. The two paths used are both from the 23.4 kHz transmitter, DHO, in north Germany with the first path being northward and mainly over the sea along the west coast of Denmark over a range of 320-425 km, and the second, also mainly all-sea, to a single fixed recording receiver at Eskdalemuir in Scotland ( 750 km). From plots of the measured amplitudes and phases versus distance for the first of these paths compared with calculations using the U.S. Navy code, ModeFinder, the Wait height and sharpness parameters of the D region at midday in summer 2015 are found to be H' = 72.8 ± 0.2 km and β = 0.345 ± 0.015 km-1 at a solar zenith angle 33°. From phase and amplitude measurements at other times of day on the second path, the daytime changes in H' and β as functions of solar zenith angle are determined from shortly after dawn to shortly before dusk. Comparisons are also made between the modal ModeFinder calculations and wave hop calculations, with both giving similar results. The parameters found here should be useful in understanding energy inputs to the D region from the radiation belts, solar flares, or transient luminous events. The midday values may be sufficiently precise to be useful for monitoring climate change.

  14. Resolving phase information of the optical local density of state with scattering near-field probes

    NASA Astrophysics Data System (ADS)

    Prasad, R.; Vincent, R.

    2016-10-01

    We theoretically discuss the link between the phase measured using a scattering optical scanning near-field microscopy (s-SNOM) and the local density of optical states (LDOS). A remarkable result is that the LDOS information is directly included in the phase of the probe. Therefore by monitoring the spatial variation of the trans-scattering phase, we locally measure the phase modulation associated with the probe and the optical paths. We demonstrate numerically that a technique involving two-phase imaging of a sample with two different sized tips should allow to obtain the image the pLDOS. For this imaging method, numerical comparison with extinction probe measurement shows crucial qualitative and quantitative improvement.

  15. Singularity of the time-energy uncertainty in adiabatic perturbation and cycloids on a Bloch sphere

    PubMed Central

    Oh, Sangchul; Hu, Xuedong; Nori, Franco; Kais, Sabre

    2016-01-01

    Adiabatic perturbation is shown to be singular from the exact solution of a spin-1/2 particle in a uniformly rotating magnetic field. Due to a non-adiabatic effect, its quantum trajectory on a Bloch sphere is a cycloid traced by a circle rolling along an adiabatic path. As the magnetic field rotates more and more slowly, the time-energy uncertainty, proportional to the length of the quantum trajectory, calculated by the exact solution is entirely different from the one obtained by the adiabatic path traced by the instantaneous eigenstate. However, the non-adiabatic Aharonov- Anandan geometric phase, measured by the area enclosed by the exact path, approaches smoothly the adiabatic Berry phase, proportional to the area enclosed by the adiabatic path. The singular limit of the time-energy uncertainty and the regular limit of the geometric phase are associated with the arc length and arc area of the cycloid on a Bloch sphere, respectively. Prolate and curtate cycloids are also traced by different initial states outside and inside of the rolling circle, respectively. The axis trajectory of the rolling circle, parallel to the adiabatic path, is shown to be an example of transitionless driving. The non-adiabatic resonance is visualized by the number of cycloid arcs. PMID:26916031

  16. Hybrid shearing and phase-shifting point diffraction interferometer

    DOEpatents

    Goldberg, Kenneth Alan; Naulleau, Patrick P.

    2003-06-03

    A new interferometry configuration combines the strengths of two existing interferometry methods, improving the quality and extending the dynamic range of both. On the same patterned mask, placed near the image-plane of an optical system under test, patterns for phase-shifting point diffraction interferometry and lateral shearing interferometry coexist. The former giving verifiable high accuracy for the measurement of nearly diffraction-limited optical systems. The latter enabling the measurement of optical systems with more than one wave of aberration in the system wavefront. The interferometry configuration is a hybrid shearing and point diffraction interferometer system for testing an optical element that is positioned along an optical path including: a source of electromagnetic energy in the optical path; a first beam splitter that is secured to a device that includes means for maneuvering the first beam splitter in a first position wherein the first beam splitter is in the optical path dividing light from the source into a reference beam and a test beam and in a second position wherein the first beam splitter is outside the optical path: a hybrid mask which includes a first section that defines a test window and at least one reference pinhole and a second section that defines a second beam splitter wherein the hybrid mask is secured to a device that includes means for maneuvering either the first section or the second section into the optical path positioned in an image plane that is created by the optical element, with the proviso that the first section of the hybrid mask is positioned in the optical path when first beam splitter is positioned in the optical path; and a detector positioned after the hybrid mask along the optical path.

  17. Ultrafast electron crystallography of the cooperative reaction path in vanadium dioxide

    PubMed Central

    Yang, Ding-Shyue; Baum, Peter; Zewail, Ahmed H.

    2016-01-01

    Time-resolved electron diffraction with atomic-scale spatial and temporal resolution was used to unravel the transformation pathway in the photoinduced structural phase transition of vanadium dioxide. Results from bulk crystals and single-crystalline thin-films reveal a common, stepwise mechanism: First, there is a femtosecond V−V bond dilation within 300 fs, second, an intracell adjustment in picoseconds and, third, a nanoscale shear motion within tens of picoseconds. Experiments at different ambient temperatures and pump laser fluences reveal a temperature-dependent excitation threshold required to trigger the transitional reaction path of the atomic motions. PMID:27376103

  18. Multipathing Via Three Parameter Common Image Gathers (CIGs) From Reverse Time Migration

    NASA Astrophysics Data System (ADS)

    Ostadhassan, M.; Zhang, X.

    2015-12-01

    A noteworthy problem for seismic exploration is effects of multipathing (both wanted or unwanted) caused by subsurface complex structures. We show that reverse time migration (RTM) combined with a unified, systematic three parameter framework that flexibly handles multipathing can be accomplished by adding one more dimension (image time) to the angle domain common image gather (ADCIG) data. RTM is widely used to generate prestack depth migration images. When using the cross-correlation image condition in 2D prestack migration in RTM, the usual practice is to sum over all the migration time steps. Thus all possible wave types and paths automatically contribute to the resulting image, including destructive wave interferences, phase shifts, and other distortions. One reason is that multipath (prismatic wave) contributions are not properly sorted and mapped in the ADCIGs. Also, multipath arrivals usually have different instantaneous attributes (amplitude, phase and frequency), and if not separated, the amplitudes and phases in the final prestack image will not stack coherently across sources. A prismatic path satisfies an image time for it's unique path; Cavalca and Lailly (2005) show that RTM images with multipaths can provide more complete target information in complex geology, as multipaths usually have different incident angles and amplitudes compared to primary reflections. If the image time slices within a cross-correlation common-source migration are saved for each image time, this three-parameter (incident angle, depth, image time) volume can be post-processed to generate separate, or composite, images of any desired subset of the migrated data. Images can by displayed for primary contributions, any combination of primary and multipath contributions (with or without artifacts), or various projections, including the conventional ADCIG (angle vs depth) plane. Examples show that signal from the true structure can be separated from artifacts caused by multiple arrivals when they have different image times. This improves the quality of images and benefits migration velocity analysis (MVA) and amplitude variation with angle (AVA) inversion.

  19. The experimental electron mean-free-path in Si under typical (S)TEM conditions.

    PubMed

    Potapov, P L

    2014-12-01

    The electron mean-free-path in Si was measured by EELS using the test structure with the certified dimensions as a calibration standard. In a good agreement with the previous CBED measurements, the mean-free-path is 150nm for 200keV and 179nm for 300keV energy of primary electrons at large collection angles. These values are accurately predicted by the model of Iakoubovskii et al. while the model of Malis et al. incorporated in common microscopy software underestimates the mean-free-path by 15% at least. Correspondingly, the thickness of TEM samples reported in many studies of the Si-based materials last decades might be noticeably underestimated. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Application of Phase Shifted, Laser Feedback Interferometry to Fluid Physics

    NASA Technical Reports Server (NTRS)

    Ovryn, Ben; Eppell, Steven J.; Andrews, James H.; Khaydarov, John

    1996-01-01

    We have combined the principles of phase-shifting interferometry (PSI) and laser-feedback interferometry (LFI) to produce a new instrument that can measure both optical path length (OPL) changes and discern sample reflectivity variations. In LFI, coherent feedback of the incident light either reflected directly from a surface or reflected after transmission through a region of interest will modulate the output intensity of the laser. LFI can yield a high signal-to-noise ratio even for low reflectivity samples. By combining PSI and LFI, we have produced a robust instrument, based upon a HeNe laser, with high dynamic range that can be used to measure either static (dc) or oscillatory changes along the optical path. As with other forms of interferometry, large changes in OPL require phase unwrapping. Conversely, small phase changes are limited by the fraction of a fringe that can be measured. We introduce the phase shifts with an electro-optic modulator (EOM) and use either the Carre or Hariharan algorithms to determine the phase and visibility. We have determined the accuracy and precision of our technique by measuring both the bending of a cantilevered piezoelectric bimorph and linear ramps to the EOM. Using PSI, sub-nanometer displacements can be measured. We have combined our interferometer with a commercial microscope and scanning piezoelectric stage and have measured the variation in OPL and visibility for drops of PDMS (silicone oil) on coated single crystal silicon. Our measurement of the static contact angle agrees with the value of 68 deg stated in the literature.

  1. Automatic Alignment of Displacement-Measuring Interferometer

    NASA Technical Reports Server (NTRS)

    Halverson, Peter; Regehr, Martin; Spero, Robert; Alvarez-Salazar, Oscar; Loya, Frank; Logan, Jennifer

    2006-01-01

    A control system strives to maintain the correct alignment of a laser beam in an interferometer dedicated to measuring the displacement or distance between two fiducial corner-cube reflectors. The correct alignment of the laser beam is parallel to the line between the corner points of the corner-cube reflectors: Any deviation from parallelism changes the length of the optical path between the reflectors, thereby introducing a displacement or distance measurement error. On the basis of the geometrical optics of corner-cube reflectors, the length of the optical path can be shown to be L = L(sub 0)cos theta, where L(sub 0) is the distance between the corner points and theta is the misalignment angle. Therefore, the measurement error is given by DeltaL = L(sub 0)(cos theta - 1). In the usual case in which the misalignment is small, this error can be approximated as DeltaL approximately equal to -L(sub 0)theta sup 2/2. The control system (see figure) is implemented partly in hardware and partly in software. The control system includes three piezoelectric actuators for rapid, fine adjustment of the direction of the laser beam. The voltages applied to the piezoelectric actuators include components designed to scan the beam in a circular pattern so that the beam traces out a narrow cone (60 microradians wide in the initial application) about the direction in which it is nominally aimed. This scan is performed at a frequency (2.5 Hz in the initial application) well below the resonance frequency of any vibration of the interferometer. The laser beam makes a round trip to both corner-cube reflectors and then interferes with the launched beam. The interference is detected on a photodiode. The length of the optical path is measured by a heterodyne technique: A 100- kHz frequency shift between the launched beam and a reference beam imposes, on the detected signal, an interferometric phase shift proportional to the length of the optical path. A phase meter comprising analog filters and specialized digital circuitry converts the phase shift to an indication of displacement, generating a digital signal proportional to the path length.

  2. Analysis of frequency mixing error on heterodyne interferometric ellipsometry

    NASA Astrophysics Data System (ADS)

    Deng, Yuan-long; Li, Xue-jin; Wu, Yu-bin; Hu, Ju-guang; Yao, Jian-quan

    2007-11-01

    A heterodyne interferometric ellipsometer, with no moving parts and a transverse Zeeman laser, is demonstrated. The modified Mach-Zehnder interferometer characterized as a separate frequency and common-path configuration is designed and theoretically analyzed. The experimental data show a fluctuation mainly resulting from the frequency mixing error which is caused by the imperfection of polarizing beam splitters (PBS), the elliptical polarization and non-orthogonality of light beams. The producing mechanism of the frequency mixing error and its influence on measurement are analyzed with the Jones matrix method; the calculation indicates that it results in an error up to several nanometres in the thickness measurement of thin films. The non-orthogonality has no contribution to the phase difference error when it is relatively small; the elliptical polarization and the imperfection of PBS have a major effect on the error.

  3. Neck Muscle Moment Arms Obtained In-Vivo from MRI: Effect of Curved and Straight Modeled Paths.

    PubMed

    Suderman, Bethany L; Vasavada, Anita N

    2017-08-01

    Musculoskeletal models of the cervical spine commonly represent neck muscles with straight paths. However, straight lines do not best represent the natural curvature of muscle paths in the neck, because the paths are constrained by bone and soft tissue. The purpose of this study was to estimate moment arms of curved and straight neck muscle paths using different moment arm calculation methods: tendon excursion, geometric, and effective torque. Curved and straight muscle paths were defined for two subject-specific cervical spine models derived from in vivo magnetic resonance images (MRI). Modeling neck muscle paths with curvature provides significantly different moment arm estimates than straight paths for 10 of 15 neck muscles (p < 0.05, repeated measures two-way ANOVA). Moment arm estimates were also found to be significantly different among moment arm calculation methods for 11 of 15 neck muscles (p < 0.05, repeated measures two-way ANOVA). In particular, using straight lines to model muscle paths can lead to overestimating neck extension moment. However, moment arm methods for curved paths should be investigated further, as different methods of calculating moment arm can provide different estimates.

  4. Octave-spanning carrier-envelope phase stabilized visible pulse with sub-3-fs pulse duration.

    PubMed

    Okamura, Kotaro; Kobayashi, Takayoshi

    2011-01-15

    The visible second harmonic of the idler output from a noncollinear optical parametric amplifier was compressed using adaptive dispersion control with a deformable mirror. The amplifier was pumped by and seeded in the signal path by a common 400 nm second-harmonic pulse from a Ti:sapphire regenerative amplifier. Thus, both the idler output and the second harmonic of the idler were passively carrier-envelope phase stabilized. The shortest pulse duration achieved was below 3 fs.

  5. Large dynamic range optical vector analyzer based on optical single-sideband modulation and Hilbert transform

    NASA Astrophysics Data System (ADS)

    Xue, Min; Pan, Shilong; Zhao, Yongjiu

    2016-07-01

    A large dynamic range optical vector analyzer (OVA) based on optical single-sideband modulation is proposed and demonstrated. By dividing the optical signal after optical device under test into two paths, reversing the phase of one swept sideband using a Hilbert transformer in one path, and detecting the two signals from the two paths with a balanced photodetector, the measurement errors induced by the residual -1st-order sideband and the high-order sidebands can be eliminated and the dynamic range of the measurement is increased. In a proof-of-concept experiment, the stimulated Brillouin scattering and a fiber Bragg grating are measured by OVAs with and without the Hilbert transform and balanced photodetection. Results show that about 40-dB improvement in the measurement dynamic range is realized by the proposed OVA.

  6. Vibration Analysis of a Split Path Gearbox

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy L.; Rashidi, Majid

    1995-01-01

    Split path gearboxes can be attractive alternatives to the common planetary designs for rotorcraft, but because they have seen little use, they are relatively high risk designs. To help reduce the risk of fielding a rotorcraft with a split path gearbox, the vibration and dynamic characteristics of such a gearbox were studied. A mathematical model was developed by using the Lagrangian method, and it was applied to study the effect of three design variables on the natural frequencies and vibration energy of the gearbox. The first design variable, shaft angle, had little influence on the natural frequencies. The second variable, mesh phasing, had a strong effect on the levels of vibration energy, with phase angles of 0 deg and 180 deg producing low vibration levels. The third design variable, the stiffness of the shafts connecting the spur gears to the helical pinions, strongly influenced the natural frequencies of some of the vibration modes, including two of the dominant modes. We found that, to achieve the lowest level of vibration energy, the natural frequencies of these two dominant modes should be less than those of the main excitation sources.

  7. Radiometric Calibration Techniques for Signal-of-Opportunity Reflectometers

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey R.; Shah, Rashmi; Deshpande, Manohar; Johnson, Carey

    2014-01-01

    Bi-static reflection measurements utilizing global navigation satellite service (GNSS) or other signals of opportunity (SoOp) can be used to sense ocean and terrestrial surface properties. End-to-end calibration of GNSS-R has been performed using well-characterized reflection surface (e.g., water), direct path antenna, and receiver gain characterization. We propose an augmented approach using on-board receiver electronics for radiometric calibration of SoOp reflectometers utilizing direct and reflected signal receiving antennas. The method calibrates receiver and correlator gains and offsets utilizing a reference switch and common noise source. On-board electronic calibration sources, such as reference switches, noise diodes and loop-back circuits, have shown great utility in stabilizing total power and correlation microwave radiometer and scatterometer receiver electronics in L-band spaceborne instruments. Application to SoOp instruments is likely to bring several benefits. For example, application to provide short and long time scale calibration stability of the direct path channel, especially in low signal-to-noise ratio configurations, is directly analogous to the microwave radiometer problem. The direct path channel is analogous to the loopback path in a scatterometer to provide a reference of the transmitted power, although the receiver is independent from the reflected path channel. Thus, a common noise source can be used to measure the gain ratio of the two paths. Using these techniques long-term (days to weeks) calibration stability of spaceborne L-band scatterometer and radiometer has been achieved better than 0.1. Similar long-term stability would likely be needed for a spaceborne reflectometer mission to measure terrestrial properties such as soil moisture.

  8. Footwear and Foam Surface Alter Gait Initiation of Typical Subjects

    PubMed Central

    Vieira, Marcus Fraga; Sacco, Isabel de Camargo Neves; Nora, Fernanda Grazielle da Silva Azevedo; Rosenbaum, Dieter; Lobo da Costa, Paula Hentschel

    2015-01-01

    Gait initiation is the task commonly used to investigate the anticipatory postural adjustments necessary to begin a new gait cycle from the standing position. In this study, we analyzed whether and how foot-floor interface characteristics influence the gait initiation process. For this purpose, 25 undergraduate students were evaluated while performing a gait initiation task in three experimental conditions: barefoot on a hard surface (barefoot condition), barefoot on a soft surface (foam condition), and shod on a hard surface (shod condition). Two force plates were used to acquire ground reaction forces and moments for each foot separately. A statistical parametric mapping (SPM) analysis was performed in COP time series. We compared the anterior-posterior (AP) and medial-lateral (ML) resultant center of pressure (COP) paths and average velocities, the force peaks under the right and left foot, and the COP integral x force impulse for three different phases: the anticipatory postural adjustment (APA) phase (Phase 1), the swing-foot unloading phase (Phase 2), and the support-foot unloading phase (Phase 3). In Phase 1, significantly smaller ML COP paths and velocities were found for the shod condition compared to the barefoot and foam conditions. Significantly smaller ML COP paths were also found in Phase 2 for the shod condition compared to the barefoot and foam conditions. In Phase 3, increased AP COP velocities were found for the shod condition compared to the barefoot and foam conditions. SPM analysis revealed significant differences for vector COP time series in the shod condition compared to the barefoot and foam conditions. The foam condition limited the impulse-generating capacity of COP shift and produced smaller ML force peaks, resulting in limitations to body-weight transfer from the swing to the support foot. The results suggest that footwear and a soft surface affect COP and impose certain features of gait initiation, especially in the ML direction of Phase 1. PMID:26270323

  9. Considerations in Phase Estimation and Event Location Using Small-aperture Regional Seismic Arrays

    NASA Astrophysics Data System (ADS)

    Gibbons, Steven J.; Kværna, Tormod; Ringdal, Frode

    2010-05-01

    The global monitoring of earthquakes and explosions at decreasing magnitudes necessitates the fully automatic detection, location and classification of an ever increasing number of seismic events. Many seismic stations of the International Monitoring System are small-aperture arrays designed to optimize the detection and measurement of regional phases. Collaboration with operators of mines within regional distances of the ARCES array, together with waveform correlation techniques, has provided an unparalleled opportunity to assess the ability of a small-aperture array to provide robust and accurate direction and slowness estimates for phase arrivals resulting from well-constrained events at sites of repeating seismicity. A significant reason for the inaccuracy of current fully-automatic event location estimates is the use of f- k slowness estimates measured in variable frequency bands. The variability of slowness and azimuth measurements for a given phase from a given source region is reduced by the application of almost any constant frequency band. However, the frequency band resulting in the most stable estimates varies greatly from site to site. Situations are observed in which regional P- arrivals from two sites, far closer than the theoretical resolution of the array, result in highly distinct populations in slowness space. This means that the f- k estimates, even at relatively low frequencies, can be sensitive to source and path-specific characteristics of the wavefield and should be treated with caution when inferring a geographical backazimuth under the assumption of a planar wavefront arriving along the great-circle path. Moreover, different frequency bands are associated with different biases meaning that slowness and azimuth station corrections (commonly denoted SASCs) cannot be calibrated, and should not be used, without reference to the frequency band employed. We demonstrate an example where fully-automatic locations based on a source-region specific fixed-parameter template are more stable than the corresponding analyst reviewed estimates. The reason is that the analyst selects a frequency band and analysis window which appears optimal for each event. In this case, the frequency band which produces the most consistent direction estimates has neither the best SNR or the greatest beam-gain, and is therefore unlikely to be chosen by an analyst without calibration data.

  10. Design of interferometer system on Versatile Experiment Spherical Torus (VEST) at Seoul National University

    NASA Astrophysics Data System (ADS)

    Choi, D. H.; An, Y. H.; Chung, K. J.; Hwang, Y. S.

    2012-01-01

    A 94 GHz heterodyne interferometer system was designed to measure the plasma density of VEST (Versatile Experiment Spherical Torus), which was recently built at Seoul National University. Two 94 GHz Gunn oscillators with a frequency difference of 40 MHz were used in the microwave electronics part of a heterodyne interferometer system. A compact beam focusing system utilizing a pair of plano-convex lenses and a concave mirror was designed to maximize the effective beam reception and spatial resolution. Beam path analysis based on Gaussian optics was used in the design of the beam focusing system. The design of the beam focusing system and the beam path analysis were verified with a couple of experiments that were done within an experimental framework that considered the real dimensions of a vacuum vessel. Optimum distances between the optical components and the beam radii along the beam path obtained from the experiments were in good agreement with the beam path analysis using the Gaussian optics. Both experimentation and numerical calculations confirmed that the designed beam focusing system maximized the spatial resolution of the measurement; moreover, the beam waist was located at the center of the plasma to generate a phase shift more effectively in plasmas. The interferometer system presented in this paper is expected to be used in the measurements of line integrated plasma densities during the start-up phase of VEST.

  11. Reflectivity retrieval in a networked radar environment

    NASA Astrophysics Data System (ADS)

    Lim, Sanghun

    Monitoring of precipitation using a high-frequency radar system such as X-band is becoming increasingly popular due to its lower cost compared to its counterpart at S-band. Networks of meteorological radar systems at higher frequencies are being pursued for targeted applications such as coverage over a city or a small basin. However, at higher frequencies, the impact of attenuation due to precipitation needs to be resolved for successful implementation. In this research, new attenuation correction algorithms are introduced to compensate the attenuation impact due to rain medium. In order to design X-band radar systems as well as evaluate algorithm development, it is useful to have simultaneous X-band observation with and without the impact of path attenuation. One way to obtain that data set is through theoretical models. Methodologies for generating realistic range profiles of radar variables at attenuating frequencies such as X-band for rain medium are presented here. Fundamental microphysical properties of precipitation, namely size and shape distribution information, are used to generate realistic profiles of X-band starting with S-band observations. Conditioning the simulation from S-band radar measurements maintains the natural distribution of microphysical parameters associated with rainfall. In this research, data taken by the CSU-CHILL radar and the National Center for Atmospheric Research S-POL radar are used to simulate X-band radar variables. Three procedures to simulate the radar variables at X-band and sample applications are presented. A new attenuation correction algorithm based on profiles of reflectivity, differential reflectivity, and differential propagation phase shift is presented. A solution for specific attenuation retrieval in rain medium is proposed that solves the integral equations for reflectivity and differential reflectivity with cumulative differential propagation phase shift constraint. The conventional rain profiling algorithms that connect reflectivity and specific attenuation can retrieve specific attenuation values along the radar path assuming a constant intercept parameter of the normalized drop size distribution. However, in convective storms, the drop size distribution parameters can have significant variation along the path. In this research, a dual-polarization rain profiling algorithm for horizontal-looking radars incorporating reflectivity as well as differential reflectivity profiles is developed. The dual-polarization rain profiling algorithm has been evaluated with X-band radar observations simulated from drop size distribution derived from high-resolution S-band measurements collected by the CSU-CHILL radar. The analysis shows that the dual-polarization rain profiling algorithm provides significant improvement over the current algorithms. A methodology for reflectivity and attenuation retrieval for rain medium in a networked radar environment is described. Electromagnetic waves backscattered from a common volume in networked radar systems are attenuated differently along the different paths. A solution for the specific attenuation distribution is proposed by solving the integral equation for reflectivity. The set of governing integral equations describing the backscatter and propagation of common resolution volume are solved simultaneously with constraints on total path attenuation. The proposed algorithm is evaluated based on simulated X-band radar observations synthesized from S-band measurements collected by the CSU-CHILL radar. Retrieved reflectivity and specific attenuation using the proposed method show good agreement with simulated reflectivity and specific attenuation.

  12. Energy Index For Aircraft Maneuvers

    NASA Technical Reports Server (NTRS)

    Chidester, Thomas R. (Inventor); Lynch, Robert E. (Inventor); Lawrence, Robert E. (Inventor); Amidan, Brett G. (Inventor); Ferryman, Thomas A. (Inventor); Drew, Douglas A. (Inventor); Ainsworth, Robert J. (Inventor); Prothero, Gary L. (Inventor); Romanowski, Tomothy P. (Inventor); Bloch, Laurent (Inventor)

    2006-01-01

    Method and system for analyzing, separately or in combination, kinetic energy and potential energy and/or their time derivatives, measured or estimated or computed, for an aircraft in approach phase or in takeoff phase, to determine if the aircraft is or will be put in an anomalous configuration in order to join a stable approach path or takeoff path. A 3 reference value of kinetic energy andor potential energy (or time derivatives thereof) is provided, and a comparison index .for the estimated energy and reference energy is computed and compared with a normal range of index values for a corresponding aircraft maneuver. If the computed energy index lies outside the normal index range, this phase of the aircraft is identified as anomalous, non-normal or potentially unstable.

  13. Optical weak measurements without removing the Goos-Hänchen phase

    NASA Astrophysics Data System (ADS)

    Araújo, Manoel P.; De Leo, Stefano; Maia, Gabriel G.

    2018-04-01

    Optical weak measurements are a powerful tool for measuring small shifts of optical paths. When applied to the measurement of the Goos-Hänchen shift, in particular, a special step must be added to its protocol: the removal of the relative Goos-Hänchen phase, since its presence generates a destructive influence on the measurement. There is, however, a lack of description in the literature of the precise effect of the Goos-Hänchen phase on weak measurements. In this paper we address this issue, developing an analytic study for a Gaussian beam transmitted through a dielectric structure. We obtain analytic expressions for weak measurements as a function of the relative Goos-Hänchen phase and show how to remove it without the aid of waveplates.

  14. SIMRAND I- SIMULATION OF RESEARCH AND DEVELOPMENT PROJECTS

    NASA Technical Reports Server (NTRS)

    Miles, R. F.

    1994-01-01

    The Simulation of Research and Development Projects program (SIMRAND) aids in the optimal allocation of R&D resources needed to achieve project goals. SIMRAND models the system subsets or project tasks as various network paths to a final goal. Each path is described in terms of task variables such as cost per hour, cost per unit, availability of resources, etc. Uncertainty is incorporated by treating task variables as probabilistic random variables. SIMRAND calculates the measure of preference for each alternative network. The networks yielding the highest utility function (or certainty equivalence) are then ranked as the optimal network paths. SIMRAND has been used in several economic potential studies at NASA's Jet Propulsion Laboratory involving solar dish power systems and photovoltaic array construction. However, any project having tasks which can be reduced to equations and related by measures of preference can be modeled. SIMRAND analysis consists of three phases: reduction, simulation, and evaluation. In the reduction phase, analytical techniques from probability theory and simulation techniques are used to reduce the complexity of the alternative networks. In the simulation phase, a Monte Carlo simulation is used to derive statistics on the variables of interest for each alternative network path. In the evaluation phase, the simulation statistics are compared and the networks are ranked in preference by a selected decision rule. The user must supply project subsystems in terms of equations based on variables (for example, parallel and series assembly line tasks in terms of number of items, cost factors, time limits, etc). The associated cumulative distribution functions and utility functions for each variable must also be provided (allowable upper and lower limits, group decision factors, etc). SIMRAND is written in Microsoft FORTRAN 77 for batch execution and has been implemented on an IBM PC series computer operating under DOS.

  15. Using colloidal silica as isolator, diverter and blocking agent for subsurface geological applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourcier, William L.; Roberts, Sarah K.; Roberts, Jeffery J.

    A system for blocking fast flow paths in geological formations includes preparing a solution of colloidal silica having a nonviscous phase and a solid gel phase. The solution of colloidal silica is injected into the geological formations while the solution of colloidal silica is in the nonviscous phase. The solution of colloidal silica is directed into the fast flow paths and reaches the solid gel phase in the fast flow paths thereby blocking flow of fluid in the fast paths.

  16. Geodesic-loxodromes for diffusion tensor interpolation and difference measurement.

    PubMed

    Kindlmann, Gordon; Estépar, Raúl San José; Niethammer, Marc; Haker, Steven; Westin, Carl-Fredrik

    2007-01-01

    In algorithms for processing diffusion tensor images, two common ingredients are interpolating tensors, and measuring the distance between them. We propose a new class of interpolation paths for tensors, termed geodesic-loxodromes, which explicitly preserve clinically important tensor attributes, such as mean diffusivity or fractional anisotropy, while using basic differential geometry to interpolate tensor orientation. This contrasts with previous Riemannian and Log-Euclidean methods that preserve the determinant. Path integrals of tangents of geodesic-loxodromes generate novel measures of over-all difference between two tensors, and of difference in shape and in orientation.

  17. Backside imaging of a microcontroller with common-path digital holography

    NASA Astrophysics Data System (ADS)

    Finkeldey, Markus; Göring, Lena; Schellenberg, Falk; Gerhardt, Nils C.; Hofmann, Martin

    2017-03-01

    The investigation of integrated circuits (ICs), such as microcontrollers (MCUs) and system on a chip (SoCs) devices is a topic with growing interests. The need for fast and non-destructive imaging methods is given by the increasing importance of hardware Trojans, reverse engineering and further security related analysis of integrated cryptographic devices. In the field of side-channel attacks, for instance, the precise spot for laser fault attacks is important and could be determined by using modern high resolution microscopy methods. Digital holographic microscopy (DHM) is a promising technique to achieve high resolution phase images of surface structures. These phase images provide information about the change of the refractive index in the media and the topography. For enabling a high phase stability, we use the common-path geometry to create the interference pattern. The interference pattern, or hologram, is captured with a water cooled sCMOS camera. This provides a fast readout while maintaining a low level of noise. A challenge for these types of holograms is the interference of the reflected waves from the different interfaces inside the media. To distinguish between the phase signals from the buried layer and the surface reflection we use specific numeric filters. For demonstrating the performance of our setup we show results with devices under test (DUT), using a 1064 nm laser diode as light source. The DUTs are modern microcontrollers thinned to different levels of thickness of the Si-substrate. The effect of the numeric filter compared to unfiltered images is analyzed.

  18. Advances in Focal Plane Wavefront Estimation for Directly Imaging Exoplanets

    NASA Astrophysics Data System (ADS)

    Eldorado Riggs, A. J.; Kasdin, N. Jeremy; Groff, Tyler Dean

    2015-01-01

    To image cold exoplanets directly in visible light, an instrument on a telescope needs to suppress starlight by about 9 orders of magnitude at small separations from the star. A coronagraph changes the point spread function to create regions of high contrast where exoplanets or disks can be seen. Aberrations on the optics degrade the contrast by several orders of magnitude, so all high-contrast imaging systems incorporate one or more deformable mirrors (DMs) to recover regions of high contrast. With a coronagraphic instrument planned for the WFIRST-AFTA space telescope, there is a pressing need for faster, more robust estimation and control schemes for the DMs. Non-common path aberrations limit conventional phase conjugation schemes to medium star-to-planet contrast ratios of about 1e-6. High-contrast imaging requires estimation and control of both phase and amplitude in the same beam path as the science camera. Field estimation is a challenge since only intensity is measured; the most common approach, including that planned for WFIRST-AFTA, is to use DMs to create diversity, via pairs of small probe shapes, thereby allowing disambiguation of the electric field. Most implementations of DM Diversity require at least five images per electric field estimate and require narrowband measurements. This paper describes our new estimation algorithms that improve the speed (by using fewer images) and bandwidth of focal plane wavefront estimation. For narrowband estimation, we are testing nonlinear, recursive algorithms such as an iterative extended Kalman filter (IEKF) to use three images each iteration and build better, more robust estimates. We are also exploring the use of broadband estimation without the need for narrowband sub-filters and measurements. Here we present simulations of these algorithms with realistic noise and small signals to show how they might perform for WFIRST-AFTA. Once validated in simulations, we will test these algorithms experimentally in Princeton's HCIL and in the Jet Propulsion Laboratory's (JPL's) High Contrast Imaging Testbed (HCIT). Developing these faster, more robust wavefront estimators is a crucial for increasing the science yield of the WFIRST-AFTA coronagraphic instrument.

  19. Design of an Fiber-Coupled Laser Heterodyne Interferometer for the FLARE

    NASA Astrophysics Data System (ADS)

    Frank, Samuel; Yoo, Jongsoo; Ji, Hantao; Jara-Almonte, Jon

    2016-10-01

    The FLARE (Facility for Laboratory Reconnection Experiments), which is currently under construction at PPPL, requires a complete set of laboratory plasma diagnostics. The Langmuir probes that will be used in the device to gather local density data require a reliable interferometer system to serve as baseline for density measurement calibration. A fully fiber-coupled infrared laser heterodyne interferometer has been designed in order to serve as the primary line-integrated electron density diagnostic. Thanks to advances in the communications industry many fiber optic devices and phase detection methods have advanced significantly becoming increasingly reliable and inexpensive. Fully fiber coupling a plasma interferometer greatly simplifies alignment procedures needed since the only free space laser path needing alignment is through the plasma itself. Fiber-coupling also provides significant resistance to vibrational noise, a common problem in plasma interferometry systems. This device also uses a greatly simplified phase detection scheme in which chips, originally developed for the communications industry, capable of directly detecting the phase shift of a signal with high time resolution. The design and initial performance of the system will be discussed.

  20. Tests of a two-color interferometer and polarimeter for ITER density measurements

    NASA Astrophysics Data System (ADS)

    Van Zeeland, M. A.; Carlstrom, T. N.; Finkenthal, D. K.; Boivin, R. L.; Colio, A.; Du, D.; Gattuso, A.; Glass, F.; Muscatello, C. M.; O'Neill, R.; Smiley, M.; Vasquez, J.; Watkins, M.; Brower, D. L.; Chen, J.; Ding, W. X.; Johnson, D.; Mauzey, P.; Perry, M.; Watts, C.; Wood, R.

    2017-12-01

    A full-scale 120 m path length ITER toroidal interferometer and polarimeter (TIP) prototype, including an active feedback alignment system, has been constructed and undergone initial testing at General Atomics. In the TIP prototype, two-color interferometry is carried out at 10.59 μm and 5.22 μm using a CO2 and quantum cascade laser (QCL) respectively while a separate polarimetry measurement of the plasma induced Faraday effect is made at 10.59 μm. The polarimeter system uses co-linear right and left-hand circularly polarized beams upshifted by 40 and 44 MHz acousto-optic cells respectively, to generate the necessary beat signal for heterodyne phase detection, while interferometry measurements are carried out at both 40 MHz and 44 MHz for the CO2 laser and 40 MHz for the QCL. The high-resolution phase information is obtained using an all-digital FPGA based phase demodulation scheme and precision clock source. The TIP prototype is equipped with a piezo tip/tilt stage active feedback alignment system responsible for minimizing noise in the measurement and keeping the TIP diagnostic aligned indefinitely on its 120 m beam path including as the ITER vessel is brought from ambient to operating temperatures. The prototype beam path incorporates translation stages to simulate ITER motion through a bake cycle as well as other sources of motion or misalignment. Even in the presence of significant motion, the TIP prototype is able to meet ITER’s density measurement requirements over 1000 s shot durations with demonstrated phase resolution of 0.06° and 1.5° for the polarimeter and vibration compensated interferometer respectively. TIP vibration compensated interferometer measurements of a plasma have also been made in a pulsed radio frequency device and show a line-integrated density resolution of δ {nL}=3.5× {10}17 m-2.

  1. Ultrasonic Phased Array Assessment of the Interference Fit and Leak Path of the North Anna Unit 2 Control Rod Drive Mechanism Nozzle 63 with Destructive Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, Susan L.; Cinson, Anthony D.; MacFarlan, Paul J.

    2012-08-01

    The objective of this investigation was to evaluate the efficacy of ultrasonic testing (UT) for primary water leak path assessments of reactor pressure vessel (RPV) upper head penetrations. Operating reactors have experienced leakage when stress corrosion cracking of nickel-based alloy penetrations allowed primary water into the annulus of the interference fit between the penetration and the low-alloy steel RPV head. In this investigation, UT leak path data were acquired for an Alloy 600 control rod drive mechanism nozzle penetration, referred to as Nozzle 63, which was removed from the North Anna Unit 2 reactor when the RPV head was replacedmore » in 2002. In-service inspection prior to the head replacement indicated that Nozzle 63 had a probable leakage path through the interference fit region. Nozzle 63 was examined using a phased-array UT probe with a 5.0-MHz, eight-element annular array. Immersion data were acquired from the nozzle inner diameter surface. The UT data were interpreted by comparing to responses measured on a mockup penetration with known features. Following acquisition of the UT data, Nozzle 63 was destructively examined to determine if the features identified in the UT examination, including leakage paths and crystalline boric acid deposits, could be visually confirmed. Additional measurements of boric acid deposit thickness and low-alloy steel wastage were made to assess how these factors affect the UT response. The implications of these findings for interpreting UT leak path data are described.« less

  2. Parallel multiplex laser feedback interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Song; Tan, Yidong; Zhang, Shulian, E-mail: zsl-dpi@mail.tsinghua.edu.cn

    2013-12-15

    We present a parallel multiplex laser feedback interferometer based on spatial multiplexing which avoids the signal crosstalk in the former feedback interferometer. The interferometer outputs two close parallel laser beams, whose frequencies are shifted by two acousto-optic modulators by 2Ω simultaneously. A static reference mirror is inserted into one of the optical paths as the reference optical path. The other beam impinges on the target as the measurement optical path. Phase variations of the two feedback laser beams are simultaneously measured through heterodyne demodulation with two different detectors. Their subtraction accurately reflects the target displacement. Under typical room conditions, experimentalmore » results show a resolution of 1.6 nm and accuracy of 7.8 nm within the range of 100 μm.« less

  3. Selective influence of prior allocentric knowledge on the kinesthetic learning of a path.

    PubMed

    Lafon, Matthieu; Vidal, Manuel; Berthoz, Alain

    2009-04-01

    Spatial cognition studies have described two main cognitive strategies involved in the memorization of traveled paths in human navigation. One of these strategies uses the action-based memory (egocentric) of the traveled route or paths, which involves kinesthetic memory, optic flow, and episodic memory, whereas the other strategy privileges a survey memory of cartographic type (allocentric). Most studies have dealt with these two strategies separately, but none has tried to show the interaction between them in spite of the fact that we commonly use a map to imagine our journey and then proceed using egocentric navigation. An interesting question is therefore: how does prior allocentric knowledge of the environment affect the egocentric, purely kinesthetic navigation processes involved in human navigation? We designed an experiment in which blindfolded subjects had first to walk and memorize a path with kinesthetic cues only. They had previously been shown a map of the path, which was either correct or distorted (consistent shrinking or growing). The latter transformations were studied in order to observe what influence a distorted prior knowledge could have on spatial mechanisms. After having completed the first learning travel along the path, they had to perform several spatial tasks during the testing phase: (1) pointing towards the origin and (2) to specific points encountered along the path, (3) a free locomotor reproduction, and (4) a drawing of the memorized path. The results showed that prior cartographic knowledge influences the paths drawn and the spatial inference capacity, whereas neither locomotor reproduction nor spatial updating was disturbed. Our results strongly support the notion that (1) there are two independent neural bases underlying these mechanisms: a map-like representation allowing allocentric spatial inferences, and a kinesthetic memory of self-motion in space; and (2) a common use of, or a switching between, these two strategies is possible. Nevertheless, allocentric representations can emerge from the experience of kinesthetic cues alone.

  4. Monolithic mm-wave phase shifter using optically activated superconducting switches

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R. (Inventor); Bhasin, Kul B. (Inventor)

    1992-01-01

    A phase shifter is disclosed having a reference path and a delay path, light sources, and superconductive switches. Each of the superconductive switches is terminated in a virtual short circuit, which may be a radial stub. Switching between the reference path and delayed path is accomplished by illuminating the superconductive switches connected to the desired path, while not illuminating the superconductive switches connected to the other path.

  5. MEASUREMENT OF AMMONIA EMISSIONS FROM MECHANICALLY VENTILATED POULTRY HOUSES USING MULTIPATH TUNABLE DIODE LASER SPECTROSCOPY

    EPA Science Inventory

    Ammonia emissions from mechanically ventilated poultry operations are an important environmental concern. Open Path Tunable Diode Laser Absorption Spectroscopy has emerged as a robust real-time method for gas phase measurement of ammonia concentrations in agricultural settings. ...

  6. Electrical crosstalk-coupling measurement and analysis for digital closed loop fibre optic gyro

    NASA Astrophysics Data System (ADS)

    Jin, Jing; Tian, Hai-Ting; Pan, Xiong; Song, Ning-Fang

    2010-03-01

    The phase modulation and the closed-loop controller can generate electrical crosstalk-coupling in digital closed-loop fibre optic gyro. Four electrical cross-coupling paths are verified by the open-loop testing approach. It is found the variation of ramp amplitude will lead to the alternation of gyro bias. The amplitude and the phase parameters of the electrical crosstalk signal are measured by lock-in amplifier, and the variation of gyro bias is confirmed to be caused by the alternation of phase according to the amplitude of the ramp. A digital closed-loop fibre optic gyro electrical crosstalk-coupling model is built by approximating the electrical cross-coupling paths as a proportion and integration segment. The results of simulation and experiment show that the modulation signal electrical crosstalk-coupling can cause the dead zone of the gyro when a small angular velocity is inputted, and it could also lead to a periodic vibration of the bias error of the gyro when a large angular velocity is inputted.

  7. ALISEO on MIOSat: an imaging interferometer for earth observation

    NASA Astrophysics Data System (ADS)

    Barducci, A.; Castagnoli, F.; Castellini, G.; Guzzi, D.; Marcoionni, P.; Pippi, I.

    2017-11-01

    The Italian Space Agency (ASI) decided to perform an low cost Earth observation mission based on a new mini satellite named MIOsat which will carry various technological payloads. Among them an imaging interferometer designed and now ready to be assembled and tested by our Institute. The instrument, named ALISEO (Aerospace Leap-frog Imaging Stationary interferometer for Earth Observation), operates in the common-path Sagnac configuration, and it does not utilize any moving part to scan the phase delays between the two interfering beams. The sensor acquires target images modulated by a pattern of autocorrelation functions of the energy coming from each scene pixel, and the resulting fringe pattern remains spatially fixed with respect to the instrument's field-of-view. The complete interferogram of each target location is retrieved by introducing a relative source-observer motion, which allows any image pixels to be observed under different viewing-angles and experience discrete path differences. The paper describes the main characteristics of the imaging interferometer as well as the overall optical configuration and the electronics layout. Moreover some theoretical issues concerning sampling theory in "common path" imaging interferometry are investigated. The experimental activity performed in laboratory is presented and its outcomes are analysed. Particularly, a set of measurements has been carried out using both standard (certificate) reflectance tiles and natural samples of different volcanic rocks. An algorithm for raw data pre-processing aimed at retrieving the at-sensor radiance spectrum is introduced and its performance is addressed by taking into account various issues such as dark signal subtraction, spectral instrument response compensation, effects of vignetting, and Fourier backtransform. Finally, examples of retrieved absolute reflectance of several samples are sketched at different wavelengths.

  8. Physical and Mathematical Questions on Signal Processing in Multibase Phase Direction Finders

    NASA Astrophysics Data System (ADS)

    Denisov, V. P.; Dubinin, D. V.; Meshcheryakov, A. A.

    2018-02-01

    Questions on improving the accuracy of multiple-base phase direction finders by rejecting anomalously large errors in the process of resolving the measurement ambiguities are considered. A physical basis is derived and calculated relationships characterizing the efficiency of the proposed solutions are obtained. Results of a computer simulation of a three-base direction finder are analyzed, along with field measurements of a three-base direction finder along near-ground paths.

  9. Precision pointing and tracking through random media by exploitation of the enhanced backscatter phenomenon.

    PubMed

    Harvey, J E; Reddy, S P; Phillips, R L

    1996-07-20

    The active illumination of a target through a turbulent medium with a monostatic transmitter-receiver results in a naturally occurring conjugate wave caused by reciprocal scattering paths that experience identical phase variations. This reciprocal path-scattering phenomenon produces an enhanced backscatter in the retroverse direction (precisely along the boresight of the pointing telescope). A dual aperture causes this intensity enhancement to take the form of Young's interference fringes. Interference fringes produced by the reciprocal path-scattering phenomenon are temporally stable even in the presence of time-varying turbulence. Choosing the width-to-separation ratio of the dual apertures appropriately and utilizing orthogonal polarizations to suppress the time-varying common-path scattered radiation allow one to achieve interferometric sensitivity in pointing accuracy through a random medium or turbulent atmosphere. Computer simulations are compared with laboratory experimental data. This new precision pointing and tracking technique has potential applications in ground-to-space laser communications, laser power beaming to satellites, and theater missile defense scenarios.

  10. High-resolution corneal topography and tomography of fish eye using wide-field white light interference microscopy

    NASA Astrophysics Data System (ADS)

    Srivastava, Vishal; Nandy, Sreyankar; Singh Mehta, Dalip

    2013-04-01

    Topography and tomography of fish cornea is reconstructed using high resolution white light interference microscopy. White light interferograms at different depths were recorded by moving the object axially. For each depth position, five phase shifted interferograms were recorded and analyzed. From the reconstructed phase maps, the corneal topography and hence the refractive index was determined and from amplitude images the cross-sectional image of fish cornea was reconstructed. In the present method, we utilize a nearly common-path interference microscope and wide field illumination and hence do not require any mechanical B-scan. Therefore, the phase stability of the recorded data is improved.

  11. A common-path optical coherence tomography based electrode for structural imaging of nerves and recording of action potentials

    NASA Astrophysics Data System (ADS)

    Islam, M. Shahidul; Haque, Md. Rezuanul; Oh, Christian M.; Wang, Yan; Park, B. Hyle

    2013-03-01

    Current technologies for monitoring neural activity either use different variety of electrodes (electrical recording) or require contrast agents introduced exogenously or through genetic modification (optical imaging). Here we demonstrate an optical method for non-contact and contrast agent free detection of nerve activity using phase-resolved optical coherence tomography (pr-OCT). A common-path variation of the pr-OCT is recently implemented and the developed system demonstrated the capability to detect rapid transient structural changes that accompany neural spike propagation. No averaging over multiple trials was required, indicating its capability of single-shot detection of individual impulses from functionally stimulated Limulus optic nerve. The strength of this OCT-based optical electrode is that it is a contactless method and does not require any exogenous contrast agent. With further improvements in accuracy and sensitivity, this optical electrode will play a complementary role to the existing recording technologies in future.

  12. 4D measurements of biological and synthetic structures using a dynamic interferometer

    NASA Astrophysics Data System (ADS)

    Toto-Arellano, Noel-Ivan

    2017-12-01

    Considering the deficiency of time elapsed for phase-stepping interferometric techniques and the need of developing non-contact and on-line measurement with high accuracy, a single-shot phase-shifting triple-interferometer (PSTI) is developed for analysis of characteristics of transparent structures and optical path difference (OPD) measurements. In the proposed PSTI, coupled three interferometers which generate four interference patterns, and a polarizer array is used as phase shifters to produce four spatially separated interferograms with π/2-phase shifts, which are recorded in a single capture by a camera. The configuration of the PSTI allows dynamic measurements (4D measurements) and does not require vibration isolation. We have applied the developed system to examine the size and OPD of cells, and the slope of thin films

  13. Beam combining and SBS suppression in white noise and pseudo-random modulated amplifiers

    NASA Astrophysics Data System (ADS)

    Anderson, Brian; Flores, Angel; Holten, Roger; Ehrenreich, Thomas; Dajani, Iyad

    2015-03-01

    White noise phase modulation (WNS) and pseudo-random binary sequence phase modulation (PRBS) are effective techniques for mitigation of nonlinear effects such as stimulated Brillouin scattering (SBS); thereby paving the way for higher power narrow linewidth fiber amplifiers. However, detailed studies comparing both coherent beam combination and the SBS suppression of these phase modulation schemes have not been reported. In this study an active fiber cutback experiment is performed comparing the enhancement factor of a PRBS and WNS broadened seed as a function of linewidth and fiber length. Furthermore, two WNS and PRBS modulated fiber lasers are coherently combined to measure and compare the fringe visibility and coherence length as a function of optical path length difference. Notably, the discrete frequency comb of PRBS modulation provides a beam combining re-coherence effect where the lasers periodically come back into phase. Significantly, this may reduce path length matching complexity in coherently combined fiber laser systems.

  14. Wavelength-multiplexing surface plasmon holographic microscopy.

    PubMed

    Zhang, Jiwei; Dai, Siqing; Zhong, Jinzhan; Xi, Teli; Ma, Chaojie; Li, Ying; Di, Jianglei; Zhao, Jianlin

    2018-05-14

    Surface plasmon holographic microscopy (SPHM), which combines surface plasmon microscopy with digital holographic microscopy, can be applied for amplitude- and phase-contrast surface plasmon resonance (SPR) imaging. In this paper, we propose an improved SPHM with the wavelength multiplexing technique based on two laser sources and a common-path hologram recording configuration. Through recording and reconstructing the SPR images at two wavelengths simultaneously employing the improved SPHM, tiny variation of dielectric refractive index in near field is quantitatively monitored with an extended measurement range while maintaining the high sensitivity. Moreover, imaging onion tissues is performed to demonstrate that the detection sensitivities of two wavelengths can compensate for each other in SPR imaging. The proposed wavelength-multiplexing SPHM presents simple structure, high temporal stability and inherent capability of phase curvature compensation, as well as shows great potentials for further applications in monitoring diverse dynamic processes related with refractive index variations and imaging biological tissues with low-contrast refractive index distributions in the near field.

  15. Quantum caustics in resonance-fluorescence trajectories

    NASA Astrophysics Data System (ADS)

    Naghiloo, M.; Tan, D.; Harrington, P. M.; Lewalle, P.; Jordan, A. N.; Murch, K. W.

    2017-11-01

    We employ phase-sensitive amplification to perform homodyne detection of the resonance fluorescence from a driven superconducting artificial atom. Entanglement between the emitter and its fluorescence allows us to track the individual quantum state trajectories of the emitter conditioned on the outcomes of the field measurements. We analyze the ensemble properties of these trajectories by considering trajectories that connect specific initial and final states. By applying the stochastic path-integral formalism, we calculate equations of motion for the most-likely path between two quantum states and compare these predicted paths to experimental data. Drawing on the mathematical similarity between the action formalism of the most-likely quantum paths and ray optics, we study the emergence of caustics in quantum trajectories: places where multiple extrema in the stochastic action occur. We observe such multiple most-likely paths in experimental data and find these paths to be in reasonable quantitative agreement with theoretical calculations.

  16. Adaptive feedforward control of non-minimum phase structural systems

    NASA Astrophysics Data System (ADS)

    Vipperman, J. S.; Burdisso, R. A.

    1995-06-01

    Adaptive feedforward control algorithms have been effectively applied to stationary disturbance rejection. For structural systems, the ideal feedforward compensator is a recursive filter which is a function of the transfer functions between the disturbance and control inputs and the error sensor output. Unfortunately, most control configurations result in a non-minimum phase control path; even a collocated control actuator and error sensor will not necessarily produce a minimum phase control path in the discrete domain. Therefore, the common practice is to choose a suitable approximation of the ideal compensator. In particular, all-zero finite impulse response (FIR) filters are desirable because of their inherent stability for adaptive control approaches. However, for highly resonant systems, large order filters are required for broadband applications. In this work, a control configuration is investigated for controlling non-minimum phase lightly damped structural systems. The control approach uses low order FIR filters as feedforward compensators in a configuration that has one more control actuator than error sensors. The performance of the controller was experimentally evaluated on a simply supported plate under white noise excitation for a two-input, one-output (2I1O) system. The results show excellent error signal reduction, attesting to the effectiveness of the method.

  17. Measurement of refractive index of photopolymer for holographic gratings

    NASA Astrophysics Data System (ADS)

    Watanabe, Eriko; Mizuno, Jun; Fujikawa, Chiemi; Kodate, Kashiko

    2007-02-01

    We have made attempts to measure directly the small-scale variation of optical path lengths in photopolymer samples. For those with uniform thickness, the measured quantity is supposed to be proportional to the refractive index of the photopolymer. The system is based on a Mach-Zehnder interferometer using phase-locking technique and measures the change in optical path length during the sample is scanned across the optical axis. The spatial resolution is estimated to be 2μm, which is limited by the sample thickness. The path length resolution is estimated to be 6nm, which corresponds to the change in refractive index less than 10 -3 for the sample of 10μm thick. The measurement results showed clearly that the refractive index of photopolymer is not simply proportional to the exposure energy, contrary to the conventional photosensitive materials such as silver halide emulsion and dichromated gelatine. They also revealed the refractive index fluctuation in uniformly exposed photopolymer sample, which explains the milky appearance that sometimes observed in thick samples.

  18. A study to evaluate non-uniform phase maps in shape memory alloys using finite element method

    NASA Astrophysics Data System (ADS)

    Motte, Naren

    The unique thermo-mechanical behavior of Shape Memory Alloys (SMAs), such as their ability to recover the original shape upon heating or being able to tolerate large deformations without undergoing plastic transformations, makes them a good choice for actuators. This work studies their application in the aerospace and defense industries where SMA components can serve as release mechanisms for gates of enclosures that have to be deployed remotely. This work provides a novel approach in evaluating the stress and heat induced change of phase in a SMA, in terms of the transformation strain tensor. In particular, the FEA tool ANSYS has been used to perform a 2-D analysis of a Cu-Al-Zn-Mn SMA specimen undergoing a nontraditional loading path in two steps with stress and heating loads. In the first load step, tensile displacement is applied, followed by the second load step in which the specimen is heated while the end displacements are held constant. A number of geometric configurations are examined under the two step loading path. Strain results are used to calculate transformation strain which provides a quantitative measure of phase at a material point; when transformation strain is zero, the material point is either twinned martensite, or austenite depending on the temperature. Transformation strain value of unity corresponds to detwinned martensite. A value between zero and one indicates mixed phase. In this study, through two step loading in conjunction with transformation strain calculations, a method for mapping transient non-uniform distribution of phases in an SMA is introduced. Ability to obtain drastically different phase distributions under same loading path by modifying the geometry is demonstrated. The failure behavior of SMAs can be designed such that the load level the crack initiates and the path it propagates can be customized.

  19. Traveling salesman problem with a center.

    PubMed

    Lipowski, Adam; Lipowska, Dorota

    2005-06-01

    We study a traveling salesman problem where the path is optimized with a cost function that includes its length L as well as a certain measure C of its distance from the geometrical center of the graph. Using simulated annealing (SA) we show that such a problem has a transition point that separates two phases differing in the scaling behavior of L and C, in efficiency of SA, and in the shape of minimal paths.

  20. Time-resolved, dual heterodyne phase collection transient grating spectroscopy

    DOE PAGES

    Dennett, Cody A.; Short, Michael P.

    2017-05-23

    The application of optical heterodyne detection for transient grating spectroscopy (TGS) using a fixed, binary phase mask often relies on taking the difference between signals captured at multiple heterodyne phases. To date, this has been accomplished by manually controlling the heterodyne phase between measurements with an optical flat. In this letter, an optical configuration is presented which allows for collection of TGS measurements at two heterodyne phases concurrently through the use of two independently phase controlled interrogation paths. This arrangement allows for complete, heterodyne amplified TGS measurements to be made in a manner not constrained by a mechanical actuation time.more » Measurements are instead constrained only by the desired signal-to-noise ratio. A temporal resolution of between 1 and 10 s, demonstrated here on single crystal metallic samples, will allow TGS experiments to be used as an in-situ, time-resolved monitoring technique for many material processing applications.« less

  1. Time-resolved, dual heterodyne phase collection transient grating spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennett, Cody A.; Short, Michael P.

    The application of optical heterodyne detection for transient grating spectroscopy (TGS) using a fixed, binary phase mask often relies on taking the difference between signals captured at multiple heterodyne phases. To date, this has been accomplished by manually controlling the heterodyne phase between measurements with an optical flat. In this letter, an optical configuration is presented which allows for collection of TGS measurements at two heterodyne phases concurrently through the use of two independently phase controlled interrogation paths. This arrangement allows for complete, heterodyne amplified TGS measurements to be made in a manner not constrained by a mechanical actuation time.more » Measurements are instead constrained only by the desired signal-to-noise ratio. A temporal resolution of between 1 and 10 s, demonstrated here on single crystal metallic samples, will allow TGS experiments to be used as an in-situ, time-resolved monitoring technique for many material processing applications.« less

  2. A randomized controlled trial of acupuncture and moxibustion to treat Bell's palsy according to different stages: design and protocol.

    PubMed

    Chen, Xiaoqin; Li, Ying; Zheng, Hui; Hu, Kaming; Zhang, Hongxing; Zhao, Ling; Li, Yan; Liu, Lian; Mang, Lingling; Yu, Shuyuan

    2009-07-01

    Acupuncture to treat Bell's palsy is one of the most commonly used methods in China. There are a variety of acupuncture treatment options to treat Bell's palsy in clinical practice. Since Bell's palsy has three different path-stages (acute stage, resting stage and restoration stage), so whether acupuncture is effective in the different path-stages and which acupuncture treatment is the best method are major issues in acupuncture clinical trials about Bell's palsy. In this article, we report the design and protocol of a large sample multi-center randomized controlled trial to treat Bell's palsy with acupuncture. There are five acupuncture groups, with four according to different path-stages and one not. In total, 900 patients with Bell's palsy are enrolled in this study. These patients are randomly assigned to receive one of the following four treatment groups according to different path-stages, i.e. 1) staging acupuncture group, 2) staging acupuncture and moxibustion group, 3) staging electro-acupuncture group, 4) staging acupuncture along yangming musculature group or non-staging acupuncture control group. The outcome measurements in this trial are the effect comparison achieved among these five groups in terms of House-Brackmann scale (Global Score and Regional Score), Facial Disability Index scale, Classification scale of Facial Paralysis, and WHOQOL-BREF scale before randomization (baseline phase) and after randomization. The result of this trial will certify the efficacy of using staging acupuncture and moxibustion to treat Bell's palsy, and to approach a best acupuncture treatment among these five different methods for treating Bell's palsy.

  3. Transformation of BCC and B2 High Temperature Phases to HCP and Orthorhombic Structures in the Ti-Al-Nb System. Part II: Experimental TEM Study of Microstructures

    PubMed Central

    Bendersky, L. A.; Boettinger, W. J.

    1993-01-01

    Possible transformation paths that involve no long range diffusion and their corresponding microstructural details were predicted by Bendersky, Roytburd, and Boettinger [J. Res. Natl. Inst. Stand. Technol. 98, 561 (1993)] for Ti-Al-Nb alloys cooled from the high temperature BCC/B2 phase field into close-packed orthorhombic or hexagonal phase fields. These predictions were based on structural and symmetry relations between the known phases. In the present paper experimental TEM results show that two of the predicted transformation paths are indeed followed for different alloy compositions. For Ti-25Al-12.5Nb (at%), the path includes the formation of intermediate hexagonal phases, A3 and DO19, and subsequent formation of a metastable domain structure of the low-temperature O phase. For alloys close to Ti-25Al-25Nb (at%), the path involves an intermediate B19 structure and subsequent formation of a translational domain structure of the O phase. The path selection depends on whether B2 order forms in the high temperature cubic phase prior to transformation to the close-packed structure. The paper also analyzes the formation of a two-phase modulated microstructure during long term annealing at 700 °C. The structure forms by congruent ordering of the DO19 phase to the O phase, and then reprecipitation of the DO19 phase, possibly by a spinodal mechanism. The thermodynamics underlying the path selection and the two-phase formation are also discussed. PMID:28053488

  4. Daytime tropical D region parameters from short path VLF phase and amplitude

    NASA Astrophysics Data System (ADS)

    Thomson, Neil R.

    2010-09-01

    Observed phases and amplitudes of VLF radio signals, propagating on a short (˜300-km) path, are used to find improved parameters for the lowest edge of the (D region of the) Earth's ionosphere. The phases, relative to GPS 1-s pulses, and the amplitudes were measured both near (˜100 km from) the transmitter, where the direct ground wave is very dominant, and at distances of ˜300 km near where the ionospherically reflected waves form a (modal) minimum with the (direct) ground wave. The signals came from the 19.8 kHz, 1 MW transmitter, NWC, on the North West Cape of Australia, propagating ˜300 km ENE, mainly over the sea, to the vicinity of Karratha/Dampier on the N.W. coast of Australia. The bottom edge of the mid-day tropical/equatorial ionosphere was thus found to be well-modeled by H‧ = 70.5 ± 0.5 km and β = 0.47 ± 0.03 km-1 where H‧ and β are the traditional height and sharpness parameters as used by Wait and by the U.S. Navy in their Earth-ionosphere VLF radio waveguide programs. U.S. Navy modal waveguide code calculations are also compared with those from the wave hop code of Berry and Herman (1971). At least for the vertical electric fields on the path studied here, the resulting phase and amplitude differences (between the ˜100-km and ˜300-km sites) agree very well after just a small adjustment of ˜0.2 km in H‧ between the two codes. Such short paths also allow more localization than the usual long paths; here this localization is to low latitudes.

  5. Transformation Paths from Cubic to Low-Symmetry Structures in Heusler Ni2MnGa Compound.

    PubMed

    Zelený, Martin; Straka, Ladislav; Sozinov, Alexei; Heczko, Oleg

    2018-05-08

    In order to explain the formation of low-temperature phases in stoichiometric Ni 2 MnGa magnetic shape memory alloy, we investigate the phase transformation paths from cubic austenite with Heusler structure to low-symmetry martensitic structures. We used ab initio calculations combined with the generalized solid state nudged elastic band method to determine the minimum energy path and corresponding changes in crystal lattice. The four-, five-, and seven-layered modulated phases of martensite (4O, 10M, and 14M) are built as the relaxed nanotwinned non-modulated (NM) phase. Despite having a total energy larger than the other martensitic phases, the 10M phase will spontaneously form at 0 K, because there is no energy barrier on the path and the energy decreases with a large negative slope. Moreover, a similar negative slope in the beginning of path is found also for the transformation to the 6M premartensite, which appears as a local minimum on the path leading further to 10M martensite. Transformation paths to other structures exhibit more or less significant barriers in the beginning hindering such a transformation from austenite. These findings correspond to experiment and demonstrates that the kinetics of the transformation is decisive for the selection of the particular low-symmetry structure.

  6. Evaluation of a Cubature Kalman Filtering-Based Phase Unwrapping Method for Differential Interferograms with High Noise in Coal Mining Areas

    PubMed Central

    Liu, Wanli; Bian, Zhengfu; Liu, Zhenguo; Zhang, Qiuzhao

    2015-01-01

    Differential interferometric synthetic aperture radar has been shown to be effective for monitoring subsidence in coal mining areas. Phase unwrapping can have a dramatic influence on the monitoring result. In this paper, a filtering-based phase unwrapping algorithm in combination with path-following is introduced to unwrap differential interferograms with high noise in mining areas. It can perform simultaneous noise filtering and phase unwrapping so that the pre-filtering steps can be omitted, thus usually retaining more details and improving the detectable deformation. For the method, the nonlinear measurement model of phase unwrapping is processed using a simplified Cubature Kalman filtering, which is an effective and efficient tool used in many nonlinear fields. Three case studies are designed to evaluate the performance of the method. In Case 1, two tests are designed to evaluate the performance of the method under different factors including the number of multi-looks and path-guiding indexes. The result demonstrates that the unwrapped results are sensitive to the number of multi-looks and that the Fisher Distance is the most suitable path-guiding index for our study. Two case studies are then designed to evaluate the feasibility of the proposed phase unwrapping method based on Cubature Kalman filtering. The results indicate that, compared with the popular Minimum Cost Flow method, the Cubature Kalman filtering-based phase unwrapping can achieve promising results without pre-filtering and is an appropriate method for coal mining areas with high noise. PMID:26153776

  7. Nanometer-scale displacement sensing using self-mixing interferometry with a correlation-based signal processing technique

    NASA Astrophysics Data System (ADS)

    Hast, J.; Okkonen, M.; Heikkinen, H.; Krehut, L.; Myllylä, R.

    2006-06-01

    A self-mixing interferometer is proposed to measure nanometre-scale optical path length changes in the interferometer's external cavity. As light source, the developed technique uses a blue emitting GaN laser diode. An external reflector, a silicon mirror, driven by a piezo nanopositioner is used to produce an interference signal which is detected with the monitor photodiode of the laser diode. Changing the optical path length of the external cavity introduces a phase difference to the interference signal. This phase difference is detected using a signal processing algorithm based on Pearson's correlation coefficient and cubic spline interpolation techniques. The results show that the average deviation between the measured and actual displacements of the silicon mirror is 3.1 nm in the 0-110 nm displacement range. Moreover, the measured displacements follow linearly the actual displacement of the silicon mirror. Finally, the paper considers the effects produced by the temperature and current stability of the laser diode as well as dispersion effects in the external cavity of the interferometer. These reduce the sensor's measurement accuracy especially in long-term measurements.

  8. Broadband, Common-path, Interferometric Wavefront Sensor

    NASA Technical Reports Server (NTRS)

    Wallace, James Kent (Inventor)

    2015-01-01

    Hybrid sensors comprising Shack-Hartmann Wavefront Sensor (S-HWFS) and Zernike Wavefront Sensor (Z-WFS) capabilities are presented. The hybrid sensor includes a Z-WFS optically arranged in-line with a S-HWFS such that the combined wavefront sensor operates across a wide dynamic range and noise conditions. The Z-WFS may include the ability to introduce a dynamic phase shift in both transmissive and reflective modes.

  9. Relationships between molecular structure and kinetic and thermodynamic controls in lipid systems. Part II: Phase behavior and transformation paths of SSS, PSS and PPS saturated triacylglycerols--effect of chain length mismatch.

    PubMed

    Bouzidi, Laziz; Narine, Suresh S

    2012-01-01

    The kinetic phase behavior and phase transformation paths of purified tristearoylglycerol (SSS), 3-palmitoyl-1,2-distearoyl-sn-glycerol (PSS) and 1,2-dipalmitoyl-3-stearoyl-sn-glycerol (PPS) were investigated in terms of polymorphism, crystallization and melting. The details of the phase transformation paths were obtained using the heating cycles of two sets of experiments: (a) cooling rate was varied and heating rate fixed and (b) cooling rate was fixed and heating rate varied. Kinetic effects were manifest in all measured properties, underscoring the complexity of the phase transformation paths for each TAG, and the intricate thermodynamics-molecular relationships. For the first time, XRD data obtained for SSS, PSS and PPS TAGs, cooled at rates higher than 0.5°C/min, suggested the formation of a transient structure similar to the so-called α(2)-phase which has been observed in mixed saturated-unsaturated TAGs quenched from the melt. The more stable phases (β' in PSS and PPS, and β in SSS) were only observed for cooling rates lower than 1.0°C/min. The kinetic and thermodynamic differences observed in the crystallization, structure and melting of SSS, PSS and PPS are proposed to be mainly due to the disturbances introduced at the "terrace" level via methyl-end group interactions, i.e., the missing of two or four CH(2) groups compared to SSS. The symmetrical SSS with a relatively flat "terrace" crystallizes preferably in the most stable β-form. Two missing CH(2) groups at the sn-1 position (PSS) introduces enough structural disturbances to promote the relative prevalence and persistence of the β'-phase, and four missing CH(2) groups at the sn-1 and sn-2 positions (PPS) is relatively too large of a disturbance and therefore favors the α-form. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  10. Girsanov reweighting for path ensembles and Markov state models

    NASA Astrophysics Data System (ADS)

    Donati, L.; Hartmann, C.; Keller, B. G.

    2017-06-01

    The sensitivity of molecular dynamics on changes in the potential energy function plays an important role in understanding the dynamics and function of complex molecules. We present a method to obtain path ensemble averages of a perturbed dynamics from a set of paths generated by a reference dynamics. It is based on the concept of path probability measure and the Girsanov theorem, a result from stochastic analysis to estimate a change of measure of a path ensemble. Since Markov state models (MSMs) of the molecular dynamics can be formulated as a combined phase-space and path ensemble average, the method can be extended to reweight MSMs by combining it with a reweighting of the Boltzmann distribution. We demonstrate how to efficiently implement the Girsanov reweighting in a molecular dynamics simulation program by calculating parts of the reweighting factor "on the fly" during the simulation, and we benchmark the method on test systems ranging from a two-dimensional diffusion process and an artificial many-body system to alanine dipeptide and valine dipeptide in implicit and explicit water. The method can be used to study the sensitivity of molecular dynamics on external perturbations as well as to reweight trajectories generated by enhanced sampling schemes to the original dynamics.

  11. Scattering Mechanisms and Nature of the Indirect Propagation Paths Measured by the CONSERT Instrument during the Late Phase of Philae's Descent onto 67P/Churyumov-Gerasimenko's Surface

    NASA Astrophysics Data System (ADS)

    Plettemeier, D.; Statz, C.; Herique, A.; Rogez, Y.; Zine, S.; Ciarletti, V.; Kofman, W. W.

    2017-12-01

    Bi-static electromagnetic wave propagation measurements performed by the Comet Nucleus Sounding Experiment by Radiowave Transmission (CONSERT) during the descent of Philae onto comet 67P/Churyumov-Gerasimenko's surface (SDL) complement the data obtained during the first science sequence (FSS). These SDL measurements allow analyses of the comet's surface and near subsurface dielectric and roughness properties - especially in vicinity of the designated Agilkia landing site - during the late phase of the descent and support the main scientific objective of CONSERT, the dielectric characterization of the comet's nucleus. In order to perform the propagation measurements, the CONSERT instrument unit aboard the lander received and processed the radio signal emitted by the orbiter's CONSERT counterpart. The lander's CONSERT unit then transmitted a signal back to the orbiter. This happened at a time scale of milliseconds for each measurement and a temporal resolution of the signal below 30m. Multiple measurements were performed throughout the descent and the first science sequence. The signal received by the CONSERT unit aboard Rosetta consists of the direct propagation path between Rosetta and lander Philae as well as indirect propagation paths. These measured paths consist of reflections from 67P/C-G's surface and near subsurface. Due to the large footprint of CONSERT's receiving and transmitting antenna's in the bi-static context and the complex surface geometry of 67P/C-G, the measured signatures are likely to originate from a region with approximately 1,5 km diameter subsequently covering a large portion of the head and resulting in a scattering angle between orbiter, surface and lander dependent on the measurement position. With the direct propagation path between lander and orbiter as a calibration reference and a varying scattering angle (up to approximately 40°), bounds on the likely scattering mechanisms can be imposed and localized. The information on the scattering mechanisms is crucial for the creation of a surface permittivity map of 67P/C-G and the contextualization of the permittivity estimation based on CONSERT's FSS measurements. From the localized permittivity and roughness distributions based on the SDL measurements further properties with regard to 67P/C-G's composition can be derived.

  12. Phase-Shifting Zernike Interferometer Wavefront Sensor

    NASA Technical Reports Server (NTRS)

    Wallace, J. Kent; Rao, Shanti; Jensen-Clemb, Rebecca M.; Serabyn, Gene

    2011-01-01

    The canonical Zernike phase-contrast technique1,2,3,4 transforms a phase object in one plane into an intensity object in the conjugate plane. This is done by applying a static pi/2 phase shift to the central core (approx. lambda/D) of the PSF which is intermediate between the input and output planes. Here we present a new architecture for this sensor. First, the optical system is simple and all reflective. Second, the phase shift in the central core of the PSF is dynamic and or arbitrary size. This common-path, all-reflective design makes it minimally sensitive to vibration, polarization and wavelength. We review the theory of operation, describe the optical system, summarize numerical simulations and sensitivities and review results from a laboratory demonstration of this novel instrument

  13. Phase-Shifting Zernike Interferometer Wavefront Sensor

    NASA Technical Reports Server (NTRS)

    Wallace, J. Kent; Rao, Shanti; Jensen-Clem, Rebecca M.

    2011-01-01

    The canonical Zernike phase-contrast technique transforms a phase object in one plane into an intensity object in the conjugate plane. This is done by applying a static pi/2 phase shift to the central core (approx. lambda/diameter) of the PSF which is intermediate between the input and output plane. Here we present a new architecture for this sensor. First, the optical system is simple and all reflective, and second the phase shift in the central core of the PSF is dynamic and can be made arbitrarily large. This common-path, all-reflective design makes it minimally sensitive to vibration, polarization and wavelength. We review the theory of operation, describe the optical system, summarize numerical simulations and sensitivities and review results from a laboratory demonstration of this novel instrument.

  14. Fast, multi-phase H2O measurements on board of HALO: Results from the novel HAI instrument during the first field campaigns.

    NASA Astrophysics Data System (ADS)

    Buchholz, Bernhard; Afchine, Armin; Krämer, Martina; Ebert, Volker

    2014-05-01

    Water vapor is a key species for many questions in atmospheric research [1] [2] but is also a gas species which is complex to handle. A particular challenge is the simultaneous quantification of gas and condensed phase water. This is especially true for measurements on airborne platforms but also for laboratory experiments [3]. On research aircraft, total water measurement (i.e. the sum of gas-phase and ice-phase) is realized by sampling air with an inlet faced into flight direction ('forward' sampling) and subsequent evaporation of the ice crystals in the heated sampling lines. Gas-phase detection is typically realized using inlets facing against flight direction ('backward' sampling) or 'Rosemount' inlets where an air stream is sampled perpendicular to the high speed airflow through the inlet. For both methods it is believed that no ice crystals reach the downstream hygrometer, but the question remains - especially for Rosemount inlets - if some small ice particles or water droplets may have entered the sampling lines. In addition to the question of proper sampling of the water phases, currently no hygrometer exists that measures all phases with the same measurement principle in one instrument. In the rare occasions that multi-phase measurements are realized, gas-and condensed-phase observations rely on different methods and calibration strategies so that precision and accuracy levels are difficult to compare. The novel HAI (Hygrometer for Atmospheric Investigation) realizes a simultaneous multi-phase hygrometer in a unique concept [4]. Water detection with HAI is based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) with a special evaluation method allowing absolute water vapor measurements without any sensor calibration [5]. The HAI instrument contains two independent dual-channel spectrometers, one at 1.4 μm and one at 2.6 μm which allows to cover a very wide water concentration range from 1 to 30 000 ppmv. Both HAI spectrometers couple one light path in a so called "closed-path" cell [6] for total water measurement via a forward facing inlet. The other part of the laser light is coupled to an "open-path" cell [7] placed outside of the aircraft fuselage to measure gas phase water without any possible artifacts from ice or liquid particles. The frequency of the measurements can be up to 240 Hz (4.2 msec) for all four channels. Altogether, the novel HAI instrument allows fast, accurate and precise dual-phase water measurements. The individual evaluation of the multi-channel raw-data is done afterwards, without any channel interdependencies, in a calibration-free mode. The water signals are combined with an extensive set of more than 100 housekeeping data to enable a holistic data quality management and a rigorous signal scrutiny to maximize the confidence level of the final H2O values. HAI therefore represents a new unique research tool for atmospheric hygrometry to address numerous open topics in atmospheric research. First scientific HAI campaigns have been successfully realized in 2012 onboard the German research plane HALO (High Altitude and Long Range Research Aircraft) during the TACTS and ESMVal missions. The first two HALO campaigns in clouds (MLCIRRUS and ACRIDICON) will be realized in 2014. In our contribution we present and discuss the performance of HAI and show detailed evaluations of typical inflight data. The results of the first two HAI campaigns on HALO resulted in more than 100 operation hours of continuous data and show nice agreement between the closed-path and open-path under clear sky conditions, despite the different sampling conditions of the sensor channels and airspeed of up to 900 km/h in the open path section. All mission data are and will be uploaded to the HALO database and are available for further scientific exploitation. Furthermore, the HAI principle can be adapted to other (airborne) platforms and be used for phase resolved science of the atmospheric water cycle. In parallel HAI's cal-free data evaluation principle will be validated with metrological scrutiny to further investigate the possibility of flying field-qualified metrological transfer standards to resolve the persistent discrepancies in atmospheric hygrometry. The HAI development is funded by DFG within the SPP 1294 HALO via FKZ EB 235/3 [1] A. R. Ravishankara, Science, vol. 337, no. 6096, pp. 809-810, (2012), doi:10.1126/science.1227004. [2] S. Sherwood, S. Bony, and J. Dufresne, Nature, vol. 505, no. 7481, pp. 37-42, (2014), [3] D. Fahey R. Gao, 'Summary of the AquaVIT Water Vapor Intercomparison' source: https://aquavit.icg.kfa-juelich.de/WhitePaper/AquaVITWhitePaper_Final_23Oct2009_6MB.pdf, (2009). [4] V. Ebert, C. Lauer, H. Saathoff, S. Hunsmann, and S. Wagner, Geophys. Res.Abstr., 10, p. EGU2008-A-10066 (2008). [5] V. Ebert and J. Wolfrum, 'Absorption spectroscopy,' in Optical Measurements - Techniques and Applications, F. Mayinger and O. Feldmann, Eds., Springer Heidelberg, München, ISBN:978-3540666905, pp. 273-312, (2000). [6] B. Buchholz, B. Kühnreich, HGJ. Smit, V. Ebert, Appl. Phys. B, vol. 110, no. 2, pp. 249-262, (2013), [7] B. Buchholz, A. Afchine, A. Klein, J. Barthel, T. Klostermann, S. Kallweit, M. Krämer, C. Schiller, and V. Ebert, in DGAO Proceedings, ISSN:1614-8436 - urn:nbn:de:0287-2013-B035-5, (2013).

  15. A Multi-Baseline 12 GHz Atmospheric Phase Interferometer with One Micron Path Length Sensitivity

    NASA Astrophysics Data System (ADS)

    Kimberk, Robert S.; Hunter, Todd R.; Leiker, Patrick S.; Blundell, Raymond; Nystrom, George U.; Petitpas, Glen R.; Test, John; Wilson, Robert W.; Yamaguchi, Paul; Young, Kenneth H.

    2012-12-01

    We have constructed a five station 12 GHz atmospheric phase interferometer (API) for the Submillimeter Array (SMA) located near the summit of Mauna Kea, Hawaii. Operating at the base of unoccupied SMA antenna pads, each station employs a commercial low noise mixing block coupled to a 0.7 m off-axis satellite dish which receives a broadband, white noise-like signal from a geostationary satellite. The signals are processed by an analog correlator to produce the phase delays between all pairs of stations with projected baselines ranging from 33-261 m. Each baseline's amplitude and phase is measured continuously at a rate of 8 kHz, processed, averaged and output at 10 Hz. Further signal processing and data reduction is accomplished with a Linux computer, including the removal of the diurnal motion of the target satellite. The placement of the stations below ground level with an environmental shield combined with the use of low temperature coefficient, buried fiber optic cables provides excellent system stability. The sensitivity in terms of rms path length is 1.3 microns which corresponds to phase deviations of about 1° of phase at the highest operating frequency of the SMA. The two primary data products are: (1) standard deviations of observed phase over various time scales, and (2) phase structure functions. These real-time statistical data measured by the API in the direction of the satellite provide an estimate of the phase front distortion experienced by the concurrent SMA astronomical observations. The API data also play an important role, along with the local opacity measurements and weather predictions, in helping to plan the scheduling of science observations on the telescope.

  16. Unidirectional, dual-comb lasing under multiple pulse formation mechanisms in a passively mode-locked fiber ring laser.

    PubMed

    Liu, Ya; Zhao, Xin; Hu, Guoqing; Li, Cui; Zhao, Bofeng; Zheng, Zheng

    2016-09-19

    Dual-comb lasers simultaneously generating asynchronous ultrashort pulses could be an intriguing alternative to the current dual-laser comb source. When generated through a common light path, the low common-mode noises and good coherence between the pulse trains could be realized. Here we demonstrate the completely common-path, unidirectional dual-comb lasing using a carbon nanotube saturable absorber with additional pulse narrowing and broadening mechanisms. The interactions between multiple soliton formation mechanisms result in bifurcation into unusual two-pulse states with pulses of four-fold bandwidth difference and tens-of-Hz repetition rate difference. Coherence between the pulses is verified by the asynchronous cross-sampling and dual-comb spectroscopy measurements.

  17. Imaging Organ of Corti Vibration Using Fourier-Domain OCT

    NASA Astrophysics Data System (ADS)

    Choudhury, Niloy; Chen, Fangyi; Fridberger, Anders; Zha, Dingjun; Jacques, Steven L.; Wang, Ruikang K.; Nuttall, Alfred L.

    2011-11-01

    Measuring the sound stimulated vibration from various structures in the organ of Corti is important in understanding how the small vibrations are amplified and detected. In this study we examine the feasibility of using phase-sensitive Fourier domain optical coherence tomography (PSFD-OCT) to measure vibration of the cellular structures of the organ of Corti. PSFD-OCT is a low coherence interferrometry system where the interferrogram is detected as a function of wavelength. The phase of the Fourier transformation of the detected spectra contains path deference (between the sample arm and the reference arm) information of the interferometer. In PSFD-OCT this phase is measured as a function of time and thus any time dependent change in the path difference between the sample arm and the reference arm can be detected. In the experiment, we used an in vitro preparation of the guinea pig cochlea and made a surgical opening at the apical end to access the organ of Corti. By applying tones with different frequencies via the intact middle ear, we recorded the structural vibration inside the organ of Corti. Vibration amplitude and phase of different substructures were mapped on a cross-section view of the organ of Corti. Although the measurements were made at the apical turn of the cochlea, it will be possible to make vibration measurement from various turns of the cochlea. The noise floor of the system was 0.3 nm, calibrated using a piezo stack as a calibrator.

  18. Acoustic resonances of fluid-immersed elastic cylinders and spheroids: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Niemiec, Jan; Überall, Herbert; Bao, X. L.

    2002-05-01

    Frequency resonances in the scattering of acoustic waves from a target object are caused by the phase matching of surface waves repeatedly encircling the object. This is exemplified here by considering elastic finite cylinders and spheroids, and the phase-matching condition provides a means of calculating the complex resonance frequencies of such objects. Tank experiments carried out at Catholic University, or at the University of Le Havre, France by G. Maze and J. Ripoche, have been interpreted using this approach. The experiments employed sound pulses to measure arrival times, which allowed identification of the surface paths taken by the surface waves, thus giving rise to resonances in the scattering amplitude. A calculation of the resonance frequencies using the T-matrix approach showed satisfactory agreement with the experimental resonance frequencies that were either measured directly (as at Le Havre), or that were obtained by the interpretation of measured arrival times (at Catholic University) using calculated surface wave paths, and the extraction of resonance frequencies therefrom, on the basis of the phase-matching condition. Results for hemispherically endcapped, evacuated steel cylinders obtained in a lake experiment carried out by the NSWC were interpreted in the same fashion.

  19. Nighttime ionospheric D region parameters from VLF phase and amplitude

    NASA Astrophysics Data System (ADS)

    Thomson, Neil R.; Clilverd, Mark A.; McRae, Wayne M.

    2007-07-01

    Nighttime ionospheric D region heights and electron densities are determined from an extensive set of VLF radio phase and amplitude observations. The D region parameters are characterized by the traditional H' (height in kilometers) and β (sharpness in km-1) as used by Wait and by the U. S. Navy in their Earth-ionosphere waveguide programs. The VLF measurements were made with several frequencies in the range 10 kHz to 41 kHz on long, mainly all-sea paths, including Omega La Reunion and Omega Argentina to Dunedin, New Zealand, NAU (Puerto Rico) and NAA (Maine, USA) to Cambridge, UK, and NPM (Hawaii) to San Francisco. Because daytime VLF propagation on such paths is readily measured and predicted, the differences between night and day amplitudes and phases were measured and compared with calculations for a range of nighttime ionospheric parameters. This avoided the problem of uncertainties in the transmitter powers. In this way the height, H', and the sharpness, β, when averaged over periods of several days, at least for the midlatitude D region near solar minimum, were found to be 85.1 ± 0.4 km and 0.63 ± 0.04 km-1, respectively.

  20. Instantaneous phase-shifting Fizeau interferometry with high-speed pixelated phase-mask camera

    NASA Astrophysics Data System (ADS)

    Yatagai, Toyohiko; Jackin, Boaz Jessie; Ono, Akira; Kiyohara, Kosuke; Noguchi, Masato; Yoshii, Minoru; Kiyohara, Motosuke; Niwa, Hayato; Ikuo, Kazuyuki; Onuma, Takashi

    2015-08-01

    A Fizeou interferometer with instantaneous phase-shifting ability using a Wollaston prism is designed. to measure dynamic phase change of objects, a high-speed video camera of 10-5s of shutter speed is used with a pixelated phase-mask of 1024 × 1024 elements. The light source used is a laser of wavelength 532 nm which is split into orthogonal polarization states by passing through a Wollaston prism. By adjusting the tilt of the reference surface it is possible to make the reference and object beam with orthogonal polarizations states to coincide and interfere. Then the pixelated phase-mask camera calculate the phase changes and hence the optical path length difference. Vibration of speakers and turbulence of air flow were successfully measured in 7,000 frames/sec.

  1. A Non-Abelian Geometric Phase for Spin Systems

    NASA Astrophysics Data System (ADS)

    H M, Bharath; Boguslawski, Matthew; Barrios, Maryrose; Chapman, Michael

    Berry's geometric phase has been used to characterize topological phase transitions. Recent works have addressed the question of whether generalizations of Berry's phase to mixed states can be used to characterize topological phase transitions. Berry's phase is essentially the geometric information stored in the overall phase of a quantum system. Here, we show that geometric information is also stored in the higher order spin moments of a quantum spin system. In particular, we show that when the spin vector of a quantum spin system with a spin 1 or higher is transported along a closed path inside the Bloch ball, the tensor of second moments picks up a geometric phase in the form of an SO(3) operator. Geometrically interpreting this phase is tantamount to defining a steradian angle for closed paths inside the Bloch ball. Typically the steradian angle is defined by projecting the path onto the surface of the Bloch ball. However, paths that pass through the center cannot be projected onto the surface. We show that the steradian angles of all paths, including those that pass through the center can be defined by projecting them onto a real projective plane, instead of a sphere. This steradian angle is equal to the geometric phase picked up by a spin system.

  2. Interferometer for the measurement of plasma density

    DOEpatents

    Jacobson, Abram R.

    1980-01-01

    An interferometer which combines the advantages of a coupled cavity interferometer requiring alignment of only one light beam, and a quadrature interferometer which has the ability to track multi-fringe phase excursions unambiguously. The device utilizes a Bragg cell for generating a signal which is electronically analyzed to unambiguously determine phase modulation which is proportional to the path integral of the plasma density.

  3. A hybrid quantum eraser scheme for characterization of free-space and fiber communication channels

    NASA Astrophysics Data System (ADS)

    Nape, Isaac; Kyeremah, Charlotte; Vallés, Adam; Rosales-Guzmán, Carmelo; Buah-Bassuah, Paul K.; Forbes, Andrew

    2018-02-01

    We demonstrate a simple projective measurement based on the quantum eraser concept that can be used to characterize the disturbances of any communication channel. Quantum erasers are commonly implemented as spatially separated path interferometric schemes. Here we exploit the advantages of redefining the which-path information in terms of spatial modes, replacing physical paths with abstract paths of orbital angular momentum (OAM). Remarkably, vector modes (natural modes of free-space and fiber) have a non-separable feature of spin-orbit coupled states, equivalent to the description of two independently marked paths. We explore the effects of fiber perturbations by probing a step-index optical fiber channel with a vector mode, relevant to high-order spatial mode encoding of information for ultra-fast fiber communications.

  4. Multi-mode phase speed measurements with array-based analysis: Application to the North American continent

    NASA Astrophysics Data System (ADS)

    Matsuzawa, H.; Yoshizawa, K.

    2017-12-01

    Recent high-density broad-band seismic networks allow us to construct improved 3-D upper mantle models with unprecedented horizontal resolution using surface waves. Such dispersion measurements have been primarily based on the analysis of fundamental mode. Higher-mode information can be of help in enhancing vertical resolution of 3-D models, but their dispersion analysis is intrinsically difficult, since wave-packets of several modes are overlapped each other in an observed seismogram. In this study, we measure phase dispersion of multi-mode surface waves with an array-based analysis. Our method is modeled on a one-dimensional frequency-wavenumber method originally developed by Nolet (1975, GRL), which can be applied to a set of broadband seismic records observed in a linear array along a great circle path. Through this analysis, we can obtain a spectrogram in c-T (phase speed - period) domain, which is characterized by mode-branch dispersion curves and relative spectral powers for each mode. Synthetic experiments indicate that we can separate the modal contribution using a long linear array with typical array length of about 2000 to 4000 km. The method is applied to a large data set from USArray using nearly 400 seismic events in 2007 - 2014 with Mw 6.5 or greater. Our phase-speed maps for the fundamental-mode Love and Rayleigh waves and the first higher-mode Rayleigh waves match well with the earlier models. The phase speed maps reflect typical large-scale features of regional seismic structure in North America, but smaller-scale variations are less constrained in our model, since our measured phase speeds represent path-average features over a long path (about a few thousands kilometers). Our multi-mode dispersion measurements can also be used for the extraction of mode-branch waveforms for the first a few modes. This can be done by applying a narrow filter around the dispersion curves of a target mode in c-T spectrogram. The mode-branch waveforms can then be reconstructed based on a linear Radon transform (e.g., Luo et al., 2015, GJI). Synthetic experiments suggest that we can successfully retrieve the mode-branch waveforms for several mode branches, which can be used in the secondary analysis for constraining local-scale heterogeneity with enhanced depth resolution.

  5. Accurate optical vector network analyzer based on optical single-sideband modulation and balanced photodetection.

    PubMed

    Xue, Min; Pan, Shilong; Zhao, Yongjiu

    2015-02-15

    A novel optical vector network analyzer (OVNA) based on optical single-sideband (OSSB) modulation and balanced photodetection is proposed and experimentally demonstrated, which can eliminate the measurement error induced by the high-order sidebands in the OSSB signal. According to the analytical model of the conventional OSSB-based OVNA, if the optical carrier in the OSSB signal is fully suppressed, the measurement result is exactly the high-order-sideband-induced measurement error. By splitting the OSSB signal after the optical device-under-test (ODUT) into two paths, removing the optical carrier in one path, and then detecting the two signals in the two paths using a balanced photodetector (BPD), high-order-sideband-induced measurement error can be ideally eliminated. As a result, accurate responses of the ODUT can be achieved without complex post-signal processing. A proof-of-concept experiment is carried out. The magnitude and phase responses of a fiber Bragg grating (FBG) measured by the proposed OVNA with different modulation indices are superimposed, showing that the high-order-sideband-induced measurement error is effectively removed.

  6. White light phase shifting interferometry and color fringe analysis for the detection of contaminants in water

    NASA Astrophysics Data System (ADS)

    Dubey, Vishesh; Singh, Veena; Ahmad, Azeem; Singh, Gyanendra; Mehta, Dalip Singh

    2016-03-01

    We report white light phase shifting interferometry in conjunction with color fringe analysis for the detection of contaminants in water such as Escherichia coli (E.coli), Campylobacter coli and Bacillus cereus. The experimental setup is based on a common path interferometer using Mirau interferometric objective lens. White light interferograms are recorded using a 3-chip color CCD camera based on prism technology. The 3-chip color camera have lesser color cross talk and better spatial resolution in comparison to single chip CCD camera. A piezo-electric transducer (PZT) phase shifter is fixed with the Mirau objective and they are attached with a conventional microscope. Five phase shifted white light interferograms are recorded by the 3-chip color CCD camera and each phase shifted interferogram is decomposed into the red, green and blue constituent colors, thus making three sets of five phase shifted intererograms for three different colors from a single set of white light interferogram. This makes the system less time consuming and have lesser effect due to surrounding environment. Initially 3D phase maps of the bacteria are reconstructed for red, green and blue wavelengths from these interferograms using MATLAB, from these phase maps we determines the refractive index (RI) of the bacteria. Experimental results of 3D shape measurement and RI at multiple wavelengths will be presented. These results might find applications for detection of contaminants in water without using any chemical processing and fluorescent dyes.

  7. Investigation of ion kinetic effects in direct-drive exploding-pusher implosions at the NIF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, M. J., E-mail: mrosenbe@mit.edu; Zylstra, A. B.; Séguin, F. H.

    Measurements of yield, ion temperature, areal density (ρR), shell convergence, and bang time have been obtained in shock-driven, D{sub 2} and D{sup 3}He gas-filled “exploding-pusher” inertial confinement fusion (ICF) implosions at the National Ignition Facility to assess the impact of ion kinetic effects. These measurements probed the shock convergence phase of ICF implosions, a critical stage in hot-spot ignition experiments. The data complement previous studies of kinetic effects in shock-driven implosions. Ion temperature and fuel ρR inferred from fusion-product spectroscopy are used to estimate the ion-ion mean free path in the gas. A trend of decreasing yields relative to themore » predictions of 2D DRACO hydrodynamics simulations with increasing Knudsen number (the ratio of ion-ion mean free path to minimum shell radius) suggests that ion kinetic effects are increasingly impacting the hot fuel region, in general agreement with previous results. The long mean free path conditions giving rise to ion kinetic effects in the gas are often prevalent during the shock phase of both exploding pushers and ablatively driven implosions, including ignition-relevant implosions.« less

  8. Investigating the source of anomalous PKP travel-times on south-Sandwich to Alaska paths

    NASA Astrophysics Data System (ADS)

    Frost, D. A.; Romanowicz, B. A.

    2017-12-01

    Inner core anisotropy was proposed thirty years ago to explain differences in travel times of inner core phases (PKIKP) on polar and equatorial paths (Morelli et al., 1986). Over time, models of inner core anisotropy have become very complex, with evidence for depth dependence, hemispherical variations, and other localised features. Some models propose the strength of anisotropy to be in excess of 4% in the western hemisphere of the inner core. This is difficult to reconcile with predictions from mineral physics and dynamical models of inner core growth. The strong anisotropy is confined to anomalous paths between earthquakes in the south Sandwich Islands and stations in Alaska. In contrast, the strength of inner core anisotropy obtained from measurements of PKPPKP travel times on polar paths does not exceed 1-2% (Bréger et al., 2000; Frost and Romanowicz, 2017). We re-examine the trends of PKIKP travel times on polar paths, in order to reconcile the different measurements and to determine whether discrepancies can be explained by structure in the mantle, the outer core, or localized strong anisotropy in the inner core. For this, we combine existing and new measurements, taking advantage of recent deployments of broadband arrays in Alaska and Antarctica.

  9. Dark-field optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Pache, C.; Villiger, M. L.; Lasser, T.

    2010-02-01

    Many solutions have been proposed to produce phase quantitative images of biological cell samples. Among these, Spectral Domain Phase Microscopy combines the fast imaging speed and high sensitivity of Optical Coherence Microscopy (OCM) in the Fourier domain with the high phase stability of common-path interferometry. We report on a new illumination scheme for OCM that enhances the sensitivity for backscattered light and detects the weak sample signal, otherwise buried by the signal from specular reflection. With the use of a Bessel-like beam, a dark-field configuration was realized. Sensitivity measurements for three different illumination configurations were performed to compare our method to standard OCM and extended focus OCM. Using a well-defined scattering and reflecting object, we demonstrated an attenuation of -40 dB of the DC-component and a relative gain of 30 dB for scattered light, compared to standard OCM. In a second step, we applied this technique, referred to as dark-field Optical Coherence Microscopy (dfOCM), to living cells. Chinese hamster ovarian cells were applied in a drop of medium on a coverslide. The cells of ~15 μm in diameter and even internal cell structures were visualized in the acquired tomograms.

  10. CW-THz vector spectroscopy and imaging system based on 1.55-µm fiber-optics.

    PubMed

    Kim, Jae-Young; Song, Ho-Jin; Yaita, Makoto; Hirata, Akihiko; Ajito, Katsuhiro

    2014-01-27

    We present a continuous-wave terahertz (THz) vector spectroscopy and imaging system based on a 1.5-µm fiber optic uni-traveling-carrier photodiode and InGaAs photo-conductive receiver. Using electro-optic (EO) phase modulators for THz phase control with shortened optical paths, the system achieves fast vector measurement with effective phase stabilization. Dynamic ranges of 100 dB · Hz and 75 dB · Hz at 300 GHz and 1 THz, and phase stability of 1.5° per minute are obtained. With the simultaneous measurement of absorbance and relative permittivity, we demonstrate non-destructive analyses of pharmaceutical cocrystals inside tablets within a few minutes.

  11. Cellular biophysical markers of hydroxyurea treatment in sickle cell disease

    NASA Astrophysics Data System (ADS)

    So, Peter T. C.; Hosseini, Poorya; Abidi, Sabia Z.; Du, E.; Papageorgiou, Dimitrios P.; Park, YongKeun; Higgins, John; Kato, Gregory J.; Suresh, Subra; Dao, Ming; Yaqoob, Zahid

    2017-04-01

    Using a common-path interferometric technique, we measure biomechanical and morphological properties of individual red blood cells in SCD patients as a function of cell density, and investigate the correlation of these biophysical properties with drug intake as well as other clinically measured parameters.

  12. A First Order Wavefront Estimation Algorithm for P1640 Calibrator

    NASA Technical Reports Server (NTRS)

    Zhaia, C.; Vasisht, G.; Shao, M.; Lockhart, T.; Cady, E.; Oppenheimer, B.; Burruss, R.; Roberts, J.; Beichman, C.; Brenner, D.; hide

    2012-01-01

    P1640 calibrator is a wavefront sensor working with the P1640 coronagraph and the Palomar 3000 actuator adaptive optics system (P3K) at the Palomar 200 inch Hale telescope. It measures the wavefront by interfering post-coronagraph light with a reference beam formed by low-pass filtering the blocked light from the coronagraph focal plane mask. The P1640 instrument has a similar architecture to the Gemini Planet Imager (GPI) and its performance is currently limited by the quasi-static speckles due to non-common path wavefront errors, which comes from the non-common path for the light to arrive at the AO wavefront sensor and the coronagraph mask. By measuring the wavefront after the coronagraph mask, the non-common path wavefront error can be estimated and corrected by feeding back the error signal to the deformable mirror (DM) of the P3K AO system. Here, we present a first order wavefront estimation algorithm and an instrument calibration scheme used in experiments done recently at Palomar observatory. We calibrate the P1640 calibrator by measuring its responses to poking DM actuators with a sparse checkerboard pattern at different amplitudes. The calibration yields a complex normalization factor for wavefront estimation and establishes the registration of the DM actuators at the pupil camera of the P1640 calibrator, necessary for wavefront correction. Improvement of imaging quality after feeding back the wavefront correction to the AO system demonstrated the efficacy of the algorithm.

  13. Measuring Diffusion of Liquids by Common-Path Interferometry

    NASA Technical Reports Server (NTRS)

    Rashidnia, Nasser

    2003-01-01

    A method of observing the interdiffusion of a pair of miscible liquids is based on the use of a common-path interferometer (CPI) to measure the spatially varying gradient of the index refraction in the interfacial region in which the interdiffusion takes place. Assuming that the indices of refraction of the two liquids are different and that the gradient of the index of refraction of the liquid is proportional to the gradient in the relative concentrations of either liquid, the diffusivity of the pair of liquids can be calculated from the temporal variation of the spatial variation of the index of refraction. This method yields robust measurements and does not require precise knowledge of the indices of refraction of the pure liquids. Moreover, the CPI instrumentation is compact and is optomechanically robust by virtue of its common- path design. The two liquids are placed in a transparent rectangular parallelepiped test cell. Initially, the interface between the liquids is a horizontal plane, above which lies pure liquid 2 (the less-dense liquid) and below which lies pure liquid 1 (the denser liquid). The subsequent interdiffusion of the liquids gives rise to a gradient of concentration and a corresponding gradient of the index of refraction in a mixing layer. For the purpose of observing the interdiffusion, the test cell is placed in the test section of the CPI, in which a collimated, polarized beam of light from a low-power laser is projected horizontally through a region that contains the mixing layer.

  14. Surface Wave Detection and Measurement Using a One Degree Global Dispersion Grid

    DTIC Science & Technology

    2006-05-01

    explosions at all major test sites .................................................................... 21 List of Figures (continued) Figure 17 Page...surface - . 7 " wave phase and group velocity dispersion curves from underground nuclear test sites (Stevens, 1986; Stevens and McLaughlin, 19881...calculated from earth models for 270 paths ( test site - station combinations) at 10 frequencies between 0.01 5 and 0.06 Hz; phase and group velocity

  15. Deep-turbulence wavefront sensing using digital holography in the on-axis phase shifting recording geometry

    NASA Astrophysics Data System (ADS)

    Thornton, Douglas E.; Spencer, Mark F.; Perram, Glen P.

    2017-09-01

    The effects of deep turbulence in long-range imaging applications presents unique challenges to properly measure and correct for aberrations incurred along the atmospheric path. In practice, digital holography can detect the path-integrated wavefront distortions caused by deep turbulence, and di erent recording geometries offer different benefits depending on the application of interest. Previous studies have evaluated the performance of the off-axis image and pupil plane recording geometries for deep-turbulence sensing. This study models digital holography in the on-axis phase shifting recording geometry using wave optics simulations. In particular, the analysis models spherical-wave propagation through varying deep-turbulence conditions to estimate the complex optical field, and performance is evaluated by calculating the field-estimated Strehl ratio and RMS wavefront error. Altogether, the results show that digital holography in the on-axis phase shifting recording geometry is an effective wavefront-sensing method in the presence of deep turbulence.

  16. Phase-locking and coherent power combining of broadband linearly chirped optical waves.

    PubMed

    Satyan, Naresh; Vasilyev, Arseny; Rakuljic, George; White, Jeffrey O; Yariv, Amnon

    2012-11-05

    We propose, analyze and demonstrate the optoelectronic phase-locking of optical waves whose frequencies are chirped continuously and rapidly with time. The optical waves are derived from a common optoelectronic swept-frequency laser based on a semiconductor laser in a negative feedback loop, with a precisely linear frequency chirp of 400 GHz in 2 ms. In contrast to monochromatic waves, a differential delay between two linearly chirped optical waves results in a mutual frequency difference, and an acoustooptic frequency shifter is therefore used to phase-lock the two waves. We demonstrate and characterize homodyne and heterodyne optical phase-locked loops with rapidly chirped waves, and show the ability to precisely control the phase of the chirped optical waveform using a digital electronic oscillator. A loop bandwidth of ~ 60 kHz, and a residual phase error variance of < 0.01 rad(2) between the chirped waves is obtained. Further, we demonstrate the simultaneous phase-locking of two optical paths to a common master waveform, and the ability to electronically control the resultant two-element optical phased array. The results of this work enable coherent power combining of high-power fiber amplifiers-where a rapidly chirping seed laser reduces stimulated Brillouin scattering-and electronic beam steering of chirped optical waves.

  17. Effects of liquid layers and distribution patterns on three-phase saturation and relative permeability relationships: a micromodel study.

    PubMed

    Tsai, Jui-Pin; Chang, Liang-Cheng; Hsu, Shao-Yiu; Shan, Hsin-Yu

    2017-12-01

    In the current study, we used micromodel experiments to study three-phase fluid flow in porous media. In contrast to previous studies, we simultaneously observed and measured pore-scale fluid behavior and three-phase constitutive relationships with digital image acquisition/analysis, fluid pressure control, and permeability assays. Our results showed that the fluid layers significantly influenced pore-scale, three-phase fluid displacement as well as water relative permeability. At low water saturation, water relative permeability not only depended on water saturation but also on the distributions of air and diesel. The results also indicate that the relative permeability-saturation model proposed by Parker et al. (1987) could not completely describe the experimental data from our three-phase flow experiments because these models ignore the effects of phase distribution. A simple bundle-of-tubes model shows that the water relative permeability was proportional to the number of apparently continuous water paths before the critical stage in which no apparently continuous water flow path could be found. Our findings constitute additional information about the essential constitutive relationships involved in both the understanding and the modeling of three-phase flows in porous media.

  18. Phase unwrapping methods of corner reflector DInSAR monitoring slow ground deformation

    NASA Astrophysics Data System (ADS)

    Fu, Wenxue; Guo, Xiaofang; Tian, Qingjiu

    2007-06-01

    Difference interferometric Synthetic aperture radar (DInSAR) has turned out to be a very powerful technique for the measurement of land deformations, but it requires the observed area to be correlated, and coherence degradation will seriously affect the quality of interferogram. Corner reflector DInSAR (CRDInSAR) is a new technique in recently years, which can compensate for the limitation of the classical DInSAR. Due to the stable amplitude and phase performance of the reflector, the interferometric phase difference of the reflector can be used to monitor or measure the small and slowly ground deformation for the cases of large geometrical baseline and large time interval between acquisitions. Phase unwrapping is the process where the absolute phase is reconstructed from its principal value as accurately as possible. It is a key step in the analysis of DInSAR. The classical phase unwrapping methods are either of path following type or of minimum-norm type. However, if the coherence of the two images is very low, the both methods will get error result. In application of CRDInSAR, due to the scattered points, the phase unwrapping of corner reflectors is only dealt with on a sparse grid, so all the reflectors are connected with Delaunay triangulation firstly, which can be used to define neighboring points and elementary cycles. When the monitoring ground deformation is slow, that is unwrapped neighboring-CR phase gradients are supposed to equal their wrapped-phase counterparts, then path-following method and Phase unwrapping using Coefficient of Elevation-Phase-Relation can be used to phase unwrapping. However, in the cases of unwrapped gradients exceeding one-half cycle, minimum cost flow (MCF) method can be used to unwrap the interferogram.

  19. Path-separated electron interferometry in a scanning transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Yasin, Fehmi S.; Harvey, Tyler R.; Chess, Jordan J.; Pierce, Jordan S.; McMorran, Benjamin J.

    2018-05-01

    We report a path-separated electron interferometer within a scanning transmission electron microscope. In this setup, we use a nanofabricated grating as an amplitude-division beamsplitter to prepare multiple spatially separated, coherent electron probe beams. We achieve path separations of 30 nm. We pass the  +1 diffraction order probe through amorphous carbon while passing the 0th and  ‑1 orders through vacuum. The probes are then made to interfere via imaging optics, and we observe an interference pattern at the CCD detector with up to 39.7% fringe visibility. We show preliminary experimental results in which the interference pattern was recorded during a 1D scan of the diffracted probes across a test phase object. These results qualitatively agree with a modeled interference predicted by an independent measurement of the specimen thickness. This experimental design can potentially be applied to phase contrast imaging and fundamental physics experiments, such as an exploration of electron wave packet coherence length.

  20. Improved routing strategy based on gravitational field theory

    NASA Astrophysics Data System (ADS)

    Song, Hai-Quan; Guo, Jin

    2015-10-01

    Routing and path selection are crucial for many communication and logistic applications. We study the interaction between nodes and packets and establish a simple model for describing the attraction of the node to the packet in transmission process by using the gravitational field theory, considering the real and potential congestion of the nodes. On the basis of this model, we propose a gravitational field routing strategy that considers the attractions of all of the nodes on the travel path to the packet. In order to illustrate the efficiency of proposed routing algorithm, we introduce the order parameter to measure the throughput of the network by the critical value of phase transition from a free flow phase to a congested phase, and study the distribution of betweenness centrality and traffic jam. Simulations show that, compared with the shortest path routing strategy, the gravitational field routing strategy considerably enhances the throughput of the network and balances the traffic load, and nearly all of the nodes are used efficiently. Project supported by the Technology and Development Research Project of China Railway Corporation (Grant No. 2012X007-D) and the Key Program of Technology and Development Research Foundation of China Railway Corporation (Grant No. 2012X003-A).

  1. Verification of target motion effects on SAR imagery using the Gotcha GMTI challenge dataset

    NASA Astrophysics Data System (ADS)

    Hack, Dan E.; Saville, Michael A.

    2010-04-01

    This paper investigates the relationship between a ground moving target's kinematic state and its SAR image. While effects such as cross-range offset, defocus, and smearing appear well understood, their derivations in the literature typically employ simplifications of the radar/target geometry and assume point scattering targets. This study adopts a geometrical model for understanding target motion effects in SAR imagery, termed the target migration path, and focuses on experimental verification of predicted motion effects using both simulated and empirical datasets based on the Gotcha GMTI challenge dataset. Specifically, moving target imagery is generated from three data sources: first, simulated phase history for a moving point target; second, simulated phase history for a moving vehicle derived from a simulated Mazda MPV X-band signature; and third, empirical phase history from the Gotcha GMTI challenge dataset. Both simulated target trajectories match the truth GPS target position history from the Gotcha GMTI challenge dataset, allowing direct comparison between all three imagery sets and the predicted target migration path. This paper concludes with a discussion of the parallels between the target migration path and the measurement model within a Kalman filtering framework, followed by conclusions.

  2. Design principles of the LVT-2 model laser instrument for the measurement of visual characteristics

    NASA Astrophysics Data System (ADS)

    Sun, Wende

    1989-10-01

    As far as the LVT-2 model laser visual acuity measuring instrument, after its model improvement, is concerned, it not only is capable of measuring the visual acuity of retina (LVA), but also capable of measuring the MTF of retina. The light path system of the instrument has three sections. One is a double light bundle common path interference system making use of double Dufu prisms to divide bundles. In conjunction with this, it uses the movement of a reflection lens M2 in order to change the interval distance of the two mutually interfering bundles. As a result of this, it changes the spacial frequency of the interference bands. This acts as the light path to measure LVA. The second is the background light set composed of such components as the tungsten filament lamp T sub L, the interference filter optical plate OF, and the polarization lens P2. It is used in order to form, on the retina, a uniform background base light. In conjunction with this, through adjustments of the dispersion prism B in the light path, adjustments are made in the degree of contrast change I sub O/I sub u measuring the MTF of the retina.

  3. Comparison of path visualizations and cognitive measures relative to travel technique in a virtual environment.

    PubMed

    Zanbaka, Catherine A; Lok, Benjamin C; Babu, Sabarish V; Ulinski, Amy C; Hodges, Larry F

    2005-01-01

    We describe a between-subjects experiment that compared four different methods of travel and their effect on cognition and paths taken in an immersive virtual environment (IVE). Participants answered a set of questions based on Crook's condensation of Bloom's taxonomy that assessed their cognition of the IVE with respect to knowledge, understanding and application, and higher mental processes. Participants also drew a sketch map of the IVE and the objects within it. The users' sense of presence was measured using the Steed-Usoh-Slater Presence Questionnaire. The participants' position and head orientation were automatically logged during their exposure to the virtual environment. These logs were later used to create visualizations of the paths taken. Path analysis, such as exploring the overlaid path visualizations and dwell data information, revealed further differences among the travel techniques. Our results suggest that, for applications where problem solving and evaluation of information is important or where opportunity to train is minimal, then having a large tracked space so that the participant can walk around the virtual environment provides benefits over common virtual travel techniques.

  4. Energy-Aware Multipath Routing Scheme Based on Particle Swarm Optimization in Mobile Ad Hoc Networks

    PubMed Central

    Robinson, Y. Harold; Rajaram, M.

    2015-01-01

    Mobile ad hoc network (MANET) is a collection of autonomous mobile nodes forming an ad hoc network without fixed infrastructure. Dynamic topology property of MANET may degrade the performance of the network. However, multipath selection is a great challenging task to improve the network lifetime. We proposed an energy-aware multipath routing scheme based on particle swarm optimization (EMPSO) that uses continuous time recurrent neural network (CTRNN) to solve optimization problems. CTRNN finds the optimal loop-free paths to solve link disjoint paths in a MANET. The CTRNN is used as an optimum path selection technique that produces a set of optimal paths between source and destination. In CTRNN, particle swarm optimization (PSO) method is primly used for training the RNN. The proposed scheme uses the reliability measures such as transmission cost, energy factor, and the optimal traffic ratio between source and destination to increase routing performance. In this scheme, optimal loop-free paths can be found using PSO to seek better link quality nodes in route discovery phase. PSO optimizes a problem by iteratively trying to get a better solution with regard to a measure of quality. The proposed scheme discovers multiple loop-free paths by using PSO technique. PMID:26819966

  5. Relationships Between the Phase Transformation Kinetics, Texture Evolution, and Microstructure Development in a 304L Stainless Steel Under Biaxial Loading Conditions: Synchrotron X-ray and Electron Backscatter Diffraction Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cakmak, Ercan; Choo, Hahn; Kang, Jun-Yun

    2015-02-11

    The relationships between the martensitic phase transformation kinetics, texture evolution, and the microstructure development in the parent austenite phase were studied for a 304L stainless steel that exhibits the transformation-induced plasticity effect under biaxial loading conditions at ambient temperature. The applied loading paths included: pure torsion, simultaneous biaxial torsion/tension, simultaneous biaxial torsion/compression, and stepwise loading of tension followed by torsion (i.e., first loading by uniaxial tension and then by pure torsion in sequence). Synchrotron X-ray and electron backscatter diffraction techniques were used to measure the evolution of the phase fractions, textures, and microstructures as a function of the applied strains.more » The influence of loading character and path on the changes in martensitic phase transformation kinetics is discussed in the context of (1) texture-transformation relationship and the preferred transformation of grains belonging to certain texture components over the others, (2) effects of axial strains on shear band evolutions, and (3) volume changes associated with martensitic transformation.« less

  6. On the relation between phase path, group path and attenuation in a cold absorbing plasma

    NASA Technical Reports Server (NTRS)

    Bennett, J. A.; Dyson, P. L.

    1978-01-01

    Consideration is given to a cold absorbing plasma in which the collision frequency is zero. Expressions are developed which relate the attenuation and the group and phase refractive indices. It is found that because the expressions for the group and phase refractive indices and the imaginary part of the refractive index are closely related in form, the attenuation is related to the difference between the group and phase paths. Numerical calculations have derived approximations which significantly increase the range of known approximations of this type.

  7. Local Magnetic Measurements of Trapped Flux Through a Permanent Current Path in Graphite

    NASA Astrophysics Data System (ADS)

    Stiller, Markus; Esquinazi, Pablo D.; Quiquia, José Barzola; Precker, Christian E.

    2018-04-01

    Temperature- and field-dependent measurements of the electrical resistance of different natural graphite samples suggest the existence of superconductivity at room temperature in some regions of the samples. To verify whether dissipationless electrical currents are responsible for the trapped magnetic flux inferred from electrical resistance measurements, we localized them using magnetic force microscopy on a natural graphite sample in remanent state after applying a magnetic field. The obtained evidence indicates that at room temperature a permanent current flows at the border of the trapped flux region. The current path vanishes at the same transition temperature T_c≈ 370 K as the one obtained from electrical resistance measurements on the same sample. This sudden decrease in the phase is different from what is expected for a ferromagnetic material. Time-dependent measurements of the signal show the typical behavior of flux creep of a permanent current flowing in a superconductor. The overall results support the existence of room-temperature superconductivity at certain regions in the graphite structure and indicate that magnetic force microscopy is suitable to localize them. Magnetic coupling is excluded as origin of the observed phase signal.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bromberger, Seth A.; Klymko, Christine F.; Henderson, Keith A.

    Betweenness centrality is a graph statistic used to nd vertices that are participants in a large number of shortest paths in a graph. This centrality measure is commonly used in path and network interdiction problems and its complete form requires the calculation of all-pairs shortest paths for each vertex. This leads to a time complexity of O(jV jjEj), which is impractical for large graphs. Estimation of betweenness centrality has focused on performing shortest-path calculations on a subset of randomly- selected vertices. This reduces the complexity of the centrality estimation to O(jSjjEj); jSj < jV j, which can be scaled appropriatelymore » based on the computing resources available. An estimation strategy that uses random selection of vertices for seed selection is fast and simple to implement, but may not provide optimal estimation of betweenness centrality when the number of samples is constrained. Our experimentation has identi ed a number of alternate seed-selection strategies that provide lower error than random selection in common scale-free graphs. These strategies are discussed and experimental results are presented.« less

  9. Prediction of Process-Induced Distortions in L-Shaped Composite Profiles Using Path-Dependent Constitutive Law

    NASA Astrophysics Data System (ADS)

    Ding, Anxin; Li, Shuxin; Wang, Jihui; Ni, Aiqing; Sun, Liangliang; Chang, Lei

    2016-10-01

    In this paper, the corner spring-in angles of AS4/8552 L-shaped composite profiles with different thicknesses are predicted using path-dependent constitutive law with the consideration of material properties variation due to phase change during curing. The prediction accuracy mainly depends on the properties in the rubbery and glassy states obtained by homogenization method rather than experimental measurements. Both analytical and finite element (FE) homogenization methods are applied to predict the overall properties of AS4/8552 composite. The effect of fiber volume fraction on the properties is investigated for both rubbery and glassy states using both methods. And the predicted results are compared with experimental measurements for the glassy state. Good agreement is achieved between the predicted results and available experimental data, showing the reliability of the homogenization method. Furthermore, the corner spring-in angles of L-shaped composite profiles are measured experimentally and the reliability of path-dependent constitutive law is validated as well as the properties prediction by FE homogenization method.

  10. Effect of wet tropospheric path delays on estimation of geodetic baselines in the Gulf of California using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Tralli, David M.; Dixon, Timothy H.; Stephens, Scott A.

    1988-01-01

    Surface Meteorological (SM) and Water Vapor Radiometer (WVR) measurements are used to provide an independent means of calibrating the GPS signal for the wet tropospheric path delay in a study of geodetic baseline measurements in the Gulf of California using GPS in which high tropospheric water vapor content yielded wet path delays in excess of 20 cm at zenith. Residual wet delays at zenith are estimated as constants and as first-order exponentially correlated stochastic processes. Calibration with WVR data is found to yield the best repeatabilities, with improved results possible if combined carrier phase and pseudorange data are used. Although SM measurements can introduce significant errors in baseline solutions if used with a simple atmospheric model and estimation of residual zenith delays as constants, SM calibration and stochastic estimation for residual zenith wet delays may be adequate for precise estimation of GPS baselines. For dry locations, WVRs may not be required to accurately model tropospheric effects on GPS baselines.

  11. Minimising back reflections from the common path objective in a fundus camera

    NASA Astrophysics Data System (ADS)

    Swat, A.

    2016-11-01

    Eliminating back reflections is critical in the design of a fundus camera with internal illuminating system. As there is very little light reflected from the retina, even excellent antireflective coatings are not sufficient suppression of ghost reflections, therefore the number of surfaces in the common optics in illuminating and imaging paths shall be minimised. Typically a single aspheric objective is used. In the paper an alternative approach, an objective with all spherical surfaces, is presented. As more surfaces are required, more sophisticated method is needed to get rid of back reflections. Typically back reflections analysis, comprise treating subsequent objective surfaces as mirrors, and reflections from the objective surfaces are traced back through the imaging path. This approach can be applied in both sequential and nonsequential ray tracing. It is good enough for system check but not very suitable for early optimisation process in the optical system design phase. There are also available standard ghost control merit function operands in the sequential ray-trace, for example in Zemax system, but these don't allow back ray-trace in an alternative optical path, illumination vs. imaging. What is proposed in the paper, is a complete method to incorporate ghost reflected energy into the raytracing system merit function for sequential mode which is more efficient in optimisation process. Although developed for the purpose of specific case of fundus camera, the method might be utilised in a wider range of applications where ghost control is critical.

  12. Crosstalk Cancellation for a Simultaneous Phase Shifting Interferometer

    NASA Technical Reports Server (NTRS)

    Olczak, Eugene (Inventor)

    2014-01-01

    A method of minimizing fringe print-through in a phase-shifting interferometer, includes the steps of: (a) determining multiple transfer functions of pixels in the phase-shifting interferometer; (b) computing a crosstalk term for each transfer function; and (c) displaying, to a user, a phase-difference map using the crosstalk terms computed in step (b). Determining a transfer function in step (a) includes measuring intensities of a reference beam and a test beam at the pixels, and measuring an optical path difference between the reference beam and the test beam at the pixels. Computing crosstalk terms in step (b) includes computing an N-dimensional vector, where N corresponds to the number of transfer functions, and the N-dimensional vector is obtained by minimizing a variance of a modulation function in phase shifted images.

  13. Realtime speckle sensing and suppression with project 1640 at Palomar

    NASA Astrophysics Data System (ADS)

    Vasisht, Gautam; Cady, Eric; Zhai, Chengxing; Lockhart, Thomas; Oppenheimer, Ben

    2014-08-01

    Palomar's Project 1640 (P1640) is the first stellar coronagraph to regularly use active coronagraphic wavefront control (CWFC). For this it has a hierarchy of offset wavefront sensors (WFS), the most important of which is the higher-order WFS (called CAL), which tracks quasi-static modes between 2-35 cycles-per-aperture. The wavefront is measured in the coronagraph at 0.01 Hz rates, providing slope targets to the upstream Palm 3000 adaptive optics (AO) system. The CWFC handles all non-common path distortions up to the coronagraphic focal plane mask, but does not sense second order modes between the WFSs and the science integral field unit (IFU); these modes determine the system's current limit. We have two CWFC operating modes: (1) P-mode, where we only control phases, generating double-sided darkholes by correcting to the largest controllable spatial frequencies, and (2) E-mode, where we can control amplitudes and phases, generating single-sided dark-holes in specified regions-of-interest. We describe the performance and limitations of both these modes, and discuss the improvements we are considering going forward.

  14. Spatial phase-shift dual-beam speckle interferometry.

    PubMed

    Gao, Xinya; Yang, Lianxiang; Wang, Yonghong; Zhang, Boyang; Dan, Xizuo; Li, Junrui; Wu, Sijin

    2018-01-20

    The spatial phase-shift technique has been successfully applied to an out-of-plane speckle interferometry system. Its application to a pure in-plane sensitive system has not been reported yet. This paper presents a novel optical configuration that enables the application of the spatial phase-shift technique to pure in-plane sensitive dual-beam speckle interferometry. The new spatial phase-shift dual-beam speckle interferometry (SPS-DBSP) uses a dual-beam in-plane electronic speckle pattern interferometry configuration with individual aperture shears, avoiding the interference in the object plane by the use of a low-coherence source, and different optical paths. The measured object is illuminated by two incoherent beams that are generated by a delay line, which is larger than the coherence length of the laser. The two beams reflected from the object surface interfere with each other at the CCD plane because of different optical paths. A spatial phase shift is introduced by the angle between the two apertures when they are mapped to the same optical axis. The phase of the in-plane deformation can directly be extracted from the speckle patterns by the Fourier transform method. The capability of SPS-DBSI is demonstrated by theoretical discussion as well as experiments.

  15. One-shot phase-shifting phase-grating interferometry with modulation of polarization: case of four interferograms.

    PubMed

    Rodriguez-Zurita, Gustavo; Meneses-Fabian, Cruz; Toto-Arellano, Noel-Ivan; Vázquez-Castillo, José F; Robledo-Sánchez, Carlos

    2008-05-26

    An experimental setup for optical phase extraction from 2-D interferograms using a one-shot phase-shifting technique able to achieve four interferograms with 90 degrees phase shifts in between is presented. The system uses a common-path interferometer consisting of two windows in the input plane and a phase grating in Fourier plane as its pupil. Each window has a birefringent wave plate attached in order to achieve nearly circular polarization of opposite rotations one respect to the other after being illuminated with a 45 degrees linear polarized beam. In the output, interference of the fields associated with replicated windows (diffraction orders) is achieved by a proper choice of the windows spacing with respect to the grating period. The phase shifts to achieve four interferograms simultaneously to perform phase-shifting interferometry can be obtained by placing linear polarizers on each diffraction orders before detection at an appropriate angle. Some experimental results are shown.

  16. Dispersive detection of radio-frequency-dressed states

    NASA Astrophysics Data System (ADS)

    Jammi, Sindhu; Pyragius, Tadas; Bason, Mark G.; Florez, Hans Marin; Fernholz, Thomas

    2018-04-01

    We introduce a method to dispersively detect alkali-metal atoms in radio-frequency-dressed states. In particular, we use dressed detection to measure populations and population differences of atoms prepared in their clock states. Linear birefringence of the atomic medium enables atom number detection via polarization homodyning, a form of common path interferometry. In order to achieve low technical noise levels, we perform optical sideband detection after adiabatic transformation of bare states into dressed states. The balanced homodyne signal then oscillates independently of field fluctuations at twice the dressing frequency, thus allowing for robust, phase-locked detection that circumvents low-frequency noise. Using probe pulses of two optical frequencies, we can detect both clock states simultaneously and obtain population difference as well as the total atom number. The scheme also allows for difference measurements by direct subtraction of the homodyne signals at the balanced detector, which should technically enable quantum noise limited measurements with prospects for the preparation of spin squeezed states. The method extends to other Zeeman sublevels and can be employed in a range of atomic clock schemes, atom interferometers, and other experiments using dressed atoms.

  17. Laser beam complex amplitude measurement by phase diversity.

    PubMed

    Védrenne, Nicolas; Mugnier, Laurent M; Michau, Vincent; Velluet, Marie-Thérèse; Bierent, Rudolph

    2014-02-24

    The control of the optical quality of a laser beam requires a complex amplitude measurement able to deal with strong modulus variations and potentially highly perturbed wavefronts. The method proposed here consists in an extension of phase diversity to complex amplitude measurements that is effective for highly perturbed beams. Named camelot for Complex Amplitude MEasurement by a Likelihood Optimization Tool, it relies on the acquisition and processing of few images of the beam section taken along the optical path. The complex amplitude of the beam is retrieved from the images by the minimization of a Maximum a Posteriori error metric between the images and a model of the beam propagation. The analytical formalism of the method and its experimental validation are presented. The modulus of the beam is compared to a measurement of the beam profile, the phase of the beam is compared to a conventional phase diversity estimate. The precision of the experimental measurements is investigated by numerical simulations.

  18. The phase interrogation method for optical fiber sensor by analyzing the fork interference pattern

    NASA Astrophysics Data System (ADS)

    Lv, Riqing; Qiu, Liqiang; Hu, Haifeng; Meng, Lu; Zhang, Yong

    2018-02-01

    The phase interrogation method for optical fiber sensor is proposed based on the fork interference pattern between the orbital angular momentum beam and plane wave. The variation of interference pattern with phase difference between the two light beams is investigated to realize the phase interrogation. By employing principal component analysis method, the features of the interference pattern can be extracted. Moreover, the experimental system is designed to verify the theoretical analysis, as well as feasibility of phase interrogation. In this work, the Mach-Zehnder interferometer was employed to convert the strain applied on sensing fiber to the phase difference between the reference and measuring paths. This interrogation method is also applicable for the measurements of other physical parameters, which can produce the phase delay in optical fiber. The performance of the system can be further improved by employing highlysensitive materials and fiber structures.

  19. Total solar eclipse effects on VLF signals: Observations and modeling

    NASA Astrophysics Data System (ADS)

    Clilverd, Mark A.; Rodger, Craig J.; Thomson, Neil R.; Lichtenberger, János; Steinbach, Péter; Cannon, Paul; Angling, Matthew J.

    During the total solar eclipse observed in Europe on August 11, 1999, measurements were made of the amplitude and phase of four VLF transmitters in the frequency range 16-24 kHz. Five receiver sites were set up, and significant variations in phase and amplitude are reported for 17 paths, more than any previously during an eclipse. Distances from transmitter to receiver ranged from 90 to 14,510 km, although the majority were <2000 km. Typically, positive amplitude changes were observed throughout the whole eclipse period on path lengths <2000 km, while negative amplitude changes were observed on paths >10,000 km. Negative phase changes were observed on most paths, independent of path length. Although there was significant variation from path to path, the typical changes observed were ~3 dB and ~50°. The changes observed were modeled using the Long Wave Propagation Capability waveguide code. Maximum eclipse effects occurred when the Wait inverse scale height parameter β was 0.5 km-1 and the effective ionospheric height parameter H' was 79 km, compared with β=0.43km-1 and H'=71km for normal daytime conditions. The resulting changes in modeled amplitude and phase show good agreement with the majority of the observations. The modeling undertaken provides an interpretation of why previous estimates of height change during eclipses have shown such a range of values. A D region gas-chemistry model was compared with electron concentration estimates inferred from the observations made during the solar eclipse. Quiet-day H' and β parameters were used to define the initial ionospheric profile. The gas-chemistry model was then driven only by eclipse-related solar radiation levels. The calculated electron concentration values at 77 km altitude throughout the period of the solar eclipse show good agreement with the values determined from observations at all times, which suggests that a linear variation in electron production rate with solar ionizing radiation is reasonable. At times of minimum electron concentration the chemical model predicts that the D region profile would be parameterized by the same β and H' as the LWPC model values, and rocket profiles, during totality and can be considered a validation of the chemical processes defined within the model.

  20. FOCAL PLANE WAVEFRONT SENSING USING RESIDUAL ADAPTIVE OPTICS SPECKLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Codona, Johanan L.; Kenworthy, Matthew, E-mail: jlcodona@gmail.com

    2013-04-20

    Optical imperfections, misalignments, aberrations, and even dust can significantly limit sensitivity in high-contrast imaging systems such as coronagraphs. An upstream deformable mirror (DM) in the pupil can be used to correct or compensate for these flaws, either to enhance the Strehl ratio or suppress the residual coronagraphic halo. Measurement of the phase and amplitude of the starlight halo at the science camera is essential for determining the DM shape that compensates for any non-common-path (NCP) wavefront errors. Using DM displacement ripples to create a series of probe and anti-halo speckles in the focal plane has been proposed for space-based coronagraphsmore » and successfully demonstrated in the lab. We present the theory and first on-sky demonstration of a technique to measure the complex halo using the rapidly changing residual atmospheric speckles at the 6.5 m MMT telescope using the Clio mid-IR camera. The AO system's wavefront sensor measurements are used to estimate the residual wavefront, allowing us to approximately compute the rapidly evolving phase and amplitude of speckle halo. When combined with relatively short, synchronized science camera images, the complex speckle estimates can be used to interferometrically analyze the images, leading to an estimate of the static diffraction halo with NCP effects included. In an operational system, this information could be collected continuously and used to iteratively correct quasi-static NCP errors or suppress imperfect coronagraphic halos.« less

  1. Characterization and Comparison of Vibration Transfer Paths in a Helicopter Gearbox and a Fixture Mounted Gearbox

    NASA Technical Reports Server (NTRS)

    Islam, Akm Anwarul; Dempsey, Paula J.; Feldman, Jason; Larsen, Chris

    2014-01-01

    Health monitoring of rotorcraft components, currently being performed by Health and Usage Monitoring Systems through analyses of vibration signatures of dynamic mechanical components, is very important for their safe and economic operation. HUMS analyze vibration signatures associated with faults and quantify them as condition indicators to predict component behavior. Vibration transfer paths are characterized by frequency response functions derived from the input/output relationship between applied force and dynamic response through a structure as a function of frequency. With an objective to investigate the differences in transfer paths, transfer path measurements were recorded under similar conditions in the left and right nose gearboxes of an AH-64 helicopter and in an isolated left nose gearbox in a test fixture at NASA Glenn Research Center. The test fixture enabled the application of measured torques-common during an actual operation. An impact hammer as well as commercial and lab piezo shakers, were used in conjunction with two types of commercially available accelerometers to collect the vibration response under various test conditions. The frequency response functions measured under comparable conditions of both systems were found to be consistent. Measurements made on the fixture indicated certain real-world installation and maintenance issues, such as sensor alignments, accelerometer locations and installation torques, had minimal effect. However, gear vibration transfer path dynamics appeared to be somewhat dependent on the presence of oil, and the transfer path dynamics were notably different if the force input was on the internal ring gear rather than on the external gearbox case.

  2. Quantum robots plus environments.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benioff, P.

    1998-07-23

    A quantum robot is a mobile quantum system, including an on board quantum computer and needed ancillary systems, that interacts with an environment of quantum systems. Quantum robots carry out tasks whose goals include making specified changes in the state of the environment or carrying out measurements on the environment. The environments considered so far, oracles, data bases, and quantum registers, are seen to be special cases of environments considered here. It is also seen that a quantum robot should include a quantum computer and cannot be simply a multistate head. A model of quantum robots and their interactions ismore » discussed in which each task, as a sequence of alternating computation and action phases,is described by a unitary single time step operator T {approx} T{sub a} + T{sub c} (discrete space and time are assumed). The overall system dynamics is described as a sum over paths of completed computation (T{sub c}) and action (T{sub a}) phases. A simple example of a task, measuring the distance between the quantum robot and a particle on a 1D lattice with quantum phase path dispersion present, is analyzed. A decision diagram for the task is presented and analyzed.« less

  3. (abstract) Studies of Interferometric Penetration into Vegetation Canopies using Multifrequency Interferometry Data at JPL

    NASA Technical Reports Server (NTRS)

    Hensley, Scott; Rodriguez, Ernesto; Truhafft, Bob; van Zyl, Jakob; Rosen, Paul; Werner, Charles; Madsen, Sren; Chapin, Elaine

    1997-01-01

    Radar interferometric observations both from spaceborne and airborne platforms have been used to generate accurate topographic maps, measure milimeter level displacements from earthquakes and volcanoes, and for making land cover classification and land cover change maps. Interferometric observations have two basic measurements, interferometric phase, which depends upon the path difference between the two antennas and the correlation. One of the key questions concerning interferometric observations of vegetated regions is where in the canopy does the interferometric phase measure the height. Results for two methods of extracting tree heights and other vegetation parameters based upon the amount of volumetric decorrelation will be presented.

  4. Ultrasonic tomography for in-process measurements of temperature in a multi-phase medium

    DOEpatents

    Beller, Laurence S.

    1993-01-01

    A method and apparatus for the in-process measurement of internal particulate temperature utilizing ultrasonic tomography techniques to determine the speed of sound through a specimen material. Ultrasonic pulses are transmitted through a material, which can be a multi-phase material, over known flight paths and the ultrasonic pulse transit times through all sectors of the specimen are measured to determine the speed of sound. The speed of sound being a function of temperature, it is possible to establish the correlation between speed of sound and temperature, throughout a cross-section of the material, which correlation is programmed into a computer to provide for a continuous in-process measurement of temperature throughout the specimen.

  5. In-line optical fiber metallic mirror reflector for monolithic common path optical coherence tomography probes.

    PubMed

    Singh, Kanwarpal; Reddy, Rohith; Sharma, Gargi; Verma, Yogesh; Gardecki, Joseph A; Tearney, Guillermo

    2018-03-01

    Endoscopic optical coherence tomography probes suffer from various artifacts due to dispersion imbalance and polarization mismatch between reference and sample arm light. Such artifacts can be minimized using a common path approach. In this work, we demonstrate a miniaturized common path probe for optical coherence tomography using an inline fiber mirror. A common path optical fiber probe suitable for performing high-resolution endoscopic optical coherence tomography imaging was developed. To achieve common path functionality, an inline fiber mirror was fabricated using a thin gold layer. A commercially available swept source engine was used to test the designed probe in a cadaver human coronary artery ex vivo. We achieved a sensitivity of 104 dB for this probe using a swept source optical coherence tomography system. To test the probe, images of a cadaver human coronary artery were obtained, demonstrating the quality that is comparable to those obtained by OCT systems with separate reference arms. Additionally, we demonstrate recovery of ranging depth by use of a Michelson interferometer in the detection path. We developed a miniaturized monolithic inline fiber mirror-based common path probe for optical coherence tomography. Owing to its simplicity, our design will be helpful in endoscopic applications that require high-resolution probes in a compact form factor while reducing system complexity. Lasers Surg. Med. 50:230-235, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Accurate cell counts in live mouse embryos using optical quadrature and differential interference contrast microscopy

    NASA Astrophysics Data System (ADS)

    Warger, William C., II; Newmark, Judith A.; Zhao, Bing; Warner, Carol M.; DiMarzio, Charles A.

    2006-02-01

    Present imaging techniques used in in vitro fertilization (IVF) clinics are unable to produce accurate cell counts in developing embryos past the eight-cell stage. We have developed a method that has produced accurate cell counts in live mouse embryos ranging from 13-25 cells by combining Differential Interference Contrast (DIC) and Optical Quadrature Microscopy. Optical Quadrature Microscopy is an interferometric imaging modality that measures the amplitude and phase of the signal beam that travels through the embryo. The phase is transformed into an image of optical path length difference, which is used to determine the maximum optical path length deviation of a single cell. DIC microscopy gives distinct cell boundaries for cells within the focal plane when other cells do not lie in the path to the objective. Fitting an ellipse to the boundary of a single cell in the DIC image and combining it with the maximum optical path length deviation of a single cell creates an ellipsoidal model cell of optical path length deviation. Subtracting the model cell from the Optical Quadrature image will either show the optical path length deviation of the culture medium or reveal another cell underneath. Once all the boundaries are used in the DIC image, the subtracted Optical Quadrature image is analyzed to determine the cell boundaries of the remaining cells. The final cell count is produced when no more cells can be subtracted. We have produced exact cell counts on 5 samples, which have been validated by Epi-Fluorescence images of Hoechst stained nuclei.

  7. Phase calibration target for quantitative phase imaging with ptychography.

    PubMed

    Godden, T M; Muñiz-Piniella, A; Claverley, J D; Yacoot, A; Humphry, M J

    2016-04-04

    Quantitative phase imaging (QPI) utilizes refractive index and thickness variations that lead to optical phase shifts. This gives contrast to images of transparent objects. In quantitative biology, phase images are used to accurately segment cells and calculate properties such as dry mass, volume and proliferation rate. The fidelity of the measured phase shifts is of critical importance in this field. However to date, there has been no standardized method for characterizing the performance of phase imaging systems. Consequently, there is an increasing need for protocols to test the performance of phase imaging systems using well-defined phase calibration and resolution targets. In this work, we present a candidate for a standardized phase resolution target, and measurement protocol for the determination of the transfer of spatial frequencies, and sensitivity of a phase imaging system. The target has been carefully designed to contain well-defined depth variations over a broadband range of spatial frequencies. In order to demonstrate the utility of the target, we measure quantitative phase images on a ptychographic microscope, and compare the measured optical phase shifts with Atomic Force Microscopy (AFM) topography maps and surface profile measurements from coherence scanning interferometry. The results show that ptychography has fully quantitative nanometer sensitivity in optical path differences over a broadband range of spatial frequencies for feature sizes ranging from micrometers to hundreds of micrometers.

  8. A digital, constant-frequency pulsed phase-locked-loop instrument for real-time, absolute ultrasonic phase measurements

    NASA Astrophysics Data System (ADS)

    Haldren, H. A.; Perey, D. F.; Yost, W. T.; Cramer, K. E.; Gupta, M. C.

    2018-05-01

    A digitally controlled instrument for conducting single-frequency and swept-frequency ultrasonic phase measurements has been developed based on a constant-frequency pulsed phase-locked-loop (CFPPLL) design. This instrument uses a pair of direct digital synthesizers to generate an ultrasonically transceived tone-burst and an internal reference wave for phase comparison. Real-time, constant-frequency phase tracking in an interrogated specimen is possible with a resolution of 0.000 38 rad (0.022°), and swept-frequency phase measurements can be obtained. Using phase measurements, an absolute thickness in borosilicate glass is presented to show the instrument's efficacy, and these results are compared to conventional ultrasonic pulse-echo time-of-flight (ToF) measurements. The newly developed instrument predicted the thickness with a mean error of -0.04 μm and a standard deviation of error of 1.35 μm. Additionally, the CFPPLL instrument shows a lower measured phase error in the absence of changing temperature and couplant thickness than high-resolution cross-correlation ToF measurements at a similar signal-to-noise ratio. By showing higher accuracy and precision than conventional pulse-echo ToF measurements and lower phase errors than cross-correlation ToF measurements, the new digitally controlled CFPPLL instrument provides high-resolution absolute ultrasonic velocity or path-length measurements in solids or liquids, as well as tracking of material property changes with high sensitivity. The ability to obtain absolute phase measurements allows for many new applications than possible with previous ultrasonic pulsed phase-locked loop instruments. In addition to improved resolution, swept-frequency phase measurements add useful capability in measuring properties of layered structures, such as bonded joints, or materials which exhibit non-linear frequency-dependent behavior, such as dispersive media.

  9. Extended charge banking model of dual path shocks for implantable cardioverter defibrillators

    PubMed Central

    Dosdall, Derek J; Sweeney, James D

    2008-01-01

    Background Single path defibrillation shock methods have been improved through the use of the Charge Banking Model of defibrillation, which predicts the response of the heart to shocks as a simple resistor-capacitor (RC) circuit. While dual path defibrillation configurations have significantly reduced defibrillation thresholds, improvements to dual path defibrillation techniques have been limited to experimental observations without a practical model to aid in improving dual path defibrillation techniques. Methods The Charge Banking Model has been extended into a new Extended Charge Banking Model of defibrillation that represents small sections of the heart as separate RC circuits, uses a weighting factor based on published defibrillation shock field gradient measures, and implements a critical mass criteria to predict the relative efficacy of single and dual path defibrillation shocks. Results The new model reproduced the results from several published experimental protocols that demonstrated the relative efficacy of dual path defibrillation shocks. The model predicts that time between phases or pulses of dual path defibrillation shock configurations should be minimized to maximize shock efficacy. Discussion Through this approach the Extended Charge Banking Model predictions may be used to improve dual path and multi-pulse defibrillation techniques, which have been shown experimentally to lower defibrillation thresholds substantially. The new model may be a useful tool to help in further improving dual path and multiple pulse defibrillation techniques by predicting optimal pulse durations and shock timing parameters. PMID:18673561

  10. High pressure in situ x-ray absorption spectroscopy cell for studying simultaneously the liquid phase and the solid-liquid interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grunwaldt, Jan-Dierk; Ramin, Michael; Rohr, Markus

    2005-05-15

    A high pressure in situ x-ray absorption spectroscopy cell with two different path lengths and path positions is presented for studying element-specifically both the liquid phase and the solid-liquid interface at pressures up to 250 bar and temperatures up to 220 deg. C. For this purpose, one x-ray path probes the bottom, while the other x-ray path penetrates through the middle of the in situ cell. The basic design of the cell resembles a 10 ml volume batch reactor, which is equipped with in- and outlet lines to dose compressed gases and liquids as well as a stirrer for goodmore » mixing. Due to the use of a polyetheretherketone inset it is also suitable for measurements under corrosive conditions. The characteristic features of the cell are illustrated using case studies from catalysis and solid state chemistry: (a) the ruthenium-catalyzed formylation of an amine in 'supercritical' carbon dioxide in the presence of hydrogen; (b) the cycloaddition of carbon dioxide to propylene oxide in the presence of a solid Zn-based catalyst, and (c) the solvothermal synthesis of MoO{sub 3} nanorods from MoO{sub 3}-2H{sub 2}O.« less

  11. Fate and Transport of TCE Solvents Through Saturated Karst Aquifer

    NASA Astrophysics Data System (ADS)

    Padilla, I. Y.; Carmona, M.; Anaya, A. A.

    2014-12-01

    Dense Nonaqueous-Phase Liquids (DNAPLs) are a group of organic compounds that have been a serious problem for groundwater pollution in karst. The industrial production and utilization of these chemicals spread since 1940, and are present at tens of thousands of contaminated sites worldwide. The physic-chemical properties of DNAPLs in conjunction with the hydraulic properties of the karst systems create the perfect condition for DNAPLs to penetrate the epikarst, reach the groundwater, and more within the karst system to zones of potential exposure, such as wells, streams and wetlands. Trichloroethylene (TCE) is the most common DNPAL found in the subsurface environment. This research studies the fate and transport of TCE DNAPL in a karstified limestone physical model (KLPM). Experiments are carried out in KLPM. The KLPM is an enclosed stainless steel tank packed with a rectangular limestone block (15cm x 15cm x 76cm) that simulates a saturated confine karst aquifer. DNAPL experiment involve the injection of 40 ml of pure TCE into steady groundwater flow at the upstream boundary of the KLPM model, while sampling spatially and temporally along the block. Samples are analyzed for TCE on the pure and dissolved phase. Pure TCE is analyzed volumetrically and dissolved phase concentrations are analyze using a High Performance Liquid Chromatography (HPLC). TCE data is used to construct temporal distributions curves (TDCs) at different spatial locations. Results show that pure TCE volumes are collected at the beginnings of the experiment in sampling ports located near the injection port and along preferential flow paths. TCE concentration TDCs show spatial variations related to the limestone block heterogeneously. Rapid response to TCE concentrations is associated with preferential flow paths. Slow response and long tailing of TCE of TCE concentration are associated with diffusive transport in rock matrix and mass transport rates limitations. Bimodal distributions are associated with multiple flow path connectivity. Overall, results show that karstified limestone has a high capacity to rapidly transport, as well as store and slowly release TCE pure and dissolved phase. Response times to TCE concentrations depend on the mode of transport, and region of flow paths.

  12. Estimating the D-Region Ionospheric Electron Density Profile Using VLF Narrowband Transmitters

    NASA Astrophysics Data System (ADS)

    Gross, N. C.; Cohen, M.

    2016-12-01

    The D-region ionospheric electron density profile plays an important role in many applications, including long-range and transionospheric communications, and coupling between the lower atmosphere and the upper ionosphere occurs, and estimation of very low frequency (VLF) wave propagation within the earth-ionosphere waveguide. However, measuring the D-region ionospheric density profile has been a challenge. The D-region is about 60 to 90 [km] in altitude, which is higher than planes and balloons can fly but lower than satellites can orbit. Researchers have previously used VLF remote sensing techniques, from either narrowband transmitters or sferics, to estimate the density profile, but these estimations are typically during a short time frame and over a single propagation path.We report on an effort to construct estimates of the D-region ionospheric electron density profile over multiple narrowband transmission paths for long periods of time. Measurements from multiple transmitters at multiple receivers are analyzed concurrently to minimize false solutions and improve accuracy. Likewise, time averaging is used to remove short transient noise at the receivers. The cornerstone of the algorithm is an artificial neural network (ANN), where input values are the received amplitude and phase for the narrowband transmitters and the outputs are the commonly known h' and beta two parameter exponential electron density profile. Training data for the ANN is generated using the Navy's Long-Wavelength Propagation Capability (LWPC) model. Results show the algorithm performs well under smooth ionospheric conditions and when proper geometries for the transmitters and receivers are used.

  13. Folded tubular photometer for atmospheric measurements of NO2 and NO

    NASA Astrophysics Data System (ADS)

    Birks, John W.; Andersen, Peter C.; Williford, Craig J.; Turnipseed, Andrew A.; Strunk, Stanley E.; Ennis, Christine A.; Mattson, Erick

    2018-05-01

    We describe and characterize a modular folded tubular photometer for making direct measurements of the concentrations of nitrogen dioxide (NO2) and specify how this method could be extended to measure other pollutants such as sulfur dioxide (SO2), ozone (O3), and black carbon particulate matter. Direct absorbance measurements using this photometer can be made across the spectral range from the ultraviolet (UV) to the near infrared. The absorbance cell makes use of modular components (tubular detection cells and mirror cubes) that allow construction of path lengths of up to 2 m or more while maintaining low cell volumes. The long path lengths and low cell volumes enable sensitive detection of ambient air pollutants down to low part-per-billion levels for gas species and aerosol extinctions down to 1 Mm-1, corresponding to ˜ 0.1 µg m-3 for black carbon particulates. Pressure equalization throughout the stages of the absorbance measurement is shown to be critical to accurate measurements of analyte concentrations. The present paper describes the application of this photometer to direct measurements of nitrogen dioxide (NO2) and the incorporation of design features that also enable measurement of nitric oxide (NO) in the same instrument. Excellent agreement for ambient measurements along an urban roadside was found for both NO2 and NO measured by the folded tubular photometer compared to existing standard techniques. Compared to commonly used methods for measurements of NOx species, the advantages of this approach include (1) an absolute quantification for NO2 based on the Beer-Lambert law, thereby greatly reducing the frequency at which calibrations are required; (2) the direct measurement of NO2 concentration without prior conversion to NO as is required for the commonly used chemiluminescence method; (3) the use of modular components that allow construction of absorbance detection cells of varying lengths for extending the dynamic range of concentrations that can be measured; (4) a more economical instrument than other currently available direct measurement techniques for NO2; and (5) the potential for simultaneous detection of additional species such as SO2, O3, and black carbon in the same instrument. In contrast to other commercially available direct NO2 measurements, such as cavity-attenuated phase-shift spectroscopy (CAPS), the folded tubular photometer also measures NO simultaneously in the same apparatus by quantitatively converting NO to NO2 with ozone, which is then detected by direct absorbance.

  14. Reentry trajectory optimization with waypoint and no-fly zone constraints using multiphase convex programming

    NASA Astrophysics Data System (ADS)

    Zhao, Dang-Jun; Song, Zheng-Yu

    2017-08-01

    This study proposes a multiphase convex programming approach for rapid reentry trajectory generation that satisfies path, waypoint and no-fly zone (NFZ) constraints on Common Aerial Vehicles (CAVs). Because the time when the vehicle reaches the waypoint is unknown, the trajectory of the vehicle is divided into several phases according to the prescribed waypoints, rendering a multiphase optimization problem with free final time. Due to the requirement of rapidity, the minimum flight time of each phase index is preferred over other indices in this research. The sequential linearization is used to approximate the nonlinear dynamics of the vehicle as well as the nonlinear concave path constraints on the heat rate, dynamic pressure, and normal load; meanwhile, the convexification techniques are proposed to relax the concave constraints on control variables. Next, the original multiphase optimization problem is reformulated as a standard second-order convex programming problem. Theoretical analysis is conducted to show that the original problem and the converted problem have the same solution. Numerical results are presented to demonstrate that the proposed approach is efficient and effective.

  15. Field evaluation of open and closed-path CO2 flux systems over asphalt surface

    NASA Astrophysics Data System (ADS)

    Bogoev, I.; Santos, E.

    2016-12-01

    Eddy covariance (EC) is a widely used method for quantifying surface fluxes of heat, water vapor and carbon dioxide between ecosystems and the atmosphere. A typical EC system consists of an ultrasonic anemometer measuring the 3D wind vector and a fast-response infrared gas analyzer for sensing the water vapor and CO2 density in the air. When using an open-path analyzer that detects the constituent's density in situ a correction for concurrent air temperature and humidity fluctuations must be applied, Webb et al. (1980). In environments with small magnitudes of CO2 flux (<5µmol m-2 s-1) and in the presence of high sensible heat flux, like wintertime over boreal forest, open-path flux measurements have been challenging since the magnitude of the density corrections are as large as the uncorrected CO2 flux itself. A new technology merging the sensing paths of the gas analyzer and the sonic anemometer has been recently developed. This new integrated instrument allows a direct measurement of CO2 mixing ratio in the open air and has the potential to improve the quality of the temperature related density corrections by synchronously measuring the sensible heat flux in the optical path of the gas analyzer. We evaluate the performance and the accuracy of this new sensor over a large parking lot with an asphalt surface where the CO2 fluxes are considered low and the interfering sensible heat fluxes are above 200 Wm-2. A co-located closed-path EC system is used as a reference measurement to examine any systematic biases and apparent CO2 uptake observed with open-path sensors under high sensible heat flux regimes. Half-hour mean and variance of CO2 and water vapor concentrations are evaluated. The relative spectral responses, covariances and corrected turbulent fluxes using a common sonic anemometer are analyzed. The influence of sensor separation and frequency response attenuation on the density corrections is discussed.

  16. Relationships Between the Phase Transformation Kinetics, Texture Evolution, and Microstructure Development in a 304L Stainless Steel Under Biaxial Loading Conditions: Synchrotron X-ray and Electron Backscatter Diffraction Studies

    DOE PAGES

    Cakmak, Ercan; Choo, Hahn; Kang, Jun-Yun; ...

    2015-02-11

    Here we report that the relationships between the martensitic phase transformation kinetics, texture evolution, and the microstructure development in the parent austenite phase were studied for a 304L stainless steel that exhibits the transformation-induced plasticity effect under biaxial loading conditions at ambient temperature. The applied loading paths included: pure torsion, simultaneous biaxial torsion/tension, simultaneous biaxial torsion/compression, and stepwise loading of tension followed by torsion (i.e., first loading by uniaxial tension and then by pure torsion in sequence). Synchrotron X-ray and electron backscatter diffraction techniques were used to measure the evolution of the phase fractions, textures, and microstructures as a functionmore » of the applied strains. The influence of loading character and path on the changes in martensitic phase transformation kinetics is discussed in the context of (1) texture-transformation relationship and the preferred transformation of grains belonging to certain texture components over the others, (2) effects of axial strains on shear band evolutions, and (3) volume changes associated with martensitic transformation.« less

  17. HAI: A new TDLAS hygrometer for the HALO research aircraft

    NASA Astrophysics Data System (ADS)

    Klostermann, Tim; Afchine, Armin; Barthel, Jochen; Höh, Matthias; Wagner, Steven; Witzel, Oliver; Saathoff, Harald; Schiller, Cornelius; Ebert, Volker

    2010-05-01

    Water vapor is the most important greenhouse gas in the Earth's atmosphere and a key component for several physical and chemical processes. Therefore it is a key parameter to be measured during most research campaigns. The Hygrometer for Atmospheric Investigations (HAI) is especially designed for operations on the research aircraft HALO (High Altitude and LOng range research aircraft). HAI permits both, the in-situ measurement of water vapor with an open-path cell and the measurement of total water with an extractive close-path absorption cell. We are using TDLAS (Tunable Diode Laser Absorption Spectroscopy) in two water absorption bands with different line strength to increase the dynamical range. With this concept it is possible to measure from the middle troposphere up to the stratosphere. The open-path cell outside of the fuselage consists of a robust, aerodynamically designed aluminum structure with a single integrated White-cell for both laser beams. Although the mirror separation is only 15cm the cell allows an open absorption path of 4.8m. The detection of higher H2O concentrations is realized with a fiber coupled 1.4µm DFB diode laser. Inside the UTLS layer were small concentrations in the low ppm range are common, we employ up to 20 times stronger fundamental ro-vibration lines of the water molecule near 2.6µm. To supply this, the fiber coupled 2.6µm laser setup was developed and is a part of the HAI. Both detection wavelengths are introduced in the same open path cell via glass fibers which provide water measurements with a minimum of parasitic absorption. We will present the spectrometer design for high-quality airborne water measurements. Furthermore, first laboratory measurements will be shown.

  18. Remote sensing of snow using bistatic radar reflectometry

    NASA Astrophysics Data System (ADS)

    Komanduru, Abi

    Snow and ice processes are a critical part of the Earth's hydrological and climate cycles. These processes can serve as an important source of fresh water as well as a cause of flooding. Various missions have been proposed by NASA and ESA for the purpose of remote sensing of snow. This research looks at applying bistatic radar reflectometry to the remote sensing of snow water equivalent. The resulting phase offset from changes in optical path length due to reflection through snow are the primary measurements made. The research uses data from a field campaign in Fraser, CO, involving an instrument collecting direct and reflected from S band during Jan 2015 - Apr 2015. Phase measurements from the field data are made from the two signals and compared to theoretical phase computed from a forward model using in situ data. A moderate correlation (>0.6) is found between the measured and modeled phase.

  19. Vertical structure of boundary layer convection during cold-air outbreaks at Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Wang, Yonggang; Geerts, Bart; Chen, Yaosheng

    2016-01-01

    Boundary layer convection (BLC) is common over high-latitude oceans and adjacent coastal regions when a cold airmass becomes exposed to a sufficient fetch of open water. The vertical structure of mixed-phase BLC clouds and precipitation is examined using the Atmospheric Radiation Measurement Program data set collected at the North Slope of Alaska (NSA) site at Barrow, Alaska. BLC may occur at this location in autumn, when cold air masses originating at higher latitudes advect southward over the still ice-free coastal waters north of Alaska. This study identifies such BLC and documents its occurrence and characteristics. Instruments used for this study include profiling Ka band radars, a depolarization backscatter profiling lidar, a scanning X band radar, a microwave radiometer, a ceilometer, surface meteorological probes, and radiosondes. Six criteria are applied to objectively identify the BLC events, using data collected between 2004 and 2013. BLC episodes are relatively common at the NSA site, but almost exclusively in the month of October, and most episodes are relatively short, less than 10 h in duration. Liquid water is commonly found in these mixed-phase BLC clouds, with a typical liquid water path of 150 g/m2, and snowfall rates average ~3 mm h-1 (water equivalent), in some cases over 10 mm h-1, notwithstanding the low cloud echo tops (~1.0-1.5 km). In one rather weak but persistent episode fall speed estimates derived from the profiling Ka band radar indicates the presence of rimed particles, confirming the convective nature of this precipitation.

  20. High-precision diode-laser-based temperature measurement for air refractive index compensation.

    PubMed

    Hieta, Tuomas; Merimaa, Mikko; Vainio, Markku; Seppä, Jeremias; Lassila, Antti

    2011-11-01

    We present a laser-based system to measure the refractive index of air over a long path length. In optical distance measurements, it is essential to know the refractive index of air with high accuracy. Commonly, the refractive index of air is calculated from the properties of the ambient air using either Ciddor or Edlén equations, where the dominant uncertainty component is in most cases the air temperature. The method developed in this work utilizes direct absorption spectroscopy of oxygen to measure the average temperature of air and of water vapor to measure relative humidity. The method allows measurement of temperature and humidity over the same beam path as in optical distance measurement, providing spatially well-matching data. Indoor and outdoor measurements demonstrate the effectiveness of the method. In particular, we demonstrate an effective compensation of the refractive index of air in an interferometric length measurement at a time-variant and spatially nonhomogeneous temperature over a long time period. Further, we were able to demonstrate 7 mK RMS noise over a 67 m path length using a 120 s sample time. To our knowledge, this is the best temperature precision reported for a spectroscopic temperature measurement. © 2011 Optical Society of America

  1. Modified Fabry-Perot interferometer for displacement measurement in ultra large measuring range

    NASA Astrophysics Data System (ADS)

    Chang, Chung-Ping; Tung, Pi-Cheng; Shyu, Lih-Horng; Wang, Yung-Cheng; Manske, Eberhard

    2013-05-01

    Laser interferometers have demonstrated outstanding measuring performances for high precision positioning or dimensional measurements in the precision industry, especially in the length measurement. Due to the non-common-optical-path structure, appreciable measurement errors can be easily induced under ordinary measurement conditions. That will lead to the limitation and inconvenience for in situ industrial applications. To minimize the environmental and mechanical effects, a new interferometric displacement measuring system with the common-optical-path structure and the resistance to tilt-angle is proposed. With the integration of optomechatronic modules in the novel interferometric system, the resolution up to picometer order, high precision, and ultra large measuring range have been realized. For the signal stabilization of displacement measurement, an automatic gain control module has been proposed. A self-developed interpolation model has been employed for enhancing the resolution. The novel interferometer can hold the advantage of high resolution and large measuring range simultaneously. By the experimental verifications, it has been proven that the actual resolution of 2.5 nm can be achieved in the measuring range of 500 mm. According to the comparison experiments, the maximal standard deviation of the difference between the self-developed Fabry-Perot interferometer and the reference commercial Michelson interferometer is 0.146 μm in the traveling range of 500 mm. With the prominent measuring characteristics, this should be the largest dynamic measurement range of a Fabry-Perot interferometer up till now.

  2. Generalized gradient algorithm for trajectory optimization

    NASA Technical Reports Server (NTRS)

    Zhao, Yiyuan; Bryson, A. E.; Slattery, R.

    1990-01-01

    The generalized gradient algorithm presented and verified as a basis for the solution of trajectory optimization problems improves the performance index while reducing path equality constraints, and terminal equality constraints. The algorithm is conveniently divided into two phases, of which the first, 'feasibility' phase yields a solution satisfying both path and terminal constraints, while the second, 'optimization' phase uses the results of the first phase as initial guesses.

  3. A new method of time difference measurement: The time difference method by dual phase coincidence points detection

    NASA Technical Reports Server (NTRS)

    Zhou, Wei

    1993-01-01

    In the high accurate measurement of periodic signals, the greatest common factor frequency and its characteristics have special functions. A method of time difference measurement - the time difference method by dual 'phase coincidence points' detection is described. This method utilizes the characteristics of the greatest common factor frequency to measure time or phase difference between periodic signals. It can suit a very wide frequency range. Measurement precision and potential accuracy of several picoseconds were demonstrated with this new method. The instrument based on this method is very simple, and the demand for the common oscillator is low. This method and instrument can be used widely.

  4. Microwave Ground-Based Retrievals of Liquid Water Path in Drizzling Clouds: Challenges and Possibilities

    NASA Astrophysics Data System (ADS)

    Cadeddu, M. P.; Marchand, R.; Orlandi, E.; Turner, D. D.; Mech, M.

    2016-12-01

    The retrieval of liquid water path (LWP) during drizzle and rain from ground-based microwave radiometers presents several challenges that have not been entirely solved. Ground-based microwave radiometers have been traditionally used to retrieve cloud LWP assuming non-precipitating conditions. Yet retrieval of liquid water path under light rain and possibly the partition of total liquid water path among cloud and rain are very important to study cloud properties because the presence of drizzle affects for example the cloud's lifetime. Improving the LWP retrieval during drizzle and possibly partitioning cloud and rain LWP is therefore highly desirable. In precipitating clouds the raindrop's size is of the same order of magnitude of the wavelength sampled by the instrument and the effects of hydrometeor's scattering can't be neglected. In this paper we model the effect of scattering hydrometeors on radiometric brightness temperatures commonly used in LWP retrievals and develop a physical retrieval to derive precipitable water vapor (PWV), total LWP, and the fraction of cloud and rain liquid water (Cf) from microwave brightness temperatures at three commonly used frequencies. The retrieval is first applied to a set of synthetic measurements and is then used to retrieve PWV, LWP, and Cf in two drizzling cases at the Atmospheric Radiation Measurement (ARM) Program Eastern North Atlantic (ENA) site. Results show that there is useful information in the microwave brightness temperatures that can be used to reduce LWP retrieval uncertainty during light rain and can open the path for a better integration of active and passive sensors. The effect of raindrops on the radiometer's lens is examined with the help of a digital camera and experimental data. A possible way to account for raindrop deposition on the instrument's lens is suggested.

  5. Quantum circuit dynamics via path integrals: Is there a classical action for discrete-time paths?

    NASA Astrophysics Data System (ADS)

    Penney, Mark D.; Enshan Koh, Dax; Spekkens, Robert W.

    2017-07-01

    It is straightforward to compute the transition amplitudes of a quantum circuit using the sum-over-paths methodology when the gates in the circuit are balanced, where a balanced gate is one for which all non-zero transition amplitudes are of equal magnitude. Here we consider the question of whether, for such circuits, the relative phases of different discrete-time paths through the configuration space can be defined in terms of a classical action, as they are for continuous-time paths. We show how to do so for certain kinds of quantum circuits, namely, Clifford circuits where the elementary systems are continuous-variable systems or discrete systems of odd-prime dimension. These types of circuit are distinguished by having phase-space representations that serve to define their classical counterparts. For discrete systems, the phase-space coordinates are also discrete variables. We show that for each gate in the generating set, one can associate a symplectomorphism on the phase-space and to each of these one can associate a generating function, defined on two copies of the configuration space. For discrete systems, the latter association is achieved using tools from algebraic geometry. Finally, we show that if the action functional for a discrete-time path through a sequence of gates is defined using the sum of the corresponding generating functions, then it yields the correct relative phases for the path-sum expression. These results are likely to be relevant for quantizing physical theories where time is fundamentally discrete, characterizing the classical limit of discrete-time quantum dynamics, and proving complexity results for quantum circuits.

  6. Generation of phase edge singularities by coplanar three-beam interference and their detection.

    PubMed

    Patorski, Krzysztof; Sluzewski, Lukasz; Trusiak, Maciej; Pokorski, Krzysztof

    2017-02-06

    In recent years singular optics has gained considerable attention in science and technology. Up to now optical vortices (phase point dislocations) have been of main interest. This paper presents the first general analysis of formation of phase edge singularities by coplanar three-beam interference. They can be generated, for example, by three-slit interference or self-imaging in the Fresnel diffraction field of a sinusoidal grating. We derive a general condition for the ratio of amplitudes of interfering beams resulting in phase edge dislocations, lateral separation of dislocations depends on this ratio as well. Analytically derived properties are corroborated by numerical and experimental studies. We develop a simple, robust, common path optical self-imaging configuration aided by a coherent tilted reference wave and spatial filtering. Finally, we propose an automatic fringe pattern analysis technique for detecting phase edge dislocations, based on the continuous wavelet transform. Presented studies open new possibilities for developing grating based sensing techniques for precision metrology of very small phase differences.

  7. Long-term maintenance of the carrier-envelope phase coherence of a femtosecond laser.

    PubMed

    Kim, Eok Bong; Lee, Jae-Hwan; Lee, Won-Kyu; Luu, Tran Trung; Nam, Chang Hee

    2010-12-06

    The long-term carrier-envelope phase (CEP) coherence of a femtosecond laser with same pulse-to-pulse CEP value, obtained using the direct locking method, is demonstrated by employing a quasi-common-path interferometer (QPI). For the evaluation of the CEP stability, the phase noise properties of a femtosecond laser with the CEP stabilized using a QPI are compared with those obtained using a Mach-Zehnder f-2f interferometer, for which the phase power spectral density and the Allan deviation were calculated from the beat signals of the interferometers. With the improved CEP stability, the long-term CEP coherent signal with an accumulated phase noise well below 1 radian can be maintained for more than 56 hours, i.e., the CEP coherence is preserved without a phase cycle slip for more than 1.6 × 10(13) pulses at a repetition rate of 80 MHz. The relative stability is also estimated to be approximately 1.4 × 10(-22) at a central wavelength of 790 nm.

  8. Kinematic analyses of the golf swing hub path and its role in golfer/club kinetic transfers.

    PubMed

    Nesbit, Steven M; McGinnis, Ryan

    2009-01-01

    This study analyzed the fundamental geometric and kinematic characteristics of the swing hub path of the golf shot for four diverse subjects. In addition, the role of the hub path geometry in transferring the kinetic quantities from the golfer to the club were investigated. The hub path was found to have a complex geometry with significantly changing radii, and a constantly moving center-of-curvature during the downswing for all subjects. While the size and shape of the hub path differed considerably among the subjects, a three phase radius-based pattern was revealed that aligned with distinct stages of the downswing. Artificially controlling and optimizing the hub path of the better golfer in the group indicated that a non-circular hub path was superior to a constant radius path in minimizing the kinetic loading while generating the highest possible club head velocity. The shape and purpose of the hub path geometry appears to result from a complex combination of achieving equilibrium between the golfer and the club, and a purposeful configuring of the path to control the outward movement of the club while minimizing the kinetic loading on the golfer yet transferring the maximum kinetic quantities to the club. Describing the downswing relative to the hub path phasing is presented and was found to be informative since the phases align with significant swing, kinetic and kinematic markers. These findings challenge golf swing modeling methodologies which fix the center-of-curvature of the hub path thus constraining it to constant radius motion. Key pointsThe golf swing hub path was found to have a complex geometry with significantly changing radii, and a constantly moving center-of-curvature during the downswing.The hub path differed considerably among subjects, however a three phase radius-based pattern was revealed that aligned with distinct stages of the downswing.The shape and purpose of the hub path geometry appears to result from a complex combination of achieving equilibrium between the golfer and the club, and a purposeful configuring of the path to control the outward movement of the club while minimizing the kinetic loading on the golfer yet transferring the maximum kinetic quantities to the club.

  9. Equalizing secondary path effects using the periodicity of fMRI acoustic noise.

    PubMed

    Kannan, Govind; Milani, Ali A; Panahi, Issa; Briggs, Richard

    2008-01-01

    Non-minimum phase secondary path has a direct effect on achieving a desired noise attenuation level in active noise control (ANC) systems. The adaptive noise canceling filter is often a causal FIR filter which may not be able to sufficiently equalize the effect of a non-minimum phase secondary path, since in theory only a non-causal filter can equalize it. However a non-causal stable filter can be found to equalize the non-minimum phase effect of secondary path. Realization of non-causal stable filters requires knowledge of future values of input signal. In this paper we develop methods for equalizing the non-minimum phase property of the secondary path and improving the performance of an ANC system by exploiting the periodicity of fMRI acoustic noise. It has been shown that the scanner noise component is highly periodic and hence predictable which enables easy realization of non-causal filtering. Improvement in performance due to the proposed methods (with and without the equalizer) is shown for periodic fMRI acoustic noise.

  10. Quantitative estimation of Tropical Rainfall Mapping Mission precipitation radar signals from ground-based polarimetric radar observations

    NASA Astrophysics Data System (ADS)

    Bolen, Steven M.; Chandrasekar, V.

    2003-06-01

    The Tropical Rainfall Mapping Mission (TRMM) is the first mission dedicated to measuring rainfall from space using radar. The precipitation radar (PR) is one of several instruments aboard the TRMM satellite that is operating in a nearly circular orbit with nominal altitude of 350 km, inclination of 35°, and period of 91.5 min. The PR is a single-frequency Ku-band instrument that is designed to yield information about the vertical storm structure so as to gain insight into the intensity and distribution of rainfall. Attenuation effects on PR measurements, however, can be significant and as high as 10-15 dB. This can seriously impair the accuracy of rain rate retrieval algorithms derived from PR signal returns. Quantitative estimation of PR attenuation is made along the PR beam via ground-based polarimetric observations to validate attenuation correction procedures used by the PR. The reflectivity (Zh) at horizontal polarization and specific differential phase (Kdp) are found along the beam from S-band ground radar measurements, and theoretical modeling is used to determine the expected specific attenuation (k) along the space-Earth path at Ku-band frequency from these measurements. A theoretical k-Kdp relationship is determined for rain when Kdp ≥ 0.5°/km, and a power law relationship, k = a Zhb, is determined for light rain and other types of hydrometers encountered along the path. After alignment and resolution volume matching is made between ground and PR measurements, the two-way path-integrated attenuation (PIA) is calculated along the PR propagation path by integrating the specific attenuation along the path. The PR reflectivity derived after removing the PIA is also compared against ground radar observations.

  11. Phase compensation with fiber optic surface profile acquisition and reconstruction system

    NASA Astrophysics Data System (ADS)

    Bo, En; Duan, Fajie; Feng, Fan; Lv, Changrong; Xiao, Fu; Huang, Tingting

    2015-02-01

    A fiber-optic sinusoidal phase modulating (SPM) interferometer was proposed for the acquisition and reconstruction of three-dimensional (3-D) surface profile. Sinusoidal phase modulation was induced by controlling the injection current of light source. The surface profile was constructed on the basis of fringe projection. Fringe patterns are vulnerable to external disturbances such as mechanical vibration and temperature fluctuation, which cause phase drift in the interference signal and decrease measuring accuracy. A closed-loop feedback phase compensation system was built. In the subsystem, the initial phase of the interference signal, which was caused by the initial optical path difference between interference arms, could be demodulated using phase generated carrier (PGC) method and counted out using coordinated rotation digital computer (CORDIC) , then a compensation voltage was generated for the PZT driver. The bias value of external disturbances superimposed on fringe patterns could be reduced to about 50 mrad, and the phase stability for interference fringes was less than 6 mrad. The feasibility for real-time profile measurement has been verified.

  12. Application of confocal surface wave microscope to self-calibrated attenuation coefficient measurement by Goos-Hänchen phase shift modulation.

    PubMed

    Pechprasarn, Suejit; Chow, Terry W K; Somekh, Michael G

    2018-06-04

    In this paper, we present a direct method to measure surface wave attenuation arising from both ohmic and coupling losses using our recently developed phase spatial light modulator (phase-SLM) based confocal surface plasmon microscope. The measurement is carried out in the far-field using a phase-SLM to impose an artificial surface wave phase profile in the back focal plane (BFP) of a microscope objective. In other words, we effectively provide an artificially engineered backward surface wave by modulating the Goos Hänchen (GH) phase shift of the surface wave. Such waves with opposing phase and group velocities are well known in acoustics and electromagnetic metamaterials but usually require structured or layered surfaces, here the effective wave is produced externally in the microscope illumination path. Key features of the technique developed here are that it (i) is self-calibrating and (ii) can distinguish between attenuation arising from ohmic loss (k″ Ω ) and coupling (reradiation) loss (k″ c ). This latter feature has not been achieved with existing methods. In addition to providing a unique measurement the measurement occurs of over a localized region of a few microns. The results were then validated against the surface plasmons (SP) dip measurement in the BFP and a theoretical model based on a simplified Green's function.

  13. Common-Path Wavefront Sensing for Advanced Coronagraphs

    NASA Technical Reports Server (NTRS)

    Wallace, J. Kent; Serabyn, Eugene; Mawet, Dimitri

    2012-01-01

    Imaging of faint companions around nearby stars is not limited by either intrinsic resolution of a coronagraph/telescope system, nor is it strictly photon limited. Typically, it is both the magnitude and temporal variation of small phase and amplitude errors imparted to the electric field by elements in the optical system which will limit ultimate performance. Adaptive optics systems, particularly those with multiple deformable mirrors, can remove these errors, but they need to be sensed in the final image plane. If the sensing system is before the final image plane, which is typical for most systems, then the non-common path optics between the wavefront sensor and science image plane will lead to un-sensed errors. However, a new generation of high-performance coronagraphs naturally lend themselves to wavefront sensing in the final image plane. These coronagraphs and the wavefront sensing will be discussed, as well as plans for demonstrating this with a high-contrast system on the ground. Such a system will be a key system-level proof for a future space-based coronagraph mission, which will also be discussed.

  14. Designing and testing the coronagraphic Modal Wavefront Sensor: a fast non-common path error sensor for high-contrast imaging

    NASA Astrophysics Data System (ADS)

    Wilby, M. J.; Keller, C. U.; Haffert, S.; Korkiakoski, V.; Snik, F.; Pietrow, A. G. M.

    2016-07-01

    Non-Common Path Errors (NCPEs) are the dominant factor limiting the performance of current astronomical high-contrast imaging instruments. If uncorrected, the resulting quasi-static speckle noise floor limits coronagraph performance to a raw contrast of typically 10-4, a value which does not improve with increasing integration time. The coronagraphic Modal Wavefront Sensor (cMWS) is a hybrid phase optic which uses holographic PSF copies to supply focal-plane wavefront sensing information directly from the science camera, whilst maintaining a bias-free coronagraphic PSF. This concept has already been successfully implemented on-sky at the William Herschel Telescope (WHT), La Palma, demonstrating both real-time wavefront sensing capability and successful extraction of slowly varying wavefront errors under a dominant and rapidly changing atmospheric speckle foreground. In this work we present an overview of the development of the cMWS and recent first light results obtained using the Leiden EXoplanet Instrument (LEXI), a high-contrast imager and high-dispersion spectrograph pathfinder instrument for the WHT.

  15. Laboratory measurements of trace gas emissions from biomass burning of fuel types from the southeastern and southwestern United States

    NASA Astrophysics Data System (ADS)

    Burling, I. R.; Yokelson, R. J.; Griffith, D. W. T.; Johnson, T. J.; Veres, P.; Roberts, J. M.; Warneke, C.; Urbanski, S. P.; Reardon, J.; Weise, D. R.; Hao, W. M.; de Gouw, J.

    2010-11-01

    Vegetation commonly managed by prescribed burning was collected from five southeastern and southwestern US military bases and burned under controlled conditions at the US Forest Service Fire Sciences Laboratory in Missoula, Montana. The smoke emissions were measured with a large suite of state-of-the-art instrumentation including an open-path Fourier transform infrared (OP-FTIR) spectrometer for measurement of gas-phase species. The OP-FTIR detected and quantified 19 gas-phase species in these fires: CO2, CO, CH4, C2H2, C2H4, C3H6, HCHO, HCOOH, CH3OH, CH3COOH, furan, H2O, NO, NO2, HONO, NH3, HCN, HCl, and SO2. Emission factors for these species are presented for each vegetation type burned. Gas-phase nitrous acid (HONO), an important OH precursor, was detected in the smoke from all fires. The HONO emission factors ranged from 0.15 to 0.60 g kg-1 and were higher for the southeastern fuels. The fire-integrated molar emission ratios of HONO (relative to NOx) ranged from approximately 0.03 to 0.20, with higher values also observed for the southeastern fuels. The majority of non-methane organic compound (NMOC) emissions detected by OP-FTIR were oxygenated volatile organic compounds (OVOCs) with the total identified OVOC emissions constituting 61 ± 12% of the total measured NMOC on a molar basis. These OVOC may undergo photolysis or further oxidation contributing to ozone formation. Elevated amounts of gas-phase HCl and SO2 were also detected during flaming combustion, with the amounts varying greatly depending on location and vegetation type. The fuels with the highest HCl emission factors were all located in the coastal regions, although HCl was also observed from fuels farther inland. Emission factors for HCl were generally higher for the southwestern fuels, particularly those found in the chaparral biome in the coastal regions of California.

  16. Laboratory measurements of trace gas emissions from biomass burning of fuel types from the Southeastern and Southwestern United States

    NASA Astrophysics Data System (ADS)

    Burling, I. R.; Yokelson, R. J.; Griffith, D. W. T.; Johnson, T. J.; Veres, P.; Roberts, J. M.; Warneke, C.; Urbanski, S. P.; Reardon, J.; Weise, D. R.; Hao, W. M.; de Gouw, J.

    2010-07-01

    Vegetation commonly managed by prescribed burning was collected from five southeastern and southwestern US military bases and burned under controlled conditions at the US Forest Service Fire Sciences Laboratory in Missoula, Montana. The smoke emissions were measured with a large suite of state-of-the-art instrumentation including an open-path Fourier transform infrared (OP-FTIR) spectrometer for measurement of gas-phase species. The OP-FTIR detected and quantified 19 gas-phase species in these fires: CO2, CO, CH4, C2H2, C2H4, C3H6, HCHO, HCOOH, CH3OH, CH3COOH, furan, H2O, NO, NO2, HONO, NH3, HCN, HCl, and SO2. Emission factors for these species are presented for each vegetation type burned. Gas-phase nitrous acid (HONO), an important OH precursor, was detected in the smoke from all fires. The HONO emission factors ranged from 0.15 to 0.60 g kg-1 and were higher for the southeastern fuels. The fire-integrated molar emission ratios of HONO (relative to NOx) ranged from approximately 0.03 to 0.20, with higher values also observed for the southeastern fuels. The majority of non-methane organic compound (NMOC) emissions detected by OP-FTIR were oxygenated volatile organic compounds (OVOCs) with the total identified OVOC emissions constituting 61±12% of the total measured NMOC on a molar basis. These OVOC may undergo photolysis or further oxidation contributing to ozone formation. Elevated amounts of gas-phase HCl and SO2 were also detected during flaming combustion, with the amounts varying greatly depending on location and vegetation type. The fuels with the highest HCl emission factors were all located in the coastal regions, although HCl was also observed from fuels farther inland. Emission factors for HCl were generally higher for the southwestern fuels, particularly those found in the chaparral biome in the coastal regions of California.

  17. Experimental Study of Split-Path Transmission Load Sharing

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy L.; Delgado, Irebert R.

    1996-01-01

    Split-path transmissions are promising, attractive alternatives to the common planetary transmissions for helicopters. The split-path design offers two parallel paths for transmitting torque from the engine to the rotor. Ideally, the transmitted torque is shared equally between the two load paths; however, because of manufacturing tolerances, the design must be sized to allow for other than equal load sharing. To study the effect of tolerances, experiments were conducted using the NASA split-path test gearbox. Two gearboxes, nominally identical except for manufacturing tolerances, were tested. The clocking angle was considered to be a design parameter and used to adjust the load sharing of an otherwise fixed design. The torque carried in each path was measured for a matrix of input torques and clocking angles. The data were used to determine the optimal value and a tolerance for the clocking angles such that the most heavily loaded split path carried no greater than 53 percent of an input shaft torque of 367 N-m. The range of clocking angles satisfying this condition was -0.0012 +/- 0.0007 rad for box 1 and -0.0023 +/- 0.0009 rad for box 2. This study indicates that split-path gearboxes can be used successfully in rotorcraft and can be manufactured with existing technology.

  18. Methods for multiple-telescope beam imaging and guiding in the near-infrared

    NASA Astrophysics Data System (ADS)

    Anugu, N.; Amorim, A.; Gordo, P.; Eisenhauer, F.; Pfuhl, O.; Haug, M.; Wieprecht, E.; Wiezorrek, E.; Lima, J.; Perrin, G.; Brandner, W.; Straubmeier, C.; Le Bouquin, J.-B.; Garcia, P. J. V.

    2018-05-01

    Atmospheric turbulence and precise measurement of the astrometric baseline vector between any two telescopes are two major challenges in implementing phase-referenced interferometric astrometry and imaging. They limit the performance of a fibre-fed interferometer by degrading the instrument sensitivity and the precision of astrometric measurements and by introducing image reconstruction errors due to inaccurate phases. A multiple-beam acquisition and guiding camera was built to meet these challenges for a recently commissioned four-beam combiner instrument, GRAVITY, at the European Southern Observatory Very Large Telescope Interferometer. For each telescope beam, it measures (a) field tip-tilts by imaging stars in the sky, (b) telescope pupil shifts by imaging pupil reference laser beacons installed on each telescope using a 2 × 2 lenslet and (c) higher-order aberrations using a 9 × 9 Shack-Hartmann. The telescope pupils are imaged to provide visual monitoring while observing. These measurements enable active field and pupil guiding by actuating a train of tip-tilt mirrors placed in the pupil and field planes, respectively. The Shack-Hartmann measured quasi-static aberrations are used to focus the auxiliary telescopes and allow the possibility of correcting the non-common path errors between the adaptive optics systems of the unit telescopes and GRAVITY. The guiding stabilizes the light injection into single-mode fibres, increasing sensitivity and reducing the astrometric and image reconstruction errors. The beam guiding enables us to achieve an astrometric error of less than 50 μas. Here, we report on the data reduction methods and laboratory tests of the multiple-beam acquisition and guiding camera and its performance on-sky.

  19. A high-speed tunable beam splitter for feed-forward photonic quantum information processing.

    PubMed

    Ma, Xiao-Song; Zotter, Stefan; Tetik, Nuray; Qarry, Angie; Jennewein, Thomas; Zeilinger, Anton

    2011-11-07

    We realize quantum gates for path qubits with a high-speed, polarization-independent and tunable beam splitter. Two electro-optical modulators act in a Mach-Zehnder interferometer as high-speed phase shifters and rapidly tune its splitting ratio. We test its performance with heralded single photons, observing a polarization-independent interference contrast above 95%. The switching time is about 5.6 ns, and a maximal repetition rate is 2.5 MHz. We demonstrate tunable feed-forward operations of a single-qubit gate of path-encoded qubits and a two-qubit gate via measurement-induced interaction between two photons.

  20. Digital Hilbert transformation for separation measurement of thicknesses and refractive indices of layered objects by use of a wavelength-scanning heterodyne interference confocal microscope.

    PubMed

    Watanabe, Yuuki; Yamaguchi, Ichirou

    2002-08-01

    A wavelength-scanning heterodyne interference confocal microscope quickly accomplishes the simultaneous measurement of the thickness and the refractive index of a sample by detection of the amplitude and the phase of the interference signal during a sample scan. However, the measurement range of the optical path difference (OPD) that is obtained from the phase changes is limited by the time response of the phase-locked loop circuit in the FM demodulator. To overcome this limitation and to improve the accuracy of the separation measurement, we propose an OPD detection using digital signal processing with a Hilbert transform. The measurement range is extended approximately five times, and the resolution of the OPD is improved to 5.5 from 9 microm without the electrical noise of the FM demodulator circuit. By applying this method for simultaneous measurement of thickness and the refractive index, we can measure samples 20-30-microm thick with refractive indices between 1 and 1.5.

  1. Digital Hilbert transformation for separation measurement of thicknesses and refractive indices of layered objects by use of a wavelength-scanning heterodyne interference confocal microscope

    NASA Astrophysics Data System (ADS)

    Watanabe, Yuuki; Yamaguchi, Ichirou

    2002-08-01

    A wavelength-scanning heterodyne interference confocal microscope quickly accomplishes the simultaneous measurement of the thickness and the refractive index of a sample by detection of the amplitude and the phase of the interference signal during a sample scan. However, the measurement range of the optical path difference (OPD) that is obtained from the phase changes is limited by the time response of the phase-locked loop circuit in the FM demodulator. To overcome this limitation and to improve the accuracy of the separation measurement, we propose an OPD detection using digital signal processing with a Hilbert transform. The measurement range is extended approximately five times, and the resolution of the OPD is improved to 5.5 from 9 mum without the electrical noise of the FM demodulator circuit. By applying this method for simultaneous measurement of thickness and the refractive index, we can measure samples 20-30-mum thick with refractive indices between 1 and 1.5.

  2. Cavity ring-down spectroscopy in the liquid phase

    NASA Astrophysics Data System (ADS)

    Xu, Shucheng; Sha, Guohe; Xie, Jinchun

    2002-02-01

    A new application for cavity ring-down spectroscopic (CRDS) technique using a pulsed polarized light source has been developed in the absorption measurement of liquids for "colorless" organic compounds using both a single sample cell and double sample cells inserted in an optical cavity at Brewster angle. At present an experimental capability of measuring absorption coefficients as small as 2-5×10-7 cm-1 has been demonstrated by measurement of the absorption baselines. The first spectra for CRDS in the liquid phase, the C-H stretching fifth vibrational overtones of benzene in the pure liquid and hexane solution are obtained. The optical absorption length for liquids in both a single sample cell and double sample cells of 1 cm length is up to 900 cm due to multipass of light within an optical cavity. Compared to the thermal lens and optoacoustic spectroscopic techniques, the sensitivity for CRDS mainly depends on the optical absorption path of the sample (single passing path of the sample times multipass times), is not determined by the laser power and the length of the sample cell. The absolute absorption coefficient and band intensity for the sample are determined directly by the spectroscopy.

  3. Ground-based remote sensing of thin clouds in the Arctic

    NASA Astrophysics Data System (ADS)

    Garrett, T. J.; Zhao, C.

    2012-11-01

    This paper describes a method for using interferometer measurements of downwelling thermal radiation to retrieve the properties of single-layer clouds. Cloud phase is determined from ratios of thermal emission in three "micro-windows" where absorption by water vapor is particularly small. Cloud microphysical and optical properties are retrieved from thermal emission in two micro-windows, constrained by the transmission through clouds of stratospheric ozone emission. Assuming a cloud does not approximate a blackbody, the estimated 95% confidence retrieval errors in effective radius, visible optical depth, number concentration, and water path are, respectively, 10%, 20%, 38% (55% for ice crystals), and 16%. Applied to data from the Atmospheric Radiation Measurement program (ARM) North Slope of Alaska - Adjacent Arctic Ocean (NSA-AAO) site near Barrow, Alaska, retrievals show general agreement with ground-based microwave radiometer measurements of liquid water path. Compared to other retrieval methods, advantages of this technique include its ability to characterize thin clouds year round, that water vapor is not a primary source of retrieval error, and that the retrievals of microphysical properties are only weakly sensitive to retrieved cloud phase. The primary limitation is the inapplicability to thicker clouds that radiate as blackbodies.

  4. Uncertainties in Ice-Sheet Altimetry from a Spaceborne 1064-nm Single-Channel Lidar Due to Undetected Thin Clouds

    NASA Technical Reports Server (NTRS)

    Yang, Yuekui; Marshak, Alexander; Varnai, Tamas; Wiscombe, Warren; Yang, Ping

    2010-01-01

    In support of the Ice, Cloud, and land Elevation Satellite (ICESat)-II mission, this paper studies the bias in surface-elevation measurements caused by undetected thin clouds. The ICESat-II satellite may only have a 1064-nm single-channel lidar onboard. Less sensitive to clouds than the 532-nm channel, the 1064-nm channel tends to miss thin clouds. Previous studies have demonstrated that scattering by cloud particles increases the photon-path length, thus resulting in biases in ice-sheet-elevation measurements from spaceborne lidars. This effect is referred to as atmospheric path delay. This paper complements previous studies in the following ways: First, atmospheric path delay is estimated over the ice sheets based on cloud statistics from the Geoscience Laser Altimeter System onboard ICESat and the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua. Second, the effect of cloud particle size and shape is studied with the state-of-the-art phase functions developed for MODIS cirrus- cloud microphysical model. Third, the contribution of various orders of scattering events to the path delay is studied, and an analytical model of the first-order scattering contribution is developed. This paper focuses on the path delay as a function of telescope field of view (FOV). The results show that reducing telescope FOV can significantly reduce the expected path delay. As an example, the average path delays for FOV = 167 microrad (a 100-m-diameter circle on the surface) caused by thin undetected clouds by the 1064-nm channel over Greenland and East Antarctica are illustrated.

  5. Towards non-invasive 3D hepatotoxicity assays with optical coherence phase microscopy

    NASA Astrophysics Data System (ADS)

    Nelson, Leonard J.; Koulovasilopoulos, Andreas; Treskes, Philipp; Hayes, Peter C.; Plevris, John N.; Bagnaninchi, Pierre O.

    2015-03-01

    Three-dimensional tissue-engineered models are increasingly recognised as more physiologically-relevant than standard 2D cell culture for pre-clinical drug toxicity testing. However, many types of conventional toxicity assays are incompatible with dense 3D tissues. This study investigated the use of optical coherence phase microscopy (OCPM) as a novel approach to assess cell death in 3D tissue culture. For 3D micro-spheroid formation Human hepatic C3A cells were encapsulated in hyaluronic acid gels and cultured in 100μl MEME/10%FBS in 96-well plates. After spheroid formation the 3D liver constructs were exposed to acetaminophen on culture day 8. Acetaminophen hepatotoxicity in 3D cultures was evaluated using standard biochemical assays. An inverted OCPM in common path configuration was developed with a Callisto OCT engine (Thorlabs), centred at 930nm and a custom scanning head. Intensity data were used to perform in-depth microstructural imaging. In addition, phase fluctuations were measured by collecting several successive B scans at the same location, and statistics on the first time derivative of the phase, i.e. time fluctuations, were analysed over the acquisition time interval to retrieve overall cell viability. OCPM intensity (cell cluster size) and phase fluctuation statistics were directly compared with biochemical assays. In this study, we investigated optical coherence phase tomography to assess cell death in a 3d liver model after exposure to a prototypical hepatotoxin, acetaminophen. We showed that OCPM has the potential to assess noninvasively and label-free drug toxicity in 3D tissue models.

  6. Ultrasonic tomography for in-process measurements of temperature in a multi-phase medium

    DOEpatents

    Beller, L.S.

    1993-01-26

    A method and apparatus are described for the in-process measurement of internal particulate temperature utilizing ultrasonic tomography techniques to determine the speed of sound through a specimen material. Ultrasonic pulses are transmitted through a material, which can be a multi-phase material, over known flight paths and the ultrasonic pulse transit times through all sectors of the specimen are measured to determine the speed of sound. The speed of sound being a function of temperature, it is possible to establish the correlation between speed of sound and temperature, throughout a cross-section of the material, which correlation is programmed into a computer to provide for a continuous in-process measurement of temperature throughout the specimen.

  7. An on/off Berry phase switch in circular graphene resonators

    NASA Astrophysics Data System (ADS)

    Ghahari, Fereshte; Walkup, Daniel; Gutiérrez, Christopher; Rodriguez-Nieva, Joaquin F.; Zhao, Yue; Wyrick, Jonathan; Natterer, Fabian D.; Cullen, William G.; Watanabe, Kenji; Taniguchi, Takashi; Levitov, Leonid S.; Zhitenev, Nikolai B.; Stroscio, Joseph A.

    2017-05-01

    The phase of a quantum state may not return to its original value after the system’s parameters cycle around a closed path; instead, the wave function may acquire a measurable phase difference called the Berry phase. Berry phases typically have been accessed through interference experiments. Here, we demonstrate an unusual Berry phase-induced spectroscopic feature: a sudden and large increase in the energy of angular-momentum states in circular graphene p-n junction resonators when a relatively small critical magnetic field is reached. This behavior results from turning on a π Berry phase associated with the topological properties of Dirac fermions in graphene. The Berry phase can be switched on and off with small magnetic field changes on the order of 10 millitesla, potentially enabling a variety of optoelectronic graphene device applications.

  8. The application of UV LEDs for differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Geiko, Pavel P.; Smirnov, Sergey S.; Samokhvalov, Ignatii V.

    2018-04-01

    Modern UV LEDs represent a potentially very advantageous alternative to thermal light sources, in particular xenon arc lamps, which are the most common light sources in trace gas-analyzers. So, the light-emitting diodes are very attractive for use of as light sources for Long Path Differential Optical Absorption Spectroscopy (DOAS) measurements of trace gases in the open atmosphere. Recent developments in fibre-coupling telescope technology and the availability of ultraviolet light emitting diodes have now allowed us to construct a portable, long path DOAS instrument for use at remote locations and specifically for measuring degassing from active volcanic systems. First of all, we are talking about the measurement of sulphur dioxide, carbon disulphide and, oxides of chlorine and bromine. The parallel measurements of sulfur dioxide using a certified gas analyzer, were conducted and showed good correlation.

  9. Amplitude and phase perturbations on VLF/LF signals at Belgrade due to X-ray flare intensity

    NASA Astrophysics Data System (ADS)

    Sulic, Desanka

    2016-07-01

    Narrowband very low frequency (VLF, 3-30 kHz) and low frequency (LF, 30-300 kHz) radio signals are powerful tool for long-range remote sensing of the ionospheric D-region electron density. Propagation of VLF/LF signals emitted by man-made transmitters takes place in the Earth-ionosphere waveguide and strongly depends on the electrical properties of the ionosphere. Changes in the D-region electron density cause changes in the received amplitude and phase on VLF/LF signals. Comparing the measured VLF/LF perturbations with LWPC simulations based on the predicted changes to the D-region, so as to infer the average D-region electron density profiles along the waveguide. The data were recorded at a Belgrade (44.85 ^{0} N, 20.38 ^{0} E) Serbia by AbsPAL and AWESOME receivers since 2003 and 2008 up to 2015, respectively. The first purpose of this paper is to give an account on the dropping amplitude phenomena on one long and three short VLF paths. The NAA-BEL path is sufficiently long, D = 6540 km and oriented west-east to show well-developed sunrise and sunset effects on amplitude and phase. Measured NAA/24.00 kHz signal at Belgrade shows three amplitude minima in time interval when sunrise reaches Belgrade and Maine, USA. Similar but less evident changes occur in time interval defined by sunsets at receiver and transmitter sites. The results show that at the times of amplitude minima the rate of change of phase becomes quite large. GQD/22.10 kHz, DHO/23.40 kHz and NSC/45.90 kHz signals propagate over short paths, D < 2000 km to Belgrade and reflect once on the middle of the paths. When an ionization process starts in the middle of the propagation path, the consequence is development of the first amplitude minimum and transition from phase level during night to phase level during daytime. On the basis of changing reflection characteristics of the D-region our numerical results show that a VLF propagation is a superposition of n _{n} ˜17 and n _{d} ˜7 discrete modes during nighttime and daytime condition, respectively. Propagation of LF radio signal is performed with n _{n} ˜34 (nighttime) and n _{d} ˜10 (daytime) discrete modes. The second purpose of this paper is to give an account of the narrowband VLF/LF perturbations induced by disturbances in the D-region to the event of solar X-ray flare. During occurrence of solar flare the altitude profile of ionospheric conductivity changes, a VLF/LF signal reflects from lower height and these changes result that VLF/LF propagation is performed with more discrete modes than in normal ionospheric condition. Amplitude and phase perturbations on different VLF/LF signals observed at Belgrade have sensitive dependence on: X-ray flare intensity, solar zenith angle, occurrence of solar flare under solar zenith angle which is close with timing of amplitude minimum in normal ionospheric condition and geophysical characteristics of path. The GQD-BEL path is short, D = 1982 km and oriented west-east. A solar flare X17.2 (I _{X} = 1.72 10 ^{-3} Wm ^{-2}) class occurred on 28 Oct 2003 with peak of intensity at 11:10 UT. This powerful solar flare induced amplitude and huge phase perturbation on GQD/22.10 kHz signal (Δ A=5.35 dB and Δ φ = 75 ^{0}). The NSC-BEL path is short, D = 953 km and oriented southwest-northeast. A solar flare M5.77 (I _{X} = 5.77 10 ^{-4} Wm ^{-2}) class occurred on 10 May 2012 with peak of intensity at 04:18 UT. Illumination of the D-region from east to west was under solar zenith angle 80.3 ^{0} < χ < 87.4 ^{0} and the consequence is very untypical LF perturbations. It is interesting to note that these two events are very rare.

  10. Retrieving the Polar Mixed-Phase Cloud Liquid Water Path by Combining CALIOP and IIR Measurements

    NASA Astrophysics Data System (ADS)

    Luo, Tao; Wang, Zhien; Li, Xuebin; Deng, Shumei; Huang, Yong; Wang, Yingjian

    2018-02-01

    Mixed-phase cloud (MC) is the dominant cloud type over the polar region, and there are challenging conditions for remote sensing and in situ measurements. In this study, a new methodology of retrieving the stratiform MC liquid water path (LWP) by combining Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and infrared imaging radiometer (IIR) measurements was developed and evaluated. This new methodology takes the advantage of reliable cloud-phase discrimination by combining lidar and radar measurements. An improved multiple-scattering effect correction method for lidar signals was implemented to provide reliable cloud extinction near cloud top. Then with the adiabatic cloud assumption, the MC LWP can be retrieved by a lookup-table-based method. Simulations with error-free inputs showed that the mean bias and the root mean squared error of the LWP derived from the new method are -0.23 ± 2.63 g/m2, with the mean absolute relative error of 4%. Simulations with erroneous inputs suggested that the new methodology could provide reliable retrieval of LWP to support the statistical or climatology analysis. Two-month A-train satellite retrievals over Arctic region showed that the new method can produce very similar cloud top temperature (CTT) dependence of LWP to the ground-based microwave radiometer measurements, with a bias of -0.78 g/m2 and a correlation coefficient of 0.95 between the two mean CTT-LWP relationships. The new approach can also produce reasonable pattern and value of LWP in spatial distribution over the Arctic region.

  11. Amphibole equilibria as monitors of P-T path and process in the exhumation of HP/UHP terranes

    NASA Astrophysics Data System (ADS)

    Waters, David; Airaghi, Laura; Czertowicz, Thomas

    2014-05-01

    Recent advances in modelling and the development of refined activity-composition relations allow the calculation of phase diagrams involving complex mineral solid solutions, such as calcic, sodic-calcic and sodic amphiboles (e.g. Diener et al., 2007, J metamorphic Geol.). Amphiboles are commonly found in eclogite facies metabasites, and formed at different metamorphic stages. Such rocks commonly show complex reaction microstructures that reveal their history. The focus in this contribution is on two distinct amphibole types: coarse, post-peak matrix amphibole, and amphibole involved in symplectitic microstructures replacing omphacite. These studies serve as a test of the current activity models and calculation approaches, but more importantly as a framework for understanding the processes and P-T path during exhumation of subducted terranes. Examples are taken from the Western Gneiss Complex of Norway and from the Kaghan Valley (Pakistan), but are more generally applicable to crustal blocks that have exhumed through the P-T 'window' in which comparable petrological features develop. The microstructural types of interest here are: broad irregular interstitial amphibole grains, which commonly merge with a coarse spongy intergrowth of amphibole with quartz and/or albite (most likely replacing omphacite); and a fine-grained symplectite of low-Na clinopyroxene with sodic plagioclase and minor hornblende invading omphacite. Many specimens show these varieties as a sequence, inferred to reflect decreasing pressure (and ultimately, temperature). Amphibole compositions cover a wide range: the most sodic occur in large interstitial grains and fall near the junction of the winchite, barroisite and taramite fields of the IMA classification; they trend towards a pargasitic hornblende, still with significant glaucophane component; spongy amphiboles typically lie on a trend towards lower glaucophane component; symplectite amphibole is generally a common hornblende on a typical trend between actinolite and pargasite, with low glaucophane component. Pressures and temperatures for matrix and spongy amphiboles are constrained by mapping phase compositions and proportions on P-T phase diagrams calculated for a range of water contents in bulk rock and local systems. In HP eclogites they define near-isothermal decompression trajectories from ~20 to ~12 kbar at ~630-670°C. Matrix and spongy amphiboles from UHP eclogites lacking significant hydrous minerals require influx of external fluid in the interval 16-12 kbar. In symplectites conditions are derived from an internal equilibrium among amphibole, pyroxene and plagioclase. In a number of cases the variation along lamellae in a symplectite colony defines a P-T array covering ~60°C of cooling over ~3 kbar decompression down to 12-10 kbar. In many cases amphibole development can be linked to both external and local sources of aqueous fluid. Microstructural and chemical evidence links symplectite formation to the breakdown of phengite. The near-isothermal earlier stages of P-T paths in these slices dominated by continental units suggest that exhumation did not take place in a cold subduction channel, but may reflect a post-collisional mechanism. The lower P-T slope of paths associated with later symplectite arrays may reflect the loss of buoyancy contrast as exhuming slices reach crustal levels.

  12. Computational fluid dynamics analysis of SSME phase 2 and phase 2+ preburner injector element hydrogen flow paths

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph H.

    1992-01-01

    Phase 2+ Space Shuttle Main Engine powerheads, E0209 and E0215 degraded their main combustion chamber (MCC) liners at a faster rate than is normal for phase 2 powerheads. One possible cause of the accelerated degradation was a reduction of coolant flow through the MCC. Hardware changes were made to the preburner fuel leg which may have reduced the resistance and, therefore, pulled some of the hydrogen from the MCC coolant leg. A computational fluid dynamics (CFD) analysis was performed to determine hydrogen flow path resistances of the phase 2+ fuel preburner injector elements relative to the phase 2 element. FDNS was implemented on axisymmetric grids with the hydrogen assumed to be incompressible. The analysis was performed in two steps: the first isolated the effect of the different inlet areas and the second modeled the entire injector element hydrogen flow path.

  13. Evaluation of Two Methods for Modeling Measurement Errors When Testing Interaction Effects with Observed Composite Scores

    ERIC Educational Resources Information Center

    Hsiao, Yu-Yu; Kwok, Oi-Man; Lai, Mark H. C.

    2018-01-01

    Path models with observed composites based on multiple items (e.g., mean or sum score of the items) are commonly used to test interaction effects. Under this practice, researchers generally assume that the observed composites are measured without errors. In this study, we reviewed and evaluated two alternative methods within the structural…

  14. Acoustic propagation and atmosphere characteristics derived from infrasonic waves generated by the Concorde.

    PubMed

    Le, Pichon Alexis; Garcés, Milton; Blanc, Elisabeth; Barthélémy, Maud; Drob, Doug P

    2002-01-01

    Infrasonic signals generated by daily supersonic Concorde flights between North America and Europe have been consistently recorded by an array of microbarographs in France. These signals are used to investigate the effects of atmospheric variability on long-range sound propagation. Statistical analysis of wave parameters shows seasonal and daily variations associated with changes in the wind structure of the atmosphere. The measurements are compared to the predictions obtained by tracing rays through realistic atmospheric models. Theoretical ray paths allow a consistent interpretation of the observed wave parameters. Variations in the reflection level, travel time, azimuth deviation and propagation range are explained by the source and propagation models. The angular deviation of a ray's azimuth direction, due to the seasonal and diurnal fluctuations of the transverse wind component, is found to be approximately 5 degrees from the initial launch direction. One application of the seasonal and diurnal variations of the observed phase parameters is the use of ground measurements to estimate fluctuations in the wind velocity at the reflection heights. The simulations point out that care must be taken when ascribing a phase velocity to a turning height. Ray path simulations which allow the correct computation of reflection heights are essential for accurate phase identifications.

  15. Finding binaries from phase modulation of pulsating stars with Kepler

    NASA Astrophysics Data System (ADS)

    Shibahashi, Hiromoto; Murphy, Simon; Bedding, Tim

    2017-09-01

    Binary orbital motion causes a periodic variation in the path length travelled by light emitted from a star towards us. Hence, if the star is pulsating, the observed phase of the pulsation varies over the orbit. Conversely, once we have observed such phase variation, we can extract information about the binary orbit from photometry alone. Continuous and precise space-based photometry has made it possible to measure these light travel time effects on the pulsating stars in binary systems. This opens up a new way of finding unseen brown dwarfs, planets, or massive compact stellar remnants: neutron stars and black holes.

  16. On Being Found: How Habitual Patterns of Thought Influence Creative Interest, Behavior, and Ability

    ERIC Educational Resources Information Center

    Verhaeghen, Paul; Trani, Alexandra N.; Aikman, Shelley N.

    2017-01-01

    This study on 138 undergraduate students used path analysis to investigate the relationship between creativity (interest, measured by a creative activities survey; and ability: fluency, originality, and elaboration) and different aspects of thought patterns presumed to influence the preparation and illumination phase of the creative process:…

  17. Multi-chord fiber-coupled interferometer with a long coherence length laser

    NASA Astrophysics Data System (ADS)

    Merritt, Elizabeth C.; Lynn, Alan G.; Gilmore, Mark A.; Hsu, Scott C.

    2012-03-01

    This paper describes a 561 nm laser heterodyne interferometer that provides time-resolved measurements of line-integrated plasma electron density within the range of 1015-1018 cm-2. Such plasmas are produced by railguns on the plasma liner experiment, which aims to produce μs-, cm-, and Mbar-scale plasmas through the merging of 30 plasma jets in a spherically convergent geometry. A long coherence length, 320 mW laser allows for a strong, sub-fringe phase-shift signal without the need for closely matched probe and reference path lengths. Thus, only one reference path is required for all eight probe paths, and an individual probe chord can be altered without altering the reference or other probe path lengths. Fiber-optic decoupling of the probe chord optics on the vacuum chamber from the rest of the system allows the probe paths to be easily altered to focus on different spatial regions of the plasma. We demonstrate that sub-fringe resolution capability allows the interferometer to operate down to line-integrated densities of the order of 5 × 1015 cm-2.

  18. LTP interferometer—noise sources and performance

    NASA Astrophysics Data System (ADS)

    Robertson, David; Killow, Christian; Ward, Harry; Hough, Jim; Heinzel, Gerhard; Garcia, Antonio; Wand, Vinzenz; Johann, Ulrich; Braxmaier, Claus

    2005-05-01

    The LISA Technology Package (LTP) uses laser interferometry to measure the changes in relative displacement between two inertial test masses. The goals of the mission require a displacement measuring precision of 10 pm Hz-1/2 at frequencies in the 3 30 mHz band. We report on progress with a prototype LTP interferometer optical bench in which fused silica mirrors and beamsplitters are fixed to a ZERODUR® substrate using hydroxide catalysis bonding to form a rigid interferometer. The couplings to displacement noise of this interferometer of two expected noise sources—laser frequency noise and ambient temperature fluctuations—have been investigated, and an additional, unexpected, noise source has been identified. The additional noise is due to small amounts of signal at the heterodyne frequency arriving at the photodiode preamplifiers with a phase that quasistatically changes with respect to the optical signal. The phase shift is caused by differential changes in the external optical paths the beams travel before they reach the rigid interferometer. Two different external path length stabilization systems have been demonstrated and these allowed the performance of the overall system to meet the LTP displacement noise requirement.

  19. Water vapor radiometry research and development phase

    NASA Technical Reports Server (NTRS)

    Resch, G. M.; Chavez, M. C.; Yamane, N. L.; Barbier, K. M.; Chandlee, R. C.

    1985-01-01

    This report describes the research and development phase for eight dual-channel water vapor radiometers constructed for the Crustal Dynamics Project at the Goddard Space Flight Center, Greenbelt, Maryland, and for the NASA Deep Space Network. These instruments were developed to demonstrate that the variable path delay imposed on microwave radio transmissions by atmospheric water vapor can be calibrated, particularly as this phenomenon affects very long baseline interferometry measurement systems. Water vapor radiometry technology can also be used in systems that involve moist air meteorology and propagation studies.

  20. Energetically optimal travel across terrain: visualizations and a new metric of geographic distance with anthropological applications

    NASA Astrophysics Data System (ADS)

    Wood, Brian M.; Wood, Zoë J.

    2006-01-01

    We present a visualization and computation tool for modeling the caloric cost of pedestrian travel across three dimensional terrains. This tool is being used in ongoing archaeological research that analyzes how costs of locomotion affect the spatial distribution of trails and artifacts across archaeological landscapes. Throughout human history, traveling by foot has been the most common form of transportation, and therefore analyses of pedestrian travel costs are important for understanding prehistoric patterns of resource acquisition, migration, trade, and political interaction. Traditionally, archaeologists have measured geographic proximity based on "as the crow flies" distance. We propose new methods for terrain visualization and analysis based on measuring paths of least caloric expense, calculated using well established metabolic equations. Our approach provides a human centered metric of geographic closeness, and overcomes significant limitations of available Geographic Information System (GIS) software. We demonstrate such path computations and visualizations applied to archaeological research questions. Our system includes tools to visualize: energetic cost surfaces, comparisons of the elevation profiles of shortest paths versus least cost paths, and the display of paths of least caloric effort on Digital Elevation Models (DEMs). These analysis tools can be applied to calculate and visualize 1) likely locations of prehistoric trails and 2) expected ratios of raw material types to be recovered at archaeological sites.

  1. Amplitude and phase beam characterization using a two-dimensional wavefront sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neal, D.R.; Alford, W.J.; Gruetzner, J.K.

    1996-09-01

    We have developed a two-dimensional Shack-Hartman wavefront sensor that uses binary optic lenslet arrays to directly measure the wavefront slope (phase gradient) and amplitude of the laser beam. This sensor uses an array of lenslets that dissects the beam into a number of samples. The focal spot location of each of these lenslets (measured by a CCD camera) is related to the incoming wavefront slope over the lenslet. By integrating these measurements over the laser aperture, the wavefront or phase distribution can be determined. Since the power focused by each lenslet is also easily determined, this allows a complete measurementmore » of the intensity and phase distribution of the laser beam. Furthermore, all the information is obtained in a single measurement. Knowing the complete scalar field of the beam allows the detailed prediction of the actual beam`s characteristics along its propagation path. In particular, the space- beamwidth product M{sup 2}, can be obtained in a single measurement. The intensity and phase information can be used in concert with information about other elements in the optical train to predict the beam size, shape, phase and other characteristics anywhere in the optical train. We present preliminary measurements of an Ar{sup +} laser beam and associated M{sup 2} calculations.« less

  2. Communication: importance sampling including path correlation in semiclassical initial value representation calculations for time correlation functions.

    PubMed

    Pan, Feng; Tao, Guohua

    2013-03-07

    Full semiclassical (SC) initial value representation (IVR) for time correlation functions involves a double phase space average over a set of two phase points, each of which evolves along a classical path. Conventionally, the two initial phase points are sampled independently for all degrees of freedom (DOF) in the Monte Carlo procedure. Here, we present an efficient importance sampling scheme by including the path correlation between the two initial phase points for the bath DOF, which greatly improves the performance of the SC-IVR calculations for large molecular systems. Satisfactory convergence in the study of quantum coherence in vibrational relaxation has been achieved for a benchmark system-bath model with up to 21 DOF.

  3. Interrogation of miniature extrinsic Fabry-Pérot sensor using path matched differential interferometer and phase generated carrier scheme

    NASA Astrophysics Data System (ADS)

    Wang, Fuyin; Xie, Jiehui; Hu, Zhengliang; Xiong, Shuidong; Luo, Hong; Hu, Yongming

    2014-05-01

    Study of fiber optic extrinsic Fabry-Pérot sensors utilizing state-of-the-art MEMS technology mostly focus on sensor fabrication for various applications, while the signal interrogation is still insatiable to current application. In this paper, we propose a white light path matched differential interferometer dynamic sensing system utilizing phase generated carrier demodulation scheme. A step motor with a movable mirror and a fiber-wound piezoelectric transducer string are used to act path matching and phase modulation respectively. Experimental results show that the sensing signal could be correctly recovered with low distortion and the phase noise spectrum level is less than -100 dB re. rad/√Hz above 2.5 kHz.

  4. Empirical transfer functions: Application to determination of outermost core velocity structure using SmKS phases

    NASA Astrophysics Data System (ADS)

    Alexandrakis, Catherine; Eaton, David W.

    2007-11-01

    SmKS waves provide good resolution of outer-core velocity structure, but are affected by heterogeneity in the D'' region. We have developed an Empirical Transfer Function (ETF) technique that transforms a reference pulse (here, SmKS) into a target waveform (SKKS) by: (1) time-windowing the respective pulses, (2) applying Wiener deconvolution, and (3) convolving the output with a Gaussian waveform. Common source and path effects are implicitly removed by this process. We combine ETFs from 446 broadband seismograms to produce a global stack, from which S3KS-SKKS differential time can be measured accurately. As a result of stacking, the scatter in our measurements (0.43 s) is much less than the 1.29 s scatter in previous compilations. Although our data do not uniquely constrain outermost core velocities, we show that the fit of most standard models can be improved by perturbing the outermost core velocity. Our best-fitting model is formed using IASP91 with PREM-like velocity at the top of the core.

  5. A study of interdiffusion in beta + gamma/gamma + gamma prime Ni-Cr-Al. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Carol, L. A.

    1985-01-01

    Ternary diffusion in the NiCrAl system at 1200 C was studied with beta + gamma/gamma + gamma prime infinite diffusion couples. Interdiffusion resulted in the formation of complex, multiphase diffusion zones. Concentration/distance profiles for Cr and Al in the phases present in the diffusion zone were measured after 200 hr. The Ni-rich portion of the NiCrAl phase diagram (1200 C) was also determined. From these data, bulk Cr and Al profiles were calculated and translated to diffusion paths on the ternary isotherm. Growth layer kinetics of the layers present in the diffusion zone were also measured.

  6. A Design of a Novel Airborne Aerosol Spectrometer for Remote Sensing Validation

    NASA Astrophysics Data System (ADS)

    Adler, G. A.; Brock, C. A.; Dube, W. P.; Erdesz, F.; Gordon, T.; Law, D. C.; Manfred, K.; Mason, B. J.; McLaughlin, R. J.; Richardson, M.; Wagner, N. L.; Washenfelder, R. A.; Murphy, D. M.

    2016-12-01

    Aerosols and their effect on the radiative properties of clouds contribute one of the largest sources of uncertainty to the Earth's energy budget. Many current global assessments, of atmospheric aerosol radiative forcing rely heavily on remote sensing observation; therefore, in situ aircraft and ground-based measurements are essential for validation of remote sensing measurements. Cavity ringdown spectrometers (CRD) measure aerosol extinction and are commonly used to validate remote sensing observations. These instruments have been deployed on aircraft based platforms over the years thus providing the opportunity to measure these properties over large areas in various conditions. However, deployment of the CRD on an aircraft platform has drawbacks. Typically, aircraft based CRDs draw sampled aerosol into a cabin based instrument through long lengths of tubing. This limits the ability of the instrument to measure: 1) Course mode aerosols (e.g. dust) 2) Aerosols at high relative humidity (above 90%) Here we describe the design of a novel aircraft based open path CRD. The open path CRD is intended to be mounted external to the cabin and has no sample tubing for aerosol delivery, thus measuring optical properties of all aerosol at the ambient conditions. However, the design of an open path CRD for operation on a wing-mounted aircraft platform has certain design complexities. The instrument's special design features include 2 CRD channels, 2 airfoils around the open Path CRD and a configuration which could be easily aligned and rigid at the same time. This novel implementation of cavity ringdown spectroscopy will provide a better assessment of the accuracy of remote sensing satellite measurements

  7. JSEM: A Framework for Identifying and Evaluating Indicators.

    ERIC Educational Resources Information Center

    Hyman, Jeffrey B.; Leibowitz, Scott G.

    2001-01-01

    Presents an approach to identifying and evaluating combinations of indicators when the mathematical relationships between the indicators and an endpoint may not be quantified, a limitation common to many ecological assessments. Uses the framework of Structural Equation Modeling (SEM), which combines path analysis with measurement model, to…

  8. Constraining Path-Dependent Processes During Basalt-CO2 Interactions with Observations From Flow-Through and Batch Experiments

    NASA Astrophysics Data System (ADS)

    Thomas, D.; Garing, C.; Zahasky, C.; Harrison, A. L.; Bird, D. K.; Benson, S. M.; Oelkers, E. H.; Maher, K.

    2017-12-01

    Predicting the timing and magnitude of CO2 storage in basaltic rocks relies partly on quantifying the dependence of reactivity on flow path and mineral distribution. Flow-through experiments that use intact cores are advantageous because the spatial heterogeneity of pore space and reactive phases is preserved. Combining aqueous geochemical analyses and petrologic characterization with non-destructive imaging techniques (e.g. micro-computed tomography) constrains the relationship between irreversible reactions, pore connectivity and accessible surface area. Our work enhances these capabilities by dynamically imaging flow through vesicular basalts with Positron Emission Tomography (PET) scanning. PET highlights the path a fluid takes by detecting photons produced during radioactive decay of an injected radiotracer (FDG). We have performed single-phase, CO2-saturated flow-through experiments with basaltic core from Iceland at CO2 sequestration conditions (50 °C; 76-90 bar Ptot). Constant flow rate and continuous pressure measurements at the inlet and outlet of the core constrain permeability. We monitor geochemical evolution through cation and anion analysis of outlet fluid sampled periodically. Before and after reaction, we perform PET scans and characterize the core using micro-CT. The PET scans indicate a discrete, localized flow path that appears to be a micro-crack connecting vesicles, suggesting that vesicle-lining minerals are immediately accessible and important reactants. Rapid increases in aqueous cation concentration, pH and HCO3- indicate that the rock reacts nearly immediately after CO2 injection. After 24 hours the solute release decreases, which may reflect a transition to reaction with phases with slower kinetic dissolution rates (e.g. zeolites and glasses to feldspar), a decrease in available reactive surface area or precipitation. We have performed batch experiments using crushed material of the same rock to elucidate the effect of flow path geometry and mineral accessibility on geochemical evolution. Interestingly, surface area-normalized dissolution rates as evinced by SiO2 release in all experiments approach similar values ( 10-15 mol/cm2/s). Our experiments show how imaging techniques are helpful in interpreting path-dependent processes in open systems.

  9. Computational path planner for product assembly in complex environments

    NASA Astrophysics Data System (ADS)

    Shang, Wei; Liu, Jianhua; Ning, Ruxin; Liu, Mi

    2013-03-01

    Assembly path planning is a crucial problem in assembly related design and manufacturing processes. Sampling based motion planning algorithms are used for computational assembly path planning. However, the performance of such algorithms may degrade much in environments with complex product structure, narrow passages or other challenging scenarios. A computational path planner for automatic assembly path planning in complex 3D environments is presented. The global planning process is divided into three phases based on the environment and specific algorithms are proposed and utilized in each phase to solve the challenging issues. A novel ray test based stochastic collision detection method is proposed to evaluate the intersection between two polyhedral objects. This method avoids fake collisions in conventional methods and degrades the geometric constraint when a part has to be removed with surface contact with other parts. A refined history based rapidly-exploring random tree (RRT) algorithm which bias the growth of the tree based on its planning history is proposed and employed in the planning phase where the path is simple but the space is highly constrained. A novel adaptive RRT algorithm is developed for the path planning problem with challenging scenarios and uncertain environment. With extending values assigned on each tree node and extending schemes applied, the tree can adapts its growth to explore complex environments more efficiently. Experiments on the key algorithms are carried out and comparisons are made between the conventional path planning algorithms and the presented ones. The comparing results show that based on the proposed algorithms, the path planner can compute assembly path in challenging complex environments more efficiently and with higher success. This research provides the references to the study of computational assembly path planning under complex environments.

  10. Stress path dependent hydromechanical behaviour of heterogeneous carbonate rock

    NASA Astrophysics Data System (ADS)

    Gland, N.; Dautriat, J.; Dimanov, A.; Raphanel, J.

    2010-06-01

    The influence of stress paths, representative of reservoir conditions, on the hydromechanical behavior of a moderately heterogeneous carbonate has been investigated. Multiscale structural heterogeneities, common for instance in carbonate rocks, can strongly alter the mechanical response and significantly influence the evolution of flow properties with stress. Using a triaxial cell, the permeability evolutions during compression and the effects of brittle (fracture) and plastic (pore collapse) deformations at yield, were measured. A strong scattering was observed on the mechanical response both in term of compressibility and failure threshold. Using the porosity scaling predicted by an adapted effective medium theory (based on crack growth under Hertzian contact), we have rescaled the critical pressures by the normalized porosity deviation. This procedure reduces efficiently the scattering, revealing in the framework of proportional stress path loading, a linear relation between the critical pressures and the stress path parameter through all the deformation regimes. It leads to a new formulation for the critical state envelope in the 'mean stress, deviatoric stress' diagram. The attractive feature of this new yield envelope formulation relies on the fact that only the two most common different mechanical tests 'Uniaxial Compression' and 'Hydrostatic Compression', are needed to define entirely the yield envelope. Volumic strains and normalized permeabilities are finally mapped in the stresses diagram and correlated.

  11. Tunable diode laser IR spectrometer for in situ measurements of the gas phase composition and particle size distribution of Titan's atmosphere

    NASA Technical Reports Server (NTRS)

    Webster, Christopher R.; Sander, Stanley P.; Beer, Reinhard; May, Randy D.; Knollenberg, Robert G.

    1990-01-01

    A new instrument, the Probe Infrared Laser Spectrometer (PIRLS), is described for in situ sensing of the gas composition and particle size distribution of Titan's atmosphere on the NASA/ESA Cassini mission. For gas composition measurements, several narrow-band (0.0001/cm) tunable lead-salt diode lasers operating near 80 K at selected mid-IR wavelengths are directed over a path length defined by a small reflector extending over the edge of the probe spacecraft platform; volume mixing ratios of 10 to the -9th should be measurable for several species of interest. A cloud-particle-size spectrometer using a diode laser source at 780 nm shares the optical path and deployed reflector; a combination of imaging and light scattering techniques is used to determine sizes of haze and cloud particles and their number density as a function of altitude.

  12. Sub-0.1 μm optical track width measurement

    NASA Astrophysics Data System (ADS)

    Smith, Richard J.; See, Chung W.; Somekh, Mike G.; Yacoot, Andrew

    2005-08-01

    In this paper, we will describe a technique that combines a common path scanning optical interferometer with artificial neural networks (ANN), to perform track width measurements that are significantly beyond the capability of conventional optical systems. Artificial neural networks have been used for many different applications. In the present case, ANNs are trained using profiles of known samples obtained from the scanning interferometer. They are then applied to tracks that have not previously been exposed to the networks. This paper will discuss the impacts of various ANN configurations, and the processing of the input signal on the training of the network. The profiles of the samples, which are used as the inputs to the ANNs, are obtained with a common path scanning optical interferometer. It provides extremely repeatable measurements, with very high signal to noise ratio, both are essential for the working of the ANNs. The characteristics of the system will be described. A number of samples with line widths ranging from 60nm-3μm have been measured to test the system. The system can measure line widths down to 60nm with a standard deviation of 3nm using optical wavelength of 633nm and a system numerical aperture of 0.3. These results will be presented in detail along with a discussion of the potential of this technique.

  13. Method and turbine for extracting kinetic energy from a stream of two-phase fluid

    NASA Technical Reports Server (NTRS)

    Elliott, D. G. (Inventor)

    1979-01-01

    An axial flow separator turbine is described which includes a number of nozzles for delivering streams of a two-phase fluid along linear paths. A phase separator which responsively separates the vapor and liquid is characterized by concentrically related annuli supported for rotation within the paths. The separator has endless channels for confining the liquid under the influence of centrifugal forces. A vapor turbine fan extracts kinetic energy from the liquid. Angular momentum of both the liquid phase and the vapor phase of the fluid is converted to torque.

  14. Phase computations and phase models for discrete molecular oscillators.

    PubMed

    Suvak, Onder; Demir, Alper

    2012-06-11

    Biochemical oscillators perform crucial functions in cells, e.g., they set up circadian clocks. The dynamical behavior of oscillators is best described and analyzed in terms of the scalar quantity, phase. A rigorous and useful definition for phase is based on the so-called isochrons of oscillators. Phase computation techniques for continuous oscillators that are based on isochrons have been used for characterizing the behavior of various types of oscillators under the influence of perturbations such as noise. In this article, we extend the applicability of these phase computation methods to biochemical oscillators as discrete molecular systems, upon the information obtained from a continuous-state approximation of such oscillators. In particular, we describe techniques for computing the instantaneous phase of discrete, molecular oscillators for stochastic simulation algorithm generated sample paths. We comment on the accuracies and derive certain measures for assessing the feasibilities of the proposed phase computation methods. Phase computation experiments on the sample paths of well-known biological oscillators validate our analyses. The impact of noise that arises from the discrete and random nature of the mechanisms that make up molecular oscillators can be characterized based on the phase computation techniques proposed in this article. The concept of isochrons is the natural choice upon which the phase notion of oscillators can be founded. The isochron-theoretic phase computation methods that we propose can be applied to discrete molecular oscillators of any dimension, provided that the oscillatory behavior observed in discrete-state does not vanish in a continuous-state approximation. Analysis of the full versatility of phase noise phenomena in molecular oscillators will be possible if a proper phase model theory is developed, without resorting to such approximations.

  15. Phase computations and phase models for discrete molecular oscillators

    PubMed Central

    2012-01-01

    Background Biochemical oscillators perform crucial functions in cells, e.g., they set up circadian clocks. The dynamical behavior of oscillators is best described and analyzed in terms of the scalar quantity, phase. A rigorous and useful definition for phase is based on the so-called isochrons of oscillators. Phase computation techniques for continuous oscillators that are based on isochrons have been used for characterizing the behavior of various types of oscillators under the influence of perturbations such as noise. Results In this article, we extend the applicability of these phase computation methods to biochemical oscillators as discrete molecular systems, upon the information obtained from a continuous-state approximation of such oscillators. In particular, we describe techniques for computing the instantaneous phase of discrete, molecular oscillators for stochastic simulation algorithm generated sample paths. We comment on the accuracies and derive certain measures for assessing the feasibilities of the proposed phase computation methods. Phase computation experiments on the sample paths of well-known biological oscillators validate our analyses. Conclusions The impact of noise that arises from the discrete and random nature of the mechanisms that make up molecular oscillators can be characterized based on the phase computation techniques proposed in this article. The concept of isochrons is the natural choice upon which the phase notion of oscillators can be founded. The isochron-theoretic phase computation methods that we propose can be applied to discrete molecular oscillators of any dimension, provided that the oscillatory behavior observed in discrete-state does not vanish in a continuous-state approximation. Analysis of the full versatility of phase noise phenomena in molecular oscillators will be possible if a proper phase model theory is developed, without resorting to such approximations. PMID:22687330

  16. A technique for phase correction in Fourier transform spectroscopy

    NASA Astrophysics Data System (ADS)

    Artsang, P.; Pongchalee, P.; Palawong, K.; Buisset, C.; Meemon, P.

    2018-03-01

    Fourier transform spectroscopy (FTS) is a type of spectroscopy that can be used to analyze components in the sample. The basic setup that is commonly used in this technique is "Michelson interferometer". The interference signal obtained from interferometer can be Fourier transformed into the spectral pattern of the illuminating light source. To experimentally study the concept of the Fourier transform spectroscopy, the project started by setup the Michelson interferometer in the laboratory. The implemented system used a broadband light source in near infrared region (0.81-0.89 μm) and controlled the movable mirror by using computer controlled motorized translation stage. In the early study, there is no sample the interference path. Therefore, the theoretical spectral results after the Fourier transformation of the captured interferogram must be the spectral shape of the light source. One main challenge of the FTS is to retrieve the correct phase information of the inferferogram that relates with the correct spectral shape of the light source. One main source of the phase distortion in FTS that we observed from our system is the non-linear movement of the movable reference mirror of the Michelson interferometer. Therefore, to improve the result, we coupled a monochromatic light source to the implemented interferometer. We simultaneously measured the interferograms of the monochromatic and broadband light sources. The interferogram of the monochromatic light source was used to correct the phase of the interferogram of the broadband light source. The result shows significant improvement in the computed spectral shape.

  17. Common path ball lens probe for optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Singh, Kanwarpal; Yamada, Daisuke; Tearney, Guillermo J.

    2016-02-01

    Background: Common path probes are highly desirable for optical coherence tomography (OCT) as they reduce system complexity and cost. In this work we report an all-fiber common path side viewing monolithic probe for coronary artery imaging. Methods: Our common path probe was designed for spectrometer based Fourier domain OCT at 1310 nm wavelength. Light from the fiber expands in the coreless fiber region and then focussed by the ball lens. Reflection from ball lens-air interface served as reference signal. The monolithic ball lens probe was assembled within a 560 µmouter diameter drive shaft which was attached to a rotary junction. The drive shaft was placed inside an outer, transparent sheath of 800 µm diameter. Results: With a source input power of 25 mW, we could achieve sensitivity of 100.5 dB. The axial resolution of the system was found to be 15.6 µm in air and the lateral resolution (full width half maximum) was approximately 49 µm. As proof of principal, images of skin acquired using this probe demonstrated clear visualization of the stratum corneum, epidermis, and papillary dermis, along with sweat ducts. Conclusion: In this work we have demonstrated a monolithic, ball lens common, path probe for OCT imaging. The designed ball lens probe is easy to fabricate using a laser splicer. Based on the features and capability of common path probes to provide a simpler solution for OCT, we believe that this development will be an important enhancement for certain types of catheters.

  18. Laboratory measurements of trace gas emissions from biomass burning of fuel types from the southeastern and southwestern United States

    Treesearch

    I. R. Burling; R. J. Yokelson; D. W. T. Griffith; T. J. Johnson; P. Veres; J. M. Roberts; C. Warneke; S. P. Urbanski; J. Reardon; D. R. Weise; W. M. Hao; J. de Gouw

    2010-01-01

    Vegetation commonly managed by prescribed burning was collected from five southeastern and southwestern US military bases and burned under controlled conditions at the US Forest Service Fire Sciences Laboratory in Missoula, Montana. The smoke emissions were measured with a large suite of state-of-the-art instrumentation including an open-path Fourier transform infrared...

  19. Hardware Overview of the Microwave Imaging Reflectometry (MIR) on DIII-D

    NASA Astrophysics Data System (ADS)

    Hu, Xing; Muscatello, Chirstopher; Domier, Calvin; Luhmann, Neville; Ren, Xiaoxin; Spear, Alexander; Tobias, Benjamin; Yu, Liubing; University of California Davis Collaboration; Princeton Plasma Physics Laboratory Collaboration

    2013-10-01

    UC Davis in collaboration with PPPL has developed and installed a 12 by 4 (48) channel MIR system on DIII-D to measure 2-D structure of density fluctuations. In the transmitter path, a four-frequency probing beam is generated by mixing the 65 GHz Gunn oscillator signal with two different 0.5 ~ 9 GHz signals. Carefully designed imaging optics shape the beam to ensure the probing beam wavefront matches the cutoff surfaces. In the receiver path, large aperture imaging optics collect the reflected beam and focus it onto the mini lens antenna array, which provides improved LO coupling and antenna performance over earlier imaging systems. The reflected signal is down-converted for the first time on the array and goes into the innovative electronics for a second down-conversion. Low frequency LOs for the IQ mixer are generated by mixing two reference signals from phase-locked circuits. The double down-converted signal is mixed with the low frequency LOs yielding in-phase and quadrature components of the phase and thus density fluctuation information.

  20. Measuring the expressed abundance of the three phases of water with an imaging spectrometer over melting snow

    NASA Astrophysics Data System (ADS)

    Green, Robert O.; Painter, Thomas H.; Roberts, Dar A.; Dozier, Jeff

    2006-10-01

    From imaging spectrometer data, we simultaneously estimate the abundance of the three phases of water in an environment that includes melting snow, basing the analysis on the spectral shift in the absorption coefficient between water vapor, liquid water, and ice at 940, 980, and 1030 nm respectively. We apply a spectral fitting algorithm that measures the expressed abundance of the three phases of water to a data set acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over Mount Rainier, Washington, on 14 June 1996. Precipitable water vapor varies from 1 mm over the summit of Mount Rainier to 10 mm over the lower valleys to the northwest. Equivalent path absorption of liquid water varies from 0 to 13 mm, with the zero values over rocky areas and high-elevation snow and the high values associated with liquid water held in vegetation canopies and in melting snow. Ice abundance varies from 0 to 30 mm equivalent path absorption in the snow- and glacier-covered portions of Mount Rainier. The water and ice abundances are related to the amount of liquid water and the sizes of the ice grains in the near-surface layer. Precision of the estimates, calculated over locally homogeneous areas, indicates an uncertainty of better than 1.5% for all three phases, except for liquid water in vegetation, where an optimally homogeneous site was not found. The analysis supports new strategies for hydrological research and applications as imaging spectrometers become more available.

  1. Inner core structure behind the PKP core phase triplication

    NASA Astrophysics Data System (ADS)

    Blom, Nienke A.; Deuss, Arwen; Paulssen, Hanneke; Waszek, Lauren

    2015-06-01

    The structure of the Earth's inner core is not well known between depths of ˜100-200 km beneath the inner core boundary. This is a result of the PKP core phase triplication and the existence of strong precursors to PKP phases, which hinder the measurement of inner core compressional PKIKP waves at epicentral distances between roughly 143 and 148°. Consequently, interpretation of the detailed structure of deeper regions also remains difficult. To overcome these issues we stack seismograms in slowness and time, separating the PKP and PKIKP phases which arrive simultaneously but with different slowness. We apply this method to study the inner core's Western hemisphere beneath South and Central America using paths travelling in the quasi-polar direction between 140 and 150° epicentral distance, which enables us to measure PKiKP-PKIKP differential traveltimes up to greater epicentral distance than has previously been done. The resulting PKiKP-PKIKP differential traveltime residuals increase with epicentral distance, which indicates a marked increase in seismic velocity for polar paths at depths greater than 100 km compared to reference model AK135. Assuming a homogeneous outer core, these findings can be explained by either (i) inner core heterogeneity due to an increase in isotropic velocity or (ii) increase in anisotropy over the studied depth range. Although this study only samples a small region of the inner core and the current data cannot distinguish between the two alternatives, we prefer the latter interpretation in the light of previous work.

  2. The ABLE ACE wavefront sensor

    NASA Astrophysics Data System (ADS)

    Butts, Robert R.

    1997-08-01

    A low noise, high resolution Shack-Hartmann wavefront sensor was included in the ABLE-ACE instrument suite to obtain direct high resolution phase measurements of the 0.53 micrometers pulsed laser beam propagated through high altitude atmospheric turbulence. The wavefront sensor employed a Fired geometry using a lenslet array which provided approximately 17 sub-apertures across the pupil. The lenslets focused the light in each sub-aperture onto a 21 by 21 array of pixels in the camera focal plane with 8 pixels in the camera focal plane with 8 pixels across the central lobe of the diffraction limited spot. The goal of the experiment was to measure the effects of the turbulence in the free atmosphere on propagation, but the wavefront sensor also detected the aberrations induced by the aircraft boundary layer and the receiver aircraft internal beam path. Data analysis methods used to extract the desired atmospheric contribution to the phase measurements from the data corrupted by non-atmospheric aberrations are described. Approaches which were used included a reconstruction of the phase as a linear combination of Zernike polynomials coupled with optical estimator sand computation of structure functions of the sub-aperture slopes. The theoretical basis for the data analysis techniques is presented. Results are described, and comparisons with theory and simulations are shown. Estimates of average turbulence strength along the propagation path from the wavefront sensor showed good agreement with other sensor. The Zernike spectra calculated from the wavefront sensor data were consistent with the standard Kolmogorov model of turbulence.

  3. Multi-path transportation futures study: Results from Phase 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, Phil; Singh, Margaret; Plotkin, Steve

    2007-03-09

    This PowerPoint briefing provides documentation and details for Phase 1 of the Multi-Path Transportation Futures Study, which compares alternative ways to make significant reductions in oil use and carbon emissions from U.S. light vehicles to 2050. Phase I, completed in 2006, was a scoping study, aimed at identifying key analytic issues and constructing a study design. The Phase 1 analysis included an evaluation of several pathways and scenarios; however, these analyses were limited in number and scope and were designed to be preliminary.

  4. Applications and development of new algorithms for displacement analysis using InSAR time series

    NASA Astrophysics Data System (ADS)

    Osmanoglu, Batuhan

    Time series analysis of Synthetic Aperture Radar Interferometry (InSAR) data has become an important scientific tool for monitoring and measuring the displacement of Earth's surface due to a wide range of phenomena, including earthquakes, volcanoes, landslides, changes in ground water levels, and wetlands. Time series analysis is a product of interferometric phase measurements, which become ambiguous when the observed motion is larger than half of the radar wavelength. Thus, phase observations must first be unwrapped in order to obtain physically meaningful results. Persistent Scatterer Interferometry (PSI), Stanford Method for Persistent Scatterers (StaMPS), Short Baselines Interferometry (SBAS) and Small Temporal Baseline Subset (STBAS) algorithms solve for this ambiguity using a series of spatio-temporal unwrapping algorithms and filters. In this dissertation, I improve upon current phase unwrapping algorithms, and apply the PSI method to study subsidence in Mexico City. PSI was used to obtain unwrapped deformation rates in Mexico City (Chapter 3),where ground water withdrawal in excess of natural recharge causes subsurface, clay-rich sediments to compact. This study is based on 23 satellite SAR scenes acquired between January 2004 and July 2006. Time series analysis of the data reveals a maximum line-of-sight subsidence rate of 300mm/yr at a high enough resolution that individual subsidence rates for large buildings can be determined. Differential motion and related structural damage along an elevated metro rail was evident from the results. Comparison of PSI subsidence rates with data from permanent GPS stations indicate root mean square (RMS) agreement of 6.9 mm/yr, about the level expected based on joint data uncertainty. The Mexico City results suggest negligible recharge, implying continuing degradation and loss of the aquifer in the third largest metropolitan area in the world. Chapters 4 and 5 illustrate the link between time series analysis and three-dimensional (3-D) phase unwrapping. Chapter 4 focuses on the unwrapping path. Unwrapping algorithms can be divided into two groups, path-dependent and path-independent algorithms. Path-dependent algorithms use local unwrapping functions applied pixel-by-pixel to the dataset. In contrast, path-independent algorithms use global optimization methods such as least squares, and return a unique solution. However, when aliasing and noise are present, path-independent algorithms can underestimate the signal in some areas due to global fitting criteria. Path-dependent algorithms do not underestimate the signal, but, as the name implies, the unwrapping path can affect the result. Comparison between existing path algorithms and a newly developed algorithm based on Fisher information theory was conducted. Results indicate that Fisher information theory does indeed produce lower misfit results for most tested cases. Chapter 5 presents a new time series analysis method based on 3-D unwrapping of SAR data using extended Kalman filters. Existing methods for time series generation using InSAR data employ special filters to combine two-dimensional (2-D) spatial unwrapping with one-dimensional (1-D) temporal unwrapping results. The new method, however, combines observations in azimuth, range and time for repeat pass interferometry. Due to the pixel-by-pixel characteristic of the filter, the unwrapping path is selected based on a quality map. This unwrapping algorithm is the first application of extended Kalman filters to the 3-D unwrapping problem. Time series analyses of InSAR data are used in a variety of applications with different characteristics. Consequently, it is difficult to develop a single algorithm that can provide optimal results in all cases, given that different algorithms possess a unique set of strengths and weaknesses. Nonetheless, filter-based unwrapping algorithms such as the one presented in this dissertation have the capability of joining multiple observations into a uniform solution, which is becoming an important feature with continuously growing datasets.

  5. Phase-shifter using submicron silicon waveguide couplers with ultra-small electro-mechanical actuator.

    PubMed

    Ikeda, Taro; Takahashi, Kazunori; Kanamori, Yoshiaki; Hane, Kazuhiro

    2010-03-29

    Phase shifter is an important part of optical waveguide circuits as used in interferometer. However, it is not always easy to generate a large phase shift in a small region. Here, a variable phase-shifter operating as delay-line of silicon waveguide was designed and fabricated by silicon micromachining. The proposed phase-shifter consists of a freestanding submicron-wide silicon waveguide with two waveguide couplers and an ultrasmall silicon comb-drive actuator. The position of the freestanding waveguide is moved by the actuator to vary the total optical path. Phase-shift was measured in a Mach-Zehnder interferometer to be 3.0pi at the displacement of 1.0 mum at the voltage of 31 V. The dimension of the fabricated device is 50microm wide and 85microm long.

  6. Differential phase contrast X-ray imaging system and components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stutman, Daniel; Finkenthal, Michael

    2017-11-21

    A differential phase contrast X-ray imaging system includes an X-ray illumination system, a beam splitter arranged in an optical path of the X-ray illumination system, and a detection system arranged in an optical path to detect X-rays after passing through the beam splitter.

  7. Confocal reflectance quantitative phase microscope system for cellular membranes dynamics study (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Singh, Vijay Raj; Yaqoob, Zahid; So, Peter T. C.

    2017-02-01

    Quantitative phase microscopy (QPM) techniques developed so far primarily belongs to high speed transmitted light based systems that has enough sensitivity to resolve membrane fluctuations and dynamics, but has no depth resolution. Therefore, most biomechanics studies using QPM today is confined to simple cells, such as RBCs, without internal organelles. An important instrument that will greatly extend the biomedical applications of QPM is to develop next generation microscope with 3D capability and sufficient temporal resolution to study biomechanics of complex eukaryotic cells including the mechanics of their internal compartments. For eukaryotic cells, the depth sectioning capability is critical and should be sufficient to distinguish nucleic membrane fluctuations from plasma membrane fluctuations. Further, this microscope must provide high temporal resolution since typical eukaryotes membranes are substantially stiffer than RBCs. A confocal reflectance quantitative phase microscope is presented based on multi-pinhole scanning, with the capabilities of higher temporal resolution and sensitivity for nucleic and plasma membranes of eukaryotic cells. System hardware is developed based on an array of confocal pinhole generated by using the `ON' state of subset of micro-mirrors of digital micro-mirror device (DMD, from Texas Instruments) and high-speed raster scanning provides 14ms imaging speed in wide-field mode. A common path interferometer is integrated at the imaging arm for detection of specimens' quantitative phase information. Theoretical investigation of quantitative phase reconstructed from system is investigated and application of system is presented for dimensional fluctuations measurements of both cellular plasma and nucleic membranes of embryonic stem cells.

  8. Realization of a multipath ultrasonic gas flowmeter based on transit-time technique.

    PubMed

    Chen, Qiang; Li, Weihua; Wu, Jiangtao

    2014-01-01

    A microcomputer-based ultrasonic gas flowmeter with transit-time method is presented. Modules of the flowmeter are designed systematically, including the acoustic path arrangement, ultrasound emission and reception module, transit-time measurement module, the software and so on. Four 200 kHz transducers forming two acoustic paths are used to send and receive ultrasound simultaneously. The synchronization of the transducers can eliminate the influence caused by the inherent switch time in simple chord flowmeter. The distribution of the acoustic paths on the mechanical apparatus follows the Tailored integration, which could reduce the inherent error by 2-3% compared with the Gaussian integration commonly used in the ultrasonic flowmeter now. This work also develops timing modules to determine the flight time of the acoustic signal. The timing mechanism is different from the traditional method. The timing circuit here adopts high capability chip TDC-GP2, with the typical resolution of 50 ps. The software of Labview is used to receive data from the circuit and calculate the gas flow value. Finally, the two paths flowmeter has been calibrated and validated on the test facilities for air flow in Shaanxi Institute of Measurement & Testing. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Investigating mixed phase clouds using a synergy of ground based remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Gierens, Rosa; Kneifel, Stefan; Löhnert, Ulrich

    2017-04-01

    Low level mixed phase clouds occur frequently in the Arctic, and can persist from hours to several days. However, the processes that lead to the commonality and persistence of these clouds are not well understood. The aim of our work is to get a more detailed understanding of the dynamics of and the processes in Arctic mixed phase clouds using a combination of instruments operating at the AWIPEV station in Svalbard. In addition, an aircraft campaign collecting in situ measurements inside mixed phase clouds above the station is planned for May-June 2017. The in situ data will be used for developing and validating retrievals for microphysical properties from Doppler cloud radar measurements. Once observational data for cloud properties is obtained, it can be used for evaluating model performance, for studies combining modeling and observational approaches, and eventually lead to developing model parameterizations of mixed phase microphysics. To describe the low-level mixed phase clouds, and the atmospheric conditions in which they occur, we present a case study of a persistent mixed phase cloud observed above the AWIPEV station. In the frame of the Arctic Amplification: Climate Relevant Atmospheric and Surface Processes and Feedback Mechanisms ((AC)3) -project, a millimeter wavelength cloud radar was installed at the site in June 2016. The high vertical (4 m in the lowest layer) and temporal (2.5 sec) resolution allows for a detailed description of the structure of the cloud. In addition to radar reflectivity and mean vertical velocity, we also utilize the higher moments of the Doppler spectra, such as skewness and kurtosis. To supplement the radar measurements, a ceilometer is used to detect liquid layers inside the cloud. Liquid water path and integrated water vapor are estimated using a microwave radiometer, which together with soundings can also provide temperature and humidity profiles in the lower troposphere. Moreover, a three-dimensional wind field is be obtained from a Doppler wind lidar. Furthermore, the Cloudnet scheme (www.cloud-net.org), that combines radar, lidar and microwave radiometer observations with a forecast model to provide a best estimate of cloud properties, is used for identifying mixed phase clouds. The continuous measurements carried out at AWIPEV make it possible to characterize the macro- and micro- physical properties of mixed-phase clouds on a long-term, statistical basis. The Arctic observations are compared to a 5-year observational data set from Jülich Observatory for Cloud Evolution (JOYCE) in Western Germany. The occurrence of different types of clouds (with focus on mixed-phase and super-cooled clouds), the distribution of ice and liquid within the clouds, the turbulent environment as well as the temperatures where the different phases are occurring are investigated.

  10. A direct-view customer-oriented digital holographic camera

    NASA Astrophysics Data System (ADS)

    Besaga, Vira R.; Gerhardt, Nils C.; Maksimyak, Peter P.; Hofmann, Martin R.

    2018-01-01

    In this paper, we propose a direct-view digital holographic camera system consisting mostly of customer-oriented components. The camera system is based on standard photographic units such as camera sensor and objective and is adapted to operate under off-axis external white-light illumination. The common-path geometry of the holographic module of the system ensures direct-view operation. The system can operate in both self-reference and self-interference modes. As a proof of system operability, we present reconstructed amplitude and phase information of a test sample.

  11. Extreme ultraviolet interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldberg, Kenneth A.

    EUV lithography is a promising and viable candidate for circuit fabrication with 0.1-micron critical dimension and smaller. In order to achieve diffraction-limited performance, all-reflective multilayer-coated lithographic imaging systems operating near 13-nm wavelength and 0.1 NA have system wavefront tolerances of 0.27 nm, or 0.02 waves RMS. Owing to the highly-sensitive resonant reflective properties of multilayer mirrors and extraordinarily tight tolerances set forth for their fabrication, EUV optical systems require at-wavelength EUV interferometry for final alignment and qualification. This dissertation discusses the development and successful implementation of high-accuracy EUV interferometric techniques. Proof-of-principle experiments with a prototype EUV point-diffraction interferometer for themore » measurement of Fresnel zoneplate lenses first demonstrated sub-wavelength EUV interferometric capability. These experiments spurred the development of the superior phase-shifting point-diffraction interferometer (PS/PDI), which has been implemented for the testing of an all-reflective lithographic-quality EUV optical system. Both systems rely on pinhole diffraction to produce spherical reference wavefronts in a common-path geometry. Extensive experiments demonstrate EUV wavefront-measuring precision beyond 0.02 waves RMS. EUV imaging experiments provide verification of the high-accuracy of the point-diffraction principle, and demonstrate the utility of the measurements in successfully predicting imaging performance. Complementary to the experimental research, several areas of theoretical investigation related to the novel PS/PDI system are presented. First-principles electromagnetic field simulations of pinhole diffraction are conducted to ascertain the upper limits of measurement accuracy and to guide selection of the pinhole diameter. Investigations of the relative merits of different PS/PDI configurations accompany a general study of the most significant sources of systematic measurement errors. To overcome a variety of experimental difficulties, several new methods in interferogram analysis and phase-retrieval were developed: the Fourier-Transform Method of Phase-Shift Determination, which uses Fourier-domain analysis to improve the accuracy of phase-shifting interferometry; the Fourier-Transform Guided Unwrap Method, which was developed to overcome difficulties associated with a high density of mid-spatial-frequency blemishes and which uses a low-spatial-frequency approximation to the measured wavefront to guide the phase unwrapping in the presence of noise; and, finally, an expedient method of Gram-Schmidt orthogonalization which facilitates polynomial basis transformations in wave-front surface fitting procedures.« less

  12. Dual-wavelength, continuous-wave Yb:YAG laser for high-resolution photothermal common-path interferometry.

    PubMed

    Zhuang, Fengjiang; Jungbluth, Bernd; Gronloh, Bastian; Hoffmann, Hans-Dieter; Zhang, Ge

    2013-07-20

    We present a continuous-wave (CW) intracavity frequency-doubled Yb:YAG laser providing 1030 and 515 nm output simultaneously. This laser system was designed for photothermal common-path interferometry to measure spatially resolved profiles of the linear absorption in dielectric media and coatings for visible or infrared light as well as of the nonlinear absorption for the combination of both. A Z-shape laser cavity was designed, providing a beam waist in which an LBO crystal was located for effective second-harmonic generation (SHG). Suitable frequency conversion parameters and cavity configurations were discussed to achieve the optimal performance of a diode-pumped CW SHG laser. A 12.4 W 1030 nm laser and 5.4 W 515 nm laser were developed simultaneously in our experiment.

  13. Phase selection during crystallization of undercooled liquid eutectic lead-tin alloys

    NASA Technical Reports Server (NTRS)

    Fecht, H. J.

    1991-01-01

    During rapid solidification substantial amounts of undercooling are in general required for formation of metastable phases. Crystallization at varying levels of undercooling and melting of metastable phases were studied during slow cooling and heating of emulsified PB-Sn alloys. Besides the experimental demonstration of the reversibility of metastable phase equilibra, two different principal solidification paths have been identified and compared with the established metastable phase diagram and predictions from classical nucleation theory. The results suggest that the most probable solidification path is described by the 'step rule' resulting in the formation of metastable phases at low undercooling, whereas the stable eutectic phase mixture crystallizes without metastable phase formation at high undercooling.

  14. Ultrasonic Nondestructive Evaluation Techniques Applied to the Quantitative Characterization of Textile Composite Materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1997-01-01

    In this Progress Report, we describe our recent developments of advanced ultrasonic nondestructive evaluation methods applied to the characterization of anisotropic materials. We present images obtained from experimental measurements of ultrasonic diffraction patterns for a thin woven composite in an immersion setup. In addition, we compare apparent signal loss measurements of the thin woven composite for phase-sensitive and phase-insensitive detection methods. All images of diffraction patterns have been included on the accompanying CD-ROM in the Adobe(Trademark) Portable Document Format (PDF). Due to the extensive amount of data, however, hardcopies of only a small representative selection of the images are included within the printed report. This Progress Report presents experimental results that support successful implementation of single element as well as one and two-dimensional ultrasonic array technologies for the inspection of textile composite structures. In our previous reports, we have addressed issues regarding beam profiles of ultrasonic pressure fields transmitted through a water reference path and transmitted through a thin woven composite sample path. Furthermore, we presented experimental results of the effect of a thin woven composite on the magnitude of an insonifying ultrasonic pressure field. In addition to the study of ultrasonic beam profiles, we consider issues relevant to the application of single-element, one-dimensional, and two-dimensional array technologies towards probing the mechanical properties of advanced engineering composites and structures. We provide comparisons between phase-sensitive and phase-insensitive detection methods for determination of textile composite structure parameters. We also compare phase-sensitive and phase-insensitive - - ---- ----- apparent signal loss measurements in an effort to study the phenomenon of phase cancellation at the face of a finite-aperture single-element receiver. Furthermore, in this Progress Report we extend our work on ultrasonic beam profile issues through investigation of the phase fronts of the pressure field. In Section H of this Progress Report we briefly describe the experimental arrangement and methods for data acquisition of the ultrasonic diffraction patterns upon transmission through a thin woven composite. Section III details the analysis of the experimental data followed by the experimental results in Section IV. Finally, a discussion of the observations and conclusions is found in Section V.

  15. Systems and methods for analyzing liquids under vacuum

    DOEpatents

    Yu, Xiao-Ying; Yang, Li; Cowin, James P.; Iedema, Martin J.; Zhu, Zihua

    2013-10-15

    Systems and methods for supporting a liquid against a vacuum pressure in a chamber can enable analysis of the liquid surface using vacuum-based chemical analysis instruments. No electrical or fluid connections are required to pass through the chamber walls. The systems can include a reservoir, a pump, and a liquid flow path. The reservoir contains a liquid-phase sample. The pump drives flow of the sample from the reservoir, through the liquid flow path, and back to the reservoir. The flow of the sample is not substantially driven by a differential between pressures inside and outside of the liquid flow path. An aperture in the liquid flow path exposes a stable portion of the liquid-phase sample to the vacuum pressure within the chamber. The radius, or size, of the aperture is less than or equal to a critical value required to support a meniscus of the liquid-phase sample by surface tension.

  16. Simultaneous gas-phase and total water detection for airborne applications with a multi-channel TDL spectrometer at 1.4 μm and 2.6 μm

    NASA Astrophysics Data System (ADS)

    Buchholz, Bernhard; Afchine, Armin; Klein, Alexander; Barthel, Jochen; Kallweit, Sören; Klostermann, Tim; Krämer, Martina; Schiller, Cornelius; Ebert, Volker

    2013-04-01

    Water vapor measurements especially within clouds are difficult, in particular due to numerous instrument-specific limitations in precision, time resolution and accuracy. Notably the quantification of the ice and gas-phase water content in cirrus clouds, which play an important role in the global climate system, require new high-speed hygrometers concepts which are capable of resolving large water vapor gradients. Previously we demonstrated a stationary concept of a Tunable Diode Laser Absorption Spectroscopy (TDLAS)-based quantification of the ice/liquid water by independent, but simultaneous measurements of A) the gas-phase water in an open-path configuration (optical-path 125 m) and B) the total water in an extractive version with a closed cell (30 m path) after evaporating the condensed water [1]. In this case we used laboratory TDLAS instrumentation in combination with a long absorption paths and applied those to the AIDA cloud camber [2]. Recently we developed an advanced, miniature version of the concept, suitable for mobile field applications and in particular for use on aircrafts. First tests of our new, fiber-coupled open-path TDLAS cell [3] for airborne applications were combined with the experiences of our extractive SEALDH instruments [4] and led to a new, multi-channel, "multi-phase TDL-hygrometer" called "HAI" ("Hygrometer for Atmospheric Investigations"). HAI, which is explicitly designed for the new German HALO (High Altitude and Long Range Research Aircraft) airplane, provides a similar, but improved functionality like the stationary, multi-phase TDLAS developed for AIDA. However HAI comes in a much more compact, six height units, 30 kg, electronics rack for the main unit and with a new, completely fiber-coupled, compact, 21 kg, dual-wavelength open-path TDL-cell which is placed in the aircraft's skin. HAI is much more complex and versatile than the AIDA precursor and can be seen as comprised of four TDL-spectrometers, as it simultaneously measures with two independent wavelengths (1.4 μm for troposphere and 2.6 μm for UT/LS to permit full coverage of water vapor concentrations from ground level to the stratosphere) both of which are applied to two measurement scenarios: A) in two independent extractive, closed cells (1.5 m path, 300 ccm cell volume) for redundant total water measurements at 1.4 and 2.6 μm and B) in a dual-wavelength open path cell (4.3 m path length) for a selective gas phase water detection. All HAI channels, but the 2.6 μm closed cell, are fibred-coupled. Depending on the sampling inlet (forward direction, ram pressure borrowed) we achieve in the closed cells a flow of 7 slm at 120 hPa which leads with a bulk flow assumption to a gas exchange time of 0.3 sec. Both lasers are synchronized and wavelength tuned at repetition frequencies of up to 1 kHz depending on the spatial resolution needed. HAI runs autonomous [5] allowing almost maintenance-free operation even in harsh environments. HAI is further combined with our long-term experience in TDLAS data evaluation [6] especially in rapidly changing and disturbed processes [7], [8] which leads to a highly precise, long term stable, fast, accurate, calibration-free, interference resistant hygrometer which can help to clarify several important issues - both from a technical perspective (e.g. influence of sampling system) as well as from a scientific view (e.g. determination ice-content of cirrus clouds). In the presentation we will discuss HAI's novel setup, its performance during the first tests, and show results from the first successful flights on HALO during the TACTS and EMSVAL campaigns in 2012. The HAI development was funded by DFG within the HALO-SPP 1294 and via internal funds from FZJ. - [1] B. J. Murray, T. W. Wilson, S. Dobbie, Z. Cui, S. M. R. K. Al-Jumur, O. Möhler, M. Schnaiter, R. Wagner, S. Benz, M. Niemand, H. Saathoff, V. Ebert, S. Wagner, and B. Kärcher, "Heterogeneous nucleation of ice particles on glassy aerosols under cirrus conditions," Nature Geoscience, vol. 3, no. 4, pp. 233-237, Mar. 2010. [2] V. Ebert, C. Lauer, H. Saathoff, S. Hunsmann, and S. Wagner, "Simultaneous, absolute gas-phase and total water detection during cloud formation studies in the AIDA chamber using a dual 1.37 μm TDL-Spectrometer," Geophysical Research Abstracts, vol. 10, pp. 1-2, 2008. [3] T. Klostermann, Entwicklung und Erprobung des Hygrometer for Atmospheric Investigations, PhD Thesis, Universität Wuppertal, 2011, p. 118 [4] B. Buchholz, B. Kühnreich, H. G. J. Smit, and V. Ebert, "Validation of an extractive, airborne, compact TDL spectrometer for atmospheric humidity sensing by blind intercomparison," Applied Physics B, Sep. 2012. DOI: 10.1007/s00340-012-5143-1 [5] B. Buchholz, "Neue Hard- und Softwareentwicklungen für autonome, kompakte und leichte Feld-Diodenlaserspektrometer," Diploma thesis, Universität Heidelberg, 2010. [6] V. Ebert and J. Wolfrum, "Absorption spectroscopy," in OPTICAL MEASUREMENTS-Techniques and Applications, ed. F. Mayinger, Springer, 1994, pp. 273-312. [7] C. Schulz, A. Dreizler, V. Ebert, and J. Wolfrum, "Combustion Diagnostics," in Handbook of Experimental Fluid Mechanics, C. Tropea, A. L. Yarin, and J. F. Foss, Eds. Heidelberg: Springer Berlin Heidelberg, 2007, pp. 1241-1316. [8] V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, and H. Jaritz, "Simultaneous diode-laser-based in situ detection of multiple species and temperature in a gas-fired power plant," Proc. Combust. Inst., 28, 1, pp. 423-430, 2000.

  17. Secondary phases in Al xCoCrFeNi high-entropy alloys: An in-situ TEM heating study and thermodynamic appraisal

    DOE PAGES

    Rao, J. C.; Diao, H. Y.; Ocelík, V.; ...

    2017-03-27

    Secondary phases, either introduced by alloying or heat treatment, are commonly present in most high-entropy alloys (HEAs). Understanding the formation of secondary phases at high temperatures, and their effect on mechanical properties, is a critical issue that is undertaken in the present paper, using the Al xCoCrFeNi (x = 0.3, 0.5, and 0.7) as a model alloy. The in-situ transmission-electron-microscopy (TEM) heating observation, an atom-probe-tomography (APT) study for the reference starting materials (Al 0.3 and Al 0.5 alloys), and thermodynamic calculations for all three alloys, are performed to investigate (1) the aluminum effect on the secondary-phase fractions, (2) the annealing-twinningmore » formation in the face-centered-cubic (FCC) matrix, (3) the strengthening effect of the secondary ordered body-centered-cubic (B2) phase, and (4) the nucleation path of the σ secondary phase thoroughly. Finally, the present work will substantially optimize the alloy design of HEAs and facilitate applications of HEAs to a wide temperature range.« less

  18. Secondary phases in Al xCoCrFeNi high-entropy alloys: An in-situ TEM heating study and thermodynamic appraisal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, J. C.; Diao, H. Y.; Ocelík, V.

    Secondary phases, either introduced by alloying or heat treatment, are commonly present in most high-entropy alloys (HEAs). Understanding the formation of secondary phases at high temperatures, and their effect on mechanical properties, is a critical issue that is undertaken in the present paper, using the Al xCoCrFeNi (x = 0.3, 0.5, and 0.7) as a model alloy. The in-situ transmission-electron-microscopy (TEM) heating observation, an atom-probe-tomography (APT) study for the reference starting materials (Al 0.3 and Al 0.5 alloys), and thermodynamic calculations for all three alloys, are performed to investigate (1) the aluminum effect on the secondary-phase fractions, (2) the annealing-twinningmore » formation in the face-centered-cubic (FCC) matrix, (3) the strengthening effect of the secondary ordered body-centered-cubic (B2) phase, and (4) the nucleation path of the σ secondary phase thoroughly. Finally, the present work will substantially optimize the alloy design of HEAs and facilitate applications of HEAs to a wide temperature range.« less

  19. Design and fabrication of a freeform phase plate for high-order ocular aberration correction

    NASA Astrophysics Data System (ADS)

    Yi, Allen Y.; Raasch, Thomas W.

    2005-11-01

    In recent years it has become possible to measure and in some instances to correct the high-order aberrations of human eyes. We have investigated the correction of wavefront error of human eyes by using phase plates designed to compensate for that error. The wavefront aberrations of the four eyes of two subjects were experimentally determined, and compensating phase plates were machined with an ultraprecision diamond-turning machine equipped with four independent axes. A slow-tool servo freeform trajectory was developed for the machine tool path. The machined phase-correction plates were measured and compared with the original design values to validate the process. The position of the phase-plate relative to the pupil is discussed. The practical utility of this mode of aberration correction was investigated with visual acuity testing. The results are consistent with the potential benefit of aberration correction but also underscore the critical positioning requirements of this mode of aberration correction. This process is described in detail from optical measurements, through machining process design and development, to final results.

  20. Evolution of the electrical resistivity anisotropy during saline tracer tests: insights from geoelectrical milli-fluidic experiments

    NASA Astrophysics Data System (ADS)

    Jougnot, D.; Jimenez-Martinez, J.; Legendre, R.; Le Borgne, T.; Meheust, Y.; Linde, N.

    2017-12-01

    The use of time-lapse electrical resistivity tomography has been largely developed in environmental studies to remotely monitor water saturation and contaminant plumes migration. However, subsurface heterogeneities, and corresponding preferential transport paths, yield a potentially large anisotropy in the electrical properties of the subsurface. In order to study this effect, we have used a newly developed geoelectrical milli-fluidic experimental set-up with a flow cell that contains a 2D porous medium consisting of a single layer of cylindrical solid grains. We performed saline tracer tests under full and partial water saturations in that cell by jointly injecting air and aqueous solutions with different salinities. The flow cell is equipped with four electrodes to measure the bulk electrical resistivity at the cell's scale. The spatial distribution of the water/air phases and the saline solute concentration field in the water phase are captured simultaneously with a high-resolution camera by combining a fluorescent tracer with the saline solute. These data are used to compute the longitudinal and transverse effective electrical resistivity numerically from the measured spatial distributions of the fluid phases and the salinity field. This approach is validated as the computed longitudinal effective resistivities are in good agreement with the laboratory measurements. The anisotropy in electrical resistivity is then inferred from the computed longitudinal and transverse effective resistivities. We find that the spatial distribution of saline tracer, and potentially air phase, drive temporal changes in the effective resistivity through preferential paths or barriers for electrical current at the pore scale. The resulting heterogeneities in the solute concentrations lead to strong anisotropy of the effective bulk electrical resistivity, especially for partially saturated conditions. Therefore, considering the electrical resistivity as a tensor could improve our understanding of transport properties from field-scale time-lapse ERT.

  1. Joint Inversion of Phase and Amplitude Data of Surface Waves for North American Upper Mantle

    NASA Astrophysics Data System (ADS)

    Hamada, K.; Yoshizawa, K.

    2015-12-01

    For the reconstruction of the laterally heterogeneous upper-mantle structure using surface waves, we generally use phase delay information of seismograms, which represents the average phase velocity perturbation along a ray path, while the amplitude information has been rarely used in the velocity mapping. Amplitude anomalies of surface waves contain a variety of information such as anelastic attenuation, elastic focusing/defocusing, geometrical spreading, and receiver effects. The effects of elastic focusing/defocusing are dependent on the second derivative of phase velocity across the ray path, and thus, are sensitive to shorter-wavelength structure than the conventional phase data. Therefore, suitably-corrected amplitude data of surface waves can be useful for improving the lateral resolution of phase velocity models. In this study, we collect a large-number of inter-station phase velocity and amplitude ratio data for fundamental-mode surface waves with a non-linear waveform fitting between two stations of USArray. The measured inter-station phase velocity and amplitude ratios are then inverted simultaneously for phase velocity maps and local amplification factor at receiver locations in North America. The synthetic experiments suggest that, while the phase velocity maps derived from phase data only reflect large-scale tectonic features, those from phase and amplitude data tend to exhibit better recovery of the strength of velocity perturbations, which emphasizes local-scale tectonic features with larger lateral velocity gradients; e.g., slow anomalies in Snake River Plain and Rio Grande Rift, where significant local amplification due to elastic focusing are observed. Also, the spatial distribution of receiver amplification factor shows a clear correlation with the velocity structure. Our results indicate that inter-station amplitude-ratio data can be of help in reconstructing shorter-wavelength structures of the upper mantle.

  2. Full path compensation laser feedback interferometry for remote sensing with recovered nanometer resolutions

    NASA Astrophysics Data System (ADS)

    Xu, Ling; Tan, Yidong; Zhang, Shulian

    2018-03-01

    The accuracy of the existing laser feedback interferometry for measuring the remote target is limited to several microns due to environmental disturbances. A novel approach is presented in this paper based on the double-beam frequency-shift feedback of the laser, which can completely eliminate the dead path errors and measure the displacement or vibration with accuracy at nanometer scale even at a far measurement distance. The two beams emitted from one Nd:YVO4 crystal are incident on the measurement target and its adjacent reference surface, respectively. The reference surface could be taken from the nearby stationary object, without the need to put a reference mirror. The feedback paths and shift frequencies of the two beams are the same, so the air disturbances and the thermal effects in the way could be fully compensated. Under common room conditions, the displacement of a steel block at a distance of 10 m is measured, which proved that the system's stability is ±12 nm in 100 s and ±50 nm in 1000 s, the short-term resolution is better than 3 nm, and the linearity within the 300 mm range is 5 × 10-6 and within the 100 μm range is 1 × 10-4.

  3. Elevation effects in volcano applications of the COSPEC

    USGS Publications Warehouse

    Gerlach, T.M.

    2003-01-01

    Volcano applications commonly involve sizeable departures from the reference pressure and temperature of COSPEC calibration cells. Analysis shows that COSPEC SO2 column abundances and derived mass emission rates are independent of pressure and temperature, and thus unaffected by elevation effects related to deviations from calibration cell reference state. However, path-length concentrations are pressure and temperature dependent. Since COSPEC path-length concentration data assume the reference pressure and temperature of calibration cells, they can lead to large errors when used to calculate SO2 mixing ratios of volcanic plumes. Correction factors for COSPEC path-length concentrations become significant (c.10%) at elevations of about 1 km (e.g. Kilauea volcano) and rise rapidly to c.80% at 6 km (e.g. Cotopaxi volcano). Calculating SO2 mixing ratios for volcanic plumes directly from COSPEC path-length concentrations always gives low results. Corrections can substantially increase mixing ratios; for example, corrections increase SO2 ppm concentrations reported for the Mount St Helens, Colima, and Erebus plumes by 25-50%. Several arguments suggest it would be advantageous to calibrate COSPEC measurements in column abundance units rather than path-length concentration units.

  4. Turbulent transport of He II in active and passive phase separators using slit devices and porous media

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.; Lee, J. M.; Frederking, T. H. K.

    1988-01-01

    The turbulent transport mode of vapor liquid phase separators (VLPS) for He II has been investigated comparing passive porous plug separators with active phase separators (APS) using slits of variable flow paths within a common frame of reference. It is concluded that the basic transport regimes in both devices are identical. An integrated Gorter-Mellink (1949) equation, found previously to predict VLPS results of porous plugs, is employed to analyze APS data published in the literature. It is found that the Gorter-Mellink flow rate parameter for 9-micron and 14-micron APS slit widths are relatively independent of the slit width, having a rate constant of about 9 + or - 10 percent. This agrees with the early heat flow results for He II entropy transport at zero net mass flow in wide capillaries and slits.

  5. An Unsplit Monte-Carlo solver for the resolution of the linear Boltzmann equation coupled to (stiff) Bateman equations

    NASA Astrophysics Data System (ADS)

    Bernede, Adrien; Poëtte, Gaël

    2018-02-01

    In this paper, we are interested in the resolution of the time-dependent problem of particle transport in a medium whose composition evolves with time due to interactions. As a constraint, we want to use of Monte-Carlo (MC) scheme for the transport phase. A common resolution strategy consists in a splitting between the MC/transport phase and the time discretization scheme/medium evolution phase. After going over and illustrating the main drawbacks of split solvers in a simplified configuration (monokinetic, scalar Bateman problem), we build a new Unsplit MC (UMC) solver improving the accuracy of the solutions, avoiding numerical instabilities, and less sensitive to time discretization. The new solver is essentially based on a Monte Carlo scheme with time dependent cross sections implying the on-the-fly resolution of a reduced model for each MC particle describing the time evolution of the matter along their flight path.

  6. Multi-technique approach for deriving a VLBI signal extra-path variation model induced by gravity: the example of Medicina

    NASA Astrophysics Data System (ADS)

    Sarti, P.; Abbondanza, C.; Negusini, M.; Vittuari, L.

    2009-09-01

    During the measurement sessions gravity might induce significant deformations in large VLBI telescopes. If neglected or mismodelled, these deformations might bias the phase of the incoming signal thus corrupting the estimate of some crucial geodetic parameters (e.g. the height component of VLBI Reference Point). This paper describes a multi-technique approach implemented for measuring and quantifying the gravity-dependent deformations experienced by the 32-m diameter VLBI antenna of Medicina (Northern Italy). Such an approach integrates three different methods: Terrestrial Triangulations and Trilaterations (TTT), Laser Scanning (LS) and a Finite Element Model (FEM) of the antenna. The combination of the observations performed with these methods allows to accurately define an elevation-dependent model of the signal path variation which appears to be, for the Medicina telescope, non negligible. In the range [0,90] deg the signal path increases monotonically by almost 2 cm. The effect of such a variation has not been introduced in actual VLBI analysis yet; nevertheless this is the task we are going to pursue in the very next future.

  7. Observation of Biological Tissues Using Common Path Optical Coherence Tomography with Gold Coated Conical Tip Lens Fiber

    NASA Astrophysics Data System (ADS)

    Taguchi, K.; Sugiyama, J.; Totsuka, M.; Imanaka, S.

    2012-03-01

    In this paper, we proposed a high lateral resolution common-path Fourier domain optical coherence tomography(OCT) system with the use of a chemically etched single mode fiber. In our experiments, single mode optical fiber for 1310nm was used for preparing the tapered tips. Our system used a conical microlens that was chemically etched by selective chemical etching technique using an etching solution of buffered hydrofluoric acid (BHF). From experimental results, we verified that our proposed optical coherence tomography system could operate as a common-path Fourier domain OCT system and conical tip lens fiber was very useful for a high lateral resolution common-path Fourier domain OCT system. Furthermore, we could observe a surface of paramecium bursaria and symbiotic chlorella in the paramecium bursaria using gold coated conical-tip fiber in the water.

  8. Semantic text relatedness on Al-Qur’an translation using modified path based method

    NASA Astrophysics Data System (ADS)

    Irwanto, Yudi; Arif Bijaksana, Moch; Adiwijaya

    2018-03-01

    Abdul Baquee Muhammad [1] have built Corpus that contained AlQur’an domain, WordNet and dictionary. He has did initialisation in the development of knowledges about AlQur’an and the knowledges about relatedness between texts in AlQur’an. The Path based measurement method that proposed by Liu, Zhou and Zheng [3] has never been used in the AlQur’an domain. By using AlQur’an translation dataset in this research, the path based measurement method proposed by Liu, Zhou and Zheng [3] will be used to test this method in AlQur’an domain to obtain similarity values and to measure its correlation value. In this study the degree value is proposed to be used in modifying the path based method that proposed in previous research. Degree Value is the number of links that owned by a lcs (lowest common subsumer) node on a taxonomy. The links owned by a node on the taxonomy represent the semantic relationship that a node has in the taxonomy. By using degree value to modify the path-based method that proposed in previous research is expected that the correlation value obtained will increase. After running some experiment by using proposed method, the correlation measurement value can obtain fairly good correlation ties with 200 Word Pairs derive from Noun POS SimLex-999. The correlation value that be obtained is 93.3% which means their bonds are strong and they have very strong correlation. Whereas for the POS other than Noun POS vocabulary that owned by WordNet is incomplete therefore many pairs of words that the value of its similarity is zero so the correlation value is low.

  9. Quantization of Simple Parametrized Systems

    NASA Astrophysics Data System (ADS)

    Ruffini, Giulio

    1995-01-01

    I study the canonical formulation and quantization of some simple parametrized systems using Dirac's formalism and the Becchi-Rouet-Stora-Tyutin (BRST) extended phase space method. These systems include the parametrized particle and minisuperspace. Using Dirac's formalism I first analyze for each case the construction of the classical reduced phase space. There are two separate features of these systems that may make this construction difficult: (a) Because of the boundary conditions used, the actions are not gauge invariant at the boundaries. (b) The constraints may have a disconnected solution space. The relativistic particle and minisuperspace have such complicated constraints, while the non-relativistic particle displays only the first feature. I first show that a change of gauge fixing is equivalent to a canonical transformation in the reduced phase space, thus resolving the problems associated with the first feature above. Then I consider the quantization of these systems using several approaches: Dirac's method, Dirac-Fock quantization, and the BRST formalism. In the cases of the relativistic particle and minisuperspace I consider first the quantization of one branch of the constraint at the time and then discuss the backgrounds in which it is possible to quantize simultaneously both branches. I motivate and define the inner product, and obtain, for example, the Klein-Gordon inner product for the relativistic case. Then I show how to construct phase space path integral representations for amplitudes in these approaches--the Batalin-Fradkin-Vilkovisky (BFV) and the Faddeev path integrals --from which one can then derive the path integrals in coordinate space--the Faddeev-Popov path integral and the geometric path integral. In particular I establish the connection between the Hilbert space representation and the range of the lapse in the path integrals. I also examine the class of paths that contribute in the path integrals and how they affect space-time covariance, concluding that it is consistent to take paths that move forward in time only when there is no electric field. The key elements in this analysis are the space-like paths and the behavior of the action under the non-trivial ( Z_2) element of the reparametrization group.

  10. Time-Domain Pure-state Polarization Analysis of Surface Waves Traversing California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J; Walter, W R; Lay, T

    A time-domain pure-state polarization analysis method is used to characterize surface waves traversing California parallel to the plate boundary. The method is applied to data recorded at four broadband stations in California from twenty-six large, shallow earthquakes which occurred since 1988, yielding polarization parameters such as the ellipticity, Euler angles, instantaneous periods, and wave incident azimuths. The earthquakes are located along the circum-Pacific margin and the ray paths cluster into two groups, with great-circle paths connecting stations MHC and PAS or CMB and GSC. The first path (MHC-PAS) is in the vicinity of the San Andreas Fault System (SAFS), andmore » the second (CMB-GSC) traverses the Sierra Nevada Batholith parallel to and east of the SAFS. Both Rayleigh and Love wave data show refractions due to lateral velocity heterogeneities under the path, indicating that accurate phase velocity and attenuation analysis requires array measurements. The Rayleigh waves are strongly affected by low velocity anomalies beneath Central California, with ray paths bending eastward as waves travel toward the south, while Love waves are less affected, providing observables to constrain the depth extent of the anomalies. Strong lateral gradients in the lithospheric structure between the continent and the ocean are the likely cause of the path deflections.« less

  11. Integrative Families and Systems Treatment: A Middle Path toward Integrating Common and Specific Factors in Evidence-Based Family Therapy

    ERIC Educational Resources Information Center

    Fraser, J. Scott; Solovey, Andrew D.; Grove, David; Lee, Mo Yee; Greene, Gilbert J.

    2012-01-01

    A moderate common factors approach is proposed as a synthesis or middle path to integrate common and specific factors in evidence-based approaches to high-risk youth and families. The debate in family therapy between common and specific factors camps is reviewed and followed by suggestions from the literature for synthesis and creative flexibility…

  12. Metal dioxides as analogue of SiO2 under strong compression studied by synchrotron XRD and simulations

    NASA Astrophysics Data System (ADS)

    Liu, H.; Liu, L. L.

    2017-12-01

    The phase transition sequence of SiO2 inducing by high pressure was theoretically predicted as coordination number (CN=6) structures (rutile, pyrite), CN=8 (Pnma) and CN=9 (P-62m) structures, but only the phases up to pyrite structure in SiO2 were observed experimentally up to now. The CN8 phase and CN9 phases of SiO2 were predicted to be stable at least 650 GPa, which is challenging to achieve in the static DAC experiment at present. In other metal dioxide systems, such as TiO2, the ambient rutile and anatase phases first transform to pyrite (CN6), then to the baddeleyite (CN7) phase, to a Pnma (CN8) phase and P-62m(CN9) phase. In this report, under strong compression at room temperature, several metal dioxides were studied experimentally and theoretically, to verify whether this theoretical predicted trend is common transition path under strong compression. This work was supported by Natural Science Foundation of China (11374075), Heilongjiang Province Science Fund for Distinguished Young Scholars (JC201005), Longjiang Scholar, the Fundamental Research Funds for the Central Universities (HIT. BRET1.2010002, HIT. IBRSEM.A.201403).

  13. Multi-path interferometric Josephson directional amplifier for qubit readout

    NASA Astrophysics Data System (ADS)

    Abdo, Baleegh; Bronn, Nicholas T.; Jinka, Oblesh; Olivadese, Salvatore; Brink, Markus; Chow, Jerry M.

    2018-04-01

    We realize and characterize a quantum-limited, directional Josephson amplifier suitable for qubit readout. The device consists of two nondegenerate, three-wave-mixing amplifiers that are coupled together in an interferometric scheme, embedded in a printed circuit board. Nonreciprocity is generated by applying a phase gradient between the same-frequency pumps feeding the device, which plays the role of the magnetic field in a Faraday medium. Directional amplification and reflection-gain elimination are induced via wave interference between multiple paths in the system. We measure and discuss the main figures of merit of the device and show that the experimental results are in good agreement with theory. An improved version of this directional amplifier is expected to eliminate the need for bulky, off-chip isolation stages that generally separate quantum systems and preamplifiers in high-fidelity, quantum-nondemolition measurement setups.

  14. Young's double-slit interference with two-color biphotons.

    PubMed

    Zhang, De-Jian; Wu, Shuang; Li, Hong-Guo; Wang, Hai-Bo; Xiong, Jun; Wang, Kaige

    2017-12-12

    In classical optics, Young's double-slit experiment with colored coherent light gives rise to individual interference fringes for each light frequency, referring to single-photon interference. However, two-photon double-slit interference has been widely studied only for wavelength-degenerate biphoton, known as subwavelength quantum lithography. In this work, we report double-slit interference experiments with two-color biphoton. Different from the degenerate case, the experimental results depend on the measurement methods. From a two-axis coincidence measurement pattern we can extract complete interference information about two colors. The conceptual model provides an intuitional picture of the in-phase and out-of-phase photon correlations and a complete quantum understanding about the which-path information of two colored photons.

  15. Daytime midlatitude D region parameters at solar minimum from short-path VLF phase and amplitude

    NASA Astrophysics Data System (ADS)

    Thomson, Neil R.; Clilverd, Mark A.; Rodger, Craig J.

    2011-03-01

    Observed phases and amplitudes of VLF radio signals propagating on a short (˜360 km) path are used to find improved parameters for the lowest edge of the (D region of the) Earth's ionosphere at a geomagnetic latitude of ˜53.5° in midsummer near solar minimum. The phases, relative to GPS 1 s pulses, and the amplitudes were measured both near (˜110 km from) the transmitter, where the direct ground wave is very dominant, and at distances of ˜360 km near where the ionospherically reflected waves form a (modal) minimum with the (direct) ground wave. The signals came from the 24.0 kHz transmitter, NAA, on the coast of Maine near the U.S.-Canada border, propagating ˜360 km E-NE, mainly over the sea, to Saint John and Prince Edward Island. The bottom edge of the midday, midsummer, ionosphere at ˜53.5° geomagnetic latitude was thus found to be well modeled by H' = 71.8 ± 0.6 km and β = 0.335 ± 0.025 km-1 where H' and β are Wait's traditional height and sharpness parameters used by the U.S. Navy in their Earth-ionosphere VLF radio waveguide programs. The variation of β with latitude is also estimated with the aid of interpolation using measured galactic cosmic ray fluxes.

  16. A novel design measuring method based on linearly polarized laser interference

    NASA Astrophysics Data System (ADS)

    Cao, Yanbo; Ai, Hua; Zhao, Nan

    2013-09-01

    The interferometric method is widely used in the precision measurement, including the surface quality of the large-aperture mirror. The laser interference technology has been developing rapidly as the laser sources become more and more mature and reliable. We adopted the laser diode as the source for the sake of the short coherent wavelength of it for the optical path difference of the system is quite shorter as several wavelengths, and the power of laser diode is sufficient for measurement and safe to human eye. The 673nm linearly laser was selected and we construct a novel form of interferometric system as we called `Closed Loop', comprised of polarizing optical components, such as polarizing prism and quartz wave plate, the light from the source split by which into measuring beam and referencing beam, they've both reflected by the measuring mirror, after the two beams transforming into circular polarization and spinning in the opposite directions we induced the polarized light synchronous phase shift interference technology to get the detecting fringes, which transfers the phase shifting in time domain to space, so that we did not need to consider the precise-controlled shift of optical path difference, which will introduce the disturbance of the air current and vibration. We got the interference fringes from four different CCD cameras well-alignment, and the fringes are shifted into four different phases of 0, π/2, π, and 3π/2 in time. After obtaining the images from the CCD cameras, we need to align the interference fringes pixel to pixel from different CCD cameras, and synthesis the rough morphology, after getting rid of systematic error, we could calculate the surface accuracy of the measuring mirror. This novel design detecting method could be applied into measuring the optical system aberration, and it would develop into the setup of the portable structural interferometer and widely used in different measuring circumstances.

  17. Elastic constants of hcp 4He: Path-integral Monte Carlo results versus experiment

    NASA Astrophysics Data System (ADS)

    Ardila, Luis Aldemar Peña; Vitiello, Silvio A.; de Koning, Maurice

    2011-09-01

    The elastic constants of hcp 4He are computed using the path-integral Monte Carlo (PIMC) method. The stiffness coefficients are obtained by imposing different distortions to a periodic cell containing 180 atoms, followed by measurement of the elements of the corresponding stress tensor. For this purpose an appropriate path-integral expression for the stress tensor observable is derived and implemented into the pimc++ package. In addition to allowing the determination of the elastic stiffness constants, this development also opens the way to an explicit atomistic determination of the Peierls stress for dislocation motion using the PIMC technique. A comparison of the results to available experimental data shows an overall good agreement of the density dependence of the elastic constants, with the single exception of C13. Additional calculations for the bcc phase, on the other hand, show good agreement for all elastic constants.

  18. The Effects of Ethanol on the Morphological and Biochemical Properties of Individual Human Red Blood Cells.

    PubMed

    Lee, Sang Yun; Park, Hyun Joo; Best-Popescu, Catherine; Jang, Seongsoo; Park, Yong Keun

    2015-01-01

    Here, we report the results of a study on the effects of ethanol exposure on human red blood cells (RBCs) using quantitative phase imaging techniques at the level of individual cells. Three-dimensional refractive index tomograms and dynamic membrane fluctuations of RBCs were measured using common-path diffraction optical tomography, from which morphological (volume, surface area, and sphericity); biochemical (hemoglobin (Hb) concentration and Hb content); and biomechanical (membrane fluctuation) parameters were retrieved at various concentrations of ethanol. RBCs exposed to the ethanol concentration of 0.1 and 0.3% v/v exhibited cell sphericities higher than those of normal cells. However, mean surface area and sphericity of RBCs in a lethal alcoholic condition (0.5% v/v) are not statistically different with those of healthy RBCs. Meanwhile, significant decreases of Hb content and concentration in RBC cytoplasm at the lethal condition were observed. Furthermore, dynamic fluctuation of RBC membranes increased significantly upon ethanol treatments, indicating ethanol-induced membrane fluidization.

  19. Multistep Dst development and ring current composition changes during the 4-6 June 1991 magnetic storm

    NASA Astrophysics Data System (ADS)

    Kozyra, J. U.; Liemohn, M. W.; Clauer, C. R.; Ridley, A. J.; Thomsen, M. F.; Borovsky, J. E.; Roeder, J. L.; Jordanova, V. K.; Gonzalez, W. D.

    2002-08-01

    The 4-6 June 1991 magnetic storm, which occurred during solar maximum conditions, is analyzed to investigate two observed features of magnetic storms that are not completely understood: (1) the mass-dependent decay of the ring current during the early recovery phase and (2) the role of preconditioning in multistep ring current development. A kinetic ring current drift-loss model, driven by dynamic fluxes at the nightside outer boundary, was used to simulate this storm interval. A strong partial ring current developed and persisted throughout the main and early recovery phases. The majority of ions in the partial ring current make one pass through the inner magnetosphere on open drift paths before encountering the dayside magnetopause. The ring current exhibited a three-phase decay in this storm. A short interval of charge-exchange loss constituted the first phase of the decay followed by a classical two-phase decay characterized by an abrupt transition between two very different decay timescales. The short interval dominated by charge-exchange loss occurred because an abrupt northward turning of the interplanetary magnetic field (IMF) trapped ring current ions on closed trajectories, and turned-off sources and ``flow-out'' losses. If this had been the end of the solar wind disturbance, decay timescales would have gradually lengthened as charge exchange preferentially removed the short-lived species; a distinctive two-phase decay would not have resulted. However, the IMF turned weakly southward, drift paths became open, and a standard two-phase decay ensued as the IMF rotated slowly northward again. As has been shown before, a two-phase decay is produced as open drift paths are converted to closed in a weakening convection electric field, driving a transition from the fast flow-out losses associated with the partial ring current to the slower charge-exchange losses associated with the trapped ring current. The open drift path geometry during the main phase and during phase 1 of the two-phase decay has important consequences for the evolution of ring current composition and for preconditioning issues. In this particular storm, ring current composition changes measured by the Combined Release and Radiation Effects Satellite (CRRES) during the main and recovery phase of the storm resulted largely from composition changes in the plasma sheet transmitted into the inner magnetosphere along open drift paths as the magnetic activity declined. Possible preconditioning elements were investigated during the multistep development of this storm, which was driven by the sequential arrival of three southward IMF Bz intervals of increasing peak strength. In each case, previous intensifications (preexisting ring currents) were swept out of the magnetosphere by the enhanced convection associated with the latest intensification and did not act as a significant preconditioning element. However, plasma sheet characteristics varied significantly between subsequent intensifications, altering the response of the magnetosphere to the sequential solar wind drivers. A denser plasma sheet (ring current source population) appeared during the second intensification, compensating for the weaker IMF Bz at this time and producing a minimum pressure-corrected Dst* value comparable to the third intensification (driven by stronger IMF Bz but a lower density plasma sheet source). The controlling influence of the plasma sheet dynamics on the ring current dynamics and its role in altering the inner magnetospheric response to solar wind drivers during magnetic storms adds a sense of urgency to understanding what processes produce time-dependent responses in the plasma sheet density, composition, and temperature.

  20. Predicting links based on knowledge dissemination in complex network

    NASA Astrophysics Data System (ADS)

    Zhou, Wen; Jia, Yifan

    2017-04-01

    Link prediction is the task of mining the missing links in networks or predicting the next vertex pair to be connected by a link. A lot of link prediction methods were inspired by evolutionary processes of networks. In this paper, a new mechanism for the formation of complex networks called knowledge dissemination (KD) is proposed with the assumption of knowledge disseminating through the paths of a network. Accordingly, a new link prediction method-knowledge dissemination based link prediction (KDLP)-is proposed to test KD. KDLP characterizes vertex similarity based on knowledge quantity (KQ) which measures the importance of a vertex through H-index. Extensive numerical simulations on six real-world networks demonstrate that KDLP is a strong link prediction method which performs at a higher prediction accuracy than four well-known similarity measures including common neighbors, local path index, average commute time and matrix forest index. Furthermore, based on the common conclusion that an excellent link prediction method reveals a good evolving mechanism, the experiment results suggest that KD is a considerable network evolving mechanism for the formation of complex networks.

  1. Anisoplanatic image propagation along a slanted path under lower atmosphere phase turbulence in the presence of encrypted chaos

    NASA Astrophysics Data System (ADS)

    Chatterjee, Monish R.; Mohamed, Ali A.

    2017-05-01

    In recent research, anisoplanatic electromagnetic (EM) wave propagation along a slanted path in the presence of low atmosphere phase turbulence (modified von Karman spectrum or MVKS) has been investigated assuming a Hufnagel-Valley (HV) type structure parameter. Preliminary results indicate a strong dependence on the slant angle especially for long range transmission and relatively strong turbulence. The investigation was further divided into two regimes, viz. (a) one where the EM source consisted of a plane wave modulated with a digitized image, which is propagated along the turbulent path and recovered via demodulation at the receiver; and (b) transmit the plane wave without modulation along the turbulent path through an image transparency and a thin lens designed to gather the received image in the focal plane. In this paper, we reexamine the same problem (part (a) only) in the presence of a chaotic optical carrier where the chaos is generated in the feedback loop of an acousto-optic Bragg cell. The image information is encrypted within the chaos wave, and subsequently propagated along a similar slant path and identical turbulence conditions. The recovered image extracted via heterodyning from the received chaos is compared quantitatively (through image cross-correlations and mean-squared error measures) for the non-chaotic versus the chaotic approaches. Generally, "packaging" the information in chaos improves performance through turbulent propagation, and results are discussed from this perspective. Concurrently, we will also examine the effect of a non-encrypted plane EM wave propagation through a transparency-lens combination. These results are also presented with appropriate comparisons with the cases involving lensless transmission of imagery through corresponding turbulent and non-turbulent layers.

  2. Sensitivity of Cirrus and Mixed-phase Clouds to the Ice Nuclei Spectra in McRAS-AC: Single Column Model Simulations

    NASA Technical Reports Server (NTRS)

    Betancourt, R. Morales; Lee, D.; Oreopoulos, L.; Sud, Y. C.; Barahona, D.; Nenes, A.

    2012-01-01

    The salient features of mixed-phase and ice clouds in a GCM cloud scheme are examined using the ice formation parameterizations of Liu and Penner (LP) and Barahona and Nenes (BN). The performance of LP and BN ice nucleation parameterizations were assessed in the GEOS-5 AGCM using the McRAS-AC cloud microphysics framework in single column mode. Four dimensional assimilated data from the intensive observation period of ARM TWP-ICE campaign was used to drive the fluxes and lateral forcing. Simulation experiments where established to test the impact of each parameterization in the resulting cloud fields. Three commonly used IN spectra were utilized in the BN parameterization to described the availability of IN for heterogeneous ice nucleation. The results show large similarities in the cirrus cloud regime between all the schemes tested, in which ice crystal concentrations were within a factor of 10 regardless of the parameterization used. In mixed-phase clouds there are some persistent differences in cloud particle number concentration and size, as well as in cloud fraction, ice water mixing ratio, and ice water path. Contact freezing in the simulated mixed-phase clouds contributed to transfer liquid to ice efficiently, so that on average, the clouds were fully glaciated at T approximately 260K, irrespective of the ice nucleation parameterization used. Comparison of simulated ice water path to available satellite derived observations were also performed, finding that all the schemes tested with the BN parameterization predicted 20 average values of IWP within plus or minus 15% of the observations.

  3. Theory of remote entanglement via quantum-limited phase-preserving amplification

    NASA Astrophysics Data System (ADS)

    Silveri, Matti; Zalys-Geller, Evan; Hatridge, Michael; Leghtas, Zaki; Devoret, Michel H.; Girvin, S. M.

    2016-06-01

    We show that a quantum-limited phase-preserving amplifier can act as a which-path information eraser when followed by heterodyne detection. This "beam splitter with gain" implements a continuous joint measurement on the signal sources. As an application, we propose heralded concurrent remote entanglement generation between two qubits coupled dispersively to separate cavities. Dissimilar qubit-cavity pairs can be made indistinguishable by simple engineering of the cavity driving fields providing further experimental flexibility and the prospect for scalability. Additionally, we find an analytic solution for the stochastic master equation, a quantum filter, yielding a thorough physical understanding of the nonlinear measurement process leading to an entangled state of the qubits. We determine the concurrence of the entangled states and analyze its dependence on losses and measurement inefficiencies.

  4. Parasitic Effects of Grounding Paths on Common-Mode EMI Filter's Performance in Power Electronics Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shuo; Maillet, Yoann; Wang, Fei

    2010-01-01

    High-frequency common-mode (CM) electromagnetic-interference (EMI) noise is difficult to suppress in electronics systems. EMI filters are used to suppress CM noise, but their performance is greatly affected by the parasitic effects of the grounding paths. In this paper, the parasitic effects of the grounding paths on an EMI filter's performance are investigated in a motor-drive system. The effects of the mutual inductance between two grounding paths are explored. Guidelines for the grounding of CM EMI filters are derived. Simulations and experiments are finally carried out to verify the theoretical analysis.

  5. Nano-optical functionality based on local photoisomerization in photochromic single crystal

    NASA Astrophysics Data System (ADS)

    Nakagomi, Ryo; Uchiyama, Kazuharu; Kubota, Satoru; Hatano, Eri; Uchida, Kingo; Naruse, Makoto; Hori, Hirokazu

    2018-01-01

    Towards the construction of functional devices and systems using optical near-field processes, we demonstrate the multivalent features in the path-branching phenomena in a photochromic single crystal observed in optical phase change between colorless (1o) and blue-colored (1c) phases that transmits in subwavelength scale over a macroscopic spatial range associated with local mechanical distortions induced. To observe the near-field optical processes of transmission path branching, we have developed a top-to-bottom double-probe scanning near-field optical microscope capable of nanometer-scale correlation measurements by two individually position-controlled probes that face each other sandwiching the photochromic material. We have experimentally confirmed that a local near-field optical excitation applied to one side of the photochromic crystal by a probe tip resulted in characteristic structures of subwavelength scale around 100 nm or less that are observed by the other probe tip located on the opposite side. The structures are different from those resulting from far-field excitations that are quantitively evaluated by autocorrelations. The results suggest that the mechanical distortion caused by the local phase change in the photochromic crystal suppresses the phase change of the neighboring molecules. This new type of optical-near-field-induced local photoisomerization has the potential to allow the construction of functional devices with multivalent properties for natural intelligence.

  6. Light-driven phase shifter

    DOEpatents

    Early, James W.

    1990-01-01

    A light-driven phase shifter is provided for modulating a transmission light beam. A gaseous medium such as argon is provided with electron energy states excited to populate a metastable state. A tunable dye laser is selected with a wavelength effective to deplete the metastable electron state and may be intensity modulated. The dye laser is directed through the gaseous medium to define a first optical path having an index of refraction determined by the gaseous medium having a depleted metastable electron state. A transmission laser beam is also directed through the gaseous medium to define a second optical path at least partially coincident with the first optical path. The intensity of the dye laser beam may then be varied to phase modulate the transmission laser beam.

  7. Ground-based remote sensing of thin clouds in the Arctic

    NASA Astrophysics Data System (ADS)

    Garrett, T. J.; Zhao, C.

    2013-05-01

    This paper describes a method for using interferometer measurements of downwelling thermal radiation to retrieve the properties of single-layer clouds. Cloud phase is determined from ratios of thermal emission in three "micro-windows" at 862.5 cm-1, 935.8 cm-1, and 988.4 cm-1 where absorption by water vapour is particularly small. Cloud microphysical and optical properties are retrieved from thermal emission in the first two of these micro-windows, constrained by the transmission through clouds of primarily stratospheric ozone emission at 1040 cm-1. Assuming a cloud does not approximate a blackbody, the estimated 95% confidence retrieval errors in effective radius re, visible optical depth τ, number concentration N, and water path WP are, respectively, 10%, 20%, 38% (55% for ice crystals), and 16%. Applied to data from the Atmospheric Radiation Measurement programme (ARM) North Slope of Alaska - Adjacent Arctic Ocean (NSA-AAO) site near Barrow, Alaska, retrievals show general agreement with both ground-based microwave radiometer measurements of liquid water path and a method that uses combined shortwave and microwave measurements to retrieve re, τ and N. Compared to other retrieval methods, advantages of this technique include its ability to characterise thin clouds year round, that water vapour is not a primary source of retrieval error, and that the retrievals of microphysical properties are only weakly sensitive to retrieved cloud phase. The primary limitation is the inapplicability to thicker clouds that radiate as blackbodies and that it relies on a fairly comprehensive suite of ground based measurements.

  8. Compensation of high order harmonic long quantum-path attosecond chirp

    NASA Astrophysics Data System (ADS)

    Guichard, R.; Caillat, J.; Lévêque, C.; Risoud, F.; Maquet, A.; Taïeb, R.; Zaïr, A.

    2017-12-01

    We propose a method to compensate for the extreme ultra violet (XUV) attosecond chirp associated with the long quantum-path in the high harmonic generation process. Our method employs an isolated attosecond pulse (IAP) issued from the short trajectory contribution in a primary target to assist the infrared driving field to produce high harmonics from the long trajectory in a secondary target. In our simulations based on the resolution of the time-dependent Schrödinger equation, the resulting high harmornics present a clear phase compensation of the long quantum-path contribution, near to Fourier transform limited attosecond XUV pulse. Employing time-frequency analysis of the high harmonic dipole, we found that the compensation is not a simple far-field photonic interference between the IAP and the long-path harmonic emission, but a coherent phase transfer from the weak IAP to the long quantum-path electronic wavepacket. Our approach opens the route to utilizing the long quantum-path for the production and applications of attosecond pulses.

  9. Common-path Fourier domain optical coherence tomography of irradiated human skin and ventilated isolated rabbit lungs

    NASA Astrophysics Data System (ADS)

    Popp, A.; Wendel, M.; Knels, L.; Knuschke, P.; Mehner, M.; Koch, T.; Boller, D.; Koch, P.; Koch, E.

    2005-08-01

    A compact common path Fourier domain optical coherence tomography (FD-OCT) system based on a broadband superluminescence diode is used for biomedical imaging. The epidermal thickening of human skin after exposure to ultraviolet radiation is measured to proof the feasibility of FD-OCT for future substitution of invasive biopsies in a long term study on natural UV skin protection. The FD-OCT system is also used for imaging lung parenchyma. FD-OCT images of a formalin fixated lung show the same alveolar structure as scanning electron microscopy images. In the ventilated and blood-free perfused isolated rabbit lung FD-OCT is used for real-time cross-sectional image capture of alveolar mechanics throughout tidal ventilation. The alveolar mechanics changing from alternating recruitment-derecruitment at zero positive end-expiratory pressure (PEEP) to persistent recruitment after applying a PEEP of 5 cm H2O is observed in the OCT images.

  10. Measuring the seismic velocity in the top 15 km of Earth's inner core

    NASA Astrophysics Data System (ADS)

    Godwin, Harriet; Waszek, Lauren; Deuss, Arwen

    2018-01-01

    We present seismic observations of the uppermost layer of the inner core. This was formed most recently, thus its seismic features are related to current solidification processes. Previous studies have only constrained the east-west hemispherical seismic velocity structure in the Earth's inner core at depths greater than 15 km below the inner core boundary. The properties of shallower structure have not yet been determined, because the seismic waves PKIKP and PKiKP used for differential travel time analysis arrive close together and start to interfere. Here, we present a method to make differential travel time measurements for waves that turn in the top 15 km of the inner core, and measure the corresponding seismic velocity anomalies. We achieve this by generating synthetic seismograms to model the overlapping signals of the inner core phase PKIKP and the inner core boundary phase PKiKP. We then use a waveform comparison to attribute different parts of the signal to each phase. By measuring the same parts of the signal in both observed and synthetic data, we are able to calculate differential travel time residuals. We apply our method to data with ray paths which traverse the Pacific hemisphere boundary. We generate a velocity model for this region, finding lower velocity for deeper, more easterly ray paths. Forward modelling suggests that this region contains either a high velocity upper layer, or variation in the location of the hemisphere boundary with depth and/or latitude. Our study presents the first direct seismic observation of the uppermost 15 km of the inner core, opening new possibilities for further investigating the inner core boundary region.

  11. Development of a fiber optic pavement subgrade strain measurement system

    NASA Astrophysics Data System (ADS)

    Miller, Craig Emerson

    2000-11-01

    This dissertation describes the development of a fiber optic sensing system to measure strains within the soil subgrade of highway pavements resulting from traffic loads. The motivation to develop such a device include improvements to: (1)all phases of pavement design, (2)theoretical models used to predict pavement performance, and (3)pavement rehabilitation. The design of the sensing system encompasses selecting an appropriate transducer design as well as the development of optimal optical and demodulation systems. The first is spring based, which attempts to match its spring stiffness to that of the soil-data indicate it is not an optimal transducer design. The second transducer implements anchoring plates attached to two telescoping tubes which allows the soil to be compacted to a desired density between the plates to dictate the transducer's behavior. Both transducers include an extrinsic Fabry- Perot cavity to impose the soil strains onto a phase change of the optical signal propagating through the cavity. The optical system includes a low coherence source and allows phase modulation via path length stretching by adding a second interferometer in series with the transducer, resulting in a path matched differential interferometer. A digitally implemented synthetic heterodyne demodulator based on a four step phase stepping algorithm is used to obtain unambiguous soil strain information from the displacement of the Fabry-Perot cavity. The demodulator is calibrated and characterized by illuminating the transducer with a second long coherence source of different wavelength. The transducer using anchoring plates is embedded within cylindrical soil specimens of varying soil types and soil moisture contents. Loads are applied to the specimen and resulting strains are measured using the embedded fiber optic gage and LVDTs attached to the surface of the specimen. This experimental verification is substantiated using a finite element analysis to predict any differences between interior and surface strains in the specimens. The experimental data indicate 2-inch diameter anchoring plates embedded in soil close to its optimum moisture content allow for very accurate soil strain measurements.

  12. Equation of state, phase stability, and phase transformations of uranium-6 wt. % niobium under high pressure and temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Jianzhong; Vogel, Sven; Brown, Donald; Clausen, Bjorn; Hackenberg, Robert

    2018-05-01

    In-situ time-of-flight neutron diffraction experiments were conducted on the uranium-niobium alloy with 6 wt. % Nb (U-6Nb) at pressures up to 4.7 GPa and temperatures up to 1073 K. Upon static compression at room temperature, the monoclinic structure of U-6Nb (α″ U-6Nb) remains stable up to the highest experimental pressure. Based on the pressure-volume measurements at room temperature, the least-squares fit using the finite-strain equation of state (EOS) yields an isothermal bulk modulus of B0 = 127 ± 2 GPa for the α″-phase of U-6Nb. The calculated zero-pressure bulk sound speed from this EOS is 2.706 ± 0.022 km/s, which is in good agreement with the linear extrapolation of the previous Hugoniot data above 12 GPa for α″ U-6Nb, indicating that the dynamic response under those shock-loading conditions is consistent with the stabilization of the initial monoclinic phase of U-6Nb. Upon heating at ambient and high pressures, the metastable α″ U-6Nb exhibits complex transformation paths leading to the diffusional phase decomposition, which are sensitive to applied pressure, stress state, and temperature-time path. These findings provide new insight into the behavior of atypical systems such as U-Nb and suggest that the different U-Nb phases are separated by rather small energies and hence highly sensitive to compositional, thermal, and mechanical perturbations.

  13. Graph theoretical analysis of EEG functional connectivity during music perception.

    PubMed

    Wu, Junjie; Zhang, Junsong; Liu, Chu; Liu, Dongwei; Ding, Xiaojun; Zhou, Changle

    2012-11-05

    The present study evaluated the effect of music on large-scale structure of functional brain networks using graph theoretical concepts. While most studies on music perception used Western music as an acoustic stimulus, Guqin music, representative of Eastern music, was selected for this experiment to increase our knowledge of music perception. Electroencephalography (EEG) was recorded from non-musician volunteers in three conditions: Guqin music, noise and silence backgrounds. Phase coherence was calculated in the alpha band and between all pairs of EEG channels to construct correlation matrices. Each resulting matrix was converted into a weighted graph using a threshold, and two network measures: the clustering coefficient and characteristic path length were calculated. Music perception was found to display a higher level mean phase coherence. Over the whole range of thresholds, the clustering coefficient was larger while listening to music, whereas the path length was smaller. Networks in music background still had a shorter characteristic path length even after the correction for differences in mean synchronization level among background conditions. This topological change indicated a more optimal structure under music perception. Thus, prominent small-world properties are confirmed in functional brain networks. Furthermore, music perception shows an increase of functional connectivity and an enhancement of small-world network organizations. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Sign phase transition in the problem of interfering directed paths

    NASA Astrophysics Data System (ADS)

    Baldwin, C. L.; Laumann, C. R.; Spivak, B.

    2018-01-01

    We investigate the statistical properties of interfering directed paths in disordered media. At long distance, the average sign of the sum over paths may tend to zero (sign disordered) or remain finite (sign ordered) depending on dimensionality and the concentration of negative scattering sites x . We show that in two dimensions the sign-ordered phase is unstable even for arbitrarily small x by identifying rare destabilizing events. In three dimensions, we present strong evidence that there is a sign phase transition at a finite xc>0 . These results have consequences for several different physical systems. In two-dimensional insulators at low temperature, the variable-range-hopping magnetoresistance is always negative, while in three dimensions, it changes sign at the point of the sign phase transition. We also show that in the sign-disordered regime a small magnetic field may enhance superconductivity in a random system of D -wave superconducting grains embedded in a metallic matrix. Finally, the existence of the sign phase transition in three dimensions implies new features in the spin-glass phase diagram at high temperature.

  15. Common path endoscopic probes for optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Singh, Kanwarpal; Gardecki, Joseph A.; Tearney, Guillermo J.

    2017-02-01

    Background: Dispersion imbalance and polarization mismatch between the reference and sample arm signals can lead to image quality degradation in optical coherence tomography (OCT). One approach to reduce these image artifacts is to employ a common-path geometry in fiber-based probes. In this work, we report an 800 um diameter all-fiber common-path monolithic probe for coronary artery imaging where the reference signal is generated using an inline fiber partial reflector. Methods: Our common-path probe was designed for swept-source based Fourier domain OCT at 1310 nm wavelength. A face of a coreless fiber was coated with gold and spliced to a standard SMF-28 single mode fiber creating an inline partial reflector, which acted as a reference surface. The other face of the coreless fiber was shaped into a ball lens for focusing. The optical elements were assembled within a 560 µm diameter drive shaft, which was attached to a rotary junction. The drive shaft was placed inside a transparent sheath having an outer diameter of 800 µm. Results: With a source input power of 30mW, the inline common-path probe achieved a sensitivity of 104 dB. Images of human finger skin showed the characteristic layers of skin as well as features such as sweat ducts. Images of coronary arteries ex vivo obtained with this probe enabled visualization of the characteristic architectural morphology of the normal artery wall and known features of atherosclerotic plaque. Conclusion: In this work, we have demonstrated a common path OCT probe for cardiovascular imaging. The probe is easy to fabricate, will reduce system complexity and overall cost. We believe that this design will be helpful in endoscopic applications that require high resolution and a compact form factor.

  16. A phase-field approach to model multi-axial and microstructure dependent fracture in nuclear grade graphite

    DOE PAGES

    Chakraborty, Pritam; Sabharwall, Piyush; Carroll, Mark C.

    2016-04-07

    The fracture behavior of nuclear grade graphites is strongly influenced by underlying microstructural features such as the character of filler particles, and the distribution of pores and voids. These microstructural features influence the crack nucleation and propagation behavior, resulting in quasi-brittle fracture with a tortuous crack path and significant scatter in measured bulk strength. This paper uses a phase-field method to model the microstructural and multi-axial fracture in H-451, a historic variant of nuclear graphite that provides the basis for an idealized study on a legacy grade. The representative volume elements are constructed from randomly located pores with random sizemore » obtained from experimentally determined log-normal distribution. The representative volume elements are then subjected to simulated multi-axial loading, and a reasonable agreement of the resulting fracture stress with experiments is obtained. Finally, quasi-brittle stress-strain evolution with a tortuous crack path is also observed from the simulations and is consistent with experimental results.« less

  17. A double-fibre Fabry-Perot sensor based on modified fringe counting and direct phase demodulation

    NASA Astrophysics Data System (ADS)

    Li, M.; Tong, B.; Arsad, N.; Guo, J. J.

    2013-09-01

    A modified double-fibre Fabry-Perot cavity is developed for determination of the fringe moving direction and higher sensitivity in applications of liquid level and displacement sensors. Two fibres are integrated into a silica ferrule where the ends of the two fibres in the ferrule serve as the front surfaces of the Fabry-Perot cavities, and a diaphragm, which is replaced by a moving mirror for measurement of displacement, serves as the rear surface for both cavities in liquid level sensing. Our design has no strict requirements for a specific phase difference between the two optical paths, just a constant difference resulting from the processing error between the two fibre end positions rather than a precise optical path difference of λ/8 to judge the pattern shift direction. Experimental results demonstrate the feasibility of this approach to determining the fringe moving direction, a displacement sensitivity of 3 µm and good linearity for both applications.

  18. Distribution of activity at the solar active longitudes between 1979 - 2011 in the northern hemisphere

    NASA Astrophysics Data System (ADS)

    Gyenge, N.; Baranyi, T.; Ludmány, A.

    The solar active longitudes were studied in the northern hemisphere in cycles 22 and 23 by using data of DPD sunspot catalogue. The active longitudes are not fixed in the Carrington system, they have a well recognizable migration path between the descending phase of cycle 21 (from about 1984) and ascending phase of cycle 23 (until about 1996), out of this interval the migration path is ambiguous. The longitudinal distribution on both sides of the path has been computed and averaged for the length of the path. The so-called flip-flop phenomenon, when the activity temporarily gets to the opposite longitude, can also be recognized. The widths of the active domains are fairly narrow in the increasing and decaying phases of cycle 22, their half widths are about 20°-30° for both the main and secondary active belts but it is more flat and stretched around the maximum with a half width of about 60°.

  19. Application of Extended Kalman Filter in Persistant Scatterer Interferometry to Enhace the Accuracy of Unwrapping Process

    NASA Astrophysics Data System (ADS)

    Tavakkoli Estahbanat, A.; Dehghani, M.

    2017-09-01

    In interferometry technique, phases have been modulated between 0-2π. Finding the number of integer phases missed when they were wrapped is the main goal of unwrapping algorithms. Although the density of points in conventional interferometry is high, this is not effective in some cases such as large temporal baselines or noisy interferograms. Due to existing noisy pixels, not only it does not improve results, but also it leads to some unwrapping errors during interferogram unwrapping. In PS technique, because of the sparse PS pixels, scientists are confronted with a problem to unwrap phases. Due to the irregular data separation, conventional methods are sterile. Unwrapping techniques are divided in to path-independent and path-dependent in the case of unwrapping paths. A region-growing method which is a path-dependent technique has been used to unwrap PS data. In this paper an idea of EKF has been generalized on PS data. This algorithm is applied to consider the nonlinearity of PS unwrapping problem as well as conventional unwrapping problem. A pulse-pair method enhanced with singular value decomposition (SVD) has been used to estimate spectral shift from interferometric power spectral density in 7*7 local windows. Furthermore, a hybrid cost-map is used to manage the unwrapping path. This algorithm has been implemented on simulated PS data. To form a sparse dataset, A few points from regular grid are randomly selected and the RMSE of results and true unambiguous phases in presented to validate presented approach. The results of this algorithm and true unwrapped phases were completely identical.

  20. Measuring Gravitation Using Polarization Spectroscopy

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey; Yu, Nan; Maleki, Lute

    2004-01-01

    A proposed method of measuring gravitational acceleration would involve the application of polarization spectroscopy to an ultracold, vertically moving cloud of atoms (an atomic fountain). A related proposed method involving measurements of absorption of light pulses like those used in conventional atomic interferometry would yield an estimate of the number of atoms participating in the interferometric interaction. The basis of the first-mentioned proposed method is that the rotation of polarization of light is affected by the acceleration of atoms along the path of propagation of the light. The rotation of polarization is associated with a phase shift: When an atom moving in a laboratory reference interacts with an electromagnetic wave, the energy levels of the atom are Doppler-shifted, relative to where they would be if the atom were stationary. The Doppler shift gives rise to changes in the detuning of the light from the corresponding atomic transitions. This detuning, in turn, causes the electromagnetic wave to undergo a phase shift that can be measured by conventional means. One would infer the gravitational acceleration and/or the gradient of the gravitational acceleration from the phase measurements.

  1. Babinet's principle in the Fresnel regime studied using ultrasound

    NASA Astrophysics Data System (ADS)

    Hitachi, Akira; Takata, Momo

    2010-07-01

    The diffraction of ultrasound by a circular disk and an aperture of the same size has been investigated as a demonstration of Babinet's principle in the Fresnel regime. The amplitude and the phase of the diffracted ultrasonic waves are measured and a graphical treatment of the results is performed by drawing vectors in the complex plane. The results verify Babinet's principle. It is also found that the incident wave is π /2 behind the phase of the wave passing through on the central axis of a circular aperture. Because both waves travel the same path and the same distance, they should be in phase. This paradox has previously been regarded as a defect of Fresnel's theory.

  2. Middle infrared (wavelength range: 8 μm-14 μm) 2-dimensional spectroscopy (total weight with electrical controller: 1.7 kg, total cost: less than 10,000 USD) so-called hyperspectral camera for unmanned air vehicles like drones

    NASA Astrophysics Data System (ADS)

    Yamamoto, Naoyuki; Saito, Tsubasa; Ogawa, Satoru; Ishimaru, Ichiro

    2016-05-01

    We developed the palm size (optical unit: 73[mm]×102[mm]×66[mm]) and light weight (total weight with electrical controller: 1.7[kg]) middle infrared (wavelength range: 8[μm]-14[μm]) 2-dimensional spectroscopy for UAV (Unmanned Air Vehicle) like drone. And we successfully demonstrated the flights with the developed hyperspectral camera mounted on the multi-copter so-called drone in 15/Sep./2015 at Kagawa prefecture in Japan. We had proposed 2 dimensional imaging type Fourier spectroscopy that was the near-common path temporal phase-shift interferometer. We install the variable phase shifter onto optical Fourier transform plane of infinity corrected imaging optical systems. The variable phase shifter was configured with a movable mirror and a fixed mirror. The movable mirror was actuated by the impact drive piezo-electric device (stroke: 4.5[mm], resolution: 0.01[μm], maker: Technohands Co.,Ltd., type:XDT50-45, price: around 1,000USD). We realized the wavefront division type and near common path interferometry that has strong robustness against mechanical vibrations. Without anti-mechanical vibration systems, the palm-size Fourier spectroscopy was realized. And we were able to utilize the small and low-cost middle infrared camera that was the micro borometer array (un-cooled VOxMicroborometer, pixel array: 336×256, pixel pitch: 17[μm], frame rate 60[Hz], maker: FLIR, type: Quark 336, price: around 5,000USD). And this apparatus was able to be operated by single board computer (Raspberry Pi.). Thus, total cost was less than 10,000 USD. We joined with KAMOME-PJ (Kanagawa Advanced MOdule for Material Evaluation Project) with DRONE FACTORY Corp., KUUSATSU Corp., Fuji Imvac Inc. And we successfully obtained the middle infrared spectroscopic imaging with multi-copter drone.

  3. Characterization of airborne transducers by optical tomography

    PubMed

    Bou Matar O; Pizarro; Certon; Remenieras; Patat

    2000-03-01

    This paper describes the application of an acousto-optic method to the measurement of airborne ultrasound. The method consists of a heterodyne interferometric probing of the pressure emitted by the transducer combined with a tomographic algorithm. The heterodyne interferometer measures the optical phase shift of the probe laser beam, proportional to the acoustic pressure integrated along the light path. A number of projections of the sound field, e.g. a set of ray integrals obtained along parallel paths, are made in moving the transducer to be tested. The main advantage of the method is its very high sensitivity in air (2 x 10(-4) Pa Hz-1/2), combined with a large bandwidth. Using the same principle as X-ray tomography the ultrasonic pressure in a plane perpendicular to the transducer axis can be reconstructed. Several ultrasonic fields emitted by wide-band home made electrostatic transducers, with operating frequencies between 200 and 700 kHz, have been measured. The sensitivities compared favorably with those of commercial airborne transducers.

  4. The CREW intercomparison of SEVIRI cloud retrievals

    NASA Astrophysics Data System (ADS)

    Hamann, U.; Walther, A.; Bennartz, R.; Thoss, A.; Meirink, J. M.; Roebeling, R.

    2012-12-01

    About 70% of the earth's surface is covered with clouds. They strongly influence the radiation balance and the water cycle of the earth. Hence the detailed monitoring of cloud properties - such as cloud fraction, cloud top temperature, cloud particle size, and cloud water path - is important to understand the role of clouds in the weather and the climate system. The remote sensing with passive sensors is an essential mean for the global observation of the cloud parameters, but is nevertheless challenging. This presentation focuses on the inter-comparison and validation of cloud physical properties retrievals from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard METEOSAT. For this study we use retrievals from 12 state-of-art algorithms (Eumetsat, KNMI, NASA Langley, NASA Goddard, University Madison/Wisconsin, DWD, DLR, Meteo-France, KMI, FU Berlin, UK MetOffice) that are made available through the common database of the CREW (Cloud Retrieval Evaluation Working) group. Cloud detection, cloud top phase, height, and temperature, as well as optical properties and water path are validated with CLOUDSAT, CALIPSO, MISR, and AMSR-E measurements. Special emphasis is given to challenging retrieval conditions. Semi-transparent clouds over the earth's surface or another cloud layer modify the measured brightness temperature and increase the retrieval uncertainty. The consideration of the three-dimensional radiative effects is especially important for large viewing angles and broken cloud fields. Aerosols might be misclassified as cloud and may increase the retrieval uncertainty, too. Due to the availability of the high number of sophisticated retrieval datasets, the advantages of different retrieval approaches can be examined and suggestions for future retrieval developments can be made. We like to thank Eumetsat for sponsoring the CREW project including this work.nstitutes that participate in the CREW project.

  5. Sensitivity Analysis of Situational Awareness Measures

    NASA Technical Reports Server (NTRS)

    Shively, R. J.; Davison, H. J.; Burdick, M. D.; Rutkowski, Michael (Technical Monitor)

    2000-01-01

    A great deal of effort has been invested in attempts to define situational awareness, and subsequently to measure this construct. However, relatively less work has focused on the sensitivity of these measures to manipulations that affect the SA of the pilot. This investigation was designed to manipulate SA and examine the sensitivity of commonly used measures of SA. In this experiment, we tested the most commonly accepted measures of SA: SAGAT, objective performance measures, and SART, against different levels of SA manipulation to determine the sensitivity of such measures in the rotorcraft flight environment. SAGAT is a measure in which the simulation blanks in the middle of a trial and the pilot is asked specific, situation-relevant questions about the state of the aircraft or the objective of a particular maneuver. In this experiment, after the pilot responded verbally to several questions, the trial continued from the point frozen. SART is a post-trial questionnaire that asked for subjective SA ratings from the pilot at certain points in the previous flight. The objective performance measures included: contacts with hazards (power lines and towers) that impeded the flight path, lateral and vertical anticipation of these hazards, response time to detection of other air traffic, and response time until an aberrant fuel gauge was detected. An SA manipulation of the flight environment was chosen that undisputedly affects a pilot's SA-- visibility. Four variations of weather conditions (clear, light rain, haze, and fog) resulted in a different level of visibility for each trial. Pilot SA was measured by either SAGAT or the objective performance measures within each level of visibility. This enabled us to not only determine the sensitivity within a measure, but also between the measures. The SART questionnaire and the NASA-TLX, a measure of workload, were distributed after every trial. Using the newly developed rotorcraft part-task laboratory (RPTL) at NASA Ames Research Center, each pilot flew eight trials, four using SAGAT and four using performance measures. Each set of four trials differed by level of visibility as well. The flight paths were very similar in appearance and hazard number, allowing comparison between flight paths. The pilots were tasked with flying along a road at an assigned altitude and speed while avoiding any hazards that they happened upon. The attempt here was not to find a single best measure of SA, but rather to begin an investigation of the sensitivity of common measures of SA. Upon completion of this study, its results, in combination with future studies, should allow us to develop an empirically based taxonomy of SA measures and the contexts for their appropriate use.

  6. Combined Cycle Engine Large-Scale Inlet for Mode Transition Experiments: System Identification Rack Hardware Design

    NASA Technical Reports Server (NTRS)

    Thomas, Randy; Stueber, Thomas J.

    2013-01-01

    The System Identification (SysID) Rack is a real-time hardware-in-the-loop data acquisition (DAQ) and control instrument rack that was designed and built to support inlet testing in the NASA Glenn Research Center 10- by 10-Foot Supersonic Wind Tunnel. This instrument rack is used to support experiments on the Combined-Cycle Engine Large-Scale Inlet for Mode Transition Experiment (CCE? LIMX). The CCE?LIMX is a testbed for an integrated dual flow-path inlet configuration with the two flow paths in an over-and-under arrangement such that the high-speed flow path is located below the lowspeed flow path. The CCE?LIMX includes multiple actuators that are designed to redirect airflow from one flow path to the other; this action is referred to as "inlet mode transition." Multiple phases of experiments have been planned to support research that investigates inlet mode transition: inlet characterization (Phase-1) and system identification (Phase-2). The SysID Rack hardware design met the following requirements to support Phase-1 and Phase-2 experiments: safely and effectively move multiple actuators individually or synchronously; sample and save effector control and position sensor feedback signals; automate control of actuator positioning based on a mode transition schedule; sample and save pressure sensor signals; and perform DAQ and control processes operating at 2.5 KHz. This document describes the hardware components used to build the SysID Rack including their function, specifications, and system interface. Furthermore, provided in this document are a SysID Rack effectors signal list (signal flow); system identification experiment setup; illustrations indicating a typical SysID Rack experiment; and a SysID Rack performance overview for Phase-1 and Phase-2 experiments. The SysID Rack described in this document was a useful tool to meet the project objectives.

  7. Bayesian Analysis of Evolutionary Divergence with Genomic Data under Diverse Demographic Models.

    PubMed

    Chung, Yujin; Hey, Jody

    2017-06-01

    We present a new Bayesian method for estimating demographic and phylogenetic history using population genomic data. Several key innovations are introduced that allow the study of diverse models within an Isolation-with-Migration framework. The new method implements a 2-step analysis, with an initial Markov chain Monte Carlo (MCMC) phase that samples simple coalescent trees, followed by the calculation of the joint posterior density for the parameters of a demographic model. In step 1, the MCMC sampling phase, the method uses a reduced state space, consisting of coalescent trees without migration paths, and a simple importance sampling distribution without the demography of interest. Once obtained, a single sample of trees can be used in step 2 to calculate the joint posterior density for model parameters under multiple diverse demographic models, without having to repeat MCMC runs. Because migration paths are not included in the state space of the MCMC phase, but rather are handled by analytic integration in step 2 of the analysis, the method is scalable to a large number of loci with excellent MCMC mixing properties. With an implementation of the new method in the computer program MIST, we demonstrate the method's accuracy, scalability, and other advantages using simulated data and DNA sequences of two common chimpanzee subspecies: Pan troglodytes (P. t.) troglodytes and P. t. verus. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Unidirectional, dual-comb lasing under multiple pulse formation mechanisms in a passively mode-locked fiber ring laser

    NASA Astrophysics Data System (ADS)

    Liu, Ya; Zhao, Xin; Hu, Guoqing; Li, Cui; Zhao, Bofeng; Zheng, Zheng

    2016-09-01

    Dual-comb lasers from which asynchronous ultrashort pulses can be simultaneously generated have recently become an interesting research subject. They could be an intriguing alternative to the current dual-laser optical-frequency-comb source with highly sophisticated electronic control systems. If generated through a common light path traveled by all pulses, the common-mode noises between the spectral lines of different pulse trains could be significantly reduced. Therefore, coherent dual-comb generation from a completely common-path, unidirectional lasing cavity would be an interesting territory to explore. In this paper, we demonstrate such a dual-comb lasing scheme based on a nanomaterial saturable absorber with additional pulse narrowing and broadening mechanisms concurrently introduced into a mode-locked fiber laser. The interactions between multiple soliton formation mechanisms result in unusual bifurcation into two-pulse states with quite different characteristics. Simultaneous oscillation of pulses with four-fold difference in pulsewidths and tens of Hz repetition rate difference is observed. The coherence between these spectral-overlapped, picosecond and femtosecond pulses is further verified by the corresponding asynchronous cross-sampling and dual-comb spectroscopy measurements.

  9. Born iterative reconstruction using perturbed-phase field estimates.

    PubMed

    Astheimer, Jeffrey P; Waag, Robert C

    2008-10-01

    A method of image reconstruction from scattering measurements for use in ultrasonic imaging is presented. The method employs distorted-wave Born iteration but does not require using a forward-problem solver or solving large systems of equations. These calculations are avoided by limiting intermediate estimates of medium variations to smooth functions in which the propagated fields can be approximated by phase perturbations derived from variations in a geometric path along rays. The reconstruction itself is formed by a modification of the filtered-backpropagation formula that includes correction terms to account for propagation through an estimated background. Numerical studies that validate the method for parameter ranges of interest in medical applications are presented. The efficiency of this method offers the possibility of real-time imaging from scattering measurements.

  10. Complex quantum network geometries: Evolution and phase transitions

    NASA Astrophysics Data System (ADS)

    Bianconi, Ginestra; Rahmede, Christoph; Wu, Zhihao

    2015-08-01

    Networks are topological and geometric structures used to describe systems as different as the Internet, the brain, or the quantum structure of space-time. Here we define complex quantum network geometries, describing the underlying structure of growing simplicial 2-complexes, i.e., simplicial complexes formed by triangles. These networks are geometric networks with energies of the links that grow according to a nonequilibrium dynamics. The evolution in time of the geometric networks is a classical evolution describing a given path of a path integral defining the evolution of quantum network states. The quantum network states are characterized by quantum occupation numbers that can be mapped, respectively, to the nodes, links, and triangles incident to each link of the network. We call the geometric networks describing the evolution of quantum network states the quantum geometric networks. The quantum geometric networks have many properties common to complex networks, including small-world property, high clustering coefficient, high modularity, and scale-free degree distribution. Moreover, they can be distinguished between the Fermi-Dirac network and the Bose-Einstein network obeying, respectively, the Fermi-Dirac and Bose-Einstein statistics. We show that these networks can undergo structural phase transitions where the geometrical properties of the networks change drastically. Finally, we comment on the relation between quantum complex network geometries, spin networks, and triangulations.

  11. Complex quantum network geometries: Evolution and phase transitions.

    PubMed

    Bianconi, Ginestra; Rahmede, Christoph; Wu, Zhihao

    2015-08-01

    Networks are topological and geometric structures used to describe systems as different as the Internet, the brain, or the quantum structure of space-time. Here we define complex quantum network geometries, describing the underlying structure of growing simplicial 2-complexes, i.e., simplicial complexes formed by triangles. These networks are geometric networks with energies of the links that grow according to a nonequilibrium dynamics. The evolution in time of the geometric networks is a classical evolution describing a given path of a path integral defining the evolution of quantum network states. The quantum network states are characterized by quantum occupation numbers that can be mapped, respectively, to the nodes, links, and triangles incident to each link of the network. We call the geometric networks describing the evolution of quantum network states the quantum geometric networks. The quantum geometric networks have many properties common to complex networks, including small-world property, high clustering coefficient, high modularity, and scale-free degree distribution. Moreover, they can be distinguished between the Fermi-Dirac network and the Bose-Einstein network obeying, respectively, the Fermi-Dirac and Bose-Einstein statistics. We show that these networks can undergo structural phase transitions where the geometrical properties of the networks change drastically. Finally, we comment on the relation between quantum complex network geometries, spin networks, and triangulations.

  12. Computational study on the aminolysis of beta-hydroxy-alpha,beta-unsaturated ester via the favorable path including the formation of alpha-oxo ketene intermediate.

    PubMed

    Jin, Lu; Xue, Ying; Zhang, Hui; Kim, Chan Kyung; Xie, Dai Qian; Yan, Guo Sen

    2008-05-15

    The possible mechanisms of the aminolysis of N-methyl-3-(methoxycarbonyl)-4-hydroxy-2-pyridone (beta-hydroxy-alpha,beta-unsaturated ester) with dimethylamine are investigated at the hybrid density functional theory B3LYP/6-31G(d,p) level in the gas phase. Single-point computations at the B3LYP/6-311++G(d,p) and the Becke88-Becke95 1-parameter model BB1K/6-311++G(d,p) levels are performed for more precise energy predictions. Solvent effects are also assessed by single-point calculations at the integral equation formalism polarized continuum model IEFPCM-B3LYP/6-311++G(d,p) and IEFPCM-BB1K/6-311++G(d,p) levels on the gas-phase optimized geometries. Three possible pathways, the concerted pathway (path A), the stepwise pathway involving tetrahedral intermediates (path B), and the stepwise pathway via alpha-oxo ketene intermediate due to the participation of beta-hydroxy (path C), are taken into account for the title reaction. Moreover, path C includes two sequential processes. The first process is to generate alpha-oxo ketene intermediate via the decomposition of N-methyl-3-(methoxycarbonyl)-4-hydroxy-2-pyridone; the second process is the addition of dimethylamine to alpha-oxo ketene intermediate. Our results indicate that path C is more favorable than paths A and B both in the gas phase and in solvent (heptane). In path C, the first process is the rate-determining step, and the second process is revealed to be a [4+2] pseudopericyclic reaction without the energy barrier. Being independent of the concentration of amine, the first process obeys the first-order rate law.

  13. Estimating Transmitted-Signal Phase Variations for Uplink Array Antennas

    NASA Technical Reports Server (NTRS)

    Paal, Leslie; Mukai, Ryan; Vilntrotter, Victor; Cornish, Timothy; Lee, Dennis

    2009-01-01

    A method of estimating phase drifts of microwave signals distributed to, and transmitted by, antennas in an array involves the use of the signals themselves as phase references. The method was conceived as part of the solution of the problem of maintaining precise phase calibration required for proper operation of an array of Deep Space Network (DSN) antennas on Earth used for communicating with distant spacecraft at frequencies between 7 and 8 GHz. The method could also be applied to purely terrestrial phased-array radar and other radio antenna array systems. In the DSN application, the electrical lengths (effective signal-propagation path lengths) of the various branches of the system for distributing the transmitted signals to the antennas are not precisely known, and they vary with time. The variations are attributable mostly to thermal expansion and contraction of fiber-optic and electrical signal cables and to a variety of causes associated with aging of signal-handling components. The variations are large enough to introduce large phase drifts at the signal frequency. It is necessary to measure and correct for these phase drifts in order to maintain phase calibration of the antennas. A prior method of measuring phase drifts involves the use of reference-frequency signals separate from the transmitted signals. A major impediment to accurate measurement of phase drifts over time by the prior method is the fact that although DSN reference-frequency sources separate from the transmitting signal sources are stable and accurate enough for most DSN purposes, they are not stable enough for use in maintaining phase calibrations, as required, to within a few degrees over times as long as days or possibly even weeks. By eliminating reliance on the reference-frequency subsystem, the present method overcomes this impediment. In a DSN array to which the present method applies (see figure), the microwave signals to be transmitted are generated by exciters in a signal-processing center, then distributed to the antennas via optical fibers. At each antenna, the signals are used to drive a microwave power-amplifier train, the output of which is coupled to the antenna for transmission. A small fraction of the power-amplifier-train output is sent back to the signal-processing center along another optical fiber that is part of the same fiber-optic cable used to distribute the transmitted signal to the antenna. In the signal-processing center, the signal thus returned from each antenna is detected and its phase is compared with the phase of the signal sampled directly from the corresponding exciter. It is known, from other measurements, that the signal-propagation path length from the power-amplifier-train output port to the phase center of each antenna is sufficiently stable and, hence, that sampling the signal at the power-amplifier-train output port suffices for the purpose of characterizing the phase drift of the transmitted signal at the phase center of the antenna

  14. Measuring Cyclic Error in Laser Heterodyne Interferometers

    NASA Technical Reports Server (NTRS)

    Ryan, Daniel; Abramovici, Alexander; Zhao, Feng; Dekens, Frank; An, Xin; Azizi, Alireza; Chapsky, Jacob; Halverson, Peter

    2010-01-01

    An improved method and apparatus have been devised for measuring cyclic errors in the readouts of laser heterodyne interferometers that are configured and operated as displacement gauges. The cyclic errors arise as a consequence of mixing of spurious optical and electrical signals in beam launchers that are subsystems of such interferometers. The conventional approach to measurement of cyclic error involves phase measurements and yields values precise to within about 10 pm over air optical paths at laser wavelengths in the visible and near infrared. The present approach, which involves amplitude measurements instead of phase measurements, yields values precise to about .0.1 microns . about 100 times the precision of the conventional approach. In a displacement gauge of the type of interest here, the laser heterodyne interferometer is used to measure any change in distance along an optical axis between two corner-cube retroreflectors. One of the corner-cube retroreflectors is mounted on a piezoelectric transducer (see figure), which is used to introduce a low-frequency periodic displacement that can be measured by the gauges. The transducer is excited at a frequency of 9 Hz by a triangular waveform to generate a 9-Hz triangular-wave displacement having an amplitude of 25 microns. The displacement gives rise to both amplitude and phase modulation of the heterodyne signals in the gauges. The modulation includes cyclic error components, and the magnitude of the cyclic-error component of the phase modulation is what one needs to measure in order to determine the magnitude of the cyclic displacement error. The precision attainable in the conventional (phase measurement) approach to measuring cyclic error is limited because the phase measurements are af-

  15. The system of high accuracy UV spectral radiation system

    NASA Astrophysics Data System (ADS)

    Lin, Guan-yu; Yu, Lei; Xu, Dian; Cao, Dian-sheng; Yu, Yu-Xiang

    2016-10-01

    UV spectral radiation detecting and visible observation telescope is designed by the coaxial optical. In order to decrease due to the incident light polarization effect, and improve the detection precision, polarizer need to be used in the light path. Four pieces of quartz of high Precision UV radiation depolarizer retarder stack together is placed in front of Seya namioka dispersion unit. The coherent detection principle of modulation of light signal and the reference signal multiplied processing, increase the phase sensitive detector can be adjustment function, ensure the UV spectral radiation detection stability. A lock-in amplifier is used in the electrical system to advance the accuracy of measurement. To ensure the precision measurement detected, the phase-sensitive detector function can be adjustable. the output value is not more than 10mV before each measurement, so it can be ensured that the stability of the measured radiation spectrum is less than 1 percent.

  16. Noninvasive Intracranial Volume and Pressure Measurements Using Ultrasound

    NASA Technical Reports Server (NTRS)

    Hargens, A. R.

    1998-01-01

    Prevention of secondary brain injuries following head can be accomplished most easily when intracranial pressure (ICP) is monitored. However, current measurement techniques are invasive and thus not practical in the combat environment. The Pulsed Phase Lock Loop (PPLL) devise, which was developed and patented, uses a unique, noninvasive ultrasonic phase comparison method to measure slight changes in cranial volume which occur with changes in ICP. Year one studies involved instrument improvements and measurement of altered intracranial distance with altered ICP in fresh cadavera. Our software was improved to facilitate future studies of normal subjects and trauma patients. Our bench studies proved that PPLL output correlated highly with changes in path length across a model cranium. Cadaveric studies demonstrated excellent compact, noninvasive devise for monitoring changes in intracranial distance may aid in the early detection of elevated ICP, decreasing risk of secondary brain injury and infection, and returning head-injured patients to duty.

  17. Critical Behavior of Spatial Evolutionary Game with Altruistic to Spiteful Preferences on Two-Dimensional Lattices

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Li, Xiao-Teng; Chen, Wei; Liu, Jian; Chen, Xiao-Song

    2016-10-01

    Self-questioning mechanism which is similar to single spin-flip of Ising model in statistical physics is introduced into spatial evolutionary game model. We propose a game model with altruistic to spiteful preferences via weighted sums of own and opponent's payoffs. This game model can be transformed into Ising model with an external field. Both interaction between spins and the external field are determined by the elements of payoff matrix and the preference parameter. In the case of perfect rationality at zero social temperature, this game model has three different phases which are entirely cooperative phase, entirely non-cooperative phase and mixed phase. In the investigations of the game model with Monte Carlo simulation, two paths of payoff and preference parameters are taken. In one path, the system undergoes a discontinuous transition from cooperative phase to non-cooperative phase with the change of preference parameter. In another path, two continuous transitions appear one after another when system changes from cooperative phase to non-cooperative phase with the prefenrence parameter. The critical exponents v, β, and γ of two continuous phase transitions are estimated by the finite-size scaling analysis. Both continuous phase transitions have the same critical exponents and they belong to the same universality class as the two-dimensional Ising model. Supported by the National Natural Science Foundation of China under Grant Nos. 11121403 and 11504384

  18. Modeling of Adaptive Optics-Based Free-Space Communications Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilks, S C; Morris, J R; Brase, J M

    2002-08-06

    We introduce a wave-optics based simulation code written for air-optic laser communications links, that includes a detailed model of an adaptive optics compensation system. We present the results obtained by this model, where the phase of a communications laser beam is corrected, after it propagates through a turbulent atmosphere. The phase of the received laser beam is measured using a Shack-Hartmann wavefront sensor, and the correction method utilizes a MEMS mirror. Strehl improvement and amount of power coupled to the receiving fiber for both 1 km horizontal and 28 km slant paths are presented.

  19. Spectral phase measurement of a Fano resonance using tunable attosecond pulses

    PubMed Central

    Kotur, M.; Guénot, D.; Jiménez-Galán, Á; Kroon, D.; Larsen, E. W.; Louisy, M.; Bengtsson, S.; Miranda, M.; Mauritsson, J.; Arnold, C. L.; Canton, S. E.; Gisselbrecht, M.; Carette, T.; Dahlström, J. M.; Lindroth, E.; Maquet, A.; Argenti, L.; Martín, F.; L'Huillier, A.

    2016-01-01

    Electron dynamics induced by resonant absorption of light is of fundamental importance in nature and has been the subject of countless studies in many scientific areas. Above the ionization threshold of atomic or molecular systems, the presence of discrete states leads to autoionization, which is an interference between two quantum paths: direct ionization and excitation of the discrete state coupled to the continuum. Traditionally studied with synchrotron radiation, the probability for autoionization exhibits a universal Fano intensity profile as a function of excitation energy. However, without additional phase information, the full temporal dynamics cannot be recovered. Here we use tunable attosecond pulses combined with weak infrared radiation in an interferometric setup to measure not only the intensity but also the phase variation of the photoionization amplitude across an autoionization resonance in argon. The phase variation can be used as a fingerprint of the interactions between the discrete state and the ionization continua, indicating a new route towards monitoring electron correlations in time. PMID:26887682

  20. Interference between two resonant transitions with distinct initial and final states connected by radiative decay

    NASA Astrophysics Data System (ADS)

    Marsman, A.; Horbatsch, M.; Hessels, E. A.

    2017-12-01

    The resonant line shape from driving a transition between two states, |a 〉 and |b 〉 , can be distorted due to a quantum-mechanical interference effect involving a resonance between two different states, |c 〉 and |d 〉 , if |c 〉 has a decay path to |a 〉 and |d 〉 has a decay path to |b 〉 . This interference can cause a shift of the measured resonance, despite the fact that the two resonances do not have a common initial or final state. As an example, we demonstrate that such a shift affects measurements of the atomic hydrogen 2 S1 /2 -to-2 P1 /2 Lamb-shift transition due to 3 S -to-3 P transitions if the 3 S1 /2 state has some initial population.

  1. Results from SIM's Thermo-Opto-Mechanical (TOM3) Testbed

    NASA Technical Reports Server (NTRS)

    Goullioud, Renaud; Lindensmith, C. A.; Hahn, I.

    2006-01-01

    Future space-based optical interferometers, such as the Space Interferometer Mission Planet Quest (SIM), require thermal stability of the optical wavefront to the level of picometers in order to produce astrometric data at the micro-arc-second level. In SIM, the internal path of the interferometer will be measured with a small metrology beam whereas the starlight fringe position is estimated from a large concentric annular beam. To achieve the micro-arc-second observation goal for SIM, it is necessary to maintain the optical path difference between the central and the outer annulus portions of the wavefront of the front-end telescope optics to a few tens of picometers. The Thermo-Opto-Mecha nical testbed (TOM3) was developed at the Jet Propulsion Laboratory to measure thermally induced optical deformations of a full-size flight-like beam compressor and siderostat, the two largest optics on SIM, in flight-like thermal environments. A Common Path Heterodyne Interferometer (COPHI) developed at JPL was used for the fine optical path difference measurement as the metrology sensor. The system was integrated inside a large vacuum chamber in order to mitigate the atmospheric and thermal disturbances. The siderostat was installed in a temperature-controlled thermal shroud inside the vacuum chamber, creating a flight-like thermal environment. Detailed thermal and structural models of the test articles (siderostat and compressor) were also developed for model prediction and correlation of the thermal deformations. Experimental data shows SIM required thermal stability of the test articles and good agreement with the model predictions.

  2. FLASHFlux Info

    Atmospheric Science Data Center

    2013-05-20

    ... Surface Emissivity Cloud Area Fraction Cloud Effective Pressure Cloud Effective Temperature Cloud Effective Height Cloud Top Pressure Cloud Base Pressure Cloud Particle Phase Liquid Water Path Ice Water Path Water Particle Radius Ice Particle ...

  3. Rapid and sensitive quantification of isotopic mixtures using a rapidly-swept external cavity quantum cascade laser

    DOE PAGES

    Brumfield, Brian E.; Taubman, Matthew S.; Phillips, Mark C.

    2016-05-23

    A rapidly-swept external-cavity quantum cascade laser with an open-path Herriott cell is used to quantify gas-phase chemical mixtures of D 2O and HDO at a rate of 40 Hz (25-ms measurement time). The chemical mixtures were generated by evaporating D 2O liquid near the open-path Herriott cell, allowing the H/D exchange reaction with ambient H 2O to produce HDO. Fluctuations in the ratio of D 2O and HDO on timescales of <1 s due to the combined effects of plume transport and the H/D exchange chemical reaction are observed. Noise-equivalent concentrations (1σ) (NEC) of 147.0 ppbv and 151.6 ppbv inmore » a 25-ms measurement time are determined for D 2O and HDO, respectively, with a 127-m optical path. These NECs are improved to 23.0 and 24.0 ppbv with a 1-s averaging time for D 2O and HDO, respectively. NECs <200 ppbv are also estimated for N2O, 1,1,1,2–tetrafluoroethane (F134A), CH 4, acetone and SO 2 for a 25-ms measurement time. Finally, the isotopic precision for measurement of the [D 2O]/[HDO] concentration ratio of 33‰ and 5‰ is calculated for the current experimental conditions for measurement times of 25 ms and 1 s, respectively.« less

  4. 47 CFR 22.515 - Permissible communications paths.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Permissible communications paths. 22.515 Section 22.515 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Paging and Radiotelephone Service § 22.515 Permissible communications paths...

  5. 47 CFR 22.515 - Permissible communications paths.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Permissible communications paths. 22.515 Section 22.515 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Paging and Radiotelephone Service § 22.515 Permissible communications paths...

  6. 47 CFR 22.515 - Permissible communications paths.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Permissible communications paths. 22.515 Section 22.515 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Paging and Radiotelephone Service § 22.515 Permissible communications paths...

  7. 47 CFR 22.515 - Permissible communications paths.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Permissible communications paths. 22.515 Section 22.515 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Paging and Radiotelephone Service § 22.515 Permissible communications paths...

  8. CERES-MISR Info

    Atmospheric Science Data Center

    2013-05-20

    ... Surface Albedo Cloud Area Fraction Cloud Effective Pressure Cloud Effective Temperature Cloud Effective Height Cloud Top Pressure Cloud Base Pressure Cloud Particle Phase Liquid Water Path Ice Water Path Water Particle Radius Ice Particle ...

  9. CERES CRS Info

    Atmospheric Science Data Center

    2013-05-17

    ... Flux - Down Cloud Area Fraction Cloud Effective Pressure Cloud Effective Temperature Cloud Effective Height Cloud Top Pressure Cloud Base Pressure Cloud Particle Phase Liquid Water Path Ice Water Path Water Particle Radius Ice Particle ...

  10. Development of Michelson interferometer based spatial phase-shift digital shearography

    NASA Astrophysics Data System (ADS)

    Xie, Xin

    Digital shearography is a non-contact, full field, optical measurement method, which has the capability of directly measuring the gradient of deformation. For high measurement sensitivity, phase evaluation method has to be introduced into digital shearography by phase-shift technique. Catalog by phase-shift method, digital phase-shift shearography can be divided into Temporal Phase-Shift Digital Shearography (TPS-DS) and Spatial Phase-Shift Digital Shearography (SPS-DS). TPS-DS is the most widely used phase-shift shearography system, due to its simple algorithm, easy operation and good phase-map quality. However, the application of TPS-DS is only limited in static/step-by-step loading measurement situation, due to its multi-step shifting process. In order to measure the strain under dynamic/continuous loading situation, a SPS-DS system has to be developed. This dissertation aims to develop a series of Michelson Interferometer based SPS-DS measurement methods to achieve the strain measurement by using only a single pair of speckle pattern images. The Michelson Interferometer based SPS-DS systems utilize special designed optical setup to introduce extra carrier frequency into the laser wavefront. The phase information corresponds to the strain field can be separated on the Fourier domain using a Fourier Transform and can further be evaluated with a Windowed Inverse Fourier Transform. With different optical setups and carrier frequency arrangements, the Michelson Interferometer based SPS-DS method is capable to achieve a variety of measurement tasks using only single pair of speckle pattern images. Catalog by the aimed measurand, these capable measurement tasks can be divided into five categories: 1) measurement of out-of-plane strain field with small shearing amount; 2) measurement of relative out-of-plane deformation field with big shearing amount; 3) simultaneous measurement of relative out-of-plane deformation field and deformation gradient field by using multiple carrier frequencies; 4) simultaneous measurement of two directional strain field using dual measurement channels 5) measurement of pure in-plane strain and pure out-of-plane strain with multiple carrier frequencies. The basic theory, optical path analysis, preliminary studies, results analysis and research plan are shown in detail in this dissertation.

  11. An Exact Algebraic Evaluation of Path-Length Difference for Two-Source Interference

    ERIC Educational Resources Information Center

    Hopper, Seth; Howell, John

    2006-01-01

    When studying wave interference, one often wants to know the difference in path length for two waves arriving at a common point P but coming from adjacent sources. For example, in many contexts interference maxima occur where this path-length difference is an integer multiple of the wavelength. The standard approximation for the path-length…

  12. Geometric phase effects in ultracold chemistry

    NASA Astrophysics Data System (ADS)

    Hazra, Jisha; Naduvalath, Balakrishnan; Kendrick, Brian K.

    2016-05-01

    In molecules, the geometric phase, also known as Berry's phase, originates from the adiabatic transport of the electronic wavefunction when the nuclei follow a closed path encircling a conical intersection between two electronic potential energy surfaces. It is demonstrated that the inclusion of the geometric phase has an important effect on ultracold chemical reaction rates. The effect appears in rotationally and vibrationally resolved integral cross sections as well as cross sections summed over all product quantum states. It arises from interference between scattering amplitudes of two reaction pathways: a direct path and a looping path that encircle the conical intersection between the two lowest adiabatic electronic potential energy surfaces. Illustrative results are presented for the O+ OH --> H+ O2 reaction and for hydrogen exchange in H+ H2 and D+HD reactions. It is also qualitatively demonstrated that the geometric phase effect can be modulated by applying an external electric field allowing the possibility of quantum control of chemical reactions in the ultracold regime. This work was supported in part by NSF Grant PHY-1505557 (N.B.) and ARO MURI Grant No. W911NF-12-1-0476 (N.B.).

  13. Putting vital stains in context.

    PubMed

    Efron, Nathan

    2013-07-01

    While vital staining remains a cornerstone in the diagnosis of ocular disease and contact lens complications, there are many misconceptions regarding the properties of commonly used dyes by eye-care practitioners and what is and what is not corneal staining after instillation of sodium fluorescein. Similarly, the proper use and diagnostic utility of rose Bengal and lissamine green B, the other two ophthalmic dyes commonly used for assessing ocular complications, have similarly remained unclear. Due to the limitations of vital stains for definitive diagnosis, concomitant signs and symptoms in addition to a complete patient history are required. Over the past decade, there have been many reports of a type of corneal staining--often referred to as solution-induced corneal staining (SICS)--that is observed with the use of multipurpose solutions in combination with soft lenses, more specifically silicone hydrogel lenses. Some authors believe that SICS is a sign of lens/solution incompatibility; however, new research shows that SICS may be neither a measure of lens/solution biocompatibility nor 'true' corneal staining, as that observed in pathological situations. A large component of SICS may be a benign phenomenon, known as preservative-associated transient hyperfluorescence (PATH). There is a lack of correlated signs and/or symptoms with SICS/PATH. Several properties of SICS/PATH, such as appearance and duration, differentiate it from pathological corneal staining. This paper reviews the properties of vital stains, their use and limitations in assessment of the ocular surface, the aetiology of corneal staining, characteristics of SICS/PATH that differentiate it from pathological corneal staining and what the SICS/PATH phenomenon means for contact lens-wearing patients. © 2012 The Author. Clinical and Experimental Optometry © 2012 Optometrists Association Australia.

  14. CERES SSF Current Info

    Atmospheric Science Data Center

    2013-05-17

    ... Surface Albedo Cloud Area Fraction Cloud Effective Pressure Cloud Effective Temperature Cloud Effective Height Cloud Top Pressure Cloud Base Pressure Cloud Particle Phase Liquid Water Path Ice Water Path Water Particle Radius Ice Particle ...

  15. Heating of solid earthen material, measuring moisture and resistivity

    DOEpatents

    Heath, W.O.; Richardson, R.L.; Goheen, S.C.

    1994-07-19

    The present invention includes a method of treating solid earthen material having volatile, semi-volatile, and non-volatile contaminants. Six electrodes are inserted into a region of earthen material to be treated in a substantially equilateral hexagonal arrangement. Six phases of voltages are applied to corresponding electrodes. The voltages are adjusted within a first range of voltages to create multiple current paths between pairs of the electrodes. The current paths are evenly distributed throughout the region defined by the electrodes and therefore uniformly heat the region. The region of earthen material is heated to a temperature sufficient to substantially remove volatile and semi-volatile contaminants by promoting microbial action. This temperature is less than a melting temperature of the earthen material. 13 figs.

  16. Heating of solid earthen material, measuring moisture and resistivity

    DOEpatents

    Heath, William O.; Richardson, Richard L.; Goheen, Steven C.

    1994-01-01

    The present invention includes a method of treating solid earthen material having volatile, semi-volatile, and non-volatile contaminants. Six electrodes are inserted into a region of earthen material to be treated in a substantially equilateral hexagonal arrangement. Six phases of voltages are applied to corresponding electrodes. The voltages are adjusted within a first range of voltages to create multiple current paths between pairs of the electrodes. The current paths are evenly distributed throughout the region defined by the electrodes and therefore uniformly heat the region. The region of earthen material is heated to a temperature sufficient to substantially remove volatile and semi-volatile contaminants by promoting microbial action. This temperature is less than a melting temperature of the earthen material.

  17. Some design considerations for a synthetic aperture optical telescope array

    NASA Astrophysics Data System (ADS)

    Scott, P. W.

    1984-01-01

    Several design considerations inherent in the configuration of phased array transmission of multiwavelength laser beams are discussed. Attention is focused on the U.S.A.F. phased array (PHASAR) demonstration project, where problems have been encountered in dividing the beam(s), controlling the optical path differences between subapertures, and expanding individual beams.A piston-driven path length adjustment mechanism has been selected, along with an active control system and proven components for stability maintenance. The necessity of developing broadband, high reflectivity low phase shift coatings for the system mirrors is stressed.

  18. Hemispherical Anisotropic Patterns of the Earth's Inner Core

    NASA Astrophysics Data System (ADS)

    Mattesini, M.; Belonoshko, A. B.; Buforn, E.; Ramirez, M.; Simak, S. I.; Udias, A.; Mao, H.; Ahuja, R.

    2010-12-01

    It has been shown that the Earth's inner core has an axisymmetric anisotropic structure with seismic waves travelling ˜3% faster along polar paths than along equatorial directions. However, hemispherical anisotropic patterns of solid Earth's core are rather complex, and the commonly used hexagonal-close-packed (hcp) iron phase might be insufficient to account for seismological observations. We show that the data we collected are in good agreement with the presence of two anisotropically specular east and west core hemispheres. The detected travel-time anomalies can only be disclosed by a lattice preferred orientation of a body-centered-cubic iron aggregate (bcc), having a fraction of their [111] crystal axes parallel to the Earth's rotation axis. This is a compelling evidence for the presence of a body-centered-cubic Fe phase at the top 100 km of the Earth's inner core.

  19. DMD-based quantitative phase microscopy and optical diffraction tomography

    NASA Astrophysics Data System (ADS)

    Zhou, Renjie

    2018-02-01

    Digital micromirror devices (DMDs), which offer high speed and high degree of freedoms in steering light illuminations, have been increasingly applied to optical microscopy systems in recent years. Lately, we introduced DMDs into digital holography to enable new imaging modalities and break existing imaging limitations. In this paper, we will first present our progress in using DMDs for demonstrating laser-illumination Fourier ptychographic microscopy (FPM) with shotnoise limited detection. After that, we will present a novel common-path quantitative phase microscopy (QPM) system based on using a DMD. Building on those early developments, a DMD-based high speed optical diffraction tomography (ODT) system has been recently demonstrated, and the results will also be presented. This ODT system is able to achieve video-rate 3D refractive-index imaging, which can potentially enable observations of high-speed 3D sample structural changes.

  20. Laboratory Investigation of Trace Gas Emissions from Biomass Burning on DoD Bases

    NASA Astrophysics Data System (ADS)

    Burling, I. R.; Yokelson, R. J.; Griffith, D. W.; Roberts, J. M.; Veres, P. R.; Warneke, C.; Johnson, T. J.

    2009-12-01

    Vegetation representing fuels commonly managed with prescribed fires was collected from five DoD bases and burned under controlled conditions at the USFS Firelab in Missoula, MT. The smoke emissions were measured with a large suite of state-of-the-art instrumentation. Seventy-seven fires were conducted and the smoke composition data will improve DoD land managers’ ability to assess the impact of prescribed fires on local air quality. A key instrument used in the measurement of the gas phase species in smoke was an open-path FTIR (OP-FTIR) spectrometer, built and operated by the Universities of Montana and Wollongong. The OP-FTIR has to date detected and quantified 20 gas phase species - CO2, CO, H2O, N2O, NO2, NO, HONO, NH3, HCl, SO2, CH4, CH3OH, HCHO, HCOOH, C2H2, C2H4, CH3COOH, HCN, propylene and furan. The spectra were analyzed using a non-linear least squares fitting routine that included reference spectra recently acquired at the Pacific Northwest National Laboratories. Preliminary results from the OP-FTIR analysis are reported here. Of particular interest, gas-phase nitrous acid (HONO) was detected simultaneously by the OP-FTIR and negative-ion proton-transfer chemical ionization spectrometer (NI-PT-CIMS), with preliminary fire-integrated molar emission ratios (relative to NOx) ranging from approximately 0.03 to 0.20, depending on the vegetation type. HONO is an important precursor in the production of OH, the primary oxidizing species in the atmosphere. There existed little previous data documenting HONO emissions from either wild or prescribed fires. The non-methane organic emissions were dominated by oxygenated species, which can be further oxidized and thus involved in secondary aerosol formation. Elevated amounts of gas-phase HCl were also detected in the smoke, with the amounts varying depending on location and vegetation type.

  1. Dynamic Testing of the NASA Hypersonic Project Combined Cycle Engine Testbed for Mode Transition Experiments

    NASA Technical Reports Server (NTRS)

    2011-01-01

    NASA is interested in developing technology that leads to more routine, safe, and affordable access to space. Access to space using airbreathing propulsion systems has potential to meet these objectives based on Airbreathing Access to Space (AAS) system studies. To this end, the NASA Fundamental Aeronautics Program (FAP) Hypersonic Project is conducting fundamental research on a Turbine Based Combined Cycle (TBCC) propulsion system. The TBCC being studied considers a dual flow-path inlet system. One flow-path includes variable geometry to regulate airflow to a turbine engine cycle. The turbine cycle provides propulsion from take-off to supersonic flight. The second flow-path supports a dual-mode scramjet (DMSJ) cycle which would be initiated at supersonic speed to further accelerate the vehicle to hypersonic speed. For a TBCC propulsion system to accelerate a vehicle from supersonic to hypersonic speed, a critical enabling technology is the ability to safely and effectively transition from the turbine to the DMSJ-referred to as mode transition. To experimentally test methods of mode transition, a Combined Cycle Engine (CCE) Large-scale Inlet testbed was designed with two flow paths-a low speed flow-path sized for a turbine cycle and a high speed flow-path designed for a DMSJ. This testbed system is identified as the CCE Large-Scale Inlet for Mode Transition studies (CCE-LIMX). The test plan for the CCE-LIMX in the NASA Glenn Research Center (GRC) 10- by 10-ft Supersonic Wind Tunnel (10x10 SWT) is segmented into multiple phases. The first phase is a matrix of inlet characterization (IC) tests to evaluate the inlet performance and establish the mode transition schedule. The second phase is a matrix of dynamic system identification (SysID) experiments designed to support closed-loop control development at mode transition schedule operating points for the CCE-LIMX. The third phase includes a direct demonstration of controlled mode transition using a closed loop control system developed with the data obtained from the first two phases. Plans for a fourth phase include mode transition experiments with a turbine engine. This paper, focusing on the first two phases of experiments, presents developed operational and analysis tools for streamlined testing and data reduction procedures.

  2. In-situ monitoring of blood glucose level for dialysis machine by AAA-battery-size ATR Fourier spectroscopy

    NASA Astrophysics Data System (ADS)

    Hosono, Satsuki; Sato, Shun; Ishida, Akane; Suzuki, Yo; Inohara, Daichi; Nogo, Kosuke; Abeygunawardhana, Pradeep K.; Suzuki, Satoru; Nishiyama, Akira; Wada, Kenji; Ishimaru, Ichiro

    2015-07-01

    For blood glucose level measurement of dialysis machines, we proposed AAA-battery-size ATR (Attenuated total reflection) Fourier spectroscopy in middle infrared light region. The proposed one-shot Fourier spectroscopic imaging is a near-common path and spatial phase-shift interferometer with high time resolution. Because numerous number of spectral data that is 60 (= camera frame rare e.g. 60[Hz]) multiplied by pixel number could be obtained in 1[sec.], statistical-averaging improvement realize high-accurate spectral measurement. We evaluated the quantitative accuracy of our proposed method for measuring glucose concentration in near-infrared light region with liquid cells. We confirmed that absorbance at 1600[nm] had high correlations with glucose concentrations (correlation coefficient: 0.92). But to measure whole-blood, complex light phenomenon caused from red blood cells, that is scattering and multiple reflection or so, deteriorate spectral data. Thus, we also proposed the ultrasound-assisted spectroscopic imaging that traps particles at standing-wave node. Thus, if ATR prism is oscillated mechanically, anti-node area is generated around evanescent light field on prism surface. By elimination complex light phenomenon of red blood cells, glucose concentration in whole-blood will be quantify with high accuracy. In this report, we successfully trapped red blood cells in normal saline solution with ultrasonic standing wave (frequency: 2[MHz]).

  3. Measurement of J-integral in CAD/CAM dental ceramics and composite resin by digital image correlation.

    PubMed

    Jiang, Yanxia; Akkus, Anna; Roperto, Renato; Akkus, Ozan; Li, Bo; Lang, Lisa; Teich, Sorin

    2016-09-01

    Ceramic and composite resin blocks for CAD/CAM machining of dental restorations are becoming more common. The sample sizes affordable by these blocks are smaller than ideal for stress intensity factor (SIF) based tests. The J-integral measurement calls for full field strain measurement, making it challenging to conduct. Accordingly, the J-integral values of dental restoration materials used in CAD/CAM restorations have not been reported to date. Digital image correlation (DIC) provides full field strain maps, making it possible to calculate the J-integral value. The aim of this study was to measure the J-integral value for CAD/CAM restorative materials. Four types of materials (sintered IPS E-MAX CAD, non-sintered IPS E-MAX CAD, Vita Mark II and Paradigm MZ100) were used to prepare beam samples for three-point bending tests. J-integrals were calculated for different integral path size and locations with respect to the crack tip. J-integral at path 1 for each material was 1.26±0.31×10(-4)MPam for MZ 100, 0.59±0.28×10(-4)MPam for sintered E-MAX, 0.19±0.07×10(-4)MPam for VM II, and 0.21±0.05×10(-4)MPam for non-sintered E-MAX. There were no significant differences between different integral path size, except for the non-sintered E-MAX group. J-integral paths of non-sintered E-MAX located within 42% of the height of the sample provided consistent values whereas outside this range resulted in lower J-integral values. Moreover, no significant difference was found among different integral path locations. The critical SIF was calculated from J-integral (KJ) along with geometry derived SIF values (KI). KI values were comparable with KJ and geometry based SIF values obtained from literature. Therefore, DIC derived J-integral is a reliable way to assess the fracture toughness of small sized specimens for dental CAD/CAM restorative materials; however, with caution applied to the selection of J-integral path. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. A high speed compact microwave interferometer for density fluctuation measurements in Sino-UNIted Spherical Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, H., E-mail: zhongh14@126.com; Tan, Y.; Liu, Y. Q.

    2016-11-15

    A single-channel 3 mm interferometer has been developed for plasma density diagnostics in the Sino-UNIted Spherical Tokamak (SUNIST). The extremely compact microwave interferometer utilizes one corrugated feed horn antenna for both emitting and receiving the microwave. The beam path lies on the equatorial plane so the system would not suffer from beam path deflection problems due to the symmetry of the cross section. A focusing lens group and an oblique vacuum window are carefully designed to boost the signal to noise ratio, which allows this system to show good performance even with the small-diameter central column itself as a reflector,more » without a concave mirror. The whole system discards the reference leg for maximum compactness, which is particularly suitable for the small-sized tokamak. An auto-correcting algorithm is developed to calculate the phase evolution, and the result displays good phase stability of the whole system. The intermediate frequency is adjustable and can reach its full potential of 2 MHz for best temporal resolution. Multiple measurements during ohmic discharges proved the interferometer’s capability to track typical density fluctuations in SUNIST, which enables this system to be utilized in the study of MHD activities.« less

  5. Lowermost mantle anisotropy near the eastern edge of the Pacific LLSVP: constraints from SKS-SKKS splitting intensity measurements

    NASA Astrophysics Data System (ADS)

    Deng, Jie; Long, Maureen D.; Creasy, Neala; Wagner, Lara; Beck, Susan; Zandt, George; Tavera, Hernando; Minaya, Estela

    2017-08-01

    Seismic anisotropy has been documented in many portions of the lowermost mantle, with particularly strong anisotropy thought to be present along the edges of large low shear velocity provinces (LLSVPs). The region surrounding the Pacific LLSVP, however, has not yet been studied extensively in terms of its anisotropic structure. In this study, we use seismic data from southern Peru, northern Bolivia and Easter Island to probe lowermost mantle anisotropy beneath the eastern Pacific Ocean, mostly relying on data from the Peru Lithosphere and Slab Experiment and Central Andean Uplift and Geodynamics of High Topography experiments. Differential shear wave splitting measurements from phases that have similar ray paths in the upper mantle but different ray paths in the lowermost mantle, such as SKS and SKKS, are used to constrain anisotropy in D″. We measured splitting for 215 same station-event SKS-SKKS pairs that sample the eastern Pacific LLSVP at the base of the mantle. We used measurements of splitting intensity(SI), a measure of the amount of energy on the transverse component, to objectively and quantitatively analyse any discrepancies between SKS and SKKS phases. While the overall splitting signal is dominated by the upper-mantle anisotropy, a minority of SKS-SKKS pairs (∼10 per cent) exhibit strongly discrepant splitting between the phases (i.e. the waveforms require a difference in SI of at least 0.4), indicating a likely contribution from lowermost mantle anisotropy. In order to enhance lower mantle signals, we also stacked waveforms within individual subregions and applied a waveform differencing technique to isolate the signal from the lowermost mantle. Our stacking procedure yields evidence for substantial splitting due to lowermost mantle anisotropy only for a specific region that likely straddles the edge of Pacific LLSVP. Our observations are consistent with the localization of deformation and anisotropy near the eastern boundary of the Pacific LLSVP, similar to previous observations for the African LLSVP.

  6. The importance of position and path repeatability on force at the knee during six-DOF joint motion.

    PubMed

    Darcy, Shon P; Gil, Jorge E; Woo, Savio L-Y; Debski, Richard E

    2009-06-01

    Mechanical devices, such as robotic manipulators have been designed to measure joint and ligament function because of their ability to position a diarthrodial joint in six degrees-of-freedom with fidelity. However, the precision and performance of these testing devices vary. Therefore, the objective of this study was to determine the effect of systematic errors in position and path repeatability of two high-payload robotic manipulators (Manipulators 1 and 2) on the resultant forces at the knee. Using a porcine knee, the position and path repeatability of these manipulators were determined during passive flexion-extension with a coordinate measuring machine. The position repeatability of Manipulator 1 was 0.3 mm in position and 0.2 degrees in orientation while Manipulator 2 had a better position repeatability of 0.1 mm in position and 0.1 degrees in orientation throughout the range of positions examined. The corresponding variability in the resultant force at the knee for these assigned positions was 32+/-33 N for Manipulator 1 and 4+/-1 N for Manipulator 2. Furthermore, the repeatability of the trajectory of each manipulator while moving between assigned positions (path repeatability) was 0.8 mm for Manipulator 1 while the path repeatability for Manipulator 2 was improved (0.1 mm). These path discrepancies produced variability in the resultant force at the knee of 44+/-24 and 21+/-8 N, respectively, for Manipulators 1 and 2 primarily due to contact between the articular surfaces of the tibia and femur. Therefore, improved position and path repeatability yields lower variability in the resultant forces at the knee. Although position repeatability has been the most common criteria for evaluating biomechanical testing devices, the current study has clearly demonstrated that path repeatability can have an even larger effect on the variability in resultant force at the knee. Consequently, the repeatability of the path followed by the joint throughout its prescribed trajectory is as important as the repeatability of the joint at reaching positions making up its trajectory, particularly when joint contact occurs.

  7. Evaluation of Project P.A.T.H.S. (Secondary 1 Program) by the Program Participants: Findings Based on the Full Implementation Phase

    ERIC Educational Resources Information Center

    Shek, Daniel T. L.; Sun, Rachel C. F.

    2008-01-01

    A total of 207 schools (N = 33,693 students) participated in the Secondary 1 Program of Project P.A.T.H.S. in the Full Implementation Phase (2006-07). Participants responded to a Subjective Outcome Evaluation Form (Form A) to assess their views of the program, instructors, and perceived effectiveness after program completion. Utilizing the…

  8. Ionospheric Scintillation Explorer (ISX)

    NASA Astrophysics Data System (ADS)

    Iuliano, J.; Bahcivan, H.

    2015-12-01

    NSF has recently selected Ionospheric Scintillation Explorer (ISX), a 3U Cubesat mission to explore the three-dimensional structure of scintillation-scale ionospheric irregularities associated with Equatorial Spread F (ESF). ISX is a collaborative effort between SRI International and Cal Poly. This project addresses the science question: To what distance along a flux tube does an irregularity of certain transverse-scale extend? It has been difficult to measure the magnetic field-alignment of scintillation-scale turbulent structures because of the difficulty of sampling a flux tube at multiple locations within a short time. This measurement is now possible due to the worldwide transition to DTV, which presents unique signals of opportunity for remote sensing of ionospheric irregularities from numerous vantage points. DTV spectra, in various formats, contain phase-stable, narrowband pilot carrier components that are transmitted simultaneously. A 4-channel radar receiver will simultaneously record up to 4 spatially separated transmissions from the ground. Correlations of amplitude and phase scintillation patterns corresponding to multiple points on the same flux tube will be a measure of the spatial extent of the structures along the magnetic field. A subset of geometries where two or more transmitters are aligned with the orbital path will be used to infer the temporal development of the structures. ISX has the following broad impact. Scintillation of space-based radio signals is a space weather problem that is intensively studied. ISX is a step toward a CubeSat constellation to monitor worldwide TEC variations and radio wave distortions on thousands of ionospheric paths. Furthermore, the rapid sampling along spacecraft orbits provides a unique dataset to deterministically reconstruct ionospheric irregularities at scintillation-scale resolution using diffraction radio tomography, a technique that enables prediction of scintillations at other radio frequencies, and potentially, mitigation of phase distortions.

  9. Spatially Correlated Sparse MIMO Channel Path Delay Estimation in Scattering Environments Based on Signal Subspace Tracking

    PubMed Central

    Chargé, Pascal; Bazzi, Oussama; Ding, Yuehua

    2018-01-01

    A parametric scheme for spatially correlated sparse multiple-input multiple-output (MIMO) channel path delay estimation in scattering environments is presented in this paper. In MIMO outdoor communication scenarios, channel impulse responses (CIRs) of different transmit–receive antenna pairs are often supposed to be sparse due to a few significant scatterers, and share a common sparse pattern, such that path delays are assumed to be equal for every transmit–receive antenna pair. In some existing works, an exact common support condition is exploited, where the path delays are considered equal for every transmit–receive antenna pair, meanwhile ignoring the influence of scattering. A more realistic channel model is proposed in this paper, where due to scatterers in the environment, the received signals are modeled as clusters of multi-rays around a nominal or mean time delay at different antenna elements, resulting in a non-strictly exact common support phenomenon. A method for estimating the channel mean path delays is then derived based on the subspace approach, and the tracking of the effective dimension of the signal subspace that changes due to the wireless environment. The proposed method shows an improved channel mean path delays estimation performance in comparison with the conventional estimation methods. PMID:29734797

  10. Spatially Correlated Sparse MIMO Channel Path Delay Estimation in Scattering Environments Based on Signal Subspace Tracking.

    PubMed

    Mohydeen, Ali; Chargé, Pascal; Wang, Yide; Bazzi, Oussama; Ding, Yuehua

    2018-05-06

    A parametric scheme for spatially correlated sparse multiple-input multiple-output (MIMO) channel path delay estimation in scattering environments is presented in this paper. In MIMO outdoor communication scenarios, channel impulse responses (CIRs) of different transmit⁻receive antenna pairs are often supposed to be sparse due to a few significant scatterers, and share a common sparse pattern, such that path delays are assumed to be equal for every transmit⁻receive antenna pair. In some existing works, an exact common support condition is exploited, where the path delays are considered equal for every transmit⁻receive antenna pair, meanwhile ignoring the influence of scattering. A more realistic channel model is proposed in this paper, where due to scatterers in the environment, the received signals are modeled as clusters of multi-rays around a nominal or mean time delay at different antenna elements, resulting in a non-strictly exact common support phenomenon. A method for estimating the channel mean path delays is then derived based on the subspace approach, and the tracking of the effective dimension of the signal subspace that changes due to the wireless environment. The proposed method shows an improved channel mean path delays estimation performance in comparison with the conventional estimation methods.

  11. Common-path interference and oscillatory Zener tunneling in bilayer graphene p-n junctions

    PubMed Central

    Nandkishore, Rahul; Levitov, Leonid

    2011-01-01

    Interference and tunneling are two signature quantum effects that are often perceived as the yin and yang of quantum mechanics: a particle simultaneously propagating along several distinct classical paths versus a particle penetrating through a classically inaccessible region via a single least-action path. Here we demonstrate that the Dirac quasiparticles in graphene provide a dramatic departure from this paradigm. We show that Zener tunneling in gapped bilayer graphene, which governs transport through p-n heterojunctions, exhibits common-path interference that takes place under the tunnel barrier. Due to a symmetry peculiar to the gapped bilayer graphene bandstructure, interfering tunneling paths form conjugate pairs, giving rise to high-contrast oscillations in transmission as a function of the gate-tunable bandgap and other control parameters of the junction. The common-path interference is solely due to forward-propagating waves; in contrast to Fabry–Pérot-type interference in resonant-tunneling structures, it does not rely on multiple backscattering. The oscillations manifest themselves in the junction I–V characteristic as N-shaped branches with negative differential conductivity. The negative dI/dV, which arises solely due to under-barrier interference, can enable new high-speed active-circuit devices with architectures that are not available in electronic semiconductor devices. PMID:21825159

  12. Optical encrypted holographic memory using triple random phase-encoded multiplexing in photorefractive LiNbO3:Fe crystal

    NASA Astrophysics Data System (ADS)

    Tang, Li-Chuan; Hu, Guang W.; Russell, Kendra L.; Chang, Chen S.; Chang, Chi Ching

    2000-10-01

    We propose a new holographic memory scheme based on random phase-encoded multiplexing in a photorefractive LiNbO3:Fe crystal. Experimental results show that rotating a diffuser placed as a random phase modulator in the path of the reference beam provides a simple yet effective method of increasing the holographic storage capabilities of the crystal. Combining this rotational multiplexing with angular multiplexing offers further advantages. Storage capabilities can be optimized by using a post-image random phase plate in the path of the object beam. The technique is applied to a triple phase-encoded optical security system that takes advantage of the high angular selectivity of the angular-rotational multiplexing components.

  13. LASER ABSORPTION SPECTROSCOPY METHODS FOR SUBSURFACE MONITORING OF CO2 IN WATER AND AIR PHASES AT SEQUESTRATION SITES

    NASA Astrophysics Data System (ADS)

    Wu, S.; Romanak, K.; Yang, C.

    2009-12-01

    We report the development of two methods for subsurface monitoring of CO2 in both air and water phases at sequestration sites. The first method is based on line-of-sight (LOS) tunable laser spectroscopy. Funded by DOE, we demonstrated the Phase Insensitive Two Tone Frquency Modulation spectroscopy (PITTFM). FM reduces low frequency noise in the beam path due to scintillations; while the PI design gives the ease of installation. We demonstrated measurement over 1 mile distance with an accuracy of 3ppm of CO2 in normal air. Built-in switches shoot the laser beam into multi-directions, thus forming a cellular monitoring network covering 10 km^2. The system cost is under $100K, and COTS telecom components guarantee the reliability in the field over decades. Software will log the data and translate the 2D CO2 profile. When coupled with other parameters, it will be able to locate the point and rate of leakages. Field tests at SECARB sequestration site are proposed. The system also monitors other green house gases (GHG), e.g. CH4, which is also needed where EOR is pursued along with CO2 sequestration. Figures 1 through 2 give the results of this method. The second method is based on the latest technology advances in quantum cascade lasers (QCLs). The current state of the art technology to measure Total/Dissolved Inorganic Carbon (TIC/DIC) in water is menometer. Menometer is both time consuming and costly, and could not be used underground, i.e. high pressure and temperature. We propose to use high brightness QC lasers to extend the current Mid-IR optical path from 30 microns to over 500microns, thus providing the possibility to measure CO2 dissoveled (Aqueous phase) with an accuracy of 0.2mg/Liter. Preliminary results will be presented.

  14. XV-15 Tiltrotor Low Noise Terminal Area Operations

    NASA Technical Reports Server (NTRS)

    Conner, David A.; Marcolini, Michael A.; Edwards, Bryan D.; Brieger, John T.

    1998-01-01

    Acoustic data have been acquired for the XV-15 tiltrotor aircraft performing a variety of terminal area operating procedures. This joint NASA/Bell/Army test program was conducted in two phases. During Phase 1 the XV-15 was flown over a linear array of microphones, deployed perpendicular to the flight path, at a number of fixed operating conditions. This documented the relative noise differences between the various conditions. During Phase 2 the microphone array was deployed over a large area to directly measure the noise footprint produced during realistic approach and departure procedures. The XV-15 flew approach profiles that culminated in IGE hover over a landing pad, then takeoffs from the hover condition back out over the microphone array. Results from Phase 1 identify noise differences between selected operating conditions, while those from Phase 2 identify differences in noise footprints between takeoff and approach conditions and changes in noise footprint due to variation in approach procedures.

  15. Compact Radar Transceiver with Included Calibration

    NASA Technical Reports Server (NTRS)

    McLinden, Matthew; Rincon, Rafael

    2013-01-01

    The Digital Beamforming Synthetic Aperture Radar (DBSAR) is an eight-channel phased array radar system that employs solid-state radar transceivers, a microstrip patch antenna, and a reconfigurable waveform generator and processor unit. The original DBSAR transceiver design utilizes connectorized electronic components that tend to be physically large and heavy. To achieve increased functionality in a smaller volume, PCB (printed circuit board) transceivers were designed to replace the large connectorized transceivers. One of the most challenging problems designing the transceivers in a PCB format was achieving proper performance in the calibration path. For a radar loop-back calibration path, a portion of the transmit signal is coupled out of the antenna feed and fed back into the receiver. This is achieved using passive components for stability and repeatability. Some signal also leaks through the receive path. As these two signal paths are correlated via an unpredictable phase, the leakage through the receive path during transmit must be 30 dB below the calibration path. For DBSAR s design, this requirement called for a 100-dB isolation in the receiver path during transmit. A total of 16 solid-state L-band transceivers on a PCB format were designed. The transceivers include frequency conversion stages, T/R switching, and a calibration path capable of measuring the transmit power-receiver gain product during transmit for pulse-by-pulse calibration or matched filtering. In particular, this calibration path achieves 100-dB isolation between the transmitted signal and the low-noise amplifier through the use of a switching network and a section of physical walls achieving attenuation of radiated leakage. The transceivers were designed in microstrip PCBs with lumped elements and individually packaged components for compactness. Each transceiver was designed on a single PCB with a custom enclosure providing interior walls and compartments to isolate transceiver subsystems from radiated interference. The enclosure also acts as a heat sink for the voltage regulators and power amplifiers inside the system. The PCB transceiver design produces transmit pulses of 2 W with an arbitrary duty cycle. Each transceiver is fed by an external 120-MHz signal transmit and two 1,140-MHz local oscillator signals. The received signal is amplified and down-converted to 120 MHz and is fed to the data processor. The transceiver dimensions are approximately 3.5 11.5 0.6 in. (9 29 1.5 cm). The PCB transceiver design reduces the volume and weight of the DBSAR instrument while maintaining the functionality found in the original design. Both volume and weight are critical for airborne and flight remote sensing instrumentation.

  16. Effective Methods of Teaching Moon Phases

    NASA Astrophysics Data System (ADS)

    Jones, Heather; Hintz, E. G.; Lawler, M. J.; Jones, M.; Mangrubang, F. R.; Neeley, J. E.

    2010-01-01

    This research investigates the effectiveness of several commonly used methods for teaching the causes of moon phases to sixth grade students. Common teaching methods being investigated are the use of diagrams, animations, modeling/kinesthetics and direct observations of moon phases using a planetarium. Data for each method will be measured by a pre and post assessment of students understanding of moon phases taught using one of the methods. The data will then be used to evaluate the effectiveness of each teaching method individually and comparatively, as well as the method's ability to discourage common misconceptions about moon phases. Results from this research will provide foundational data for the development of educational planetarium shows for the deaf or other linguistically disadvantage children.

  17. Fast kinematic ray tracing of first- and later-arriving global seismic phases

    NASA Astrophysics Data System (ADS)

    Bijwaard, Harmen; Spakman, Wim

    1999-11-01

    We have developed a ray tracing algorithm that traces first- and later-arriving global seismic phases precisely (traveltime errors of the order of 0.1 s), and with great computational efficiency (15 rays s- 1). To achieve this, we have extended and adapted two existing ray tracing techniques: a graph method and a perturbation method. The two resulting algorithms are able to trace (critically) refracted, (multiply) reflected, some diffracted (Pdiff), and (multiply) converted seismic phases in a 3-D spherical geometry, thus including the largest part of seismic phases that are commonly observed on seismograms. We have tested and compared the two methods in 2-D and 3-D Cartesian and spherical models, for which both algorithms have yielded precise paths and traveltimes. These tests indicate that only the perturbation method is computationally efficient enough to perform 3-D ray tracing on global data sets of several million phases. To demonstrate its potential for non-linear tomography, we have applied the ray perturbation algorithm to a data set of 7.6 million P and pP phases used by Bijwaard et al. (1998) for linearized tomography. This showed that the expected heterogeneity within the Earth's mantle leads to significant non-linear effects on traveltimes for 10 per cent of the applied phases.

  18. Design of the Longitudinal Dispersion Compensation System for the CHARA Array

    NASA Astrophysics Data System (ADS)

    Berger, D. H.; Bagnuolo, W. G.

    2001-05-01

    In recent years, the baselines of optical and infrared interferometers have been approaching half of a kilometer in length. With increased spatial layout comes new and challenging problems to solve. One common hurdle occurs when observing objects not perpendicular to the baseline. The result is one beam with added path length that must be added to the non-delayed beam such that identical phase fronts are combined together to produce fringes. For several interferometers without the addition of costly and logistically difficult evacuated delay lines, path length equalization occurs in long buildings through the ambient air medium. This causes a beam which is spectrally dispersed along the optical axis. The undesirable consequence is decreased fringe contrast. A solution is to disperse the uncompensated beam by inserting a block of glass to match the optical path lengths for all wavelengths within the observing waveband. A single glass solution is presented for the CHARA Array. Modeling, design and fabrication methods are also considered. The CHARA Array, a six-telescope O/IR interferometric array operated by Georgia State University on Mt. Wilson, California, was funded by the National Science Foundation, the W.M. Keck Foundation, the David and Lucile Packard Foundation, and Georgia State University. This research is also funded in part by the Michelson Fellowship Program sponsored by Jet Propulsion Laboratory.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Argo, P.E.; DeLapp, D.; Sutherland, C.D.

    TRACKER is an extension of a three-dimensional Hamiltonian raytrace code developed some thirty years ago by R. Michael Jones. Subsequent modifications to this code, which is commonly called the {open_quotes}Jones Code,{close_quotes} were documented by Jones and Stephensen (1975). TRACKER incorporates an interactive user`s interface, modern differential equation integrators, graphical outputs, homing algorithms, and the Ionospheric Conductivity and Electron Density (ICED) ionosphere. TRACKER predicts the three-dimensional paths of radio waves through model ionospheres by numerically integrating Hamilton`s equations, which are a differential expression of Fermat`s principle of least time. By using continuous models, the Hamiltonian method avoids false caustics and discontinuousmore » raypath properties often encountered in other raytracing methods. In addition to computing the raypath, TRACKER also calculates the group path (or pulse travel time), the phase path, the geometrical (or {open_quotes}real{close_quotes}) pathlength, and the Doppler shift (if the time variation of the ionosphere is explicitly included). Computational speed can be traded for accuracy by specifying the maximum allowable integration error per step in the integration. Only geometrical optics are included in the main raytrace code; no partial reflections or diffraction effects are taken into account. In addition, TRACKER does not lend itself to statistical descriptions of propagation -- it requires a deterministic model of the ionosphere.« less

  20. Topologic connection between 2-D layered structures and 3-D diamond structures for conventional semiconductors

    PubMed Central

    Wang, Jianwei; Zhang, Yong

    2016-01-01

    When coming to identify new 2D materials, our intuition would suggest us to look from layered instead of 3D materials. However, since graphite can be hypothetically derived from diamond by stretching it along its [111] axis, many 3D materials can also potentially be explored as new candidates for 2D materials. Using a density functional theory, we perform a systematic study over the common Group IV, III–V, and II–VI semiconductors along different deformation paths to reveal new structures that are topologically connected to but distinctly different from the 3D parent structure. Specifically, we explore two major phase transition paths, originating respectively from wurtzite and NiAs structure, by applying compressive and tensile strain along the symmetry axis, and calculating the total energy changes to search for potential metastable states, as well as phonon spectra to examine the structural stability. Each path is found to further split into two branches under tensile strain–low buckled and high buckled structures, which respectively lead to a low and high buckled monolayer structure. Most promising new layered or planar structures identified include BeO, GaN, and ZnO on the tensile strain side, Ge, Si, and GaP on the compressive strain side. PMID:27090430

  1. Monitoring the thinning dynamics of soap films by phase shift interferometry. The case of perfluoropolyether surfactants.

    PubMed

    Gambi, Cecilia M C; Vannoni, Maurizio; Sordini, Andrea; Molesini, Giuseppe

    2014-02-01

    An interferometric method to monitor the thinning process of vertical soap films from a water solution of surfactant materials is reported. Raw data maps of optical path difference introduced by the film are obtained by conventional phase shift interferometry. Off-line re-processing of such raw data taking into account the layered structure of soap films leads to an accurate measurement of the geometrical thickness. As an example of data acquisition and processing, the measuring chain is demonstrated on perfluoropolyether surfactants; the section profile of vertical films is monitored from drawing to black film state, and quantitative data on the dynamics of the thinning process are presented. The interferometric method proves effective to the task, and lends itself to further investigate the physical properties of soap films.

  2. Born iterative reconstruction using perturbed-phase field estimates

    PubMed Central

    Astheimer, Jeffrey P.; Waag, Robert C.

    2008-01-01

    A method of image reconstruction from scattering measurements for use in ultrasonic imaging is presented. The method employs distorted-wave Born iteration but does not require using a forward-problem solver or solving large systems of equations. These calculations are avoided by limiting intermediate estimates of medium variations to smooth functions in which the propagated fields can be approximated by phase perturbations derived from variations in a geometric path along rays. The reconstruction itself is formed by a modification of the filtered-backpropagation formula that includes correction terms to account for propagation through an estimated background. Numerical studies that validate the method for parameter ranges of interest in medical applications are presented. The efficiency of this method offers the possibility of real-time imaging from scattering measurements. PMID:19062873

  3. Arctic Gas Phase Water Vapor Measurements from the NASA DC-8 During SOLVE

    NASA Technical Reports Server (NTRS)

    Podolske, James; Sachse, Glen; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    The NASA Langley / Ames Diode Laser Hygrometer (DLH) was flown aboard the NASA DC-8 during all three arctic deployments of the SOLVE campaign. The DLH measures gas phase H2O in the freestream air between the fuselage and the outer right engine cowling, essentially free from aircraft perturbations. It uses wavelength-modulated near-IR laser radiation at about 1.4 microns to detect the H2O absorption. Calibration is based on short path experiments in the laboratory using a NIST-traceable dewpoint hygrometer with carefully conditioned air at dewpoints between - 10 and + 10 degrees C. The theory of operation of the DLH instrument will be presented, along with a description of the calibration methodology. A simple climatology of H2O observations from SOLVE will be presented.

  4. Surface wave phase velocities from 2-D surface wave tomography studies in the Anatolian plate

    NASA Astrophysics Data System (ADS)

    Arif Kutlu, Yusuf; Erduran, Murat; Çakır, Özcan; Vinnik, Lev; Kosarev, Grigoriy; Oreshin, Sergey

    2014-05-01

    We study the Rayleigh and Love surface wave fundamental mode propagation beneath the Anatolian plate. To examine the inter-station phase velocities a two-station method is used along with the Multiple Filter Technique (MFT) in the Computer Programs in Seismology (Herrmann and Ammon, 2004). The near-station waveform is deconvolved from the far-station waveform removing the propagation effects between the source and the station. This method requires that the near and far stations are aligned with the epicentre on a great circle path. The azimuthal difference of the earthquake to the two-stations and the azimuthal difference between the earthquake and the station are restricted to be smaller than 5o. We selected 3378 teleseismic events (Mw >= 5.7) recorded by 394 broadband local stations with high signal-to-noise ratio within the years 1999-2013. Corrected for the instrument response suitable seismogram pairs are analyzed with the two-station method yielding a collection of phase velocity curves in various period ranges (mainly in the range 25-185 sec). Diffraction from lateral heterogeneities, multipathing, interference of Rayleigh and Love waves can alter the dispersion measurements. In order to obtain quality measurements, we select only smooth portions of the phase velocity curves, remove outliers and average over many measurements. We discard these average phase velocity curves suspected of suffering from phase wrapping errors by comparing them with a reference Earth model (IASP91 by Kennett and Engdahl, 1991). The outlined analysis procedure yields 3035 Rayleigh and 1637 Love individual phase velocity curves. To obtain Rayleigh and Love wave travel times for a given region we performed 2-D tomographic inversion for which the Fast Marching Surface Tomography (FMST) code developed by N. Rawlinson at the Australian National University was utilized. This software package is based on the multistage fast marching method by Rawlinson and Sambridge (2004a, 2004b). The azimuthal coverage of the respective two-station paths is proper to analyze the observed dispersion curves in terms of both azimuthal and radial anisotropy beneath the study region. This research is supported by Joint Research Project of the Scientific and Research Council of Turkey (TUBİTAK- Grant number 111Y190) and the Russian Federation for Basic Research (RFBR).

  5. An Application of Self-Organizing Map for Multirobot Multigoal Path Planning with Minmax Objective.

    PubMed

    Faigl, Jan

    2016-01-01

    In this paper, Self-Organizing Map (SOM) for the Multiple Traveling Salesman Problem (MTSP) with minmax objective is applied to the robotic problem of multigoal path planning in the polygonal domain. The main difficulty of such SOM deployment is determination of collision-free paths among obstacles that is required to evaluate the neuron-city distances in the winner selection phase of unsupervised learning. Moreover, a collision-free path is also needed in the adaptation phase, where neurons are adapted towards the presented input signal (city) to the network. Simple approximations of the shortest path are utilized to address this issue and solve the robotic MTSP by SOM. Suitability of the proposed approximations is verified in the context of cooperative inspection, where cities represent sensing locations that guarantee to "see" the whole robots' workspace. The inspection task formulated as the MTSP-Minmax is solved by the proposed SOM approach and compared with the combinatorial heuristic GENIUS. The results indicate that the proposed approach provides competitive results to GENIUS and support applicability of SOM for robotic multigoal path planning with a group of cooperating mobile robots. The proposed combination of approximate shortest paths with unsupervised learning opens further applications of SOM in the field of robotic planning.

  6. An Application of Self-Organizing Map for Multirobot Multigoal Path Planning with Minmax Objective

    PubMed Central

    Faigl, Jan

    2016-01-01

    In this paper, Self-Organizing Map (SOM) for the Multiple Traveling Salesman Problem (MTSP) with minmax objective is applied to the robotic problem of multigoal path planning in the polygonal domain. The main difficulty of such SOM deployment is determination of collision-free paths among obstacles that is required to evaluate the neuron-city distances in the winner selection phase of unsupervised learning. Moreover, a collision-free path is also needed in the adaptation phase, where neurons are adapted towards the presented input signal (city) to the network. Simple approximations of the shortest path are utilized to address this issue and solve the robotic MTSP by SOM. Suitability of the proposed approximations is verified in the context of cooperative inspection, where cities represent sensing locations that guarantee to “see” the whole robots' workspace. The inspection task formulated as the MTSP-Minmax is solved by the proposed SOM approach and compared with the combinatorial heuristic GENIUS. The results indicate that the proposed approach provides competitive results to GENIUS and support applicability of SOM for robotic multigoal path planning with a group of cooperating mobile robots. The proposed combination of approximate shortest paths with unsupervised learning opens further applications of SOM in the field of robotic planning. PMID:27340395

  7. Looking Deeper Into Hydrologic Connectivity and Streamflow Generation: A Groundwater Hydrologist's Perspective.

    NASA Astrophysics Data System (ADS)

    Gardner, W. P.

    2016-12-01

    In this presentation the definition of hydraulic connection will be explored with a focus on the role of deep groundwater in streamflow generation and its time and space limits. Regional groundwater flow paths can be important sources of baseflow and potentially event response in surface water systems. This deep groundwater discharge plays an important role in determining how the watershed responds to climatic forcing, whether watersheds are a carbon source or sink and can be significant for watershed geochemistry and nutrient loading. These flow paths potentially "connect" to surface water systems and saturated soil zones at large distances, and over long time scales. However, these flow paths are challenging to detect, especially with hydraulic techniques. Here we will discuss some of the basic physical processes that affect the hydraulic signal along a groundwater flow path and their implications for the definition of hydrologic connection. Methods of measuring hydraulic connection using groundwater head response and their application in detecting regional groundwater discharge will be discussed. Environmental tracers are also a powerful method for identifying connected flowpaths in groundwater systems, and are commonly used to determine flow connection and flow rates in groundwater studies. Isotopic tracer methods for detecting deep, regional flow paths in watersheds will be discussed, along with observations of deep groundwater discharge in shallow alluvial systems around the world. The goal of this talk is to discuss hydraulic and hydrologic connection from a groundwater hydrologist's perspective, spark conversation on the meaning of hydrologic connection, the processes which govern hydraulic response and methods to measure flow connections and flux.

  8. Photonic generation of low phase noise arbitrary chirped microwave waveforms with large time-bandwidth product.

    PubMed

    Xie, Weilin; Xia, Zongyang; Zhou, Qian; Shi, Hongxiao; Dong, Yi; Hu, Weisheng

    2015-07-13

    We present a photonic approach for generating low phase noise, arbitrary chirped microwave waveforms based on heterodyne beating between high order correlated comb lines extracted from frequency-agile optical frequency comb. Using the dual heterodyne phase transfer scheme, extrinsic phase noises induced by the separate optical paths are efficiently suppressed by 42-dB at 1-Hz offset frequency. Linearly chirped microwave waveforms are achieved within 30-ms temporal duration, contributing to a large time-bandwidth product. The linearity measurement leads to less than 90 kHz RMS frequency error during the entire chirp duration, exhibiting excellent linearity for the microwave and sub-THz waveforms. The capability of generating arbitrary waveforms up to sub-THz band with flexible temporal duration, long repetition period, broad bandwidth, and large time-bandwidth product is investigated and discussed.

  9. Method and apparatus for probing relative volume fractions

    DOEpatents

    Jandrasits, Walter G.; Kikta, Thomas J.

    1998-01-01

    A relative volume fraction probe particularly for use in a multiphase fluid system includes two parallel conductive paths defining therebetween a sample zone within the system. A generating unit generates time varying electrical signals which are inserted into one of the two parallel conductive paths. A time domain reflectometer receives the time varying electrical signals returned by the second of the two parallel conductive paths and, responsive thereto, outputs a curve of impedance versus distance. An analysis unit then calculates the area under the curve, subtracts the calculated area from an area produced when the sample zone consists entirely of material of a first fluid phase, and divides this calculated difference by the difference between an area produced when the sample zone consists entirely of material of the first fluid phase and an area produced when the sample zone consists entirely of material of a second fluid phase. The result is the volume fraction.

  10. Optical path design of phase contrast imaging on HL-2A tokamak

    NASA Astrophysics Data System (ADS)

    Qiyun, CHENG; Yi, YU; Shaobo, GONG; Min, XU; Tao, LAN; Wei, JIANG; Boda, YUAN; Yifan, WU; Lin, NIE; Rui, KE; Ting, LONG; Dong, GUO; Minyou, YE; Xuru, DUAN

    2017-12-01

    A phase contrast imaging (PCI) diagnostic has recently been developed on HL-2A tokamak. It can diagnose plasma density fluctuations with maximum wave number of 15 cm-1 and wave number resolution of 2 cm-1. The time resolution reaches 2 μs. A 10.6 μm CO2 laser is expanded to a beam with a diameter of 30 mm and injected into the plasma as an incident beam, injecting into plasma. The emerging scattered and unscattered beams are contrasted by a phase plate. The ideas of optical path design are presented in this paper, together with the parameters of the main optical components. The whole optical path of PCI is not only carefully designed, but also constructed on HL-2A. First calibration results show the ability of this system to catch plasma turbulence in a wide frequency domain.

  11. Method and apparatus for probing relative volume fractions

    DOEpatents

    Jandrasits, W.G.; Kikta, T.J.

    1998-03-17

    A relative volume fraction probe particularly for use in a multiphase fluid system includes two parallel conductive paths defining therebetween a sample zone within the system. A generating unit generates time varying electrical signals which are inserted into one of the two parallel conductive paths. A time domain reflectometer receives the time varying electrical signals returned by the second of the two parallel conductive paths and, responsive thereto, outputs a curve of impedance versus distance. An analysis unit then calculates the area under the curve, subtracts the calculated area from an area produced when the sample zone consists entirely of material of a first fluid phase, and divides this calculated difference by the difference between an area produced when the sample zone consists entirely of material of the first fluid phase and an area produced when the sample zone consists entirely of material of a second fluid phase. The result is the volume fraction. 9 figs.

  12. Phase-linking and the perceived motion during off-vertical axis rotation.

    PubMed

    Holly, Jan E; Wood, Scott J; McCollum, Gin

    2010-01-01

    Human off-vertical axis rotation (OVAR) in the dark typically produces perceived motion about a cone, the amplitude of which changes as a function of frequency. This perception is commonly attributed to the fact that both the OVAR and the conical motion have a gravity vector that rotates about the subject. Little-known, however, is that this rotating-gravity explanation for perceived conical motion is inconsistent with basic observations about self-motion perception: (a) that the perceived vertical moves toward alignment with the gravito-inertial acceleration (GIA) and (b) that perceived translation arises from perceived linear acceleration, as derived from the portion of the GIA not associated with gravity. Mathematically proved in this article is the fact that during OVAR these properties imply mismatched phase of perceived tilt and translation, in contrast to the common perception of matched phases which correspond to conical motion with pivot at the bottom. This result demonstrates that an additional perceptual rule is required to explain perception in OVAR. This study investigates, both analytically and computationally, the phase relationship between tilt and translation at different stimulus rates-slow (45 degrees /s) and fast (180 degrees /s), and the three-dimensional shape of predicted perceived motion, under different sets of hypotheses about self-motion perception. We propose that for human motion perception, there is a phase-linking of tilt and translation movements to construct a perception of one's overall motion path. Alternative hypotheses to achieve the phase match were tested with three-dimensional computational models, comparing the output with published experimental reports. The best fit with experimental data was the hypothesis that the phase of perceived translation was linked to perceived tilt, while the perceived tilt was determined by the GIA. This hypothesis successfully predicted the bottom-pivot cone commonly reported and a reduced sense of tilt during fast OVAR. Similar considerations apply to the hilltop illusion often reported during horizontal linear oscillation. Known response properties of central neurons are consistent with this ability to phase-link translation with tilt. In addition, the competing "standard" model was mathematically proved to be unable to predict the bottom-pivot cone regardless of the values used for parameters in the model.

  13. Analysis of off-axis incoherent digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Quan, Xiangyu; Matoba, Osamu; Awatsuji, Yasuhiro

    2017-05-01

    Off-axis incoherent digital holography that enables single-shot three-dimensional (3D) distribution is introduced in the paper. Conventional fluorescence microscopy images 3D fields by sectioning, this prevents instant imaging of fast reactions of living cells. In order to realize digital holography from incoherent light, we adapted common path configuration to achieve the best temporal coherence. And by introducing gratings, we shifted the direction of each light to achieve off-axis interference. Simulations and preliminary experiments using LED light have confirmed the results. We expect to use this method to realize 3D phase imaging and fluorescent imaging at the same time from the same biological sample.

  14. Effects of partners together in health intervention on physical activity and healthy eating behaviors: a pilot study.

    PubMed

    Yates, Bernice C; Norman, Joseph; Meza, Jane; Krogstrand, Kaye Stanek; Harrington, Susana; Shurmur, Scott; Johnson, Matthew; Schumacher, Karen

    2015-01-01

    Despite proven efficacy of cardiac rehabilitation (CR) in helping patients initiate physical activity and healthy eating changes, less than 50% of CR participants maintain changes 6 months later. The objective of this feasibility study was to test the Partners Together in Health (PaTH) intervention versus usual care in improving physical activity and healthy eating behaviors in coronary artery bypass graft surgery patients and their spouses. An experimental, 2-group (n = 17 couples/group), repeated-measures design was used. Coronary artery bypass surgery patients in both groups participated in phase II outpatient CR. Spouses in the PaTH group attended CR with the patient and were asked to make the same physical activity and healthy eating changes as patients did. Spouses in the usual care attended educational classes with patients. It was theorized that "2 persons would be better than 1" at making changes and sticking with them in the long-term. Physical activity behavior was measured using the Actiheart accelerometer; the activity biomarker was an exercise tolerance test. Eating behavior was measured using 3-day food records; the biomarker was the lipid profile. Data were collected at baseline (entrance in CR), at 3 months (post-CR), and at 6 months. Changes over time were examined using Mann-Whitney U statistics and effect sizes. The PaTH intervention was successful primarily in demonstrating improved trends in healthy eating behavior for patients and spouses. No differences were found between the PaTH and usual care patients or spouses at 3 or 6 months in the number of minutes per week of physical activity. By 6 months, patients in both groups were, on average, below the national guidelines for PA recommendations (≥150 min/wk at >3 metabolic equivalents). The couple-focused PaTH intervention demonstrated promise in offsetting the decline in dietary adherence typically seen 6 months after CR.

  15. Open-path, closed-path and reconstructed aerosol extinction at a rural site.

    PubMed

    Gordon, Timothy D; Prenni, Anthony J; Renfro, James R; McClure, Ethan; Hicks, Bill; Onasch, Timothy B; Freedman, Andrew; McMeeking, Gavin R; Chen, Ping

    2018-04-09

    The Handix Scientific Open-Path Cavity Ringdown Spectrometer (OPCRDS) was deployed during summer 2016 in Great Smoky Mountains National Park (GRSM). Extinction coefficients from the relatively new OPCRDS and from a more well-established extinction instrument agreed to within 7%. Aerosol hygroscopic growth (f(RH)) was calculated from the ratio of ambient extinction measured by the OPCRDS to dry extinction measured by a closed-path extinction monitor (Aerodyne's Cavity Attenuated Phase Shift Particulate Matter Extinction Monitor, CAPS PMex). Derived hygroscopicity (RH < 95%) from this campaign agreed with data from 1995 at the same site and time of year, which is noteworthy given the decreasing trend for organics and sulfate in the eastern U.S. However, maximum f(RH) values in 1995 were less than half as large as those recorded in 2016-possibly due to nephelometer truncation losses in 1995. Two hygroscopicity parameterizations were investigated using high time resolution OPCRDS+CAPS PMex data, and the K ext model was more accurate than the γ model. Data from the two ambient optical instruments, the OPCRDS and the open-path nephelometer, generally agreed; however, significant discrepancies between ambient scattering and extinction were observed, apparently driven by a combination of hygroscopic growth effects, which tend to increase nephelometer truncation losses and decrease sensitivity to the wavelength difference between the two instruments as a function of particle size. There was not a statistically significant difference in the mean reconstructed extinction values obtained from the original and the revised IMPROVE (Interagency Monitoring of Protected Visual Environments) equations. On average IMPROVE reconstructed extinction was ~25% lower than extinction measured by the OPCRDS, which suggests that the IMPROVE equations and 24-hr aerosol data are moderately successful in estimating current haze levels at GRSM. However, this conclusion is limited by the coarse temporal resolution and the low dynamic range of the IMPROVE reconstructed extinction.

  16. Phase noise characterization of a QD-based diode laser frequency comb.

    PubMed

    Vedala, Govind; Al-Qadi, Mustafa; O'Sullivan, Maurice; Cartledge, John; Hui, Rongqing

    2017-07-10

    We measure, simultaneously, the phases of a large set of comb lines from a passively mode locked, InAs/InP, quantum dot laser frequency comb (QDLFC) by comparing the lines to a stable comb reference using multi-heterodyne coherent detection. Simultaneity permits the separation of differential and common mode phase noise and a straightforward determination of the wavelength corresponding to the minimum width of the comb line. We find that the common mode and differential phases are uncorrelated, and measure for the first time for a QDLFC that the intrinsic differential-mode phase (IDMP) between adjacent subcarriers is substantially the same for all subcarrier pairs. The latter observation supports an interpretation of 4.4ps as the standard deviation of IDMP on a 200µs time interval for this laser.

  17. Determination of the Residence Time of Food Particles During Aseptic Sterilization

    NASA Technical Reports Server (NTRS)

    Carl, J. R.; Arndt, G. D.; Nguyen, T. X.

    1994-01-01

    The paper describes a non-invasive method to measure the time an individual particle takes to move through a length of stainless steel pipe. The food product is in two phase flow (liquids and solids) and passes through a pipe with pressures of approximately 60 psig and temperatures of 270-285 F. The proposed problem solution is based on the detection of transitory amplitude and/or phase changes in a microwave transmission path caused by the passage of the particles of interest. The particles are enhanced in some way, as will be discussed later, such that they will provide transitory changes that are distinctive enough not to be mistaken for normal variations in the received signal (caused by the non-homogeneous nature of the medium). Two detectors (transmission paths across the pipe) will be required and place at a known separation. A minimum transit time calculation is made from which the maximum velocity can be determined. This provides the minimum residence time. Also average velocity and statistical variations can be computed so that the amount of 'over-cooking' can be determined.

  18. Flexibility and torsional behaviour of rotary nickel-titanium PathFile, RaCe ISO 10, Scout RaCe and stainless steel K-File hand instruments.

    PubMed

    Nakagawa, R K L; Alves, J L; Buono, V T L; Bahia, M G A

    2014-03-01

    To assess and compare the flexibility and torsional resistance of PathFile, RaCe ISO 10 and Scout RaCe instruments in relation to stainless steel K-File hand instruments. Rotary PathFile (sizes 13, 16 and 19; .02 taper), Race ISO 10 (size 10; 0.02, 0.04 and 0.06 tapers), Scout RaCe (sizes 10, 15 and 20; 0.02 taper) and hand K-File (sizes 10, 15 and 20; 0.02 taper) instruments were evaluated. Alloy chemical composition, phases present and transformation temperatures were determined for the NiTi instruments. For all instruments, diameters at each millimetre from the tip as well as cross-sectional areas at 3 mm from the tip were measured based on ANSI/ADA Specification No. 101 using image analysis software. Resistance to bending and torsional resistance were determined according to specification ISO 3630-1. Vickers microhardness measurements were also taken in all instruments to assess their strength. Data were analysed using analysis of variance (α = 0.05). The alloys used in the manufacture of the three types of NiTi instruments had approximately the same chemical composition, but the PathFile instruments had a higher Af transformation temperature and contained a small amount of B19' martensite. All instruments had diameter values within the standard tolerance. The bending and torsional resistance values were significantly increased relative to the instrument diameter and cross-sectional area. PathFile instruments were the most flexible and the least torque resistant, whilst the stainless steel instruments were the least flexible although they were more torque resistant than the NiTi instruments. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  19. Semiclassical propagator of the Wigner function.

    PubMed

    Dittrich, Thomas; Viviescas, Carlos; Sandoval, Luis

    2006-02-24

    Propagation of the Wigner function is studied on two levels of semiclassical propagation: one based on the Van Vleck propagator, the other on phase-space path integration. Leading quantum corrections to the classical Liouville propagator take the form of a time-dependent quantum spot. Its oscillatory structure depends on whether the underlying classical flow is elliptic or hyperbolic. It can be interpreted as the result of interference of a pair of classical trajectories, indicating how quantum coherences are to be propagated semiclassically in phase space. The phase-space path-integral approach allows for a finer resolution of the quantum spot in terms of Airy functions.

  20. Long open-path measurements of greenhouse gases in air using near-infrared Fourier transform spectroscopy

    NASA Astrophysics Data System (ADS)

    Griffith, David W. T.; Pöhler, Denis; Schmitt, Stefan; Hammer, Samuel; Vardag, Sanam N.; Platt, Ulrich

    2018-03-01

    In complex and urban environments, atmospheric trace gas composition is highly variable in time and space. Point measurement techniques for trace gases with in situ instruments are well established and accurate, but do not provide spatial averaging to compare against developing high-resolution atmospheric models of composition and meteorology with resolutions of the order of a kilometre. Open-path measurement techniques provide path average concentrations and spatial averaging which, if sufficiently accurate, may be better suited to assessment and interpretation with such models. Open-path Fourier transform spectroscopy (FTS) in the mid-infrared region, and differential optical absorption spectroscopy (DOAS) in the UV and visible, have been used for many years for open-path spectroscopic measurements of selected species in both clean air and in polluted environments. Near infrared instrumentation allows measurements over longer paths than mid-infrared FTS for species such as greenhouse gases which are not easily accessible to DOAS.In this pilot study we present the first open-path near-infrared (4000-10 000 cm-1, 1.0-2.5 µm) FTS measurements of CO2, CH4, O2, H2O and HDO over a 1.5 km path in urban Heidelberg, Germany. We describe the construction of the open-path FTS system, the analysis of the collected spectra, several measures of precision and accuracy of the measurements, and the results a four-month trial measurement period in July-November 2014. The open-path measurements are compared to calibrated in situ measurements made at one end of the open path. We observe significant differences of the order of a few ppm for CO2 and a few tens of ppb for CH4 between the open-path and point measurements which are 2 to 4 times the measurement repeatability, but we cannot unequivocally assign the differences to specific local sources or sinks. We conclude that open-path FTS may provide a valuable new tool for investigations of atmospheric trace gas composition in complex, small-scale environments such as cities.

  1. Channel Modeling of Miniaturized Battery-Powered Capacitive Human Body Communication Systems.

    PubMed

    Park, Jiwoong; Garudadri, Harinath; Mercier, Patrick P

    2017-02-01

    The purpose of this contribution is to estimate the path loss of capacitive human body communication (HBC) systems under practical conditions. Most prior work utilizes large grounded instruments to perform path loss measurements, resulting in overly optimistic path loss estimates for wearable HBC devices. In this paper, small battery-powered transmitter and receiver devices are implemented to measure path loss under realistic assumptions. A hybrid electrostatic finite element method simulation model is presented that validates measurements and enables rapid and accurate characterization of future capacitive HBC systems. Measurements from form-factor-accurate prototypes reveal path loss results between 31.7 and 42.2 dB from 20 to 150 MHz. Simulation results matched measurements within 2.5 dB. Comeasurements using large grounded benchtop vector network analyzer (VNA) and large battery-powered spectrum analyzer (SA) underestimate path loss by up to 33.6 and 8.2 dB, respectively. Measurements utilizing a VNA with baluns, or large battery-powered SAs with baluns still underestimate path loss by up to 24.3 and 6.7 dB, respectively. Measurements of path loss in capacitive HBC systems strongly depend on instrumentation configurations. It is thus imperative to simulate or measure path loss in capacitive HBC systems utilizing realistic geometries and grounding configurations. HBC has a great potential for many emerging wearable devices and applications; accurate path loss estimation will improve system-level design leading to viable products.

  2. Influence of La/W ratio on electrical conductivity of lanthanum tungstate with high La/W ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojo, Gen; Shono, Yohei; Ushiyama, Hiroshi

    The proton-conducting properties of lanthanum tungstates (LWOs) with high La/W ratios were investigated using electrochemical measurements and quantum chemical calculations. Single phases of LWOs with high La/W ratios (6.3≤La/W≤6.7) were synthesized by high-temperature sintering at around 1700 °C. The electrical conductivity of LWO increased with increasing La/W ratio in the single-phase region. The LWO synthesized at the optimum sintering temperature and time, and with the optimum La/W ratio gave the maximum conductivity, i.e., 2.7×10{sup −3} S cm{sup −1} with La/W=6.7 at 500 °C. Density functional theory calculations, using the nudged elastic band method, were performed to investigate the proton diffusionmore » barrier. The results suggest that the proton diffusion paths around La sites have the lowest proton diffusion barrier. These findings improve our understanding of LWO synthesis and the proton-conducting mechanism and provide a strategy for improving proton conduction in LWOs. - Graphical abstract: The LWOs with high La/W ratios were synthesized for the first time. The optimum La/W ratio gave the maximum conductivity with La/W=6.7 at 500 °C. The proton diffusion paths were also considered with density functional theory calculations. - Highlights: • The proton-conducting properties of lanthanum tungstates (LWOs) were investigated. • Single phase LWOs with high La/W ratios (6.3≤La/W≤6.7) were synthesized successfully. • LWOs with the high La/W ratios showed high proton conductivity. • The DFT calculation suggested the lowest proton diffusion barrier in the path around La sites.« less

  3. Wind-tunnel acoustic results of two rotor models with several tip designs

    NASA Technical Reports Server (NTRS)

    Martin, R. M.; Connor, A. B.

    1986-01-01

    A three-phase research program has been undertaken to study the acoustic signals due to the aerodynamic interaction of rotorcraft main rotors and tail rotors. During the first phase, two different rotor models with several interchangeable tips were tested in the Langley 4- by 7-Meter Tunnel on the U.S. Army rotor model system. An extensive acoustic data base was acquired, with special emphasis on blade-vortex interaction (BVI) noise. The details of the experimental procedure, acoustic data acquisition, and reduction are documented. The overall sound pressure level (OASPL) of the high-twist rotor systems is relatively insensitive to flight speed but generally increases with rotor tip-path-plane angle. The OASPL of the high-twist rotors is dominated by acoustic energy in the low-frequency harmonics. The OASPL of the low-twist rotor systems shows more dependence on flight speed than the high-twist rotors, in addition to being quite sensitive to tip-path-plane angle. An integrated band-limited sound pressure level, limited by 500 to 3000 Hz, is a useful metric to quantify the occurrence of BVI noise. The OASPL of the low-twist rotors is strongly influenced by the band-limited sound levels, indicating that the blade-vortex impulsive noise is a dominant noise source for this rotor design. The midfrequency acoustic levels for both rotors show a very strong dependence on rotor tip-path-plane angle. The tip-path-plane angle at which the maximum midfrequency sound level occurs consistently decreases with increasing flight speed. The maximum midfrequency sound level measured at a given location is constant regardless of the flight speed.

  4. Anisotropic tomography of the European lithospheric structure from surface wave studies

    NASA Astrophysics Data System (ADS)

    Nita, Blanka; Maurya, Satish; Montagner, Jean-Paul

    2016-06-01

    We present continental-scale seismic isotropic and anisotropic imaging of shear wave upper-mantle structure of tectonically diversified terranes creating the European continent. Taking into account the 36-200 s period range of surface waves enables us to model the deep subcontinental structure at different vertical scale-lengths down to 300 km. After very strict quality selection criteria, we have obtained phase wave speeds at different periods for fundamental Rayleigh and Love modes from about 9000 three-component seismograms. Dispersion measurements are performed by using Fourier-domain waveform inversion technique named "roller-coaster-type" algorithm. We used the reference model with a varying average crustal structure for each source-station path. That procedure led to significant improvement of the quality and number of phase wave speed dispersion measurements compared to the common approach of using a reference model with one average crustal structure. Surface wave dispersion data are inverted at depth for retrieving isotropy and anisotropy parameters. The fast axis directions related to azimuthal anisotropy at different depths constitute a rich database for geodynamical interpretations. Shear wave anomalies of the horizontal dimension larger than 200 km are imaged in our models. They correlate with tectonic provinces of varying age-provenance. Different anisotropy patterns are observed along the most distinctive feature on our maps-the bordering zone between the Palaeozoic and Precambrian Europe. We discuss the depth changes of the lithosphere-asthenosphere boundary along the profiles crossing the chosen tectonic units of different origin and age: Fennoscandia, East European Craton, Anatolia, Mediterranean subduction zones. Within the flat and stable cratonic lithosphere, we find traces of the midlithospheric discontinuity.

  5. A Big Data and Learning Analytics Approach to Process-Level Feedback in Cognitive Simulations.

    PubMed

    Pecaric, Martin; Boutis, Kathy; Beckstead, Jason; Pusic, Martin

    2017-02-01

    Collecting and analyzing large amounts of process data for the purposes of education can be considered a big data/learning analytics (BD/LA) approach to improving learning. However, in the education of health care professionals, the application of BD/LA is limited to date. The authors discuss the potential advantages of the BD/LA approach for the process of learning via cognitive simulations. Using the lens of a cognitive model of radiograph interpretation with four phases (orientation, searching/scanning, feature detection, and decision making), they reanalyzed process data from a cognitive simulation of pediatric ankle radiography where 46 practitioners from three expertise levels classified 234 cases online. To illustrate the big data component, they highlight the data available in a digital environment (time-stamped, click-level process data). Learning analytics were illustrated using algorithmic computer-enabled approaches to process-level feedback.For each phase, the authors were able to identify examples of potentially useful BD/LA measures. For orientation, the trackable behavior of re-reviewing the clinical history was associated with increased diagnostic accuracy. For searching/scanning, evidence of skipping views was associated with an increased false-negative rate. For feature detection, heat maps overlaid on the radiograph can provide a metacognitive visualization of common novice errors. For decision making, the measured influence of sequence effects can reflect susceptibility to bias, whereas computer-generated path maps can provide insights into learners' diagnostic strategies.In conclusion, the augmented collection and dynamic analysis of learning process data within a cognitive simulation can improve feedback and prompt more precise reflection on a novice clinician's skill development.

  6. Identifying Methane Sources in Groundwater; Quantifying Changes in Compositional and Stable Isotope Values during Multiphase Transport

    NASA Astrophysics Data System (ADS)

    Larson, T.; Sathaye, K.

    2014-12-01

    A dramatic expansion of hydraulic fracturing and horizontal drilling for natural gas in unconventional reserves is underway. This expansion is fueling considerable public concern, however, that extracted natural gas, reservoir brines and associated fracking fluids may infiltrate to and contaminate shallower (< 500m depth) groundwater reservoirs, thereby posing a health threat. Attributing methane found in shallow groundwater to either deep thermogenic 'fracking' operations or locally-derived shallow microbial sources utilizes geochemical methods including alkane wetness and stable carbon and hydrogen isotope ratios of short chain (C1-C5) hydrocarbons. Compared to shallow microbial gas, thermogenic gas is wetter and falls within a different range of δ13C and δD values. What is not clear, however, is how the transport of natural gas through water saturated geological media may affect its compositional and stable isotope values. What is needed is a means to differentiate potential flow paths of natural gas including 'fast paths' along preexisting fractures and drill casings vs. 'slow paths' through low permeability rocks. In this study we attempt quantify transport-related effects using experimental 1-dimensional two-phase column experiments and analytical solutions to multi-phase gas injection equations. Two-phase experimental results for an injection of natural gas into a water saturated column packed with crushed illite show that the natural gas becomes enriched in methane compared to ethane and propane during transport. Carbon isotope measurements are ongoing. Results from the multi-phase gas injection equations that include methane isotopologue solubility and diffusion effects predict the development of a 'bank' of methane depleted in 13C relative to 12C at the front of a plume of fugitive natural gas. These results, therefore, suggest that transport of natural gas through water saturated geological media may complicate attribution methods needed to distinguish thermogenic and microbial methane.

  7. A heterodyne interferometer with periodic nonlinearities smaller than ±10 pm

    NASA Astrophysics Data System (ADS)

    Weichert, C.; Köchert, P.; Köning, R.; Flügge, J.; Andreas, B.; Kuetgens, U.; Yacoot, A.

    2012-09-01

    The PTB developed a new optical heterodyne interferometer in the context of the European joint research project ‘Nanotrace’. A new optical concept using plane-parallel plates and spatially separated input beams to minimize the periodic nonlinearities was realized. Furthermore, the interferometer has the resolution of a double-path interferometer, compensates for possible angle variations between the mirrors and the interferometer optics and offers a minimal path difference between the reference and the measurement arm. Additionally, a new heterodyne phase evaluation based on an analogue to digital converter board with embedded field programmable gate arrays was developed, providing a high-resolving capability in the single-digit picometre range. The nonlinearities were characterized by a comparison with an x-ray interferometer, over a measurement range of 2.2 periods of the optical interferometer. Assuming an error-free x-ray interferometer, the nonlinearities are considered to be the deviation of the measured displacement from a best-fit line. For the proposed interferometer, nonlinearities smaller than ±10 pm were observed without any quadrature fringe correction.

  8. A Bayesian framework for infrasound location

    NASA Astrophysics Data System (ADS)

    Modrak, Ryan T.; Arrowsmith, Stephen J.; Anderson, Dale N.

    2010-04-01

    We develop a framework for location of infrasound events using backazimuth and infrasonic arrival times from multiple arrays. Bayesian infrasonic source location (BISL) developed here estimates event location and associated credibility regions. BISL accounts for unknown source-to-array path or phase by formulating infrasonic group velocity as random. Differences between observed and predicted source-to-array traveltimes are partitioned into two additive Gaussian sources, measurement error and model error, the second of which accounts for the unknown influence of wind and temperature on path. By applying the technique to both synthetic tests and ground-truth events, we highlight the complementary nature of back azimuths and arrival times for estimating well-constrained event locations. BISL is an extension to methods developed earlier by Arrowsmith et al. that provided simple bounds on location using a grid-search technique.

  9. Markedly impaired bilateral coordination of gait in post-stroke patients: Is this deficit distinct from asymmetry? A cohort study

    PubMed Central

    2011-01-01

    Background Multiple aspects of gait are typically impaired post-stroke. Asymmetric gait is common as a consequence of unilateral brain lesions. The relationship between the resulting asymmetric gait and impairments in the ability to properly coordinate the reciprocal stepping activation of the legs is not clear. The objective of this exploratory study is to quantify the effects of hemiparesis on two putatively independent aspects of the bilateral coordination of gait to gain insight into mechanisms and their relationship and to assess their potential as clinical markers. Methods Twelve ambulatory stroke patients and age-matched healthy adults wore a tri-axial piezo-resistive accelerometer and walked back and forth along a straight path in a hall at a comfortable walking speed during 2 minutes. Gait speed, gait asymmetry (GA), and aspects of the bilateral coordination of gait (BCG) were determined. Bilateral coordination measures included the left-right stepping phase for each stride φi, consistency in the phase generation φ_CV, accuracy in the phase generation φ_ABS, and Phase Coordination Index (PCI), a combination of accuracy and consistency of the phase generation. Results Group differences (p < 0.001) were observed for gait speed (1.1 ± 0.1 versus 1.7 ± 0.1 m/sec for patients and controls, respectively), GA (26.3 ± 5.6 versus 5.5 ± 1.2, correspondingly) and PCI (19.5 ± 2.3 versus 6.2 ± 1.0, correspondingly). A significant correlation between GA and PCI was seen in the stroke patients (r = 0.94; p < 0.001), but not in the controls. Conclusions In ambulatory post-stroke patients, two gait coordination properties, GA and PCI, are markedly impaired. Although these features are not related to each other in healthy controls, they are strongly related in stroke patients, which is a novel finding. A measurement approach based on body-fixed sensors apparently may provide sensitive markers that can be used for clinical assessment and for enhancing rehabilitation targeting in post-stroke patients. PMID:21545703

  10. Dynamic phase transitions of the Blume-Emery-Griffiths model under an oscillating external magnetic field by the path probability method

    NASA Astrophysics Data System (ADS)

    Ertaş, Mehmet; Keskin, Mustafa

    2015-03-01

    By using the path probability method (PPM) with point distribution, we study the dynamic phase transitions (DPTs) in the Blume-Emery-Griffiths (BEG) model under an oscillating external magnetic field. The phases in the model are obtained by solving the dynamic equations for the average order parameters and a disordered phase, ordered phase and four mixed phases are found. We also investigate the thermal behavior of the dynamic order parameters to analyze the nature dynamic transitions as well as to obtain the DPT temperatures. The dynamic phase diagrams are presented in three different planes in which exhibit the dynamic tricritical point, double critical end point, critical end point, quadrupole point, triple point as well as the reentrant behavior, strongly depending on the values of the system parameters. We compare and discuss the dynamic phase diagrams with dynamic phase diagrams that were obtained within the Glauber-type stochastic dynamics based on the mean-field theory.

  11. High-efficiency and flexible generation of vector vortex optical fields by a reflective phase-only spatial light modulator.

    PubMed

    Cai, Meng-Qiang; Wang, Zhou-Xiang; Liang, Juan; Wang, Yan-Kun; Gao, Xu-Zhen; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian

    2017-08-01

    The scheme for generating vector optical fields should have not only high efficiency but also flexibility for satisfying the requirements of various applications. However, in general, high efficiency and flexibility are not compatible. Here we present and experimentally demonstrate a solution to directly, flexibly, and efficiently generate vector vortex optical fields (VVOFs) with a reflective phase-only liquid crystal spatial light modulator (LC-SLM) based on optical birefringence of liquid crystal molecules. To generate the VVOFs, this approach needs in principle only a half-wave plate, an LC-SLM, and a quarter-wave plate. This approach has some advantages, including a simple experimental setup, good flexibility, and high efficiency, making the approach very promising in some applications when higher power is need. This approach has a generation efficiency of 44.0%, which is much higher than the 1.1% of the common path interferometric approach.

  12. Phase-stepping fiber-optic projected fringe system for surface topography measurements

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R. (Inventor); Beheim, Glenn (Inventor)

    1992-01-01

    A projected fringe interferometer for measuring the topography of an object is presented. The interferometer periodically steps the phase angle between a pair of light beams emanating from a common source. The steps are pi/2 radians (90 deg) apart, and at each step a video image of the fringes is recorded and stored. Photodetectors measure either the phase and theta of the beams or 2(theta). Either of the measures can be used to control one of the light beams so that the 90 deg theta is accurately maintained. A camera, a computer, a phase controller, and a phase modulator established closed-loop control of theta. Measuring the phase map of a flat surface establishes a calibration reference.

  13. Examining social-cognitive predictors of parenting skills among mothers with preschool and early elementary school-aged children.

    PubMed

    Norouzi, Saiideh; Moghaddam, Mohammad Hossein Baghiani; Morowatisharifabad, Mohammad Ali; Norouzi, Ali; Jafari, Ali Reza; Fallahzadeh, Hossein

    2015-01-01

    Identification of parenting skills determinants among mothers is an ongoing field of research. The aim of this study was to identify the social cognitive predictors of parenting skills among mothers. Previous studies have demonstrated the health action process approach (HAPA) as a credible frame for predicting behavior, but the number of studies considering the predictive value of parenting skills determinants among mothers is rare. An 8 months prospective design was applied. Participants were mothers with preschool and early elementary school-aged children. At the 1(st) time, 120 participants completed self-report questionnaires regarding their risk perception, outcome expectancies, task self-efficacy, and intentions toward parenting skills. At the 2(nd) time, they returned a follow-up questionnaire, which measured planning, coping self-efficacy, and recovery self-efficacy and finally, 8 months later as the 3(rd) time, parenting skills were measured. Path analysis was used for analysis. Path analysis indicated that, in the motivational phase, there was no relationship between parenting skills intention and risk perception, outcome expectancies, and task self-efficacy. Furthermore, no relationship was found between parenting skills intention and planning. In the volitional phase, coping self-efficacy, recovery self-efficacy, and planning were statistically significant predictors of parenting skills. The results of this study confirm that volitional phase of the HAPA model is useful in determining parenting skills. However, the role motivational variables seem to be unimportant in performing these behaviors. It was concluded that everybody intended to apply parenting skills, in nature, and intervention strategies should be focused on turning intentions into behavior.

  14. Physiological responses and evaluation of effects of BMI, smoking and drinking in high altitude acclimatization: a cohort study in Chinese Han young males.

    PubMed

    Peng, Qian-Qian; Basang, Zhuoma; Cui, Chao-Ying; Li, Lei; Qian, Ji; Gesang, Quzhen; Yang, La; La, Zong; De, Yang; Dawa, Puchi; Qu, Ni; Suo, Qu; Dan, Zhen; Xiao, Duoji; Wang, Xiao-Feng; Jin, Li

    2013-01-01

    High altitude acclimatization is a series of physiological responses taking places when subjects go to altitude. Many factors could influence these processes, such as altitude, ascending speed and individual characteristics. In this study, based on a repeated measurement design of three sequential measurements at baseline, acute phase and chronic phase, we evaluated the effect of BMI, smoking and drinking on a number of physiological responses in high altitude acclimatization by using mixed model and partial least square path model on a sample of 755 Han Chinese young males. We found that subjects with higher BMI responses were reluctant to hypoxia. The effect of smoking was not significant at acute phase. But at chronic phase, red blood cell volume increased less while respiratory function increased more for smoking subjects compared with nonsmokers. For drinking subjects, red blood cell volume increased less than nondrinkers at both acute and chronic phases, while blood pressures increased more than nondrinkers at acute phase and respiratory function, red blood cell volume and oxygen saturation increased more than nondrinkers at chronic phase. The heavy and long-term effect of smoking, drinking and other factors in high altitude acclimatization needed to be further studied.

  15. Physiological Responses and Evaluation of Effects of BMI, Smoking and Drinking in High Altitude Acclimatization: A Cohort Study in Chinese Han Young Males

    PubMed Central

    Cui, Chao-ying; Li, Lei; Qian, Ji; Gesang, Quzhen; Yang, La; La, Zong; De, Yang; Dawa, Puchi; Qu, Ni; Suo, Qu; Dan, Zhen; Xiao, Duoji; Wang, Xiao-feng; Jin, Li

    2013-01-01

    High altitude acclimatization is a series of physiological responses taking places when subjects go to altitude. Many factors could influence these processes, such as altitude, ascending speed and individual characteristics. In this study, based on a repeated measurement design of three sequential measurements at baseline, acute phase and chronic phase, we evaluated the effect of BMI, smoking and drinking on a number of physiological responses in high altitude acclimatization by using mixed model and partial least square path model on a sample of 755 Han Chinese young males. We found that subjects with higher BMI responses were reluctant to hypoxia. The effect of smoking was not significant at acute phase. But at chronic phase, red blood cell volume increased less while respiratory function increased more for smoking subjects compared with nonsmokers. For drinking subjects, red blood cell volume increased less than nondrinkers at both acute and chronic phases, while blood pressures increased more than nondrinkers at acute phase and respiratory function, red blood cell volume and oxygen saturation increased more than nondrinkers at chronic phase. The heavy and long-term effect of smoking, drinking and other factors in high altitude acclimatization needed to be further studied. PMID:24260204

  16. Nonequilibrium Phase Transitions in Supercooled Water

    NASA Astrophysics Data System (ADS)

    Limmer, David; Chandler, David

    2012-02-01

    We present results of a simulation study of water driven out of equilibrium. Using transition path sampling, we can probe stationary path distributions parameterize by order parameters that are extensive in space and time. We find that by coupling external fields to these parameters, we can drive water through a first order dynamical phase transition into amorphous ice. By varying the initial equilibrium distributions we can probe pathways for the creation of amorphous ices of low and high densities.

  17. Beyond Guzman? The Future of the Shining Path in Peru

    DTIC Science & Technology

    1992-12-01

    order with. 4’ This relieves the stresses of everyday life, such as racism , sexism , poverty, and joblessness, because the Fourth Sword has given them...revolutionary phases are modeled on Mao’s three-phased theory of protracted revolutionary warfare." The Shining Path’s revolutionary ideology...in part from the collective-goods theory , and is similar in approach to Parsons’ four types of social control. See Talcott Parsons, "Reflections on

  18. Direct Measurement of Large, Diffuse, Optical Structures

    NASA Technical Reports Server (NTRS)

    Saif, Babak N.; Keski-Kuha, Ritva; Feinberg, Lee; Wyant, J. C.; Atkinson, C.

    2004-01-01

    Digital Speckle Pattern Interferometry (DSPI) is a well-established method for the measurement of diffuse objects in experimental mechanics. DSPIs are phase shifting interferometers. Three or four bucket temporal phase shifting algorithms are commonly used to provide phase shifting. These algorithms are sensitive to vibrations and can not be used to measure large optical structures far away from the interferometer. In this research a simultaneous phase shifted interferometer, PhaseCam product of 4D Technology Corporation in Tucson Arizona, is modified to be a Simultaneous phase shifted Digital Speckle Pattern Interferometer (SDSPI). Repeatability, dynamic range, and accuracy of the SDSPI are characterized by measuring a 5 cm x 5 cm carbon fiber coupon.

  19. Molecular interferometric imaging study of molecular interactions

    NASA Astrophysics Data System (ADS)

    Zhao, Ming; Wang, Xuefeng; Nolte, David

    2008-02-01

    Molecular Interferometric Imaging (MI2) is a sensitive detection platform for direct optical detection of immobilized biomolecules. It is based on inline common-path interferometry combined with far-field optical imaging. The substrate is a simple thermal oxide on a silicon surface with a thickness at or near the quadrature condition that produces a π/2 phase shift between the normal-incident wave reflected from the top oxide surface and the bottom silicon surface. The presence of immobilized or bound biomolecules on the surface produces a relative phase shift that is converted to a far-field intensity shift and is imaged by a reflective microscope onto a CCD camera. Shearing interferometry is used to remove the spatial 1/f noise from the illumination to achieve shot-noise-limited detection of surface dipole density profiles. The lateral resolution of this technique is diffraction limited at 0.4 micron, and the best longitudinal resolution is 10 picometers. The minimum detectable mass at the metrology limit is 2 attogram, which is 8 antibody molecules of size 150 kDa. The corresponding scaling mass sensitivity is 5 fg/mm compared with 1 pg/mm for typical SPR sensitivity. We have applied MI2 to immunoassay applications, and real-time binding kinetics has been measured for antibody-antigen reactions. The simplicity of the substrate and optical read-out make MI2 a promising analytical assay tool for high-throughput screening and diagnostics.

  20. μX-ray fluorescence analysis of traces and calcium phosphate phases on tooth tartar interfaces using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Abraham, J. A.; Grenón, M. S.; Sánchez, H. J.; Valentinuzzi, M. C.; Perez, C. A.

    2007-07-01

    Hard dental tissues like dentine and cementum with calcified deposits (dental calculi) were studied in several human dental pieces of adult individuals from the same geographic region. A couple of cross cuts were performed at dental root level resulting in a planar slice with calculus and dental tissue exposed for analysis. The elemental content along a linear path crossing the dentine-cementum-tartar interfaces and also all over a surface was measured by X-ray fluorescence microanalysis using synchrotron radiation (μSRXRF). The concentration of elemental traces like K, V, Cu, Zn, As, Br and Sr showed different features on the analyzed regions. The possible connections with the dynamic of mineralization and biological implications are discussed. The concentrations of major elements Ca and P were also determined and the measured Ca/P molar ratio was used to estimate the average composition of calcium phosphate phases in the measured points. A deeper knowledge of the variations of the elemental compositions and the changes of the different phases will help to a better understanding of the scarcely known mechanism of calculus growing.

  1. AC signal characterization for optimization of a CMOS single-electron pump

    NASA Astrophysics Data System (ADS)

    Murray, Roy; Perron, Justin K.; Stewart, M. D., Jr.; Zimmerman, Neil M.

    2018-02-01

    Pumping single electrons at a set rate is being widely pursued as an electrical current standard. Semiconductor charge pumps have been pursued in a variety of modes, including single gate ratchet, a variety of 2-gate ratchet pumps, and 2-gate turnstiles. Whether pumping with one or two AC signals, lower error rates can result from better knowledge of the properties of the AC signal at the device. In this work, we operated a CMOS single-electron pump with a 2-gate ratchet style measurement and used the results to characterize and optimize our two AC signals. Fitting this data at various frequencies revealed both a difference in signal path length and attenuation between our two AC lines. Using this data, we corrected for the difference in signal path length and attenuation by applying an offset in both the phase and the amplitude at the signal generator. Operating the device as a turnstile while using the optimized parameters determined from the 2-gate ratchet measurement led to much flatter, more robust charge pumping plateaus. This method was useful in tuning our device up for optimal charge pumping, and may prove useful to the semiconductor quantum dot community to determine signal attenuation and path differences at the device.

  2. Geometric phase in entangled systems: A single-neutron interferometer experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sponar, S.; Klepp, J.; Loidl, R.

    2010-04-15

    The influence of the geometric phase on a Bell measurement, as proposed by Bertlmann et al. [Phys. Rev. A 69, 032112 (2004)] and expressed by the Clauser-Horne-Shimony-Holt (CHSH) inequality, has been observed for a spin-path-entangled neutron state in an interferometric setup. It is experimentally demonstrated that the effect of geometric phase can be balanced by a change in Bell angles. The geometric phase is acquired during a time-dependent interaction with a radiofrequency field. Two schemes, polar and azimuthal adjustment of the Bell angles, are realized and analyzed in detail. The former scheme yields a sinusoidal oscillation of the correlation functionmore » S, dependent on the geometric phase, such that it varies in the range between 2 and 2{radical}(2) and therefore always exceeds the boundary value 2 between quantum mechanic and noncontextual theories. The latter scheme results in a constant, maximal violation of the Bell-like CHSH inequality, where S remains 2{radical}(2) for all settings of the geometric phase.« less

  3. VLF phase and amplitude: daytime ionospheric parameters

    NASA Astrophysics Data System (ADS)

    McRae, W. M.; Thomson, N. R.

    2000-05-01

    Experimental observations of the daytime variations of VLF phase and amplitude over a variety of long subionospheric paths have been found to be satisfactorily modelled with a D-region ionosphere, described by the two traditional parameters, H' and /β (being measures of the ionospheric height and the rate of increase of electron density with height, respectively). This VLF radio modelling uses the NOSC Earth-ionosphere waveguide programs but with an experimentally deduced dependence of these two ionospheric parameters on solar zenith angle. Phase and amplitude measurements from several VLF Omega and MSK stations were compared with calculations from the programs LWPC and Modefinder using values of H' and /β determined previously from amplitude only data. This led to refined curves for the diurnal variations of H' and /β which, when used in these programs, give not only calculated amplitudes but also, for the first time, calculated phase variations that agree well with a series of observations at Dunedin, New Zealand, of VLF signals from Omega Japan, Omega Hawaii, NPM (Hawaii) and NLK (Seattle) covering a frequency range of 10-25 kHz.

  4. Gas Phase Dissociation Behavior of Acyl-Arginine Peptides.

    PubMed

    McGee, William M; McLuckey, Scott A

    2013-11-15

    The gas phase dissociation behavior of peptides containing acyl-arginine residues is investigated. These acylations are generated via a combination of ion/ion reactions between arginine-containing peptides and N -hydroxysuccinimide (NHS) esters and subsequent tandem mass spectrometry (MS/MS). Three main dissociation pathways of acylated arginine, labeled Paths 1-3, have been identified and are dependent on the acyl groups. Path 1 involves the acyl-arginine undergoing deguanidination, resulting in the loss of the acyl group and dissociation of the guanidine to generate an ornithine residue. This pathway generates selective cleavage sites based on the recently discussed "ornithine effect". Path 2 involves the coordinated losses of H 2 O and NH 3 from the acyl-arginine side chain while maintaining the acylation. We propose that Path 2 is initiated via cyclization of the δ-nitrogen of arginine and the C-terminal carbonyl carbon, resulting in rapid rearrangement from the acyl-arginine side chain and the neutral losses. Path 3 occurs when the acyl group contains α-hydrogens and is observed as a rearrangement to regenerate unmodified arginine while the acylation is lost as a ketene.

  5. Characterizations of individual human red blood cells from patients with diabetes mellitus (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lee, SangYun; Jang, Seongsoo; Park, HyunJoo; Park, YongKeun

    2016-03-01

    We systematically measure the morphological, biochemical, and biomechanical properties of individual human red blood cells (RBCs) from patients with diabetes mellitus using quantitative phase imaging technique to characterize the diabetic red cells with respect to those of the healthy. The 3-D refractive index tomograms and 2-D dynamic membrane fluctuation maps of individual RBCs are reconstructed from a set of the retrieved complex optical fields at various laser incidence angles using the Common-path diffraction optical tomography, from which volume, surface area, sphericity, hemoglobin (Hb) concentration, Hb content, and membrane fluctuation are obtained simultaneously. The correlative relations among the retrieved red cell indices of diabetic and healthy RBCs are also investigated with capabilities of individual cell measurement. As expected, there are no significant alterations in morphologies (cellular volumes, surface area, and sphericity) between diabetic and healthy RBCs. However, despite the minute mean corpuscular Hb differences in cell blood count datasheet, the measured Hb concentrations and Hb contents of diabetic RBCs are statistically higher than those of healthy RBCs, which might be related to the glycation of Hb molecules by hyperglycemia. Meanwhile, the membrane fluctuations of diabetic RBCs are clearly diminished compared to healthy red cells, implying the significantly decreased RBC deformability. In particular, it seems that the membrane fluctuations have mild negative relationships with the reported HbA1c levels.

  6. Study of magnetoresistance in the supercooled state of Dy-Y alloys

    NASA Astrophysics Data System (ADS)

    Jena, Rudra Prasad; Lakhani, Archana

    2018-02-01

    We report the magnetoresistance studies on Dy1-xYx (x ≤ 0.05) alloys across the first order helimagnetic to ferromagnetic phase transition. These alloys exhibit multiple magnetic phases on varying the temperature and magnetic field. The magnetoresistance studies in the hysteresis region shows irreversibility in forward and reverse field cycles. The resistivity values at zero field for these alloys after zero field cooling to the measurement temperatures, are different in both forward and reverse field cycles. The path dependence of magnetoresistance suggests the presence of helimagnetic phase as the supercooled metastable state which transforms to the stable ferromagnetic state on increasing the field. At high magnetic fields negative magnetoresistance following a linear dependence with field is observed which is attributed to the magnon scattering.

  7. Study of Critical Heat Flux and Two-Phase Pressure Drop Under Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Abdollahian, Davood; Quintal, Joseph; Barez, Fred; Zahm, Jennifer; Lohr, Victor

    1996-01-01

    The design of the two-phase flow systems which are anticipated to be utilized in future spacecraft thermal management systems requires a knowledge of two-phase flow and heat transfer phenomena in reduced gravities. This program was funded by NASA headquarters in response to NRA-91-OSSA-17 and was managed by Lewis Research Center. The main objective of this program was to design and construct a two-phase test loop, and perform a series of normal gravity and aircraft trajectory experiments to study the effect of gravity on the Critical Heat Flux (CHF) and onset of instability. The test loop was packaged on two aircraft racks and was also instrumented to generate data for two-phase pressure drop. The normal gravity tests were performed with vertical up and downflow configurations to bound the effect of gravity on the test parameters. One set of aircraft trajectory tests was performed aboard the NASA DC-9 aircraft. These tests were mainly intended to evaluate the test loop and its operational performance under actual reduced gravity conditions, and to produce preliminary data for the test parameters. The test results were used to demonstrate the applicability of the normal gravity models for prediction of the two-phase friction pressure drop. It was shown that the two-phase friction multipliers for vertical upflow and reduced gravity conditions can be successfully predicted by the appropriate normal gravity models. Limited critical heat flux data showed that the measured CHF under reduced gravities are of the same order of magnitude as the test results with vertical upflow configuration. A simplified correlation was only successful in predicting the measured CHF for low flow rates. Instability tests with vertical upflow showed that flow becomes unstable and critical heat flux occurs at smaller powers when a parallel flow path exists. However, downflow tests and a single reduced gravity instability experiment indicated that the system actually became more stable with a parallel single-phase flow path. Several design modifications have been identified which will improve the system performance for generating reduced gravity data. The modified test loop can provide two-phase flow data for a range of operating conditions and can serve as a test bed for component evaluation.

  8. Application of space periodic variation of light polarization in imaging polarimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drobczynski, Slawomir; Kasprzak, Henryk

    The application of space periodic variation of light polarization for measurement and calculation of the distribution of the phase retardation between two eigenwaves propagating inside a linearly birefringent media and the distribution of the azimuth angle of the first eigenvector is described. The measuring method proposed does not require any mechanical movements or rotations of any optical elements. Application of a liquid crystal (LC) modulator instead of a quarter-wave plate gives an opportunity to introduce the required phase shift. The space periodic modulation of the polarization of light is achieved by the use of a Wollaston prism placed inside themore » path of the light beam. Then a fast Fourier transform is used for further calculations. The number of measurements of the light intensity at the output of the system is minimized to two. These assumptions make the proposed method very fast, which is especially important in measurements of the objects with optical anisotropy that is changing in time.« less

  9. An acoustic thermometer for air refractive index estimation in long distance interferometric measurements

    NASA Astrophysics Data System (ADS)

    Pisani, Marco; Astrua, Milena; Zucco, Massimo

    2018-02-01

    We present a method to measure the temperature along the path of an optical interferometer based on the propagation of acoustic waves. It exploits the high sensitivity of the speed of sound to air temperature. In particular, it takes advantage of a technique where the generation of acoustic waves is synchronous with the amplitude modulation of a laser source. A photodetector converts the laser light into an electronic signal used as a reference, while the incoming acoustic waves are focused on a microphone and generate the measuring signal. Under this condition, the phase difference between the two signals substantially depends on the temperature of the air volume interposed between the sources and the receivers. A comparison with traditional temperature sensors highlighted the limit of the latter in the case of fast temperature variations and the advantage of a measurement integrated along the optical path instead of a sampling measurement. The capability of the acoustic method to compensate for the interferometric distance measurements due to air temperature variations has been demonstrated to the level of 0.1 °C corresponding to 10-7 on the refractive index of air. We applied the method indoor for distances up to 27 m, outdoor at 78 m and finally tested the acoustic thermometer over a distance of 182 m.

  10. Novel in situ resistance measurement for the investigation of CIGS growth in a selenization process

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Tian, Jian-Guo; Li, Zu-Bin; He, Qing; Li, Feng-Yan; Li, Chang-Jian; Sun, Yun

    2009-03-01

    During the selenization process of CIGS thin films, the relation between the element loss rate and the precursor depositions are analyzed. The growth of the CIGS thin films during the selenization process is investigated by the novel in situ resistance measurement, by which the formation of compound semiconductors can be observed directly and simultaneously. Their structures, phase evolutions and element losses are analyzed by XRD and XRF. Based on the experimental results, it can be concluded that the phase transforms have nothing to do with the deposition sequences of precursors, while the element loss rates are related to the deposition sequences in this process. In addition, element loss mechanisms of CIGS thin films prepared by the selenization process are analyzed by the phase evolutions and chemical combined path in the In, Ga-Se reaction processes. Moreover it is verified that the element losses are depressed by increasing the ramping-up rate finally. The results provide effective methods to fabricate high-quality CIGS thin films with low element losses.

  11. Ab initio based potential energy surface and kinetics study of the OH + NH3 hydrogen abstraction reaction.

    PubMed

    Monge-Palacios, M; Rangel, C; Espinosa-Garcia, J

    2013-02-28

    A full-dimensional analytical potential energy surface (PES) for the OH + NH3 → H2O + NH2 gas-phase reaction was developed based exclusively on high-level ab initio calculations. This reaction presents a very complicated shape with wells along the reaction path. Using a wide spectrum of properties of the reactive system (equilibrium geometries, vibrational frequencies, and relative energies of the stationary points, topology of the reaction path, and points on the reaction swath) as reference, the resulting analytical PES reproduces reasonably well the input ab initio information obtained at the coupled-cluster single double triple (CCSD(T)) = FULL/aug-cc-pVTZ//CCSD(T) = FC/cc-pVTZ single point level, which represents a severe test of the new surface. As a first application, on this analytical PES we perform an extensive kinetics study using variational transition-state theory with semiclassical transmission coefficients over a wide temperature range, 200-2000 K. The forward rate constants reproduce the experimental measurements, while the reverse ones are slightly underestimated. However, the detailed analysis of the experimental equilibrium constants (from which the reverse rate constants are obtained) permits us to conclude that the experimental reverse rate constants must be re-evaluated. Another severe test of the new surface is the analysis of the kinetic isotope effects (KIEs), which were not included in the fitting procedure. The KIEs reproduce the values obtained from ab initio calculations in the common temperature range, although unfortunately no experimental information is available for comparison.

  12. Research on Airborne SAR Imaging Based on Esc Algorithm

    NASA Astrophysics Data System (ADS)

    Dong, X. T.; Yue, X. J.; Zhao, Y. H.; Han, C. M.

    2017-09-01

    Due to the ability of flexible, accurate, and fast obtaining abundant information, airborne SAR is significant in the field of Earth Observation and many other applications. Optimally the flight paths are straight lines, but in reality it is not the case since some portion of deviation from the ideal path is impossible to avoid. A small disturbance from the ideal line will have a major effect on the signal phase, dramatically deteriorating the quality of SAR images and data. Therefore, to get accurate echo information and radar images, it is essential to measure and compensate for nonlinear motion of antenna trajectories. By means of compensating each flying trajectory to its reference track, MOCO method corrects linear phase error and quadratic phase error caused by nonlinear antenna trajectories. Position and Orientation System (POS) data is applied to acquiring accuracy motion attitudes and spatial positions of antenna phase centre (APC). In this paper, extend chirp scaling algorithm (ECS) is used to deal with echo data of airborne SAR. An experiment is done using VV-Polarization raw data of C-band airborne SAR. The quality evaluations of compensated SAR images and uncompensated SAR images are done in the experiment. The former always performs better than the latter. After MOCO processing, azimuth ambiguity is declined, peak side lobe ratio (PSLR) effectively improves and the resolution of images is improved obviously. The result shows the validity and operability of the imaging process for airborne SAR.

  13. Extracting contours of oval-shaped objects by Hough transform and minimal path algorithms

    NASA Astrophysics Data System (ADS)

    Tleis, Mohamed; Verbeek, Fons J.

    2014-04-01

    Circular and oval-like objects are very common in cell and micro biology. These objects need to be analyzed, and to that end, digitized images from the microscope are used so as to come to an automated analysis pipeline. It is essential to detect all the objects in an image as well as to extract the exact contour of each individual object. In this manner it becomes possible to perform measurements on these objects, i.e. shape and texture features. Our measurement objective is achieved by probing contour detection through dynamic programming. In this paper we describe a method that uses Hough transform and two minimal path algorithms to detect contours of (ovoid-like) objects. These algorithms are based on an existing grey-weighted distance transform and a new algorithm to extract the circular shortest path in an image. The methods are tested on an artificial dataset of a 1000 images, with an F1-score of 0.972. In a case study with yeast cells, contours from our methods were compared with another solution using Pratt's figure of merit. Results indicate that our methods were more precise based on a comparison with a ground-truth dataset. As far as yeast cells are concerned, the segmentation and measurement results enable, in future work, to retrieve information from different developmental stages of the cell using complex features.

  14. Chikugunya and zika virus dissemination in the Americas: different arboviruses reflecting the same spreading routes and poor vector-control policies.

    PubMed

    Fernández-Salas, Ildefonso; Díaz-González, Esteban E; López-Gatell, Hugo; Alpuche-Aranda, Celia

    2016-10-01

    This review gathers the most recent investigations about chikungunya and zika viruses in America and would help in creating new research approaches. Clinical descriptions of chikungunya fever have been performed in the American outbreak observing that fever, polyarthalgia, myalgia and rash are the most common symptoms in the acute phase, while chronic arthralgia has persisted in 37-90% of small cohorts. The Asian origin of American strains of chikungunya virus (CHIKV) and zika virus (ZIKV) evidences a dissemination route in common and both are being transmitted by Aedes aegypti. Regarding zika fever, the association of congenital malformations with previous ZIKV exposure of pregnant women and potential sexual transmission of ZIKV are the most important discoveries in the New World. Massive outbreaks of chikungunya fever in 2014 and then followed by zika fever epidemics of lower magnitude in the next year throughout the American continent have their origins in Asia but may have used Pacific Islands as a path of dissemination. Reports of chronic arthralgia have been little described in the continent and more research is needed to measure the economic and health impact in patients who contracted CHIKV before. On the contrary, zika is menacing newborns' health because of its link with congenital microcephaly and sexual health by prolonged presence of viral particles in semen and urine.

  15. The effect of water chemistry on a change in the composition of gas phase in the steam-water path of a supercritical-pressure boiler

    NASA Astrophysics Data System (ADS)

    Belyakov, I. I.; Belokonova, A. F.

    2010-07-01

    We present the results from an experimental research work on studying the behavior of the gas phase in the path of a supercritical-pressure boiler during its operation with different water chemistries, including all-volatile (hydrazine-ammonia), complexone, neutral oxygenated, and combined oxygenated-ammonia chemistries. It is shown that the minimal content of hydrogen in steam is achieved if feedwater is treated with oxygen.

  16. Command Flight Path Display. Phase I and II. Appendix F.

    DTIC Science & Technology

    1983-09-01

    AD -R145 858 COMMAND FLIGHT PATH DISPLAY PHASE I AND 11 APPENDIX F / (U) SYSTEMS ASSOCIATES INC LONG BEACH CA RESOURCE MANAGEMENT SYSTEMS DIY SEP...34- (Appendix F) .ś. SYSTEMS ASSOCIATES INC* of CALIFORNIA t. Resource Management Systems Division DTICL it~~~ll ELECTE 1 o..-- , ~SEP 2 4 1984...Availability Codos Avail and/or Dist Special "i j L i 7 7 .... Contained in this appendix are the various plots generated dur- ing data reduction. Parameters

  17. Synchronized diffusive-wave spectroscopy: Principle and application to sound propagation in aqueous foams.

    PubMed

    Crassous, Jérôme; Chasle, Patrick; Pierre, Juliette; Saint-Jalmes, Arnaud; Dollet, Benjamin

    2016-03-01

    We present an experimental method to measure oscillatory strains in turbid material. The material is illuminated with a laser, and the speckle patterns are recorded. The analysis of the deformations of the optical path length shows that the speckle patterns are modulated at the strain frequency. By recording those patterns synchronously with the strain source, we are able to measure the amplitude and the phase of the strain. This method is tested in the specific case of an aqueous foam where an acoustic wave propagates. The effects of material internal dynamics and heterogeneous deformations are also discussed.

  18. Synchronized diffusive-wave spectroscopy: Principle and application to sound propagation in aqueous foams

    NASA Astrophysics Data System (ADS)

    Crassous, Jérôme; Chasle, Patrick; Pierre, Juliette; Saint-Jalmes, Arnaud; Dollet, Benjamin

    2016-03-01

    We present an experimental method to measure oscillatory strains in turbid material. The material is illuminated with a laser, and the speckle patterns are recorded. The analysis of the deformations of the optical path length shows that the speckle patterns are modulated at the strain frequency. By recording those patterns synchronously with the strain source, we are able to measure the amplitude and the phase of the strain. This method is tested in the specific case of an aqueous foam where an acoustic wave propagates. The effects of material internal dynamics and heterogeneous deformations are also discussed.

  19. Enhanced sensitivity for optical loss measurement in planar thin-films (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yuan, Hua-Kang

    2016-09-01

    An organic-inorganic hybrid material benefits from processing advantages of organics and high refractive indices of inorganics. We focus on a titanium oxide hydrate system combined with common bulk polymers. In particular, we target thin-film structures of a few microns in thickness. Traditional Beer-Lambert approaches for measuring optical losses can only provide an upper limit estimate. This sensitivity is highly limited when considering the low-losses required for mid-range optical applications, on the order of 0.1 cm-1. For intensity based measurements, improving the sensitivity requires an increase in the optical path length. Instead, a new sensitive technique suitable for simple planar thin films is required. A number of systems were modelled to measure optical losses in films of 1 micron thick. The presented techniques utilise evanescent waves and total internal reflection to increase optical path length through the material. It was found that a new way of using prism coupling provides the greatest improvement in sensitivity. In keeping the requirements on the material simple, this method for measuring loss is well suited to any future developments of new materials in thin-film structures.

  20. The CTS 11.7 GHz angle of arrival experiment

    NASA Technical Reports Server (NTRS)

    Kwan, B. W.; Hodge, D. B.

    1981-01-01

    The objective of the experiment was to determine the statistical behavior of attenuation and angle of arrival on an Earth-space propagation path using the CTS 11.7 GHz beacon. Measurements performed from 1976 to 1978 form the data base for analysis. The statistics of the signal attenuation and phase variations due to atmospheric disturbances are presented. Rainfall rate distributions are also included to provide a link between the above effects on wave propagation and meteorological conditions.

Top