Model-Independent Phenotyping of C. elegans Locomotion Using Scale-Invariant Feature Transform
Koren, Yelena; Sznitman, Raphael; Arratia, Paulo E.; Carls, Christopher; Krajacic, Predrag; Brown, André E. X.; Sznitman, Josué
2015-01-01
To uncover the genetic basis of behavioral traits in the model organism C. elegans, a common strategy is to study locomotion defects in mutants. Despite efforts to introduce (semi-)automated phenotyping strategies, current methods overwhelmingly depend on worm-specific features that must be hand-crafted and as such are not generalizable for phenotyping motility in other animal models. Hence, there is an ongoing need for robust algorithms that can automatically analyze and classify motility phenotypes quantitatively. To this end, we have developed a fully-automated approach to characterize C. elegans’ phenotypes that does not require the definition of nematode-specific features. Rather, we make use of the popular computer vision Scale-Invariant Feature Transform (SIFT) from which we construct histograms of commonly-observed SIFT features to represent nematode motility. We first evaluated our method on a synthetic dataset simulating a range of nematode crawling gaits. Next, we evaluated our algorithm on two distinct datasets of crawling C. elegans with mutants affecting neuromuscular structure and function. Not only is our algorithm able to detect differences between strains, results capture similarities in locomotory phenotypes that lead to clustering that is consistent with expectations based on genetic relationships. Our proposed approach generalizes directly and should be applicable to other animal models. Such applicability holds promise for computational ethology as more groups collect high-resolution image data of animal behavior. PMID:25816290
What to consider when pseudohypoparathyroidism is ruled out: iPPSD and differential diagnosis.
Pereda, Arrate; Garin, Intza; Perez de Nanclares, Guiomar
2018-03-02
Pseudohypoparathyroidism (PHP) is a rare disease whose phenotypic features are rather difficult to identify in some cases. Thus, although these patients may present with the Albright's hereditary osteodystrophy (AHO) phenotype, which is characterized by small stature, obesity with a rounded face, subcutaneous ossifications, mental retardation and brachydactyly, its manifestations are somewhat variable. Indeed, some of them present with a complete phenotype, whereas others show only subtle manifestations. In addition, the features of the AHO phenotype are not specific to it and a similar phenotype is also commonly observed in other syndromes. Brachydactyly type E (BDE) is the most specific and objective feature of the AHO phenotype, and several genes have been associated with syndromic BDE in the past few years. Moreover, these syndromes have a skeletal and endocrinological phenotype that overlaps with AHO/PHP. In light of the above, we have developed an algorithm to aid in genetic testing of patients with clinical features of AHO but with no causative molecular defect at the GNAS locus. Starting with the feature of brachydactyly, this algorithm allows the differential diagnosis to be broadened and, with the addition of other clinical features, can guide genetic testing. We reviewed our series of patients (n = 23) with a clinical diagnosis of AHO and with brachydactyly type E or similar pattern, who were negative for GNAS anomalies, and classify them according to the diagnosis algorithm to finally propose and analyse the most probable gene(s) in each case. A review of the clinical data for our series of patients, and subsequent analysis of the candidate gene(s), allowed detection of the underlying molecular defect in 12 out of 23 patients: five patients harboured a mutation in PRKAR1A, one in PDE4D, four in TRPS1 and two in PTHLH. This study confirmed that the screening of other genes implicated in syndromes with BDE and AHO or a similar phenotype is very helpful for establishing a correct genetic diagnosis for those patients who have been misdiagnosed with "AHO-like phenotype" with an unknown genetic cause, and also for better describing the characteristic and differential features of these less common syndromes.
2010-01-01
Background Abnormalities of cell cycle regulators are common features in human cancers, and several of these factors are associated with the early development of gastric cancers. However, recent studies have shown that gastric cancer tumorigenesis was characterized by mucin expression. Thus, expression patterns of cell cycle-related proteins were investigated in the early phase of differentiated-type gastric cancers to ascertain any mechanistic relationships with mucin phenotypes. Methods Immunostaining for Cyclins D1, A, E, and p21, p27, p53 and β-catenin was used to examine impairments of the cell cycle in 190 gastric intramucosal differentiated-type cancers. Mucin phenotypes were determined by the expressions of MUC5AC, MUC6, MUC2 and CD10. A Ki-67 positive rate (PR) was also examined. Results Overexpressions of p53, cyclin D1 and cyclin A were significantly more frequent in a gastric phenotype than an intestinal phenotype. Cyclin A was overexpressed in a mixed phenotype compared with an intestinal phenotype, while p27 overexpression was more frequent in an intestinal phenotype than in a mixed phenotype. Reduction of p21 was a common feature of the gastric intramucosal differentiated-type cancers examined. Conclusions Our results suggest that the levels of some cell cycle regulators appear to be associated with mucin phenotypes of early gastric differentiated-type cancers. PMID:20525401
Clinical phenotype of ASD-associated DYRK1A haploinsufficiency.
Earl, Rachel K; Turner, Tychele N; Mefford, Heather C; Hudac, Caitlin M; Gerdts, Jennifer; Eichler, Evan E; Bernier, Raphael A
2017-01-01
DYRK1A is a gene recurrently disrupted in 0.1-0.5% of the ASD population. A growing number of case reports with DYRK1A haploinsufficiency exhibit common phenotypic features including microcephaly, intellectual disability, speech delay, and facial dysmorphisms. Phenotypic information from previously published DYRK1A cases ( n = 51) and participants in an ongoing study at the University of Washington (UW, n = 10) were compiled. Frequencies of recurrent phenotypic features in this population were compared to features observed in a large sample with idiopathic ASD from the Simons Simplex Collection ( n = 1981). UW DYRK1A cases were further characterized quantitatively and compared to a randomly subsampled set of idiopathic ASD cases matched on age and gender ( n = 10) and to cases with an ASD-associated disruptive mutation to CHD8 ( n = 12). Contribution of familial genetic background to clinical heterogeneity was assessed by comparing head circumference, IQ, and ASD-related symptoms of UW DYRK1A cases to their unaffected parents. DYRK1A haploinsufficiency results in a common phenotypic profile including intellectual disability, speech and motor difficulties, microcephaly, feeding difficulties, and vision abnormalities. Eighty-nine percent of DYRK1A cases ascertained for ASD presented with a constellation of five or more of these symptoms. When compared quantitatively, DYRK1A cases presented with significantly lower IQ and adaptive functioning compared to idiopathic cases and significantly smaller head size compared to both idiopathic and CHD8 cases. Phenotypic variability in parental head circumference, IQ, and ASD-related symptoms corresponded to observed variability in affected child phenotype. Results confirm a core clinical phenotype for DYRK1A disruptions, with a combination of features that is distinct from idiopathic ASD. Cases with DYRK1A mutations are also distinguishable from disruptive mutations to CHD8 by head size. Measurable, quantitative characterization of DYRK1A haploinsufficiency illuminates clinical variability, which may be, in part, due to familial genetic background.
X-linked juvenile retinoschisis (XLRS): a review of genotype-phenotype relationships.
Kim, David Y; Mukai, Shizuo
2013-01-01
X-linked juvenile retinoschisis (XLRS) is one of the most common genetic causes of juvenile progressive retinal-vitreal degeneration in males. To date, more than 196 different mutations of the RS1 gene have been associated with XLRS. The mutation spectrum is large and the phenotype variable. This review will focus on the clinical features of XLRS and examine the relationship between phenotype and genotype.
Down Syndrome - Genetics and Cardiogenetics.
Plaiasu, Vasilica
2017-09-01
During the last years, Down syndrome has been the focus of special attention. Down syndrome is a genetic disorder characterized by distinct physical features and some degree of cognitive disability. Patients with Down syndrome also present many other congenital anomalies. The mapping for phenotypes to specific regions of chromosome 21 permits to identify which genes (or small regions) contribute to the phenotypic features of Down syndrome and thus, to understand its pathogenesis. Mainly there are three cytogenetic forms of Down syndrome: free trisomy 21, mosaic trisomy 21 and robertsonian translocation trisomy 21. Prenatal and postnatal testing has become commonly used to diagnose different cases presenting the same pathology. Early clinical diagnosis is extremely important for patient prognosis. Lately, advances in Down syndrome research have been registered, but little is known about cardiovascular phenotype in Down syndrome. About half of patients with Down syndrome have congenital heart disease, and atrioventricular septal defects are the most common defects found. Basic research on Down syndrome is now rapidly accelerating, using new genomic technologies. There were many studies performed to identify a correlation between genotype and phenotype in Down syndrome.
Wichajam, Khunton; Kampan, Jureeporn
2014-10-01
22q11.2 deletion syndrome is a common microdeletion syndrome that affected various systems. To determine clinical phenotypes and immunologicalfeatures of 22q11.2 deletion syndrome in north-eastern Thai children compare to western countries. The authors described the clinical and immunological features in 20 north-eastern Thai children with 22q11.2 deletion syndrome that were followed-up at Srinagarind Hospital. Clinical phenotypes were facial dysmorphism (100%), congenital heart disease (80%) and cleft palate (30%). Prevalence of tetralogy of Fallot (TOF) in this syndrome was higher than in western. Serious infections were found including pneumonia, septicemia and brain abscess. Only a patient had panhypogammaglobulinemia and subsequently died. Selective IgA deficiency was not found. There was a twin patient conceivedfrom intracytoplasmic sperm injection (ICSI). TOF is more common in Asian patients than in western which different to selective IgA deficiency. The 22q11.2 deletion syndrome could be consequence from ICSI.
Partial epilepsy and 47,XXX karyotype: report of four cases.
Roubertie, Agathe; Humbertclaude, Véronique; Leydet, Julie; Lefort, Geneviève; Echenne, Bernard
2006-07-01
Epilepsy is a common finding in chromosomal imbalances, but only a few chromosome abnormalities have a characteristic electro-clinical pattern. Trisomy X is one of the most common sex chromosome abnormalities in females, and is associated with considerable phenotypic variability. This report describes four 47,XXX females with mental deficiency and epilepsy. Although a specific electro-clinical pattern could not be defined, the epileptic phenotypes of these patients share many features; we suggest that the association 47,XXX/epilepsy/mental retardation may not be coincidental. This report also enlarges the clinical spectrum of the 47,XXX phenotype. Moreover, these observations highlight the critical role of chromosome X in epilepsy and mental retardation.
Webster, Emily; Cho, Megan T; Alexander, Nora; Desai, Sonal; Naidu, Sakkubai; Bekheirnia, Mir Reza; Lewis, Andrea; Retterer, Kyle; Juusola, Jane; Chung, Wendy K
2016-11-01
Using whole-exome sequencing, we have identified novel de novo heterozygous pleckstrin homology domain-interacting protein ( PHIP ) variants that are predicted to be deleterious, including a frameshift deletion, in two unrelated patients with common clinical features of developmental delay, intellectual disability, anxiety, hypotonia, poor balance, obesity, and dysmorphic features. A nonsense mutation in PHIP has previously been associated with similar clinical features. Patients with microdeletions of 6q14.1, including PHIP , have a similar phenotype of developmental delay, intellectual disability, hypotonia, and obesity, suggesting that the phenotype of our patients is a result of loss-of-function mutations. PHIP produces multiple protein products, such as PHIP1 (also known as DCAF14), PHIP, and NDRP. PHIP1 is one of the multiple substrate receptors of the proteolytic CUL4-DDB1 ubiquitin ligase complex. CUL4B deficiency has been associated with intellectual disability, central obesity, muscle wasting, and dysmorphic features. The overlapping phenotype associated with CUL4B deficiency suggests that PHIP mutations cause disease through disruption of the ubiquitin ligase pathway.
Heike, Carrie L; Wallace, Erin; Speltz, Matthew L; Siebold, Babette; Werler, Martha M; Hing, Anne V; Birgfeld, Craig B; Collett, Brent R; Leroux, Brian G; Luquetti, Daniela V
2016-11-01
Craniofacial microsomia (CFM) is a congenital condition with wide phenotypic variability, including hypoplasia of the mandible and external ear. We assembled a cohort of children with facial features within the CFM spectrum and children without known craniofacial anomalies. We sought to develop a standardized approach to assess and describe the facial characteristics of the study cohort, using multiple sources of information gathered over the course of this longitudinal study and to create case subgroups with shared phenotypic features. Participants were enrolled between 1996 and 2002. We classified the facial phenotype from photographs, ratings using a modified version of the Orbital, Ear, Mandible, Nerve, Soft tissue (OMENS) pictorial system, data from medical record abstraction, and health history questionnaires. The participant sample included 142 cases and 290 controls. The average age was 13.5 years (standard deviation, 1.3 years; range, 11.1-17.1 years). Sixty-one percent of cases were male, 74% were white non-Hispanic. Among cases, the most common features were microtia (66%) and mandibular hypoplasia (50%). Case subgroups with meaningful group definitions included: (1) microtia without other CFM-related features (n = 24), (2) microtia with mandibular hypoplasia (n = 46), (3) other combinations of CFM- related facial features (n = 51), and (4) atypical features (n = 21). We developed a standardized approach for integrating multiple data sources to phenotype individuals with CFM, and created subgroups based on clinically-meaningful, shared characteristics. We hope that this system can be used to explore associations between phenotype and clinical outcomes of children with CFM and to identify the etiology of CFM. Birth Defects Research (Part A) 106:915-926, 2016.© 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Presenting phenotype of paediatric inflammatory bowel disease in Wessex, Southern England 2010-2013.
Ashton, J J; Coelho, T; Ennis, S; Batra, A; Afzal, N A; Beattie, R M
2015-08-01
There has been at least a twofold increase in the incidence of paediatric inflammatory bowel disease (PIBD) over the last 20 years; we report the presenting features from 2010 to 2013 and compare with previous data. All patients diagnosed with PIBD at University Hospitals Southampton from 2010 to 2013 were identified from an in-house database. Data were obtained from paper and electronic notes. Height, weight and BMI SDS are presented as median values (95% CI). One hundred and seventy-two patients were included (median age at diagnosis 13.5, 115 male); Crohn's disease (CD) - 107, UC - 50, inflammatory bowel disease unclassified (IBDU) - 15. The most common presenting features of CD were abdominal pain (86%), diarrhoea (78.5%) and weight loss (56.1%); 42.1% of patients had all three. In UC blood in stool (92%), diarrhoea (92%) and abdominal pain (88%) were the most common; all three in 76% of patients. CD presented with ileocolonic disease in 52.5%. UC presented with pancolitis in 64%. There was growth delay in CD: height -0.37 (-0.60 to -0.14); weight -1.09 (-1.35 to -0.83). Growth was maintained in UC: height 0.53 (0.19 to 0.87); weight 0.14 (-0.20 to 0.48). Paediatric inflammatory bowel disease phenotype remains as extensive despite increasing incidence. Although the classical phenotype is common, a reasonable proportion present with atypical features, normal growth and normal blood markers. ©2015 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.
Desiderata for computable representations of electronic health records-driven phenotype algorithms
Mo, Huan; Thompson, William K; Rasmussen, Luke V; Pacheco, Jennifer A; Jiang, Guoqian; Kiefer, Richard; Zhu, Qian; Xu, Jie; Montague, Enid; Carrell, David S; Lingren, Todd; Mentch, Frank D; Ni, Yizhao; Wehbe, Firas H; Peissig, Peggy L; Tromp, Gerard; Larson, Eric B; Chute, Christopher G; Pathak, Jyotishman; Speltz, Peter; Kho, Abel N; Jarvik, Gail P; Bejan, Cosmin A; Williams, Marc S; Borthwick, Kenneth; Kitchner, Terrie E; Roden, Dan M; Harris, Paul A
2015-01-01
Background Electronic health records (EHRs) are increasingly used for clinical and translational research through the creation of phenotype algorithms. Currently, phenotype algorithms are most commonly represented as noncomputable descriptive documents and knowledge artifacts that detail the protocols for querying diagnoses, symptoms, procedures, medications, and/or text-driven medical concepts, and are primarily meant for human comprehension. We present desiderata for developing a computable phenotype representation model (PheRM). Methods A team of clinicians and informaticians reviewed common features for multisite phenotype algorithms published in PheKB.org and existing phenotype representation platforms. We also evaluated well-known diagnostic criteria and clinical decision-making guidelines to encompass a broader category of algorithms. Results We propose 10 desired characteristics for a flexible, computable PheRM: (1) structure clinical data into queryable forms; (2) recommend use of a common data model, but also support customization for the variability and availability of EHR data among sites; (3) support both human-readable and computable representations of phenotype algorithms; (4) implement set operations and relational algebra for modeling phenotype algorithms; (5) represent phenotype criteria with structured rules; (6) support defining temporal relations between events; (7) use standardized terminologies and ontologies, and facilitate reuse of value sets; (8) define representations for text searching and natural language processing; (9) provide interfaces for external software algorithms; and (10) maintain backward compatibility. Conclusion A computable PheRM is needed for true phenotype portability and reliability across different EHR products and healthcare systems. These desiderata are a guide to inform the establishment and evolution of EHR phenotype algorithm authoring platforms and languages. PMID:26342218
Joffret, Marie-Line; Jégouic, Sophie; Bessaud, Maël; Balanant, Jean; Tran, Coralie; Caro, Valerie; Holmblat, Barbara; Razafindratsimandresy, Richter; Reynes, Jean-Marc; Rakoto-Andrianarivelo, Mala; Delpeyroux, Francis
2012-05-01
Five cases of poliomyelitis due to type 2 or 3 recombinant vaccine-derived polioviruses (VDPVs) were reported in the Toliara province of Madagascar in 2005. We sequenced the genome of the VDPVs isolated from the patients and from 12 healthy children and characterized phenotypic aspects, including pathogenicity, in mice transgenic for the poliovirus receptor. We identified 6 highly complex mosaic recombinant lineages composed of sequences derived from different vaccine polioviruses and other species C human enteroviruses (HEV-Cs). Most had some recombinant genome features in common and contained nucleotide sequences closely related to certain cocirculating coxsackie A virus isolates. However, they differed in terms of their recombinant characteristics or nucleotide substitutions and phenotypic features. All VDPVs were neurovirulent in mice. This study confirms the genetic relationship between type 2 and 3 VDPVs, indicating that both types can be involved in a single outbreak of disease. Our results highlight the various ways in which a vaccine-derived poliovirus may become pathogenic in complex viral ecosystems, through frequent recombination events and mutations. Intertypic recombination between cocirculating HEV-Cs (including polioviruses) appears to be a common mechanism of genetic plasticity underlying transverse genetic variability.
Machine learning and computer vision approaches for phenotypic profiling.
Grys, Ben T; Lo, Dara S; Sahin, Nil; Kraus, Oren Z; Morris, Quaid; Boone, Charles; Andrews, Brenda J
2017-01-02
With recent advances in high-throughput, automated microscopy, there has been an increased demand for effective computational strategies to analyze large-scale, image-based data. To this end, computer vision approaches have been applied to cell segmentation and feature extraction, whereas machine-learning approaches have been developed to aid in phenotypic classification and clustering of data acquired from biological images. Here, we provide an overview of the commonly used computer vision and machine-learning methods for generating and categorizing phenotypic profiles, highlighting the general biological utility of each approach. © 2017 Grys et al.
Machine learning and computer vision approaches for phenotypic profiling
Morris, Quaid
2017-01-01
With recent advances in high-throughput, automated microscopy, there has been an increased demand for effective computational strategies to analyze large-scale, image-based data. To this end, computer vision approaches have been applied to cell segmentation and feature extraction, whereas machine-learning approaches have been developed to aid in phenotypic classification and clustering of data acquired from biological images. Here, we provide an overview of the commonly used computer vision and machine-learning methods for generating and categorizing phenotypic profiles, highlighting the general biological utility of each approach. PMID:27940887
Expanding the phenotype of Triple X syndrome: A comparison of prenatal versus postnatal diagnosis.
Wigby, Kristen; D'Epagnier, Cheryl; Howell, Susan; Reicks, Amy; Wilson, Rebecca; Cordeiro, Lisa; Tartaglia, Nicole
2016-11-01
Triple X syndrome (47, XXX) occurs in approximately 1:1,000 female births and has a variable phenotype of physical and psychological features. Prenatal diagnosis rates of 47, XXX are increasing due to non-invasive prenatal genetic testing. Previous studies suggest that prenatal diagnosed females have better neurodevelopmental outcomes. This cross-sectional study describes diagnosis, physical features, medical problems, and neurodevelopmental features in a large cohort of females with 47, XXX. Evaluation included review of medical and developmental history, physical exam, cognitive, and adaptive testing. Medical and developmental features were compared between the prenatal and postnatal diagnosis groups using rate calculations and Fisher's exact test. Cognitive and adaptive tests scores were compared using t-tests. Seventy-four females age 6 months-24 years (mean 8.3 years) participated. Forty-four (59.5%) females were in the prenatal diagnosis group. Mean age of postnatal diagnosis was 5.9 years; developmental delay was the most common indication for postnatal genetic testing. Common physical features included hypertelorism, epicanthal folds, clinodactyly, and hypotonia. Medical problems included dental disorders (44.4%), seizure disorders (16.2%), genitourinary malformations (12.2%). The prenatal diagnosis group had higher verbal (P < 0.001), general ability index (P = 0.004), and adaptive functioning scores (P < 0.001). Rates of ADHD (52.2% vs. 45.5%, P = 0.77) and learning disabilities (39.1% vs. 36.3%, P = 1.00) were similar between the two groups. These findings expand on the phenotypic features in females with Triple X syndrome and support that prenatally ascertained females have better cognitive and functional outcomes. However, prenatally diagnosed females are still at risk for neurodevelopmental disorders. Genetic counseling and treatment recommendations are summarized. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Cardio-facio-cutaneous syndrome: Does genotype predict phenotype?
Allanson, Judith E; Annerén, Göran; Aoki, Yoki; Armour, Christine M; Bondeson, Marie-Louise; Cave, Helene; Gripp, Karen W; Kerr, Bronwyn; Nystrom, Anna-Maja; Sol-Church, Katia; Verloes, Alain; Zenker, Martin
2011-01-01
Cardio-facio-cutaneous syndrome is a sporadic multiple congenital anomalies/mental retardation condition principally caused by mutations in BRAF, MEK1, and MEK2. Mutations in KRAS and SHOC2 lead to a phenotype with overlapping features. In approximately 10–30% of individuals with a clinical diagnosis of cardio-facio-cutaneous, a mutation in one of these causative genes is not found. Cardinal features of cardio-facio-cutaneous include congenital heart defects, a characteristic facial appearance, and ectodermal abnormalities. Additional features include failure to thrive with severe feeding problems, moderate to severe intellectual disability and short stature with relative macrocephaly. First described in 1986, more than 100 affected individuals are reported. Following the discovery of the causative genes, more information has emerged on the breadth of clinical features. Little, however, has been published on genotype-phenotype correlations. This clinical study of 186 children and young adults with mutation-proven cardio-facio-cutaneous syndrome is the largest reported to date. BRAF mutations are documented in 140 individuals (~75%), while 46 (~25%) have a mutation in MEK 1 or MEK 2. The age range is 6 months to 32 years, the oldest individual being a female from the original report [Reynolds et al., 1986]. While some clinical data on 136 are in the literature, fifty are not previously published. We provide new details of the breadth of phenotype and discuss the frequency of particular features in each genotypic group. Pulmonary stenosis is the only anomaly that demonstrates a statistically significant genotype-phenotype correlation, being more common in individuals with a BRAF mutation. PMID:21495173
Cardio-facio-cutaneous syndrome: does genotype predict phenotype?
Allanson, Judith E; Annerén, Göran; Aoki, Yoki; Armour, Christine M; Bondeson, Marie-Louise; Cave, Helene; Gripp, Karen W; Kerr, Bronwyn; Nystrom, Anna-Maja; Sol-Church, Katia; Verloes, Alain; Zenker, Martin
2011-05-15
Cardio-facio-cutaneous (CFC) syndrome is a sporadic multiple congenital anomalies/mental retardation condition principally caused by mutations in BRAF, MEK1, and MEK2. Mutations in KRAS and SHOC2 lead to a phenotype with overlapping features. In approximately 10–30% of individuals with a clinical diagnosis of CFC, a mutation in one of these causative genes is not found. Cardinal features of CFC include congenital heart defects, a characteristic facial appearance, and ectodermal abnormalities. Additional features include failure to thrive with severe feeding problems, moderate to severe intellectual disability and short stature with relative macrocephaly. First described in 1986, more than 100 affected individuals are reported. Following the discovery of the causative genes, more information has emerged on the breadth of clinical features. Little, however, has been published on genotype–phenotype correlations. This clinical study of 186 children and young adults with mutation-proven CFC syndrome is the largest reported to date. BRAF mutations are documented in 140 individuals (approximately 75%), while 46 (approximately 25%) have a mutation in MEK 1 or MEK 2. The age range is 6 months to 32 years, the oldest individual being a female from the original report [Reynolds et al. (1986); Am J Med Genet 25:413–427]. While some clinical data on 136 are in the literature, 50 are not previously published. We provide new details of the breadth of phenotype and discuss the frequency of particular features in each genotypic group. Pulmonary stenosis is the only anomaly that demonstrates a statistically significant genotype–phenotype correlation, being more common in individuals with a BRAF mutation.
Desiderata for computable representations of electronic health records-driven phenotype algorithms.
Mo, Huan; Thompson, William K; Rasmussen, Luke V; Pacheco, Jennifer A; Jiang, Guoqian; Kiefer, Richard; Zhu, Qian; Xu, Jie; Montague, Enid; Carrell, David S; Lingren, Todd; Mentch, Frank D; Ni, Yizhao; Wehbe, Firas H; Peissig, Peggy L; Tromp, Gerard; Larson, Eric B; Chute, Christopher G; Pathak, Jyotishman; Denny, Joshua C; Speltz, Peter; Kho, Abel N; Jarvik, Gail P; Bejan, Cosmin A; Williams, Marc S; Borthwick, Kenneth; Kitchner, Terrie E; Roden, Dan M; Harris, Paul A
2015-11-01
Electronic health records (EHRs) are increasingly used for clinical and translational research through the creation of phenotype algorithms. Currently, phenotype algorithms are most commonly represented as noncomputable descriptive documents and knowledge artifacts that detail the protocols for querying diagnoses, symptoms, procedures, medications, and/or text-driven medical concepts, and are primarily meant for human comprehension. We present desiderata for developing a computable phenotype representation model (PheRM). A team of clinicians and informaticians reviewed common features for multisite phenotype algorithms published in PheKB.org and existing phenotype representation platforms. We also evaluated well-known diagnostic criteria and clinical decision-making guidelines to encompass a broader category of algorithms. We propose 10 desired characteristics for a flexible, computable PheRM: (1) structure clinical data into queryable forms; (2) recommend use of a common data model, but also support customization for the variability and availability of EHR data among sites; (3) support both human-readable and computable representations of phenotype algorithms; (4) implement set operations and relational algebra for modeling phenotype algorithms; (5) represent phenotype criteria with structured rules; (6) support defining temporal relations between events; (7) use standardized terminologies and ontologies, and facilitate reuse of value sets; (8) define representations for text searching and natural language processing; (9) provide interfaces for external software algorithms; and (10) maintain backward compatibility. A computable PheRM is needed for true phenotype portability and reliability across different EHR products and healthcare systems. These desiderata are a guide to inform the establishment and evolution of EHR phenotype algorithm authoring platforms and languages. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association.
Associations of Age and Sex with Marfan Phenotype: The NHLBI GenTAC Registry
Roman, Mary J.; Devereux, Richard B.; Preiss, Liliana R.; Asch, Federico M.; Eagle, Kim A.; Holmes, Kathryn W.; LeMaire, Scott A.; Maslen, Cheryl L.; Milewicz, Dianna M.; Morris, Shaine A.; Prakash, Siddharth K.; Pyeritz, Reed E.; Ravekes, William J.; Shohet, Ralph V.; Song, Howard K.; Weinsaft, Jonathan W.
2017-01-01
Background The associations of age and sex with phenotypic features of Marfan syndrome have not been systematically examined in a large cohort of both children and adults. Methods and Results We evaluated 789 Marfan patients enrolled in the NHLBI GenTAC Registry (53% male; mean age 31 [range: 1–86 years]). Females aged≥15 and males aged≥16 years were considered adults based on average age of skeletal maturity. Adults (n=606) were more likely than children (n=183) likely to have spontaneous pneumothorax, scoliosis, and striae, but were comparable in revised Ghent systemic score, ectopia lentis, and most phenotypic features, including prevalence of aortic root dilatation. Prophylactic aortic root replacement and mitral valve surgery were rare during childhood vs. adulthood (2 vs. 35% and 1 vs. 9%, respectively, both p<0.0001). Adult males were more likely than females to have aortic root dilatation (92 vs. 84%), aortic regurgitation (55 vs. 36%) and to have undergone prophylactic aortic root replacement (47 vs. 24%), all p<0.001. Prevalence of prior aortic dissection tended to be higher in males than females (25 vs. 18%, p=0.06); 44% of dissections were type B. Type B dissection was strongly associated with previous prophylactic aortic root replacement. Conclusions Pulmonary, skeletal and aortic complications, but not other phenotypic features, are more prevalent in adults than children in Marfan syndrome. Aortic aneurysms and prophylactic aortic surgery are more common in men. Aortic dissection, commonly type B, occurs in an appreciable proportion of Marfan patients, especially in men and following previous prophylactic aortic root replacement. PMID:28600386
Orofacial functions and oral health associated with Treacher Collins syndrome.
Asten, Pamela; Skogedal, Nina; Nordgarden, Hilde; Axelsson, Stefan; Akre, Harriet; Sjögreen, Lotta
2013-01-01
The aim of this study was to describe orofacial features and functions and oral health associated with Treacher Collins syndrome (TCS) in relation to the variable phenotypic expression of the condition. The Nordic Orofacial Test-Screening (NOT-S), MHC Questionnaire, MHC Observation chart and clinical examinations of nasal and pharyngeal conditions and chewing and swallowing function were used to assess 19 individuals aged 5-74 years (median 34 years). TCS severity scores were calculated by a clinical geneticist. Orofacial features characterizing the study group were altered profile, increased mandibular angle, narrow hypopharynx and facial asymmetry. Basic orofacial functions such as breathing, eating, facial expression and speech were affected in all subjects demonstrating orofacial dysfunction in at least two NOT-S domains (median NOT-S total score 4/12, range 2-7). Significant correlation was found between the TCS severity scores reflecting phenotypic expression and the NOT-S total scores reflecting orofacial function. Self-reported experience of dry oral mucosa was common. Overall, dental health was good with few carious lesions diagnosed, but considerable need for orthodontic treatment was documented. Altered orofacial features and functions in TCS are common and often persist into late adolescence and adulthood. The functional level was correlated with the phenotypic variability of the condition. The standard of oral health was satisfactory. The findings indicated that individuals with TCS are likely to require lifelong health services related to their oral condition.
Khani, Marzieh; Alavi, Afagh; Nafissi, Shahriar; Elahi, Elahe
2015-07-06
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disorder in European populations. ALS can be sporadic ALS (SALS) or familial ALS (FALS). Among 20 known ALS genes, mutations in C9orf72 and superoxide dismutase 1 (SOD1) are the most common genetic causes of the disease. Whereas C9orf72 mutations are more common in Western populations, the contribution of SOD1 to ALS in Iran is more than C9orf72. At present, a clear genotype/phenotype correlation for ALS has not been identified. We aimed to perform mutation screening of SOD1 in a newly identified Iranian FALS patient and to assess whether a genotype/phenotype correlation for the identified mutation exists. The five exons of SOD1 and flanking intronic sequences of a FALS proband were screened for mutations by direct sequencing. The clinical features of the proband were assessed by a neuromuscular specialist (SN). The phenotypic presentations were compared to previously reported patients with the same mutation. Heterozygous c.260A > G mutation in SOD1 that causes Asn86Ser was identified in the proband. Age at onset was 34 years and site of the first presentation was in the lower extremities. Comparisons of clinical features of different ALS patients with the same mutation evidenced variable presentations. The c.260A > G mutation in SOD1 that causes Asn86Ser appears to cause ALS with variable clinical presentations.
Genotypic and phenotypic predictors of inflammation in patients with chronic kidney disease.
Luttropp, Karin; Debowska, Malgorzata; Lukaszuk, Tomasz; Bobrowski, Leon; Carrero, Juan Jesus; Qureshi, Abdul Rashid; Stenvinkel, Peter; Lindholm, Bengt; Waniewski, Jacek; Nordfors, Louise
2016-12-01
In complex diseases such as chronic kidney disease (CKD), the risk of clinical complications is determined by interactions between phenotypic and genotypic factors. However, clinical epidemiological studies rarely attempt to analyse the combined effect of large numbers of phenotype and genotype features. We have recently shown that the relaxed linear separability (RLS) model of feature selection can address such complex issues. Here, it is applied to identify risk factors for inflammation in CKD. The RLS model was applied in 225 CKD stage 5 patients sampled in conjunction with dialysis initiation. Fifty-seven anthropometric or biochemical measurements and 79 genetic polymorphisms were entered into the model. The model was asked to identify phenotypes and genotypes that, when combined, could separate inflamed from non-inflamed patients. Inflammation was defined as a high-sensitivity C-reactive protein concentration above the median (5 mg/L). Among the 60 genotypic and phenotypic features predicting inflammation, 31 were genetic. Among the 10 strongest predictors of inflammation, 8 were single nucleotide polymorphisms located in the NAMPT, CIITA, BMP2 and PIK3CB genes, whereas fibrinogen and bone mineral density were the only phenotypic biomarkers. These results indicate a larger involvement of hereditary factors in inflammation than might have been expected and suggest that inclusion of genotype features in risk assessment studies is critical. The RLS model demonstrates that inflammation in CKD is determined by an extensive panel of factors and may prove to be a suitable tool that could enable a much-needed multifactorial approach as opposed to the commonly utilized single-factor analysis. © The Author 2016. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
PAX3 gene deletion detected by microarray analysis in a girl with hearing loss.
Drozniewska, Malgorzata; Haus, Olga
2014-01-01
Deletions of the PAX3 gene have been rarely reported in the literature. Mutations of this gene are a common cause of Waardenburg syndrome type 1 and 3. We report a 16 year old female presenting hearing loss and normal intellectual development, without major features of Waardenburg syndrome type 1, and without family history of the syndrome. Her phenotype, however, overlaps with features of craniofacial-deafness-hand syndrome. Microarray analysis showed ~862 kb de novo deletion at 2q36.1 including PAX3. The above findings suggest that the rearrangement found in our patient appeared de novo and with high probability is a cause of her phenotype.
Egg phenotype differentiation in sympatric cuckoo Cuculus canorus gentes.
Antonov, Anton; Stokke, B G; Vikan, J R; Fossøy, F; Ranke, P S; Røskaft, E; Moksnes, A; Møller, A P; Shykoff, J A
2010-06-01
The brood parasitic common cuckoo Cuculus canorus consists of gentes, which typically parasitize only a single host species whose eggs they often mimic. Where multiple cuckoo gentes co-exist in sympatry, we may expect variable but generally poorer mimicry because of host switches or inter-gens gene flow via males if these also contribute to egg phenotypes. Here, we investigated egg trait differentiation and mimicry in three cuckoo gentes parasitizing great reed warblers Acrocephalus arundinaceus, marsh warblers Acrocephalus palustris and corn buntings Miliaria calandra breeding in close sympatry in partially overlapping habitat types. The three cuckoo gentes showed a remarkable degree of mimicry to their three host species in some but not all egg features, including egg size, a hitherto largely ignored feature of egg mimicry. Egg phenotype matching for both background and spot colours as well as for egg size has been maintained in close sympatry despite the possibility for gene flow.
A knowledge based approach to matching human neurodegenerative disease and animal models
Maynard, Sarah M.; Mungall, Christopher J.; Lewis, Suzanna E.; Imam, Fahim T.; Martone, Maryann E.
2013-01-01
Neurodegenerative diseases present a wide and complex range of biological and clinical features. Animal models are key to translational research, yet typically only exhibit a subset of disease features rather than being precise replicas of the disease. Consequently, connecting animal to human conditions using direct data-mining strategies has proven challenging, particularly for diseases of the nervous system, with its complicated anatomy and physiology. To address this challenge we have explored the use of ontologies to create formal descriptions of structural phenotypes across scales that are machine processable and amenable to logical inference. As proof of concept, we built a Neurodegenerative Disease Phenotype Ontology (NDPO) and an associated Phenotype Knowledge Base (PKB) using an entity-quality model that incorporates descriptions for both human disease phenotypes and those of animal models. Entities are drawn from community ontologies made available through the Neuroscience Information Framework (NIF) and qualities are drawn from the Phenotype and Trait Ontology (PATO). We generated ~1200 structured phenotype statements describing structural alterations at the subcellular, cellular and gross anatomical levels observed in 11 human neurodegenerative conditions and associated animal models. PhenoSim, an open source tool for comparing phenotypes, was used to issue a series of competency questions to compare individual phenotypes among organisms and to determine which animal models recapitulate phenotypic aspects of the human disease in aggregate. Overall, the system was able to use relationships within the ontology to bridge phenotypes across scales, returning non-trivial matches based on common subsumers that were meaningful to a neuroscientist with an advanced knowledge of neuroanatomy. The system can be used both to compare individual phenotypes and also phenotypes in aggregate. This proof of concept suggests that expressing complex phenotypes using formal ontologies provides considerable benefit for comparing phenotypes across scales and species. PMID:23717278
Aminoacyl-tRNA synthetase deficiencies in search of common themes.
Fuchs, Sabine A; Schene, Imre F; Kok, Gautam; Jansen, Jurriaan M; Nikkels, Peter G J; van Gassen, Koen L I; Terheggen-Lagro, Suzanne W J; van der Crabben, Saskia N; Hoeks, Sanne E; Niers, Laetitia E M; Wolf, Nicole I; de Vries, Maaike C; Koolen, David A; Houwen, Roderick H J; Mulder, Margot F; van Hasselt, Peter M
2018-06-06
Pathogenic variations in genes encoding aminoacyl-tRNA synthetases (ARSs) are increasingly associated with human disease. Clinical features of autosomal recessive ARS deficiencies appear very diverse and without apparent logic. We searched for common clinical patterns to improve disease recognition, insight into pathophysiology, and clinical care. Symptoms were analyzed in all patients with recessive ARS deficiencies reported in literature, supplemented with unreported patients evaluated in our hospital. In literature, we identified 107 patients with AARS, DARS, GARS, HARS, IARS, KARS, LARS, MARS, RARS, SARS, VARS, YARS, and QARS deficiencies. Common symptoms (defined as present in ≥4/13 ARS deficiencies) included abnormalities of the central nervous system and/or senses (13/13), failure to thrive, gastrointestinal symptoms, dysmaturity, liver disease, and facial dysmorphisms. Deep phenotyping of 5 additional patients with unreported compound heterozygous pathogenic variations in IARS, LARS, KARS, and QARS extended the common phenotype with lung disease, hypoalbuminemia, anemia, and renal tubulopathy. We propose a common clinical phenotype for recessive ARS deficiencies, resulting from insufficient aminoacylation activity to meet translational demand in specific organs or periods of life. Assuming residual ARS activity, adequate protein/amino acid supply seems essential instead of the traditional replacement of protein by glucose in patients with metabolic diseases.
Jones, Kyle B.; Goodwin, Alice F.; Landan, Maya; Seidel, Kerstin; Tran, Dong-Kha; Hogue, Jacob; Chavez, Miquella; Fete, Mary; Yu, Wenli; Hussein, Tarek; Johnson, Ramsey; Huttner, Kenneth; Jheon, Andrew H.; Klein, Ophir D.
2015-01-01
Hypohidrotic ectodermal dysplasia (HED) is the most common type of ectodermal dysplasia (ED), which encompasses a large group of syndromes that share several phenotypic features such as missing or malformed ectodermal structures, including skin, hair, sweat glands, and teeth. X-linked hypohidrotic ectodermal dysplasia (XL-HED) is associated with mutations in ectodysplasin (EDA1). Hypohidrosis due to hypoplastic sweat glands and thin, sparse hair are phenotypic features that significantly affect the daily lives of XL-HED individuals and therefore require systematic analysis. We sought to determine the quality of life of individuals with XL-HED and to quantify sweat duct and hair phenotypes using confocal imaging, pilocarpine iontophoresis, and phototrichogram analysis. Using these highly sensitive and non-invasive techniques, we demonstrated that 11/12 XL-HED individuals presented with a complete absence of sweat ducts and that none produced sweat. We determined that the thin hair phenotype observed in XL-HED was due to multiple factors, such as fewer terminal hairs with decreased thickness and slower growth rate, as well as fewer follicular units and fewer hairs per unit. The precise characterization of XL-HED phenotypes using sensitive and non-invasive techniques presented in our study will improve upon larger genotype-phenotype studies and in the assessment of future therapies in XL-HED. PMID:23687000
Vaz, Sara O; Pires, Renato; Pires, Luís M; Carreira, Isabel M; Anjos, Rui; Maciel, Paula; Mota-Vieira, Luisa
2015-08-22
The rearrangements of the 22q11.2 chromosomal region, most frequently deletions and duplications, have been known to be responsible for multiple congenital anomaly disorders. These rearrangements are implicated in syndromes that have some phenotypic resemblances. While the 22q11.2 deletion, also known as DiGeorge/Velocardiofacial syndrome, has common features that include cardiac abnormalities, thymic hypoplasia, characteristic face, hypocalcemia, cognitive delay, palatal defects, velopharyngeal insufficiency, and other malformations, the microduplication syndrome is largely undetected. This is mainly because phenotypic appearance is variable, milder, less characteristic and unpredictable. In this paper, we report the clinical evaluation and follow-up of two patients affected by 22q11.2 rearrangements, emphasizing new phenotypic features associated with duplication and triplication of this genomic region. Patient 1 is a 24 year-old female with 22q11.2 duplication who has a heart defect (ostium secundum atrial septal defect) and supernumerary teeth (hyperdontia), a feature previously not reported in patients with 22q11.2 microduplication syndrome. Her monozygotic twin sister, who died at the age of one month, had a different heart defect (truncus arteriousus). Patient 2 is a 20 year-old female with a 22q11.2 triplication who had a father with 22q11.2 duplication. In comparison to the first case reported in the literature, she has an aggravated phenotype characterized by heart defects (restrictive VSD and membranous subaortic stenosis), and presented other facial dysmorphisms and urogenital malformations (ovarian cyst). Additionally, she has a hemangioma planum on the right side of her face, a feature of Sturge-Weber syndrome. In this report, we described hyperdontia as a new feature of 22q11.2 microdeletion syndrome. Moreover, this syndrome was diagnosed in a patient who had a deceased monozygotic twin affected with a different heart defect, which corresponds to a phenotypic discordance never reported in the literature. Case 2 is the second clinical report of 22q11.2 triplication and presents an aggravated phenotype in contrast to the patient previously reported.
Hoppman-Chaney, N; Wain, K; Seger, P R; Superneau, D W; Hodge, J C
2013-04-01
The 15q13.3 microdeletion syndrome (OMIM #612001) is characterized by a wide range of phenotypic features, including intellectual disability, seizures, autism, and psychiatric conditions. This deletion is inherited in approximately 75% of cases and has been found in mildly affected and normal parents, consistent with variable expressivity and incomplete penetrance. The common deletion is approximately 2 Mb and contains several genes; however, the gene(s) responsible for the resulting clinical features have not been clearly defined. Recently, four probands were reported with small deletions including only the CHRNA7 gene. These patients showed a wide range of phenotypic features similar to those associated with the larger 15q13.3 microdeletion. To further correlate genotype and phenotype, we queried our database of >15,000 patients tested in the Mayo Clinic Cytogenetics Laboratory from 2008 to 2011 and identified 19 individuals (10 probands and 9 family members) with isolated heterozygous CHRNA7 gene deletions. All but two infants displayed multiple features consistent with 15q13.3 microdeletion syndrome. We also identified the first de novo deletion confined to CHRNA7 as well as the second known case with homozygous deletion of CHRNA7 only. These results provide further evidence implicating CHRNA7 as the gene responsible for the clinical findings associated with 15q13.3 microdeletion. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.
48,XXYY, 48,XXXY and 49,XXXXY syndromes: not just variants of Klinefelter syndrome
Tartaglia, Nicole; Ayari, Natalie; Howell, Susan; D’Epagnier, Cheryl; Zeitler, Philip
2012-01-01
Sex chromosome tetrasomy and pentasomy conditions occur in 1:18 000–1:100 000 male births. While often compared with 47,XXY/Klinefelter syndrome because of shared features including tall stature and hypergonadotropic hypogonadism, 48,XXYY, 48,XXXY and 49,XXXXY syndromes are associated with additional physical findings, congenital malformations, medical problems and psychological features. While the spectrum of cognitive abilities extends much higher than originally described, developmental delays, cognitive impairments and behavioural disorders are common and require strong treatment plans. Future research should focus on genotype–phenotype relationships and the development of evidence-based treatments. Conclusion The more complex physical, medical and psychological phenotypes of 48,XXYY, 48,XXXY and 49,XXXXY syndromes make distinction from 47,XXY important; however, all of these conditions share features of hypergonadotropic hypogonadism and the need for increased awareness, biomedical research and the development of evidence-based treatments. PMID:21342258
Mosaic Trisomy 9p in a Patient with Mild Dysmorphic Features and Normal Intelligence.
Brar, Randeep; Basel, Donald G; Bick, David P; Weik, LuAnn; vanTuinen, Peter; Peterson, Jess F
2017-01-01
To the Editor: Partial and whole duplications of the short arm of chromosome 9 have been commonly reported in the literature with characteristic phenotypic features and intellectual disabilities. The clinical features of 9p duplications are broad and can include growth retardation, developmental delay, intellectual disability, microbrachycephaly, deep set eyes, hypertelorism, downslanting palpebral fissures, prominent nasal root, bulbous nasal tip, low-set ears, short fingers and toes with hypoplastic nails, and delayed bone age (Bonaglia et al., 2002; Zou et al., 2009; Guilherme et al., 2014).
USDA-ARS?s Scientific Manuscript database
Hyperphagia is a central feature of inherited disorders (e.g., Prader-Willi Syndrome) in which obesity is a primary phenotypic component. Hyperphagia may also contribute to obesity as observed in the general population, thus raising the potential importance of common underlying mechanisms and treatm...
Krause, A; Mitchell, CL; Essop, F; Tager, S; Temlett, J; Stevanin, G; Ross, CA; Rudnicki, DD; Margolis, RL
2015-01-01
Huntington disease (HD) is a progressive autosomal dominant neurodegenerative disorder, characterized by abnormal movements, cognitive decline and psychiatric symptoms, caused by a CAG repeat expansion in the huntingtin (HTT) gene on chromosome 4p. A CAG/CTG repeat expansion in the junctophilin-3 (JPH3) gene on chromosome 16q24.2 causes a Huntington disease-like phenotype (HDL2). All patients to date with HDL2 have some African ancestry. The present study aimed to characterize the genetic basis of the Huntington disease phenotype in South Africans and to investigate the possible origin of the JPH3 mutation. In a sample of unrelated South African individuals referred for diagnostic HD testing, 62% (106/171) of white patients compared to only 36% (47/130) of black patients had an expansion in HTT. However, 15% (20/130) of black South African patients and no white patients (0/171) had an expansion in JPH3, confirming the diagnosis of Huntington disease like 2 (HDL2). Individuals with HDL2 share many clinical features with individuals with HD and are clinically indistinguishable in many cases, although the average age of onset and diagnosis in HDL2 is 5 years later than HD and individual clinical features may be more prominent. HDL2 mutations contribute significantly to the HD phenotype in South Africans with African ancestry. JPH3 haplotype studies in 31 families, mainly from South Africa and North America, provide evidence for a founder mutation and support a common African origin for all HDL2 patients. Molecular testing in individuals with an HD phenotype and African ancestry should include testing routinely for JPH3 mutations. PMID:26079385
Microglial aging in the healthy CNS: phenotypes, drivers, and rejuvenation
Wong, Wai T.
2013-01-01
Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and age-related macular degeneration (AMD), share two characteristics in common: (1) a disease prevalence that increases markedly with advancing age, and (2) neuroinflammatory changes in which microglia, the primary resident immune cell of the CNS, feature prominently. These characteristics have led to the hypothesis that pathogenic mechanisms underlying age-related neurodegenerative disease involve aging changes in microglia. If correct, targeting features of microglial senescence may constitute a feasible therapeutic strategy. This review explores this hypothesis and its implications by considering the current knowledge on how microglia undergo change during aging and how the emergence of these aging phenotypes relate to significant alterations in microglial function. Evidence and theories on cellular mechanisms implicated in driving senescence in microglia are reviewed, as are “rejuvenative” measures and strategies that aim to reverse or ameliorate the aging microglial phenotype. Understanding and controlling microglial aging may represent an opportunity for elucidating disease mechanisms and for formulating novel therapies. PMID:23493481
van den Brand, Michiel; van der Velden, Walter J F M; Diets, Illja J; Ector, Geneviève I C G; de Haan, Anton F J; Stevens, Wendy B C; Hebeda, Konnie M; Groenen, Patricia J T A; van Krieken, Han J M
2016-07-01
Nodal marginal zone lymphoma (NMZL) is a rare type of B-cell non-Hodgkin lymphoma. This study assessed the clinical features of 56 patients with NMZL in comparison to 46 patients with follicular lymphoma (FL). Patients with NMZL and FL had a largely similar clinical presentation, but patients with FL had a higher disease stage at presentation, more frequent abdominal lymphadenopathy and bone marrow involvement, and showed more common transformation into diffuse large B-cell lymphoma (DLBCL) during the course of disease. Overall survival and event-free survival were similar for patients with NMZL and FL, but factors associated with worse prognosis differed between the two groups. Transformation into DLBCL was associated with a significantly poorer outcome in both groups, but the phenotypes were different: DLBCL arising in FL was mainly of germinal center B-cell phenotype, whereas DLBCL arising in NMZL was mainly of non-germinal center B-cell phenotype.
The Face of Noonan Syndrome: Does Phenotype Predict Genotype
Allanson, Judith E.; Bohring, Axel; Dorr, Helmuth-Guenther; Dufke, Andreas; Gillessen-Kaesbach, Gabrielle; Horn, Denise; König, Rainer; Kratz, Christian P.; Kutsche, Kerstin; Pauli, Silke; Raskin, Salmo; Rauch, Anita; Turner, Anne; Wieczorek, Dagmar; Zenker, Martin
2011-01-01
The facial photographs of 81 individuals with Noonan syndrome, from infancy to adulthood, have been evaluated by two dysmorphologists (JA and MZ), each of whom has considerable experience with disorders of the Ras/MAPK pathway. Thirty-two of this cohort have PTPN11 mutations, 21 SOS1 mutations, 11 RAF1 mutations, and 17 KRAS mutations. The facial appearance of each person was judged to be typical of Noonan syndrome or atypical. In each gene category both typical and unusual faces were found. We determined that some individuals with mutations in the most commonly affected gene, PTPN11, which is correlated with the cardinal physical features, may have a quite atypical face. Conversely, some individuals with KRAS mutations, which may be associated with a less characteristic intellectual phenotype and a resemblance to Costello and cardio-facio-cutaneous syndromes, can have a very typical face. Thus, the facial phenotype, alone, is insufficient to predict the genotype, but certain facial features may facilitate an educated guess in some cases. PMID:20602484
Tehrani, Fahimeh Ramezani; Rashidi, Homeira; Khomami, Mahnaz Bahri; Tohidi, Maryam; Azizi, Fereidoun
2014-09-16
Polycystic ovary syndrome (PCOS) is a common endocrinopathy, associated with metabolic abnormalities. Metabolic features of various phenotypes of this syndrome are still debatable. The aim of present study hence was to evaluate the metabolic and hormonal features of PCOS phenotypes in comparison to a group of healthy control. A total of 646 reproductive-aged women were randomly selected using the stratified, multistage probability cluster sampling method. The subjects were divided into five phenotypes: A (oligo/anovulation + hyperandrogenism + polycystic ovaries), B (oligo/anovulation + hyperandrogenism), C (hyperandrogenism + polycystic ovaries) and D (oligo/anovulation + polycystic ovaries). Hormonal and metabolic profiles and the prevalence of metabolic syndrome among these groups were compared using ANCOVA adjusted for age and body mass index. Among women with PCOS (n = 85), those of groups A and C had higher serum levels of insulin and homeostatic model assessment for insulin resistance (HOMA-IR), compared to PCOS women of group D. Serum concentrations of cholesterol, low density lipoprotein, triglycerides and glucose in group A were higher than in other phenotypes, whereas the metabolic syndrome was more prevalent among group B. Women who had all three components of the syndrome showed the highest level of metabolic disturbances indicating that metabolic screening of the severest phenotype of PCOS may be necessary.
Carcillo, Joseph A; Halstead, E Scott; Hall, Mark W; Nguyen, Trung C; Reeder, Ron; Aneja, Rajesh; Shakoory, Bita; Simon, Dennis
2017-06-01
We hypothesize that three inflammation pathobiology phenotypes are associated with increased inflammation, proclivity to develop features of macrophage activation syndrome, and multiple organ failure-related death in pediatric severe sepsis. Prospective cohort study comparing children with severe sepsis and any of three phenotypes: 1) immunoparalysis-associated multiple organ failure (whole blood ex vivo tumor necrosis factor response to endotoxin < 200 pg/mL), 2) thrombocytopenia-associated multiple organ failure (new onset thrombocytopenia with acute kidney injury and a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 activity < 57%), and/or 3) sequential multiple organ failure with hepatobiliary dysfunction (respiratory distress followed by liver dysfunction with soluble Fas ligand > 200 pg/mL), to those without any of these phenotypes. Tertiary children's hospital PICU. One hundred consecutive severe sepsis admissions. Clinical data were recorded daily, and blood was collected twice weekly. Multiple organ failure developed in 75 cases and eight died. Multiple organ failure cases with any of the three inflammation phenotypes (n = 37) had higher inflammation (C-reactive protein, p = 0.009 and ferritin, p < 0.001) than multiple organ failure cases without any of these phenotypes (n = 38) or cases with only single organ failure (n = 25). Development of features of macrophage activation syndrome and death were more common among multiple organ failure cases with any of the phenotypes (macrophage activation syndrome: 10/37, 27%; death: 8/37, 22%) compared to multiple organ failure cases without any phenotype (macrophage activation syndrome: 1/38, 3%; p = 0.003 and death: 0/38, 0%; p = 0.002). Our approach to phenotype categorization remains hypothetical, and the phenotypes identified need to be confirmed in multicenter studies of pediatric multiple organ dysfunction syndrome.
NASA Astrophysics Data System (ADS)
Cao, Kunlin; Bhagalia, Roshni; Sood, Anup; Brogi, Edi; Mellinghoff, Ingo K.; Larson, Steven M.
2015-03-01
Positron emission tomography (PET) using uorodeoxyglucose (18F-FDG) is commonly used in the assessment of breast lesions by computing voxel-wise standardized uptake value (SUV) maps. Simple metrics derived from ensemble properties of SUVs within each identified breast lesion are routinely used for disease diagnosis. The maximum SUV within the lesion (SUVmax) is the most popular of these metrics. However these simple metrics are known to be error-prone and are susceptible to image noise. Finding reliable SUV map-based features that correlate to established molecular phenotypes of breast cancer (viz. estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) expression) will enable non-invasive disease management. This study investigated 36 SUV features based on first and second order statistics, local histograms and texture of segmented lesions to predict ER and PR expression in 51 breast cancer patients. True ER and PR expression was obtained via immunohistochemistry (IHC) of tissue samples from each lesion. A supervised learning, adaptive boosting-support vector machine (AdaBoost-SVM), framework was used to select a subset of features to classify breast lesions into distinct phenotypes. Performance of the trained multi-feature classifier was compared against the baseline single-feature SUVmax classifier using receiver operating characteristic (ROC) curves. Results show that texture features encoding local lesion homogeneity extracted from gray-level co-occurrence matrices are the strongest discriminator of lesion ER expression. In particular, classifiers including these features increased prediction accuracy from 0.75 (baseline) to 0.82 and the area under the ROC curve from 0.64 (baseline) to 0.75.
Variant of Rett syndrome and CDKL5 gene: clinical and autonomic description of 10 cases.
Pini, Giorgio; Bigoni, Stefania; Engerström, Ingegerd Witt; Calabrese, Olga; Felloni, Beatrice; Scusa, Maria Flora; Di Marco, Pietro; Borelli, Paolo; Bonuccelli, Ubaldo; Julu, Peter O O; Nielsen, Jytte Bieber; Morin, Bodil; Hansen, Stig; Gobbi, Giuseppe; Visconti, Paola; Pintaudi, Maria; Edvige, Veneselli; Romanelli, Anna; Bianchi, Fabrizio; Casarano, Manuela; Battini, Roberta; Cioni, Giovanni; Ariani, Francesca; Renieri, Alessandra; Benincasa, Alberto; Delamont, Robert S; Zappella, Michele
2012-02-01
Rett syndrome (RTT) is a severe neurodevelopmental disorder affecting almost exclusively females. The Hanefeld variant, or early-onset seizure variant, has been associated with mutations in CDKL5 gene. In recent years more than 60 patients with mutations in the CDKL5 gene have been described in the literature, but the cardiorespiratory phenotype has not been reported. Our aim is to describe clinical and autonomic features of these girls. 10 girls with CDKL5 mutations and a diagnosis of Hanefeld variant have been evaluated on axiological and clinical aspects. In all subjects an evaluation of the autonomic system was performed using the Neuroscope. Common features were gaze avoidance, repetitive head movements and hand stereotypies. The autonomic evaluation disclosed eight cases with the Forceful breather cardiorespiratory phenotype and two cases with the Apneustic breather phenotype. The clinical picture remains within the RTT spectrum but some symptoms are more pronounced in addition to the very early onset of seizures. The cardiorespiratory phenotype was dominated by Forceful breathers, while Feeble breathers were not found, differently from the general Rett population, suggesting a specific behavioral and cardiorespiratory phenotype of the RTT the Hanefeld variant. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
The neuropsychiatric phenotype in Darier disease.
Gordon-Smith, K; Jones, L A; Burge, S M; Munro, C S; Tavadia, S; Craddock, N
2010-09-01
Darier disease (DD) is a rare autosomal dominantly inherited skin disorder in which co-occurrence of neuropsychiatric abnormalities has been frequently reported by dermatologists. It is caused by mutations in a single gene, ATP2A2, which is expressed in the skin and brain. To conduct the first systematic investigation of the neuropsychiatric phenotype in DD. One hundred unrelated individuals with DD were assessed using a battery of standardized neuropsychiatric measures. Data were also obtained on a number of clinical features of DD. Individuals with DD were found to have high lifetime rates of mood disorders (50%), specifically major depression (30%) and bipolar disorder (4%), and suicide attempts (13%) and suicidal thoughts (31%). These were more common in DD when compared with general population data. The prevalence of epilepsy (3%) in the sample was also higher than the prevalence in the general population. There was no consistent association of specific dermatological features of DD and presence of psychiatric features. These findings highlight the need for clinicians to assess and recognize neuropsychiatric symptoms in DD. The results do not suggest that neuropsychiatric symptoms are simply a psychological reaction to having a skin disease, but are consistent with the pleiotropy hypothesis that mutations in the ATP2A2 gene, in addition to causing DD, confer susceptibility to neuropsychiatric features. Further research is needed to investigate genotype-phenotype correlations between the types and/or locations of pathogenic mutations within ATP2A2 and the expressed neuropsychiatric phenotypes. © 2010 The Authors. Journal Compilation © 2010 British Association of Dermatologists.
Prevalence and Severity of Voice and Swallowing Difficulties in Mitochondrial Disease
ERIC Educational Resources Information Center
Read, Jennifer L.; Whittaker, Roger G.; Miller, Nick; Clark, Sue; Taylor, Robert; McFarland, Robert; Turnbull, Douglass
2012-01-01
Background: Mutations of mitochondrial DNA (mtDNA) cause a broad spectrum of clinical phenotypes. Anecdotal evidence suggests that voice and swallow problems are a common feature of these diseases. Aims: To characterize accurately the prevalence and severity of voice and swallow problems in a large cohort of patients with mitochondrial disease.…
ERIC Educational Resources Information Center
Phillips, Kristin D.; Klein-Tasman, Bonita P.
2009-01-01
The refinement of the Williams syndrome phenotype has frequently included the study of behavioral and temperamental features common to individuals with this disorder. Within this line of research, the importance of evaluating incidence of psychopathology has been increasingly recognized, with studies consistently identifying an increased risk for…
Peltekova, Iskra T; Hurteau-Millar, Julie; Armour, Christine M
2014-12-01
Chromosome 10q deletions are rare and phenotypically diverse. Such deletions differ in length and occur in numerous regions on the long arm of chromosome 10, accounting for the wide clinical variability. Commonly reported findings include dysmorphic facial features, microcephaly, developmental delay, and genitourinary abnormalities. Here, we report on a female patient with a novel interstitial 5.54 Mb deletion at 10q24.31-q25.1. This patient had findings in common with a previously reported patient with an overlapping deletion, including renal anomalies and an orofacial cleft, but also demonstrated lobar holoprosencephaly and a Dandy-Walker malformation, features which have not been previously reported with 10q deletions. An analysis of the region deleted in our patient showed numerous genes, such as KAZALD1, PAX2, SEMA4G, ACTRA1, INA, and FGF8, whose putative functions may have played a role in the phenotype seen in our patient. © 2014 Wiley Periodicals, Inc.
Noordman, Iris; Duijnhouwer, Anthonie; Kapusta, Livia; Kempers, Marlies; Roeleveld, Nel; Schokking, Michiel; Smeets, Dominique; Freriks, Kim; Timmers, Henri; van Alfen-van der Velden, Janiëlle
2018-06-01
Turner syndrome (TS) is a genetic disorder characterized by the (partial) absence or a structural aberration of the second sex chromosome and is associated with a variety of phenotypes with specific physical features and cardio-aortic malformations. The objective of this study was to gain a better insight into the differences in dysmorphic features between girls and women with TS and to explore the association between these features, karyotype and cardio-aortic malformations. This prospective study investigated 14 dysmorphic features of TS girls and women using a checklist. Three major phenotypic patterns were recognized (severe phenotype, lymphatic phenotype and skeletal phenotype). Patient data including karyotype and cardio-aortic malformations (bicuspid aortic valve (BAV) and aortic coarctation (COA)) were collected. Associations between the prevalence of dysmorphic features, karyotype and cardio-aortic malformations were analysed using chi 2 -test and odds ratios. A total of 202 patients (84 girls and 118 women) were analysed prospectively. Differences in prevalence of dysmorphic features were found between girls and women. A strong association was found between monosomy 45,X and the phenotypic patterns. Furthermore, an association was found between COA and lymphatic phenotype, but no association was found between karyotype and cardio-aortic malformations. This study uncovered a difference in dysmorphic features between girls and women. Monosomy 45,X is associated with a more severe phenotype, lymphatic phenotype and skeletal phenotype. All patients with TS should be screened for cardio-aortic malformations, because in contrast to previous reports, karyotype and cardio-aortic malformations showed no significant association. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Annotation of phenotypic diversity: decoupling data curation and ontology curation using Phenex.
Balhoff, James P; Dahdul, Wasila M; Dececchi, T Alexander; Lapp, Hilmar; Mabee, Paula M; Vision, Todd J
2014-01-01
Phenex (http://phenex.phenoscape.org/) is a desktop application for semantically annotating the phenotypic character matrix datasets common in evolutionary biology. Since its initial publication, we have added new features that address several major bottlenecks in the efficiency of the phenotype curation process: allowing curators during the data curation phase to provisionally request terms that are not yet available from a relevant ontology; supporting quality control against annotation guidelines to reduce later manual review and revision; and enabling the sharing of files for collaboration among curators. We decoupled data annotation from ontology development by creating an Ontology Request Broker (ORB) within Phenex. Curators can use the ORB to request a provisional term for use in data annotation; the provisional term can be automatically replaced with a permanent identifier once the term is added to an ontology. We added a set of annotation consistency checks to prevent common curation errors, reducing the need for later correction. We facilitated collaborative editing by improving the reliability of Phenex when used with online folder sharing services, via file change monitoring and continual autosave. With the addition of these new features, and in particular the Ontology Request Broker, Phenex users have been able to focus more effectively on data annotation. Phenoscape curators using Phenex have reported a smoother annotation workflow, with much reduced interruptions from ontology maintenance and file management issues.
Hush, Julia M; Marcuzzi, Anna
2012-07-01
SUMMARY Contemporary clinical assessment of back pain is based on the diagnostic triage paradigm. The most common diagnostic classification is nonspecific back pain, considered to be of nociceptive etiology. A small proportion are diagnosed with radicular pain, of neuropathic origin. In this study we review the body of literature on the prevalence of neuropathic features of back pain, revealing that the point prevalence is 17% in primary care, 34% in mixed clinical settings and 53% in tertiary care. There is evidence that neuropathic features of back pain are not restricted to typical clinical radicular pain phenotypes and may be under-recognized, particularly in primary care. The consequence of this is that in the clinic, diagnostic triage may erroneously classify patients with nonspecific back pain or radicular pain. A promising alternative is the development of mechanism-based pain phenotyping in patients with back pain. Timely identification of contributory pain mechanisms may enable greater opportunity to select appropriate therapeutic targets and improve patient outcomes.
GBM heterogeneity characterization by radiomic analysis of phenotype anatomical planes
NASA Astrophysics Data System (ADS)
Chaddad, Ahmad; Desrosiers, Christian; Toews, Matthew
2016-03-01
Glioblastoma multiforme (GBM) is the most common malignant primary tumor of the central nervous system, characterized among other traits by rapid metastatis. Three tissue phenotypes closely associated with GBMs, namely, necrosis (N), contrast enhancement (CE), and edema/invasion (E), exhibit characteristic patterns of texture heterogeneity in magnetic resonance images (MRI). In this study, we propose a novel model to characterize GBM tissue phenotypes using gray level co-occurrence matrices (GLCM) in three anatomical planes. The GLCM encodes local image patches in terms of informative, orientation-invariant texture descriptors, which are used here to sub-classify GBM tissue phenotypes. Experiments demonstrate the model on MRI data of 41 GBM patients, obtained from the cancer genome atlas (TCGA). Intensity-based automatic image registration is applied to align corresponding pairs of fixed T1˗weighted (T1˗WI) post-contrast and fluid attenuated inversion recovery (FLAIR) images. GBM tissue regions are then segmented using the 3D Slicer tool. Texture features are computed from 12 quantifier functions operating on GLCM descriptors, that are generated from MRI intensities within segmented GBM tissue regions. Various classifier models are used to evaluate the effectiveness of texture features for discriminating between GBM phenotypes. Results based on T1-WI scans showed a phenotype classification accuracy of over 88.14%, a sensitivity of 85.37% and a specificity of 96.1%, using the linear discriminant analysis (LDA) classifier. This model has the potential to provide important characteristics of tumors, which can be used for the sub-classification of GBM phenotypes.
Autism Spectrum Disorder, Developmental and Psychiatric Features in 16p11.2 Duplication.
Green Snyder, LeeAnne; D'Angelo, Debra; Chen, Qixuan; Bernier, Raphael; Goin-Kochel, Robin P; Wallace, Arianne Stevens; Gerdts, Jennifer; Kanne, Stephen; Berry, Leandra; Blaskey, Lisa; Kuschner, Emily; Roberts, Timothy; Sherr, Elliot; Martin, Christa L; Ledbetter, David H; Spiro, John E; Chung, Wendy K; Hanson, Ellen
2016-08-01
The 16p11.2 duplication (BP4-BP5) is associated with Autism Spectrum Disorder (ASD), although significant heterogeneity exists. Quantitative ASD, behavioral and neuropsychological measures and DSM-IV diagnoses in child and adult carriers were compared with familial non-carrier controls, and to published results from deletion carriers. The 16p11.2 duplication phenotype ranges widely from asymptomatic presentation to significant disability. The most common diagnoses were intellectual disability, motor delays and Attention Deficit Hyperactivity Disorder in children, and anxiety in adults. ASD occurred in nearly 20 % of child cases, but a majority of carriers did not show the unique social features of ASD. The 16p11.2 duplication phenotype is characterized by wider variability than the reciprocal deletion, likely reflecting contributions from additional risk factors.
Bishop, Dorothy VM; Scerif, Gaia
2011-01-01
Aim To compare the phenotype in Klinefelter syndrome (KS) with (i) specific language impairment (SLI) and (ii) XXX and XYY trisomies. Methods Phenotypes of KS, XXX and XYY were based on data from a systematic review of neurodevelopmental outcomes plus a recent parent survey. Phenotype of SLI was based on a published survey of children attending a special school. Results There are close similarities between the KS phenotype and SLI. Furthermore, a minority of children with KS have features of autistic spectrum disorder. Similar language and communication problems are seen in the other two sex chromosome trisomies (SCTs), XXX and XYY. Conclusion We propose the neurexin–neuroligin hypothesis, based on the observation that neuroligin genes, which occur on both X and Y chromosomes, are involved in the same synaptic networks as neurexin genes with common variants that affect risk for SLI and autism. According to our hypothesis, the effect of a triple dose of neuroligin gene product will be particularly detrimental when it occurs in conjunction with specific variants of neurexin genes on other chromosomes. This speculative proposal demonstrates the potential of illuminating the aetiology of common neurodevelopmental disorders by studying children with SCTs. PMID:21418292
Electronic health record analysis via deep poisson factor models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henao, Ricardo; Lu, James T.; Lucas, Joseph E.
Electronic Health Record (EHR) phenotyping utilizes patient data captured through normal medical practice, to identify features that may represent computational medical phenotypes. These features may be used to identify at-risk patients and improve prediction of patient morbidity and mortality. We present a novel deep multi-modality architecture for EHR analysis (applicable to joint analysis of multiple forms of EHR data), based on Poisson Factor Analysis (PFA) modules. Each modality, composed of observed counts, is represented as a Poisson distribution, parameterized in terms of hidden binary units. In-formation from different modalities is shared via a deep hierarchy of common hidden units. Activationmore » of these binary units occurs with probability characterized as Bernoulli-Poisson link functions, instead of more traditional logistic link functions. In addition, we demon-strate that PFA modules can be adapted to discriminative modalities. To compute model parameters, we derive efficient Markov Chain Monte Carlo (MCMC) inference that scales efficiently, with significant computational gains when compared to related models based on logistic link functions. To explore the utility of these models, we apply them to a subset of patients from the Duke-Durham patient cohort. We identified a cohort of over 12,000 patients with Type 2 Diabetes Mellitus (T2DM) based on diagnosis codes and laboratory tests out of our patient population of over 240,000. Examining the common hidden units uniting the PFA modules, we identify patient features that represent medical concepts. Experiments indicate that our learned features are better able to predict mortality and morbidity than clinical features identified previously in a large-scale clinical trial.« less
Electronic health record analysis via deep poisson factor models
Henao, Ricardo; Lu, James T.; Lucas, Joseph E.; ...
2016-01-01
Electronic Health Record (EHR) phenotyping utilizes patient data captured through normal medical practice, to identify features that may represent computational medical phenotypes. These features may be used to identify at-risk patients and improve prediction of patient morbidity and mortality. We present a novel deep multi-modality architecture for EHR analysis (applicable to joint analysis of multiple forms of EHR data), based on Poisson Factor Analysis (PFA) modules. Each modality, composed of observed counts, is represented as a Poisson distribution, parameterized in terms of hidden binary units. In-formation from different modalities is shared via a deep hierarchy of common hidden units. Activationmore » of these binary units occurs with probability characterized as Bernoulli-Poisson link functions, instead of more traditional logistic link functions. In addition, we demon-strate that PFA modules can be adapted to discriminative modalities. To compute model parameters, we derive efficient Markov Chain Monte Carlo (MCMC) inference that scales efficiently, with significant computational gains when compared to related models based on logistic link functions. To explore the utility of these models, we apply them to a subset of patients from the Duke-Durham patient cohort. We identified a cohort of over 12,000 patients with Type 2 Diabetes Mellitus (T2DM) based on diagnosis codes and laboratory tests out of our patient population of over 240,000. Examining the common hidden units uniting the PFA modules, we identify patient features that represent medical concepts. Experiments indicate that our learned features are better able to predict mortality and morbidity than clinical features identified previously in a large-scale clinical trial.« less
Armour, C M; Allanson, J E
2008-04-01
Cardio-facio-cutaneous syndrome (CFC) is a multiple congenital anomaly/mental retardation syndrome named because of a characteristic facies, cardiac anomalies, and ectodermal abnormalities. While considerable literature describes the main features, few studies have documented the frequencies of less common features allowing a greater appreciation of the full phenotype. We have analysed clinical data on 38 individuals with CFC and a confirmed mutation in one of the genes known to cause the condition. We provide data on well-established features, and those that are less often described. Polyhydramnios (77%) and prematurity (49%) were common perinatal issues. 71% of individuals had a cardiac anomaly, the most common being pulmonary valve stenosis (42%), hypertrophic cardiomyopathy (39%), and atrial septal defect (28%). Hair anomalies were also typical: 92% had curly hair, 84% sparse hair, and 86% absent or sparse eyebrows. The most frequent cutaneous features were keratosis pilaris (73%), hyperkeratosis (61%) and nevi (76%). Significant and long lived gastrointestinal dysmotility (71%), seizures (49%), optic nerve hypoplasia (30%) and renal anomalies, chiefly hydronephrosis (20%), were among the less well known issues reported. This study reports a broad range of clinical issues in a large cohort of individuals with molecular confirmation of CFC.
Inducible and reversible phenotypes in a novel mouse model of Friedreich’s Ataxia
Gao, Kun; Swarup, Vivek; Versano, Revital; Dong, Hongmei; Jordan, Maria C
2017-01-01
Friedreich's ataxia (FRDA), the most common inherited ataxia, is caused by recessive mutations that reduce the levels of frataxin (FXN), a mitochondrial iron binding protein. We developed an inducible mouse model of Fxn deficiency that enabled us to control the onset and progression of disease phenotypes by the modulation of Fxn levels. Systemic knockdown of Fxn in adult mice led to multiple phenotypes paralleling those observed in human patients across multiple organ systems. By reversing knockdown after clinical features appear, we were able to determine to what extent observed phenotypes represent reversible cellular dysfunction. Remarkably, upon restoration of near wild-type FXN levels, we observed significant recovery of function, associated pathology and transcriptomic dysregulation even after substantial motor dysfunction and pathology were observed. This model will be of broad utility in therapeutic development and in refining our understanding of the relative contribution of reversible cellular dysfunction at different stages in disease. PMID:29257745
Phenotypical Characteristics of Idiopathic Infantile Nystagmus with and without Mutations in "FRMD7"
ERIC Educational Resources Information Center
Thomas, Shery; Proudlock, Frank A.; Sarvananthan, Nagini; Roberts, Eryl O.; Awan, Musarat; McLean, Rebecca; Surendran, Mylvaganam; Kumar, A. S. Anil; Farooq, Shegufta J.; Degg, Chris; Gale, Richard P.; Reinecke, Robert D.; Woodruff, Geoffrey; Langmann, Andrea; Lindner, Susanne; Jain, Sunila; Tarpey, Patrick; Raymond, F. Lucy; Gottlob, Irene
2008-01-01
Idiopathic infantile nystagmus (IIN) consists of involuntary oscillations of the eyes. The familial form is most commonly X-linked. We recently found mutations in a novel gene "FRMD7" (Xq26.2), which provided an opportunity to investigate a genetically defined and homogeneous group of patients with nystagmus. We compared clinical features and eye…
Roles of GSK3 in metabolic shift toward abnormal anabolism in cell senescence.
Kim, You-Mie; Seo, Yong-Hak; Park, Chan-Bae; Yoon, Soo-Han; Yoon, Gyesoon
2010-07-01
Diverse metabolic alterations, including mitochondrial dysfunction, have often been reported as characteristic phenotypes of senescent cells. However, the overall consequence of senescent metabolic features, how they develop, and how they are linked to other senescent phenotypes, such as enlarged cell volume, increased granularity, and oxidative stress, is not clear. We investigated the potential roles of glycogen synthase kinase 3 (GSK3), a multifunctional kinase, in the development of the metabolic phenotypes in cell senescence. The inactivation of GSK3 via phosphorylation is commonly observed in diverse cell senescences. Furthermore, subcytotoxic concentration of GSK3 inhibitor was sufficient to induce cellular senescence, accompanied by augmented anabolism, such as enhanced protein synthesis, and increased glycogenesis and lipogenesis, in addition to mitochondrial dysfunction. Anabolism was accomplished through glycogen synthase, eIF2B, and SREBP1. These metabolic features seem to contribute to an increase in cellular mass by increasing glycogen granules, protein mass, and organelles. Taken together, our results suggest that GSK3 is one of the key modulators of metabolic alteration, leading the cells to senescence.
Addissie, Yonit A; Kotecha, Udhaya; Hart, Rachel A; Martinez, Ariel F; Kruszka, Paul; Muenke, Maximilian
2015-11-01
Noonan syndrome (NS) is a multiple congenital anomaly syndrome caused by germline mutations in genes coding for components of the Ras-mitogen-activated protein kinase (RAS-MAPK) pathway. Features include short stature, characteristic facies, congenital heart anomalies, and developmental delay. While there is considerable clinical heterogeneity in NS, craniosynostosis is not a common feature of the condition. Here, we report on a 2 month-old girl with Noonan syndrome associated with a de novo mutation in KRAS (p.P34Q) and premature closure of the sagittal suture. We provide a review of the literature of germline KRAS mutations and find that approximately 10% of published cases have craniosynostosis. Our findings expand on the NS phenotype and suggest that germline mutations in the KRAS gene are causally involved in craniosynostosis, supporting the role of the RAS-MAPK pathway as a mediator of aberrant bone growth in cranial sutures. The inclusion of craniosynostosis as a possible phenotype in KRAS-associated Noonan Syndrome has implications in the differential diagnosis and surgical management of individuals with craniosynostosis. © 2015 Wiley Periodicals, Inc.
19q13.32 microdeletion syndrome: three new cases.
Castillo, Angela; Kramer, Nancy; Schwartz, Charles E; Miles, Judith H; DuPont, Barbara R; Rosenfeld, Jill A; Graham, John M
2014-01-01
A previous report described a unique phenotype associated with an apparently de novo 732 kb 19q13.32 microdeletion, consisting of intellectual disability, facial asymmetry, ptosis, oculomotor abnormalities, orofacial clefts, cardiac defects, scoliosis and chronic constipation. We report three unrelated patients with developmental delay and dysmorphic features, who were all found to have interstitial 19q13.32 microdeletions of varying sizes. Both the previously reported patient and our Patient 1 with a larger, 1.3-Mb deletion have distinctive dysmorphic features and medical problems, allowing us to define a recognizable 19q13.32 microdeletion syndrome. Patient 1 was hypotonic and dysmorphic at birth, with aplasia of the posterior corpus callosum, bilateral ptosis, oculomotor paralysis, down-slanting palpebral fissures, facial asymmetry, submucosal cleft palate, micrognathia, wide-spaced nipples, right-sided aortic arch, hypospadias, bilateral inguinal hernias, double toenail of the left second toe, partial 2-3 toe syndactyly, kyphoscoliosis and colonic atony. Therefore, the common features of the 19q13.32 microdeletion syndrome include facial asymmetry, ptosis, oculomotor paralysis, orofacial clefting, micrognathia, kyphoscoliosis, aortic defects and colonic atony. These findings are probably related to a deletion of some combination of the 20-23 genes in common between these two patients, especially NPAS1, NAPA, ARHGAP35, SLC8A2, DHX34, MEIS3, and ZNF541. These candidate genes are expressed in the brain parenchyma, glia, heart, gastrointestinal tract and musculoskeletal system and likely play a fundamental role in the expression of this phenotype. This report delineates the phenotypic spectrum associated with the haploinsufficiency of genes found in 19q13.32. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Reproducibility of radiomics for deciphering tumor phenotype with imaging
NASA Astrophysics Data System (ADS)
Zhao, Binsheng; Tan, Yongqiang; Tsai, Wei-Yann; Qi, Jing; Xie, Chuanmiao; Lu, Lin; Schwartz, Lawrence H.
2016-03-01
Radiomics (radiogenomics) characterizes tumor phenotypes based on quantitative image features derived from routine radiologic imaging to improve cancer diagnosis, prognosis, prediction and response to therapy. Although radiomic features must be reproducible to qualify as biomarkers for clinical care, little is known about how routine imaging acquisition techniques/parameters affect reproducibility. To begin to fill this knowledge gap, we assessed the reproducibility of a comprehensive, commonly-used set of radiomic features using a unique, same-day repeat computed tomography data set from lung cancer patients. Each scan was reconstructed at 6 imaging settings, varying slice thicknesses (1.25 mm, 2.5 mm and 5 mm) and reconstruction algorithms (sharp, smooth). Reproducibility was assessed using the repeat scans reconstructed at identical imaging setting (6 settings in total). In separate analyses, we explored differences in radiomic features due to different imaging parameters by assessing the agreement of these radiomic features extracted from the repeat scans reconstructed at the same slice thickness but different algorithms (3 settings in total). Our data suggest that radiomic features are reproducible over a wide range of imaging settings. However, smooth and sharp reconstruction algorithms should not be used interchangeably. These findings will raise awareness of the importance of properly setting imaging acquisition parameters in radiomics/radiogenomics research.
Iyadurai, Stanley; Arnold, W David; Kissel, John T; Ruhno, Corey; Mcgovern, Vicki L; Snyder, Pamela J; Prior, Thomas W; Roggenbuck, Jennifer; Burghes, Arthur H; Kolb, Stephen J
2017-08-01
Distal hereditary motor neuropathy (dHMN) causes distal-predominant weakness without prominent sensory loss. Myosin heavy chain disorders most commonly result in distal myopathy and cardiomyopathy with or without hearing loss, but a complex phenotype with dHMN, myopathy, hoarseness, and hearing loss was reported in a Korean family with a c.2822G>T mutation in MYH14. In this study we report phenotypic features in a North American family with the c.2822G>T in MYH14. Clinical and molecular characterization was performed in a large, 6-generation, Caucasian family with MYH14 dHMN. A total of 11 affected and 7 unaffected individuals were evaluated and showed varying age of onset and severity of weakness. Genotypic concordance was confirmed with molecular analysis. Electrophysiological studies demonstrated distal motor axonal degeneration without myopathy in all affected subjects tested. Mutation of MYH14 can result in a range of neuromuscular phenotypes that includes a dHMN and hearing loss phenotype with variable age of onset. Muscle Nerve 56: 341-345, 2017. © 2016 Wiley Periodicals, Inc.
Craniofacial and Dental Development in Costello Syndrome
Goodwin, Alice F.; Oberoi, Snehlata; Landan, Maya; Charles, Cyril; Massie, Jessica C.; Fairley, Cecilia; Rauen, Katherine A.; Klein, Ophir D.
2014-01-01
Costello syndrome (CS) is a RASopathy characterized by a wide range of cardiac, musculoskeletal, dermatological, and developmental abnormalities. The RASopathies are defined as a group of syndromes caused by activated Ras/mitogen-activated protein kinase (MAPK) signaling. Specifically, CS is caused by activating mutations in HRAS. Although receptor tyrosine kinase (RTK) signaling, which is upstream of Ras/MAPK, is known to play a critical role in craniofacial and dental development, the craniofacial and dental features of CS have not been systematically defined in a large group of individuals. In order to address this gap in our understanding and fully characterize the CS phenotype, we evaluated the craniofacial and dental phenotype in a large cohort (n=41) of CS individuals. We confirmed that the craniofacial features common in CS include macrocephaly, bitemporal narrowing, convex facial profile, full cheeks, and large mouth. Additionally, CS patients have a characteristic dental phenotype that includes malocclusion with anterior open bite and posterior crossbite, enamel hypo-mineralization, delayed tooth development and eruption, gingival hyperplasia, thickening of the alveolar ridge, and high palate. Comparison of the craniofacial and dental phenotype in CS with other RASopathies, such as cardio-facio-cutaneous syndrome (CFC), provides insight into the complexities of Ras/MAPK signaling in human craniofacial and dental development. PMID:24668879
Craniofacial and dental development in Costello syndrome.
Goodwin, Alice F; Oberoi, Snehlata; Landan, Maya; Charles, Cyril; Massie, Jessica C; Fairley, Cecilia; Rauen, Katherine A; Klein, Ophir D
2014-06-01
Costello syndrome (CS) is a RASopathy characterized by a wide range of cardiac, musculoskeletal, dermatological, and developmental abnormalities. The RASopathies are defined as a group of syndromes caused by activated Ras/mitogen-activated protein kinase (MAPK) signaling. Specifically, CS is caused by activating mutations in HRAS. Although receptor tyrosine kinase (RTK) signaling, which is upstream of Ras/MAPK, is known to play a critical role in craniofacial and dental development, the craniofacial and dental features of CS have not been systematically defined in a large group of individuals. In order to address this gap in our understanding and fully characterize the CS phenotype, we evaluated the craniofacial and dental phenotype in a large cohort (n = 41) of CS individuals. We confirmed that the craniofacial features common in CS include macrocephaly, bitemporal narrowing, convex facial profile, full cheeks, and large mouth. Additionally, CS patients have a characteristic dental phenotype that includes malocclusion with anterior open bite and posterior crossbite, enamel hypo-mineralization, delayed tooth development and eruption, gingival hyperplasia, thickening of the alveolar ridge, and high palate. Comparison of the craniofacial and dental phenotype in CS with other RASopathies, such as cardio-facio-cutaneous syndrome (CFC), provides insight into the complexities of Ras/MAPK signaling in human craniofacial and dental development. © 2014 Wiley Periodicals, Inc.
Phenotype of a child with Angelman syndrome born to a woman with Prader-Willi syndrome.
Ostergaard, John R
2015-09-01
This report describes the phenotype, from early childhood to adolescence, of a girl with Angelman syndrome (AS) born following a maternal transmission of a germline paternal 15q11.2-q13 deletion. During early childhood, she showed a typical AS phenotype, such as jerky movements, poor sleep, high voltage electroencephalography pattern, epilepsy, and a severe developmental disability. As she grew older, indications of phenotypical traits similar to Prader-Willi syndrome (PWS) appeared, in particular hyperphagic behavior and a body fat distribution similar to that reported in PWS. She generally showed cheerful AS behavior and had the characteristic outbursts of laughter, but her attitude to other people did not reflect the usual shared enjoyment of interaction seen in children with AS. In unfamiliar surroundings, she withdrew socially, similar to children with PWS, and her insistence on the same, rigid routines was similar to behavior patterns in PWS. The dysmorphic facial features that characterize AS were blurred in adolescence. The specified features that this AS patient had in common with PWS were hardly incidental and, if verified by upcoming case reports of children born to women with a paternal 15q11.2-q13 deletion, they may show new aspects of genetic imprinting. © 2015 Wiley Periodicals, Inc.
Yu, Sheng; Liao, Katherine P; Shaw, Stanley Y; Gainer, Vivian S; Churchill, Susanne E; Szolovits, Peter; Murphy, Shawn N; Kohane, Isaac S; Cai, Tianxi
2015-09-01
Analysis of narrative (text) data from electronic health records (EHRs) can improve population-scale phenotyping for clinical and genetic research. Currently, selection of text features for phenotyping algorithms is slow and laborious, requiring extensive and iterative involvement by domain experts. This paper introduces a method to develop phenotyping algorithms in an unbiased manner by automatically extracting and selecting informative features, which can be comparable to expert-curated ones in classification accuracy. Comprehensive medical concepts were collected from publicly available knowledge sources in an automated, unbiased fashion. Natural language processing (NLP) revealed the occurrence patterns of these concepts in EHR narrative notes, which enabled selection of informative features for phenotype classification. When combined with additional codified features, a penalized logistic regression model was trained to classify the target phenotype. The authors applied our method to develop algorithms to identify patients with rheumatoid arthritis and coronary artery disease cases among those with rheumatoid arthritis from a large multi-institutional EHR. The area under the receiver operating characteristic curves (AUC) for classifying RA and CAD using models trained with automated features were 0.951 and 0.929, respectively, compared to the AUCs of 0.938 and 0.929 by models trained with expert-curated features. Models trained with NLP text features selected through an unbiased, automated procedure achieved comparable or slightly higher accuracy than those trained with expert-curated features. The majority of the selected model features were interpretable. The proposed automated feature extraction method, generating highly accurate phenotyping algorithms with improved efficiency, is a significant step toward high-throughput phenotyping. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Birgfeld, Craig B; Heike, Carrie L; Saltzman, Babette S; Leroux, Brian G; Evans, Kelly N; Luquetti, Daniela V
2016-03-31
Craniofacial microsomia is a common congenital condition for which children receive longitudinal, multidisciplinary team care. However, little is known about the etiology of craniofacial microsomia and few outcome studies have been published. In order to facilitate large, multicenter studies in craniofacial microsomia, we assessed the reliability of phenotypic classification based on photographs by comparison with direct physical examination. Thirty-nine children with craniofacial microsomia underwent a physical examination and photographs according to a standardized protocol. Three clinicians completed ratings during the physical examination and, at least a month later, using respective photographs for each participant. We used descriptive statistics for participant characteristics and intraclass correlation coefficients (ICCs) to assess reliability. The agreement between ratings on photographs and physical exam was greater than 80 % for all 15 categories included in the analysis. The ICC estimates were higher than 0.6 for most features. Features with the highest ICC included: presence of epibulbar dermoids, ear abnormalities, and colobomas (ICC 0.85, 0.81, and 0.80, respectively). Orbital size, presence of pits, tongue abnormalities, and strabismus had the lowest ICC, values (0.17 or less). There was not a strong tendency for either type of rating, physical exam or photograph, to be more likely to designate a feature as abnormal. The agreement between photographs and physical exam regarding the presence of a prior surgery was greater than 90 % for most features. Our results suggest that categorization of facial phenotype in children with CFM based on photographs is reliable relative to physical examination for most facial features.
IVS-II-648/649 (-T) (HBB: c.316-202del) Triggers a Novel β-Thalassemia Phenotype.
Azimi, Azam; Alibakhshi, Reza; Hayati, Hasibeh; Tahmasebi, Soosan; Alimoradi, Sasan
2017-01-01
Thalassemia is the most common inherited disorder in Iran. There are approximately 800 different genomic alterations of the β-globin gene described in the HbVar database. In this study, we identified a novel mutation in a 21-year-old woman [IVS-II-648/649 (-T); HBB: c.316-202del)] and describe its clinical implications. Two other members of this family, all with hematological and clinical features associated with β-thalassemia (β-thal), also carried this mutation. The molecular diagnosis of the β-globin gene mutation was performed by direct sequencing. Based on the observed β-thal phenotype and in silico analysis results, we concluded that this novel β-globin gene mutation was associated with the mild phenotype of β-thal.
A let-7-to-miR-125 MicroRNA Switch Regulates Neuronal Integrity and Lifespan in Drosophila
Chawla, Geetanjali; Deosthale, Padmini; Childress, Sue; Wu, Yen-chi; Sokol, Nicholas S.
2016-01-01
Messenger RNAs (mRNAs) often contain binding sites for multiple, different microRNAs (miRNAs). However, the biological significance of this feature is unclear, since such co-targeting miRNAs could function coordinately, independently, or redundantly with one another. Here, we show that two co-transcribed Drosophila miRNAs, let-7 and miR-125, non-redundantly regulate a common target, the transcription factor Chronologically Inappropriate Morphogenesis (Chinmo). We first characterize novel adult phenotypes associated with loss of both let-7 and miR-125, which are derived from a common, polycistronic transcript that also encodes a third miRNA, miR-100. Consistent with the coordinate upregulation of all three miRNAs in aging flies, these phenotypes include brain degeneration and shortened lifespan. However, transgenic rescue analysis reveal separable roles for these miRNAs: adult miR-125 but not let-7 mutant phenotypes are associated with ectopic Chinmo expression in adult brains and are suppressed by chinmo reduction. In contrast, let-7 is predominantly responsible for regulating chinmo during nervous system formation. These results indicate that let-7 and miR-125 function during two distinct stages, development and adulthood, rather than acting at the same time. These different activities are facilitated by an increased rate of processing of let-7 during development and a lower rate of decay of the accumulated miR-125 in the adult nervous system. Thus, this work not only establishes a key role for the highly conserved miR-125 in aging. It also demonstrates that two co-transcribed miRNAs function independently during distinct stages to regulate a common target, raising the possibility that such biphasic control may be a general feature of clustered miRNAs. PMID:27508495
Shetty, Devi C.; Singh, Harkanwal P.; Kumar, Prince; Verma, Chanchal
2012-01-01
Skeletal dysplasias are a heterogenous group of disorders combining abnormalities in the skull and other skeletal bones. Weyers acrofacial dysostosis also known as Weyers acrodental dysostosis was first described in 1952, by Weyers, as a postaxial polydactyly, which had features distinct from, yet some in common with the Ellis-van Creveld Syndrome (EvC). Both the syndromes have been mapped to the same chromosome, 4p16. The cases reported here highlight the overlapping features of both syndromes, which are dissimilar in mode of inheritance and phenotypic severity, emphasizing the need for genetic analysis, to categorize these conditions. PMID:22616035
A review of trisomy X (47,XXX).
Tartaglia, Nicole R; Howell, Susan; Sutherland, Ashley; Wilson, Rebecca; Wilson, Lennie
2010-05-11
Trisomy X is a sex chromosome anomaly with a variable phenotype caused by the presence of an extra X chromosome in females (47,XXX instead of 46,XX). It is the most common female chromosomal abnormality, occurring in approximately 1 in 1,000 female births. As some individuals are only mildly affected or asymptomatic, it is estimated that only 10% of individuals with trisomy X are actually diagnosed. The most common physical features include tall stature, epicanthal folds, hypotonia and clinodactyly. Seizures, renal and genitourinary abnormalities, and premature ovarian failure (POF) can also be associated findings. Children with trisomy X have higher rates of motor and speech delays, with an increased risk of cognitive deficits and learning disabilities in the school-age years. Psychological features including attention deficits, mood disorders (anxiety and depression), and other psychological disorders are also more common than in the general population. Trisomy X most commonly occurs as a result of nondisjunction during meiosis, although postzygotic nondisjunction occurs in approximately 20% of cases. The risk of trisomy X increases with advanced maternal age. The phenotype in trisomy X is hypothesized to result from overexpression of genes that escape X-inactivation, but genotype-phenotype relationships remain to be defined. Diagnosis during the prenatal period by amniocentesis or chorionic villi sampling is common. Indications for postnatal diagnoses most commonly include developmental delays or hypotonia, learning disabilities, emotional or behavioral difficulties, or POF. Differential diagnosis prior to definitive karyotype results includes fragile X, tetrasomy X, pentasomy X, and Turner syndrome mosaicism. Genetic counseling is recommended. Patients diagnosed in the prenatal period should be followed closely for developmental delays so that early intervention therapies can be implemented as needed. School-age children and adolescents benefit from a psychological evaluation with an emphasis on identifying and developing an intervention plan for problems in cognitive/academic skills, language, and/or social-emotional development. Adolescents and adult women presenting with late menarche, menstrual irregularities, or fertility problems should be evaluated for POF. Patients should be referred to support organizations to receive individual and family support. The prognosis is variable, depending on the severity of the manifestations and on the quality and timing of treatment.
A review of trisomy X (47,XXX)
2010-01-01
Trisomy X is a sex chromosome anomaly with a variable phenotype caused by the presence of an extra X chromosome in females (47,XXX instead of 46,XX). It is the most common female chromosomal abnormality, occurring in approximately 1 in 1,000 female births. As some individuals are only mildly affected or asymptomatic, it is estimated that only 10% of individuals with trisomy X are actually diagnosed. The most common physical features include tall stature, epicanthal folds, hypotonia and clinodactyly. Seizures, renal and genitourinary abnormalities, and premature ovarian failure (POF) can also be associated findings. Children with trisomy X have higher rates of motor and speech delays, with an increased risk of cognitive deficits and learning disabilities in the school-age years. Psychological features including attention deficits, mood disorders (anxiety and depression), and other psychological disorders are also more common than in the general population. Trisomy X most commonly occurs as a result of nondisjunction during meiosis, although postzygotic nondisjunction occurs in approximately 20% of cases. The risk of trisomy X increases with advanced maternal age. The phenotype in trisomy X is hypothesized to result from overexpression of genes that escape X-inactivation, but genotype-phenotype relationships remain to be defined. Diagnosis during the prenatal period by amniocentesis or chorionic villi sampling is common. Indications for postnatal diagnoses most commonly include developmental delays or hypotonia, learning disabilities, emotional or behavioral difficulties, or POF. Differential diagnosis prior to definitive karyotype results includes fragile X, tetrasomy X, pentasomy X, and Turner syndrome mosaicism. Genetic counseling is recommended. Patients diagnosed in the prenatal period should be followed closely for developmental delays so that early intervention therapies can be implemented as needed. School-age children and adolescents benefit from a psychological evaluation with an emphasis on identifying and developing an intervention plan for problems in cognitive/academic skills, language, and/or social-emotional development. Adolescents and adult women presenting with late menarche, menstrual irregularities, or fertility problems should be evaluated for POF. Patients should be referred to support organizations to receive individual and family support. The prognosis is variable, depending on the severity of the manifestations and on the quality and timing of treatment. PMID:20459843
Prader-Willi syndrome: a case report with atypical developmental features.
Sewaybricker, Letícia E; Guaragna-Filho, Guilherme; Paula, Georgette B; Andrade, Juliana G R; Tincani, Bruna J; D'Souza-Li, Lília; Lemos-Marini, Sofia H V; Maciel-Guerra, Andréa T; Guerra-Júnior, Gil
2014-09-01
To describe the case of a male Prader-Willi syndrome (PWS) patient with atypical development features. We report the case of a male adolescent with confirmed diagnosis of PWS which presents atypical phenotype. The patient progressed with spontaneous and complete pubertal development, stature in the normal range, and weight control without any pharmacological treatment, except metformin. PWS is an imprinting paternally inherited disorder of 15q11-13 characterized by hypotonia in infant age, hyperphagia, varied degrees of mental retardation, behavior problems, hypogonadism, short stature, and other less common findings.
Craig, Francesco; Lamanna, Anna Linda; Margari, Francesco; Matera, Emilia; Simone, Marta; Margari, Lucia
2015-06-01
Recent studies support several overlapping traits between autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD), assuming the existence of a combined phenotype. The aim of our study was to evaluate the common or distinctive clinical features between ASD and ADHD in order to identify possible different phenotypes that could have a clinical value. We enrolled 181 subjects divided into four diagnostic groups: ADHD group, ASD group, ASD+ADHD group (that met diagnostic criteria for both ASD and ADHD), and control group. Intelligent quotient (IQ), emotional and behavior problems, ADHD symptoms, ASD symptoms, and adaptive behaviors were investigated through the following test: Wechsler Intelligence Scale for Children, Wechsler Preschool and Primary Scale of Intelligence or Leiter International Performances Scale Revised, Child Behavior Checklist, Conners' Rating Scales-Revised, SNAP-IV Rating Scale, the Social Communication Questionnaire, Vineland Adaptive Behavior Scales. The ASD+ADHD group differs from ADHD or ASD in some domains such as lower IQ mean level and a higher autistic symptoms severity. However, the ASD+ADHD group shares inattention and hyperactivity deficit and some emotional and behavior problems with the ADHD group, while it shares adaptive behavior impairment with ASD group. These findings provide a new understanding of clinical manifestation of ASD+ADHD phenotype, they may also inform a novel treatment target. © 2015 The Authors Autism Research published by Wiley Periodicals, Inc. on behalf of International Society for Autism Research.
Frequency of MELAS main mutation in a phenotype-targeted young ischemic stroke patient population.
Tatlisumak, Turgut; Putaala, Jukka; Innilä, Markus; Enzinger, Christian; Metso, Tiina M; Curtze, Sami; von Sarnowski, Bettina; Amaral-Silva, Alexandre; Jungehulsing, Gerhard Jan; Tanislav, Christian; Thijs, Vincent; Rolfs, Arndt; Norrving, Bo; Fazekas, Franz; Suomalainen, Anu; Kolodny, Edwin H
2016-02-01
Mitochondrial diseases, predominantly mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS), may occasionally underlie or coincide with ischemic stroke (IS) in young and middle-aged individuals. We searched for undiagnosed patients with MELAS in a target subpopulation of unselected young IS patients enrolled in the Stroke in Young Fabry Patients study (sifap1). Among the 3291 IS patients aged 18-55 years recruited to the sifap1 study at 47 centers across 14 European countries, we identified potential MELAS patients with the following phenotypic features: (a) diagnosed cardiomyopathy or (b) presence of two of the three following findings: migraine, short stature (≤165 cm for males; ≤155 cm for females), and diabetes. Identified patients' blood samples underwent analysis of the common MELAS mutation, m.3243A>G in the MTTL1 gene of mitochondrial DNA. Clinical and cerebral MRI features of the mutation carriers were reviewed. We analyzed blood samples of 238 patients (177 with cardiomyopathy) leading to identification of four previously unrecognized MELAS main mutation carrier-patients. Their clinical and MRI characteristics were within the expectation for common IS patients except for severe hearing loss in one patient and hyperintensity of the pulvinar thalami on T1-weighted MRI in another one. Genetic testing for the m.3243A>G MELAS mutation in young patients with IS based on phenotypes suggestive of mitochondrial disease identifies previously unrecognized carriers of MELAS main mutation, but does not prove MELAS as the putative cause.
uPA/uPAR system activation drives a glycolytic phenotype in melanoma cells.
Laurenzana, Anna; Chillà, Anastasia; Luciani, Cristina; Peppicelli, Silvia; Biagioni, Alessio; Bianchini, Francesca; Tenedini, Elena; Torre, Eugenio; Mocali, Alessandra; Calorini, Lido; Margheri, Francesca; Fibbi, Gabriella; Del Rosso, Mario
2017-09-15
In this manuscript, we show the involvement of the uPA/uPAR system in the regulation of aerobic glycolysis of melanoma cells. uPAR over-expression in human melanoma cells controls an invasive and glycolytic phenotype in normoxic conditions. uPAR down-regulation by siRNA or its uncoupling from integrins, and hence from integrin-linked tyrosine kinase receptors (IL-TKRs), by an antagonist peptide induced a striking inhibition of the PI3K/AKT/mTOR/HIF1α pathway, resulting into impairment of glucose uptake, decrease of several glycolytic enzymes and of PKM2, a checkpoint that controls metabolism of cancer cells. Further, binding of uPA to uPAR regulates expression of molecules that govern cell invasion, including extracellular matrix metallo-proteinases inducer (EMPPRIN) and enolase, a glycolytyc enzyme that also serves as a plasminogen receptor, thus providing a common denominator between tumor metabolism and phenotypic invasive features. Such effects depend on the α5β1-integrin-mediated uPAR connection with EGFR in melanoma cells with engagement of the PI3K-mTOR-HIFα pathway. HIF-1α trans-activates genes whose products mediate tumor invasion and glycolysis, thus providing the common denominator between melanoma metabolism and its invasive features. These findings unveil a unrecognized interaction between the invasion-related uPAR and IL-TKRs in the control of glycolysis and disclose a new pharmacological target (i.e., uPAR/IL-TKRs axis) for the therapy of melanoma. © 2017 UICC.
Age at onset and Parkinson disease phenotype
Pagano, Gennaro; Ferrara, Nicola; Brooks, David J.
2016-01-01
Objective: To explore clinical phenotype and characteristics of Parkinson disease (PD) at different ages at onset in recently diagnosed patients with untreated PD. Methods: We have analyzed baseline data from the Parkinson's Progression Markers Initiative database. Four hundred twenty-two patients with a diagnosis of PD confirmed by DaTSCAN imaging were divided into 4 groups according to age at onset (onset younger than 50 years, 50–59 years, 60–69 years, and 70 years or older) and investigated for differences in side, type and localization of symptoms, occurrence/severity of motor and nonmotor features, nigrostriatal function, and CSF biomarkers. Results: Older age at onset was associated with a more severe motor and nonmotor phenotype, a greater dopaminergic dysfunction on DaTSCAN, and reduction of CSF α-synuclein and total tau. The most common presentation was the combination of 2 or 3 motor symptoms (bradykinesia, resting tremor, and rigidity) with rigidity being more common in the young-onset group. In about 80% of the patients with localized onset, the arm was the most affected part of the body, with no difference across subgroups. Conclusions: Although the presentation of PD symptoms is similar across age subgroups, the severity of motor and nonmotor features, the impairment of striatal binding, and the levels of CSF biomarkers increase with age at onset. The variability of imaging and nonimaging biomarkers in patients with PD at different ages could hamper the results of future clinical trials. PMID:26865518
Kotze, M J; De Villiers, W J; Steyn, K; Kriek, J A; Marais, A D; Langenhoven, E; Herbert, J S; Graadt Van Roggen, J F; Van der Westhuyzen, D R; Coetzee, G A
1993-10-01
Two common founder-related gene mutations that affect the low-density lipoprotein receptor (LDLR) are responsible for approximately 80% of familial hypercholesterolemia (FH) in South African Afrikaners. The FH Afrikaner-1 (FH1) mutation (Asp206-->Glu) in exon 4 results in defective receptors with approximately 20% of normal activity, whereas the FH Afrikaner-2 (FH2) mutation (Val408-->Met) in exon 9 completely abolishes LDLR activity (< 2% normal activity). We analyzed the contribution of these mutations and other factors on the variation of hypercholesterolemia and clinical features in Afrikaner FH heterozygotes. The type of FH mutation, plasma triglyceride levels, and age of patients each contributed significantly to the variation in hypercholesterolemia, whereas smoking status, high-density lipoprotein cholesterol levels, and gender had no influence. Although all FH heterozygotes had frank hypercholesterolemia, patients with the FH1 mutation had significantly lower cholesterol levels than those with the FH2 mutation. FH1 heterozygotes also tended to have milder clinical features. The differences between the two FH groups could not be explained by a difference in the common apolipoprotein E variants. This study demonstrates that mutational heterogeneity in the LDLR gene influences the phenotypic expression of heterozygous FH.
Stevenson, David A.; Viskochil, David H.; Rope, Alan F.; Carey, John C.
2011-01-01
NF-Noonan syndrome (NFNS) has been described as a unique phenotype, combining manifestations of neurofibromatosis type 1 (NF1) and Noonan syndromes, which are separate syndromes. Potential etiologies of NF-Noonan syndrome include a discrete syndrome of distinct etiology, co-segregation of two mutated common genes, variable clinical expressivity of NF1, and/or allelic heterogeneity. We present an informative family with an unusual NF1 mutation with variable features of NF1 and Noonan syndrome. We hypothesize that an NF1 mutant allele can lead to diagnostic manifestations of Noonan syndrome, supporting the hypothesis that NF1 allelic heterogeneity causes NFNS. PMID:16542390
Epigenetics and Developmental Plasticity Across Species
Champagne, Frances A.
2012-01-01
Plasticity is a typical feature of development and can lead to divergent phenotypes. There is increasing evidence that epigenetic mechanisms, such as DNA methylation, are present across species, are modifiable by the environment, and are involved in developmental plasticity. Thus, in the context of the concept of developmental homology, epigenetic mechanisms may serve to create a process homology between species by providing a common molecular pathway through which environmental experiences shape development, ultimately leading to phenotypic diversity. This article will highlight evidence derived from across-species investigations of epigenetics, development, and plasticity which may contribute to our understanding of the homology that exists between species and between ancestors and descendants. PMID:22711291
Cellucci, Tania; Tyrrell, Pascal N; Twilt, Marinka; Sheikh, Shehla; Benseler, Susanne M
2014-03-01
To identify distinct clusters of children with inflammatory brain diseases based on clinical, laboratory, and imaging features at presentation, to assess which features contribute strongly to the development of clusters, and to compare additional features between the identified clusters. A single-center cohort study was performed with children who had been diagnosed as having an inflammatory brain disease between June 1, 1989 and December 31, 2010. Demographic, clinical, laboratory, neuroimaging, and histologic data at diagnosis were collected. K-means cluster analysis was performed to identify clusters of patients based on their presenting features. Associations between the clusters and patient variables, such as diagnoses, were determined. A total of 147 children (50% female; median age 8.8 years) were identified: 105 with primary central nervous system (CNS) vasculitis, 11 with secondary CNS vasculitis, 8 with neuronal antibody syndromes, 6 with postinfectious syndromes, and 17 with other inflammatory brain diseases. Three distinct clusters were identified. Paresis and speech deficits were the most common presenting features in cluster 1. Children in cluster 2 were likely to present with behavior changes, cognitive dysfunction, and seizures, while those in cluster 3 experienced ataxia, vision abnormalities, and seizures. Lesions seen on T2/fluid-attenuated inversion recovery sequences of magnetic resonance imaging were common in all clusters, but unilateral ischemic lesions were more prominent in cluster 1. The clusters were associated with specific diagnoses and diagnostic test results. Children with inflammatory brain diseases presented with distinct phenotypical patterns that are associated with specific diagnoses. This information may inform the development of a diagnostic classification of childhood inflammatory brain diseases and suggest that specific pathways of diagnostic evaluation are warranted. Copyright © 2014 by the American College of Rheumatology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindsay, E.A.; Shaffer, L.G.; Greenberg, F.
DiGeorge anomaly (DGA) and velo-cardio-facial syndrome (VCFS) are frequently associated with monosomy of chromosome region 22q11. Most patients have a submicroscopic deletion, recently estimated to be at least 1-2 Mb. It is not clear whether individuals who present with only some of the features of these conditions have the deletion, and if so, whether the size of the deletion varies from those with more classic phenotypes. We have used fluorescence in situ hybridization (FISH) to assess the deletion status of 85 individuals referred to us for molecular analysis, with a wide range of DGA-like or VCFS-like clinical features. The testmore » probe used was the cosmid sc11.1, which detects two loci about 2 Mb apart in 22q11.2. Twenty-four patients carried the deletion. Of the deleted patients, most had classic DGA or VCFS phenotypes, but 6 deleted patients had mild phenotypes, including 2 with minor facial anomalies and velopharyngeal incompetence as the only presenting signs. Despite the great phenotypic variability among the deleted patients, none had a deletion smaller than the 2-Mb region defined by sc11.1. Smaller deletions were not detected in patients with particularly suggestive phenotypes who were not deleted for sc11.1, even when tested with two other probes from the DGA/VCFS region. 24 refs., 2 figs., 2 tabs.« less
Klein, Karl Martin; Pendziwiat, Manuela; Eilam, Anda; Gilad, Ronit; Blatt, Ilan; Rosenow, Felix; Kanaan, Moien; Helbig, Ingo; Afawi, Zaid
2017-07-01
Mutations or structural genomic alterations of the X-chromosomal gene ARHGEF9 have been described in male and female patients with intellectual disability. Hyperekplexia and epilepsy were observed to a variable degree, but incompletely described. Here, we expand the phenotypic spectrum of ARHGEF9 by describing a large Ethiopian-Jewish family with epilepsy and intellectual disability. The four affected male siblings, their unaffected parents and two unaffected female siblings were recruited and phenotyped. Parametric linkage analysis was performed using SNP microarrays. Variants from exome sequencing in two affected individuals were confirmed by Sanger sequencing. All affected male siblings had febrile seizures from age 2-3 years and intellectual disability. Three developed afebrile seizures between age 7-17 years. Three showed focal seizure semiology. None had hyperekplexia. A novel ARHGEF9 variant (c.967G>A, p.G323R, NM_015185.2) was hemizygous in all affected male siblings and heterozygous in the mother. This family reveals that the phenotypic spectrum of ARHGEF9 is broader than commonly assumed and includes febrile seizures and focal epilepsy with intellectual disability in the absence of hyperekplexia or other clinically distinguishing features. Our findings suggest that pathogenic variants in ARHGEF9 may be more common than previously assumed in patients with intellectual disability and mild epilepsy.
Li, Feng; Yao, Li; Wu, Hong; Cao, Shihong
2016-09-01
To discuss the manifestations of endocrine and metabolism for polycystic ovary syndrome patients with different phenotype. This study selected 226 cases of Rotterdam Standard diagnosed polycystic ovary syndrome patients in People's Hospital of Zhengzhou from October 2013 to February 2015. The control group was the 100 cases of non hyperandrogen menstrual women as the control group. Polycystic ovary syndrome included 4 phenotype: /or anovulatio (O) combined with hyperandrogenism (H) and polycystic ovary morphology (P), phenotype of O and P, phenotype of H and P, and phenotype of O and P. All patients were detected for the clinical endocrine and metabolism related parameters. The phenotype of O and P occupied 55.8%, it had significant difference on the comparison between control group and the luteinizing hormone (LH) and luteinizing hormone/follicle stimulating hormone (LH/FSH) of phenotype of O, H and P, phenotype of O and H and phenotype of O and P; the testosterone (T) of phenotype of O,H and P and phenotype of O and H was apparently higher than phenotype of O and P and control group; The total cholesterol (TC) and triglyceride (TG) in phenotype of O, H and P was greatly higher than phenotype of O and P and control group. The phenotype of O and P was the most common phenotype in PCOS patients. It was same for the clinical endocrine and metabolism of two classic characteristics in PCOS. Compared to other PCOS phenotype, the metabolism in phenotype of O and P was lower. The phenotype classification of PCOS patients could better guide clinical individualized treatment in patients with PCOS.
2q24 deletion in a 9-month old girl with anal atresia, hearing impairment, and hypotonia.
Zhao, Peiwei; Mao, Bing; Cai, Xiaonan; Jiang, Jun; Liu, Zhisheng; Lin, Jun; He, Xuelian
2018-06-01
Deletion of 2q24.2 is a rare cytogenetic aberration in patients, exhibiting heterogeneous clinical features, and common phenotypes included developmental delay, intellectual disability, hypotonia, and mild dysmorphic features. Hearing impairment and anal atresia are rarely described. Here we described a 9-month-old female patient with hypotonia in all four limbs, developmental delay, and intellectual disability. In addition, congenital anal atresia was diagnosed and treated after birth, and hearing impairment was found in right ear. Single nucleotide polymorphisms (SNP) array detected a 5.2 Mb deletion on 2q24.2q24.3, including 19 genes (ITGB6; TBR1; SLC4A10; KCNH7 SCN3A; SCN2A et al.). Among these genes, it is affirmative that TBR1 is a causative gene for intellectual disability; however, the pathogenic genes of other phenotypes remain unclear. We briefly review the knowledge of genes likely involved in these clinical features, including hearing impairment, anal atresia, and developmental delay. Copyright © 2018 Elsevier B.V. All rights reserved.
Sex differences and within-family associations in the broad autism phenotype.
Klusek, Jessica; Losh, Molly; Martin, Gary E
2014-02-01
While there is a strong sex bias in the presentation of autism, it is unknown whether this bias is also present in subclinical manifestations of autism among relatives, or the broad autism phenotype. This study examined this question and investigated patterns of co-occurrence of broad autism phenotype traits within families of individuals with autism. Pragmatic language and personality features of the broad autism phenotype were studied in 42 fathers and 50 mothers of individuals with autism using direct assessment tools used in prior family studies of the broad autism phenotype. Higher rates of aloof personality style were detected among fathers, while no sex differences were detected for other broad autism phenotype traits. Within individuals, pragmatic language features were associated with the social personality styles of the broad autism phenotype in mothers but not in fathers. A number of broad autism phenotype features were correlated within spousal pairs. Finally, the associations were detected between paternal broad autism phenotype characteristics and the severity of children's autism symptoms in all three domains (social, communication, and repetitive behaviors). Mother-child correlations were detected for aspects of communication only. Together, the findings suggest that most features of the broad autism phenotype express comparably in males and females and raise some specific questions about how such features might inform studies of the genetic basis of autism.
Lessons from rare diseases of cartilage and bone.
Gallagher, James A; Ranganath, Lakshminarayan R; Boyde, Alan
2015-06-01
Studying severe phenotypes of rare syndromes can elucidate disease mechanisms of more common disorders and identify potential therapeutic targets. Lessons from rare bone diseases contributed to the development of the most successful class of bone active agents, the bisphosphonates. More recent research on rare bone diseases has helped elucidate key pathways and identify new targets in bone resorption and bone formation including cathepsin K and sclerostin, for which drugs are now in clinical trials. By contrast, there has been much less focus on rare cartilage diseases and osteoarthritis (OA) remains a common disease with no effective therapy. Investigation of rare cartilage syndromes is identifying new potential targets in OA including GDF5 and lubricin. Research on the arthropathy of the ultra-rare disease alkaptonuria has identified several new features of the OA phenotype, including high density mineralized protrusions (HDMPs) which constitute a newly identified mechanism of joint destruction. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lamb, Allen N; Rosenfeld, Jill A; Neill, Nicholas J; Talkowski, Michael E; Blumenthal, Ian; Girirajan, Santhosh; Keelean-Fuller, Debra; Fan, Zheng; Pouncey, Jill; Stevens, Cathy; Mackay-Loder, Loren; Terespolsky, Deborah; Bader, Patricia I; Rosenbaum, Kenneth; Vallee, Stephanie E; Moeschler, John B; Ladda, Roger; Sell, Susan; Martin, Judith; Ryan, Shawnia; Jones, Marilyn C; Moran, Rocio; Shealy, Amy; Madan-Khetarpal, Suneeta; McConnell, Juliann; Surti, Urvashi; Delahaye, Andrée; Heron-Longe, Bénédicte; Pipiras, Eva; Benzacken, Brigitte; Passemard, Sandrine; Verloes, Alain; Isidor, Bertrand; Le Caignec, Cedric; Glew, Gwen M; Opheim, Kent E; Descartes, Maria; Eichler, Evan E; Morton, Cynthia C; Gusella, James F; Schultz, Roger A; Ballif, Blake C; Shaffer, Lisa G
2012-04-01
SOX5 encodes a transcription factor involved in the regulation of chondrogenesis and the development of the nervous system. Despite its important developmental roles, SOX5 disruption has yet to be associated with human disease. We report one individual with a reciprocal translocation breakpoint within SOX5, eight individuals with intragenic SOX5 deletions (four are apparently de novo and one inherited from an affected parent), and seven individuals with larger 12p12 deletions encompassing SOX5. Common features in these subjects include prominent speech delay, intellectual disability, behavior abnormalities, and dysmorphic features. The phenotypic impact of the deletions may depend on the location of the deletion and, consequently, which of the three major SOX5 protein isoforms are affected. One intragenic deletion, involving only untranslated exons, was present in a more mildly affected subject, was inherited from a healthy parent and grandparent, and is similar to a deletion found in a control cohort. Therefore, some intragenic SOX5 deletions may have minimal phenotypic effect. Based on the location of the deletions in the subjects compared to the controls, the de novo nature of most of these deletions, and the phenotypic similarities among cases, SOX5 appears to be a dosage-sensitive, developmentally important gene. © 2012 Wiley Periodicals, Inc.
Iris phenotypes and pigment dispersion caused by genes influencing pigmentation
Hawes, Norman L.; Trantow, Colleen M.; Chang, Bo; John, Simon W.M.
2010-01-01
Summary Spontaneous mutations altering mouse coat colors have been a classic resource for discovery of numerous molecular pathways. Although often overlooked, the mouse iris is also densely pigmented and easily observed, thus representing a similarly powerful opportunity for studying pigment cell biology. Here, we present an analysis of iris phenotypes among sixteen mouse strains with mutations influencing melanosomes. Many of these strains exhibit biologically and medically relevant phenotypes, including pigment dispersion, a common feature of several human ocular diseases. Pigment dispersion was identified in several strains with mutant alleles known to influence melanosomes, including beige, light, and vitiligo. Pigment dispersion was also detected in the recently arising spontaneous coat color variant, nm2798. We have identified the nm2798 mutation as a missense mutation in the Dct gene, an identical re-occurrence of the slaty light mutation. These results suggest that dysregulated events of melanosomes can be potent contributors to the pigment dispersion phenotype. Combined, these findings illustrate the utility of studying iris phenotypes as a means of discovering new pathways, and re-linking old ones, to processes of pigmented cells in health and disease. PMID:18715234
Iris phenotypes and pigment dispersion caused by genes influencing pigmentation.
Anderson, Michael G; Hawes, Norman L; Trantow, Colleen M; Chang, Bo; John, Simon W M
2008-10-01
Spontaneous mutations altering mouse coat colors have been a classic resource for discovery of numerous molecular pathways. Although often overlooked, the mouse iris is also densely pigmented and easily observed, thus representing a similarly powerful opportunity for studying pigment cell biology. Here, we present an analysis of iris phenotypes among 16 mouse strains with mutations influencing melanosomes. Many of these strains exhibit biologically and medically relevant phenotypes, including pigment dispersion, a common feature of several human ocular diseases. Pigment dispersion was identified in several strains with mutant alleles known to influence melanosomes, including beige, light, and vitiligo. Pigment dispersion was also detected in the recently arising spontaneous coat color variant, nm2798. We have identified the nm2798 mutation as a missense mutation in the Dct gene, an identical re-occurrence of the slaty light mutation. These results suggest that dysregulated events of melanosomes can be potent contributors to the pigment dispersion phenotype. Combined, these findings illustrate the utility of studying iris phenotypes as a means of discovering new pathways, and re-linking old ones, to processes of pigmented cells in health and disease.
Multivariate modelling of endophenotypes associated with the metabolic syndrome in Chinese twins.
Pang, Z; Zhang, D; Li, S; Duan, H; Hjelmborg, J; Kruse, T A; Kyvik, K O; Christensen, K; Tan, Q
2010-12-01
The common genetic and environmental effects on endophenotypes related to the metabolic syndrome have been investigated using bivariate and multivariate twin models. This paper extends the pairwise analysis approach by introducing independent and common pathway models to Chinese twin data. The aim was to explore the common genetic architecture in the development of these phenotypes in the Chinese population. Three multivariate models including the full saturated Cholesky decomposition model, the common factor independent pathway model and the common factor common pathway model were fitted to 695 pairs of Chinese twins representing six phenotypes including BMI, total cholesterol, total triacylglycerol, fasting glucose, HDL and LDL. Performances of the nested models were compared with that of the full Cholesky model. Cross-phenotype correlation coefficients gave clear indication of common genetic or environmental backgrounds in the phenotypes. Decomposition of phenotypic correlation by the Cholesky model revealed that the observed phenotypic correlation among lipid phenotypes had genetic and unique environmental backgrounds. Both pathway models suggest a common genetic architecture for lipid phenotypes, which is distinct from that of the non-lipid phenotypes. The declining performance with model restriction indicates biological heterogeneity in development among some of these phenotypes. Our multivariate analyses revealed common genetic and environmental backgrounds for the studied lipid phenotypes in Chinese twins. Model performance showed that physiologically distinct endophenotypes may follow different genetic regulations.
2013-01-01
Background Recombinant chromosome 4, a rare constitutional rearrangement arising from pericentric inversion, comprises a duplicated segment of 4p13~p15→4pter and a deleted segment of 4q35→4qter. To date, 10 cases of recombinant chromosome 4 have been reported. Result We describe the second case in which array-CGH was used to characterize recombinant chromosome 4 syndrome. The patient was a one-year old boy with consistent clinical features. Conventional cytogenetics and FISH documented a recombinant chromosome 4, derived from a paternal pericentric inversion, leading to partial trisomy 4p and partial monosomy of 4q. Array-CGH, performed to further characterize the rearranged chromosome 4 and delineate the breakpoints, documented a small (4.36 Mb) 4q35.1 terminal deletion and a large (23.81 Mb) 4p15.1 terminal duplication. Genotype-phenotype analysis of 10 previously reported cases and the present case indicated relatively consistent clinical features and breakpoints. This consistency was more evident in our case and another characterized by array-CGH, where both showed the common breakpoints of p15.1 and q35.1. A genotype-phenotype correlation study between rec(4), dup(4p), and del(4q) syndromes revealed that urogenital and cardiac defects are probably due to the deletion of 4q whereas the other clinical features are likely due to 4p duplication. Conclusion Our findings support that the clinical features of patients with rec(4) are relatively consistent and specific to the regions of duplication or deletion. Recombinant chromosome 4 syndrome thus appears to be a discrete entity that can be suspected on the basis of clinical features or specific deleted and duplicated chromosomal regions. PMID:23639048
Hemmat, Morteza; Hemmat, Omid; Anguiano, Arturo; Boyar, Fatih Z; El Naggar, Mohammed; Wang, Jia-Chi; Wang, Borris T; Sahoo, Trilochan; Owen, Renius; Haddadin, Mary
2013-05-02
Recombinant chromosome 4, a rare constitutional rearrangement arising from pericentric inversion, comprises a duplicated segment of 4p13~p15→4pter and a deleted segment of 4q35→4qter. To date, 10 cases of recombinant chromosome 4 have been reported. We describe the second case in which array-CGH was used to characterize recombinant chromosome 4 syndrome. The patient was a one-year old boy with consistent clinical features. Conventional cytogenetics and FISH documented a recombinant chromosome 4, derived from a paternal pericentric inversion, leading to partial trisomy 4p and partial monosomy of 4q. Array-CGH, performed to further characterize the rearranged chromosome 4 and delineate the breakpoints, documented a small (4.36 Mb) 4q35.1 terminal deletion and a large (23.81 Mb) 4p15.1 terminal duplication. Genotype-phenotype analysis of 10 previously reported cases and the present case indicated relatively consistent clinical features and breakpoints. This consistency was more evident in our case and another characterized by array-CGH, where both showed the common breakpoints of p15.1 and q35.1. A genotype-phenotype correlation study between rec(4), dup(4p), and del(4q) syndromes revealed that urogenital and cardiac defects are probably due to the deletion of 4q whereas the other clinical features are likely due to 4p duplication. Our findings support that the clinical features of patients with rec(4) are relatively consistent and specific to the regions of duplication or deletion. Recombinant chromosome 4 syndrome thus appears to be a discrete entity that can be suspected on the basis of clinical features or specific deleted and duplicated chromosomal regions.
Bae, Jeong Mo; Kim, Mi Jung; Kim, Jung Ho; Koh, Jae Moon; Cho, Nam-Yun; Kim, Tae-You; Kang, Gyeong Hoon
2011-07-01
Microsatellite instability-positive (MSI+) colorectal cancers (CRCs) are divided into CpG island methylator phenotype-positive (CIMP+) and CpG island methylator phenotype-negative (CIMP-) tumors. The repertoire of inactivated genes in CIMP+/MSI+ CRCs overlaps with but is likely to differ from that of CIMP-/MSI+ CRCs. Because epigenotypic differences are likely to be manifested as phenotypic differences, CIMP+/MSI+ CRCs are expected to differ from CIMP-/MSI+ CRCs in some clinicopathological features. This study aimed to characterize both common and different features between the two subtypes. A total of 72 MSI+ CRCs were analyzed for their methylation status in eight CIMP panel markers using MethyLight assay. CIMP+/MSI+ and CIMP-/MSI+ CRCs were compared regarding clinicopathologic features and mutation in KRAS/BRAF. An independent set of MSI+ CRCs (n = 97) was analyzed for their relationship of CIMP+ status with clinical outcome. Eighteen cases (25%) were CIMP+, and this CIMP+ subtype was highly correlated with older age (P < 0.001). Polypoid gross appearance without ulceration was observed only in CIMP-/MSI+ CRCs (18.5%, P = 0.057). CIMP+/MSI+ CRCs were closely associated with poor differentiation, medullary appearance, signet ring cell appearance, and acinar-form appearance, whereas the CIMP-/MSI+ subtype was closely associated with intraglandular eosinophilic mucin and stratified nuclei (all P values <0.05). Patients with CIMP+/MSI+ CRCs showed worse overall survival than patients with CIMP-/MSI+ CRCs. Our results demonstrate heterogeneity in the clinicopathological features of MSI+ CRCs depending on CIMP status. The observation that CIMP+ and CIMP- subtypes showed different clinical behaviors may provide a clue for establishing subtype-specific therapeutic strategies for these two subtypes.
Szewczyk-Krolikowski, Konrad; Tomlinson, Paul; Nithi, Kannan; Wade-Martins, Richard; Talbot, Kevin; Ben-Shlomo, Yoav; Hu, Michele T M
2014-01-01
Identifying factors influencing phenotypic heterogeneity in Parkinson's Disease is crucial for understanding variability in disease severity and progression. Age and gender are two most basic epidemiological characteristics, yet their effect on expression of PD symptoms is not fully defined. We aimed to delineate effects of age and gender on the phenotype in an incident cohort of PD patients and healthy controls from the Oxford Parkinson Disease Centre (OPDC). Clinical features, including demographic and medical characteristics and non-motor and motor symptoms, were analyzed in a group of PD patients within 3 years of diagnosis and a group of healthy controls from the OPDC cohort. Disease features were stratified according to age and compared between genders, controlling for effects of common covariates. 490 PD patients and 176 healthy controls were analyzed. Stratification by age showed increased disease severity with age on motor scales. Some non-motor features showed similar trend, including cognition and autonomic features. Comparison across genders highlighted a pattern of increased severity and greater symptom symmetricality in the face, neck and arms in men with women having more postural problems. Amongst the non-motor symptoms, men had more cognitive impairment, greater rate of REM behavior disorder (RBD), more orthostatic hypotension and sexual dysfunction. Age in PD is a strong factor contributing to disease severity even after controlling for the effect of disease duration. Gender-related motor phenotype can be defined by a vertical split into more symmetrical upper-body disease in men and disease dominated by postural symptoms in women. Copyright © 2013 Elsevier Ltd. All rights reserved.
Endogenous molecular network reveals two mechanisms of heterogeneity within gastric cancer.
Li, Site; Zhu, Xiaomei; Liu, Bingya; Wang, Gaowei; Ao, Ping
2015-05-30
Intratumor heterogeneity is a common phenomenon and impedes cancer therapy and research. Gastric cancer (GC) cells have generally been classified into two heterogeneous cellular phenotypes, the gastric and intestinal types, yet the mechanisms of maintaining two phenotypes and controlling phenotypic transition are largely unknown. A qualitative systematic framework, the endogenous molecular network hypothesis, has recently been proposed to understand cancer genesis and progression. Here, a minimal network corresponding to such framework was found for GC and was quantified via a stochastic nonlinear dynamical system. We then further extended the framework to address the important question of intratumor heterogeneity quantitatively. The working network characterized main known features of normal gastric epithelial and GC cell phenotypes. Our results demonstrated that four positive feedback loops in the network are critical for GC cell phenotypes. Moreover, two mechanisms that contribute to GC cell heterogeneity were identified: particular positive feedback loops are responsible for the maintenance of intestinal and gastric phenotypes; GC cell progression routes that were revealed by the dynamical behaviors of individual key components are heterogeneous. In this work, we constructed an endogenous molecular network of GC that can be expanded in the future and would broaden the known mechanisms of intratumor heterogeneity.
Endogenous molecular network reveals two mechanisms of heterogeneity within gastric cancer
Li, Site; Zhu, Xiaomei; Liu, Bingya; Wang, Gaowei; Ao, Ping
2015-01-01
Intratumor heterogeneity is a common phenomenon and impedes cancer therapy and research. Gastric cancer (GC) cells have generally been classified into two heterogeneous cellular phenotypes, the gastric and intestinal types, yet the mechanisms of maintaining two phenotypes and controlling phenotypic transition are largely unknown. A qualitative systematic framework, the endogenous molecular network hypothesis, has recently been proposed to understand cancer genesis and progression. Here, a minimal network corresponding to such framework was found for GC and was quantified via a stochastic nonlinear dynamical system. We then further extended the framework to address the important question of intratumor heterogeneity quantitatively. The working network characterized main known features of normal gastric epithelial and GC cell phenotypes. Our results demonstrated that four positive feedback loops in the network are critical for GC cell phenotypes. Moreover, two mechanisms that contribute to GC cell heterogeneity were identified: particular positive feedback loops are responsible for the maintenance of intestinal and gastric phenotypes; GC cell progression routes that were revealed by the dynamical behaviors of individual key components are heterogeneous. In this work, we constructed an endogenous molecular network of GC that can be expanded in the future and would broaden the known mechanisms of intratumor heterogeneity. PMID:25962957
Nesbitt, Victoria; Pitceathly, Robert D S; Turnbull, Doug M; Taylor, Robert W; Sweeney, Mary G; Mudanohwo, Ese E; Rahman, Shamima; Hanna, Michael G; McFarland, Robert
2013-08-01
Population-based studies suggest the m.3243A>G mutation in MTTL1 is the most common disease-causing mtDNA mutation, with a carrier rate of 1 in 400 people. The m.3243A>G mutation is associated with several clinical syndromes including mitochondrial encephalopathy lactic acidosis and stroke-like episodes (MELAS), maternally inherited deafness and diabetes (MIDD) and progressive external ophthalmoplegia (PEO). Many patients affected by this mutation exhibit a clinical phenotype that does not fall within accepted criteria for the currently recognised classical mitochondrial syndromes. We have defined the phenotypic spectrum associated with the m.3243A>G mtDNA mutation in 129 patients, from 83 unrelated families, recruited to the Mitochondrial Disease Patient Cohort Study UK. 10% of patients exhibited a classical MELAS phenotype, 30% had MIDD, 6% MELAS/MIDD, 2% MELAS/chronic PEO (CPEO) and 5% MIDD/CPEO overlap syndromes. 6% had PEO and other features of mitochondrial disease not consistent with another recognised syndrome. Isolated sensorineural hearing loss occurred in 3%. 28% of patients demonstrated a panoply of clinical features, which were not consistent with any of the classical syndromes associated with the m.3243A>G mutation. 9% of individuals harbouring the mutation were clinically asymptomatic. Following this study we propose guidelines for screening and for the management of confirmed cases.
Nguyen, Doreen N; Heaphy, Christopher M; de Wilde, Roeland F; Orr, Brent A; Odia, Yazmin; Eberhart, Charles G; Meeker, Alan K; Rodriguez, Fausto J
2013-05-01
Recent studies suggest that the telomere maintenance mechanism known as alternative lengthening of telomeres (ALT) is relatively more common in specific glioma subsets and strongly associated with ATRX mutations. We retrospectively examined 116 high-grade astrocytomas (32 pediatric glioblastomas, 65 adult glioblastomas, 19 anaplastic astrocytomas) with known ALT status using tissue microarrays to identify associations with molecular and phenotypic features. Immunohistochemistry was performed using antibodies against ATRX, DAXX, p53 and IDH1(R132H) mutant protein. EGFR amplification was evaluated by fluorescence in situ hybridization (FISH). Almost half of fibrillary and gemistocytic astrocytomas (44%) demonstrated ALT. Conversely all gliosarcomas (n = 4), epithelioid (n = 2), giant cell (n = 2) and adult small cell astrocytomas (n = 7) were ALT negative. The ALT phenotype was positively correlated with the presence of round cells (P = 0.002), microcysts (P < 0.0002), IDH1 mutant protein (P < 0.0001), ATRX protein loss (P < 0.0001), strong P53 immunostaining (P < 0.0001) and absence of EGFR amplification (P = 0.004). There was no significant correlation with DAXX expression. We conclude that ALT represents a specific phenotype in high-grade astrocytomas with distinctive pathologic and molecular features. Future studies are required to clarify the clinical and biological significance of ALT in high-grade astrocytomas. © 2012 The Authors; Brain Pathology © 2012 International Society of Neuropathology.
Kasten, Meike; Hartmann, Corinna; Hampf, Jennie; Schaake, Susen; Westenberger, Ana; Vollstedt, Eva-Juliane; Balck, Alexander; Domingo, Aloysius; Vulinovic, Franca; Dulovic, Marija; Zorn, Ingo; Madoev, Harutyun; Zehnle, Hanna; Lembeck, Christina M; Schawe, Leopold; Reginold, Jennifer; Huang, Jana; König, Inke R; Bertram, Lars; Marras, Connie; Lohmann, Katja; Lill, Christina M; Klein, Christine
2018-04-11
This first comprehensive MDSGene review is devoted to the 3 autosomal recessive Parkinson's disease forms: PARK-Parkin, PARK-PINK1, and PARK-DJ1. It followed MDSGene's standardized data extraction protocol and screened a total of 3652 citations and is based on fully curated phenotypic and genotypic data on >1100 patients with recessively inherited PD because of 221 different disease-causing mutations in Parkin, PINK1, or DJ1. All these data are also available in an easily searchable online database (www.mdsgene.org), which also provides descriptive summary statistics on phenotypic and genetic data. Despite the high degree of missingness of phenotypic features and unsystematic reporting of genotype data in the original literature, the present review recapitulates many of the previously described findings including early onset (median age at onset of ∼30 years for carriers of at least 2 mutations in any of the 3 genes) of an overall clinically typical form of PD with excellent treatment response, dystonia and dyskinesia being relatively common and cognitive decline relatively uncommon. However, when comparing actual data with common expert knowledge in previously published reviews, we detected several discrepancies. We conclude that systematic reporting of phenotypes is a pressing need in light of increasingly available molecular genetic testing and the emergence of first gene-specific therapies entering clinical trials. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.
2015-01-01
Wound bioburden in the form of colonizing biofilms is a major contributor to nonhealing wounds. Staphylococcus aureus is a Gram-positive, facultative anaerobe commonly found in chronic wounds; however, much remains unknown about the basic physiology of this opportunistic pathogen, especially with regard to the biofilm phenotype. Transcriptomic and proteomic analysis of S. aureus biofilms have suggested that S. aureus biofilms exhibit an altered metabolic state relative to the planktonic phenotype. Herein, comparisons of extracellular and intracellular metabolite profiles detected by 1H NMR were conducted for methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) S. aureus strains grown as biofilm and planktonic cultures. Principal component analysis distinguished the biofilm phenotype from the planktonic phenotype, and factor loadings analysis identified metabolites that contributed to the statistical separation of the biofilm from the planktonic phenotype, suggesting that key features distinguishing biofilm from planktonic growth include selective amino acid uptake, lipid catabolism, butanediol fermentation, and a shift in metabolism from energy production to assembly of cell-wall components and matrix deposition. These metabolite profiles provide a basis for the development of metabolite biomarkers that distinguish between biofilm and planktonic phenotypes in S. aureus and have the potential for improved diagnostic and therapeutic use in chronic wounds. PMID:24809402
Desrosiers, Christian; Hassan, Lama; Tanougast, Camel
2016-01-01
Objective: Predicting the survival outcome of patients with glioblastoma multiforme (GBM) is of key importance to clinicians for selecting the optimal course of treatment. The goal of this study was to evaluate the usefulness of geometric shape features, extracted from MR images, as a potential non-invasive way to characterize GBM tumours and predict the overall survival times of patients with GBM. Methods: The data of 40 patients with GBM were obtained from the Cancer Genome Atlas and Cancer Imaging Archive. The T1 weighted post-contrast and fluid-attenuated inversion-recovery volumes of patients were co-registered and segmented into delineate regions corresponding to three GBM phenotypes: necrosis, active tumour and oedema/invasion. A set of two-dimensional shape features were then extracted slicewise from each phenotype region and combined over slices to describe the three-dimensional shape of these phenotypes. Thereafter, a Kruskal–Wallis test was employed to identify shape features with significantly different distributions across phenotypes. Moreover, a Kaplan–Meier analysis was performed to find features strongly associated with GBM survival. Finally, a multivariate analysis based on the random forest model was used for predicting the survival group of patients with GBM. Results: Our analysis using the Kruskal–Wallis test showed that all but one shape feature had statistically significant differences across phenotypes, with p-value < 0.05, following Holm–Bonferroni correction, justifying the analysis of GBM tumour shapes on a per-phenotype basis. Furthermore, the survival analysis based on the Kaplan–Meier estimator identified three features derived from necrotic regions (i.e. Eccentricity, Extent and Solidity) that were significantly correlated with overall survival (corrected p-value < 0.05; hazard ratios between 1.68 and 1.87). In the multivariate analysis, features from necrotic regions gave the highest accuracy in predicting the survival group of patients, with a mean area under the receiver-operating characteristic curve (AUC) of 63.85%. Combining the features of all three phenotypes increased the mean AUC to 66.99%, suggesting that shape features from different phenotypes can be used in a synergic manner to predict GBM survival. Conclusion: Results show that shape features, in particular those extracted from necrotic regions, can be used effectively to characterize GBM tumours and predict the overall survival of patients with GBM. Advances in knowledge: Simple volumetric features have been largely used to characterize the different phenotypes of a GBM tumour (i.e. active tumour, oedema and necrosis). This study extends previous work by considering a wide range of shape features, extracted in different phenotypes, for the prediction of survival in patients with GBM. PMID:27781499
Xita, Nectaria; Tsatsoulis, Agathocles
2006-05-01
Polycystic ovary syndrome (PCOS) is a common endocrine disorder of premenopausal women, characterized by hyperandrogenism, polycystic ovaries, and chronic anovulation along with insulin resistance and abdominal obesity as frequent metabolic traits. Although PCOS manifests clinically during adolescence, emerging data suggest that the natural history of PCOS may originate in intrauterine life. Evidence from experimental, clinical, and genetic research supporting the hypothesis for the fetal origins of PCOS has been analyzed. Female primates, exposed in utero to androgen excess, exhibit the phenotypic features of PCOS during adult life. Clinical observations also support a potential fetal origin of PCOS. Women with fetal androgen excess disorders, including congenital 21-hydroxylase deficiency and congenital adrenal virilizing tumors, develop features characteristic of PCOS during adulthood despite the normalization of androgen excess after birth. The potential mechanisms of fetal androgen excess leading to a PCOS phenotype in humans are not clearly understood. However, maternal and/or fetal hyperandrogenism can provide a plausible mechanism for fetal programing of PCOS, and this, in part, may be genetically determined. Thus, genetic association studies have indicated that common polymorphic variants of genes determining androgen activity or genes that influence the availability of androgens to target tissues are associated with PCOS and increased androgen levels. These genomic variants may provide the genetic link to prenatal androgenization in human PCOS. Prenatal androgenization of the female fetus induced by genetic and environmental factors, or the interaction of both, may program differentiating target tissues toward the development of PCOS phenotype in adult life.
Shain, Catherine; Ramgopal, Sriram; Fallil, Zianka; Parulkar, Isha; Alongi, Richard; Knowlton, Robert; Poduri, Annapurna
2013-01-01
Purpose Polymicrogyria (PMG) is an epileptogenic malformation of cortical development. We describe the clinical epilepsy and imaging features of a large cohort with PMG-related epilepsy. Methods Participants were recruited through the Epilepsy Phenome/Genome Project, a multi-center collaborative effort to collect detailed phenotypic data on individuals with epilepsy. We reviewed phenotypic data from participants with epilepsy and PMG. Key Findings We identified 87 participants, 43 female and 44 male, with PMG and epilepsy. Median age of seizure onset was 3 years (range <1 month-37 years). Most presented with focal epilepsy (87.4%), some in combination with seizures generalized from onset (23.0%). Focal seizures with dyscognitive features were most common (54.3%). Of those presenting with generalized seizure types, infantile spasms were most prevalent (45.2%). The most common topographic pattern was perisylvian PMG (77.0%), of which the majority was bilateral (56.7%). Generalized PMG presented with an earlier age of seizure onset (median age of 8 months) and an increased prevalence of developmental delay prior to seizure onset (57.1%). Of the focal, unilateral and asymmetric bilateral groups where PMG was more involved in one hemisphere, the majority (71.4%) of participants had seizures that lateralized to the same hemisphere as the PMG or the hemisphere with greater involvement. Significance Participants with PMG had both focal and generalized onset of seizures. Our data confirm the involvement of known topographic patterns of PMG and suggest that more extensive distributions of PMG present with an earlier age of seizure onset and increased prevalence of developmental delay prior to seizure onset. PMID:23750890
Epigenetics and developmental plasticity across species.
Champagne, Frances A
2013-01-01
Plasticity is a typical feature of development and can lead to divergent phenotypes. There is increasing evidence that epigenetic mechanisms, such as DNA methylation, are present across species, are modifiable by the environment, and are involved in developmental plasticity. Thus, in the context of the concept of developmental homology, epigenetic mechanisms may serve to create a process homology between species by providing a common molecular pathway through which environmental experiences shape development, ultimately leading to phenotypic diversity. This article will highlight evidence derived from across-species investigations of epigenetics, development, and plasticity which may contribute to our understanding of the homology that exists between species and between ancestors and descendants. Copyright © 2012 Wiley Periodicals, Inc.
Mullegama, Sureni V.; Alaimo, Joseph T.; Chen, Li; Elsea, Sarah H.
2015-01-01
Roughly 20% of autism spectrum disorders (ASD) are syndromic with a well-established genetic cause. Studying the genes involved can provide insight into the molecular and cellular mechanisms of ASD. 2q23.1 deletion syndrome (causative gene, MBD5) is a recently identified genetic neurodevelopmental disorder associated with ASD. Mutations in MBD5 have been found in ASD cohorts. In this study, we provide a phenotypic update on the prevalent features of 2q23.1 deletion syndrome, which include severe intellectual disability, seizures, significant speech impairment, sleep disturbance, and autistic-like behavioral problems. Next, we examined the phenotypic, molecular, and network/pathway relationships between nine neurodevelopmental disorders associated with ASD: 2q23.1 deletion Rett, Angelman, Pitt-Hopkins, 2q23.1 duplication, 5q14.3 deletion, Kleefstra, Kabuki make-up, and Smith-Magenis syndromes. We show phenotypic overlaps consisting of intellectual disability, speech delay, seizures, sleep disturbance, hypotonia, and autistic-like behaviors. Molecularly, MBD5 possibly regulates the expression of UBE3A, TCF4, MEF2C, EHMT1 and RAI1. Network analysis reveals that there could be indirect protein interactions, further implicating function for these genes in common pathways. Further, we show that when MBD5 and RAI1 are haploinsufficient, they perturb several common pathways that are linked to neuronal and behavioral development. These findings support further investigations into the molecular and pathway relationships among genes linked to neurodevelopmental disorders and ASD, which will hopefully lead to common points of regulation that may be targeted toward therapeutic intervention. PMID:25853262
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong, Meng, E-mail: tong.59@osu.edu; Han, Byungdo B.; Holpuch, Andrew S.
The presence of the EMT (epithelial-mesenchymal transition), EndMT (endothelial-mesenchymal transition) and VM (vasculogenic mimicry) demonstrates the multidirectional extent of phenotypic plasticity in cancers. Previous findings demonstrating the crosstalk between head and neck squamous cell carcinoma (HNSCC) and vascular endothelial growth factor (VEGF) imply that HNSCC cells share some functional commonalities with endothelial cells. Our current results reveal that cultured HNSCC cells not only possess endothelial-specific markers, but also display endotheliod functional features including low density lipoprotein uptake, formation of tube-like structures on Matrigel and growth state responsiveness to VEGF and endostatin. HNSCC cell subpopulations are also highly responsive to transformingmore » growth factor-β1 and express its auxiliary receptor, endoglin. Furthermore, the endotheliod characteristics observed in vitro recapitulate phenotypic features observed in human HNSCC tumors. Conversely, cultured normal human oral keratinocytes and intact or ulcerated human oral epithelia do not express comparable endotheliod characteristics, which imply that assumption of endotheliod features is restricted to transformed keratinocytes. In addition, this phenotypic state reciprocity facilitates HNSCC progression by increasing production of factors that are concurrently pro-proliferative and pro-angiogenic, conserving cell energy stores by LDL internalization and enhancing cell mobility. Finally, recognition of this endotheliod phenotypic transition provides a solid rationale to evaluate the antitumorigenic potential of therapeutic agents formerly regarded as exclusively angiostatic in scope. - Highlights: ► HNSCC tumor cells express endothelial specific markers VE-cadherin, CD31 and vimentin. ► Similarly, cultured HNSCC cells retain expression of these markers. ► HNSCC cells demonstrate functional endotheliod characteristics i.e. AcLDL uptake. ► HNSCC cell subpopulations are highly responsive to TGF- β1, VEGF and endostatin. ► TGF-β1 facilitates cadherin switching and augments invasiveness of HNSCC subpopulations.« less
Expansion of phenotype and genotypic data in CRB2-related syndrome.
Lamont, Ryan E; Tan, Wen-Hann; Innes, A Micheil; Parboosingh, Jillian S; Schneidman-Duhovny, Dina; Rajkovic, Aleksandar; Pappas, John; Altschwager, Pablo; DeWard, Stephanie; Fulton, Anne; Gray, Kathryn J; Krall, Max; Mehta, Lakshmi; Rodan, Lance H; Saller, Devereux N; Steele, Deanna; Stein, Deborah; Yatsenko, Svetlana A; Bernier, François P; Slavotinek, Anne M
2016-10-01
Sequence variants in CRB2 cause a syndrome with greatly elevated maternal serum alpha-fetoprotein and amniotic fluid alpha-fetoprotein levels, cerebral ventriculomegaly and renal findings similar to Finnish congenital nephrosis. All reported patients have been homozygotes or compound heterozygotes for sequence variants in the Crumbs, Drosophila, Homolog of, 2 (CRB2) genes. Variants affecting CRB2 function have also been identified in four families with steroid resistant nephrotic syndrome, but without any other known systemic findings. We ascertained five, previously unreported individuals with biallelic variants in CRB2 that were predicted to affect function. We compiled the clinical features of reported cases and reviewed available literature for cases with features suggestive of CRB2-related syndrome in order to better understand the phenotypic and genotypic manifestations. Phenotypic analyses showed that ventriculomegaly was a common clinical manifestation (9/11 confirmed cases), in contrast to the original reports, in which patients were ascertained due to renal disease. Two children had minor eye findings and one was diagnosed with a B-cell lymphoma. Further genetic analysis identified one family with two affected siblings who were both heterozygous for a variant in NPHS2 predicted to affect function and separate families with sequence variants in NPHS4 and BBS7 in addition to the CRB2 variants. Our report expands the clinical phenotype of CRB2-related syndrome and establishes ventriculomegaly and hydrocephalus as frequent manifestations. We found additional sequence variants in genes involved in kidney development and ciliopathies in patients with CRB2-related syndrome, suggesting that these variants may modify the phenotype.
Mercer, Catherine L; Lachlan, Katherine; Karcanias, Alexandra; Affara, Nabeel; Huang, Shuwen; Jacobs, Patricia A; Thomas, N Simon
2013-01-01
Integrity of the long arm of the X chromosome is important for maintaining female fertility and several critical regions for normal ovarian function have been proposed. In order to understand further the importance of specific areas of the X chromosome, we describe a series of 20 previously unreported patients missing part of Xq in whom detailed phenotypic information has been gathered as well as precise chromosome mapping using array Comparative Genomic Hybridization. Features often associated with Turner syndrome were not common in our study and excluding puberty, menarche and menstruation, the phenotypes observed were present in only a minority of women and were not specific to the X chromosome. The most frequently occurring phenotypic features in our patients were abnormalities of menstruation and fertility. Larger terminal deletions were associated with a higher incidence of primary ovarian failure, occurring at a younger age; however patients with similar or even identical deletions had discordant menstrual phenotypes, making accurate genetic counselling difficult. Nevertheless, large deletions are likely to be associated with complete skewing of X inactivation so that the resulting phenotypes are relatively benign given the amount of genetic material missing, even in cases with unbalanced X;autosome translocations. Some degree of ovarian dysfunction is highly likely, especially for terminal deletions extending proximal to Xq27. In conjunction with patient data from the literature, our study suggests that loss of Xq26-Xq28 has the most significant effect on ovarian function. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Owen, Sian V.; Langridge, Gemma; Connell, Steve; Nair, Satheesh; Reuter, Sandra; Dallman, Timothy J.; Corander, Jukka; Tabing, Kristine C.; Le Hello, Simon; Fookes, Maria; Doublet, Benoît; Zhou, Zhemin; Feltwell, Theresa; Ellington, Matthew J.; Herrera, Silvia; Gilmour, Matthew; Cloeckaert, Axel; Achtman, Mark; Wain, John; De Pinna, Elizabeth; Weill, François-Xavier; Peters, Tansy; Thomson, Nick
2016-01-01
ABSTRACT For 100 years, it has been obvious that Salmonella enterica strains sharing the serotype with the formula 1,4,[5],12:b:1,2—now known as Paratyphi B—can cause diseases ranging from serious systemic infections to self-limiting gastroenteritis. Despite considerable predicted diversity between strains carrying the common Paratyphi B serotype, there remain few methods that subdivide the group into groups that are congruent with their disease phenotypes. Paratyphi B therefore represents one of the canonical examples in Salmonella where serotyping combined with classical microbiological tests fails to provide clinically informative information. Here, we use genomics to provide the first high-resolution view of this serotype, placing it into a wider genomic context of the Salmonella enterica species. These analyses reveal why it has been impossible to subdivide this serotype based upon phenotypic and limited molecular approaches. By examining the genomic data in detail, we are able to identify common features that correlate with strains of clinical importance. The results presented here provide new diagnostic targets, as well as posing important new questions about the basis for the invasive disease phenotype observed in a subset of strains. PMID:27555304
Newbury-Ecob, R
1998-01-01
Atelosteogenesis type 2 (AO2) (MIM 256050) is a neonatally lethal chondrodysplasia characterised by severe limb shortening and deficient ossification of parts of the skeleton. Other features include facial dysmorphism, cleft palate, talipes, and abducted thumbs and toes. Phenotypic overlap with non-lethal diastrophic dysplasia (DTD) suggested a common aetiology and it has recently been confirmed that both syndromes result from mutations in the DTDST (diastrophic dysplasia sulphate transporter) gene. Images PMID:9475095
Parkinsonism in Spinocerebellar Ataxia
Park, Hyeyoung; Kim, Han-Joon; Jeon, Beom S.
2015-01-01
Spinocerebellar ataxia (SCA) presents heterogeneous clinical phenotypes, and parkinsonism is reported in diverse SCA subtypes. Both levodopa responsive Parkinson disease (PD) like phenotype and atypical parkinsonism have been described especially in SCA2, SCA3, and SCA17 with geographic differences in prevalence. SCA2 is the most frequently reported subtype of SCA related to parkinsonism worldwide. Parkinsonism in SCA2 has unique genetic characteristics, such as low number of expansions and interrupted structures, which may explain the sporadic cases with low penetrance. Parkinsonism in SCA17 is more remarkable in Asian populations especially in Korea. In addition, an unclear cutoff of the pathologic range is the key issue in SCA17 related parkinsonism. SCA3 is more common in western cohorts. SCA6 and SCA8 have also been reported with a PD-like phenotype. Herein, we reviewed the epidemiologic, clinical, genetic, and pathologic features of parkinsonism in SCAs. PMID:25866756
Genomic imprinting and dermatological disease.
Millington, G W M
2006-09-01
Imprinting is the process whereby genetic alleles responsible for a phenotype are derived from one parent only. It is an epigenetic phenomenon resulting from DNA methylation or modification of protruding histones. When imprinted genes are disrupted, syndromes with characteristic patterns of inheritance and multisystem phenotype occur. Those detailed in this article have some quite characteristic cutaneous features and patterns of inheritance. These diseases include Beckwith-Wiedmann, Silver-Russell, Prader-Willi, McCune-Albright and Angelman syndromes, Albright's hereditary osteodystrophy, and progressive osseous heteroplasia. In the case of Von Hippel-Lindau syndrome, hypomelanosis of Ito and dermatopathia pigmentosa reticularis, imprinting may play a part in the inheritance. With neurofibromatosis type 1, a nonimprinted condition, the expression of the phenotype could be affected by interaction with imprinted gene loci. Imprinted genes could also play a part in the polygenetic inheritance of more common diseases also, as atopic eczema and psoriasis may have predominantly maternal and paternal modes of transmission, respectively.
Chromosome abnormalities and the genetics of congenital corneal opacification
Mataftsi, A.; Islam, L.; Kelberman, D.; Sowden, J.C.
2011-01-01
Congenital corneal opacification (CCO) encompasses a broad spectrum of disorders that have different etiologies, including genetic and environmental. Terminology used in clinical phenotyping is commonly not specific enough to describe separate entities, for example both the terms Peters anomaly and sclerocornea have been ascribed to a clinical picture of total CCO, without investigating the presence or absence of iridocorneal adhesions. This is not only confusing but also unhelpful in determining valid genotype-phenotype correlations, and thereby revealing clues for pathogenesis. We undertook a systematic review of the literature focusing on CCO as part of anterior segment developmental anomalies (ASDA), and analyzed its association specifically with chromosomal abnormalities. Genes previously identified as being associated with CCO are also summarized. All reports were critically appraised to classify phenotypes according to described features, rather than the given diagnosis. Some interesting associations were found, and are discussed. PMID:21738392
Chromosome abnormalities and the genetics of congenital corneal opacification.
Mataftsi, A; Islam, L; Kelberman, D; Sowden, J C; Nischal, K K
2011-01-01
Congenital corneal opacification (CCO) encompasses a broad spectrum of disorders that have different etiologies, including genetic and environmental. Terminology used in clinical phenotyping is commonly not specific enough to describe separate entities, for example both the terms Peters anomaly and sclerocornea have been ascribed to a clinical picture of total CCO, without investigating the presence or absence of iridocorneal adhesions. This is not only confusing but also unhelpful in determining valid genotype-phenotype correlations, and thereby revealing clues for pathogenesis. We undertook a systematic review of the literature focusing on CCO as part of anterior segment developmental anomalies (ASDA), and analyzed its association specifically with chromosomal abnormalities. Genes previously identified as being associated with CCO are also summarized. All reports were critically appraised to classify phenotypes according to described features, rather than the given diagnosis. Some interesting associations were found, and are discussed.
Molecular Cytogenetic Characterization of an inv(Y)(p11.2q11.221∼q11.222) in a Syrian Family.
Al-Achkar, W; Wafa, A; Al-Ablog, A; Moassass, F; Liehr, T
2013-12-01
Constitutional chromosomal abnormalities are an important cause of miscarriage, infertility, congenital anomalies and mental retardation in humans. Pericentric inversions of the human Y-chromosome [inv(Y)] are rather common and show an estimated incidence of 0.6-1:1,000 in males in the general population. Most of the reported cases with inv(Y) are familial. For carriers of pericentric inversions the risk of mental retardation or multiple abortions is not apparently increased and there is no relation with abnormal phenotypic features. Polymerase chain reaction (PCR) analysis to detect microdeletions along the Y-chromosome as well as cytogenetic and fluorescence in situ hybridization (FISH) analysis were done to delineate the characteristics of an inv(Y) in a Syrian family. Thus, we present a detailed molecular-cytogenetic characterization of a father and his two sons having an inv(Y)(p11. 2q11.221∼q11.222) with varying mental retardation features but otherwise normal phenotype.
Phenotypic Antimicrobial Susceptibility Testing with Deep Learning Video Microscopy.
Yu, Hui; Jing, Wenwen; Iriya, Rafael; Yang, Yunze; Syal, Karan; Mo, Manni; Grys, Thomas E; Haydel, Shelley E; Wang, Shaopeng; Tao, Nongjian
2018-05-15
Timely determination of antimicrobial susceptibility for a bacterial infection enables precision prescription, shortens treatment time, and helps minimize the spread of antibiotic resistant infections. Current antimicrobial susceptibility testing (AST) methods often take several days and thus impede these clinical and health benefits. Here, we present an AST method by imaging freely moving bacterial cells in urine in real time and analyzing the videos with a deep learning algorithm. The deep learning algorithm determines if an antibiotic inhibits a bacterial cell by learning multiple phenotypic features of the cell without the need for defining and quantifying each feature. We apply the method to urinary tract infection, a common infection that affects millions of people, to determine the minimum inhibitory concentration of pathogens from both bacteria spiked urine and clinical infected urine samples for different antibiotics within 30 min and validate the results with the gold standard broth macrodilution method. The deep learning video microscopy-based AST holds great potential to contribute to the solution of increasing drug-resistant infections.
Phenotypic characterization of glioblastoma identified through shape descriptors
NASA Astrophysics Data System (ADS)
Chaddad, Ahmad; Desrosiers, Christian; Toews, Matthew
2016-03-01
This paper proposes quantitatively describing the shape of glioblastoma (GBM) tissue phenotypes as a set of shape features derived from segmentations, for the purposes of discriminating between GBM phenotypes and monitoring tumor progression. GBM patients were identified from the Cancer Genome Atlas, and quantitative MR imaging data were obtained from the Cancer Imaging Archive. Three GBM tissue phenotypes are considered including necrosis, active tumor and edema/invasion. Volumetric tissue segmentations are obtained from registered T1˗weighted (T1˗WI) postcontrast and fluid-attenuated inversion recovery (FLAIR) MRI modalities. Shape features are computed from respective tissue phenotype segmentations, and a Kruskal-Wallis test was employed to select features capable of classification with a significance level of p < 0.05. Several classifier models are employed to distinguish phenotypes, where a leave-one-out cross-validation was performed. Eight features were found statistically significant for classifying GBM phenotypes with p <0.05, orientation is uninformative. Quantitative evaluations show the SVM results in the highest classification accuracy of 87.50%, sensitivity of 94.59% and specificity of 92.77%. In summary, the shape descriptors proposed in this work show high performance in predicting GBM tissue phenotypes. They are thus closely linked to morphological characteristics of GBM phenotypes and could potentially be used in a computer assisted labeling system.
Monogenic autoimmune diseases of the endocrine system.
Johnson, Matthew B; Hattersley, Andrew T; Flanagan, Sarah E
2016-10-01
The most common endocrine diseases, type 1 diabetes, hyperthyroidism, and hypothyroidism, are the result of autoimmunity. Clustering of autoimmune endocrinopathies can result from polygenic predisposition, or more rarely, may present as part of a wider syndrome due to a mutation within one of seven genes. These monogenic autoimmune diseases show highly variable phenotypes both within and between families with the same mutations. The average age of onset of the monogenic forms of autoimmune endocrine disease is younger than that of the common polygenic forms, and this feature combined with the manifestation of other autoimmune diseases, specific hallmark features, or both, can inform clinicians as to the relevance of genetic testing. A genetic diagnosis can guide medical management, give an insight into prognosis, inform families of recurrence risk, and facilitate prenatal diagnoses. Copyright © 2016 Elsevier Ltd. All rights reserved.
Molecular genetic models related to schizophrenia and psychotic illness: heuristics and challenges.
O'Tuathaigh, Colm M P; Desbonnet, Lieve; Moran, Paula M; Kirby, Brian P; Waddington, John L
2011-01-01
Schizophrenia is a heritable disorder that may involve several common genes of small effect and/or rare copy number variation, with phenotypic heterogeneity across patients. Furthermore, any boundaries vis-à-vis other psychotic disorders are far from clear. Consequently, identification of informative animal models for this disorder, which typically relate to pharmacological and putative pathophysiological processes of uncertain validity, faces considerable challenges. In juxtaposition, the majority of mutant models for schizophrenia relate to the functional roles of a diverse set of genes associated with risk for the disorder or with such putative pathophysiological processes. This chapter seeks to outline the evidence from phenotypic studies in mutant models related to schizophrenia. These have commonly assessed the degree to which mutation of a schizophrenia-related gene is associated with the expression of several aspects of the schizophrenia phenotype or more circumscribed, schizophrenia-related endophenotypes; typically, they place specific emphasis on positive and negative symptoms and cognitive deficits, and extend to structural and other pathological features. We first consider the primary technological approaches to the generation of such mutants, to include their relative merits and demerits, and then highlight the diverse phenotypic approaches that have been developed for their assessment. The chapter then considers the application of mutant phenotypes to study pathobiological and pharmacological mechanisms thought to be relevant for schizophrenia, particularly in terms of dopaminergic and glutamatergic dysfunction, and to an increasing range of candidate susceptibility genes and copy number variants. Finally, we discuss several pertinent issues and challenges within the field which relate to both phenotypic evaluation and a growing appreciation of the functional genomics of schizophrenia and the involvement of gene × environment interactions.
Phenotype and genotype in 52 patients with Rubinstein-Taybi syndrome caused by EP300 mutations.
Fergelot, Patricia; Van Belzen, Martine; Van Gils, Julien; Afenjar, Alexandra; Armour, Christine M; Arveiler, Benoit; Beets, Lex; Burglen, Lydie; Busa, Tiffany; Collet, Marie; Deforges, Julie; de Vries, Bert B A; Dominguez Garrido, Elena; Dorison, Nathalie; Dupont, Juliette; Francannet, Christine; Garciá-Minaúr, Sixto; Gabau Vila, Elisabeth; Gebre-Medhin, Samuel; Gener Querol, Blanca; Geneviève, David; Gérard, Marion; Gervasini, Cristina Giovanna; Goldenberg, Alice; Josifova, Dragana; Lachlan, Katherine; Maas, Saskia; Maranda, Bruno; Moilanen, Jukka S; Nordgren, Ann; Parent, Philippe; Rankin, Julia; Reardon, Willie; Rio, Marlène; Roume, Joëlle; Shaw, Adam; Smigiel, Robert; Sojo, Amaia; Solomon, Benjamin; Stembalska, Agnieszka; Stumpel, Constance; Suarez, Francisco; Terhal, Paulien; Thomas, Simon; Touraine, Renaud; Verloes, Alain; Vincent-Delorme, Catherine; Wincent, Josephine; Peters, Dorien J M; Bartsch, Oliver; Larizza, Lidia; Lacombe, Didier; Hennekam, Raoul C
2016-12-01
Rubinstein-Taybi syndrome (RSTS) is a developmental disorder characterized by a typical face and distal limbs abnormalities, intellectual disability, and a vast number of other features. Two genes are known to cause RSTS, CREBBP in 60% and EP300 in 8-10% of clinically diagnosed cases. Both paralogs act in chromatin remodeling and encode for transcriptional co-activators interacting with >400 proteins. Up to now 26 individuals with an EP300 mutation have been published. Here, we describe the phenotype and genotype of 42 unpublished RSTS patients carrying EP300 mutations and intragenic deletions and offer an update on another 10 patients. We compare the data to 308 individuals with CREBBP mutations. We demonstrate that EP300 mutations cause a phenotype that typically resembles the classical RSTS phenotype due to CREBBP mutations to a great extent, although most facial signs are less marked with the exception of a low-hanging columella. The limb anomalies are more similar to those in CREBBP mutated individuals except for angulation of thumbs and halluces which is very uncommon in EP300 mutated individuals. The intellectual disability is variable but typically less marked whereas the microcephaly is more common. All types of mutations occur but truncating mutations and small rearrangements are most common (86%). Missense mutations in the HAT domain are associated with a classical RSTS phenotype but otherwise no genotype-phenotype correlation is detected. Pre-eclampsia occurs in 12/52 mothers of EP300 mutated individuals versus in 2/59 mothers of CREBBP mutated individuals, making pregnancy with an EP300 mutated fetus the strongest known predictor for pre-eclampsia. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Sweney, Matthew T; Newcomb, Tara M; Swoboda, Kathryn J
2015-01-01
ATP1A3 mutations have now been recognized in infants and children presenting with a diverse group of neurological phenotypes, including Rapid-onset Dystonia-Parkinsonism (RDP), Alternating Hemiplegia of Childhood (AHC), and most recently, Cerebellar ataxia, Areflexia, Pes cavus, Optic atrophy, and Sensorineural hearing loss (CAPOS) syndrome. Existing literature on ATP1A3-related disorders in the pediatric population were reviewed, with attention to clinical features and associated genotypes among those with RDP, AHC, or CAPOS syndrome phenotypes. While classically defined phenotypes associated with AHC, RDP, and CAPOS syndromes are distinct, common elements among ATP1A3-related neurological disorders include characteristic episodic neurological symptoms and signs that vary in severity, duration, and frequency of occurrence. Affected children typically present in the context of an acute onset of paroxysmal, episodic neurological symptoms ranging from oculomotor abnormalities, hypotonia, paralysis, dystonia, ataxia, seizure-like episodes, or encephalopathy. Neurodevelopmental delays or persistence of dystonia, chorea, or ataxia after resolution of an initial episode are common, providing important clues for diagnosis. The phenotypic spectrum of ATP1A3-related neurological disorders continues to expand beyond the distinct yet overlapping phenotypes in patients with AHC, RDP, and CAPOS syndromes. ATP1A3 mutation analysis is appropriate to consider in the diagnostic algorithm for any child presenting with episodic or fluctuating ataxia, weakness or dystonia whether they manifest persistence of neurological symptoms between episodes. Additional work is needed to better identify and classify affected patients and develop targeted treatment approaches. Copyright © 2015 Elsevier Inc. All rights reserved.
How normal is the transparent cornea? Effects of aging on corneal morphology.
Hillenaar, Toine; van Cleynenbreugel, Hugo; Remeijer, Lies
2012-02-01
To ascertain the effects of aging on corneal morphology and to illustrate the morphologic diversity of the different layers in the normal cornea as seen by in vivo confocal microscopy (IVCM). Observational cross-sectional study. A total of 150 healthy subjects, evenly distributed over 5 age categories, comprising 75 men and 75 women. Both transparent corneas (n = 300) of all subjects were examined in duplicate by white light IVCM (Confoscan 4, NIDEK Technologies, Albignasego, Padova, Italy). After reviewing the IVCM examinations for morphologic variations of the corneal layers, we selected the 8 most common features to illustrate the morphologic diversity. Subsequently, all 600 IVCM examinations were assessed for the presence of these features. We used binary logistic regression analyses to assess the age-relatedness of each feature. Age distribution of bright superficial epithelial cells, dendriform cells, alterations characteristic of epithelial basement membrane dystrophy (EBMD), tortuous stromal nerves, stromal microdots in the anterior stroma, folds in the posterior stroma, opacification of Descemet's membrane, and corneal guttae. Four features were found characteristic of the aging cornea: stromal microdots in the anterior stroma (P<0.0001), folds in the posterior stroma (P<0.0001), opacification of Descemet's membrane (P<0.0001), and corneal guttae (P<0.0001). Alterations characteristic of EBMD were found in 3% of all eyes and only detected in subjects aged ≥40 years, suggesting age-relatedness (P = 0.09). Other features, such as bright superficial epithelial cells (n = 38, 13%), dendriform cells (n = 42, 14%), and tortuous stromal nerves (n = 115, 38%), were age-independent. We also found a novel phenotype of corneal endothelium in 4 normal eyes of 2 subjects, which we coined "salt and pepper endothelium." We could not establish whether this novel phenotype represented a morphologic variant of normal endothelium, an early stage of a known corneal endothelial disorder, or a completely new disease entity. Knowledge of the common morphologic variations of the corneal layers and the effects of aging on corneal morphology as seen by IVCM increases our understanding of corneal degenerative disorders and is essential to detect corneal pathology. Our finding of a novel phenotype of corneal endothelium emphasizes the morphologic diversity of this optically transparent tissue. Copyright © 2012 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Changing facial phenotype in Cohen syndrome: towards clues for an earlier diagnosis.
El Chehadeh-Djebbar, Salima; Blair, Edward; Holder-Espinasse, Muriel; Moncla, Anne; Frances, Anne-Marie; Rio, Marlène; Debray, François-Guillaume; Rump, Patrick; Masurel-Paulet, Alice; Gigot, Nadège; Callier, Patrick; Duplomb, Laurence; Aral, Bernard; Huet, Frédéric; Thauvin-Robinet, Christel; Faivre, Laurence
2013-07-01
Cohen syndrome (CS) is a rare autosomal recessive condition caused by mutations and/or large rearrangements in the VPS13B gene. CS clinical features, including developmental delay, the typical facial gestalt, chorioretinal dystrophy (CRD) and neutropenia, are well described. CS diagnosis is generally raised after school age, when visual disturbances lead to CRD diagnosis and to VPS13B gene testing. This relatively late diagnosis precludes accurate genetic counselling. The aim of this study was to analyse the evolution of CS facial features in the early period of life, particularly before school age (6 years), to find clues for an earlier diagnosis. Photographs of 17 patients with molecularly confirmed CS were analysed, from birth to preschool age. By comparing their facial phenotype when growing, we show that there are no special facial characteristics before 1 year. However, between 2 and 6 years, CS children already share common facial features such as a short neck, a square face with micrognathia and full cheeks, a hypotonic facial appearance, epicanthic folds, long ears with an everted upper part of the auricle and/or a prominent lobe, a relatively short philtrum, a small and open mouth with downturned corners, a thick lower lip and abnormal eye shapes. These early transient facial features evolve to typical CS facial features with aging. These observations emphasize the importance of ophthalmological tests and neutrophil count in children in preschool age presenting with developmental delay, hypotonia and the facial features we described here, for an earlier CS diagnosis.
Enabling phenotypic big data with PheNorm.
Yu, Sheng; Ma, Yumeng; Gronsbell, Jessica; Cai, Tianrun; Ananthakrishnan, Ashwin N; Gainer, Vivian S; Churchill, Susanne E; Szolovits, Peter; Murphy, Shawn N; Kohane, Isaac S; Liao, Katherine P; Cai, Tianxi
2018-01-01
Electronic health record (EHR)-based phenotyping infers whether a patient has a disease based on the information in his or her EHR. A human-annotated training set with gold-standard disease status labels is usually required to build an algorithm for phenotyping based on a set of predictive features. The time intensiveness of annotation and feature curation severely limits the ability to achieve high-throughput phenotyping. While previous studies have successfully automated feature curation, annotation remains a major bottleneck. In this paper, we present PheNorm, a phenotyping algorithm that does not require expert-labeled samples for training. The most predictive features, such as the number of International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes or mentions of the target phenotype, are normalized to resemble a normal mixture distribution with high area under the receiver operating curve (AUC) for prediction. The transformed features are then denoised and combined into a score for accurate disease classification. We validated the accuracy of PheNorm with 4 phenotypes: coronary artery disease, rheumatoid arthritis, Crohn's disease, and ulcerative colitis. The AUCs of the PheNorm score reached 0.90, 0.94, 0.95, and 0.94 for the 4 phenotypes, respectively, which were comparable to the accuracy of supervised algorithms trained with sample sizes of 100-300, with no statistically significant difference. The accuracy of the PheNorm algorithms is on par with algorithms trained with annotated samples. PheNorm fully automates the generation of accurate phenotyping algorithms and demonstrates the capacity for EHR-driven annotations to scale to the next level - phenotypic big data. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Grubb, Stephen C.; Maddatu, Terry P.; Bult, Carol J.; Bogue, Molly A.
2009-01-01
The Mouse Phenome Database (MPD; http://www.jax.org/phenome) is an open source, web-based repository of phenotypic and genotypic data on commonly used and genetically diverse inbred strains of mice and their derivatives. MPD is also a facility for query, analysis and in silico hypothesis testing. Currently MPD contains about 1400 phenotypic measurements contributed by research teams worldwide, including phenotypes relevant to human health such as cancer susceptibility, aging, obesity, susceptibility to infectious diseases, atherosclerosis, blood disorders and neurosensory disorders. Electronic access to centralized strain data enables investigators to select optimal strains for many systems-based research applications, including physiological studies, drug and toxicology testing, modeling disease processes and complex trait analysis. The ability to select strains for specific research applications by accessing existing phenotype data can bypass the need to (re)characterize strains, precluding major investments of time and resources. This functionality, in turn, accelerates research and leverages existing community resources. Since our last NAR reporting in 2007, MPD has added more community-contributed data covering more phenotypic domains and implemented several new tools and features, including a new interactive Tool Demo available through the MPD homepage (quick link: http://phenome.jax.org/phenome/trytools). PMID:18987003
Paisán-Ruiz, Coro; Guevara, Rocio; Federoff, Monica; Hanagasi, Hasmet; Sina, Fardaz; Elahi, Elahe; Schneider, Susanne A; Schwingenschuh, Petra; Bajaj, Nin; Emre, Murat; Singleton, Andrew B; Hardy, John; Bhatia, Kailash P; Brandner, Sebastian; Lees, Andrew J; Houlden, Henry
2010-09-15
Seven autosomal recessive genes associated with juvenile and young-onset Levodopa-responsive parkinsonism have been identified. Mutations in PRKN, DJ-1, and PINK1 are associated with a rather pure parkinsonian phenotype, and have a more benign course with sustained treatment response and absence of dementia. On the other hand, Kufor-Rakeb syndrome has additional signs, which distinguish it clearly from Parkinson's disease including supranuclear vertical gaze palsy, myoclonic jerks, pyramidal signs, and cognitive impairment. Neurodegeneration with brain iron accumulation type I (Hallervorden-Spatz syndrome) due to mutations in PANK2 gene may share similar features with Kufor-Rakeb syndrome. Mutations in three other genes, PLA2G6 (PARK14), FBXO7 (PARK15), and Spatacsin (SPG11) also produce clinical similar phenotypes in that they presented with rapidly progressive parkinsonism, initially responsive to Levodopa treatment but later, developed additional features including cognitive decline and loss of Levodopa responsiveness. Here, using homozygosity mapping and sequence analysis in families with complex parkinsonisms, we identified genetic defects in the ATP13A2 (1 family), PLA2G6 (1 family) FBXO7 (2 families), and SPG11 (1 family). The genetic heterogeneity was surprising given their initially common clinical features. On careful review, we found the FBXO7 cases to have a phenotype more similar to PRKN gene associated parkinsonism. The ATP13A2 and PLA2G6 cases were more seriously disabled with additional swallowing problems, dystonic features, severe in some, and usually pyramidal involvement including pyramidal weakness. These data suggest that these four genes account for many cases of Levodopa responsive parkinsonism with pyramidal signs cases formerly categorized clinically as pallido-pyramidal syndrome. © 2010 Movement Disorder Society.
Paisán-Ruiz, Coro; Guevara, Rocio; Federoff, Monica; Hanagasi, Hasmet; Sina, Fardaz; Elahi, Elahe; Schneider, Susanne A.; Schwingenschuh, Petra; Bajaj, Nin; Emre, Murat; Singleton, Andrew B.; Hardy, John; Bhatia, Kailash P.; Brandner, Sebastian; Lees, Andrew J.; Houlden, Henry
2018-01-01
Seven autosomal recessive genes associated with juvenile and young-onset Levodopa-responsive parkinsonism have been identified. Mutations in PRKN, DJ-1, and PINK1 are associated with a rather pure parkinsonian phenotype, and have a more benign course with sustained treatment response and absence of dementia. On the other hand, Kufor-Rakeb syndrome has additional signs, which distinguish it clearly from Parkinson’s disease including supranu-clear vertical gaze palsy, myoclonic jerks, pyramidal signs, and cognitive impairment. Neurodegeneration with brain iron accumulation type I (Hallervorden-Spatz syndrome) due to mutations in PANK2 gene may share similar features with Kufor-Rakeb syndrome. Mutations in three other genes, PLA2G6 (PARK14), FBXO7 (PARK15), and Spatacsin (SPG11) also produce clinical similar phenotypes in that they presented with rapidly progressive parkinsonism, initially responsive to Levodopa treatment but later, developed additional features including cognitive decline and loss of Levodopa responsiveness. Here, using homozygosity mapping and sequence analysis in families with complex parkinsonisms, we identified genetic defects in the ATP13A2 (1 family), PLA2G6 (1 family) FBXO7 (2 families), and SPG11 (1 family). The genetic heterogeneity was surprising given their initially common clinical features. On careful review, we found the FBXO7 cases to have a phenotype more similar to PRKN gene associated parkinsonism. The ATP13A2 and PLA2G6 cases were more seriously disabled with additional swallowing problems, dystonic features, severe in some, and usually pyramidal involvement including pyramidal weakness. These data suggest that these four genes account for many cases of Levodopa responsive parkinsonism with pyramidal signs cases formerly categorized clinically as pallido-pyramidal syndrome. 3 2010 Movement Disorder Society PMID:20669327
The Importance of Clinical Phenotype in Understanding and Preventing Spontaneous Preterm Birth.
Esplin, M Sean
2016-02-01
Spontaneous preterm birth (SPTB) is a well-known cause of maternal and neonatal morbidity. The search for the underlying pathways, documentation of the genetic causes, and identification of markers of spontaneous PTB have been marginally successful due to the fact that it is highly complex, with numerous processes that lead to a final common pathway. There is a great need for a comprehensive, consistent, and uniform classification system, which will be useful in identifying mechanisms, assigning prognosis, aiding in clinical management, and can identify areas of interest for intervention and future study. Effective classification systems must overcome obstacles including the lack of widely accepted definitions and uncertainty about inclusion of classifying features (e.g., presentation at delivery and multiple gestations) and levels of detail of these features. The optimal classification system should be based on the clinical phenotype, including characteristics of the mother, fetus, placenta, and the presentation for delivery. We present a proposed phenotyping system for spontaneous PTB. Future classification systems must establish a universally accepted set of definitions and a standardized clinical workup for all PTBs including the minimum clinical data to be collected and the laboratory and pathologic evaluation that should be completed. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Pattern of retinal morphological and functional decay in a light-inducible, rhodopsin mutant mouse.
Gargini, Claudia; Novelli, Elena; Piano, Ilaria; Biagioni, Martina; Strettoi, Enrica
2017-07-18
Hallmarks of Retinitis Pigmentosa (RP), a family of genetic diseases, are a typical rod-cone-degeneration with initial night blindness and loss of peripheral vision, followed by decreased daylight sight and progressive visual acuity loss up to legal blindness. Great heterogeneity in nature and function of mutated genes, variety of mutations for each of them, variability in phenotypic appearance and transmission modality contribute to make RP a still incurable disease. Translational research relies on appropriate animal models mimicking the genetic and phenotypic diversity of the human pathology. Here, we provide a systematic, morphological and functional analysis of Rho Tvrm4 /Rho + rhodopsin mutant mice, originally described in 2010 and portraying several features of common forms of autosomal dominant RP caused by gain-of-function mutations. These mice undergo photoreceptor degeneration only when exposed briefly to strong, white light and allow controlled timing of induction of rod and cone death, which therefore can be elicited in adult animals, as observed in human RP. The option to control severity and retinal extent of the phenotype by regulating intensity and duration of the inducing light opens possibilities to exploit this model for multiple experimental purposes. Altogether, the unique features of this mutant make it an excellent resource for retinal degeneration research.
FGWAS: Functional genome wide association analysis.
Huang, Chao; Thompson, Paul; Wang, Yalin; Yu, Yang; Zhang, Jingwen; Kong, Dehan; Colen, Rivka R; Knickmeyer, Rebecca C; Zhu, Hongtu
2017-10-01
Functional phenotypes (e.g., subcortical surface representation), which commonly arise in imaging genetic studies, have been used to detect putative genes for complexly inherited neuropsychiatric and neurodegenerative disorders. However, existing statistical methods largely ignore the functional features (e.g., functional smoothness and correlation). The aim of this paper is to develop a functional genome-wide association analysis (FGWAS) framework to efficiently carry out whole-genome analyses of functional phenotypes. FGWAS consists of three components: a multivariate varying coefficient model, a global sure independence screening procedure, and a test procedure. Compared with the standard multivariate regression model, the multivariate varying coefficient model explicitly models the functional features of functional phenotypes through the integration of smooth coefficient functions and functional principal component analysis. Statistically, compared with existing methods for genome-wide association studies (GWAS), FGWAS can substantially boost the detection power for discovering important genetic variants influencing brain structure and function. Simulation studies show that FGWAS outperforms existing GWAS methods for searching sparse signals in an extremely large search space, while controlling for the family-wise error rate. We have successfully applied FGWAS to large-scale analysis of data from the Alzheimer's Disease Neuroimaging Initiative for 708 subjects, 30,000 vertices on the left and right hippocampal surfaces, and 501,584 SNPs. Copyright © 2017 Elsevier Inc. All rights reserved.
Lyle, Robert; Béna, Frédérique; Gagos, Sarantis; Gehrig, Corinne; Lopez, Gipsy; Schinzel, Albert; Lespinasse, James; Bottani, Armand; Dahoun, Sophie; Taine, Laurence; Doco-Fenzy, Martine; Cornillet-Lefèbvre, Pascale; Pelet, Anna; Lyonnet, Stanislas; Toutain, Annick; Colleaux, Laurence; Horst, Jürgen; Kennerknecht, Ingo; Wakamatsu, Nobuaki; Descartes, Maria; Franklin, Judy C; Florentin-Arar, Lina; Kitsiou, Sophia; Aït Yahya-Graison, Emilie; Costantine, Maher; Sinet, Pierre-Marie; Delabar, Jean M; Antonarakis, Stylianos E
2009-01-01
Down syndrome (DS) is one of the most frequent congenital birth defects, and the most common genetic cause of mental retardation. In most cases, DS results from the presence of an extra copy of chromosome 21. DS has a complex phenotype, and a major goal of DS research is to identify genotype–phenotype correlations. Cases of partial trisomy 21 and other HSA21 rearrangements associated with DS features could identify genomic regions associated with specific phenotypes. We have developed a BAC array spanning HSA21q and used array comparative genome hybridization (aCGH) to enable high-resolution mapping of pathogenic partial aneuploidies and unbalanced translocations involving HSA21. We report the identification and mapping of 30 pathogenic chromosomal aberrations of HSA21 consisting of 19 partial trisomies and 11 partial monosomies for different segments of HSA21. The breakpoints have been mapped to within ∼85 kb. The majority of the breakpoints (26 of 30) for the partial aneuploidies map within a 10-Mb region. Our data argue against a single DS critical region. We identify susceptibility regions for 25 phenotypes for DS and 27 regions for monosomy 21. However, most of these regions are still broad, and more cases are needed to narrow down the phenotypic maps to a reasonable number of candidate genomic elements per phenotype. PMID:19002211
Sofou, Kalliopi; de Coo, Irenaeus F M; Ostergaard, Elsebet; Isohanni, Pirjo; Naess, Karin; De Meirleir, Linda; Tzoulis, Charalampos; Uusimaa, Johanna; Lönnqvist, Tuula; Bindoff, Laurence Albert; Tulinius, Már; Darin, Niklas
2018-01-01
Leigh syndrome is a phenotypically and genetically heterogeneous mitochondrial disorder. While some genetic defects are associated with well-described phenotypes, phenotype-genotype correlations in Leigh syndrome are not fully explored. We aimed to identify phenotype-genotype correlations in Leigh syndrome in a large cohort of systematically evaluated patients. We studied 96 patients with genetically confirmed Leigh syndrome diagnosed and followed in eight European centres specialising in mitochondrial diseases. We found that ataxia, ophthalmoplegia and cardiomyopathy were more prevalent among patients with mitochondrial DNA defects. Patients with mutations in MT-ND and NDUF genes with complex I deficiency shared common phenotypic features, such as early development of central nervous system disease, followed by high occurrence of cardiac and ocular manifestations. The cerebral cortex was affected in patients with NDUF mutations significantly more often than the rest of the cohort. Patients with the m.8993T>G mutation in MT-ATP6 gene had more severe clinical and radiological manifestations and poorer disease outcome compared with patients with the m.8993T>C mutation. Our study provides new insights into phenotype-genotype correlations in Leigh syndrome and particularly in patients with complex I deficiency and with defects in the mitochondrial ATP synthase. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Wimmer, Katharina; Beilken, Andreas; Nustede, Rainer; Ripperger, Tim; Lamottke, Britta; Ure, Benno; Steinmann, Diana; Reineke-Plaass, Tanja; Lehmann, Ulrich; Zschocke, Johannes; Valle, Laura; Fauth, Christine; Kratz, Christian P
2017-01-01
In a 14-year-old boy with polyposis and rectosigmoid carcinoma, we identified a novel POLE germline mutation, p.(Val411Leu), previously found as recurrent somatic mutation in 'ultramutated' sporadic cancers. This is the youngest reported cancer patient with polymerase proofreading-associated polyposis indicating that POLE mutation p.(Val411Leu) may confer a more severe phenotype than previously reported POLE and POLD1 germline mutations. The patient had multiple café-au-lait macules and a pilomatricoma mimicking the clinical phenotype of constitutional mismatch repair deficiency. We hypothesize that these skin features may be common to different types of constitutional DNA repair defects associated with polyposis and early-onset cancer.
Autism Phenotypes in Tuberous Sclerosis Complex: Diagnostic and Treatment Considerations.
Gipson, Tanjala T; Poretti, Andrea; Thomas, Emily A; Jenkins, Kosunique T; Desai, Sonal; Johnston, Michael V
2015-12-01
Tuberous sclerosis complex is a multisystem, chronic genetic condition characterized by systemic growth of benign tumors and often accompanied by epilepsy, autism spectrum disorders, and intellectual disability. Nonetheless, the neurodevelopmental phenotype of these patients is not often detailed. The authors describe 3 individuals with tuberous sclerosis complex who share common characteristics that can help to identify a distinct profile of autism spectrum disorder. These findings include typical cognitive development, expressive and pragmatic language deficits, and anxiety. The authors also describe features specific to tuberous sclerosis complex that require consideration before diagnosing an autism spectrum disorder. Identifying distinct profiles of autism spectrum disorder in tuberous sclerosis complex can help optimize treatment across the life span. © The Author(s) 2015.
Grigsby, Jim
2016-01-01
Objectives To provide an historical perspective and overview of the phenotypes, mechanism, pathology, and epidemiology of the fragile X-associated tremor/ataxia syndrome (FXTAS) for neuropsychologists. Methods Selective review of the literature on FXTAS. Results FXTAS is an X-linked neurodegenerative disorder of late onset. One of several phenotypes associated with different mutations of the fragile X mental retardation 1 gene (FMR1), FXTAS involves progressive action tremor, gait ataxia, and impaired executive functioning, among other features. It affects carriers of the FMR1 premutation, which may expand when passed from a mother to her children, in which case it is likely to cause fragile X syndrome (FXS), the most common inherited developmental disability. Conclusion This review briefly summarizes current knowledge of the mechanisms, epidemiology, and mode of transmission of FXTAS and FXS, as well as the neuropsychological, neurologic, neuropsychiatric, neuropathologic, and neuroradiologic phenotypes of FXTAS. Because it was only recently identified, FXTAS is not well known to most practitioners, and it remains largely misdiagnosed, despite the fact that its prevalence may be relatively high. PMID:27356167
Grigsby, Jim
2016-08-01
To provide an historical perspective and overview of the phenotypes, mechanism, pathology, and epidemiology of the fragile X-associated tremor/ataxia syndrome (FXTAS) for neuropsychologists. Selective review of the literature on FXTAS. FXTAS is an X-linked neurodegenerative disorder of late onset. One of several phenotypes associated with different mutations of the fragile X mental retardation 1 gene (FMR1), FXTAS involves progressive action tremor, gait ataxia, and impaired executive functioning, among other features. It affects carriers of the FMR1 premutation, which may expand when passed from a mother to her children, in which case it is likely to cause fragile X syndrome (FXS), the most common inherited developmental disability. This review briefly summarizes current knowledge of the mechanisms, epidemiology, and mode of transmission of FXTAS and FXS, as well as the neuropsychological, neurologic, neuropsychiatric, neuropathologic, and neuroradiologic phenotypes of FXTAS. Because it was only recently identified, FXTAS is not well known to most practitioners, and it remains largely misdiagnosed, despite the fact that its prevalence may be relatively high.
Konstantinidou, Anastasia E; Tasoulas, Jason; Kallipolitis, Georgios; Gasparatos, Spyros; Velissariou, Voula; Paraskevakou, Helen
2013-12-01
Treacher Collins syndrome is the most common mandibulofacial dysostosis of autosomal dominant or, rarely, recessive inheritance. Affected fetuses may be identified by prenatal ultrasound or diagnosed at autopsy in case of perinatal death or pregnancy termination. We describe the ultrasonographic, autopsy, and molecular findings in a 25-week-gestation affected fetus, and review the clinical, prenatal, and postmortem findings in 15 previously reported fetal and perinatal cases. A nearly complete spectrum of the typical facial characteristics can be present by the early second trimester of gestation, including subtle defects such as lower eyelid colobomas. Mandibular hypoplasia and bilateral auricle defects were constant findings in the affected fetal population. Downslanting palpebral fissures were the second more common feature, followed by midface hypoplasia, polyhydramnios, and ocular defects. Association with Pierre Robin sequence was common (38%) in the reviewed series. Previously unreported pectus carinatum was noted in our case bearing a heterozygous TCOF1 mutation. Other unique reported findings include salivary gland hyperplasia, single umbilical artery, and tracheo-esophageal fistula, all in molecularly unconfirmed cases. Treacher Collins syndrome can be prenatally detected by ultrasound and should be included in the wide range of genetic syndromes that can be diagnosed at perinatal autopsy. Affected fetuses tend to have a more severe phenotype than living patients. The reported association of Treacher Collins syndrome type 1 with pectus carinatum expands the phenotype, provides information on genotype-phenotype correlation, and suggests possible pathogenetic interactions between neural crest cell disorders and the formation of the sternum that merit investigation. Copyright © 2013 Wiley Periodicals, Inc.
Potocki, Lorraine; Bi, Weimin; Treadwell-Deering, Diane; Carvalho, Claudia M. B.; Eifert, Anna; Friedman, Ellen M.; Glaze, Daniel; Krull, Kevin; Lee, Jennifer A.; Lewis, Richard Alan; Mendoza-Londono, Roberto; Robbins-Furman, Patricia; Shaw, Chad; Shi, Xin; Weissenberger, George; Withers, Marjorie; Yatsenko, Svetlana A.; Zackai, Elaine H.; Stankiewicz, Pawel; Lupski, James R.
2007-01-01
The duplication 17p11.2 syndrome, associated with dup(17)(p11.2p11.2), is a recently recognized syndrome of multiple congenital anomalies and mental retardation and is the first predicted reciprocal microduplication syndrome described—the homologous recombination reciprocal of the Smith-Magenis syndrome (SMS) microdeletion (del(17)(p11.2p11.2)). We previously described seven subjects with dup(17)(p11.2p11.2) and noted their relatively mild phenotype compared with that of individuals with SMS. Here, we molecularly analyzed 28 additional patients, using multiple independent assays, and also report the phenotypic characteristics obtained from extensive multidisciplinary clinical study of a subset of these patients. Whereas the majority of subjects (22 of 35) harbor the homologous recombination reciprocal product of the common SMS microdeletion (∼3.7 Mb), 13 subjects (∼37%) have nonrecurrent duplications ranging in size from 1.3 to 15.2 Mb. Molecular studies suggest potential mechanistic differences between nonrecurrent duplications and nonrecurrent genomic deletions. Clinical features observed in patients with the common dup(17)(p11.2p11.2) are distinct from those seen with SMS and include infantile hypotonia, failure to thrive, mental retardation, autistic features, sleep apnea, and structural cardiovascular anomalies. We narrow the critical region to a 1.3-Mb genomic interval that contains the dosage-sensitive RAI1 gene. Our results refine the critical region for Potocki-Lupski syndrome, provide information to assist in clinical diagnosis and management, and lend further support for the concept that genomic architecture incites genomic instability. PMID:17357070
Agaimy, Abbas; Cheng, Liang; Egevad, Lars; Feyerabend, Bernd; Hes, Ondřej; Keck, Bastian; Pizzolitto, Stefano; Sioletic, Stefano; Wullich, Bernd; Hartmann, Arndt
2017-02-01
Undifferentiated (anaplastic) and rhabdoid cell features are increasingly recognized as adverse prognostic findings in renal cell carcinoma (RCC), but their molecular pathogenesis has not been studied sufficiently. Recent studies identified alterations in the Switch Sucrose nonfermentable (SWI/SNF) chromatin remodeling complex as molecular mechanisms underlying dedifferentiation and rhabdoid features in carcinomas of different organs. We herein have analyzed 32 undifferentiated RCCs having in common an undifferentiated (anaplastic) phenotype, prominent rhabdoid features, or both, irrespective of the presence or absence of conventional RCC component. Cases were stained with 6 SWI/SNF pathway members (SMARCB1, SMARCA2, SMARCA4, ARID1A, SMARCC1, and SMARCC2) in addition to conventional RCC markers. Patients were 20 males and 12 females aged 32 to 85 years (mean, 59). A total of 22/27 patients with known stage presented with ≥pT3. A differentiated component varying from microscopic to major component was detected in 20/32 cases (16 clear cell and 2 cases each chromophobe and papillary RCC). The undifferentiated component varied from rhabdoid dyscohesive cells to large epithelioid to small monotonous anaplastic cells. Variable loss of at least 1 SWI/SNF complex subunit was noted in the undifferentiated/rhabdoid component of 21/32 cases (65%) compared with intact or reduced expression in the differentiated component. A total of 15/17 patients (88%) with follow-up died of metastatic disease (mostly within 1 y). Only 2 patients were disease free at last follow-up (1 and 6 y). No difference in survival, age distribution, or sex was observed between the SWI/SNF-deficient and the SWI/SNF-intact group. This is the first study exploring the role of SWI/SNF deficiency as a potential mechanism underlying undifferentiated and rhabdoid phenotype in RCC. Our results highlight the association between the aggressive rhabdoid phenotype and the SWI/SNF complex deficiency, consistent with studies on similar neoplasms in other organs. Thorough sampling of such tumors that are usually huge and locally advanced is necessary for recognizing the clone of origin and hence for proper subtyping and also for differentiating them from undifferentiated urothelial carcinoma.
Mutations in C8ORF37 cause Bardet Biedl syndrome (BBS21)
Heon, Elise; Kim, Gunhee; Qin, Sophie; Garrison, Janelle E.; Tavares, Erika; Vincent, Ajoy; Nuangchamnong, Nina; Scott, C. Anthony; Slusarski, Diane C.; Sheffield, Val C.
2016-01-01
Bardet Biedl syndrome (BBS) is a multisystem genetically heterogeneous ciliopathy that most commonly leads to obesity, photoreceptor degeneration, digit anomalies, genito-urinary abnormalities, as well as cognitive impairment with autism, among other features. Sequencing of a DNA sample from a 17-year-old female affected with BBS did not identify any mutation in the known BBS genes. Whole-genome sequencing identified a novel loss-of-function disease-causing homozygous mutation (K102*) in C8ORF37, a gene coding for a cilia protein. The proband was overweight (body mass index 29.1) with a slowly progressive rod-cone dystrophy, a mild learning difficulty, high myopia, three limb post-axial polydactyly, horseshoe kidney, abnormally positioned uterus and elevated liver enzymes. Mutations in C8ORF37 were previously associated with severe autosomal recessive retinal dystrophies (retinitis pigmentosa RP64 and cone-rod dystrophy CORD16) but not BBS. To elucidate the functional role of C8ORF37 in a vertebrate system, we performed gene knockdown in Danio rerio and assessed the cardinal features of BBS and visual function. Knockdown of c8orf37 resulted in impaired visual behavior and BBS-related phenotypes, specifically, defects in the formation of Kupffer’s vesicle and delays in retrograde transport. Specificity of these phenotypes to BBS knockdown was shown with rescue experiments. Over-expression of human missense mutations in zebrafish also resulted in impaired visual behavior and BBS-related phenotypes. This is the first functional validation and association of C8ORF37 mutations with the BBS phenotype, which identifies BBS21. The zebrafish studies hereby show that C8ORF37 variants underlie clinically diagnosed BBS-related phenotypes as well as isolated retinal degeneration. PMID:27008867
Gollasch, Benjamin; Basmanav, Fitnat Buket; Nanda, Arti; Fritz, Günter; Mahmoudi, Hassnaa; Thiele, Holger; Wehner, Maria; Wolf, Sabrina; Altmüller, Janine; Nürnberg, Peter; Frank, Jorge; Betz, Regina C
2015-11-01
Three children from an expanded consanguineous Kuwaiti kindred presented with ankyloblepharon, sparse and curly hair, and hypoplastic nails, suggestive of CHAND syndrome (OMIM 214350) that belongs to the heterogeneous spectrum of ectodermal dysplasias. After exclusion of pathogenic mutations in TP63 we performed homozygosity mapping, followed by exome sequencing of one affected individual. We initially identified three homozygous mutations in the linked region, located in PWP2, MX2 and RIPK4. Recently, mutations in RIPK4 have been reported in Bartsocas-Papas syndrome (OMIM 263650) that shows overlapping clinical symptoms with the phenotype observed in the affected individuals studied here. Subsequent analysis of affected and non-affected family members showed that mutation c.850G>A (p.Glu284Lys) in RIPK4 was in complete segregation with the disease phenotype, in accordance with an autosomal recessive inheritance pattern, thus supporting pathogenicity of this variant. Interestingly, however, our patients did not have cleft lip/palate, a common feature encountered in Bartsocas-Papas syndrome. Whereas in Bartsocas-Papas syndromes missense mutations are usually located within the serin/threonin kinase of RIPK4, the mutation detected in our family resides just outside of the kinase domain, which could explain the milder phenotype. Our data raise the question if CHAND syndrome indeed is a distinct entity. Alternatively, CHAND and Bartsocas-Papas syndrome might be allelic disorders or RIPK4 mutations could confer varying degrees of phenotypic severity, depending on their localization within or outside functionally important domains. Our findings indicate that making an accurate diagnosis based only on the prevailing clinical symptoms is challenging. © 2015 Wiley Periodicals, Inc.
Differences in manifestations of Marfan syndrome, Ehlers-Danlos syndrome, and Loeys-Dietz syndrome.
Meester, Josephina A N; Verstraeten, Aline; Schepers, Dorien; Alaerts, Maaike; Van Laer, Lut; Loeys, Bart L
2017-11-01
Many different heritable connective tissue disorders (HCTD) have been described over the past decades. These syndromes often affect the connective tissue of various organ systems, including heart, blood vessels, skin, joints, bone, eyes, and lungs. The discovery of these HCTD was followed by the identification of mutations in a wide range of genes encoding structural proteins, modifying enzymes, or components of the TGFβ-signaling pathway. Three typical examples of HCTD are Marfan syndrome (MFS), Ehlers-Danlos syndrome (EDS), and Loeys-Dietz syndrome (LDS). These syndromes show some degree of phenotypical overlap of cardiovascular, skeletal, and cutaneous features. MFS is typically characterized by cardiovascular, ocular, and skeletal manifestations and is caused by heterozygous mutations in FBN1 , coding for the extracellular matrix (ECM) protein fibrillin-1. The most common cardiovascular phenotype involves aortic aneurysm and dissection at the sinuses of Valsalva. LDS is caused by mutations in TGBR1/2 , SMAD2/3 , or TGFB2/3 , all coding for components of the TGFβ-signaling pathway. LDS can be distinguished from MFS by the unique presence of hypertelorism, bifid uvula or cleft palate, and widespread aortic and arterial aneurysm and tortuosity. Compared to MFS, LDS cardiovascular manifestations tend to be more severe. In contrast, no association is reported between LDS and the presence of ectopia lentis, a key distinguishing feature of MFS. Overlapping features between MFS and LDS include scoliosis, pes planus, anterior chest deformity, spontaneous pneumothorax, and dural ectasia. EDS refers to a group of clinically and genetically heterogeneous connective tissue disorders and all subtypes are characterized by variable abnormalities of skin, ligaments and joints, blood vessels, and internal organs. Typical presenting features include joint hypermobility, skin hyperextensibility, and tissue fragility. Up to one quarter of the EDS patients show aortic aneurysmal disease. The latest EDS nosology distinguishes 13 subtypes. Many phenotypic features show overlap between the different subtypes, which makes the clinical diagnosis rather difficult and highlights the importance of molecular diagnostic confirmation.
Differences in manifestations of Marfan syndrome, Ehlers-Danlos syndrome, and Loeys-Dietz syndrome
Meester, Josephina A. N.; Verstraeten, Aline; Schepers, Dorien; Alaerts, Maaike; Van Laer, Lut
2017-01-01
Many different heritable connective tissue disorders (HCTD) have been described over the past decades. These syndromes often affect the connective tissue of various organ systems, including heart, blood vessels, skin, joints, bone, eyes, and lungs. The discovery of these HCTD was followed by the identification of mutations in a wide range of genes encoding structural proteins, modifying enzymes, or components of the TGFβ-signaling pathway. Three typical examples of HCTD are Marfan syndrome (MFS), Ehlers-Danlos syndrome (EDS), and Loeys-Dietz syndrome (LDS). These syndromes show some degree of phenotypical overlap of cardiovascular, skeletal, and cutaneous features. MFS is typically characterized by cardiovascular, ocular, and skeletal manifestations and is caused by heterozygous mutations in FBN1, coding for the extracellular matrix (ECM) protein fibrillin-1. The most common cardiovascular phenotype involves aortic aneurysm and dissection at the sinuses of Valsalva. LDS is caused by mutations in TGBR1/2, SMAD2/3, or TGFB2/3, all coding for components of the TGFβ-signaling pathway. LDS can be distinguished from MFS by the unique presence of hypertelorism, bifid uvula or cleft palate, and widespread aortic and arterial aneurysm and tortuosity. Compared to MFS, LDS cardiovascular manifestations tend to be more severe. In contrast, no association is reported between LDS and the presence of ectopia lentis, a key distinguishing feature of MFS. Overlapping features between MFS and LDS include scoliosis, pes planus, anterior chest deformity, spontaneous pneumothorax, and dural ectasia. EDS refers to a group of clinically and genetically heterogeneous connective tissue disorders and all subtypes are characterized by variable abnormalities of skin, ligaments and joints, blood vessels, and internal organs. Typical presenting features include joint hypermobility, skin hyperextensibility, and tissue fragility. Up to one quarter of the EDS patients show aortic aneurysmal disease. The latest EDS nosology distinguishes 13 subtypes. Many phenotypic features show overlap between the different subtypes, which makes the clinical diagnosis rather difficult and highlights the importance of molecular diagnostic confirmation. PMID:29270370
Polycystic ovary syndrome: reviewing diagnosis and management of metabolic disturbances.
Spritzer, Poli Mara
2014-03-01
Polycystic ovary syndrome (PCOS) is a common condition in women at reproductive age associated with reproductive and metabolic dysfunction. Proposed diagnosed criteria for PCOS include two out of three features: androgen excess, menstrual irregularity, and polycystic ovary appearance on ultrasound (PCO), after other causes of hyperandrogenism and dysovulation are excluded. Based on these diagnostic criteria, the most common phenotypes are the "classic PCOS"--hyperandrogenism and oligomenorrhea, with or without PCO; the "ovulatory phenotype"--hyperandrogenism and PCO in ovulatory women; and the "non-hyperandrogenic phenotype", in which there is oligomenorrhea and PCO, without overt hyperandrogenism. The presence of obesity may exacerbate the metabolic and reproductive disorders associated with the syndrome. In addition, PCOS women present higher risk for type 2 diabetes and higher prevalence of cardiovascular risk factors that seems to be associated with the classic phenotype. The main interventions to minimize cardiovascular and metabolic risks in PCOS are lifestyle changes, pharmacological therapy, and bariatric surgery. Treatment with metformin has been shown to improve insulin sensitivity, lowering blood glucose and androgen levels. These effects are more potent when combined with lifestyle interventions. In conclusion, besides reproductive abnormalities, PCOS has been associated to metabolic comorbidities, most of them linked to obesity. Confounders, such as the lack of standard diagnostic criteria, heterogeneity of the clinical presentation, and presence of obesity, make management of PCOS difficult. Therefore, the approach to metabolic abnormalities should be tailored to the risks and treatment goals of each individual woman.
Margolis, Kara Gross; Li, Zhishan; Stevanovic, Korey; Saurman, Virginia; Anderson, George M.; Snyder, Isaac; Blakely, Randy D.; Gershon, Michael D.
2016-01-01
Autism spectrum disorder (ASD) is an increasingly common behavioral condition that frequently presents with gastrointestinal (GI) disturbances. It is not clear, however, how gut dysfunction relates to core ASD features. Multiple, rare hyperfunctional coding variants of the serotonin (5-HT) transporter (SERT, encoded by SLC6A4) have been identified in ASD. Expression of the most common SERT variant (Ala56) in mice increases 5-HT clearance and causes ASD-like behaviors. Here, we demonstrated that Ala56-expressing mice display GI defects that resemble those seen in mice lacking neuronal 5-HT. These defects included enteric nervous system hypoplasia, slow GI transit, diminished peristaltic reflex activity, and proliferation of crypt epithelial cells. An opposite phenotype was seen in SERT-deficient mice and in progeny of WT dams given the SERT antagonist fluoxetine. The reciprocal phenotypes that resulted from increased or decreased SERT activity support the idea that 5-HT signaling regulates enteric neuronal development and can, when disturbed, cause long-lasting abnormalities of GI function. Administration of a 5-HT4 agonist to Ala56 mice during development prevented Ala56-associated GI perturbations, suggesting that excessive SERT activity leads to inadequate 5-HT4–mediated neurogenesis. We propose that deficient 5-HT signaling during development may contribute to GI and behavioral features of ASD. The consequences of therapies targeting SERT during pregnancy warrant further evaluation. PMID:27111230
Cho, Nam-Yun; Kang, Gyeong Hoon
2016-01-01
The presence or absence of MLH1 methylation may critically affect the heterogeneity of colorectal carcinoma (CRC) with the CpG island methylator phenotype (CIMP). Here, we investigated the differential characteristics of CIMP-high (CIMP-H) CRCs according to MLH1 methylation status. To further confirm the MLH1-dependent features in CIMP-H CRC, an independent analysis was performed using data from The Cancer Genome Atlas (TCGA). In our CIMP-H CRC samples, MLH1-methylated tumors were characterized by older patient age, proximal colonic location, mucinous histology, intense lymphoid reactions, RUNX3/SOCS1 promoter methylation, BRAF mutations, and microsatellite instability-high (MSI-H) status. By contrast, MLH1-unmethylated tumors were associated with earlier age of onset, increased distal colorectal localization, adverse pathologic features, and KRAS mutations. In the TCGA dataset, the MLH1-silenced CIMP-H CRC demonstrated proximal location, MSI-H status, hypermutated phenotype, and frequent BRAF mutations, but the MLH1-non-silenced CIMP-H CRC was significantly associated with high frequencies of KRAS and APC mutations. In conclusion, the differential nature of CIMP-H CRCs depends primarily on the MLH1 methylation status. Based on the current knowledge, the sessile serrated adenoma/polyp may be the major precursor of MLH1-methylated CIMP-H CRCs, whereas MLH1-unmethylated CIMP-H CRCs may develop predominantly from KRAS-mutated traditional serrated adenomas and less commonly from BRAF-mutated traditional serrated adenomas and/or sessile serrated adenomas/polyps. PMID:26883113
Kim, Jung Ho; Bae, Jeong Mo; Cho, Nam-Yun; Kang, Gyeong Hoon
2016-03-22
The presence or absence of MLH1 methylation may critically affect the heterogeneity of colorectal carcinoma (CRC) with the CpG island methylator phenotype (CIMP). Here, we investigated the differential characteristics of CIMP-high (CIMP-H) CRCs according to MLH1 methylation status. To further confirm the MLH1-dependent features in CIMP-H CRC, an independent analysis was performed using data from The Cancer Genome Atlas (TCGA). In our CIMP-H CRC samples, MLH1-methylated tumors were characterized by older patient age, proximal colonic location, mucinous histology, intense lymphoid reactions, RUNX3/SOCS1 promoter methylation, BRAF mutations, and microsatellite instability-high (MSI-H) status. By contrast, MLH1-unmethylated tumors were associated with earlier age of onset, increased distal colorectal localization, adverse pathologic features, and KRAS mutations. In the TCGA dataset, the MLH1-silenced CIMP-H CRC demonstrated proximal location, MSI-H status, hypermutated phenotype, and frequent BRAF mutations, but the MLH1-non-silenced CIMP-H CRC was significantly associated with high frequencies of KRAS and APC mutations. In conclusion, the differential nature of CIMP-H CRCs depends primarily on the MLH1 methylation status. Based on the current knowledge, the sessile serrated adenoma/polyp may be the major precursor of MLH1-methylated CIMP-H CRCs, whereas MLH1-unmethylated CIMP-H CRCs may develop predominantly from KRAS-mutated traditional serrated adenomas and less commonly from BRAF-mutated traditional serrated adenomas and/or sessile serrated adenomas/polyps.
Zhang, Minlu; Zhu, Cheng; Jacomy, Alexis; Lu, Long J.; Jegga, Anil G.
2011-01-01
The low prevalence rate of orphan diseases (OD) requires special combined efforts to improve diagnosis, prevention, and discovery of novel therapeutic strategies. To identify and investigate relationships based on shared genes or shared functional features, we have conducted a bioinformatic-based global analysis of all orphan diseases with known disease-causing mutant genes. Starting with a bipartite network of known OD and OD-causing mutant genes and using the human protein interactome, we first construct and topologically analyze three networks: the orphan disease network, the orphan disease-causing mutant gene network, and the orphan disease-causing mutant gene interactome. Our results demonstrate that in contrast to the common disease-causing mutant genes that are predominantly nonessential, a majority of orphan disease-causing mutant genes are essential. In confirmation of this finding, we found that OD-causing mutant genes are topologically important in the protein interactome and are ubiquitously expressed. Additionally, functional enrichment analysis of those genes in which mutations cause ODs shows that a majority result in premature death or are lethal in the orthologous mouse gene knockout models. To address the limitations of traditional gene-based disease networks, we also construct and analyze OD networks on the basis of shared enriched features (biological processes, cellular components, pathways, phenotypes, and literature citations). Analyzing these functionally-linked OD networks, we identified several additional OD-OD relations that are both phenotypically similar and phenotypically diverse. Surprisingly, we observed that the wiring of the gene-based and other feature-based OD networks are largely different; this suggests that the relationship between ODs cannot be fully captured by the gene-based network alone. PMID:21664998
Mutational robustness accelerates the origin of novel RNA phenotypes through phenotypic plasticity.
Wagner, Andreas
2014-02-18
Novel phenotypes can originate either through mutations in existing genotypes or through phenotypic plasticity, the ability of one genotype to form multiple phenotypes. From molecules to organisms, plasticity is a ubiquitous feature of life, and a potential source of exaptations, adaptive traits that originated for nonadaptive reasons. Another ubiquitous feature is robustness to mutations, although it is unknown whether such robustness helps or hinders the origin of new phenotypes through plasticity. RNA is ideal to address this question, because it shows extensive plasticity in its secondary structure phenotypes, a consequence of their continual folding and unfolding, and these phenotypes have important biological functions. Moreover, RNA is to some extent robust to mutations. This robustness structures RNA genotype space into myriad connected networks of genotypes with the same phenotype, and it influences the dynamics of evolving populations on a genotype network. In this study I show that both effects help accelerate the exploration of novel phenotypes through plasticity. My observations are based on many RNA molecules sampled at random from RNA sequence space, and on 30 biological RNA molecules. They are thus not only a generic feature of RNA sequence space but are relevant for the molecular evolution of biological RNA. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Fernández, Luis; Nevado, Julián; Santos, Fernando; Heine-Suñer, Damià; Martinez-Glez, Victor; García-Miñaur, Sixto; Palomo, Rebeca; Delicado, Alicia; Pajares, Isidora López; Palomares, María; García-Guereta, Luis; Valverde, Eva; Hawkins, Federico; Lapunzina, Pablo
2009-01-01
Background Individuals affected with DiGeorge and Velocardiofacial syndromes present with both phenotypic diversity and variable expressivity. The most frequent clinical features include conotruncal congenital heart defects, velopharyngeal insufficiency, hypocalcemia and a characteristic craniofacial dysmorphism. The etiology in most patients is a 3 Mb recurrent deletion in region 22q11.2. However, cases of infrequent deletions and duplications with different sizes and locations have also been reported, generally with a milder, slightly different phenotype for duplications but with no clear genotype-phenotype correlation to date. Methods We present a 7 month-old male patient with surgically corrected ASD and multiple VSDs, and dysmorphic facial features not clearly suggestive of 22q11.2 deletion syndrome, and a newborn male infant with cleft lip and palate and upslanting palpebral fissures. Karyotype, FISH, MLPA, microsatellite markers segregation studies and SNP genotyping by array-CGH were performed in both patients and parents. Results Karyotype and FISH with probe N25 were normal for both patients. MLPA analysis detected a partial de novo 1.1 Mb deletion in one patient and a novel partial familial 0.4 Mb duplication in the other. Both of these alterations were located at a distal position within the commonly deleted region in 22q11.2. These rearrangements were confirmed and accurately characterized by microsatellite marker segregation studies and SNP array genotyping. Conclusion The phenotypic diversity found for deletions and duplications supports a lack of genotype-phenotype correlation in the vicinity of the LCRC-LCRD interval of the 22q11.2 chromosomal region, whereas the high presence of duplications in normal individuals supports their role as polymorphisms. We suggest that any hypothetical correlation between the clinical phenotype and the size and location of these alterations may be masked by other genetic and/or epigenetic modifying factors. PMID:19490635
The role of virologic and immunologic factors in mother-to-child transmission of HIV-1.
Colognesi, C; Halapi, E; Jansson, M; Hodara, V; Steuer, G; Tresoldi, E; Leitner, T; Scarlatti, G
1997-09-01
More than 90% of human immunodeficiency virus type 1 (HIV-1) infection in children is acquired by mother-to-child transmission. However, infection of the child occurs in between 14 and 35% of cases. To understand the mechanisms involved in HIV-1 transmission, we have investigated the antigenic, molecular, and phenotypic characteristics of the virus harbored in infected mothers and their children. A clear correlation was observed between the transmission of the virus and the isolation of viral variants with a rapidly replicating and syncytium-inducing phenotype from the mother. Furthermore, non-transmitting mothers were able to neutralize several primary isolates more frequently than transmitting mothers. The comparison of the viral phenotype and genotype of mother-child pairs showed that the transmitted virus did not have common features, suggesting that transmission is usually not a selective process. This study suggests that transmission is governed by an interaction of both viral and immunological factors. The results obtained indicate that different strategies can be applied for the prevention of transmission.
Essential pitfalls in "essential” tremor
Espay, AJ; Lang, AE; Erro, R; Merola, A; Fasano, A; Berardelli, A; Bhatia, KP
2016-01-01
While essential tremor has been considered the most common movement disorder, it has largely remained a diagnosis of exclusion: many tremor and non-tremor features must be absent for the clinical diagnosis to stand. The clinical features of “essential tremor” overlap with or may be part of other tremor disorders and, not surprisingly, this prevalent familial disorder has remained without a gene identified, without a consistent natural history, and without an acceptable pathology or pathophysiologic underpinning. The collective evidence suggests that under the rubric of essential tremor there exists multiple unique diseases, some of which represent cerebellar dysfunction, but for which there is no intrinsic “essence” other than a common oscillatory behavior on posture and action. One approach may be to use the term “essential tremor” only as a transitional node in the deep phenotyping of tremor disorders based on historical, phenomenological, and neurophysiological features, to facilitate its etiologic diagnosis or serve for future gene- and biomarker-discovery efforts. This approach deemphasizes essential tremor as a diagnostic entity and facilitates the understanding of the underlying disorders in order to develop biologically tailored diagnostic and therapeutic strategies. PMID:28116753
Modelling fragile X syndrome in the laboratory setting: A behavioral perspective.
Melancia, Francesca; Trezza, Viviana
2018-04-25
Fragile X syndrome is the most common form of inherited mental retardation and the most frequent monogenic cause of syndromic autism spectrum disorders. The syndrome is caused by the loss of the Fragile X Mental Retardation Protein (FMRP), a key RNA-binding protein involved in synaptic plasticity and neuronal morphology. Patients show intellectual disability, social deficits, repetitive behaviors and impairments in social communication. The aim of this review is to outline the importance of behavioral phenotyping of animal models of FXS from a developmental perspective, by showing how the behavioral characteristics of FXS at the clinical level can be translated into effective, developmentally-specific and clinically meaningful behavioral readouts in the laboratory setting. After introducing the behavioral features, diagnostic criteria and off-label pharmacotherapy of FXS, we outline how FXS-relevant behavioral features can be modelled in laboratory animals in the course of development: we review the progress to date, discuss how behavioral phenotyping in animal models of FXS is essential to identify potential treatments, and discuss caveats and future directions in this research field. Copyright © 2018. Published by Elsevier B.V.
Misceo, D; Barøy, T; Helle, J R; Braaten, O; Fannemel, M; Frengen, E
2012-10-01
Several Wolf-Hirschhorn syndrome patients have been studied, mouse models for a few candidate genes have been constructed and two WHS critical regions have been postulated, but the molecular basis of the syndrome remains poorly understood. Single gene contributions to phenotypes of microdeletion syndromes have often been based on the study of patients carrying small, atypical deletions. We report a 5-year-old girl harboring an atypical 1.5Mb del4p16.3 and review seven previously published patients carrying a similar deletion. They show a variable clinical presentation and the only consistent feature is post-natal growth delay. However, four of eight patients carry a ring (4), and ring chromosomes in general are associated with growth deficiency. The Greek helmet profile is absent, although a trend towards common dysmorphic features exists. Variable expressivity and incomplete penetrance might play a role in WHS, resulting in difficult clinical diagnosis and challenge in understanding of the genotype/phenotype correlation. Copyright © 2012 Elsevier B.V. All rights reserved.
Can Creutzfeldt-Jakob disease unravel the mysteries of Alzheimer?
Kovacs, Gabor G
2016-09-02
Recent studies on iatrogenic Creutzfeldt-Jakob disease (CJD) raised concerns that one of the hallmark lesions of Alzheimer disease (AD), amyloid-β (Aβ), may be transmitted from human-to-human. The neuropathology of AD-related lesions is complex. Therefore, many aspects need to be considered in deciding on this issue. Observations of recent studies can be summarized as follows: 1) The frequency of iatrogenic CJD cases with parencyhmal and vascular Aβ deposits is statistically higher than expected; 2) The morphology and distribution of Aβ deposition may show distinct features; 3) The pituitary and the dura mater themselves may serve as potential sources of Aβ seeds; 4) Cadaveric dura mater from 2 examined cases shows Aβ deposition; and 5) There is a lack of evidence that the clinical phenotype of AD appears following the application of cadaveric pituitary hormone or dura mater transplantation. These studies support the notion that neurodegenerative diseases have common features regarding propagation of disease-associated proteins as seeds. However, until further evidence emerges, prions of transmissible spongiform encephalopathies are the only neurodegenerative disease-related proteins proven to propagate clinicopathological phenotypes.
Lacourse, Eric; Brendgen, Mara; Vitaro, Frank; Dionne, Ginette; Tremblay, Richard Ernest; Boivin, Michel
2017-01-01
Background Few studies are grounded in a developmental framework to study proactive and reactive aggression. Furthermore, although distinctive correlates, predictors and outcomes have been highlighted, proactive and reactive aggression are substantially correlated. To our knowledge, no empirical study has examined the communality of genetic and environmental underpinning of the development of both subtypes of aggression. The current study investigated the communality and specificity of genetic-environmental factors related to heterogeneity in proactive and reactive aggression’s development throughout childhood. Methods Participants were 223 monozygotic and 332 dizygotic pairs. Teacher reports of aggression were obtained at 6, 7, 9, 10 and 12 years of age. Joint development of both phenotypes were analyzed through a multivariate latent growth curve model. Set point, differentiation, and genetic maturation/environmental modulation hypotheses were tested using a biometric decomposition of intercepts and slopes. Results Common genetic factors accounted for 64% of the total variation of proactive and reactive aggression’s intercepts. Two other sets of uncorrelated genetic factors accounted for reactive aggression’s intercept (17%) on the one hand, and for proactive (43%) and reactive (13%) aggression’s slopes on the other. Common shared environmental factors were associated with proactive aggression’s intercept (21%) and slope (26%) and uncorrelated shared environmental factors were also associated with reactive aggression’s slope (14%). Common nonshared environmental factors explained most of the remaining variability of proactive and reactive aggression slopes. Conclusions A genetic differentiation hypothesis common to both phenotypes was supported by common genetic factors associated with the developmental heterogeneity of proactive and reactive aggression in childhood. A genetic maturation hypothesis common to both phenotypes, albeit stronger for proactive aggression, was supported by common genetic factors associated with proactive and reactive aggression slopes. A shared environment set point hypothesis for proactive aggression was supported by shared environmental factors associated with proactive aggression baseline and slope. Although there are many common features to proactive and reactive aggression, the current research underscores the advantages of differentiating them when studying aggression. PMID:29211810
Autism Spectrum Disorders: Translating human deficits into mouse behavior.
Pasciuto, E; Borrie, S C; Kanellopoulos, A K; Santos, A R; Cappuyns, E; D'Andrea, L; Pacini, L; Bagni, C
2015-10-01
Autism Spectrum Disorders are a heterogeneous group of neurodevelopmental disorders, with rising incidence but little effective therapeutic intervention available. Currently two main clinical features are described to diagnose ASDs: impaired social interaction and communication, and repetitive behaviors. Much work has focused on understanding underlying causes of ASD by generating animal models of the disease, in the hope of discovering signaling pathways and cellular targets for drug intervention. Here we review how ASD behavioral phenotypes can be modeled in the mouse, the most common animal model currently in use in this field, and discuss examples of genetic mouse models of ASD with behavioral features that recapitulate various symptoms of ASD. Copyright © 2015 Elsevier Inc. All rights reserved.
Generalized overgrowth syndromes with prenatal onset.
Yachelevich, Naomi
2015-04-01
Children with generalized overgrowth syndromes are large at birth, or have excessive postnatal growth. Many of these syndromes are associated with an increase in neoplasia. Consideration of the possibility of overgrowth syndrome in a pediatric patient who presents with increased growth parameters, variable malformations and neurodevelopmental phenotype, and distinctive features, is important for medical management, reproductive counseling, and tumor surveillance for some of the disorders. This review describes the clinical features and surveillance recommendations for the common generalized overgrowth syndromes the pediatrician may encounter. It also provides a glimpse into advances of recent years in understanding the molecular mechanisms responsible for the disrupted growth regulation in these disorders. Copyright © 2015 Mosby, Inc. All rights reserved.
Salivary glands abnormalities in oculo-auriculo-vertebral spectrum.
Brotto, Davide; Manara, Renzo; Vio, Stefania; Ghiselli, Sara; Cantone, Elena; Mardari, Rodica; Toldo, Irene; Stritoni, Valentina; Castiglione, Alessandro; Lovo, Elisa; Trevisi, Patrizia; Bovo, Roberto; Martini, Alessandro
2018-01-01
Feeding and swallowing impairment are present in up to 80% of oculo-auriculo-vertebral spectrum (OAVS) patients. Salivary gland abnormalities have been reported in OAVS patients but their rate, features, and relationship with phenotype severity have yet to be defined. Parotid and submandibular salivary gland hypo/aplasia was evaluated on head MRI of 25 OAVS patients (16 with severe phenotype, Goldenhar syndrome) and 11 controls. All controls disclosed normal salivary glands. Abnormal parotid glands were found exclusively ipsilateral to facial microsomia in 21/25 OAVS patients (84%, aplasia in six patients) and showed no association with phenotype severity (14/16 patients with Goldenhar phenotype vs 7/9 patients with milder phenotype, p = 0.6). Submandibular salivary gland hypoplasia was detected in six OAVS patients, all with concomitant ipsilateral severe involvement of the parotid gland (p < 0.001). Submandibular salivary gland hypoplasia was associated to Goldenhar phenotype (p < 0.05). Parotid gland abnormalities were associated with ipsilateral fifth (p < 0.001) and seventh cranial nerve (p = 0.001) abnormalities. No association was found between parotid gland anomaly and ipsilateral internal carotid artery, inner ear, brain, eye, or spine abnormalities (p > 0.6). Salivary gland abnormalities are strikingly common in OAVS. Their detection might help the management of OAVS-associated swallowing and feeding impairment.
1p36 deletion syndrome associated with Prader-Willi-like phenotype.
Tsuyusaki, Yu; Yoshihashi, Hiroshi; Furuya, Noritaka; Adachi, Masanori; Osaka, Hitoshi; Yamamoto, Kayono; Kurosawa, Kenji
2010-08-01
1p36 deletion syndrome is one of the most common subtelomeric deletion syndromes, characterized by moderate to severe mental retardation, characteristic facial appearance, hypotonia, obesity, and seizures. The clinical features often overlap with those of Prader-Willi syndrome (PWS). To elucidate the phenotype-genotype correlation in 1p36 deletion syndrome, two cases involving a PWS-like phenotype were analyzed on molecular cytogenetics. Two patients presenting with the PWS-like phenotype but having negative results for PWS underwent fluorescence in situ hybridization (FISH). The size of the chromosome 1p36 deletions was characterized using probes of BAC clones based on the University of California, Santa Cruz (UCSC) Genome Browser. PWS was excluded on FISH and methylation-specific polymerase chain reaction. Subsequent FISH using the probe D1Z2 showed deletion of the 1p36.3 region, confirming the diagnosis of 1p36 deletion syndrome. Further analysis characterized the 1p36 deletions as being located between 4.17 and 4.36 Mb in patient 1 and between 4.89 and 6.09 Mb in patient 2. Patients with 1p36 deletion syndrome exhibit a PWS-like phenotype and are therefore probably underdiagnosed. The possible involvement of the terminal 4 Mb region of chromosome 1p36 in the PWS-like phenotype is hypothesized. © 2010 Japan Pediatric Society.
Mice lacking cyclin-dependent kinase-like 5 manifest autistic and ADHD-like behaviors.
Jhang, Cian-Ling; Huang, Tzyy-Nan; Hsueh, Yi-Ping; Liao, Wenlin
2017-10-15
Neurodevelopmental disorders frequently share common clinical features and appear high rate of comorbidity, such as those present in patients with attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorders (ASD). While characterizing behavioral phenotypes in the mouse model of cyclin-dependent kinase-like 5 (CDKL5) disorder, a neurodevelopmental disorder caused by mutations in the X-linked gene encoding CDKL5, we found that these mice manifested behavioral phenotypes mimicking multiple key features of ASD, such as impaired social interaction and communication, as well as increased stereotypic digging behaviors. These mice also displayed hyper-locomotion, increased aggressiveness and impulsivity, plus deficits in motor and associative learning, resembling primary symptoms of ADHD. Through brain region-specific biochemical analysis, we uncovered that loss of CDKL5 disrupts dopamine synthesis and the expression of social communication-related key genes, such as forkhead-box P2 and mu-opioid receptor, in the corticostriatal circuit. Together, our findings support that CDKL5 plays a role in the comorbid features of autism and ADHD, and mice lacking CDKL5 may serve as an animal model to study the molecular and circuit mechanisms underlying autism-ADHD comorbidity. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Hunt, E; Bornovalova, M A; Patrick, C J
2015-05-01
Previous studies have reported strong genetic and environmental overlap between antisocial-externalizing (factor 2; F2) features of psychopathy and borderline personality disorder (BPD) tendencies. However, this line of research has yet to examine etiological associations of affective-interpersonal (factor 1, F1) features of psychopathy with BPD tendencies. The current study investigated differential phenotypic and genetic overlap of psychopathy factors 1 and 2 with BPD tendencies in a sample of over 250 male and female community-recruited adult twin pairs. Consistent with previous research, biometric analyses revealed strong genetic and non-shared environmental correlations of F2 with BPD tendencies, suggesting that common genetic and non-shared environmental factors contribute to both phenotypes. In contrast, negative genetic and non-shared environmental correlations were observed between F1 and BPD tendencies, indicating that the genetic factors underlying F1 serve as protective factors against BPD. No gender differences emerged in the analyses. These findings provide further insight into associations of psychopathic features - F1 as well as F2 - and BPD tendencies. Implications for treatment and intervention are discussed, along with how psychopathic traits may differentially influence the manifestation of BPD tendencies.
Risk factors, pathological and phenotypic features of male breast cancer in Greece.
Tsoukalas, Nikolaos; Moirogiorgou, Evangelia; Tolia, Maria; Pistamaltzian, Nikolaos; Bournakis, Evangelos; Papadimitriou, Konstantinos; Demiri, Stamatina; Panopoulos, Christos; Koumakis, Georgios; Efremidis, Anna
2014-03-01
Breast cancer (BC) in males is a rare disease and comprises 0.5-1% of all BC cases. Due to its rarity, there are limited data regarding risk factors, biology and relevant treatment. A prospective observational study of demographic, clinical and histological characteristics of serially-admitted men with breast cancer was carried out from 1999 to 2009. Data were recorded and analyzed from a database including 1,315 cases of BC. Registered data concerned age, initial presentation, family and lifestyle history (risk factors), histological features, phenotypic subtypes and TNM staging. Twenty two men with BC were identified, with a median age of 63 years. The most common initial presentation was a palpable lump in 12 patients, nipple contraction in three and ulceration in three. According to their medical history, nine men were overweight, 10 suffered from hypertension and 12 were smokers. The most prevalent phenotype was luminal-A followed by triple-negative type. BC in none of the cases was HER 2-amplified. The majority of cases were grade II or III and stage II or III. In the present small study, we confirm that BC in males is rare. It is a disease of middle-age and presents at advanced stages. Most of patients had 1-3 risk factors for BC. Expression of hormonal receptors occurs in the majority of BC tumors in males and with rarity in HER 2 amplification.
Richard, Annie E; Scheffer, Ingrid E; Wilson, Sarah J
2017-04-01
Richard, A.E., I.E. Scheffer and S.J. Wilson. Features of the broader autism phenotype in people with epilepsy support shared mechanisms between epilepsy and autism spectrum disorder. NEUROSCI BIOBEHAV REV 21(1) XXX-XXX, 2016. To inform on mechanisms underlying the comorbidity of epilepsy and autism spectrum disorder (ASD), we conducted meta-analyses to test whether impaired facial emotion recognition (FER) and theory of mind (ToM), key phenotypic traits of ASD, are more common in people with epilepsy (PWE) than controls. We contrasted these findings with those of relatives of individuals with ASD (ASD-relatives) compared to controls. Furthermore, we examined the relationship of demographic (age, IQ, sex) and epilepsy-related factors (epilepsy onset age, duration, seizure laterality and origin) to FER and ToM. Thirty-one eligible studies of PWE (including 1449 individuals: 77% with temporal lobe epilepsy), and 22 of ASD-relatives (N=1295) were identified by a systematic database search. Analyses revealed reduced FER and ToM in PWE compared to controls (p<0.001), but only reduced ToM in ASD-relatives (p<0.001). ToM was poorer in PWE than ASD-relatives. Only weak associations were found between FER and ToM and epilepsy-related factors. These findings suggest shared mechanisms between epilepsy and ASD, independent of intellectual disability. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Human Phenotype Ontology: Semantic Unification of Common and Rare Disease
Groza, Tudor; Köhler, Sebastian; Moldenhauer, Dawid; Vasilevsky, Nicole; Baynam, Gareth; Zemojtel, Tomasz; Schriml, Lynn Marie; Kibbe, Warren Alden; Schofield, Paul N.; Beck, Tim; Vasant, Drashtti; Brookes, Anthony J.; Zankl, Andreas; Washington, Nicole L.; Mungall, Christopher J.; Lewis, Suzanna E.; Haendel, Melissa A.; Parkinson, Helen; Robinson, Peter N.
2015-01-01
The Human Phenotype Ontology (HPO) is widely used in the rare disease community for differential diagnostics, phenotype-driven analysis of next-generation sequence-variation data, and translational research, but a comparable resource has not been available for common disease. Here, we have developed a concept-recognition procedure that analyzes the frequencies of HPO disease annotations as identified in over five million PubMed abstracts by employing an iterative procedure to optimize precision and recall of the identified terms. We derived disease models for 3,145 common human diseases comprising a total of 132,006 HPO annotations. The HPO now comprises over 250,000 phenotypic annotations for over 10,000 rare and common diseases and can be used for examining the phenotypic overlap among common diseases that share risk alleles, as well as between Mendelian diseases and common diseases linked by genomic location. The annotations, as well as the HPO itself, are freely available. PMID:26119816
Giant Viruses of Amoebas: An Update
Aherfi, Sarah; Colson, Philippe; La Scola, Bernard; Raoult, Didier
2016-01-01
During the 12 past years, five new or putative virus families encompassing several members, namely Mimiviridae, Marseilleviridae, pandoraviruses, faustoviruses, and virophages were described. In addition, Pithovirus sibericum and Mollivirus sibericum represent type strains of putative new giant virus families. All these viruses were isolated using amoebal coculture methods. These giant viruses were linked by phylogenomic analyses to other large DNA viruses. They were then proposed to be classified in a new viral order, the Megavirales, on the basis of their common origin, as shown by a set of ancestral genes encoding key viral functions, a common virion architecture, and shared major biological features including replication inside cytoplasmic factories. Megavirales is increasingly demonstrated to stand in the tree of life aside Bacteria, Archaea, and Eukarya, and the megavirus ancestor is suspected to be as ancient as cellular ancestors. In addition, giant amoebal viruses are visible under a light microscope and display many phenotypic and genomic features not found in other viruses, while they share other characteristics with parasitic microbes. Moreover, these organisms appear to be common inhabitants of our biosphere, and mimiviruses and marseilleviruses were isolated from human samples and associated to diseases. In the present review, we describe the main features and recent findings on these giant amoebal viruses and virophages. PMID:27047465
Jobling, Rebekah; Stavropoulos, Dimitri James; Marshall, Christian R; Cytrynbaum, Cheryl; Axford, Michelle M; Londero, Vanessa; Moalem, Sharon; Orr, Jennifer; Rossignol, Francis; Lopes, Fatima Daniela; Gauthier, Julie; Alos, Nathalie; Rupps, Rosemarie; McKinnon, Margaret; Adam, Shelin; Nowaczyk, Malgorzata J M; Walker, Susan; Scherer, Stephen W; Nassif, Christina; Hamdan, Fadi F; Deal, Cheri L; Soucy, Jean-François; Weksberg, Rosanna; Macleod, Patrick; Michaud, Jacques L; Chitayat, David
2018-05-01
Chitayat-Hall syndrome, initially described in 1990, is a rare condition characterised by distal arthrogryposis, intellectual disability, dysmorphic features and hypopituitarism, in particular growth hormone deficiency. The genetic aetiology has not been identified. We identified three unrelated families with a total of six affected patients with the clinical manifestations of Chitayat-Hall syndrome. Through whole exome or whole genome sequencing, pathogenic variants in the MAGEL2 gene were identified in all affected patients. All disease-causing sequence variants detected are predicted to result in a truncated protein, including one complex variant that comprised a deletion and inversion. Chitayat-Hall syndrome is caused by pathogenic variants in MAGEL2 and shares a common aetiology with the recently described Schaaf-Yang syndrome. The phenotype of MAGEL2 -related disorders is expanded to include growth hormone deficiency as an important and treatable complication. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Genetic and developmental basis for parallel evolution and its significance for hominoid evolution.
Reno, Philip L
2014-01-01
Greater understanding of ape comparative anatomy and evolutionary history has brought a general appreciation that the hominoid radiation is characterized by substantial homoplasy.(1-4) However, little consensus has been reached regarding which features result from repeated evolution. This has important implications for reconstructing ancestral states throughout hominoid evolution, including the nature of the Pan-Homo last common ancestor (LCA). Advances from evolutionary developmental biology (evo-devo) have expanded the diversity of model organisms available for uncovering the morphogenetic mechanisms underlying instances of repeated phenotypic change. Of particular relevance to hominoids are data from adaptive radiations of birds, fish, and even flies demonstrating that parallel phenotypic changes often use similar genetic and developmental mechanisms. The frequent reuse of a limited set of genes and pathways underlying phenotypic homoplasy suggests that the conserved nature of the genetic and developmental architecture of animals can influence evolutionary outcomes. Such biases are particularly likely to be shared by closely related taxa that reside in similar ecological niches and face common selective pressures. Consideration of these developmental and ecological factors provides a strong theoretical justification for the substantial homoplasy observed in the evolution of complex characters and the remarkable parallel similarities that can occur in closely related taxa. Thus, as in other branches of the hominoid radiation, repeated phenotypic evolution within African apes is also a distinct possibility. If so, the availability of complete genomes for each of the hominoid genera makes them another model to explore the genetic basis of repeated evolution. © 2014 Wiley Periodicals, Inc.
Shah, Shaheen P; Taylor, Amy E; Sowden, Jane C; Ragge, Nicky; Russell-Eggitt, Isabelle; Rahi, Jugnoo S; Gilbert, Clare E
2012-02-01
To describe the clinical features of children with anophthalmos, microphthalmos, and typical coloboma (AMC). Descriptive, observational, cross-sectional study of the United Kingdom. A total of 135 children with AMC newly diagnosed over an 18-month period beginning in October 2006. Cases were identified using active surveillance through an established ophthalmic surveillance system. Eligible cases were followed up 6 months after first notification. Phenotypic characteristics, both ocular and systemic, clinical investigations, causes, and interventions. A total of 210 eyes (of 135 children) were affected by AMC, of which 153 had isolated coloboma or coloboma with microphthalmos. The most common colobomatous anomaly was a chorioretinal defect present in 109 eyes (71.2%). Some 44% of children were bilaterally visually impaired. Systemic abnormalities were present in 59.7% of children, with craniofacial anomalies being the most common. Children with bilateral disease had a 2.7 times higher odds (95% confidence interval, 1.3-5.5, P = 0.006) of having systemic involvement than unilaterally affected children. Neurologic imaging was the most frequent investigation (58.5%) performed. Less than one third (30.3%) of the children with microphthalmos had ocular axial lengths measured. Eight children had confirmed genetic mutations. Approximately half (49.2%) of the children required ocular intervention. Colobomatous defects were the most common phenotype within this spectrum of anomalies in the United Kingdom. The high frequency of posterior segment colobomatous involvement means that a dilated fundal examination should be made in all cases. The significant visual and systemic morbidity in affected children underlines the importance of a multidisciplinary approach to management. Copyright © 2012 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Neurologic and developmental features of the Smith-Magenis syndrome (del 17p11.2).
Gropman, Andrea L; Duncan, Wallace C; Smith, Ann C M
2006-05-01
The Smith-Magenis syndrome is a rare, complex multisystemic disorder featuring, mental retardation and multiple congenital anomalies caused by a heterozygous interstitial deletion of chromosome 17p11.2. The phenotype of Smith-Magenis syndrome is characterized by a distinct pattern of features including infantile hypotonia, generalized complacency and lethargy in infancy, minor skeletal (brachycephaly, brachydactyly) and craniofacial features, ocular abnormalities, middle ear and laryngeal abnormalities including hoarse voice, as well as marked early expressive speech and language delays, psychomotor and growth retardation, and a 24-hour sleep disturbance. A striking neurobehavioral pattern of stereotypies, hyperactivity, polyembolokoilamania, onychotillomania, maladaptive and self-injurious and aggressive behavior is observed with increasing age. The diagnosis of Smith-Magenis syndrome is based upon the clinical recognition of a constellation of physical, developmental, and behavioral features in combination with a sleep disorder characterized by inverted circadian rhythm of melatonin secretion. Many of the features of Smith-Magenis syndrome are subtle in infancy and early childhood, and become more recognizable with advancing age. Infants are described as looking "cherubic" with a Down syndrome-like appearance, whereas with age the facial appearance is that of relative prognathism. Early diagnosis requires awareness of the often subtle clinical and neurobehavioral phenotype of the infant period. Speech delay with or without hearing loss is common. Most children are diagnosed in mid-childhood when the features of the disorder are most recognizable and striking. While improvements in cytogenetic analysis help to bring cases to clinical recognition at an earlier age, this review seeks to increase clinical awareness about Smith-Magenis syndrome by presenting the salient features observed at different ages including descriptions of the neurologic and behavioral features. Detailed review of the circadian rhythm disturbance unique to Smith-Magenis syndrome is presented. Suggestions for management of the behavioral and sleep difficulties are discussed in the context of the authors' personal experience in the setting of an ongoing Smith-Magenis syndrome natural history study.
Genomic Study of Cardiovascular Continuum Comorbidity.
Makeeva, O A; Sleptsov, A A; Kulish, E V; Barbarash, O L; Mazur, A M; Prokhorchuk, E B; Chekanov, N N; Stepanov, V A; Puzyrev, V P
2015-01-01
Comorbidity or a combination of several diseases in the same individual is a common and widely investigated phenomenon. However, the genetic background for non-random disease combinations is not fully understood. Modern technologies and approaches to genomic data analysis enable the investigation of the genetic profile of patients burdened with several diseases (polypathia, disease conglomerates) and its comparison with the profiles of patients with single diseases. An association study featuring three groups of patients with various combinations of cardiovascular disorders and a control group of relatively healthy individuals was conducted. Patients were selected as follows: presence of only one disease, ischemic heart disease (IHD); a combination of two diseases, IHD and arterial hypertension (AH); and a combination of several diseases, including IHD, AH, type 2 diabetes mellitus (T2DM), and hypercholesterolemia (HC). Genotyping was performed using the "My Gene" genomic service (www.i-gene.ru). An analysis of 1,400 polymorphic genetic variants and their associations with the studied phenotypes are presented. A total of 14 polymorphic variants were associated with the phenotype "IHD only," including those in the APOB, CD226, NKX2-5, TLR2, DPP6, KLRB1, VDR, SCARB1, NEDD4L, and SREBF2 genes, and intragenic variants rs12487066, rs7807268, rs10896449, and rs944289. A total of 13 genetic markers were associated with the "IHD and AH" phenotype, including variants in the BTNL2, EGFR, CNTNAP2, SCARB1, and HNF1A genes, and intragenic polymorphisms rs801114, rs10499194, rs13207033, rs2398162, rs6501455, and rs1160312. A total of 14 genetic variants were associated with a combination of several diseases of cardiovascular continuum (CVC), including those in the TAS2R38, SEZ6L, APOA2, KLF7, CETP, ITGA4, RAD54B, LDLR, and MTAP genes, along with intragenic variants rs1333048, rs1333049, and rs6501455. One common genetic marker was identified for the "IHD only" and "IHD and AH" phenotypes: rs4765623 in the SCARB1 gene; two common genetic markers, rs663048 in SEZ6L and intragenic rs6501455, were identified for the "IHD and AH" phenotype and a combination of several diseases (syntropy); there were no common genetic markers for the "syntropy" and "IHD only" phenotypes. Classificatory analysis of the relationships between the associated genes and metabolic pathways revealed that lipid-metabolizing genes are involved in the development of all three CVC variants, whereas immunity-response genes are specific to the "IHD only" phenotype. The study demonstrated that comorbidity presents additional challenges in association studies of disease predisposition, since the genetic profile of combined forms of pathology can be markedly different from those for isolated "single" forms of a disease.
Geographic atrophy phenotype identification by cluster analysis.
Monés, Jordi; Biarnés, Marc
2018-03-01
To identify ocular phenotypes in patients with geographic atrophy secondary to age-related macular degeneration (GA) using a data-driven cluster analysis. This was a retrospective analysis of data from a prospective, natural history study of patients with GA who were followed for ≥6 months. Cluster analysis was used to identify subgroups within the population based on the presence of several phenotypic features: soft drusen, reticular pseudodrusen (RPD), primary foveal atrophy, increased fundus autofluorescence (FAF), greyish FAF appearance and subfoveal choroidal thickness (SFCT). A comparison of features between the subgroups was conducted, and a qualitative description of the new phenotypes was proposed. The atrophy growth rate between phenotypes was then compared. Data were analysed from 77 eyes of 77 patients with GA. Cluster analysis identified three groups: phenotype 1 was characterised by high soft drusen load, foveal atrophy and slow growth; phenotype 3 showed high RPD load, extrafoveal and greyish FAF appearance and thin SFCT; the characteristics of phenotype 2 were midway between phenotypes 1 and 3. Phenotypes differed in all measured features (p≤0.013), with decreases in the presence of soft drusen, foveal atrophy and SFCT seen from phenotypes 1 to 3 and corresponding increases in high RPD load, high FAF and greyish FAF appearance. Atrophy growth rate differed between phenotypes 1, 2 and 3 (0.63, 1.91 and 1.73 mm 2 /year, respectively, p=0.0005). Cluster analysis identified three distinct phenotypes in GA. One of them showed a particularly slow growth pattern. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Weaver syndrome and EZH2 mutations: Clarifying the clinical phenotype.
Tatton-Brown, Katrina; Murray, Anne; Hanks, Sandra; Douglas, Jenny; Armstrong, Ruth; Banka, Siddharth; Bird, Lynne M; Clericuzio, Carol L; Cormier-Daire, Valerie; Cushing, Tom; Flinter, Frances; Jacquemont, Marie-Line; Joss, Shelagh; Kinning, Esther; Lynch, Sally Ann; Magee, Alex; McConnell, Vivienne; Medeira, Ana; Ozono, Keiichi; Patton, Michael; Rankin, Julia; Shears, Debbie; Simon, Marleen; Splitt, Miranda; Strenger, Volker; Stuurman, Kyra; Taylor, Clare; Titheradge, Hannah; Van Maldergem, Lionel; Temple, I Karen; Cole, Trevor; Seal, Sheila; Rahman, Nazneen
2013-12-01
Weaver syndrome, first described in 1974, is characterized by tall stature, a typical facial appearance, and variable intellectual disability. In 2011, mutations in the histone methyltransferase, EZH2, were shown to cause Weaver syndrome. To date, we have identified 48 individuals with EZH2 mutations. The mutations were primarily missense mutations occurring throughout the gene, with some clustering in the SET domain (12/48). Truncating mutations were uncommon (4/48) and only identified in the final exon, after the SET domain. Through analyses of clinical data and facial photographs of EZH2 mutation-positive individuals, we have shown that the facial features can be subtle and the clinical diagnosis of Weaver syndrome is thus challenging, especially in older individuals. However, tall stature is very common, reported in >90% of affected individuals. Intellectual disability is also common, present in ~80%, but is highly variable and frequently mild. Additional clinical features which may help in stratifying individuals to EZH2 mutation testing include camptodactyly, soft, doughy skin, umbilical hernia, and a low, hoarse cry. Considerable phenotypic overlap between Sotos and Weaver syndromes is also evident. The identification of an EZH2 mutation can therefore provide an objective means of confirming a subtle presentation of Weaver syndrome and/or distinguishing Weaver and Sotos syndromes. As mutation testing becomes increasingly accessible and larger numbers of EZH2 mutation-positive individuals are identified, knowledge of the clinical spectrum and prognostic implications of EZH2 mutations should improve. © 2013 Wiley Periodicals, Inc.
Hedera, P; Toriello, H V; Petty, E M
2002-07-01
Treacher Collins syndrome (TCS), the most common type of mandibulofacial dysostosis (MFD), is genetically homogeneous. Other types of MFD are less common and, of these, only the Bauru type of MFD has an autosomal dominant (AD) mode of inheritance established. Here we report clinical features of a kindred with a unique AD MFD with the exclusion of linkage to the TCS locus (TCOF1) on chromosome 5q31-q32. Six affected family members underwent a complete medical genetics physical examination and two affected subjects had skeletal survey. All available medical records were reviewed. Linkage analysis using the markers spanning the TCOF1 locus was performed. One typically affected family member had a high resolution karyotype. Affected subjects had significant craniofacial abnormalities without any significant acral changes and thus had a phenotype consistent with a MFD variant. Distinctive features included hypoplasia of the zygomatic complex, micrognathia with malocclusion, auricular abnormalities with conductive hearing loss, and ptosis. Significantly negative two point lod scores were obtained for markers spanning the TCOF1 locus, excluding the possibility that the disease in our kindred is allelic with TCS. High resolution karyotype was normal. We report a kindred with a novel type of MFD that is not linked to the TCOF1 locus and is also clinically distinct from other types of AD MFD. Identification of additional families will facilitate identification of the gene causing this type of AD MFD and further characterisation of the clinical phenotype.
The genotypic and phenotypic spectrum of MTO1 deficiency.
O'Byrne, James J; Tarailo-Graovac, Maja; Ghani, Aisha; Champion, Michael; Deshpande, Charu; Dursun, Ali; Ozgul, Riza K; Freisinger, Peter; Garber, Ian; Haack, Tobias B; Horvath, Rita; Barić, Ivo; Husain, Ralf A; Kluijtmans, Leo A J; Kotzaeridou, Urania; Morris, Andrew A; Ross, Colin J; Santra, Saikat; Smeitink, Jan; Tarnopolsky, Mark; Wortmann, Saskia B; Mayr, Johannes A; Brunner-Krainz, Michaela; Prokisch, Holger; Wasserman, Wyeth W; Wevers, Ron A; Engelke, Udo F; Rodenburg, Richard J; Ting, Teck Wah; McFarland, Robert; Taylor, Robert W; Salvarinova, Ramona; van Karnebeek, Clara D M
2018-01-01
Mitochondrial diseases, a group of multi-systemic disorders often characterized by tissue-specific phenotypes, are usually progressive and fatal disorders resulting from defects in oxidative phosphorylation. MTO1 (Mitochondrial tRNA Translation Optimization 1), an evolutionarily conserved protein expressed in high-energy demand tissues has been linked to human early-onset combined oxidative phosphorylation deficiency associated with hypertrophic cardiomyopathy, often referred to as combined oxidative phosphorylation deficiency-10 (COXPD10). Thirty five cases of MTO1 deficiency were identified and reviewed through international collaboration. The cases of two female siblings, who presented at 1 and 2years of life with seizures, global developmental delay, hypotonia, elevated lactate and complex I and IV deficiency on muscle biopsy but without cardiomyopathy, are presented in detail. For the description of phenotypic features, the denominator varies as the literature was insufficient to allow for complete ascertainment of all data for the 35 cases. An extensive review of all known MTO1 deficiency cases revealed the most common features at presentation to be lactic acidosis (LA) (21/34; 62% cases) and hypertrophic cardiomyopathy (15/34; 44% cases). Eventually lactic acidosis and hypertrophic cardiomyopathy are described in 35/35 (100%) and 27/34 (79%) of patients with MTO1 deficiency, respectively; with global developmental delay/intellectual disability present in 28/29 (97%), feeding difficulties in 17/35 (49%), failure to thrive in 12/35 (34%), seizures in 12/35 (34%), optic atrophy in 11/21 (52%) and ataxia in 7/34 (21%). There are 19 different pathogenic MTO1 variants identified in these 35 cases: one splice-site, 3 frameshift and 15 missense variants. None have bi-allelic variants that completely inactivate MTO1; however, patients where one variant is truncating (i.e. frameshift) while the second one is a missense appear to have a more severe, even fatal, phenotype. These data suggest that complete loss of MTO1 is not viable. A ketogenic diet may have exerted a favourable effect on seizures in 2/5 patients. MTO1 deficiency is lethal in some but not all cases, and a genotype-phenotype relation is suggested. Aside from lactic acidosis and cardiomyopathy, developmental delay and other phenotypic features affecting multiple organ systems are often present in these patients, suggesting a broader spectrum than hitherto reported. The diagnosis should be suspected on clinical features and the presence of markers of mitochondrial dysfunction in body fluids, especially low residual complex I, III and IV activity in muscle. Molecular confirmation is required and targeted genomic testing may be the most efficient approach. Although subjective clinical improvement was observed in a small number of patients on therapies such as ketogenic diet and dichloroacetate, no evidence-based effective therapy exists. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
The Human Phenotype Ontology: Semantic Unification of Common and Rare Disease
Groza, Tudor; Köhler, Sebastian; Moldenhauer, Dawid; ...
2015-06-25
The Human Phenotype Ontology (HPO) is widely used in the rare disease community for differential diagnostics, phenotype-driven analysis of next-generation sequence-variation data, and translational research, but a comparable resource has not been available for common disease. Here, we have developed a concept-recognition procedure that analyzes the frequencies of HPO disease annotations as identified in over five million PubMed abstracts by employing an iterative procedure to optimize precision and recall of the identified terms. We derived disease models for 3,145 common human diseases comprising a total of 132,006 HPO annotations. The HPO now comprises over 250,000 phenotypic annotations for over 10,000more » rare and common diseases and can be used for examining the phenotypic overlap among common diseases that share risk alleles, as well as between Mendelian diseases and common diseases linked by genomic location. The annotations, as well as the HPO itself, are freely available.« less
Phenotypic manifestation of congenital transverse amputation of autopod in Pakistani subjects
Riaz, Hafiza Fizzah; Lal, Karmoon; Ullah, Saif; Bhatti, Nadeem Ahmad; Ullah, Waheed; Malik, Sajid
2016-01-01
Terminal transverse deficiency of forearm is a very rare limb malformation. Most of the cases have traumatic etiology and congenital presentation is less common. A series of six individuals with transverse deficiency through the hands is presented in this communication. The cases were congenital, morphologically similar and showed loss of four fingers, most often postaxial. The affected arm was reduced in size compared to the contralateral limb and there was distortion of palmer creases. All cases were sporadic and non-syndromic in nature. The characteristics of these cases were concordant with the symbrachydactyly type III or monodactylous type, when classified according to the scheme proposed by Blauth and Gekeler (1973). The malformation resulted in permanent quality-of-life impairment in these subjects and warrant prosthetic management. Detailed physical and phenotypic features of the patients have been presented. PMID:27182274
Phenotypic manifestation of congenital transverse amputation of autopod in Pakistani subjects.
Riaz, Hafiza Fizzah; Lal, Karmoon; Ullah, Saif; Bhatti, Nadeem Ahmad; Ullah, Waheed; Malik, Sajid
2016-01-01
Terminal transverse deficiency of forearm is a very rare limb malformation. Most of the cases have traumatic etiology and congenital presentation is less common. A series of six individuals with transverse deficiency through the hands is presented in this communication. The cases were congenital, morphologically similar and showed loss of four fingers, most often postaxial. The affected arm was reduced in size compared to the contralateral limb and there was distortion of palmer creases. All cases were sporadic and non-syndromic in nature. The characteristics of these cases were concordant with the symbrachydactyly type III or monodactylous type, when classified according to the scheme proposed by Blauth and Gekeler (1973). The malformation resulted in permanent quality-of-life impairment in these subjects and warrant prosthetic management. Detailed physical and phenotypic features of the patients have been presented.
X-linked adrenoleukodystrophy in heterozygous female patients: women are not just carriers.
Lourenço, Charles Marques; Simão, Gustavo Novelino; Santos, Antonio Carlos; Marques, Wilson
2012-07-01
X-linked adrenoleukodystrophy (X-ALD) is a recessive X-linked disorder associated with marked phenotypic variability. Female carriers are commonly thought to be normal or only mildly affected, but their disease still needs to be better described and systematized. To review and systematize the clinical features of heterozygous women followed in a Neurogenetics Clinic. We reviewed the clinical, biochemical, and neuroradiological data of all women known to have X-ADL. The nine women identified were classified into three groups: with severe and aggressive diseases; with slowly progressive, spastic paraplegia; and with mildly decreased vibratory sensation, brisk reflexes, and no complaints. Many of these women did not have a known family history of X-ALD. Heterozygous women with X-ADL have a wide spectrum of clinical manifestations, ranging from mild to severe phenotypes.
Heritable Individual-Specific and Allele-Specific Chromatin Signatures in Humans
McDaniell, Ryan; Lee, Bum-Kyu; Song, Lingyun; Liu, Zheng; Boyle, Alan P.; Erdos, Michael R.; Scott, Laura J.; Morken, Mario A.; Kucera, Katerina S.; Battenhouse, Anna; Keefe, Damian; Collins, Francis S.; Willard, Huntington F.; Lieb, Jason D.; Furey, Terrence S.; Crawford, Gregory E.; Iyer, Vishwanath R.; Birney, Ewan
2010-01-01
The extent to which variation in chromatin structure and transcription factor binding may influence gene expression, and thus underlie or contribute to variation in phenotype, is unknown. To address this question, we cataloged both individual-to-individual variation and differences between homologous chromosomes within the same individual (allele-specific variation) in chromatin structure and transcription factor binding in lymphoblastoid cells derived from individuals of geographically diverse ancestry. Ten percent of active chromatin sites were individual-specific; a similar proportion were allele-specific. Both individual-specific and allele-specific sites were commonly transmitted from parent to child, which suggests that they are heritable features of the human genome. Our study shows that heritable chromatin status and transcription factor binding differ as a result of genetic variation and may underlie phenotypic variation in humans. PMID:20299549
Capalbo, Donatella; Scala, Maria Giuseppa; Melis, Daniela; Minopoli, Giorgia; Improda, Nicola; Palamaro, Loredana; Pignata, Claudio; Salerno, Mariacarolina
2012-09-20
Noonan-like syndrome with loose anagen hair (NS/LAH; OMIM #607721) has been recently related to the invariant c.4A > G missense change in SHOC2. It is characterized by features reminiscent of Noonan syndrome. Ectodermal involvement, short stature associated to growth hormone (GH) deficiency (GHD), and cognitive deficits are common features. We compare in two patients with molecularly confirmed NS/LAH diagnosis, the clinical phenotype and pathogenetic mechanism underlying short stature. In particular, while both the patients exhibited a severe short stature, GH/IGFI axis functional evaluation revealed a different pathogenetic alteration, suggesting in one patient an upstream alteration (typical GHD) and in the other one a peripheral GH insensitivity.
Hereditary myopathies with early respiratory insufficiency in adults.
Naddaf, Elie; Milone, Margherita
2017-11-01
Hereditary myopathies with early respiratory insufficiency as a predominant feature of the clinical phenotype are uncommon and underestimated in adults. We reviewed the clinical and laboratory data of patients with hereditary myopathies who demonstrated early respiratory insufficiency before the need for ambulatory assistance. Only patients with disease-causing mutations or a specific histopathological diagnosis were included. Patients with cardiomyopathy were excluded. We identified 22 patients; half had isolated respiratory symptoms at onset. The diagnosis of the myopathy was often delayed, resulting in delayed ventilatory support. The most common myopathies were adult-onset Pompe disease, myofibrillar myopathy, multi-minicore disease, and myotonic dystrophy type 1. Single cases of laminopathy, MELAS (mitochondrial encephalomyopathy with lactic acidosis and strokelike events), centronuclear myopathy, and cytoplasmic body myopathy were identified. We highlighted the most common hereditary myopathies associated with early respiratory insufficiency as the predominant clinical feature, and underscored the importance of a timely diagnosis for patient care. Muscle Nerve 56: 881-886, 2017. © 2017 Wiley Periodicals, Inc.
Genetic basis of Bartter syndrome in Korea.
Lee, Beom Hee; Cho, Hee Yeon; Lee, HyunKyung; Han, Kyoung Hee; Kang, Hee Gyung; Ha, Il Soo; Lee, Joo Hoon; Park, Young Seo; Shin, Jae Il; Lee, Dae-Yeol; Kim, Su-Yung; Choi, Yong; Cheong, Hae Il
2012-04-01
Bartter syndrome (BS) is clinically classified into antenatal or neonatal BS (aBS) and classic BS (cBS) as well as five subtypes based on the underlying mutant gene; SLC12A1 (BS I), KCNJ1 (BS II), CLCNKB (BS III), BSND (BS IV) and CASR (BS V). Clinico-genetic features of a nationwide cohort of 26 Korean children with BS were investigated. The clinical diagnosis was aBS in 8 (30.8%), cBS in 15 (57.7%) and mixed Bartter-Gitelman phenotype in 3 cases (11.5%). Five of eight patients with aBS and all 18 patients with either cBS or mixed Bartter-Gitelman phenotype had CLCNKB mutations. Among the 23 patients (46 alleles) with CLCNKB mutations, p.W610X and large deletions were detected in 25 (54.3%) and 10 (21.7%) alleles, respectively. There was no genotype-phenotype correlation in patients with CLCNKB mutations. Twenty-three (88.5%) of the 26 BS patients involved in this study had CLCNKB mutations. The p.W610X mutation and large deletion were two common types of mutations in CLCNKB. The clinical manifestations of BS III were heterogeneous without a genotype-phenotype correlation, typically manifesting cBS phenotype but also aBS or mixed Bartter-Gitelman phenotypes. The molecular diagnostic steps for patients with BS in our population should be designed taking these peculiar genotype distributions into consideration, and a new more clinically relevant classification including BS and Gitelman syndrome is required.
Rider, Lisa G.; Nistala, Kiran
2015-01-01
The aim of this review is to summarize recent advances in the understanding of the clinical and autoantibody phenotypes, their associated outcomes, and the pathogenesis of the juvenile idiopathic inflammatory myopathies (JIIMs). The major clinical and autoantibody phenotypes in children have many features similar to those in adults, and each has distinct demographic and clinical features and associated outcomes. The most common myositis autoantibodies in JIIM patients are anti-p155/140, anti-MJ, and anti-MDA5. Higher mortality has been associated with overlap myositis as well as with the presence of anti-synthetase and anti-MDA5 autoantibodies; a chronic illness course and lipodystrophy have been associated with anti-p155/140 autoantibodies; and calcinosis has been associated with anti-MJ autoantibodies. Histologic abnormalities of JIIMs detectable on muscle biopsy have also been correlated with myositis-specific autoantibodies; for example, patients with anti-MDA5 show low levels of inflammatory infiltrate and muscle damage on biopsy. The first genome-wide association study of adult and juvenile dermatomyositis revealed three novel genetic associations, BLK, PLCL1, and CCL21, and confirmed that the human leukocyte antigen region is the primary risk region for juvenile dermatomyositis. Here we review the well-established pathogenic processes in JIIMs, including the type 1 interferon and endoplasmic reticulum stress pathways. Several novel JIIM-associated inflammatory mediators, such as the innate immune system proteins, myeloid-related peptide 8/14, galectin 9, and eotaxin, have emerged as promising biomarkers of disease. Advances in our understanding of the phenotypes and pathophysiology of the JIIMs are leading to better tools to help clinicians stratify and treat these heterogeneous disorders. PMID:27028907
Aharoni, Sharon; Barwick, Katy E S; Straussberg, Rachel; Harlalka, Gaurav V; Nevo, Yoram; Chioza, Barry A; McEntagart, Meriel M; Mimouni-Bloch, Aviva; Weedon, Michael; Crosby, Andrew H
2016-11-16
CMT-2 is a clinically and genetically heterogeneous group of peripheral axonal neuropathies characterized by slowly progressive weakness and atrophy of distal limb muscles resulting from length-dependent motor and sensory neurodegeneration. Classical giant axonal neuropathy (GAN) is an autosomal recessively inherited progressive neurodegenerative disorder of the peripheral and central nervous systems, typically diagnosed in early childhood and resulting in death by the end of the third decade. Distinctive phenotypic features are the presence of "kinky" hair and long eyelashes. The genetic basis of the disease has been well established, with over 40 associated mutations identified in the gene GAN, encoding the BTB-KELCH protein gigaxonin, involved in intermediate filament regulation. An Illumina Human CytoSNP-12 array followed by whole exome sequence analysis was used to identify the disease associated gene mutation in a large consanguineous family diagnosed with Charcot-Marie-Tooth disease type 2 (CMT-2) from which all but one affected member had straight hair. Here we report the identification of a novel GAN missense mutation underlying the CMT-2 phenotype observed in this family. Although milder forms of GAN, with and without the presence of kinky hair have been reported previously, a phenotype distinct from that was investigated in this study. All family members lacked common features of GAN, including ataxia, nystagmus, intellectual disability, seizures, and central nervous system involvement. Our findings broaden the spectrum of phenotypes associated with GAN mutations and emphasize a need to proceed with caution when providing families with diagnostic or prognostic information based on either clinical or genetic findings alone.
A Genome-Wide Association Study Identifies Five Loci Influencing Facial Morphology in Europeans
Liu, Fan; van der Lijn, Fedde; Schurmann, Claudia; Zhu, Gu; Chakravarty, M. Mallar; Hysi, Pirro G.; Wollstein, Andreas; Lao, Oscar; de Bruijne, Marleen; Ikram, M. Arfan; van der Lugt, Aad; Rivadeneira, Fernando; Uitterlinden, André G.; Hofman, Albert; Niessen, Wiro J.; Homuth, Georg; de Zubicaray, Greig; McMahon, Katie L.; Thompson, Paul M.; Daboul, Amro; Puls, Ralf; Hegenscheid, Katrin; Bevan, Liisa; Pausova, Zdenka; Medland, Sarah E.; Montgomery, Grant W.; Wright, Margaret J.; Wicking, Carol; Boehringer, Stefan; Spector, Timothy D.; Paus, Tomáš; Martin, Nicholas G.; Biffar, Reiner; Kayser, Manfred
2012-01-01
Inter-individual variation in facial shape is one of the most noticeable phenotypes in humans, and it is clearly under genetic regulation; however, almost nothing is known about the genetic basis of normal human facial morphology. We therefore conducted a genome-wide association study for facial shape phenotypes in multiple discovery and replication cohorts, considering almost ten thousand individuals of European descent from several countries. Phenotyping of facial shape features was based on landmark data obtained from three-dimensional head magnetic resonance images (MRIs) and two-dimensional portrait images. We identified five independent genetic loci associated with different facial phenotypes, suggesting the involvement of five candidate genes—PRDM16, PAX3, TP63, C5orf50, and COL17A1—in the determination of the human face. Three of them have been implicated previously in vertebrate craniofacial development and disease, and the remaining two genes potentially represent novel players in the molecular networks governing facial development. Our finding at PAX3 influencing the position of the nasion replicates a recent GWAS of facial features. In addition to the reported GWA findings, we established links between common DNA variants previously associated with NSCL/P at 2p21, 8q24, 13q31, and 17q22 and normal facial-shape variations based on a candidate gene approach. Overall our study implies that DNA variants in genes essential for craniofacial development contribute with relatively small effect size to the spectrum of normal variation in human facial morphology. This observation has important consequences for future studies aiming to identify more genes involved in the human facial morphology, as well as for potential applications of DNA prediction of facial shape such as in future forensic applications. PMID:23028347
Hundreds of variants clustered in genomic loci and biological pathways affect human height
Lango Allen, Hana; Estrada, Karol; Lettre, Guillaume; Berndt, Sonja I.; Weedon, Michael N.; Rivadeneira, Fernando; Willer, Cristen J.; Jackson, Anne U.; Vedantam, Sailaja; Raychaudhuri, Soumya; Ferreira, Teresa; Wood, Andrew R.; Weyant, Robert J.; Segrè, Ayellet V.; Speliotes, Elizabeth K.; Wheeler, Eleanor; Soranzo, Nicole; Park, Ju-Hyun; Yang, Jian; Gudbjartsson, Daniel; Heard-Costa, Nancy L.; Randall, Joshua C.; Qi, Lu; Smith, Albert Vernon; Mägi, Reedik; Pastinen, Tomi; Liang, Liming; Heid, Iris M.; Luan, Jian'an; Thorleifsson, Gudmar; Winkler, Thomas W.; Goddard, Michael E.; Lo, Ken Sin; Palmer, Cameron; Workalemahu, Tsegaselassie; Aulchenko, Yurii S.; Johansson, Åsa; Zillikens, M.Carola; Feitosa, Mary F.; Esko, Tõnu; Johnson, Toby; Ketkar, Shamika; Kraft, Peter; Mangino, Massimo; Prokopenko, Inga; Absher, Devin; Albrecht, Eva; Ernst, Florian; Glazer, Nicole L.; Hayward, Caroline; Hottenga, Jouke-Jan; Jacobs, Kevin B.; Knowles, Joshua W.; Kutalik, Zoltán; Monda, Keri L.; Polasek, Ozren; Preuss, Michael; Rayner, Nigel W.; Robertson, Neil R.; Steinthorsdottir, Valgerdur; Tyrer, Jonathan P.; Voight, Benjamin F.; Wiklund, Fredrik; Xu, Jianfeng; Zhao, Jing Hua; Nyholt, Dale R.; Pellikka, Niina; Perola, Markus; Perry, John R.B.; Surakka, Ida; Tammesoo, Mari-Liis; Altmaier, Elizabeth L.; Amin, Najaf; Aspelund, Thor; Bhangale, Tushar; Boucher, Gabrielle; Chasman, Daniel I.; Chen, Constance; Coin, Lachlan; Cooper, Matthew N.; Dixon, Anna L.; Gibson, Quince; Grundberg, Elin; Hao, Ke; Junttila, M. Juhani; Kaplan, Lee M.; Kettunen, Johannes; König, Inke R.; Kwan, Tony; Lawrence, Robert W.; Levinson, Douglas F.; Lorentzon, Mattias; McKnight, Barbara; Morris, Andrew P.; Müller, Martina; Ngwa, Julius Suh; Purcell, Shaun; Rafelt, Suzanne; Salem, Rany M.; Salvi, Erika; Sanna, Serena; Shi, Jianxin; Sovio, Ulla; Thompson, John R.; Turchin, Michael C.; Vandenput, Liesbeth; Verlaan, Dominique J.; Vitart, Veronique; White, Charles C.; Ziegler, Andreas; Almgren, Peter; Balmforth, Anthony J.; Campbell, Harry; Citterio, Lorena; De Grandi, Alessandro; Dominiczak, Anna; Duan, Jubao; Elliott, Paul; Elosua, Roberto; Eriksson, Johan G.; Freimer, Nelson B.; Geus, Eco J.C.; Glorioso, Nicola; Haiqing, Shen; Hartikainen, Anna-Liisa; Havulinna, Aki S.; Hicks, Andrew A.; Hui, Jennie; Igl, Wilmar; Illig, Thomas; Jula, Antti; Kajantie, Eero; Kilpeläinen, Tuomas O.; Koiranen, Markku; Kolcic, Ivana; Koskinen, Seppo; Kovacs, Peter; Laitinen, Jaana; Liu, Jianjun; Lokki, Marja-Liisa; Marusic, Ana; Maschio, Andrea; Meitinger, Thomas; Mulas, Antonella; Paré, Guillaume; Parker, Alex N.; Peden, John F.; Petersmann, Astrid; Pichler, Irene; Pietiläinen, Kirsi H.; Pouta, Anneli; Ridderstråle, Martin; Rotter, Jerome I.; Sambrook, Jennifer G.; Sanders, Alan R.; Schmidt, Carsten Oliver; Sinisalo, Juha; Smit, Jan H.; Stringham, Heather M.; Walters, G.Bragi; Widen, Elisabeth; Wild, Sarah H.; Willemsen, Gonneke; Zagato, Laura; Zgaga, Lina; Zitting, Paavo; Alavere, Helene; Farrall, Martin; McArdle, Wendy L.; Nelis, Mari; Peters, Marjolein J.; Ripatti, Samuli; van Meurs, Joyce B.J.; Aben, Katja K.; Ardlie, Kristin G; Beckmann, Jacques S.; Beilby, John P.; Bergman, Richard N.; Bergmann, Sven; Collins, Francis S.; Cusi, Daniele; den Heijer, Martin; Eiriksdottir, Gudny; Gejman, Pablo V.; Hall, Alistair S.; Hamsten, Anders; Huikuri, Heikki V.; Iribarren, Carlos; Kähönen, Mika; Kaprio, Jaakko; Kathiresan, Sekar; Kiemeney, Lambertus; Kocher, Thomas; Launer, Lenore J.; Lehtimäki, Terho; Melander, Olle; Mosley, Tom H.; Musk, Arthur W.; Nieminen, Markku S.; O'Donnell, Christopher J.; Ohlsson, Claes; Oostra, Ben; Palmer, Lyle J.; Raitakari, Olli; Ridker, Paul M.; Rioux, John D.; Rissanen, Aila; Rivolta, Carlo; Schunkert, Heribert; Shuldiner, Alan R.; Siscovick, David S.; Stumvoll, Michael; Tönjes, Anke; Tuomilehto, Jaakko; van Ommen, Gert-Jan; Viikari, Jorma; Heath, Andrew C.; Martin, Nicholas G.; Montgomery, Grant W.; Province, Michael A.; Kayser, Manfred; Arnold, Alice M.; Atwood, Larry D.; Boerwinkle, Eric; Chanock, Stephen J.; Deloukas, Panos; Gieger, Christian; Grönberg, Henrik; Hall, Per; Hattersley, Andrew T.; Hengstenberg, Christian; Hoffman, Wolfgang; Lathrop, G.Mark; Salomaa, Veikko; Schreiber, Stefan; Uda, Manuela; Waterworth, Dawn; Wright, Alan F.; Assimes, Themistocles L.; Barroso, Inês; Hofman, Albert; Mohlke, Karen L.; Boomsma, Dorret I.; Caulfield, Mark J.; Cupples, L.Adrienne; Erdmann, Jeanette; Fox, Caroline S.; Gudnason, Vilmundur; Gyllensten, Ulf; Harris, Tamara B.; Hayes, Richard B.; Jarvelin, Marjo-Riitta; Mooser, Vincent; Munroe, Patricia B.; Ouwehand, Willem H.; Penninx, Brenda W.; Pramstaller, Peter P.; Quertermous, Thomas; Rudan, Igor; Samani, Nilesh J.; Spector, Timothy D.; Völzke, Henry; Watkins, Hugh; Wilson, James F.; Groop, Leif C.; Haritunians, Talin; Hu, Frank B.; Kaplan, Robert C.; Metspalu, Andres; North, Kari E.; Schlessinger, David; Wareham, Nicholas J.; Hunter, David J.; O'Connell, Jeffrey R.; Strachan, David P.; Wichmann, H.-Erich; Borecki, Ingrid B.; van Duijn, Cornelia M.; Schadt, Eric E.; Thorsteinsdottir, Unnur; Peltonen, Leena; Uitterlinden, André; Visscher, Peter M.; Chatterjee, Nilanjan; Loos, Ruth J.F.; Boehnke, Michael; McCarthy, Mark I.; Ingelsson, Erik; Lindgren, Cecilia M.; Abecasis, Gonçalo R.; Stefansson, Kari; Frayling, Timothy M.; Hirschhorn, Joel N
2010-01-01
Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence phenotype. Genome-wide association (GWA) studies have identified >600 variants associated with human traits1, but these typically explain small fractions of phenotypic variation, raising questions about the utility of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait2,3. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P=0.016), and that underlie skeletal growth defects (P<0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants, and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented amongst variants that alter amino acid structure of proteins and expression levels of nearby genes. Our data explain ∼10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to ∼16% of phenotypic variation (∼20% of heritable variation). Although additional approaches are needed to fully dissect the genetic architecture of polygenic human traits, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways. PMID:20881960
Psoriasis and polycystic ovary syndrome: a new link in different phenotypes.
Moro, Francesca; Tropea, Anna; Scarinci, Elisa; Federico, Alex; De Simone, Clara; Caldarola, Giacomo; Leoncini, Emanuele; Boccia, Stefania; Lanzone, Antonio; Apa, Rosanna
2015-08-01
Women affected by PCOS and psoriasis are more likely to have insulin-resistance, hyperinsulinemia, reduced HDL cholesterol levels and a more severe degree of skin disease than those with psoriasis alone. The mechanism underlying this association between PCOS and psoriasis is currently unknown. The aim of the present study was to evaluate the features of psoriasis and the psoriasis severity scores in the different PCOS phenotypes and in age and body mass index (BMI)-matched psoriatic control patients. A cross-sectional study was performed on 150 psoriatic patients: 94 PCOS and 56 age- and BMI-matched controls. PCOS patients were diagnosed and divided into four phenotypes according to Rotterdam criteria: A - patients with complete phenotype with hyperandrogenism (H) plus oligoamenorrhea (O) plus polycystic ovary (PCO) on ultrasound examination; B - patients with H plus O (without PCO); C - patients with H plus PCO (ovulatory phenotype); D - patients with O plus PCO (without H). The patient's Psoriasis Area and Severity Index (PASI) as well as the Physician's Global Assessment (PGA) were calculated. A PASI score ≥10 was correlated with common indicator of severe disease. A PGA ≥4 was considered as a condition of moderate to severe disease. Among the four phenotypes investigated, the group with complete phenotype (H plus O plus PCO) had a higher prevalence of patients with patient's PASI ≥10 compared to controls (Odds Ratio (OR) 4.71, 95% confidence intervals (CI) 1.59-13.95). The group with O plus PCO had a higher prevalence of patients with PGA ≥4 compared to controls (OR 26.79, 95% CI 3.40-211.02) while the ovulatory group had a lower prevalence of patients with PGA ≥4 (OR 0.06, 95% CI 0.01-0.51). The ovulatory phenotype displays a milder psoriasis form than other phenotypes while the phenotypes with oligoamenorrhea presented higher severity scores of disease than other phenotypes and control group. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Uncommon nucleotide excision repair phenotypes revealed by targeted high-throughput sequencing.
Calmels, Nadège; Greff, Géraldine; Obringer, Cathy; Kempf, Nadine; Gasnier, Claire; Tarabeux, Julien; Miguet, Marguerite; Baujat, Geneviève; Bessis, Didier; Bretones, Patricia; Cavau, Anne; Digeon, Béatrice; Doco-Fenzy, Martine; Doray, Bérénice; Feillet, François; Gardeazabal, Jesus; Gener, Blanca; Julia, Sophie; Llano-Rivas, Isabel; Mazur, Artur; Michot, Caroline; Renaldo-Robin, Florence; Rossi, Massimiliano; Sabouraud, Pascal; Keren, Boris; Depienne, Christel; Muller, Jean; Mandel, Jean-Louis; Laugel, Vincent
2016-03-22
Deficient nucleotide excision repair (NER) activity causes a variety of autosomal recessive diseases including xeroderma pigmentosum (XP) a disorder which pre-disposes to skin cancer, and the severe multisystem condition known as Cockayne syndrome (CS). In view of the clinical overlap between NER-related disorders, as well as the existence of multiple phenotypes and the numerous genes involved, we developed a new diagnostic approach based on the enrichment of 16 NER-related genes by multiplex amplification coupled with next-generation sequencing (NGS). Our test cohort consisted of 11 DNA samples, all with known mutations and/or non pathogenic SNPs in two of the tested genes. We then used the same technique to analyse samples from a prospective cohort of 40 patients. Multiplex amplification and sequencing were performed using AmpliSeq protocol on the Ion Torrent PGM (Life Technologies). We identified causative mutations in 17 out of the 40 patients (43%). Four patients showed biallelic mutations in the ERCC6(CSB) gene, five in the ERCC8(CSA) gene: most of them had classical CS features but some had very mild and incomplete phenotypes. A small cohort of 4 unrelated classic XP patients from the Basque country (Northern Spain) revealed a common splicing mutation in POLH (XP-variant), demonstrating a new founder effect in this population. Interestingly, our results also found ERCC2(XPD), ERCC3(XPB) or ERCC5(XPG) mutations in two cases of UV-sensitive syndrome and in two cases with mixed XP/CS phenotypes. Our study confirms that NGS is an efficient technique for the analysis of NER-related disorders on a molecular level. It is particularly useful for phenotypes with combined features or unusually mild symptoms. Targeted NGS used in conjunction with DNA repair functional tests and precise clinical evaluation permits rapid and cost-effective diagnosis in patients with NER-defects.
Zoppi, Nicoletta; Chiarelli, Nicola; Binetti, Silvia; Ritelli, Marco; Colombi, Marina
2018-04-01
Hypermobile Ehlers-Danlos syndrome (hEDS) is a heritable connective tissue disorder with unknown molecular basis mainly characterized by generalized joint hypermobility, joint instability complications, and minor skin changes. The phenotypic spectrum is broad and includes multiple associated symptoms shared with chronic inflammatory systemic diseases. The stricter criteria defined in the 2017 EDS nosology leave without an identity many individuals with symptomatic joint hypermobility and/or features of hEDS; for these patients, the term Hypermobility Spectrum Disorders (HSD) was introduced. We previously reported that in vitro cultured hEDS and HSD patients' skin fibroblasts show a disarray of several extracellular matrix (ECM) components and dysregulated expression of genes involved in connective tissue homeostasis and inflammatory/pain/immune responses. Herein, we report that hEDS and HSD skin fibroblasts exhibit in vitro a similar myofibroblast-like phenotype characterized by the organization of α-smooth muscle actin cytoskeleton, expression of OB-cadherin/cadherin-11, enhanced migratory capability associated with augmented levels of the ECM-degrading metalloproteinase-9, and altered expression of the inflammation mediators CCN1/CYR61 and CCN2/CTGF. We demonstrate that in hEDS and HSD cells this fibroblast-to-myofibroblast transition is triggered by a signal transduction pathway that involves αvβ3 integrin-ILK complexes, organized in focal adhesions, and the Snail1/Slug transcription factor, thus providing insights into the molecular mechanisms related to the pathophysiology of these protean disorders. The indistinguishable phenotype identified in hEDS and HSD cells resembles an inflammatory-like condition, which correlates well with the systemic phenotype of patients, and suggests that these multisystemic disorders might be part of a phenotypic continuum rather than representing distinct clinical entities. Copyright © 2018 Elsevier B.V. All rights reserved.
Pedersen, Mangor; Curwood, Evan K; Archer, John S; Abbott, David F; Jackson, Graeme D
2015-11-01
Lennox-Gastaut syndrome, and the similar but less tightly defined Lennox-Gastaut phenotype, describe patients with severe epilepsy, generalized epileptic discharges, and variable intellectual disability. Our previous functional neuroimaging studies suggest that abnormal diffuse association network activity underlies the epileptic discharges of this clinical phenotype. Herein we use a data-driven multivariate approach to determine the spatial changes in local and global networks of patients with severe epilepsy of the Lennox-Gastaut phenotype. We studied 9 adult patients and 14 controls. In 20 min of task-free blood oxygen level-dependent functional magnetic resonance imaging data, two metrics of functional connectivity were studied: Regional homogeneity or local connectivity, a measure of concordance between each voxel to a focal cluster of adjacent voxels; and eigenvector centrality, a global connectivity estimate designed to detect important neural hubs. Multivariate pattern analysis of these data in a machine-learning framework was used to identify spatial features that classified disease subjects. Multivariate pattern analysis was 95.7% accurate in classifying subjects for both local and global connectivity measures (22/23 subjects correctly classified). Maximal discriminating features were the following: increased local connectivity in frontoinsular and intraparietal areas; increased global connectivity in posterior association areas; decreased local connectivity in sensory (visual and auditory) and medial frontal cortices; and decreased global connectivity in the cingulate cortex, striatum, hippocampus, and pons. Using a data-driven analysis method in task-free functional magnetic resonance imaging, we show increased connectivity in critical areas of association cortex and decreased connectivity in primary cortex. This supports previous findings of a critical role for these association cortical regions as a final common pathway in generating the Lennox-Gastaut phenotype. Abnormal function of these areas is likely to be important in explaining the intellectual problems characteristic of this disorder. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.
Almendro, Vanessa; Cheng, Yu-Kang; Randles, Amanda; Itzkovitz, Shalev; Marusyk, Andriy; Ametller, Elisabet; Gonzalez-Farre, Xavier; Muñoz, Montse; Russnes, Hege G.; Helland, Åslaug; Rye, Inga H.; Borresen-Dale, Anne-Lise; Maruyama, Reo; van Oudenaarden, Alexander; Dowsett, Mitchell; Jones, Robin L.; Reis-Filho, Jorge; Gascon, Pere; Gönen, Mithat; Michor, Franziska; Polyak, Kornelia
2014-01-01
SUMMARY Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor subtype-specific and it did not change during treatment in tumors with partial or no response. However, lower pre-treatment genetic diversity was significantly associated with complete pathologic response. In contrast, phenotypic diversity was different between pre- and post-treatment samples. We also observed significant changes in the spatial distribution of cells with distinct genetic and phenotypic features. We used these experimental data to develop a stochastic computational model to infer tumor growth patterns and evolutionary dynamics. Our results highlight the importance of integrated analysis of genotypes and phenotypes of single cells in intact tissues to predict tumor evolution. PMID:24462293
Automated phenotype pattern recognition of zebrafish for high-throughput screening.
Schutera, Mark; Dickmeis, Thomas; Mione, Marina; Peravali, Ravindra; Marcato, Daniel; Reischl, Markus; Mikut, Ralf; Pylatiuk, Christian
2016-07-03
Over the last years, the zebrafish (Danio rerio) has become a key model organism in genetic and chemical screenings. A growing number of experiments and an expanding interest in zebrafish research makes it increasingly essential to automatize the distribution of embryos and larvae into standard microtiter plates or other sample holders for screening, often according to phenotypical features. Until now, such sorting processes have been carried out by manually handling the larvae and manual feature detection. Here, a prototype platform for image acquisition together with a classification software is presented. Zebrafish embryos and larvae and their features such as pigmentation are detected automatically from the image. Zebrafish of 4 different phenotypes can be classified through pattern recognition at 72 h post fertilization (hpf), allowing the software to classify an embryo into 2 distinct phenotypic classes: wild-type versus variant. The zebrafish phenotypes are classified with an accuracy of 79-99% without any user interaction. A description of the prototype platform and of the algorithms for image processing and pattern recognition is presented.
Klukas, Christian; Chen, Dijun; Pape, Jean-Michel
2014-01-01
High-throughput phenotyping is emerging as an important technology to dissect phenotypic components in plants. Efficient image processing and feature extraction are prerequisites to quantify plant growth and performance based on phenotypic traits. Issues include data management, image analysis, and result visualization of large-scale phenotypic data sets. Here, we present Integrated Analysis Platform (IAP), an open-source framework for high-throughput plant phenotyping. IAP provides user-friendly interfaces, and its core functions are highly adaptable. Our system supports image data transfer from different acquisition environments and large-scale image analysis for different plant species based on real-time imaging data obtained from different spectra. Due to the huge amount of data to manage, we utilized a common data structure for efficient storage and organization of data for both input data and result data. We implemented a block-based method for automated image processing to extract a representative list of plant phenotypic traits. We also provide tools for build-in data plotting and result export. For validation of IAP, we performed an example experiment that contains 33 maize (Zea mays ‘Fernandez’) plants, which were grown for 9 weeks in an automated greenhouse with nondestructive imaging. Subsequently, the image data were subjected to automated analysis with the maize pipeline implemented in our system. We found that the computed digital volume and number of leaves correlate with our manually measured data in high accuracy up to 0.98 and 0.95, respectively. In summary, IAP provides a multiple set of functionalities for import/export, management, and automated analysis of high-throughput plant phenotyping data, and its analysis results are highly reliable. PMID:24760818
Richieri-Costa-Pereira syndrome: Expanding its phenotypic and genotypic spectrum.
Bertola, D R; Hsia, G; Alvizi, L; Gardham, A; Wakeling, E L; Yamamoto, G L; Honjo, R S; Oliveira, L A N; Di Francesco, R C; Perez, B A; Kim, C A; Passos-Bueno, M R
2018-04-01
Richieri-Costa-Pereira syndrome is a rare autosomal recessive acrofacial dysostosis that has been mainly described in Brazilian individuals. The cardinal features include Robin sequence, cleft mandible, laryngeal anomalies and limb defects. A biallelic expansion of a complex repeated motif in the 5' untranslated region of EIF4A3 has been shown to cause this syndrome, commonly with 15 or 16 repeats. The only patient with mild clinical findings harbored a 14-repeat expansion in 1 allele and a point mutation in the other allele. This proband is described here in more details, as well as is his affected sister, and 5 new individuals with Richieri-Costa-Pereira syndrome, including a patient from England, of African ancestry. This study has expanded the phenotype in this syndrome by the observation of microcephaly, better characterization of skeletal abnormalities, less severe phenotype with only mild facial dysmorphisms and limb anomalies, as well as the absence of cleft mandible, which is a hallmark of the syndrome. Although the most frequent mutation in this study was the recurrent 16-repeat expansion in EIF4A3, there was an overrepresentation of the 14-repeat expansion, with mild phenotypic expression, thus suggesting that the number of these motifs could play a role in phenotypic delineation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Jasiewicz, Andrzej; Grzywacz, Anna; Jabłoński, Marcin; Bieńkowski, Przemysław; Samochowiec, Agnieszka; Samochowiec, Jerzy
2014-01-01
The purpose of this study was to determine the relationship between sweet-liking phenotype and the variation of the gene sequence of the dopaminergic and serotonergic system. The study recruited 100 probands. The participants were interviewed for addiction (SSAGA-Semi Structured Assessment for the Genetics of Alcoholism) and assessed with the questionnaires: MMSE, Beck Depression Inventory and Hamilton Anxiety, Snaith-Hamilton Pleasure Scale. The taste was analyzed with tests to assess sensitivity to sweet taste and also smell tests were performed. Patients preferring the highest glucose volumes were called sweet likers. Statistical analyses were performed (SPSS- Statistical Package for the Social Sciences). Links between sweet liking phenotype and polymorphic variant of DAT1 gene were determined. The presence of DAT1 9/10 genotype increased three fold time sweet liking phenotype (p = 0.015, odds ratio-3.00), the presence of DAT1 10/10 decreased two fold time the chance being sweet liker (p = 0.051, odds ratio-0.43). Genotype 10/10 was significantly more common among sweet dislikers 10/10 (68.18% vs 47.92%) i 9/9 (6.82% vs 2.08%). CONCLUSIONS; A genetically significant association between the presence of 9/10 DAT1 VNTR genotype and a sweet-liking phenotype in probands was determined.
Neurological presentation of three patients with 22q11 deletion (CATCH 22 syndrome).
Roubertie, A; Semprino, M; Chaze, A M; Rivier, F; Humbertclaude, V; Cheminal, R; Lefort, G; Echenne, B
2001-12-01
Chromosome 22q11 deletion (CATCH 22 syndrome or velocardiofacial syndrome) is one of the most frequent chromosomal syndromes. Neurological features other than cognitive disorders are probably the least-described part of the expanding phenotype of the 22q11 deletion. We report the neurological features of three unrelated children with a de novo deletion: one patient with an autistic disorder, a second patient with hypocalcaemic neonatal seizures and unusual persistent epileptic focus at electroencephalographic follow-up, and a third patient with atypical absence epilepsy. These observations enlarge the clinical and neurological spectrum of the 22q11 deletion. Awareness of such cases is necessary, and a diagnosis of the 22q11 deletion should be suspected in children with common neurological features associated with severe or mild dysmorphism. Diagnosis of the 22q11 deletion should be confirmed by fluorescence in situ hybridization analysis associated with standard chromosomal analysis.
2010-01-01
Background The staphylococci are one of the most common environmental isolates found in clean room facility. Consequently, isolation followed by comprehensive and accurate identification is an essential step in any environmental monitoring program. Findings We have used the API Staph identification kit (bioMérieux, France) which depends on the expression of metabolic activities and or morphological features to identify the Staphylococcus isolates. The API staphylococci showed low sensitivity in the identification of some species, so we performed molecular methods based on PCR based fingerprinting of glyceraldehyde-3-phosphate dehydrogenase encoding gene as useful taxonomic tool for examining Staphylococcus isolates. Conclusions Our results showed that PCR protocol used in this study which depends on genotypic features was relatively accurate, rapid, sensitive and superior in the identification of at least 7 species of Staphylococcus than API Staph which depends on phenotypic features. PMID:21047438
Sheraba, Norhan S; Yassin, Aymen S; Amin, Magdy A
2010-11-04
The staphylococci are one of the most common environmental isolates found in clean room facility. Consequently, isolation followed by comprehensive and accurate identification is an essential step in any environmental monitoring program. We have used the API Staph identification kit (bioMérieux, France) which depends on the expression of metabolic activities and or morphological features to identify the Staphylococcus isolates. The API staphylococci showed low sensitivity in the identification of some species, so we performed molecular methods based on PCR based fingerprinting of glyceraldehyde-3-phosphate dehydrogenase encoding gene as useful taxonomic tool for examining Staphylococcus isolates. Our results showed that PCR protocol used in this study which depends on genotypic features was relatively accurate, rapid, sensitive and superior in the identification of at least 7 species of Staphylococcus than API Staph which depends on phenotypic features.
Novakovic, Boris; Evain-Brion, Danièle; Murthi, Padma; Fournier, Thiery; Saffery, Richard
2017-06-01
Placental functioning relies on the appropriate differentiation of progenitor villous cytotrophoblasts (CTBs) into extravillous cytotrophoblasts (EVCTs), including invasive EVCTs, and the multinucleated syncytiotrophoblast (ST) layer. This is accompanied by a general move away from a proliferative, immature phenotype. Genome-scale expression studies have provided valuable insight into genes that are associated with the shift to both an invasive EVCT and ST phenotype, whereas genome-scale DNA methylation analysis has shown that differentiation to ST involves widespread methylation shifts, which are counteracted by low oxygen. In the current study, we sought to identify DNA methylation variation that is associated with transition from CTB to ST in vitro and from a noninvasive to invasive EVCT phenotype after culture on Matrigel. Of the several hundred differentially methylated regions that were identified in each comparison, the majority showed a loss of methylation with differentiation. This included a large differentially methylated region (DMR) in the gene body of death domain-associated protein 6 ( DAXX ), which lost methylation during both CTB syncytialization to ST and EVCT differentiation to invasive EVCT. Comparison to publicly available methylation array data identified the same DMR as among the most consistently differentially methylated genes in placental samples from preeclampsia pregnancies. Of interest, in vitro culture of CTB or ST in low oxygen increases methylation in the same region, which correlates with delayed differentiation. Analysis of combined epigenomics signatures confirmed DAXX DMR as a likely regulatory element, and direct gene expression analysis identified a positive association between methylation at this site and DAXX expression levels. The widespread dynamic nature of DAXX methylation in association with trophoblast differentiation and placenta-associated pathologies is consistent with an important role for this gene in proper placental development and function.-Novakovic, B., Evain-Brion, D., Murthi, P., Fournier, T., Saffery, R. Variable DAXX gene methylation is a common feature of placental trophoblast differentiation, preeclampsia, and response to hypoxia. © FASEB.
Stankiewicz, Paweł; Kulkarni, Shashikant; Dharmadhikari, Avinash V.; Sampath, Srirangan; Bhatt, Samarth S.; Shaikh, Tamim H.; Xia, Zhilian; Pursley, Amber N.; Cooper, M. Lance; Shinawi, Marwan; Paciorkowski, Alex R.; Grange, Dorothy K.; Noetzel, Michael J.; Saunders, Scott; Simons, Paul; Summar, Marshall; Lee, Brendan; Scaglia, Fernando; Fellmann, Florence; Martinet, Danielle; Beckmann, Jacques S.; Asamoah, Alexander; Platky, Kathryn; Sparks, Susan; Martin, Ann S.; Madan-Khetarpal, Suneeta; Hoover, Jacqueline; Medne, Livija; Bonnemann, Carsten G.; Moeschler, John B.; Vallee, Stephanie E.; Parikh, Sumit; Irwin, Polly; Dalzell, Victoria P.; Smith, Wendy E.; Banks, Valerie C.; Flannery, David B.; Lovell, Carolyn M.; Bellus, Gary A.; Golden-Grant, Kathryn; Gorski, Jerome L.; Kussmann, Jennifer L.; McGregor, Tracy L.; Hamid, Rizwan; Pfotenhauer, Jean; Ballif, Blake C.; Shaw, Chad A.; Kang, Sung-Hae L.; Bacino, Carlos A.; Patel, Ankita; Rosenfeld, Jill A.; Cheung, Sau Wai; Shaffer, Lisa G.
2013-01-01
We report 24 unrelated individuals with deletions and 17 additional cases with duplications at 10q11.21q21.1 identified by chromosomal microarray analysis. The rearrangements range in size from 0.3 to 12 Mb. Nineteen of the deletions and eight duplications are flanked by large, directly oriented segmental duplications of >98% sequence identity, suggesting that nonallelic homologous recombination (NAHR) caused these genomic rearrangements. Nine individuals with deletions and five with duplications have additional copy number changes. Detailed clinical evaluation of 20 patients with deletions revealed variable clinical features, with developmental delay (DD) and/or intellectual disability (ID) as the only features common to a majority of individuals. We suggest that some of the other features present in more than one patient with deletion, including hypotonia, sleep apnea, chronic constipation, gastroesophageal and vesicoureteral refluxes, epilepsy, ataxia, dysphagia, nystagmus, and ptosis may result from deletion of the CHAT gene, encoding choline acetyltransferase, and the SLC18A3 gene, mapping in the first intron of CHAT and encoding vesicular acetylcholine transporter. The phenotypic diversity and presence of the deletion in apparently normal carrier parents suggest that subjects carrying 10q11.21q11.23 deletions may exhibit variable phenotypic expressivity and incomplete penetrance influenced by additional genetic and nongenetic modifiers. PMID:21948486
Murine Models of Heart Failure with Preserved Ejection Fraction: a “Fishing Expedition”
Valero-Muñoz, Maria; Backman, Warren; Sam, Flora
2017-01-01
Summary Heart failure with preserved ejection fraction (HFpEF) is characterized by signs and symptoms of HF in the presence of a normal left ventricular (LV) ejection fraction (EF). Despite accounting for up to 50% of all clinical presentations of HF, the mechanisms implicated in HFpEF are poorly understood, thus precluding effective therapy. The pathophysiological heterogeneity in the HFpEF phenotype also contributes to this disease and likely to the absence of evidence-based therapies. Limited access to human samples and imperfect animal models that completely recapitulate the human HFpEF phenotype have impeded our understanding of the mechanistic underpinnings that exist in this disease. Aging and comorbidities such as atrial fibrillation, hypertension, diabetes and obesity, pulmonary hypertension and renal dysfunction are highly associated with HFpEF. Yet, the relationship and contribution between them remains ill-defined. This review discusses some of the distinctive clinical features of HFpEF in association with these comorbidities and highlights the advantages and disadvantage of commonly used murine models, used to study the HFpEF phenotype. PMID:29333506
Dynamic nuclear envelope phenotype in rats overexpressing mutated human torsinA protein.
Yu-Taeger, Libo; Gaiser, Viktoria; Lotzer, Larissa; Roenisch, Tina; Fabry, Benedikt Timo; Stricker-Shaver, Janice; Casadei, Nicolas; Walter, Michael; Schaller, Martin; Riess, Olaf; Nguyen, Huu Phuc; Ott, Thomas; Grundmann-Hauser, Kathrin
2018-05-08
A three-base-pair deletion in the human TOR1A gene is causative for the most common form of primary dystonia, the early-onset dystonia type 1 (DYT1 dystonia). The pathophysiological consequences of this mutation are still unknown.To study the pathology of the mutant torsinA (TOR1A) protein, we have generated a transgenic rat line that overexpresses the human mutant protein under the control of the human TOR1A promoter. This new animal model was phenotyped with several approaches, including behavioral tests and neuropathological analyses. A motor phenotype and cellular and ultrastructural key features of torsinA pathology were found in this new transgenic rat line supporting that it can be used as a model system for investigating the disease development. Analyses of mutant TOR1A protein expression in various brain regions also showed a dynamic expression pattern and a reversible nuclear envelope pathology. These findings suggest the differential vulnerabilities of distinct neuronal subpopulations. Furthermore the reversibility of the nuclear envelope pathology might be a therapeutic target to treat the disease. © 2018. Published by The Company of Biologists Ltd.
Charoenkwan, Phasit; Hwang, Eric; Cutler, Robert W; Lee, Hua-Chin; Ko, Li-Wei; Huang, Hui-Ling; Ho, Shinn-Ying
2013-01-01
High-content screening (HCS) has become a powerful tool for drug discovery. However, the discovery of drugs targeting neurons is still hampered by the inability to accurately identify and quantify the phenotypic changes of multiple neurons in a single image (named multi-neuron image) of a high-content screen. Therefore, it is desirable to develop an automated image analysis method for analyzing multi-neuron images. We propose an automated analysis method with novel descriptors of neuromorphology features for analyzing HCS-based multi-neuron images, called HCS-neurons. To observe multiple phenotypic changes of neurons, we propose two kinds of descriptors which are neuron feature descriptor (NFD) of 13 neuromorphology features, e.g., neurite length, and generic feature descriptors (GFDs), e.g., Haralick texture. HCS-neurons can 1) automatically extract all quantitative phenotype features in both NFD and GFDs, 2) identify statistically significant phenotypic changes upon drug treatments using ANOVA and regression analysis, and 3) generate an accurate classifier to group neurons treated by different drug concentrations using support vector machine and an intelligent feature selection method. To evaluate HCS-neurons, we treated P19 neurons with nocodazole (a microtubule depolymerizing drug which has been shown to impair neurite development) at six concentrations ranging from 0 to 1000 ng/mL. The experimental results show that all the 13 features of NFD have statistically significant difference with respect to changes in various levels of nocodazole drug concentrations (NDC) and the phenotypic changes of neurites were consistent to the known effect of nocodazole in promoting neurite retraction. Three identified features, total neurite length, average neurite length, and average neurite area were able to achieve an independent test accuracy of 90.28% for the six-dosage classification problem. This NFD module and neuron image datasets are provided as a freely downloadable MatLab project at http://iclab.life.nctu.edu.tw/HCS-Neurons. Few automatic methods focus on analyzing multi-neuron images collected from HCS used in drug discovery. We provided an automatic HCS-based method for generating accurate classifiers to classify neurons based on their phenotypic changes upon drug treatments. The proposed HCS-neurons method is helpful in identifying and classifying chemical or biological molecules that alter the morphology of a group of neurons in HCS.
Yang, Hui; Douglas, Ganka; Monaghan, Kristin G; Retterer, Kyle; Cho, Megan T; Escobar, Luis F; Tucker, Megan E; Stoler, Joan; Rodan, Lance H; Stein, Diane; Marks, Warren; Enns, Gregory M; Platt, Julia; Cox, Rachel; Wheeler, Patricia G; Crain, Carrie; Calhoun, Amy; Tryon, Rebecca; Richard, Gabriele; Vitazka, Patrik; Chung, Wendy K
2015-10-01
Whole-exome sequencing (WES) represents a significant breakthrough in clinical genetics, and identifies a genetic etiology in up to 30% of cases of intellectual disability (ID). Using WES, we identified seven unrelated patients with a similar clinical phenotype of severe intellectual disability or neurodevelopmental delay who were all heterozygous for de novo truncating variants in the AT-hook DNA-binding motif-containing protein 1 (AHDC1). The patients were all minimally verbal or nonverbal and had variable neurological problems including spastic quadriplegia, ataxia, nystagmus, seizures, autism, and self-injurious behaviors. Additional common clinical features include dysmorphic facial features and feeding difficulties associated with failure to thrive and short stature. The AHDC1 gene has only one coding exon, and the protein contains conserved regions including AT-hook motifs and a PDZ binding domain. We postulate that all seven variants detected in these patients result in a truncated protein missing critical functional domains, disrupting interactions with other proteins important for brain development. Our study demonstrates that truncating variants in AHDC1 are associated with ID and are primarily associated with a neurodevelopmental phenotype.
Recent advances in bulbar syndromes: genetic causes and disease mechanisms.
Manole, Andreea; Fratta, Pietro; Houlden, Henry
2014-10-01
With advances in next-generation gene sequencing, progress in deep phenotyping and a greater understanding of the pathogenesis of motor neuron disease, our knowledge of the progressive bulbar syndromes has significantly increased in recent years. This group of heterogeneous conditions, in which the primary disorder is focused around degeneration of the lower cranial nerves, can occur in children or adults and form a spectrum of severity, based around the common feature of bulbar dysfunction. Early genetic diagnosis may allow treatment in some bulbar syndromes. Brown-Vialetto-Van Laere and Fazio-Londe syndromes are the most recent childhood forms of progressive bulbar palsy to be genetically defined. The clinical phenotype of this group of childhood disorders was first reported over 120 years ago. Recently, it was demonstrated that in a third of these patients Brown-Vialetto-Van Laere is caused by mutations in the SLC52A2 and SLC52A3 genes, both of which encode riboflavin transporters. Importantly, supplementation of riboflavin can lead to significant clinical improvement if started early in the disease process. Here, we outline the clinical features, management and an update on the disease mechanisms and genetic causes of the progressive bulbar syndromes.
Understanding COPD-overlap syndromes.
Poh, Tuang Yeow; Mac Aogáin, Micheál; Chan, Adrian Kwok Wai; Yii, Anthony Chau Ang; Yong, Valerie Fei Lee; Tiew, Pei Yee; Koh, Mariko Siyue; Chotirmall, Sanjay Haresh
2017-04-01
Chronic obstructive pulmonary disease accounts for a large burden of lung disease. It can 'overlap' with other respiratory diseases including bronchiectasis, fibrosis and obstructive sleep apnea (OSA). While COPD alone confers morbidity and mortality, common features with contrasting clinical outcomes can occur in COPD 'overlap syndromes'. Areas covered: Given the large degree of heterogeneity in COPD, individual variation to treatment is adopted based on its observed phenotype, which in turn overlaps with features of other respiratory disease states such as asthma. This is coined asthma-COPD overlap syndrome ('ACOS'). Other examples of such overlapping clinical states include bronchiectasis-COPD ('BCOS'), fibrosis-COPD ('FCOS') and OSA-COPD ('OCOS'). The objective of this review is to highlight similarities and differences between the COPD-overlap syndromes in terms of risk factors, pathophysiology, diagnosis and potential treatment differences. Expert commentary: As a consequence of COPD overlap syndromes, a transition from the traditional 'one size fits all' treatment approach is necessary. Greater treatment stratification according to clinical phenotype using a precision medicine approach is now required. In this light, it is important to recognize and differentiate COPD overlap syndromes as distinct disease states compared to individual diseases such as asthma, COPD, fibrosis or bronchiectasis.
Insights into the beaded filament of the eye lens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perng, M.-D.; Zhang Qingjiong; Quinlan, Roy A.
2007-06-10
Filensin (BFSP1) and CP49 (BFSP2) represent two members of the IF protein superfamily that are thus far exclusively expressed in the eye lens. Mutations in both proteins cause lens cataract and careful consideration of the detail of these cataract phenotypes alerts us to several interesting features concerning the function of filensin (BFSP1) and CP49 (BFSP2) in the lens. With the first filensin (BFSP1) mutation now having been reported to cause a recessive cataract phenotype, there is the suggestion that the mutation could predispose heterozygote carriers to the early onset of age-related nuclear cataract. In the case of CP49 (BFSP2), theremore » are now three unrelated families who have been identified with a common E233{delta} mutation. Very interestingly this is linked to myopia in one family. Despite the apparent phenotypic differences of the filensin (BFSP1) and CP49 (BFSP2) mutations, the data are still consistent with the beaded filament proteins being essential for lens function and specifically contributing to the optical properties of the lens. The fact that none of the mutations thus far reported affect either the conserved LNDR or TYRKLLEGE motifs that flank the central rod domain supports the view that this pair of IF proteins have unusual structural features and a distinctive assembly mechanism. The multiple sequence divergences suggest these proteins have been adapted to the specific functional requirements of lens fibre cells, a function that can be traced from squid to man.« less
Population-expression models of immune response
NASA Astrophysics Data System (ADS)
Stromberg, Sean P.; Antia, Rustom; Nemenman, Ilya
2013-06-01
The immune response to a pathogen has two basic features. The first is the expansion of a few pathogen-specific cells to form a population large enough to control the pathogen. The second is the process of differentiation of cells from an initial naive phenotype to an effector phenotype which controls the pathogen, and subsequently to a memory phenotype that is maintained and responsible for long-term protection. The expansion and the differentiation have been considered largely independently. Changes in cell populations are typically described using ecologically based ordinary differential equation models. In contrast, differentiation of single cells is studied within systems biology and is frequently modeled by considering changes in gene and protein expression in individual cells. Recent advances in experimental systems biology make available for the first time data to allow the coupling of population and high dimensional expression data of immune cells during infections. Here we describe and develop population-expression models which integrate these two processes into systems biology on the multicellular level. When translated into mathematical equations, these models result in non-conservative, non-local advection-diffusion equations. We describe situations where the population-expression approach can make correct inference from data while previous modeling approaches based on common simplifying assumptions would fail. We also explore how model reduction techniques can be used to build population-expression models, minimizing the complexity of the model while keeping the essential features of the system. While we consider problems in immunology in this paper, we expect population-expression models to be more broadly applicable.
Costes, V; Medioni, D; Durand, L; Sarran, N; Marguerite, G; Baldet, P
1997-03-01
We report a case of congenital cervical rhabdoid tumor with association of a medulloblastoma in a brother. The immunohistochemical features of this tumor are compatible with a neuroectodermal differentiation (MIC 2+, Leu 7+). Extrarenal rhabdoid tumors share a common morphology but do not represent a single entity with only one histogenesis. Most of them are now considered to be of neuroectodermal origin. In our case, the association with a medulloblastoma in a brother seems to confirm this concept.
Social Cognition, Social Skill, and the Broad Autism Phenotype
ERIC Educational Resources Information Center
Sasson, Noah J.; Nowlin, Rachel B.; Pinkham, Amy E.
2013-01-01
Social-cognitive deficits differentiate parents with the "broad autism phenotype" from non-broad autism phenotype parents more robustly than other neuropsychological features of autism, suggesting that this domain may be particularly informative for identifying genetic and brain processes associated with the phenotype. The current study…
Hearing Loss in Osteogenesis Imperfecta: Characteristics and Treatment Considerations
Pillion, Joseph P.; Vernick, David; Shapiro, Jay
2011-01-01
Osteogenesis imperfecta (OI) is the most common heritable disorder of connective tissue. It is associated with fractures following relatively minor injury, blue sclerae, dentinogenesis imperfecta, increased joint mobility, short stature, and hearing loss. Structures in the otic capsule and inner ear share in the histologic features common to other skeletal tissues. OI is due to mutations involving several genes, the most commonly involved are the COL1A1 or COL1A2 genes which are responsible for the synthesis of the proalpha-1 and proalpha-2 polypeptide chains that form the type I collagen triple helix. A genotype/phenotype relationship to hearing loss has not been established in OI. Hearing loss is commonly found in OI with prevalence rates ranging from 50 to 92% in some studies. Hearing loss in OI may be conductive, mixed, or sensorineural and is more common by the second or third decade. Treatment options such as hearing aids, stapes surgery, and cochlear implants are discussed. PMID:22567374
Abnormal brain magnetic resonance imaging in two patients with Smith-Magenis syndrome.
Maya, Idit; Vinkler, Chana; Konen, Osnat; Kornreich, Liora; Steinberg, Tamar; Yeshaya, Josepha; Latarowski, Victoria; Shohat, Mordechai; Lev, Dorit; Baris, Hagit N
2014-08-01
Smith-Magenis syndrome (SMS) is a clinically recognizable contiguous gene syndrome ascribed to an interstitial deletion in chromosome 17p11.2. Seventy percent of SMS patients have a common deletion interval spanning 3.5 megabases (Mb). Clinical features of SMS include characteristic mild dysmorphic features, ocular anomalies, short stature, brachydactyly, and hypotonia. SMS patients have a unique neurobehavioral phenotype that includes intellectual disability, self-injurious behavior and severe sleep disturbance. Little has been reported in the medical literature about anatomical brain anomalies in patients with SMS. Here we describe two patients with SMS caused by the common deletion in 17p11.2 diagnosed using chromosomal microarray (CMA). Both patients had a typical clinical presentation and abnormal brain magnetic resonance imaging (MRI) findings. One patient had subependymal periventricular gray matter heterotopia, and the second had a thin corpus callosum, a thin brain stem and hypoplasia of the cerebellar vermis. This report discusses the possible abnormal MRI images in SMS and reviews the literature on brain malformations in SMS. Finally, although structural brain malformations in SMS patients are not a common feature, we suggest baseline routine brain imaging in patients with SMS in particular, and in patients with chromosomal microdeletion/microduplication syndromes in general. Structural brain malformations in these patients may affect the decision-making process regarding their management. © 2014 Wiley Periodicals, Inc.
Bessenyei, Beáta; Nagy, Andrea; Balogh, Erzsébet; Novák, László; Bognár, László; Knegt, Alida C; Oláh, Eva
2013-10-01
We report on a female patient with an exceedingly rare combination of achondroplasia and multiple-suture craniosynostosis. Besides the specific features of achondroplasia, synostosis of the metopic, coronal, lambdoid, and squamosal sutures was found. Series of neurosurgical interventions were carried out, principally for acrocephaly and posterior plagiocephaly. The most common achondroplasia mutation, a p.Gly380Arg in the fibroblast growth factor receptor 3 (FGFR3) gene, was detected. Cytogenetic and array CGH analyses, as well as molecular genetic testing of FGFR1, 2, 3 and TWIST1 genes failed to identify any additional genetic alteration. It is suggested that this unusual phenotype is a result of variable expressivity of the common achondroplasia mutation. Copyright © 2013 Wiley Periodicals, Inc.
2018-01-01
ABSTRACT A small group of HIV-1-infected individuals, called long-term nonprogressors (LTNPs), and in particular a subgroup of LTNPs, elite controllers (LTNP-ECs), display permanent control of viral replication and lack of clinical progression. This control is the result of a complex interaction of host, immune, and viral factors. We identified, by phylogenetic analysis, a cluster of LTNP-ECs infected with very similar low-replication HIV-1 viruses, suggesting the contribution of common viral features to the clinical LTNP-EC phenotype. HIV-1 envelope (Env) glycoprotein mediates signaling and promotes HIV-1 fusion, entry, and infection, being a key factor of viral fitness in vitro, cytopathicity, and infection progression in vivo. Therefore, we isolated full-length env genes from viruses of these patients and from chronically infected control individuals. Functional characterization of the initial events of the viral infection showed that Envs from the LTNP-ECs were ineffective in the binding to CD4 and in the key triggering of actin/tubulin-cytoskeleton modifications compared to Envs from chronic patients. The viral properties of the cluster viruses result in a defective viral fusion, entry, and infection, and these properties were inherited by every virus of the cluster. Therefore, inefficient HIV-1 Env functions and signaling defects may contribute to the low viral replication capacity and transmissibility of the cluster viruses, suggesting a direct role in the LTNP-EC phenotype of these individuals. These results highlight the important role of viral characteristics in the LTNP-EC clinical phenotype. These Env viral properties were common to all the cluster viruses and thus support the heritability of the viral characteristics. PMID:29636433
Taxonomy of rare genetic metabolic bone disorders.
Masi, L; Agnusdei, D; Bilezikian, J; Chappard, D; Chapurlat, R; Cianferotti, L; Devolgelaer, J-P; El Maghraoui, A; Ferrari, S; Javaid, M K; Kaufman, J-M; Liberman, U A; Lyritis, G; Miller, P; Napoli, N; Roldan, E; Papapoulos, S; Watts, N B; Brandi, M L
2015-10-01
This article reports a taxonomic classification of rare skeletal diseases based on metabolic phenotypes. It was prepared by The Skeletal Rare Diseases Working Group of the International Osteoporosis Foundation (IOF) and includes 116 OMIM phenotypes with 86 affected genes. Rare skeletal metabolic diseases comprise a group of diseases commonly associated with severe clinical consequences. In recent years, the description of the clinical phenotypes and radiographic features of several genetic bone disorders was paralleled by the discovery of key molecular pathways involved in the regulation of bone and mineral metabolism. Including this information in the description and classification of rare skeletal diseases may improve the recognition and management of affected patients. IOF recognized this need and formed a Skeletal Rare Diseases Working Group (SRD-WG) of basic and clinical scientists who developed a taxonomy of rare skeletal diseases based on their metabolic pathogenesis. This taxonomy of rare genetic metabolic bone disorders (RGMBDs) comprises 116 OMIM phenotypes, with 86 affected genes related to bone and mineral homeostasis. The diseases were divided into four major groups, namely, disorders due to altered osteoclast, osteoblast, or osteocyte activity; disorders due to altered bone matrix proteins; disorders due to altered bone microenvironmental regulators; and disorders due to deranged calciotropic hormonal activity. This article provides the first comprehensive taxonomy of rare metabolic skeletal diseases based on deranged metabolic activity. This classification will help in the development of common and shared diagnostic and therapeutic pathways for these patients and also in the creation of international registries of rare skeletal diseases, the first step for the development of genetic tests based on next generation sequencing and for performing large intervention trials to assess efficacy of orphan drugs.
Iwata, Hiroaki; Mizutani, Sayaka; Tabei, Yasuo; Kotera, Masaaki; Goto, Susumu; Yamanishi, Yoshihiro
2013-01-01
Most phenotypic effects of drugs are involved in the interactions between drugs and their target proteins, however, our knowledge about the molecular mechanism of the drug-target interactions is very limited. One of challenging issues in recent pharmaceutical science is to identify the underlying molecular features which govern drug-target interactions. In this paper, we make a systematic analysis of the correlation between drug side effects and protein domains, which we call "pharmacogenomic features," based on the drug-target interaction network. We detect drug side effects and protein domains that appear jointly in known drug-target interactions, which is made possible by using classifiers with sparse models. It is shown that the inferred pharmacogenomic features can be used for predicting potential drug-target interactions. We also discuss advantages and limitations of the pharmacogenomic features, compared with the chemogenomic features that are the associations between drug chemical substructures and protein domains. The inferred side effect-domain association network is expected to be useful for estimating common drug side effects for different protein families and characteristic drug side effects for specific protein domains.
Sell-Kubiak, E; van der Waaij, E H; Bijma, P
2013-08-01
The main focus of this study was to identify sow gestation features that affect growth rate (GR) and feed intake (FI) of their offspring during grower-finishing stage. Because the sow provides a specific environment to her offspring during gestation, certain features (e.g., BW of the sow), feed refusals or gestation group, may affect her ability to deliver and feed a healthy litter. Data on 17,743 grower-finishing pigs, coming from 604 sires and 681 crossbred sows, were obtained from the Institute for Pigs Genetics. Sow gestation features were collected during multiple gestations and divided into 3 clusters describing i) sow body condition (i.e., BW, backfat, and gestation length), ii) sow feed refusals (FR), the difference between offered and eaten feed during 3 periods of gestation: 1 to 28, 25 to 50, 45 to 80 d, and iii) sow group features (i.e., number of sows, and average parity). Sow gestation features were added to the base model 1 at a time to study their effect on GR and FI. Significant gestation features (P < 0.1) were fitted simultaneously in animal model to investigate whether they could explain common litter and permanent sow effects. Gestation length had effect on GR [1.4 (g/d)/d; P = 0.04] and FI [6.8 (g/d)/d; P = 0.007]. Body weights of the sow at insemination [0.07 (g/d)/kg; P = 0.08], at farrowing [0.14 (g/d)/kg; P < 0.0001], and after lactation [0.1 (g/d)/kg; P = 0.003] had effect on GR. Sow parturition-lactation loss in backfat thickness and weight were not significant for GR and FI. Days with FR during 25 to 50 and 45 to 80 d of gestation and average FR during 45 to 80 d of gestation had negative effect on GR and when substantially increased had also a positive effect on FI. Sow FR from 1 to 28 d of gestation were not significant. Number of sows in gestation group had effect on FI [-9 (g/d)/group member; P = 0.04] and day sow entered group had an effect on GR [-0.9 (g/d)/day; P = 0.04]. Sow gestation features explained 1 to 3% of the total variance in grower-finishing pigs. Gestation features did explain phenotypic variance due to permanent sow and part of phenotypic variance due to common litter effects for FI but not for GR.
Cucchi, Thomas; Barnett, Ross; Martínková, Natália; Renaud, Sabrina; Renvoisé, Elodie; Evin, Allowen; Sheridan, Alison; Mainland, Ingrid; Wickham‐Jones, Caroline; Tougard, Christelle; Quéré, Jean Pierre; Pascal, Michel; Pascal, Marine; Heckel, Gerald; O'Higgins, Paul; Searle, Jeremy B.; Dobney, Keith M.
2014-01-01
Island evolution may be expected to involve fast initial morphological divergence followed by stasis. We tested this model using the dental phenotype of modern and ancient common voles (Microtus arvalis), introduced onto the Orkney archipelago (Scotland) from continental Europe some 5000 years ago. First, we investigated phenotypic divergence of Orkney and continental European populations and assessed climatic influences. Second, phenotypic differentiation among Orkney populations was tested against geography, time, and neutral genetic patterns. Finally, we examined evolutionary change along a time series for the Orkney Mainland. Molar gigantism and anterior‐lobe hypertrophy evolved rapidly in Orkney voles following introduction, without any transitional forms detected. Founder events and adaptation appear to explain this initial rapid evolution. Idiosyncrasy in dental features among different island populations of Orkney voles is also likely the result of local founder events following Neolithic translocation around the archipelago. However, against our initial expectations, a second marked phenotypic shift occurred between the 4th and 12th centuries AD, associated with increased pastoral farming and introduction of competitors (mice and rats) and terrestrial predators (foxes and cats). These results indicate that human agency can generate a more complex pattern of morphological evolution than might be expected in island rodents. PMID:24957579
Smooth to Rough Dissociation in Brucella: The Missing Link to Virulence.
Mancilla, Marcos
2015-01-01
Dissociation encompasses changes in a series of phenotypes: colony and cell morphology, inmunological and biochemical reactions and virulence. The concept is generally associated to the in vitro transition between smooth (S) and rough (R) colonies, a phenotypic observation in Gram-negative bacteria commonly made since the beginning of microbiology as a science. It is also well known that the loss of the O-polysaccharide, the most external lipopolysaccharide (LPS) moiety, triggers the change in the colony phenotype. Although dissociation is related to one of the most basic features used to distinguish between species, i.e., colony morphology, and, in the case of pathogens, predict their virulence behavior, it has been considered a laboratory artifact and thus did not gain further attention. However, recent insights into genetics and pathogenesis of members of Brucella, causative agents of brucellosis, have brought a new outlook on this experimental fact, suggesting that it plays a role beyond the laboratory observations. In this perspective article, the current knowledge on Brucella LPS genetics and its connection with dissociation in the frame of evolution is discussed. Latest reports support the notion that, by means of a better understanding of genetic pathways linked to R phenotype and the biological impact of this intriguing "old" phenomenon, unexpected applications can be achieved.
Smooth to Rough Dissociation in Brucella: The Missing Link to Virulence
Mancilla, Marcos
2016-01-01
Dissociation encompasses changes in a series of phenotypes: colony and cell morphology, inmunological and biochemical reactions and virulence. The concept is generally associated to the in vitro transition between smooth (S) and rough (R) colonies, a phenotypic observation in Gram-negative bacteria commonly made since the beginning of microbiology as a science. It is also well known that the loss of the O-polysaccharide, the most external lipopolysaccharide (LPS) moiety, triggers the change in the colony phenotype. Although dissociation is related to one of the most basic features used to distinguish between species, i.e., colony morphology, and, in the case of pathogens, predict their virulence behavior, it has been considered a laboratory artifact and thus did not gain further attention. However, recent insights into genetics and pathogenesis of members of Brucella, causative agents of brucellosis, have brought a new outlook on this experimental fact, suggesting that it plays a role beyond the laboratory observations. In this perspective article, the current knowledge on Brucella LPS genetics and its connection with dissociation in the frame of evolution is discussed. Latest reports support the notion that, by means of a better understanding of genetic pathways linked to R phenotype and the biological impact of this intriguing “old” phenomenon, unexpected applications can be achieved. PMID:26779449
Which ante mortem clinical features predict progressive supranuclear palsy pathology?
Respondek, Gesine; Kurz, Carolin; Arzberger, Thomas; Compta, Yaroslau; Englund, Elisabet; Ferguson, Leslie W; Gelpi, Ellen; Giese, Armin; Irwin, David J; Meissner, Wassilios G; Nilsson, Christer; Pantelyat, Alexander; Rajput, Alex; van Swieten, John C; Troakes, Claire; Josephs, Keith A; Lang, Anthony E; Mollenhauer, Brit; Müller, Ulrich; Whitwell, Jennifer L; Antonini, Angelo; Bhatia, Kailash P; Bordelon, Yvette; Corvol, Jean-Christophe; Colosimo, Carlo; Dodel, Richard; Grossman, Murray; Kassubek, Jan; Krismer, Florian; Levin, Johannes; Lorenzl, Stefan; Morris, Huw; Nestor, Peter; Oertel, Wolfgang H; Rabinovici, Gil D; Rowe, James B; van Eimeren, Thilo; Wenning, Gregor K; Boxer, Adam; Golbe, Lawrence I; Litvan, Irene; Stamelou, Maria; Höglinger, Günter U
2017-07-01
Progressive supranuclear palsy (PSP) is a neuropathologically defined disease presenting with a broad spectrum of clinical phenotypes. To identify clinical features and investigations that predict or exclude PSP pathology during life, aiming at an optimization of the clinical diagnostic criteria for PSP. We performed a systematic review of the literature published since 1996 to identify clinical features and investigations that may predict or exclude PSP pathology. We then extracted standardized data from clinical charts of patients with pathologically diagnosed PSP and relevant disease controls and calculated the sensitivity, specificity, and positive predictive value of key clinical features for PSP in this cohort. Of 4166 articles identified by the database inquiry, 269 met predefined standards. The literature review identified clinical features predictive of PSP, including features of the following 4 functional domains: ocular motor dysfunction, postural instability, akinesia, and cognitive dysfunction. No biomarker or genetic feature was found reliably validated to predict definite PSP. High-quality original natural history data were available from 206 patients with pathologically diagnosed PSP and from 231 pathologically diagnosed disease controls (54 corticobasal degeneration, 51 multiple system atrophy with predominant parkinsonism, 53 Parkinson's disease, 73 behavioral variant frontotemporal dementia). We identified clinical features that predicted PSP pathology, including phenotypes other than Richardson's syndrome, with varying sensitivity and specificity. Our results highlight the clinical variability of PSP and the high prevalence of phenotypes other than Richardson's syndrome. The features of variant phenotypes with high specificity and sensitivity should serve to optimize clinical diagnosis of PSP. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.
Infectious and autoantibody-associated encephalitis: clinical features and long-term outcome.
Pillai, Sekhar C; Hacohen, Yael; Tantsis, Esther; Prelog, Kristina; Merheb, Vera; Kesson, Alison; Barnes, Elizabeth; Gill, Deepak; Webster, Richard; Menezes, Manoj; Ardern-Holmes, Simone; Gupta, Sachin; Procopis, Peter; Troedson, Christopher; Antony, Jayne; Ouvrier, Robert A; Polfrit, Yann; Davies, Nicholas W S; Waters, Patrick; Lang, Bethan; Lim, Ming J; Brilot, Fabienne; Vincent, Angela; Dale, Russell C
2015-04-01
Pediatric encephalitis has a wide range of etiologies, clinical presentations, and outcomes. This study seeks to classify and characterize infectious, immune-mediated/autoantibody-associated and unknown forms of encephalitis, including relative frequencies, clinical and radiologic phenotypes, and long-term outcome. By using consensus definitions and a retrospective single-center cohort of 164 Australian children, we performed clinical and radiologic phenotyping blinded to etiology and outcomes, and we tested archived acute sera for autoantibodies to N-methyl-D-aspartate receptor, voltage-gated potassium channel complex, and other neuronal antigens. Through telephone interviews, we defined outcomes by using the Liverpool Outcome Score (for encephalitis). An infectious encephalitis occurred in 30%, infection-associated encephalopathy in 8%, immune-mediated/autoantibody-associated encephalitis in 34%, and unknown encephalitis in 28%. In descending order of frequency, the larger subgroups were acute disseminated encephalomyelitis (21%), enterovirus (12%), Mycoplasma pneumoniae (7%), N-methyl-D-aspartate receptor antibody (6%), herpes simplex virus (5%), and voltage-gated potassium channel complex antibody (4%). Movement disorders, psychiatric symptoms, agitation, speech dysfunction, cerebrospinal fluid oligoclonal bands, MRI limbic encephalitis, and clinical relapse were more common in patients with autoantibodies. An abnormal outcome occurred in 49% of patients after a median follow-up of 5.8 years. Herpes simplex virus and unknown forms had the worst outcomes. According to our multivariate analysis, an abnormal outcome was more common in patients with status epilepticus, magnetic resonance diffusion restriction, and ICU admission. We have defined clinical and radiologic phenotypes of infectious and immune-mediated/autoantibody-associated encephalitis. In this resource-rich cohort, immune-mediated/autoantibody-associated etiologies are common, and the recognition and treatment of these entities should be a clinical priority. Copyright © 2015 by the American Academy of Pediatrics.
van Hattem, W. Arnout; Langeveld, Danielle; de Leng, Wendy W. J.; Morsink, Folkert H.; van Diest, Paul J.; Iacobuzio-Donahue, Christine A.; Giardiello, Francis M.; Offerhaus, G. Johan A.; Brosens, Lodewijk A. A.
2011-01-01
Background Juvenile polyps are distinct hamartomatous malformations of the gastrointestinal tract that may occur in the heritable juvenile polyposis syndrome (JPS) or sporadically. Histologically, juvenile polyps are characterised by a marked increase of the stromal cell compartment but, an epithelial phenotype has also been reported. JPS has an increased risk of colorectal cancer but sporadic juvenile polyps do not. In 50–60% of JPS patients a germline mutation of the TGF-β/BMP pathway genes SMAD4 or BMPR1A is found. This study compares the histological phenotype of juvenile polyps with a SMAD4 or BMPR1A germline mutation and sporadic juvenile polyps. Methods H&E slides of 65 JPS polyps and 25 sporadic juvenile polyps were reviewed for histological features and dysplasia. Systematic random crypt and stroma counts were obtained by count stereology and a crypt-stroma ratio was determined. All polyps were subsequently categorised as type A (crypt-stroma ratio <1.00) or type B (crypt-stroma ratio ≥1.00), the latter referring to the epithelial phenotype. Cell cycle activity was assessed using immunohistochemistry of the proliferation marker Ki67, and mutation analysis was conducted for KRAS and APC to determine the involvement of the adenoma-carcinoma sequence. Results Juvenile polyps with a SMAD4 germline mutation were predominantly type B, whereas, type A was more common among juvenile polyps with a BMPR1A germline mutation, but this distinction could not be ascribed to differences in cell cycle activity. Dysplasia was equally common in JPS polyps with either a SMAD4 or BMPR1A germline mutation, where the involvement of the adenoma-carcinoma sequence does not seem to play a distinct role. Conclusion juvenile polyps in the setting of JPS exhibit distinct phenotypes correlating with the underlying genetic defect. PMID:21412070
The myositis autoantibody phenotypes of the juvenile idiopathic inflammatory myopathies.
Rider, Lisa G; Shah, Mona; Mamyrova, Gulnara; Huber, Adam M; Rice, Madeline Murguia; Targoff, Ira N; Miller, Frederick W
2013-07-01
The juvenile idiopathic inflammatory myopathies (JIIM) are systemic autoimmune diseases characterized by skeletal muscle weakness, characteristic rashes, and other systemic features. In follow-up to our study defining the major clinical subgroup phenotypes of JIIM, we compared demographics, clinical features, laboratory measures, and outcomes among myositis-specific autoantibody (MSA) subgroups, as well as with published data on adult idiopathic inflammatory myopathy patients enrolled in a separate natural history study. In the present study, of 430 patients enrolled in a nationwide registry study who had serum tested for myositis autoantibodies, 374 had either a single specific MSA (n = 253) or no identified MSA (n = 121) and were the subject of the present report. Following univariate analysis, we used random forest classification and exact logistic regression modeling to compare autoantibody subgroups. Anti-p155/140 autoantibodies were the most frequent subgroup, present in 32% of patients with juvenile dermatomyositis (JDM) or overlap myositis with JDM, followed by anti-MJ autoantibodies, which were seen in 20% of JIIM patients, primarily in JDM. Other MSAs, including anti-synthetase, anti-signal recognition particle (SRP), and anti-Mi-2, were present in only 10% of JIIM patients. Features that characterized the anti-p155/140 autoantibody subgroup included Gottron papules, malar rash, "shawl-sign" rash, photosensitivity, cuticular overgrowth, lowest creatine kinase (CK) levels, and a predominantly chronic illness course. The features that differed for patients with anti-MJ antibodies included muscle cramps, dysphonia, intermediate CK levels, a high frequency of hospitalization, and a monocyclic disease course. Patients with anti-synthetase antibodies had higher frequencies of interstitial lung disease, arthralgia, and "mechanic's hands," and had an older age at diagnosis. The anti-SRP group, which had exclusively juvenile polymyositis, was characterized by high frequencies of black race, severe onset, distal weakness, falling episodes, Raynaud phenomenon, cardiac involvement, high CK levels, chronic disease course, frequent hospitalization, and wheelchair use. Characteristic features of the anti-Mi-2 subgroup included Hispanic ethnicity, classic dermatomyositis and malar rashes, high CK levels, and very low mortality. Finally, the most common features of patients without any currently defined MSA or myositis-associated autoantibodies included linear extensor erythema, arthralgia, and a monocyclic disease course. Several demographic and clinical features were shared between juvenile and adult idiopathic inflammatory myopathy subgroups, but with several important differences. We conclude that juvenile myositis is a heterogeneous group of illnesses with distinct autoantibody phenotypes defined by varying clinical and demographic characteristics, laboratory features, and outcomes.
The Myositis Autoantibody Phenotypes of the Juvenile Idiopathic Inflammatory Myopathies
Shah, Mona; Mamyrova, Gulnara; Huber, Adam M.; Rice, Madeline Murguia; Targoff, Ira N.; Miller, Frederick W.
2013-01-01
Abstract The juvenile idiopathic inflammatory myopathies (JIIM) are systemic autoimmune diseases characterized by skeletal muscle weakness, characteristic rashes, and other systemic features. In follow-up to our study defining the major clinical subgroup phenotypes of JIIM, we compared demographics, clinical features, laboratory measures, and outcomes among myositis-specific autoantibody (MSA) subgroups, as well as with published data on adult idiopathic inflammatory myopathy patients enrolled in a separate natural history study. In the present study, of 430 patients enrolled in a nationwide registry study who had serum tested for myositis autoantibodies, 374 had either a single specific MSA (n = 253) or no identified MSA (n = 121) and were the subject of the present report. Following univariate analysis, we used random forest classification and exact logistic regression modeling to compare autoantibody subgroups. Anti-p155/140 autoantibodies were the most frequent subgroup, present in 32% of patients with juvenile dermatomyositis (JDM) or overlap myositis with JDM, followed by anti-MJ autoantibodies, which were seen in 20% of JIIM patients, primarily in JDM. Other MSAs, including anti-synthetase, anti-signal recognition particle (SRP), and anti-Mi-2, were present in only 10% of JIIM patients. Features that characterized the anti-p155/140 autoantibody subgroup included Gottron papules, malar rash, “shawl-sign” rash, photosensitivity, cuticular overgrowth, lowest creatine kinase (CK) levels, and a predominantly chronic illness course. The features that differed for patients with anti-MJ antibodies included muscle cramps, dysphonia, intermediate CK levels, a high frequency of hospitalization, and a monocyclic disease course. Patients with anti-synthetase antibodies had higher frequencies of interstitial lung disease, arthralgia, and “mechanic’s hands,” and had an older age at diagnosis. The anti-SRP group, which had exclusively juvenile polymyositis, was characterized by high frequencies of black race, severe onset, distal weakness, falling episodes, Raynaud phenomenon, cardiac involvement, high CK levels, chronic disease course, frequent hospitalization, and wheelchair use. Characteristic features of the anti-Mi-2 subgroup included Hispanic ethnicity, classic dermatomyositis and malar rashes, high CK levels, and very low mortality. Finally, the most common features of patients without any currently defined MSA or myositis-associated autoantibodies included linear extensor erythema, arthralgia, and a monocyclic disease course. Several demographic and clinical features were shared between juvenile and adult idiopathic inflammatory myopathy subgroups, but with several important differences. We conclude that juvenile myositis is a heterogeneous group of illnesses with distinct autoantibody phenotypes defined by varying clinical and demographic characteristics, laboratory features, and outcomes. PMID:23877355
Dissecting Alzheimer disease in Down syndrome using mouse models
Choong, Xun Yu; Tosh, Justin L.; Pulford, Laura J.; Fisher, Elizabeth M. C.
2015-01-01
Down syndrome (DS) is a common genetic condition caused by the presence of three copies of chromosome 21 (trisomy 21). This greatly increases the risk of Alzheimer disease (AD), but although virtually all people with DS have AD neuropathology by 40 years of age, not all develop dementia. To dissect the genetic contribution of trisomy 21 to DS phenotypes including those relevant to AD, a range of DS mouse models has been generated which are trisomic for chromosome segments syntenic to human chromosome 21. Here, we consider key characteristics of human AD in DS (AD-DS), and our current state of knowledge on related phenotypes in AD and DS mouse models. We go on to review important features needed in future models of AD-DS, to understand this type of dementia and so highlight pathogenic mechanisms relevant to all populations at risk of AD. PMID:26528151
Dissecting Alzheimer disease in Down syndrome using mouse models.
Choong, Xun Yu; Tosh, Justin L; Pulford, Laura J; Fisher, Elizabeth M C
2015-01-01
Down syndrome (DS) is a common genetic condition caused by the presence of three copies of chromosome 21 (trisomy 21). This greatly increases the risk of Alzheimer disease (AD), but although virtually all people with DS have AD neuropathology by 40 years of age, not all develop dementia. To dissect the genetic contribution of trisomy 21 to DS phenotypes including those relevant to AD, a range of DS mouse models has been generated which are trisomic for chromosome segments syntenic to human chromosome 21. Here, we consider key characteristics of human AD in DS (AD-DS), and our current state of knowledge on related phenotypes in AD and DS mouse models. We go on to review important features needed in future models of AD-DS, to understand this type of dementia and so highlight pathogenic mechanisms relevant to all populations at risk of AD.
Noonan syndrome and clinically related disorders
Tartaglia, Marco; Gelb, Bruce D.; Zenker, Martin
2010-01-01
Noonan syndrome is a relatively common, clinically variable developmental disorder. Cardinal features include postnatally reduced growth, distinctive facial dysmorphism, congenital heart defects and hypertrophic cardiomyopathy, variable cognitive deficit and skeletal, ectodermal and hematologic anomalies. Noonan syndrome is transmitted as an autosomal dominant trait, and is genetically heterogeneous. So far, heterozygous mutations in nine genes (PTPN11, SOS1, KRAS, NRAS, RAF1, BRAF, SHOC2, MEK1 and CBL) have been documented to underlie this disorder or clinically related phenotypes. Based on these recent discoveries, the diagnosis can now be confirmed molecularly in approximately 75% of affected individuals. Affected genes encode for proteins participating in the RAS-mitogen-activated protein kinases (MAPK) signal transduction pathway, which is implicated in several developmental processes controlling morphology determination, organogenesis, synaptic plasticity and growth. Here, we provide an overview of clinical aspects of this disorder and closely related conditions, the molecular mechanisms underlying pathogenesis, and major genotype-phenotype correlations. PMID:21396583
Trigos, Anna S; Pearson, Richard B; Papenfuss, Anthony T; Goode, David L
2017-06-13
Tumors of distinct tissues of origin and genetic makeup display common hallmark cellular phenotypes, including sustained proliferation, suppression of cell death, and altered metabolism. These phenotypic commonalities have been proposed to stem from disruption of conserved regulatory mechanisms evolved during the transition to multicellularity to control fundamental cellular processes such as growth and replication. Dating the evolutionary emergence of human genes through phylostratigraphy uncovered close association between gene age and expression level in RNA sequencing data from The Cancer Genome Atlas for seven solid cancers. Genes conserved with unicellular organisms were strongly up-regulated, whereas genes of metazoan origin were primarily inactivated. These patterns were most consistent for processes known to be important in cancer, implicating both selection and active regulation during malignant transformation. The coordinated expression of strongly interacting multicellularity and unicellularity processes was lost in tumors. This separation of unicellular and multicellular functions appeared to be mediated by 12 highly connected genes, marking them as important general drivers of tumorigenesis. Our findings suggest common principles closely tied to the evolutionary history of genes underlie convergent changes at the cellular process level across a range of solid cancers. We propose altered activity of genes at the interfaces between multicellular and unicellular regions of human gene regulatory networks activate primitive transcriptional programs, driving common hallmark features of cancer. Manipulation of cross-talk between biological processes of different evolutionary origins may thus present powerful and broadly applicable treatment strategies for cancer.
Trigos, Anna S.; Pearson, Richard B.; Papenfuss, Anthony T.; Goode, David L.
2017-01-01
Tumors of distinct tissues of origin and genetic makeup display common hallmark cellular phenotypes, including sustained proliferation, suppression of cell death, and altered metabolism. These phenotypic commonalities have been proposed to stem from disruption of conserved regulatory mechanisms evolved during the transition to multicellularity to control fundamental cellular processes such as growth and replication. Dating the evolutionary emergence of human genes through phylostratigraphy uncovered close association between gene age and expression level in RNA sequencing data from The Cancer Genome Atlas for seven solid cancers. Genes conserved with unicellular organisms were strongly up-regulated, whereas genes of metazoan origin were primarily inactivated. These patterns were most consistent for processes known to be important in cancer, implicating both selection and active regulation during malignant transformation. The coordinated expression of strongly interacting multicellularity and unicellularity processes was lost in tumors. This separation of unicellular and multicellular functions appeared to be mediated by 12 highly connected genes, marking them as important general drivers of tumorigenesis. Our findings suggest common principles closely tied to the evolutionary history of genes underlie convergent changes at the cellular process level across a range of solid cancers. We propose altered activity of genes at the interfaces between multicellular and unicellular regions of human gene regulatory networks activate primitive transcriptional programs, driving common hallmark features of cancer. Manipulation of cross-talk between biological processes of different evolutionary origins may thus present powerful and broadly applicable treatment strategies for cancer. PMID:28484005
Motohashi, Reiko; Rödiger, Anja; Agne, Birgit; Baerenfaller, Katja; Baginsky, Sacha
2012-01-01
Research interest in proteomics is increasingly shifting toward the reverse genetic characterization of gene function at the proteome level. In plants, several distinct gene defects perturb photosynthetic capacity, resulting in the loss of chlorophyll and an albino or pale-green phenotype. Because photosynthesis is interconnected with the entire plant metabolism and its regulation, all albino plants share common characteristics that are determined by the switch from autotrophic to heterotrophic growth. Reverse genetic characterizations of such plants often cannot distinguish between specific consequences of a gene defect from generic effects in response to perturbations in photosynthetic capacity. Here, we set out to define common and specific features of protein accumulation in three different albino/pale-green plant lines. Using quantitative proteomics, we report a common molecular phenotype that connects the loss of photosynthetic capacity with other chloroplast and cellular functions, such as protein folding and stability, plastid protein import, and the expression of stress-related genes. Surprisingly, we do not find significant differences in the expression of key transcriptional regulators, suggesting that substantial regulation occurs at the posttranscriptional level. We examine the influence of different normalization schemes on the quantitative proteomics data and report all identified proteins along with their fold changes and P values in albino plants in comparison with the wild type. Our analysis provides initial guidance for the distinction between general and specific adaptations of the proteome in photosynthesis-impaired plants. PMID:23027667
Lasko, Thomas A; Denny, Joshua C; Levy, Mia A
2013-01-01
Inferring precise phenotypic patterns from population-scale clinical data is a core computational task in the development of precision, personalized medicine. The traditional approach uses supervised learning, in which an expert designates which patterns to look for (by specifying the learning task and the class labels), and where to look for them (by specifying the input variables). While appropriate for individual tasks, this approach scales poorly and misses the patterns that we don't think to look for. Unsupervised feature learning overcomes these limitations by identifying patterns (or features) that collectively form a compact and expressive representation of the source data, with no need for expert input or labeled examples. Its rising popularity is driven by new deep learning methods, which have produced high-profile successes on difficult standardized problems of object recognition in images. Here we introduce its use for phenotype discovery in clinical data. This use is challenging because the largest source of clinical data - Electronic Medical Records - typically contains noisy, sparse, and irregularly timed observations, rendering them poor substrates for deep learning methods. Our approach couples dirty clinical data to deep learning architecture via longitudinal probability densities inferred using Gaussian process regression. From episodic, longitudinal sequences of serum uric acid measurements in 4368 individuals we produced continuous phenotypic features that suggest multiple population subtypes, and that accurately distinguished (0.97 AUC) the uric-acid signatures of gout vs. acute leukemia despite not being optimized for the task. The unsupervised features were as accurate as gold-standard features engineered by an expert with complete knowledge of the domain, the classification task, and the class labels. Our findings demonstrate the potential for achieving computational phenotype discovery at population scale. We expect such data-driven phenotypes to expose unknown disease variants and subtypes and to provide rich targets for genetic association studies.
Lasko, Thomas A.; Denny, Joshua C.; Levy, Mia A.
2013-01-01
Inferring precise phenotypic patterns from population-scale clinical data is a core computational task in the development of precision, personalized medicine. The traditional approach uses supervised learning, in which an expert designates which patterns to look for (by specifying the learning task and the class labels), and where to look for them (by specifying the input variables). While appropriate for individual tasks, this approach scales poorly and misses the patterns that we don’t think to look for. Unsupervised feature learning overcomes these limitations by identifying patterns (or features) that collectively form a compact and expressive representation of the source data, with no need for expert input or labeled examples. Its rising popularity is driven by new deep learning methods, which have produced high-profile successes on difficult standardized problems of object recognition in images. Here we introduce its use for phenotype discovery in clinical data. This use is challenging because the largest source of clinical data – Electronic Medical Records – typically contains noisy, sparse, and irregularly timed observations, rendering them poor substrates for deep learning methods. Our approach couples dirty clinical data to deep learning architecture via longitudinal probability densities inferred using Gaussian process regression. From episodic, longitudinal sequences of serum uric acid measurements in 4368 individuals we produced continuous phenotypic features that suggest multiple population subtypes, and that accurately distinguished (0.97 AUC) the uric-acid signatures of gout vs. acute leukemia despite not being optimized for the task. The unsupervised features were as accurate as gold-standard features engineered by an expert with complete knowledge of the domain, the classification task, and the class labels. Our findings demonstrate the potential for achieving computational phenotype discovery at population scale. We expect such data-driven phenotypes to expose unknown disease variants and subtypes and to provide rich targets for genetic association studies. PMID:23826094
Ghoti, Hussam; Fibach, Eitan; Rachmilewitz, Eliezer A; Jeadi, Hisham; Filon, Dvora
2017-03-01
β-Thalassemia (β-thal) is a very common disease in the Palestinian population of the Gaza Strip. We studied their mutation frequency and clinical features. Thirteen different mutations were identified. The most common mutation was IVS-I-1 (G>A) (HBB: c.92+1G>A), which was prevalent in 31.5% of the thalassemia alleles studied. The IVS-I-110 (G>A) (HBB: c.93-21G>A) mutation was found in 25.0% of the alleles. Homozygotes for the IVS-I-1 mutation had higher mean hemoglobin (Hb) levels, required less blood transfusions, and lower transferrin saturation than the homozygotes for the IVS-I-110 mutation. This milder phenotype was, most likely, the result of the persistent production of Hb F; it was 9-fold higher in absolute terms (g/dL) and 7.7-fold higher in relative terms (percentage of total Hb). About half of our IVS-I-1 patients carried the XmnI polymorphism, which is known to be associated with elevated Hb F levels.
Macrocytic anemia in Lesch-Nyhan disease and its variants.
Cakmakli, Hasan F; Torres, Rosa J; Menendez, Araceli; Yalcin-Cakmakli, Gul; Porter, Christopher C; Puig, Juan Garcia; Jinnah, H A
2018-06-06
Lesch-Nyhan disease is an inherited metabolic disorder characterized by overproduction of uric acid and neurobehavioral abnormalities. The purpose of this study was to describe macrocytic erythrocytes as another common aspect of the phenotype. The results of 257 complete blood counts from 65 patients over a 23-year period were collected from 2 reference centers where many patients are seen regularly. Macrocytic erythrocytes occurred in 81-92% of subjects with Lesch-Nyhan disease or its neurological variants. After excluding cases with iron deficiency because it might pseudonormalize erythrocyte volumes, macrocytosis occurred in 97% of subjects. Macrocytic erythrocytes were sometimes accompanied by mild anemia, and rarely by severe anemia. These results establish macrocytic erythrocytes as a very common aspect of the clinical phenotype of Lesch-Nyhan disease and its neurological variants. Macrocytosis is so characteristic that its absence should prompt suspicion of a secondary process, such as iron deficiency. Because macrocytosis is uncommon in unaffected children, it can also be used as a clue for early diagnosis in children with neurodevelopmental delay. Better recognition of this characteristic feature of the disorder will also help to prevent unnecessary diagnostic testing and unnecessary attempts to treat it with folate or B12 supplements.
NASA Astrophysics Data System (ADS)
Hoehndorf, Robert; Schofield, Paul N.; Gkoutos, Georgios V.
2015-06-01
Phenotypes are the observable characteristics of an organism arising from its response to the environment. Phenotypes associated with engineered and natural genetic variation are widely recorded using phenotype ontologies in model organisms, as are signs and symptoms of human Mendelian diseases in databases such as OMIM and Orphanet. Exploiting these resources, several computational methods have been developed for integration and analysis of phenotype data to identify the genetic etiology of diseases or suggest plausible interventions. A similar resource would be highly useful not only for rare and Mendelian diseases, but also for common, complex and infectious diseases. We apply a semantic text-mining approach to identify the phenotypes (signs and symptoms) associated with over 6,000 diseases. We evaluate our text-mined phenotypes by demonstrating that they can correctly identify known disease-associated genes in mice and humans with high accuracy. Using a phenotypic similarity measure, we generate a human disease network in which diseases that have similar signs and symptoms cluster together, and we use this network to identify closely related diseases based on common etiological, anatomical as well as physiological underpinnings.
Brain enlargement is associated with regression in preschool-age boys with autism spectrum disorders
Nordahl, Christine Wu; Lange, Nicholas; Li, Deana D.; Barnett, Lou Ann; Lee, Aaron; Buonocore, Michael H.; Simon, Tony J.; Rogers, Sally; Ozonoff, Sally; Amaral, David G.
2011-01-01
Autism is a heterogeneous disorder with multiple behavioral and biological phenotypes. Accelerated brain growth during early childhood is a well-established biological feature of autism. Onset pattern, i.e., early onset or regressive, is an intensely studied behavioral phenotype of autism. There is currently little known, however, about whether, or how, onset status maps onto the abnormal brain growth. We examined the relationship between total brain volume and onset status in a large sample of 2- to 4-y-old boys and girls with autism spectrum disorder (ASD) [n = 53, no regression (nREG); n = 61, regression (REG)] and a comparison group of age-matched typically developing controls (n = 66). We also examined retrospective head circumference measurements from birth through 18 mo of age. We found that abnormal brain enlargement was most commonly found in boys with regressive autism. Brain size in boys without regression did not differ from controls. Retrospective head circumference measurements indicate that head circumference in boys with regressive autism is normal at birth but diverges from the other groups around 4–6 mo of age. There were no differences in brain size in girls with autism (n = 22, ASD; n = 24, controls). These results suggest that there may be distinct neural phenotypes associated with different onsets of autism. For boys with regressive autism, divergence in brain size occurs well before loss of skills is commonly reported. Thus, rapid head growth may be a risk factor for regressive autism. PMID:22123952
Post, Andrew R.; Kurc, Tahsin; Cholleti, Sharath; Gao, Jingjing; Lin, Xia; Bornstein, William; Cantrell, Dedra; Levine, David; Hohmann, Sam; Saltz, Joel H.
2013-01-01
Objective To create an analytics platform for specifying and detecting clinical phenotypes and other derived variables in electronic health record (EHR) data for quality improvement investigations. Materials and Methods We have developed an architecture for an Analytic Information Warehouse (AIW). It supports transforming data represented in different physical schemas into a common data model, specifying derived variables in terms of the common model to enable their reuse, computing derived variables while enforcing invariants and ensuring correctness and consistency of data transformations, long-term curation of derived data, and export of derived data into standard analysis tools. It includes software that implements these features and a computing environment that enables secure high-performance access to and processing of large datasets extracted from EHRs. Results We have implemented and deployed the architecture in production locally. The software is available as open source. We have used it as part of hospital operations in a project to reduce rates of hospital readmission within 30 days. The project examined the association of over 100 derived variables representing disease and co-morbidity phenotypes with readmissions in five years of data from our institution’s clinical data warehouse and the UHC Clinical Database (CDB). The CDB contains administrative data from over 200 hospitals that are in academic medical centers or affiliated with such centers. Discussion and Conclusion A widely available platform for managing and detecting phenotypes in EHR data could accelerate the use of such data in quality improvement and comparative effectiveness studies. PMID:23402960
McTwo: a two-step feature selection algorithm based on maximal information coefficient.
Ge, Ruiquan; Zhou, Manli; Luo, Youxi; Meng, Qinghan; Mai, Guoqin; Ma, Dongli; Wang, Guoqing; Zhou, Fengfeng
2016-03-23
High-throughput bio-OMIC technologies are producing high-dimension data from bio-samples at an ever increasing rate, whereas the training sample number in a traditional experiment remains small due to various difficulties. This "large p, small n" paradigm in the area of biomedical "big data" may be at least partly solved by feature selection algorithms, which select only features significantly associated with phenotypes. Feature selection is an NP-hard problem. Due to the exponentially increased time requirement for finding the globally optimal solution, all the existing feature selection algorithms employ heuristic rules to find locally optimal solutions, and their solutions achieve different performances on different datasets. This work describes a feature selection algorithm based on a recently published correlation measurement, Maximal Information Coefficient (MIC). The proposed algorithm, McTwo, aims to select features associated with phenotypes, independently of each other, and achieving high classification performance of the nearest neighbor algorithm. Based on the comparative study of 17 datasets, McTwo performs about as well as or better than existing algorithms, with significantly reduced numbers of selected features. The features selected by McTwo also appear to have particular biomedical relevance to the phenotypes from the literature. McTwo selects a feature subset with very good classification performance, as well as a small feature number. So McTwo may represent a complementary feature selection algorithm for the high-dimensional biomedical datasets.
Pediatric patients with common variable immunodeficiency: long-term follow-up.
Mohammadinejad, P; Aghamohammadi, A; Abolhassani, H; Sadaghiani, M S; Abdollahzade, S; Sadeghi, B; Soheili, H; Tavassoli, M; Fathi, S M; Tavakol, M; Behniafard, N; Darabi, B; Pourhamdi, S; Rezaei, N
2012-01-01
Common variable immunodeficiency (CVID) is the most common form of symptomatic primary immunodeficiency disease. It is characterized by hypogammaglobulinemia, increased predisposition to infections, autoimmunity, and cancer. This study was performed to evaluate the clinical and immunological features of a group of pediatric patients with CVID. The study population comprised 69 individuals with CVID diagnosed during childhood. The patients were followed up for a mean (SD) period of 5.2 (4.3) years. The mean diagnostic delay was 4.4 (3.6) years, which was significantly lower in patients who were diagnosed recently. Children were classified according to 5 clinical phenotypes: infections only (n=39), polyclonal lymphocytic infiltration (n=17), autoimmunity (n=12), malignancy (n=7), and enteropathy (n=3). Postdiagnosis survival (10-year) was 71%. The high percentages of pediatric patients with CVID in Iran may be due to the considerable prevalence of parental consanguinity in the region and an underlying genetic background.
Mapping Gene Associations in Human Mitochondria using Clinical Disease Phenotypes
Scharfe, Curt; Lu, Henry Horng-Shing; Neuenburg, Jutta K.; Allen, Edward A.; Li, Guan-Cheng; Klopstock, Thomas; Cowan, Tina M.; Enns, Gregory M.; Davis, Ronald W.
2009-01-01
Nuclear genes encode most mitochondrial proteins, and their mutations cause diverse and debilitating clinical disorders. To date, 1,200 of these mitochondrial genes have been recorded, while no standardized catalog exists of the associated clinical phenotypes. Such a catalog would be useful to develop methods to analyze human phenotypic data, to determine genotype-phenotype relations among many genes and diseases, and to support the clinical diagnosis of mitochondrial disorders. Here we establish a clinical phenotype catalog of 174 mitochondrial disease genes and study associations of diseases and genes. Phenotypic features such as clinical signs and symptoms were manually annotated from full-text medical articles and classified based on the hierarchical MeSH ontology. This classification of phenotypic features of each gene allowed for the comparison of diseases between different genes. In turn, we were then able to measure the phenotypic associations of disease genes for which we calculated a quantitative value that is based on their shared phenotypic features. The results showed that genes sharing more similar phenotypes have a stronger tendency for functional interactions, proving the usefulness of phenotype similarity values in disease gene network analysis. We then constructed a functional network of mitochondrial genes and discovered a higher connectivity for non-disease than for disease genes, and a tendency of disease genes to interact with each other. Utilizing these differences, we propose 168 candidate genes that resemble the characteristic interaction patterns of mitochondrial disease genes. Through their network associations, the candidates are further prioritized for the study of specific disorders such as optic neuropathies and Parkinson disease. Most mitochondrial disease phenotypes involve several clinical categories including neurologic, metabolic, and gastrointestinal disorders, which might indicate the effects of gene defects within the mitochondrial system. The accompanying knowledgebase (http://www.mitophenome.org/) supports the study of clinical diseases and associated genes. PMID:19390613
Phenotype detection in morphological mutant mice using deformation features.
Roy, Sharmili; Liang, Xi; Kitamoto, Asanobu; Tamura, Masaru; Shiroishi, Toshihiko; Brown, Michael S
2013-01-01
Large-scale global efforts are underway to knockout each of the approximately 25,000 mouse genes and interpret their roles in shaping the mammalian embryo. Given the tremendous amount of data generated by imaging mutated prenatal mice, high-throughput image analysis systems are inevitable to characterize mammalian development and diseases. Current state-of-the-art computational systems offer only differential volumetric analysis of pre-defined anatomical structures between various gene-knockout mice strains. For subtle anatomical phenotypes, embryo phenotyping still relies on the laborious histological techniques that are clearly unsuitable in such big data environment. This paper presents a system that automatically detects known phenotypes and assists in discovering novel phenotypes in muCT images of mutant mice. Deformation features obtained from non-linear registration of mutant embryo to a normal consensus average image are extracted and analyzed to compute phenotypic and candidate phenotypic areas. The presented system is evaluated using C57BL/10 embryo images. All cases of ventricular septum defect and polydactyly, well-known to be present in this strain, are successfully detected. The system predicts potential phenotypic areas in the liver that are under active histological evaluation for possible phenotype of this mouse line.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groza, Tudor; Köhler, Sebastian; Moldenhauer, Dawid
The Human Phenotype Ontology (HPO) is widely used in the rare disease community for differential diagnostics, phenotype-driven analysis of next-generation sequence-variation data, and translational research, but a comparable resource has not been available for common disease. Here, we have developed a concept-recognition procedure that analyzes the frequencies of HPO disease annotations as identified in over five million PubMed abstracts by employing an iterative procedure to optimize precision and recall of the identified terms. We derived disease models for 3,145 common human diseases comprising a total of 132,006 HPO annotations. The HPO now comprises over 250,000 phenotypic annotations for over 10,000more » rare and common diseases and can be used for examining the phenotypic overlap among common diseases that share risk alleles, as well as between Mendelian diseases and common diseases linked by genomic location. The annotations, as well as the HPO itself, are freely available.« less
Kawase, Koya; Azuma, Eiichi; Ohshita, Hironori; Tanaka, Tatsushi; Hanada, Yu; Sasaki, Tomoaki; Sugimoto, Mari; Togawa, Takao; Kouwaki, Masanori; Ito, Tsuyoshi; Hirayama, Masahiro; Koyama, Norihisa
2012-08-01
Not only in newborns with Down syndrome, but newborns without phenotypic features of Down syndrome also develop transient myeloproliferative disorder (TMD). In these cases, trisomy 21 and related chromosomal abnormalities are either constitutionally mosaic or limited to blood cells. Risk factors for early death of these patients are unknown so far. We here report a fatal case of TMD without phenotypic features of Down syndrome and review literature to identify risk factors associated with early death. Not only are gestational age and white blood cell count risk factors for early death in TMD with Down syndrome, but they also appear to be risk factors in TMD without Down syndrome.
Uniparental disomy and prenatal phenotype
Li, Xiaofei; Liu, Yan; Yue, Song; Wang, Li; Zhang, Tiejuan; Guo, Cuixia; Hu, Wenjie; Kagan, Karl-Oliver; Wu, Qingqing
2017-01-01
Abstract Rationale: Uniparental disomy (UPD) gives a description of the inheritance of both homologues of a chromosome pair from the same parent. The consequences of UPD depend on the specific chromosome/segment involved and its parental origin. Patient concerns: We report prenatal phenotypes of 2 rare cases of UPD. Diagnoses: The prenatal phenotype of case 1 included sonographic markers such as enlarged nuchal translucency (NT), absent nasal bone, short femur and humerus length, and several structural malformations involving Dandy–Walker malformation and congenital heart defects. The prenatal phenotype of Case 2 are sonographic markers, including enlarged NT, thickened nuchal fold, ascites, and polyhydramnios without apparent structural malformations. Interventions: Conventional G-band karyotype appears normal in case 1, while it shows normal chromosomes with a small supernumerary marker chromosome (sSMC) in case 2. Genetic etiology was left unknown until single-nucleotide polymorphism-based array (SNP-array) was performed, and segmental paternal UPD 22 was identified in case 1 and segmental paternal UPD 14 was found in case 2. Outcomes: The parents of case 1 chose termination of pregnancy. The neonate of case 2 was born prematurely with a bellshaped small thorax and died within a day. Lessons: UPD cases are rare and the phenotypes are different, which depend on the origin and affected chromosomal part. If a fetus shows multiple anomalies that cannot be attributed to a common aneuploidy or a genetic syndrome, or manifests some features possibly related to an UPD syndrome, such as detection of sSMC, SNP-array should be considered. PMID:29137034
Uniparental disomy and prenatal phenotype: Two case reports and review.
Li, Xiaofei; Liu, Yan; Yue, Song; Wang, Li; Zhang, Tiejuan; Guo, Cuixia; Hu, Wenjie; Kagan, Karl-Oliver; Wu, Qingqing
2017-11-01
Uniparental disomy (UPD) gives a description of the inheritance of both homologues of a chromosome pair from the same parent. The consequences of UPD depend on the specific chromosome/segment involved and its parental origin. We report prenatal phenotypes of 2 rare cases of UPD. The prenatal phenotype of case 1 included sonographic markers such as enlarged nuchal translucency (NT), absent nasal bone, short femur and humerus length, and several structural malformations involving Dandy-Walker malformation and congenital heart defects. The prenatal phenotype of Case 2 are sonographic markers, including enlarged NT, thickened nuchal fold, ascites, and polyhydramnios without apparent structural malformations. Conventional G-band karyotype appears normal in case 1, while it shows normal chromosomes with a small supernumerary marker chromosome (sSMC) in case 2. Genetic etiology was left unknown until single-nucleotide polymorphism-based array (SNP-array) was performed, and segmental paternal UPD 22 was identified in case 1 and segmental paternal UPD 14 was found in case 2. The parents of case 1 chose termination of pregnancy. The neonate of case 2 was born prematurely with a bellshaped small thorax and died within a day. UPD cases are rare and the phenotypes are different, which depend on the origin and affected chromosomal part. If a fetus shows multiple anomalies that cannot be attributed to a common aneuploidy or a genetic syndrome, or manifests some features possibly related to an UPD syndrome, such as detection of sSMC, SNP-array should be considered.
The E1784K mutation in SCN5A is associated with mixed clinical phenotype of type 3 long QT syndrome
Makita, Naomasa; Behr, Elijah; Shimizu, Wataru; Horie, Minoru; Sunami, Akihiko; Crotti, Lia; Schulze-Bahr, Eric; Fukuhara, Shigetomo; Mochizuki, Naoki; Makiyama, Takeru; Itoh, Hideki; Christiansen, Michael; McKeown, Pascal; Miyamoto, Koji; Kamakura, Shiro; Tsutsui, Hiroyuki; Schwartz, Peter J.; George, Alfred L.; Roden, Dan M.
2008-01-01
Phenotypic overlap of type 3 long QT syndrome (LQT3) with Brugada syndrome (BrS) is observed in some carriers of mutations in the Na channel SCN5A. While this overlap is important for patient management, the clinical features, prevalence, and mechanisms underlying such overlap have not been fully elucidated. To investigate the basis for this overlap, we genotyped a cohort of 44 LQT3 families of multiple ethnicities from 7 referral centers and found a high prevalence of the E1784K mutation in SCN5A. Of 41 E1784K carriers, 93% had LQT3, 22% had BrS, and 39% had sinus node dysfunction. Heterologously expressed E1784K channels showed a 15.0-mV negative shift in the voltage dependence of Na channel inactivation and a 7.5-fold increase in flecainide affinity for resting-state channels, properties also seen with other LQT3 mutations associated with a mixed clinical phenotype. Furthermore, these properties were absent in Na channels harboring the T1304M mutation, which is associated with LQT3 without a mixed clinical phenotype. These results suggest that a negative shift of steady-state Na channel inactivation and enhanced tonic block by class IC drugs represent common biophysical mechanisms underlying the phenotypic overlap of LQT3 and BrS and further indicate that class IC drugs should be avoided in patients with Na channels displaying these behaviors. PMID:18451998
DeScipio, Cheryl; Conlin, Laura; Rosenfeld, Jill; Tepperberg, James; Pasion, Romela; Patel, Ankita; McDonald, Marie T; Aradhya, Swaroop; Ho, Darlene; Goldstein, Jennifer; McGuire, Marianne; Mulchandani, Surabhi; Medne, Livija; Rupps, Rosemarie; Serrano, Alvaro H.; Thorland, Erik C; Tsai, Anne C-H; Hilhorst-Hofstee, Yvonne; Ruivenkamp, Claudia AL; Van Esch, Hilde; Addor, Marie-Claude; Martinet, Danielle; Mason, Thornton B.A.; Clark, Dinah; Spinner, Nancy B; Krantz, Ian D
2012-01-01
We describe 19 unrelated individuals with submicroscopic deletions involving 10p15.3 characterized by chromosomal microarray (CMA). Interestingly, to our knowledge, only two individuals with isolated, submicroscopic 10p15.3 deletion have been reported to date; however, only limited clinical information is available for these probands and the deleted region has not been molecularly mapped. Comprehensive clinical history was obtained for 12 of the 19 individuals described in this study. Common features among these 12 individuals include: cognitive/behavioral/developmental differences (11/11), speech delay/language disorder (10/10), motor delay (10/10), craniofacial dysmorphism (9/12), hypotonia (7/11,), brain anomalies (4/6) and seizures (3/7). Parental studies were performed for nine of the 19 individuals; the 10p15.3 deletion was de novo in seven of the probands, not maternally inherited in one proband and inherited from an apparently affected mother in one proband. Molecular mapping of the 19 individuals reported in this study has identified two genes, ZMYND11 (OMIM# 608668) and DIP2C (OMIM# 611380) (UCSC Genome Browser), mapping within 10p15.3 which are most commonly deleted. Although no single gene has been identified which is deleted in all 19 individuals studied, the deleted region in all but one individual includes ZMYND11 and the deleted region in all but one other individual includes DIP2C. There is not a clearly identifiable phenotypic difference between these two individuals and the size of the deleted region does not generally predict clinical features. Little is currently known about these genes complicating a direct genotype/phenotype correlation at this time. These data however, suggest that ZMYND11 and/or DIP2C haploinsufficiency contributes to the clinical features associated with 10p15 deletions in probands described in this study. PMID:22847950
DeScipio, Cheryl; Conlin, Laura; Rosenfeld, Jill; Tepperberg, James; Pasion, Romela; Patel, Ankita; McDonald, Marie T; Aradhya, Swaroop; Ho, Darlene; Goldstein, Jennifer; McGuire, Marianne; Mulchandani, Surabhi; Medne, Livija; Rupps, Rosemarie; Serrano, Alvaro H; Thorland, Erik C; Tsai, Anne C-H; Hilhorst-Hofstee, Yvonne; Ruivenkamp, Claudia A L; Van Esch, Hilde; Addor, Marie-Claude; Martinet, Danielle; Mason, Thornton B A; Clark, Dinah; Spinner, Nancy B; Krantz, Ian D
2012-09-01
We describe 19 unrelated individuals with submicroscopic deletions involving 10p15.3 characterized by chromosomal microarray (CMA). Interestingly, to our knowledge, only two individuals with isolated, submicroscopic 10p15.3 deletion have been reported to date; however, only limited clinical information is available for these probands and the deleted region has not been molecularly mapped. Comprehensive clinical history was obtained for 12 of the 19 individuals described in this study. Common features among these 12 individuals include: cognitive/behavioral/developmental differences (11/11), speech delay/language disorder (10/10), motor delay (10/10), craniofacial dysmorphism (9/12), hypotonia (7/11), brain anomalies (4/6) and seizures (3/7). Parental studies were performed for nine of the 19 individuals; the 10p15.3 deletion was de novo in seven of the probands, not maternally inherited in one proband and inherited from an apparently affected mother in one proband. Molecular mapping of the 19 individuals reported in this study has identified two genes, ZMYND11 (OMIM 608668) and DIP2C (OMIM 611380; UCSC Genome Browser), mapping within 10p15.3 which are most commonly deleted. Although no single gene has been identified which is deleted in all 19 individuals studied, the deleted region in all but one individual includes ZMYND11 and the deleted region in all but one other individual includes DIP2C. There is not a clearly identifiable phenotypic difference between these two individuals and the size of the deleted region does not generally predict clinical features. Little is currently known about these genes complicating a direct genotype/phenotype correlation at this time. These data however, suggest that ZMYND11 and/or DIP2C haploinsufficiency contributes to the clinical features associated with 10p15 deletions in probands described in this study. Copyright © 2012 Wiley Periodicals, Inc.
Fung, Lawrence K; Quintin, Eve-Marie; Haas, Brian W; Reiss, Allan L
2012-04-01
The overarching goal of this review is to compare and contrast the cognitive-behavioral features of fragile X syndrome (FraX) and Williams syndrome and to review the putative neural and molecular underpinnings of these features. Information is presented in a framework that provides guiding principles for conceptualizing gene-brain-behavior associations in neurodevelopmental disorders. Abnormalities, in particular cognitive-behavioral domains with similarities in underlying neurodevelopmental correlates, occur in both FraX and Williams syndrome including aberrant frontostriatal pathways leading to executive function deficits, and magnocellular/dorsal visual stream, superior parietal lobe, inferior parietal lobe, and postcentral gyrus abnormalities contributing to deficits in visuospatial function. Compelling cognitive-behavioral and neurodevelopmental contrasts also exist in these two disorders, for example, aberrant amygdala and fusiform cortex structure and function occurring in the context of contrasting social behavioral phenotypes, and temporal cortical and cerebellar abnormalities potentially underlying differences in language function. Abnormal dendritic development is a shared neurodevelopmental morphologic feature between FraX and Williams syndrome. Commonalities in molecular machinery and processes across FraX and Williams syndrome occur as well - microRNAs involved in translational regulation of major synaptic proteins; scaffolding proteins in excitatory synapses; and proteins involved in axonal development. Although the genetic variations leading to FraX and Williams syndrome are different, important similarities and contrasts in the phenotype, neurocircuitry, molecular machinery, and cellular processes in these two disorders allow for a unique approach to conceptualizing gene-brain-behavior links occurring in neurodevelopmental disorders.
Neurologic manifestations of the cryopyrin-associated periodic syndrome.
Kitley, Joanna L; Lachmann, Helen J; Pinto, Ashwin; Ginsberg, Lionel
2010-04-20
The cryopyrin-associated periodic syndrome (CAPS) is a rare but treatable hereditary autoinflammatory condition. Without treatment, one third of patients develop amyloidosis with consequent renal failure and death. CAPS encompasses 3 conditions: familial cold autoinflammatory syndrome, Muckle-Wells syndrome, and chronic infantile, neurologic, cutaneous, and articular syndrome. Neurologic complications are common in children with the chronic infantile, neurologic, cutaneous, and articular phenotype, but there are no previous published reports of neurologic features in adults with milder phenotypes. In this case series, we report in detail an adult case of CAPS and summarize the neurologic features seen in 12 other adults with genetically proven CAPS. These patients participated in a recent randomized study of canakinumab in CAPS and we used pretreatment data collected in this study. Twelve of the 13 patients (92%) had headache, of whom 10 (77%) had features of migraine. Seven patients (54%) had sensorineural deafness. Nine patients (69%) reported myalgia. Six patients (46%) had papilledema and a further 2 (15%) had optic disc pallor. MRI brain scan was normal in all patients. CAPS is a rare but treatable condition that may be encountered by neurologists in adult clinical practice since it can present with headache, myalgia, papilledema, sensorineural deafness, and aseptic meningitis. Unrecognized and untreated, it can lead to significant morbidity and mortality from renal failure. Treatment with anti-interleukin-1 therapy leads to complete resolution of symptoms and should also prevent progression to amyloidosis and subsequent renal failure.
Bianchin, Marino Muxfeldt; Londero, Renata Gomes; Lima, José Eduardo; Bigal, Marcelo Eduardo
2010-08-01
The association of epilepsy and migraine has been long recognized. Migraine and epilepsy are both chronic disorders with episodic attacks. Furthermore, headache may be a premonitory or postdromic symptom of seizures, and migraine headaches may cause seizures per se (migralepsy). Migraine and epilepsy are comorbid, sharing pathophysiological mechanisms and common clinical features. Several recent studies identified common genetic and molecular substrates for migraine and epilepsy, including phenotypic-genotypic correlations with mutations in the CACNA1A, ATP1A2, and SCN1A genes, as well as in syndromes due to mutations in the SLC1A3, POLG, and C10orF2 genes. Herein, we review the relationship between migraine and epilepsy, focusing on clinical aspects and some recent pathophysiological and molecular studies.
N-Myc Drives Neuroendocrine Prostate Cancer Initiated from Human Prostate Epithelial Cells.
Lee, John K; Phillips, John W; Smith, Bryan A; Park, Jung Wook; Stoyanova, Tanya; McCaffrey, Erin F; Baertsch, Robert; Sokolov, Artem; Meyerowitz, Justin G; Mathis, Colleen; Cheng, Donghui; Stuart, Joshua M; Shokat, Kevan M; Gustafson, W Clay; Huang, Jiaoti; Witte, Owen N
2016-04-11
MYCN amplification and overexpression are common in neuroendocrine prostate cancer (NEPC). However, the impact of aberrant N-Myc expression in prostate tumorigenesis and the cellular origin of NEPC have not been established. We define N-Myc and activated AKT1 as oncogenic components sufficient to transform human prostate epithelial cells to prostate adenocarcinoma and NEPC with phenotypic and molecular features of aggressive, late-stage human disease. We directly show that prostate adenocarcinoma and NEPC can arise from a common epithelial clone. Further, N-Myc is required for tumor maintenance, and destabilization of N-Myc through Aurora A kinase inhibition reduces tumor burden. Our findings establish N-Myc as a driver of NEPC and a target for therapeutic intervention. Copyright © 2016 Elsevier Inc. All rights reserved.
Cleft Lip and Palate in CHARGE Syndrome: Phenotypic Features That Influence Management.
Isaac, Kathryn V; Ganske, Ingrid M; Rottgers, Stephen A; Lim, So Young; Mulliken, John B
2018-03-01
Infants with syndromic cleft lip and/or cleft palate (CL/P) often require more complex care than their nonsyndromic counterparts. Our purpose was to (1) determine the prevalence of CL/P in patients with CHARGE syndrome and (2) highlight factors that affect management in this subset of children. This is a retrospective review from 1998 to 2016. Patients with CHARGE syndrome were diagnosed clinically and genetically. Prevalence of CL/P was determined and clinical details tabulated: phenotypic anomalies, cleft types, operative treatment, and results of repair. CHARGE syndrome was confirmed in 44 patients: 11 (25%) had cleft lip and palate and 1 had cleft palate only. Surgical treatment followed our usual protocols. Two patients with cardiac anomalies had prolonged recovery following surgical correction, necessitating palatal closure prior to nasolabial repair. One of these patients was too old for dentofacial orthopedics and underwent combined premaxillary setback and palatoplasty, prior to labial closure. Velopharyngeal insufficiency was frequent (n = 3/7). All patients had feeding difficulty and required a gastrostomy tube. All patients had neurosensory hearing loss; anomalies of the semicircular canals were frequent (n = 3/4). External auricular anomalies, colobomas, and cardiovascular anomalies were also common (n = 8/11). Other associated anomalies were choanal atresia (n = 4/11) and tracheoesophageal fistula (n = 2/11). CHARGE syndrome is an under-recognized genetic cause of cleft lip and palate. Hearing loss and speech and feeding difficulties often occur in these infants. Diagnosis can be delayed if the child presents with covert phenotypic features, such as chorioretinal colobomas, semicircular canal hypoplasia, and unilateral choanal atresia.
Lee, Jia-Ying Joey; Miller, James Alastair; Basu, Sreetama; Kee, Ting-Zhen Vanessa; Loo, Lit-Hsin
2018-06-01
Human lungs are susceptible to the toxicity induced by soluble xenobiotics. However, the direct cellular effects of many pulmonotoxic chemicals are not always clear, and thus, a general in vitro assay for testing pulmonotoxicity applicable to a wide variety of chemicals is not currently available. Here, we report a study that uses high-throughput imaging and artificial intelligence to build an in vitro pulmonotoxicity assay by automatically comparing and selecting human lung-cell lines and their associated quantitative phenotypic features most predictive of in vivo pulmonotoxicity. This approach is called "High-throughput In vitro Phenotypic Profiling for Toxicity Prediction" (HIPPTox). We found that the resulting assay based on two phenotypic features of a human bronchial epithelial cell line, BEAS-2B, can accurately classify 33 reference chemicals with human pulmonotoxicity information (88.8% balance accuracy, 84.6% sensitivity, and 93.0% specificity). In comparison, the predictivity of a standard cell-viability assay on the same set of chemicals is much lower (77.1% balanced accuracy, 84.6% sensitivity, and 69.5% specificity). We also used the assay to evaluate 17 additional test chemicals with unknown/unclear human pulmonotoxicity, and experimentally confirmed that many of the pulmonotoxic reference and predicted-positive test chemicals induce DNA strand breaks and/or activation of the DNA-damage response (DDR) pathway. Therefore, HIPPTox helps us to uncover these common modes-of-action of pulmonotoxic chemicals. HIPPTox may also be applied to other cell types or models, and accelerate the development of predictive in vitro assays for other cell-type- or organ-specific toxicities.
GESPA: classifying nsSNPs to predict disease association.
Khurana, Jay K; Reeder, Jay E; Shrimpton, Antony E; Thakar, Juilee
2015-07-25
Non-synonymous single nucleotide polymorphisms (nsSNPs) are the most common DNA sequence variation associated with disease in humans. Thus determining the clinical significance of each nsSNP is of great importance. Potential detrimental nsSNPs may be identified by genetic association studies or by functional analysis in the laboratory, both of which are expensive and time consuming. Existing computational methods lack accuracy and features to facilitate nsSNP classification for clinical use. We developed the GESPA (GEnomic Single nucleotide Polymorphism Analyzer) program to predict the pathogenicity and disease phenotype of nsSNPs. GESPA is a user-friendly software package for classifying disease association of nsSNPs. It allows flexibility in acceptable input formats and predicts the pathogenicity of a given nsSNP by assessing the conservation of amino acids in orthologs and paralogs and supplementing this information with data from medical literature. The development and testing of GESPA was performed using the humsavar, ClinVar and humvar datasets. Additionally, GESPA also predicts the disease phenotype associated with a nsSNP with high accuracy, a feature unavailable in existing software. GESPA's overall accuracy exceeds existing computational methods for predicting nsSNP pathogenicity. The usability of GESPA is enhanced by fast SQL-based cloud storage and retrieval of data. GESPA is a novel bioinformatics tool to determine the pathogenicity and phenotypes of nsSNPs. We anticipate that GESPA will become a useful clinical framework for predicting the disease association of nsSNPs. The program, executable jar file, source code, GPL 3.0 license, user guide, and test data with instructions are available at http://sourceforge.net/projects/gespa.
Howell, Katherine B.; McMahon, Jacinta M.; Carvill, Gemma L.; Tambunan, Dimira; Mackay, Mark T.; Rodriguez-Casero, Victoria; Webster, Richard; Clark, Damian; Freeman, Jeremy L.; Calvert, Sophie; Olson, Heather E.; Mandelstam, Simone; Poduri, Annapurna; Mefford, Heather C.; Harvey, A. Simon
2015-01-01
Objective: De novo SCN2A mutations have recently been associated with severe infantile-onset epilepsies. Herein, we define the phenotypic spectrum of SCN2A encephalopathy. Methods: Twelve patients with an SCN2A epileptic encephalopathy underwent electroclinical phenotyping. Results: Patients were aged 0.7 to 22 years; 3 were deceased. Seizures commenced on day 1–4 in 8, week 2–6 in 2, and after 1 year in 2. Characteristic features included clusters of brief focal seizures with multiple hourly (9 patients), multiple daily (2), or multiple weekly (1) seizures, peaking at maximal frequency within 3 months of onset. Multifocal interictal epileptiform discharges were seen in all. Three of 12 patients had infantile spasms. The epileptic syndrome at presentation was epilepsy of infancy with migrating focal seizures (EIMFS) in 7 and Ohtahara syndrome in 2. Nine patients had improved seizure control with sodium channel blockers including supratherapeutic or high therapeutic phenytoin levels in 5. Eight had severe to profound developmental impairment. Other features included movement disorders (10), axial hypotonia (11) with intermittent or persistent appendicular spasticity, early handedness, and severe gastrointestinal symptoms. Mutations arose de novo in 11 patients; paternal DNA was unavailable in one. Conclusions: Review of our 12 and 34 other reported cases of SCN2A encephalopathy suggests 3 phenotypes: neonatal-infantile–onset groups with severe and intermediate outcomes, and a childhood-onset group. Here, we show that SCN2A is the second most common cause of EIMFS and, importantly, does not always have a poor developmental outcome. Sodium channel blockers, particularly phenytoin, may improve seizure control. PMID:26291284
Martinelli, Simone; De Luca, Alessandro; Stellacci, Emilia; Rossi, Cesare; Checquolo, Saula; Lepri, Francesca; Caputo, Viviana; Silvano, Marianna; Buscherini, Francesco; Consoli, Federica; Ferrara, Grazia; Digilio, Maria C.; Cavaliere, Maria L.; van Hagen, Johanna M.; Zampino, Giuseppe; van der Burgt, Ineke; Ferrero, Giovanni B.; Mazzanti, Laura; Screpanti, Isabella; Yntema, Helger G.; Nillesen, Willy M.; Savarirayan, Ravi; Zenker, Martin; Dallapiccola, Bruno; Gelb, Bruce D.; Tartaglia, Marco
2010-01-01
RAS signaling plays a key role in controlling appropriate cell responses to extracellular stimuli and participates in early and late developmental processes. Although enhanced flow through this pathway has been established as a major contributor to oncogenesis, recent discoveries have revealed that aberrant RAS activation causes a group of clinically related developmental disorders characterized by facial dysmorphism, a wide spectrum of cardiac disease, reduced growth, variable cognitive deficits, ectodermal and musculoskeletal anomalies, and increased risk for certain malignancies. Here, we report that heterozygous germline mutations in CBL, a tumor-suppressor gene that is mutated in myeloid malignancies and encodes a multivalent adaptor protein with E3 ubiquitin ligase activity, can underlie a phenotype with clinical features fitting or partially overlapping Noonan syndrome (NS), the most common condition of this disease family. Independent CBL mutations were identified in two sporadic cases and two families from among 365 unrelated subjects who had NS or suggestive features and were negative for mutations in previously identified disease genes. Phenotypic heterogeneity and variable expressivity were documented. Mutations were missense changes altering evolutionarily conserved residues located in the RING finger domain or the linker connecting this domain to the N-terminal tyrosine kinase binding domain, a known mutational hot spot in myeloid malignancies. Mutations were shown to affect CBL-mediated receptor ubiquitylation and dysregulate signal flow through RAS. These findings document that germline mutations in CBL alter development to cause a clinically variable condition that resembles NS and that possibly predisposes to malignancies. PMID:20619386
D'Angelo, Carla S; Da Paz, José A; Kim, Chong A; Bertola, Débora R; Castro, Claudia I E; Varela, Monica C; Koiffmann, Célia P
2006-01-01
Monosomy 1p36 is one of the most commonly observed mental retardation (MR) syndromes that results in a clinically recognizable phenotype including delayed psychomotor development and/or MR, hypotonia, epilepsy, hearing loss, growth delay, microcephaly, deep-set eyes, flat nasal bridge and pointed chin. Besides, a Prader-Willi syndrome (PWS)-like phenotype has been described in patients with 1p36 monosomy. Forty-one patients presenting hypotonia, developmental delay, obesity and/or hyperphagia and behavioral problems who tested negative for PWS were investigated by FISH and/or microsatellite markers. Twenty-six were analyzed with a 1p-specific subtelomeric probe, and one terminal deletion was identified. Thirty patients (15 of which also studied by FISH) were investigated by microsatellite markers, and no interstitial 1p36 deletion was found. Our patient presenting the 1p36 deletion did not have the striking features of this monosomy, but her clinical and behavioral features were quite similar to those observed in patients with PWS, except for the presence of normal sucking at birth. The extent of the deletion could be limited to the most terminal 2.5 Mb of 1p36, within the chromosomal region 1p36.33-1p36.32, that is smaller than usually seen in monosomy 1p36 patients. Therefore, chromosome 1p36.33 deletion should be investigated in patients with hypotonia, developmental delay, obesity and/or hyperphagia and behavioral problems who test negative for PWS.
Deep machine learning provides state-of-the-art performance in image-based plant phenotyping.
Pound, Michael P; Atkinson, Jonathan A; Townsend, Alexandra J; Wilson, Michael H; Griffiths, Marcus; Jackson, Aaron S; Bulat, Adrian; Tzimiropoulos, Georgios; Wells, Darren M; Murchie, Erik H; Pridmore, Tony P; French, Andrew P
2017-10-01
In plant phenotyping, it has become important to be able to measure many features on large image sets in order to aid genetic discovery. The size of the datasets, now often captured robotically, often precludes manual inspection, hence the motivation for finding a fully automated approach. Deep learning is an emerging field that promises unparalleled results on many data analysis problems. Building on artificial neural networks, deep approaches have many more hidden layers in the network, and hence have greater discriminative and predictive power. We demonstrate the use of such approaches as part of a plant phenotyping pipeline. We show the success offered by such techniques when applied to the challenging problem of image-based plant phenotyping and demonstrate state-of-the-art results (>97% accuracy) for root and shoot feature identification and localization. We use fully automated trait identification using deep learning to identify quantitative trait loci in root architecture datasets. The majority (12 out of 14) of manually identified quantitative trait loci were also discovered using our automated approach based on deep learning detection to locate plant features. We have shown deep learning-based phenotyping to have very good detection and localization accuracy in validation and testing image sets. We have shown that such features can be used to derive meaningful biological traits, which in turn can be used in quantitative trait loci discovery pipelines. This process can be completely automated. We predict a paradigm shift in image-based phenotyping bought about by such deep learning approaches, given sufficient training sets. © The Authors 2017. Published by Oxford University Press.
EHR-based phenotyping: Bulk learning and evaluation.
Chiu, Po-Hsiang; Hripcsak, George
2017-06-01
In data-driven phenotyping, a core computational task is to identify medical concepts and their variations from sources of electronic health records (EHR) to stratify phenotypic cohorts. A conventional analytic framework for phenotyping largely uses a manual knowledge engineering approach or a supervised learning approach where clinical cases are represented by variables encompassing diagnoses, medicinal treatments and laboratory tests, among others. In such a framework, tasks associated with feature engineering and data annotation remain a tedious and expensive exercise, resulting in poor scalability. In addition, certain clinical conditions, such as those that are rare and acute in nature, may never accumulate sufficient data over time, which poses a challenge to establishing accurate and informative statistical models. In this paper, we use infectious diseases as the domain of study to demonstrate a hierarchical learning method based on ensemble learning that attempts to address these issues through feature abstraction. We use a sparse annotation set to train and evaluate many phenotypes at once, which we call bulk learning. In this batch-phenotyping framework, disease cohort definitions can be learned from within the abstract feature space established by using multiple diseases as a substrate and diagnostic codes as surrogates. In particular, using surrogate labels for model training renders possible its subsequent evaluation using only a sparse annotated sample. Moreover, statistical models can be trained and evaluated, using the same sparse annotation, from within the abstract feature space of low dimensionality that encapsulates the shared clinical traits of these target diseases, collectively referred to as the bulk learning set. Copyright © 2017 Elsevier Inc. All rights reserved.
The complexity and implications of yeast prion domains
2011-01-01
Prions are infectious proteins with altered conformations converted from otherwise normal host proteins. While there is only one known mammalian prion protein, PrP, a handful of prion proteins have been identified in the yeast Saccharomyces cerevisiae. Yeast prion proteins usually have a defined region called prion domain (PrD) essential for prion properties, which are typically rich in glutamine (Q) and asparagine (N). Despite sharing several common features, individual yeast PrDs are generally intricate and divergent in their compositional characteristics, which potentially implicates their prion phenotypes, such as prion-mediated transcriptional regulations. PMID:22156731
Role for metabotropic glutamate receptor 5 (mGluR5) in the pathogenesis of fragile X syndrome.
Dölen, Gül; Bear, Mark F
2008-03-15
Metabotropic glutamate receptors (mGluRs) have been implicated in a diverse variety of neuronal functions. Studies reviewed here indicate that exaggerated signalling through mGluR5 can account for multiple cognitive and syndromic features of fragile X syndrome, the most common inherited form of mental retardation and autism. Since a reduction of mGluR5 signalling can reverse fragile X phenotypes, these studies provide a compelling rationale for the use of mGluR5 antagonists for the treatment of fragile X and related disorders.
How many breaks do we need to CATCH on 22q11?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dallapiccola, B.; Pizzuti, A.; Novelli, G.
1996-07-01
The major clinical manifestations of DiGeorge syndrome (DGS; MIM 188400), which reflect developmental abnormalities of the 3d and 4th pharyngeal pouch derivatives, include thymus- and parathyroid-gland aplasia or hypoplasia and conotruncal cardiac malformations. The additional dysmorphic facial features, such as hypertelorism, cleft lip and palate, bifid uvula, and small/low-set ears, which are also common, presumably reflect the same defect. The DGS phenotype has been associated with chromosome abnormalities and, sometimes, is the effect of teratogenic agents such as retinoic acid and alcohol. 53 refs., 1 fig.
Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
Aerts, Hugo J. W. L.; Velazquez, Emmanuel Rios; Leijenaar, Ralph T. H.; Parmar, Chintan; Grossmann, Patrick; Cavalho, Sara; Bussink, Johan; Monshouwer, René; Haibe-Kains, Benjamin; Rietveld, Derek; Hoebers, Frank; Rietbergen, Michelle M.; Leemans, C. René; Dekker, Andre; Quackenbush, John; Gillies, Robert J.; Lambin, Philippe
2014-01-01
Human cancers exhibit strong phenotypic differences that can be visualized noninvasively by medical imaging. Radiomics refers to the comprehensive quantification of tumour phenotypes by applying a large number of quantitative image features. Here we present a radiomic analysis of 440 features quantifying tumour image intensity, shape and texture, which are extracted from computed tomography data of 1,019 patients with lung or head-and-neck cancer. We find that a large number of radiomic features have prognostic power in independent data sets of lung and head-and-neck cancer patients, many of which were not identified as significant before. Radiogenomics analysis reveals that a prognostic radiomic signature, capturing intratumour heterogeneity, is associated with underlying gene-expression patterns. These data suggest that radiomics identifies a general prognostic phenotype existing in both lung and head-and-neck cancer. This may have a clinical impact as imaging is routinely used in clinical practice, providing an unprecedented opportunity to improve decision-support in cancer treatment at low cost. PMID:24892406
Meloidogyne partityla on Pecan Isozyme Phenotypes and Other Host.
Starr, J L; Tomaszewski, E K; Mundo-Ocampo, M; Baldwin, J G
1996-12-01
Meloidogyne sp. from five pecan (Carya illinoensis) orchards in Texas were distinctive in host range and iszoyme profiles from common species of Meloidogyne but were morphologically congruent with Meloidogyne partityla Kleynhans, a species previously known only in South Africa. In addition to pecan, species of walnut (Juglans hindsii and J. regia) and hickory (C. ovata) also were hosts. No reproduction was observed on 15 other plant species from nine families, including several common hosts of other Meloidogyne spp. Three esterase phenotypes and two malate dehydrogenase phenotypes of M. partityla were identified by polyacrylamide gel electrophoresis. Each of these isozyme phenotypes was distinct from those of the more common species M. arenaria, M. hapla, M. incognita, and M. javanica.
Calaza, Manuel; Witte, Torsten; Papasteriades, Chryssa; Marchini, Maurizio; Migliaresi, Sergio; Kovacs, Attila; Ordi-Ros, Josep; Bijl, Marc; Santos, Maria Jose; Ruzickova, Sarka; Pullmann, Rudolf; Carreira, Patricia; Skopouli, Fotini N.; D'Alfonso, Sandra; Sebastiani, Gian Domenico; Suarez, Ana; Blanco, Francisco J.; Gomez-Reino, Juan J.; Gonzalez, Antonio
2011-01-01
Systemic Lupus Erythematosus (SLE) is an autoimmune disease with a very varied spectrum of clinical manifestations that could be partly determined by genetic factors. We aimed to determine the relationship between prevalence of 11 clinical features and age of disease onset with European population genetic substructure. Data from 1413 patients of European ancestry recruited in nine countries was tested for association with genotypes of top ancestry informative markers. This analysis was done with logistic regression between phenotypes and genotypes or principal components extracted from them. We used a genetic additive model and adjusted for gender and disease duration. Three clinical features showed association with ancestry informative markers: autoantibody production defined as immunologic disorder (P = 6.8×10−4), oral ulcers (P = 6.9×10−4) and photosensitivity (P = 0.002). Immunologic disorder was associated with genotypes more common in Southern European ancestries, whereas the opposite trend was observed for photosensitivity. Oral ulcers were specifically more common in patients of Spanish and Portuguese self-reported ancestry. These results should be taken into account in future research and suggest new hypotheses and possible underlying mechanisms to be investigated. A first hypothesis linking photosensitivity with variation in skin pigmentation is suggested. PMID:22194982
Cleft-palate lateral synechia syndrome: insight into the phenotypic spectrum of Fryns syndrome?
Jaeger, April; Kapur, Raj; Whelan, Michael; Leung, Eric; Cunningham, Michael
2003-06-01
In 1972, Fuhrmann et al. (Humangenetik 1972;14:196-203) described a novel syndrome consisting of cleft palate (CP) and lateral synechiae (LS) between the palate and the floor of the mouth. This constellation of malformations, since denoted as cleft-palate lateral synechiae syndrome (CPLS), is a rare syndrome; only five cases have been reported since the original description. Because of the paucity of recognized cases, little is known regarding the phenotypic spectrum of this presumably autosomal dominant condition. We report two unrelated patients who presented with remarkably similar phenotypic features, including multiple intraoral synechiae (filiforme intraalveolar bands), cleft palate, micrognathia, and redundant lower lip tissue. Their phenotypic findings indicate a diagnosis of CPLS; however, case 3 (the monozygotic twin of case 2) had classic phenotypic features of Fryns syndrome. This report presents two new cases of CPLS, and suggests that the CPLS phenotype may represent the mild end of the Fryns syndrome phenotypic spectrum. Supplementary material for this article can be found on the Birth Defects Research (Part A) website (http://www.interscience.wiley.com/ jpages/1542-0752/suppmat/67/fig5.xls).
Sadiq, Faizan A; Flint, Steve; Li, YanJun; Ou, Kai; Yuan, Lei; He, Guo Qing
2017-09-01
Phenotypic changes or phase variation within biofilms is an important feature of bacterial dormant life. Enhanced resistance to antimicrobials is one of the distinct features displayed by a fraction of cells within biofilms. It is believed that persisters are mainly responsible for this phenotypic heterogeneity. However, there is still an unresolved debate on the formation of persisters. In this short review, we highlight all known genomic and proteomic changes encountered by bacterial cells within biofilms. We have also described all phenotypic changes displayed by bacterial cells within biofilms with particular emphasis on enhanced antimicrobial tolerance of biofilms with particular reference to persisters. In addition, all currently known models of persistence have been succinctly discussed.
IL-21 sustains CD28 expression on IL-15-activated human naive CD8+ T cells.
Alves, Nuno L; Arosa, Fernando A; van Lier, René A W
2005-07-15
Human naive CD8+ T cells are able to respond in an Ag-independent manner to IL-7 and IL-15. Whereas IL-7 largely maintains CD8+ T cells in a naive phenotype, IL-15 drives these cells to an effector phenotype characterized, among other features, by down-regulation of the costimulatory molecule CD28. We evaluated the influence of the CD4+ Th cell-derived common gamma-chain cytokine IL-21 on cytokine-induced naive CD8+ T cell activation. Stimulation with IL-21 did not induce division and only slightly increased IL-15-induced proliferation of naive CD8+ T cells. Strikingly, however, IL-15-induced down-modulation of CD28 was completely prevented by IL-21 at the protein and transcriptional level. Subsequent stimulation via combined TCR/CD3 and CD28 triggering led to a markedly higher production of IL-2 and IFN-gamma in IL-15/IL-21-stimulated cells compared with IL-15-stimulated T cells. Our data show that IL-21 modulates the phenotype of naive CD8+ T cells that have undergone IL-15 induced homeostatic proliferation and preserves their responsiveness to CD28 ligands.
Hypertelorism in Charcot-Marie-Tooth disease 1A from the common PMP22 duplication: A Case Report
Finsterer, Josef
2012-01-01
The 1.4Mb tandem-duplication in the PMP22 gene at 17p11.2 usually manifests as hereditary sensorimotor polyneuropathy with foot deformity, sensorineural hearing-loss, moderate developmental delay, and gait disturbance. Hypertelorism and marked phenotypic variability within a single family has not been reported. In a single family, the PMP22 tandem-duplication manifested as short stature, sensorimotor polyneuropathy, tremor, ataxia, sensorineural hearing-loss, and hypothyroidism in the 27 years-old index case, as mild facial dysmorphism, muscle cramps, tinnitus, intention tremor, bradydiadochokinesia, and sensorimotor polyneuropathy in the 31 year-old half-brother of the index-patient, and as sensorimotor polyneuropathy and foot-deformity in the father of the two. The half-brother additionally presented with hypertelorism, not previously reported in PMP22 tandem-duplication carriers. The presented cases show that the tandem-duplication 17p11.2 may present with marked intra-familial phenotype variability and that mild facial dysmorphism with stuck-out ears and hypertelorism may be a rare phenotypic feature of this mutation. The causal relation between facial dysmorphism and the PMP22 tandem-duplication, however, remains speculative. PMID:22496945
Acar, Sinem; Bulut, Ece; Durul, Bora; Uner, Ilhan; Kur, Mehmet; Avsaroglu, M Dilek; Kirmaci, Hüseyin Avni; Tel, Yasar Osman; Zeyrek, Fadile Y; Soyer, Yesim
2017-01-16
192 Food samples (commonly consumed 8 food types), 355 animal samples (animal feces of bovine, ovine, goat and chicken) and 50 samples from clinical human cases in Sanliurfa city, Turkey in a year were collected to determine the Salmonella enterica subsp. enterica mosaic in Turkey. 161 Salmonella isolates represented 17 serotypes, 20 sequence types (STs) and 44 PFGE patterns (PTs). 3 serotypes, S. Enteritidis, S. Typhimurium and S. Kentucky, were recovered from three different hosts. The highest discriminatory power was obtained by PFGE (SID=0.945), followed by MLST (SID=0.902) and serotyping (SID=0.885) for all isolates. The prevalence of antimicrobial resistance genes (aadA1, aadA2, strA, strB, aphA 1-Iab , bla TEM-1 , bla PSE-1 , tetA) was highly correlated with phenotypic profiles of aminoglycoside, ß-lactam and tetracycline groups (kappa >0.85). From our knowledge, this is the first study reporting spatial and temporal distribution of Salmonella species through phenotypic and genetic approaches over farm to fork chain in Turkey. Thus, our data provided further information for evolution, ecology and transmission of Salmonella in Turkey. Copyright © 2016. Published by Elsevier B.V.
Borghi, Lidia; Leone, Daniela; Vegni, Elena; Galiano, Valentina; Lepadatu, Corina; Sulpizio, Patrizia; Garzia, Emanuele
2018-06-01
To investigate the association between polycystic ovary syndrome (PCOS) and psychological disturbances, including anger. To analyze whether the biochemical/phenotypical features of PCOS play a role in the type and severity of psychological disorders. This case-control study included 30 PCOS patients meeting NIH criteria and 30 non-PCOS women referring to Reproductive Medicine Unit for infertility. Complete clinical and biochemical screening and the self-reported psychological data [Symptom Check List 90-R (SCL-90-R); Short-Form Health Survey 36 (SF-36); and State-Trait Anger Expression Inventory-2 (STAXI-2)] were collected. Statistical analyses were performed with SPSS-21. Compared with control women, women with PCOS reported significantly higher scores on SCL-90-R scales of somatization, anxiety, hostility, psychoticism, overall psychological distress and a number of symptoms. At STAXI-2, patients with PCOS scored higher in trait-anger and in the outward expression of anger, while lower in outward anger-control; PCOS patients had significantly lower scores on SF-36 scales of physical functioning and bodily pain. Hirsutism was directly associated with anxiety. Regarding the associations between phenotypical/biochemical features and psychological distress in PCOS patients, results showed that waist-to-hip ratio is inversely related to anxiety, psychoticism, hostility and to the indexes of psychological distress; such inverse relationship was also seen between plasmatic levels of testosterone and trait-anger, and between total cholesterol and hostility. Results were consistent with the previous literature on the well-being of PCOS women (in particular for anxiety and quality of life [QoL]) but failed to find evidence for depression. The relationship between psychological distress and the features of the syndrome highlighted the role of hirsutism. With respect to hyperandrogenemia, our data rejected its involvement in the elevated negative mood states and affects. Adopting an interdisciplinary approach in the PCOS patients' care, anger showed to be common and deserves major consideration.
The epileptology of Koolen-de Vries syndrome: Electro-clinico-radiologic findings in 31 patients.
Myers, Kenneth A; Mandelstam, Simone A; Ramantani, Georgia; Rushing, Elisabeth J; de Vries, Bert B; Koolen, David A; Scheffer, Ingrid E
2017-06-01
This study was designed to describe the spectrum of epilepsy phenotypes in Koolen-de Vries syndrome (KdVS), a genetic syndrome involving dysmorphic features, intellectual disability, hypotonia, and congenital malformations, that occurs secondary to 17q21.31 microdeletions and heterozygous mutations in KANSL1. We were invited to attend a large gathering of individuals with KdVS and their families. While there, we recruited individuals with KdVS and seizures, and performed thorough phenotyping. Additional subjects were included who approached us after the family support group brought attention to our research via social media. Inclusion criteria were genetic testing results demonstrating 17q21.31 deletion or KANSL1 mutation, and at least one seizure. Thirty-one individuals were studied, aged 2-35 years. Median age at seizure onset was 3.5 years, and 9 of 22 had refractory seizures 2 years after onset. Focal impaired awareness seizures were the most frequent seizure type occurring in 20 of 31, usually with prominent autonomic features. Twenty-one patients had prolonged seizures and, at times, refractory status epilepticus. Electroencephalography (EEG) showed focal/multifocal epileptiform discharges in 20 of 26. MRI studies of 13 patients were reviewed, and all had structural anomalies. Corpus callosum dysgenesis, abnormal hippocampi, and dilated ventricles were the most common, although periventricular nodular heterotopia, focal cortical dysplasia, abnormal sulcation, and brainstem and cerebellum abnormalities were also observed. One patient underwent epilepsy surgery for a lesion that proved to be an angiocentric glioma. The typical epilepsy phenotype of KdVS involves childhood-onset focal seizures that are prolonged and have prominent autonomic features. Multifocal epileptiform discharges are the typical EEG pattern. Structural brain abnormalities may be universal, including signs of abnormal neuroblast migration and abnormal axonal guidance. Epilepsy surgery should be undertaken with care given the widespread neuroanatomic abnormalities; however, tumors are a rare, yet important, occurrence. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.
Elshabrawy, Walaa Othman; Sallam, Manar
2017-01-01
Introduction Pityriasis Versicolor (PV) is a common health problem caused by genus Malassezia, a lipophilic fungi found as a part of the normal flora of skin. Although PV is common in Egypt, there is little information regarding the Malassezia species distribution in PV patients to date. Aim To spot a light on the distribution and clinico-epidemiological features of the Malassezia species in PV patients and healthy individuals that were established by conventional phenotypic and molecular techniques. Materials and Methods A cross-sectional study including 167 individuals; 137 clinically suspected PV patients attending Mansoura University Hospitals, Egypt and 30 healthy control individuals, was carried out. Characterization of Malassezia species was performed phenotypically by conventional, culture-based methods and biochemical tests. Genomic DNA was extracted from isolated colonies for PCR amplification of the highly conserved 26S rDNA region with further species level identification by Restriction Fragment Length Polymorphism (RFLP) using Hha1 and BstC1 enzymes. The association of Malassezia species with epidemiological profile and clinical characteristics was studied. Results A 94.2% of PV samples and 13.3% of control samples were positive by Potassium Hydroxide (KOH) while 71.5% of PV samples and 16.7% of control samples yielded growth in culture with high statistically significant differences (p=0.0001, for both methods). By phenotypic methods, only 75.5% of isolates from patients were identified as: M. furfur (51.4%), M. globosa, (29.7%), M. restricta (13.5%) and M. pachydermatis (5.4%) while by RFLP technique, six species were revealed: M. furfur (44.9%), M. globosa (24.5%), M. sympodialis (12.2 %), M. restricta (10.2%), M. obtusa (4.1%) and M. pachydermatis (4.1%). Most species were isolated from hypopigmented lesions of PV patients aged between 20-29 years. Neck and back were the most common affected sites. Only M. furfur (10%) and M. globosa (6.7%) were identified in healthy controls. Conclusion M. furfur and M. globosa are the commonly encountered species in both healthy and diseased human skin although other species were identified in PV patients. PCR-RFLP method represents a considerably accurate technique in identification of different Malassezia species for better understanding of their effect on the clinico-epidemiological characterization of PV patients in Egypt. PMID:28969121
Colen, Rivka; Foster, Ian; Gatenby, Robert; Giger, Mary Ellen; Gillies, Robert; Gutman, David; Heller, Matthew; Jain, Rajan; Madabhushi, Anant; Madhavan, Subha; Napel, Sandy; Rao, Arvind; Saltz, Joel; Tatum, James; Verhaak, Roeland; Whitman, Gary
2014-10-01
The National Cancer Institute (NCI) Cancer Imaging Program organized two related workshops on June 26-27, 2013, entitled "Correlating Imaging Phenotypes with Genomics Signatures Research" and "Scalable Computational Resources as Required for Imaging-Genomics Decision Support Systems." The first workshop focused on clinical and scientific requirements, exploring our knowledge of phenotypic characteristics of cancer biological properties to determine whether the field is sufficiently advanced to correlate with imaging phenotypes that underpin genomics and clinical outcomes, and exploring new scientific methods to extract phenotypic features from medical images and relate them to genomics analyses. The second workshop focused on computational methods that explore informatics and computational requirements to extract phenotypic features from medical images and relate them to genomics analyses and improve the accessibility and speed of dissemination of existing NIH resources. These workshops linked clinical and scientific requirements of currently known phenotypic and genotypic cancer biology characteristics with imaging phenotypes that underpin genomics and clinical outcomes. The group generated a set of recommendations to NCI leadership and the research community that encourage and support development of the emerging radiogenomics research field to address short-and longer-term goals in cancer research.
Characterization, design, and function of the mitochondrial proteome: from organs to organisms.
Lotz, Christopher; Lin, Amanda J; Black, Caitlin M; Zhang, Jun; Lau, Edward; Deng, Ning; Wang, Yueju; Zong, Nobel C; Choi, Jeong H; Xu, Tao; Liem, David A; Korge, Paavo; Weiss, James N; Hermjakob, Henning; Yates, John R; Apweiler, Rolf; Ping, Peipei
2014-02-07
Mitochondria are a common energy source for organs and organisms; their diverse functions are specialized according to the unique phenotypes of their hosting environment. Perturbation of mitochondrial homeostasis accompanies significant pathological phenotypes. However, the connections between mitochondrial proteome properties and function remain to be experimentally established on a systematic level. This uncertainty impedes the contextualization and translation of proteomic data to the molecular derivations of mitochondrial diseases. We present a collection of mitochondrial features and functions from four model systems, including two cardiac mitochondrial proteomes from distinct genomes (human and mouse), two unique organ mitochondrial proteomes from identical genetic codons (mouse heart and mouse liver), as well as a relevant metazoan out-group (drosophila). The data, composed of mitochondrial protein abundance and their biochemical activities, capture the core functionalities of these mitochondria. This investigation allowed us to redefine the core mitochondrial proteome from organs and organisms, as well as the relevant contributions from genetic information and hosting milieu. Our study has identified significant enrichment of disease-associated genes and their products. Furthermore, correlational analyses suggest that mitochondrial proteome design is primarily driven by cellular environment. Taken together, these results connect proteome feature with mitochondrial function, providing a prospective resource for mitochondrial pathophysiology and developing novel therapeutic targets in medicine.
Chograni, Manèl; Rejeb, Imen; Jemaa, Lamia Ben; Châabouni, Myriam; Bouhamed, Habiba Chaabouni
2011-01-01
Nance-Horan Syndrome (NHS) or X-linked cataract-dental syndrome is a disease of unknown gene action mechanism, characterized by congenital cataract, dental anomalies, dysmorphic features and, in some cases, mental retardation. We performed linkage analysis in a Tunisian family with NHS in which affected males and obligate carrier female share a common haplotype in the Xp22.32-p11.21 region that contains the NHS gene. Direct sequencing of NHS coding exons and flanking intronic sequences allowed us to identify the first missense mutation (P551S) and a reported SNP-polymorphism (L1319F) in exon 6, a reported UTR–SNP (c.7422 C>T) and a novel one (c.8239 T>A) in exon 8. Both variations P551S and c.8239 T>A segregate with NHS phenotype in this family. Although truncations, frame-shift and copy number variants have been reported in this gene, no missense mutations have been found to segregate previously. This is the first report of a missense NHS mutation causing NHS phenotype (including cardiac defects). We hypothesize also that the non-reported UTR–SNP of the exon 8 (3′-UTR) is specific to the Tunisian population. PMID:21559051
Chograni, Manèl; Rejeb, Imen; Jemaa, Lamia Ben; Châabouni, Myriam; Bouhamed, Habiba Chaabouni
2011-08-01
Nance-Horan Syndrome (NHS) or X-linked cataract-dental syndrome is a disease of unknown gene action mechanism, characterized by congenital cataract, dental anomalies, dysmorphic features and, in some cases, mental retardation. We performed linkage analysis in a Tunisian family with NHS in which affected males and obligate carrier female share a common haplotype in the Xp22.32-p11.21 region that contains the NHS gene. Direct sequencing of NHS coding exons and flanking intronic sequences allowed us to identify the first missense mutation (P551S) and a reported SNP-polymorphism (L1319F) in exon 6, a reported UTR-SNP (c.7422 C>T) and a novel one (c.8239 T>A) in exon 8. Both variations P551S and c.8239 T>A segregate with NHS phenotype in this family. Although truncations, frame-shift and copy number variants have been reported in this gene, no missense mutations have been found to segregate previously. This is the first report of a missense NHS mutation causing NHS phenotype (including cardiac defects). We hypothesize also that the non-reported UTR-SNP of the exon 8 (3'-UTR) is specific to the Tunisian population.
Armao, Diane; Bailey, Rachel M; Bouldin, Thomas W; Kim, Yongbaek; Gray, Steven J
2016-08-01
Giant axonal neuropathy (GAN) is an inherited severe sensorimotor neuropathy. The aim of this research was to investigate the neuropathologic features and clinical autonomic nervous system (ANS) phenotype in two GAN knockout (KO) mouse models. Little is known about ANS involvement in GAN in humans, but autonomic signs and symptoms are commonly reported in early childhood. Routine histology and immunohistochemistry was performed on GAN KO mouse specimens taken at various ages. Enteric dysfunction was assessed by quantifying the frequency, weight, and water content of defecation in GAN KO mice. Histological examination of the enteric, parasympathetic and sympathetic ANS of GAN KO mice revealed pronounced and widespread neuronal perikaryal intermediate filament inclusions. These neuronal inclusions served as an easily identifiable, early marker of GAN in young GAN KO mice. Functional studies identified an age-dependent alteration in fecal weight and defecation frequency in GAN KO mice. For the first time in the GAN KO mouse model, we described the early, pronounced and widespread neuropathologic features involving the ANS. In addition, we provided evidence for a clinical autonomic phenotype in GAN KO mice, reflected in abnormal gastrointestinal function. These findings in GAN KO mice suggest that consideration should be given to ANS involvement in human GAN, especially when considering treatments and patient care.
H syndrome: the first 79 patients.
Molho-Pessach, Vered; Ramot, Yuval; Camille, Frances; Doviner, Victoria; Babay, Sofia; Luis, Siekavizza Juan; Broshtilova, Valentina; Zlotogorski, Abraham
2014-01-01
H syndrome is an autosomal recessive genodermatosis with multisystem involvement caused by mutations in SLC29A3. We sought to investigate the clinical and molecular findings in 79 patients with this disorder. A total of 79 patients were included, of which 13 are newly reported cases. Because of the phenotypic similarity and molecular overlap with H syndrome, we included 18 patients with allelic disorders. For 31 patients described by others, data were gathered from the medical literature. The most common clinical features (>45% of patients) were hyperpigmentation, phalangeal flexion contractures, hearing loss, and short stature. Insulin-dependent diabetes mellitus and lymphadenopathy mimicking Rosai-Dorfman disease were each found in approximately 20%. Additional systemic features were described in less than 15% of cases. Marked interfamilial and intrafamilial clinical variability exists. Twenty mutations have been identified in SLC29A3, with no genotype-phenotype correlation. In the 31 patients described by others, data were collected from the medical literature. H syndrome is a multisystemic disease with clinical variability. Consequently, all SLC29A3-related diseases should be considered a single entity. Recognition of the pleomorphic nature of H syndrome is important for diagnosis of additional patients. Copyright © 2013 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.
Somatostatin, neuronal vulnerability and behavioral emotionality.
Lin, L C; Sibille, E
2015-03-01
Somatostatin (SST) deficits are common pathological features in depression and other neurological disorders with mood disturbances, but little is known about the contribution of SST deficits to mood symptoms or causes of these deficits. Here we show that mice lacking SST (Sst(KO)) exhibit elevated behavioral emotionality, high basal plasma corticosterone and reduced gene expression of Bdnf, Cortistatin and Gad67, together recapitulating behavioral, neuroendocrine and molecular features of human depression. Studies in Sst(KO) and heterozygous (Sst(HZ)) mice show that elevated corticosterone is not sufficient to reproduce the behavioral phenotype, suggesting a putative role for Sst cell-specific molecular changes. Using laser capture microdissection, we show that cortical SST-positive interneurons display significantly greater transcriptome deregulations after chronic stress compared with pyramidal neurons. Protein translation through eukaryotic initiation factor 2 (EIF2) signaling, a pathway previously implicated in neurodegenerative diseases, was most affected and suppressed in stress-exposed SST neurons. We then show that activating EIF2 signaling through EIF2 kinase inhibition mitigated stress-induced behavioral emotionality in mice. Taken together, our data suggest that (1) low SST has a causal role in mood-related phenotypes, (2) deregulated EIF2-mediated protein translation may represent a mechanism for vulnerability of SST neurons and (3) that global EIF2 signaling has antidepressant/anxiolytic potential.
Somatostatin, neuronal vulnerability and behavioral emotionality
Lin, LC; Sibille, E
2014-01-01
Somatostatin (SST) deficits are common pathological features in depression and other neurological disorders with mood disturbances, but little is known about the contribution of SST deficits to mood symptoms or causes of these deficits. Here we show that mice lacking Sst (SstKO) exhibit elevated behavioral emotionality, high basal plasma corticosterone and reduced gene expression of Bdnf, Cortistatin, and Gad67, together recapitulating behavioral, neuroendocrine and molecular features of human depression. Studies in SstKO and heterozygous (SstHZ) mice show that elevated corticosterone is not sufficient to reproduce the behavioral phenotype, suggesting a putative role for Sst cell-specific molecular changes. Using laser-capture microdissection, we show that cortical SST-positive interneurons display significantly greater transcriptome deregulations after chronic stress compared to pyramidal neurons. Protein translation through eukaryotic initiation factor 2 (EIF2) signaling, a pathway previously implicated in neurodegenerative diseases, was most affected and suppressed in stress-exposed SST neurons. We then show that activating EIF2 signaling through EIF2 kinase inhibition mitigated stress-induced behavioral emotionality in mice. Together, our data suggest that (1) low SST plays a causal role in mood-related phenotypes, (2) deregulated EIF2-mediated protein translation may represent a mechanism for vulnerability of SST neurons, and (3) that global EIF2 signaling has antidepressant/anxiolytic potential. PMID:25600109
[Myotonic dystrophy - a new insight into a well-known disease].
Lusakowska, Anna; Sułek-Piatkowska, Anna
2010-01-01
Myotonic dystrophy (DM), the most common dystrophy in adults, is an autosomal dominant disease characterized by a variety of multisystemic features. Two genetically distinct forms of DM are identified - type 1 (DM1), the classic form first described by Steinert, and type 2 (DM2), identified by Ricker. DM1 is caused by trinucleotide expansion of CTG in the myotonic dystrophy protein kinase gene, whereas in DM2 the expansion of tetranucleotide repeats (CCTG) in the zinc finger protein 9 gene was identified. Both mutations are dynamic and are located in non-coding parts of the genes. Phenotype variability of DM1 and DM2 is caused by a molecular mechanism due to mutated RNA toxicity. This paper reviews the clinical features of both types of myotonic dystrophies and summarizes current views on pathogenesis of myotonic dystrophy.
Encephalocraniocutaneous lipomatosis with calvarial exostosis - Case report and review of literature
Thakur, Shruti; Thakur, Vijay; Sood, Ram Gopal; Thakur, Charu Smita; Khanna, Shweta
2013-01-01
Encephalocraniocutaneous lipomatosis (ECCL), also known as Haberland syndrome, is a rare syndrome with unknown etiology. The syndrome is characterized by a triad of unique cutaneous, ocular, and central nervous system (CNS) manifestations. The cutaneous hallmark, nevus psiloliparus (NP), along with overlying alopecia is a constant feature. Choristoma of the eyelid is the most common ocular manifestation, while intracranial lipoma is the predominant CNS finding. Genetic counseling is required to emphasize that the disorder, although congenital, is not inheritable. We present a 21-year-old female with cutaneous, ocular, and CNS features satisfying the diagnostic criteria for ECCL. To our knowledge, this is the first case of ECCL having a large temporal exostosis. The objective of this article is to better understand the phenotypic spectrum of this syndrome whose molecular basis is still unknown. PMID:24604937
[Neuropsychiatric aspects of Prader-Willi syndrome – a review].
Briegel, Wolfgang
2018-05-01
Prader-Willi Syndrome (PWS) is caused by the absence of paternal expression of imprinted genes in the region at 15q11–q13. With an estimated birth incidence of 1/15 000 – 1/30 000, PWS is one of the more frequent genetic syndromes among humans. Typical physical features include neonatal hypotonia and feeding problems, hypogonadism, hyperphagia in later childhood with consecutive obesity, and short stature. Most people with PWS show a mild to moderate intellectual disability. Furthermore, lability of mood, temper tantrums, skin-picking, and compulsive behaviors are quite typical for subjects with PWS. Psychotic disorders have also been found to be quite common in adulthood. This manuscript reviews current knowledge about the etiology, physical features, developmental aspects, behavioral phenotype, and psychiatric disorders that occur as well as existing psychopharmacological and psychotherapeutic interventions.
Decision Processes During Development of Molecular Biomarkers for Gonadal Phenotypic Sex
Molecular biomarkers for determination of gonadal phenotypic sex in the Japanese medaka (Oryzias latipes), will serve as a case study. The medaka has unique features that aid in the development of appropriate molecular biomarkers of gonad phenotype, a) genetic sex can be determin...
Non-specific filtering of beta-distributed data.
Wang, Xinhui; Laird, Peter W; Hinoue, Toshinori; Groshen, Susan; Siegmund, Kimberly D
2014-06-19
Non-specific feature selection is a dimension reduction procedure performed prior to cluster analysis of high dimensional molecular data. Not all measured features are expected to show biological variation, so only the most varying are selected for analysis. In DNA methylation studies, DNA methylation is measured as a proportion, bounded between 0 and 1, with variance a function of the mean. Filtering on standard deviation biases the selection of probes to those with mean values near 0.5. We explore the effect this has on clustering, and develop alternate filter methods that utilize a variance stabilizing transformation for Beta distributed data and do not share this bias. We compared results for 11 different non-specific filters on eight Infinium HumanMethylation data sets, selected to span a variety of biological conditions. We found that for data sets having a small fraction of samples showing abnormal methylation of a subset of normally unmethylated CpGs, a characteristic of the CpG island methylator phenotype in cancer, a novel filter statistic that utilized a variance-stabilizing transformation for Beta distributed data outperformed the common filter of using standard deviation of the DNA methylation proportion, or its log-transformed M-value, in its ability to detect the cancer subtype in a cluster analysis. However, the standard deviation filter always performed among the best for distinguishing subgroups of normal tissue. The novel filter and standard deviation filter tended to favour features in different genome contexts; for the same data set, the novel filter always selected more features from CpG island promoters and the standard deviation filter always selected more features from non-CpG island intergenic regions. Interestingly, despite selecting largely non-overlapping sets of features, the two filters did find sample subsets that overlapped for some real data sets. We found two different filter statistics that tended to prioritize features with different characteristics, each performed well for identifying clusters of cancer and non-cancer tissue, and identifying a cancer CpG island hypermethylation phenotype. Since cluster analysis is for discovery, we would suggest trying both filters on any new data sets, evaluating the overlap of features selected and clusters discovered.
2013-01-01
Background 22q13 deletion syndrome, also known as Phelan-McDermid syndrome, is a neurodevelopmental disorder characterized by intellectual disability, hypotonia, delayed or absent speech, and autistic features. SHANK3 has been identified as the critical gene in the neurological and behavioral aspects of this syndrome. The phenotype of SHANK3 deficiency has been described primarily from case studies, with limited evaluation of behavioral and cognitive deficits. The present study used a prospective design and inter-disciplinary clinical evaluations to assess patients with SHANK3 deficiency, with the goal of providing a comprehensive picture of the medical and behavioral profile of the syndrome. Methods A serially ascertained sample of patients with SHANK3 deficiency (n = 32) was evaluated by a team of child psychiatrists, neurologists, clinical geneticists, molecular geneticists and psychologists. Patients were evaluated for autism spectrum disorder using the Autism Diagnostic Interview-Revised and the Autism Diagnostic Observation Schedule-G. Results Thirty participants with 22q13.3 deletions ranging in size from 101 kb to 8.45 Mb and two participants with de novo SHANK3 mutations were included. The sample was characterized by high rates of autism spectrum disorder: 27 (84%) met criteria for autism spectrum disorder and 24 (75%) for autistic disorder. Most patients (77%) exhibited severe to profound intellectual disability and only five (19%) used some words spontaneously to communicate. Dysmorphic features, hypotonia, gait disturbance, recurring upper respiratory tract infections, gastroesophageal reflux and seizures were also common. Analysis of genotype-phenotype correlations indicated that larger deletions were associated with increased levels of dysmorphic features, medical comorbidities and social communication impairments related to autism. Analyses of individuals with small deletions or point mutations identified features related to SHANK3 haploinsufficiency, including ASD, seizures and abnormal EEG, hypotonia, sleep disturbances, abnormal brain MRI, gastroesophageal reflux, and certain dysmorphic features. Conclusions This study supports findings from previous research on the severity of intellectual, motor, and speech impairments seen in SHANK3 deficiency, and highlights the prominence of autism spectrum disorder in the syndrome. Limitations of existing evaluation tools are discussed, along with the need for natural history studies to inform clinical monitoring and treatment development in SHANK3 deficiency. PMID:23758760
Estrada-De Los Santos, P; Bustillos-Cristales, R; Caballero-Mellado, J
2001-06-01
The genus Burkholderia comprises 19 species, including Burkholderia vietnamiensis which is the only known N(2)-fixing species of this bacterial genus. The first isolates of B. vietnamiensis were recovered from the rhizosphere of rice plants grown in a phytotron, but its existence in natural environments and its geographic distribution were not reported. In the present study, most N(2)-fixing isolates recovered from the environment of field-grown maize and coffee plants cultivated in widely separated regions of Mexico were phenotypically identified as B. cepacia using the API 20NE system. Nevertheless, a number of these isolates recovered from inside of maize roots, as well as from the rhizosphere and rhizoplane of maize and coffee plants, showed similar or identical features to those of B. vietnamiensis TVV75(T). These features include nitrogenase activity with 10 different carbon sources, identical or very similar nifHDK hybridization patterns, very similar protein electrophoregrams, identical amplified 16S rDNA restriction (ARDRA) profiles, and levels of DNA-DNA reassociation higher than 70% with total DNA from strain TVV75(T). Although the ability to fix N(2) is not reported to be a common feature among the known species of the genus Burkholderia, the results obtained show that many diazotrophic Burkholderia isolates analyzed showed phenotypic and genotypic features different from those of the known N(2)-fixing species B. vietnamiensis as well as from those of B. kururiensis, a bacterium identified in the present study as a diazotrophic species. DNA-DNA reassociation assays confirmed the existence of N(2)-fixing Burkholderia species different from B. vietnamiensis. In addition, this study shows the wide geographic distribution and substantial capability of N(2)-fixing Burkholderia spp. for colonizing diverse host plants in distantly separated environments.
Alsahli, Saud; Alrifai, Muhammad Talal; Al Tala, Saeed; Mutairi, Fuad Al; Alfadhel, Majid
2018-01-01
Background: Cerebellar ataxia, mental retardation, and disequilibrium syndrome (CAMRQ) is a heterogeneous group of genetic disorders that have been grouped by shared clinical features; all of these features are transmitted via an autosomal recessive mechanism. Four variants of this syndrome have been identified so far, and each one differs in terms of both clinical and genotypical features. CAMRQ4 is a rare genetic disorder characterized by mental retardation, ataxia or an inability to walk, dysarthria and, in some patients, quadrupedal gait. Methods: We investigated three Saudi families with CAMRQ4. Blood samples were collected from the affected patients, their parents, and healthy siblings. DNA was extracted from whole blood, and whole-exome sequencing was performed. Findings were confirmed by segregation analysis, which was performed on other family members. Results: Thus far, 17 patients have been affected by CAMRQ4. Genetic analysis of all patients, including our current patients, showed a mutation in the aminophospholipid transporter, class I, type 8A, member 2 gene (ATP8A2). A series of common phenotypical features have been reported in these patients, with few exceptions. Ataxia, mental retardation, and hypotonia were present in all patients, consanguinity in 90% and abnormal movements in 50%. Moreover, 40% achieved ambulation at least once in their lifetime, 40% had microcephaly, whereas 30% were mute. Magnetic resonance imaging (MRI) of the brain was normal in 60% of patients. Conclusions: We described the largest cohort of patients with CAMRQ4 syndrome and identified three novel mutations. CAMRQ4 syndrome should be suspected in patients presenting with ataxia, intellectual disability, hypotonia, microcephaly, choreoathetoid movements, ophthalmoplegia, and global developmental delay, even if brain MRI appears normal. PMID:29531481
Alsahli, Saud; Alrifai, Muhammad Talal; Al Tala, Saeed; Mutairi, Fuad Al; Alfadhel, Majid
2018-01-01
Cerebellar ataxia, mental retardation, and disequilibrium syndrome (CAMRQ) is a heterogeneous group of genetic disorders that have been grouped by shared clinical features; all of these features are transmitted via an autosomal recessive mechanism. Four variants of this syndrome have been identified so far, and each one differs in terms of both clinical and genotypical features. CAMRQ4 is a rare genetic disorder characterized by mental retardation, ataxia or an inability to walk, dysarthria and, in some patients, quadrupedal gait. We investigated three Saudi families with CAMRQ4. Blood samples were collected from the affected patients, their parents, and healthy siblings. DNA was extracted from whole blood, and whole-exome sequencing was performed. Findings were confirmed by segregation analysis, which was performed on other family members. Thus far, 17 patients have been affected by CAMRQ4. Genetic analysis of all patients, including our current patients, showed a mutation in the aminophospholipid transporter, class I, type 8A, member 2 gene ( ATP8A2 ). A series of common phenotypical features have been reported in these patients, with few exceptions. Ataxia, mental retardation, and hypotonia were present in all patients, consanguinity in 90% and abnormal movements in 50%. Moreover, 40% achieved ambulation at least once in their lifetime, 40% had microcephaly, whereas 30% were mute. Magnetic resonance imaging (MRI) of the brain was normal in 60% of patients. We described the largest cohort of patients with CAMRQ4 syndrome and identified three novel mutations. CAMRQ4 syndrome should be suspected in patients presenting with ataxia, intellectual disability, hypotonia, microcephaly, choreoathetoid movements, ophthalmoplegia, and global developmental delay, even if brain MRI appears normal.
Estrada-De Los Santos, Paulina; Bustillos-Cristales, Rocío; Caballero-Mellado, Jesús
2001-01-01
The genus Burkholderia comprises 19 species, including Burkholderia vietnamiensis which is the only known N2-fixing species of this bacterial genus. The first isolates of B. vietnamiensis were recovered from the rhizosphere of rice plants grown in a phytotron, but its existence in natural environments and its geographic distribution were not reported. In the present study, most N2-fixing isolates recovered from the environment of field-grown maize and coffee plants cultivated in widely separated regions of Mexico were phenotypically identified as B. cepacia using the API 20NE system. Nevertheless, a number of these isolates recovered from inside of maize roots, as well as from the rhizosphere and rhizoplane of maize and coffee plants, showed similar or identical features to those of B. vietnamiensis TVV75T. These features include nitrogenase activity with 10 different carbon sources, identical or very similar nifHDK hybridization patterns, very similar protein electrophoregrams, identical amplified 16S rDNA restriction (ARDRA) profiles, and levels of DNA-DNA reassociation higher than 70% with total DNA from strain TVV75T. Although the ability to fix N2 is not reported to be a common feature among the known species of the genus Burkholderia, the results obtained show that many diazotrophic Burkholderia isolates analyzed showed phenotypic and genotypic features different from those of the known N2-fixing species B. vietnamiensis as well as from those of B. kururiensis, a bacterium identified in the present study as a diazotrophic species. DNA-DNA reassociation assays confirmed the existence of N2-fixing Burkholderia species different from B. vietnamiensis. In addition, this study shows the wide geographic distribution and substantial capability of N2-fixing Burkholderia spp. for colonizing diverse host plants in distantly separated environments. PMID:11375196
Rayner, Genevieve; Jackson, Graeme D; Wilson, Sarah J
2016-11-01
Depression is common but underdiagnosed in epilepsy. A quarter of patients meet criteria for a depressive disorder, yet few receive active treatment. We hypothesize that the presentation of depression is less recognizable in epilepsy because the symptoms are heterogeneous and often incorrectly attributed to the secondary effects of seizures or medication. Extending the ILAE's new phenomenological approach to classification of the epilepsies to include psychiatric comorbidity, we use data-driven profiling of the symptoms of depression to perform a preliminary investigation of whether there is a distinctive symptom-based phenotype of depression in epilepsy that could facilitate its recognition in the neurology clinic. The psychiatric and neuropsychological functioning of 91 patients with focal epilepsy was compared with that of 77 healthy controls (N=168). Cluster analysis of current depressive symptoms identified three clusters: one comprising nondepressed patients and two symptom-based phenotypes of depression. The 'Cognitive' phenotype (base rate=17%) was characterized by symptoms taking the form of self-critical cognitions and dysphoria and was accompanied by pervasive memory deficits. The 'Somatic' phenotype (7%) was characterized by vegetative depressive symptoms and anhedonia and was accompanied by greater anxiety. It is hoped that identification of the features of these two phenotypes will ultimately facilitate improved detection and diagnosis of depression in patients with epilepsy and thereby lead to appropriate and timely treatment, to the benefit of patient wellbeing and the potential efficacy of treatment of the seizure disorder. This article is part of a Special Issue entitled "The new approach to classification: Rethinking cognition and behavior in epilepsy". Copyright © 2016 Elsevier Inc. All rights reserved.
Differentiating Bipolar Disorder–Not Otherwise Specified and Severe Mood Dysregulation
Towbin, Kenneth; Axelson, David; Leibenluft, Ellen; Birmaher, Boris
2013-01-01
Objective Bipolar Disorder–Not Otherwise Specified (BP-NOS) and Severe Mood Dysregulation (SMD) are severe mood disorders that were both defined to address questions about the diagnosis of bipolar disorder (BD) in youth. SMD and BP-NOS are distinct phenotypes that differ in clinical presentation and longitudinal course. The purpose of this review is to inform clinicians about the clinical features of the two phenotypes and about the research literature distinguishing them. Method We review the literature on SMD as studied in the National Institute of Mental Health Intramural Research Program and on BP-NOS in youth. For BP-NOS, we focus on the phenotype defined in the Course of Bipolar Youth (COBY) study, since this has received the most study. Results SMD is characterized by impairing, chronic irritability without distinct manic episodes. Most commonly, BP-NOS is characterized by manic, mixed or hypomanic episodes that are too short to meet DSM-IV-TR duration criterion. Research provides strong, albeit suggestive, evidence that SMD is not a form of BD; the most convincing evidence are longitudinal data indicating that youth with SMD are not at high risk to develop BD as they age. The BP-NOS phenotype appears to be on a diagnostic continuum with BD type I and type II. BP-NOS and BD- type I subjects have similar symptom and family history profiles, and youth with BP-NOS are at high risk to develop BD as they age. Currently, little research guides treatment for either phenotype. Conclusions Pressing research needs include identifying effective treatments for these phenotypes, ascertaining biomarkers that predict conversion from BP-NOS to BD, elucidating associations between SMD and other disorders, and defining the neural circuitry mediating each condition. PMID:23622848
Inferring protein domains associated with drug side effects based on drug-target interaction network
2013-01-01
Background Most phenotypic effects of drugs are involved in the interactions between drugs and their target proteins, however, our knowledge about the molecular mechanism of the drug-target interactions is very limited. One of challenging issues in recent pharmaceutical science is to identify the underlying molecular features which govern drug-target interactions. Results In this paper, we make a systematic analysis of the correlation between drug side effects and protein domains, which we call "pharmacogenomic features," based on the drug-target interaction network. We detect drug side effects and protein domains that appear jointly in known drug-target interactions, which is made possible by using classifiers with sparse models. It is shown that the inferred pharmacogenomic features can be used for predicting potential drug-target interactions. We also discuss advantages and limitations of the pharmacogenomic features, compared with the chemogenomic features that are the associations between drug chemical substructures and protein domains. Conclusion The inferred side effect-domain association network is expected to be useful for estimating common drug side effects for different protein families and characteristic drug side effects for specific protein domains. PMID:24565527
A System-Level Pathway-Phenotype Association Analysis Using Synthetic Feature Random Forest
Pan, Qinxin; Hu, Ting; Malley, James D.; Andrew, Angeline S.; Karagas, Margaret R.; Moore, Jason H.
2015-01-01
As the cost of genome-wide genotyping decreases, the number of genome-wide association studies (GWAS) has increased considerably. However, the transition from GWAS findings to the underlying biology of various phenotypes remains challenging. As a result, due to its system-level interpretability, pathway analysis has become a popular tool for gaining insights on the underlying biology from high-throughput genetic association data. In pathway analyses, gene sets representing particular biological processes are tested for significant associations with a given phenotype. Most existing pathway analysis approaches rely on single-marker statistics and assume that pathways are independent of each other. As biological systems are driven by complex biomolecular interactions, embracing the complex relationships between single-nucleotide polymorphisms (SNPs) and pathways needs to be addressed. To incorporate the complexity of gene-gene interactions and pathway-pathway relationships, we propose a system-level pathway analysis approach, synthetic feature random forest (SF-RF), which is designed to detect pathway-phenotype associations without making assumptions about the relationships among SNPs or pathways. In our approach, the genotypes of SNPs in a particular pathway are aggregated into a synthetic feature representing that pathway via Random Forest (RF). Multiple synthetic features are analyzed using RF simultaneously and the significance of a synthetic feature indicates the significance of the corresponding pathway. We further complement SF-RF with pathway-based Statistical Epistasis Network (SEN) analysis that evaluates interactions among pathways. By investigating the pathway SEN, we hope to gain additional insights into the genetic mechanisms contributing to the pathway-phenotype association. We apply SF-RF to a population-based genetic study of bladder cancer and further investigate the mechanisms that help explain the pathway-phenotype associations using SEN. The bladder cancer associated pathways we found are both consistent with existing biological knowledge and reveal novel and plausible hypotheses for future biological validations. PMID:24535726
Azziz, Ricardo
2006-03-01
Polycystic ovary syndrome (PCOS) is defined most commonly according to the proceedings of an expert conference sponsored by the National Institutes of Health (NIH) in April 1990, which noted the disorder as having 1) hyperandrogenism and/or hyperandrogenemia, 2) oligoovulation, and 3) exclusion of known disorders. Alternatively, another expert conference held in Rotterdam in May 2003 defined PCOS, after the exclusion of related disorders, by two of the following three features: 1) oligo- or anovulation, 2) clinical and/or biochemical signs of hyperandrogenism, or 3) polycystic ovaries. In essence, the Rotterdam 2003 expanded the NIH 1990 definition creating two new phenotypes: 1) ovulatory women with polycystic ovaries and hyperandrogenism, and 2) oligoanovulatory women with polycystic ovaries, but without hyperandrogenism. The objective of this study was to ascertain the validity of using the Rotterdam 2003 criteria rather than the NIH 1991 criteria for the diagnosis of PCOS. Interventions included the use of the Rotterdam 2003 criteria for diagnosing PCOS and, in particular, the proposal to define two new phenotypes as PCOS. POSITIONS: Available data suggest that hyperandrogenic ovulatory women with polycystic ovaries tend to have mild insulin resistance and mild evidence of ovarian dysfunction, although significantly less than women with anovulatory PCOS. However, whether these women will have an increased risk of infertility or metabolic complications, such as type 2 diabetes, remains to be determined. Alternatively, the risk of insulin resistance and long-term metabolic risks of oligoovulatory women with polycystic ovaries is even less well characterized and may be nonexistent. Because of the paucity of data on the two new phenotypes and their long-term implications and the potential negative impact on research, clinical practice, and patient insurability, the adoption of the Rotterdam 2003 criteria for defining PCOS should be considered premature. However, because polycystic ovaries are a frequent feature of PCOS, a modification of the NIH 1990 criteria is proposed. Additional research characterizing the phenotypes and associated morbidities of PCOS is urgently required.
Revah-Politi, Anya; Ganapathi, Mythily; Bier, Louise; Cho, Megan T; Goldstein, David B; Hemati, Parisa; Iglesias, Alejandro; Juusola, Jane; Pappas, John; Petrovski, Slavé; Wilson, Ashley L; Aggarwal, Vimla S; Anyane-Yeboa, Kwame
2017-12-01
The association between 1p32-p31 contiguous gene deletions and a distinct phenotype that includes anomalies of the corpus callosum, ventriculomegaly, developmental delay, seizures, and dysmorphic features has been long recognized and described. Recently, the observation of overlapping phenotypes in patients with chromosome translocations that disrupt NFIA (Nuclear factor I/A), a gene within this deleted region, and NFIA intragenic deletions has led to the hypothesis that NFIA is a critical gene within this region. The wide application and increasing accessibility of whole exome sequencing (WES) has helped identify new cases to support this hypothesis. Here, we describe four patients with loss-of-function variants in the NFIA gene identified through WES. The clinical presentation of these patients significantly overlaps with the phenotype described in previously reported cases of 1p32-p31 deletion syndrome, NFIA gene disruptions and intragenic NFIA deletions. Our cohort includes a mother and daughter as well as an unrelated individual who share the same nonsense variant (c.205C>T, p.Arg69Ter; NM_001145512.1). We also report a patient with a frameshift NFIA variant (c.159_160dupCC, p.Gln54ProfsTer49). We have compared published cases of 1p32-p31 microdeletion syndrome, translocations resulting in NFIA gene disruption, intragenic deletions, and loss-of-function mutations (including our four patients) to reveal that abnormalities of the corpus callosum, ventriculomegaly/hydrocephalus, macrocephaly, Chiari I malformation, dysmorphic features, developmental delay, hypotonia, and urinary tract defects are common findings. The consistent overlap in clinical presentation provides further evidence of the critical role of NFIA haploinsufficiency in the development of the 1p32-p31 microdeletion syndrome phenotype. © 2017 Wiley Periodicals, Inc.
Social-Cognition and the Broad Autism Phenotype: Identifying Genetically Meaningful Phenotypes
ERIC Educational Resources Information Center
Losh, Molly; Piven, Joseph
2007-01-01
Background: Strong evidence from twin and family studies suggests that the genetic liability to autism may be expressed through personality and language characteristics qualitatively similar, but more subtly expressed than those defining the full syndrome. This study examined behavioral features of this "broad autism phenotype" (BAP) in relation…
The Broad Autism Phenotype Questionnaire
ERIC Educational Resources Information Center
Hurley, Robert S. E.; Losh, Molly; Parlier, Morgan; Reznick, J. Steven; Piven, Joseph
2007-01-01
The broad autism phenotype (BAP) is a set of personality and language characteristics that reflect the phenotypic expression of the genetic liability to autism, in non-autistic relatives of autistic individuals. These characteristics are milder but qualitatively similar to the defining features of autism. A new instrument designed to measure the…
Meloidogyne partityla on Pecan Isozyme Phenotypes and Other Host
Starr, J. L.; Tomaszewski, E. K.; Mundo-Ocampo, M.; Baldwin, J. G.
1996-01-01
Meloidogyne sp. from five pecan (Carya illinoensis) orchards in Texas were distinctive in host range and iszoyme profiles from common species of Meloidogyne but were morphologically congruent with Meloidogyne partityla Kleynhans, a species previously known only in South Africa. In addition to pecan, species of walnut (Juglans hindsii and J. regia) and hickory (C. ovata) also were hosts. No reproduction was observed on 15 other plant species from nine families, including several common hosts of other Meloidogyne spp. Three esterase phenotypes and two malate dehydrogenase phenotypes of M. partityla were identified by polyacrylamide gel electrophoresis. Each of these isozyme phenotypes was distinct from those of the more common species M. arenaria, M. hapla, M. incognita, and M. javanica. PMID:19277175
Absence of BiP co-chaperone DNAJC3 causes diabetes mellitus and multisystemic neurodegeneration.
Synofzik, Matthis; Haack, Tobias B; Kopajtich, Robert; Gorza, Matteo; Rapaport, Doron; Greiner, Markus; Schönfeld, Caroline; Freiberg, Clemens; Schorr, Stefan; Holl, Reinhard W; Gonzalez, Michael A; Fritsche, Andreas; Fallier-Becker, Petra; Zimmermann, Richard; Strom, Tim M; Meitinger, Thomas; Züchner, Stephan; Schüle, Rebecca; Schöls, Ludger; Prokisch, Holger
2014-12-04
Diabetes mellitus and neurodegeneration are common diseases for which shared genetic factors are still only partly known. Here, we show that loss of the BiP (immunoglobulin heavy-chain binding protein) co-chaperone DNAJC3 leads to diabetes mellitus and widespread neurodegeneration. We investigated three siblings with juvenile-onset diabetes and central and peripheral neurodegeneration, including ataxia, upper-motor-neuron damage, peripheral neuropathy, hearing loss, and cerebral atrophy. Exome sequencing identified a homozygous stop mutation in DNAJC3. Screening of a diabetes database with 226,194 individuals yielded eight phenotypically similar individuals and one family carrying a homozygous DNAJC3 deletion. DNAJC3 was absent in fibroblasts from all affected subjects in both families. To delineate the phenotypic and mutational spectrum and the genetic variability of DNAJC3, we analyzed 8,603 exomes, including 506 from families affected by diabetes, ataxia, upper-motor-neuron damage, peripheral neuropathy, or hearing loss. This analysis revealed only one further loss-of-function allele in DNAJC3 and no further associations in subjects with only a subset of the features of the main phenotype. Our findings demonstrate that loss-of-function DNAJC3 mutations lead to a monogenic, recessive form of diabetes mellitus in humans. Moreover, they present a common denominator for diabetes and widespread neurodegeneration. This complements findings from mice in which knockout of Dnajc3 leads to diabetes and modifies disease in a neurodegenerative model of Marinesco-Sjögren syndrome. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
The Role of Glucose Metabolism and Glucose-Associated Signalling in Cancer
Wittig, Rainer; Coy, Johannes F.
2007-01-01
Aggressive carcinomas ferment glucose to lactate even in the presence of oxygen. This particular metabolism, termed aerobic glycolysis, the glycolytic phenotype, or the Warburg effect, was discovered by Nobel laureate Otto Warburg in the 1920s. Since these times, controversial discussions about the relevance of the fermentation of glucose by tumours took place; however, a majority of cancer researchers considered the Warburg effect as a non-causative epiphenomenon. Recent research demonstrated, that several common oncogenic events favour the expression of the glycolytic phenotype. Moreover, a suppression of the phenotypic features by either substrate limitation, pharmacological intervention, or genetic manipulation was found to mediate potent tumour-suppressive effects. The discovery of the transketolase-like 1 (TKTL1) enzyme in aggressive cancers may deliver a missing link in the interpretation of the Warburg effect. TKTL1-activity could be the basis for a rapid fermentation of glucose in aggressive carcinoma cells via the pentose phosphate pathway, which leads to matrix acidification, invasive growth, and ultimately metastasis. TKTL1 expression in certain non-cancerous tissues correlates with aerobic formation of lactate and rapid fermentation of glucose, which may be required for the prevention of advanced glycation end products and the suppression of reactive oxygen species. There is evidence, that the activity of this enzyme and the Warburg effect can be both protective or destructive for the organism. These results place glucose metabolism to the centre of pathogenesis of several civilisation related diseases and raise concerns about the high glycaemic index of various food components commonly consumed in western diets. PMID:19812737
Infiltrating lobular carcinoma of the breast: tumor characteristics and clinical outcome.
Arpino, Grazia; Bardou, Valerie J; Clark, Gary M; Elledge, Richard M
2004-01-01
Invasive lobular carcinoma (ILC) comprises approximately 10% of breast cancers and appears to have a distinct biology. Because it is less common than infiltrating ductal carcinoma (IDC), few data have been reported that address the biologic features of ILC in the context of their clinical outcome. In the present study we undertook an extensive comparison of ILC and IDC using a large database to provide a more complete and reliable assessment of their biologic phenotypes and clinical behaviors. The clinical and biological features of 4140 patients with ILC were compared with those of 45,169 patients with IDC (not otherwise specified). The median follow-up period was 87 months. In comparison with IDC, ILC was significantly more likely to occur in older patients, to be larger in size, to be estrogen and progesterone receptor positive, to have lower S-phase fraction, to be diploid, and to be HER-2, p53, and epidermal growth factor receptor negative. It was more common for ILC than for IDC to metastasize to the gastrointestinal tract and ovary. The incidence of contralateral breast cancer was higher for ILC patients than for IDC patients (20.9% versus 11.2%; P < 0.0001). Breast preservation was modestly less frequent in ILC patients than in IDC patients. The 5-year disease-free survival was 85.7% for ILC and 83.5% for IDC (P = 0.13). The 5-year overall survival was 85.6% for ILC and 84.1% for IDC (P = 0.64). Despite the fact that the biologic phenotype of ILC is quite favorable, these patients do not have better clinical outcomes than do patients with IDC. At present, management decisions should be based on individual patient and tumor biologic characteristics, and not on lobular histology.
Molecular Analysis of Mixed Endometrial Carcinomas Shows Clonality in Most Cases.
Köbel, Martin; Meng, Bo; Hoang, Lien N; Almadani, Noorah; Li, Xiaodong; Soslow, Robert A; Gilks, C Blake; Lee, Cheng-Han
2016-02-01
Mixed endometrial carcinoma refers to a tumor that comprises 2 or more distinct histotypes. We studied 18 mixed-type endometrial carcinomas-11 mixed serous and low-grade endometrioid carcinomas (SC/EC), 5 mixed clear cell and low-grade ECs (CCC/EC), and 2 mixed CCC and SCs (CCC/SC), using targeted next-generation sequencing and immunohistochemistry to compare the molecular profiles of the different histotypes present in each case. In 16 of 18 cases there was molecular evidence that both components shared a clonal origin. Eight cases (6 EC/SC, 1 EC/CCC, and 1 SC/CCC) showed an SC molecular profile that was the same in both components. Five cases (3 CCC/EC and 2 SC/EC) showed a shared endometrioid molecular profile and identical mismatch-repair protein deficiency in both components. A single SC/EC case harbored the same POLE exonuclease domain mutation in both components. One SC/CCC and 1 EC/CCC case showed both shared and unique molecular features in the 2 histotype components, suggesting early molecular divergence from a common clonal origin. In 2 cases, there were no shared molecular features, and these appear to be biologically unrelated synchronous tumors. Overall, these results show that the different histologic components in mixed endometrial carcinomas typically share the same molecular aberrations. Mixed endometrial carcinomas most commonly occur through morphologic mimicry, whereby tumors with serous-type molecular profile show morphologic features of EC or CCC, or through underlying deficiency in DNA nucleotide repair, with resulting rapid accrual of mutations and intratumoral phenotypic heterogeneity. Less commonly, mixed endometrial carcinomas are the result of early molecular divergence from a common progenitor clone or are synchronous biologically unrelated tumors (collision tumors).
Molecular analysis of mixed endometrial carcinomas shows clonality in most cases
Hoang, Lien N.; Almadani, Noorah; Li, Xiaodong; Soslow, Robert A; Gilks, C. Blake; Lee, Cheng-Han
2016-01-01
Mixed endometrial carcinoma refers to a tumor that is comprised of two or more distinct histotypes. We studied 18 mixed-type endometrial carcinomas - 11 mixed serous and low-grade endometrioid carcinomas (SC/EC), 5 mixed clear cell and low-grade endometrioid carcinomas (CCC/EC), and 2 mixed clear cell and serous carcinoma (CCC/SC), using targeted next generation sequencing and immunohistochemistry to compare the molecular profiles of the different histotypes present in each case. In 16 of 18 cases there was molecular evidence that both components shared a clonal origin. Eight cases (6 EC/SC, 1 EC/CCC and 1 SC/CCC) showed a serous carcinoma molecular profile that was the same in both components. Five cases (3 CCC/EC and 2 SC/EC) showed a shared endometrioid molecular profile and identical mismatch repair protein (MMR) deficiency in both components. A single SC/EC case harbored the same POLE exonuclease domain mutation in both components. One SC/CCC and one EC/CCC case showed both shared and unique molecular features in the two histotype components, suggesting early molecular divergence from a common clonal origin. In two cases, there were no shared molecular features and these appear to be biologically unrelated synchronous tumors. Overall, these results show that the different histologic components in mixed endometrial carcinomas typically share the same molecular aberrations. Mixed endometrial carcinomas most commonly occur through morphological mimicry, whereby tumors with serous-type molecular profile show morphological features of endometrioid or clear cell carcinoma, or through underlying deficiency in DNA nucleotide repair, with resulting rapid accrual of mutations and intratumoral phenotypic heterogeneity. Less commonly, mixed endometrial carcinomas are the result of early molecular divergence from a common progenitor clone or are synchronous biologically unrelated tumors (collision tumors). PMID:26492180
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoving, Saske; Heeneman, Sylvia; Gijbels, Marion J.J.
2008-07-01
Purpose: Increased risk of atherosclerosis and stroke has been demonstrated in patients receiving radiotherapy for Hodgkin's lymphoma and head-and-neck cancer. We previously showed that 14 Gy to the carotid arteries of hypercholesterolemic ApoE{sup -/-} mice resulted in accelerated development of macrophage-rich, inflammatory atherosclerotic lesions. Here we investigate whether clinically relevant fractionated irradiation schedules and lower single doses also predispose to an inflammatory plaque phenotype. Methods and Materials: ApoE{sup -/-} mice were given 8 or 14 Gy, or 20 x 2.0 Gy in 4 weeks to the neck, and the carotid arteries were subsequently examinated for presence of atherosclerotic lesions, plaquemore » size, and phenotype. Results: At 4 weeks, early atherosclerotic lesions were found in 44% of the mice after single doses of 14 Gy but not in age-matched controls. At 22 to 30 weeks after irradiation there was a twofold increase in the mean number of carotid lesions (8-14 Gy and 20 x 2.0 Gy) and total plaque burden (single doses only), compared with age-matched controls. The majority of lesions seen at 30 to 34 weeks after fractionated irradiation or 14-Gy single doses were granulocyte rich (100% and 63%, respectively), with thrombotic features (90% and 88%), whereas these phenotypes were much less common in age-matched controls or after a single dose of 8 Gy. Conclusions: We showed that fractionated irradiation accelerated the development of atherosclerosis in ApoE{sup -/-} mice and predisposed to the formation of an inflammatory, thrombotic plaque phenotype.« less
Runx2 Expression in Smooth Muscle Cells Is Required for Arterial Medial Calcification in Mice
Lin, Mu-En; Chen, Theodore; Leaf, Elizabeth M.; Speer, Mei Y.; Giachelli, Cecilia M.
2016-01-01
Arterial medial calcification (AMC) is a hallmark of aging, diabetes, and chronic kidney disease. Smooth muscle cell (SMC) transition to an osteogenic phenotype is a common feature of AMC, and is preceded by expression of runt-related transcription factor 2 (Runx2), a master regulator of bone development. Whether SMC-specific Runx2 expression is required for osteogenic phenotype change and AMC remains unknown. We therefore created an improved targeting construct to generate mice with floxed Runx2 alleles (Runx2f/f) that do not produce truncated Runx2 proteins after Cre recombination, thereby preventing potential off-target effects. SMC-specific deletion using SM22–recombinase transgenic allele mice (Runx2ΔSM) led to viable mice with normal bone and arterial morphology. After vitamin D overload, arterial SMCs in Runx2f/f mice expressed Runx2, underwent osteogenic phenotype change, and developed severe AMC. In contrast, vitamin D–treated Runx2ΔSM mice had no Runx2 in blood vessels, maintained SMC phenotype, and did not develop AMC. Runx2 deletion did not affect serum calcium, phosphate, fibroblast growth factor-23, or alkaline phosphatase levels. In vitro, Runx2f/f SMCs calcified to a much greater extent than those derived from Runx2ΔSM mice. These data indicate a critical role of Runx2 in SMC osteogenic phenotype change and mineral deposition in a mouse model of AMC, suggesting that Runx2 and downstream osteogenic pathways in SMCs may be useful therapeutic targets for treating or preventing AMC in high-risk patients. PMID:25987250
Ross, Mindy K; Yoon, Jinsung; van der Schaar, Auke; van der Schaar, Mihaela
2018-01-01
Pediatric asthma has variable underlying inflammation and symptom control. Approaches to addressing this heterogeneity, such as clustering methods to find phenotypes and predict outcomes, have been investigated. However, clustering based on the relationship between treatment and clinical outcome has not been performed, and machine learning approaches for long-term outcome prediction in pediatric asthma have not been studied in depth. Our objectives were to use our novel machine learning algorithm, predictor pursuit (PP), to discover pediatric asthma phenotypes on the basis of asthma control in response to controller medications, to predict longitudinal asthma control among children with asthma, and to identify features associated with asthma control within each discovered pediatric phenotype. We applied PP to the Childhood Asthma Management Program study data (n = 1,019) to discover phenotypes on the basis of asthma control between assigned controller therapy groups (budesonide vs. nedocromil). We confirmed PP's ability to discover phenotypes using the Asthma Clinical Research Network/Childhood Asthma Research and Education network data. We next predicted children's asthma control over time and compared PP's performance with that of traditional prediction methods. Last, we identified clinical features most correlated with asthma control in the discovered phenotypes. Four phenotypes were discovered in both datasets: allergic not obese (A + /O - ), obese not allergic (A - /O + ), allergic and obese (A + /O + ), and not allergic not obese (A - /O - ). Of the children with well-controlled asthma in the Childhood Asthma Management Program dataset, we found more nonobese children treated with budesonide than with nedocromil (P = 0.015) and more obese children treated with nedocromil than with budesonide (P = 0.008). Within the obese group, more A + /O + children's asthma was well controlled with nedocromil than with budesonide (P = 0.022) or with placebo (P = 0.011). The PP algorithm performed significantly better (P < 0.001) than traditional machine learning algorithms for both short- and long-term asthma control prediction. Asthma control and bronchodilator response were the features most predictive of short-term asthma control, regardless of type of controller medication or phenotype. Bronchodilator response and serum eosinophils were the most predictive features of asthma control, regardless of type of controller medication or phenotype. Advanced statistical machine learning approaches can be powerful tools for discovery of phenotypes based on treatment response and can aid in asthma control prediction in complex medical conditions such as asthma.
Kabir, Z D; Lee, A S; Rajadhyaksha, A M
2016-10-15
Brain Ca v 1.2 and Ca v 1.3 L-type Ca 2+ channels play key physiological roles in various neuronal processes that contribute to brain function. Genetic studies have recently identified CACNA1C as a candidate risk gene for bipolar disorder (BD), schizophrenia (SCZ), major depressive disorder (MDD) and autism spectrum disorder (ASD), and CACNA1D for BD and ASD, suggesting a contribution of Ca v 1.2 and Ca v 1.3 Ca 2+ signalling to the pathophysiology of neuropsychiatric disorders. Once considered sole clinical entities, it is now clear that BD, SCZ, MDD and ASD share common phenotypic features, most likely due to overlapping neurocircuitry and common molecular mechanisms. A major future challenge lies in translating the human genetic findings to pathological mechanisms that are translatable back to the patient. One approach for tackling such a daunting scientific endeavour for complex behaviour-based neuropsychiatric disorders is to examine intermediate biological phenotypes in the context of endophenotypes within distinct behavioural domains. This will better allow us to integrate findings from genes to behaviour across species, and improve the chances of translating preclinical findings to clinical practice. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Clinical features of Friedreich's ataxia: classical and atypical phenotypes.
Parkinson, Michael H; Boesch, Sylvia; Nachbauer, Wolfgang; Mariotti, Caterina; Giunti, Paola
2013-08-01
One hundred and fifty years since Nikolaus Friedreich's first description of the degenerative ataxic syndrome which bears his name, his description remains at the core of the classical clinical phenotype of gait and limb ataxia, poor balance and coordination, leg weakness, sensory loss, areflexia, impaired walking, dysarthria, dysphagia, eye movement abnormalities, scoliosis, foot deformities, cardiomyopathy and diabetes. Onset is typically around puberty with slow progression and shortened life-span often related to cardiac complications. Inheritance is autosomal recessive with the vast majority of cases showing an unstable intronic GAA expansion in both alleles of the frataxin gene on chromosome 9q13. A small number of cases are caused by a compound heterozygous expansion with a point mutation or deletion. Understanding of the underlying molecular biology has enabled identification of atypical phenotypes with late onset, or atypical features such as retained reflexes. Late-onset cases tend to have slower progression and are associated with smaller GAA expansions. Early-onset cases tend to have more rapid progression and a higher frequency of non-neurological features such as diabetes, cardiomyopathy, scoliosis and pes cavus. Compound heterozygotes, including those with large deletions, often have atypical features. In this paper, we review the classical and atypical clinical phenotypes of Friedreich's ataxia. © 2013 International Society for Neurochemistry.
ibex: An open infrastructure software platform to facilitate collaborative work in radiomics
Zhang, Lifei; Fried, David V.; Fave, Xenia J.; Hunter, Luke A.; Court, Laurence E.
2015-01-01
Purpose: Radiomics, which is the high-throughput extraction and analysis of quantitative image features, has been shown to have considerable potential to quantify the tumor phenotype. However, at present, a lack of software infrastructure has impeded the development of radiomics and its applications. Therefore, the authors developed the imaging biomarker explorer (ibex), an open infrastructure software platform that flexibly supports common radiomics workflow tasks such as multimodality image data import and review, development of feature extraction algorithms, model validation, and consistent data sharing among multiple institutions. Methods: The ibex software package was developed using the matlab and c/c++ programming languages. The software architecture deploys the modern model-view-controller, unit testing, and function handle programming concepts to isolate each quantitative imaging analysis task, to validate if their relevant data and algorithms are fit for use, and to plug in new modules. On one hand, ibex is self-contained and ready to use: it has implemented common data importers, common image filters, and common feature extraction algorithms. On the other hand, ibex provides an integrated development environment on top of matlab and c/c++, so users are not limited to its built-in functions. In the ibex developer studio, users can plug in, debug, and test new algorithms, extending ibex’s functionality. ibex also supports quality assurance for data and feature algorithms: image data, regions of interest, and feature algorithm-related data can be reviewed, validated, and/or modified. More importantly, two key elements in collaborative workflows, the consistency of data sharing and the reproducibility of calculation result, are embedded in the ibex workflow: image data, feature algorithms, and model validation including newly developed ones from different users can be easily and consistently shared so that results can be more easily reproduced between institutions. Results: Researchers with a variety of technical skill levels, including radiation oncologists, physicists, and computer scientists, have found the ibex software to be intuitive, powerful, and easy to use. ibex can be run at any computer with the windows operating system and 1GB RAM. The authors fully validated the implementation of all importers, preprocessing algorithms, and feature extraction algorithms. Windows version 1.0 beta of stand-alone ibex and ibex’s source code can be downloaded. Conclusions: The authors successfully implemented ibex, an open infrastructure software platform that streamlines common radiomics workflow tasks. Its transparency, flexibility, and portability can greatly accelerate the pace of radiomics research and pave the way toward successful clinical translation. PMID:25735289
IBEX: an open infrastructure software platform to facilitate collaborative work in radiomics.
Zhang, Lifei; Fried, David V; Fave, Xenia J; Hunter, Luke A; Yang, Jinzhong; Court, Laurence E
2015-03-01
Radiomics, which is the high-throughput extraction and analysis of quantitative image features, has been shown to have considerable potential to quantify the tumor phenotype. However, at present, a lack of software infrastructure has impeded the development of radiomics and its applications. Therefore, the authors developed the imaging biomarker explorer (IBEX), an open infrastructure software platform that flexibly supports common radiomics workflow tasks such as multimodality image data import and review, development of feature extraction algorithms, model validation, and consistent data sharing among multiple institutions. The IBEX software package was developed using the MATLAB and c/c++ programming languages. The software architecture deploys the modern model-view-controller, unit testing, and function handle programming concepts to isolate each quantitative imaging analysis task, to validate if their relevant data and algorithms are fit for use, and to plug in new modules. On one hand, IBEX is self-contained and ready to use: it has implemented common data importers, common image filters, and common feature extraction algorithms. On the other hand, IBEX provides an integrated development environment on top of MATLAB and c/c++, so users are not limited to its built-in functions. In the IBEX developer studio, users can plug in, debug, and test new algorithms, extending IBEX's functionality. IBEX also supports quality assurance for data and feature algorithms: image data, regions of interest, and feature algorithm-related data can be reviewed, validated, and/or modified. More importantly, two key elements in collaborative workflows, the consistency of data sharing and the reproducibility of calculation result, are embedded in the IBEX workflow: image data, feature algorithms, and model validation including newly developed ones from different users can be easily and consistently shared so that results can be more easily reproduced between institutions. Researchers with a variety of technical skill levels, including radiation oncologists, physicists, and computer scientists, have found the IBEX software to be intuitive, powerful, and easy to use. IBEX can be run at any computer with the windows operating system and 1GB RAM. The authors fully validated the implementation of all importers, preprocessing algorithms, and feature extraction algorithms. Windows version 1.0 beta of stand-alone IBEX and IBEX's source code can be downloaded. The authors successfully implemented IBEX, an open infrastructure software platform that streamlines common radiomics workflow tasks. Its transparency, flexibility, and portability can greatly accelerate the pace of radiomics research and pave the way toward successful clinical translation.
Wood, Susan K.; Bhatnagar, Seema
2014-01-01
The most common form of stress encountered by people stems from one's social environment and is perceived as more intense than other types of stressors. One feature that may be related to differential resilience or vulnerability to stress is the type of strategy used to cope with the stressor, either active or passive coping. This review focuses on models of social stress in which individual differences in coping strategies produce resilience or vulnerability to the effects of stress. Neurobiological mechanisms underlying these individual differences are discussed. Overall, the literature suggests that there are multiple neural mechanisms that underlie individual differences in stress-induced resilience and vulnerability. How these mechanisms interact with one another to produce a resilient or vulnerable phenotype is not understood and such mechanisms have been poorly studied in females and in early developmental periods. Finally, we propose that resilience may be stress context specific and resilience phenotypes may need to be fine-tuned to suit a shifting environment. PMID:25580450
Barkla, Bronwyn J; Hirschi, Kendal D; Pittman, Jon K
2008-05-01
Tonoplast-localised proton-coupled Ca(2+) transporters encoded by cation/H(+)exchanger (CAX) genes play a critical role in sequestering Ca(2+) into the vacuole. These transporters may function in coordination with Ca(2+) release channels, to shape stimulus-induced cytosolic Ca(2+) elevations. Recent analysis of Arabidopsis CAX knockout mutants, particularly cax1 and cax3, identified a variety of phenotypes including sensitivity to abiotic stresses, which indicated that these transporters might play a role in mediating the plant's stress response. A common feature of these mutants was the perturbation of H(+)-ATPase activity at both the tonoplast and the plasma membrane, suggesting a tight interplay between the Ca(2+)/H(+) exchangers and H(+) pumps. We speculate that indirect regulation of proton flux by the exchangers may be as important as the direct regulation of Ca(2+) flux. These results suggest cautious interpretation of mutant Ca(2+)/H(+) exchanger phenotypes that may be due to either perturbed Ca(2+) or H(+) transport.
Barkla, Bronwyn J; Hirschi, Kendal D
2008-01-01
Tonoplast-localised proton-coupled Ca2+ transporters encoded by cation/H+ exchanger (CAX) genes play a critical role in sequestering Ca2+ into the vacuole. These transporters may function in coordination with Ca2+ release channels, to shape stimulus-induced cytosolic Ca2+ elevations. Recent analysis of Arabidopsis CAX knockout mutants, particularly cax1 and cax3, identified a variety of phenotypes including sensitivity to abiotic stresses, which indicated that these transporters might play a role in mediating the plant's stress response. A common feature of these mutants was the perturbation of H+-ATPase activity at both the tonoplast and the plasma membrane, suggesting a tight interplay between the Ca2+/H+ exchangers and H+ pumps. We speculate that indirect regulation of proton flux by the exchangers may be as important as the direct regulation of Ca2+ flux. These results suggest cautious interpretation of mutant Ca2+/H+ exchanger phenotypes that may be due to either perturbed Ca2+ or H+ transport. PMID:19841670
Barratt, Kristen S; Arkell, Ruth M
2018-01-01
The ZIC2 transcription factor is one of the most commonly mutated genes in Holoprosencephaly (HPE) probands. HPE is a severe congenital defect of forebrain development which occurs when the cerebral hemispheres fail to separate during the early stages of organogenesis and is typically associated with mispatterning of the embryonic midline. Recent study of genotype-phenotype correlations in HPE cases has defined distinctive features of ZIC2-associated HPE presentation and genetics, revealing that ZIC2 mutation does not produce the craniofacial abnormalities generally thought to characterise HPE but leads to a range of non-forebrain phenotypes. Furthermore, the studies confirm the extent of ZIC2 allelic heterogeneity and that pathogenic variants of ZIC2 are associated with both classic and middle interhemispheric variant (MIHV) HPE which arise from defective ventral and dorsal forebrain patterning, respectively. An allelic series of mouse mutants has helped to delineate the cellular and molecular mechanisms by which one gene leads to defects in these related but distinct embryological processes.
New ALS-Related Genes Expand the Spectrum Paradigm of Amyotrophic Lateral Sclerosis.
Sabatelli, Mario; Marangi, Giuseppe; Conte, Amelia; Tasca, Giorgio; Zollino, Marcella; Lattante, Serena
2016-03-01
Amyotrophic Lateral Sclerosis (ALS) is characterized by the degeneration of upper and lower motor neurons. Clinical heterogeneity is a well-recognized feature of the disease as age of onset, site of onset and the duration of the disease can vary greatly among patients. A number of genes have been identified and associated to familial and sporadic forms of ALS but the majority of cases remains still unexplained. Recent breakthrough discoveries have demonstrated that clinical manifestations associated with ALS-related genes are not circumscribed to motor neurons involvement. In this view, ALS appears to be linked to different conditions over a continuum or spectrum in which overlapping phenotypes may be identified. In this review, we aim to examine the increasing number of spectra, including ALS/Frontotemporal Dementia and ALS/Myopathies spectra. Considering all these neurodegenerative disorders as different phenotypes of the same spectrum can help to identify common pathological pathways and consequently new therapeutic targets in these incurable diseases. © 2016 International Society of Neuropathology.
Le Meur, Nathalie; Holder-Espinasse, Muriel; Jaillard, Sylvie; Goldenberg, Alice; Joriot, Sylvie; Amati-Bonneau, Patrizia; Guichet, Agnès; Barth, Magalie; Charollais, Aude; Journel, Hubert; Auvin, Stéphane; Boucher, Cécile; Kerckaert, Jean-Pierre; David, Véronique; Manouvrier-Hanu, Sylvie; Saugier-Veber, Pascale; Frébourg, Thierry; Dubourg, Christèle; Andrieux, Joris; Bonneau, Dominique
2010-01-01
Over the last few years, array-CGH has remarkably improved the ability to detect cryptic unbalanced rearrangements in patients presenting with syndromic mental retardation. Using whole genome oligonucleotide array-CGH, we detected 5q14.3 microdeletions ranging from 216 kb to 8.8 Mb in 5 unrelated patients showing phenotypic similarities, namely severe mental retardation with absent speech, hypotonia and stereotypic movements. Most of the patients presented also with facial dysmorphic features, epilepsy and/or cerebral malformations. The minimal common deleted region of these 5q14 microdeletions encompassed only MEF2C, known to act in brain as a neurogenesis effector which regulates excitatory synapse number. In a patient presenting a similar phenotype, we subsequently identified a MEF2C nonsense mutation. Taken together, these results strongly suggest that haploinsufficiency of MEF2C is responsible for severe mental retardation with stereotypic movements, seizures and/or cerebral malformations. PMID:19592390
Wood, Susan K; Bhatnagar, Seema
2015-01-01
The most common form of stress encountered by people stems from one's social environment and is perceived as more intense than other types of stressors. One feature that may be related to differential resilience or vulnerability to stress is the type of strategy used to cope with the stressor, either active or passive coping. This review focuses on models of social stress in which individual differences in coping strategies produce resilience or vulnerability to the effects of stress. Neurobiological mechanisms underlying these individual differences are discussed. Overall, the literature suggests that there are multiple neural mechanisms that underlie individual differences in stress-induced resilience and vulnerability. How these mechanisms interact with one another to produce a resilient or vulnerable phenotype is not understood and such mechanisms have been poorly studied in females and in early developmental periods. Finally, we propose that resilience may be stress context specific and resilience phenotypes may need to be fine-tuned to suit a shifting environment.
Informatics and machine learning to define the phenotype.
Basile, Anna Okula; Ritchie, Marylyn DeRiggi
2018-03-01
For the past decade, the focus of complex disease research has been the genotype. From technological advancements to the development of analysis methods, great progress has been made. However, advances in our definition of the phenotype have remained stagnant. Phenotype characterization has recently emerged as an exciting area of informatics and machine learning. The copious amounts of diverse biomedical data that have been collected may be leveraged with data-driven approaches to elucidate trait-related features and patterns. Areas covered: In this review, the authors discuss the phenotype in traditional genetic associations and the challenges this has imposed.Approaches for phenotype refinement that can aid in more accurate characterization of traits are also discussed. Further, the authors highlight promising machine learning approaches for establishing a phenotype and the challenges of electronic health record (EHR)-derived data. Expert commentary: The authors hypothesize that through unsupervised machine learning, data-driven approaches can be used to define phenotypes rather than relying on expert clinician knowledge. Through the use of machine learning and an unbiased set of features extracted from clinical repositories, researchers will have the potential to further understand complex traits and identify patient subgroups. This knowledge may lead to more preventative and precise clinical care.
McLennan, Yingratana; Polussa, Jonathan; Tassone, Flora; Hagerman, Randi
2011-05-01
Recent data from a national survey highlighted a significant difference in obesity rates in young fragile X males (31%) compared to age matched controls (18%). Fragile X syndrome (FXS) is the most common cause of intellectual disability in males and the most common single gene cause of autism. This X-linked disorder is caused by an expansion of a trinucleotide CGG repeat (>200) on the promotor region of the fragile X mental retardation 1 gene (FMR1). As a result, the promotor region often becomes methylated which leads to a deficiency or absence of the FMR1 protein (FMRP). Common characteristics of FXS include mild to severe cognitive impairments in males but less severe cognitive impairment in females. Physical features of FXS include an elongated face, prominent ears, and post-pubertal macroorchidism. Severe obesity in full mutation males is often associated with the Prader-Willi phenotype (PWP) which includes hyperphagia, lack of satiation after meals, and hypogonadism or delayed puberty; however, there is no deletion at 15q11-q13 nor uniparental maternal disomy. Herein, we discuss the molecular mechanisms leading to FXS and the Prader-Willi phenotype with an emphasis on mouse FMR1 knockout studies that have shown the reversal of weight increase through mGluR antagonists. Finally, we review the current medications used in treatment of FXS including the atypical antipsychotics that can lead to weight gain and the research regarding the use of targeted treatments in FXS that will hopefully have a significantly beneficial effect on cognition and behavior without weight gain.
Xu, Xiang-Ru Shannon; Gantz, Valentino Matteo; Siomava, Natalia; Bier, Ethan
2017-12-23
The knirps ( kni ) locus encodes transcription factors required for induction of the L2 wing vein in Drosophila . Here, we employ diverse CRISPR/Cas9 genome editing tools to generate a series of targeted lesions within the endogenous cis-regulatory module (CRM) required for kni expression in the L2 vein primordium. Phenotypic analysis of these ' in locus ' mutations based on both expression of Kni protein and adult wing phenotypes, reveals novel unexpected features of L2-CRM function including evidence for a chromosome pairing-dependent process that promotes transcription. We also demonstrate that self-propagating active genetic elements (CopyCat elements) can efficiently delete and replace the L2-CRM with orthologous sequences from other divergent fly species. Wing vein phenotypes resulting from these trans-species enhancer replacements parallel features of the respective donor fly species. This highly sensitive phenotypic readout of enhancer function in a native genomic context reveals novel features of CRM function undetected by traditional reporter gene analysis. © 2017, Xu et al.
Siomava, Natalia
2017-01-01
The knirps (kni) locus encodes transcription factors required for induction of the L2 wing vein in Drosophila. Here, we employ diverse CRISPR/Cas9 genome editing tools to generate a series of targeted lesions within the endogenous cis-regulatory module (CRM) required for kni expression in the L2 vein primordium. Phenotypic analysis of these ‘in locus’ mutations based on both expression of Kni protein and adult wing phenotypes, reveals novel unexpected features of L2-CRM function including evidence for a chromosome pairing-dependent process that promotes transcription. We also demonstrate that self-propagating active genetic elements (CopyCat elements) can efficiently delete and replace the L2-CRM with orthologous sequences from other divergent fly species. Wing vein phenotypes resulting from these trans-species enhancer replacements parallel features of the respective donor fly species. This highly sensitive phenotypic readout of enhancer function in a native genomic context reveals novel features of CRM function undetected by traditional reporter gene analysis. PMID:29274230
Protein Interactome of Muscle Invasive Bladder Cancer
Bhat, Akshay; Heinzel, Andreas; Mayer, Bernd; Perco, Paul; Mühlberger, Irmgard; Husi, Holger; Merseburger, Axel S.; Zoidakis, Jerome; Vlahou, Antonia; Schanstra, Joost P.; Mischak, Harald; Jankowski, Vera
2015-01-01
Muscle invasive bladder carcinoma is a complex, multifactorial disease caused by disruptions and alterations of several molecular pathways that result in heterogeneous phenotypes and variable disease outcome. Combining this disparate knowledge may offer insights for deciphering relevant molecular processes regarding targeted therapeutic approaches guided by molecular signatures allowing improved phenotype profiling. The aim of the study is to characterize muscle invasive bladder carcinoma on a molecular level by incorporating scientific literature screening and signatures from omics profiling. Public domain omics signatures together with molecular features associated with muscle invasive bladder cancer were derived from literature mining to provide 286 unique protein-coding genes. These were integrated in a protein-interaction network to obtain a molecular functional map of the phenotype. This feature map educated on three novel disease-associated pathways with plausible involvement in bladder cancer, namely Regulation of actin cytoskeleton, Neurotrophin signalling pathway and Endocytosis. Systematic integration approaches allow to study the molecular context of individual features reported as associated with a clinical phenotype and could potentially help to improve the molecular mechanistic description of the disorder. PMID:25569276
van Bon, B W M; Mefford, H C; Menten, B; Koolen, D A; Sharp, A J; Nillesen, W M; Innis, J W; de Ravel, T J L; Mercer, C L; Fichera, M; Stewart, H; Connell, L E; Ounap, K; Lachlan, K; Castle, B; Van der Aa, N; van Ravenswaaij, C; Nobrega, M A; Serra-Juhé, C; Simonic, I; de Leeuw, N; Pfundt, R; Bongers, E M; Baker, C; Finnemore, P; Huang, S; Maloney, V K; Crolla, J A; van Kalmthout, M; Elia, M; Vandeweyer, G; Fryns, J P; Janssens, S; Foulds, N; Reitano, S; Smith, K; Parkel, S; Loeys, B; Woods, C G; Oostra, A; Speleman, F; Pereira, A C; Kurg, A; Willatt, L; Knight, S J L; Vermeesch, J R; Romano, C; Barber, J C; Mortier, G; Pérez-Jurado, L A; Kooy, F; Brunner, H G; Eichler, E E; Kleefstra, T; de Vries, B B A
2009-08-01
Recurrent 15q13.3 microdeletions were recently identified with identical proximal (BP4) and distal (BP5) breakpoints and associated with mild to moderate mental retardation and epilepsy. To assess further the clinical implications of this novel 15q13.3 microdeletion syndrome, 18 new probands with a deletion were molecularly and clinically characterised. In addition, we evaluated the characteristics of a family with a more proximal deletion between BP3 and BP4. Finally, four patients with a duplication in the BP3-BP4-BP5 region were included in this study to ascertain the clinical significance of duplications in this region. The 15q13.3 microdeletion in our series was associated with a highly variable intra- and inter-familial phenotype. At least 11 of the 18 deletions identified were inherited. Moreover, 7 of 10 siblings from four different families also had this deletion: one had a mild developmental delay, four had only learning problems during childhood, but functioned well in daily life as adults, whereas the other two had no learning problems at all. In contrast to previous findings, seizures were not a common feature in our series (only 2 of 17 living probands). Three patients with deletions had cardiac defects and deletion of the KLF13 gene, located in the critical region, may contribute to these abnormalities. The limited data from the single family with the more proximal BP3-BP4 deletion suggest this deletion may have little clinical significance. Patients with duplications of the BP3-BP4-BP5 region did not share a recognisable phenotype, but psychiatric disease was noted in 2 of 4 patients. Overall, our findings broaden the phenotypic spectrum associated with 15q13.3 deletions and suggest that, in some individuals, deletion of 15q13.3 is not sufficient to cause disease. The existence of microdeletion syndromes, associated with an unpredictable and variable phenotypic outcome, will pose the clinician with diagnostic difficulties and challenge the commonly used paradigm in the diagnostic setting that aberrations inherited from a phenotypically normal parent are usually without clinical consequences.
Chacon-Cabrera, Alba; Mateu-Jimenez, Mercè; Langohr, Klaus; Fermoselle, Clara; García-Arumí, Elena; Andreu, Antoni L; Yelamos, Jose; Barreiro, Esther
2017-12-01
Strategies to treat cachexia are still at its infancy. Enhanced muscle protein breakdown and ubiquitin-proteasome system are common features of cachexia associated with chronic conditions including lung cancer (LC). Poly(ADP-ribose) polymerases (PARP), which play a major role in chromatin structure regulation, also underlie maintenance of muscle metabolism and body composition. We hypothesized that protein catabolism, proteolytic markers, muscle fiber phenotype, and muscle anabolism may improve in respiratory and limb muscles of LC-cachectic Parp-1-deficient (Parp-1 -/- ) and Parp-2 -/- mice. In diaphragm and gastrocnemius of LC (LP07 adenocarcinoma) bearing mice (wild type, Parp-1 -/- , and Parp-2 -/- ), PARP activity (ADP-ribose polymers, pADPr), redox balance, muscle fiber phenotype, apoptotic nuclei, tyrosine release, protein ubiquitination, muscle-specific E3 ligases, NF-κB signaling pathway, markers of muscle anabolism (Akt, mTOR, p70S6K, and mitochondrial DNA) were evaluated along with body and muscle weights, and limb muscle force. Compared to wild type cachectic animals, in both respiratory and limb muscles of Parp-1 -/- and Parp-2 -/- cachectic mice: cancer induced-muscle wasting characterized by increased PARP activity, protein oxidation, tyrosine release, and ubiquitin-proteasome system (total protein ubiquitination, atrogin-1, and 20S proteasome C8 subunit) were blunted, the reduction in contractile myosin and atrophy of the fibers was attenuated, while no effects were seen in other structural features (inflammatory cells, internal or apoptotic nuclei), and markers of muscle anabolism partly improved. Activation of either PARP-1 or -2 is likely to play a role in muscle protein catabolism via oxidative stress, NF-κB signaling, and enhanced proteasomal degradation in cancer-induced cachexia. Therapeutic potential of PARP activity inhibition deserves attention. © 2017 Wiley Periodicals, Inc.
Hannes, F D; Sharp, A J; Mefford, H C; de Ravel, T; Ruivenkamp, C A; Breuning, M H; Fryns, J-P; Devriendt, K; Van Buggenhout, G; Vogels, A; Stewart, H; Hennekam, R C; Cooper, G M; Regan, R; Knight, S J L; Eichler, E E; Vermeesch, J R
2009-01-01
Background: Genomic disorders are often caused by non-allelic homologous recombination between segmental duplications. Chromosome 16 is especially rich in a chromosome-specific low copy repeat, termed LCR16. Methods and Results: A bacterial artificial chromosome (BAC) array comparative genome hybridisation (CGH) screen of 1027 patients with mental retardation and/or multiple congenital anomalies (MR/MCA) was performed. The BAC array CGH screen identified five patients with deletions and five with apparently reciprocal duplications of 16p13 covering 1.65 Mb, including 15 RefSeq genes. In addition, three atypical rearrangements overlapping or flanking this region were found. Fine mapping by high-resolution oligonucleotide arrays suggests that these deletions and duplications result from non-allelic homologous recombination (NAHR) between distinct LCR16 subunits with >99% sequence identity. Deletions and duplications were either de novo or inherited from unaffected parents. To determine whether these imbalances are associated with the MR/MCA phenotype or whether they might be benign variants, a population of 2014 normal controls was screened. The absence of deletions in the control population showed that 16p13.11 deletions are significantly associated with MR/MCA (p = 0.0048). Despite phenotypic variability, common features were identified: three patients with deletions presented with MR, microcephaly and epilepsy (two of these had also short stature), and two other deletion carriers ascertained prenatally presented with cleft lip and midline defects. In contrast to its previous association with autism, the duplication seems to be a common variant in the population (5/1682, 0.29%). Conclusion: These findings indicate that deletions inherited from clinically normal parents are likely to be causal for the patients’ phenotype whereas the role of duplications (de novo or inherited) in the phenotype remains uncertain. This difference in knowledge regarding the clinical relevance of the deletion and the duplication causes a paradigm shift in (cyto)genetic counselling. PMID:18550696
Fung, Lawrence K.; Quintin, Eve-Marie; Haas, Brian W.
2013-01-01
Purpose of review The overarching goal of this review is to compare and contrast the cognitive-behavioral features of fragile X syndrome (FraX) and Williams syndrome and to review the putative neural and molecular underpinnings of these features. Information is presented in a framework that provides guiding principles for conceptualizing gene-brain-behavior associations in neurodevelopmental disorders. Recent findings Abnormalities, in particular cognitive-behavioral domains with similarities in underlying neurodevelopmental correlates, occur in both FraX and Williams syndrome including aberrant frontostriatal pathways leading to executive function deficits, and magnocellular/dorsal visual stream, superior parietal lobe, inferior parietal lobe, and postcentral gyrus abnormalities contributing to deficits in visuospatial function. Compelling cognitive–behavioral and neurodevelopmental contrasts also exist in these two disorders, for example, aberrant amygdala and fusiform cortex structure and function occurring in the context of contrasting social behavioral phenotypes, and temporal cortical and cerebellar abnormalities potentially underlying differences in language function. Abnormal dendritic development is a shared neurodevelopmental morphologic feature between FraX and Williams syndrome. Commonalities in molecular machinery and processes across FraX and Williams syndrome occur as well – microRNAs involved in translational regulation of major synaptic proteins; scaffolding proteins in excitatory synapses; and proteins involved in axonal development. Summary Although the genetic variations leading to FraX and Williams syndrome are different, important similarities and contrasts in the phenotype, neurocircuitry, molecular machinery, and cellular processes in these two disorders allow for a unique approach to conceptualizing gene–brain–behavior links occurring in neurodevelopmental disorders. PMID:22395002
Clinical spectrum of 4H leukodystrophy caused by POLR3A and POLR3B mutations
Vanderver, Adeline; van Spaendonk, Rosalina M.L.; Schiffmann, Raphael; Brais, Bernard; Bugiani, Marianna; Sistermans, Erik; Catsman-Berrevoets, Coriene; Kros, Johan M.; Pinto, Pedro Soares; Pohl, Daniela; Tirupathi, Sandya; Strømme, Petter; de Grauw, Ton; Fribourg, Sébastien; Demos, Michelle; Pizzino, Amy; Naidu, Sakkubai; Guerrero, Kether; van der Knaap, Marjo S.; Bernard, Geneviève
2014-01-01
Objective: To study the clinical and radiologic spectrum and genotype–phenotype correlation of 4H (hypomyelination, hypodontia, hypogonadotropic hypogonadism) leukodystrophy caused by mutations in POLR3A or POLR3B. Methods: We performed a multinational cross-sectional observational study of the clinical, radiologic, and molecular characteristics of 105 mutation-proven cases. Results: The majority of patients presented before 6 years with gross motor delay or regression. Ten percent had an onset beyond 10 years. The disease course was milder in patients with POLR3B than in patients with POLR3A mutations. Other than the typical neurologic, dental, and endocrine features, myopia was seen in almost all and short stature in 50%. Dental and hormonal findings were not invariably present. Mutations in POLR3A and POLR3B were distributed throughout the genes. Except for French Canadian patients, patients from European backgrounds were more likely to have POLR3B mutations than other populations. Most patients carried the common c.1568T>A POLR3B mutation on one allele, homozygosity for which causes a mild phenotype. Systematic MRI review revealed that the combination of hypomyelination with relative T2 hypointensity of the ventrolateral thalamus, optic radiation, globus pallidus, and dentate nucleus, cerebellar atrophy, and thinning of the corpus callosum suggests the diagnosis. Conclusions: 4H is a well-recognizable clinical entity if all features are present. Mutations in POLR3A are associated with a more severe clinical course. MRI characteristics are helpful in addressing the diagnosis, especially if patients lack the cardinal non-neurologic features. PMID:25339210
Multivariate Analysis of Genotype-Phenotype Association.
Mitteroecker, Philipp; Cheverud, James M; Pavlicev, Mihaela
2016-04-01
With the advent of modern imaging and measurement technology, complex phenotypes are increasingly represented by large numbers of measurements, which may not bear biological meaning one by one. For such multivariate phenotypes, studying the pairwise associations between all measurements and all alleles is highly inefficient and prevents insight into the genetic pattern underlying the observed phenotypes. We present a new method for identifying patterns of allelic variation (genetic latent variables) that are maximally associated-in terms of effect size-with patterns of phenotypic variation (phenotypic latent variables). This multivariate genotype-phenotype mapping (MGP) separates phenotypic features under strong genetic control from less genetically determined features and thus permits an analysis of the multivariate structure of genotype-phenotype association, including its dimensionality and the clustering of genetic and phenotypic variables within this association. Different variants of MGP maximize different measures of genotype-phenotype association: genetic effect, genetic variance, or heritability. In an application to a mouse sample, scored for 353 SNPs and 11 phenotypic traits, the first dimension of genetic and phenotypic latent variables accounted for >70% of genetic variation present in all 11 measurements; 43% of variation in this phenotypic pattern was explained by the corresponding genetic latent variable. The first three dimensions together sufficed to account for almost 90% of genetic variation in the measurements and for all the interpretable genotype-phenotype association. Each dimension can be tested as a whole against the hypothesis of no association, thereby reducing the number of statistical tests from 7766 to 3-the maximal number of meaningful independent tests. Important alleles can be selected based on their effect size (additive or nonadditive effect on the phenotypic latent variable). This low dimensionality of the genotype-phenotype map has important consequences for gene identification and may shed light on the evolvability of organisms. Copyright © 2016 by the Genetics Society of America.
Kim, Jong-Hyuk; Chon, Seung-Ki; Im, Keum-Soon; Kim, Na-Hyun; Sur, Jung-Hyang
2013-04-01
Abundant lymphocyte infiltration is frequently found in canine malignant mammary tumors, but the pathological features and immunophenotypes associated with the infiltration remain to be elucidated. The aim of the present study was to evaluate the relationship between lymphocyte infiltration, histopathological features, and molecular phenotype in canine mammary carcinoma (MC). The study was done with archived formalin-fixed, paraffin-embedded samples (n = 47) by histologic and immunohistochemical methods. The degree of lymphocyte infiltration was evaluated by morphologic analysis, and the T- and B-cell populations as well as the T/B-cell ratio were evaluated by morphometric analysis; results were compared with the histologic features and molecular phenotypes. The degree of lymphocyte infiltration was significantly higher in MCs with lymphatic invasion than in those without lymphatic invasion (P < 0.0001) and in tumors of high histologic grade compared with those of lower histologic grade (P = 0.045). Morphometric analysis showed a larger amount of T-cells and B-cells in MCs with a higher histologic grade and lymphatic invasion, but the T/B ratio did not change. Lymphocyte infiltration was not associated with histologic type or molecular phenotype, as assessed from the immunohistochemical expression of epidermal growth factor receptor 2, estrogen receptor, cytokeratin 14, and p63. Since intense lymphocyte infiltration was associated with aggressive histologic features, lymphocytes may be important for tumor aggressiveness and greater malignant behavior in the tumor microenvironment.
Bermúdez de la Vega, José A; Fernández-Cancio, Mónica; Bernal, Susana; Audí, Laura
2015-01-01
In 4 complete androgen insensitivity syndrome (CAIS) members of one family, 2 presented extreme and unusual clinical features: male gender identity disorder (case 1) and female precocious central puberty (case 2). The AR gene carried the mutation c.1752C>G, p.Phe584Leu. Gender dysphoria in CAIS may be considered as a true transgender and has been described in 3 other cases. Central precocious puberty has only been described in 1 case; Müllerian ducts in case 2 permitted menarche. Despite the common CAIS phenotype, there was a familial disparity for gender identity adequacy and timing and type of puberty.
Germline mutations of KIT in gastrointestinal stromal tumor (GIST) and mastocytosis.
Ke, Hengning; Kazi, Julhash U; Zhao, Hui; Sun, Jianmin
2016-01-01
Somatic mutations of KIT are frequently found in mastocytosis and gastrointestinal stromal tumor (GIST), while germline mutations of KIT are rare, and only found in few cases of familial GIST and mastocytosis. Although ligand-independent activation is the common feature of KIT mutations, the phenotypes mediated by various germline KIT mutations are different. Germline KIT mutations affect different tissues such as interstitial cells of Cajal (ICC), mast cells or melanocytes, and thereby lead to GIST, mastocytosis, or abnormal pigmentation. In this review, we summarize germline KIT mutations in familial mastocytosis and GIST and discuss the possible cellular context dependent transforming activity of KIT mutations.
The spectrum of clinical presentation, diagnosis, and management of mitochondrial forms of diabetes.
Karaa, Amel; Goldstein, Amy
2015-02-01
Primary mitochondrial diseases refer to a group of heterogeneous and complex genetic disorders affecting 1:5000 people. The true prevalence is anticipated to be even higher because of the complexity of achieving a diagnosis in many patients who present with multisystemic complaints ranging from infancy to adulthood. Diabetes is a prominent feature of several of these disorders which might be overlooked by the endocrinologist. We here review mitochondrial disorders and describe the phenotypic and pathogenetic differences between mitochondrial diabetes mellitus (mDM) and other more common forms of diabetes mellitus. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
How much does the amphioxus genome represent the ancestor of chordates?
Louis, Alexandra; Roest Crollius, Hugues; Robinson-Rechavi, Marc
2012-03-01
One of the main motivations to study amphioxus is its potential for understanding the last common ancestor of chordates, which notably gave rise to the vertebrates. An important feature in this respect is the slow evolutionary rate that seems to have characterized the cephalochordate lineage, making amphioxus an interesting proxy for the chordate ancestor, as well as a key lineage to include in comparative studies. Whereas slow evolution was first noticed at the phenotypic level, it has also been described at the genomic level. Here, we examine whether the amphioxus genome is indeed a good proxy for the genome of the chordate ancestor, with a focus on protein-coding genes. We investigate genome features, such as synteny, gene duplication and gene loss, and contrast the amphioxus genome with those of other deuterostomes that are used in comparative studies, such as Ciona, Oikopleura and urchin.
Evolution and regulation of complex life cycles: a brown algal perspective.
Cock, J Mark; Godfroy, Olivier; Macaisne, Nicolas; Peters, Akira F; Coelho, Susana M
2014-02-01
The life cycle of an organism is one of its fundamental features, influencing many aspects of its biology. The brown algae exhibit a diverse range of life cycles indicating that transitions between life cycle types may have been key adaptive events in the evolution of this group. Life cycle mutants, identified in the model organism Ectocarpus, are providing information about how life cycle progression is regulated at the molecular level in brown algae. We explore some of the implications of the phenotypes of the life cycle mutants described to date and draw comparisons with recent insights into life cycle regulation in the green lineage. Given the importance of coordinating growth and development with life cycle progression, we suggest that the co-option of ancient life cycle regulators to control key developmental events may be a common feature in diverse groups of multicellular eukaryotes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Familial polycystic ovarian disease.
Givens, J R
1988-12-01
Emphasis is placed on the heterogeneity of the phenotypic presentation of PCOD. It is the common expression of an unknown number of disorders and thus is a sign and not a specific diagnosis. Two essential features are arrested follicular maturation and atresia of follicles. Normal folliculogenesis is described, emphasizing that a large number of areas could be subject to derangement causing PCOD. Any interference of the finely balanced sequence of events can lead to PCOD. The genetic defect causing familial PCOD is unknown and the initiating event remains undefined. Three families are described that illustrate four features of familial PCOD. A number of associated disorders such as diabetes, hyperinsulinemia, obesity, and hypertension are described. The potential importance of agents that modulate the LH and FSH activity that may cause PCOD is emphasized. The theoretic means by which similar male and female gonadal abnormalities may be coupled in families through growth factors EGF and alpha TGF are presented.
Menten, Björn; Buysse, Karen; Zahir, Farah; Hellemans, Jan; Hamilton, Sara J; Costa, Teresa; Fagerstrom, Carrie; Anadiotis, George; Kingsbury, Daniel; McGillivray, Barbara C; Marra, Marco A; Friedman, Jan M; Speleman, Frank; Mortier, Geert
2007-04-01
This report presents the detection of a heterozygous deletion at chromosome 12q14 in three unrelated patients with a similar phenotype consisting of mild mental retardation, failure to thrive in infancy, proportionate short stature and osteopoikilosis as the most characteristic features. In each case, this interstitial deletion was found using molecular karyotyping. The deletion occurred as a de novo event and varied between 3.44 and 6 megabases (Mb) in size with a 3.44 Mb common deleted region. The deleted interval was not flanked by low-copy repeats or segmental duplications. It contains 13 RefSeq genes, including LEMD3, which was previously shown to be the causal gene for osteopoikilosis. The observation of osteopoikilosis lesions should facilitate recognition of this new microdeletion syndrome among children with failure to thrive, short stature and learning disabilities.
Kuroda, Yukiko; Saito, Toshiyuki; Nagai, Jun-Ichi; Ida, Kazumi; Naruto, Takuya; Masuno, Mitsuo; Kurosawa, Kenji
2015-02-01
Peutz-Jeghers syndrome (PJS) is a rare autosomal dominant disease characterized by gastrointestinal polyposis and mucocutaneous pigmentation. Germline point mutations in the serine/threonine kinase 11 (STK11) have been identified in about 70% of patients with PJS. Only a few large genomic deletions have been identified. We report on a girl with PJS and multiple congenital anomalies. She had intellectual disability, umbilical hernia, bilateral inguinal hernias, scoliosis, and distinct facial appearance including prominent mandible, smooth philtrum, and malformed ears. She developed lip pigmentation at the age of 12 years but had no gastrointestinal polyps. Array comparative genomic hybridization revealed an approximately 610 kb deletion at 19p13.3, encompassing STK11. Together with previous reports, the identification of common clinical features suggests that microdeletion at 19p13.3 encompassing STK11 constitutes a distinctive phenotype. © 2014 Wiley Periodicals, Inc.
Cornelia de Lange syndrome: a case study.
Kalal, Goud Iravathy; Raina, Vimarsh P; Nayak, Veerabhadra S; Teotia, Pooja; Gupta, Bhushan V
2009-02-01
Cornelia de Lange syndrome (CDLS) is a relatively common multiple congenital anomaly/mental retardation disorder with an unknown genetic and molecular pathogenesis. The essential features of this developmental malformation syndrome are retardation in growth, developmental delay, various structural limb abnormalities, and distinctive facial features. Most cases are sporadic and are thought to result from a new dominant mutation. Consequently, hypotheses regarding the pathogenetic mechanisms underlying the two distinct phenotypes, classic and mild, are purely speculative. The recent discovery of molecular techniques and identification of the NIPBL gene has allowed etiologic diagnosis of this disorder. In this article, we describe a patient with CDLS in whom conventional cytogenetics, fluorescence in situ hybridization, and NIPBL gene mutation analysis determined an etiologic diagnosis, providing precise genetic counseling and facilitated the family to make an evidence-based decision for conception and also alleviated the extreme degree of anxiety associated with the thought of having a second child in this set of circumstances.
[Clinical aspects of congenital maxillofacial deformities].
Sólya, Kitti; Dézsi, Csilla; Vanya, Melinda; Szabó, János; Sikovanyecz, János; Kozinszky, Zoltán; Szili, Károly
2015-09-13
The cleft lip and palate deformity is one of the most common type of congenital abnormalities. The aim of this paper is to summarise the literature knowledge about cleft lip and/or palate. The authors review and discuss international literature data on the prevention, genetic and environmental predisposing factors, anatomical and embryological features, as well as pre- and post-natal diagnosis and treatment of these deformities. The aetiology is multifactorial, driven by both genetic and environmental factors which lead to multifaceted phenotypes and clinical features of these malformations. The lack of the multidisciplinary knowledge about prenatal diagnosis, prevention, genetic aspects and treatment strategy could result in serious diagnostic errors, hence clinical teamwork is critically important to solve the problems of this pathology. Only the professional teamwork and multidisciplinary cooperation can guarantee the optimal level of health care and better quality of life for these patients and their families.
Escherichia coli DnaE Polymerase Couples Pyrophosphatase Activity to DNA Replication
Lapenta, Fabio; Montón Silva, Alejandro; Brandimarti, Renato; Lanzi, Massimiliano; Gratani, Fabio Lino; Vellosillo Gonzalez, Perceval; Perticarari, Sofia; Hochkoeppler, Alejandro
2016-01-01
DNA Polymerases generate pyrophosphate every time they catalyze a step of DNA elongation. This elongation reaction is generally believed as thermodynamically favoured by the hydrolysis of pyrophosphate, catalyzed by inorganic pyrophosphatases. However, the specific action of inorganic pyrophosphatases coupled to DNA replication in vivo was never demonstrated. Here we show that the Polymerase-Histidinol-Phosphatase (PHP) domain of Escherichia coli DNA Polymerase III α subunit features pyrophosphatase activity. We also show that this activity is inhibited by fluoride, as commonly observed for inorganic pyrophosphatases, and we identified 3 amino acids of the PHP active site. Remarkably, E. coli cells expressing variants of these catalytic residues of α subunit feature aberrant phenotypes, poor viability, and are subject to high mutation frequencies. Our findings indicate that DNA Polymerases can couple DNA elongation and pyrophosphate hydrolysis, providing a mechanism for the control of DNA extension rate, and suggest a promising target for novel antibiotics. PMID:27050298
Naval-Sanchez, Marina; Nguyen, Quan; McWilliam, Sean; Porto-Neto, Laercio R; Tellam, Ross; Vuocolo, Tony; Reverter, Antonio; Perez-Enciso, Miguel; Brauning, Rudiger; Clarke, Shannon; McCulloch, Alan; Zamani, Wahid; Naderi, Saeid; Rezaei, Hamid Reza; Pompanon, Francois; Taberlet, Pierre; Worley, Kim C; Gibbs, Richard A; Muzny, Donna M; Jhangiani, Shalini N; Cockett, Noelle; Daetwyler, Hans; Kijas, James
2018-02-28
Domestication fundamentally reshaped animal morphology, physiology and behaviour, offering the opportunity to investigate the molecular processes driving evolutionary change. Here we assess sheep domestication and artificial selection by comparing genome sequence from 43 modern breeds (Ovis aries) and their Asian mouflon ancestor (O. orientalis) to identify selection sweeps. Next, we provide a comparative functional annotation of the sheep genome, validated using experimental ChIP-Seq of sheep tissue. Using these annotations, we evaluate the impact of selection and domestication on regulatory sequences and find that sweeps are significantly enriched for protein coding genes, proximal regulatory elements of genes and genome features associated with active transcription. Finally, we find individual sites displaying strong allele frequency divergence are enriched for the same regulatory features. Our data demonstrate that remodelling of gene expression is likely to have been one of the evolutionary forces that drove phenotypic diversification of this common livestock species.
Noonan syndrome: clinical features, diagnosis, and management guidelines.
Romano, Alicia A; Allanson, Judith E; Dahlgren, Jovanna; Gelb, Bruce D; Hall, Bryan; Pierpont, Mary Ella; Roberts, Amy E; Robinson, Wanda; Takemoto, Clifford M; Noonan, Jacqueline A
2010-10-01
Noonan syndrome (NS) is a common, clinically and genetically heterogeneous condition characterized by distinctive facial features, short stature, chest deformity, congenital heart disease, and other comorbidities. Gene mutations identified in individuals with the NS phenotype are involved in the Ras/MAPK (mitogen-activated protein kinase) signal transduction pathway and currently explain ∼61% of NS cases. Thus, NS frequently remains a clinical diagnosis. Because of the variability in presentation and the need for multidisciplinary care, it is essential that the condition be identified and managed comprehensively. The Noonan Syndrome Support Group (NSSG) is a nonprofit organization committed to providing support, current information, and understanding to those affected by NS. The NSSG convened a conference of health care providers, all involved in various aspects of NS, to develop these guidelines for use by pediatricians in the diagnosis and management of individuals with NS and to provide updated genetic findings.
Almendro, Vanessa; Cheng, Yu-Kang; Randles, Amanda; Itzkovitz, Shalev; Marusyk, Andriy; Ametller, Elisabet; Gonzalez-Farre, Xavier; Muñoz, Montse; Russnes, Hege G; Helland, Aslaug; Rye, Inga H; Borresen-Dale, Anne-Lise; Maruyama, Reo; van Oudenaarden, Alexander; Dowsett, Mitchell; Jones, Robin L; Reis-Filho, Jorge; Gascon, Pere; Gönen, Mithat; Michor, Franziska; Polyak, Kornelia
2014-02-13
Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here, we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor-subtype specific, and it did not change during treatment in tumors with partial or no response. However, lower pretreatment genetic diversity was significantly associated with pathologic complete response. In contrast, phenotypic diversity was different between pre- and posttreatment samples. We also observed significant changes in the spatial distribution of cells with distinct genetic and phenotypic features. We used these experimental data to develop a stochastic computational model to infer tumor growth patterns and evolutionary dynamics. Our results highlight the importance of integrated analysis of genotypes and phenotypes of single cells in intact tissues to predict tumor evolution. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Almendro, Vanessa; Cheng, Yu -Kang; Randles, Amanda; ...
2014-02-01
Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here, we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor-subtype specific, and it did not change during treatment in tumors with partial or no response. However, lower pretreatment genetic diversity was significantly associated with pathologic complete response. In contrast, phenotypic diversity was different between pre- and post-treatment samples. We also observed significant changes in the spatialmore » distribution of cells with distinct genetic and phenotypic features. We used these experimental data to develop a stochastic computational model to infer tumor growth patterns and evolutionary dynamics. Our results highlight the importance of integrated analysis of genotypes and phenotypes of single cells in intact tissues to predict tumor evolution.« less
Feature theory and the two-step hypothesis of Müllerian mimicry evolution.
Balogh, Alexandra Catherine Victoria; Gamberale-Stille, Gabriella; Tullberg, Birgitta Sillén; Leimar, Olof
2010-03-01
The two-step hypothesis of Müllerian mimicry evolution states that mimicry starts with a major mutational leap between adaptive peaks, followed by gradual fine-tuning. The hypothesis was suggested to solve the problem of apostatic selection producing a valley between adaptive peaks, and appears reasonable for a one-dimensional phenotype. Extending the hypothesis to the realistic scenario of multidimensional phenotypes controlled by multiple genetic loci can be problematic, because it is unlikely that major mutational leaps occur simultaneously in several traits. Here we consider the implications of predator psychology on the evolutionary process. According to feature theory, single prey traits may be used by predators as features to classify prey into discrete categories. A mutational leap in such a trait could initiate mimicry evolution. We conducted individual-based evolutionary simulations in which virtual predators both categorize prey according to features and generalize over total appearances. We found that an initial mutational leap toward feature similarity in one dimension facilitates mimicry evolution of multidimensional traits. We suggest that feature-based predator categorization together with predator generalization over total appearances solves the problem of applying the two-step hypothesis to complex phenotypes, and provides a basis for a theory of the evolution of mimicry rings.
Quality Control Test for Sequence-Phenotype Assignments
Ortiz, Maria Teresa Lara; Rosario, Pablo Benjamín Leon; Luna-Nevarez, Pablo; Gamez, Alba Savin; Martínez-del Campo, Ana; Del Rio, Gabriel
2015-01-01
Relating a gene mutation to a phenotype is a common task in different disciplines such as protein biochemistry. In this endeavour, it is common to find false relationships arising from mutations introduced by cells that may be depurated using a phenotypic assay; yet, such phenotypic assays may introduce additional false relationships arising from experimental errors. Here we introduce the use of high-throughput DNA sequencers and statistical analysis aimed to identify incorrect DNA sequence-phenotype assignments and observed that 10–20% of these false assignments are expected in large screenings aimed to identify critical residues for protein function. We further show that this level of incorrect DNA sequence-phenotype assignments may significantly alter our understanding about the structure-function relationship of proteins. We have made available an implementation of our method at http://bis.ifc.unam.mx/en/software/chispas. PMID:25700273
Novel (ovario) leukodystrophy related to AARS2 mutations
Dallabona, Cristina; Diodato, Daria; Kevelam, Sietske H.; Haack, Tobias B.; Wong, Lee-Jun; Salomons, Gajja S.; Baruffini, Enrico; Melchionda, Laura; Mariotti, Caterina; Strom, Tim M.; Meitinger, Thomas; Prokisch, Holger; Chapman, Kim; Colley, Alison; Rocha, Helena; Őunap, Katrin; Schiffmann, Raphael; Salsano, Ettore; Savoiardo, Mario; Hamilton, Eline M.; Abbink, Truus E. M.; Wolf, Nicole I.; Ferrero, Ileana; Lamperti, Costanza; Zeviani, Massimo; Vanderver, Adeline
2014-01-01
Objectives: The study was focused on leukoencephalopathies of unknown cause in order to define a novel, homogeneous phenotype suggestive of a common genetic defect, based on clinical and MRI findings, and to identify the causal genetic defect shared by patients with this phenotype. Methods: Independent next-generation exome-sequencing studies were performed in 2 unrelated patients with a leukoencephalopathy. MRI findings in these patients were compared with available MRIs in a database of unclassified leukoencephalopathies; 11 patients with similar MRI abnormalities were selected. Clinical and MRI findings were investigated. Results: Next-generation sequencing revealed compound heterozygous mutations in AARS2 encoding mitochondrial alanyl-tRNA synthetase in both patients. Functional studies in yeast confirmed the pathogenicity of the mutations in one patient. Sanger sequencing revealed AARS2 mutations in 4 of the 11 selected patients. The 6 patients with AARS2 mutations had childhood- to adulthood-onset signs of neurologic deterioration consisting of ataxia, spasticity, and cognitive decline with features of frontal lobe dysfunction. MRIs showed a leukoencephalopathy with striking involvement of left-right connections, descending tracts, and cerebellar atrophy. All female patients had ovarian failure. None of the patients had signs of a cardiomyopathy. Conclusions: Mutations in AARS2 have been found in a severe form of infantile cardiomyopathy in 2 families. We present 6 patients with a new phenotype caused by AARS2 mutations, characterized by leukoencephalopathy and, in female patients, ovarian failure, indicating that the phenotypic spectrum associated with AARS2 variants is much wider than previously reported. PMID:24808023
Banka, Siddharth; Veeramachaneni, Ratna; Reardon, William; Howard, Emma; Bunstone, Sancha; Ragge, Nicola; Parker, Michael J; Crow, Yanick J; Kerr, Bronwyn; Kingston, Helen; Metcalfe, Kay; Chandler, Kate; Magee, Alex; Stewart, Fiona; McConnell, Vivienne P M; Donnelly, Deirdre E; Berland, Siren; Houge, Gunnar; Morton, Jenny E; Oley, Christine; Revencu, Nicole; Park, Soo-Mi; Davies, Sally J; Fry, Andrew E; Lynch, Sally Ann; Gill, Harinder; Schweiger, Susann; Lam, Wayne W K; Tolmie, John; Mohammed, Shehla N; Hobson, Emma; Smith, Audrey; Blyth, Moira; Bennett, Christopher; Vasudevan, Pradeep C; García-Miñaúr, Sixto; Henderson, Alex; Goodship, Judith; Wright, Michael J; Fisher, Richard; Gibbons, Richard; Price, Susan M; C de Silva, Deepthi; Temple, I Karen; Collins, Amanda L; Lachlan, Katherine; Elmslie, Frances; McEntagart, Meriel; Castle, Bruce; Clayton-Smith, Jill; Black, Graeme C; Donnai, Dian
2012-04-01
MLL2 mutations are detected in 55 to 80% of patients with Kabuki syndrome (KS). In 20 to 45% patients with KS, the genetic basis remains unknown, suggesting possible genetic heterogeneity. Here, we present the largest yet reported cohort of 116 patients with KS. We identified MLL2 variants in 74 patients, of which 47 are novel and a majority are truncating. We show that pathogenic missense mutations were commonly located in exon 48. We undertook a systematic facial KS morphology study of patients with KS at our regional dysmorphology meeting. Our data suggest that nearly all patients with typical KS facial features have pathogenic MLL2 mutations, although KS can be phenotypically variable. Furthermore, we show that MLL2 mutation-positive KS patients are more likely to have feeding problems, kidney anomalies, early breast bud development, joint dislocations and palatal malformations in comparison with MLL2 mutation-negative patients. Our work expands the mutation spectrum of MLL2 that may help in better understanding of this molecule, which is important in gene expression, epigenetic control of active chromatin states, embryonic development and cancer. Our analyses of the phenotype indicates that MLL2 mutation-positive and -negative patients differ systematically, and genetic heterogeneity of KS is not as extensive as previously suggested. Moreover, phenotypic variability of KS suggests that MLL2 testing should be considered even in atypical patients.
Developmental Emergence of Phenotypes in the Auditory Brainstem Nuclei of Fmr1 Knockout Mice
Rotschafer, Sarah E.
2017-01-01
Abstract Fragile X syndrome (FXS), the most common monogenic cause of autism, is often associated with hypersensitivity to sound. Several studies have shown abnormalities in the auditory brainstem in FXS; however, the emergence of these auditory phenotypes during development has not been described. Here, we investigated the development of phenotypes in FXS model [Fmr1 knockout (KO)] mice in the ventral cochlear nucleus (VCN), medial nucleus of the trapezoid body (MNTB), and lateral superior olive (LSO). We studied features of the brainstem known to be altered in FXS or Fmr1 KO mice, including cell size and expression of markers for excitatory (VGLUT) and inhibitory (VGAT) synapses. We found that cell size was reduced in the nuclei with different time courses. VCN cell size is normal until after hearing onset, while MNTB and LSO show decreases earlier. VGAT expression was elevated relative to VGLUT in the Fmr1 KO mouse MNTB by P6, before hearing onset. Because glial cells influence development and are altered in FXS, we investigated their emergence in the developing Fmr1 KO brainstem. The number of microglia developed normally in all three nuclei in Fmr1 KO mice, but we found elevated numbers of astrocytes in Fmr1 KO in VCN and LSO at P14. The results indicate that some phenotypes are evident before spontaneous or auditory activity, while others emerge later, and suggest that Fmr1 acts at multiple sites and time points in auditory system development. PMID:29291238
Zhu, Yun; Fan, Ruzong; Xiong, Momiao
2017-01-01
Investigating the pleiotropic effects of genetic variants can increase statistical power, provide important information to achieve deep understanding of the complex genetic structures of disease, and offer powerful tools for designing effective treatments with fewer side effects. However, the current multiple phenotype association analysis paradigm lacks breadth (number of phenotypes and genetic variants jointly analyzed at the same time) and depth (hierarchical structure of phenotype and genotypes). A key issue for high dimensional pleiotropic analysis is to effectively extract informative internal representation and features from high dimensional genotype and phenotype data. To explore correlation information of genetic variants, effectively reduce data dimensions, and overcome critical barriers in advancing the development of novel statistical methods and computational algorithms for genetic pleiotropic analysis, we proposed a new statistic method referred to as a quadratically regularized functional CCA (QRFCCA) for association analysis which combines three approaches: (1) quadratically regularized matrix factorization, (2) functional data analysis and (3) canonical correlation analysis (CCA). Large-scale simulations show that the QRFCCA has a much higher power than that of the ten competing statistics while retaining the appropriate type 1 errors. To further evaluate performance, the QRFCCA and ten other statistics are applied to the whole genome sequencing dataset from the TwinsUK study. We identify a total of 79 genes with rare variants and 67 genes with common variants significantly associated with the 46 traits using QRFCCA. The results show that the QRFCCA substantially outperforms the ten other statistics. PMID:29040274
Sun, Lianhua; Li, Xiaohua; Shi, Jun; Pang, Xiuhong; Hu, Yechen; Wang, Xiaowen; Wu, Hao; Yang, Tao
2016-10-19
Waardenburg syndrome (WS) characterized by sensorineural hearing loss and pigmentary abnormalities is genetically heterogeneous and phenotypically variable. This study investigated the molecular etiology and genotype-phenotype correlation of WS in 36 Chinese Han deaf probands and 16 additional family members that were clinically diagnosed with WS type I (WS1, n = 8) and type II (WS2, n = 42). Mutation screening of six WS-associated genes detected PAX3 mutations in 6 (86%) of the 7 WS1 probands. Among the 29 WS2 probands, 13 (45%) and 10 (34%) were identified with SOX10 and MITF mutations, respectively. Nineteen of the 26 detected mutations were novel. In WS2 probands whose parental DNA samples were available, de novo mutations were frequently seen for SOX10 mutations (7/8) but not for MITF mutations (0/5, P = 0.005). Excessive freckle, a common feature of WS2 in Chinese Hans, was frequent in WS2 probands with MITF mutations (7/10) but not in those with SOX10 mutations (0/13, P = 4.9 × 10 -4 ). Our results showed that mutations in SOX10 and MITF are two major causes for deafness associated with WS2. These two subtypes of WS2 can be distinguished by the high de novo rate of the SOX10 mutations and the excessive freckle phenotype exclusively associated with the MITF mutations.
Sun, Lianhua; Li, Xiaohua; Shi, Jun; Pang, Xiuhong; Hu, Yechen; Wang, Xiaowen; Wu, Hao; Yang, Tao
2016-01-01
Waardenburg syndrome (WS) characterized by sensorineural hearing loss and pigmentary abnormalities is genetically heterogeneous and phenotypically variable. This study investigated the molecular etiology and genotype-phenotype correlation of WS in 36 Chinese Han deaf probands and 16 additional family members that were clinically diagnosed with WS type I (WS1, n = 8) and type II (WS2, n = 42). Mutation screening of six WS-associated genes detected PAX3 mutations in 6 (86%) of the 7 WS1 probands. Among the 29 WS2 probands, 13 (45%) and 10 (34%) were identified with SOX10 and MITF mutations, respectively. Nineteen of the 26 detected mutations were novel. In WS2 probands whose parental DNA samples were available, de novo mutations were frequently seen for SOX10 mutations (7/8) but not for MITF mutations (0/5, P = 0.005). Excessive freckle, a common feature of WS2 in Chinese Hans, was frequent in WS2 probands with MITF mutations (7/10) but not in those with SOX10 mutations (0/13, P = 4.9 × 10−4). Our results showed that mutations in SOX10 and MITF are two major causes for deafness associated with WS2. These two subtypes of WS2 can be distinguished by the high de novo rate of the SOX10 mutations and the excessive freckle phenotype exclusively associated with the MITF mutations. PMID:27759048
Fox, Robin; Ealing, John; Murphy, Helen; Gow, David P; Gosal, David
2016-09-01
DNA methyltransferase 1 (DNMT1) is an enzyme which has a role in methylation of DNA, gene regulation, and chromatin stability. Missense mutations in the DNMT1 gene have been previously associated with two neurological syndromes: hereditary sensory and autonomic neuropathy type 1 with dementia and deafness (HSAN1E) and autosomal dominant cerebellar ataxia, deafness, and narcolepsy (ADCA-DN). We report a case showing overlap of both of these syndromes plus associated clinical features of common variable immune deficiency, scleroderma, and endocrinopathy that could also be mutation associated. Our patient was found to be heterozygous for a previously unreported frameshift mutation, c.1635_1637delCAA p.(Asn545del) in the DNMT1 gene exon 20. This case displays both the first frameshift mutation described in the literature which is associated with a phenotype with a high degree of overlap between HSAN1E and ADCA-DN and early age of onset (c. 8 years). Our case is also of interest as the patient displays a number of new non-neurological features, which could also be DNMT1 mutation related. © 2016 Peripheral Nerve Society.
Singh, Navneet; Chakrabarty, Subhas
2013-11-15
We recently reported on the isolation and characterization of calcium sensing receptor (CaSR) null human colon cancer cells (Singh et al., Int J Cancer 2013; 132: 1996-2005). CaSR null cells possess a myriad of molecular features that are linked to a highly malignant and drug resistant phenotype of colon cancer. The CaSR null phenotype can be maintained in defined human embryonic stem cell culture medium. We now show that the CaSR null cells can be induced to differentiate in conventional culture medium, regained the expression of CaSR with a concurrent reversal of the cellular and molecular features associated with the null phenotype. These features include cellular morphology, expression of colon cancer stem cell markers, expression of survivin and thymidylate synthase and sensitivity to fluorouracil. Other features include the expression of epithelial mesenchymal transition linked molecules and transcription factors, oncogenic miRNAs and tumor suppressive molecule and miRNA. With the exception of cancer stem cell markers, the reversal of molecular features, upon the induction of CaSR expression, is directly linked to the expression and function of CaSR because blocking CaSR induction by shRNA circumvented such reversal. We further report that methylation and demethylation of the CaSR gene promoter underlie CaSR expression. Due to the malignant nature of the CaSR null cells, inclusion of the CaSR null phenotype in disease management may improve on the mortality of this disease. Because CaSR is a robust promoter of differentiation and mediates its action through diverse mechanisms and pathways, inactivation of CaSR may serve as a new paradigm in colon carcinogenesis. Copyright © 2013 UICC.
New developments in Smith-Magenis syndrome (del 17p11.2).
Gropman, Andrea L; Elsea, Sarah; Duncan, Wallace C; Smith, Ann C M
2007-04-01
Recent clinical, neuroimaging, sleep, and molecular cytogenetic studies have provided new insights into the mechanisms leading to the Smith-Magenis phenotype and are summarized in this review. Cross sectional studies of patients with Smith-Magenis syndrome have found evidence for central and peripheral nervous system abnormalities, neurobehavioral disturbances, and an inverted pattern of melatonin secretion leading to circadian rhythm disturbance. A common chromosome 17p11.2 deletion interval spanning approximately 3.5 Mb is identified in about 70% of individuals with chromosome deletion. Recently heterozygous point mutations in the RAI1 gene within the Smith-Magenis syndrome critical region have been reported in Smith-Magenis syndrome patients without detectable deletion by fluorescent in-situ hybridization. Patients with intragenic mutations in RAI1 as well as those with deletions share most but not all aspects of the phenotype. Findings from molecular cytogenetic analysis suggest that other genes or genetic background may play a role in altering the functional availability of RAI1 for downstream effects. Further research into additional genes in the Smith-Magenis syndrome critical region will help define the role they play in modifying features or severity of the Smith-Magenis syndrome phenotype. More research is needed to translate advances in clinical research into new treatment options to address the sleep and neurobehavioral problems in this disorder.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang Shurong; Risques, Rosa Ana; Martin, George M.
2008-01-01
LMNA mutations are responsible for a variety of genetic disorders, including muscular dystrophy, lipodystrophy, and certain progeroid syndromes, notably Hutchinson-Gilford Progeria. Although a number of clinical features of these disorders are suggestive of accelerated aging, it is not known whether cells derived from these patients exhibit cellular phenotypes associated with accelerated aging. We examined a series of isogenic skin fibroblast lines transfected with LMNA constructs bearing known pathogenic point mutations or deletion mutations found in progeroid syndromes. Fibroblasts overexpressing mutant lamin A exhibited accelerated rates of loss of telomeres and shortened replicative lifespans, in addition to abnormal nuclear morphology. Tomore » our surprise, these abnormalities were also observed in lines overexpressing wild-type lamin A. Copy number variants are common in human populations; those involving LMNA, whether arising meiotically or mitotically, might lead to progeroid phenotypes. In an initial pilot study of 23 progeroid cases without detectable WRN or LMNA mutations, however, no cases of altered LMNA copy number were detected. Nevertheless, our findings raise a hypothesis that changes in lamina organization may cause accelerated telomere attrition, with different kinetics for overexpession of wild-type and mutant lamin A, which leads to rapid replicative senescence and progroid phenotypes.« less
Kasajima, Ichiro; Sasaki, Katsutomo
2016-05-03
The development of new phenotypes is key to the commercial development of the main floricultural species and cultivars. Important new phenotypes include features such as multiple-flowers, color variations, increased flower size, new petal shapes, variegation and distinctive petal margin colourations. Although their commercial use is not yet common, the transgenic technologies provide a potentially rapid means of generating interesting new phenotypes. In this report, we construct 5 vectors which we expected to change the color of the flower anthocyanins, from purple to blue, regulating vacuolar pH. When these constructs were transformed into purple torenia, we unexpectedly recovered some genotypes having slightly margined petals. These transgenic lines expressed a chimeric repressor of the petunia PhPH4 gene under the control of Cauliflower mosaic virus 35 S RNA promoter. PhPH4 is an R2R3-type MYB transcription factor. The transgenic lines lacked pigmentation in the petal margin cells both on the adaxial and abaxial surfaces. Expressions of Flavanone 3-hydroxylase (F3H), Flavonoid 3'-hydroxylase (F3'H) and Flavonoid 3'5'-hydroxylase (F3'5'H) genes were reduced in the margins of these transgenic lines, suggesting an inhibitory effect of PhPH4 repressor on anthocyanin synthesis.
Varela, M C; Kok, F; Setian, N; Kim, C A; Koiffmann, C P
2005-01-01
Prader-Willi syndrome (PWS) can result from a 15q11-q13 paternal deletion, maternal uniparental disomy (UPD), or imprinting mutations. We describe here the phenotypic variability detected in 51 patients with different types of deletions and 24 patients with UPD. Although no statistically significant differences could be demonstrated between the two main types of PWS deletion patients, it was observed that type I (BP1-BP3) patients acquired speech later than type II (BP2-BP3) patients. Comparing the clinical pictures of our patients with UPD with those with deletions, we found that UPD children presented with lower birth length and started walking earlier and deletion patients presented with a much higher incidence of seizures than UPD patients. In addition, the mean maternal age in the UPD group was higher than in the deletion group. No statistically significant differences could be demonstrated between the deletion and the UPD group with respect to any of the major features of PWS. In conclusion, our study did not detect significant phenotypic differences among type I and type II PWS deletion patients, but it did demonstrate that seizures were six times more common in patients with a deletion than in those with UPD.
Attractiveness as a Function of Skin Tone and Facial Features: Evidence from Categorization Studies.
Stepanova, Elena V; Strube, Michael J
2018-01-01
Participants rated the attractiveness and racial typicality of male faces varying in their facial features from Afrocentric to Eurocentric and in skin tone from dark to light in two experiments. Experiment 1 provided evidence that facial features and skin tone have an interactive effect on perceptions of attractiveness and mixed-race faces are perceived as more attractive than single-race faces. Experiment 2 further confirmed that faces with medium levels of skin tone and facial features are perceived as more attractive than faces with extreme levels of these factors. Black phenotypes (combinations of dark skin tone and Afrocentric facial features) were rated as more attractive than White phenotypes (combinations of light skin tone and Eurocentric facial features); ambiguous faces (combinations of Afrocentric and Eurocentric physiognomy) with medium levels of skin tone were rated as the most attractive in Experiment 2. Perceptions of attractiveness were relatively independent of racial categorization in both experiments.
Simonet, Jacqueline C; Sunnen, C Nicole; Wu, Jue; Golden, Jeffrey A; Marsh, Eric D
2015-09-01
Mutations in the Aristaless-Related Homeobox (ARX) gene cause structural anomalies of the brain, epilepsy, and neurocognitive deficits in children. During forebrain development, Arx is expressed in both pallial and subpallial progenitor cells. We previously demonstrated that elimination of Arx from subpallial-derived cortical interneurons generates an epilepsy phenotype with features overlapping those seen in patients with ARX mutations. In this report, we have selectively removed Arx from pallial progenitor cells that give rise to the cerebral cortical projection neurons. While no discernable seizure activity was recorded, these mice exhibited a peculiar constellation of behaviors. They are less anxious, less social, and more active when compared with their wild-type littermates. The overall cortical thickness was reduced, and the corpus callosum and anterior commissure were hypoplastic, consistent with a perturbation in cortical connectivity. Taken together, these data suggest that some of the structural and behavioral anomalies, common in patients with ARX mutations, are specifically due to alterations in pallial progenitor function. Furthermore, our data demonstrate that some of the neurobehavioral features found in patients with ARX mutations may not be due to on-going seizures, as is often postulated, given that epilepsy was eliminated as a confounding variable in these behavior analyses. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
High-fat diet induces significant metabolic disorders in a mouse model of polycystic ovary syndrome.
Lai, Hao; Jia, Xiao; Yu, Qiuxiao; Zhang, Chenglu; Qiao, Jie; Guan, Youfei; Kang, Jihong
2014-11-01
Polycystic ovary syndrome (PCOS) is the most common female endocrinopathy associated with both reproductive and metabolic disorders. Dehydroepiandrosterone (DHEA) is currently used to induce a PCOS mouse model. High-fat diet (HFD) has been shown to cause obesity and infertility in female mice. The possible effect of an HFD on the phenotype of DHEA-induced PCOS mice is unknown. The aim of the present study was to investigate both reproductive and metabolic features of DHEA-induced PCOS mice fed a normal chow or a 60% HFD. Prepubertal C57BL/6 mice (age 25 days) on the normal chow or an HFD were injected (s.c.) daily with the vehicle sesame oil or DHEA for 20 consecutive days. At the end of the experiment, both reproductive and metabolic characteristics were assessed. Our data show that an HFD did not affect the reproductive phenotype of DHEA-treated mice. The treatment of HFD, however, caused significant metabolic alterations in DHEA-treated mice, including obesity, glucose intolerance, dyslipidemia, and pronounced liver steatosis. These findings suggest that HFD induces distinct metabolic features in DHEA-induced PCOS mice. The combined DHEA and HFD treatment may thus serve as a means of studying the mechanisms involved in metabolic derangements of this syndrome, particularly in the high prevalence of hepatic steatosis in women with PCOS. © 2014 by the Society for the Study of Reproduction, Inc.
High rate of drug resistance among tuberculous meningitis cases in Shaanxi province, China
Wang, Ting; Feng, Guo-Dong; Pang, Yu; Liu, Jia-Yun; Zhou, Yang; Yang, Yi-Ning; Dai, Wen; Zhang, Lin; Li, Qiao; Gao, Yu; Chen, Ping; Zhan, Li-Ping; Marais, Ben J; Zhao, Yan-Lin; Zhao, Gang
2016-01-01
The clinical and mycobacterial features of tuberculous meningitis (TBM) cases in China are not well described; especially in western provinces with poor tuberculosis control. We prospectively enrolled patients in whom TBM was considered in Shaanxi Province, northwestern China, over a 2-year period (September 2010 to December 2012). Cerebrospinal fluid specimens were cultured for Mycobacterium tuberculosis; with phenotypic and genotypic drug susceptibility testing (DST), as well as genotyping of all positive cultures. Among 350 patients included in the study, 27 (7.7%) had culture-confirmed TBM; 84 (24.0%) had probable and 239 (68.3%) had possible TBM. DST was performed on 25/27 (92.3%) culture positive specimens; 12/25 (48.0%) had “any resistance” detected and 3 (12.0%) were multi-drug resistant (MDR). Demographic and clinical features of drug resistant and drug susceptible TBM cases were similar. Beijing was the most common genotype (20/25; 80.0%) with 9/20 (45%) of the Beijing strains exhibiting drug resistance; including all 3 MDR strains. All (4/4) isoniazid resistant strains had mutations in the katG gene; 75% (3/4) of strains with phenotypic rifampicin resistance had mutations in the rpoB gene detected by Xpert MTB/RIF®. High rates of drug resistance were found among culture-confirmed TBM cases; most were Beijing strains. PMID:27143630
Tuijnenburg, Paul; Lango Allen, Hana; Burns, Siobhan O; Greene, Daniel; Jansen, Machiel H; Staples, Emily; Stephens, Jonathan; Carss, Keren J; Biasci, Daniele; Baxendale, Helen; Thomas, Moira; Chandra, Anita; Kiani-Alikhan, Sorena; Longhurst, Hilary J; Seneviratne, Suranjith L; Oksenhendler, Eric; Simeoni, Ilenia; de Bree, Godelieve J; Tool, Anton T J; van Leeuwen, Ester M M; Ebberink, Eduard H T M; Meijer, Alexander B; Tuna, Salih; Whitehorn, Deborah; Brown, Matthew; Turro, Ernest; Thrasher, Adrian J; Smith, Kenneth G C; Thaventhiran, James E; Kuijpers, Taco W
2018-03-02
The genetic cause of primary immunodeficiency disease (PID) carries prognostic information. We conducted a whole-genome sequencing study assessing a large proportion of the NIHR BioResource-Rare Diseases cohort. In the predominantly European study population of principally sporadic unrelated PID cases (n = 846), a novel Bayesian method identified nuclear factor κB subunit 1 (NFKB1) as one of the genes most strongly associated with PID, and the association was explained by 16 novel heterozygous truncating, missense, and gene deletion variants. This accounted for 4% of common variable immunodeficiency (CVID) cases (n = 390) in the cohort. Amino acid substitutions predicted to be pathogenic were assessed by means of analysis of structural protein data. Immunophenotyping, immunoblotting, and ex vivo stimulation of lymphocytes determined the functional effects of these variants. Detailed clinical and pedigree information was collected for genotype-phenotype cosegregation analyses. Both sporadic and familial cases demonstrated evidence of the noninfective complications of CVID, including massive lymphadenopathy (24%), unexplained splenomegaly (48%), and autoimmune disease (48%), features prior studies correlated with worse clinical prognosis. Although partial penetrance of clinical symptoms was noted in certain pedigrees, all carriers have a deficiency in B-lymphocyte differentiation. Detailed assessment of B-lymphocyte numbers, phenotype, and function identifies the presence of an increased CD21 low B-cell population. Combined with identification of the disease-causing variant, this distinguishes between healthy subjects, asymptomatic carriers, and clinically affected cases. We show that heterozygous loss-of-function variants in NFKB1 are the most common known monogenic cause of CVID, which results in a temporally progressive defect in the formation of immunoglobulin-producing B cells. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Divergent sensory phenotypes in nonspecific arm pain: comparisons with cervical radiculopathy.
Moloney, Niamh; Hall, Toby; Doody, Catherine
2015-02-01
To investigate whether distinct sensory phenotypes were identifiable in individuals with nonspecific arm pain (NSAP) and whether these differed from those in people with cervical radiculopathy. A secondary question considered whether the frequency of features of neuropathic pain, kinesiophobia, high pain ratings, hyperalgesia, and allodynia differed according to subgroups of sensory phenotypes. Cross-sectional study. Higher education institution. Forty office workers with NSAP, 17 people with cervical radiculopathy, and 40 age- and sex-matched healthy controls (N=97). Not applicable. Participants were assessed using quantitative sensory testing (QST) comprising thermal and vibration detection thresholds and thermal and pressure pain thresholds; clinical examination; and relevant questionnaires. Sensory phenotypes were identified for each individual in the patient groups using z-score transformation of the QST data. Individuals with NSAP and cervical radiculopathy present with a spectrum of sensory abnormalities; a dominant sensory phenotype was not identifiable in individuals with NSAP. No distinct pattern between clinical features and questionnaire results across sensory phenotypes was identified in either group. When considering sensory phenotypes, neither individuals with NSAP nor individuals with cervical radiculopathy should be considered homogeneous. Therefore, people with either condition may warrant different intervention approaches according to their individual sensory phenotype. Issues relating to the clinical identification of sensory hypersensitivity and the validity of QST are highlighted. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Amberger, Joanna S.; Bocchini, Carol A.; Schiettecatte, François; Scott, Alan F.; Hamosh, Ada
2015-01-01
Online Mendelian Inheritance in Man, OMIM®, is a comprehensive, authoritative and timely research resource of curated descriptions of human genes and phenotypes and the relationships between them. The new official website for OMIM, OMIM.org (http://omim.org), was launched in January 2011. OMIM is based on the published peer-reviewed biomedical literature and is used by overlapping and diverse communities of clinicians, molecular biologists and genome scientists, as well as by students and teachers of these disciplines. Genes and phenotypes are described in separate entries and are given unique, stable six-digit identifiers (MIM numbers). OMIM entries have a structured free-text format that provides the flexibility necessary to describe the complex and nuanced relationships between genes and genetic phenotypes in an efficient manner. OMIM also has a derivative table of genes and genetic phenotypes, the Morbid Map. OMIM.org has enhanced search capabilities such as genome coordinate searching and thesaurus-enhanced search term options. Phenotypic series have been created to facilitate viewing genetic heterogeneity of phenotypes. Clinical synopsis features are enhanced with UMLS, Human Phenotype Ontology and Elements of Morphology terms and image links. All OMIM data are available for FTP download and through an API. MIMmatch is a novel outreach feature to disseminate updates and encourage collaboration. PMID:25428349
Computer vision and machine learning for robust phenotyping in genome-wide studies
Zhang, Jiaoping; Naik, Hsiang Sing; Assefa, Teshale; Sarkar, Soumik; Reddy, R. V. Chowda; Singh, Arti; Ganapathysubramanian, Baskar; Singh, Asheesh K.
2017-01-01
Traditional evaluation of crop biotic and abiotic stresses are time-consuming and labor-intensive limiting the ability to dissect the genetic basis of quantitative traits. A machine learning (ML)-enabled image-phenotyping pipeline for the genetic studies of abiotic stress iron deficiency chlorosis (IDC) of soybean is reported. IDC classification and severity for an association panel of 461 diverse plant-introduction accessions was evaluated using an end-to-end phenotyping workflow. The workflow consisted of a multi-stage procedure including: (1) optimized protocols for consistent image capture across plant canopies, (2) canopy identification and registration from cluttered backgrounds, (3) extraction of domain expert informed features from the processed images to accurately represent IDC expression, and (4) supervised ML-based classifiers that linked the automatically extracted features with expert-rating equivalent IDC scores. ML-generated phenotypic data were subsequently utilized for the genome-wide association study and genomic prediction. The results illustrate the reliability and advantage of ML-enabled image-phenotyping pipeline by identifying previously reported locus and a novel locus harboring a gene homolog involved in iron acquisition. This study demonstrates a promising path for integrating the phenotyping pipeline into genomic prediction, and provides a systematic framework enabling robust and quicker phenotyping through ground-based systems. PMID:28272456
Clinical Diagnostics in Human Genetics with Semantic Similarity Searches in Ontologies
Köhler, Sebastian; Schulz, Marcel H.; Krawitz, Peter; Bauer, Sebastian; Dölken, Sandra; Ott, Claus E.; Mundlos, Christine; Horn, Denise; Mundlos, Stefan; Robinson, Peter N.
2009-01-01
The differential diagnostic process attempts to identify candidate diseases that best explain a set of clinical features. This process can be complicated by the fact that the features can have varying degrees of specificity, as well as by the presence of features unrelated to the disease itself. Depending on the experience of the physician and the availability of laboratory tests, clinical abnormalities may be described in greater or lesser detail. We have adapted semantic similarity metrics to measure phenotypic similarity between queries and hereditary diseases annotated with the use of the Human Phenotype Ontology (HPO) and have developed a statistical model to assign p values to the resulting similarity scores, which can be used to rank the candidate diseases. We show that our approach outperforms simpler term-matching approaches that do not take the semantic interrelationships between terms into account. The advantage of our approach was greater for queries containing phenotypic noise or imprecise clinical descriptions. The semantic network defined by the HPO can be used to refine the differential diagnosis by suggesting clinical features that, if present, best differentiate among the candidate diagnoses. Thus, semantic similarity searches in ontologies represent a useful way of harnessing the semantic structure of human phenotypic abnormalities to help with the differential diagnosis. We have implemented our methods in a freely available web application for the field of human Mendelian disorders. PMID:19800049
Ng, Rowena; Järvinen, Anna; Bellugi, Ursula
2014-01-01
Williams syndrome (WS) is a neurogenetic disorder known for its “hypersocial” phenotype and a complex profile of anxieties. The anxieties are poorly understood specifically in relation to the social-emotional and cognitive profiles. To address this gap, we employed a Wechsler intelligence test, the Brief Symptom Inventory, Beck Anxiety Inventory, and Salk Institute Sociability Questionnaire, to (1) examine how anxiety symptoms distinguish individuals with WS from typically developing (TD) individuals; and (2) assess the associations between three key phenotypic features of WS: intellectual impairment, social-emotional functioning, and anxiety. The results highlighted intensified neurophysiological symptoms and subjective experiences of anxiety in WS. Moreover, whereas higher cognitive ability was positively associated with anxiety in WS, the opposite pattern characterized the TD individuals. This study provides novel insight into how the three core phenotypic features associate/dissociate in WS, specifically in terms of the contribution of cognitive and emotional functioning to anxiety symptoms. PMID:24973548
The CpG island methylator phenotype (CIMP) in colorectal cancer
Mojarad, Ehsan Nazemalhosseini; Kuppen, Peter JK; Aghdaei, Hamid Asadzadeh
2013-01-01
It is clear that colorectal cancer (CRC) develops through multiple genetic and epigenetic pathways. These pathways may be determined on the basis of three molecular features: (i) mutations in DNA mismatch repair genes, leading to a DNA microsatellite instability (MSI) phenotype, (ii) mutations in APC and other genes that activate Wnt pathway, characterized by chromosomal instability (CIN) phenotype, and (iii) global genome hypermethylation, resulting in switch off of tumor suppressor genes, indicated as CpG island methylator phenotype (CIMP). Each of these pathways is characterized by specific pathological features, mechanisms of carcinogenesis and process of tumor development. The molecular aspects of these pathways have been used clinically in the diagnosis, screening and management of patients with colorectal cancer. In this review we especially describe various aspects of CIMP, one of the important and rather recently discovered pathways that lead to colorectal cancer. PMID:24834258
The CpG island methylator phenotype (CIMP) in colorectal cancer.
Nazemalhosseini Mojarad, Ehsan; Kuppen, Peter Jk; Aghdaei, Hamid Asadzadeh; Zali, Mohammad Reza
2013-01-01
It is clear that colorectal cancer (CRC) develops through multiple genetic and epigenetic pathways. These pathways may be determined on the basis of three molecular features: (i) mutations in DNA mismatch repair genes, leading to a DNA microsatellite instability (MSI) phenotype, (ii) mutations in APC and other genes that activate Wnt pathway, characterized by chromosomal instability (CIN) phenotype, and (iii) global genome hypermethylation, resulting in switch off of tumor suppressor genes, indicated as CpG island methylator phenotype (CIMP). Each of these pathways is characterized by specific pathological features, mechanisms of carcinogenesis and process of tumor development. The molecular aspects of these pathways have been used clinically in the diagnosis, screening and management of patients with colorectal cancer. In this review we especially describe various aspects of CIMP, one of the important and rather recently discovered pathways that lead to colorectal cancer.
Brenner, Bernhard; Seebohm, Benjamin; Tripathi, Snigdha; Montag, Judith; Kraft, Theresia
2014-01-01
Familial hypertrophic cardiomyopathy (FHC) is the most frequent inherited cardiac disease. It has been related to numerous mutations in many sarcomeric and even some non-sarcomeric proteins. So far, however, no common mechanism has been identified by which the many different mutations in different sarcomeric and non-sarcomeric proteins trigger development of the FHC phenotype. Here we show for different MYH7 mutations variance in force pCa-relations from normal to highly abnormal as a feature common to all mutations we studied, while direct functional effects of the different FHC-mutations, e.g., on force generation, ATPase or calcium sensitivity of the contractile system, can be quite different. The functional variation among individual M. soleus fibers of FHC-patients is accompanied by large variation in mutant vs. wildtype β-MyHC-mRNA. Preliminary results show a similar variation in mutant vs. wildtype β-MyHC-mRNA among individual cardiomyocytes. We discuss our previously proposed concept as to how different mutations in the β-MyHC and possibly other sarcomeric and non-sarcomeric proteins may initiate an FHC-phenotype by functional variation among individual cardiomyocytes that results in structural distortions within the myocardium, leading to cellular and myofibrillar disarray. In addition, distortions can activate stretch-sensitive signaling in cardiomyocytes and non-myocyte cells which is known to induce cardiac remodeling with interstitial fibrosis and hypertrophy. Such a mechanism will have major implications for therapeutic strategies to prevent FHC-development, e.g., by reducing functional imbalances among individual cardiomyocytes or by inhibition of their triggering of signaling paths initiating remodeling. Targeting increased or decreased contractile function would require selective targeting of mutant or wildtype protein to reduce functional imbalances. PMID:25346696
Panidis, Dimitrios; Tziomalos, Konstantinos; Macut, Djuro; Delkos, Dimitrios; Betsas, George; Misichronis, Georgios; Katsikis, Ilias
2012-02-01
To assess the effects of age on the hormonal, metabolic, and ultrasonographic features of polycystic ovary syndrome (PCOS). Observational study. University department of obstetrics and gynecology. Patients with PCOS (n = 1,212) and healthy women (n = 254). None. Differences in the hormonal, metabolic, and ultrasonographic features of PCOS between age groups. A progressive decline in circulating androgens was observed with advancing age. Patients 21-30 years old had lower plasma glucose and insulin levels, lower area under the oral glucose tolerance test curve and lower homeostasis model assessment of insulin resistance index, and higher glucose/insulin and quantitative insulin sensitivity check index than patients 31-39 years old. The prevalence of PCOS phenotypes changed with age. More specifically, the distribution of the phenotypes did not differ substantially between patients ≤ 20 years old and patients 21-30 years old. However, a decline in the prevalence of phenotype 1 (characterized by anovulation, hyperandrogenemia, and polycystic ovaries) and an increase in the prevalence of phenotype 4 (characterized by anovulation and polycystic ovaries without hyperandrogenemia) were observed in patients 31-39 years old. In women with PCOS, hyperandrogenemia appears to diminish during reproductive life whereas insulin resistance worsens. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Distribution of genotype network sizes in sequence-to-structure genotype-phenotype maps.
Manrubia, Susanna; Cuesta, José A
2017-04-01
An essential quantity to ensure evolvability of populations is the navigability of the genotype space. Navigability, understood as the ease with which alternative phenotypes are reached, relies on the existence of sufficiently large and mutually attainable genotype networks. The size of genotype networks (e.g. the number of RNA sequences folding into a particular secondary structure or the number of DNA sequences coding for the same protein structure) is astronomically large in all functional molecules investigated: an exhaustive experimental or computational study of all RNA folds or all protein structures becomes impossible even for moderately long sequences. Here, we analytically derive the distribution of genotype network sizes for a hierarchy of models which successively incorporate features of increasingly realistic sequence-to-structure genotype-phenotype maps. The main feature of these models relies on the characterization of each phenotype through a prototypical sequence whose sites admit a variable fraction of letters of the alphabet. Our models interpolate between two limit distributions: a power-law distribution, when the ordering of sites in the prototypical sequence is strongly constrained, and a lognormal distribution, as suggested for RNA, when different orderings of the same set of sites yield different phenotypes. Our main result is the qualitative and quantitative identification of those features of sequence-to-structure maps that lead to different distributions of genotype network sizes. © 2017 The Author(s).
Noble, Luke M; Chelo, Ivo; Guzella, Thiago; Afonso, Bruno; Riccardi, David D; Ammerman, Patrick; Dayarian, Adel; Carvalho, Sara; Crist, Anna; Pino-Querido, Ania; Shraiman, Boris; Rockman, Matthew V; Teotónio, Henrique
2017-12-01
Understanding the genetic basis of complex traits remains a major challenge in biology. Polygenicity, phenotypic plasticity, and epistasis contribute to phenotypic variance in ways that are rarely clear. This uncertainty can be problematic for estimating heritability, for predicting individual phenotypes from genomic data, and for parameterizing models of phenotypic evolution. Here, we report an advanced recombinant inbred line (RIL) quantitative trait locus mapping panel for the hermaphroditic nematode Caenorhabditis elegans , the C. elegans multiparental experimental evolution (CeMEE) panel. The CeMEE panel, comprising 507 RILs at present, was created by hybridization of 16 wild isolates, experimental evolution for 140-190 generations, and inbreeding by selfing for 13-16 generations. The panel contains 22% of single-nucleotide polymorphisms known to segregate in natural populations, and complements existing C. elegans mapping resources by providing fine resolution and high nucleotide diversity across > 95% of the genome. We apply it to study the genetic basis of two fitness components, fertility and hermaphrodite body size at time of reproduction, with high broad-sense heritability in the CeMEE. While simulations show that we should detect common alleles with additive effects as small as 5%, at gene-level resolution, the genetic architectures of these traits do not feature such alleles. We instead find that a significant fraction of trait variance, approaching 40% for fertility, can be explained by sign epistasis with main effects below the detection limit. In congruence, phenotype prediction from genomic similarity, while generally poor ([Formula: see text]), requires modeling epistasis for optimal accuracy, with most variance attributed to the rapidly evolving chromosome arms. Copyright © 2017 by the Genetics Society of America.
Noble, Luke M.; Chelo, Ivo; Guzella, Thiago; Afonso, Bruno; Riccardi, David D.; Ammerman, Patrick; Dayarian, Adel; Carvalho, Sara; Crist, Anna; Pino-Querido, Ania; Shraiman, Boris; Rockman, Matthew V.; Teotónio, Henrique
2017-01-01
Understanding the genetic basis of complex traits remains a major challenge in biology. Polygenicity, phenotypic plasticity, and epistasis contribute to phenotypic variance in ways that are rarely clear. This uncertainty can be problematic for estimating heritability, for predicting individual phenotypes from genomic data, and for parameterizing models of phenotypic evolution. Here, we report an advanced recombinant inbred line (RIL) quantitative trait locus mapping panel for the hermaphroditic nematode Caenorhabditis elegans, the C. elegans multiparental experimental evolution (CeMEE) panel. The CeMEE panel, comprising 507 RILs at present, was created by hybridization of 16 wild isolates, experimental evolution for 140–190 generations, and inbreeding by selfing for 13–16 generations. The panel contains 22% of single-nucleotide polymorphisms known to segregate in natural populations, and complements existing C. elegans mapping resources by providing fine resolution and high nucleotide diversity across > 95% of the genome. We apply it to study the genetic basis of two fitness components, fertility and hermaphrodite body size at time of reproduction, with high broad-sense heritability in the CeMEE. While simulations show that we should detect common alleles with additive effects as small as 5%, at gene-level resolution, the genetic architectures of these traits do not feature such alleles. We instead find that a significant fraction of trait variance, approaching 40% for fertility, can be explained by sign epistasis with main effects below the detection limit. In congruence, phenotype prediction from genomic similarity, while generally poor (r2<10%), requires modeling epistasis for optimal accuracy, with most variance attributed to the rapidly evolving chromosome arms. PMID:29066469
Isolated and combined dystonia syndromes - an update on new genes and their phenotypes.
Balint, B; Bhatia, K P
2015-04-01
Recent consensus on the definition, phenomenology and classification of dystonia centres around phenomenology and guides our diagnostic approach for the heterogeneous group of dystonias. Current terminology classifies conditions where dystonia is the sole motor feature (apart from tremor) as 'isolated dystonia', while 'combined dystonia' refers to dystonias with other accompanying movement disorders. This review highlights recent advances in the genetics of some isolated and combined dystonic syndromes. Some genes, such as ANO3, GNAL and CIZ1, have been discovered for isolated dystonia, but they are probably not a common cause of classic cervical dystonia. Conversely, the phenotype associated with TUBB4A mutations expanded from that of isolated dystonia to a syndrome of hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC syndrome). Similarly, ATP1A3 mutations cause a wide phenotypic spectrum ranging from rapid-onset dystonia-parkinsonism to alternating hemiplegia of childhood. Other entities entailing dystonia-parkinsonism include dopamine transporter deficiency syndrome (SLC63 mutations); dopa-responsive dystonias; young-onset parkinsonism (PARKIN, PINK1 and DJ-1 mutations); PRKRA mutations; and X-linked TAF1 mutations, which rarely can also manifest in women. Clinical and genetic heterogeneity also characterizes myoclonus-dystonia, which includes not only the classical phenotype associated with epsilon-sarcoglycan mutations but rarely also presentation of ANO3 gene mutations, TITF1 gene mutations typically underlying benign hereditary chorea, and some dopamine synthesis pathway conditions due to GCH1 and TH mutations. Thus, new genes are being recognized for isolated dystonia, and the phenotype of known genes is broadening and now involves different combined dystonia syndromes. © 2015 EAN.
TBC1D24 genotype–phenotype correlation
Balestrini, Simona; Milh, Mathieu; Castiglioni, Claudia; Lüthy, Kevin; Finelli, Mattea J.; Verstreken, Patrik; Cardon, Aaron; Stražišar, Barbara Gnidovec; Holder, J. Lloyd; Lesca, Gaetan; Mancardi, Maria M.; Poulat, Anne L.; Repetto, Gabriela M.; Banka, Siddharth; Bilo, Leonilda; Birkeland, Laura E.; Bosch, Friedrich; Brockmann, Knut; Cross, J. Helen; Doummar, Diane; Félix, Temis M.; Giuliano, Fabienne; Hori, Mutsuki; Hüning, Irina; Kayserili, Hulia; Kini, Usha; Lees, Melissa M.; Meenakshi, Girish; Mewasingh, Leena; Pagnamenta, Alistair T.; Peluso, Silvio; Mey, Antje; Rice, Gregory M.; Rosenfeld, Jill A.; Taylor, Jenny C.; Troester, Matthew M.; Stanley, Christine M.; Ville, Dorothee; Walkiewicz, Magdalena; Falace, Antonio; Fassio, Anna; Lemke, Johannes R.; Biskup, Saskia; Tardif, Jessica; Ajeawung, Norbert F.; Tolun, Aslihan; Corbett, Mark; Gecz, Jozef; Afawi, Zaid; Howell, Katherine B.; Oliver, Karen L.; Berkovic, Samuel F.; Scheffer, Ingrid E.; de Falco, Fabrizio A.; Oliver, Peter L.; Striano, Pasquale; Zara, Federico
2016-01-01
Objective: To evaluate the phenotypic spectrum associated with mutations in TBC1D24. Methods: We acquired new clinical, EEG, and neuroimaging data of 11 previously unreported and 37 published patients. TBC1D24 mutations, identified through various sequencing methods, can be found online (http://lovd.nl/TBC1D24). Results: Forty-eight patients were included (28 men, 20 women, average age 21 years) from 30 independent families. Eighteen patients (38%) had myoclonic epilepsies. The other patients carried diagnoses of focal (25%), multifocal (2%), generalized (4%), and unclassified epilepsy (6%), and early-onset epileptic encephalopathy (25%). Most patients had drug-resistant epilepsy. We detail EEG, neuroimaging, developmental, and cognitive features, treatment responsiveness, and physical examination. In silico evaluation revealed 7 different highly conserved motifs, with the most common pathogenic mutation located in the first. Neuronal outgrowth assays showed that some TBC1D24 mutations, associated with the most severe TBC1D24-associated disorders, are not necessarily the most disruptive to this gene function. Conclusions: TBC1D24-related epilepsy syndromes show marked phenotypic pleiotropy, with multisystem involvement and severity spectrum ranging from isolated deafness (not studied here), benign myoclonic epilepsy restricted to childhood with complete seizure control and normal intellect, to early-onset epileptic encephalopathy with severe developmental delay and early death. There is no distinct correlation with mutation type or location yet, but patterns are emerging. Given the phenotypic breadth observed, TBC1D24 mutation screening is indicated in a wide variety of epilepsies. A TBC1D24 consortium was formed to develop further research on this gene and its associated phenotypes. PMID:27281533
(Epi)genotype-Phenotype Analysis in 69 Japanese Patients With Pseudohypoparathyroidism Type I
Sano, Shinichiro; Nakamura, Akie; Matsubara, Keiko; Nagasaki, Keisuke; Fukami, Maki; Kagami, Masayo
2018-01-01
Context: Pseudohypoparathyroidism type I (PHP-I) is divided into PHP-Ia with Albright hereditary osteodystrophy and PHP-Ib, which usually shows no Albright hereditary osteodystrophy features. Although PHP-Ia and PHP-Ib are typically caused by genetic defects involving α subunit of the stimulatory G protein (Gsα)–coding GNAS exons and methylation defects of the GNAS differentially methylated regions (DMRs) on the maternal allele, respectively, detailed phenotypic characteristics still remains to be examined. Objective: To clarify phenotypic characteristics according to underlying (epi)genetic causes. Patients and Methods: We performed (epi)genotype-phenotype analysis in 69 Japanese patients with PHP-I; that is, 28 patients with genetic defects involving Gsα-coding GNAS exons (group 1) consisting of 12 patients with missense variants (subgroup A) and 16 patients with null variants (subgroup B), as well as 41 patients with methylation defects (group 2) consisting of 21 patients with broad methylation defects of the GNAS-DMRs (subgroup C) and 20 patients with an isolated A/B-DMR methylation defect accompanied by the common STX16 microdeletion (subgroup D). Results: Although (epi)genotype-phenotype findings were grossly similar to those reported previously, several important findings were identified, including younger age at hypocalcemic symptoms and higher frequencies of hyperphosphatemia in subgroup C than in subgroup D, development of brachydactyly in four patients of subgroup C, predominant manifestation of subcutaneous ossification in subgroup B, higher frequency of thyrotropin resistance in group 1 than in group 2, and relatively low thyrotropin values in four patients with low T4 values and relatively low luteinizing hormone/follicle-stimulating hormone values in five adult females with ovarian dysfunction. Conclusion: The results imply the presence of clinical findings characteristic of each underlying cause and provide useful information on the imprinting status of Gsα. PMID:29379892
Callea, Michele; Cammarata-Scalisi, Francisco; Willoughby, Colin E; Giglio, Sabrina R; Sani, Ilaria; Bargiacchi, Sara; Traficante, Giovanna; Bellacchio, Emanuele; Tadini, Gianluca; Yavuz, Izzet; Galeotti, Angela; Clarich, Gabriella
2017-02-01
Hypohidrotic ectodermal dysplasia (HED) is a rare disease characterized by deficiency in development of structure derived from the ectoderm and is caused by mutations in the genes EDA, EDAR, or EDARADD. Phenotypes caused by mutations in these three may exhibit similar clinical features, explained by a common signaling pathway. Mutations in EDA gene cause X linked HED, which is the most common form. Mutations in EDAR and EDARADD genes cause autosomal dominant and recessive form of HED. The most striking clinical findings in HED are hypodontia, hypotrichosis and hypohidrosis that can lead to episodes of hyperthermia. We report on clinical findings in a child with HED with autosomal dominant inheritance pattern with a heterozygous mutation c.1072C>T (p.Arg358X) in the EDAR gene. A review of the literature with regard to other cases presenting the same mutation has been carried out and discussed. Sociedad Argentina de Pediatría.
Agrawal, Neeraj; Agarwal, Kavita; Varshney, Atul; Agrawal, Navneet; Dubey, Ashutosh
2016-05-01
HLA-B27 is having strong association to ankylosing spondylitis (AS) and other inflammatory diseases collectively known as seronegative spondyloarthropathy. In literature, although the evidence for association between AS and periodontitis as well as AS and HLA-B27 are there but the association of aggressive periodontitis in HLA-B27 positive patient with AS are not there. We hypothesize that there may be a common pathogenesis in aggressive periodontitis and ankylosing spondylitis in HLA-B27 patient. A 27-years-old female presented with the features of generalized aggressive periodontitis and difficulty in walking. On complete medical examination, ankylosing spondylitis was diagnosed with further positive HLA-B27 phenotype and negative rheumatic factor. This report may open up a new link to explore in the pathogenesis of aggressive periodontitis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kernel Principal Component Analysis for dimensionality reduction in fMRI-based diagnosis of ADHD.
Sidhu, Gagan S; Asgarian, Nasimeh; Greiner, Russell; Brown, Matthew R G
2012-01-01
This study explored various feature extraction methods for use in automated diagnosis of Attention-Deficit Hyperactivity Disorder (ADHD) from functional Magnetic Resonance Image (fMRI) data. Each participant's data consisted of a resting state fMRI scan as well as phenotypic data (age, gender, handedness, IQ, and site of scanning) from the ADHD-200 dataset. We used machine learning techniques to produce support vector machine (SVM) classifiers that attempted to differentiate between (1) all ADHD patients vs. healthy controls and (2) ADHD combined (ADHD-c) type vs. ADHD inattentive (ADHD-i) type vs. controls. In different tests, we used only the phenotypic data, only the imaging data, or else both the phenotypic and imaging data. For feature extraction on fMRI data, we tested the Fast Fourier Transform (FFT), different variants of Principal Component Analysis (PCA), and combinations of FFT and PCA. PCA variants included PCA over time (PCA-t), PCA over space and time (PCA-st), and kernelized PCA (kPCA-st). Baseline chance accuracy was 64.2% produced by guessing healthy control (the majority class) for all participants. Using only phenotypic data produced 72.9% accuracy on two class diagnosis and 66.8% on three class diagnosis. Diagnosis using only imaging data did not perform as well as phenotypic-only approaches. Using both phenotypic and imaging data with combined FFT and kPCA-st feature extraction yielded accuracies of 76.0% on two class diagnosis and 68.6% on three class diagnosis-better than phenotypic-only approaches. Our results demonstrate the potential of using FFT and kPCA-st with resting-state fMRI data as well as phenotypic data for automated diagnosis of ADHD. These results are encouraging given known challenges of learning ADHD diagnostic classifiers using the ADHD-200 dataset (see Brown et al., 2012).
Schizophrenia and epilepsy: is there a shared susceptibility?
Cascella, Nicola G; Schretlen, David J; Sawa, Akira
2009-04-01
Individuals with epilepsy are at increased risk of having psychotic symptoms that resemble those of schizophrenia. More controversial and less searched is if schizophrenia is a risk factor for epilepsy. Here we review overlapping epidemiological, clinical, neuropathological and neuroimaging features of these two diseases. We discuss the role of temporal and other brain areas in the development of schizophrenia-like psychosis of epilepsy. We underline the importance of ventricular enlargement in both conditions as a phenotypic manifestation of a shared biologic liability that might relate to abnormalities in neurodevelopment. We suggest that genes implicated in neurodevelopment may play a common role in both conditions and speculate that recently identified causative genes for partial complex seizures with auditory features might help explain the pathophysiology of schizophrenia. These particularly include the leucine-rich glioma inactivated (LGI) family gene loci overlap with genes of interest for psychiatric diseases like schizophrenia. Finally, we conclude that LGI genes associated with partial epilepsy with auditory features might also represent genes of interest for schizophrenia, especially among patients with prominent auditory hallucinations and formal thought disorder.
Anosmia and Ageusia in Parkinson's Disease.
Tarakad, Arjun; Jankovic, Joseph
2017-01-01
Anosmia, the loss of sense of smell, is a common nonmotor feature of Parkinson's disease (PD). Ageusia, the loss of sense of taste, is additionally an underappreciated nonmotor feature of PD. The olfactory tract is involved early in PD as indicated by frequent occurrence of hyposmia or anosmia years or decades before motor symptoms and by autopsy studies showing early synuclein pathology in the olfactory tract and anterior olfactory nucleus even in the early stages of PD. Testing for olfaction consists of evaluation of olfactory thresholds, smell identification and discrimination, and olfactory memory. Testing for gustation involves evaluating thresholds and discrimination of five basic tastes (salty, sweet, bitter, sour, and umami). The presence of a specific pattern of loss in both olfaction and gustation in PD has been proposed, but this has not yet been confirmed. Within PD, olfactory loss is strongly tied with cognitive status though links to other features of PD or a particular PD phenotype is debated. Hyposmia is more often present and typically more severe in PD patients than other parkinsonian syndromes, making it a potentially useful biomarker for the disease. © 2017 Elsevier Inc. All rights reserved.
Sarntivijai, Sirarat; Vasant, Drashtti; Jupp, Simon; Saunders, Gary; Bento, A Patrícia; Gonzalez, Daniel; Betts, Joanna; Hasan, Samiul; Koscielny, Gautier; Dunham, Ian; Parkinson, Helen; Malone, James
2016-01-01
The Centre for Therapeutic Target Validation (CTTV - https://www.targetvalidation.org/) was established to generate therapeutic target evidence from genome-scale experiments and analyses. CTTV aims to support the validity of therapeutic targets by integrating existing and newly-generated data. Data integration has been achieved in some resources by mapping metadata such as disease and phenotypes to the Experimental Factor Ontology (EFO). Additionally, the relationship between ontology descriptions of rare and common diseases and their phenotypes can offer insights into shared biological mechanisms and potential drug targets. Ontologies are not ideal for representing the sometimes associated type relationship required. This work addresses two challenges; annotation of diverse big data, and representation of complex, sometimes associated relationships between concepts. Semantic mapping uses a combination of custom scripting, our annotation tool 'Zooma', and expert curation. Disease-phenotype associations were generated using literature mining on Europe PubMed Central abstracts, which were manually verified by experts for validity. Representation of the disease-phenotype association was achieved by the Ontology of Biomedical AssociatioN (OBAN), a generic association representation model. OBAN represents associations between a subject and object i.e., disease and its associated phenotypes and the source of evidence for that association. The indirect disease-to-disease associations are exposed through shared phenotypes. This was applied to the use case of linking rare to common diseases at the CTTV. EFO yields an average of over 80% of mapping coverage in all data sources. A 42% precision is obtained from the manual verification of the text-mined disease-phenotype associations. This results in 1452 and 2810 disease-phenotype pairs for IBD and autoimmune disease and contributes towards 11,338 rare diseases associations (merged with existing published work [Am J Hum Genet 97:111-24, 2015]). An OBAN result file is downloadable at http://sourceforge.net/p/efo/code/HEAD/tree/trunk/src/efoassociations/. Twenty common diseases are linked to 85 rare diseases by shared phenotypes. A generalizable OBAN model for association representation is presented in this study. Here we present solutions to large-scale annotation-ontology mapping in the CTTV knowledge base, a process for disease-phenotype mining, and propose a generic association model, 'OBAN', as a means to integrate disease using shared phenotypes. EFO is released monthly and available for download at http://www.ebi.ac.uk/efo/.
The CDKL5 disorder is an independent clinical entity associated with early-onset encephalopathy.
Fehr, Stephanie; Wilson, Meredith; Downs, Jenny; Williams, Simon; Murgia, Alessandra; Sartori, Stefano; Vecchi, Marilena; Ho, Gladys; Polli, Roberta; Psoni, Stavroula; Bao, Xinhua; de Klerk, Nick; Leonard, Helen; Christodoulou, John
2013-03-01
The clinical understanding of the CDKL5 disorder remains limited, with most information being derived from small patient groups seen at individual centres. This study uses a large international data collection to describe the clinical profile of the CDKL5 disorder and compare with Rett syndrome (RTT). Information on individuals with cyclin-dependent kinase-like 5 (CDKL5) mutations (n=86) and females with MECP2 mutations (n=920) was sourced from the InterRett database. Available photographs of CDKL5 patients were examined for dysmorphic features. The proportion of CDKL5 patients meeting the recent Neul criteria for atypical RTT was determined. Logistic regression and time-to-event analyses were used to compare the occurrence of Rett-like features in those with MECP2 and CDKL5 mutations. Most individuals with CDKL5 mutations had severe developmental delay from birth, seizure onset before the age of 3 months and similar non-dysmorphic features. Less than one-quarter met the criteria for early-onset seizure variant RTT. Seizures and sleep disturbances were more common than in those with MECP2 mutations whereas features of regression and spinal curvature were less common. The CDKL5 disorder presents with a distinct clinical profile and a subtle facial, limb and hand phenotype that may assist in differentiation from other early-onset encephalopathies. Although mutations in the CDKL5 gene have been described in association with the early-onset variant of RTT, in our study the majority did not meet these criteria. Therefore, the CDKL5 disorder should be considered separate to RTT, rather than another variant.
The CDKL5 disorder is an independent clinical entity associated with early-onset encephalopathy
Fehr, Stephanie; Wilson, Meredith; Downs, Jenny; Williams, Simon; Murgia, Alessandra; Sartori, Stefano; Vecchi, Marilena; Ho, Gladys; Polli, Roberta; Psoni, Stavroula; Bao, Xinhua; de Klerk, Nick; Leonard, Helen; Christodoulou, John
2013-01-01
The clinical understanding of the CDKL5 disorder remains limited, with most information being derived from small patient groups seen at individual centres. This study uses a large international data collection to describe the clinical profile of the CDKL5 disorder and compare with Rett syndrome (RTT). Information on individuals with cyclin-dependent kinase-like 5 (CDKL5) mutations (n=86) and females with MECP2 mutations (n=920) was sourced from the InterRett database. Available photographs of CDKL5 patients were examined for dysmorphic features. The proportion of CDKL5 patients meeting the recent Neul criteria for atypical RTT was determined. Logistic regression and time-to-event analyses were used to compare the occurrence of Rett-like features in those with MECP2 and CDKL5 mutations. Most individuals with CDKL5 mutations had severe developmental delay from birth, seizure onset before the age of 3 months and similar non-dysmorphic features. Less than one-quarter met the criteria for early-onset seizure variant RTT. Seizures and sleep disturbances were more common than in those with MECP2 mutations whereas features of regression and spinal curvature were less common. The CDKL5 disorder presents with a distinct clinical profile and a subtle facial, limb and hand phenotype that may assist in differentiation from other early-onset encephalopathies. Although mutations in the CDKL5 gene have been described in association with the early-onset variant of RTT, in our study the majority did not meet these criteria. Therefore, the CDKL5 disorder should be considered separate to RTT, rather than another variant. PMID:22872100
The multiscale backbone of the human phenotype network based on biological pathways.
Darabos, Christian; White, Marquitta J; Graham, Britney E; Leung, Derek N; Williams, Scott M; Moore, Jason H
2014-01-25
Networks are commonly used to represent and analyze large and complex systems of interacting elements. In systems biology, human disease networks show interactions between disorders sharing common genetic background. We built pathway-based human phenotype network (PHPN) of over 800 physical attributes, diseases, and behavioral traits; based on about 2,300 genes and 1,200 biological pathways. Using GWAS phenotype-to-genes associations, and pathway data from Reactome, we connect human traits based on the common patterns of human biological pathways, detecting more pleiotropic effects, and expanding previous studies from a gene-centric approach to that of shared cell-processes. The resulting network has a heavily right-skewed degree distribution, placing it in the scale-free region of the network topologies spectrum. We extract the multi-scale information backbone of the PHPN based on the local densities of the network and discarding weak connection. Using a standard community detection algorithm, we construct phenotype modules of similar traits without applying expert biological knowledge. These modules can be assimilated to the disease classes. However, we are able to classify phenotypes according to shared biology, and not arbitrary disease classes. We present examples of expected clinical connections identified by PHPN as proof of principle. We unveil a previously uncharacterized connection between phenotype modules and discuss potential mechanistic connections that are obvious only in retrospect. The PHPN shows tremendous potential to become a useful tool both in the unveiling of the diseases' common biology, and in the elaboration of diagnosis and treatments.
[Marfan syndrome in childhood and adolescence].
Magotteaux, S; Bulk, S; Farhat, N; Sakalihasan, N; Defraigne, J-O; Seghaye, M-Ch
2016-07-01
The Marfan syndrome is a systemic connective tissue disorder with autosomal dominant inheritance. A mutation of the fibrillin-1 gene, a glycoprotein which is the main constituent of the extracellular matrix, is the cause of the disease. The cardinal features involve the skeletal, ocular and cardiovascular systems. The expression of the Marfan syndrome varies from the severe neonatal presentation to the classical manifestations of the child and young adult, but also comprises isolated features. In children, phenotypical manifestations are age dependent. For these reasons, the diagnosis of Marfan syndrome might be lately revealed by its cardiovascular complications. We report the case of 2 siblings: it illustrates the phenotypic variability that might be observed in a same family, the phenotype evolution with age and the diagnosis challenge in childhood.
PRIMARY CILIARY DYSKINESIA: DIAGNOSTIC AND PHENOTYPIC FEATURES
Primary ciliary dyskinesia (PCD) is a genetic disease characterized by abnormalities in ciliary structure/function. We hypothesized that the major clinical and biologic phenotypic markers of the disease could be evaluated by studying a cohort of subjects suspected of having PCD. ...
Szymanski, Ann Marie; Ombrello, Michael J
2018-04-25
The intersection of granulomatosis and autoinflammatory disease is a rare occurrence that can be generally subdivided into purely granulomatous phenotypes and disease spectra that are inclusive of granulomatous features. NOD2 (nucleotide-binding oligomerization domain-containing protein 2)-related disease, which includes Blau syndrome and early-onset sarcoidosis, is the prototypic example of granulomatous inflammation in the context of monogenic autoinflammation. Granulomatous inflammation has also been observed in two related autoinflammatory diseases caused by mutations in PLCG2 (phospholipase Cγ2). More recently, mutations in LACC1 (laccase domain-containing protein 1) have been identified as the cause of a monogenic form of systemic juvenile idiopathic arthritis, which does not itself manifest granulomatous inflammation, but the same LACC1 mutations have also been shown to cause an early-onset, familial form of a well-known granulomatous condition, Crohn's disease (CD). Rare genetic variants of PLCG2 have also been shown to cause a monogenic form of CD, and moreover common variants of all three of these genes have been implicated in polygenic forms of CD. Additionally, common variants of NOD2 and LACC1 have been implicated in susceptibility to leprosy, a granulomatous infection. Although no specific mechanistic link exists between these three genes, they form an intriguing web of susceptibility to both monogenic and polygenic autoinflammatory and granulomatous phenotypes.
Advances in plant gene-targeted and functional markers: a review
2013-01-01
Public genomic databases have provided new directions for molecular marker development and initiated a shift in the types of PCR-based techniques commonly used in plant science. Alongside commonly used arbitrarily amplified DNA markers, other methods have been developed. Targeted fingerprinting marker techniques are based on the well-established practices of arbitrarily amplified DNA methods, but employ novel methodological innovations such as the incorporation of gene or promoter elements in the primers. These markers provide good reproducibility and increased resolution by the concurrent incidence of dominant and co-dominant bands. Despite their promising features, these semi-random markers suffer from possible problems of collision and non-homology analogous to those found with randomly generated fingerprints. Transposable elements, present in abundance in plant genomes, may also be used to generate fingerprints. These markers provide increased genomic coverage by utilizing specific targeted sites and produce bands that mostly seem to be homologous. The biggest drawback with most of these techniques is that prior genomic information about retrotransposons is needed for primer design, prohibiting universal applications. Another class of recently developed methods exploits length polymorphism present in arrays of multi-copy gene families such as cytochrome P450 and β-tubulin genes to provide cross-species amplification and transferability. A specific class of marker makes use of common features of plant resistance genes to generate bands linked to a given phenotype, or to reveal genetic diversity. Conserved DNA-based strategies have limited genome coverage and may fail to reveal genetic diversity, while resistance genes may be under specific evolutionary selection. Markers may also be generated from functional and/or transcribed regions of the genome using different gene-targeting approaches coupled with the use of RNA information. Such techniques have the potential to generate phenotypically linked functional markers, especially when fingerprints are generated from the transcribed or expressed region of the genome. It is to be expected that these recently developed techniques will generate larger datasets, but their shortcomings should also be acknowledged and carefully investigated. PMID:23406322
Powis, Z; Petrik, I; Cohen, J S; Escolar, D; Burton, J; van Ravenswaaij-Arts, C M A; Sival, D A; Stegmann, A P A; Kleefstra, T; Pfundt, R; Chikarmane, R; Begtrup, A; Huether, R; Tang, S; Shinde, D N
2018-05-01
Due to small numbers of reported patients with pathogenic variants in single genes, the phenotypic spectrum associated with genes causing neurodevelopmental disorders such as intellectual disability (ID) and autism spectrum disorder is expanding. Among these genes is KLF7 (Krüppel-like factor 7), which is located at 2q33.3 and has been implicated in several developmental processes. KLF7 has been proposed to be a candidate gene for the phenotype of autism features seen in patients with a 2q33.3q34 deletion. Herein, we report 4 unrelated individuals with de novo KLF7 missense variants who share similar clinical features of developmental delay/ID, hypotonia, feeding/swallowing issues, psychiatric features and neuromuscular symptoms, and add to the knowledge about the phenotypic spectrum associated with KLF7 haploinsufficiency. © 2017 The Authors. Clinical Genetics published by John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Fulcher, Ben D; Jones, Nick S
2017-11-22
Phenotype measurements frequently take the form of time series, but we currently lack a systematic method for relating these complex data streams to scientifically meaningful outcomes, such as relating the movement dynamics of organisms to their genotype or measurements of brain dynamics of a patient to their disease diagnosis. Previous work addressed this problem by comparing implementations of thousands of diverse scientific time-series analysis methods in an approach termed highly comparative time-series analysis. Here, we introduce hctsa, a software tool for applying this methodological approach to data. hctsa includes an architecture for computing over 7,700 time-series features and a suite of analysis and visualization algorithms to automatically select useful and interpretable time-series features for a given application. Using exemplar applications to high-throughput phenotyping experiments, we show how hctsa allows researchers to leverage decades of time-series research to quantify and understand informative structure in time-series data. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Clinical metabolomics paves the way towards future healthcare strategies
Collino, Sebastiano; Martin, François‐Pierre J.; Rezzi, Serge
2013-01-01
Metabolomics is recognized as a powerful top‐down system biological approach to understand genetic‐environment‐health paradigms paving new avenues to identify clinically relevant biomarkers. It is nowadays commonly used in clinical applications shedding new light on physiological regulatory processes of complex mammalian systems with regard to disease aetiology, diagnostic stratification and, potentially, mechanism of action of therapeutic solutions. A key feature of metabolomics lies in its ability to underpin the complex metabolic interactions of the host with its commensal microbial partners providing a new way to define individual and population phenotypes. This review aims at describing recent applications of metabolomics in clinical fields with insight into diseases, diagnostics/monitoring and improvement of homeostatic metabolic regulation. PMID:22348240
Krieg, Thomas; Abraham, David; Lafyatis, Robert
2007-01-01
Fibrosis, characterized by excessive extracellular matrix accumulation, is a common feature of many connective tissue diseases, notably scleroderma (systemic sclerosis). Experimental studies suggest that a complex network of intercellular interactions involving endothelial cells, epithelial cells, fibroblasts and immune cells, using an array of molecular mediators, drives the pathogenic events that lead to fibrosis. Transforming growth factor-β and endothelin-1, which are part of a cytokine hierarchy with connective tissue growth factor, are key mediators of fibrogenesis and are primarily responsible for the differentiation of fibroblasts toward a myofibroblast phenotype. The tight skin mouse (Tsk-1) model of cutaneous fibrosis suggests that numerous other genes may also be important. PMID:17767742
Leigh syndrome: One disorder, more than 75 monogenic causes.
Lake, Nicole J; Compton, Alison G; Rahman, Shamima; Thorburn, David R
2016-02-01
Leigh syndrome is the most common pediatric presentation of mitochondrial disease. This neurodegenerative disorder is genetically heterogeneous, and to date pathogenic mutations in >75 genes have been identified, encoded by 2 genomes (mitochondrial and nuclear). More than one-third of these disease genes have been characterized in the past 5 years alone, reflecting the significant advances made in understanding its etiological basis. We review the diverse biochemical and genetic etiology of Leigh syndrome and associated clinical, neuroradiological, and metabolic features that can provide clues for diagnosis. We discuss the emergence of genotype-phenotype correlations, insights gleaned into the molecular basis of disease, and available therapeutic options. © 2015 American Neurological Association.
Chen, Dijun; Neumann, Kerstin; Friedel, Swetlana; Kilian, Benjamin; Chen, Ming; Altmann, Thomas; Klukas, Christian
2014-01-01
Significantly improved crop varieties are urgently needed to feed the rapidly growing human population under changing climates. While genome sequence information and excellent genomic tools are in place for major crop species, the systematic quantification of phenotypic traits or components thereof in a high-throughput fashion remains an enormous challenge. In order to help bridge the genotype to phenotype gap, we developed a comprehensive framework for high-throughput phenotype data analysis in plants, which enables the extraction of an extensive list of phenotypic traits from nondestructive plant imaging over time. As a proof of concept, we investigated the phenotypic components of the drought responses of 18 different barley (Hordeum vulgare) cultivars during vegetative growth. We analyzed dynamic properties of trait expression over growth time based on 54 representative phenotypic features. The data are highly valuable to understand plant development and to further quantify growth and crop performance features. We tested various growth models to predict plant biomass accumulation and identified several relevant parameters that support biological interpretation of plant growth and stress tolerance. These image-based traits and model-derived parameters are promising for subsequent genetic mapping to uncover the genetic basis of complex agronomic traits. Taken together, we anticipate that the analytical framework and analysis results presented here will be useful to advance our views of phenotypic trait components underlying plant development and their responses to environmental cues. PMID:25501589
Fisher's geometrical model emerges as a property of complex integrated phenotypic networks.
Martin, Guillaume
2014-05-01
Models relating phenotype space to fitness (phenotype-fitness landscapes) have seen important developments recently. They can roughly be divided into mechanistic models (e.g., metabolic networks) and more heuristic models like Fisher's geometrical model. Each has its own drawbacks, but both yield testable predictions on how the context (genomic background or environment) affects the distribution of mutation effects on fitness and thus adaptation. Both have received some empirical validation. This article aims at bridging the gap between these approaches. A derivation of the Fisher model "from first principles" is proposed, where the basic assumptions emerge from a more general model, inspired by mechanistic networks. I start from a general phenotypic network relating unspecified phenotypic traits and fitness. A limited set of qualitative assumptions is then imposed, mostly corresponding to known features of phenotypic networks: a large set of traits is pleiotropically affected by mutations and determines a much smaller set of traits under optimizing selection. Otherwise, the model remains fairly general regarding the phenotypic processes involved or the distribution of mutation effects affecting the network. A statistical treatment and a local approximation close to a fitness optimum yield a landscape that is effectively the isotropic Fisher model or its extension with a single dominant phenotypic direction. The fit of the resulting alternative distributions is illustrated in an empirical data set. These results bear implications on the validity of Fisher's model's assumptions and on which features of mutation fitness effects may vary (or not) across genomic or environmental contexts.
Phenotype, biochemical features, genotype and treatment outcome of pyridoxine-dependent epilepsy.
Al Teneiji, Amal; Bruun, Theodora U J; Cordeiro, Dawn; Patel, Jaina; Inbar-Feigenberg, Michal; Weiss, Shelly; Struys, Eduard; Mercimek-Mahmutoglu, Saadet
2017-04-01
We report treatment outcome of eleven patients with pyridoxine-dependent epilepsy caused by pathogenic variants in ALDH7A1 (PDE-ALDH7A1). We developed a clinical severity score to compare phenotype with biochemical features, genotype and delays in the initiation of pyridoxine. Clinical severity score included 1) global developmental delay/ intellectual disability; 2) age of seizure onset prior to pyridoxine; 3) current seizures on treatment. Phenotype scored 1-3 = mild; 4-6 = moderate; and 7-9 = severe. Five patients had mild, four patients had moderate, and two patients had severe phenotype. Phenotype ranged from mild to severe in eight patients (no lysine-restricted diet in the infantile period) with more than 10-fold elevated urine or plasma α-AASA levels. Phenotype ranged from mild to moderate in patients with homozygous truncating variants and from moderate to severe in patients with homozygous missense variants. There was no correlation between severity of the phenotype and the degree of α-AASA elevation in urine or genotype. All patients were on pyridoxine, nine patients were on arginine and five patients were on the lysine-restricted diet. 73% of the patients became seizure free on pyridoxine. 25% of the patients had a mild phenotype on pyridoxine monotherapy. Whereas, 100% of the patients, on the lysine-restricted diet initiated within their first 7 months of life, had a mild phenotype. Early initiation of lysine-restricted diet and/or arginine therapy likely improved neurodevelopmental outcome in young patients with PDE-ALDH7A1.
Amberger, Joanna S; Bocchini, Carol A; Schiettecatte, François; Scott, Alan F; Hamosh, Ada
2015-01-01
Online Mendelian Inheritance in Man, OMIM(®), is a comprehensive, authoritative and timely research resource of curated descriptions of human genes and phenotypes and the relationships between them. The new official website for OMIM, OMIM.org (http://omim.org), was launched in January 2011. OMIM is based on the published peer-reviewed biomedical literature and is used by overlapping and diverse communities of clinicians, molecular biologists and genome scientists, as well as by students and teachers of these disciplines. Genes and phenotypes are described in separate entries and are given unique, stable six-digit identifiers (MIM numbers). OMIM entries have a structured free-text format that provides the flexibility necessary to describe the complex and nuanced relationships between genes and genetic phenotypes in an efficient manner. OMIM also has a derivative table of genes and genetic phenotypes, the Morbid Map. OMIM.org has enhanced search capabilities such as genome coordinate searching and thesaurus-enhanced search term options. Phenotypic series have been created to facilitate viewing genetic heterogeneity of phenotypes. Clinical synopsis features are enhanced with UMLS, Human Phenotype Ontology and Elements of Morphology terms and image links. All OMIM data are available for FTP download and through an API. MIMmatch is a novel outreach feature to disseminate updates and encourage collaboration. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Jacob, Saya; Nodzenski, Michael; Reisetter, Anna C; Bain, James R; Muehlbauer, Michael J; Stevens, Robert D; Ilkayeva, Olga R; Lowe, Lynn P; Metzger, Boyd E; Newgard, Christopher B; Scholtens, Denise M; Lowe, William L
2017-07-01
We used targeted metabolomics in pregnant mothers to compare maternal metabolite associations with maternal BMI, glycemia, and insulin sensitivity. Targeted metabolomic assays of clinical metabolites, amino acids, and acylcarnitines were performed on fasting and 1-h postglucose serum samples from European ancestry, Afro-Caribbean, Thai, and Mexican American mothers (400 from each ancestry group) who participated in the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study and underwent an oral glucose tolerance test at ∼28 weeks gestation. K-means clustering, which identified patterns of metabolite levels across ancestry groups, demonstrated that, at both fasting and 1-h, levels of the majority of metabolites were similar across ancestry groups. Meta-analyses demonstrated association of a broad array of fasting and 1-h metabolites, including lipids and amino acids and their metabolites, with maternal BMI, glucose levels, and insulin sensitivity before and after adjustment for the different phenotypes. At fasting and 1 h, a mix of metabolites was identified that were common across phenotypes or associated with only one or two phenotypes. Partial correlation estimates, which allowed comparison of the strength of association of different metabolites with maternal phenotypes, demonstrated that metabolites most strongly associated with different phenotypes included some that were common across as well as unique to each phenotype. Maternal BMI and glycemia have metabolic signatures that are both shared and unique to each phenotype. These signatures largely remain consistent across different ancestry groups and may contribute to the common and independent effects of these two phenotypes on adverse pregnancy outcomes. © 2017 by the American Diabetes Association.
c-Jun-N-terminal phosphorylation regulates DNMT1 expression and genome wide methylation in gliomas
Heiland, Dieter H; Ferrarese, Roberto; Claus, Rainer; Dai, Fangping; Masilamani, Anie P; Kling, Eva; Weyerbrock, Astrid; Kling, Teresia; Nelander, Sven; Carro, Maria S
2017-01-01
High-grade gliomas (HGG) are the most common brain tumors, with an average survival time of 14 months. A glioma-CpG island methylator phenotype (G-CIMP), associated with better clinical outcome, has been described in low and high-grade gliomas. Mutation of IDH1 is known to drive the G-CIMP status. In some cases, however, the hypermethylation phenotype is independent of IDH1 mutation, suggesting the involvement of other mechanisms. Here, we demonstrate that DNMT1 expression is higher in low-grade gliomas compared to glioblastomas and correlates with phosphorylated c-Jun. We show that phospho-c-Jun binds to the DNMT1 promoter and causes DNA hypermethylation. Phospho-c-Jun activation by Anisomycin treatment in primary glioblastoma-derived cells attenuates the aggressive features of mesenchymal glioblastomas and leads to promoter methylation and downregulation of key mesenchymal genes (CD44, MMP9 and CHI3L1). Our findings suggest that phospho-c-Jun activates an important regulatory mechanism to control DNMT1 expression and regulate global DNA methylation in Glioblastoma. PMID:28036297
c-Jun-N-terminal phosphorylation regulates DNMT1 expression and genome wide methylation in gliomas.
Heiland, Dieter H; Ferrarese, Roberto; Claus, Rainer; Dai, Fangping; Masilamani, Anie P; Kling, Eva; Weyerbrock, Astrid; Kling, Teresia; Nelander, Sven; Carro, Maria S
2017-01-24
High-grade gliomas (HGG) are the most common brain tumors, with an average survival time of 14 months. A glioma-CpG island methylator phenotype (G-CIMP), associated with better clinical outcome, has been described in low and high-grade gliomas. Mutation of IDH1 is known to drive the G-CIMP status. In some cases, however, the hypermethylation phenotype is independent of IDH1 mutation, suggesting the involvement of other mechanisms. Here, we demonstrate that DNMT1 expression is higher in low-grade gliomas compared to glioblastomas and correlates with phosphorylated c-Jun. We show that phospho-c-Jun binds to the DNMT1 promoter and causes DNA hypermethylation. Phospho-c-Jun activation by Anisomycin treatment in primary glioblastoma-derived cells attenuates the aggressive features of mesenchymal glioblastomas and leads to promoter methylation and downregulation of key mesenchymal genes (CD44, MMP9 and CHI3L1). Our findings suggest that phospho-c-Jun activates an important regulatory mechanism to control DNMT1 expression and regulate global DNA methylation in Glioblastoma.
Phenotypic diagnosis of dwarfism in six Friesian horses.
Back, W; van der Lugt, J J; Nikkels, P G J; van den Belt, A J M; van der Kolk, J H; Stout, T A E
2008-05-01
An extreme form of abnormal development, dwarfism, is common in man and some animals, but has not been officially reported in horses. Within the Friesian horse breed, congenital dwarfism has been recognised for many years, but no detailed report exists on its phenotype. The most salient feature of the dwarf syndrome is the physeal growth retardation in both limbs and ribs. Affected animals have approximately 25% shorter fore- and hindlimbs and approximately 50% reduced bodyweight. Postnatal growth is still possible in these animals, albeit at a slower rate: the head and back grow faster than the limbs and ribs leading to the characteristic disproportional growth disturbance. Thus, adult dwarfs exhibit a normal, but a relatively larger head conformation, a broader chest with narrowing at the costochondral junction, a disproportionally long back, abnormally short limbs, hyperextension of the fetlocks and narrow long-toed hooves. Furthermore, a dysplastic metaphysis of the distal metacarpus and metatarsus is radiographically evident. Microscopic analysis of the growth plates at the costochondral junction shows an irregular transition from cartilage to bone, and thickening and disturbed formation of chondrocyte columns, which is similar to findings in osteochondrodysplasia.
Steroidogenic factor-1 (SF-1, NR5A1) and human disease
Ferraz-de-Souza, Bruno; Lin, Lin; Achermann, John C.
2011-01-01
Steroidogenic factor-1 (SF-1, Ad4BP, encoded by NR5A1) is a key regulator of adrenal and reproductive development and function. Based upon the features found in Nr5a1 null mice, initial attempts to identify SF-1 changes in humans focused on those rare individuals with primary adrenal failure, a 46,XY karyotype, complete gonadal dysgenesis and Müllerian structures. Although alterations affecting DNA-binding of SF-1 were found in two such cases, disruption of SF-1 is not commonly found in patients with adrenal failure. In contrast, it is emerging that variations in SF-1 can be found in association with a range of human reproductive phenotypes such as 46,XY disorders of sex development (DSD), hypospadias, anorchia, male factor infertility, or primary ovarian insufficiency in women. Overexpression or overactivity of SF-1 is also reported in some adrenal tumors or endometriosis. Therefore, the clinical spectrum of phenotypes associated with variations in SF-1 is expanding and the importance of this nuclear receptor in human endocrine disease is now firmly established. PMID:21078366
Al-Mateen, Majeed; Craig, Alexa Kanwit; Chance, Phillip F
2014-03-01
We describe 2 patients with X-linked Charcot-Marie-Tooth disease, type 1 (CMTX1) disease and central nervous system manifestations and review 19 cases from the literature. Our first case had not been previously diagnosed with Charcot-Marie-Tooth disease, and the second case, although known to have Charcot-Marie-Tooth disease, was suspected of having CMTX1 after presentation with central nervous system manifestations. The most common central nervous system manifestations were transient and included dysarthria, ataxia, hemiparesis, and tetraparesis resembling periodic paralysis. Of the 21 patients, 19 presented at 21 years of age or younger, implicating CMTX1 with transient central nervous system manifestations as a disorder that predominantly affects children and adolescents. CMTX1 should be included in the differential diagnosis of patients who present with transient central nervous system phenomena, including stroke-like episodes, tetraparesis suggestive of periodic paralysis, dysarthria, ataxia, or combinations of these deficits. Reversible, bilateral, nonenhancing white matter lesions and restricted diffusion on magnetic resonance imaging are characteristic features of the central nervous system phenotype of CMTX1.
Life stage dependent responses to desiccation risk in the annual killifish Nothobranchius wattersi.
Grégoir, A F; Philippe, C; Pinceel, T; Reniers, J; Thoré, E S J; Vanschoenwinkel, B; Brendonck, L
2017-09-01
To assess whether the annual killifish Nothobranchius wattersi responds plastically to a desiccation risk and whether this response is life stage dependent, life-history traits such as maturation time, fecundity and life span were experimentally measured in N. wattersi that were subjected to a drop in water level either as juveniles, as adults or both as juveniles and adults. Fish that were exposed to simulated pool drying as juveniles did not show changes in reproductive output or life span. Adults reacted by doubling short term egg deposition at the cost of a shorter lifespan. Overall, these results suggest that annual fish species can use phenotypic plasticity to maximize their reproductive output when faced with early pond drying, but this response appears to be life-stage specific. In addition to frogs and aquatic insects, phenotypic plasticity induced by forthcoming drought is now also confirmed in annual fishes and could well be a common feature of the limited number of fish taxa that manage to survive in this extreme environment. © 2017 The Fisheries Society of the British Isles.
DeScipio, Cheryl; Kaur, Maninder; Yaeger, Dinah; Innis, Jeffrey W.; Spinner, Nancy B.; Jackson, Laird G.; Krantz, Ian D.
2016-01-01
Cornelia de Lange syndrome (CdLS; OMIM 122470) is a dominantly inherited disorder characterized by multisystem involvement, cognitive delay, limb defects, and characteristic facial features. Recently, mutations in NIPBL have been found in ~50% of individuals with CdLS. Numerous chromosomal rearrangements have been reported in individuals with CdLS. These rearrangements may be causative of a CdLS phenotype, result in a phenocopy, or be unrelated to the observed phenotype. We describe two half siblings with a der(3)t(3;12)(p25.3;p13.3) chromosomal rearrangement, clinical features resembling CdLS, and phenotypic overlap with the del(3)(p25) phenotype. Region-specific BAC probes were used to fine-map the breakpoint region by fluorescence in situ hybridization (FISH). FISH analysis places the chromosome 3 breakpoint distal to RP11-115G3 on 3p25.3; the chromosome 12 breakpoint is distal to BAC RP11-88D16 on 12p13.3. A review of published cases of terminal 3p deletions and terminal 12p duplications indicates that the findings in these siblings are consistent with the del(3)(p25) phenotype. Given the phenotypic overlap with CdLS, we have reviewed the reported cases of chromosomal rearrangements involved in CdLS to better elucidate other potential loci that could harbor additional CdLS genes. Additionally, to identify chromosome rearrangements, genome-wide array comparative genomic hybridization (CGH) was performed on eight individuals with typical CdLS and without identifiable deletion or mutation of NIPBL. No pathologic rearrangements were identified. PMID:16075459
Autosomal dominant frontonasal dysplasia (atypical Greig syndrome): Lessons from the Xt mutant mouse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cunningham, M.L.; Nunes, M.E.
1994-09-01
Greig syndrome is the autosomal dominant association of mild hypertelorism, variable polysyndactyly, and normal intelligence. Several families have been found to have translocations or deletions of 7p13 interrupting the normal expression of GLI3 (a zinc finger, DNA binding, transcription repressor). Recently, a mutation in the mouse homologue of GLI3 was found in the extra-toes mutant mouse (Xt). The phenotypic features of this mouse model include mild hypertelorism, postaxial polydactyly of the forelimbs, preaxial polydactyly of the hindlimbs, and variable tibial hemimelia. The homozygous mutant Xt/Xt have severe frontonasal dysplasia (FND), polysyndactyly of fore-and hindlimbs and invariable tibial hemimelia. We havemore » recently evaluated a child with severe (type D) frontonasal dysplasia, fifth finger camptodactyly, preaxial polydactyly of one foot, and ispilateral tibial hemimelia. His father was born with a bifid nose, broad columnella, broad feet, and a two centimeter leg length discrepancy. The paternal grandmother of the proband is phenotypically normal; however, her fraternal twin died at birth with severe facial anomalies. The paternal great-grandmother of the proband is phenotypically normal however her niece was born with moderate ocular hypertelorism. This pedigree is suggestive of an autosomal dominant form of frontonasal dysplasia with variable expressivity. The phenotypic features of our case more closely resemble the Xt mouse than the previously defined features of Greig syndrome in humans. This suggests that a mutation in GLI3 may be responsible for FND in this family. We are currently using polymorphic dinucleotide repeat markers flanking GLI3 in a attempt to demonstrate linkage in this pedigree. Demonstration of a GLI3 mutation in this family would broaden our view of the spectrum of phenotypes possible in Greig syndrome and could provide insight into genotype/phenotype correlation in FND.« less
Wang, Yiping; Wang, Xin Maggie; Lu, Junyu; Lee, Vincent W.S.; Ye, Qianling; Nguyen, Hanh; Zheng, Guoping; Zhao, Ye; Alexander, Stephen I.; Harris, David C.H.
2015-01-01
Conventional markers of macrophages (Mфs) and dendritic cells (DCs) lack specificity and often overlap, leading to confusion and controversy regarding the precise function of these cells in kidney and other diseases. This study aimed to identify the phenotype and function of renal mononuclear phagocytes (rMPs) expressing key markers of both Mфs and DCs. F4/80+CD11c+ cells accounted for 45% of total rMPs in normal kidneys and in those from mice with Adriamycin nephropathy (AN). Despite expression of the DC marker CD11c, these double-positive rMPs displayed the features of Mфs, including Mф-like morphology, high expression of CD68, CD204, and CD206, and high phagocytic ability but low antigen-presenting ability. F4/80+CD11c+ cells were found in the cortex but not in the medulla of the kidney. In AN, F4/80+CD11c+ cells displayed an M1 Mф phenotype with high expression of inflammatory mediators and costimulatory factors. Adoptive transfer of F4/80+CD11c+ cells separated from diseased kidney aggravated renal injury in AN mice. Furthermore, adoptive transfer of common progenitors revealed that kidney F4/80+CD11c+ cells were derived predominantly from monocytes, but not from pre-DCs. In conclusion, renal F4/80+CD11c+ cells are a major subset of rMPs and display Mф-like phenotypic and functional characteristics in health and in AN. PMID:25012165
Zimmermann, Michael T.; Ferber, Matthew J.; Niu, Zhiyv; Urrutia, Raul A.; Klee, Eric W.; Babovic-Vuksanovic, Dusica
2017-01-01
Bosch–Boonstra–Schaaf optic atrophy syndrome (BBSOAS) is a recently described autosomal dominant disorder caused by mutations in the NR2F1 gene. There are presently 28 cases of BBSOAS described in the literature. Its common features include developmental delay, intellectual disability, hypotonia, optic nerve atrophy, attention deficit disorder, autism spectrum disorder, seizures, hearing defects, spasticity, and thinning of the corpus callosum. Here we report two unrelated probands with novel, de novo, missense variants in NR2F1. The first is a 14-yr-old male patient with hypotonia, intellectual disability, optic nerve hypoplasia, delayed bone age, short stature, and altered neurotransmitter levels on cerebrospinal fluid testing. The second is a 5-yr-old female with severe developmental delay, motor and speech delay, and repetitive motion behavior. Whole-exome sequencing identified a novel missense NR2F1 variant in each case, Cys86Phe in the DNA-binding domain in Case 1, and a Leu372Pro in the ligand-binding domain in Case 2. The presence of clinical findings compatible with BBSOAS along with structural analysis at atomic resolution using homology-based molecular modeling and molecular dynamic simulations, support the pathogenicity of these variants for BBSOAS. Short stature, abnormal CNS neurotransmitters, and macrocephaly have not been previously reported for this syndrome and may represent a phenotypic expansion of BBSOAS. A review of published cases along with new evidence from this report support genotype–phenotype correlations for this disorder. PMID:28963436
Thumbs down: a molecular-morphogenetic approach to avian digit homology.
Capek, Daniel; Metscher, Brian D; Müller, Gerd B
2014-01-01
Avian forelimb digit homology remains one of the standard themes in comparative biology and EvoDevo research. In order to resolve the apparent contradictions between embryological and paleontological evidence a variety of hypotheses have been presented in recent years. The proposals range from excluding birds from the dinosaur clade, to assignments of homology by different criteria, or even assuming a hexadactyl tetrapod limb ground state. At present two approaches prevail: the frame shift hypothesis and the pyramid reduction hypothesis. While the former postulates a homeotic shift of digit identities, the latter argues for a gradual bilateral reduction of phalanges and digits. Here we present a new model that integrates elements from both hypotheses with the existing experimental and fossil evidence. We start from the main feature common to both earlier concepts, the initiating ontogenetic event: reduction and loss of the anterior-most digit. It is proposed that a concerted mechanism of molecular regulation and developmental mechanics is capable of shifting the boundaries of hoxD expression in embryonic forelimb buds as well as changing the digit phenotypes. Based on a distinction between positional (topological) and compositional (phenotypic) homology criteria, we argue that the identity of the avian digits is II, III, IV, despite a partially altered phenotype. Finally, we introduce an alternative digit reduction scheme that reconciles the current fossil evidence with the presented molecular-morphogenetic model. Our approach identifies specific experiments that allow to test whether gene expression can be shifted and digit phenotypes can be altered by induced digit loss or digit gain. © 2013 Wiley Periodicals, Inc.
Jorge, Alexander A L; Souza, Silvia C; Nishi, Miriam Y; Billerbeck, Ana E; Libório, Débora C C; Kim, Chong A; Arnhold, Ivo J P; Mendonca, Berenice B
2007-01-01
The frequency of SHOX mutations in children with idiopathic short stature (ISS) has been found to be variable. We analysed the SHOX gene in children with ISS and Leri-Weill dyschondrosteosis (LWD) and evaluated the phenotypic variability in patients harbouring SHOX mutations. Sixty-three ISS, nine LWD children and 21 affected relatives. SHOX gene deletion was evaluated by fluorescence in situ hybridization (FISH), Southern blotting and segregation study of polymorphic marker. Point mutations were assessed by direct DNA sequencing. None of the ISS patients presented SHOX deletions, but two (3.2%) presented heterozygous point mutations, including the novel R147H mutation. However, when ISS patients were selected by sitting height : height ratio (SH/H) for age > 2 SD, mutation frequency detection increased to 22%. Eight (89%) LWD patients had SHOX deletions, but none had point mutations. Analysis of the other relatives in the families carrying SHOX mutations identified 14 children and 17 adult patients. A broad phenotypic variability was observed in all families regarding short stature severity and Madelung deformities. However, the presence of disproportional height, assessed by SH/H, was observed in all children and 82% of adult patients, being the most common feature in our patients with SHOX mutations. Patients with SHOX mutations present a broad phenotypic variability. SHOX mutations are very frequent in LWD (89%), in opposition to ISS (3.2%) in our cohort. The use of SH/H SDS as a selection criterion increases the frequency of SHOX mutation detection to 22% and should be used for selecting ISS children to undergo SHOX mutation molecular studies.
Rubinstein-Taybi 2 associated to novel EP300 mutations: deepening the clinical and genetic spectrum.
López, María; García-Oguiza, Alberto; Armstrong, Judith; García-Cobaleda, Inmaculada; García-Miñaur, Sixto; Santos-Simarro, Fernando; Seidel, Verónica; Domínguez-Garrido, Elena
2018-03-05
Rubinstein-Taybi syndrome (RSTS) is a rare autosomal dominant neurodevelopmental disorder characterized by broad thumbs and halluces. RSTS is caused by mutations in CREBBP and in EP300 genes in 50-60% and 8%, respectively. Up to now, 76 RSTS-EP300 patients have been described. We present the clinical and molecular characterization of a cohort of RSTS patients carrying EP300 mutations. Patients were selected from a cohort of 72 individuals suspected of RSTS after being negative in CREBBP study. MLPA and panel-based NGS EP300 were performed. Eight patients were found to carry EP300 mutations. Phenotypic characteristics included: intellectual disability (generally mild), postnatal growth retardation, infant feeding problems, psychomotor and language delay and typical facial dysmorphisms (microcephaly, downslanting palpebral fissures, columella below the alae nasi, and prominent nose). Broad thumbs and/or halluces were common, but angulated thumbs were only found in two patients. We identified across the gene novel mutations, including large deletion, frameshift mutations, nonsense, missense and splicing alterations, confirming de novo origin in all but one (the mother, possibly underdiagnosed, has short and broad thumbs and had learning difficulties). The clinical evaluation of our patients corroborates that clinical features in EP300 are less marked than in CREBBP patients although it is difficult to establish a genotype-phenotype correlation although. It is remarkable that these findings are observed in a RSTS-diagnosed cohort; some patients harbouring EP300 mutations could present a different phenotype. Broadening the knowledge about EP300-RSTS phenotype may contribute to improve the management of patients and the counselling to the families.
Cao, Qi; Wang, Yiping; Wang, Xin Maggie; Lu, Junyu; Lee, Vincent W S; Ye, Qianling; Nguyen, Hanh; Zheng, Guoping; Zhao, Ye; Alexander, Stephen I; Harris, David C H
2015-02-01
Conventional markers of macrophages (Mфs) and dendritic cells (DCs) lack specificity and often overlap, leading to confusion and controversy regarding the precise function of these cells in kidney and other diseases. This study aimed to identify the phenotype and function of renal mononuclear phagocytes (rMPs) expressing key markers of both Mфs and DCs. F4/80(+)CD11c(+) cells accounted for 45% of total rMPs in normal kidneys and in those from mice with Adriamycin nephropathy (AN). Despite expression of the DC marker CD11c, these double-positive rMPs displayed the features of Mфs, including Mф-like morphology, high expression of CD68, CD204, and CD206, and high phagocytic ability but low antigen-presenting ability. F4/80(+)CD11c(+) cells were found in the cortex but not in the medulla of the kidney. In AN, F4/80(+)CD11c(+) cells displayed an M1 Mф phenotype with high expression of inflammatory mediators and costimulatory factors. Adoptive transfer of F4/80(+)CD11c(+) cells separated from diseased kidney aggravated renal injury in AN mice. Furthermore, adoptive transfer of common progenitors revealed that kidney F4/80(+)CD11c(+) cells were derived predominantly from monocytes, but not from pre-DCs. In conclusion, renal F4/80(+)CD11c(+) cells are a major subset of rMPs and display Mф-like phenotypic and functional characteristics in health and in AN. Copyright © 2015 by the American Society of Nephrology.
A Boy with an LCR3/4-Flanked 10q22.3q23.2 Microdeletion and Uncommon Phenotypic Features
Petrova, E.; Neuner, C.; Haaf, T.; Schmid, M.; Wirbelauer, J.; Jurkutat, A.; Wermke, K.; Nanda, I.; Kunstmann, E.
2014-01-01
The recurrent 10q22.3q23.2 deletion with breakpoints within low copy repeats 3 and 4 is a rare genomic disorder, reported in only 13 patients to date. The phenotype is rather uncharacteristic, which makes a clinical diagnosis difficult. A phenotypic feature described in almost all patients is a delay in speech development, albeit systematic studies are still pending. In this study, we report on a boy with an LCR3/4-flanked 10q22.3q23.2 deletion exhibiting an age-appropriate language development evaluated by a standardized test at an age of 2 years and 3 months. The boy was born with a cleft palate – a feature not present in any of the patients described before. Previously reported cases are reviewed, and the role of the BMPR1A gene is discussed. The phenotype of patients with an LCR3/4-flanked 10q22.3q23.2 deletion can be rather variable, so counseling the families regarding the prognosis of an affected child should be done with caution. Long-term studies of affected children are needed to delineate the natural history of this rare disorder. PMID:24550761
NASA Astrophysics Data System (ADS)
Kang, Mi-Sun; Rhee, Seon-Min; Seo, Ji-Hyun; Kim, Myoung-Hee
2017-03-01
Patients' responses to a drug differ at the cellular level. Here, we present an image-based cell phenotypic feature quantification method for predicting the responses of patient-derived glioblastoma cells to a particular drug. We used high-content imaging to understand the features of patient-derived cancer cells. A 3D spheroid culture formation resembles the in vivo environment more closely than 2D adherent cultures do, and it allows for the observation of cellular aggregate characteristics. However, cell analysis at the individual level is more challenging. In this paper, we demonstrate image-based phenotypic screening of the nuclei of patient-derived cancer cells. We first stitched the images of each well of the 384-well plate with the same state. We then used intensity information to detect the colonies. The nuclear intensity and morphological characteristics were used for the segmentation of individual nuclei. Next, we calculated the position of each nucleus that is appeal of the spatial pattern of cells in the well environment. Finally, we compared the results obtained using 3D spheroid culture cells with those obtained using 2D adherent culture cells from the same patient being treated with the same drugs. This technique could be applied for image-based phenotypic screening of cells to determine the patient's response to the drug.
Teede, H; Deeks, A; Moran, L
2010-06-30
Polycystic ovary syndrome (PCOS) is of clinical and public health importance as it is very common, affecting up to one in five women of reproductive age. It has significant and diverse clinical implications including reproductive (infertility, hyperandrogenism, hirsutism), metabolic (insulin resistance, impaired glucose tolerance, type 2 diabetes mellitus, adverse cardiovascular risk profiles) and psychological features (increased anxiety, depression and worsened quality of life). Polycystic ovary syndrome is a heterogeneous condition and, as such, clinical and research agendas are broad and involve many disciplines. The phenotype varies widely depending on life stage, genotype, ethnicity and environmental factors including lifestyle and bodyweight. Importantly, PCOS has unique interactions with the ever increasing obesity prevalence worldwide as obesity-induced insulin resistance significantly exacerbates all the features of PCOS. Furthermore, it has clinical implications across the lifespan and is relevant to related family members with an increased risk for metabolic conditions reported in first-degree relatives. Therapy should focus on both the short and long-term reproductive, metabolic and psychological features. Given the aetiological role of insulin resistance and the impact of obesity on both hyperinsulinaemia and hyperandrogenism, multidisciplinary lifestyle improvement aimed at normalising insulin resistance, improving androgen status and aiding weight management is recognised as a crucial initial treatment strategy. Modest weight loss of 5% to 10% of initial body weight has been demonstrated to improve many of the features of PCOS. Management should focus on support, education, addressing psychological factors and strongly emphasising healthy lifestyle with targeted medical therapy as required. Monitoring and management of long-term metabolic complications is also an important part of routine clinical care. Comprehensive evidence-based guidelines are needed to aid early diagnosis, appropriate investigation, regular screening and treatment of this common condition. Whilst reproductive features of PCOS are well recognised and are covered here, this review focuses primarily on the less appreciated cardiometabolic and psychological features of PCOS.
2010-01-01
Polycystic ovary syndrome (PCOS) is of clinical and public health importance as it is very common, affecting up to one in five women of reproductive age. It has significant and diverse clinical implications including reproductive (infertility, hyperandrogenism, hirsutism), metabolic (insulin resistance, impaired glucose tolerance, type 2 diabetes mellitus, adverse cardiovascular risk profiles) and psychological features (increased anxiety, depression and worsened quality of life). Polycystic ovary syndrome is a heterogeneous condition and, as such, clinical and research agendas are broad and involve many disciplines. The phenotype varies widely depending on life stage, genotype, ethnicity and environmental factors including lifestyle and bodyweight. Importantly, PCOS has unique interactions with the ever increasing obesity prevalence worldwide as obesity-induced insulin resistance significantly exacerbates all the features of PCOS. Furthermore, it has clinical implications across the lifespan and is relevant to related family members with an increased risk for metabolic conditions reported in first-degree relatives. Therapy should focus on both the short and long-term reproductive, metabolic and psychological features. Given the aetiological role of insulin resistance and the impact of obesity on both hyperinsulinaemia and hyperandrogenism, multidisciplinary lifestyle improvement aimed at normalising insulin resistance, improving androgen status and aiding weight management is recognised as a crucial initial treatment strategy. Modest weight loss of 5% to 10% of initial body weight has been demonstrated to improve many of the features of PCOS. Management should focus on support, education, addressing psychological factors and strongly emphasising healthy lifestyle with targeted medical therapy as required. Monitoring and management of long-term metabolic complications is also an important part of routine clinical care. Comprehensive evidence-based guidelines are needed to aid early diagnosis, appropriate investigation, regular screening and treatment of this common condition. Whilst reproductive features of PCOS are well recognised and are covered here, this review focuses primarily on the less appreciated cardiometabolic and psychological features of PCOS. PMID:20591140
Piccinini, Filippo; Balassa, Tamas; Szkalisity, Abel; Molnar, Csaba; Paavolainen, Lassi; Kujala, Kaisa; Buzas, Krisztina; Sarazova, Marie; Pietiainen, Vilja; Kutay, Ulrike; Smith, Kevin; Horvath, Peter
2017-06-28
High-content, imaging-based screens now routinely generate data on a scale that precludes manual verification and interrogation. Software applying machine learning has become an essential tool to automate analysis, but these methods require annotated examples to learn from. Efficiently exploring large datasets to find relevant examples remains a challenging bottleneck. Here, we present Advanced Cell Classifier (ACC), a graphical software package for phenotypic analysis that addresses these difficulties. ACC applies machine-learning and image-analysis methods to high-content data generated by large-scale, cell-based experiments. It features methods to mine microscopic image data, discover new phenotypes, and improve recognition performance. We demonstrate that these features substantially expedite the training process, successfully uncover rare phenotypes, and improve the accuracy of the analysis. ACC is extensively documented, designed to be user-friendly for researchers without machine-learning expertise, and distributed as a free open-source tool at www.cellclassifier.org. Copyright © 2017 Elsevier Inc. All rights reserved.
Bioassays of quorum sensing compounds using Agrobacterium tumefaciens and Chromobacterium violaceum.
Chu, Weihua; Vattem, Dhiraj A; Maitin, Vatsala; Barnes, Mary B; McLean, Robert J C
2011-01-01
In most bacteria, a global level of regulation exists involving intercellular communication via the production and response to cell density-dependent signal molecules. This cell density-dependent regulation has been termed quorum sensing (QS). QS is a global regulator, which has been associated with a number of important features in bacteria including virulence regulation and biofilm formation. Consequently, there is considerable interest in understanding, detecting, and inhibiting QS. Acyl homoserine lactones (acyl HSLs) are used as extracellular QS signals by a variety of Gram-negative bacteria. Chromobacterium violaceum, a Gram-negative bacterium commonly found in soil and water, produces the characteristic purple pigment violacein, the production of which is regulated by acyl HSL-mediated QS. Based on this readily observed pigmentation phenotype, C. violaceum strains can be used to detect various aspects of acyl HSL-mediated QS activity. In another commonly used bioassay organism, Agrobacterium tumefaciens, QS can be detected by the use of a reporter gene such as lacZ. Here, we describe several commonly used approaches incorporating C. violaceum and A. tumefaciens that can be used to detect acyl HSLs and QS inhibition.
The genetic basis of female reproductive disorders: Etiology and clinical testing ☆
Layman, Lawrence C.
2013-01-01
With the advent of improved molecular biology techniques, the genetic basis of an increasing number of reproductive disorders has been elucidated. Mutations in at least 20 genes cause hypogonadotropic hypogonadism including Kallmann syndrome in about 35–40% of patients. The two most commonly involved genes are FGFR1 and CHD7. When combined pituitary hormone deficiency includes hypogonadotropic hypogonadism as a feature, PROP1 mutations are the most common of the six genes involved. For hypergonadotropic hypogonadism, mutations in 14 genes cause gonadal failure in 15% of affected females, most commonly in FMR1. In eugonadal disorders, activating FSHR mutations have been identified for spontaneous ovarian hyperstimulation syndrome; and WNT4 mutations have been described in mullerian aplasia. For other eugonadal disorders, such as endometriosis, polycystic ovary syndrome, and leiomyomata, specific germline gene mutations have not been identified, but some chromosomal regions are associated with the corresponding phenotype. Practical genetic testing is possible to perform in both hypogonadotropic and hypergonadotropic hypogonadism and spontaneous ovarian hyperstimulation syndrome. However, clinical testing for endometriosis, polycystic ovary syndrome, and leiomyomata is not currently practical for the clinician. PMID:23499866
MLL2 mutation detection in 86 patients with Kabuki syndrome: a genotype-phenotype study.
Makrythanasis, P; van Bon, B W; Steehouwer, M; Rodríguez-Santiago, B; Simpson, M; Dias, P; Anderlid, B M; Arts, P; Bhat, M; Augello, B; Biamino, E; Bongers, E M H F; Del Campo, M; Cordeiro, I; Cueto-González, A M; Cuscó, I; Deshpande, C; Frysira, E; Izatt, L; Flores, R; Galán, E; Gener, B; Gilissen, C; Granneman, S M; Hoyer, J; Yntema, H G; Kets, C M; Koolen, D A; Marcelis, C l; Medeira, A; Micale, L; Mohammed, S; de Munnik, S A; Nordgren, A; Psoni, S; Reardon, W; Revencu, N; Roscioli, T; Ruiterkamp-Versteeg, M; Santos, H G; Schoumans, J; Schuurs-Hoeijmakers, J H M; Silengo, M C; Toledo, L; Vendrell, T; van der Burgt, I; van Lier, B; Zweier, C; Reymond, A; Trembath, R C; Perez-Jurado, L; Dupont, J; de Vries, B B A; Brunner, H G; Veltman, J A; Merla, G; Antonarakis, S E; Hoischen, A
2013-12-01
Recently, pathogenic variants in the MLL2 gene were identified as the most common cause of Kabuki (Niikawa-Kuroki) syndrome (MIM#147920). To further elucidate the genotype-phenotype correlation, we studied a large cohort of 86 clinically defined patients with Kabuki syndrome (KS) for mutations in MLL2. All patients were assessed using a standardized phenotype list and all were scored using a newly developed clinical score list for KS (MLL2-Kabuki score 0-10). Sequencing of the full coding region and intron-exon boundaries of MLL2 identified a total of 45 likely pathogenic mutations (52%): 31 nonsense, 10 missense and four splice-site mutations, 34 of which were novel. In five additional patients, novel, i.e. non-dbSNP132 variants of clinically unknown relevance, were identified. Patients with likely pathogenic nonsense or missense MLL2 mutations were usually more severely affected (median 'MLL2-Kabuki score' of 6) as compared to the patients without MLL2 mutations (median 'MLL2-Kabuki score' of 5), a significant difference (p < 0.0014). Several typical facial features such as large dysplastic ears, arched eyebrows with sparse lateral third, blue sclerae, a flat nasal tip with a broad nasal root, and a thin upper and a full lower lip were observed more often in mutation positive patients. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
vonHoldt, Bridgett M; Shuldiner, Emily; Koch, Ilana Janowitz; Kartzinel, Rebecca Y; Hogan, Andrew; Brubaker, Lauren; Wanser, Shelby; Stahler, Daniel; Wynne, Clive D L; Ostrander, Elaine A; Sinsheimer, Janet S; Udell, Monique A R
2017-07-01
Although considerable progress has been made in understanding the genetic basis of morphologic traits (for example, body size and coat color) in dogs and wolves, the genetic basis of their behavioral divergence is poorly understood. An integrative approach using both behavioral and genetic data is required to understand the molecular underpinnings of the various behavioral characteristics associated with domestication. We analyze a 5-Mb genomic region on chromosome 6 previously found to be under positive selection in domestic dog breeds. Deletion of this region in humans is linked to Williams-Beuren syndrome (WBS), a multisystem congenital disorder characterized by hypersocial behavior. We associate quantitative data on behavioral phenotypes symptomatic of WBS in humans with structural changes in the WBS locus in dogs. We find that hypersociability, a central feature of WBS, is also a core element of domestication that distinguishes dogs from wolves. We provide evidence that structural variants in GTF2I and GTF2IRD1 , genes previously implicated in the behavioral phenotype of patients with WBS and contained within the WBS locus, contribute to extreme sociability in dogs. This finding suggests that there are commonalities in the genetic architecture of WBS and canine tameness and that directional selection may have targeted a unique set of linked behavioral genes of large phenotypic effect, allowing for rapid behavioral divergence of dogs and wolves, facilitating coexistence with humans.
Flex, Elisabetta; Jaiswal, Mamta; Pantaleoni, Francesca; Martinelli, Simone; Strullu, Marion; Fansa, Eyad K.; Caye, Aurélie; De Luca, Alessandro; Lepri, Francesca; Dvorsky, Radovan; Pannone, Luca; Paolacci, Stefano; Zhang, Si-Cai; Fodale, Valentina; Bocchinfuso, Gianfranco; Rossi, Cesare; Burkitt-Wright, Emma M.M.; Farrotti, Andrea; Stellacci, Emilia; Cecchetti, Serena; Ferese, Rosangela; Bottero, Lisabianca; Castro, Silvana; Fenneteau, Odile; Brethon, Benoît; Sanchez, Massimo; Roberts, Amy E.; Yntema, Helger G.; Van Der Burgt, Ineke; Cianci, Paola; Bondeson, Marie-Louise; Cristina Digilio, Maria; Zampino, Giuseppe; Kerr, Bronwyn; Aoki, Yoko; Loh, Mignon L.; Palleschi, Antonio; Di Schiavi, Elia; Carè, Alessandra; Selicorni, Angelo; Dallapiccola, Bruno; Cirstea, Ion C.; Stella, Lorenzo; Zenker, Martin; Gelb, Bruce D.; Cavé, Hélène; Ahmadian, Mohammad R.; Tartaglia, Marco
2014-01-01
RASopathies, a family of disorders characterized by cardiac defects, defective growth, facial dysmorphism, variable cognitive deficits and predisposition to certain malignancies, are caused by constitutional dysregulation of RAS signalling predominantly through the RAF/MEK/ERK (MAPK) cascade. We report on two germline mutations (p.Gly39dup and p.Val55Met) in RRAS, a gene encoding a small monomeric GTPase controlling cell adhesion, spreading and migration, underlying a rare (2 subjects among 504 individuals analysed) and variable phenotype with features partially overlapping Noonan syndrome, the most common RASopathy. We also identified somatic RRAS mutations (p.Gly39dup and p.Gln87Leu) in 2 of 110 cases of non-syndromic juvenile myelomonocytic leukaemia, a childhood myeloproliferative/myelodysplastic disease caused by upregulated RAS signalling, defining an atypical form of this haematological disorder rapidly progressing to acute myeloid leukaemia. Two of the three identified mutations affected known oncogenic hotspots of RAS genes and conferred variably enhanced RRAS function and stimulus-dependent MAPK activation. Expression of an RRAS mutant homolog in Caenorhabditis elegans enhanced RAS signalling and engendered protruding vulva, a phenotype previously linked to the RASopathy-causing SHOC2S2G mutant. Overall, these findings provide evidence of a functional link between RRAS and MAPK signalling and reveal an unpredicted role of enhanced RRAS function in human disease. PMID:24705357
He, Yunjuan; Ji, Xing; Yan, Hui; Ye, Xiantao; Liu, Yu; Wei, Wei; Xiao, Bing; Sun, Yu
2018-06-20
Biallelic UNC80 mutations cause infantile hypotonia with psychomotor retardation and characteristic facies 2 (IHPRF2), which is characterized by hypotonia, developmental delay (DD)/intellectual disability (ID), intrauterine growth retardation, postnatal growth retardation and characteristic facial features. We report two unrelated Chinese patients with compound heterozygous UNC80 mutations inherited from their parents, as identified by whole-exome sequencing (WES). Mutations c.3719G>A (p.W1240*)/c.4926_4937del (p.N1643_L1646del) and c.4963C>T (p.R1655C)/c.8385C>G (p.Y2795*) were identified in patient 1 and patient 2, respectively. Although both patients presented with DD/ID and hypotonia, different manifestations also occurred. Patient 1 presented with infantile hypotonia, epilepsy and hyperactivity without growth retardation, whereas patient 2 presented with persistent hypotonia, growth retardation and self-injury without epilepsy. Furthermore, we herein summarize the genotypes and phenotypes of patients with UNC80 mutations reported in the literature, revealing that IHPRF2 is a phenotypically heterogeneous disease. Common facial dysmorphisms include a thin upper lip, a tented upper lip, a triangular face, strabismus and microcephaly. To some extent, the manifestations of IHPRF2 mimic those of Angelman syndrome (AS)-like syndromes. Copyright © 2018 Elsevier B.V. All rights reserved.
A novel pathogenic MYH3 mutation in a child with Sheldon-Hall syndrome and vertebral fusions.
Scala, Marcello; Accogli, Andrea; De Grandis, Elisa; Allegri, Anna; Bagowski, Christoph P; Shoukier, Moneef; Maghnie, Mohamad; Capra, Valeria
2018-03-01
Sheldon-Hall syndrome (SHS) is the most common of the distal arthrogryposes (DAs), a group of disorders characterized by congenital non-progressive contractures. Patients with SHS present with contractures of the limbs and a distinctive triangular facies with prominent nasolabial folds. Calcaneovalgus deformity is frequent, as well as camptodactyly and ulnar deviation. Causative mutations in at least four different genes have been reported (MYH3, TNNI2, TPM2, and TNNT3). MYH3 plays a pivotal role in fetal muscle development and mutations in this gene are associated with Freeman-Sheldon syndrome, distal arthrogryposis 8 (DA8), and autosomal dominant spondylocarpotarsal synostosis. The last two disorders are characterized by skeletal abnormalities, in particular bony fusions. The observation that MYH3 may be mutated in these syndromes has suggested the involvement of this gene in bone development. We report the case of a boy with a novel pathogenic MYH3 mutation, presenting with the classical clinical features of SHS in association with unilateral carpal bone fusion and multiple vertebral fusions. This distinctive phenotype has never been reported in the literature so far and expands the phenotypic spectrum of SHS, endorsing the clinical variability of patients with MYH3-related disorders. Our findings also support a role for MYH3 in both muscle and bone development, suggesting a phenotypic continuum in MYH3-related disorders. © 2018 Wiley Periodicals, Inc.
Evidence for a chromosome 22q susceptibility locus for some schizophrenics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pulver, A.E.; Wolyniec, P.; Nestadt, G.
Recent reports from linkage studies suggests that in some families there may be a gene associated with schizophrenia on chromosome 22q. Given the probable heterogeneity of schizophrenia, further exploration of this region was undertaken. The region was examined for candidate genes and diseases reported to have some psychiatric manifestations. Studies were initiated to examine the the potential phenotypic and molecular similarity between schizophrenia and velo-cardio-facial syndrome (VCFS), a syndrome associated with an interstitial deletion of 22q11.2. Phenotypic expression: (1) psychiatric evaluations of VCFS patients and their relatives found a high rate of DSM III-R schizophrenia in the patients and ofmore » psychotic illness in their 2nd and 3rd degree relatives. (2) 160 schizophrenic patients from the Maryland Epidemiology Sample (MES) were evaluated for the presence of typical facies seen in VCFS. Rating a 5-point scale, {open_quotes}5{close_quotes} being most likely, 15 (9.4%) were rated {open_quotes}5{close_quotes} and 27 (16.9%) were rated {open_quotes}4{close_quotes} for the VCFS-like facial features. Molecular characteristics: fluorescent in situ hybridization methods (FISH) identified 3 schizophrenics among 60 in the MES with the microdeletion of probe sc11.lab commonly deleted in VCFS subjects. This work provides a model for the mapping of complex phenotypes such schizophrenia using both genetic and epidemiological methods.« less
Pebrel-Richard, Céline; Debost-Legrand, Anne; Eymard-Pierre, Eléonore; Greze, Victoria; Kemeny, Stéphan; Gay-Bellile, Mathilde; Gouas, Laetitia; Tchirkov, Andreï; Vago, Philippe; Goumy, Carole; Francannet, Christine
2014-03-01
With the introduction of array comparative genomic hybridization (aCGH) techniques in the diagnostic setting of patients with developmental delay and congenital malformations, many new microdeletion syndromes have been recognized. One of these recently recognized microdeletion syndromes is the 16p11.2 deletion syndrome, associated with variable clinical outcomes including developmental delay, autism spectrum disorder, epilepsy, and obesity, but also apparently normal phenotype. We report on a 16-year-old patient with developmental delay, exhibiting retinis pigmentosa with progressive visual failure from the age of 9 years, ataxia, and peripheral neuropathy. Chromosomal microarray analysis identified a 1.7-Mb 16p11.2 deletion encompassing the 593-kb common deletion (∼29.5 to ∼30.1 Mb; Hg18) and the 220-kb distal deletion (∼28.74 to ∼28.95 Mb; Hg18) that partially included the CLN3 gene. As the patient's clinical findings were different from usual 16p11.2 microdeletion phenotypes and showed some features reminiscent of juvenile neuronal ceroid-lipofuscinosis (JNCL, Batten disease, OMIM 204200), we suspected and confirmed a mutation of the remaining CLN3 allele. This case further illustrates that unmasking of hemizygous recessive mutations by chromosomal deletion represents one explanation for the phenotypic variability observed in chromosomal deletion disorders.
Pebrel-Richard, Céline; Debost-Legrand, Anne; Eymard-Pierre, Eléonore; Greze, Victoria; Kemeny, Stéphan; Gay-Bellile, Mathilde; Gouas, Laetitia; Tchirkov, Andreï; Vago, Philippe; Goumy, Carole; Francannet, Christine
2014-01-01
With the introduction of array comparative genomic hybridization (aCGH) techniques in the diagnostic setting of patients with developmental delay and congenital malformations, many new microdeletion syndromes have been recognized. One of these recently recognized microdeletion syndromes is the 16p11.2 deletion syndrome, associated with variable clinical outcomes including developmental delay, autism spectrum disorder, epilepsy, and obesity, but also apparently normal phenotype. We report on a 16-year-old patient with developmental delay, exhibiting retinis pigmentosa with progressive visual failure from the age of 9 years, ataxia, and peripheral neuropathy. Chromosomal microarray analysis identified a 1.7-Mb 16p11.2 deletion encompassing the 593-kb common deletion (∼29.5 to ∼30.1 Mb; Hg18) and the 220-kb distal deletion (∼28.74 to ∼28.95 Mb; Hg18) that partially included the CLN3 gene. As the patient's clinical findings were different from usual 16p11.2 microdeletion phenotypes and showed some features reminiscent of juvenile neuronal ceroid-lipofuscinosis (JNCL, Batten disease, OMIM 204200), we suspected and confirmed a mutation of the remaining CLN3 allele. This case further illustrates that unmasking of hemizygous recessive mutations by chromosomal deletion represents one explanation for the phenotypic variability observed in chromosomal deletion disorders. PMID:23860047
Sonam, Kothari; Khan, Nahid Akthar; Bindu, Parayil Sankaran; Taly, Arun B; Gayathri, N; Bharath, M M Srinivas; Govindaraju, C; Arvinda, H R; Nagappa, Madhu; Sinha, Sanjib; Thangaraj, K
2014-10-01
Mutation in the SURF1 is one of the most common nuclear mutations associated with Leigh syndrome and cytochrome c oxidase deficiency. This study aims to describe the phenotypic and imaging features in four patients with Leigh syndrome and novel SURF1 mutation. The study included four patients with Leigh syndrome and SURF1 mutations identified from a cohort of 25 children with Leigh syndrome seen over a period of six years (2006-2012). All the patients underwent a detailed neurological assessment, muscle biopsy, and sequencing of the complete mitochondrial genome and SURF1. Three patients had classical presentation of Leigh syndrome. The fourth patient had a later age of onset with ataxia as the presenting manifestation and a stable course. Hypertrichosis, facial dysmorphism and hypopigmentation were the additional phenotypic features noted. On magnetic resonance imaging all patients had brainstem and cerebellar involvement and two had basal ganglia involvement in addition. The bilateral symmetrical hypertrophic olivary degeneration in these patients was striking. The SURF1 analysis identified previously unreported mutations in all the patients. On follow-up three patients expired and one had a stable course. Patients with Leigh syndrome and SURF1 mutation often have skin and hair abnormalities. Bilateral symmetrical hypertrophic olivary degeneration was a consistent finding on magnetic resonance imaging in these patients. Copyright © 2013 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Identification of novel drought-tolerant-associated SNPs in common bean (Phaseolus vulgaris)
Villordo-Pineda, Emiliano; González-Chavira, Mario M.; Giraldo-Carbajo, Patricia; Acosta-Gallegos, Jorge A.; Caballero-Pérez, Juan
2015-01-01
Common bean (Phaseolus vulgaris L.) is a leguminous in high demand for human nutrition and a very important agricultural product. Production of common bean is constrained by environmental stresses such as drought. Although conventional plant selection has been used to increase production yield and stress tolerance, drought tolerance selection based on phenotype is complicated by associated physiological, anatomical, cellular, biochemical, and molecular changes. These changes are modulated by differential gene expression. A common method to identify genes associated with phenotypes of interest is the characterization of Single Nucleotide Polymorphims (SNPs) to link them to specific functions. In this work, we selected two drought-tolerant parental lines from Mesoamerica, Pinto Villa, and Pinto Saltillo. The parental lines were used to generate a population of 282 families (F3:5) and characterized by 169 SNPs. We associated the segregation of the molecular markers in our population with phenotypes including flowering time, physiological maturity, reproductive period, plant, seed and total biomass, reuse index, seed yield, weight of 100 seeds, and harvest index in three cultivation cycles. We observed 83 SNPs with significant association (p < 0.0003 after Bonferroni correction) with our quantified phenotypes. Phenotypes most associated were days to flowering and seed biomass with 58 and 44 associated SNPs, respectively. Thirty-seven out of the 83 SNPs were annotated to a gene with a potential function related to drought tolerance or relevant molecular/biochemical functions. Some SNPs such as SNP28 and SNP128 are related to starch biosynthesis, a common osmotic protector; and SNP18 is related to proline biosynthesis, another well-known osmotic protector. PMID:26257755
Identification of novel drought-tolerant-associated SNPs in common bean (Phaseolus vulgaris).
Villordo-Pineda, Emiliano; González-Chavira, Mario M; Giraldo-Carbajo, Patricia; Acosta-Gallegos, Jorge A; Caballero-Pérez, Juan
2015-01-01
Common bean (Phaseolus vulgaris L.) is a leguminous in high demand for human nutrition and a very important agricultural product. Production of common bean is constrained by environmental stresses such as drought. Although conventional plant selection has been used to increase production yield and stress tolerance, drought tolerance selection based on phenotype is complicated by associated physiological, anatomical, cellular, biochemical, and molecular changes. These changes are modulated by differential gene expression. A common method to identify genes associated with phenotypes of interest is the characterization of Single Nucleotide Polymorphims (SNPs) to link them to specific functions. In this work, we selected two drought-tolerant parental lines from Mesoamerica, Pinto Villa, and Pinto Saltillo. The parental lines were used to generate a population of 282 families (F3:5) and characterized by 169 SNPs. We associated the segregation of the molecular markers in our population with phenotypes including flowering time, physiological maturity, reproductive period, plant, seed and total biomass, reuse index, seed yield, weight of 100 seeds, and harvest index in three cultivation cycles. We observed 83 SNPs with significant association (p < 0.0003 after Bonferroni correction) with our quantified phenotypes. Phenotypes most associated were days to flowering and seed biomass with 58 and 44 associated SNPs, respectively. Thirty-seven out of the 83 SNPs were annotated to a gene with a potential function related to drought tolerance or relevant molecular/biochemical functions. Some SNPs such as SNP28 and SNP128 are related to starch biosynthesis, a common osmotic protector; and SNP18 is related to proline biosynthesis, another well-known osmotic protector.
Co-occurrence of migraine and atopy in children and adolescents: myth or a casual relationship?
Özge, Aynur; Uluduz, Derya; Bolay, Hayrunnisa
2017-06-01
To clarify the causal relationship between migraine and atopic disorders in children and adolescents. Migraine headache and atopic disorders including asthma are both common functional syndromes of childhood in which nature of the relationship is still debated. Attacks may induce in both disorders upon exposure to potential triggers in genetically susceptible individuals. Clinical phenotype manifests by temporary dysfunction of target tissue mediated by inflammation triggered by specific agents. Clinical features also change after puberty because of the partial effect of female sex hormones on the process. Appropriate definition of the syndrome and differentiating from other disorders are necessary not only for correct diagnosis, but also for planning of management strategies in children. Allergic rhinosinusitis needs to be differentiated from migraine even in experienced clinics. Questioning the presence of cranial autonomic symptoms is important clue in the differential diagnosis. Atopic disorder screening is particularly required in the diagnosis of migraine in childhood and adolescents. The link between both disorders of childhood seems to be far from a coincidence and some common inflammatory mechanisms are shared. On the basis of clinical features, laboratory findings and some practical clues in children, accurate diagnosis of migraine and atopic disorders are very critical for physicians, pediatricians and algologists.
Hernandez-Quiceno, Sara
2017-01-01
Several genetic disorders caused by defective nucleotide excision repair that affect the skin and the nervous system have been described, including Xeroderma Pigmentosum (XP), De Sanctis–Cacchione syndrome (DSC), Cockayne syndrome, and Trichothiodystrophy. Cutaneous photosensitivity with an increased risk of skin malignancy is a common feature of these disorders, but clinical manifestations commonly overlap these syndromes. Several genes have been found to be altered in these pathologies, but we lack more genotype-phenotype correlations in order to make an accurate diagnosis. Very few cases of DSC syndrome have been reported in the literature. We present a case of a 12-year-old Colombian male, with multiple skin lesions in sun-exposed areas from the age of 3 months and a history of 15 skin cancers. He also displayed severe neurologic abnormalities (intellectual disability, ataxia, altered speech, and hyperreflexia), short stature, and microcephaly, which are features associated with DSC. Genetic testing revealed a novel germline mutation in the XP-C gene (c.547A>T). This is the first case of an XP-C mutation causing De Sanctis–Cacchione syndrome. Multigene panel testing is becoming more widely available and accessible in the clinical setting and will help rapidly unveil the molecular etiology of these rare genetic disorders. PMID:28255305
Combat-related headache and traumatic brain injury.
Waung, Maggie W; Abrams, Gary M
2012-12-01
Post-traumatic headache is a commonly described complication of traumatic brain injury. Recent studies highlight differences between headache features of combat veterans who suffered traumatic brain injury compared to civilians. Not surprisingly, there is a higher rate of associated PTSD and sleep disturbances among veterans. Factors of lower socioeconomic status, rank, and multiple head injuries appear to have a similar effect on post-traumatic headache in combat-related traumatic brain injury. Areas of discordance in the literature include the effect of prolonged loss of consciousness and the prevalence of specific headache phenotypes following head trauma. To date, there have been no randomized trials of treatment for post-traumatic headache. This may be related to the variability of headache features and uncertainty of pathophysiologic mechanisms. Given this lack of data, many practitioners follow treatment guidelines for primary headaches. Additionally, because of mounting data linking PTSD to post-traumatic headache in combat veterans, it may be crucial to choose multimodal agents and take a multidisciplinary approach to combat-related headache.
Kaczorowska, Ewa; Zimowski, Janusz; Cichoń-Kotek, Monika; Mrozińska, Agnieszka; Purzycka, Joanna; Wierzba, Jolanta; Limon, Janusz; Lipska-Ziętkiewicz, Beata S
Turner syndrome is a relatively common chromosomal disorder which affects about one in 2000 live born females. Duchenne muscular dystrophy is an X-linked recessive disorder affecting 1:3600 live born males. Considering the above, the coexistence of these two diseases may occur only anecdotally. Here, we report a 4 ½ year-old female with classical 45,X Turner syndrome who also had Duchenne muscular dystrophy caused by a point mutation in the dystrophin gene (c.9055delG). The patient showed the typical phenotype of Turner syndrome including distinctive dysmorphic features (short neck, low posterior hairline, wide position of nipples), aortic coarctation and feet lymphedema. Besides, she presented with an unusually early beginning of muscular dystrophy symptoms with infantile-onset motor developmental delay, intellectual disability and early calf muscular hypertrophy. The coexistence of an X-linked recessive disorder should be considered in women affected by Turner syndrome presenting with additional atypical clinical features.
Unisexual versus bisexual mating in Cryptococcus neoformans: Consequences and biological impacts
Fu, Ci; Sun, Sheng; Billmyre, R. Blake; Roach, Kevin C.; Heitman, Joseph
2014-01-01
Cryptococcus neoformans is an opportunistic human fungal pathogen and can undergo both bisexual and unisexual mating. Despite the fact that one mating type is dispensable for unisexual mating, the two sexual cycles share surprisingly similar features. Both mating cycles are affected by similar environmental factors and regulated by the same pheromone response pathway. Recombination takes place during unisexual reproduction in a fashion similar to bisexual reproduction and can both admix pre-existing genetic diversity and also generate diversity de novo just like bisexual reproduction. These common features may allow the unisexual life cycle to provide phenotypic and genotypic plasticity for the natural Cryptococcus population, which is predominantly α mating type, and to avoid Muller’s ratchet. The morphological transition from yeast to hyphal growth during both bisexual and unisexual mating may provide increased opportunities for outcrossing and the ability to forage for nutrients at a distance. The unisexual life cycle is a key evolutionary factor for Cryptococcus as a highly successful global fungal pathogen. PMID:25173822
Pheno-phenotypes: a holistic approach to the psychopathology of schizophrenia.
Stanghellini, Giovanni; Rossi, Rodolfo
2014-05-01
Mental disorders are mainly characterized via symptom assessment. Symptoms are state-like macroscopic anomalies of behaviour, experience, and expression that are deemed relevant for diagnostic purposes. An alternative approach is based on the concept of endophenotypes, which are physiological or behavioural measures occupying the terrain between symptoms and risk genotypes. We will critically discuss these two approaches, and later focus on the concept of pheno-phenotype as it is revealed by recent phenomenological research on schizophrenia. Several studies have been recently published on the schizophrenic pheno-phenotype mainly addressing self-disorders, as well as disorders of time and bodily experience. The mainstream approach to psychopathological phenotypes is focussed on easy-to-assess operationalizable symptoms. Thinness of phenotypes and simplification of clinical constructs are the consequences of this. Also, this approach has not been successful in investigating the biological causes of mental disorders. An integrative approach is based on the concept of 'endophenotype'. Endophenotypes were conceptualized as a supportive tool for the genetic dissection of psychiatric disorders. The underlying rationale states that disease-specific phenotypes should be the upstream phenotypic manifestation of a smaller genotype than the whole disease-related genotype. Psychopathological phenotypes can also be characterized in terms of pheno-phenotypes. This approach aims at delineating the manifold phenomena experienced by patients in all of their concrete and distinctive features, so that the features of a pathological condition emerge, while preserving their peculiar feel, meaning, and value for the patient. Systematic explorations of anomalies in the patients' experience, for example, of time, space, body, self, and otherness, may provide a useful integration to the symptom-based and endophenotype-based approaches. These abnormal phenomena can be used as pointers to the fundamental alterations of the structure of subjectivity characterizing each mental disorder.
Atik, Tahir; Aykut, Ayca; Hazan, Filiz; Onay, Huseyin; Goksen, Damla; Darcan, Sukran; Tukun, Ajlan; Ozkinay, Ferda
2016-06-01
To evaluate the spectrum of PTPN11 gene mutations in Noonan syndrome patients and to study the genotype-phenotype associations. In this study, twenty Noonan syndrome patients with PTPN11 mutations were included. The patients underwent a detailed clinical and physical evaluation. To identify inherited cases, parents of all mutation positive patients were analyzed. Thirteen different PTPN11 mutations, two of them being novel, were detected in the study group. These mutations included eleven missense mutations: p.G60A, p.D61N, p.Y62D, p.Y63C, p.E69Q, p.Q79R, p.Y279C,p.N308D, p.N308S, p.M504V, p.Q510R and two novel missense mutations: p.I56V and p.I282M. The frequency of cardiac abnormalities and short stature were found to be 80 % and 80 %, respectively. Mental retardation was not observed in patients having exon 8 mutations. No significant correlations were detected between other phenotypic features and genotypes. By identifying genotype-phenotype correlations, this study provides information on phenotypes observed in NS patients with different PTPN11 mutations.
Ballif, Blake C.; Theisen, Aaron; Rosenfeld, Jill A.; Traylor, Ryan N.; Gastier-Foster, Julie; Thrush, Devon Lamb; Astbury, Caroline; Bartholomew, Dennis; McBride, Kim L.; Pyatt, Robert E.; Shane, Kate; Smith, Wendy E.; Banks, Valerie; Gallentine, William B.; Brock, Pamela; Rudd, M. Katharine; Adam, Margaret P.; Keene, Julia A.; Phillips, John A.; Pfotenhauer, Jean P.; Gowans, Gordon C.; Stankiewicz, Pawel; Bejjani, Bassem A.; Shaffer, Lisa G.
2010-01-01
Segmental duplications, which comprise ∼5%–10% of the human genome, are known to mediate medically relevant deletions, duplications, and inversions through nonallelic homologous recombination (NAHR) and have been suggested to be hot spots in chromosome evolution and human genomic instability. We report seven individuals with microdeletions at 17q23.1q23.2, identified by microarray-based comparative genomic hybridization (aCGH). Six of the seven deletions are ∼2.2 Mb in size and flanked by large segmental duplications of >98% sequence identity and in the same orientation. One of the deletions is ∼2.8 Mb in size and is flanked on the distal side by a segmental duplication, whereas the proximal breakpoint falls between segmental duplications. These characteristics suggest that NAHR mediated six out of seven of these rearrangements. These individuals have common features, including mild to moderate developmental delay (particularly speech delay), microcephaly, postnatal growth retardation, heart defects, and hand, foot, and limb abnormalities. Although all individuals had at least mild dysmorphic facial features, there was no characteristic constellation of features that would elicit clinical suspicion of a specific disorder. The identification of common clinical features suggests that microdeletions at 17q23.1q23.2 constitute a novel syndrome. Furthermore, the inclusion in the minimal deletion region of TBX2 and TBX4, transcription factors belonging to a family of genes implicated in a variety of developmental pathways including those of heart and limb, suggests that these genes may play an important role in the phenotype of this emerging syndrome. PMID:20206336
Andrews, Tallulah; Meader, Stephen; Vulto-van Silfhout, Anneke; Taylor, Avigail; Steinberg, Julia; Hehir-Kwa, Jayne; Pfundt, Rolph; de Leeuw, Nicole; de Vries, Bert B A; Webber, Caleb
2015-03-01
Readily-accessible and standardised capture of genotypic variation has revolutionised our understanding of the genetic contribution to disease. Unfortunately, the corresponding systematic capture of patient phenotypic variation needed to fully interpret the impact of genetic variation has lagged far behind. Exploiting deep and systematic phenotyping of a cohort of 197 patients presenting with heterogeneous developmental disorders and whose genomes harbour de novo CNVs, we systematically applied a range of commonly-used functional genomics approaches to identify the underlying molecular perturbations and their phenotypic impact. Grouping patients into 408 non-exclusive patient-phenotype groups, we identified a functional association amongst the genes disrupted in 209 (51%) groups. We find evidence for a significant number of molecular interactions amongst the association-contributing genes, including a single highly-interconnected network disrupted in 20% of patients with intellectual disability, and show using microcephaly how these molecular networks can be used as baits to identify additional members whose genes are variant in other patients with the same phenotype. Exploiting the systematic phenotyping of this cohort, we observe phenotypic concordance amongst patients whose variant genes contribute to the same functional association but note that (i) this relationship shows significant variation across the different approaches used to infer a commonly perturbed molecular pathway, and (ii) that the phenotypic similarities detected amongst patients who share the same inferred pathway perturbation result from these patients sharing many distinct phenotypes, rather than sharing a more specific phenotype, inferring that these pathways are best characterized by their pleiotropic effects.
Martikainen, Mika H; Ng, Yi Shiau; Gorman, Gráinne S; Alston, Charlotte L; Blakely, Emma L; Schaefer, Andrew M; Chinnery, Patrick F; Burn, David J; Taylor, Robert W; McFarland, Robert; Turnbull, Doug M
2016-06-01
Extrapyramidal movement disorders associated with mitochondrial disease are difficult to treat and can lead to considerable disability. Moreover, potential new treatment trials on the horizon highlight the importance of genotype-phenotype associations and deep phenotyping of the movement disorders related to mitochondrial disease. To describe the phenotype, genetic etiology, and investigation of extrapyramidal movement disorders in a large and well-defined mitochondrial disease cohort. An observational cohort study at a single national referral center. Among 678 patients (87% adults) followed up at the Newcastle mitochondrial disease specialized referral center between January 1, 2000, and January 31, 2015, 42 patients (12 pediatric, 30 adult) with genetic or biochemical evidence of mitochondrial disease and with 1 or more predefined extrapyramidal movement disorders (parkinsonism, dystonia, tremor, chorea, and restless legs syndrome) were included. We investigated the prevalence and genetic causes of dystonia and parkinsonism as well as radiological findings in the context of movement disorders in mitochondrial disease. All patients were interviewed and examined. All available medical notes and clinical, radiological, and genetic investigations were reviewed. Forty-two patients (mean [SD] age, 37 [25] years; 38% female) with mitochondrial disease (12 pediatric [age range, 4-14 years], 30 adult [age range, 20-81 years]) with extrapyramidal movement disorders were identified. Dystonia manifested in 11 pediatric patients (92%), often in the context of Leigh syndrome; parkinsonism predominated in 13 adult patients (43%), among whom 5 (38%) harbored either dominant (n = 1) or recessive (n = 4) mutations in POLG. Eleven adult patients (37%) manifested with either generalized or multifocal dystonia related to mutations in mitochondrial DNA, among which the most common were the m.11778G>A mutation and mutations in MT-ATP6 (3 of 11 patients [27%] each). Bilateral basal ganglia lesions were the most common finding in brain magnetic resonance imaging, usually associated with generalized dystonia or Leigh syndrome. Dystonia, often associated with Leigh syndrome, was the most common extrapyramidal movement disorder among pediatric patients with mitochondrial disease. Parkinsonism was the most prevalent extrapyramidal movement disorder in adults and was commonly associated with POLG mutations; dystonia was predominantly associated with mitochondrial DNA mutations. These findings may help direct genetic screening in a busy neurology outpatient setting.
Park, Sung Hee; Lee, Ji Young; Kim, Sangsoo
2011-01-01
Current Genome-Wide Association Studies (GWAS) are performed in a single trait framework without considering genetic correlations between important disease traits. Hence, the GWAS have limitations in discovering genetic risk factors affecting pleiotropic effects. This work reports a novel data mining approach to discover patterns of multiple phenotypic associations over 52 anthropometric and biochemical traits in KARE and a new analytical scheme for GWAS of multivariate phenotypes defined by the discovered patterns. This methodology applied to the GWAS for multivariate phenotype highLDLhighTG derived from the predicted patterns of the phenotypic associations. The patterns of the phenotypic associations were informative to draw relations between plasma lipid levels with bone mineral density and a cluster of common traits (Obesity, hypertension, insulin resistance) related to Metabolic Syndrome (MS). A total of 15 SNPs in six genes (PAK7, C20orf103, NRIP1, BCL2, TRPM3, and NAV1) were identified for significant associations with highLDLhighTG. Noteworthy findings were that the significant associations included a mis-sense mutation (PAK7:R335P), a frame shift mutation (C20orf103) and SNPs in splicing sites (TRPM3). The six genes corresponded to rat and mouse quantitative trait loci (QTLs) that had shown associations with the common traits such as the well characterized MS and even tumor susceptibility. Our findings suggest that the six genes may play important roles in the pleiotropic effects on lipid metabolism and the MS, which increase the risk of Type 2 Diabetes and cardiovascular disease. The use of the multivariate phenotypes can be advantageous in identifying genetic risk factors, accounting for the pleiotropic effects when the multivariate phenotypes have a common etiological pathway.
Afawi, Zaid; Mandelstam, Simone; Korczyn, Amos D; Kivity, Sara; Walid, Simri; Shalata, Adel; Oliver, Karen L; Corbett, Mark; Gecz, Jozef; Berkovic, Samuel F; Jackson, Graeme D
2013-07-01
We describe the clinical and radiological features of a family with a homozygous mutation in TBC1D24. The phenotype comprised onset of focal seizures at 2 months with prominent eye-blinking, facial and limb jerking with an oral sensory aura. These were controllable with medication but persisted into adult life. Associated features were mild to moderate intellectual disability and cerebellar features. MRI showed subtle cortical thickening with cerebellar atrophy and high signal confined to the ansiform lobule. The disorder is allelic with familial infantile myoclonic epilepsy, where intellect and neurologic examination are normal, highlighting the phenotypic variation with mutations of TBC1D24. Copyright © 2013 Elsevier B.V. All rights reserved.
Karsan, N; Prabhakar, P; Goadsby, P J
2016-12-01
The premonitory stage of migraine attacks, when symptomatology outside of pain can manifest hours to days before the onset of the headache, is well recognised. Such symptoms have been reported in adults in a number of studies, and have value in predicting an impending headache. These symptoms have not been extensively studied in children. We aimed to characterise which, if any, of these symptoms are reported in children seen within a Specialist Headache Service. We reviewed clinic letters from the initial consultation of children and adolescents seen within the Specialist Headache Service at Great Ormond Street Hospital between 1999 and 2015 with migraine in whom we had prospectively assessed clinical phenotype data. We randomly selected 100 cases with at least one premonitory symptom recorded in the letter. For these patients, the age at headache onset, presence of family history of headache, headache diagnosis, presence of episodic syndromes which may be associated with headache, developmental milestones, gestation at birth, mode of delivery and presence of premonitory symptoms occurring before or during headache were recorded. Of the 100 patients selected, 65 % were female. The age range of the patients was 18 months to 15 years at the time of headache onset. The most common diagnosis was chronic migraine in 58 %, followed by episodic migraine (29 %), New Daily Persistent Headache with migrainous features (8 %) and hemiplegic migraine (5 %). A history of infantile colic was noted in 31 % and was the most common childhood episodic syndrome associated with migraine. The most common premonitory symptoms recorded were fatigue, mood change and neck stiffness. The commonest number of reported premonitory symptoms was two. Premonitory symptoms associated with migraine are reported in children as young as 18 months, with an overall clinical phenotype comparable to adults. Better documentation of this stage will aid parents and clinicians to better understand the phenotype of attacks, better recognise migraine and thus initiate appropriate management. Larger studies with a broader base are warranted to understand the extent and implications of these symptoms for childhood and adolescent migraine.
Hamouda, Faiza; El-Sissy, Azza H; Radwan, Ashraf K; Hussein, Hany; Gadallah, Farida H; Al-Sharkawy, Nahla; Sedhom, Eman; Ebeid, Emad; Salem, Shereen I
2007-06-01
To identify chromosomal pattern among the major immunophenotypic subgroups in Egyptian children with ALL, and its correlation with clinical presentation and disease free survival. Cytogenetic and immunophenotypic analysis were done for all patients. Patients received ALL-PNCI-III/98 chemotherapy protocol used at NCI, Cairo University. The frequency of pseudodiploidy and normal karyotype in the whole group was 42.9% and 33.3% respectively. The frequency of pseudodiploidy was 36.8% in CALLA positive early pre B, 30.7% in pre B cases, 71.4% in T cell cases and 100% in mature B cell cases. At 12 months, DFS was 50% for pseudodiploid group having pre B phenotype, compared to 16.6% for pseudodiploid group with CALLA positive early pre B ALL. Sixteen percent of the studied cases showed T cell phenotype, 71.4% of them showed pseudodiploid karyotype, all of them had high risk features. Hyperdiploidy was found in 31.5% of CALLA positive early pre B cases and was associated with favorable prognostic features and DFS of 66.6% at 12 months. Hyperdiploidy of >50 chromosome represented 62.5% of hyperdipoid cases, 80% of them were CALLA positive early pre B ALL carrying good risk features. Fifty percent of normal karyotypic patients showed pre B phenotype, while 42.8% showed CALLA positive early pre B ALL. Their age, TLC, DFS, were almost comparable. CALLA early pre B phenotype has a positive impact on chromosomal pattern having best outcome among patients with hyperdiploidy. The Pseudodiploid karyotype carries a better outcome with pre B phenotype.
Gregson, C L; Hardcastle, S A; Murphy, A; Faber, B; Fraser, W D; Williams, M; Davey Smith, G; Tobias, J H
2017-04-01
High Bone Mass (HBM) is associated with (a) radiographic knee osteoarthritis (OA), partly mediated by increased BMI, and (b) pelvic enthesophytes and hip osteophytes, suggestive of a bone-forming phenotype. We aimed to establish whether HBM is associated with radiographic features of OA in non-weight-bearing (hand) joints, and whether such OA demonstrates a bone-forming phenotype. HBM cases (BMD Z-scores≥+3.2) were compared with family controls. A blinded assessor graded all PA hand radiographs for: osteophytes (0-3), joint space narrowing (JSN) (0-3), subchondral sclerosis (0-1), at the index Distal Interphalangeal Joint (DIPJ) and 1st Carpometacarpal Joint (CMCJ), using an established atlas. Analyses used a random effects logistic regression model, adjusting a priori for age and gender. Mediating roles of BMI and bone turnover markers (BTMs) were explored by further adjustment. 314 HBM cases (mean age 61.1years, 74% female) and 183 controls (54.3years, 46% female) were included. Osteophytes (grade≥1) were more common in HBM (DIPJ: 67% vs. 45%, CMCJ: 69% vs. 50%), with adjusted OR [95% CI] 1.82 [1.11, 2.97], p=0.017 and 1.89 [1.19, 3.01], p=0.007 respectively; no differences were seen in JSN. Further adjustment for BMI failed to attenuate ORs for osteophytes in HBM cases vs. controls; DIPJ 1.72 [1.05, 2.83], p=0.032, CMCJ 1.76 [1.00, 3.06], p=0.049. Adjustment for BTMs (concentrations lower amongst HBM cases) did not attenuate ORs. HBM is positively associated with OA in non-weight-bearing joints, independent of BMI. HBM-associated OA is characterised by osteophytes, consistent with a bone-forming phenotype, rather than JSN reflecting cartilage loss. Systemic factors (e.g. genetic architecture) which govern HBM may also increase bone-forming OA risk. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Enlarged Dural Sac in Idiopathic Bronchiectasis Implicates Heritable Connective Tissue Gene Variants
Birchard, Katherine R.; Lowe, Jared R.; Patrone, Michael V.
2016-01-01
Rationale: Patients with idiopathic bronchiectasis are predominantly female and have an asthenic body morphotype and frequent nontuberculous mycobacterial respiratory infections. They also demonstrate phenotypic features (scoliosis, pectus deformity, mitral valve prolapse) that are commonly seen in individuals with heritable connective tissue disorders. Objectives: To determine whether lumbar dural sac size is increased in patients with idiopathic bronchiectasis as compared with control subjects, and to assess whether dural sac size is correlated with phenotypic characteristics seen in individuals with heritable connective tissue disorders. Methods: Two readers blinded to diagnosis measured anterior–posterior and transverse dural sac diameter using L1–L5 magnetic resonance images of 71 patients with idiopathic bronchiectasis, 72 control subjects without lung disease, 29 patients with cystic fibrosis, and 24 patients with Marfan syndrome. We compared groups by pairwise analysis of means, using Tukey’s method to adjust for multiple comparisons. Dural sac diameter association with phenotypic and clinical features was also tested. Measurements and Main Results: The L1–L5 (average) anterior–posterior dural sac diameter of the idiopathic bronchiectasis group was larger than those of the control group (P < 0.001) and the cystic fibrosis group (P = 0.002). There was a strong correlation between increased dural sac size and the presence of pulmonary nontuberculous mycobacterial infection (P = 0.007) and long fingers (P = 0.003). A trend toward larger dural sac diameter was seen in those with scoliosis (P = 0.130) and those with a family history of idiopathic bronchiectasis (P = 0.149). Conclusions: Individuals with idiopathic bronchiectasis have an enlarged dural sac diameter, which is associated with pulmonary nontuberculous mycobacterial infection, long fingers, and family history of idiopathic bronchiectasis. These findings support our hypothesis that “idiopathic” bronchiectasis development reflects complex genetic variation in heritable connective tissue and associated transforming growth factor-β–related pathway genes. PMID:27409985
Schönewolf-Greulich, B; Tejada, M-I; Stephens, K; Hadzsiev, K; Gauthier, J; Brøndum-Nielsen, K; Pfundt, R; Ravn, K; Maortua, H; Gener, B; Martínez-Bouzas, C; Piton, A; Rouleau, G; Clayton-Smith, J; Kleefstra, T; Bisgaard, A-M; Tümer, Z
2016-06-01
Missense MECP2 variants can have various phenotypic effects ranging from a normal phenotype to typical Rett syndrome (RTT). In females, the phenotype can also be influenced by the X-inactivation pattern. In this study, we present detailed clinical descriptions of six patients with a rare base-pair substitution affecting Arg309 at the C-terminal end of the transcriptional repression domain (TRD). All patients have intellectual disability and present with some RTT features, but they do not fulfill the clinical criteria for typical or atypical RTT. Most of the patients also have mild facial dysmorphism. Intriguingly, the mother of an affected male patient is an asymptomatic carrier of this variant. It is therefore likely that the p.(Arg309Trp) variation does not necessarily lead to male lethality, and it results in a wide range of clinical features in females, probably influenced by different X-inactivation patterns in target tissues. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Boczek, Nicole J; Kruisselbrink, Teresa; Cousin, Margot A; Blackburn, Patrick R; Klee, Eric W; Gavrilova, Ralitza H; Lanpher, Brendan C
2017-05-01
STAR syndrome is a rare X-linked dominant disorder characterized by toe Syndactyly, Telecanthus, Anogenital malformations, and Renal malformations, and is caused by loss-of-function variants in FAM58A. Our proband presented with the hallmark features of STAR syndrome, as well as some additional less typical features including tethered cord and hearing loss. The proband's mother and maternal half-sister had similar clinical histories, but had variability in phenotypic severity. Clinical whole exome sequencing revealed a novel pathogenic nonsense variant, c.651G>A (p.Trp217X; NM_152274), in FAM58A in the proband, mother, and maternal half-sister. This pedigree represents the 11-13th patients described with STAR syndrome and the third instance of familial inheritance. To our knowledge, this is the first occurrence of a nonsense variant in FAM58A described in individuals with STAR syndrome and the phenotype in this pedigree suggests that tethered cord and hearing loss are features of STAR syndrome. © 2017 Wiley Periodicals, Inc.
LGI1, CASPR2 and related antibodies: a molecular evolution of the phenotypes
Binks, Sophie N M; Klein, Christopher J; Waters, Patrick; Pittock, Sean J; Irani, Sarosh R
2018-01-01
Recent biochemical observations have helped redefine antigenic components within the voltage-gated potassium channel (VGKC) complex. The related autoantibodies may be now divided into likely pathogenic entities, which target the extracellular domains of leucine-rich glioma-inactivated 1 (LGI1) and contactin-associated protein-like 2 (CASPR2), and species that target intracellular neuronal components and are likely non-pathogenic. This distinction has enhanced clinical practice as direct determination of LGI1 and CASPR2 antibodies offers optimal sensitivity and specificity. In this review, we describe and compare the clinical features associated with pathogenic LGI1 and CASPR2 antibodies, illustrate emerging laboratory techniques for antibody determination and describe the immunological mechanisms that may mediate antibody-induced pathology. We highlight marked clinical overlaps between patients with either LGI1 or CASPR2 antibodies that include frequent focal seizures, prominent amnesia, dysautonomia, neuromyotonia and neuropathic pain. Although occurring at differing rates, these commonalities are striking and only faciobrachial dystonic seizures reliably differentiate these two conditions. Furthermore, the coexistence of both LGI1 and CASPR2 antibodies in an individual occurs surprisingly frequently. Patients with either antibody respond well to immunotherapies, although systematic studies are required to determine the magnitude of the effect beyond placebo. Finally, data have suggested that CASPR2 and LGI1 modulation via genetic or autoimmune mechanisms may share common intermediate molecules. Taken together, the biochemical distinction of antigenic targets has led to important clinical advances for patient care. However, the striking syndrome similarities, coexistence of two otherwise rare antibodies and molecular insights suggest the VGKC complex may yet be a common functional effector of antibody action. Hence, we argue for a molecular evolution alongside a clinical and phenotypic re-evaluation. PMID:29055902
Cao, Lu; Graauw, Marjo de; Yan, Kuan; Winkel, Leah; Verbeek, Fons J
2016-05-03
Endocytosis is regarded as a mechanism of attenuating the epidermal growth factor receptor (EGFR) signaling and of receptor degradation. There is increasing evidence becoming available showing that breast cancer progression is associated with a defect in EGFR endocytosis. In order to find related Ribonucleic acid (RNA) regulators in this process, high-throughput imaging with fluorescent markers is used to visualize the complex EGFR endocytosis process. Subsequently a dedicated automatic image and data analysis system is developed and applied to extract the phenotype measurement and distinguish different developmental episodes from a huge amount of images acquired through high-throughput imaging. For the image analysis, a phenotype measurement quantifies the important image information into distinct features or measurements. Therefore, the manner in which prominent measurements are chosen to represent the dynamics of the EGFR process becomes a crucial step for the identification of the phenotype. In the subsequent data analysis, classification is used to categorize each observation by making use of all prominent measurements obtained from image analysis. Therefore, a better construction for a classification strategy will support to raise the performance level in our image and data analysis system. In this paper, we illustrate an integrated analysis method for EGFR signalling through image analysis of microscopy images. Sophisticated wavelet-based texture measurements are used to obtain a good description of the characteristic stages in the EGFR signalling. A hierarchical classification strategy is designed to improve the recognition of phenotypic episodes of EGFR during endocytosis. Different strategies for normalization, feature selection and classification are evaluated. The results of performance assessment clearly demonstrate that our hierarchical classification scheme combined with a selected set of features provides a notable improvement in the temporal analysis of EGFR endocytosis. Moreover, it is shown that the addition of the wavelet-based texture features contributes to this improvement. Our workflow can be applied to drug discovery to analyze defected EGFR endocytosis processes.
Scribner, Elizabeth; Fathallah-Shaykh, Hassan M
2017-01-01
Glioblastoma (GBM) is a malignant brain tumor that continues to be associated with neurological morbidity and poor survival times. Brain invasion is a fundamental property of malignant glioma cells. The Go-or-Grow (GoG) phenotype proposes that cancer cell motility and proliferation are mutually exclusive. Here, we construct and apply a single glioma cell mathematical model that includes motility and angiogenesis and lacks the GoG phenotype. Simulations replicate key features of GBM including its multilayer structure (i.e.edema, enhancement, and necrosis), its progression patterns associated with bevacizumab treatment, and replicate the survival times of GBM treated or untreated with bevacizumab. These results suggest that the GoG phenotype is not a necessary property for the formation of the multilayer structure, recurrence patterns, and the poor survival times of patients diagnosed with GBM.
Martins, Marina Angela; Silva, Maria Luiza; Elói-Santos, Silvana Maria; Ribeiro, José Geraldo Leite; Peruhype-Magalhães, Vanessa; Marciano, Ana Paula Vieira; Homma, Akira; Kroon, Erna Geessien; Teixeira-Carvalho, Andréa; Martins-Filho, Olindo Assis
2008-02-26
Detailed multiparametric phenotypic investigation aiming to characterize the kinetics of the innate immune response in the peripheral blood following 17DD yellow fever (17DD-YF) first-time vaccination was performed. Results showed increased frequency of monocytes and NK cell subpopulations besides unexpected up-regulation of granulocytes activation status (CD28+/CD23+ and CD28+/HLA-DR+, respectively). Up-regulation of Fcgamma-R and IL-10-R expression emerge as putative events underlying the mixed pattern of phenotypic features triggered by the 17DD yellow fever (17DD-YF) vaccination. Mixed pattern of chemokine receptors expression further support our hypothesis that a parallel establishment of activation/modulation microenvironment plays a pivotal role in the protective immunity triggered by the 17DD-YF vaccine.
Does the concept of borderline personality features have clinical utility in childhood?
Hawes, David J
2014-01-01
Phenotypic features of borderline personality disorder may first emerge during childhood, alongside symptoms of common externalizing and internalizing disorders. Children with these borderline personality features (BPF) are, therefore, likely to come into contact with clinical services prior to adolescence. This raises the question of whether BPF may be clinically informative with respect to the formulation and treatment of childhood psychopathology. BPF in late childhood appear to be highly heritable, while also predicted by environmental risk factors that overlap with those related to both externalizing and internalizing disorders. These risk factors include hostile parenting, maternal insensitivity to infant attachment cues, and early peer victimization, thereby implicating both family and peer processes that play out across early development. Children with BPF appear to be further characterized by social-cognitive factors including social perspective coordination deficits, a shame-prone self-concept, and hypermentalizing, which may represent potential therapeutic targets. Clinical research into the implications of BPF for the treatment of childhood psychopathology is a current priority. It is proposed that the research designs that have contributed to recent evidence for the clinical utility of childhood psychopathic traits may likewise aid in understanding the potential clinical utility of BPF in children.
Gaye, M. M.; Valentine, S. J.; Hu, Y.; Mirjankar, N.; Hammoud, Z. T.; Mechref, Y.; Lavine, B. K.; Clemmer, D. E.
2012-01-01
Three disease phenotypes, Barrett’s esophagus (BE), high-grade dysplasia (HGD), esophageal adenocarcinoma (EAC), and a set of normal control (NC) serum samples are examined using a combination of ion mobility spectrometry (IMS), mass spectrometry (MS) and principal component analysis (PCA) techniques. Samples from a total of 136 individuals were examined, including: 7 characterized as BE, 12 as HGD, 56 as EAC and 61 as NC. In typical datasets it was possible to assign ~20 to 30 glycan ions based on MS measurements. Ion mobility distributions for these ions show multiple features. In some cases, such as the [S1H5N4+3Na]3+ and [S1F1H5N4+3Na]3+ glycan ions, the ratio of intensities of high-mobility features to low-mobility features vary significantly for different groups. The degree to which such variations in mobility profiles can be used to distinguish phenotypes is evaluated for eleven N-linked glycan ions. An outlier analysis on each sample class followed by an unsupervised PCA using a genetic algorithm for pattern recognition reveals that EAC samples are separated from NC samples based on 46 features originating from the 11-glycan composite IMS distribution. PMID:23126309
Hepler, N Lance; Scheffler, Konrad; Weaver, Steven; Murrell, Ben; Richman, Douglas D; Burton, Dennis R; Poignard, Pascal; Smith, Davey M; Kosakovsky Pond, Sergei L
2014-09-01
Since its identification in 1983, HIV-1 has been the focus of a research effort unprecedented in scope and difficulty, whose ultimate goals--a cure and a vaccine--remain elusive. One of the fundamental challenges in accomplishing these goals is the tremendous genetic variability of the virus, with some genes differing at as many as 40% of nucleotide positions among circulating strains. Because of this, the genetic bases of many viral phenotypes, most notably the susceptibility to neutralization by a particular antibody, are difficult to identify computationally. Drawing upon open-source general-purpose machine learning algorithms and libraries, we have developed a software package IDEPI (IDentify EPItopes) for learning genotype-to-phenotype predictive models from sequences with known phenotypes. IDEPI can apply learned models to classify sequences of unknown phenotypes, and also identify specific sequence features which contribute to a particular phenotype. We demonstrate that IDEPI achieves performance similar to or better than that of previously published approaches on four well-studied problems: finding the epitopes of broadly neutralizing antibodies (bNab), determining coreceptor tropism of the virus, identifying compartment-specific genetic signatures of the virus, and deducing drug-resistance associated mutations. The cross-platform Python source code (released under the GPL 3.0 license), documentation, issue tracking, and a pre-configured virtual machine for IDEPI can be found at https://github.com/veg/idepi.
The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease.
Eppig, Janan T; Blake, Judith A; Bult, Carol J; Kadin, James A; Richardson, Joel E
2015-01-01
The Mouse Genome Database (MGD, http://www.informatics.jax.org) serves the international biomedical research community as the central resource for integrated genomic, genetic and biological data on the laboratory mouse. To facilitate use of mouse as a model in translational studies, MGD maintains a core of high-quality curated data and integrates experimentally and computationally generated data sets. MGD maintains a unified catalog of genes and genome features, including functional RNAs, QTL and phenotypic loci. MGD curates and provides functional and phenotype annotations for mouse genes using the Gene Ontology and Mammalian Phenotype Ontology. MGD integrates phenotype data and associates mouse genotypes to human diseases, providing critical mouse-human relationships and access to repositories holding mouse models. MGD is the authoritative source of nomenclature for genes, genome features, alleles and strains following guidelines of the International Committee on Standardized Genetic Nomenclature for Mice. A new addition to MGD, the Human-Mouse: Disease Connection, allows users to explore gene-phenotype-disease relationships between human and mouse. MGD has also updated search paradigms for phenotypic allele attributes, incorporated incidental mutation data, added a module for display and exploration of genes and microRNA interactions and adopted the JBrowse genome browser. MGD resources are freely available to the scientific community. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
[Medicopsychosocial syndrome of polygonosomies (XXX, XXY, XYY, syndromes etc...)].
Benezech, M; Bourgeois, M
1976-01-01
This is an attempt to describe a common syndrom of polygonosomy. Medical, psychological and social incidences of XXX, XXY, XYY, genotypes indicate that these chromosomal aberrations share identical features: phenotypic abnormalities (high stature, dermatoglyphes abnormalities), neuropsychic troubles (neurological symptoms and mental fragility) and antisocial tendancy. One can suppose that at least some polygonosomic persons have a minimal brain dysfunction (or damage), which causes more vulnerability to environnement, deprivation and stress. Relational, educational and socio-economical factors appear now to have a marked role in the etiopathogenesis of these psychiatric troubles. Some forensic and ethical problems of human genetic research are reviewed, such as the so-called "criminal chromosome", supplementary Y chromosome, a myth based upon false and premature scientific assertions.
Melo, Cláudia; Gama-de-Sousa, Susana; Almeida, Filipa; Rendeiro, Paula; Tavares, Purificação; Cardoso, Helena; Carvalho, Sónia
2013-10-15
Cat eye syndrome is a rare congenital disease characterized by the existence of a supernumerary chromosome derived from chromosome 22, with a variable phenotype comprising anal atresia, coloboma of the iris and preauricular tags or pits. We report a girl with cat eye syndrome, presenting short stature, with growth hormone deficiency due to posterior pituitary ectopia. Short stature is a common feature of this syndrome, and the association with a structural pituitary anomaly has been described, however growth hormone deficiency and the underlying mechanisms are rarely reported. A review on short stature and growth hormone deficiency in cat eye syndrome is conducted. © 2013 Elsevier B.V. All rights reserved.
Latent autoimmune diabetes of the adult: current knowledge and uncertainty
Laugesen, E; Østergaard, J A; Leslie, R D G
2015-01-01
Patients with adult-onset autoimmune diabetes have less Human Leucocyte Antigen (HLA)-associated genetic risk and fewer diabetes-associated autoantibodies compared with patients with childhood-onset Type 1 diabetes. Metabolic changes at diagnosis reflect a broad clinical phenotype ranging from diabetic ketoacidosis to mild non-insulin-requiring diabetes, also known as latent autoimmune diabetes of the adult (LADA). This latter phenotype is the most prevalent form of adult-onset autoimmune diabetes and probably the most prevalent form of autoimmune diabetes in general. Although LADA is associated with the same genetic and immunological features as childhood-onset Type 1 diabetes, it also shares some genetic features with Type 2 diabetes, which raises the question of genetic heterogeneity predisposing to this form of the disease. The potential value of screening patients with adult-onset diabetes for diabetes-associated autoantibodies to identify those with LADA is emphasized by their lack of clinically distinct features, their different natural history compared with Type 2 diabetes and their potential need for a dedicated management strategy. The fact that, in some studies, patients with LADA show worse glucose control than patients with Type 2 diabetes, highlights the need for further therapeutic studies. Challenges regarding classification, epidemiology, genetics, metabolism, immunology, clinical presentation and treatment of LADA were discussed at a 2014 workshop arranged by the Danish Diabetes Academy. The presentations and discussions are summarized in this review, which sets out the current ideas and controversies surrounding this form of diabetes. What’s new? Latent autoimmune diabetes of the adult (LADA) is an autoimmune diabetes defined by adult-onset, presence of diabetes associated autoantibodies, and no insulin treatment requirement for a period after diagnosis. Immunologically, glutamic acid decarboxylase 65 autoantibodies are by far the most common autoantibody in adult-onset diabetes. LADA is the most prevalent form of adult-onset autoimmune diabetes and probably the most prevalent form of autoimmune diabetes in general. LADA shares genetic features with both type 1 and type 2 diabetes. Phenotypically, LADA patients are often misdiagnosed as having type 2 diabetes. LADA patients generally have worse HbA1c levels than type 2 diabetes patients. Clinically, LADA patients tend to have a lower mean age at diabetes onset, lower body mass index and more frequent need for insulin treatment than patients with type 2 diabetes. Management of LADA may require a dedicated strategy, yet currently there is a paucity of randomized controlled trial data. PMID:25601320
Aarskog-Scott syndrome: clinical update and report of nine novel mutations of the FGD1 gene.
Orrico, A; Galli, L; Faivre, L; Clayton-Smith, J; Azzarello-Burri, S M; Hertz, J M; Jacquemont, S; Taurisano, R; Arroyo Carrera, I; Tarantino, E; Devriendt, K; Melis, D; Thelle, T; Meinhardt, U; Sorrentino, V
2010-02-01
Mutations in the FGD1 gene have been shown to cause Aarskog-Scott syndrome (AAS), or facio-digito-genital dysplasia (OMIM#305400), an X-linked disorder characterized by distinctive genital and skeletal developmental abnormalities with a broad spectrum of clinical phenotypes. To date, 20 distinct mutations have been reported, but little phenotypic data are available on patients with molecularly confirmed AAS. In the present study, we report on our experience of screening for mutations in the FGD1 gene in a cohort of 60 European patients with a clinically suspected diagnosis of AAS. We identified nine novel mutations in 11 patients (detection rate of 18.33%), including three missense mutations (p.R402Q; p.S558W; p.K748E), four truncating mutations (p.Y530X; p.R656X; c.806delC; c.1620delC), one in-frame deletion (c.2020_2022delGAG) and the first reported splice site mutation (c.1935+3A>C). A recurrent mutation (p.R656X) was detected in three independent families. We did not find any evidence for phenotype-genotype correlations between type and position of mutations and clinical features. In addition to the well-established phenotypic features of AAS, other clinical features are also reported and discussed. Copyright 2010 Wiley-Liss, Inc.
Franke, Andre; Fischer, Annegret; Nothnagel, Michael; Becker, Christian; Grabe, Nils; Till, Andreas; Lu, Tim; Müller-Quernheim, Joachim; Wittig, Michael; Hermann, Alexander; Balschun, Tobias; Hofmann, Sylvia; Niemiec, Regina; Schulz, Sabrina; Hampe, Jochen; Nikolaus, Susanna; Nürnberg, Peter; Krawczak, Michael; Schürmann, Manfred; Rosenstiel, Philip; Nebel, Almut; Schreiber, Stefan
2008-10-01
Crohn's disease (CD) and sarcoidosis (SA) are chronic inflammatory barrier diseases that share several clinical and immunological features, including the occurrence of granulomas. A 100k genome-wide association study with 83,360 single-nucleotide polymorphisms (SNPs) was performed on 382 CD patients, 398 SA patients, and 394 control individuals. The 24 SNPs that were most strongly associated in the combined CD/SA phenotype were selected for verification in an independent sample of 1,317 patients (660 CD and 657 SA) and 1,091 controls. The most significant association (Bonferroni corrected P = .036) was obtained at SNP rs1398024 on chromosome 10p12.2, with an odds ratio (OR) for both diseases of 0.81 (95% confidence interval [CI], 0.69-0.96) for carriership of the rarer allele A. The P value in the overall combined sample was 4.24 x 10(-6). During further follow-up, a moderate association (OR, 0.83; 95% CI, 0.72-0.96; P = .015) was observed between rs1398024 and ulcerative colitis (1,080 patients vs 1,091 controls), the second main subphenotype of inflammatory bowel disease in addition to CD. Extensive fine mapping of the 10p12.2 locus points to yet unidentified variants in the C10ORF67 gene region as the most likely underlying risk factors. Our study demonstrates that the combined analysis of different, albeit clinically related, phenotypes can lead to the identification of common susceptibility loci.
Ogino, Shuji; Kawasaki, Takako; Kirkner, Gregory J.; Loda, Massimo; Fuchs, Charles S.
2006-01-01
The CpG island methylator phenotype (CIMP or CIMP-high) with extensive promoter methylation seems to be a distinct epigenotype of colorectal cancer. However, no study has comprehensively examined features of colorectal cancer with less extensive promoter methylation (designated as “CIMP-low”). Using real-time polymerase chain reaction (MethyLight), we quantified DNA methylation in five CIMP-specific gene promoters [CACNA1G, CDKN2A (p16), CRABP1, MLH1, and NEUROG1] in 840 relatively unbiased, population-based colorectal cancer samples, obtained from two large prospective cohort studies. CIMP-low (defined as 1/5 to 3/5 methylated promoters) colorectal cancers were significantly more common among men (38 versus 30% in women, P = 0.01) and among KRAS-mutated tumors (44 versus 30% in KRAS/BRAF wild-type tumors, P = 0.0003; 19% in BRAF-mutated tumors, P < 0.0001). In addition, KRAS mutations were significantly more common in CIMP-low tumors (47%) than in CIMP-high tumors (with ≥4/5 methylated promoters, 12%, P < 0.0001) and CIMP-0 tumors (with 0/5 methylated promoters, 37%, P = 0.007). The associations of CIMP-low tumors with male sex and KRAS mutations still existed after tumors were stratified by microsatellite instability status. In conclusion, CIMP-low colorectal cancer is associated with male sex and KRAS mutations. The hypothesis that CIMP-low tumors are different from CIMP-high and CIMP-0 tumors needs to be tested further. PMID:17065427
Ogino, Shuji; Kawasaki, Takako; Kirkner, Gregory J; Loda, Massimo; Fuchs, Charles S
2006-11-01
The CpG island methylator phenotype (CIMP or CIMP-high) with extensive promoter methylation seems to be a distinct epigenotype of colorectal cancer. However, no study has comprehensively examined features of colorectal cancer with less extensive promoter methylation (designated as "CIMP-low"). Using real-time polymerase chain reaction (MethyLight), we quantified DNA methylation in five CIMP-specific gene promoters [CACNA1G, CDKN2A (p16), CRABP1, MLH1, and NEUROG1] in 840 relatively unbiased, population-based colorectal cancer samples, obtained from two large prospective cohort studies. CIMP-low (defined as 1/5 to 3/5 methylated promoters) colorectal cancers were significantly more common among men (38 versus 30% in women, P = 0.01) and among KRAS-mutated tumors (44 versus 30% in KRAS/BRAF wild-type tumors, P = 0.0003; 19% in BRAF-mutated tumors, P < 0.0001). In addition, KRAS mutations were significantly more common in CIMP-low tumors (47%) than in CIMP-high tumors (with > or =4/5 methylated promoters, 12%, P < 0.0001) and CIMP-0 tumors (with 0/5 methylated promoters, 37%, P = 0.007). The associations of CIMP-low tumors with male sex and KRAS mutations still existed after tumors were stratified by microsatellite instability status. In conclusion, CIMP-low colorectal cancer is associated with male sex and KRAS mutations. The hypothesis that CIMP-low tumors are different from CIMP-high and CIMP-0 tumors needs to be tested further.
Anikieva, L V; Kharin, V N; Spektor, E N
2004-01-01
Polymorphism and phenotypic diversity of a hostal ecoform of Proteocephalus longicollis from its typical host, the vendace, Coregonus albula L., were studied. A complex phenotypic structure of the parasite population and presence of morphologically different groupings were revealed. We distinguished four groupings based on the external characters and three groupings based on the feed and reproduction features; among latter groupings one has very specific variations of features. We conclude that P. longicollis has high intraspecific and intrapopulation heterogeneity, and the host plays a stabilising role in the parasite species formation.
Parkinson's Disease Subtypes in the Oxford Parkinson Disease Centre (OPDC) Discovery Cohort.
Lawton, Michael; Baig, Fahd; Rolinski, Michal; Ruffman, Claudio; Nithi, Kannan; May, Margaret T; Ben-Shlomo, Yoav; Hu, Michele T M
2015-01-01
Within Parkinson's there is a spectrum of clinical features at presentation which may represent sub-types of the disease. However there is no widely accepted consensus of how best to group patients. Use a data-driven approach to unravel any heterogeneity in the Parkinson's phenotype in a well-characterised, population-based incidence cohort. 769 consecutive patients, with mean disease duration of 1.3 years, were assessed using a broad range of motor, cognitive and non-motor metrics. Multiple imputation was carried out using the chained equations approach to deal with missing data. We used an exploratory and then a confirmatory factor analysis to determine suitable domains to include within our cluster analysis. K-means cluster analysis of the factor scores and all the variables not loading into a factor was used to determine phenotypic subgroups. Our factor analysis found three important factors that were characterised by: psychological well-being features; non-tremor motor features, such as posture and rigidity; and cognitive features. Our subsequent five cluster model identified groups characterised by (1) mild motor and non-motor disease (25.4%), (2) poor posture and cognition (23.3%), (3) severe tremor (20.8%), (4) poor psychological well-being, RBD and sleep (18.9%), and (5) severe motor and non-motor disease with poor psychological well-being (11.7%). Our approach identified several Parkinson's phenotypic sub-groups driven by largely dopaminergic-resistant features (RBD, impaired cognition and posture, poor psychological well-being) that, in addition to dopaminergic-responsive motor features may be important for studying the aetiology, progression, and medication response of early Parkinson's.
Genetic neurological channelopathies: molecular genetics and clinical phenotypes.
Spillane, J; Kullmann, D M; Hanna, M G
2016-01-01
Evidence accumulated over recent years has shown that genetic neurological channelopathies can cause many different neurological diseases. Presentations relating to the brain, spinal cord, peripheral nerve or muscle mean that channelopathies can impact on almost any area of neurological practice. Typically, neurological channelopathies are inherited in an autosomal dominant fashion and cause paroxysmal disturbances of neurological function, although the impairment of function can become fixed with time. These disorders are individually rare, but an accurate diagnosis is important as it has genetic counselling and often treatment implications. Furthermore, the study of less common ion channel mutation-related diseases has increased our understanding of pathomechanisms that is relevant to common neurological diseases such as migraine and epilepsy. Here, we review the molecular genetic and clinical features of inherited neurological channelopathies. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Practical guidelines for familial combined hyperlipidemia diagnosis: an up-date
Gaddi, Antonio; Cicero, AFG; Odoo, FO; Poli A, A; Paoletti, R
2007-01-01
Familial combined hyperlidemia (FCH) is a common metabolic disorder characterized by: (a) increase in cholesterolemia and/or triglyceridemia in at least two members of the same family, (b) intra-individual and intrafamilial variability of the lipid phenotype, and (c) increased risk of premature coronary heart disease (CHD). FCH is very frequent and is one of the most common genetic hyperlipidemias in the general population (prevalence estimated: 0.5%–2.0%), being the most frequent in patients affected by CHD (10%) and among acute myocardial infarction survivors aged less than 60 (11.3%). This percentage increases to 40% when all the myocardial infarction survivors are considered without age limits. However, because of the peculiar variability of laboratory parameters, and because of the frequent overlapping with the features of metabolic syndrome, this serious disease is often not recognized and treated. The aim of this review is to define the main characteristics of the disease in order to simplify its detection and early treatment by all physicians by mean of practical guidelines. PMID:18200807
Practical guidelines for familial combined hyperlipidemia diagnosis: an up-date.
Gaddi, Antonio; Cicero, A F G; Odoo, F O; Poli, A A; Paoletti, R
2007-01-01
Familial combined hyperlidemia (FCH) is a common metabolic disorder characterized by: (a) increase in cholesterolemia and/or triglyceridemia in at least two members of the same family, (b) intra-individual and intrafamilial variability of the lipid phenotype, and (c) increased risk of premature coronary heart disease (CHD). FCH is very frequent and is one of the most common genetic hyperlipidemias in the general population (prevalence estimated: 0.5%-2.0%), being the most frequent in patients affected by CHD (10%) and among acute myocardial infarction survivors aged less than 60 (11.3%). This percentage increases to 40% when all the myocardial infarction survivors are considered without age limits. However, because of the peculiar variability of laboratory parameters, and because of the frequent overlapping with the features of metabolic syndrome, this serious disease is often not recognized and treated. The aim of this review is to define the main characteristics of the disease in order to simplify its detection and early treatment by all physicians by mean of practical guidelines.
Mild Cognitive Impairment in Parkinson's Disease-What Is It?
Weil, Rimona S; Costantini, Alyssa A; Schrag, Anette E
2018-03-10
Mild cognitive impairment is a common feature of Parkinson's disease, even at the earliest disease stages, but there is variation in the nature and severity of cognitive involvement and in the risk of conversion to Parkinson's disease dementia. This review aims to summarise current understanding of mild cognitive impairment in Parkinson's disease. We consider the presentation, rate of conversion to dementia, underlying pathophysiology and potential biomarkers of mild cognitive impairment in Parkinson's disease. Finally, we discuss challenges and controversies of mild cognitive impairment in Parkinson's disease. Large-scale longitudinal studies have shown that cognitive involvement is important and common in Parkinson's disease and can present early in the disease course. Recent criteria for mild cognitive impairment in Parkinson's provide the basis for further study of cognitive decline and for the progression of different cognitive phenotypes and risk of conversion to dementia. Improved understanding of the underlying pathology and progression of cognitive change are likely to lead to opportunities for early intervention for this important aspect of Parkinson's disease.
Early constraints in sexual dimorphism: survival benefits of feminized phenotypes.
López-Rull, I; Vergara, P; Martínez-Padilla, J; Fargallo, J A
2016-02-01
Sexual dimorphism (SD) has evolved in response to selection pressures that differ between sexes. Since such pressures change across an individual's life, SD may vary within age classes. Yet, little is known about how selection on early phenotypes may drive the final SD observed in adults. In many dimorphic species, juveniles resemble adult females rather than adult males, meaning that out of the selective pressures established by sexual selection feminized phenotypes may be adaptive. If true, fitness benefits of early female-like phenotypes may constrain the expression of male phenotypes in adulthood. Using the common kestrel Falco tinnunculus as a study model, we evaluated the fitness advantages of expressing more feminized phenotypes at youth. Although more similar to adult females than to adult males, common kestrel fledglings are still sexually dimorphic in size and coloration. Integrating morphological and chromatic variables, we analysed the phenotypic divergence between sexes as a measure of how much each individual looks like the sex to which it belongs (phenotypic sexual resemblance, PSR). We then tested the fitness benefits associated with PSR by means of the probability of recruitment in the population. We found a significant interaction between PSR and sex, showing that in both sexes more feminized phenotypes recruited more into the population than less feminized phenotypes. Moreover, males showed lower PSR than females and a higher proportion of incorrect sex classifications. These findings suggest that the mechanisms in males devoted to resembling female phenotypes in youth, due to a trend to increase fitness through more feminized phenotypes, may provide a mechanism to constrain the SD in adulthood. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Canafoglia, Laura; Gennaro, Elena; Capovilla, Giuseppe; Gobbi, Giuseppe; Boni, Antonella; Beccaria, Francesca; Viri, Maurizio; Michelucci, Roberto; Agazzi, Pamela; Assereto, Stefania; Coviello, Domenico A; Di Stefano, Maria; Rossi Sebastiano, Davide; Franceschetti, Silvana; Zara, Federico
2012-12-01
Unverricht-Lundborg disease (EPM1A) is frequently due to an unstable expansion of a dodecamer repeat in the CSTB gene, whereas other types of mutations are rare. EPM1A due to homozygous expansion has a rather stereotyped presentation with prominent action myoclonus. We describe eight patients with five different compound heterozygous CSTB point or indel mutations in order to highlight their particular phenotypical presentations and evaluate their genotype-phenotype relationships. We screened CSTB mutations by means of Southern blotting and the sequencing of the genomic DNA of each proband. CSTB messenger RNA (mRNA) aberrations were characterized by sequencing the complementary DNA (cDNA) of lymphoblastoid cells, and assessing the protein concentrations in the lymphoblasts. The patient evaluations included the use of a simplified myoclonus severity rating scale, multiple neurophysiologic tests, and electroencephalography (EEG)-polygraphic recordings. To highlight the particular clinical features and disease time-course in compound heterozygous patients, we compared some of their characteristics with those observed in a series of 40 patients carrying the common homozygous expansion mutation observed at the C. Besta Foundation, Milan, Italy. The eight compound heterozygous patients belong to six EPM1A families (out of 52; 11.5%) diagnosed at the Laboratory of Genetics of the Galliera Hospitals in Genoa, Italy. They segregated five different heterozygous point or indel mutations in association with the common dodecamer expansion. Four patients from three families had previously reported CSTB mutations (c.67-1G>C and c.168+1_18del); one had a novel nonsense mutation at the first exon (c.133C>T) leading to a premature stop codon predicting a short peptide; the other three patients from two families had a complex novel indel mutation involving the donor splice site of intron 2 (c.168+2_169+21delinsAA) and leading to an aberrant transcript with a partially retained intron. The protein dose (cystatin B/β-actin) in our heterozygous patients was 0.24 ± 0.02, which is not different from that assessed in patients bearing the homozygous dodecamer expansion. The compound heterozygous patients had a significantly earlier disease onset (7.4 ± 1.7 years) than the homozygous patients, and their disease presentations included frequent myoclonic seizures and absences, often occurring in clusters throughout the course of the disease. The seizures were resistant to the pharmacologic treatments that usually lead to complete seizure control in homozygous patients. EEG-polygraphy allowed repeated seizures to be recorded. Action myoclonus progressively worsened and all of the heterozygous patients older than 30 years were in wheelchairs. Most of the patients showed moderate to severe cognitive impairment, and six had psychiatric symptoms. EPM1A due to compound heterozygous CSTB mutations presents with variable but often markedly severe and particular phenotypes. Most of our patients presented with the electroclinical features of severe epilepsy, which is unexpected in homozygous patients, and showed frequent seizures resistant to pharmacologic treatment. The presence of variable phenotypes (even in siblings) suggests interactions with other genetic factors influencing the final disease presentation. Wiley Periodicals, Inc. © 2012 International League Against Epilepsy.
Common genetic variation drives molecular heterogeneity in human iPSCs.
Kilpinen, Helena; Goncalves, Angela; Leha, Andreas; Afzal, Vackar; Alasoo, Kaur; Ashford, Sofie; Bala, Sendu; Bensaddek, Dalila; Casale, Francesco Paolo; Culley, Oliver J; Danecek, Petr; Faulconbridge, Adam; Harrison, Peter W; Kathuria, Annie; McCarthy, Davis; McCarthy, Shane A; Meleckyte, Ruta; Memari, Yasin; Moens, Nathalie; Soares, Filipa; Mann, Alice; Streeter, Ian; Agu, Chukwuma A; Alderton, Alex; Nelson, Rachel; Harper, Sarah; Patel, Minal; White, Alistair; Patel, Sharad R; Clarke, Laura; Halai, Reena; Kirton, Christopher M; Kolb-Kokocinski, Anja; Beales, Philip; Birney, Ewan; Danovi, Davide; Lamond, Angus I; Ouwehand, Willem H; Vallier, Ludovic; Watt, Fiona M; Durbin, Richard; Stegle, Oliver; Gaffney, Daniel J
2017-06-15
Technology utilizing human induced pluripotent stem cells (iPS cells) has enormous potential to provide improved cellular models of human disease. However, variable genetic and phenotypic characterization of many existing iPS cell lines limits their potential use for research and therapy. Here we describe the systematic generation, genotyping and phenotyping of 711 iPS cell lines derived from 301 healthy individuals by the Human Induced Pluripotent Stem Cells Initiative. Our study outlines the major sources of genetic and phenotypic variation in iPS cells and establishes their suitability as models of complex human traits and cancer. Through genome-wide profiling we find that 5-46% of the variation in different iPS cell phenotypes, including differentiation capacity and cellular morphology, arises from differences between individuals. Additionally, we assess the phenotypic consequences of genomic copy-number alterations that are repeatedly observed in iPS cells. In addition, we present a comprehensive map of common regulatory variants affecting the transcriptome of human pluripotent cells.
Common genetic variation drives molecular heterogeneity in human iPSCs
Leha, Andreas; Afzal, Vackar; Alasoo, Kaur; Ashford, Sofie; Bala, Sendu; Bensaddek, Dalila; Casale, Francesco Paolo; Culley, Oliver J; Danecek, Petr; Faulconbridge, Adam; Harrison, Peter W; Kathuria, Annie; McCarthy, Davis; McCarthy, Shane A; Meleckyte, Ruta; Memari, Yasin; Moens, Nathalie; Soares, Filipa; Mann, Alice; Streeter, Ian; Agu, Chukwuma A; Alderton, Alex; Nelson, Rachel; Harper, Sarah; Patel, Minal; White, Alistair; Patel, Sharad R; Clarke, Laura; Halai, Reena; Kirton, Christopher M; Kolb-Kokocinski, Anja; Beales, Philip; Birney, Ewan; Danovi, Davide; Lamond, Angus I; Ouwehand, Willem H; Vallier, Ludovic; Watt, Fiona M; Durbin, Richard
2017-01-01
Induced pluripotent stem cell (iPSC) technology has enormous potential to provide improved cellular models of human disease. However, variable genetic and phenotypic characterisation of many existing iPSC lines limits their potential use for research and therapy. Here, we describe the systematic generation, genotyping and phenotyping of 711 iPSC lines derived from 301 healthy individuals by the Human Induced Pluripotent Stem Cells Initiative (HipSci: http://www.hipsci.org). Our study outlines the major sources of genetic and phenotypic variation in iPSCs and establishes their suitability as models of complex human traits and cancer. Through genome-wide profiling we find that 5-46% of the variation in different iPSC phenotypes, including differentiation capacity and cellular morphology, arises from differences between individuals. Additionally, we assess the phenotypic consequences of rare, genomic copy number mutations that are repeatedly observed in iPSC reprogramming and present a comprehensive map of common regulatory variants affecting the transcriptome of human pluripotent cells. PMID:28489815
Multiple Natural and Experimental Inflammatory Rabbit Lacrimal Gland Phenotypes
Mircheff, Austin K.; Wang, Yanru; Schechter, Joel E.; Li, Meng; Tong, Warren; Attar, Mayssa; Chengalvala, Murty; Harmuth, Joe; Prusakiewicz, Jeffery J.
2016-01-01
Purpose To investigate lacrimal gland (LG) immunophysiological and immune-mediated inflammatory process (IMIP) phenotype diversity. Methods Ex vivo matured dendritic cells (mDC) were loaded with acinar cell microparticles (MP). Peripheral blood lymphocytes (PBL) were activated in mixed cell reactions with mDC and injected directly into autologous, unilateral LG (1° ATD-LG) of two rabbit cohorts, one naïve, one immunized with a LG lysate membrane fraction (Pi). Autoimmune IgG titers were assayed by ELISA, MCR PBL stimulation indices (SI) by [3H]-thymidine incorporation. Schirmer tests without and with topical anesthetic (STT-I, STT-IA) and rose Bengal (RB) staining tests were performed. H&E and immunohistochemically stained sections were examined. RNA yields and selected transcript abundances were measured. Immune cell number and transcript abundance data were submitted to Principal Component Analysis (PCA). Results Immunizing Pi dose influenced SI but not IgG titers. STT scores were decreased, and rose Bengal scores increased, by day 118 after immunization. Previous immunization exacerbated scores in 1° ATD-eyes and exacerbated 1° ATD-LG atrophy. IMIP were evident in 2° ATD-LG as well as 1° ATD-LG. PCA described diverse immunophysiological phenotypes in control LG and diverse IMIP phenotypes in ATD-LG. IgG titers and SI pre-adoptive transfer were significantly associated with certain post-adoptive transfer IMIP phenotype features, and certain LG IMIP features were significantly associated with RB and STT IA scores. Conclusions The underlying variability of normal states may contribute to the diversity of experimental IMIP phenotypes. The ability to generate and characterize diverse phenotypes may lead to phenotype-specific diagnostic and therapeutic paradigms. PMID:27423911
Correlates across the Structural, Functional, and Molecular Phenotypes of Fragile X Syndrome
ERIC Educational Resources Information Center
Beckel-Mitchener, Andrea; Greenough, William T.
2004-01-01
Fragile X syndrome (FXS) is characterized by a pattern of morphological, functional, and molecular characteristics with, in at least some cases, apparent relationships among phenotypic features at different levels. Gross morphology differences in the sizes of some human brain regions are accompanied by fine structural alterations in the shapes and…
O'Rawe, Jason A; Wu, Yiyang; Dörfel, Max J; Rope, Alan F; Au, P Y Billie; Parboosingh, Jillian S; Moon, Sungjin; Kousi, Maria; Kosma, Konstantina; Smith, Christopher S; Tzetis, Maria; Schuette, Jane L; Hufnagel, Robert B; Prada, Carlos E; Martinez, Francisco; Orellana, Carmen; Crain, Jonathan; Caro-Llopis, Alfonso; Oltra, Silvestre; Monfort, Sandra; Jiménez-Barrón, Laura T; Swensen, Jeffrey; Ellingwood, Sara; Smith, Rosemarie; Fang, Han; Ospina, Sandra; Stegmann, Sander; Den Hollander, Nicolette; Mittelman, David; Highnam, Gareth; Robison, Reid; Yang, Edward; Faivre, Laurence; Roubertie, Agathe; Rivière, Jean-Baptiste; Monaghan, Kristin G; Wang, Kai; Davis, Erica E; Katsanis, Nicholas; Kalscheuer, Vera M; Wang, Edith H; Metcalfe, Kay; Kleefstra, Tjitske; Innes, A Micheil; Kitsiou-Tzeli, Sophia; Rosello, Monica; Keegan, Catherine E; Lyon, Gholson J
2015-12-03
We describe an X-linked genetic syndrome associated with mutations in TAF1 and manifesting with global developmental delay, intellectual disability (ID), characteristic facial dysmorphology, generalized hypotonia, and variable neurologic features, all in male individuals. Simultaneous studies using diverse strategies led to the identification of nine families with overlapping clinical presentations and affected by de novo or maternally inherited single-nucleotide changes. Two additional families harboring large duplications involving TAF1 were also found to share phenotypic overlap with the probands harboring single-nucleotide changes, but they also demonstrated a severe neurodegeneration phenotype. Functional analysis with RNA-seq for one of the families suggested that the phenotype is associated with downregulation of a set of genes notably enriched with genes regulated by E-box proteins. In addition, knockdown and mutant studies of this gene in zebrafish have shown a quantifiable, albeit small, effect on a neuronal phenotype. Our results suggest that mutations in TAF1 play a critical role in the development of this X-linked ID syndrome. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Burnside, Rachel D; Pasion, Romela; Mikhail, Fady M; Carroll, Andrew J; Robin, Nathaniel H; Youngs, Erin L; Gadi, Inder K; Keitges, Elizabeth; Jaswaney, Vikram L; Papenhausen, Peter R; Potluri, Venkateswara R; Risheg, Hiba; Rush, Brooke; Smith, Janice L; Schwartz, Stuart; Tepperberg, James H; Butler, Merlin G
2011-10-01
The proximal long arm of chromosome 15 has segmental duplications located at breakpoints BP1-BP5 that mediate the generation of NAHR-related microdeletions and microduplications. The classical Prader-Willi/Angelman syndrome deletion is flanked by either of the proximal BP1 or BP2 breakpoints and the distal BP3 breakpoint. The larger Type I deletions are flanked by BP1 and BP3 in both Prader-Willi and Angelman syndrome subjects. Those with this deletion are reported to have a more severe phenotype than individuals with either Type II deletions (BP2-BP3) or uniparental disomy 15. The BP1-BP2 region spans approximately 500 kb and contains four evolutionarily conserved genes that are not imprinted. Reports of mutations or disturbed expression of these genes appear to impact behavioral and neurological function in affected individuals. Recently, reports of deletions and duplications flanked by BP1 and BP2 suggest an association with speech and motor delays, behavioral problems, seizures, and autism. We present a large cohort of subjects with copy number alteration of BP1 to BP2 with common phenotypic features. These include autism, developmental delay, motor and language delays, and behavioral problems, which were present in both cytogenetic groups. Parental studies demonstrated phenotypically normal carriers in several instances, and mildly affected carriers in others, complicating phenotypic association and/or causality. Possible explanations for these results include reduced penetrance, altered gene dosage on a particular genetic background, or a susceptibility region as reported for other areas of the genome implicated in autism and behavior disturbances.
The Phenotypic Spectrum of DYT24 Due to ANO3 Mutations
Stamelou, Maria; Charlesworth, Gavin; Cordivari, Carla; Schneider, Susanne A; Kägi, Georg; Sheerin, Una-Marie; Rubio-Agusti, Ignacio; Batla, Amit; Houlden, Henry; Wood, Nicholas W; Bhatia, Kailash P
2014-01-01
Genes causing primary dystonia are rare. Recently, pathogenic mutations in the anoctamin 3 gene (ANO3) have been identified to cause autosomal dominant craniocervical dystonia and have been assigned to the dystonia locus dystonia-24 (DYT24). Here, we expand on the phenotypic spectrum of DYT24 and provide demonstrative videos. Moreover, tremor recordings were performed, and back-averaged electroencephalography, sensory evoked potentials, and C-reflex studies were carried out in two individuals who carried two different mutations in ANO3. Ten patients from three families are described. The age at onset ranged from early childhood to the forties. Cervical dystonia was the most common site of onset followed by laryngeal dystonia. The characteristic feature in all affected individuals was the presence of tremor, which contrasts DYT24 from the typical DYT6 phenotype. Tremor was the sole initial manifestation in some individuals with ANO3 mutations, leading to misdiagnosis as essential tremor. Electrophysiology in two patients with two different mutations showed co-contraction of antagonist muscles, confirming dystonia, and a 6-Hz arm tremor at rest, which increased in amplitude during action. In one of the studied patients, clinically superimposed myoclonus was observed. The duration of the myoclonus was in the range of 250 msec at about 3 Hz, which is more consistent with subcortical myoclonus. In summary, ANO3 causes a varied phenotype of young-onset or adult-onset craniocervical dystonia with tremor and/or myoclonic jerks. Patients with familial cervical dystonia who also have myoclonus-dystonia as well as patients with prominent tremor and mild dystonia should be tested for ANO3 mutations. © 2014 The Authors. Movement Disorders published by International Parkinson and Movement Disorder Society PMID:24442708
Dystonia: an update on phenomenology, classification, pathogenesis and treatment.
Balint, Bettina; Bhatia, Kailash P
2014-08-01
This article will highlight recent advances in dystonia with focus on clinical aspects such as the new classification, syndromic approach, new gene discoveries and genotype-phenotype correlations. Broadening of phenotype of some of the previously described hereditary dystonias and environmental risk factors and trends in treatment will be covered. Based on phenomenology, a new consensus update on the definition, phenomenology and classification of dystonia and a syndromic approach to guide diagnosis have been proposed. Terminology has changed and 'isolated dystonia' is used wherein dystonia is the only motor feature apart from tremor, and the previously called heredodegenerative dystonias and dystonia plus syndromes are now subsumed under 'combined dystonia'. The recently discovered genes ANO3, GNAL and CIZ1 appear not to be a common cause of adult-onset cervical dystonia. Clinical and genetic heterogeneity underlie myoclonus-dystonia, dopa-responsive dystonia and deafness-dystonia syndrome. ALS2 gene mutations are a newly recognized cause for combined dystonia. The phenotypic and genotypic spectra of ATP1A3 mutations have considerably broadened. Two new genome-wide association studies identified new candidate genes. A retrospective analysis suggested complicated vaginal delivery as a modifying risk factor in DYT1. Recent studies confirm lasting therapeutic effects of deep brain stimulation in isolated dystonia, good treatment response in myoclonus-dystonia, and suggest that early treatment correlates with a better outcome. Phenotypic classification continues to be important to recognize particular forms of dystonia and this includes syndromic associations. There are a number of genes underlying isolated or combined dystonia and there will be further new discoveries with the advances in genetic technologies such as exome and whole-genome sequencing. The identification of new genes will facilitate better elucidation of pathogenetic mechanisms and possible corrective therapies.
Yan, Qiongqiong; Wang, Juan; Gangiredla, Jayanthi; Cao, Yu; Martins, Marta; Gopinath, Gopal R.; Stephan, Roger; Lampel, Keith; Tall, Ben D.
2015-01-01
Cronobacter species are opportunistic pathogens commonly found in the environment. Among the seven Cronobacter species, Cronobacter sakazakii sequence type 4 (ST-4) is predominantly associated with recorded cases of infantile meningitis. This study reports on a 26-month powdered infant formula (PIF) surveillance program in four production facilities located in distinct geographic regions. The objective was to identify the ST(s) in PIF production environments and to investigate the phenotypic features that support their survival. Of all 168 Cronobacter isolates, 133 were recovered from a PIF production environment, 31 were of clinical origin, and 4 were laboratory type strains. Sequence type 1 (n = 84 isolates; 63.9%) was the dominant type in PIF production environments. The majority of these isolates clustered with an indistinguishable pulsotype and persisted for at least an 18-month period. Moreover, DNA microarray results identified two phylogenetic lineages among ST-4 strains tested. Thereafter, the ST-1 and -4 isolates were phenotypically compared. Differences were noted based on the phenotypes expressed by these isolates. The ST-1 PIF isolates produced stronger biofilms at both 28°C and 37°C, while the ST-4 clinical isolates exhibited greater swimming activity and increased binding to Congo red dye. Given the fact that PIF is a low-moisture environment and that the clinical environment provides for an interaction between the pathogen and its host, these differences may be consistent with a form of pathoadaptation. These findings help to extend our current understanding of the epidemiology and ecology of Cronobacter species in PIF production environments. PMID:25911470
Trender-Gerhard, I; Sweeney, M G; Schwingenschuh, P; Mir, P; Edwards, M J; Gerhard, A; Polke, J M; Hanna, M G; Davis, M B; Wood, N W; Bhatia, K P
2009-08-01
An autosomal dominantly inherited defect in the GCH1 gene that encodes guanosine triphosphate cyclohydrolase 1 (GTPCH1) is the most common cause of dopa-responsive dystonia (DRD). A classic phenotype of young-onset lower-limb dystonia, diurnal fluctuations and excellent response to levodopa has been well recognised in association with GCH1 mutations, and rare atypical presentations have been reported. However, a number of clinical issues remain unresolved including phenotypic variability, long-term response to levodopa and associated non-motor symptoms, and there are limited data on long-term follow-up of genetically proven cases. A detailed clinical evaluation of 34 patients (19 women, 15 men), with confirmed mutations in the GCH1 gene, is presented. The classic phenotype was most frequent (n = 23), with female predominance (F:M = 16:7), and early onset (mean 4.5 years) with involvement of legs. However, a surprisingly large number of patients developed craniocervical dystonia, with spasmodic dysphonia being the predominant symptom in two subjects. A subset of patients, mainly men, presented with either a young-onset (mean 6.8 years) mild DRD variant not requiring treatment (n = 4), or with an adult-onset (mean 37 years) Parkinson disease-like phenotype (n = 4). Two siblings were severely affected with early hypotonia and delay in motor development, associated with compound heterozygous GCH1 gene mutations. The study also describes a number of supplementary features including restless-legs-like symptoms, influence of female sex hormones, predominance of tremor or parkinsonism in adult-onset cases, initial reverse reaction to levodopa, recurrent episodes of depressive disorder and specific levodopa-resistant symptoms (writer's cramp, dysphonia, truncal dystonia). Levodopa was used effectively and safely in 20 pregnancies, and did not cause any fetal abnormalities.
AGAPE (Automated Genome Analysis PipelinE) for Pan-Genome Analysis of Saccharomyces cerevisiae
Song, Giltae; Dickins, Benjamin J. A.; Demeter, Janos; Engel, Stacia; Dunn, Barbara; Cherry, J. Michael
2015-01-01
The characterization and public release of genome sequences from thousands of organisms is expanding the scope for genetic variation studies. However, understanding the phenotypic consequences of genetic variation remains a challenge in eukaryotes due to the complexity of the genotype-phenotype map. One approach to this is the intensive study of model systems for which diverse sources of information can be accumulated and integrated. Saccharomyces cerevisiae is an extensively studied model organism, with well-known protein functions and thoroughly curated phenotype data. To develop and expand the available resources linking genomic variation with function in yeast, we aim to model the pan-genome of S. cerevisiae. To initiate the yeast pan-genome, we newly sequenced or re-sequenced the genomes of 25 strains that are commonly used in the yeast research community using advanced sequencing technology at high quality. We also developed a pipeline for automated pan-genome analysis, which integrates the steps of assembly, annotation, and variation calling. To assign strain-specific functional annotations, we identified genes that were not present in the reference genome. We classified these according to their presence or absence across strains and characterized each group of genes with known functional and phenotypic features. The functional roles of novel genes not found in the reference genome and associated with strains or groups of strains appear to be consistent with anticipated adaptations in specific lineages. As more S. cerevisiae strain genomes are released, our analysis can be used to collate genome data and relate it to lineage-specific patterns of genome evolution. Our new tool set will enhance our understanding of genomic and functional evolution in S. cerevisiae, and will be available to the yeast genetics and molecular biology community. PMID:25781462
Klaassens, Merel; Morrogh, Deborah; Rosser, Elisabeth M; Jaffer, Fatima; Vreeburg, Maaike; Bok, Levinus A; Segboer, Tim; van Belzen, Martine; Quinlivan, Ros M; Kumar, Ajith; Hurst, Jane A; Scott, Richard H
2015-05-01
De novo monoallelic variants in NFIX cause two distinct syndromes. Whole gene deletions, nonsense variants and missense variants affecting the DNA-binding domain have been seen in association with a Sotos-like phenotype that we propose is referred to as Malan syndrome. Frameshift and splice-site variants thought to avoid nonsense-mediated RNA decay have been seen in Marshall-Smith syndrome. We report six additional patients with Malan syndrome and de novo NFIX deletions or sequence variants and review the 20 patients now reported. The phenotype is characterised by moderate postnatal overgrowth and macrocephaly. Median height and head circumference in childhood are 2.0 and 2.3 standard deviations (SD) above the mean, respectively. There is overlap of the facial phenotype with NSD1-positive Sotos syndrome in some cases including a prominent forehead, high anterior hairline, downslanting palpebral fissures and prominent chin. Neonatal feeding difficulties and/or hypotonia have been reported in 30% of patients. Developmental delay/learning disability have been reported in all cases and are typically moderate. Ocular phenotypes are common, including strabismus (65%), nystagmus (25% ) and optic disc pallor/hypoplasia (25%). Other recurrent features include pectus excavatum (40%) and scoliosis (25%). Eight reported patients have a deletion also encompassing CACNA1A, haploinsufficiency of which causes episodic ataxia type 2 or familial hemiplegic migraine. One previous case had episodic ataxia and one case we report has had cyclical vomiting responsive to pizotifen. In individuals with this contiguous gene deletion syndrome, awareness of possible later neurological manifestations is important, although their penetrance is not yet clear.
Exosomes derived from mesenchymal non-small cell lung cancer cells promote chemoresistance.
Lobb, Richard J; van Amerongen, Rosa; Wiegmans, Adrian; Ham, Sunyoung; Larsen, Jill E; Möller, Andreas
2017-08-01
Non-small cell lung cancer (NSCLC) is the most common lung cancer type and the most common cause of mortality in lung cancer patients. NSCLC is often associated with resistance to chemotherapeutics and together with rapid metastatic spread, results in limited treatment options and poor patient survival. NSCLCs are heterogeneous, and consist of epithelial and mesenchymal NSCLC cells. Mesenchymal NSCLC cells are thought to be responsible for the chemoresistance phenotype, but if and how this phenotype can be transferred to other NSCLC cells is currently not known. We hypothesised that small extracellular vesicles, exosomes, secreted by mesenchymal NSCLC cells could potentially transfer the chemoresistance phenotype to surrounding epithelial NSCLC cells. To explore this possibility, we used a unique human bronchial epithelial cell (HBEC) model in which the parental cells were transformed from an epithelial to mesenchymal phenotype by introducing oncogenic alterations common in NSCLC. We found that exosomes derived from the oncogenically transformed, mesenchymal HBECs could transfer chemoresistance to the parental, epithelial HBECs and increase ZEB1 mRNA, a master EMT transcription factor, in the recipient cells. Additionally, we demonstrate that exosomes from mesenchymal, but not epithelial HBECs contain the ZEB1 mRNA, thereby providing a potential mechanism for the induction of a mesenchymal phenotype in recipient cells. Together, this work demonstrates for the first time that exosomes derived from mesenchymal, oncogenically transformed lung cells can transfer chemoresistance and mesenchymal phenotypes to recipient cells, likely via the transfer of ZEB1 mRNA in exosomes. © 2017 UICC.
PCOS remains a diagnosis of exclusion: a concise review of key endocrinopathies to exclude.
Kyritsi, Eleni Magdalini; Dimitriadis, George K; Kyrou, Ioannis; Kaltsas, Gregory; Randeva, Harpal S
2017-01-01
Polycystic ovarian syndrome (PCOS) is a heterogenous disorder associated with clinical, endocrine and ultrasonographic features that can also be encountered in a number of other diseases. It has traditionally been suggested that prolactin excess, enzymatic steroidogenic abnormalities and thyroid disorders need to be excluded before a diagnosis of PCOS is made. However, there is paucity of data regarding the prevalence of PCOS phenotype in some of these disorders, whereas other endocrine diseases that exhibit PCOS-like features may elude diagnosis and proper management if not considered. This article reviews the data of currently included entities that exhibit a PCOS phenotype and those that potentially need to be looked for, and attempts to identify specific features that distinguish them from idiopathic PCOS. © 2016 John Wiley & Sons Ltd.
Phenotypic features of the domestic pigs bred in the Roman settlements of Pompeii and Caralis.
Manca, Paolo; Farina, Vittorio; Gadau, Sergio; Lepore, Gianluca; Genovese, Angelo; Zedda, Marco
2004-01-01
A reconstruction of the morphological features of domestic pigs from two Roman settlements is here suggested by means of the study of skeletal and dental remains, with the aim at evaluating their degree of selection in comparison with wild boars. Material was formed by 111 bone and tooth fragments and was uncovered during the excavations of Polybius' House in Pompeii and of Roman buildings in the neighbourhood of Caralis harbour (Sardinia). The remains underwent morphological examination. The eruption of permanent teeth and ossification of epiphyseal cartilages let us establish that most animals were over 18-20 months. When possible, the determination of sex was made by detecting tusk features. The presence of anthropic signs on the bone surface provides some information about slaughtering and cooking procedure in the Roman period and supports the hypothesis that the animal remnants were food remains. Osteometric analysis was carried out on long and short bones and teeth through suitable multiplicative parameters, leading to the assessment of the withers height and other main phenotypic features. Logarithmic deviation pointed out the significant osteometric differences between the domestic pigs from the two Roman settlements. These data were also compared with those from wild boars and modern crossbred wild boars X non-selected pigs. In conclusion, our data show that pigs from Caralis bear much resemblance to wild boars, whereas those from Pompeii appear to be improved, so sharing some phenotypic features of modem improved breeds.
Novel Myopia Genes and Pathways Identified From Syndromic Forms of Myopia
Loughman, James; Wildsoet, Christine F.; Williams, Cathy; Guggenheim, Jeremy A.
2018-01-01
Purpose To test the hypothesis that genes known to cause clinical syndromes featuring myopia also harbor polymorphisms contributing to nonsyndromic refractive errors. Methods Clinical phenotypes and syndromes that have refractive errors as a recognized feature were identified using the Online Mendelian Inheritance in Man (OMIM) database. One hundred fifty-four unique causative genes were identified, of which 119 were specifically linked with myopia and 114 represented syndromic myopia (i.e., myopia and at least one other clinical feature). Myopia was the only refractive error listed for 98 genes and hyperopia and the only refractive error noted for 28 genes, with the remaining 28 genes linked to phenotypes with multiple forms of refractive error. Pathway analysis was carried out to find biological processes overrepresented within these sets of genes. Genetic variants located within 50 kb of the 119 myopia-related genes were evaluated for involvement in refractive error by analysis of summary statistics from genome-wide association studies (GWAS) conducted by the CREAM Consortium and 23andMe, using both single-marker and gene-based tests. Results Pathway analysis identified several biological processes already implicated in refractive error development through prior GWAS analyses and animal studies, including extracellular matrix remodeling, focal adhesion, and axon guidance, supporting the research hypothesis. Novel pathways also implicated in myopia development included mannosylation, glycosylation, lens development, gliogenesis, and Schwann cell differentiation. Hyperopia was found to be linked to a different pattern of biological processes, mostly related to organogenesis. Comparison with GWAS findings further confirmed that syndromic myopia genes were enriched for genetic variants that influence refractive errors in the general population. Gene-based analyses implicated 21 novel candidate myopia genes (ADAMTS18, ADAMTS2, ADAMTSL4, AGK, ALDH18A1, ASXL1, COL4A1, COL9A2, ERBB3, FBN1, GJA1, GNPTG, IFIH1, KIF11, LTBP2, OCA2, POLR3B, POMT1, PTPN11, TFAP2A, ZNF469). Conclusions Common genetic variants within or nearby genes that cause syndromic myopia are enriched for variants that cause nonsyndromic, common myopia. Analysis of syndromic forms of refractive errors can provide new insights into the etiology of myopia and additional potential targets for therapeutic interventions. PMID:29346494
Martínez-Abadías, Neus; Mateu, Roger; Niksic, Martina; Russo, Lucia; Sharpe, James
2016-01-01
How the genotype translates into the phenotype through development is critical to fully understand the evolution of phenotypes. We propose a novel approach to directly assess how changes in gene expression patterns are associated with changes in morphology using the limb as a case example. Our method combines molecular biology techniques, such as whole-mount in situ hybridization, with image and shape analysis, extending the use of Geometric Morphometrics to the analysis of nonanatomical shapes, such as gene expression domains. Elliptical Fourier and Procrustes-based semilandmark analyses were used to analyze the variation and covariation patterns of the limb bud shape with the expression patterns of two relevant genes for limb morphogenesis, Hoxa11 and Hoxa13. We devised a multiple thresholding method to semiautomatically segment gene domains at several expression levels in large samples of limb buds from C57Bl6 mouse embryos between 10 and 12 postfertilization days. Besides providing an accurate phenotyping tool to quantify the spatiotemporal dynamics of gene expression patterns within developing structures, our morphometric analyses revealed high, non-random, and gene-specific variation undergoing canalization during limb development. Our results demonstrate that Hoxa11 and Hoxa13, despite being paralogs with analogous functions in limb patterning, show clearly distinct dynamic patterns, both in shape and size, and are associated differently with the limb bud shape. The correspondence between our results and already well-established molecular processes underlying limb development confirms that this morphometric approach is a powerful tool to extract features of development regulating morphogenesis. Such multilevel analyses are promising in systems where not so much molecular information is available and will advance our understanding of the genotype–phenotype map. In systematics, this knowledge will increase our ability to infer how evolution modified a common developmental pattern to generate a wide diversity of morphologies, as in the vertebrate limb. PMID:26377442
Butler, John S; Beiser, Ines M; Williams, Laura; McGovern, Eavan; Molloy, Fiona; Lynch, Tim; Healy, Dan G; Moore, Helena; Walsh, Richard; Reilly, Richard B; O'Riordan, Seán; Walsh, Cathal; Hutchinson, Michael
2015-01-01
Adult-onset isolated focal dystonia (AOIFD) presenting in early adult life is more frequent in men, whereas in middle age it is female predominant. Temporal discrimination, an endophenotype of adult-onset idiopathic isolated focal dystonia, shows evidence of sexual dimorphism in healthy participants. We assessed the distinctive features of age-related sexual dimorphism of (i) sex ratios in dystonia phenotypes and (ii) sexual dimorphism in temporal discrimination in unaffected relatives of cervical dystonia patients. We performed (i) a meta-regression analysis of the proportion of men in published cohorts of phenotypes of adult-onset dystonia in relation to their mean age of onset and (ii) an analysis of temporal discrimination thresholds in 220 unaffected first-degree relatives (125 women) of cervical dystonia patients. In 53 studies of dystonia phenotypes, the proportion of men showed a highly significant negative association with mean age of onset (p < 0.0001, pseudo-R (2) = 59.6%), with increasing female predominance from 40 years of age. Age of onset and phenotype together explained 92.8% of the variance in proportion of men. Temporal discrimination in relatives under the age of 35 years is faster in women than men but the age-related rate of deterioration in women is twice that of men; after 45 years of age, men have faster temporal discrimination than women. Temporal discrimination in unaffected relatives of cervical dystonia patients and sex ratios in adult-onset dystonia phenotypes show similar patterns of age-related sexual dimorphism. Such age-related sexual dimorphism in temporal discrimination and adult-onset focal dystonia may reflect common underlying mechanisms. Cerebral GABA levels have been reported to show similar age-related sexual dimorphism in healthy participants and may be the mechanism underlying the observed age-related sexual dimorphism in temporal discrimination and the sex ratios in AOIFD.
Identifying Genetic Sources of Phenotypic Heterogeneity in Orofacial Clefts by Targeted Sequencing.
Carlson, Jenna C; Taub, Margaret A; Feingold, Eleanor; Beaty, Terri H; Murray, Jeffrey C; Marazita, Mary L; Leslie, Elizabeth J
2017-07-17
Orofacial clefts (OFCs), including nonsyndromic cleft lip with or without cleft palate (NSCL/P), are common birth defects. NSCL/P is highly heterogeneous with multiple phenotypic presentations. Two common subtypes of NSCL/P are cleft lip (CL) and cleft lip with cleft palate (CLP) which have different population prevalence. Similarly, NSCL/P can be divided into bilateral and unilateral clefts, with unilateral being the most common. Individuals with unilateral NSCL/P are more likely to be affected on the left side of the upper lip, but right side affection also occurs. Moreover, NSCL/P is twice as common in males as in females. The goal of this study is to discover genetic variants that have different effects in case subgroups. We conducted both common variant and rare variant analyses in 1034 individuals of Asian ancestry with NSCL/P, examining four sources of heterogeneity within CL/P: cleft type, sex, laterality, and side. We identified several regions associated with subtype differentiation: cleft type differences in 8q24 (p = 1.00 × 10 -4 ), laterality differences in IRF6, a gene previously implicated with wound healing (p = 2.166 × 10 -4 ), sex differences and side of unilateral CL differences in FGFR2 (p = 3.00 × 10 -4 ; p = 6.00 × 10 -4 ), and sex differences in VAX1 (p < 1.00 × 10 -4 ) among others. Many of the regions associated with phenotypic modification were either adjacent to or overlapping functional elements based on ENCODE chromatin marks and published craniofacial enhancers. We have identified multiple common and rare variants as potential phenotypic modifiers of NSCL/P, and suggest plausible elements responsible for phenotypic heterogeneity, further elucidating the complex genetic architecture of OFCs. Birth Defects Research 109:1030-1038, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Incomplete penetrance and phenotypic variability of 6q16 deletions including SIM1.
El Khattabi, Laïla; Guimiot, Fabien; Pipiras, Eva; Andrieux, Joris; Baumann, Clarisse; Bouquillon, Sonia; Delezoide, Anne-Lise; Delobel, Bruno; Demurger, Florence; Dessuant, Hélène; Drunat, Séverine; Dubourg, Christelle; Dupont, Céline; Faivre, Laurence; Holder-Espinasse, Muriel; Jaillard, Sylvie; Journel, Hubert; Lyonnet, Stanislas; Malan, Valérie; Masurel, Alice; Marle, Nathalie; Missirian, Chantal; Moerman, Alexandre; Moncla, Anne; Odent, Sylvie; Palumbo, Orazio; Palumbo, Pietro; Ravel, Aimé; Romana, Serge; Tabet, Anne-Claude; Valduga, Mylène; Vermelle, Marie; Carella, Massimo; Dupont, Jean-Michel; Verloes, Alain; Benzacken, Brigitte; Delahaye, Andrée
2015-08-01
6q16 deletions have been described in patients with a Prader-Willi-like (PWS-like) phenotype. Recent studies have shown that certain rare single-minded 1 (SIM1) loss-of-function variants were associated with a high intra-familial risk for obesity with or without features of PWS-like syndrome. Although SIM1 seems to have a key role in the phenotype of patients carrying 6q16 deletions, some data support a contribution of other genes, such as GRIK2, to explain associated behavioural problems. We describe 15 new patients in whom de novo 6q16 deletions were characterised by comparative genomic hybridisation or single-nucleotide polymorphism (SNP) array analysis, including the first patient with fetopathological data. This fetus showed dysmorphic facial features, cerebellar and cerebral migration defects with neuronal heterotopias, and fusion of brain nuclei. The size of the deletion in the 14 living patients ranged from 1.73 to 7.84 Mb, and the fetus had the largest deletion (14 Mb). Genotype-phenotype correlations confirmed the major role for SIM1 haploinsufficiency in obesity and the PWS-like phenotype. Nevertheless, only 8 of 13 patients with SIM1 deletion exhibited obesity, in agreement with incomplete penetrance of SIM1 haploinsufficiency. This study in the largest series reported to date confirms that the PWS-like phenotype is strongly linked to 6q16.2q16.3 deletions and varies considerably in its clinical expression. The possible involvement of other genes in the 6q16.2q16.3-deletion phenotype is discussed.
Grewal, Jaspreet S; Smith, Lauren B; Winegarden, Jerome D; Krauss, John C; Tworek, Joseph A; Schnitzer, Bertram
2007-07-01
Anaplastic large cell lymphoma (ALCL) is an aggressive neoplasm of T- or null cell phenotype and is recognized as a distinct clinicopathologic subtype of non-Hodgkin lymphoma (NHL) in the revised World Health Organization (WHO) classification of hematopoietic neoplasms. It is rarely associated with leukemic phase. Most cases with leukemic involvement are the small cell variant of ALCL. These cases often lack the pleomorphism seen in the common variant of ALCL and may be misdiagnosed. We report a series of three patients who presented with leukemic phase ALCL. The patients included an 11-year-old boy, a 29-year-old man, and a 59-year-old woman. The clinical and pathologic features of these cases are reviewed. The patients in our case series with leukemic phase ALCL exhibited rare clinical features. The patients presented with massive extranodal disease involving cerebrospinal fluid (CSF), liver, spleen, lungs, and bone marrow. CSF involvement was documented morphologically as well as by flow cytometry in two patients. Two of the patients had small cell variant and the third patient had common type ALCL. The neoplastic cells in all three patients were ALK positive; however these patients died within months of diagnosis. Leukemic phase ALCL is rare, and behaves in an aggressive manner. Some, but not all, cases in the literature presenting with peripheral blood involvement had small cell variant ALCL, as seen in two of our cases. The leukemic phase of ALCL should be considered when a T-cell leukemia with unusual morphologic features is encountered.