Sample records for common reference space

  1. A First Look at the Upcoming SISO Space Reference FOM

    NASA Technical Reports Server (NTRS)

    Crues, Edwin; Dexter, Dan; Madden, Michael; Garro, Alfred; Vankov, Alexander; Skuratovskiy, Anton; Moller, Bjorn

    2016-01-01

    Simulation is increasingly used in the space domain for several purposes. One example is analysis and engineering, from the mission level down to individual systems and subsystems. Another example is training of space crew and flight controllers. Several distributed simulations have been developed for example for docking vehicles with the ISS and for mission training, in many cases with participants from several nations. Space based scenarios are also used in the "Simulation Exploration Experience", SISO's university outreach program. We have thus realized that there is a need for a distributed simulation interoperability standard for data exchange within the space domain. Based on these experiences, SISO is developing a Space Reference FOM. Members of the product development group come from several countries and contribute experiences from projects within NASA, ESA and other organizations. Participants represent government, academia and industry. The first version will focus on handling of time and space. The Space Reference FOM will provide the following: (i) a flexible positioning system using reference frames for arbitrary bodies in space, (ii) a naming conventions for well known reference frames, (iii) definitions of common time scales, (iv) federation agreements for common types of time management with focus on time stepped simulation, and (v) support for physical entities, such as space vehicles and astronauts. The Space Reference FOM is expected to make collaboration politically, contractually and technically easier. It is also expected to make collaboration easier to manage and extend.

  2. A First Look at the Upcoming SISO Space Reference FOM

    NASA Technical Reports Server (NTRS)

    Mueller, Bjorn; Crues, Edwin Z.; Dexter, Dan; Garro, Alfredo; Skuratovskiy, Anton; Vankov, Alexander

    2016-01-01

    Spaceflight is difficult, dangerous and expensive; human spaceflight even more so. In order to mitigate some of the danger and expense, professionals in the space domain have relied, and continue to rely, on computer simulation. Simulation is used at every level including concept, design, analysis, construction, testing, training and ultimately flight. As space systems have grown more complex, new simulation technologies have been developed, adopted and applied. Distributed simulation is one those technologies. Distributed simulation provides a base technology for segmenting these complex space systems into smaller, and usually simpler, component systems or subsystems. This segmentation also supports the separation of responsibilities between participating organizations. This segmentation is particularly useful for complex space systems like the International Space Station (ISS), which is composed of many elements from many nations along with visiting vehicles from many nations. This is likely to be the case for future human space exploration activities. Over the years, a number of distributed simulations have been built within the space domain. While many use the High Level Architecture (HLA) to provide the infrastructure for interoperability, HLA without a Federation Object Model (FOM) is insufficient by itself to insure interoperability. As a result, the Simulation Interoperability Standards Organization (SISO) is developing a Space Reference FOM. The Space Reference FOM Product Development Group is composed of members from several countries. They contribute experiences from projects within NASA, ESA and other organizations and represent government, academia and industry. The initial version of the Space Reference FOM is focusing on time and space and will provide the following: (i) a flexible positioning system using reference frames for arbitrary bodies in space, (ii) a naming conventions for well-known reference frames, (iii) definitions of common time scales, (iv) federation agreements for common types of time management with focus on time stepped simulation, and (v) support for physical entities, such as space vehicles and astronauts. The Space Reference FOM is expected to make collaboration politically, contractually and technically easier. It is also expected to make collaboration easier to manage and extend.

  3. Design and Development of an Equipotential Voltage Reference (Grounding) System for a Low-Cost Rapid-Development Modular Spacecraft Architecture

    NASA Technical Reports Server (NTRS)

    Lukash, James A.; Daley, Earl

    2011-01-01

    This work describes the design and development effort to adapt rapid-development space hardware by creating a ground system using solutions of low complexity, mass, & cost. The Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft is based on the modular common spacecraft bus architecture developed at NASA Ames Research Center. The challenge was building upon the existing modular common bus design and development work and improving the LADEE spacecraft design by adding an Equipotential Voltage Reference (EVeR) system, commonly referred to as a ground system. This would aid LADEE in meeting Electromagnetic Environmental Effects (E3) requirements, thereby making the spacecraft more compatible with itself and its space environment. The methods used to adapt existing hardware are presented, including provisions which may be used on future spacecraft.

  4. Common View Time Transfer Using Worldwide GPS and DMA Monitor Stations

    NASA Technical Reports Server (NTRS)

    Reid, Wilson G.; McCaskill, Thomas B.; Oaks, Orville J.; Buisson, James A.; Warren, Hugh E.

    1996-01-01

    Analysis of the on-orbit Navstar clocks and the Global Positioning System (GPS) monitor station reference clocks is performed by the Naval Research Laboratory using both broadcast and postprocessed precise ephemerides. The precise ephemerides are produced by the Defense Mapping Agency (DMA) for each of the GPS space vehicles from pseudo-range measurements collected at five GPS and at five DMA monitor stations spaced around the world. Recently, DMA established an additional site co-located with the US Naval Observatory precise time site. The time reference for the new DMA site is the DoD Master Clock. Now, for the first time, it is possible to transfer time every 15 minutes via common view from the DoD Master Clock to the 11 GPS and DMA monitor stations. The estimated precision of a single common-view time transfer measurement taken over a 15-minute interval was between 1.4 and 2.7 nanoseconds. Using the measurements from all Navstar space vehicles in common view during the 15-minute interval, typically 3-7 space vehicles, improved the estimate of the precision to between 0.65 and 1.13 nanoseconds. The mean phase error obtained from closure of the time transfer around the world using the 11 monitor stations and the 25 space vehicle clocks over a period of 4 months had a magnitude of 31 picoseconds. Analysis of the low noise time transfer from the DoD Master Clock to each of the monitor stations yields not only the bias in the time of the reference clock, but also focuses attention on structure in the behaviour of the reference clock not previously seen. Furthermore, the time transfer provides a a uniformly sampled database of 15-minute measurements that make possible, for the first time, the direct and exhaustive computation of the frequency stability of the monitor station reference clocks. To lend perspective to the analysis, a summary is given of the discontinuities in phase and frequency that occurred in the reference clock at the Master Control Station during the period covered by the analysis.

  5. Peer education in the commons: a new approach to reference services.

    PubMed

    Neal, Ruth E; Ajamie, Lauren F; Harmon, Karen D; Kellerby, Carissa D; Schweikhard, April J

    2010-10-01

    In planning for a new library construction project for the University of Oklahoma-Tulsa, graduate students enrolled in the University of Oklahoma (OU) School of Library and Information Studies collaborated in an innovative effort to develop a commons-based reference service. By first considering a philosophical approach to the need for a commons, blending in the experiences of other libraries that have created similar spaces, and focusing on the workflow issues likely to be encountered by the graduate assistants staffing the commons itself, this planning team developed an uncommon peer-to-peer approach to reference and education services, one focused on the patron as student.

  6. MSFC Space Station Program Commonly Used Acronyms and Abbreviations Listing

    NASA Technical Reports Server (NTRS)

    Gates, Thomas G.

    1988-01-01

    The Marshall Space Flight Center maintains an active history program to assure that the foundation of the Center's history is captured and preserved for current and future generations. As part of that overall effort, the Center began a project in 1987 to capture historical information and documentation on the Marshall Center's roles regarding Space Shuttle and Space Station. This document is MSFC Space Station Program Commonly Used Acronyms and Abbreviations Listing. It contains acronyms and abbreviations used in Space Station documentation and in the Historian Annotated Bibliography of Space Station Program. The information may be used by the researcher as a reference tool.

  7. On the Execution Control of HLA Federations using the SISO Space Reference FOM

    NASA Technical Reports Server (NTRS)

    Moller, Bjorn; Garro, Alfredo; Falcone, Alberto; Crues, Edwin Z.; Dexter, Daniel E.

    2017-01-01

    In the Space domain the High Level Architecture (HLA) is one of the reference standard for Distributed Simulation. However, for the different organizations involved in the Space domain (e.g. NASA, ESA, Roscosmos, and JAXA) and their industrial partners, it is difficult to implement HLA simulators (called Federates) able to interact and interoperate in the context of a distributed HLA simulation (called Federation). The lack of a common FOM (Federation Object Model) for the Space domain is one of the main reasons that precludes a-priori interoperability between heterogeneous federates. To fill this lack a Product Development Group (PDG) has been recently activated in the Simulation Interoperability Standards Organization (SISO) with the aim to provide a Space Reference FOM (SRFOM) for international collaboration on Space systems simulations. Members of the PDG come from several countries and contribute experiences from projects within NASA, ESA and other organizations. Participants represent government, academia and industry. The paper presents an overview of the ongoing Space Reference FOM standardization initiative by focusing on the solution provided for managing the execution of an SRFOM-based Federation.

  8. On the Delusiveness of Adopting a Common Space for Modeling IR Objects: Are Queries Documents?

    ERIC Educational Resources Information Center

    Bollmann-Sdorra, Peter; Raghavan, Vjay V.

    1993-01-01

    Proposes that document space and query space have different structures in information retrieval and discusses similarity measures, term independence, and linear structure. Examples are given using the retrieval functions of dot-product, the cosine measure, the coefficient of Jaccard, and the overlap function. (Contains 28 references.) (LRW)

  9. Common source cascode amplifiers for integrating IR-FPA applications

    NASA Technical Reports Server (NTRS)

    Woolaway, James T.; Young, Erick T.

    1989-01-01

    Space based astronomical infrared measurements present stringent performance requirements on the infrared detector arrays and their associated readout circuitry. To evaluate the usefulness of commercial CMOS technology for astronomical readout applications a theoretical and experimental evaluation was performed on source follower and common-source cascode integrating amplifiers. Theoretical analysis indicates that for conditions where the input amplifier integration capacitance is limited by the detectors capacitance the input referred rms noise electrons of each amplifier should be equivalent. For conditions of input gate limited capacitance the source follower should provide lower noise. Measurements of test circuits containing both source follower and common source cascode circuits showed substantially lower input referred noise for the common-source cascode input circuits. Noise measurements yielded 4.8 input referred rms noise electrons for an 8.5 minute integration. The signal and noise gain of the common-source cascode amplifier appears to offer substantial advantages in acheiving predicted noise levels.

  10. Chemical Physics of Charge Mechanisms in Nonmetallic Spacecraft Materials.

    DTIC Science & Technology

    1979-05-01

    techniques may not provide data truly representative of actual in-orbit space - craft charging effects . The results of the discharge characterization...phenomena, commonly referred to collectively as space - !. craft charging effects , can produce undesirable and sometimes serious prob- lems with the...lifetime of future space systems requires a practical understanding of spacecraft charging phenomena and their effects . The laboratory program

  11. Global reference frame: Intercomparison of results (SLR, VLBI and GPS)

    NASA Technical Reports Server (NTRS)

    Ma, Chopo; Watkins, Michael M.; Heflin, M.

    1994-01-01

    The terrestrial reference frame (TRF) is realized by a set of positions and velocities derived from a combination of the three space geodetic techniques, SLR, VLBI and GPS. The standard International TRF is constructed by the International Earth Rotation Service in such a way that it is stable with time and the addition of new data. An adopted model for overall plate motion, NUVEL-1 NNR, defines the conceptual reference frame in which all the plates are moving. In addition to the measurements made between reference points within the space geodetic instruments, it is essential to have accurate, documented eccentricity measurements from the instrument reference points to ground monuments. Proper local surveys between the set of ground monuments at a site are also critical for the use of the space geodetic results. Eccentricities and local surveys are, in fact, the most common and vexing sources of error in the use of the TRF for such activities as collocation and intercomparison.

  12. Mathematical Working Spaces through Networking Lens

    ERIC Educational Resources Information Center

    Artigue, Michèle

    2016-01-01

    This issue of "ZDM" collects research works sharing a common reference to the theoretical framework of Mathematical Working Spaces (MWS), a construction which emerged about one decade ago, and has progressively found its way in the mathematics education community, thanks to the collaborative work of an international group of researchers.…

  13. Sol Invictus - Heliophilic Elements in Early Russian Space Flight Theory

    NASA Astrophysics Data System (ADS)

    Tolkowsky, G.

    Common historiographic theory refers to the space age as an extrapolation of the Age of the Enlightenment. According to this thesis, the Copernican transformation of man's place in the universe, and the gradual divergence of science away from Judeo-Christian theology, paved the road to the application of scientific and technological methodologies to the age-old notion of space travel. As an anti-thesis to this historiographic tradition, and in particular reference to the Russian case, one can point at the influence of certain metaphysical elements alien to the Enlightenment, some of which were pagan, on the birth of the space age. At the centre of this metaphysical foundation of astronautics stands the heliophilic motif, namely - the attribution of monistic potency to the sun, and the pursuit of an anthropo-solar affinity by way of space travel.

  14. Legal issues inherent in Space Shuttle operations

    NASA Technical Reports Server (NTRS)

    Mossinghoff, G. J.; Sloup, G. P.

    1978-01-01

    The National Aeronautics and Space Act of 1958 (NASAct) is discussed with reference to its relevance to the operation of the Space Shuttle. The law is interpreted as giving NASA authority to regulate specific Shuttle missions, as well as authority to decide how much space aboard the Shuttle gets rented to whom. The Shuttle will not, however, be considered a 'common carrier' either in terms of NASAct or FAA regulations, because it will not be held available to the public-at-large, as are the flag carriers of various national airlines, e.g., Lufthansa, Air France, Aeroflot, etc. It is noted that the Launch Policy of 1972, which ensures satellite launch assistance to other countries or international organizations, shall not be interpreted as conferring common carrier status on the Space Shuttle.

  15. MEMS Reliability Assurance Guidelines for Space Applications

    NASA Technical Reports Server (NTRS)

    Stark, Brian (Editor)

    1999-01-01

    This guide is a reference for understanding the various aspects of microelectromechanical systems, or MEMS, with an emphasis on device reliability. Material properties, failure mechanisms, processing techniques, device structures, and packaging techniques common to MEMS are addressed in detail. Design and qualification methodologies provide the reader with the means to develop suitable qualification plans for the insertion of MEMS into the space environment.

  16. Automated and continual determination of radio telescope reference points with sub-mm accuracy: results from a campaign at the Onsala Space Observatory

    NASA Astrophysics Data System (ADS)

    Lösler, Michael; Haas, Rüdiger; Eschelbach, Cornelia

    2013-08-01

    The Global Geodetic Observing System (GGOS) requires sub-mm accuracy, automated and continual determinations of the so-called local tie vectors at co-location stations. Co-location stations host instrumentation for several space geodetic techniques and the local tie surveys involve the relative geometry of the reference points of these instruments. Thus, these reference points need to be determined in a common coordinate system, which is a particular challenge for rotating equipment like radio telescopes for geodetic Very Long Baseline Interferometry. In this work we describe a concept to achieve automated and continual determinations of radio telescope reference points with sub-mm accuracy. We developed a monitoring system, including Java-based sensor communication for automated surveys, network adjustment and further data analysis. This monitoring system was tested during a monitoring campaign performed at the Onsala Space Observatory in the summer of 2012. The results obtained in this campaign show that it is possible to perform automated determination of a radio telescope reference point during normal operations of the telescope. Accuracies on the sub-mm level can be achieved, and continual determinations can be realized by repeated determinations and recursive estimation methods.

  17. Optical monitoring of QSO in the framework of the Gaia space mission

    NASA Astrophysics Data System (ADS)

    Taris, F.; Damljanovic, G.; Andrei, A.; Klotz, A.; Vachier, F.

    2015-08-01

    The Gaia astrometric mission of the European Space Agency has been launched the 19th December 2013. It will provide an astrometric catalogue of 500 000 extragalactic sources that could be the basis of a new optical reference frame. On the other hand, the current International Celestial Reference Frame (ICRF) is based on the observations of extragalactic sources at radio wavelength. The astrometric coordinates of sources in these two reference systems will have roughly the same uncertainty. It is then mandatory to observe a set of common targets at both optical and radio wavelength to link the ICRF with what could be called the GCRF (Gaia Celestial Reference Frame). We will show in this paper some results obtained with the TJO, Telescopi Juan Oro, from Observatori Astronomic del Montsec in Spain. It also presents some results obtained with the Lomb-Scargle and CLEAN algorithm methods applied to optical magnitude obtained with the TAROT telescopes.

  18. Body Space in Social Interactions: A Comparison of Reaching and Comfort Distance in Immersive Virtual Reality

    PubMed Central

    Iachini, Tina; Coello, Yann; Frassinetti, Francesca; Ruggiero, Gennaro

    2014-01-01

    Background Do peripersonal space for acting on objects and interpersonal space for interacting with con-specifics share common mechanisms and reflect the social valence of stimuli? To answer this question, we investigated whether these spaces refer to a similar or different physical distance. Methodology Participants provided reachability-distance (for potential action) and comfort-distance (for social processing) judgments towards human and non-human virtual stimuli while standing still (passive) or walking toward stimuli (active). Principal Findings Comfort-distance was larger than other conditions when participants were passive, but reachability and comfort distances were similar when participants were active. Both spaces were modulated by the social valence of stimuli (reduction with virtual females vs males, expansion with cylinder vs robot) and the gender of participants. Conclusions These findings reveal that peripersonal reaching and interpersonal comfort spaces share a common motor nature and are sensitive, at different degrees, to social modulation. Therefore, social processing seems embodied and grounded in the body acting in space. PMID:25405344

  19. An Overview of a Trajectory-Based Solution for En Route and Terminal Area Self-Spacing: Third Revision

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    2012-01-01

    This paper presents an overview of the third major revision to an algorithm specifically designed to support NASA's Airborne Precision Spacing concept. This algorithm is referred to as the Airborne Spacing for Terminal Arrival Routes version 11 (ASTAR11). This airborne self-spacing concept is trajectory-based, allowing for spacing operations prior to the aircraft being on a common path. Because this algorithm is trajectory-based, it also has the inherent ability to support required time-of-arrival (RTA) operations. This algorithm was also designed specifically to support a standalone, non-integrated implementation in the spacing aircraft.

  20. Connecting kinematic and dynamic reference frames by D-VLBI

    NASA Astrophysics Data System (ADS)

    Schuh, Harald; Plank, Lucia; Madzak, Matthias; Böhm, Johannes

    2012-08-01

    In geodetic and astrometric practice, terrestrial station coordinates are usually provided in the kinematic International Terrestrial Reference Frame (ITRF) and radio source coordinates in the International Celestial Reference Frame (ICRF), whereas measurements of space probes such as satellites and spacecrafts, or planetary ephemerides rest upon dynamical theories. To avoid inconsistencies and errors during measurement and calculation procedures, exact frame ties between quasi - inertial, kinematic and dynamic reference frames have to be secured. While the Earth Orientation Parameters (EOP), e.g. measured by VLBI, link the ITRF to the ICRF, the ties with the dynamic frames can be established with the differential Very Long Baseline Interferometry (D - VLBI) method. By observing space probes alternately t o radio sources, the relative position of the targets to each other on the sky can be determined with high accuracy. While D - VLBI is a common technique in astrophysics (source imaging) and deep space navigation, just recently there have been several effort s to use it for geodetic purposes. We present investigations concerning possible VLBI observations to satellites. This includes the potential usage of available GNNS satellites as well as specifically designed missions, as e.g. the GRASP mission proposed b y JPL/NASA and an international consortium, where the aspect of co - location in space of various techniques (VLBI, SLR, GNSS, DORIS) is the main focus.

  1. Space station integrated propulsion and fluid systems study. Space station program fluid management systems databook

    NASA Technical Reports Server (NTRS)

    Bicknell, B.; Wilson, S.; Dennis, M.; Lydon, M.

    1988-01-01

    Commonality and integration of propulsion and fluid systems associated with the Space Station elements are being evaluated. The Space Station elements consist of the core station, which includes habitation and laboratory modules, nodes, airlocks, and trusswork; and associated vehicles, platforms, experiments, and payloads. The program is being performed as two discrete tasks. Task 1 investigated the components of the Space Station architecture to determine the feasibility and practicality of commonality and integration among the various propulsion elements. This task was completed. Task 2 is examining integration and commonality among fluid systems which were identified by the Phase B Space Station contractors as being part of the initial operating capability (IOC) and growth Space Station architectures. Requirements and descriptions for reference fluid systems were compiled from Space Station documentation and other sources. The fluid systems being examined are: an experiment gas supply system, an oxygen/hydrogen supply system, an integrated water system, the integrated nitrogen system, and the integrated waste fluids system. Definitions and descriptions of alternate systems were developed, along with analyses and discussions of their benefits and detriments. This databook includes fluid systems descriptions, requirements, schematic diagrams, component lists, and discussions of the fluid systems. In addition, cost comparison are used in some cases to determine the optimum system for a specific task.

  2. The Thaayorre think of Time Like They Talk of Space.

    PubMed

    Gaby, Alice

    2012-01-01

    Around the world, it is common to both talk and think about time in terms of space. But does our conceptualization of time simply reflect the space/time metaphors of the language we speak? Evidence from the Australian language Kuuk Thaayorre suggests not. Kuuk Thaayorre speakers do not employ active spatial metaphors in describing time. But this is not to say that spatial language is irrelevant to temporal construals: non-linguistic representations of time are shown here to covary with the linguistic system of describing space. This article contrasts two populations of ethnic Thaayorre from Pormpuraaw - one comprising Kuuk Thaayorre/English bilinguals and the other English-monolinguals - in order to distinguish the effects of language from environmental and other factors. Despite their common physical, social, and cultural context, the two groups differ in their representations of time in ways that are congruent with the language of space in Kuuk Thaayorre and English, respectively. Kuuk Thaayorre/English bilinguals represent time along an absolute east-to-west axis, in alignment with the high frequency of absolute frame of reference terms in Kuuk Thaayorre spatial description. The English-monolinguals, in contrast, represent time from left-to-right, aligning with the dominant relative frame of reference in English spatial description. This occurs in the absence of any east-to-west metaphors in Kuuk Thaayorre, or left-to-right metaphors in English. Thus the way these two groups think about time appears to reflect the language of space and not the language of time.

  3. Implementing system simulation of C3 systems using autonomous objects

    NASA Technical Reports Server (NTRS)

    Rogers, Ralph V.

    1987-01-01

    The basis of all conflict recognition in simulation is a common frame of reference. Synchronous discrete-event simulation relies on the fixed points in time as the basic frame of reference. Asynchronous discrete-event simulation relies on fixed-points in the model space as the basic frame of reference. Neither approach provides sufficient support for autonomous objects. The use of a spatial template as a frame of reference is proposed to address these insufficiencies. The concept of a spatial template is defined and an implementation approach offered. Discussed are the uses of this approach to analyze the integration of sensor data associated with Command, Control, and Communication systems.

  4. Space station automation of common module power management and distribution, volume 2

    NASA Technical Reports Server (NTRS)

    Ashworth, B.; Riedesel, J.; Myers, C.; Jakstas, L.; Smith, D.

    1990-01-01

    The new Space Station Module Power Management and Distribution System (SSM/PMAD) testbed automation system is described. The subjects discussed include testbed 120 volt dc star bus configuration and operation, SSM/PMAD automation system architecture, fault recovery and management expert system (FRAMES) rules english representation, the SSM/PMAD user interface, and the SSM/PMAD future direction. Several appendices are presented and include the following: SSM/PMAD interface user manual version 1.0, SSM/PMAD lowest level processor (LLP) reference, SSM/PMAD technical reference version 1.0, SSM/PMAD LLP visual control logic representation's (VCLR's), SSM/PMAD LLP/FRAMES interface control document (ICD) , and SSM/PMAD LLP switchgear interface controller (SIC) ICD.

  5. Design and Principles Enabling the Space Reference FOM

    NASA Technical Reports Server (NTRS)

    Moeller, Bjoern; Dexter, Dan; Madden, Michael; Crues, Edwin Z.; Garro, Alfredo; Skuratovskiy, Anton

    2017-01-01

    A first complete draft of the Simulation Interoperability Standards Organization (SISO) Space Reference Federation Object Model (FOM) has now been produced. This paper provides some insights into its capabilities and discusses the opportunity for reuse in other domains. The focus of this first version of the standard is execution control, time management and coordinate systems, well-known reference frames, as well as some basic support for physical entities. The biggest part of the execution control is the coordinated start-up process. This process contains a number of steps, including checking of required federates, handling of early versus late joiners, sharing of federation wide configuration data and multi-phase initialization. An additional part of Execution Control is the coordinated and synchronized transition between Run mode, Freeze mode and Shutdown. For time management, several time lines are defined, including real-time, scenario time, High Level Architecture (HLA) logical time and physical time. A strategy for mixing simulations that use different time steps is introduced, as well as an approach for finding common boundaries for fully synchronized freeze. For describing spatial information, a mechanism with a set of reference frames is specified. Each reference frame has a position and orientation related to a parent reference frame. This makes it possible for federates to perform calculations in reference frames that are convenient to them. An operation on the Moon can be performed using lunar coordinates whereas an operation on Earth can be performed using Earth coordinates. At the same time, coordinates in one reference frame have an unambiguous relationship to a coordinate in another reference frame. While the Space Reference FOM is originally being developed for Space operations, the authors believe that many parts of it can be reused for any simulation that has a focus on physical processes with one or more coordinate systems, and require high fidelity and repeatability.

  6. Systems Challenges for Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Hunt, James L.; Laruelle, Gerard; Wagner, Alain

    1997-01-01

    This paper examines the system challenges posed by fully reusable hypersonic cruise airplanes and access to space vehicles. Hydrocarbon and hydrogen fueled airplanes are considered with cruise speeds of Mach 5 and 10, respectively. The access to space matrix is examined. Airbreathing and rocket powered, single- and two-stage vehicles are considered. Reference vehicle architectures are presented. Major systems/subsystems challenges are described. Advanced, enhancing systems concepts as well as common system technologies are discussed.

  7. A Reference Architecture for Space Information Management

    NASA Technical Reports Server (NTRS)

    Mattmann, Chris A.; Crichton, Daniel J.; Hughes, J. Steven; Ramirez, Paul M.; Berrios, Daniel C.

    2006-01-01

    We describe a reference architecture for space information management systems that elegantly overcomes the rigid design of common information systems in many domains. The reference architecture consists of a set of flexible, reusable, independent models and software components that function in unison, but remain separately managed entities. The main guiding principle of the reference architecture is to separate the various models of information (e.g., data, metadata, etc.) from implemented system code, allowing each to evolve independently. System modularity, systems interoperability, and dynamic evolution of information system components are the primary benefits of the design of the architecture. The architecture requires the use of information models that are substantially more advanced than those used by the vast majority of information systems. These models are more expressive and can be more easily modularized, distributed and maintained than simpler models e.g., configuration files and data dictionaries. Our current work focuses on formalizing the architecture within a CCSDS Green Book and evaluating the architecture within the context of the C3I initiative.

  8. A content analysis of displayed alcohol references on a social networking web site.

    PubMed

    Moreno, Megan A; Briner, Leslie R; Williams, Amanda; Brockman, Libby; Walker, Leslie; Christakis, Dimitri A

    2010-08-01

    Exposure to alcohol use in media is associated with adolescent alcohol use. Adolescents frequently display alcohol references on Internet media, such as social networking web sites. The purpose of this study was to conduct a theoretically based content analysis of older adolescents' displayed alcohol references on a social networking web site. We evaluated 400 randomly selected public MySpace profiles of self-reported 17- to 20-year-olds from zip codes, representing urban, suburban, and rural communities in one Washington county. Content was evaluated for alcohol references, suggesting: (1) explicit versus figurative alcohol use, (2) alcohol-related motivations, associations, and consequences, including references that met CRAFFT problem drinking criteria. We compared profiles from four target zip codes for prevalence and frequency of alcohol display. Of 400 profiles, 225 (56.3%) contained 341 references to alcohol. Profile owners who displayed alcohol references were mostly male (54.2%) and white (70.7%). The most frequent reference category was explicit use (49.3%); the most commonly displayed alcohol use motivation was peer pressure (4.7%). Few references met CRAFFT problem drinking criteria (3.2%). There were no differences in prevalence or frequency of alcohol display among the four sociodemographic communities. Despite alcohol use being illegal and potentially stigmatizing in this population, explicit alcohol use is frequently referenced on adolescents' MySpace profiles across several sociodemographic communities. Motivations, associations, and consequences regarding alcohol use referenced on MySpace appear consistent with previous studies of adolescent alcohol use. These references may be a potent source of influence on adolescents, particularly given that they are created and displayed by peers. (c) 2010 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  9. A Content Analysis of Displayed Alcohol References on a Social Networking Web Site

    PubMed Central

    Moreno, Megan A; Briner, Leslie R; Williams, Amanda; Brockman, Libby; Walker, Leslie; Christakis, Dimitri A

    2010-01-01

    Purpose Exposure to alcohol use in media is associated with adolescent alcohol use. Adolescents frequently display alcohol references on Internet media such as social networking websites (SNSs). The purpose of this study was to conduct a theoretically-based content analysis of older adolescents’ displayed alcohol references on a SNS. Methods We evaluated 400 randomly selected public MySpace profiles of self-reported 17 to 20-year-olds from zip codes representing urban, suburban and rural communities in one Washington county. Content was evaluated for alcohol references suggesting: 1) explicit versus figurative alcohol use, 2) alcohol-related motivations, associations and consequences, including references that met CRAFFT problem drinking criteria. We compared profiles from four target zip codes for prevalence and frequency of alcohol display. Results Of 400 profiles, 225 profiles (56.3%) contained 341 references to alcohol. Profile owners who displayed alcohol references were mostly male (54.2%) and White (70.7%). The most frequent reference category was explicit use (49.3%), the most commonly displayed alcohol use motivation was peer pressure (4.7%). Few references met CRAFFT problem drinking criteria (3.2%). There were no differences in prevalence or frequency of alcohol display among the four sociodemographic communities. Conclusions Despite alcohol use being illegal and potentially stigmatizing in this population, explicit alcohol use is frequently referenced on adolescents’ MySpace profiles across several sociodemographic communities. Motivations, associations and consequences regarding alcohol use referenced on MySpace appear consistent with previous studies of adolescent alcohol use. These references may be a potent source of influence on adolescents, particularly given that they are created and displayed by peers. PMID:20638009

  10. An Overview of a Trajectory-Based Solution for En Route and Terminal Area Self-Spacing: Sixth Revision

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    2015-01-01

    This paper presents an overview of the sixth revision to an algorithm specifically designed to support NASA's Airborne Precision Spacing concept. This algorithm is referred to as the Airborne Spacing for Terminal Arrival Routes version 13 (ASTAR13). This airborne self-spacing concept contains both trajectory-based and state-based mechanisms for calculating the speeds required to achieve or maintain a precise spacing interval. The trajectory-based capability allows for spacing operations prior to the aircraft being on a common path. This algorithm was also designed specifically to support a standalone, non-integrated implementation in the spacing aircraft. This current revision to the algorithm adds the state-based capability in support of evolving industry standards relating to airborne self-spacing.

  11. Development of NASA's Space Communications and Navigation Test Bed Aboard ISS to Investigate SDR, On-Board Networking and Navigation Technologies

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Kacpura, Thomas J.; Johnson, Sandra K.; Lux, James P.

    2010-01-01

    NASA is developing an experimental flight payload (referred to as the Space Communication and Navigation (SCAN) Test Bed) to investigate software defined radio (SDR), networking, and navigation technologies, operationally in the space environment. The payload consists of three software defined radios each compliant to NASA s Space Telecommunications Radio System Architecture, a common software interface description standard for software defined radios. The software defined radios are new technology developments underway by NASA and industry partners. Planned for launch in early 2012, the payload will be externally mounted to the International Space Station truss and conduct experiments representative of future mission capability.

  12. Human Exploration of Mars Design Reference Architecture 5.0

    NASA Technical Reports Server (NTRS)

    Drake, Bret G.

    2010-01-01

    This paper provides a summary of the Mars Design Reference Architecture 5.0 (DRA 5.0), which is the latest in a series of NASA Mars reference missions. It provides a vision of one potential approach to human Mars exploration. The reference architecture provides a common framework for future planning of systems concepts, technology development, and operational testing as well as Mars robotic missions, research that is conducted on the International Space Station, and future lunar exploration missions. This summary the Mars DRA 5.0 provides an overview of the overall mission approach, surface strategy and exploration goals, as well as the key systems and challenges for the first three human missions to Mars.

  13. Bernoulli's Principle: Science as a Human Endeavor

    ERIC Educational Resources Information Center

    McCarthy, Deborah

    2008-01-01

    What do the ideas of Daniel Bernoulli--an 18th-century Swiss mathematician, physicist, natural scientist, and professor--and your students' next landing of the space shuttle via computer simulation have in common? Because of his contribution, referred in physical science as Bernoulli's principle, modern flight is possible. The mini learning-cycle…

  14. An Overview of a Trajectory-Based Solution for En Route and Terminal Area Self-Spacing: Seventh Revision

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    2015-01-01

    This paper presents an overview of the seventh revision to an algorithm specifically designed to support NASA's Airborne Precision Spacing concept. This paper supersedes the previous documentation and presents a modification to the algorithm referred to as the Airborne Spacing for Terminal Arrival Routes version 13 (ASTAR13). This airborne self-spacing concept contains both trajectory-based and state-based mechanisms for calculating the speeds required to achieve or maintain a precise spacing interval. The trajectory-based capability allows for spacing operations prior to the aircraft being on a common path. This algorithm was also designed specifically to support a standalone, non-integrated implementation in the spacing aircraft. This current revision to the algorithm adds the state-based capability in support of evolving industry standards relating to airborne self-spacing.

  15. An Overview of a Trajectory-Based Solution for En Route and Terminal Area Self-Spacing: Eighth Revision

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.; Swieringa, Kurt S.

    2017-01-01

    This paper presents an overview of the eighth revision to an algorithm specifically designed to support NASA's Airborne Precision Spacing concept. This paper supersedes the previous documentation and presents a modification to the algorithm referred to as the Airborne Spacing for Terminal Arrival Routes version 13 (ASTAR13). This airborne self-spacing concept contains both trajectory-based and state-based mechanisms for calculating the speeds required to achieve or maintain a precise spacing interval with another aircraft. The trajectory-based capability allows for spacing operations prior to the aircraft being on a common path. This algorithm was also designed specifically to support a standalone, non-integrated implementation in the spacing aircraft. This current revision to the algorithm supports the evolving industry standards relating to airborne self-spacing.

  16. Use of 3D vision for fine robot motion

    NASA Technical Reports Server (NTRS)

    Lokshin, Anatole; Litwin, Todd

    1989-01-01

    An integration of 3-D vision systems with robot manipulators will allow robots to operate in a poorly structured environment by visually locating targets and obstacles. However, by using computer vision for objects acquisition makes the problem of overall system calibration even more difficult. Indeed, in a CAD based manipulation a control architecture has to find an accurate mapping between the 3-D Euclidean work space and a robot configuration space (joint angles). If a stereo vision is involved, then one needs to map a pair of 2-D video images directly into the robot configuration space. Neural Network approach aside, a common solution to this problem is to calibrate vision and manipulator independently, and then tie them via common mapping into the task space. In other words, both vision and robot refer to some common Absolute Euclidean Coordinate Frame via their individual mappings. This approach has two major difficulties. First a vision system has to be calibrated over the total work space. And second, the absolute frame, which is usually quite arbitrary, has to be the same with a high degree of precision for both robot and vision subsystem calibrations. The use of computer vision to allow robust fine motion manipulation in a poorly structured world which is currently in progress is described along with the preliminary results and encountered problems.

  17. Academic Libraries: "Social" or "Communal?" The Nature and Future of Academic Libraries

    ERIC Educational Resources Information Center

    Gayton, Jeffrey T.

    2008-01-01

    The apparent death of academic libraries, as measured by declining circulation of print materials, reduced use of reference services, and falling gate counts, has led to calls for a more "social" approach to academic libraries: installing cafes, expanding group study spaces, and developing "information commons." This study compares these social…

  18. Varieties of virtualization

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.

    1991-01-01

    Natural environments have a content, i.e., the objects in them; a geometry, i.e., a pattern of rules for positioning and displacing the objects; and a dynamics, i.e., a system of rules describing the effects of forces acting on the objects. Human interaction with most common natural environments has been optimized by centuries of evolution. Virtual environments created through the human-computer interface similarly have a content, geometry, and dynamics, but the arbitrary character of the computer simulation creating them does not insure that human interaction with these virtual environments will be natural. The interaction, indeed, could be supernatural but it also could be impossible. An important determinant of the comprehensibility of a virtual environment is the correspondence between the environmental frames of reference and those associated with the control of environmental objects. The effects of rotation and displacement of control frames of reference with respect to corresponding environmental references differ depending upon whether perceptual judgement or manual tracking performance is measured. The perceptual effects of frame of reference displacement may be analyzed in terms of distortions in the process of virtualizing the synthetic environment space. The effects of frame of reference displacement and rotation have been studied by asking subjects to estimate exocentric direction in a virtual space.

  19. Evaluation of Human and AutomationRobotics Integration Needs for Future Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    Marquez, Jessica J.; Adelstein, Bernard D.; Ellis, Stephen; Chang, Mai Lee; Howard, Robert

    2016-01-01

    NASA employs Design Reference Missions (DRMs) to define potential architectures for future human exploration missions to deep space, the Moon, and Mars. While DRMs to these destinations share some components, each mission has different needs. This paper focuses on the human and automation/robotic integration needs for these future missions, evaluating them with respect to NASA research gaps in the area of space human factors engineering. The outcomes of our assessment is a human and automation/robotic (HAR) task list for each of the four DRMs that we reviewed (i.e., Deep Space Sortie, Lunar Visit/Habitation, Deep Space Habitation, and Planetary), a list of common critical HAR factors that drive HAR design.

  20. Human Exploration of Mars Design Reference Architecture 5.0

    NASA Technical Reports Server (NTRS)

    Drake, Bret G.; Hoffman, Stephen J.; Beaty, David W.

    2009-01-01

    This paper provides a summary of the 2007 Mars Design Reference Architecture 5.0 (DRA 5.0), which is the latest in a series of NASA Mars reference missions. It provides a vision of one potential approach to human Mars exploration including how Constellation systems can be used. The reference architecture provides a common framework for future planning of systems concepts, technology development, and operational testing as well as Mars robotic missions, research that is conducted on the International Space Station, and future lunar exploration missions. This summary the Mars DRA 5.0 provides an overview of the overall mission approach, surface strategy and exploration goals, as well as the key systems and challenges for the first three human missions to Mars.

  1. Far Infrared spectroscopy of proteinogenic and other less common amino acids

    NASA Astrophysics Data System (ADS)

    Iglesias-Groth, S.; Cataldo, F.

    2018-05-01

    Far infrared spectroscopy is a powerful tool complementing the potential of mid infrared spectroscopy for the search and identification of organic molecules in space. The far infrared spectra of a total of 29 amino acids are reported in this study. In addition to the spectra of 20 common proteinogenic amino acids, spectra of a selection of 9 non-proteinogenic amino acids are also reported, including the 2-aminoisobutyric acid or α-aminoisobutyric acid which, with glycine, it is one of the most abundant amino acids found in meteorites. The present database of 29 far infrared spectra may serve as reference in the search for amino acids in space environments, given the new apportunities that JWST offers for mid and far IR spectroscopy.

  2. Issues and Design Drivers for Deep Space Habitats

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.; Anderson, Molly

    2012-01-01

    A cross-disciplinary team of scientists and engineers applied expertise gained in Lunar Lander development to the conceptual design of a long-duration, deep space habitat for Near Earth Asteroid (NEA) missions. The design reference mission involved two launches to assemble 5-modules for a 380-day round trip mission carrying 4 crew members. The conceptual design process yielded a number of interesting debates, some of which could be significant design drivers in a detailed Deep Space Habitat (DSH) design. These issues included: Design to minimize crew radiation exposure, launch loads, communications challenges, docking system and hatch commonality, pointing and visibility, consumables, and design for contingency operations.

  3. Lexico-Semantic Structure and the Word-Frequency Effect in Recognition Memory

    ERIC Educational Resources Information Center

    Monaco, Joseph D.; Abbott, L. F.; Kahana, Michael J.

    2007-01-01

    The word-frequency effect (WFE) in recognition memory refers to the finding that more rare words are better recognized than more common words. We demonstrate that a familiarity-discrimination model operating on data from a semantic word-association space yields a robust WFE in data on both hit rates and false-alarm rates. Our modeling results…

  4. Colorimetry and prime colours--a theorem.

    PubMed

    Hornaes, Hans Petter; Wold, Jan Henrik; Farup, Ivar

    2005-08-01

    Human colour vision is the result of a complex process involving topics ranging from physics of light to perception. Whereas the diversity of light entering the eye in principle span an infinite-dimensional vector space in terms of the spectral power distributions, the space of human colour perceptions is three dimensional. One important consequence of this is that a variety of colours can be visually matched by a mixture of only three adequately chosen reference lights. It has been observed that there exists one particular set of monochromatic reference lights that, according to a certain definition, is optimal for producing colour matches. These reference lights are commonly denoted prime colours. In the present paper, we intend to rigorously show that the existence of prime colours is not particular to the human visual system as sometimes stated, but rather an algebraic consequence of the manner in which a kind of colorimetric functions called colour-matching functions are defined and transformed. The solution is based on maximisation of a determinant determining the gamut size of the colour space spanned by the prime colours. Cramer's rule for solving a set of linear equations is an essential part of the proof. By means of examples, it is shown that mathematically the optimal set of reference lights is not unique in general, and that the existence of a maximum determinant is not a necessary condition for the existence of prime colours.

  5. Reference Specifications for SAVOIR Avionics Elements

    NASA Astrophysics Data System (ADS)

    Hult, Torbjorn; Lindskog, Martin; Roques, Remi; Planche, Luc; Brunjes, Bernhard; Dellandrea, Brice; Terraillon, Jean-Loup

    2012-08-01

    Space industry and Agencies have been recognizing already for quite some time the need to raise the level of standardisation in the spacecraft avionics systems in order to increase efficiency and reduce development cost and schedule. This also includes the aspect of increasing competition in global space business, which is a challenge that European space companies are facing at all stages of involvement in the international markets.A number of initiatives towards this vision are driven both by the industry and ESA’s R&D programmes. However, today an intensified coordination of these activities is required in order to achieve the necessary synergy and to ensure they converge towards the shared vision. It has been proposed to federate these initiatives under the common Space Avionics Open Interface Architecture (SAVOIR) initiative. Within this initiative, the approach based on reference architectures and building blocks plays a key role.Following the principles outlined above, the overall goal of the SAVOIR is to establish a streamlined onboard architecture in order to standardize the development of avionics systems for space programmes. This reflects the need to increase efficiency and cost-effectiveness in the development process as well as account the trend towards more functionality implemented by the onboard building blocks, i.e. HW and SW components, and more complexity for the overall space mission objectives.

  6. Measurement of aspheric mirror segments using Fizeau interferometry with CGH correction

    NASA Astrophysics Data System (ADS)

    Burge, James H.; Zhao, Chunyu; Dubin, Matt

    2010-07-01

    Large aspheric primary mirrors are proposed that use hundreds segments that all must be aligned and phased to approximate the desired continuous mirror. We present a method of measuring these concave segments with a Fizeau interferometer where a spherical convex reference surface is held a few millimeters from the aspheric segment. The aspheric shape is accommodated by a small computer generated hologram (CGH). Different segments are measured by replacing the CGH. As a Fizeau test, nearly all of the optical elements and air spaces are common to both the measurement and reference wavefront, so the sensitivities are not tight. Also, since the reference surface of the test plate is common to all tests, this system achieves excellent control for the radius of curvature variation from one part to another. This paper describes the test system design and analysis for such a test, and presents data from a similar 1.4-m test performed at the University of Arizona.

  7. Compilation of Published Estimates of Annual Geocenter Motions Using Space Geodesy

    NASA Technical Reports Server (NTRS)

    Elosegui, P.

    2005-01-01

    The definition of the term "geocenter motion" depends on the adopted origin of the reference frame. Common reference frames used in Space Geodesy include: the center of mass of the whole Earth (CM), the center of mass of the Solid Earth without mass load (CE), and the center of figure of the outer surface of the Solid Earth (CF). There are two established definitions of the term geocenter: one, the vector offset of CF relative to CM and, two, the reverse, the vector offset of CM relative to CF. Obviously, their amplitude is the same and their phase differs by 180 deg. Following Dong et al. [2003], we label the first X(sub CF, sup CM) and the second X(sup CF, sup CM) (i.e., the superscript represents the frame, the subscript represents any point in the frame).

  8. Geosynchronous Orbit Determination Using Space Surveillance Network Observations and Improved Radiative Force Modeling

    DTIC Science & Technology

    2004-06-01

    equinoctial elements , because both sets of orbital elements reference the equinoctial coordinate system. In fact, to...spacecraft position and velocity vectors, or an element set , which represents the orbit using scalar quantities and angle measurements called orbital ...common element sets used to describe elliptical orbits (including circular orbits ) are Keplerian elements , also called classical orbital

  9. Comparing Laser Interferometry and Atom Interferometry Approaches to Space-Based Gravitational-Wave Measurement

    NASA Technical Reports Server (NTRS)

    Baker, John; Thorpe, Ira

    2012-01-01

    Thoroughly studied classic space-based gravitational-wave missions concepts such as the Laser Interferometer Space Antenna (LISA) are based on laser-interferometry techniques. Ongoing developments in atom-interferometry techniques have spurred recently proposed alternative mission concepts. These different approaches can be understood on a common footing. We present an comparative analysis of how each type of instrument responds to some of the noise sources which may limiting gravitational-wave mission concepts. Sensitivity to laser frequency instability is essentially the same for either approach. Spacecraft acceleration reference stability sensitivities are different, allowing smaller spacecraft separations in the atom interferometry approach, but acceleration noise requirements are nonetheless similar. Each approach has distinct additional measurement noise issues.

  10. An Overview of a Trajectory-Based Solution for En Route and Terminal Area Self-Spacing: Fifth Edition

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    2015-01-01

    This paper presents an overview of the fifth revision to an algorithm specifically designed to support NASA's Airborne Precision Spacing concept. This algorithm is referred to as the Airborne Spacing for Terminal Arrival Routes version 12 (ASTAR12). This airborne self-spacing concept is trajectory-based, allowing for spacing operations prior to the aircraft being on a common path. Because this algorithm is trajectory-based, it also has the inherent ability to support required-time-of- arrival (RTA) operations. This algorithm was also designed specifically to support a standalone, non-integrated implementation in the spacing aircraft. This current revision to the algorithm includes a ground speed feedback term to compensate for slower than expected traffic aircraft speeds based on the accepted air traffic control tendency to slow aircraft below the nominal arrival speeds when they are farther from the airport.

  11. Gravitropic mechanisms derived from space experiments and magnetic gradients.

    NASA Astrophysics Data System (ADS)

    Hasenstein, Karl H.; Park, Myoung Ryoul

    2016-07-01

    Gravitropism is the result of a complex sequence of events that begins with the movement of dense particles, typically starch-filled amyloplasts in response to reorientation. Although these organelles change positions, it is not clear whether the critical signal is derived from sedimentation or dynamic interactions of amyloplasts with relevant membranes. Substituting gravity by high-gradient magnetic fields (HGMF) provides a localized stimulus for diamagnetic starch that is specific for amyloplasts and comparable to gravity without affecting other organelles. Experiments with Brassica rapa showed induction of root curvature by HGMF when roots moved sufficiently close to the magnetic gradient-inducing foci. The focused and short-range effectiveness of HGMFs provided a gravity-like stimulus and affected related gene expression. Root curvature was sensitive to the mutual alignment between roots and HGMF direction. Unrelated to any HGMF effects, the size of amyloplasts in space-grown roots increased by 30% compared to ground controls and suggests enhanced sensitivity in a gravity-reduced environment. Accompanying gene transcription studies showed greater differences between HGMF-exposed and space controls than between space and ground controls. This observation may lead to the identification of gravitropism-relevant genes. However, space grown roots showed stronger transcription of common reference genes such as actin and ubiquitin in magnetic fields than in non-magnetic conditions. In contrast, α-amylase, glucokinase and PIN encoding genes were transcribed stronger under non-magnetic conditions than under HGMF. The large number of comparisons between space, ground, and HGMF prompted the assessment of transcription differences between root segments, root-shoot junction, and seeds. Because presumed transcription of reference genes varied more than genes of interest, changes in gene expression cannot be based on reference genes. The data provide an example of complex and different responses to microgravity conditions, induced curvature, ground controls, clinorotation, and magnetic field exposure.

  12. LISA Beyond Einstein: From the Big Bang to Black Holes. LISA Technology Development at GSFC

    NASA Technical Reports Server (NTRS)

    Thorpe, James Ira

    2008-01-01

    This viewgraph presentation reviews the work that has been ongoing at the Goddard Space Flight Center (GSFC) in the development of the technology to be used in the Laser Interferometer Space Antenna (LISA) spacecrafts. The prime focus of LISA technology development efforts at NASA/GSFC has been in LISA interferometry. Specifically efforts have been made in the area of laser frequency noise mitigation. Laser frequency noise is addressed through a combination of stabilization and common-mode rejection. Current plans call for two stages of stabilization, pre-stabilization to a local frequency reference and further stabilization using the constellation as a frequency reference. In order for these techniques to be used simultaneously, the pre-stabilization step must provide an adjustable frequency offset. This presentation reports on a modification to the standard modulation/demodulation technique used to stabilize to optical cavities that generates a frequency-tunable reference from a fixed length cavity. This technique requires no modifications to the cavity itself and only minor modifications to the components. The measured noise performance and dynamic range of the laboratory prototype meet the LISA requirements.

  13. Orbiter processing facility service platform failure and redesign

    NASA Technical Reports Server (NTRS)

    Harris, Jesse L.

    1988-01-01

    In a high bay of the Orbiter Processing Facility (OPF) at the Kennedy Space Center, technicians were preparing the space shuttle orbiter Discovery for rollout to the Vehicle Assembly Building (VAB). A service platform, commonly referred to as an OPF Bucket, was being retracted when it suddenly fell, striking a technician and impacting Discovery's payload bay door. A critical component in the OPF Bucket hoist system had failed, allowing the platform to fall. The incident was thoroughly investigated by both NASA and Lockheed, revealing many design deficiencies within the system. The deficiencies and the design changes made to correct them are reviewed.

  14. Programmer's manual for the Mission Analysis Evaluation and Space Trajectory Operations program (MAESTRO)

    NASA Technical Reports Server (NTRS)

    Lutzky, D.; Bjorkman, W. S.

    1973-01-01

    The Mission Analysis Evaluation and Space Trajectory Operations program known as MAESTRO is described. MAESTRO is an all FORTRAN, block style, computer program designed to perform various mission control tasks. This manual is a guide to MAESTRO, providing individuals the capability of modifying the program to suit their needs. Descriptions are presented of each of the subroutines descriptions consist of input/output description, theory, subroutine description, and a flow chart where applicable. The programmer's manual also contains a detailed description of the common blocks, a subroutine cross reference map, and a general description of the program structure.

  15. An International Strategy for Human Exploration of the Moon: The International Space Exploration Coordination Group (ISECG) Reference Architecture for Human Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Laurini, Kathleen C.; Hufenbach, Bernhard; Junichiro, Kawaguchi; Piedboeuf, Jean-Claude; Schade, Britta; Lorenzoni, Andrea; Curtis, Jeremy; Hae-Dong, Kim

    2010-01-01

    The International Space Exploration Coordination Group (ISECG) was established in response to The Global Exploration Strategy: The Framework for Coordination developed by fourteen space agencies and released in May 2007. Several ISECG participating space agencies have been studying concepts for human exploration of the moon that allow individual and collective goals and objectives to be met. This 18 month study activity culminated with the development of the ISECG Reference Architecture for Human Lunar Exploration. The reference architecture is a series of elements delivered over time in a flexible and evolvable campaign. This paper will describe the reference architecture and how it will inform near-term and long-term programmatic planning within interested agencies. The reference architecture is intended to serve as a global point of departure conceptual architecture that enables individual agency investments in technology development and demonstration, International Space Station research and technology demonstration, terrestrial analog studies, and robotic precursor missions to contribute towards the eventual implementation of a human lunar exploration scenario which reflects the concepts and priorities established to date. It also serves to create opportunities for partnerships that will support evolution of this concept and its eventual realization. The ISECG Reference Architecture for Human Lunar Exploration (commonly referred to as the lunar gPoD) reflects the agency commitments to finding an effective balance between conducting important scientific investigations of and from the moon, as well as demonstrating and mastering the technologies and capabilities to send humans farther into the Solar System. The lunar gPoD begins with a robust robotic precursor phase that demonstrates technologies and capabilities considered important for the success of the campaign. Robotic missions will inform the human missions and buy down risks. Human exploration will start with a thorough scientific investigation of the polar region while allowing the ability to demonstrate and validate the systems needed to take humans on more ambitious lunar exploration excursions. The ISECG Reference Architecture for Human Lunar Exploration serves as a model for future cooperation and is documented in a summary report and a comprehensive document that also describes the collaborative international process that led to its development. ISECG plans to continue with architecture studies such as this to examine an open transportation architecture and other destinations, with expanded participation from ISECG agencies, as it works to inform international partnerships and advance the Global Exploration Strategy.

  16. Space Communication and Navigation Testbed Communications Technology for Exploration

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard

    2013-01-01

    NASA developed and launched an experimental flight payload (referred to as the Space Communication and Navigation Test Bed) to investigate software defined radio, networking, and navigation technologies, operationally in the space environment. The payload consists of three software defined radios each compliant to NASAs Space Telecommunications Radio System Architecture, a common software interface description standard for software defined radios. The software defined radios are new technology developed by NASA and industry partners. The payload is externally mounted to the International Space Station truss and available to NASA, industry, and university partners to conduct experiments representative of future mission capability. Experiment operations include in-flight reconfiguration of the SDR waveform functions and payload networking software. The flight system communicates with NASAs orbiting satellite relay network, the Tracking, Data Relay Satellite System at both S-band and Ka-band and to any Earth-based compatible S-band ground station.

  17. Common mode noise rejection properties of amplitude and phase noise in a heterodyne interferometer.

    PubMed

    Hechenblaikner, Gerald

    2013-05-01

    High precision metrology systems based on heterodyne interferometry can measure the position and attitude of objects to accuracies of picometer and nanorad, respectively. A frequently found feature of the general system design is the subtraction of a reference phase from the phase of the position interferometer, which suppresses low frequency common mode amplitude and phase fluctuations occurring in volatile optical path sections shared by both the position and reference interferometer. Spectral components of the noise at frequencies around or higher than the heterodyne frequency, however, are generally transmitted into the measurement band and may limit the measurement accuracy. Detailed analytical calculations complemented with Monte Carlo simulations show that high frequency noise components may also be entirely suppressed, depending on the relative difference of measurement and reference phase, which may be exploited by corresponding design provisions. While these results are applicable to any heterodyne interferometer with certain design characteristics, specific calculations and related discussions are given for the example of the optical metrology system of the LISA Pathfinder mission to space.

  18. Direct magnetic field estimation based on echo planar raw data.

    PubMed

    Testud, Frederik; Splitthoff, Daniel Nicolas; Speck, Oliver; Hennig, Jürgen; Zaitsev, Maxim

    2010-07-01

    Gradient recalled echo echo planar imaging is widely used in functional magnetic resonance imaging. The fast data acquisition is, however, very sensitive to field inhomogeneities which manifest themselves as artifacts in the images. Typically used correction methods have the common deficit that the data for the correction are acquired only once at the beginning of the experiment, assuming the field inhomogeneity distribution B(0) does not change over the course of the experiment. In this paper, methods to extract the magnetic field distribution from the acquired k-space data or from the reconstructed phase image of a gradient echo planar sequence are compared and extended. A common derivation for the presented approaches provides a solid theoretical basis, enables a fair comparison and demonstrates the equivalence of the k-space and the image phase based approaches. The image phase analysis is extended here to calculate the local gradient in the readout direction and improvements are introduced to the echo shift analysis, referred to here as "k-space filtering analysis." The described methods are compared to experimentally acquired B(0) maps in phantoms and in vivo. The k-space filtering analysis presented in this work demonstrated to be the most sensitive method to detect field inhomogeneities.

  19. SAQP pitch walk metrology using single target metrology

    NASA Astrophysics Data System (ADS)

    Fang, Fang; Herrera, Pedro; Kagalwala, Taher; Camp, Janay; Vaid, Alok; Pandev, Stilian; Zach, Franz

    2017-03-01

    Self-aligned quadruple patterning (SAQP) processes have found widespread acceptance in advanced technology nodes to drive device scaling beyond the resolution limitations of immersion scanners. Of the four spaces generated in this process from one lithography pattern two tend to be equivalent as they are derived from the first spacer deposition. The three independent spaces are commonly labelled as α, β and γ. α, β and γ are controlled by multiple process steps including the initial lithographic patterning process, the two mandrel and spacer etches as well as the two spacer depositions. Scatterometry has been the preferred metrology approach, however is restricted to repetitive arrays. In these arrays independent measurements, in particular of alpha and gamma, are not possible due to degeneracy of the standard array targets. . In this work we present a single target approach which lifts the degeneracies commonly encountered while using product relevant layout geometries. We will first describe the metrology approach which includes the previously described SRM (signal response metrology) combined with reference data derived from CD SEM data. The performance of the methodology is shown in figures 1-3. In these figures the optically determined values for alpha, beta and gamma are compared to the CD SEM reference data. The variations are achieved using controlled process experiments varying Mandrel CD and Spacer deposition thicknesses.

  20. Data catalog of satellite experiments

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The availability of space science data, a description of the data, and a description of the services supplied by the National Space Science Data Center (NSSDC) is presented. A series of cumulative indexes that reference the data descriptions contain: (1) a chronological listing of all spacecraft, experiments, and data descriptions; (2) an index of all spacecraft described, identified by common names and alternate names; (3) a listing of the original experiment institutions for experiments described; (4) a listing of the investigators associated with the experiments and their current affiliations; and (5) two displays of information about experiment data coverage for fields and particle data and a listing of all experiments sorted by phenomenon measured.

  1. Space transfer concepts and analysis for exploration missions. Implementation plan and element description document. Volume 1: Major trades. Book 1: Draft final

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This document presents trade studies and reference concept designs accomplished during a study of Space Transfer Concepts and Analyses for Exploration Missions (STCAEM). This volume contains the major top level trades, level 2 trades conducted in support of NASA's Lunar/Mars Exploration Program Office, and a synopsis of the vehicles for different propulsion systems under trade consideration. The vehicles are presented in more detail in other volumes of this report. Book 1 of Volume 1 covers the following analyses: lunar/Mars commonality trades, lunar/Mars mission operations, and Mars transfer systems.

  2. Living in Space: Time, Space and Spirit--Keys to Scientific Literacy Series.

    ERIC Educational Resources Information Center

    Stonebarger, Bill

    The idea of flight and space travel are not new, but the technologies which make them possible are very recent. This booklet considers time, space, and spirit related to living in space. Time refers to a sense of history; space refers to geography; and spirit refers to life and thought. Several chapters on the history and concepts of flight and…

  3. A Comparative Study of Measuring Devices Used During Space Shuttle Processing for Inside Diameters

    NASA Technical Reports Server (NTRS)

    Rodriguez, Antonio

    2006-01-01

    During Space Shuttle processing, discrepancies between vehicle dimensions and per print dimensions determine if a part should be refurbished, replaced or accepted "as-is." The engineer's job is to address each discrepancy by choosing the most accurate procedure and tool available, sometimes with up to ten thousands of an inch tolerance. Four methods of measurement are commonly used at the Kennedy Space Center: 1) caliper, 2) mold impressions, 3) optical comparator, 4) dial bore gage. During a problem report evaluation, uncertainty arose between methods after measuring diameters with variations of up to 0.0004" inches. The results showed that computer based measuring devices are extremely accurate, but when human factor is involved in determining points of reference, the results may vary widely compared to more traditional methods. iv

  4. NASA/MSFC ground experiment for large space structure control verification

    NASA Technical Reports Server (NTRS)

    Waites, H. B.; Seltzer, S. M.; Tollison, D. K.

    1984-01-01

    Marshall Space Flight Center has developed a facility in which closed loop control of Large Space Structures (LSS) can be demonstrated and verified. The main objective of the facility is to verify LSS control system techniques so that on orbit performance can be ensured. The facility consists of an LSS test article which is connected to a payload mounting system that provides control torque commands. It is attached to a base excitation system which will simulate disturbances most likely to occur for Orbiter and DOD payloads. A control computer will contain the calibration software, the reference system, the alignment procedures, the telemetry software, and the control algorithms. The total system will be suspended in such a fashion that LSS test article has the characteristics common to all LSS.

  5. Obama cares about visuo-spatial attention: perception of political figures moves attention and determines gaze direction.

    PubMed

    Mills, Mark; Smith, Kevin B; Hibbing, John R; Dodd, Michael D

    2015-02-01

    Processing an abstract concept such as political ideology by itself is difficult but becomes easier when a background situation contextualizes it. Political ideology within American politics, for example, is commonly processed using space metaphorically, i.e., the political "left" and "right" (referring to Democrat and Republican views, respectively), presumably to provide a common metric to which abstract features of ideology can be grounded and understood. Commonplace use of space as metaphor raises the question of whether an inherently non-spatial stimulus (e.g., picture of the political "left" leader, Barack Obama) can trigger a spatially-specific response (e.g., attentional bias toward "left" regions of the visual field). Accordingly, pictures of well-known Democrats and Republicans were presented as central cues in peripheral target detection (Experiment 1) and saccadic free-choice (Experiment 2) tasks to determine whether perception of stimuli lacking a direct association with physical space nonetheless induce attentional and oculomotor biases in the direction compatible with the ideological category of the cue (i.e., Democrat/left and Republican/right). In Experiment 1, target detection following presentation of a Democrat (Republican) was facilitated for targets appearing to the left (right). In Experiment 2, participants were more likely to look left (right) following presentation of a Democrat (Republican). Thus, activating an internal representation of political ideology induced a shift of attention and biased choice of gaze direction in a spatially-specific manner. These findings demonstrate that the link between conceptual processing and spatial attention can be totally arbitrary, with no reference to physical or symbolic spatial information. Published by Elsevier B.V.

  6. Ambient Optomechanical Alignment and Pupil Metrology for the Flight Instruments Aboard the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Coulter, Phillip; Beaton, Alexander; Gum, Jeffrey S.; Hadjimichael, Theodore J.; Hayden, Joseph E.; Hummel, Susann; Hylan, Jason E.; Lee, David; Madison, Timothy J.; Maszkiewicz, Michael; hide

    2014-01-01

    The James Webb Space Telescope science instruments are in the final stages of being integrated into the Integrated Science Instrument Module (ISIM) element. Each instrument is tied into a common coordinate system through mechanical references that are used for optical alignment and metrology within ISIM after element-level assembly. In addition, a set of ground support equipment (GSE) consisting of large, precisely calibrated, ambient, and cryogenic structures are used as alignment references and gauges during various phases of integration and test (I&T). This GSE, the flight instruments, and ISIM structure feature different types of complimentary metrology targeting. These GSE targets are used to establish and track six degrees of freedom instrument alignment during I&T in the vehicle coordinate system (VCS). This paper describes the optomechanical metrology conducted during science instrument integration and alignment in the Spacecraft Systems Development and Integration Facility (SSDIF) cleanroom at NASA Goddard Space Flight Center (GSFC). The measurement of each instrument's ambient entrance pupil location in the telescope coordinate system is discussed. The construction of the database of target locations and the development of metrology uncertainties is also discussed.

  7. Space Communication and Navigation SDR Testbed, Overview and Opportunity for Experiments

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.

    2013-01-01

    NASA has developed an experimental flight payload (referred to as the Space Communication and Navigation (SCAN) Test Bed) to investigate software defined radio (SDR) communications, networking, and navigation technologies, operationally in the space environment. The payload consists of three software defined radios each compliant to NASAs Space Telecommunications Radio System Architecture, a common software interface description standard for software defined radios. The software defined radios are new technology developments underway by NASA and industry partners launched in 2012. The payload is externally mounted to the International Space Station truss to conduct experiments representative of future mission capability. Experiment operations include in-flight reconfiguration of the SDR waveform functions and payload networking software. The flight system will communicate with NASAs orbiting satellite relay network, the Tracking and Data Relay Satellite System at both S-band and Ka-band and to any Earth-based compatible S-band ground station. The system is available for experiments by industry, academia, and other government agencies to participate in the SDR technology assessments and standards advancements.

  8. MATSIM: Development of a Voxel Model of the MATROSHKA Astronaut Dosimetric Phantom

    NASA Astrophysics Data System (ADS)

    Beck, Peter; Zechner, Andrea; Rollet, Sofia; Berger, Thomas; Bergmann, Robert; Hajek, Michael; Hranitzky, Christian; Latocha, Marcin; Reitz, Günther; Stadtmann, Hannes; Vana, Norbert; Wind, Michael

    2011-08-01

    The AIT Austrian Institute of Technology coordinates the project MATSIM (MATROSHKA Simulation) in collaboration with the Vienna University of Technology and the German Aerospace Center, to perform FLUKA Monte Carlo simulations of the MATROSHKA numerical phantom irradiated under reference radiation field conditions as well as for the radiation environment at the International Space Station (ISS). MATSIM is carried out as co-investigation of the ESA ELIPS projects SORD and RADIS (commonly known as MATROSHKA), an international collaboration of more than 18 research institutes and space agencies from all over the world, under the science and project lead of the German Aerospace Center. During MATSIM a computer tomography scan of the MATROSHKA phantom has been converted into a high resolution 3-dimensional voxel model. The energy imparted and absorbed dose distribution inside the model is determined for various radiation fields. The major goal of the MATSIM project is the validation of the numerical model under reference radiation conditions and further investigations under the radiation environment at ISS. In this report we compare depth dose distributions inside the phantom measured with thermoluminescence detectors (TLDs) and an ionization chamber with FLUKA Monte Carlo particle transport simulations due to 60Co photon exposure. Further reference irradiations with neutrons, protons and heavy ions are planned. The fully validated numerical model MATSIM will provide a perfect tool to assess the radiation exposure to humans during current and future space missions to ISS, Moon, Mars and beyond.

  9. Six Dimensional Trajectory Solver for Autonomous Proximity Operations

    DTIC Science & Technology

    1990-05-01

    Clohessy - Wiltshire equations for relative position and quaternions for relative attitude are used to define a state space relationship between the initial...0 (2.23) y + 2nX = 0 (2.24) 2+ n2 z = 0 (2.25) which are commonly referred to as the Clohessy - Wiltshire equations. Although 11 the equations are...attributed to W. Clohessy and R. Wiltshire for their paper in the September 1960 issue of the Journal of Aerospace Science, another author developed the

  10. Consistent realization of Celestial and Terrestrial Reference Frames

    NASA Astrophysics Data System (ADS)

    Kwak, Younghee; Bloßfeld, Mathis; Schmid, Ralf; Angermann, Detlef; Gerstl, Michael; Seitz, Manuela

    2018-03-01

    The Celestial Reference System (CRS) is currently realized only by Very Long Baseline Interferometry (VLBI) because it is the space geodetic technique that enables observations in that frame. In contrast, the Terrestrial Reference System (TRS) is realized by means of the combination of four space geodetic techniques: Global Navigation Satellite System (GNSS), VLBI, Satellite Laser Ranging (SLR), and Doppler Orbitography and Radiopositioning Integrated by Satellite. The Earth orientation parameters (EOP) are the link between the two types of systems, CRS and TRS. The EOP series of the International Earth Rotation and Reference Systems Service were combined of specifically selected series from various analysis centers. Other EOP series were generated by a simultaneous estimation together with the TRF while the CRF was fixed. Those computation approaches entail inherent inconsistencies between TRF, EOP, and CRF, also because the input data sets are different. A combined normal equation (NEQ) system, which consists of all the parameters, i.e., TRF, EOP, and CRF, would overcome such an inconsistency. In this paper, we simultaneously estimate TRF, EOP, and CRF from an inter-technique combined NEQ using the latest GNSS, VLBI, and SLR data (2005-2015). The results show that the selection of local ties is most critical to the TRF. The combination of pole coordinates is beneficial for the CRF, whereas the combination of Δ UT1 results in clear rotations of the estimated CRF. However, the standard deviations of the EOP and the CRF improve by the inter-technique combination which indicates the benefits of a common estimation of all parameters. It became evident that the common determination of TRF, EOP, and CRF systematically influences future ICRF computations at the level of several μas. Moreover, the CRF is influenced by up to 50 μas if the station coordinates and EOP are dominated by the satellite techniques.

  11. Co-location of space geodetic techniques carried out at the Geodetic Observatory Wettzell using a closure in time and a multi-technique reference target

    NASA Astrophysics Data System (ADS)

    Kodet, J.; Schreiber, K. U.; Eckl, J.; Plötz, C.; Mähler, S.; Schüler, T.; Klügel, T.; Riepl, S.

    2018-01-01

    The quality of the links between the different space geodetic techniques (VLBI, SLR, GNSS and DORIS) is still one of the major limiting factors for the realization of a unique global terrestrial reference frame that is accurate enough to allow the monitoring of the Earth system, i.e., of processes like sea level change, postglacial rebound and silent earthquakes. According to the specifications of the global geodetic observing system of the International Association of Geodesy, such a reference frame should be accurate to 1 mm over decades, with rates of change stable at the level of 0.1 mm/year. The deficiencies arise from inaccurate or incomplete local ties at many fundamental sites as well as from systematic instrumental biases in the individual space geodetic techniques. Frequently repeated surveys, the continuous monitoring of antenna heights and the geometrical mount stability (Lösler et al. in J Geod 90:467-486, 2016. https://doi.org/10.1007/s00190-016-0887-8) have not provided evidence for insufficient antenna stability. Therefore, we have investigated variations in the respective system delays caused by electronic circuits, which is not adequately captured by the calibration process, either because of subtle differences in the circuitry between geodetic measurement and calibration, high temporal variability or because of lacking resolving bandwidth. The measured system delay variations in the electric chain of both VLBI- and SLR systems reach the order of 100 ps, which is equivalent to 3 cm of path length. Most of this variability is usually removed by the calibrations but by far not all. This paper focuses on the development of new technologies and procedures for co-located geodetic instrumentation in order to identify and remove systematic measurement biases within and between the individual measurement techniques. A closed-loop optical time and frequency distribution system and a common inter-technique reference target provide the possibility to remove variable system delays. The main motivation for the newly established central reference target, locked to the station clock, is the combination of all space geodetic instruments at a single reference point at the observatory. On top of that it provides the unique capability to perform a closure measurement based on the observation of time.

  12. Distance-dependent processing of pictures and words.

    PubMed

    Amit, Elinor; Algom, Daniel; Trope, Yaacov

    2009-08-01

    A series of 8 experiments investigated the association between pictorial and verbal representations and the psychological distance of the referent objects from the observer. The results showed that people better process pictures that represent proximal objects and words that represent distal objects than pictures that represent distal objects and words that represent proximal objects. These results were obtained with various psychological distance dimensions (spatial, temporal, and social), different tasks (classification and categorization), and different measures (speed of processing and selective attention). The authors argue that differences in the processing of pictures and words emanate from the physical similarity of pictures, but not words, to the referents. Consequently, perceptual analysis is commonly applied to pictures but not to words. Pictures thus impart a sense of closeness to the referent objects and are preferably used to represent such objects, whereas words do not convey proximity and are preferably used to represent distal objects in space, time, and social perspective.

  13. Thermocouple, multiple junction reference oven

    NASA Technical Reports Server (NTRS)

    Leblanc, L. P. (Inventor)

    1981-01-01

    An improved oven for maintaining the junctions of a plurality of reference thermocouples at a common and constant temperature is described. The oven is characterized by a cylindrical body defining a heat sink with axially extended-cylindrical cavity a singularized heating element which comprises a unitary cylindrical heating element consisting of a resistance heating coil wound about the surface of metallic spool with an axial bore defined and seated in the cavity. Other features of the oven include an annular array of radially extended bores defined in the cylindrical body and a plurality of reference thermocouple junctions seated in the bores in uniformly spaced relation with the heating element, and a temperature sensing device seated in the axial bore for detecting temperature changes as they occur in the spool and circuit to apply a voltage across the coil in response to detected drops in temperatures of the spool.

  14. Space based topographic mapping experiment using Seasat synthetic aperture radar and LANDSAT 3 return beam vidicon imagery

    NASA Technical Reports Server (NTRS)

    Mader, G. L.

    1981-01-01

    A technique for producing topographic information is described which is based on same side/same time viewing using a dissimilar combination of radar imagery and photographic images. Common geographic areas viewed from similar space reference locations produce scene elevation displacements in opposite direction and proper use of this characteristic can yield the perspective information necessary for determination of base to height ratios. These base to height ratios can in turn be used to produce a topographic map. A test area covering the Harrisburg, Pennsylvania region was observed by synthetic aperture radar on the Seasat satellite and by return beam vidicon on by the LANDSAT - 3 satellite. The techniques developed for the scaling re-orientation and common registration of the two images are presented along with the topographic determination data. Topographic determination based exclusively on the images content is compared to the map information which is used as a performance calibration base.

  15. Heuristic approach to image registration

    NASA Astrophysics Data System (ADS)

    Gertner, Izidor; Maslov, Igor V.

    2000-08-01

    Image registration, i.e. correct mapping of images obtained from different sensor readings onto common reference frame, is a critical part of multi-sensor ATR/AOR systems based on readings from different types of sensors. In order to fuse two different sensor readings of the same object, the readings have to be put into a common coordinate system. This task can be formulated as optimization problem in a space of all possible affine transformations of an image. In this paper, a combination of heuristic methods is explored to register gray- scale images. The modification of Genetic Algorithm is used as the first step in global search for optimal transformation. It covers the entire search space with (randomly or heuristically) scattered probe points and helps significantly reduce the search space to a subspace of potentially most successful transformations. Due to its discrete character, however, Genetic Algorithm in general can not converge while coming close to the optimum. Its termination point can be specified either as some predefined number of generations or as achievement of a certain acceptable convergence level. To refine the search, potential optimal subspaces are searched using more delicate and efficient for local search Taboo and Simulated Annealing methods.

  16. Adaptive nonlinear control for autonomous ground vehicles

    NASA Astrophysics Data System (ADS)

    Black, William S.

    We present the background and motivation for ground vehicle autonomy, and focus on uses for space-exploration. Using a simple design example of an autonomous ground vehicle we derive the equations of motion. After providing the mathematical background for nonlinear systems and control we present two common methods for exactly linearizing nonlinear systems, feedback linearization and backstepping. We use these in combination with three adaptive control methods: model reference adaptive control, adaptive sliding mode control, and extremum-seeking model reference adaptive control. We show the performances of each combination through several simulation results. We then consider disturbances in the system, and design nonlinear disturbance observers for both single-input-single-output and multi-input-multi-output systems. Finally, we show the performance of these observers with simulation results.

  17. Radiation: Time, Space and Spirit--Keys to Scientific Literacy Series.

    ERIC Educational Resources Information Center

    Stonebarger, Bill

    This discussion of radiation considers the spectrum of electromagnetic energy including light, x-rays, radioactivity, and other waves. Radiation is considered from three aspects; time, space, and spirit. Time refers to a sense of history; space refers to geography; and spirit refers to life and thought. Several chapters on the history and concepts…

  18. Emerging national space launch programs: Economics and safeguards

    NASA Astrophysics Data System (ADS)

    Chow, Brian G.

    Most ballistic missile nonproliferation studies have focused on trends in the numbers and performance of missiles and the resulting security threats. This report concentrates on the economic viability of emerging national space launch programs and the prospects for imposing effective safeguards against the use of space launch technology for military missiles. For the convenience of discussion in this report, a reference to ballistic missiles hereafter means surface-to-surface guided ballistic missiles only. Space launch vehicles (SLV's) are surface-to-space ballistic missiles, and they will be referred to explicitly as 'space launch vehicles' or 'space launchers'. Surface-to-surface unguided ballistic missiles will be referred to as 'rockets.'

  19. On equivalent parameter learning in simplified feature space based on Bayesian asymptotic analysis.

    PubMed

    Yamazaki, Keisuke

    2012-07-01

    Parametric models for sequential data, such as hidden Markov models, stochastic context-free grammars, and linear dynamical systems, are widely used in time-series analysis and structural data analysis. Computation of the likelihood function is one of primary considerations in many learning methods. Iterative calculation of the likelihood such as the model selection is still time-consuming though there are effective algorithms based on dynamic programming. The present paper studies parameter learning in a simplified feature space to reduce the computational cost. Simplifying data is a common technique seen in feature selection and dimension reduction though an oversimplified space causes adverse learning results. Therefore, we mathematically investigate a condition of the feature map to have an asymptotically equivalent convergence point of estimated parameters, referred to as the vicarious map. As a demonstration to find vicarious maps, we consider the feature space, which limits the length of data, and derive a necessary length for parameter learning in hidden Markov models. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Space Propulsion Research Facility (B-2): An Innovative, Multi-Purpose Test Facility

    NASA Technical Reports Server (NTRS)

    Hill, Gerald M.; Weaver, Harold F.; Kudlac, Maureen T.; Maloney, Christian T.; Evans, Richard K.

    2011-01-01

    The Space Propulsion Research Facility, commonly referred to as B-2, is designed to hot fire rocket engines or upper stage launch vehicles with up to 890,000 N force (200,000 lb force), after environmental conditioning of the test article in simulated thermal vacuum space environment. As NASA s third largest thermal vacuum facility, and the largest designed to store and transfer large quantities of propellant, it is uniquely suited to support developmental testing associated with large lightweight structures and Cryogenic Fluid Management (CFM) systems, as well as non-traditional propulsion test programs such as Electric and In-Space propulsion. B-2 has undergone refurbishment of key subsystems to support the NASA s future test needs, including data acquisition and controls, vacuum, and propellant systems. This paper details the modernization efforts at B-2 to support the Nation s thermal vacuum/propellant test capabilities, the unique design considerations implemented for efficient operations and maintenance, and ultimately to reduce test costs.

  1. In-Space Propulsion: Where We Stand and What's Next

    NASA Technical Reports Server (NTRS)

    Sackheim, Robert L.

    2003-01-01

    The focus of this paper will be on the three stages of in-space transportation propulsion systems, now commonly referred to as in-space propulsion (ISP); i.e., the transfer of payloads from low-Earth orbits into higher orbits or into trajectories for planetary encounters, including planetary landers and sample return launchers, if required. Functions required at the operational location where ISP must provide thrust for orbit include maintenance, position control, stationkeeping, and spacecraft altitude control; i.e., proper pointing and dynamic stability in inertial space; and the third function set to enable operations at various planetary locations, such as atmospheric entry and capture, descent to the surface and ascent, back to rendezvous orbit. The discussion will concentrate on where ISP stands today and some observations of what might be next in line for new ISP technologies and systems for near-term and future flight applications. The architectural choices that are applicable for ISP will also be described and discussed in detail.

  2. Advanced Robotics for In-Space Vehicle Processing

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey H.; Estus, Jay; Heneghan, Cate; Bosley, John

    1990-01-01

    An analysis of spaceborne vehicle processing is described. Generic crew-EVA tasks are presented for a specific vehicle, the orbital maneuvering vehicle (OMV), with general implications to other on-orbit vehicles. The OMV is examined with respect to both servicing and maintenance. Crew-EVA activities are presented by task and mapped to a common set of generic crew-EVA primitives to identify high-demand areas for telerobot services. Similarly, a set of telerobot primitives is presented that can be used to model telerobot actions for alternative telerobot reference configurations. The telerobot primitives are tied to technologies and used for composting telerobot operations for an automated refueling scenario. Telerobotics technology issues and design accomodation guidelines (hooks and scars) for the Space Station Freedom are described.

  3. NSSDC Data listing

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A convenient reference to space science and supportive data available from the National Space Science Data Center (NSSDC) is provided. Satellite data are organized by NSSDC spacecraft common name. The launch date and NSSDC ID are given. Experiments are listed alphabetically by the principal investigator or team leader. The experiment name and NSSDC ID, data set ID, data set name, data form code, quantity of data, and the time span of the data as verified by NSSDC are shown. Ground-based data, models, computer routines, and composite spacecraft data that are available from NSSDC are listed alphabetically by discipline, source, data type, data content, and data set. The data set name, data form code, quantity of data, and the time span covered where appropriate are included.

  4. Method of Enhancing On-Board State Estimation Using Communication Signals

    NASA Technical Reports Server (NTRS)

    Anzalone, Evan J. (Inventor); Chuang, Jason C. H. (Inventor)

    2015-01-01

    A method of enhancing on-board state estimation for a spacecraft utilizes a network of assets to include planetary-based assets and space-based assets. Communication signals transmitted from each of the assets into space are defined by a common protocol. Data is embedded in each communication signal transmitted by the assets. The data includes a time-of-transmission for a corresponding one of the communication signals and a position of a corresponding one of the assets at the time-of-transmission. A spacecraft is equipped to receive the communication signals, has a clock synchronized to the space-wide time reference frame, and has a processor programmed to generate state estimates of the spacecraft. Using its processor, the spacecraft determines a one-dimensional range from itself to at least one of the assets and then updates its state estimates using each one-dimensional range.

  5. Direct-to-digital holography reduction of reference hologram noise and fourier space smearing

    DOEpatents

    Voelkl, Edgar

    2006-06-27

    Systems and methods are described for reduction of reference hologram noise and reduction of Fourier space smearing, especially in the context of direct-to-digital holography (off-axis interferometry). A method of reducing reference hologram noise includes: recording a plurality of reference holograms; processing the plurality of reference holograms into a corresponding plurality of reference image waves; and transforming the corresponding plurality of reference image waves into a reduced noise reference image wave. A method of reducing smearing in Fourier space includes: recording a plurality of reference holograms; processing the plurality of reference holograms into a corresponding plurality of reference complex image waves; transforming the corresponding plurality of reference image waves into a reduced noise reference complex image wave; recording a hologram of an object; processing the hologram of the object into an object complex image wave; and dividing the complex image wave of the object by the reduced noise reference complex image wave to obtain a reduced smearing object complex image wave.

  6. Film excerpts shown to specifically elicit various affects lead to overlapping activation foci in a large set of symmetrical brain regions in males.

    PubMed

    Karama, Sherif; Armony, Jorge; Beauregard, Mario

    2011-01-01

    While the limbic system theory continues to be part of common scientific parlance, its validity has been questioned on multiple grounds. Nonetheless, the issue of whether or not there exists a set of brain areas preferentially dedicated to emotional processing remains central within affective neuroscience. Recently, a widespread neural reference space for emotion which includes limbic as well as other regions was characterized in a large meta-analysis. As methodologically heterogeneous studies go into such meta-analyses, showing in an individual study in which all parameters are kept constant, the involvement of overlapping areas for various emotion conditions in keeping with the neural reference space for emotion, would serve as valuable confirmatory evidence. Here, using fMRI, 20 young adult men were scanned while viewing validated neutral and effective emotion-eliciting short film excerpts shown to quickly and specifically elicit disgust, amusement, or sexual arousal. Each emotion-specific run included, in random order, multiple neutral and emotion condition blocks. A stringent conjunction analysis revealed a large overlap across emotion conditions that fit remarkably well with the neural reference space for emotion. This overlap included symmetrical bilateral activation of the medial prefrontal cortex, the anterior cingulate, the temporo-occipital junction, the basal ganglia, the brainstem, the amygdala, the hippocampus, the thalamus, the subthalamic nucleus, the posterior hypothalamus, the cerebellum, as well as the frontal operculum extending towards the anterior insula. This study clearly confirms for the visual modality, that processing emotional stimuli leads to widespread increases in activation that cluster within relatively confined areas, regardless of valence.

  7. Communication spaces

    PubMed Central

    Coiera, Enrico

    2014-01-01

    Background and objective Annotations to physical workspaces such as signs and notes are ubiquitous. When densely annotated, work areas become communication spaces. This study aims to characterize the types and purpose of such annotations. Methods A qualitative observational study was undertaken in two wards and the radiology department of a 440-bed metropolitan teaching hospital. Images were purposefully sampled; 39 were analyzed after excluding inferior images. Results Annotation functions included signaling identity, location, capability, status, availability, and operation. They encoded data, rules or procedural descriptions. Most aggregated into groups that either created a workflow by referencing each other, supported a common workflow without reference to each other, or were heterogeneous, referring to many workflows. Higher-level assemblies of such groupings were also observed. Discussion Annotations make visible the gap between work done and the capability of a space to support work. Annotations are repairs of an environment, improving fitness for purpose, fixing inadequacy in design, or meeting emergent needs. Annotations thus record the missing information needed to undertake tasks, typically added post-implemented. Measuring annotation levels post-implementation could help assess the fit of technology to task. Physical and digital spaces could meet broader user needs by formally supporting user customization, ‘programming through annotation’. Augmented reality systems could also directly support annotation, addressing existing information gaps, and enhancing work with context sensitive annotation. Conclusions Communication spaces offer a model of how work unfolds. Annotations make visible local adaptation that makes technology fit for purpose post-implementation and suggest an important role for annotatable information systems and digital augmentation of the physical environment. PMID:24005797

  8. Space Resource Utilization: Technologies and Potential Synergism with Terrestrial Mining

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.

    2015-01-01

    Space Resources and Their Uses: The idea of using resources in space to support human exploration and settlement or for economic development and profit beyond the surface of Earth has been proposed and discussed for decades. Work on developing a method to extract oxygen from lunar regolith started even before humans set foot on the Moon for the first time. The use of space resources, commonly referred to as In Situ Resource Utilization (ISRU), involves the processes and operations to harness and utilize resources in space (both natural and discarded) to create products for subsequent use. Potential space resources include water, solar wind implanted volatiles (hydrogen, helium, carbon, nitrogen, etc.), vast quantities of metals and minerals in extraterrestrial soils, atmospheric constituents, unlimited solar energy, regions of permanent light and darkness, the vacuum and zero-gravity of space itself, trash and waste from human crew activities, and discarded hardware that has completed its primary purpose. ISRU covers a wide variety of concepts, technical disciplines, technologies, and processes. When considering all aspects of ISRU, there are 5 main areas that are relevant to human space exploration and the commercialization of space: 1. Resource Characterization and Mapping, 2. In Situ Consumables Production, 3. Civil Engineering and Construction, 4. In Situ Energy Production and Storage, and 5. In Situ Manufacturing.

  9. Nuclear Power: Time, Space and Spirit--Keys to Scientific Literacy Series.

    ERIC Educational Resources Information Center

    Stonebarger, Bill

    One of the most important discoveries of the twentieth century was the fission of radioactive materials. This booklet considers nuclear energy from three aspects: time; space; and spirit. Time refers to a sense of history; space refers to geography; and spirit refers to life and thought. Several chapters on the history and concepts of nuclear…

  10. Simultaneous two-wavelength tri-window common-path digital holography

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Shan, Mingguang; Zhong, Zhi

    2018-06-01

    Two-wavelength common-path off-axis digital holography is proposed with a tri-window in a single shot. It is established using a standard 4f optical image system with a 2D Ronchi grating placed outside the Fourier plane. The input plane consists of three windows: one for the object and the other two for reference. Aided by a spatial filter together with two orthogonal linear polarizers in the Fourier plane, the two-wavelength information is encoded into a multiplexed hologram with two orthogonal spatial frequencies that enable full separation of spectral information in the digital Fourier space without resolution loss. Theoretical analysis and experimental results illustrate that our approach can simultaneously perform quantitative phase imaging at two wavelengths.

  11. The Gene: Time, Space and Spirit--Keys to Scientific Literacy Series.

    ERIC Educational Resources Information Center

    Stonebarger, Bill

    It has only been since the late nineteenth century that people have understood the mechanics of heredity and the discoveries of genes and DNA are even more recent. This booklet considers three aspects of genetics; time, space, and spirit. Time refers to a sense of history; space refers to geography; and spirit refers to life and thought. Several…

  12. The Expanding Universe: Time, Space and Spirit--Keys to Scientific Literacy Series.

    ERIC Educational Resources Information Center

    Stonebarger, Bill

    Nearly every culture has made important discoveries about the universe. Most cultures have searched for a better understanding of the cosmos and how the earth and human life relate. The discussion in this booklet considers time, space, and spirit. Time refers to a sense of history; space refers to geography; and spirit refers to life and thought.…

  13. Natural Resources: Time, Space and Spirit--Keys to Scientific Literacy Series.

    ERIC Educational Resources Information Center

    Stonebarger, Bill

    Many experts have predicted a global crisis for the end of the twentieth century because of dwindling supplies of natural resources such as minerals, oil, gas, and soil. This booklet considers three aspects of natural resources, time, space, and spirit. Time refers to a sense of history; space refers to geography; and spirit refers to life and…

  14. On-Board Software Reference Architecture for Payloads

    NASA Astrophysics Data System (ADS)

    Bos, Victor; Rugina, Ana; Trcka, Adam

    2016-08-01

    The goal of the On-board Software Reference Architecture for Payloads (OSRA-P) is to identify an architecture for payload software to harmonize the payload domain, to enable more reuse of common/generic payload software across different payloads and missions and to ease the integration of the payloads with the platform.To investigate the payload domain, recent and current payload instruments of European space missions have been analyzed. This led to a Payload Catalogue describing 12 payload instruments as well as a Capability Matrix listing specific characteristics of each payload. In addition, a functional decomposition of payload software was prepared which contains functionalities typically found in payload systems. The definition of OSRA-P was evaluated by case studies and a dedicated OSRA-P workshop to gather feedback from the payload community.

  15. Smartphone-Based Point-of-Care Urinalysis Under Variable Illumination

    PubMed Central

    Ra, Moonsoo; Lim, Chiawei; Han, Sehui; Jung, Chansung; Kim, Whoi-Yul

    2018-01-01

    Urine tests are performed by using an off-the-shelf reference sheet to compare the color of test strips. However, the tabular representation is difficult to use and more prone to visual errors, especially when the reference color-swatches to be compared are spatially apart. Thus, making it is difficult to distinguish between the subtle differences of shades on the reagent pads. This manuscript represents a new arrangement of reference arrays for urine test strips (urinalysis). Reference color swatches are grouped in a doughnut chart, surrounding each reagent pad on the strip. The urine test can be evaluated using naked eye by referring to the strip with no additional sheet necessary. Along with this new strip, an algorithm for smartphone based application is also proposed as an alternative to deliver diagnostic results. The proposed colorimetric detection method evaluates the captured image of the strip, under various color spaces and evaluates ten different tests for urine. Thus, the proposed system can deliver results on the spot using both naked eye and smartphone. The proposed scheme delivered accurate results under various environmental illumination conditions without any calibration requirements, exhibiting performances suitable for real-life applications and an ease for a common user. PMID:29333352

  16. Space weather effects on ground based technology

    NASA Astrophysics Data System (ADS)

    Clark, T.

    Space weather can affect a variety of forms of ground-based technology, usually as a result of either the direct effects of the varying geomagnetic field, or as a result of the induced electric field that accompanies such variations. Technologies affected directly by geomagnetic variations include magnetic measurements made d ringu geophysical surveys, and navigation relying on the geomagnetic field as a direction reference, a method that is particularly common in the surveying of well-bores in the oil industry. The most obvious technology affected by induced electric fields during magnetic storms is electric power transmission, where the example of the blackout in Quebec during the March 1989 magnetic storm is widely known. Additionally, space weather effects must be taken into account in the design of active cathodic protection systems on pipelines to protect them against corrosion. Long-distance telecommunication cables may also have to be designed to cope with space weather related effects. This paper reviews the effects of space weather in these different areas of ground-based technology, and provides examples of how mitigation against hazards may be achieved. (The paper does not include the effects of space weather on radio communication or satellite navigation systems).

  17. Epidemiology of shingles.

    PubMed

    Glynn, C; Crockford, G; Gavaghan, D; Cardno, P; Price, D; Miller, J

    1990-10-01

    One thousand and nineteen patients with acute varicella zoster viral infection were referred to the physiotherapy department for treatment between 1978 and 1986. Sixty per cent were women and 40% were men with a mean age of 58 years (range 9-96 years). The prevalence varied between 1.3 and 1.6 per 1000 per annum. The left side was affected in 52% while the right was affected in 48%. The thoracic dermatomes were the most commonly affected (56%) followed by cervical (17%), lumbar (10%), sacral (5%), and the trigeminal nerve was infected in 12%. There was a significant seasonal (P less than 0.001) variation in the prevalence of acute varicella zoster virus infection, most common in the summer and least common in the spring. There was no clustering in time and space so that it is unlikely that the varicella zoster virus is infective or that re-exposure to the virus causes reactivation of the latent virus.

  18. Free-free and fixed base modal survey tests of the Space Station Common Module Prototype

    NASA Technical Reports Server (NTRS)

    Driskill, T. C.; Anderson, J. B.; Coleman, A. D.

    1992-01-01

    This paper describes the testing aspects and the problems encountered during the free-free and fixed base modal surveys completed on the original Space Station Common Module Prototype (CMP). The CMP is a 40-ft long by 14.5-ft diameter 'waffle-grid' cylinder built by the Boeing Company and housed at the Marshall Space Flight Center (MSFC) near Huntsville, AL. The CMP modal survey tests were conducted at MSFC by the Dynamics Test Branch. The free-free modal survey tests (June '90 to Sept. '90) included interface verification tests (IFVT), often referred to as impedance measurements, mass-additive testing and linearity studies. The fixed base modal survey tests (Feb. '91 to April '91), including linearity studies, were conducted in a fixture designed to constrain the CMP in 7 total degrees-of-freedom at five trunnion interfaces (two primary, two secondary, and the keel). The fixture also incorporated an airbag off-load system designed to alleviate the non-linear effects of friction in the primary and secondary trunnion interfaces. Numerous test configurations were performed with the objective of providing a modal data base for evaluating the various testing methodologies to verify dynamic finite element models used for input to coupled load analysis.

  19. A scheme for lensless X-ray microscopy combining coherent diffraction imaging and differential corner holography.

    PubMed

    Capotondi, F; Pedersoli, E; Kiskinova, M; Martin, A V; Barthelmess, M; Chapman, H N

    2012-10-22

    We successfully use the corners of a common silicon nitride supporting window in lensless X-ray microscopy as extended references in differential holography to obtain a real space hologram of the illuminated object. Moreover, we combine this method with the iterative phasing techniques of coherent diffraction imaging to enhance the spatial resolution on the reconstructed object, and overcome the problem of missing areas in the collected data due to the presence of a beam stop, achieving a resolution close to 85 nm.

  20. Four dimensional studies in earth space

    NASA Technical Reports Server (NTRS)

    Mather, R. S.

    1972-01-01

    A system of reference which is directly related to observations, is proposed for four-dimensional studies in earth space. Global control network and polar wandering are defined. The determination of variations in the earth's gravitational field with time also forms part of such a system. Techniques are outlined for the unique definition of the motion of the geocenter, and the changes in the location of the axis of rotation of an instantaneous earth model, in relation to values at some epoch of reference. The instantaneous system referred to is directly related to a fundamental equation in geodynamics. The reference system defined would provide an unambiguous frame for long period studies in earth space, provided the scale of the space were specified.

  1. Comparing long-term projections of the space debris environment to real world data - Looking back to 1990

    NASA Astrophysics Data System (ADS)

    Radtke, Jonas; Stoll, Enrico

    2016-10-01

    Long-term projections of the space debris environment are commonly used to assess the trends within different scenarios for the assumed future development of spacefaring. General scenarios investigated include business-as-usual cases in which spaceflight is performed as today and mitigation scenarios, assuming the implementation of Space Debris Mitigation Guidelines at different advances or the effectiveness of more drastic measures, such as active debris removal. One problem that always goes along with the projection of a system's behaviour in the future is that affecting parameters, such as the launch rate, are unpredictable. It is common to look backwards and re-model the past in other fields of research. This is a rather difficult task for spaceflight as it is still quite young, and furthermore mostly influenced by drastic politic changes, as the break-down of the Soviet Union in the end of the 1980s. Furthermore, one major driver of the evolution of the number of on-orbit objects turn out to be collisions between objects. As of today, these collisions are, fortunately, very rare and therefore, a real-world-data modelling approach is difficult. Nevertheless, since the end of the cold war more than 20 years of a comparably stable evolution of spaceflight activities have passed. For this study, this period is used in a comparison between the real evolution of the space debris environment and that one projected using the Institute of Space System's in-house tool for long-term assessment LUCA (Long-Term Utility for Collision Analysis). Four different scenarios are investigated in this comparison; all of them have the common starting point of using an initial population for 1st May 1989. The first scenario, which serves as reference, is simply taken from MASTER-2009. All launch and mission related objects from the Two Line Elements (TLE) catalogue and other available sources are included. All events such as explosion and collision events have been re-modelled as close to the reality as possible and included in the corresponding population. They furthermore have been correlated with TLE catalogue objects. As the latest available validated population snapshot for MASTER is May 2009, this epoch is chosen as endpoint for the simulations. The second scenario uses the knowledge of the past 25 years to perform a Monte-Carlo simulation of the evolution of the space debris environment. Necessary input parameters such as explosions per year, launch rates, and the evolution of the solar cycle are taken from their real evolutions. The third scenario goes a step further by only extracting mean numbers and trends from inputs such as launch and explosion rates and applying them. The final and fourth scenario aims to disregarding all knowledge of the time frame under investigation and inputs are determined based on data available in 1989 only. Results are compared to the reference scenario of the space debris environment.

  2. Multi-element fiber technology for space-division multiplexing applications.

    PubMed

    Jain, S; Rancaño, V J F; May-Smith, T C; Petropoulos, P; Sahu, J K; Richardson, D J

    2014-02-24

    A novel technological approach to space division multiplexing (SDM) based on the use of multiple individual fibers embedded in a common polymer coating material is presented, which is referred to as Multi-Element Fiber (MEF). The approach ensures ultralow crosstalk between spatial channels and allows for cost-effective ways of realizing multi-spatial channel amplification and signal multiplexing/demultiplexing. Both the fabrication and characterization of a passive 3-element MEF for data transmission, and an active 5-element erbium/ytterbium doped MEF for cladding-pumped optical amplification that uses one of the elements as an integrated pump delivery fiber is reported. Finally, both components were combined to emulate an optical fiber network comprising SDM transmission lines and amplifiers, and illustrate the compatibility of the approach with existing installed single-mode WDM fiber systems.

  3. DYGABCD: A program for calculating linear A, B, C, and D matrices from a nonlinear dynamic engine simulation

    NASA Technical Reports Server (NTRS)

    Geyser, L. C.

    1978-01-01

    A digital computer program, DYGABCD, was developed that generates linearized, dynamic models of simulated turbofan and turbojet engines. DYGABCD is based on an earlier computer program, DYNGEN, that is capable of calculating simulated nonlinear steady-state and transient performance of one- and two-spool turbojet engines or two- and three-spool turbofan engines. Most control design techniques require linear system descriptions. For multiple-input/multiple-output systems such as turbine engines, state space matrix descriptions of the system are often desirable. DYGABCD computes the state space matrices commonly referred to as the A, B, C, and D matrices required for a linear system description. The report discusses the analytical approach and provides a users manual, FORTRAN listings, and a sample case.

  4. 14 CFR 25.5 - Incorporations by reference.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Incorporations by reference. 25.5 Section 25.5 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES General § 25.5 Incorporations by reference. (a) The...

  5. Continuing the International Roadmapping Effort - An Introduction to the Evolution of the ISECG Global Exploration Roadmap

    NASA Astrophysics Data System (ADS)

    Schlutz, Juergen; Hufenbach, Bernhard; Laurini, Kathy; Spiero, Francois

    2016-07-01

    Future space exploration goals call for sending humans and robots beyond low Earth orbit and establishing sustained access to destinations such as the Moon, asteroids and Mars. Space agencies participating in the International Space Exploration Coordination Group (ISECG) are discussing an international approach for achieving these goals, documented in ISECG's Global Exploration Roadmap (GER). The GER reference scenario reflects a step-wise evolution of critical capabilities from ISS to missions in the lunar vicinity in preparation for the journey of humans to Mars. As ISECG agencies advance their individual planning, they also advance the mission themes and reference architecture of the GER to consolidate common goals, near-term mission scenarios and initial opportunities for collaboration. In this context, particular focus has been given to the Better understanding and further refinement of cislunar infrastructure and potential lunar transportation architecture Interaction with international science communities to identify and articulate the scientific opportunities of the near-term exploration mission themes Coordination and consolidation of interest in lunar polar volatiles prospecting and potential for in-situ resource utilisation Identification and articulation of the benefits from exploration and the technology transfer activities The paper discusses the ongoing roadmapping activity of the ISECG agencies. It provides an insight into the status of the above activities and an outlook towards the evolution of the GER that is currently foreseen in the 2017 timeframe.

  6. Film Excerpts Shown to Specifically Elicit Various Affects Lead to Overlapping Activation Foci in a Large Set of Symmetrical Brain Regions in Males

    PubMed Central

    Karama, Sherif; Armony, Jorge; Beauregard, Mario

    2011-01-01

    While the limbic system theory continues to be part of common scientific parlance, its validity has been questioned on multiple grounds. Nonetheless, the issue of whether or not there exists a set of brain areas preferentially dedicated to emotional processing remains central within affective neuroscience. Recently, a widespread neural reference space for emotion which includes limbic as well as other regions was characterized in a large meta-analysis. As methodologically heterogeneous studies go into such meta-analyses, showing in an individual study in which all parameters are kept constant, the involvement of overlapping areas for various emotion conditions in keeping with the neural reference space for emotion, would serve as valuable confirmatory evidence. Here, using fMRI, 20 young adult men were scanned while viewing validated neutral and effective emotion-eliciting short film excerpts shown to quickly and specifically elicit disgust, amusement, or sexual arousal. Each emotion-specific run included, in random order, multiple neutral and emotion condition blocks. A stringent conjunction analysis revealed a large overlap across emotion conditions that fit remarkably well with the neural reference space for emotion. This overlap included symmetrical bilateral activation of the medial prefrontal cortex, the anterior cingulate, the temporo-occipital junction, the basal ganglia, the brainstem, the amygdala, the hippocampus, the thalamus, the subthalamic nucleus, the posterior hypothalamus, the cerebellum, as well as the frontal operculum extending towards the anterior insula. This study clearly confirms for the visual modality, that processing emotional stimuli leads to widespread increases in activation that cluster within relatively confined areas, regardless of valence. PMID:21818311

  7. 14 CFR 135.207 - VFR: Helicopter surface reference requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false VFR: Helicopter surface reference requirements. 135.207 Section 135.207 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... VFR/IFR Operating Limitations and Weather Requirements § 135.207 VFR: Helicopter surface reference...

  8. 14 CFR 135.207 - VFR: Helicopter surface reference requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false VFR: Helicopter surface reference requirements. 135.207 Section 135.207 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... VFR/IFR Operating Limitations and Weather Requirements § 135.207 VFR: Helicopter surface reference...

  9. 14 CFR 135.207 - VFR: Helicopter surface reference requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false VFR: Helicopter surface reference requirements. 135.207 Section 135.207 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... VFR/IFR Operating Limitations and Weather Requirements § 135.207 VFR: Helicopter surface reference...

  10. 14 CFR 135.207 - VFR: Helicopter surface reference requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false VFR: Helicopter surface reference requirements. 135.207 Section 135.207 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... VFR/IFR Operating Limitations and Weather Requirements § 135.207 VFR: Helicopter surface reference...

  11. 14 CFR 135.207 - VFR: Helicopter surface reference requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false VFR: Helicopter surface reference requirements. 135.207 Section 135.207 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... VFR/IFR Operating Limitations and Weather Requirements § 135.207 VFR: Helicopter surface reference...

  12. Locations Where Space Weather Energy Impacts the Atmosphere

    NASA Astrophysics Data System (ADS)

    Sojka, Jan J.

    2017-11-01

    In this review we consider aspects of space weather that can have a severe impact on the terrestrial atmosphere. We begin by identifying the pre-conditioning role of the Sun on the temperature and density of the upper atmosphere. This effect we define as "space climatology". Space weather effects are then defined as severe departures from this state of the atmospheric energy and density. Three specific forms of space weather are reviewed and we show that each generates severe space weather impacts. The three forms of space weather being considered are the solar photon flux (flares), particle precipitation (aurora), and electromagnetic Joule heating (magnetosphere-ionospheric (M-I) coupling). We provide an overview of the physical processes associated with each of these space weather forms. In each case a very specific altitude range exists over which the processes can most effectively impact the atmosphere. Our argument is that a severe change in the local atmosphere's state leads to atmospheric heating and other dynamic changes at locations beyond the input heat source region. All three space weather forms have their greatest atmospheric impact between 100 and 130 km. This altitude region comprises the transition between the atmosphere's mesosphere and thermosphere and is the ionosphere's E-region. This region is commonly referred to as the Space Atmosphere Interaction Region (SAIR). The SAIR also acts to insulate the lower atmosphere from the space weather impact of energy deposition. A similar space weather zone would be present in atmospheres of other planets and exoplanets.

  13. Space Station reference configuration description

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The data generated by the Space Station Program Skunk Works over a period of 4 months which supports the definition of a Space Station reference configuration is documented. The data were generated to meet these objectives: (1) provide a focal point for the definition and assessment of program requirements; (2) establish a basis for estimating program cost; and (3) define a reference configuration in sufficient detail to allow its inclusion in the definition phase Request for Proposal (RFP).

  14. Uptake of recommended common reference intervals for chemical pathology in Australia.

    PubMed

    Jones, Graham Rd; Koetsier, Sabrina

    2017-05-01

    Background Reference intervals are a vital part of reporting numerical pathology results. It is known, however, that variation in reference intervals between laboratories is common, even when analytical methods support common reference intervals. In response to this, in Australia, the Australasian Association of Clinical Biochemists together with the Royal College of Pathologists of Australasia published in 2014 a set of recommended common reference intervals for 11 common serum analytes (sodium, potassium, chloride, bicarbonate, creatinine male, creatinine female, calcium, calcium adjusted for albumin, phosphate, magnesium, lactate dehydrogenase, alkaline phosphatase and total protein). Methods Uptake of recommended common reference intervals in Australian laboratories was assessed using data from four annual cycles of the RCPAQAP reference intervals external quality assurance programme. Results Over three years, from 2013 to 2016, the use of the recommended upper and lower reference limits has increased from 40% to 83%. Nearly half of the intervals in use by enrolled laboratories in 2016 have been changed in this time period, indicating an active response to the guidelines. Conclusions These data support the activities of the Australasian Association of Clinical Biochemists and Royal College of Pathologists of Australasia in demonstrating a change in laboratory behaviour to reduce unnecessary variation in reference intervals and thus provide a consistent message to doctor and patients irrespective of the laboratory used.

  15. A graph-Laplacian-based feature extraction algorithm for neural spike sorting.

    PubMed

    Ghanbari, Yasser; Spence, Larry; Papamichalis, Panos

    2009-01-01

    Analysis of extracellular neural spike recordings is highly dependent upon the accuracy of neural waveform classification, commonly referred to as spike sorting. Feature extraction is an important stage of this process because it can limit the quality of clustering which is performed in the feature space. This paper proposes a new feature extraction method (which we call Graph Laplacian Features, GLF) based on minimizing the graph Laplacian and maximizing the weighted variance. The algorithm is compared with Principal Components Analysis (PCA, the most commonly-used feature extraction method) using simulated neural data. The results show that the proposed algorithm produces more compact and well-separated clusters compared to PCA. As an added benefit, tentative cluster centers are output which can be used to initialize a subsequent clustering stage.

  16. Mapping Children--Mapping Space.

    ERIC Educational Resources Information Center

    Pick, Herbert L., Jr.

    Research is underway concerning the way the perception, conception, and representation of spatial layout develops. Three concepts are important here--space itself, frame of reference, and cognitive map. Cognitive map refers to a form of representation of the behavioral space, not paired associate or serial response learning. Other criteria…

  17. Exploration Blueprint: Data Book

    NASA Technical Reports Server (NTRS)

    Drake, Bret G. (Editor)

    2007-01-01

    The material contained in this report was compiled to capture the work performed by the National Aeronautics and Space Administration's (NASA's) Exploration study team in the late 2002 timeframe. The "Exploration Blueprint Data Book" documents the analyses and findings of the 90-day Agency-wide study conducted from September - November 2002. During the summer of 2002, the NASA Deputy Administrator requested that a study be performed with the following objectives: (1) Develop the rationale for exploration beyond low-Earth orbit (2) Develop roadmaps for how to accomplish the first steps through humans to Mars (3) Develop design reference missions as a basis for the roadmaps 4) Make recommendations on what can be done now to effect this future This planning team, termed the Exploration Blueprint, performed architecture analyses to develop roadmaps for how to accomplish the first steps beyond LEO through the human exploration of Mars. The previous NASA Exploration Team activities laid the foundation and framework for development of NASA's Integrated Space Plan. The reference missions resulting from the analysis performed by the Exploration Blueprint team formed the basis for requirement definition, systems development, technology roadmapping, and risk assessments for future human exploration beyond low-Earth orbit. Emphasis was placed on developing recommendations on what could be done now to effect future exploration activities. The Exploration Blueprint team embraced the "Stepping Stone" approach to exploration where human and robotic activities are conducted through progressive expansion outward beyond low-Earth orbit. Results from this study produced a long-term strategy for exploration with near-term implementation plans, program recommendations, and technology investments. Specific results included the development of a common exploration crew vehicle concept, a unified space nuclear strategy, focused bioastronautics research objectives, and an integrated human and robotic exploration strategy. Recommendations from the Exploration Blueprint included the endorsement of the Nuclear Systems Initiative, augmentation of the bioastronautics research, a focused space transportation program including heavy-lift launch and a common exploration vehicle design for ISS and exploration missions, as well as an integrated human and robotic exploration strategy for Mars.

  18. Exploration Blueprint: Data Book

    NASA Astrophysics Data System (ADS)

    Drake, Bret G.

    2007-02-01

    The material contained in this report was compiled to capture the work performed by the National Aeronautics and Space Administration's (NASA's) Exploration study team in the late 2002 timeframe. The "Exploration Blueprint Data Book" documents the analyses and findings of the 90-day Agency-wide study conducted from September - November 2002. During the summer of 2002, the NASA Deputy Administrator requested that a study be performed with the following objectives: (1) Develop the rationale for exploration beyond low-Earth orbit (2) Develop roadmaps for how to accomplish the first steps through humans to Mars (3) Develop design reference missions as a basis for the roadmaps 4) Make recommendations on what can be done now to effect this future This planning team, termed the Exploration Blueprint, performed architecture analyses to develop roadmaps for how to accomplish the first steps beyond LEO through the human exploration of Mars. The previous NASA Exploration Team activities laid the foundation and framework for development of NASA's Integrated Space Plan. The reference missions resulting from the analysis performed by the Exploration Blueprint team formed the basis for requirement definition, systems development, technology roadmapping, and risk assessments for future human exploration beyond low-Earth orbit. Emphasis was placed on developing recommendations on what could be done now to effect future exploration activities. The Exploration Blueprint team embraced the "Stepping Stone" approach to exploration where human and robotic activities are conducted through progressive expansion outward beyond low-Earth orbit. Results from this study produced a long-term strategy for exploration with near-term implementation plans, program recommendations, and technology investments. Specific results included the development of a common exploration crew vehicle concept, a unified space nuclear strategy, focused bioastronautics research objectives, and an integrated human and robotic exploration strategy. Recommendations from the Exploration Blueprint included the endorsement of the Nuclear Systems Initiative, augmentation of the bioastronautics research, a focused space transportation program including heavy-lift launch and a common exploration vehicle design for ISS and exploration missions, as well as an integrated human and robotic exploration strategy for Mars.

  19. Certification-Based Process Analysis

    NASA Technical Reports Server (NTRS)

    Knight, Russell L.

    2013-01-01

    Space mission architects are often challenged with knowing which investment in technology infusion will have the highest return. Certification-based analysis (CBA) gives architects and technologists a means to communicate the risks and advantages of infusing technologies at various points in a process. Various alternatives can be compared, and requirements based on supporting streamlining or automation can be derived and levied on candidate technologies. CBA is a technique for analyzing a process and identifying potential areas of improvement. The process and analysis products are used to communicate between technologists and architects. Process means any of the standard representations of a production flow; in this case, any individual steps leading to products, which feed into other steps, until the final product is produced at the end. This sort of process is common for space mission operations, where a set of goals is reduced eventually to a fully vetted command sequence to be sent to the spacecraft. Fully vetting a product is synonymous with certification. For some types of products, this is referred to as verification and validation, and for others it is referred to as checking. Fundamentally, certification is the step in the process where one insures that a product works as intended, and contains no flaws.

  20. 14 CFR 1207.101 - Cross-references to ethical conduct, financial disclosure, and other applicable regulations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Cross-references to ethical conduct, financial disclosure, and other applicable regulations. 1207.101 Section 1207.101 Aeronautics and Space...-references to ethical conduct, financial disclosure, and other applicable regulations. Employees of the...

  1. 14 CFR 1207.101 - Cross-references to ethical conduct, financial disclosure, and other applicable regulations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Cross-references to ethical conduct, financial disclosure, and other applicable regulations. 1207.101 Section 1207.101 Aeronautics and Space...-references to ethical conduct, financial disclosure, and other applicable regulations. Employees of the...

  2. 14 CFR 1207.101 - Cross-references to ethical conduct, financial disclosure, and other applicable regulations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Cross-references to ethical conduct, financial disclosure, and other applicable regulations. 1207.101 Section 1207.101 Aeronautics and Space...-references to ethical conduct, financial disclosure, and other applicable regulations. Employees of the...

  3. 14 CFR 1207.101 - Cross-references to ethical conduct, financial disclosure, and other applicable regulations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Cross-references to ethical conduct, financial disclosure, and other applicable regulations. 1207.101 Section 1207.101 Aeronautics and Space...-references to ethical conduct, financial disclosure, and other applicable regulations. Employees of the...

  4. Spring 2013 Graduate Engineering Internship Summary

    NASA Technical Reports Server (NTRS)

    Ehrlich, Joshua

    2013-01-01

    In the spring of 2013, I participated in the National Aeronautics and Space Administration (NASA) Pathways Intern Employment Program at the Kennedy Space Center (KSC) in Florida. This was my final internship opportunity with NASA, a third consecutive extension from a summer 2012 internship. Since the start of my tenure here at KSC, I have gained an invaluable depth of engineering knowledge and extensive hands-on experience. These opportunities have granted me the ability to enhance my systems engineering approach in the field of payload design and testing as well as develop a strong foundation in the area of composite fabrication and testing for repair design on space vehicle structures. As a systems engineer, I supported the systems engineering and integration team with final acceptance testing of the Vegetable Production System, commonly referred to as Veggie. Verification and validation (V and V) of Veggie was carried out prior to qualification testing of the payload, which incorporated the process of confirming the system's design requirements dependent on one or more validation methods: inspection, analysis, demonstration, and testing.

  5. Binary-space-partitioned images for resolving image-based visibility.

    PubMed

    Fu, Chi-Wing; Wong, Tien-Tsin; Tong, Wai-Shun; Tang, Chi-Keung; Hanson, Andrew J

    2004-01-01

    We propose a novel 2D representation for 3D visibility sorting, the Binary-Space-Partitioned Image (BSPI), to accelerate real-time image-based rendering. BSPI is an efficient 2D realization of a 3D BSP tree, which is commonly used in computer graphics for time-critical visibility sorting. Since the overall structure of a BSP tree is encoded in a BSPI, traversing a BSPI is comparable to traversing the corresponding BSP tree. BSPI performs visibility sorting efficiently and accurately in the 2D image space by warping the reference image triangle-by-triangle instead of pixel-by-pixel. Multiple BSPIs can be combined to solve "disocclusion," when an occluded portion of the scene becomes visible at a novel viewpoint. Our method is highly automatic, including a tensor voting preprocessing step that generates candidate image partition lines for BSPIs, filters the noisy input data by rejecting outliers, and interpolates missing information. Our system has been applied to a variety of real data, including stereo, motion, and range images.

  6. Space thermostat for the sight handicapped

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odom, J.A. Jr.; Wolfe, N.T.

    1986-04-15

    A space thermostat is described for the sight handicapped comprising a base member adapted to be mounted on a wall of a space, temperature responsive control means mounted on the base member adapted to control temperature conditioning apparatus supplying temperature conditioned medium to a space, temperature control point adjusting means attached to the base member and connected to the temperature responsive control means for adjusting the temperature to be maintained in the space, the adjusting means having a raised control temperature reference portion, indicia support means attached to the base member and cooperating with the reference portion, raised indicia meansmore » on the indicia support means corresponding with temperature whereby a person with sight handicap can feel the reference portion and the indicia means to position the reference portion to the desired temperature control set point, the indicia support means comprises a cover ring mounted on the base member and surrounding the adjusting means, and raised indication marks on the cover ring between raised reference temperature numbers, the marks corresponding to two temperature degree steps in the movement of the adjusting means.« less

  7. A reference model for space data system interconnection services

    NASA Astrophysics Data System (ADS)

    Pietras, John; Theis, Gerhard

    1993-03-01

    The widespread adoption of standard packet-based data communication protocols and services for spaceflight missions provides the foundation for other standard space data handling services. These space data handling services can be defined as increasingly sophisticated processing of data or information received from lower-level services, using a layering approach made famous in the International Organization for Standardization (ISO) Open System Interconnection Reference Model (OSI-RM). The Space Data System Interconnection Reference Model (SDSI-RM) incorporates the conventions of the OSIRM to provide a framework within which a complete set of space data handling services can be defined. The use of the SDSI-RM is illustrated through its application to data handling services and protocols that have been defined by, or are under consideration by, the Consultative Committee for Space Data Systems (CCSDS).

  8. A reference model for space data system interconnection services

    NASA Technical Reports Server (NTRS)

    Pietras, John; Theis, Gerhard

    1993-01-01

    The widespread adoption of standard packet-based data communication protocols and services for spaceflight missions provides the foundation for other standard space data handling services. These space data handling services can be defined as increasingly sophisticated processing of data or information received from lower-level services, using a layering approach made famous in the International Organization for Standardization (ISO) Open System Interconnection Reference Model (OSI-RM). The Space Data System Interconnection Reference Model (SDSI-RM) incorporates the conventions of the OSIRM to provide a framework within which a complete set of space data handling services can be defined. The use of the SDSI-RM is illustrated through its application to data handling services and protocols that have been defined by, or are under consideration by, the Consultative Committee for Space Data Systems (CCSDS).

  9. Discontinuities-free complete-active-space state–specific multi–reference coupled cluster theory for describing bond stretching and dissociation

    DOE PAGES

    Zaporozhets, Irina A.; Ivanov, Vladimir V.; Lyakh, Dmitry I.; ...

    2015-07-13

    The earlier proposed multi-reference state-specific coupled-cluster theory with the complete active space reference suffered from a problem of energy discontinuities when the formal reference state was changing in the calculation of the potential energy curve (PEC). A simple remedy to the discontinuity problem is found and is presented in this work. It involves using natural complete active space self-consistent field active orbitals in the complete active space coupled-cluster calculations. As a result, the approach gives smooth PECs for different types of dissociation problems, as illustrated in the calculations of the dissociation of the single bond in the hydrogen fluorine moleculemore » and of the symmetric double-bond dissociation in the water molecule.« less

  10. Using Open Space Technology for School Improvement.

    ERIC Educational Resources Information Center

    Cox, David

    2002-01-01

    Describes a theory referred to as Open Space Technology (OST), which holds that the most productive learning in conference settings takes place in the open space between formally scheduled conference sessions. Argues that OST can be applied to staff development days and other educational development programs. (Contains 10 references.) (NB)

  11. Aligning ESP Courses with the "Common European Framework of Reference for Languages"

    ERIC Educational Resources Information Center

    Athanasiou, Androulla; Constantinou, Elis Kakoulli; Neophytou, Maro; Nicolaou, Anna; Papadima Sophocleous, Salomi; Yerou, Christina

    2016-01-01

    This article explains how the "Common European Framework of References for Languages" (CEFR; Council of Europe 2001, "Common European Framework of Reference for Languages: Learning, teaching, assessment." Cambridge: Cambridge University Press) has been applied in language courses at the Language Centre (LC) of the Cyprus…

  12. International Docking Standard (IDSS) Interface Definition Document (IDD) . E; Revision

    NASA Technical Reports Server (NTRS)

    Kelly, Sean M.; Cryan, Scott P.

    2016-01-01

    This International Docking System Standard (IDSS) Interface Definition Document (IDD) is the result of a collaboration by the International Space Station membership to establish a standard docking interface to enable on-orbit crew rescue operations and joint collaborative endeavors utilizing different spacecraft. This IDSS IDD details the physical geometric mating interface and design loads requirements. The physical geometric interface requirements must be strictly followed to ensure physical spacecraft mating compatibility. This includes both defined components and areas that are void of components. The IDD also identifies common design parameters as identified in section 3.0, e.g., docking initial conditions and vehicle mass properties. This information represents a recommended set of design values enveloping a broad set of design reference missions and conditions, which if accommodated in the docking system design, increases the probability of successful docking between different spacecraft. This IDD does not address operational procedures or off-nominal situations, nor does it dictate implementation or design features behind the mating interface. It is the responsibility of the spacecraft developer to perform all hardware verification and validation, and to perform final docking analyses to ensure the needed docking performance and to develop the final certification loads for their application. While there are many other critical requirements needed in the development of a docking system such as fault tolerance, reliability, and environments (e.g. vibration, etc.), it is not the intent of the IDSS IDD to mandate all of these requirements; these requirements must be addressed as part of the specific developer's unique program, spacecraft and mission needs. This approach allows designers the flexibility to design and build docking mechanisms to their unique program needs and requirements. The purpose of the IDSS IDD is to provide basic common design parameters to allow developers to independently design compatible docking systems. The IDSS is intended for uses ranging from crewed to autonomous space vehicles, and from Low Earth Orbit (LEO) to deep-space exploration missions.The purpose of the IDSS IDD is to provide basic common design parameters to allow developers to independently design compatible docking systems. The IDSS is intended for uses ranging from crewed to autonomous space vehicles, and from Low Earth Orbit (LEO) to deep-space exploration missions. The purpose of the IDSS IDD is to provide basic common design parameters to allow developers to independently design compatible docking systems. The IDSS is intended for uses ranging from crewed to autonomous space vehicles, and from Low Earth Orbit (LEO) to deep-space exploration missions.

  13. En Route Spacing System and Method

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz (Inventor); Green, Steven M. (Inventor)

    2002-01-01

    A method of and computer software for minimizing aircraft deviations needed to comply with an en route miles-in-trail spacing requirement imposed during air traffic control operations via establishing a spacing reference geometry, predicting spatial locations of a plurality of aircraft at a predicted time of intersection of a path of a first of said plurality of aircraft with the spacing reference geometry, and determining spacing of each of the plurality of aircraft based on the predicted spatial locations.

  14. En route spacing system and method

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz (Inventor); Green, Steven M. (Inventor)

    2002-01-01

    A method of and computer software for minimizing aircraft deviations needed to comply with an en route miles-in-trail spacing requirement imposed during air traffic control operations via establishing a spacing reference geometry, predicting spatial locations of a plurality of aircraft at a predicted time of intersection of a path of a first of said plurality of aircraft with the spacing reference geometry, and determining spacing of each of the plurality of aircraft based on the predicted spatial locations.

  15. Light and Color in Nature and Art

    NASA Astrophysics Data System (ADS)

    Williamson, Samuel J.; Cummins, Herman Z.

    1983-02-01

    An introduction to the science of light and color and its applications to photography, art, natural phenomena, and other related areas. Explains the origin of phenomena commonly encountered in nature and art, emphasizing the physical aspects but also touching on aspects of physiology and psychology that directly influence how visual images are perceived. Covers the effect of mixing color, the notion of color spaces, how atoms and molecules affect light, how light can be measured, the effect of using a lens, and many other topics. Requires little or no mathematical background. Includes questions and references for further reading.

  16. Solar energy control system. [temperature measurement

    NASA Technical Reports Server (NTRS)

    Currie, J. R. (Inventor)

    1981-01-01

    A solar energy control system for a hot air type solar energy heating system wherein thermocouples are arranged to sense the temperature of a solar collector, a space to be heated, and a top and bottom of a heat storage unit is disclosed. Pertinent thermocouples are differentially connected together, and these are employed to effect the operation of dampers, a fan, and an auxiliary heat source. In accomplishing this, the differential outputs from the thermocouples are amplified by a single amplifier by multiplexing techniques. Additionally, the amplifier is corrected as to offset by including as one multiplex channel a common reference signal.

  17. Guidebook for analysis of tether applications

    NASA Technical Reports Server (NTRS)

    Carroll, J. A.

    1985-01-01

    This guidebook is intended as a tool to facilitate initial analyses of proposed tether applications in space. The guiding philosophy is that a brief analysis of all the common problem areas is far more useful than a detailed study in any one area. Such analyses can minimize the waste of resources on elegant but fatally flawed concepts, and can identify the areas where more effort is needed on concepts which do survive the initial analyses. The simplified formulas, approximations, and analytical tools included should be used only for preliminary analyses. For detailed analyses, the references with each topic and in the bibliography may be useful.

  18. The 2006 Cape Canaveral Air Force Station Range Reference Atmosphere Model Validation Study and Sensitivity Analysis to the National Aeronautics and Space Administration's Space Shuttle

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Burns, Lee; Merry, Carl; Harrington, Brian

    2008-01-01

    Atmospheric parameters are essential in assessing the flight performance of aerospace vehicles. The effects of the Earth's atmosphere on aerospace vehicles influence various aspects of the vehicle during ascent ranging from its flight trajectory to the structural dynamics and aerodynamic heatmg on the vehicle. Atmospheric databases charactenzing the wind and thermodynamic environments, known as Range Reference Atmospheres (RRA), have been developed at space launch ranges by a governmental interagency working group for use by aerospace vehicle programs. The National Aeronantics and Space Administration's (NASA) Space Shuttle Program (SSP), which launches from Kennedy Space Center, utilizes atmosphenc statistics derived from the Cape Canaveral Air Force Station Range Reference Atmosphere (CCAFS RRA) database to evaluate environmental constraints on various aspects of the vehlcle during ascent.

  19. Analysis of space systems study for the space disposal of nuclear waste study report. Volume 2: Technical report

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Reasonable space systems concepts were systematically identified and defined and a total system was evaluated for the space disposal of nuclear wastes. Areas studied include space destinations, space transportation options, launch site options payload protection approaches, and payload rescue techniques. Systems level cost and performance trades defined four alternative space systems which deliver payloads to the selected 0.85 AU heliocentric orbit destination at least as economically as the reference system without requiring removal of the protective radiation shield container. No concepts significantly less costly than the reference concept were identified.

  20. An Overview of the Smart Sensor Inter-Agency Reference Testbench (SSIART)

    NASA Technical Reports Server (NTRS)

    Wagner, Raymond S.; Braham, Stephen P.; Dufour, Jean-Francois; Barton, Richard J.

    2012-01-01

    In this paper, we present an overview of a proposed collaboration between the National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA), which is designed to facilitate the introduction of commercial-off-the-shelf (COTS) radios for smart-sensing applications into international spaceflight programs and projects. The proposed work will produce test hardware reference designs, test software reference architectures and example implementations, test plans in reference test environments, and test results, all of which will be shared between the agencies and documented for future use by mission planners. The proposed collaborative structure together with all of the anticipated tools and results produced under the effort is collectively referred to as the Smart Sensor Inter-agency Reference Testbench or SSIART. It is intended to provide guidance in technology selection and in increasing the related readiness levels of projects and missions as well as the space industry.

  1. Embodied Interaction Priority: Other's Body Part Affects Numeral-Space Mappings.

    PubMed

    You, Xuqun; Zhang, Yu; Zhu, Rongjuan; Guo, Yu

    2018-01-01

    Traditionally, the spatial-numerical association of response codes (SNARC) effect was presented in two-choice condition, in which only one individual reacted to both even (small) and odd (large) numbers. Few studies explored SNARC effect in a social situation. Moreover, there are many reference frames involved in SNARC effect, and it has not yet been investigated which reference frame is dominated when two participants perform the go-nogo task together. In the present study, we investigated which reference frame plays a primary role in SNARC effect when allocentric and egocentric reference frames were consistent or inconsistent in social settings. Furthermore, we explored how two actors corepresent number-space mapping interactively. Results of the two experiments demonstrated that egocentric reference frame was at work primarily when two reference frames were consistent and inconsistent. This shows that body-centered coordinate frames influence number-space mapping in social settings, and one actor may represent another actor's action and tasks.

  2. Solar power satellite system definition study, phase 2. Volume 2: Reference system description

    NASA Technical Reports Server (NTRS)

    1979-01-01

    System descriptions and cost estimates for the reference system of the solar power satellite program are presented. The reference system is divided into five principal elements: the solar power satellites; space construction and support; space and ground transportation; ground receiving stations; and operations control. The program scenario and non-recurring costs are briefly described.

  3. MIL-HDBK-338-Environmental Conversion Table Correction

    NASA Technical Reports Server (NTRS)

    Hark, Frank; Novack, Steve

    2017-01-01

    In reliability analysis for space launch vehicles, limited data is frequently a challenge due to the pure number of launches. A common solution is to use surrogate historical data of similar components from other industries (military data). The operating environment of the common data may be different from that of the necessary target analysis. The military electronic design handbook (MIL-HDBK-338) has a table for converting Mean Time Between Failure (MTBF) data from one environment to another. However, the table has some discrepancies and rounding of complementary conversions; namely going from environment A to B does not given the same result as going from B to A. This presentation will show the discrepancies in the original conversation table, the greater than expected magnitude, the problem with the updated published table and a suggested corrected table to reference when doing MTBF data environment conversion.

  4. Fundamental performance determining factors of the ultrahigh-precision space-borne optical metrology system for the LISA Pathfinder mission

    NASA Astrophysics Data System (ADS)

    Hechenblaikner, Gerald; Flatscher, Reinhold

    2013-05-01

    The LISA Pathfinder mission to space employs an optical metrology system (OMS) at its core to measure the distance and attitude between two freely floating test-masses to picometer and nanorad accuracy, respectively, within the measurement band of [1 mHz, 30 mHz]. The OMS is based upon an ultra-stable optical bench with 4 heterodyne interferometers from which interference signals are read-out and processed by a digital phase-meter. Laser frequency noise, power fluctuations and optical path-length variations are suppressed to uncritical levels by dedicated control loops so that the measurement performance approaches the sensor limit imposed by the phasemeter. The system design is such that low frequency common mode noise which affects the read-out phase of all four interferometers is generally well suppressed by subtraction of a reference phase from the other interferometer signals. However, high frequency noise directly affects measurement performance and its common mode rejection depends strongly on the relative signal phases. We discuss how the data from recent test campaigns point towards high frequency phase noise as a likely performance limiting factor which explains some important performance features.

  5. Array-based comparative genomic hybridization-guided identification of reference genes for normalization of real-time quantitative polymerase chain reaction assay data for lymphomas, histiocytic sarcomas, and osteosarcomas of dogs.

    PubMed

    Tsai, Pei-Chien; Breen, Matthew

    2012-09-01

    To identify suitable reference genes for normalization of real-time quantitative PCR (RT-qPCR) assay data for common tumors of dogs. Malignant lymph node (n = 8), appendicular osteosarcoma (9), and histiocytic sarcoma (12) samples and control samples of various nonneoplastic canine tissues. Array-based comparative genomic hybridization (aCGH) data were used to guide selection of 9 candidate reference genes. Expression stability of candidate reference genes and 4 commonly used reference genes was determined for tumor samples with RT-qPCR assays and 3 software programs. LOC611555 was the candidate reference gene with the highest expression stability among the 3 tumor types. Of the commonly used reference genes, expression stability of HPRT was high in histiocytic sarcoma samples, and expression stability of Ubi and RPL32 was high in osteosarcoma samples. Some of the candidate reference genes had higher expression stability than did the commonly used reference genes. Data for constitutively expressed genes with high expression stability are required for normalization of RT-qPCR assay results. Without such data, accurate quantification of gene expression in tumor tissue samples is difficult. Results of the present study indicated LOC611555 may be a useful RT-qPCR assay reference gene for multiple tissue types. Some commonly used reference genes may be suitable for normalization of gene expression data for tumors of dogs, such as lymphomas, osteosarcomas, or histiocytic sarcomas.

  6. Insight into others' minds: spatio-temporal representations by intrinsic frame of reference.

    PubMed

    Sun, Yanlong; Wang, Hongbin

    2014-01-01

    Recent research has seen a growing interest in connections between domains of spatial and social cognition. Much evidence indicates that processes of representing space in distinct frames of reference (FOR) contribute to basic spatial abilities as well as sophisticated social abilities such as tracking other's intention and belief. Argument remains, however, that belief reasoning in social domain requires an innately dedicated system and cannot be reduced to low-level encoding of spatial relationships. Here we offer an integrated account advocating the critical roles of spatial representations in intrinsic frame of reference. By re-examining the results from a spatial task (Tamborello etal., 2012) and a false-belief task (Onishi and Baillargeon, 2005), we argue that spatial and social abilities share a common origin at the level of spatio-temporal association and predictive learning, where multiple FOR-based representations provide the basic building blocks for efficient and flexible partitioning of the environmental statistics. We also discuss neuroscience evidence supporting these mechanisms. We conclude that FOR-based representations may bridge the conceptual as well as the implementation gaps between the burgeoning fields of social and spatial cognition.

  7. Changing Our Perspective on Space: Place Mathematics as a Human Endeavour

    ERIC Educational Resources Information Center

    Owens, Kay

    2010-01-01

    This paper collates some of the systematic ways that different cultural groups refer to space. In some cases, space is more strongly identified in terms of place than in school Indo-European mathematics approaches. The affinity to place does not reduce the efficient, abstract, mathematical system behind the reference but it does strengthen its…

  8. Mars rover/sample return mission requirements affecting space station

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The possible interfaces between the Space Station and the Mars Rover/Sample Return (MRSR) mission are defined. In order to constrain the scope of the report a series of seven design reference missions divided into three major types were assumed. These missions were defined to span the probable range of Space Station-MRSR interactions. The options were reduced, the MRSR sample handling requirements and baseline assumptions about the MRSR hardware and the key design features and requirements of the Space Station are summarized. Only the aspects of the design reference missions necessary to define the interfaces, hooks and scars, and other provisions on the Space Station are considered. An analysis of each of the three major design reference missions, is reported, presenting conceptual designs of key hardware to be mounted on the Space Station, a definition of weights, interfaces, and required hooks and scars.

  9. Liquid Rocket Booster (LRB) for the Space Transportation System (STS) systems study. Appendix F: Performance and trajectory for ALS/LRB launch vehicles

    NASA Technical Reports Server (NTRS)

    1989-01-01

    By simply combining two baseline pump-fed LOX/RP-1 Liquid Rocket Boosters (LRBs) with the Denver core, a launch vehicle (Option 1 Advanced Launch System (ALS)) is obtained that can perform both the 28.5 deg (ALS) mission and the polar orbit ALS mission. The Option 2 LRB was obtained by finding the optimum LOX/LH2 engine for the STS/LRB reference mission (70.5 K lb payload). Then this engine and booster were used to estimate ALS payload for the 28.5 deg inclination ALS mission. Previous studies indicated that the optimum number of STS/LRB engines is four. When the engine/booster sizing was performed, each engine had 478 K lb sea level thrust and the booster carried 625,000 lb of useable propellant. Two of these LRBs combined with the Denver core provided a launch vehicle that meets the payload requirements for both the ALS and STS reference missions. The Option 3 LRB uses common engines for the cores and boosters. The booster engines do not have the nozzle extension. These engines were sized as common ALS engines. An ALS launch vehicle that has six core engines and five engines per booster provides 109,100 lb payload for the 28.5 deg mission. Each of these LOX/LH2 LRBs carries 714,100 lb of useable propellant. It is estimated that the STS/LRB reference mission payload would be 75,900 lb.

  10. Analysis and testing of a space crane articulating joint testbed

    NASA Technical Reports Server (NTRS)

    Sutter, Thomas R.; Wu, K. Chauncey

    1992-01-01

    The topics are presented in viewgraph form and include: space crane concept with mobile base; mechanical versus structural articulating joint; articulating joint test bed and reference truss; static and dynamic characterization completed for space crane reference truss configuration; improved linear actuators reduce articulating joint test bed backlash; 1-DOF space crane slew maneuver; boom 2 tip transient response finite element dynamic model; boom 2 tip transient response shear-corrected component modes torque driver profile; peak root member force vs. slew time torque driver profile; and open loop control of space crane motion.

  11. JPL space robotics: Present accomplishments and future thrusts

    NASA Astrophysics Data System (ADS)

    Weisbin, C. R.; Hayati, S. A.; Rodriguez, G.

    1994-10-01

    Complex missions require routine and unscheduled inspection for safe operation. The purpose of research in this task is to facilitate structural inspection of the planned Space Station while mitigating the need for extravehicular activity (EVA), and giving the operator supervisory control over detailed and somewhat mundane, but important tasks. The telerobotic system enables inspection relative to a given reference (e.g., the status of the facility at the time of the last inspection) and alerts the operator to potential anomalies for verification and action. There are two primary objectives of this project: (1) To develop technologies that enable well-integrated NASA ground-to-orbit telerobotics operations, and (2) to develop a prototype common architecture workstation which implements these capabilities for other NASA technology projects and planned NASA flight applications. This task develops and supports three telerobot control modes which are applicable to time delay operation: Preview teleoperation, teleprogramming, and supervised autonomy.

  12. JPL space robotics: Present accomplishments and future thrusts

    NASA Technical Reports Server (NTRS)

    Weisbin, C. R.; Hayati, S. A.; Rodriguez, G.

    1994-01-01

    Complex missions require routine and unscheduled inspection for safe operation. The purpose of research in this task is to facilitate structural inspection of the planned Space Station while mitigating the need for extravehicular activity (EVA), and giving the operator supervisory control over detailed and somewhat mundane, but important tasks. The telerobotic system enables inspection relative to a given reference (e.g., the status of the facility at the time of the last inspection) and alerts the operator to potential anomalies for verification and action. There are two primary objectives of this project: (1) To develop technologies that enable well-integrated NASA ground-to-orbit telerobotics operations, and (2) to develop a prototype common architecture workstation which implements these capabilities for other NASA technology projects and planned NASA flight applications. This task develops and supports three telerobot control modes which are applicable to time delay operation: Preview teleoperation, teleprogramming, and supervised autonomy.

  13. The Space Technology-7 Disturbance Reduction Systems

    NASA Technical Reports Server (NTRS)

    ODonnell, James R., Jr.; Hsu, Oscar C.; Hanson, John; Hruby, Vlad

    2004-01-01

    The Space Technology 7 Disturbance Reduction System (DRS) is an in-space technology demonstration designed to validate technologies that are required for future missions such as the Laser Interferometer Space Antenna (LISA) and the Micro-Arcsecond X-ray Imaging Mission (MAXIM). The primary sensors that will be used by DRS are two Gravitational Reference Sensors (GRSs) being developed by Stanford University. DRS will control the spacecraft so that it flies about one of the freely-floating Gravitational Reference Sensor test masses, keeping it centered within its housing. The other GRS serves as a cross-reference for the first as well as being used as a reference for .the spacecraft s attitude control. Colloidal MicroNewton Thrusters being developed by the Busek Co. will be used to control the spacecraft's position and attitude using a six degree-of-freedom Dynamic Control System being developed by Goddard Space Flight Center. A laser interferometer being built by the Jet Propulsion Laboratory will be used to help validate the results of the experiment. The DRS will be launched in 2008 on the European Space Agency (ESA) LISA Pathfinder spacecraft along with a similar ESA experiment, the LISA Test Package.

  14. Modal-space reference-model-tracking fuzzy control of earthquake excited structures

    NASA Astrophysics Data System (ADS)

    Park, Kwan-Soon; Ok, Seung-Yong

    2015-01-01

    This paper describes an adaptive modal-space reference-model-tracking fuzzy control technique for the vibration control of earthquake-excited structures. In the proposed approach, the fuzzy logic is introduced to update optimal control force so that the controlled structural response can track the desired response of a reference model. For easy and practical implementation, the reference model is constructed by assigning the target damping ratios to the first few dominant modes in modal space. The numerical simulation results demonstrate that the proposed approach successfully achieves not only the adaptive fault-tolerant control system against partial actuator failures but also the robust performance against the variations of the uncertain system properties by redistributing the feedback control forces to the available actuators.

  15. Popularizing Space Education in Indian Context

    NASA Astrophysics Data System (ADS)

    Yalagi, Amrut

    Indians have many mythological stories about many constellations and stars. Hindu months are based on MOON and 27 stars on Zodiac. They are very important for many Indians in ritual, religious functions. By prompting them to identify their birth star, really makes them elevated. Similarly conveying them the importance of star gazing with respect to their day today life makes them to take interest and active participation in Space Activities. Space activities should be driven by public; their requirements; their dreams and imaginations. Their active participation definitely gives valuable inputs to space scientists. Hence, there is a need of involving common man or public mass by appropriate motivation by organising sky gazing sessions, exhibitions, workshops, etc. In this connection, even if the some organisation are able to attract a small percent of qualified engineers/scientists,, enthusiastic students, it would result in the creation of a sizable pool of talent in space sciences,which may well determine the future mankind on this planet. Some simple motivation acts have made the people to take interest in space. we have been using certain methodologies to popularize space science - 1] Conducting theory sessions on basics of star gazing and conveying importance of sky gazing with respect to day-today life. 2] Organising seminars, workshops, lectures and other academic/popular science activities with special reference to space science 3] Projects - a] Cubsat Missions b] Automatic Weather Station Facility c] Model making d] Creating and simulating space models and rover making competitions. The 50 year's of Exploration has left tremendous impact on many society's working towards space education and exploration.

  16. Reframing Student Affairs Leadership: An Analysis of Organizational Frames of Reference and Locus of Control

    ERIC Educational Resources Information Center

    Tull, Ashley; Freeman, Jerrid P.

    2011-01-01

    Examined in this study were the identified frames of reference and locus of control used by 478 student affairs administrators. Administrator responses were examined to identify frames of reference most commonly used and their preference order. Locus of control most commonly used and the relationship between frames of reference and locus of…

  17. Preface: Terrestrial Fieldwork to Support in situ Resource Utilization (ISRU) and Robotic Resource Prospecting for Future Activities in Space

    NASA Astrophysics Data System (ADS)

    Sanders, Gerald B.

    2015-05-01

    Finding, extracting, and using resources at the site of robotic and human exploration activities holds the promise of enabling sustainable and affordable exploration of the Moon, Mars, and asteroids, and eventually allow humans to expand their economy and habitation beyond the surface of the Earth. Commonly referred to as in situ Resource Utilization (ISRU), mineral and volatile resources found in space can be converted into oxygen, water, metals, fuels, and manufacturing and construction materials (such as plastics and concrete) for transportation, power, life support, habitation construction, and part/logistics manufacturing applications. For every kilogram of payload landed on the surface of the Moon or Mars, 7.5-11 kg of payload (mostly propellant) needs to be launched into low Earth orbit. Therefore, besides promising long-term self-sufficiency and infrastructure growth, ISRU can provide significant reductions in launch costs and the number of launches required. Key to being able to use space resources is knowing where they are located, how much is there, and how the resources are distributed. While ISRU holds great promise, it has also never been demonstrated in an actual space mission. Therefore, operations and hardware associated with each ISRU prospecting, excavation, transportation, and processing step must be examined, tested, and finally integrated to enable the end goal of using space resources in future human space missions.

  18. Respiratory dead space measurement in the investigation of pulmonary embolism in outpatients with pleuritic chest pain.

    PubMed

    Hogg, Kerstin; Dawson, Deborah; Tabor, Ted; Tabor, Beverly; Mackway-Jones, Kevin

    2005-10-01

    Pleuritic chest pain is a common presenting condition in the emergency department. A noninvasive bedside rule out test for pulmonary embolism would aid investigating this patient group. Our study aimed to compare the clinical utility of three methods for calculating respiratory dead space in the diagnosis of pulmonary embolism in outpatients with pleuritic chest pain. Prospective diagnostic study. Large city-center emergency department. Between February 2002 and June 2003, 425 patients presenting to the emergency department with pleuritic chest pain were prospectively recruited. Data collection for respiratory dead space was performed in the emergency department by two researchers. The respiratory dead space fraction was calculated independently using three different methods. All patients underwent an independent reference standard diagnostic algorithm to establish the presence or absence of pulmonary embolism. Those with a low modified Wells clinical probability and a normal quantitative d-dimer finding were discharged home. All others followed a reference standard protocol using Prospective Investigation of Pulmonary Embolism Diagnosis-interpreted ventilation/perfusion scanning, CT pulmonary angiography, and digital subtraction pulmonary angiography. All patients were followed up clinically for 3 months. For the Bohr calculation, the area under the receiver operating characteristic curve was 0.62 (95% confidence interval [CI], 0.51 to 0.73), the Enghoff calculation was 0.66 (95% CI, 0.55 to 0.77), and the capillary sample Enghoff was 0.62 (95% CI, 0.49 to 0.65). The optimum Bohr cutoff value gave 100.0% sensitivity (95% CI, 84.5 to 100%) but a low specificity of 22.7% (95% CI, 18.8 to 27.2%). The optimum cutoff points for Enghoff and capillary Enghoff calculations gave sensitivities of 95.3% (95% CI, 77.3 to 99.2%) and 94.4% (95% CI, 74.2 to 99.0%), respectively, with poor specificity. Respiratory dead space analysis does not perform well as a stand-alone diagnostic test for pulmonary embolism in outpatients presenting with pleuritic chest pain.

  19. A kinetic model of plasma turbulence

    NASA Astrophysics Data System (ADS)

    Servidio, S.; Valentini, F.; Perrone, D.; Greco, A.; Califano, F.; Matthaeus, W. H.; Veltri, P.

    2015-01-01

    A Hybrid Vlasov-Maxwell (HVM) model is presented and recent results about the link between kinetic effects and turbulence are reviewed. Using five-dimensional (2D in space and 3D in the velocity space) simulations of plasma turbulence, it is found that kinetic effects (or non-fluid effects) manifest through the deformation of the proton velocity distribution function (DF), with patterns of non-Maxwellian features being concentrated near regions of strong magnetic gradients. The direction of the proper temperature anisotropy, calculated in the main reference frame of the distribution itself, has a finite probability of being along or across the ambient magnetic field, in general agreement with the classical definition of anisotropy T ⊥/T ∥ (where subscripts refer to the magnetic field direction). Adopting the latter conventional definition, by varying the global plasma beta (β) and fluctuation level, simulations explore distinct regions of the space given by T ⊥/T ∥ and β∥, recovering solar wind observations. Moreover, as in the solar wind, HVM simulations suggest that proton anisotropy is not only associated with magnetic intermittent events, but also with gradient-type structures in the flow and in the density. The role of alpha particles is reviewed using multi-ion kinetic simulations, revealing a similarity between proton and helium non-Maxwellian effects. The techniques presented here are applied to 1D spacecraft-like analysis, establishing a link between non-fluid phenomena and solar wind magnetic discontinuities. Finally, the dimensionality of turbulence is investigated, for the first time, via 6D HVM simulations (3D in both spaces). These preliminary results provide support for several previously reported studies based on 2.5D simulations, confirming several basic conclusions. This connection between kinetic features and turbulence open a new path on the study of processes such as heating, particle acceleration, and temperature-anisotropy, commonly observed in space plasmas.

  20. 14 CFR 152.11 - Incorporation by reference.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Incorporation by reference. 152.11 Section 152.11 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... modifications will provide an acceptable level of safety, economy, durability, and workmanship. The...

  1. 14 CFR 171.71 - Materials incorporated by reference.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Headquarters. An historical file of these materials is maintained at Headquarters, Federal Aviation... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Materials incorporated by reference. 171.71 Section 171.71 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...

  2. 14 CFR 171.71 - Materials incorporated by reference.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Headquarters. An historical file of these materials is maintained at Headquarters, Federal Aviation... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Materials incorporated by reference. 171.71 Section 171.71 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...

  3. 14 CFR 171.71 - Materials incorporated by reference.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Headquarters. An historical file of these materials is maintained at Headquarters, Federal Aviation... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Materials incorporated by reference. 171.71 Section 171.71 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...

  4. 14 CFR 171.71 - Materials incorporated by reference.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Headquarters. An historical file of these materials is maintained at Headquarters, Federal Aviation... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Materials incorporated by reference. 171.71 Section 171.71 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...

  5. 14 CFR 171.71 - Materials incorporated by reference.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Headquarters. An historical file of these materials is maintained at Headquarters, Federal Aviation... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Materials incorporated by reference. 171.71 Section 171.71 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...

  6. Detroit, Michigan, USA

    NASA Image and Video Library

    2010-03-16

    Detroit, Michigan, USA Sensor: L7 ETM+ Acquisition Date: December 11, 2001 Path/Row: 20/30 Lat/Long: 42.330/-83.046 Detroit, Michigan, is commonly referred to as Motor City because of the many automobile manufacturing plants located in the city. It is the largest city in Michigan, with a population approaching one million. Credit: NASA/Goddard/Landsat NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Towards Formal Verification of a Separation Microkernel

    NASA Astrophysics Data System (ADS)

    Butterfield, Andrew; Sanan, David; Hinchey, Mike

    2013-08-01

    The best approach to verifying an IMA separation kernel is to use a (fixed) time-space partitioning kernel with a multiple independent levels of separation (MILS) architecture. We describe an activity that explores the cost and feasibility of doing a formal verification of such a kernel to the Common Criteria (CC) levels mandated by the Separation Kernel Protection Profile (SKPP). We are developing a Reference Specification of such a kernel, and are using higher-order logic (HOL) to construct formal models of this specification and key separation properties. We then plan to do a dry run of part of a formal proof of those properties using the Isabelle/HOL theorem prover.

  8. GCR Simulator Reference Field and a Spectral Approach for Laboratory Simulation

    NASA Technical Reports Server (NTRS)

    Slaba, Tony C.; Blattnig, Steve R.; Norbury, John W.; Rusek, Adam; La Tessa, Chiara; Walker, Steven A.

    2015-01-01

    The galactic cosmic ray (GCR) simulator at the NASA Space Radiation Laboratory (NSRL) is intended to deliver the broad spectrum of particles and energies encountered in deep space to biological targets in a controlled laboratory setting. In this work, certain aspects of simulating the GCR environment in the laboratory are discussed. Reference field specification and beam selection strategies at NSRL are the main focus, but the analysis presented herein may be modified for other facilities. First, comparisons are made between direct simulation of the external, free space GCR field and simulation of the induced tissue field behind shielding. It is found that upper energy constraints at NSRL limit the ability to simulate the external, free space field directly (i.e. shielding placed in the beam line in front of a biological target and exposed to a free space spectrum). Second, variation in the induced tissue field associated with shielding configuration and solar activity is addressed. It is found that the observed variation is likely within the uncertainty associated with representing any GCR reference field with discrete ion beams in the laboratory, given current facility constraints. A single reference field for deep space missions is subsequently identified. Third, an approach for selecting beams at NSRL to simulate the designated reference field is presented. Drawbacks of the proposed methodology are discussed and weighed against alternative simulation strategies. The neutron component and track structure characteristics of the simulated field are discussed in this context.

  9. Suited Occupant Injury Potential During Dynamic Spacecraft Flight Phases

    NASA Technical Reports Server (NTRS)

    Dub, Mark O.; McFarland, Shane M.

    2010-01-01

    In support of the Constellation Space Suit Element [CSSE], a new space-suit architecture will be created for support of Launch, Entry, Abort, Microgravity Extra- Vehicular Activity [EVA], and post-landing crew operations, safety and, under emergency conditions, survival. The space suit is unique in comparison to previous launch, entry, and abort [LEA] suit architectures in that it utilizes rigid mobility elements in the scye (i.e., shoulder) and the upper arm regions. The suit architecture also utilizes rigid thigh disconnect elements to create a quick disconnect approximately located above the knee. This feature allows commonality of the lower portion of the suit (from the thigh disconnect down), making the lower legs common across two suit configurations. This suit must interface with the Orion vehicle seat subsystem, which includes seat components, lateral supports, and restraints. Due to the unique configuration of spacesuit mobility elements, combined with the need to provide occupant protection during dynamic vehicle events, risks have been identified with potential injury due to the suit characteristics described above. To address the risk concerns, a test series has been developed in coordination with the Injury Biomechanics Research Laboratory [IBRL] to evaluate the likelihood and consequences of these potential issues. Testing includes use of Anthropomorphic Test Devices [ATDs; vernacularly referred to as "crash test dummies"], Post Mortem Human Subjects [PMHS], and representative seat/suit hardware in combination with high linear acceleration events. The ensuing treatment focuses on test purpose and objectives; test hardware, facility, and setup; and preliminary results.

  10. Dual-arm manipulators with adaptive control

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun (Inventor)

    1991-01-01

    The described and improved multi-arm invention of this application presents three strategies for adaptive control of cooperative multi-arm robots which coordinate control over a common load. In the position-position control strategy, the adaptive controllers ensure that the end-effector positions of both arms track desired trajectories in Cartesian space despite unknown time-varying interaction forces exerted through a load. In the position-hybrid control strategy, the adaptive controller of one arm controls end-effector motions in the free directions and applied forces in the constraint directions; while the adaptive controller of the other arm ensures that the end-effector tracks desired position trajectories. In the hybrid-hybrid control strategy, the adaptive controllers ensure that both end-effectors track reference position trajectories while simultaneously applying desired forces on the load. In all three control strategies, the cross-coupling effects between the arms are treated as disturbances which are compensated for by the adaptive controllers while following desired commands in a common frame of reference. The adaptive controllers do not require the complex mathematical model of the arm dynamics or any knowledge of the arm dynamic parameters or the load parameters such as mass and stiffness. Circuits in the adaptive feedback and feedforward controllers are varied by novel adaptation laws.

  11. Method and apparatus for adaptive force and position control of manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun (Inventor)

    1995-01-01

    The described and improved multi-arm invention of this application presents three strategies for adaptive control of cooperative multi-arm robots which coordinate control over a common load. In the position-position control strategy, the adaptive controllers ensure that the end-effector positions of both arms track desired trajectories in Cartesian space despite unknown time-varying interaction forces exerted through a load. In the position-hybrid control strategy, the adaptive controller of one arm controls end-effector motions in the free directions and applied forces in the constraint directions; while the adaptive controller of the other arm ensures that the end-effector tracks desired position trajectories. In the hybrid-hybrid control strategy, the adaptive controllers ensure that both end-effectors track reference position trajectories while simultaneously applying desired forces on the load. In all three control strategies, the cross-coupling effects between the arms are treated as disturbances which are compensated for by the adaptive controllers while following desired commands in a common frame of reference. The adaptive controllers do not require the complex mathematical model of the arm dynamics or any knowledge of the arm dynamic parameters or the load parameters such as mass and stiffness. Circuits in the adaptive feedback and feedforward controllers are varied by novel adaptation laws.

  12. 14 CFR 211.14 - Incorporation by reference.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Incorporation by reference. 211.14 Section 211.14 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS APPLICATIONS FOR PERMITS TO FOREIGN AIR CARRIERS General Requirements § 211...

  13. Exploring the Functioning of Decision Space: A Review of the Available Health Systems Literature.

    PubMed

    Roman, Tamlyn Eslie; Cleary, Susan; McIntyre, Diane

    2017-02-27

    The concept of decision space holds appeal as an approach to disaggregating the elements that may influence decision-making in decentralized systems. This narrative review aims to explore the functioning of decision space and the factors that influence decision space. A narrative review of the literature was conducted with searches of online databases and academic journals including PubMed Central, Emerald, Wiley, Science Direct, JSTOR, and Sage. The articles were included in the review based on the criteria that they provided insight into the functioning of decision space either through the explicit application of or reference to decision space, or implicitly through discussion of decision-making related to organizational capacity or accountability mechanisms. The articles included in the review encompass literature related to decentralisation, management and decision space. The majority of the studies utilise qualitative methodologies to assess accountability mechanisms, organisational capacities such as finance, human resources and management, and the extent of decision space. Of the 138 articles retrieved, 76 articles were included in the final review. The literature supports Bossert's conceptualization of decision space as being related to organizational capacities and accountability mechanisms. These functions influence the decision space available within decentralized systems. The exact relationship between decision space and financial and human resource capacities needs to be explored in greater detail to determine the potential influence on system functioning. © 2017 The Author(s); Published by Kerman University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

  14. Accelerating Cogent Confabulation: An Exploration in the Architecture Design Space

    DTIC Science & Technology

    2008-06-01

    DATES COVERED (From - To) 1-8 June 2008 4. TITLE AND SUBTITLE ACCELERATING COGENT CONFABULATION: AN EXPLORATION IN THE ARCHITECTURE DESIGN SPACE 5a...spiking neural networks is proposed in reference [8]. Reference [9] investigates the architecture design of a Brain-state-in-a-box model. The...Richard Linderman2, Thomas Renz2, Qing Wu1 Accelerating Cogent Confabulation: an Exploration in the Architecture Design Space POSTPRINT complexity

  15. Nationwide Multicenter Reference Interval Study for 28 Common Biochemical Analytes in China.

    PubMed

    Xia, Liangyu; Chen, Ming; Liu, Min; Tao, Zhihua; Li, Shijun; Wang, Liang; Cheng, Xinqi; Qin, Xuzhen; Han, Jianhua; Li, Pengchang; Hou, Li'an; Yu, Songlin; Ichihara, Kiyoshi; Qiu, Ling

    2016-03-01

    A nationwide multicenter study was conducted in the China to explore sources of variation of reference values and establish reference intervals for 28 common biochemical analytes, as a part of the International Federation of Clinical Chemistry and Laboratory Medicine, Committee on Reference Intervals and Decision Limits (IFCC/C-RIDL) global study on reference values. A total of 3148 apparently healthy volunteers were recruited in 6 cities covering a wide area in China. Blood samples were tested in 2 central laboratories using Beckman Coulter AU5800 chemistry analyzers. Certified reference materials and value-assigned serum panel were used for standardization of test results. Multiple regression analysis was performed to explore sources of variation. Need for partition of reference intervals was evaluated based on 3-level nested ANOVA. After secondary exclusion using the latent abnormal values exclusion method, reference intervals were derived by a parametric method using the modified Box-Cox formula. Test results of 20 analytes were made traceable to reference measurement procedures. By the ANOVA, significant sex-related and age-related differences were observed in 12 and 12 analytes, respectively. A small regional difference was observed in the results for albumin, glucose, and sodium. Multiple regression analysis revealed BMI-related changes in results of 9 analytes for man and 6 for woman. Reference intervals of 28 analytes were computed with 17 analytes partitioned by sex and/or age. In conclusion, reference intervals of 28 common chemistry analytes applicable to Chinese Han population were established by use of the latest methodology. Reference intervals of 20 analytes traceable to reference measurement procedures can be used as common reference intervals, whereas others can be used as the assay system-specific reference intervals in China.

  16. Nationwide Multicenter Reference Interval Study for 28 Common Biochemical Analytes in China

    PubMed Central

    Xia, Liangyu; Chen, Ming; Liu, Min; Tao, Zhihua; Li, Shijun; Wang, Liang; Cheng, Xinqi; Qin, Xuzhen; Han, Jianhua; Li, Pengchang; Hou, Li’an; Yu, Songlin; Ichihara, Kiyoshi; Qiu, Ling

    2016-01-01

    Abstract A nationwide multicenter study was conducted in the China to explore sources of variation of reference values and establish reference intervals for 28 common biochemical analytes, as a part of the International Federation of Clinical Chemistry and Laboratory Medicine, Committee on Reference Intervals and Decision Limits (IFCC/C-RIDL) global study on reference values. A total of 3148 apparently healthy volunteers were recruited in 6 cities covering a wide area in China. Blood samples were tested in 2 central laboratories using Beckman Coulter AU5800 chemistry analyzers. Certified reference materials and value-assigned serum panel were used for standardization of test results. Multiple regression analysis was performed to explore sources of variation. Need for partition of reference intervals was evaluated based on 3-level nested ANOVA. After secondary exclusion using the latent abnormal values exclusion method, reference intervals were derived by a parametric method using the modified Box–Cox formula. Test results of 20 analytes were made traceable to reference measurement procedures. By the ANOVA, significant sex-related and age-related differences were observed in 12 and 12 analytes, respectively. A small regional difference was observed in the results for albumin, glucose, and sodium. Multiple regression analysis revealed BMI-related changes in results of 9 analytes for man and 6 for woman. Reference intervals of 28 analytes were computed with 17 analytes partitioned by sex and/or age. In conclusion, reference intervals of 28 common chemistry analytes applicable to Chinese Han population were established by use of the latest methodology. Reference intervals of 20 analytes traceable to reference measurement procedures can be used as common reference intervals, whereas others can be used as the assay system-specific reference intervals in China. PMID:26945390

  17. Effective Use of Existing Space in Libraries.

    ERIC Educational Resources Information Center

    Brown, Nancy A.

    1981-01-01

    Discusses the effective use of stack space through weeding, storage, microfilm, and selection; study space based on student population; and service space by reorganization of staff, collections, and study space. Three references are noted. (CHC)

  18. A Network Enabled Platform for Canadian Space Science Data

    NASA Astrophysics Data System (ADS)

    Rankin, R.; Boteler, D. R.; Jayachandran, T. P.; Mann, I. R.; Sofko, G.; Yau, A. W.

    2008-12-01

    The internet is an example of a pervasive disruptive technology that has transformed society on a global scale. The term "cyberinfrastructure" refers to technology underpinning the collaborative aspect of large science projects and is synonymous with terms such as e-Science, intelligent infrastructure, and/or e- infrastructure. In the context of space science, a significant challenge is to exploit the internet and cyberinfrastructure to form effective virtual organizations (VOs) of scientists that have common or agreed- upon objectives. A typical VO is likely to include universities and government agencies specializing in types of instrumentation (ground and/or space based), which in deployment produce large quantities of space data. Such data is most effectively described by metadata, which if defined in a standard way, facilitates discovery and retrieval of data over the internet by intelligent interfaces and cyberinfrastructure. One recent and significant approach is SPASE, which is being developed by NASA as a data-standard for its Virtual Observatories (VxOs) programs. The space science community in Canada has recently formed a VO designed to complement the e-POP microsatellite mission, and new ground-based observatories (GBOs) that collect data over a large fraction of the Canadian land-mass. The VO includes members of the CGSM community (www.cgsm.ca), which is funded operationally by the Canadian Space Agency. It also includes the UCLA VMO team, and scientists in the NASA THEMIS mission. CANARIE (www.canarie.ca), the federal agency responsible for management, design and operation of Canada's research internet, has recently recognized the value of cyberinfrastucture through the creation of a Network-Enabled-Platforms (NEPs) program. An NEP for space science was funded by CANARIE in its first competition. When fully implemented, the Space Science NEP will consist of a front-end portal providing access to CGSM data. It will utilize an adaptation of the SPASE-based registry developed by Ray Walker et. al at UCLA, along with a common set of services and federation of CGSM data. An important aspect of the space science NEP is the development of scientific workflows that allow users to more easily develop data analysis tools that can be stored on their desktop for re-use. The presentation will include a high-level view of the methodology and software architecture to be implemented through the development of the CANARIE NEP for space science.

  19. Moving to a Modernized Height Reference System in Canada: Rationale, Status and Plans

    NASA Astrophysics Data System (ADS)

    Veronneau, M.; Huang, J.

    2007-05-01

    A modern society depends on a common coordinate reference system through which geospatial information can be interrelated and exploited reliably. For height measurements this requires the ability to measure mean sea level elevations easily, accurately, and at the lowest possible cost. The current national reference system for elevations, the Canadian Geodetic Vertical Datum of 1928 (CGVD28), offers only partial geographic coverage of the Canadian territory and is affected by inaccuracies that are becoming more apparent as users move to space- based technologies such as GPS. Furthermore, the maintenance and expansion of the national vertical network using spirit-levelling, a costly, time consuming and labour intensive proposition, has only been minimally funded over the past decade. It is now generally accepted that the most sustainable alternative for the realization of a national vertical datum is a gravimetric geoid model. This approach defines the datum in relation to an ellipsoid, making it compatible with space-based technologies for positioning. While simplifying access to heights above mean sea level all across the Canadian territory, this approach imposes additional demands on the quality of the geoid model. These are being met by recent and upcoming space gravimetry missions that have and will be measuring the Earth`s gravity field with increasing and unprecedented accuracy. To maintain compatibility with the CGVD28 datum materialized at benchmarks, the current first-order levelling can be readjusted by constraining geoid heights at selected stations of the Canadian Base Network. The new reference would change CGVD28 heights of benchmarks by up to 1 m across Canada. However, local height differences between benchmarks would maintain a relative precision of a few cm or better. CGVD28 will co-exist with the new height reference as long as it will be required, but it will undoubtedly disappear as benchmarks are destroyed over time. The adoption of GNSS technologies for positioning should naturally move users to the new height reference and offer the possibility of transferring heights over longer distances, within the precision of the geoid model. This transition will also reduce user dependency on a dense network of benchmarks and offer the possibility for geodetic agencies to provide the reference frame with a reduced number of 3D control points. While the rationale for moving to a modernized height system is easily understood, the acceptance of the new system by users will only occur gradually as they adopt new technologies and procedures to access the height reference. A stakeholder consultation indicates user readiness and an implementation plan is starting to unfold. This presentation will look at the current state of the geoid model and control networks that will support the modernized height system. Results of the consultation and the recommendations regarding the roles and responsibilities of the various stakeholders involved in implementing the transition will also be reported.

  20. 14 CFR 151.72 - Incorporation by reference of technical guidelines in Advisory Circulars.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Incorporation by reference of technical guidelines in Advisory Circulars. 151.72 Section 151.72 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS FEDERAL AID TO AIRPORTS Project Programming Standards § 151...

  1. 14 CFR 151.72 - Incorporation by reference of technical guidelines in Advisory Circulars.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Incorporation by reference of technical guidelines in Advisory Circulars. 151.72 Section 151.72 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS FEDERAL AID TO AIRPORTS Project Programming Standards § 151...

  2. 14 CFR 151.72 - Incorporation by reference of technical guidelines in Advisory Circulars.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Incorporation by reference of technical guidelines in Advisory Circulars. 151.72 Section 151.72 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS FEDERAL AID TO AIRPORTS Project Programming Standards § 151...

  3. 14 CFR 151.72 - Incorporation by reference of technical guidelines in Advisory Circulars.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Incorporation by reference of technical guidelines in Advisory Circulars. 151.72 Section 151.72 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS FEDERAL AID TO AIRPORTS Project Programming Standards § 151...

  4. 14 CFR 151.72 - Incorporation by reference of technical guidelines in Advisory Circulars.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Incorporation by reference of technical guidelines in Advisory Circulars. 151.72 Section 151.72 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS FEDERAL AID TO AIRPORTS Project Programming Standards § 151...

  5. Environmental control/life support system for Space Station

    NASA Technical Reports Server (NTRS)

    Miller, C. W.; Heppner, D. B.; Schubert, F. H.; Dahlhausen, M. J.

    1986-01-01

    The functional, operational, and design load requirements for the Environmental Control/Life Support System (ECLSS) are described. The ECLSS is divided into two groups: (1) an atmosphere management group and (2) a water and waste management group. The interaction between the ECLSS and the Space Station Habitability System is examined. The cruciform baseline station design, the delta and big T module configuration, and the reference Space Station configuration are evaluated in terms of ECLSS requirements. The distribution of ECLSS equipment in a reference Space Station configuration is studied as a function of initial operating conditions and growth orbit capabilities. The benefits of water electrolysis as a Space Station utility are considered.

  6. X-ray metal assessment and ovarian ultrastructure alterations of the beetle, Blaps polycresta (Coleoptera, Tenebrionidae), inhabiting polluted soil.

    PubMed

    Osman, Wafaa; Shonouda, Mourad

    2017-06-01

    X-ray analysis was applied to estimate the percentages of heavy metals in ovarian tissues of the tenebrionid beetle, Blaps polycresta. Calcium, phosphorus, sulfur, cadmium, copper, and zinc were the most common detected metals in ovaries of insects collected from reference and polluted sites. Only cadmium showed significantly higher percentages in the polluted ovaries compared with the reference ones. Ultrastructure investigation revealed severe alterations in polluted ovaries both in the tropharium and in the vitellarium. Contraction of nuclear membrane of trophocytes was observed; therefore, cavities and spaces appeared in the cytoplasm followed by nuclear pyknosis. In the vitellarium, fragmentation of chromatin materials in nuclei of the follicular cells was detected. The cytoplasm was poor in the rough endoplasmic reticulum and mitochondria. Damage of yolk bodies occurred in addition to break off in the layer of microvilli. Accumulation of electron-dense vesicles and multivesicular bodies were observed in both reference and polluted ovaries. These alterations in ovarian ultrastructure of B. polycresta show the severe impact of cadmium pollution on cell organelles of insects and could be used as an interesting tool for monitoring heavy metals inside the body organs due to soil pollution.

  7. The NASA Marshall Space Flight Center Earth Global Reference Atmospheric Model-2010 Version

    NASA Technical Reports Server (NTRS)

    Leslie, F. W.; Justus, C. G.

    2011-01-01

    Reference or standard atmospheric models have long been used for design and mission planning of various aerospace systems. The NASA Marshall Space Flight Center Global Reference Atmospheric Model was developed in response to the need for a design reference atmosphere that provides complete global geographical variability and complete altitude coverage (surface to orbital altitudes), as well as complete seasonal and monthly variability of the thermodynamic variables and wind components. In addition to providing the geographical, height, and monthly variation of the mean atmospheric state, it includes the ability to simulate spatial and temporal perturbations.

  8. Space Station Freedom electrical power system hardware commonality with the United States Polar Platform

    NASA Technical Reports Server (NTRS)

    Rieker, Lorra L.; Haraburda, Francis M.

    1989-01-01

    The National Aeronautics and Space Administration has adopted the policy to achieve the maximum practical level of commonality for the Space Station Freedom program in order to significantly reduce life cycle costs. Commonality means using identical or similar hardware/software for meeting common sets of functionally similar requirements. Information on how the concept of commonality is being implemented with respect to electric power system hardware for the Space Station Freedom and the U.S. Polar Platform is presented. Included is a historical account of the candidate common items which have the potential to serve the same power system functions on both Freedom and the Polar Platform.

  9. Space Station Biological Research Project: Reference Experiment Book

    NASA Technical Reports Server (NTRS)

    Johnson, Catherine (Editor); Wade, Charles (Editor)

    1996-01-01

    The Space Station Biological Research Project (SSBRP), which is the combined efforts of the Centrifuge Facility (CF) and the Gravitational Biology Facility (GBF), is responsible for the development of life sciences hardware to be used on the International Space Station to support cell, developmental, and plant biology research. The SSBRP Reference Experiment Book was developed to use as a tool for guiding this development effort. The reference experiments characterize the research interests of the international scientific community and serve to identify the hardware capabilities and support equipment needed to support such research. The reference experiments also serve as a tool for understanding the operational aspects of conducting research on board the Space Station. This material was generated by the science community by way of their responses to reference experiment solicitation packages sent to them by SSBRP scientists. The solicitation process was executed in two phases. The first phase was completed in February of 1992 and the second phase completed in November of 1995. Representing these phases, the document is subdivided into a Section 1 and a Section 2. The reference experiments contained in this document are only representative microgravity experiments. They are not intended to define actual flight experiments. Ground and flight experiments will be selected through the formal NASA Research Announcement (NRA) and Announcement of Opportunity (AO) experiment solicitation, review, and selection process.

  10. Properties of coupled-cluster equations originating in excitation sub-algebras

    NASA Astrophysics Data System (ADS)

    Kowalski, Karol

    2018-03-01

    In this paper, we discuss properties of single-reference coupled cluster (CC) equations associated with the existence of sub-algebras of excitations that allow one to represent CC equations in a hybrid fashion where the cluster amplitudes associated with these sub-algebras can be obtained by solving the corresponding eigenvalue problem. For closed-shell formulations analyzed in this paper, the hybrid representation of CC equations provides a natural way for extending active-space and seniority number concepts to provide an accurate description of electron correlation effects. Moreover, a new representation can be utilized to re-define iterative algorithms used to solve CC equations, especially for tough cases defined by the presence of strong static and dynamical correlation effects. We will also explore invariance properties associated with excitation sub-algebras to define a new class of CC approximations referred to in this paper as the sub-algebra-flow-based CC methods. We illustrate the performance of these methods on the example of ground- and excited-state calculations for commonly used small benchmark systems.

  11. Satellite Remote Sensing: Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2013-01-01

    Aerosols are solid or liquid particles suspended in the air, and those observed by satellite remote sensing are typically between about 0.05 and 10 microns in size. (Note that in traditional aerosol science, the term "aerosol" refers to both the particles and the medium in which they reside, whereas for remote sensing, the term commonly refers to the particles only. In this article, we adopt the remote-sensing definition.) They originate from a great diversity of sources, such as wildfires, volcanoes, soils and desert sands, breaking waves, natural biological activity, agricultural burning, cement production, and fossil fuel combustion. They typically remain in the atmosphere from several days to a week or more, and some travel great distances before returning to Earth's surface via gravitational settling or washout by precipitation. Many aerosol sources exhibit strong seasonal variability, and most experience inter-annual fluctuations. As such, the frequent, global coverage that space-based aerosol remote-sensing instruments can provide is making increasingly important contributions to regional and larger-scale aerosol studies.

  12. Medium Earth Orbits: Is There a Need for a Third Protected Region?

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2010-01-01

    The Inter-Agency Space Debris Coordination Committee (IADC) and the United Nations have adopted the concept of near-Earth regions which should be afforded protection from the accumulation of orbital debris. These regions are low Earth orbit (LEO), which extends up to 2000 km altitude, and geosynchronous orbit (GEO), which includes the volume of space encompassed by 35,786 km +/- 200 km in altitude and +/- 15 degrees in inclination. The region between LEO and GEO is commonly referred to as Medium Earth Orbit (MEO). Although historically a small minority of spacecraft have operated in MEO, the number of such satellites residing in or routinely transiting the zone is increasing. The question thus arises: should MEO be considered an orbital debris protected region? This paper first reviews the characteristics of space systems now utilizing MEO, as well as those anticipated to join them in the near future. MEO is then contrasted with LEO and GEO, both physically and pragmatically. Recommended orbital debris mitigation guidelines for MEO space vehicles are highlighted, and the challenges of spacecraft and launch vehicle stage disposal are recognized. Note is also made of the principal tenets of the United Nations Outer Space Treaty and of recent trends toward de facto partitioning of MEO. Finally, the efficacy and practicality of establishing MEO as a new protected region with regard to orbital debris is addressed.

  13. Spacing and lag effects in free recall of pure lists.

    PubMed

    Kahana, Michael J; Howard, Marc W

    2005-02-01

    Repeating list items leads to better recall when the repetitions are separated by several unique items than when they are presented successively; the spacing effect refers to improved recall for spaced versus successive repetition (lag > 0 vs. lag = 0); the lag effect refers to improved recall for long lags versus short lags. Previous demonstrations of the lag effect have utilized lists containing a mixture of items with varying degrees of spacing. Because differential rehearsal of items in mixed lists may exaggerate any effects of spacing, it is important to demonstrate these effects in pure lists. As in Toppino and Schneider (1999), we found an overall advantage for recall of spaced lists. We further report the first demonstration of a lag effect in pure lists, with significantly better recall for lists with widely spaced repetitions than for those with moderately spaced repetitions.

  14. 76 FR 32067 - Common Crop Insurance Regulations; Extra Long Staple Cotton Crop Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-03

    ... 0563-AC27 Common Crop Insurance Regulations; Extra Long Staple Cotton Crop Provisions AGENCY: Federal... (FCIC) finalizes amendments made to the Common Crop Insurance Regulations, Extra Long Staple Cotton Crop Insurance Provisions to remove all references to the Daily Spot Cotton Quotation and replace the references...

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaporozhets, Irina A.; Ivanov, Vladimir V.; Lyakh, Dmitry I.

    The earlier proposed multi-reference state-specific coupled-cluster theory with the complete active space reference suffered from a problem of energy discontinuities when the formal reference state was changing in the calculation of the potential energy curve (PEC). A simple remedy to the discontinuity problem is found and is presented in this work. It involves using natural complete active space self-consistent field active orbitals in the complete active space coupled-cluster calculations. As a result, the approach gives smooth PECs for different types of dissociation problems, as illustrated in the calculations of the dissociation of the single bond in the hydrogen fluorine moleculemore » and of the symmetric double-bond dissociation in the water molecule.« less

  16. Penetration rates over 30 years in the space age

    NASA Technical Reports Server (NTRS)

    Mcdonnell, J. A. M.; Baron, J. M.

    1995-01-01

    Experimental data from spacecraft providing impact penetration rates and cratering for metallic targets is reviewed. Data includes NASA Explorers 16 and 23 and the Pegasus series, the second US-UK satellite Ariel 2, Space Shuttle STS-3 (MFE), recovered surfaces on Solar Max Satellite, The Long Duration Exposure Facility (LDEF) and EuReCa TiCCE. Factors concerning exposure to the environment are considered and, especially, material properties which affect the penetration resistance. Reference to a common material, Aluminum alloy 2024-T3, is effected and the data then compared to define firstly an average impact flux over the period. The data is examined, in the context of possible satellite and space debris growth rates, to determine the constancy of the flux. This also provides strong constraints on the current space debris component. It is found that the impact data are consistent with domination by natural meteoroid sources. Growth rates are not evident within the period 1980-1990 and Eureca TiCCE fluxes in 1993, for particles penetrating foils of around 10 microns thickness, supports the constancy of the flux. At larger dimensions the 1993 Eureca TiCCE fluxes show an 8-fold increase but this is considered not inconsistent with the selective exposure to meteoroid streams of a satellite stabilized in heliocentric co-ordinates for an 11 month period.

  17. Lorentz Invariance of Gravitational Lagrangians in the Space of Reference Frames

    NASA Astrophysics Data System (ADS)

    Cognola, G.

    1980-06-01

    The recently proposed theories of gravitation in the space of reference frames S are based on a Lagrangian invariant with respect to the homogeneous Lorentz group. However, in theories of this kind, the Lorentz invariance is not a necessary consequence of some physical principles, as in the theories formulated in space-time, but rather a purely esthetic request. In the present paper, we give a systematic method for the construction of gravitational theories in the space S, without assuming a priori the Lorentz invariance of the Lagrangian. The Einstein-Cartan equations of gravitation are obtained requiring only that the Lagrangian is invariant under proper rotations and has particular transformation properties under space reflections and space-time dilatations

  18. An Internet Protocol-Based Software System for Real-Time, Closed-Loop, Multi-Spacecraft Mission Simulation Applications

    NASA Technical Reports Server (NTRS)

    Davis, George; Cary, Everett; Higinbotham, John; Burns, Richard; Hogie, Keith; Hallahan, Francis

    2003-01-01

    The paper will provide an overview of the web-based distributed simulation software system developed for end-to-end, multi-spacecraft mission design, analysis, and test at the NASA Goddard Space Flight Center (GSFC). This software system was developed for an internal research and development (IR&D) activity at GSFC called the Distributed Space Systems (DSS) Distributed Synthesis Environment (DSE). The long-term goal of the DSS-DSE is to integrate existing GSFC stand-alone test beds, models, and simulation systems to create a "hands on", end-to-end simulation environment for mission design, trade studies and simulations. The short-term goal of the DSE was therefore to develop the system architecture, and then to prototype the core software simulation capability based on a distributed computing approach, with demonstrations of some key capabilities by the end of Fiscal Year 2002 (FY02). To achieve the DSS-DSE IR&D objective, the team adopted a reference model and mission upon which FY02 capabilities were developed. The software was prototyped according to the reference model, and demonstrations were conducted for the reference mission to validate interfaces, concepts, etc. The reference model, illustrated in Fig. 1, included both space and ground elements, with functional capabilities such as spacecraft dynamics and control, science data collection, space-to-space and space-to-ground communications, mission operations, science operations, and data processing, archival and distribution addressed.

  19. A Distributed Simulation Software System for Multi-Spacecraft Missions

    NASA Technical Reports Server (NTRS)

    Burns, Richard; Davis, George; Cary, Everett

    2003-01-01

    The paper will provide an overview of the web-based distributed simulation software system developed for end-to-end, multi-spacecraft mission design, analysis, and test at the NASA Goddard Space Flight Center (GSFC). This software system was developed for an internal research and development (IR&D) activity at GSFC called the Distributed Space Systems (DSS) Distributed Synthesis Environment (DSE). The long-term goal of the DSS-DSE is to integrate existing GSFC stand-alone test beds, models, and simulation systems to create a "hands on", end-to-end simulation environment for mission design, trade studies and simulations. The short-term goal of the DSE was therefore to develop the system architecture, and then to prototype the core software simulation capability based on a distributed computing approach, with demonstrations of some key capabilities by the end of Fiscal Year 2002 (FY02). To achieve the DSS-DSE IR&D objective, the team adopted a reference model and mission upon which FY02 capabilities were developed. The software was prototyped according to the reference model, and demonstrations were conducted for the reference mission to validate interfaces, concepts, etc. The reference model, illustrated in Fig. 1, included both space and ground elements, with functional capabilities such as spacecraft dynamics and control, science data collection, space-to-space and space-to-ground communications, mission operations, science operations, and data processing, archival and distribution addressed.

  20. 14 CFR Appendix B to Part 382 - Cross-Reference Table

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Cross-Reference Table B Appendix B to Part 382 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) SPECIAL REGULATIONS NONDISCRIMINATION ON THE BASIS OF DISABILITY IN AIR TRAVEL Pt. 382, App. B Appendix B...

  1. 14 CFR Appendix B to Part 382 - Cross-Reference Table

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Cross-Reference Table B Appendix B to Part 382 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) SPECIAL REGULATIONS NONDISCRIMINATION ON THE BASIS OF DISABILITY IN AIR TRAVEL Pt. 382, App. B Appendix B...

  2. Research on calibration error of carrier phase against antenna arraying

    NASA Astrophysics Data System (ADS)

    Sun, Ke; Hou, Xiaomin

    2016-11-01

    It is the technical difficulty of uplink antenna arraying that signals from various quarters can not be automatically aligned at the target in deep space. The size of the far-field power combining gain is directly determined by the accuracy of carrier phase calibration. It is necessary to analyze the entire arraying system in order to improve the accuracy of the phase calibration. This paper analyzes the factors affecting the calibration error of carrier phase of uplink antenna arraying system including the error of phase measurement and equipment, the error of the uplink channel phase shift, the position error of ground antenna, calibration receiver and target spacecraft, the error of the atmospheric turbulence disturbance. Discuss the spatial and temporal autocorrelation model of atmospheric disturbances. Each antenna of the uplink antenna arraying is no common reference signal for continuous calibration. So it must be a system of the periodic calibration. Calibration is refered to communication of one or more spacecrafts in a certain period. Because the deep space targets are not automatically aligned to multiplexing received signal. Therefore the aligned signal should be done in advance on the ground. Data is shown that the error can be controlled within the range of demand by the use of existing technology to meet the accuracy of carrier phase calibration. The total error can be controlled within a reasonable range.

  3. Prevent: what is pre-criminal space?

    PubMed Central

    Goldberg, David; Jadhav, Sushrut; Younis, Tarek

    2017-01-01

    Prevent is a UK-wide programme within the government's anti-terrorism strategy aimed at stopping individuals from supporting or taking part in terrorist activities. NHS England's Prevent Training and Competencies Framework requires health professionals to understand the concept of pre-criminal space. This article examines pre-criminal space, a new term which refers to a period of time during which a person is referred to a specific Prevent-related safeguarding panel, Channel. It is unclear what the concept of pre-criminal space adds to the Prevent programme. The term should be either clarified or removed from the Framework. PMID:28811915

  4. Promoting A-Priori Interoperability of HLA-Based Simulations in the Space Domain: The SISO Space Reference FOM Initiative

    NASA Technical Reports Server (NTRS)

    Moller, Bjorn; Garro, Alfredo; Falcone, Alberto; Crues, Edwin Z.; Dexter, Daniel E.

    2016-01-01

    Distributed and Real-Time Simulation plays a key-role in the Space domain being exploited for missions and systems analysis and engineering as well as for crew training and operational support. One of the most popular standards is the 1516-2010 IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA). HLA supports the implementation of distributed simulations (called Federations) in which a set of simulation entities (called Federates) can interact using a Run-Time Infrastructure (RTI). In a given Federation, a Federate can publish and/or subscribes objects and interactions on the RTI only in accordance with their structures as defined in a FOM (Federation Object Model). Currently, the Space domain is characterized by a set of incompatible FOMs that, although meet the specific needs of different organizations and projects, increases the long-term cost for interoperability. In this context, the availability of a reference FOM for the Space domain will enable the development of interoperable HLA-based simulators for related joint projects and collaborations among worldwide organizations involved in the Space domain (e.g. NASA, ESA, Roscosmos, and JAXA). The paper presents a first set of results achieved by a SISO standardization effort that aims at providing a Space Reference FOM for international collaboration on Space systems simulations.

  5. Spatial Reorientation of Sensorimotor Balance Control in Altered Gravity

    NASA Technical Reports Server (NTRS)

    Paloski, W. H.; Black, F. L.; Kaufman, G. D.; Reschke, M. F.; Wood, S. J.

    2007-01-01

    Sensorimotor coordination of body segments following space flight are more pronounced after landing when the head is actively tilted with respect to the trunk. This suggests that central vestibular processing shifts from a gravitational frame of reference to a head frame of reference in microgravity. A major effect of such changes is a significant postural instability documented by standard head-erect Sensory Organization Tests. Decrements in functional performance may still be underestimated when head and gravity reference frames remained aligned. The purpose of this study was to examine adaptive changes in spatial processing for balance control following space flight by incorporating static and dynamic tilts that dissociate head and gravity reference frames. A second aim of this study was to examine the feasibility of altering the re-adaptation process following space flight by providing discordant visual-vestibular-somatosensory stimuli using short-radius pitch centrifugation.

  6. Coordinate references for the indoor/outdoor seamless positioning

    NASA Astrophysics Data System (ADS)

    Ruan, Ling; Zhang, Ling; Long, Yi; Cheng, Fei

    2018-05-01

    Indoor positioning technologies are being developed rapidly, and seamless positioning which connected indoor and outdoor space is a new trend. The indoor and outdoor positioning are not applying the same coordinate system and different indoor positioning scenes uses different indoor local coordinate reference systems. A specific and unified coordinate reference frame is needed as the space basis and premise in seamless positioning application. Trajectory analysis of indoor and outdoor integration also requires a uniform coordinate reference. However, the coordinate reference frame in seamless positioning which can applied to various complex scenarios is lacking of research for a long time. In this paper, we proposed a universal coordinate reference frame in indoor/outdoor seamless positioning. The research focus on analysis and classify the indoor positioning scenes and put forward the coordinate reference system establishment and coordinate transformation methods in each scene. And, through some experiments, the calibration method feasibility was verified.

  7. Free acquisition and dissemination of data through remote sensing. [Landsat program legal aspects

    NASA Technical Reports Server (NTRS)

    Hosenball, S. N.

    1976-01-01

    Free acquisition and dissemination of data through remote sensing is discussed with reference to the Landsat program. The role of the Scientific and Technical Subcommittee of the U.N. General Assembly's Committee on the Peaceful Uses of Outer Space has made recommendations on the expansion of existing ground stations and on the establishment of an experimental center for training in remote sensing. The working group for the legal subcommittee of the same U.N. committee indicates that there are common elements in the three drafts on remote sensing submitted to it: a call for international cooperation and the belief that remote sensing should be conducted for the benefit of all mankind.

  8. Reference field specification and preliminary beam selection strategy for accelerator-based GCR simulation

    NASA Astrophysics Data System (ADS)

    Slaba, Tony C.; Blattnig, Steve R.; Norbury, John W.; Rusek, Adam; La Tessa, Chiara

    2016-02-01

    The galactic cosmic ray (GCR) simulator at the NASA Space Radiation Laboratory (NSRL) is intended to deliver the broad spectrum of particles and energies encountered in deep space to biological targets in a controlled laboratory setting. In this work, certain aspects of simulating the GCR environment in the laboratory are discussed. Reference field specification and beam selection strategies at NSRL are the main focus, but the analysis presented herein may be modified for other facilities and possible biological considerations. First, comparisons are made between direct simulation of the external, free space GCR field and simulation of the induced tissue field behind shielding. It is found that upper energy constraints at NSRL limit the ability to simulate the external, free space field directly (i.e. shielding placed in the beam line in front of a biological target and exposed to a free space spectrum). Second, variation in the induced tissue field associated with shielding configuration and solar activity is addressed. It is found that the observed variation is likely within the uncertainty associated with representing any GCR reference field with discrete ion beams in the laboratory, given current facility constraints. A single reference field for deep space missions is subsequently identified. Third, a preliminary approach for selecting beams at NSRL to simulate the designated reference field is presented. This approach is not a final design for the GCR simulator, but rather a single step within a broader design strategy. It is shown that the beam selection methodology is tied directly to the reference environment, allows facility constraints to be incorporated, and may be adjusted to account for additional constraints imposed by biological or animal care considerations. The major biology questions are not addressed herein but are discussed in a companion paper published in the present issue of this journal. Drawbacks of the proposed methodology are discussed and weighed against alternative simulation strategies.

  9. Empirical Learner Language and the Levels of the "Common European Framework of Reference"

    ERIC Educational Resources Information Center

    Wisniewski, Katrin

    2017-01-01

    The "Common European Framework of Reference" (CEFR) is the most widespread reference tool for linking language tests, curricula, and national educational standards to levels of foreign language proficiency in Europe. In spite of this, little is known about how the CEFR levels (A1-C2) relate to empirical learner language(s). This article…

  10. Optimal Constellation Design for Maximum Continuous Coverage of Targets Against a Space Background

    DTIC Science & Technology

    2012-05-31

    constellation is considered with the properties shown in Table 13. The parameter hres refers to the number of equally spaced offset planes in which cross...mean anomaly 180 ◦ M0i mean anomaly of lead satellite at epoch 0 ◦ R omni-directional sensor range 5000 km m initial polygon resolution 50 PPC hres ...a Walker Star. Idealized parameters for the Iridium constellation are shown in Table 14. The parameter hres refers to the number of equally spaced

  11. How watching Pinocchio movies changes our subjective experience of extrapersonal space.

    PubMed

    Fini, Chiara; Committeri, Giorgia; Müller, Barbara C N; Deschrijver, Eliane; Brass, Marcel

    2015-01-01

    The way we experience the space around us is highly subjective. It has been shown that motion potentialities that are intrinsic to our body influence our space categorization. Furthermore, we have recently demonstrated that in the extrapersonal space, our categorization also depends on the movement potential of other agents. When we have to categorize the space as "Near" or "Far" between a reference and a target, the space categorized as "Near" is wider if the reference corresponds to a biological agent that has the potential to walk, instead of a biological and non-biological agent that cannot walk. But what exactly drives this "Near space extension"? In the present paper, we tested whether abstract beliefs about the biological nature of an agent determine how we categorize the space between the agent and an object. Participants were asked to first read a Pinocchio story and watch a correspondent video in which Pinocchio acts like a real human, in order to become more transported into the initial story. Then they had to categorize the location ("Near" or "Far") of a target object located at progressively increasing or decreasing distances from a non-biological agent (i.e., a wooden dummy) and from a biological agent (i.e., a human-like avatar). The results indicate that being transported into the Pinocchio story, induces an equal "Near" space threshold with both the avatar and the wooden dummy as reference frames.

  12. Aerosol algorithm evaluation within aerosol-CCI

    NASA Astrophysics Data System (ADS)

    Kinne, Stefan; Schulz, Michael; Griesfeller, Jan

    Properties of aerosol retrievals from space are difficult. Even data from dedicated satellite sensors face contaminations which limit the accuracy of aerosol retrieval products. Issues are the identification of complete cloud-free scenes, the need to assume aerosol compositional features in an underdetermined solution space and the requirement to characterize the background at high accuracy. Usually the development of aerosol is a slow process, requiring continuous feedback from evaluations. To demonstrate maturity, these evaluations need to cover different regions and seasons and many different aerosol properties, because aerosol composition is quite diverse and highly variable in space and time, as atmospheric aerosol lifetimes are only a few days. Three years ago the ESA Climate Change Initiative started to support aerosol retrieval efforts in order to develop aerosol retrieval products for the climate community from underutilized ESA satellite sensors. The initial focus was on retrievals of AOD (a measure for the atmospheric column amount) and of Angstrom (a proxy for aerosol size) from the ATSR and MERIS sensors on ENVISAT. The goal was to offer retrieval products that are comparable or better in accuracy than commonly used NASA products of MODIS or MISR. Fortunately, accurate reference data of ground based sun-/sky-photometry networks exist. Thus, retrieval assessments could and were conducted independently by different evaluation groups. Here, results of these evaluations for the year 2008 are summarized. The capability of these newly developed retrievals is analyzed and quantified in scores. These scores allowed a ranking of competing efforts and also allow skill comparisons of these new retrievals against existing and commonly used retrievals.

  13. Multi-GNSS signal-in-space range error assessment - Methodology and results

    NASA Astrophysics Data System (ADS)

    Montenbruck, Oliver; Steigenberger, Peter; Hauschild, André

    2018-06-01

    The positioning accuracy of global and regional navigation satellite systems (GNSS/RNSS) depends on a variety of influence factors. For constellation-specific performance analyses it has become common practice to separate a geometry-related quality factor (the dilution of precision, DOP) from the measurement and modeling errors of the individual ranging measurements (known as user equivalent range error, UERE). The latter is further divided into user equipment errors and contributions related to the space and control segment. The present study reviews the fundamental concepts and underlying assumptions of signal-in-space range error (SISRE) analyses and presents a harmonized framework for multi-GNSS performance monitoring based on the comparison of broadcast and precise ephemerides. The implications of inconsistent geometric reference points, non-common time systems, and signal-specific range biases are analyzed, and strategies for coping with these issues in the definition and computation of SIS range errors are developed. The presented concepts are, furthermore, applied to current navigation satellite systems, and representative results are presented along with a discussion of constellation-specific problems in their determination. Based on data for the January to December 2017 time frame, representative global average root-mean-square (RMS) SISRE values of 0.2 m, 0.6 m, 1 m, and 2 m are obtained for Galileo, GPS, BeiDou-2, and GLONASS, respectively. Roughly two times larger values apply for the corresponding 95th-percentile values. Overall, the study contributes to a better understanding and harmonization of multi-GNSS SISRE analyses and their use as key performance indicators for the various constellations.

  14. Faithful Pointer for Qubit Measurement

    NASA Astrophysics Data System (ADS)

    Kumari, Asmita; Pan, A. K.

    2018-02-01

    In the context of von Neumann projective measurement scenario for a qubit system, it is widely believed that the mutual orthogonality between the post-interaction pointer states is the sufficient condition for achieving the ideal measurement situation. However, for experimentally verifying the observable probabilities, the real space distinction between the pointer distributions corresponding to post-interaction pointer states play crucial role. It is implicitly assumed that mutual orthogonality ensures the support between the post-interaction pointer distributions to be disjoint. We point out that mutual orthogonality (formal idealness) does not necessarily imply the real space distinguishability (operational idealness), but converse is true. In fact, for the commonly referred Gaussian wavefunction, it is possible to obtain a measurement situation which is formally ideal but fully nonideal operationally. In this paper, we derive a class of pointer states, that we call faithful pointers, for which the degree of formal (non)idealness is equal to the operational (non)idealness. In other words, for the faithful pointers, if a measurement situation is formally ideal then it is operationally ideal and vice versa.

  15. Valid analytical performance specifications for combined analytical bias and imprecision for the use of common reference intervals.

    PubMed

    Hyltoft Petersen, Per; Lund, Flemming; Fraser, Callum G; Sandberg, Sverre; Sölétormos, György

    2018-01-01

    Background Many clinical decisions are based on comparison of patient results with reference intervals. Therefore, an estimation of the analytical performance specifications for the quality that would be required to allow sharing common reference intervals is needed. The International Federation of Clinical Chemistry (IFCC) recommended a minimum of 120 reference individuals to establish reference intervals. This number implies a certain level of quality, which could then be used for defining analytical performance specifications as the maximum combination of analytical bias and imprecision required for sharing common reference intervals, the aim of this investigation. Methods Two methods were investigated for defining the maximum combination of analytical bias and imprecision that would give the same quality of common reference intervals as the IFCC recommendation. Method 1 is based on a formula for the combination of analytical bias and imprecision and Method 2 is based on the Microsoft Excel formula NORMINV including the fractional probability of reference individuals outside each limit and the Gaussian variables of mean and standard deviation. The combinations of normalized bias and imprecision are illustrated for both methods. The formulae are identical for Gaussian and log-Gaussian distributions. Results Method 2 gives the correct results with a constant percentage of 4.4% for all combinations of bias and imprecision. Conclusion The Microsoft Excel formula NORMINV is useful for the estimation of analytical performance specifications for both Gaussian and log-Gaussian distributions of reference intervals.

  16. Evaluation of four endogenous reference genes and their real-time PCR assays for common wheat quantification in GMOs detection.

    PubMed

    Huang, Huali; Cheng, Fang; Wang, Ruoan; Zhang, Dabing; Yang, Litao

    2013-01-01

    Proper selection of endogenous reference genes and their real-time PCR assays is quite important in genetically modified organisms (GMOs) detection. To find a suitable endogenous reference gene and its real-time PCR assay for common wheat (Triticum aestivum L.) DNA content or copy number quantification, four previously reported wheat endogenous reference genes and their real-time PCR assays were comprehensively evaluated for the target gene sequence variation and their real-time PCR performance among 37 common wheat lines. Three SNPs were observed in the PKABA1 and ALMT1 genes, and these SNPs significantly decreased the efficiency of real-time PCR amplification. GeNorm analysis of the real-time PCR performance of each gene among common wheat lines showed that the Waxy-D1 assay had the lowest M values with the best stability among all tested lines. All results indicated that the Waxy-D1 gene and its real-time PCR assay were most suitable to be used as an endogenous reference gene for common wheat DNA content quantification. The validated Waxy-D1 gene assay will be useful in establishing accurate and creditable qualitative and quantitative PCR analysis of GM wheat.

  17. Evaluation of Four Endogenous Reference Genes and Their Real-Time PCR Assays for Common Wheat Quantification in GMOs Detection

    PubMed Central

    Huang, Huali; Cheng, Fang; Wang, Ruoan; Zhang, Dabing; Yang, Litao

    2013-01-01

    Proper selection of endogenous reference genes and their real-time PCR assays is quite important in genetically modified organisms (GMOs) detection. To find a suitable endogenous reference gene and its real-time PCR assay for common wheat (Triticum aestivum L.) DNA content or copy number quantification, four previously reported wheat endogenous reference genes and their real-time PCR assays were comprehensively evaluated for the target gene sequence variation and their real-time PCR performance among 37 common wheat lines. Three SNPs were observed in the PKABA1 and ALMT1 genes, and these SNPs significantly decreased the efficiency of real-time PCR amplification. GeNorm analysis of the real-time PCR performance of each gene among common wheat lines showed that the Waxy-D1 assay had the lowest M values with the best stability among all tested lines. All results indicated that the Waxy-D1 gene and its real-time PCR assay were most suitable to be used as an endogenous reference gene for common wheat DNA content quantification. The validated Waxy-D1 gene assay will be useful in establishing accurate and creditable qualitative and quantitative PCR analysis of GM wheat. PMID:24098735

  18. Coherent Frequency Reference System for the NASA Deep Space Network

    NASA Technical Reports Server (NTRS)

    Tucker, Blake C.; Lauf, John E.; Hamell, Robert L.; Gonzaler, Jorge, Jr.; Diener, William A.; Tjoelker, Robert L.

    2010-01-01

    The NASA Deep Space Network (DSN) requires state-of-the-art frequency references that are derived and distributed from very stable atomic frequency standards. A new Frequency Reference System (FRS) and Frequency Reference Distribution System (FRD) have been developed, which together replace the previous Coherent Reference Generator System (CRG). The FRS and FRD each provide new capabilities that significantly improve operability and reliability. The FRS allows for selection and switching between frequency standards, a flywheel capability (to avoid interruptions when switching frequency standards), and a frequency synthesis system (to generate standardized 5-, 10-, and 100-MHz reference signals). The FRS is powered by redundant, specially filtered, and sustainable power systems and includes a monitor and control capability for station operations to interact and control the frequency-standard selection process. The FRD receives the standardized 5-, 10-, and 100-MHz reference signals and distributes signals to distribution amplifiers in a fan out fashion to dozens of DSN users that require the highly stable reference signals. The FRD is also powered by redundant, specially filtered, and sustainable power systems. The new DSN Frequency Distribution System, which consists of the FRS and FRD systems described here, is central to all operational activities of the NASA DSN. The frequency generation and distribution system provides ultra-stable, coherent, and very low phase-noise references at 5, l0, and 100 MHz to between 60 and 100 separate users at each Deep Space Communications Complex.

  19. Quantum Optics in Phase Space

    NASA Astrophysics Data System (ADS)

    Schleich, Wolfgang P.

    2001-04-01

    Quantum Optics in Phase Space provides a concise introduction to the rapidly moving field of quantum optics from the point of view of phase space. Modern in style and didactically skillful, Quantum Optics in Phase Space prepares students for their own research by presenting detailed derivations, many illustrations and a large set of workable problems at the end of each chapter. Often, the theoretical treatments are accompanied by the corresponding experiments. An exhaustive list of references provides a guide to the literature. Quantum Optics in Phase Space also serves advanced researchers as a comprehensive reference book. Starting with an extensive review of the experiments that define quantum optics and a brief summary of the foundations of quantum mechanics the author Wolfgang P. Schleich illustrates the properties of quantum states with the help of the Wigner phase space distribution function. His description of waves ala WKB connects semi-classical phase space with the Berry phase. These semi-classical techniques provide deeper insight into the timely topics of wave packet dynamics, fractional revivals and the Talbot effect. Whereas the first half of the book deals with mechanical oscillators such as ions in a trap or atoms in a standing wave the second half addresses problems where the quantization of the radiation field is of importance. Such topics extensively discussed include optical interferometry, the atom-field interaction, quantum state preparation and measurement, entanglement, decoherence, the one-atom maser and atom optics in quantized light fields. Quantum Optics in Phase Space presents the subject of quantum optics as transparently as possible. Giving wide-ranging references, it enables students to study and solve problems with modern scientific literature. The result is a remarkably concise yet comprehensive and accessible text- and reference book - an inspiring source of information and insight for students, teachers and researchers alike.

  20. 14 CFR 399.70 - Cross-references to the Office of the Secretary's Rulemaking Procedures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Cross-references to the Office of the Secretary's Rulemaking Procedures. 399.70 Section 399.70 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) POLICY STATEMENTS STATEMENTS OF GENERAL POLICY Policies Relating to Rulemaking Proceedings § 399.7...

  1. Aerospace-Oriented Units for Use in Humanities Classes, Grades 7-12.

    ERIC Educational Resources Information Center

    Rademacher, Jean, Ed.; Williams, Mary H., Ed.

    This curriculum guide, funded under ESEA Title 3, is designed to help students in English and social studies classes develop a global frame of reference and increase their awareness of advances in air and space technology. The history of aerospace technology from the first mythological references to flight to the space exploration of the future is…

  2. The Explorer's Guide to the Universe. A Reading List for Planetary and Space Science.

    ERIC Educational Resources Information Center

    Zucker, Sandy, Comp.; And Others

    This reading list for planetary and space science presents general references and bibliographies intended to supply background to the non-scientist, as well as more specific sources for recent discoveries. Included are NASA publications and those which have been commercially produced. References are sectioned into these topics: (1) general reviews…

  3. NASA Plum Brook's B-2 Test Facility: Thermal Vacuum and Propellant Test Facility

    NASA Technical Reports Server (NTRS)

    Kudlac, Maureen T.; Weaver, Harold F.; Cmar, Mark D.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Spacecraft Propulsion Research Facility, commonly referred to as B-2, is NASA's third largest thermal vacuum facility. It is the largest designed to store and transfer large quantities of liquid hydrogen and liquid oxygen, and is perfectly suited to support developmental testing of upper stage chemical propulsion systems as well as fully integrated stages. The facility is also capable of providing thermal-vacuum simulation services to support testing of large lightweight structures, Cryogenic Fluid Management (CFM) systems, electric propulsion test programs, and other In-Space propulsion programs. A recently completed integrated system test demonstrated the refurbished thermal vacuum capabilities of the facility. The test used the modernized data acquisition and control system to monitor the facility. The heat sink provided a uniform temperature environment of approximately 77 K. The modernized infrared lamp array produced a nominal heat flux of 1.4 kW/sq m. With the lamp array and heat sink operating simultaneously, the thermal systems produced a heat flux pattern simulating radiation to space on one surface and solar exposure on the other surface.

  4. Circular common-path point diffraction interferometer.

    PubMed

    Du, Yongzhao; Feng, Guoying; Li, Hongru; Vargas, J; Zhou, Shouhuan

    2012-10-01

    A simple and compact point-diffraction interferometer with circular common-path geometry configuration is developed. The interferometer is constructed by a beam-splitter, two reflection mirrors, and a telescope system composed by two lenses. The signal and reference waves travel along the same path. Furthermore, an opaque mask containing a reference pinhole and a test object holder or test window is positioned in the common focal plane of the telescope system. The object wave is divided into two beams that take opposite paths along the interferometer. The reference wave is filtered by the reference pinhole, while the signal wave is transmitted through the object holder. The reference and signal waves are combined again in the beam-splitter and their interference is imaged in the CCD. The new design is compact, vibration insensitive, and suitable for the measurement of moving objects or dynamic processes.

  5. Overview of the Mission Design Reference Trajectory for NASA's Asteroid Redirect Robotic Mission

    NASA Technical Reports Server (NTRS)

    Mcguire, Melissa L.; Strange, Nathan J.; Burke, Laura M.; McCarty, Steven L.; Lantoine, Gregory B.; Qu, Min; Shen, Haijun; Smith, David A.; Vavrina, Matthew A.

    2017-01-01

    The National Aeronautics and Space Administration's (NASA's) recently cancelled Asteroid Redirect Mission was proposed to rendezvous with and characterize a 100 m plus class near-Earth asteroid and provide the capability to capture and retrieve a boulder off of the surface of the asteroid and bring the asteroidal material back to cislunar space. Leveraging the best of NASA's science, technology, and human exploration efforts, this mission was originally conceived to support observation campaigns, advanced solar electric propulsion, and NASA's Space Launch System heavy-lift rocket and Orion crew vehicle. The asteroid characterization and capture portion of ARM was referred to as the Asteroid Redirect Robotic Mission (ARRM) and was focused on the robotic capture and then redirection of an asteroidal boulder mass from the reference target, asteroid 2008 EV5, into an orbit near the Moon, referred to as a Near Rectilinear Halo Orbit where astronauts would visit and study it. The purpose of this paper is to document the final reference trajectory of ARRM and the challenges and unique methods employed in the trajectory design of the mission.

  6. Collaborative derivation of reference intervals for major clinical laboratory tests in Japan.

    PubMed

    Ichihara, Kiyoshi; Yomamoto, Yoshikazu; Hotta, Taeko; Hosogaya, Shigemi; Miyachi, Hayato; Itoh, Yoshihisa; Ishibashi, Midori; Kang, Dongchon

    2016-05-01

    Three multicentre studies of reference intervals were conducted recently in Japan. The Committee on Common Reference Intervals of the Japan Society of Clinical Chemistry sought to establish common reference intervals for 40 laboratory tests which were measured in common in the three studies and regarded as well harmonized in Japan. The study protocols were comparable with recruitment mostly from hospital workers with body mass index ≤28 and no medications. Age and sex distributions were made equal to obtain a final data size of 6345 individuals. Between-subgroup differences were expressed as the SD ratio (between-subgroup SD divided by SD representing the reference interval). Between-study differences were all within acceptable levels, and thus the three datasets were merged. By adopting SD ratio ≥0.50 as a guide, sex-specific reference intervals were necessary for 12 assays. Age-specific reference intervals for females partitioned at age 45 were required for five analytes. The reference intervals derived by the parametric method resulted in appreciable narrowing of the ranges by applying the latent abnormal values exclusion method in 10 items which were closely associated with prevalent disorders among healthy individuals. Sex- and age-related profiles of reference values, derived from individuals with no abnormal results in major tests, showed peculiar patterns specific to each analyte. Common reference intervals for nationwide use were developed for 40 major tests, based on three multicentre studies by advanced statistical methods. Sex- and age-related profiles of reference values are of great relevance not only for interpreting test results, but for applying clinical decision limits specified in various clinical guidelines. © The Author(s) 2015.

  7. The pore space scramble

    NASA Astrophysics Data System (ADS)

    Gormally, Alexandra; Bentham, Michelle; Vermeylen, Saskia; Markusson, Nils

    2015-04-01

    Climate change and energy security continue to be the context of the transition to a secure, affordable and low carbon energy future, both in the UK and beyond. This is reflected in for example, binding climate policy targets at the EU level, the introduction of renewable energy targets, and has also led to an increasing interest in Carbon Capture and Storage (CCS) technology with its potential to help mitigate against the effects of CO2 emissions from fossil fuel burning. The UK has proposed a three phase strategy to integrate CCS into its energy system in the long term focussing on off-shore subsurface storage (DECC, 2014). The potential of CCS therefore, raises a number of challenging questions and issues surrounding the long-term storage of CO2 captured and injected into underground spaces and, alongside other novel uses of the subsurface, contributes to opening a new field for discussion on the governance of the subsurface. Such 'novel' uses of the subsurface have lead to it becoming an increasingly contested space in terms of its governance, with issues emerging around the role of ownership, liability and property rights of subsurface pore space. For instance, questions over the legal ownership of pore space have arisen with ambiguity over the legal standpoint of the surface owner and those wanting to utilise the pore space for gas storage, and suggestions of whether there are depths at which legal 'ownership' becomes obsolete (Barton, 2014). Here we propose to discuss this 'pore space scramble' and provide examples of the competing trajectories of different stakeholders, particularly in the off-shore context given its priority in the UK. We also propose to highlight the current ambiguity around property law of pore space in the UK with reference to approaches currently taken in different national contexts. Ultimately we delineate contrasting models of governance to illustrate the choices we face and consider the ethics of these models for the common good. Barton, B (2014) The Common Law of Subsurface Activity: General Principle and Current Problems. In: Zillman, D.N., McHarg, A., Barrera-Hernandez, L., Bradbrook., A. (Eds), The Law of Energy Underground: Understanding new developments in subsurface production, transmission, and storage. Oxford University Press, Croydon, pp. 21-36. DECC (2014) Next steps in CCS: Policy Scoping Document - Developing an approach for the next phase of Carbon Capture and Storage projects in the UK. HM Government.

  8. Autonomous Mission Manager for Rendezvous, Inspection and Mating

    NASA Technical Reports Server (NTRS)

    Zimpfer, Douglas J.

    2003-01-01

    To meet cost and safety objectives, space missions that involve proximity operations between two vehicles require a high level of autonomy to successfully complete their missions. The need for autonomy is primarily driven by the need to conduct complex operations outside of communication windows, and the communication time delays inherent in space missions. Autonomy also supports the goals of both NASA and the DOD to make space operations more routine, and lower operational costs by reducing the requirement for ground personnel. NASA and the DoD have several programs underway that require a much higher level of autonomy for space vehicles. NASA's Space Launch Initiative (SLI) program has ambitious goals of reducing costs by a factor or 10 and improving safety by a factor of 100. DARPA has recently begun its Orbital Express to demonstrate key technologies to make satellite servicing routine. The Air Force's XSS-ll program is developing a protoflight demonstration of an autonomous satellite inspector. A common element in space operations for many NASA and DOD missions is the ability to rendezvous, inspect anclJor dock with another spacecraft. For DARPA, this is required to service or refuel military satellites. For the Air Force, this is required to inspect un-cooperative resident space objects. For NASA, this is needed to meet the primary SLI design reference mission of International Space Station re-supply. A common aspect for each of these programs is an Autonomous Mission Manager that provides highly autonomous planning, execution and monitoring of the rendezvous, inspection and docking operations. This paper provides an overview of the Autonomous Mission Manager (AMM) design being incorporated into many of these technology programs. This AMM provides a highly scalable level of autonomous operations, ranging from automatic execution of ground-derived plans to highly autonomous onboard planning to meet ground developed mission goals. The AMM provides the capability to automatically execute the plans and monitor the system performance. In the event of system dispersions or failures the AMM can modify plans or abort to assure overall system safety. This paper describes the design and functionality of Draper's AMM framework, presents concept of operations associated with the use of the AMM, and outlines the relevant features of the flight demonstrations.

  9. Space-Based Observations of Satellites From the MOST Microsatellite

    DTIC Science & Technology

    2006-11-01

    error estimate for these observations. To perform differential photometry, reference magnitudes for the background stars are needed. The Hubble Guide ...22 6.3 External Calibration References ..................................................................... 23 6.4 Post...32 10. References

  10. Ceos Wgiss Common Framework for Wgiss Connected Data Assets

    NASA Astrophysics Data System (ADS)

    Enloe, Y.; Mitchell, A. E.; Albani, M.; Yapur, M.

    2016-12-01

    The Committee on Earth Observation Satellites (CEOS), established in 1984 to coordinate civil space-borne observations of the Earth, has been building through its Working Group on Information Systems and Services (WGISS), a common data framework to identify and connect data assets at member agencies. Some of these data assets are federated systems such as the CEOS WGISS Integrated Catalog (CWIC), the European Space Agency's FedEO (Federated Earth Observations Missions Access) system, and the International Directory Network (IDN) which is an international effort developed by NASA to assist researchers in locating information on available data sets. A system level team provides coordination and oversight to make this loosely coupled federated system function and evolve. WGISS has identified 2 search standards, the Open Geospatial Consortium (OGC) Catalog Services for the Web (CSW) and the CEOS OpenSearch Best Practices (which references the OGC OpenSearch Geo and Time Extensions and OGC OpenSearch Extension for Earth Observation) as well as an interoperable metadata standard (ISO 19115) for use within the WGISS Connected Assets. Data partners must register their data collections in the IDN using the Global Change Master Directory (GCMD) Keywords. Data partners need to support one of the 2 search standards and be able to map their internal metadata to the ISO 19115 metadata elements. All searchable data must have a data access path. Clients can offer search and access to all or a subset of the satellite data available through the WGISS Connected Data Assets. Clients can offer support for a 2-step search: (1) Discovery through collection search using platform, instrument, science keywords, etc. at the IDN and (2) Search granule metadata at data partners through CWIC or FedEO. There are more than a dozen international agencies that offer their data through the WGISS Federation or working on developing their connections. This list includes European Space Agency, NASA, NOAA, USGS, National Institute for Space Research (Brazil), Canadian Center for Mapping and Earth Observations (CCMEO), the Academy for Opto-Electronics (China), the Indian Space Research Organization (ISRO), EUMETSAT, Russian Federal Space Agency (ROSCOSMOS) and several agencies within Australia.

  11. THOR Fluxgate Magnetometer (MAG)

    NASA Astrophysics Data System (ADS)

    Nakamura, Rumi; Eastwood, Jonathan; Magnes, Werner; Carr, Christopher, M.; O'Brien, Helen, L.; Narita, Yasuhito; K, Chen, Christopher H.; Berghofer, Gerhard; Valavanoglou, Aris; Delva, Magda; Plaschke, Ferdinand; Cupido, Emanuele; Soucek, Jan

    2017-04-01

    Turbulence Heating ObserveR (THOR) is the first mission ever flown in space dedicated to plasma turbulence. The fluxgate Magnetometer (MAG) measures the background to low frequency magnetic field. The high sensitivity measurements of MAG enable to characterize the nature of turbulent fluctuations as well as the large-scale context. MAG will provide the reference system for determining anisotropy of field fluctuations, pitch-angle and gyro-phase of particles. The design of the magnetometer consists of two tri-axial sensors and the related magnetometer electronics; the electronics are hosted on printed circuit boards in the common electronics box of the fields and wave processor (FWP). A fully redundant two- sensor system mounted on a common boom and the new miniaturized low noise design based on MMS and Solar Orbiter instruments enable accurate measurement throughout the region of interest for THOR science. The usage of the common electronics hosted by FWP guarantees to fulfill the required timing accuracy with other fields measurements. These improvements are important to obtain precise measurements of magnetic field, which is essential to estimate basic plasma parameters and correctly identify the spatial and temporal scales of the turbulence. Furthermore, THOR MAG provides high quality data with sufficient overlap with the Search Coil Magnetometer (SCM) in frequency space to obtain full coverage of the wave forms over all the frequencies necessary to obtain the full solar wind turbulence spectrum from MHD to kinetic range with sufficient accuracy. We discuss the role of MAG in THOR key science questions and present the new developments during Phase A such as the finalised instrument design, MAG relevant requirement, and new calibraion schemes.

  12. Future Standardization of Space Telecommunications Radio System with Core Flight System

    NASA Technical Reports Server (NTRS)

    Hickey, Joseph P.; Briones, Janette C.; Roche, Rigoberto; Handler, Louis M.; Hall, Steven

    2016-01-01

    NASA Glenn Research Center (GRC) is integrating the NASA Space Telecommunications Radio System (STRS) Standard with the Core Flight System (cFS). The STRS standard provides a common, consistent framework to develop, qualify, operate and maintain complex, reconfigurable and reprogrammable radio systems. The cFS is a flexible, open architecture that features a plug-and-play software executive called the Core Flight Executive (cFE), a reusable library of software components for flight and space missions and an integrated tool suite. Together, STRS and cFS create a development environment that allows for STRS compliant applications to reference the STRS APIs through the cFS infrastructure. These APis are used to standardize the communication protocols on NASAs space SDRs. The cFE-STRS Operating Environment (OE) is a portable cFS library, which adds the ability to run STRS applications on existing cFS platforms. The purpose of this paper is to discuss the cFE-STRS OE prototype, preliminary experimental results performed using the Advanced Space Radio Platform (ASRP), the GRC Sband Ground Station and the SCaN (Space Communication and Navigation) Testbed currently flying onboard the International Space Station. Additionally, this paper presents a demonstration of the Consultative Committee for Space Data Systems (CCSDS) Spacecraft Onboard Interface Services (SOIS) using electronic data sheets inside cFE. This configuration allows for the data sheets to specify binary formats for data exchange between STRS applications. The integration of STRS with cFS leverages mission-proven platform functions and mitigates barriers to integration with future missions. This reduces flight software development time and the costs of software-defined radio (SDR) platforms. Furthermore, the combined benefits of STRS standardization with the flexibility of cFS provide an effective, reliable and modular framework to minimize software development efforts for spaceflight missions.

  13. Human factors. [in space colony environments

    NASA Technical Reports Server (NTRS)

    Billingham, J.

    1977-01-01

    Life aboard space habitats is considered with reference to physiological factors and self-government. Physiological concerns include the loss of bone structural strength, the long-term effects of zero-gravity, the role of inert gases in breathing, and the danger of slow cosmic-ray particles. With reference to the administration of space habitats, it is suggested that initially Intelsat might serve as a model for supranational sponsorship. Later it is envisioned that space habitats will have some autonomy but will still be subject to earth control; habitats will not wage war on earth or on each other; and that the habitats will be protected from any adverse developments that might occur on earth.

  14. Overseas Assignment of Sponsors who have Children with Disabilities Who Are Space-Required Students in the Department of Defense Dependents Schools (DoDDS)

    DTIC Science & Technology

    1992-03-01

    reference (d)), general medical care is provided to family members on a space-available basis. 7. ’ndivuglzed Education Program. ( IEP ) A written document...participate in and benefit from his or her education. The IEP is further described in, and prepared under, reference (b). 8. pin oint Location. A specific...member the special education or related services required by an IEP or an evaluation required by DoD Instruction 1342.12 (reference (b)). 5. This

  15. Beam masking to reduce cyclic error in beam launcher of interferometer

    NASA Technical Reports Server (NTRS)

    Ames, Lawrence L. (Inventor); Bell, Raymond Mark (Inventor); Dutta, Kalyan (Inventor)

    2005-01-01

    Embodiments of the present invention are directed to reducing cyclic error in the beam launcher of an interferometer. In one embodiment, an interferometry apparatus comprises a reference beam directed along a reference path, and a measurement beam spatially separated from the reference beam and being directed along a measurement path contacting a measurement object. The reference beam and the measurement beam have a single frequency. At least a portion of the reference beam and at least a portion of the measurement beam overlapping along a common path. One or more masks are disposed in the common path or in the reference path and the measurement path to spatially isolate the reference beam and the measurement beam from one another.

  16. TIGO: a geodetic observatory for the improvement of the global reference frame

    NASA Astrophysics Data System (ADS)

    Schlueter, Wolfgang; Hase, Hayo; Boeer, Armin

    1999-12-01

    The Bundesamt fuer Kartographie und Geodaesie (BKG) will provide a major contribution to the improvement and maintenance of the global reference frames: ICRF (International Celestial Reference Frame), ITRF (International Terrestrial Reference Frame) with the operation of TIGO (Transportable Integrated Geodetic Observatory). TIGO is designed as a transportable geodetic observatory which consists of all relevant geodetic space techniques for a fundamental station (including VLBI, SLR, GPS). The transportability of the observatory enables to fill up gaps in the International Space Geodetic Network and to optimize the contribution to the global reference frames. TIGO should operate for a period of 2 to 3 years (at minimum) at one location. BKG is looking for a cooperation with countries willing to contribute to the ITRF and to support the operation of TIGO.

  17. Theory of Holors

    NASA Astrophysics Data System (ADS)

    Hiram Moon, Parry; Eberle Spencer, Domina

    2005-09-01

    Preface; Nomenclature; Historical introduction; Part I. Holors: 1. Index notation; 2. Holor algebra; 3. Gamma products; Part II. Transformations: 4. Tensors; 5. Akinetors; 6. Geometric spaces; Part III. Holor Calculus: 7. The linear connection; 8. The Riemann-Christoffel tensors; Part IV. Space Structure: 9. Non-Riemannian spaces; 10. Riemannian space; 11. Euclidean space; References; Index.

  18. Guidelines and Capabilities for Designing Human Missions

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The human element is likely the most complex and difficult one of mission design; it significantly influences every aspect of mission planning, from the basic parameters like duration to the more complex tradeoffs between mass, volume, power, risk, and cost. For engineers who rely on precise specifications in data books and other such technical references, dealing with the uncertainty and the variability of designing for human beings can be frustrating. When designing for the human element, questions arise more often than definitive answers. Nonetheless, we do not doubt that the most captivating discoveries in future space missions will necessitate human explorers. These guidelines and capabilities are meant to identify the points of intersection between humans and mission considerations such as architecture, vehicle design, technologies, operations, and science requirements. We seek to provide clear, top-level guidelines for human-related exploration studies and technology research that address common questions and requirements. As a result, we hope that ongoing mission trade studies consider common, standard, and practical criteria for human interfaces.

  19. Guidelines and Capabilities for Designing Human Missions

    NASA Astrophysics Data System (ADS)

    2002-03-01

    The human element is likely the most complex and difficult one of mission design; it significantly influences every aspect of mission planning, from the basic parameters like duration to the more complex tradeoffs between mass, volume, power, risk, and cost. For engineers who rely on precise specifications in data books and other such technical references, dealing with the uncertainty and the variability of designing for human beings can be frustrating. When designing for the human element, questions arise more often than definitive answers. Nonetheless, we do not doubt that the most captivating discoveries in future space missions will necessitate human explorers. These guidelines and capabilities are meant to identify the points of intersection between humans and mission considerations such as architecture, vehicle design, technologies, operations, and science requirements. We seek to provide clear, top-level guidelines for human-related exploration studies and technology research that address common questions and requirements. As a result, we hope that ongoing mission trade studies consider common, standard, and practical criteria for human interfaces.

  20. Stepped frequency ground penetrating radar

    DOEpatents

    Vadnais, Kenneth G.; Bashforth, Michael B.; Lewallen, Tricia S.; Nammath, Sharyn R.

    1994-01-01

    A stepped frequency ground penetrating radar system is described comprising an RF signal generating section capable of producing stepped frequency signals in spaced and equal increments of time and frequency over a preselected bandwidth which serves as a common RF signal source for both a transmit portion and a receive portion of the system. In the transmit portion of the system the signal is processed into in-phase and quadrature signals which are then amplified and then transmitted toward a target. The reflected signals from the target are then received by a receive antenna and mixed with a reference signal from the common RF signal source in a mixer whose output is then fed through a low pass filter. The DC output, after amplification and demodulation, is digitized and converted into a frequency domain signal by a Fast Fourier Transform. A plot of the frequency domain signals from all of the stepped frequencies broadcast toward and received from the target yields information concerning the range (distance) and cross section (size) of the target.

  1. Liver Parenchyma Perforation following Endoscopic Retrograde Cholangiopancreatography.

    PubMed

    Kayashima, Hiroto; Ikegami, Toru; Kasagi, Yuta; Hidaka, Gen; Yamazaki, Koji; Sadanaga, Noriaki; Itoh, Hiroyuki; Emi, Yasunori; Matsuura, Hiroshi; Okadome, Kenichiro

    2011-05-01

    Although endoscopic retrograde cholangiopancreatography (ERCP) is an effective modality for the diagnosis and treatment of biliary and pancreatic diseases, it is still related with several severe complications. We report on the case of a female patient who developed liver parenchyma perforation following ERCP. She underwent ERCP with sphincterotomy and extraction of a common bile duct stone. Shortly after ERCP, abdominal distension was identified. Abdominal computed tomography revealed intraabdominal air leakage and leakage of contrast dye penetrating the liver parenchyma into the space around the spleen. Since periampullary perforation related to sphincterotomy could not be denied, she was referred for immediate surgery. Obvious perforation could not be found at surgery. Cholecystectomy, insertion of a T tube into the common bile duct, placement of a duodenostomy tube and drainage of the retroperitoneum were performed. She did well postoperatively and was discharged home on postoperative day 28. In conclusion, as it is well recognized that perforation is one of the most serious complication related to ERCP, liver parenchyma perforation should be suspected as a cause.

  2. Multiple Regions of a Cortical Network Commonly Encode the Meaning of Words in Multiple Grammatical Positions of Read Sentences.

    PubMed

    Anderson, Andrew James; Lalor, Edmund C; Lin, Feng; Binder, Jeffrey R; Fernandino, Leonardo; Humphries, Colin J; Conant, Lisa L; Raizada, Rajeev D S; Grimm, Scott; Wang, Xixi

    2018-05-16

    Deciphering how sentence meaning is represented in the brain remains a major challenge to science. Semantically related neural activity has recently been shown to arise concurrently in distributed brain regions as successive words in a sentence are read. However, what semantic content is represented by different regions, what is common across them, and how this relates to words in different grammatical positions of sentences is weakly understood. To address these questions, we apply a semantic model of word meaning to interpret brain activation patterns elicited in sentence reading. The model is based on human ratings of 65 sensory/motor/emotional and cognitive features of experience with words (and their referents). Through a process of mapping functional Magnetic Resonance Imaging activation back into model space we test: which brain regions semantically encode content words in different grammatical positions (e.g., subject/verb/object); and what semantic features are encoded by different regions. In left temporal, inferior parietal, and inferior/superior frontal regions we detect the semantic encoding of words in all grammatical positions tested and reveal multiple common components of semantic representation. This suggests that sentence comprehension involves a common core representation of multiple words' meaning being encoded in a network of regions distributed across the brain.

  3. 14 CFR 23.73 - Reference landing approach speed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Reference landing approach speed. 23.73... Reference landing approach speed. (a) For normal, utility, and acrobatic category reciprocating engine-powered airplanes of 6,000 pounds or less maximum weight, the reference landing approach speed, VREF, must...

  4. 14 CFR 23.73 - Reference landing approach speed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Reference landing approach speed. 23.73... Reference landing approach speed. (a) For normal, utility, and acrobatic category reciprocating engine-powered airplanes of 6,000 pounds or less maximum weight, the reference landing approach speed, VREF, must...

  5. The "Common European Framework of Reference" Down Under: A Survey of Its Use and Non-Use in Australian Universities

    ERIC Educational Resources Information Center

    Normand-Marconnet, Nadine; Lo Bianco, Joseph

    2015-01-01

    Today, the "Common European Framework of Reference for Languages" (CEFR; Council of Europe 2001) is widely recognised as emblematic of globalization in education, both in the realms of policy and in educational practice (Byram et al. 2012a). In Europe the CEFR is regularly cited as a reference point for curriculum planning, and is often…

  6. Properties of colour reference solutions of the European Pharmacopoea in CIE L*a*b* colour space.

    PubMed

    Subert, J; Farsa, O; Gajdosová, Z

    2006-12-01

    The coordinates of CIE L*a*b* uniform colour space have been acquired from the transmitance spectra of colour reference solutions of European Pharmacopoeia (Ph.Eur.). Calculation of colour differences of these solutions from purified water deltaE* gave their values in the range between 0.7 (B9 solution) to 36 (Y1 solution) CIE units. Excluding red colour reference soulutions, deltaE* values did not depend on concentrations of colour compounds linearly. Small deltaE* values founded by the brown and brownish-yellow colour reference solutions of the lowest concentrations can possibly cause some problems of visual examination of the degree of coloration of liquids according to Ph.Eur.

  7. A specific endogenous reference for genetically modified common bean (Phaseolus vulgaris L.) DNA quantification by real-time PCR targeting lectin gene.

    PubMed

    Venturelli, Gustavo L; Brod, Fábio C A; Rossi, Gabriela B; Zimmermann, Naíra F; Oliveira, Jaison P; Faria, Josias C; Arisi, Ana C M

    2014-11-01

    The Embrapa 5.1 genetically modified (GM) common bean was approved for commercialization in Brazil. Methods for the quantification of this new genetically modified organism (GMO) are necessary. The development of a suitable endogenous reference is essential for GMO quantification by real-time PCR. Based on this, a new taxon-specific endogenous reference quantification assay was developed for Phaseolus vulgaris L. Three genes encoding common bean proteins (phaseolin, arcelin, and lectin) were selected as candidates for endogenous reference. Primers targeting these candidate genes were designed and the detection was evaluated using the SYBR Green chemistry. The assay targeting lectin gene showed higher specificity than the remaining assays, and a hydrolysis probe was then designed. This assay showed high specificity for 50 common bean samples from two gene pools, Andean and Mesoamerican. For GM common bean varieties, the results were similar to those obtained for non-GM isogenic varieties with PCR efficiency values ranging from 92 to 101 %. Moreover, this assay presented a limit of detection of ten haploid genome copies. The primers and probe developed in this work are suitable to detect and quantify either GM or non-GM common bean.

  8. Optimal Detection Range of RFID Tag for RFID-based Positioning System Using the k-NN Algorithm.

    PubMed

    Han, Soohee; Kim, Junghwan; Park, Choung-Hwan; Yoon, Hee-Cheon; Heo, Joon

    2009-01-01

    Positioning technology to track a moving object is an important and essential component of ubiquitous computing environments and applications. An RFID-based positioning system using the k-nearest neighbor (k-NN) algorithm can determine the position of a moving reader from observed reference data. In this study, the optimal detection range of an RFID-based positioning system was determined on the principle that tag spacing can be derived from the detection range. It was assumed that reference tags without signal strength information are regularly distributed in 1-, 2- and 3-dimensional spaces. The optimal detection range was determined, through analytical and numerical approaches, to be 125% of the tag-spacing distance in 1-dimensional space. Through numerical approaches, the range was 134% in 2-dimensional space, 143% in 3-dimensional space.

  9. A method of camera calibration in the measurement process with reference mark for approaching observation space target

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Zeng, Luan

    2017-11-01

    Binocular stereoscopic vision can be used for space-based space targets near observation. In order to solve the problem that the traditional binocular vision system cannot work normally after interference, an online calibration method of binocular stereo measuring camera with self-reference is proposed. The method uses an auxiliary optical imaging device to insert the image of the standard reference object into the edge of the main optical path and image with the target on the same focal plane, which is equivalent to a standard reference in the binocular imaging optical system; When the position of the system and the imaging device parameters are disturbed, the image of the standard reference will change accordingly in the imaging plane, and the position of the standard reference object does not change. The camera's external parameters can be re-calibrated by the visual relationship of the standard reference object. The experimental results show that the maximum mean square error of the same object can be reduced from the original 72.88mm to 1.65mm when the right camera is deflected by 0.4 degrees and the left camera is high and low with 0.2° rotation. This method can realize the online calibration of binocular stereoscopic vision measurement system, which can effectively improve the anti - jamming ability of the system.

  10. The Long-Wave Infrared Earth Image as a Pointing Reference for Deep-Space Optical Communications

    NASA Astrophysics Data System (ADS)

    Biswas, A.; Piazzolla, S.; Peterson, G.; Ortiz, G. G.; Hemmati, H.

    2006-11-01

    Optical communications from space require an absolute pointing reference. Whereas at near-Earth and even planetary distances out to Mars and Jupiter a laser beacon transmitted from Earth can serve as such a pointing reference, for farther distances extending to the outer reaches of the solar system, the means for meeting this requirement remains an open issue. We discuss in this article the prospects and consequences of utilizing the Earth image sensed in the long-wave infrared (LWIR) spectral band as a beacon to satisfy the absolute pointing requirements. We have used data from satellite-based thermal measurements of Earth to synthesize images at various ranges and have shown the centroiding accuracies that can be achieved with prospective LWIR image sensing arrays. The nonuniform emissivity of Earth causes a mispointing bias error term that exceeds a provisional pointing budget allocation when using simple centroiding algorithms. Other issues related to implementing thermal imaging of Earth from deep space for the purposes of providing a pointing reference are also reported.

  11. Free space optics: a viable last-mile alternative

    NASA Astrophysics Data System (ADS)

    Willebrand, Heinz A.; Clark, Gerald R.

    2001-10-01

    This paper explores Free Space Optics (FSO) as an access technology in the last mile of metropolitan area networks (MANs). These networks are based in part on fiber-optic telecommunications infrastructure, including network architectures of Synchronous Optical Network (commonly referred to as SONET), the North American standard for synchronous data transmission; and Synchronous Digital Hierarchy (commonly referred to as SDH), the international standard and equivalent of SONET. Several converging forces have moved FSO beyond a niche technology for use only in local area networks (LANs) as a bridge connecting two facilities. FSO now allows service providers to cost effectively provide optical bandwidth for access networks and accelerate the extension of metro optical networks bridging what has been termed by industry experts as the optical dead zone. The optical dead zone refers to both the slowdown in capital investment in the short-term future and the actual connectivity gap that exists today between core metro optical networks and the access optical networks. Service providers have built extensive core and minimal metro networks but have not yet provided optical bandwidth to the access market largely due to the non-compelling economics to bridge the dead zone with fiber. Historically, such infrastructure build-out slowdowns have been blamed on a combination of economics, time-to-market constraints and limited technology options. However, new technology developments and market acceptance of FSO give service providers a new cost-effective alternative to provide high-bandwidth services with optical bandwidth in the access networks. Merrill Lynch predicts FSO will grow into a $2 billion market by 2005. The drivers for this market are a mere 5%- 6% penetration of fiber to business buildings; cost effective solution versus RF or fiber; and significant capacity which can only be matched by a physical fiber link, Merrill Lynch reports. This paper will describe FSO technology, its capabilities and its limitations. The paper will investigate how FSO technology has evolved to its current stage for deployment in MANs, LANs, wireless backhaul and metropolitan network extensions - applications that fall within the category of last mile. The paper will address the market, drivers and the adoption of FSO, plus provide a projection of future FSO technology, based on today's product roadmaps. The paper concludes with a summary of findings and recommendations.

  12. A Reference Field for GCR Simulation and an LET-Based Implementation at NSRL

    NASA Technical Reports Server (NTRS)

    Slaba, Tony C.; Blattnig, Steve R.; Walker, Steven A.; Norbury, John W.

    2015-01-01

    Exposure to galactic cosmic rays (GCR) on long duration deep space missions presents a serious health risk to astronauts, with large uncertainties connected to the biological response. In order to reduce the uncertainties and gain understanding about the basic mechanisms through which space radiation initiates cancer and other endpoints, radiobiology experiments are performed. Some of the accelerator facilities supporting such experiments have matured to a point where simulating the broad range of particles and energies characteristic of the GCR environment in a single experiment is feasible from a technology, usage, and cost perspective. In this work, several aspects of simulating the GCR environment in the laboratory are discussed. First, comparisons are made between direct simulation of the external, free space GCR field and simulation of the induced tissue field behind shielding. It is found that upper energy constraints at the NASA Space Radiation Laboratory (NSRL) limit the ability to simulate the external, free space field directly (i.e. shielding placed in the beam line in front of a biological target and exposed to a free space spectrum). Second, variation in the induced tissue field associated with shielding configuration and solar activity is addressed. It is found that the observed variation is within physical uncertainties, allowing a single reference field for deep space missions to be defined. Third, an approach for simulating the reference field at NSRL is presented. The approach allows for the linear energy transfer (LET) spectrum of the reference field to be approximately represented with discrete ion and energy beams and implicitly maintains a reasonably accurate charge spectrum (or, average quality factor). Drawbacks of the proposed methodology are discussed and weighed against alternative simulation strategies. The neutron component and track structure characteristics of the proposed strategy are discussed in this context.

  13. GEOdetic Data assimilation and EStimation of references for climate change InvEstigation. An overall presentation of the French GEODESIE project

    NASA Astrophysics Data System (ADS)

    Nahmani, S.; Coulot, D.; Biancale, R.; Bizouard, C.; Bonnefond, P.; Bouquillon, S.; Collilieux, X.; Deleflie, F.; Garayt, B.; Lambert, S. B.; Laurent-Varin, S.; Marty, J. C.; Mercier, F.; Metivier, L.; Meyssignac, B.; Pollet, A.; Rebischung, P.; Reinquin, F.; Richard, J. Y.; Tertre, F.; Woppelmann, G.

    2017-12-01

    Many major indicators of climate change are monitored with space observations. This monitoring is highly dependent on references that only geodesy can provide. The current accuracy of these references does not permit to fully support the challenges that the constantly evolving Earth system gives rise to, and can consequently limit the accuracy of these indicators. Thus, in the framework of the GGOS, stringent requirements are fixed to the International Terrestrial Reference Frame (ITRF) for the next decade: an accuracy at the level of 1 mm and a stability at the level of 0.1 mm/yr. This means an improvement of the current quality of ITRF by a factor of 5-10. Improving the quality of the geodetic references is an issue which requires a thorough reassessment of the methodologies involved. The most relevant and promising method to improve this quality is the direct combination of the space-geodetic measurements used to compute the official references of the IERS. The GEODESIE project aims at (i) determining highly-accurate global and consistent references and (ii) providing the geophysical and climate research communities with these references, for a better estimation of geocentric sea level rise, ice mass balance and on-going climate changes. Time series of sea levels computed from altimetric data and tide gauge records with these references will also be provided. The geodetic references will be essential bases for Earth's observation and monitoring to support the challenges of the century. The geocentric time series of sea levels will permit to better apprehend (i) the drivers of the global mean sea level rise and of regional variations of sea level and (ii) the contribution of the global climate change induced by anthropogenic greenhouse gases emissions to these drivers. All the results and computation and quality assessment reports will be available at geodesie_anr.ign.fr.This project, supported by the French Agence Nationale de la Recherche (ANR) for the period 2017-2020, will be an unprecedented opportunity to provide the French Groupe de Recherche de Géodésie Spatiale (GRGS) with complete simulation and data processing capabilities to prepare the future arrival of space missions such as the European Geodetic Reference Antenna in SPace (E-GRASP) and to significantly contribute to the GGOS with accurate references.

  14. Planning collision free paths for two cooperating robots using a divide-and-conquer C-space traversal heuristic

    NASA Technical Reports Server (NTRS)

    Weaver, Johnathan M.

    1993-01-01

    A method was developed to plan feasible and obstacle-avoiding paths for two spatial robots working cooperatively in a known static environment. Cooperating spatial robots as referred to herein are robots which work in 6D task space while simultaneously grasping and manipulating a common, rigid payload. The approach is configuration space (c-space) based and performs selective rather than exhaustive c-space mapping. No expensive precomputations are required. A novel, divide-and-conquer type of heuristic is used to guide the selective mapping process. The heuristic does not involve any robot, environment, or task specific assumptions. A technique was also developed which enables solution of the cooperating redundant robot path planning problem without requiring the use of inverse kinematics for a redundant robot. The path planning strategy involves first attempting to traverse along the configuration space vector from the start point towards the goal point. If an unsafe region is encountered, an intermediate via point is identified by conducting a systematic search in the hyperplane orthogonal to and bisecting the unsafe region of the vector. This process is repeatedly applied until a solution to the global path planning problem is obtained. The basic concept behind this strategy is that better local decisions at the beginning of the trouble region may be made if a possible way around the 'center' of the trouble region is known. Thus, rather than attempting paths which look promising locally (at the beginning of a trouble region) but which may not yield overall results, the heuristic attempts local strategies that appear promising for circumventing the unsafe region.

  15. The 2006 Kennedy Space Center Range Reference Atmosphere Model Validation Study and Sensitivity Analysis to the Performance of the National Aeronautics and Space Administration's Space Shuttle Vehicle

    NASA Technical Reports Server (NTRS)

    Burns, Lee; Decker, Ryan; Harrington, Brian; Merry, Carl

    2008-01-01

    The Kennedy Space Center (KSC) Range Reference Atmosphere (RRA) is a statistical model that summarizes wind and thermodynamic atmospheric variability from surface to 70 km. The National Aeronautics and Space Administration's (NASA) Space Shuttle program, which launches from KSC, utilizes the KSC RRA data to evaluate environmental constraints on various aspects of the vehicle during ascent. An update to the KSC RRA was recently completed. As part of the update, the Natural Environments Branch at NASA's Marshall Space Flight Center (MSFC) conducted a validation study and a comparison analysis to the existing KSC RRA database version 1983. Assessments to the Space Shuttle vehicle ascent profile characteristics were performed by JSC/Ascent Flight Design Division to determine impacts of the updated model to the vehicle performance. Details on the model updates and the vehicle sensitivity analyses with the update model are presented.

  16. Legal Provisions Applicable to the Definition of Outer Space

    NASA Astrophysics Data System (ADS)

    Thorin, T.

    2002-01-01

    Whether it be the adjective "spatial" or the definition "space", these two terms have, in many respects, a non-identifiable dimension, which serves as a reference point for all players in this field, without being concerned with the exact area of application. This is evident from the vast diversity of corporate names, acronyms, logos and other designations that we often use. Among some of the most worldwide common include: NASA, ISS, ESA, and so on. Without of course forgetting , a field which concerns all legal experts and should not be overlooked is "space law". Thus, it is apparent that although the "space" community (i.e. influential and space- minded governments and relevant international authorities) has been involved in this field over the last few decades, no specific and universally-accepted definition has been adopted to date. Apart from certain demands made or unilateral positions taken by a given state particularly concerned by the matter, it is important to underline that the international community has refrained from making legislation in this area, apart from some rather limited or symbolic provisions introduced. This vagueness, in legal terms, should clearly be taken as the assertion of nationalistic demands, but also shows divergence or even antagonism between states fuelled by hypothetical profits, as was the case when attempts were made to establish maritime boundaries. We can thus by now summarise this issue by asking the following question: "Where does outer space begin?" We shall begin by looking at the sketchy legal references that we have at our disposal, which as lawyers we must use to attempt to find a solution to practical commercial or scientific contingencies which we are increasingly confronted with. Such references include the Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, Including the Moon and Other Celestial Bodies of 10th October 1967, constituting the fundamental space charter and decreeing the basic principle that no state can make claims to sovereignty or territory in space. This is followed by the Agreement of 11th September 1984 which governs the activities of states on the Moon and other celestial bodies. There are also three multilateral agreements which provide guiding principles in three specific areas: the Agreement on the Rescue and Return of Astronauts; the Convention on International Liability for Damage Caused by Space Objects; and, the Convention on Registration of Objects Launched into Outer Space. We shall then discuss other sources of law which also contribute towards defining the notion of space. These are essentially doctrinal positions which surface from the fundamental debate among legal experts divided between "functionalists" and "spacialists", which discussion is part of the general economic framework of international law, and considering naturally that Space law is an integral part of this framework. We shall also examine, as mentioned previously, the position taken by the various political and thus economic players in the international arena and we shall see that their somewhat diverging conceptions are often legitimised by very concrete concerns, far removed from theoretical debates, contributing to the development of international law. Finally, this will lead us to consider the pragmatic approach to such a problem, by discussing the various applications of legitimacy in demarcating space. So, we will among others discuss whether it is feasible to study a given territory without the permission of the country concerned; if "forbidden" orbits exist; in particular considering frequencies allocations and, of course, the simple right of flying and crossing, by shuttle designed vehicles both plane and rocket, over various states and their upper areas. In summary, the purpose of this paper is to determine when space law takes over from air law.

  17. Folklorists of Educational Spaces: Material Lore in Classrooms With and Without Walls.

    ERIC Educational Resources Information Center

    Merkel, Cecilia

    1999-01-01

    Discusses the relationship between people and the spaces that they inhabit on a college campus. A folklorist approach to the study of space examines the way people shape space through their practices and the way space shapes people's practices, particularly concerning the movement toward classrooms without walls. Contains 65 references.…

  18. Report on New Methods for Representing and Interacting with Qualitative Geographic Information, Stage 2: Task Group 1 Core Re-engineering and Place-based Use Case

    DTIC Science & Technology

    2013-06-30

    Void, Behind you, Quantum Leaping, The space between spaces  when a geographic reference is provided, we identified several categories of challenges to... consciously opt-in to include geolocation in times of crisis. In addition, 10% of tweets in our sample included place references in the text and that

  19. Science Goals of the Primary Atomic Reference Clock in Space (PARCS) Experiment

    NASA Technical Reports Server (NTRS)

    Ashby, N.

    2003-01-01

    The PARCS (Primary Atomic Reference Clock in Space) experiment will use a laser-cooled Cesium atomic clock operating in the microgravity environment aboard the International Space Station (ISS) to provide both advanced tests of gravitational theory and to demonstrate a new cold-atom clock technology for space. PARCS is a joint project of the National Institute of Standards and Technology (NIST), NASA's Jet Propulsion Laboratory (JPL), and the University of Colorado (CU). This paper concentrates on the scientific goals of the PARCS mission. The microgravity space environment allows laser-cooled Cs atoms to have Ramsey times in excess of those feasible on Earth, resulting in improved clock performance. Clock stabilities of 5x10(exp -14) at one second, and accuracies better than 10(exp -16) are projected.

  20. Analysis of the DORIS, GNSS, SLR, VLBI and gravimetric time series at the GGOS core sites

    NASA Astrophysics Data System (ADS)

    Moreaux, G.; Lemoine, F. G.; Luceri, V.; Pavlis, E. C.; MacMillan, D. S.; Bonvalot, S.; Saunier, J.

    2017-12-01

    Since June 2016 and the installation of a new DORIS station in Wettzell (Germany), four geodetic sites (Badary, Greenbelt, Wettzell and Yarragadee) are equipped with the four space geodetic techniques (DORIS, GNSS, SLR and VLBI). In line with the GGOS (Global Geodetic Observing System) objective of achieving a terrestrial reference frame at the millimetric level of accuracy, the combination centers of the four space techniques initiated a joint study to assess the level of agreement among these space geodetic techniques. In addition to the four sites, we will consider all the GGOS core sites including the seven sites with at least two space geodetic techniques in addition to DORIS. Starting from the coordinate time series, we will estimate and compare the mean positions and velocities of the co-located instruments. The temporal evolution of the coordinate differences will also be evaluated with respect to the local tie vectors and discrepancies will be investigated. Then, the analysis of the signal content of the time series will be carried out. Amplitudes and phases of the common signals among the techniques, and eventually from gravity data, will be compared. The first objective of this talk is to describe our joint study: the sites, the data, and the objectives. The second purpose is to present the first results obtained from the GGAO (Goddard Geophysical and Astronomic Observatory) site of Greenbelt.

  1. Donders is dead: cortical traveling waves and the limits of mental chronometry in cognitive neuroscience.

    PubMed

    Alexander, David M; Trengove, Chris; van Leeuwen, Cees

    2015-11-01

    An assumption nearly all researchers in cognitive neuroscience tacitly adhere to is that of space-time separability. Historically, it forms the basis of Donders' difference method, and to date, it underwrites all difference imaging and trial-averaging of cortical activity, including the customary techniques for analyzing fMRI and EEG/MEG data. We describe the assumption and how it licenses common methods in cognitive neuroscience; in particular, we show how it plays out in signal differencing and averaging, and how it misleads us into seeing the brain as a set of static activity sources. In fact, rather than being static, the domains of cortical activity change from moment to moment: Recent research has suggested the importance of traveling waves of activation in the cortex. Traveling waves have been described at a range of different spatial scales in the cortex; they explain a large proportion of the variance in phase measurements of EEG, MEG and ECoG, and are important for understanding cortical function. Critically, traveling waves are not space-time separable. Their prominence suggests that the correct frame of reference for analyzing cortical activity is the dynamical trajectory of the system, rather than the time and space coordinates of measurements. We illustrate what the failure of space-time separability implies for cortical activation, and what consequences this should have for cognitive neuroscience.

  2. Multisensory guidance of orienting behavior.

    PubMed

    Maier, Joost X; Groh, Jennifer M

    2009-12-01

    We use both vision and audition when localizing objects and events in our environment. However, these sensory systems receive spatial information in different coordinate systems: sounds are localized using inter-aural and spectral cues, yielding a head-centered representation of space, whereas the visual system uses an eye-centered representation of space, based on the site of activation on the retina. In addition, the visual system employs a place-coded, retinotopic map of space, whereas the auditory system's representational format is characterized by broad spatial tuning and a lack of topographical organization. A common view is that the brain needs to reconcile these differences in order to control behavior, such as orienting gaze to the location of a sound source. To accomplish this, it seems that either auditory spatial information must be transformed from a head-centered rate code to an eye-centered map to match the frame of reference used by the visual system, or vice versa. Here, we review a number of studies that have focused on the neural basis underlying such transformations in the primate auditory system. Although, these studies have found some evidence for such transformations, many differences in the way the auditory and visual system encode space exist throughout the auditory pathway. We will review these differences at the neural level, and will discuss them in relation to differences in the way auditory and visual information is used in guiding orienting movements.

  3. Selected Lessons Learned in Space Shuttle Orbiter Propulsion and Power Subsystems

    NASA Technical Reports Server (NTRS)

    Hernandez, Francisco J.; Martinez, Hugo; Ryan, Abigail; Westover, Shayne; Davies, Frank

    2011-01-01

    Over its 30 years of space flight history, plus the nearly 10 years of design, development test and evaluation, the Space Shuttle Orbiter is full of lessons learned in all of its numerous and complex subsystems. In the current paper, only selected lessons learned in the areas of the Orbiter propulsion and power subsystems will be described. The particular Orbiter subsystems include: Auxiliary Power Unit (APU), Hydraulics and Water Spray Boiler (WSB), Mechanical Flight Controls, Main Propulsion System (MPS), Fuel Cells and Power Reactant and Storage Devices (PRSD), Orbital Maneuvering System (OMS), Reaction Control System (RCS), Electrical Power Distribution (EPDC), electrical wiring and pyrotechnics. Given the complexity and extensive history of each of these subsystems, and the limited scope of this paper, it is impossible to include most of the lessons learned; instead the attempt will be to present a selected few or key lessons, in the judgment of the authors. Each subsystem is presented separate, beginning with an overview of the hardware and their function, a short description of a few historical problems and their lessons, followed by a more comprehensive table listing of the major subsystem problems and lessons. These tables serve as a quick reference for lessons learned in each subsystem. In addition, this paper will establish common lessons across subsystems as well as concentrate on those lessons which are deemed to have the highest applicability to future space flight programs.

  4. Thinking/acting locally/globally: Western science and environmental education in a global knowledge economy

    NASA Astrophysics Data System (ADS)

    Gough, Noel

    2002-11-01

    This paper critically appraises a number of approaches to 'thinking globally' in environmental education, with particular reference to popular assumptions about the universal applicability of Western science. Although the transnational character of many environmental issues demands that we 'think globally', I argue that the contribution of Western science to understanding and resolving environmental problems might be enhanced by seeing it as one among many local knowledge traditions. The production of a 'global knowledge economy' in/for environmental education can then be understood as creating transnational 'spaces' in which local knowledge traditions can be performed together, rather than as creating a 'common market' in which representations of local knowledge must be translated into (or exchanged for) the terms of a universal discourse.

  5. Abstracting Attribute Space for Transfer Function Exploration and Design.

    PubMed

    Maciejewski, Ross; Jang, Yun; Woo, Insoo; Jänicke, Heike; Gaither, Kelly P; Ebert, David S

    2013-01-01

    Currently, user centered transfer function design begins with the user interacting with a one or two-dimensional histogram of the volumetric attribute space. The attribute space is visualized as a function of the number of voxels, allowing the user to explore the data in terms of the attribute size/magnitude. However, such visualizations provide the user with no information on the relationship between various attribute spaces (e.g., density, temperature, pressure, x, y, z) within the multivariate data. In this work, we propose a modification to the attribute space visualization in which the user is no longer presented with the magnitude of the attribute; instead, the user is presented with an information metric detailing the relationship between attributes of the multivariate volumetric data. In this way, the user can guide their exploration based on the relationship between the attribute magnitude and user selected attribute information as opposed to being constrained by only visualizing the magnitude of the attribute. We refer to this modification to the traditional histogram widget as an abstract attribute space representation. Our system utilizes common one and two-dimensional histogram widgets where the bins of the abstract attribute space now correspond to an attribute relationship in terms of the mean, standard deviation, entropy, or skewness. In this manner, we exploit the relationships and correlations present in the underlying data with respect to the dimension(s) under examination. These relationships are often times key to insight and allow us to guide attribute discovery as opposed to automatic extraction schemes which try to calculate and extract distinct attributes a priori. In this way, our system aids in the knowledge discovery of the interaction of properties within volumetric data.

  6. LEOrbit: A program to calculate parameters relevant to modeling Low Earth Orbit spacecraft-plasma interaction

    NASA Astrophysics Data System (ADS)

    Marchand, R.; Purschke, D.; Samson, J.

    2013-03-01

    Understanding the physics of interaction between satellites and the space environment is essential in planning and exploiting space missions. Several computer models have been developed over the years to study this interaction. In all cases, simulations are carried out in the reference frame of the spacecraft and effects such as charging, the formation of electrostatic sheaths and wakes are calculated for given conditions of the space environment. In this paper we present a program used to compute magnetic fields and a number of space plasma and space environment parameters relevant to Low Earth Orbits (LEO) spacecraft-plasma interaction modeling. Magnetic fields are obtained from the International Geophysical Reference Field (IGRF) and plasma parameters are obtained from the International Reference Ionosphere (IRI) model. All parameters are computed in the spacecraft frame of reference as a function of its six Keplerian elements. They are presented in a format that can be used directly in most spacecraft-plasma interaction models. Catalogue identifier: AENY_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENY_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 270308 No. of bytes in distributed program, including test data, etc.: 2323222 Distribution format: tar.gz Programming language: FORTRAN 90. Computer: Non specific. Operating system: Non specific. RAM: 7.1 MB Classification: 19, 4.14. External routines: IRI, IGRF (included in the package). Nature of problem: Compute magnetic field components, direction of the sun, sun visibility factor and approximate plasma parameters in the reference frame of a Low Earth Orbit satellite. Solution method: Orbit integration, calls to IGRF and IRI libraries and transformation of coordinates from geocentric to spacecraft frame reference. Restrictions: Low Earth orbits, altitudes between 150 and 2000 km. Running time: Approximately two seconds to parameterize a full orbit with 1000 points.

  7. 46 CFR 72.05-5 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Structural Fire Protection § 72.05-5 Definitions. Note: The parenthetical number after each space refers to... considered as including the following spaces: (1) Control stations, i.e., spaces containing the emergency source of power, and those spaces in which a continuous watch is maintained and in which navigating...

  8. 46 CFR 72.05-5 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Structural Fire Protection § 72.05-5 Definitions. Note: The parenthetical number after each space refers to... considered as including the following spaces: (1) Control stations, i.e., spaces containing the emergency source of power, and those spaces in which a continuous watch is maintained and in which navigating...

  9. 46 CFR 72.05-5 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Structural Fire Protection § 72.05-5 Definitions. Note: The parenthetical number after each space refers to... considered as including the following spaces: (1) Control stations, i.e., spaces containing the emergency source of power, and those spaces in which a continuous watch is maintained and in which navigating...

  10. A Celestial Reference Frame at X/ka-Band (8.4/32 Ghz) for Deep Space Navigation

    NASA Technical Reports Server (NTRS)

    Jacobs, C. S.; Clark, J. E.; Garcia-Miro, C.; Horiuchi, S.; Romero-Wolf, A.; Snedeker, L.; Sotuela, I.

    2012-01-01

    Deep space tracking and navigation are done in a quasi-inertial reference frame based upon the angular positions of distant active galactic nuclei (AGN). These objects, which are found at extreme distances characterized by median redshifts of z = 1, are ideal for reference frame definition because they exhibit no measurable parallax or proper motion. They are thought to be powered by super massive black holes whose gravitational energy drives galactic sized relativistic jets. These jets produce synchrotron emissions which are detectable by modern radio techniques such as Very Long baseline Interferometry (VLBI).

  11. Reference Frames in Relativistic Space-Time

    NASA Astrophysics Data System (ADS)

    Soffel, M.; Herold, H.; Ruder, H.; Schneider, M.

    Three fundamental concepts of reference frames in relativistic space-time are confronted: 1. the gravitation compass, 2. the stellar compass and 3. the inertial compass. It is argued that under certain conditions asymptotically fixed (stellar) reference frames can be introduced with the same rigour as local Fermi frames, thereby eliminating one possible psychological reason why the importance of Fermi frames frequently has been overestimated in the past. As applications of these three concepts the authors discuss: 1. a relativistic definition of the geoid, 2. a relativistic astrometric problem and 3. the post-Newtonian theory of a laser gyroscope fixed to the Earth's surface.

  12. An Engineering Design Reference Mission for a Future Large-Aperture UVOIR Space Observatory

    NASA Astrophysics Data System (ADS)

    Thronson, Harley A.; Bolcar, Matthew R.; Clampin, Mark; Crooke, Julie A.; Redding, David; Rioux, Norman; Stahl, H. Philip

    2016-01-01

    From the 2010 NRC Decadal Survey and the NASA Thirty-Year Roadmap, Enduring Quests, Daring Visions, to the recent AURA report, From Cosmic Birth to Living Earths, multiple community assessments have recommended development of a large-aperture UVOIR space observatory capable of achieving a broad range of compelling scientific goals. Of these priority science goals, the most technically challenging is the search for spectroscopic biomarkers in the atmospheres of exoplanets in the solar neighborhood. Here we present an engineering design reference mission (EDRM) for the Advanced Technology Large-Aperture Space Telescope (ATLAST), which was conceived from the start as capable of breakthrough science paired with an emphasis on cost control and cost effectiveness. An EDRM allows the engineering design trade space to be explored in depth to determine what are the most demanding requirements and where there are opportunities for margin against requirements. Our joint NASA GSFC/JPL/MSFC/STScI study team has used community-provided science goals to derive mission needs, requirements, and candidate mission architectures for a future large-aperture, non-cryogenic UVOIR space observatory. The ATLAST observatory is designed to operate at a Sun-Earth L2 orbit, which provides a stable thermal environment and excellent field of regard. Our reference designs have emphasized a serviceable 36-segment 9.2 m aperture telescope that stows within a five-meter diameter launch vehicle fairing. As part of our cost-management effort, this particular reference mission builds upon the engineering design for JWST. Moreover, it is scalable to a variety of launch vehicle fairings. Performance needs developed under the study are traceable to a variety of additional reference designs, including options for a monolithic primary mirror.

  13. The 2006 Cape Canaveral Air Force Station Range Reference Atmosphere Model Validation Study and Sensitivity Analysis to the National Aeronautics and Space Administration's Space Shuttle

    NASA Technical Reports Server (NTRS)

    Burns, Lee; Merry, Carl; Decker, Ryan; Harrington, Brian

    2008-01-01

    The 2006 Cape Canaveral Air Force Station (CCAFS) Range Reference Atmosphere (RRA) is a statistical model summarizing the wind and thermodynamic atmospheric variability from surface to 70 kin. Launches of the National Aeronautics and Space Administration's (NASA) Space Shuttle from Kennedy Space Center utilize CCAFS RRA data to evaluate environmental constraints on various aspects of the vehicle during ascent. An update to the CCAFS RRA was recently completed. As part of the update, a validation study on the 2006 version was conducted as well as a comparison analysis of the 2006 version to the existing CCAFS RRA database version 1983. Assessments to the Space Shuttle vehicle ascent profile characteristics were performed to determine impacts of the updated model to the vehicle performance. Details on the model updates and the vehicle sensitivity analyses with the update model are presented.

  14. EPOS--The European E-Portfolio of Languages

    ERIC Educational Resources Information Center

    Kühn, Bärbel

    2016-01-01

    Democratic principles and human rights, the core values of the Council of Europe, informed the development of the "Common European Framework of Reference for Languages" (CEFR; Council of Europe 2001. "Common European framework of reference for languages: Learning, teaching, assessment." Cambridge: Cambridge University Press.…

  15. A large-scale view of Space Technology 5 magnetometer response to solar wind drivers.

    PubMed

    Knipp, D J; Kilcommons, L M; Gjerloev, J; Redmon, R J; Slavin, J; Le, G

    2015-04-01

    In this data report we discuss reprocessing of the Space Technology 5 (ST5) magnetometer database for inclusion in NASA's Coordinated Data Analysis Web (CDAWeb) virtual observatory. The mission consisted of three spacecraft flying in elliptical orbits, from 27 March to 27 June 2006. Reprocessing includes (1) transforming the data into the Modified Apex Coordinate System for projection to a common reference altitude of 110 km, (2) correcting gain jumps, and (3) validating the results. We display the averaged magnetic perturbations as a keogram, which allows direct comparison of the full-mission data with the solar wind values and geomagnetic indices. With the data referenced to a common altitude, we find the following: (1) Magnetic perturbations that track the passage of corotating interaction regions and high-speed solar wind; (2) unexpectedly strong dayside perturbations during a solstice magnetospheric sawtooth oscillation interval characterized by a radial interplanetary magnetic field (IMF) component that may have enhanced the accompanying modest southward IMF; and (3) intervals of reduced magnetic perturbations or "calms," associated with periods of slow solar wind, interspersed among variable-length episodic enhancements. These calms are most evident when the IMF is northward or projects with a northward component onto the geomagnetic dipole. The reprocessed ST5 data are in very good agreement with magnetic perturbations from the Defense Meteorological Satellite Program (DMSP) spacecraft, which we also map to 110 km. We briefly discuss the methods used to remap the ST5 data and the means of validating the results against DMSP. Our methods form the basis for future intermission comparisons of space-based magnetometer data.

  16. Dose estimation for astronauts using dose conversion coefficients calculated with the PHITS code and the ICRP/ICRU adult reference computational phantoms.

    PubMed

    Sato, Tatsuhiko; Endo, Akira; Sihver, Lembit; Niita, Koji

    2011-03-01

    Absorbed-dose and dose-equivalent rates for astronauts were estimated by multiplying fluence-to-dose conversion coefficients in the units of Gy.cm(2) and Sv.cm(2), respectively, and cosmic-ray fluxes around spacecrafts in the unit of cm(-2) s(-1). The dose conversion coefficients employed in the calculation were evaluated using the general-purpose particle and heavy ion transport code system PHITS coupled to the male and female adult reference computational phantoms, which were released as a common ICRP/ICRU publication. The cosmic-ray fluxes inside and near to spacecrafts were also calculated by PHITS, using simplified geometries. The accuracy of the obtained absorbed-dose and dose-equivalent rates was verified by various experimental data measured both inside and outside spacecrafts. The calculations quantitatively show that the effective doses for astronauts are significantly greater than their corresponding effective dose equivalents, because of the numerical incompatibility between the radiation quality factors and the radiation weighting factors. These results demonstrate the usefulness of dose conversion coefficients in space dosimetry. © Springer-Verlag 2010

  17. Space biology initiative program definition review. Trade study 4: Design modularity and commonality

    NASA Technical Reports Server (NTRS)

    Jackson, L. Neal; Crenshaw, John, Sr.; Davidson, William L.; Herbert, Frank J.; Bilodeau, James W.; Stoval, J. Michael; Sutton, Terry

    1989-01-01

    The relative cost impacts (up or down) of developing Space Biology hardware using design modularity and commonality is studied. Recommendations for how the hardware development should be accomplished to meet optimum design modularity requirements for Life Science investigation hardware will be provided. In addition, the relative cost impacts of implementing commonality of hardware for all Space Biology hardware are defined. Cost analysis and supporting recommendations for levels of modularity and commonality are presented. A mathematical or statistical cost analysis method with the capability to support development of production design modularity and commonality impacts to parametric cost analysis is provided.

  18. Quality specifications for the extra-analytical phase of laboratory testing: Reference intervals and decision limits.

    PubMed

    Ceriotti, Ferruccio

    2017-07-01

    Reference intervals and decision limits are a critical part of the clinical laboratory report. The evaluation of their correct use represents a tool to verify the post analytical quality. Four elements are identified as indicators. 1. The use of decision limits for lipids and glycated hemoglobin. 2. The use, whenever possible, of common reference values. 3. The presence of gender-related reference intervals for at least the following common serum measurands (besides obviously the fertility relate hormones): alkaline phosphatase (ALP), alanine aminotransferase (ALT), creatine kinase (CK), creatinine, gamma-glutamyl transferase (GGT), IgM, ferritin, iron, transferrin, urate, red blood cells (RBC), hemoglobin (Hb) and hematocrit (Hct). 4. The presence of age-related reference intervals. The problem of specific reference intervals for elderly people is discussed, but their use is not recommended; on the contrary it is necessary the presence of pediatric age-related reference intervals at least for the following common serum measurands: ALP, amylase, creatinine, inorganic phosphate, lactate dehydrogenase, aspartate aminotransferase, urate, insulin like growth factor 1, white blood cells, RBC, Hb, Hct, alfa-fetoprotein and fertility related hormones. The lack of such reference intervals may imply significant risks for the patients. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  19. Pseudoneglect in Back Space

    ERIC Educational Resources Information Center

    Cocchini, Gianna; Watling, Rosamond; Della Sala, Sergio; Jansari, Ashok

    2007-01-01

    Successful interaction with the environment depends upon our ability to retain and update visuo-spatial information of both front and back egocentric space. Several studies have observed that healthy people tend to show a displacement of the egocentric frame of reference towards the left. However representation of space behind us (back space) has…

  20. Asynchronous reference frame agreement in a quantum network

    NASA Astrophysics Data System (ADS)

    Islam, Tanvirul; Wehner, Stephanie

    2016-03-01

    An efficient implementation of many multiparty protocols for quantum networks requires that all the nodes in the network share a common reference frame. Establishing such a reference frame from scratch is especially challenging in an asynchronous network where network links might have arbitrary delays and the nodes do not share synchronised clocks. In this work, we study the problem of establishing a common reference frame in an asynchronous network of n nodes of which at most t are affected by arbitrary unknown error, and the identities of the faulty nodes are not known. We present a protocol that allows all the correctly functioning nodes to agree on a common reference frame as long as the network graph is complete and not more than t\\lt n/4 nodes are faulty. As the protocol is asynchronous, it can be used with some assumptions to synchronise clocks over a network. Also, the protocol has the appealing property that it allows any existing two-node asynchronous protocol for reference frame agreement to be lifted to a robust protocol for an asynchronous quantum network.

  1. Parallel updating and weighting of multiple spatial maps for visual stability during whole body motion

    PubMed Central

    Medendorp, W. P.

    2015-01-01

    It is known that the brain uses multiple reference frames to code spatial information, including eye-centered and body-centered frames. When we move our body in space, these internal representations are no longer in register with external space, unless they are actively updated. Whether the brain updates multiple spatial representations in parallel, or whether it restricts its updating mechanisms to a single reference frame from which other representations are constructed, remains an open question. We developed an optimal integration model to simulate the updating of visual space across body motion in multiple or single reference frames. To test this model, we designed an experiment in which participants had to remember the location of a briefly presented target while being translated sideways. The behavioral responses were in agreement with a model that uses a combination of eye- and body-centered representations, weighted according to the reliability in which the target location is stored and updated in each reference frame. Our findings suggest that the brain simultaneously updates multiple spatial representations across body motion. Because both representations are kept in sync, they can be optimally combined to provide a more precise estimate of visual locations in space than based on single-frame updating mechanisms. PMID:26490289

  2. Reference standard space hippocampus labels according to the European Alzheimer's Disease Consortium-Alzheimer's Disease Neuroimaging Initiative harmonized protocol: Utility in automated volumetry.

    PubMed

    Wolf, Dominik; Bocchetta, Martina; Preboske, Gregory M; Boccardi, Marina; Grothe, Michel J

    2017-08-01

    A harmonized protocol (HarP) for manual hippocampal segmentation on magnetic resonance imaging (MRI) has recently been developed by an international European Alzheimer's Disease Consortium-Alzheimer's Disease Neuroimaging Initiative project. We aimed at providing consensual certified HarP hippocampal labels in Montreal Neurological Institute (MNI) standard space to serve as reference in automated image analyses. Manual HarP tracings on the high-resolution MNI152 standard space template of four expert certified HarP tracers were combined to obtain consensual bilateral hippocampus labels. Utility and validity of these reference labels is demonstrated in a simple atlas-based morphometry approach for automated calculation of HarP-compliant hippocampal volumes within SPM software. Individual tracings showed very high agreement among the four expert tracers (pairwise Jaccard indices 0.82-0.87). Automatically calculated hippocampal volumes were highly correlated (r L/R  = 0.89/0.91) with gold standard volumes in the HarP benchmark data set (N = 135 MRIs), with a mean volume difference of 9% (standard deviation 7%). The consensual HarP hippocampus labels in the MNI152 template can serve as a reference standard for automated image analyses involving MNI standard space normalization. Copyright © 2017 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  3. Teaching about the Colonization of Space.

    ERIC Educational Resources Information Center

    Huebner, Jay S.

    1979-01-01

    Describes an undergraduate course, The Colonization of Space, which introduces nonscience majors at the University of North Florida to current topics in the exploration, industrialization, and colonization of space. References to the audiovisual resources and literature are also included. (HM)

  4. The principle of commonality and its application to the Space Station Freedom Program

    NASA Technical Reports Server (NTRS)

    Hopson, George D.; Thomas, L. Dale; Daniel, Charles C.

    1989-01-01

    The principle of commonality has achieved wide application in the communication, automotive, and aircraft industries. By the use of commonality, component development costs are minimized, logistics are simplified, and the investment costs of spares inventory are reduced. With space systems, which must be maintained and repaired in orbit, the advantages of commonality are compounded. Transportation of spares is expensive, on-board storage volume for spares is limited, and crew training and special tools needed for maintenance and repair are significant considerations. This paper addresses the techniques being formulated to realize the benefits of commonality in the design of the systems and elements of the Space Station Freedom Program, and include the criteria for determining the extent of commonality to be implemented.

  5. A latent low-dimensional common input drives a pool of motor neurons: a probabilistic latent state-space model.

    PubMed

    Feeney, Daniel F; Meyer, François G; Noone, Nicholas; Enoka, Roger M

    2017-10-01

    Motor neurons appear to be activated with a common input signal that modulates the discharge activity of all neurons in the motor nucleus. It has proven difficult for neurophysiologists to quantify the variability in a common input signal, but characterization of such a signal may improve our understanding of how the activation signal varies across motor tasks. Contemporary methods of quantifying the common input to motor neurons rely on compiling discrete action potentials into continuous time series, assuming the motor pool acts as a linear filter, and requiring signals to be of sufficient duration for frequency analysis. We introduce a space-state model in which the discharge activity of motor neurons is modeled as inhomogeneous Poisson processes and propose a method to quantify an abstract latent trajectory that represents the common input received by motor neurons. The approach also approximates the variation in synaptic noise in the common input signal. The model is validated with four data sets: a simulation of 120 motor units, a pair of integrate-and-fire neurons with a Renshaw cell providing inhibitory feedback, the discharge activity of 10 integrate-and-fire neurons, and the discharge times of concurrently active motor units during an isometric voluntary contraction. The simulations revealed that a latent state-space model is able to quantify the trajectory and variability of the common input signal across all four conditions. When compared with the cumulative spike train method of characterizing common input, the state-space approach was more sensitive to the details of the common input current and was less influenced by the duration of the signal. The state-space approach appears to be capable of detecting rather modest changes in common input signals across conditions. NEW & NOTEWORTHY We propose a state-space model that explicitly delineates a common input signal sent to motor neurons and the physiological noise inherent in synaptic signal transmission. This is the first application of a deterministic state-space model to represent the discharge characteristics of motor units during voluntary contractions. Copyright © 2017 the American Physiological Society.

  6. Resources and References for Earth Science Teachers

    ERIC Educational Resources Information Center

    Wall, Charles A.; Wall, Janet E.

    1976-01-01

    Listed are resources and references for earth science teachers including doctoral research, new textbooks, and professional literature in astronomy, space science, earth science, geology, meteorology, and oceanography. (SL)

  7. 75 FR 70850 - Common Crop Insurance Regulations; Extra Long Staple Cotton Crop Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-19

    ... Crop Insurance Regulations; Extra Long Staple Cotton Crop Provisions AGENCY: Federal Crop Insurance... Corporation (FCIC) proposes to amend the Common Crop Insurance Regulations, Extra Long Staple Cotton Crop Insurance Provisions to remove all references to the Daily Spot Cotton Quotation and replace the reference...

  8. Guide to solar reference spectra and irradiance models

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent

    The international standard for determining solar irradiances was published by the International Standards Organization (ISO) in May 2007. The document, ISO 21348 Space Environment (natural and artificial) - Process for determining solar irradiances, describes the process for representing solar irradiances. We report on the next progression of standards work, i.e., the development of a guide that identifies solar reference spectra and irradiance models for use in engineering design or scientific research. This document will be produced as an AIAA Guideline and ISO Technical Report. It will describe the content of the reference spectra and models, uncertainties and limitations, technical basis, data bases from which the reference spectra and models are formed, publication references, and sources of computer code for reference spectra and solar irradiance models, including those which provide spectrally-resolved lines as well as solar indices and proxies and which are generally recognized in the solar sciences. The document is intended to assist aircraft and space vehicle designers and developers, heliophysicists, geophysicists, aeronomers, meteorologists, and climatologists in understanding available models, comparing sources of data, and interpreting engineering and scientific results based on different solar reference spectra and irradiance models.

  9. Degrading and non-degrading sex in popular music: a content analysis.

    PubMed

    Primack, Brian A; Gold, Melanie A; Schwarz, Eleanor B; Dalton, Madeline A

    2008-01-01

    Those exposed to more degrading sexual references in popular music are more likely to initiate intercourse at a younger age. The purpose of this study was to perform a content analysis of contemporary popular music with particular attention paid to the prevalence of degrading and non-degrading sexual references. We also aimed to determine if sexual references of each subtype were associated with other song characteristics and/or content. We used Billboard magazine to identify the top popular songs in 2005. Two independent coders each analyzed all of these songs (n = 279) for degrading and non-degrading sexual references. As measured with Cohen's kappa scores, inter-rater agreement on degrading vs. non-degrading sex was substantial. Mentions of substance use, violence, and weapon carrying were also coded. Of the 279 songs identified, 103 (36.9%) contained references to sexual activity. Songs with references to degrading sex were more common than songs with references to non-degrading sex (67 [65.0%] vs. 36 [35.0%], p < 0.001). Songs with degrading sex were most commonly Rap (64.2%), whereas songs with non-degrading sex were most likely Country (44.5%) or Rhythm & Blues/Hip-Hop (27.8%). Compared with songs that had no mention of sexual activity, songs with degrading sex were more likely to contain references to substance use, violence, and weapon carrying. Songs with non-degrading sex were no more likely to mention these other risk behaviors. References to sexual activity are common in popular music, and degrading sexual references are more prevalent than non-degrading references. References to degrading sex also frequently appear with references to other risky behaviors.

  10. Docking Offset Between the Space Shuttle and the International Space Station and Resulting Impacts to the Transfer of Attitude Reference and Control

    NASA Technical Reports Server (NTRS)

    Helms, W. Jason; Pohlkamp, Kara M.

    2011-01-01

    The Space Shuttle does not dock at an exact 90 degrees to the International Space Station (ISS) x-body axis. This offset from 90 degrees, along with error sources within their respective attitude knowledge, causes the two vehicles to never completely agree on their attitude, even though they operate as a single, mated stack while docked. The docking offset can be measured in flight when both vehicles have good attitude reference and is a critical component in calculations to transfer attitude reference from one vehicle to another. This paper will describe how the docking offset and attitude reference errors between both vehicles are measured and how this information would be used to recover Shuttle attitude reference from ISS in the event of multiple failures. During STS-117, ISS on-board Guidance, Navigation and Control (GNC) computers began having problems and after several continuous restarts, the systems failed. The failure took the ability for ISS to maintain attitude knowledge. This paper will also demonstrate how with knowledge of the docking offset, the contingency procedure to recover Shuttle attitude reference from ISS was reversed in order to provide ISS an attitude reference from Shuttle. Finally, this paper will show how knowledge of the docking offset can be used to speed up attitude control handovers from Shuttle to ISS momentum management. By taking into account the docking offset, Shuttle can be commanded to hold a more precise attitude which better agrees with the ISS commanded attitude such that start up transients with the ISS momentum management controllers are reduced. By reducing start-up transients, attitude control can be transferred from Shuttle to ISS without the use of ISS thrusters saving precious on-board propellant, crew time and minimizing loads placed upon the mated stack.

  11. Skylab

    NASA Image and Video Library

    1973-01-01

    The rate of neutron flow is commonly referred to as a flux. The measurement of neutron fluxes in Skylab was the subject of a proposal by Terry Quist of San Antonio, Texas. This chart describes Quist's experiment, Neutron Analysis, Skylab student experiment ED-76. These measurements were considered important not only by NASA but also by the scientific community for four reasons. High energy neutrons can be harmful to human tissue if they are present in significant quantities. Fluxes of neutrons can damage film and other sensitive experimental equipment in a marner similar to those produced by x-rays or other radiation. Furthermore, neutron fluxes can be used as a calibration source for other space-oriented particle physics experiments. Finally, neutron fluxes can affect sensitive x-ray and gamma-ray astronomy observations. Quist's objectives were to measure the neutron fluxes present in Skylab and, with the assistance of NASA and other physicists, to attempt determination of their origin as well as their energy range or spectrum. This experiment had stimulated interest in further studies of neutron phenomena in space. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.

  12. Neutron Analysis - Skylab Student Experiment ED-76

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The rate of neutron flow is commonly referred to as a flux. The measurement of neutron fluxes in Skylab was the subject of a proposal by Terry Quist of San Antonio, Texas. This chart describes Quist's experiment, Neutron Analysis, Skylab student experiment ED-76. These measurements were considered important not only by NASA but also by the scientific community for four reasons. High energy neutrons can be harmful to human tissue if they are present in significant quantities. Fluxes of neutrons can damage film and other sensitive experimental equipment in a marner similar to those produced by x-rays or other radiation. Furthermore, neutron fluxes can be used as a calibration source for other space-oriented particle physics experiments. Finally, neutron fluxes can affect sensitive x-ray and gamma-ray astronomy observations. Quist's objectives were to measure the neutron fluxes present in Skylab and, with the assistance of NASA and other physicists, to attempt determination of their origin as well as their energy range or spectrum. This experiment had stimulated interest in further studies of neutron phenomena in space. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.

  13. Charging of Space Debris and Their Dynamical Consequences

    DTIC Science & Technology

    2016-01-08

    field of plasmas and space physics . 15. SUBJECT TERMS Space Plasma Physics , Space Debris 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...opens up potential new areas of fundamental and applied research in the field of plasmas and space physics ...object in a plasma”, accepted for publication in Physics of Plasmas. (attached as Annexure III) For details on (iv) please refer to the

  14. ARCSTONE: Accurate Calibration of Lunar Spectral Reflectance from space

    NASA Astrophysics Data System (ADS)

    Young, C. L.; Lukashin, C.; Jackson, T.; Cooney, M.; Ryan, N.; Beverly, J.; Davis, W.; Nguyen, T.; Rutherford, G.; Swanson, R.; Kehoe, M.; Kopp, G.; Smith, P.; Woodward, J.; Carvo, J.; Stone, T.

    2017-12-01

    Calibration accuracy and consistency are key on-orbit performance metrics for Earth observing sensors. The accuracy and consistency of measurements across multiple instruments in low Earth and geostationary orbits are directly connected to the scientific understanding of complex systems, such as Earth's weather and climate. Recent studies have demonstrated the quantitative impacts of observational accuracy on the science data products [1] and the ability to detect climate change trends for essential climate variables (e.g., Earth's radiation budget, cloud feedback, and long-term trends in cloud parameters) [2, 3]. It is common for sensors to carry references for calibration at various wavelengths onboard, but these can be subject to degradation and increase mass and risk. The Moon can be considered a natural solar diffuser in space. Establishing the Moon as an on-orbit high-accuracy calibration reference enables broad intercalibration opportunities, as the lunar reflectance is time-invariant and can be directly measured by most Earth-observing instruments. Existing approaches to calibrate sensors against the Moon can achieve stabilities of a tenth of a percent over a decade, as demonstrated by the SeaWIFS. However, the current lunar calibration quality, with 5 - 10% bias, depends on the photometric model of the Moon [4]. Significant improvements in the lunar reference are possible and are necessary for climate-level absolute calibrations using the Moon. The ARCSTONE instrument will provide a reliable reference for high-accuracy on-orbit calibration for reflected solar instruments. An orbiting spectrometer flying on a CubeSat in low Earth orbit will provide lunar spectral reflectance with accuracy < 0.5% (k = 1), sufficient to establish an SI-traceable absolute lunar calibration standard for past, current, and future Earth weather and climate sensors. The ARCSTONE team will present the instrument design status and path forward for development, building, calibration and testing. [1] Lyapustin, A. Y. et al., 2014, Atmos. Meas. Tech., 7, pp. 4353 - 4365. [2] Wielicki, B. A., et al., 2013, Bull. Amer. Meteor. Soc., 94, pp. 1519 - 1539. [3] Shea, Y. L., et al., 2017 J. of Climate. [4] Kieffer, H. H., et al., 2005, The Astronomical J., v. 129, pp. 2887 - 2901.

  15. Evolutionary space platform concept study. Volume 2, part B: Manned space platform concepts

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Logical, cost-effective steps in the evolution of manned space platforms are investigated and assessed. Tasks included the analysis of requirements for a manned space platform, identifying alternative concepts, performing system analysis and definition of the concepts, comparing the concepts and performing programmatic analysis for a reference concept.

  16. Space processing applications bibliography

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This special bibliography lists 724 articles, papers, and reports which discuss various aspects of the use of the space environment for materials science research or for commercial enterprise. The potentialities of space processing and the improved materials processes that are made possible by the unique aspects of the space environment are emphasized. References identified in April, 1978 are cited.

  17. Effects of Faraday Rotation on Microwave Remote Sensing From Space at L-Band

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Kao, M.

    1997-01-01

    The effect of Faraday rotation on the remote sensing of soil moisture from space is investigated using the International Reference Ionosphere (IRI) to obtain electron density profiles and the International Geomagnetic Reference Field (IGRF) to model the magnetic field. With a judicious choice of satellite orbit (6 am, sunsynchronous) the errors caused by ignoring Faraday rotation are less than 1 K at incidence angles less than 40 degrees.

  18. Time and Space Partitioning the EagleEye Reference Misson

    NASA Astrophysics Data System (ADS)

    Bos, Victor; Mendham, Peter; Kauppinen, Panu; Holsti, Niklas; Crespo, Alfons; Masmano, Miguel; de la Puente, Juan A.; Zamorano, Juan

    2013-08-01

    We discuss experiences gained by porting a Software Validation Facility (SVF) and a satellite Central Software (CSW) to a platform with support for Time and Space Partitioning (TSP). The SVF and CSW are part of the EagleEye Reference mission of the European Space Agency (ESA). As a reference mission, EagleEye is a perfect candidate to evaluate practical aspects of developing satellite CSW for and on TSP platforms. The specific TSP platform we used consists of a simulated LEON3 CPU controlled by the XtratuM separation micro-kernel. On top of this, we run five separate partitions. Each partition runs its own real-time operating system or Ada run-time kernel, which in turn are running the application software of the CSW. We describe issues related to partitioning; inter-partition communication; scheduling; I/O; and fault-detection, isolation, and recovery (FDIR).

  19. Phase change references for in-flight recalibration of orbital thermometry

    NASA Astrophysics Data System (ADS)

    Topham, T. S.; Latvakoski, H.; Watson, M.

    2013-09-01

    Several critical questions need to be answered to determine the potential utility of phase change materials as long-term orbital references: How accurate and repeatable will phase change reference implementations be after incorporating necessary design trade-offs to accommodate launch and the space environment? How can the temperature of phase transitions be transferred to something useful for calibration such as a black body. How, if at all, will the microgravity environment affect the phase transitions? To help answer some of these questions, three experiments will be conducted on the International Space Station (ISS). The experiments will test melts and freezes of three different phase change materials in various containment apparatus. This paper addresses the current status of the ISS experiments, as well as results from ground testing of several concepts for space application of PCM recalibration systems in the CORSAIR (Calibration Observations of Radiance Spectra in the far Infrared) black body.

  20. Where Did the Reference Desk Go? Transforming Staff and Space to Meet User Needs

    ERIC Educational Resources Information Center

    Bunnett, Brian; Boehme, Andrea; Hardin, Steve; Arvin, Shelley; Evans, Karen; Huey, Paula; LaBella, Carey

    2016-01-01

    A sharp decline in the number of reference queries prompted the library administration at Indiana State University to begin a project to combine the circulation, reference, and IT desks to reduce staffing at a new consolidated service point. All faculty and staff in the reference/instruction and circulation units participated in the project. The…

  1. 14 CFR 221.550 - Copies of tariffs made from filer's printer(s) located in Department's public reference room.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...(s) located in Department's public reference room. 221.550 Section 221.550 Aeronautics and Space... public reference room. Copies of information contained in a filer's on-line tariff database may be... Reference Room by the filer. The filer may assess a fee for copying, provided it is reasonable and that no...

  2. Anthropomorphic Telemanipulation System in Terminus Control Mode

    NASA Technical Reports Server (NTRS)

    Jau, Bruno M.; Lewis, M. Anthony; Bejczy, Antal K.

    1994-01-01

    This paper describes a prototype anthropomorphic kinesthetic telepresence system that is being developed at JPL. It utilizes dexterous terminus devices in the form of an exoskeleton force-sensing master glove worn by the operator and a replica four finger anthropomorphic slave hand. The newly developed master glove is integrated with our previously developed non-anthropomorphic six degree of freedom (DOF) universal force-reflecting hand controller (FRHC). The mechanical hand and forearm are mounted to an industrial robot (PUMA 560), replacing its standard forearm. The notion of 'terminus control mode' refers to the fact that only the terminus devices (glove and robot hand) are of anthropomorphic nature, and the master and slave arms are non-anthropomorphic. The system is currently being evaluated, focusing on tool handling and astronaut equivalent task executions. The evaluation revealed the system's potential for tool handling but it also became evident that hand tool manipulations and space operations require a dual arm robot. This paper describes the system's principal components, its control and computing architecture, discusses findings of the tool handling evaluation, and explains why common tool handling and EVA space tasks require dual arm robots.

  3. Flow Structure Comparison for Two 7-Point LDI Configurations

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Tacina, Kathleen M.

    2017-01-01

    This paper presents a comparison primarily of the 2-D velocity profiles in the non-burning system; and for the luminescent flame structure for a 7-point Lean Direct Injector (LDI). This circular LDI array consists of a center element surrounded by six outer elements spaced 60 degrees apart; the spacing between all adjacent elements is the same. Each element consists of simplex atomizer that injects at the throat of a converging-diverging venturi, and an axial swirler upstream of the venturi throat to generate swirl. The two configurations were: 1) one which consists of all 60 co-swirling axial air swirlers, and; 2) one configuration which uses a 60 swirler in the center, surrounded by counter-swirling 45 swirlers. Testing was done at 5 atm and an inlet temperature of 800F. Two air reference velocities were considered in the cold flow measurements and one common air flow condition for the burning case.The 2D velocity profiles were determined using particle image velocimetry and the flame structure was determined using high speed photography.

  4. Nuclear power sources in outer space. [spacecraft propulsion legal aspects

    NASA Technical Reports Server (NTRS)

    Hosenball, S. N.

    1978-01-01

    Legal problems associated with nuclear power sources in space are discussed with particular reference to the Cosmos 954 incident. Deliberations of the Legal and Scientific and Technical Subcommittees on the Peaceful Uses of Outer Space on this subject are discussed.

  5. Genesis of the NASA Space Radiation Laboratory.

    PubMed

    Schimmerling, Walter

    2016-06-01

    A personal recollection of events leading up to the construction and commissioning of NSRL, including reference to precursor facilities and the development of the NASA Space Radiation Program. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  6. The multi-reference retaining the excitation degree perturbation theory: A size-consistent, unitary invariant, and rapidly convergent wavefunction based ab initio approach

    NASA Astrophysics Data System (ADS)

    Fink, Reinhold F.

    2009-02-01

    The retaining the excitation degree (RE) partitioning [R.F. Fink, Chem. Phys. Lett. 428 (2006) 461(20 September)] is reformulated and applied to multi-reference cases with complete active space (CAS) reference wave functions. The generalised van Vleck perturbation theory is employed to set up the perturbation equations. It is demonstrated that this leads to a consistent and well defined theory which fulfils all important criteria of a generally applicable ab initio method: The theory is proven numerically and analytically to be size-consistent and invariant with respect to unitary orbital transformations within the inactive, active and virtual orbital spaces. In contrast to most previously proposed multi-reference perturbation theories the necessary condition for a proper perturbation theory to fulfil the zeroth order perturbation equation is exactly satisfied with the RE partitioning itself without additional projectors on configurational spaces. The theory is applied to several excited states of the benchmark systems CH2 , SiH2 , and NH2 , as well as to the lowest states of the carbon, nitrogen and oxygen atoms. In all cases comparisons are made with full configuration interaction results. The multi-reference (MR)-RE method is shown to provide very rapidly converging perturbation series. Energy differences between states of similar configurations converge even faster.

  7. Clinico-Pathological Profile of Deep Neck Space Infection: A Prospective Study.

    PubMed

    Das, Rumpa; Nath, Gorakh; Mishra, Anupam

    2017-09-01

    Deep neck space infections (DNI) has been a common and serious disease, involving several spaces created by planes of greater and lesser resistance between the fascial layers of the neck. Infection of deep neck space has been dangerous due to its potential ease of spread from one space to other space, associated sepsis and upper airway obstruction. This prospective study was done in 45 patients of DNI over a period of 1 year. Patients with age of 1 month to 80 years of both the sexes were included. Patient's particular, clinical presentation and associated co-morbid conditions, physical examination, routine laboratory investigations and radiological investigations were analyzed. Patients were treated, response to the treatment was assessed and follow-up was done. In present study, DNI was more commonly seen in rural population (67%) with a male predominance (69%). Mean age of presentation was 34.4 years. Odontogenic infection (64.11%) was the commonest etiological factor and diabetes mellitus (26.66%) was the commonest co-morbid condition. Most common presenting symptom was neck pain and neck swelling (91.1%) and submandibular space (66.6%) was the most commonly involved space followed by sublingual space (44.6%). Both medical and surgical treatment was needed in most of the cases (77.77%). 77.7% cases showed complete regression, 15.5% showed partial regression and they lost to follow-up, 4.4% expired and 2.2% showed progressive deterioration. DNI is a common and life-threatening disease. Early diagnosis and management is necessary for complete cure and to prevent complications associated with DNIs.

  8. Impact of quasar proper motions on the alignment between the International Celestial Reference Frame and the Gaia reference frame

    NASA Astrophysics Data System (ADS)

    Liu, J.-C.; Malkin, Z.; Zhu, Z.

    2018-03-01

    The International Celestial Reference Frame (ICRF) is currently realized by the very long baseline interferometry (VLBI) observations of extragalactic sources with the zero proper motion assumption, while Gaia will observe proper motions of these distant and faint objects to an accuracy of tens of microarcseconds per year. This paper investigates the difference between VLBI and Gaia quasar proper motions and it aims to understand the impact of quasar proper motions on the alignment of the ICRF and Gaia reference frame. We use the latest time series data of source coordinates from the International VLBI Service analysis centres operated at Goddard Space Flight Center (GSF2017) and Paris observatory (OPA2017), as well as the Gaia auxiliary quasar solution containing 2191 high-probability optical counterparts of the ICRF2 sources. The linear proper motions in right ascension and declination of VLBI sources are derived by least-squares fits while the proper motions for Gaia sources are simulated taking into account the acceleration of the Solar system barycentre and realistic uncertainties depending on the source brightness. The individual and global features of source proper motions in GSF2017 and OPA2017 VLBI data are found to be inconsistent, which may result from differences in VLBI observations, data reduction and analysis. A comparison of the VLBI and Gaia proper motions shows that the accuracies of the components of rotation and glide between the two systems are 2-4 μas yr- 1 based on about 600 common sources. For the future alignment of the ICRF and Gaia reference frames at different wavelengths, the proper motions of quasars must necessarily be considered.

  9. Urban Space as the Commons - New Modes for Urban Space Management

    NASA Astrophysics Data System (ADS)

    Ondrejicka, Vladimir; Finka, Maros; Husar, Milan; Jamecny, Lubomir

    2017-12-01

    The significant growing of urban population, globalization of social-ecological systems, fuzzification of spatial structures, the diversity of actors in spatial development, their power and interest in using the resources including space, especially in high-density urban areas. Spatial development is connected with a high concentration of economic activities and population in urban systems. In many cases very rapid processes of urbanization and suburbanization approach natural spatial/territorial limits, such as carrying capacity of land, transport and infrastructural systems, absorption capacities of recipients and others [1]. Growing shortage of space and problems in their accessibility (physical, functional, etc.) leads to growing tension and conflicts among the actors/users of urban spaces and represent the initial phase of space deprivations processes. There is a parallel with “tragedy of commons” as defined by Hardin [2] and was reinterpreted by many other academics and researchers. Urban space can be clearly interpreted as the commons or commons good for their community of users and relevant actors, so innovative governance modes overlapping defined “tragedy of commons” representing a possible approach for a new concept of urban public spaces management. This paper presents a possible new approach to the management of urban spaces reflecting the current challenges in spatial development based on the theory of commons and innovative governance modes. The new approach is built on innovations in institutional regimes, the algorithm of decision-making and economic expression and interpretation of quality of the space. The theory of the commons as the base source for this approach has been broadly proved in practice and Elinor Ostrom as the author of this theory [3-5] was awarded by Nobel Prize in 2009.

  10. Adaptive Control Of Remote Manipulator

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun

    1989-01-01

    Robotic control system causes remote manipulator to follow closely reference trajectory in Cartesian reference frame in work space, without resort to computationally intensive mathematical model of robot dynamics and without knowledge of robot and load parameters. System, derived from linear multivariable theory, uses relatively simple feedforward and feedback controllers with model-reference adaptive control.

  11. Experimental microbiological issues related to biocontamination and human life support inside manned space modules

    NASA Astrophysics Data System (ADS)

    Canganella, Francesco; Rettberg, Petra; Bianconi, G.; di Mattia, E.; Taddei, A. R.; Iylin, V.; Novikova, N.; Fani, R.; Brigidi, P.; Vitali, B.; Candela, M.; Lobascio, C.; Saverino, A.; Simone, A.; Fossati, F.; Ferraris, M.

    The issue of biocontamination in manned space modules is very important for the International Space Station (ISS) as well as for future planetary bases. We have previously carried out re-search activities concerning biofilm metabolic activities of some reference bacteria on materials commonly used for aerospace industry and currently examined for space greenhouses. It was evaluated the effect on these materials of a mixture of emulsifiers produced by Pseudomonas strain AD1 and recently characterized by chemical methods. The following materials were in-vestigated: Kevlar, Nomex, Betacloth, aluminized Kapton, conventional Kapton, Combitherm, Mylar, copper foil, Teflon, aluminum, carbon fiber composite, aluminum thermo-dissipating tex-tile, aluminum tape, Zylon, Ergoflex, Vectran. Results showed a diverse affinity of materials for bacterial biofilm formation and occasionally sessile colonization was rejected. Pre-conditioning with the emulsifying extract led in some cases to a diminish of biofilm dehydrogenase activity and development compared to untreated materials, taking into account both concentrations and experimental conditions. This also concerned the relationship between the physical traits of materials and the level of bacterial biofilm developed under the experimental conditions. Presently we are investigating microbial biofilm development on either conventional or innova-tive space materials, experimentally treated by biological or chemo-physical coating. VIABLE ISS is a flight experiment concerning the exposure of these materials inside an ISS module for about 4 years. Another initiative (MICHA) on progress is part of the MARS500 Programme, presently going on at the IBMP facility in Moscow. Data will be useful to select appropriate material to be used for life support hardware to decrease the risk of surface biocontamination and health problems inside space modules, a great challenge for both biological and medical research.

  12. Supportability Challenges, Metrics, and Key Decisions for Future Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Owens, Andrew C.; de Weck, Olivier L.; Stromgren, Chel; Cirillo, William; Goodliff, Kandyce

    2017-01-01

    Future crewed missions beyond Low Earth Orbit (LEO) represent a logistical challenge that is unprecedented in human space flight. Astronauts will travel farther and stay in space for longer than any previous mission, far from timely abort or resupply from Earth. Under these conditions, supportability { defined as the set of system characteristics that influence the logistics and support required to enable safe and effective operations of systems { will be a much more significant driver of space system lifecycle properties than it has been in the past. This paper presents an overview of supportability for future human space flight. The particular challenges of future missions are discussed, with the differences between past, present, and future missions highlighted. The relationship between supportability metrics and mission cost, performance, schedule, and risk is also discussed. A set of pro- posed strategies for managing supportability is presented (including reliability growth, uncertainty reduction, level of repair, commonality, redundancy, In-Space Manufacturing (ISM) (including the use of material recycling and In-Situ Resource Utilization (ISRU) for spares and maintenance items), reduced complexity, and spares inventory decisions such as the use of predeployed or cached spares - along with a discussion of the potential impacts of each of those strategies. References are provided to various sources that describe these supportability metrics and strategies, as well as associated modeling and optimization techniques, in greater detail. Overall, supportability is an emergent system characteristic and a holistic challenge for future system development. System designers and mission planners must carefully consider and balance the supportability metrics and decisions described in this paper in order to enable safe and effective beyond-LEO human space flight.

  13. Defining climate change scenario characteristics with a phase space of cumulative primary energy and carbon intensity

    NASA Astrophysics Data System (ADS)

    Ritchie, Justin; Dowlatabadi, Hadi

    2018-02-01

    Climate change modeling relies on projections of future greenhouse gas emissions and other phenomena leading to changes in planetary radiative forcing. Scenarios of socio-technical development consistent with end-of-century forcing levels are commonly produced by integrated assessment models. However, outlooks for forcing from fossil energy combustion can also be presented and defined in terms of two essential components: total energy use this century and the carbon intensity of that energy. This formulation allows a phase space diagram to succinctly describe a broad range of possible outcomes for carbon emissions from the future energy system. In the following paper, we demonstrate this phase space method with the Representative Concentration Pathways (RCPs) as used in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). The resulting RCP phase space is applied to map IPCC Working Group III (WGIII) reference case ‘no policy’ scenarios. Once these scenarios are described as coordinates in the phase space, data mining techniques can readily distill their core features. Accordingly, we conduct a k-means cluster analysis to distinguish the shared outlooks of these scenarios for oil, gas and coal resource use. As a whole, the AR5 database depicts a transition toward re-carbonization, where a world without climate policy inevitably leads to an energy supply with increasing carbon intensity. This orientation runs counter to the experienced ‘dynamics as usual’ of gradual decarbonization, suggesting climate change targets outlined in the Paris Accord are more readily achievable than projected to date.

  14. Language Educational Policy and Language Learning Quality Management: The "Common European Framework of Reference"

    ERIC Educational Resources Information Center

    Barenfanger, Olaf; Tschirner, Erwin

    2008-01-01

    The major goal of the Council of Europe to promote and facilitate communication and interaction among Europeans of different mother tongues has led to the development of the "Common European Framework of Reference for Languages: Learning, Teaching, Assessment" (CEFR). Among other things, the CEFR is intended to help language…

  15. The Council of Europe's "Common European Framework of Reference for Languages" (CEFR): Approach, Status, Function and Use

    ERIC Educational Resources Information Center

    Martyniuk, Waldemar

    2012-01-01

    The Council of Europe's "Common European Framework of Reference for Languages" is rapidly becoming a powerful instrument for shaping language education policies in Europe and beyond. The task of relating language policies, language curricula, teacher education and training, textbook and course design and content, examinations and…

  16. GEOdetic Data assimilation and EStimation of references for climate change InvEstigation. An overall presentation of the French GEODESIE project

    NASA Astrophysics Data System (ADS)

    Coulot, David; Richard, Jean-Yves

    2017-04-01

    Many major indicators of climate change are monitored with space observations (sea level rise from satellite altimetry, ice melting from dedicated satellites, etc.). This monitoring is highly dependent on references (positions and velocities of ground observing instruments, orbits of satellites, etc.) that only geodesy can provide. The current accuracy of these references does not permit to fully support the challenges that the constantly evolving Earth system gives rise to, and can consequently limit the accuracy of these indicators. For this reason, in the framework of the Global Geodetic Observing System (GGOS), stringent requirements are fixed to the International Terrestrial Reference Frame (ITRF) for the next decade: an accuracy at the level of 1 mm and a stability at the level of 0.1 mm/yr. This means an improvement of the current quality of ITRF by a factor of 5-10. Improving the quality of the geodetic references is an issue which requires a thorough reassessment of the methodologies involved. The most relevant and promising method to improve this quality is the direct combination (Combination at Observation Level - COL) of the space-geodetic measurements used to compute the official references of the International Earth Rotation and Reference Systems Service (IERS). The GEODESIE project aims at (i) determining highly-accurate global and consistent references (time series of Terrestrial Reference Frames and Celestial Reference Frames, of Earth's Orientation Parameters, and orbits of Earth's observation satellites) and (ii) providing the geophysical and climate research communities with these references, for a better estimation of geocentric sea level rise, ice mass balance and on-going climate changes. Time series of sea levels computed from altimetric data and tide gauge records with these references (orbits of satellite altimeters, Terrestrial Reference Frames and related vertical velocities of stations) will also be provided. The geodetic references will be essential bases for Earth's observation and monitoring to support the challenges of the century. The geocentric time series of sea levels will permit to better apprehend (i) the drivers of the global mean sea level rise and of regional variations of sea level and (ii) the contribution of the global climate change induced by anthropogenic greenhouse gases emissions to these drivers. All the results and computation and quality assessment reports will be available on a Website designed and opened in the Summer of 2017. This project, supported by the French Agence Nationale de la Recherche (ANR) for the period 2017-2020, will be an unprecedented opportunity to provide the French Groupe de Recherche de Géodésie Spatiale (GRGS) with complete simulation and data processing capabilities to prepare the future arrival of space missions such as the European Geodetic Reference Antenna in SPace (E-GRASP) and to significantly contribute to the GGOS with accurate references.

  17. Manned space flight nuclear system safety. Volume 3: Reactor system preliminary nuclear safety analysis. Part 1: Reference Design Document (RDD)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Reference Design Document, of the Preliminary Safety Analysis Report (PSAR) - Reactor System provides the basic design and operations data used in the nuclear safety analysis of the Rector Power Module as applied to a Space Base program. A description of the power module systems, facilities, launch vehicle and mission operations, as defined in NASA Phase A Space Base studies is included. Each of two Zirconium Hydride Reactor Brayton power modules provides 50 kWe for the nominal 50 man Space Base. The INT-21 is the prime launch vehicle. Resupply to the 500 km orbit over the ten year mission is provided by the Space Shuttle. At the end of the power module lifetime (nominally five years), a reactor disposal system is deployed for boost into a 990 km high altitude (long decay time) earth orbit.

  18. Environmental Controls and Life Support System (ECLSS) Design for a Multi-Mission Space Exploration Vehicle (MMSEV)

    NASA Technical Reports Server (NTRS)

    Stambaugh, Imelda; Baccus, Shelley; Buffington, Jessie; Hood, Andrew; Naids, Adam; Borrego, Melissa; Hanford, Anthony J.; Eckhardt, Brad; Allada, Rama Kumar; Yagoda, Evan

    2013-01-01

    Engineers at Johnson Space Center (JSC) are developing an Environmental Control and Life Support System (ECLSS) design for the Multi-Mission Space Exploration Vehicle (MMSEV). The purpose of the MMSEV is to extend the human exploration envelope for Lunar, Near Earth Object (NEO), or Deep Space missions by using pressurized exploration vehicles. The MMSEV, formerly known as the Space Exploration Vehicle (SEV), employs ground prototype hardware for various systems and tests it in manned and unmanned configurations. Eventually, the system hardware will evolve and become part of a flight vehicle capable of supporting different design reference missions. This paper will discuss the latest MMSEV ECLSS architectures developed for a variety of design reference missions, any work contributed toward the development of the ECLSS design, lessons learned from testing prototype hardware, and the plan to advance the ECLSS toward a flight design.

  19. New Directions in Space: A Report on the Lunar and Mars Initiatives

    NASA Technical Reports Server (NTRS)

    Seitz, Frederick; Hawkins, Willis; Jastrow, Robert; Nierenberg, William A.

    1990-01-01

    This report focuses on one aspect of the current space program: The establishment of a manned base on the Moon and the manned exploration of Mars. These missions were announced by the President last year as a major U.S. space policy objective to be implemented under the leadership of the Vice President, acting as Chairman of the National Space Council. On March 8, 1990, the White House released Presidential guidelines for the execution of the lunar and Mars programs. The guidelines stressed the need for new approaches and the development of innovative technologies with a potential for major cost, schedule and performance improvements. They also called for a competitive environment, with several years allotted to the definition of at least two significantly different human space exploration "reference architectures." Selection of the final technical concepts for the mission is scheduled to occur only after the relative merits of the competing reference architectures have been evaluated.

  20. Environmental Controls and Life Support System (ECLSS) Design for a Multi-Mission Space Exploration Vehicle (MMSEV)

    NASA Technical Reports Server (NTRS)

    Stambaugh, Imelda; Baccus, Shelley; Naids, Adam; Hanford, Anthony

    2012-01-01

    Engineers at Johnson Space Center (JSC) are developing an Environmental Control and Life Support System (ECLSS) design for the Multi-Mission Space Exploration Vehicle (MMSEV). The purpose of the MMSEV is to extend the human exploration envelope for Lunar, Near Earth Object (NEO), or Deep Space missions by using pressurized exploration vehicles. The MMSEV, formerly known as the Space Exploration Vehicle (SEV), employs ground prototype hardware for various systems and tests it in manned and unmanned configurations. Eventually, the system hardware will evolve and become part of a flight vehicle capable of supporting different design reference missions. This paper will discuss the latest MMSEV ECLSS architectures developed for a variety of design reference missions, any work contributed toward the development of the ECLSS design, lessons learned from testing prototype hardware, and the plan to advance the ECLSS toward a flight design.

  1. Computer Vision Evidence Supporting Craniometric Alignment of Rat Brain Atlases to Streamline Expert-Guided, First-Order Migration of Hypothalamic Spatial Datasets Related to Behavioral Control

    PubMed Central

    Khan, Arshad M.; Perez, Jose G.; Wells, Claire E.; Fuentes, Olac

    2018-01-01

    The rat has arguably the most widely studied brain among all animals, with numerous reference atlases for rat brain having been published since 1946. For example, many neuroscientists have used the atlases of Paxinos and Watson (PW, first published in 1982) or Swanson (S, first published in 1992) as guides to probe or map specific rat brain structures and their connections. Despite nearly three decades of contemporaneous publication, no independent attempt has been made to establish a basic framework that allows data mapped in PW to be placed in register with S, or vice versa. Such data migration would allow scientists to accurately contextualize neuroanatomical data mapped exclusively in only one atlas with data mapped in the other. Here, we provide a tool that allows levels from any of the seven published editions of atlases comprising three distinct PW reference spaces to be aligned to atlas levels from any of the four published editions representing S reference space. This alignment is based on registration of the anteroposterior stereotaxic coordinate (z) measured from the skull landmark, Bregma (β). Atlas level alignments performed along the z axis using one-dimensional Cleveland dot plots were in general agreement with alignments obtained independently using a custom-made computer vision application that utilized the scale-invariant feature transform (SIFT) and Random Sample Consensus (RANSAC) operation to compare regions of interest in photomicrographs of Nissl-stained tissue sections from the PW and S reference spaces. We show that z-aligned point source data (unpublished hypothalamic microinjection sites) can be migrated from PW to S space to a first-order approximation in the mediolateral and dorsoventral dimensions using anisotropic scaling of the vector-formatted atlas templates, together with expert-guided relocation of obvious outliers in the migrated datasets. The migrated data can be contextualized with other datasets mapped in S space, including neuronal cell bodies, axons, and chemoarchitecture; to generate data-constrained hypotheses difficult to formulate otherwise. The alignment strategies provided in this study constitute a basic starting point for first-order, user-guided data migration between PW and S reference spaces along three dimensions that is potentially extensible to other spatial reference systems for the rat brain. PMID:29765309

  2. 15 CFR 200.104 - Standard reference materials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the NIST National Measurement Laboratory administers a program to provide many types of well... be readily referred to a common base. NIST SP 260 is a catalog of Standard Reference Materials available from NIST. ...

  3. 15 CFR 200.104 - Standard reference materials.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... the NIST National Measurement Laboratory administers a program to provide many types of well... be readily referred to a common base. NIST SP 260 is a catalog of Standard Reference Materials available from NIST. ...

  4. 15 CFR 200.104 - Standard reference materials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the NIST National Measurement Laboratory administers a program to provide many types of well... be readily referred to a common base. NIST SP 260 is a catalog of Standard Reference Materials available from NIST. ...

  5. 15 CFR 200.104 - Standard reference materials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the NIST National Measurement Laboratory administers a program to provide many types of well... be readily referred to a common base. NIST SP 260 is a catalog of Standard Reference Materials available from NIST. ...

  6. 15 CFR 200.104 - Standard reference materials.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the NIST National Measurement Laboratory administers a program to provide many types of well... be readily referred to a common base. NIST SP 260 is a catalog of Standard Reference Materials available from NIST. ...

  7. Function, form, and technology - The evolution of Space Station in NASA

    NASA Technical Reports Server (NTRS)

    Fries, S. D.

    1985-01-01

    The history of major Space Station designs over the last twenty-five years is reviewed. The evolution of design concepts is analyzed with respect to the changing functions of Space Stations; and available or anticipated technology capabilities. Emphasis is given to the current NASA Space Station reference configuration, the 'power tower'. Detailed schematic drawings of the different Space Station designs are provided.

  8. Active large structures

    NASA Technical Reports Server (NTRS)

    Soosaar, K.

    1982-01-01

    Some performance requirements and development needs for the design of large space structures are described. Areas of study include: (1) dynamic response of large space structures; (2) structural control and systems integration; (3) attitude control; and (4) large optics and flexibility. Reference is made to a large space telescope.

  9. The NASA controls-structures interaction technology program

    NASA Technical Reports Server (NTRS)

    Newsom, Jerry R.; Layman, W. E.; Waites, H. B.; Hayduk, R. J.

    1990-01-01

    The interaction between a flexible spacecraft structure and its control system is commonly referred to as controls-structures interaction (CSI). The CSI technology program is developing the capability and confidence to integrate the structure and control system, so as to avoid interactions that cause problems and to exploit interactions to increase spacecraft capability. A NASA program has been initiated to advance CSI technology to a point where it can be used in spacecraft design for future missions. The CSI technology program is a multicenter program utilizing the resources of the NASA Langley Research Center (LaRC), the NASA Marshall Space Flight Center (MSFC), and the NASA Jet Propulsion Laboratory (JPL). The purpose is to describe the current activities, results to date, and future activities of the NASA CSI technology program.

  10. Toward a framework linkage map of the canine genome.

    PubMed

    Langston, A A; Mellersh, C S; Wiegand, N A; Acland, G M; Ray, K; Aguirre, G D; Ostrander, E A

    1999-01-01

    Selective breeding to maintain specific physical and behavioral traits has made the modern dog one of the most physically diverse species on earth. One unfortunate consequence of the common breeding practices used to develop lines of dogs with the desired traits is amplification and propagation of genetic diseases within distinct breeds. To map disease loci we have constructed a first-generation framework map of the canine genome. We developed large numbers of highly polymorphic markers, constructed a panel of canine-rodent hybrid cell lines, and assigned those markers to chromosome groups using the hybrid cell lines. Finally, we determined the order and spacing of markers on individual canine chromosomes by linkage analysis using a reference panel of 17 outbred pedigrees. This article describes approaches and strategies to accomplish these goals.

  11. Polymer Energy Rechargeable System (PERS) Development Program

    NASA Technical Reports Server (NTRS)

    Baldwin, Richard S.; Manzo, Michelle A.; Dalton, Penni J.; Marsh, Richard A.; Surampudi, Rao

    2001-01-01

    The National Aeronautics and Space Administration (NASA) and the Air Force Research Laboratory (AFRL) have recently established a collaborative effort to support the development of polymer-based, lithium-based cell chemistries and battery technologies to address the next generation of aerospace applications and mission needs. The overall objective of this development program, which is referred to as PERS, Polymer Energy Rechargeable System, is to establish a world-class technology capability and U.S. leadership in polymer-based battery technology for aerospace applications. Programmatically, the PERS initiative will exploit both interagency collaborations to address common technology and engineering issues and the active participation of academia and private industry. The initial program phases will focus on R&D activities to address the critical technical issues and challenges at the cell level.

  12. A compliant mechanism for inspecting extremely confined spaces

    NASA Astrophysics Data System (ADS)

    Mascareñas, David; Moreu, Fernando; Cantu, Precious; Shields, Daniel; Wadden, Jack; El Hadedy, Mohamed; Farrar, Charles

    2017-11-01

    We present a novel, compliant mechanism that provides the capability to navigate extremely confined spaces for the purpose of infrastructure inspection. Extremely confined spaces are commonly encountered during infrastructure inspection. Examples of such spaces can include pipes, conduits, and ventilation ducts. Often these infrastructure features go uninspected simply because there is no viable way to access their interior. In addition, it is not uncommon for extremely confined spaces to possess a maze-like architecture that must be selectively navigated in order to properly perform an inspection. Efforts by the imaging sensor community have resulted in the development of imaging sensors on the millimeter length scale. Due to their compact size, they are able to inspect many extremely confined spaces of interest, however, the means to deliver these sensors to the proper location to obtain the desired images are lacking. To address this problem, we draw inspiration from the field of endoscopic surgery. Specifically we consider the work that has already been done to create long flexible needles that are capable of being steered through the human body. These devices are typically referred to as ‘steerable needles.’ Steerable needle technology is not directly applicable to the problem of navigating maze-like arrangements of extremely confined spaces, but it does provide guidance on how this problem should be approached. Specifically, the super-elastic nitinol tubing material that allows steerable needles to operate is also appropriate for the problem of navigating maze-like arrangements of extremely confined spaces. Furthermore, the portion of the mechanism that enters the extremely confined space is completely mechanical in nature. The mechanical nature of the device is an advantage when the extremely confined space features environmental hazards such as radiation that could degrade an electromechanically operated mechanism. Here, we present a compliant mechanism developed to navigate maze-like arrangements of extremely confined spaces. The mechanism is shown to be able to selectively navigate past three 90° bends. The ability to selectively navigate extremely confined spaces opens up new possibilities to use emerging miniature imaging technology for infrastructure inspection.

  13. Tutorial on Actual Space Environmental Hazards For Space Systems (Invited)

    NASA Astrophysics Data System (ADS)

    Mazur, J. E.; Fennell, J. F.; Guild, T. B.; O'Brien, T. P.

    2013-12-01

    It has become common in the space science community to conduct research on diverse physical phenomena because they are thought to contribute to space weather. However, satellites contend with only three primary environmental hazards: single event effects, vehicle charging, and total dose, and not every physical phenomenon that occurs in space contributes in substantial ways to create these hazards. One consequence of the mismatch between actual threats and all-encompassing research is the often-described gap between research and operations; another is the creation of forecasts that provide no actionable information for design engineers or spacecraft operators. An example of the latter is the physics of magnetic field emergence on the Sun; the phenomenon is relevant to the formation and launch of coronal mass ejections and is also causally related to the solar energetic particles that may get accelerated in the interplanetary shock. Unfortunately for the research community, the engineering community mitigates the space weather threat (single-event effects from heavy ions above ~50 MeV/nucleon) with a worst-case specification of the environment and not with a prediction. Worst-case definition requires data mining of past events, while predictions involve large-scale systems science from the Sun to the Earth that is compelling for scientists and their funding agencies but not actionable for design or for most operations. Differing priorities among different space-faring organizations only compounds the confusion over what science research is relevant. Solar particle impacts to human crew arise mainly from the total ionizing dose from the solar protons, so the priority for prediction in the human spaceflight community is therefore much different than in the unmanned satellite community, while both communities refer to the fundamental phenomenon as space weather. Our goal in this paper is the presentation of a brief tutorial on the primary space environmental phenomena that are relevant to satellite design and operations. The tutorial will help space science researchers to understand the differing priorities of communities that operate in space and to better distinguish the science that is actually needed for the design and operation of all-weather space systems.

  14. Standardization of gamma-glutamyltransferase assays by intermethod calibration. Effect on determining common reference limits.

    PubMed

    Steinmetz, Josiane; Schiele, Françoise; Gueguen, René; Férard, Georges; Henny, Joseph

    2007-01-01

    The improvement of the consistency of gamma-glutamyltransferase (GGT) activity results among different assays after calibration with a common material was estimated. We evaluated if this harmonization could lead to reference limits common to different routine methods. Seven laboratories measured GGT activity using their own routine analytical system both according to the manufacturer's recommendation and after calibration with a multi-enzyme calibrator [value assigned by the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) reference procedure]. All samples were re-measured using the IFCC reference procedure. Two groups of subjects were selected in each laboratory: a group of healthy men aged 18-25 years without long-term medication and with alcohol consumption less than 44 g/day and a group of subjects with elevated GGT activity. The day-to-day coefficients of variation were less than 2.9% in each laboratory. The means obtained in the group of healthy subjects without common calibration (range of the means 16-23 U/L) were significantly different from those obtained by the IFCC procedure in five laboratories. After calibration, the means remained significantly different from the IFCC procedure results in only one laboratory. For three calibrated methods, the slope values of linear regression vs. the IFCC procedure were not different from the value 1. The results obtained with these three methods for healthy subjects (n=117) were gathered and reference limits were calculated. These were 11-49 U/L (2.5th-97.5th percentiles). The calibration also improved the consistency of elevated results when compared to the IFCC procedure. The common calibration improved the level of consistency between different routine methods. It permitted to define common reference limits which are quite similar to those proposed by the IFCC. This approach should lead to a real benefit in terms of prevention, screening, diagnosis, therapeutic monitoring and for epidemiological studies.

  15. From Commons to Classroom: The Evolution of Learning Spaces in Academic Libraries

    ERIC Educational Resources Information Center

    Karasic, Victoria

    2016-01-01

    Over the past two decades, academic library spaces have evolved to meet the changing teaching and learning needs of diverse campus communities. The Information Commons combines the physical and virtual in an informal library space, whereas the recent Active Learning Classroom creates a more formal setting for collaboration. As scholarship has…

  16. Second-order perturbation theory with a density matrix renormalization group self-consistent field reference function: theory and application to the study of chromium dimer.

    PubMed

    Kurashige, Yuki; Yanai, Takeshi

    2011-09-07

    We present a second-order perturbation theory based on a density matrix renormalization group self-consistent field (DMRG-SCF) reference function. The method reproduces the solution of the complete active space with second-order perturbation theory (CASPT2) when the DMRG reference function is represented by a sufficiently large number of renormalized many-body basis, thereby being named DMRG-CASPT2 method. The DMRG-SCF is able to describe non-dynamical correlation with large active space that is insurmountable to the conventional CASSCF method, while the second-order perturbation theory provides an efficient description of dynamical correlation effects. The capability of our implementation is demonstrated for an application to the potential energy curve of the chromium dimer, which is one of the most demanding multireference systems that require best electronic structure treatment for non-dynamical and dynamical correlation as well as large basis sets. The DMRG-CASPT2/cc-pwCV5Z calculations were performed with a large (3d double-shell) active space consisting of 28 orbitals. Our approach using large-size DMRG reference addressed the problems of why the dissociation energy is largely overestimated by CASPT2 with the small active space consisting of 12 orbitals (3d4s), and also is oversensitive to the choice of the zeroth-order Hamiltonian. © 2011 American Institute of Physics

  17. Creating a Learning Space in Problem-Based Learning

    ERIC Educational Resources Information Center

    Hmelo-Silver, Cindy E.

    2013-01-01

    An important aspect of PBL problems is the affordances that they hold for engaging students in discussion of important content knowledge. In this paper, I argue that one can analyze a problem in terms of a deep problem space and a broader learning space to identify the conceptual ideas for potential engagement. The problem space refers to the…

  18. The space transportation system and its impact on Latin American development

    NASA Technical Reports Server (NTRS)

    Diaz, F. R. C.

    1985-01-01

    The three components of the Space Transportation System: the space shuttle, the permanent orbital space station and the transorbital vehicle are described. The stages of completion of the various plans are discussed and the impact of the project's implementation is discussed with particular reference to Latin America and with special emphasis on the telecommunications sector.

  19. Space Station needs, attributes and architectural options, volume 2, book 2, part 4: International reports

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The capabilities of the European Space Agency's SPAS and EURECA platforms for reference payload accommodation are considered. The instrument pointing subsystem, the position and hold mount, and the antenna pointing mechanism developed by Dornier are described. Relevant payloads for the space station are summarized and space station accommodation aspects are discussed.

  20. 47 CFR 25.103 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... or within the major portion of the Earth's atmosphere intended for communication: (1) With one or... 1525-1559 MHz space-to-Earth band and the 1626.5-1660.5 MHz Earth-to-space band, which are referred to... Service space-to-Earth band and the 14.0-14.5 GHz Fixed-Satellite Service Earth-to-space band. 17/24 GHz...

  1. Free-Operant Field Experiences: Differentially Reinforcing Successive Approximations to Behavior Analysis through a ShaperSpace

    ERIC Educational Resources Information Center

    Mason, Lee L.; Andrews, Alonzo; Rivera, Christopher J.; Davis, Don

    2016-01-01

    Over the past few years an increasing number of schools and community organizations have developed transformative learning spaces referred to as "MakerSpaces" for research and training purposes. MakerSpaces are organizations in which members sharing similar interests in science, technology, engineering, and math (STEM) gather to work on…

  2. Reducing the Read Noise of HAWAII-2RG Detector Systems with Improved Reference Sampling and Subtraction (IRS2)

    NASA Technical Reports Server (NTRS)

    Rauscher, Bernard J.; Arendt, Richard G.; Fixsen, D. J.; Lander, Matthew; Lindler, Don; Loose, Markus; Moseley, S. H.; Wilson, Donna V.; Xenophontos, Christos

    2012-01-01

    IRS2 is a Wiener-optimal approach to using all of the reference information that Teledyne's HAWAII-2RG detector arrays provide. Using a new readout pattern, IRS2 regularly interleaves reference pixels with the normal pixels during readout. This differs from conventional clocking, in which the reference pixels are read out infrequently, and only in a few rows and columns around the outside edges of the detector array. During calibration, the data are processed in Fourier space, which is <;:lose to the noise's eigenspace. Using IRS2, we have reduced the read noise of the James Webb Space Telescope Near Infrared Spectrograph by 15% compared to conventional readout. We are attempting to achieve further gains by calibrating out recently recognized non-stationary noise that appears at the frame rate.

  3. Lessons Learned from the Fukushima Nuclear Accident due to Tohoku Region Pacific Coast Earthquake

    NASA Astrophysics Data System (ADS)

    Miki, M.; Wada, M.; Takeuchi, N.

    2012-01-01

    On March 11 2011, Great Eastern Japan Earthquake hit Japan and caused the devastating damage. Fukushima Nuclear Power Station (NPS) also suffered damages and provided the environmental effect with radioactive products. The situation has been settled to some extent about two months after the accidents, and currently, the cooling of reactor is continuing towards settling the situation. Japanese NPSs are designed based on safety requirements and have multiple-folds of hazard controls. However, according to publicly available information, due to the lager-than-anticipated Tsunami, all the power supply were lost, which resulted in loss of hazard controls. Also, although nuclear power plants are equipped with system/procedure in case of loss of all controls, recovery was not made as planned in Fukushima NPSs because assumptions for hazard controls became impractical or found insufficient. In consequence, a state of emergency was declared. Through this accident, many lessons learned have been obtained from the several perspectives. There are many commonality between nuclear safety and space safety. Both industries perform thorough hazard assessments because hazards in both industries can result in loss of life. Therefore, space industry must learn from this accident and reconsider more robust space safety. This paper will introduce lessons learned from Fukushima nuclear accident described in the "Report of the Japanese Government to the IAEA Ministerial Conference on Nuclear Safety" [1], and discuss the considerations to establish more robust safety in the space systems. Detailed information of Fukushima Dai-ichi NPS are referred to this report.

  4. The positive side of a negative reference: the delay between linguistic processing and common ground

    PubMed Central

    Noveck, Ira; Rivera, Natalia; Jaume-Guazzini, Francisco

    2017-01-01

    Interlocutors converge on names to refer to entities. For example, a speaker might refer to a novel looking object as the jellyfish and, once identified, the listener will too. The hypothesized mechanism behind such referential precedents is a subject of debate. The common ground view claims that listeners register the object as well as the identity of the speaker who coined the label. The linguistic view claims that, once established, precedents are treated by listeners like any other linguistic unit, i.e. without needing to keep track of the speaker. To test predictions from each account, we used visual-world eyetracking, which allows observations in real time, during a standard referential communication task. Participants had to select objects based on instructions from two speakers. In the critical condition, listeners sought an object with a negative reference such as not the jellyfish. We aimed to determine the extent to which listeners rely on the linguistic input, common ground or both. We found that initial interpretations were based on linguistic processing only and that common ground considerations do emerge but only after 1000 ms. Our findings support the idea that—at least temporally—linguistic processing can be isolated from common ground. PMID:28386440

  5. The simulation on diode-clamped five-level converters common-mode voltage suppression with zero-vector PWM strategy

    NASA Astrophysics Data System (ADS)

    Zhang, Yonggao; Gao, Yanli; Long, Lizhong

    2012-04-01

    More and more researchers have great concern on the issue of Common-mode voltage (CMV) in high voltage large power converter. A novel common-mode voltage suppression scheme based on zero-vector PWM strategy (ZVPWM) is present in this paper. Taking a diode-clamped five-level converter as example, the principle of zero vector PWM common-mode voltage (ZCMVPWM) suppression method is studied in detail. ZCMVPWM suppression strategy is including four important parts, which are locating the sector of reference voltage vector, locating the small triangular sub-sector of reference voltage vector, reference vector synthesis, and calculating the operating time of vector. The principles of four important pars are illustrated in detail and the corresponding MATLAB models are established. System simulation and experimental results are provided. It gives some consultation value for the development and research of multi-level converters.

  6. A Software Defined Radio Based Airplane Communication Navigation Simulation System

    NASA Astrophysics Data System (ADS)

    He, L.; Zhong, H. T.; Song, D.

    2018-01-01

    Radio communication and navigation system plays important role in ensuring the safety of civil airplane in flight. Function and performance should be tested before these systems are installed on-board. Conventionally, a set of transmitter and receiver are needed for each system, thus all the equipment occupy a lot of space and are high cost. In this paper, software defined radio technology is applied to design a common hardware communication and navigation ground simulation system, which can host multiple airplane systems with different operating frequency, such as HF, VHF, VOR, ILS, ADF, etc. We use a broadband analog frontend hardware platform, universal software radio peripheral (USRP), to transmit/receive signal of different frequency band. Software is compiled by LabVIEW on computer, which interfaces with USRP through Ethernet, and is responsible for communication and navigation signal processing and system control. An integrated testing system is established to perform functional test and performance verification of the simulation signal, which demonstrate the feasibility of our design. The system is a low-cost and common hardware platform for multiple airplane systems, which provide helpful reference for integrated avionics design.

  7. Future Standardization of Space Telecommunications Radio System with Core Flight System

    NASA Technical Reports Server (NTRS)

    Briones, Janette C.; Hickey, Joseph P.; Roche, Rigoberto; Handler, Louis M.; Hall, Charles S.

    2016-01-01

    NASA Glenn Research Center (GRC) is integrating the NASA Space Telecommunications Radio System (STRS) Standard with the Core Flight System (cFS), an avionics software operating environment. The STRS standard provides a common, consistent framework to develop, qualify, operate and maintain complex, reconfigurable and reprogrammable radio systems. The cFS is a flexible, open architecture that features a plugand- play software executive called the Core Flight Executive (cFE), a reusable library of software components for flight and space missions and an integrated tool suite. Together, STRS and cFS create a development environment that allows for STRS compliant applications to reference the STRS application programmer interfaces (APIs) that use the cFS infrastructure. These APIs are used to standardize the communication protocols on NASAs space SDRs. The cFS-STRS Operating Environment (OE) is a portable cFS library, which adds the ability to run STRS applications on existing cFS platforms. The purpose of this paper is to discuss the cFS-STRS OE prototype, preliminary experimental results performed using the Advanced Space Radio Platform (ASRP), the GRC S- band Ground Station and the SCaN (Space Communication and Navigation) Testbed currently flying onboard the International Space Station (ISS). Additionally, this paper presents a demonstration of the Consultative Committee for Space Data Systems (CCSDS) Spacecraft Onboard Interface Services (SOIS) using electronic data sheets (EDS) inside cFE. This configuration allows for the data sheets to specify binary formats for data exchange between STRS applications. The integration of STRS with cFS leverages mission-proven platform functions and mitigates barriers to integration with future missions. This reduces flight software development time and the costs of software-defined radio (SDR) platforms. Furthermore, the combined benefits of STRS standardization with the flexibility of cFS provide an effective, reliable and modular framework to minimize software development efforts for spaceflight missions.

  8. Reference and Information Services: An Introduction. Second Edition. Library Science Text Series.

    ERIC Educational Resources Information Center

    Bopp, Richard E., Ed.; Smith, Linda C., Ed.

    This document provides an overview of the concepts and processes behind reference services and the most important sources consulted in answering common reference questions. The book is divided into two parts. Part 1 deals with concepts and theory. It covers ethical aspects of reference service, the reference interview, the principles and goals of…

  9. On Certain New Methodology for Reducing Sensor and Readout Electronics Circuitry Noise in Digital Domain

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Miko, Joseph; Bradley, Damon; Heinzen, Katherine

    2008-01-01

    NASA Hubble Space Telescope (HST) and upcoming cosmology science missions carry instruments with multiple focal planes populated with many large sensor detector arrays. These sensors are passively cooled to low temperatures for low-level light (L3) and near-infrared (NIR) signal detection, and the sensor readout electronics circuitry must perform at extremely low noise levels to enable new required science measurements. Because we are at the technological edge of enhanced performance for sensors and readout electronics circuitry, as determined by thermal noise level at given temperature in analog domain, we must find new ways of further compensating for the noise in the signal digital domain. To facilitate this new approach, state-of-the-art sensors are augmented at their array hardware boundaries by non-illuminated reference pixels, which can be used to reduce noise attributed to sensors. There are a few proposed methodologies of processing in the digital domain the information carried by reference pixels, as employed by the Hubble Space Telescope and the James Webb Space Telescope Projects. These methods involve using spatial and temporal statistical parameters derived from boundary reference pixel information to enhance the active (non-reference) pixel signals. To make a step beyond this heritage methodology, we apply the NASA-developed technology known as the Hilbert- Huang Transform Data Processing System (HHT-DPS) for reference pixel information processing and its utilization in reconfigurable hardware on-board a spaceflight instrument or post-processing on the ground. The methodology examines signal processing for a 2-D domain, in which high-variance components of the thermal noise are carried by both active and reference pixels, similar to that in processing of low-voltage differential signals and subtraction of a single analog reference pixel from all active pixels on the sensor. Heritage methods using the aforementioned statistical parameters in the digital domain (such as statistical averaging of the reference pixels themselves) zeroes out the high-variance components, and the counterpart components in the active pixels remain uncorrected. This paper describes how the new methodology was demonstrated through analysis of fast-varying noise components using the Hilbert-Huang Transform Data Processing System tool (HHT-DPS) developed at NASA and the high-level programming language MATLAB (Trademark of MathWorks Inc.), as well as alternative methods for correcting for the high-variance noise component, using an HgCdTe sensor data. The NASA Hubble Space Telescope data post-processing, as well as future deep-space cosmology projects on-board instrument data processing from all the sensor channels, would benefit from this effort.

  10. Implications of Privacy Needs and Interpersonal Distancing Mechanisms for Space Station Design

    NASA Technical Reports Server (NTRS)

    Harrison, A. A.; Sommer, R.; Struthers, N.; Hoyt, K.

    1986-01-01

    The literature on privacy needs, personal space, interpersonal distancing, and crowding is reveiwed with special reference to spaceflight and spaceflight analogous conditions. A quantitative model is proposed for understanding privacy, interpersonal distancing, and performance. The implications for space station design is described.

  11. 14 CFR 1203.100 - Legal basis.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Legal basis. 1203.100 Section 1203.100 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM Scope § 1203.100 Legal basis. (a) Executive Order 12958 (hereinafter referred to as “the Order”). The...

  12. 14 CFR 1203.100 - Legal basis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Legal basis. 1203.100 Section 1203.100 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM Scope § 1203.100 Legal basis. (a) Executive Order 12958 (hereinafter referred to as “the Order”). The...

  13. 14 CFR 1203.100 - Legal basis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Legal basis. 1203.100 Section 1203.100 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM Scope § 1203.100 Legal basis. (a) Executive Order 12958 (hereinafter referred to as “the Order”). The...

  14. 14 CFR 1203.100 - Legal basis.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Legal basis. 1203.100 Section 1203.100 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM Scope § 1203.100 Legal basis. (a) Executive Order 12958 (hereinafter referred to as “the Order”). The...

  15. 76 FR 5120 - Highway-Rail Grade Crossing; Safe Clearance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-28

    ... driver from entering onto a highway-rail grade crossing unless there is sufficient space to drive... crossing unless there is sufficient space to drive completely through the grade crossing without stopping... as the ``clear storage distance.'' \\1\\ Chapter 8 guidance material also refers to ``storage space...

  16. Space Shuttle news reference

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A detailed description of the space shuttle vehicle and associated subsystems is given. Space transportation system propulsion, power generation, environmental control and life support system and avionics are among the topics. Also, orbiter crew accommodations and equipment, mission operations and support, and flight crew complement and crew training are addressed.

  17. Handling Discourse: Gestures, Reference Tracking, and Communication Strategies in Early L2

    ERIC Educational Resources Information Center

    Gullberg, Marianne

    2006-01-01

    The production of cohesive discourse, especially maintained reference, poses problems for early second language L2 speakers. This paper considers a communicative account of overexplicit L2 discourse by focusing on the interdependence between spoken and gestural cohesion, the latter being expressed by anchoring of referents in gesture space.…

  18. 14 CFR § 1207.101 - Cross-references to ethical conduct, financial disclosure, and other applicable regulations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Cross-references to ethical conduct, financial disclosure, and other applicable regulations. § 1207.101 Section § 1207.101 Aeronautics and... Cross-references to ethical conduct, financial disclosure, and other applicable regulations. Employees...

  19. A future large-aperture UVOIR space observatory: reference designs

    NASA Astrophysics Data System (ADS)

    Rioux, Norman; Thronson, Harley; Feinberg, Lee; Stahl, H. Philip; Redding, Dave; Jones, Andrew; Sturm, James; Collins, Christine; Liu, Alice

    2015-09-01

    Our joint NASA GSFC/JPL/MSFC/STScI study team has used community-provided science goals to derive mission needs, requirements, and candidate mission architectures for a future large-aperture, non-cryogenic UVOIR space observatory. We describe the feasibility assessment of system thermal and dynamic stability for supporting coronagraphy. The observatory is in a Sun-Earth L2 orbit providing a stable thermal environment and excellent field of regard. Reference designs include a 36-segment 9.2 m aperture telescope that stows within a five meter diameter launch vehicle fairing. Performance needs developed under the study are traceable to a variety of reference designs including options for a monolithic primary mirror.

  20. A Future Large-Aperture UVOIR Space Observatory: Reference Designs

    NASA Technical Reports Server (NTRS)

    Thronson, Harley; Rioux, Norman; Feinberg, Lee; Stahl, H. Philip; Redding, Dave; Jones, Andrew; Sturm, James; Collins, Christine; Liu, Alice

    2015-01-01

    Our joint NASA GSFC/JPL/MSFC/STScI study team has used community-provided science goals to derive mission needs, requirements, and candidate mission architectures for a future large-aperture, non-cryogenic UVOIR space observatory. We describe the feasibility assessment of system thermal and dynamic stability for supporting coronagraphy. The observatory is in a Sun-Earth L2 orbit providing a stable thermal environment and excellent field of regard. Reference designs include a 36-segment 9.2 m aperture telescope that stows within a five meter diameter launch vehicle fairing. Performance needs developed under the study are traceable to a variety of reference designs including options for a monolithic primary mirror.

  1. Connecting Online Learners with Diverse Local Practices: The Design of Effective Common Reference Points for Conversation

    ERIC Educational Resources Information Center

    Friend Wise, Alyssa; Padmanabhan, Poornima; Duffy, Thomas M.

    2009-01-01

    This mixed-methods study probed the effectiveness of three kinds of objects (video, theory, metaphor) as common reference points for conversations between online learners (student teachers). Individuals' degree of detail-focus was examined as a potentially interacting covariate and the outcome measure was learners' level of tacit knowledge related…

  2. The Common European Framework of Reference (CEFR) in Canada: A Research Agenda

    ERIC Educational Resources Information Center

    Arnott, Stephanie; Brogden, Lace Marie; Faez, Farahnaz; Péguret, Muriel; Piccardo, Enrica; Rehner, Katherine; Taylor, Shelley K.; Wernicke, Meike

    2017-01-01

    This article proposes a research agenda for future inquiry into the use of the Common European Framework of Reference (CEFR) in the plurilingual Canadian context. Drawing on data collected from a research forum hosted by the Canadian Association of Second Language Teachers in 2014, as well as a detailed analysis of Canadian empirical studies and…

  3. Internal pedestrian circulation and common open space, also illustrating mature ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Internal pedestrian circulation and common open space, also illustrating mature landscape features. Building 35 at left foreground. Facing east - Harbor Hills Housing Project, 26607 Western Avenue, Lomita, Los Angeles County, CA

  4. Improvement of absolute positioning of precision stage based on cooperation the zero position pulse signal and incremental displacement signal

    NASA Astrophysics Data System (ADS)

    Wang, H. H.; Shi, Y. P.; Li, X. H.; Ni, K.; Zhou, Q.; Wang, X. H.

    2018-03-01

    In this paper, a scheme to measure the position of precision stages, with a high precision, is presented. The encoder is composed of a scale grating and a compact two-probe reading head, to read the zero position pulse signal and continuous incremental displacement signal. The scale grating contains different codes, multiple reference codes with different spacing superimposed onto the incremental grooves with an equal spacing structure. The codes of reference mask in the reading head is the same with the reference codes on the scale grating, and generate pulse signal to locate the reference position primarily when the reading head moves along the scale grating. After locating the reference position in a section by means of the pulse signal, the reference position can be located precisely with the amplitude of the incremental displacement signal. A kind of reference codes and scale grating were designed, and experimental results show that the primary precision of the design achieved is 1 μ m. The period of the incremental signal is 1μ m, and 1000/N nm precision can be achieved by subdivide the incremental signal in N times.

  5. Differential Si ring resonators for label-free biosensing

    NASA Astrophysics Data System (ADS)

    Taniguchi, Tomoya; Yokoyama, Shuhei; Amemiya, Yoshiteru; Ikeda, Takeshi; Kuroda, Akio; Yokoyama, Shin

    2016-04-01

    Differential Si ring optical resonator sensors have been fabricated. Their detection sensitivity was 10-3-10-2% for sucrose solution, which corresponds to a sensitivity of ˜1.0 ng/ml for prostate-specific antigen (PSA), which is satisfactory for practical use. In the differential sensing the input light is incident to two rings, and one of the outputs is connected to a π phase shifter then the two outputs are merged again. For the differential detection, not only is the common-mode noise canceled, resulting in high sensitivity, but also the temperature stability is much improved. A fluid channel is fabricated so that the detecting liquid flows to the detection ring and the reference liquid flows to the reference ring. We have proposed a method of obtaining a constant sensitivity for the integrated sensors even though the resonance wavelengths of the two rings of the differential sensor are slightly different. It was found that a region exists with a linear relationship between the differential output and the difference in the resonance wavelengths of the two rings. By intentionally differentiating the resonance wavelengths in this linear region, the sensors have a constant sensitivity. Many differential sensors with different ring spaces have been fabricated and the output scattering characteristics were statistically evaluated. As a result, a standard deviation of resonance wavelength σ = 8 × 10-3 nm was obtained for a ring space of 31 µm. From the width of the linear region and the standard deviation, it was estimated from the Gaussian distribution of the resonance wavelength that 93.8% of the devices have the same sensitivity.

  6. Single-particle cryo-EM using alignment by classification (ABC): the structure of Lumbricus terrestris haemoglobin.

    PubMed

    Afanasyev, Pavel; Seer-Linnemayr, Charlotte; Ravelli, Raimond B G; Matadeen, Rishi; De Carlo, Sacha; Alewijnse, Bart; Portugal, Rodrigo V; Pannu, Navraj S; Schatz, Michael; van Heel, Marin

    2017-09-01

    Single-particle cryogenic electron microscopy (cryo-EM) can now yield near-atomic resolution structures of biological complexes. However, the reference-based alignment algorithms commonly used in cryo-EM suffer from reference bias, limiting their applicability (also known as the 'Einstein from random noise' problem). Low-dose cryo-EM therefore requires robust and objective approaches to reveal the structural information contained in the extremely noisy data, especially when dealing with small structures. A reference-free pipeline is presented for obtaining near-atomic resolution three-dimensional reconstructions from heterogeneous ('four-dimensional') cryo-EM data sets. The methodologies integrated in this pipeline include a posteriori camera correction, movie-based full-data-set contrast transfer function determination, movie-alignment algorithms, (Fourier-space) multivariate statistical data compression and unsupervised classification, 'random-startup' three-dimensional reconstructions, four-dimensional structural refinements and Fourier shell correlation criteria for evaluating anisotropic resolution. The procedures exclusively use information emerging from the data set itself, without external 'starting models'. Euler-angle assignments are performed by angular reconstitution rather than by the inherently slower projection-matching approaches. The comprehensive 'ABC-4D' pipeline is based on the two-dimensional reference-free 'alignment by classification' (ABC) approach, where similar images in similar orientations are grouped by unsupervised classification. Some fundamental differences between X-ray crystallography versus single-particle cryo-EM data collection and data processing are discussed. The structure of the giant haemoglobin from Lumbricus terrestris at a global resolution of ∼3.8 Å is presented as an example of the use of the ABC-4D procedure.

  7. Nursing Information Flow in Long-Term Care Facilities.

    PubMed

    Wei, Quan; Courtney, Karen L

    2018-04-01

     Long-term care (LTC), residential care requiring 24-hour nursing services, plays an important role in the health care service delivery system. The purpose of this study was to identify the needed clinical information and information flow to support LTC Registered Nurses (RNs) in care collaboration and clinical decision making.  This descriptive qualitative study combines direct observations and semistructured interviews, conducted at Alberta's LTC facilities between May 2014 and August 2015. The constant comparative method (CCM) of joint coding was used for data analysis.  Nine RNs from six LTC facilities participated in the study. The RN practice environment includes two essential RN information management aspects: information resources and information spaces. Ten commonly used information resources by RNs included: (1) RN-personal notes; (2) facility-specific templates/forms; (3) nursing processes/tasks; (4) paper-based resident profile; (5) daily care plans; (6) RN-notebooks; (7) medication administration records (MARs); (8) reporting software application (RAI-MDS); (9) people (care providers); and (10) references (i.e., books). Nurses used a combination of shared information spaces, such as the Nurses Station or RN-notebook, and personal information spaces, such as personal notebooks or "sticky" notes. Four essential RN information management functions were identified: collection, classification, storage, and distribution. Six sets of information were necessary to perform RN care tasks and communication, including: (1) admission, discharge, and transfer (ADT); (2) assessment; (3) care plan; (4) intervention (with two subsets: medication and care procedure); (5) report; and (6) reference. Based on the RN information management system requirements, a graphic information flow model was constructed.  This baseline study identified key components of a current LTC nursing information management system. The information flow model may assist health information technology (HIT) developers to consolidate the design of HIT solutions for LTC, and serve as a communication tool between nurses and information technology (IT) staff to refine requirements and support further LTC HIT research. Schattauer GmbH Stuttgart.

  8. Exploring the Function Space of Deep-Learning Machines

    NASA Astrophysics Data System (ADS)

    Li, Bo; Saad, David

    2018-06-01

    The function space of deep-learning machines is investigated by studying growth in the entropy of functions of a given error with respect to a reference function, realized by a deep-learning machine. Using physics-inspired methods we study both sparsely and densely connected architectures to discover a layerwise convergence of candidate functions, marked by a corresponding reduction in entropy when approaching the reference function, gain insight into the importance of having a large number of layers, and observe phase transitions as the error increases.

  9. Telecommunications Systems Design Techniques Handbook

    NASA Technical Reports Server (NTRS)

    Edelson, R. E. (Editor)

    1972-01-01

    The Deep Space Network (DSN) increasingly supports deep space missions sponsored and managed by organizations without long experience in DSN design and operation. The document is intended as a textbook for those DSN users inexperienced in the design and specification of a DSN-compatible spacecraft telecommunications system. For experienced DSN users, the document provides a reference source of telecommunication information which summarizes knowledge previously available only in a multitude of sources. Extensive references are quoted for those who wish to explore specific areas more deeply.

  10. Control system design for the large space systems technology reference platform

    NASA Technical Reports Server (NTRS)

    Edmunds, R. S.

    1982-01-01

    Structural models and classical frequency domain control system designs were developed for the large space systems technology (LSST) reference platform which consists of a central bus structure, solar panels, and platform arms on which a variety of experiments may be mounted. It is shown that operation of multiple independently articulated payloads on a single platform presents major problems when subarc second pointing stability is required. Experiment compatibility will be an important operational consideration for systems of this type.

  11. Generalized reference fields and source interpolation for the difference formulation of radiation transport

    NASA Astrophysics Data System (ADS)

    Luu, Thomas; Brooks, Eugene D.; Szőke, Abraham

    2010-03-01

    In the difference formulation for the transport of thermally emitted photons the photon intensity is defined relative to a reference field, the black body at the local material temperature. This choice of reference field combines the separate emission and absorption terms that nearly cancel, thereby removing the dominant cause of noise in the Monte Carlo solution of thick systems, but introduces time and space derivative source terms that cannot be determined until the end of the time step. The space derivative source term can also lead to noise induced crashes under certain conditions where the real physical photon intensity differs strongly from a black body at the local material temperature. In this paper, we consider a difference formulation relative to the material temperature at the beginning of the time step, or in cases where an alternative temperature better describes the radiation field, that temperature. The result is a method where iterative solution of the material energy equation is efficient and noise induced crashes are avoided. We couple our generalized reference field scheme with an ad hoc interpolation of the space derivative source, resulting in an algorithm that produces the correct flux between zones as the physical system approaches the thick limit.

  12. Space station needs, attributes and architectural options study. Volume 7-1: Data book. Science and applications missions

    NASA Technical Reports Server (NTRS)

    1983-01-01

    User requirements for space station use are presented for the following areas: space environments, astrophysics, Earth observations, and life science. Also included are a summary of study tasks and final reports, a topical cross reference, key team members, and acronyms and abbreviations.

  13. Auditory Training for Adults Who Have Hearing Loss: A Comparison of Spaced versus Massed Practice Schedules

    ERIC Educational Resources Information Center

    Tye-Murray, Nancy; Spehar, Brent; Barcroft, Joe; Sommers, Mitchell

    2017-01-01

    Purpose: The spacing effect in human memory research refers to situations in which people learn items better when they study items in spaced intervals rather than massed intervals. This investigation was conducted to compare the efficacy of meaning-oriented auditory training when administered with a spaced versus massed practice schedule. Method:…

  14. Space vehicle electrical power processing distribution and control study. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Krausz, A.

    1972-01-01

    A concept for the processing, distribution, and control of electric power for manned space vehicles and future aircraft is presented. Emphasis is placed on the requirements of the space station and space shuttle configurations. The systems involved are referred to as the processing distribution and control system (PDCS), electrical power system (EPS), and electric power generation system (EPGS).

  15. Method of pedestal and common-mode noise correction for switched-capacitor analog memories

    DOEpatents

    Britton, Charles L.

    1997-01-01

    A method and apparatus for correcting common-mode noise and pedestal noise in a multichannel array of switched-capacitor analog memories wherein each analog memory is connected to an associated analog-to-digital converter. The apparatus comprises a single differential element in two different embodiments. In a first embodiment, the differential element is a reference analog memory connected to a buffer. In the second embodiment, the differential dement is a reference analog memory connected to a reference analog-to-digital connected to an array of digital summing circuits.

  16. Method of pedestal and common-mode noise correction for switched-capacitor analog memories

    DOEpatents

    Britton, Charles L.

    1996-01-01

    A method and apparatus for correcting common-mode noise and pedestal noise in a multichannel array of switched-capacitor analog memories wherein each analog memory is connected to an associated analog-to-digital converter. The apparatus comprises a single differential element in two different embodiments. In a first embodiment, the differential element is a reference analog memory connected to a buffer. In the second embodiment, the differential element is a reference analog memory connected to a reference analog-to-digital connected to an array of digital summing circuits.

  17. Space station human productivity study. Volume 4: Issues

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The 305 Issues contained represent topics recommended for study in order to develop requirements in support of space station crew performance/productivity. The overall subject matter, space station elements affecting crew productivity, was organized into a coded subelement listing, which is included for the reader's reference. Each issue is numbered according to the 5-digit topical coding scheme. The requirements column on each Issue page shows a cross-reference to the unresolved requirement statement(s). Because topical overlaps were frequently encountered, many initial Issues were consolidated. Apparent gaps, therefore, may be accounted for by an Issue described within a related subelement. A glossary of abbreviations used throughout the study documentation is also included.

  18. The high-frequency dispersion coefficient for the Rayleigh velocity in a vertically inhomogeneous anisotropic half-space.

    PubMed

    Shuvalov, A L

    2008-05-01

    For an arbitrary anisotropic half-space with continuous vertical variation of material properties, an explicit closed-form expression for the coefficient B of high-frequency dispersion of the Rayleigh velocity v(R)(omega) approximately v(R)(0)(1+B/omega) is derived. The result involves two matrices, one consisting of the surface-traction derivatives in velocity and the other of its Wentzel-Kramers-Brillouin coefficients, which are contracted with an amplitude vector of the Rayleigh wave in the reference homogeneous half-space. The "ingredients" are routinely defined through the fundamental elasticity matrix and its first derivative, both taken at v=v(R)(0) and referred to the surface.

  19. SSIART: Opening the Way to Wireless Sensor Networks On-Board Spacecraft with an Inter-Agency Research Environment

    NASA Astrophysics Data System (ADS)

    Gunes-Lasnet, Sev; Dufour, Jean-Francois

    2012-08-01

    The potential uses and benefits of wireless technologies in space are very broad. Since many years the CCSDS SOIS wireless working group has worked at the identification of key applications for which wireless would bring benefits, and at supporting the deployment of wireless in space thanks to documents, in particular a Green informative book and magenta books presenting recommended practices.The Smart Sensor Inter-Agency Research Test bench (SSIART) is being designed to provide the space Agencies and the Industry with a reference smart sensor platform to test wireless sensor technologies in reference representative applications and RF propagation environments, while promoting these technologies at the same time.

  20. Space educators' handbook

    NASA Technical Reports Server (NTRS)

    Woodfill, Jerry

    1992-01-01

    The Space Educators' Handbook is a collection of space exploration information available on Hypercard as a space education reference book. Ranging from early dreams of space ships to current manned missions, the more than four thousand cards include entries of statistics, historical facts and anecdotes, technical articles, accounts of NASA missions from Mercury through the space shuttle, biographical information on women and men who have contributed to space exploration, scientific facts, and various other space-related data. The means of presenting the data range from cartoons and drawings to lists and narratives, some briefly quoted and some reproduced in full.

  1. An evaluation of the distribution of sexual references among "Top 8" MySpace friends.

    PubMed

    Moreno, Megan A; Brockman, Libby; Rogers, Cara B; Christakis, Dimitri A

    2010-10-01

    To evaluate whether online friends of adolescents who display sexual references on a social networking site also display references. The method used was content analysis. The result of this study was that adolescents who displayed explicit sexual references were more likely to have online friends who displayed references. Thus, social networking sites present new opportunities to investigate adolescent sexual behavior. Copyright © 2010 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  2. 46 CFR 151.03-19 - Environment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-19 Environment. This term refers to the atmosphere within a cargo tank and the spaces adjacent to the tank or spaces in which cargo is handled. ...

  3. 46 CFR 151.03-19 - Environment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-19 Environment. This term refers to the atmosphere within a cargo tank and the spaces adjacent to the tank or spaces in which cargo is handled. ...

  4. 46 CFR 151.03-19 - Environment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-19 Environment. This term refers to the atmosphere within a cargo tank and the spaces adjacent to the tank or spaces in which cargo is handled. ...

  5. 46 CFR 151.03-19 - Environment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-19 Environment. This term refers to the atmosphere within a cargo tank and the spaces adjacent to the tank or spaces in which cargo is handled. ...

  6. Performance of the Micropower Voltage Reference ADR3430 Under Extreme Temperatures

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2011-01-01

    Electronic systems designed for use in space exploration systems are expected to be exposed to harsh temperatures. For example, operation at cryogenic temperatures is anticipated in space missions such as polar craters of the moon (-223 C), James Webb Space Telescope (-236 C), Mars (-140 C), Europa (-223 C), Titan (-178 C), and other deep space probes away from the sun. Similarly, rovers and landers on the lunar surface, and deep space probes intended for the exploration of Venus are expected to encounter high temperature extremes. Electronics capable of operation under extreme temperatures would not only meet the requirements of future spacebased systems, but would also contribute to enhancing efficiency and improving reliability of these systems through the elimination of the thermal control elements that present electronics need for proper operation under the harsh environment of space. In this work, the performance of a micropower, high accuracy voltage reference was evaluated over a wide temperature range. The Analog Devices ADR3430 chip uses a patented voltage reference architecture to achieve high accuracy, low temperature coefficient, and low noise in a CMOS process [1]. The device combines two voltages of opposite temperature coefficients to create an output voltage that is almost independent of ambient temperature. It is rated for the industrial temperature range of -40 C to +125 C, and is ideal for use in low power precision data acquisition systems and in battery-powered devices. Table 1 shows some of the manufacturer s device specifications.

  7. A new governance space for health

    PubMed Central

    Kickbusch, Ilona; Szabo, Martina Marianna Cassar

    2014-01-01

    Global health refers to ‘those health issues which transcend national boundaries and governments and call for actions on the global forces and global flows that determine the health of people’. (Kickbusch 2006) Governance in this trans-national and cross-cutting arena can be analyzed along three political spaces: global health governance, global governance for health, and governance for global health. It is argued that the management of the interface between these three political spaces of governance in the global public health domain is becoming increasingly important in order to move the global health agenda forward. Global health governance refers mainly to those institutions and processes of governance which are related to an explicit health mandate, such as the World Health Organization; global governance for health refers mainly to those institutions and processes of global governance which have a direct and indirect health impact, such as the United Nations, World Trade Organization or the Human Rights Council; governance for global health refers to the institutions and mechanisms established at the national and regional level to contribute to global health governance and/or to governance for global health – such as national global health strategies or regional strategies for global health. It can also refer to club strategies, such as agreements by a group of countries such as the BRICS. In all three political spaces, the involvement of a multitude of state and non-state actors has become the norm – that is why issues of legitimacy, accountability and transparency have moved to the fore. The transnational nature of global health will require the engagement of all actors to produce global public goods for health (GPGH) and to ensure a rules-based and reliably financed global public health domain. PMID:24560259

  8. A new governance space for health.

    PubMed

    Kickbusch, Ilona; Szabo, Martina Marianna Cassar

    2014-01-01

    Global health refers to 'those health issues which transcend national boundaries and governments and call for actions on the global forces and global flows that determine the health of people'. (Kickbusch 2006) Governance in this trans-national and cross-cutting arena can be analyzed along three political spaces: global health governance, global governance for health, and governance for global health. It is argued that the management of the interface between these three political spaces of governance in the global public health domain is becoming increasingly important in order to move the global health agenda forward. Global health governance refers mainly to those institutions and processes of governance which are related to an explicit health mandate, such as the World Health Organization; global governance for health refers mainly to those institutions and processes of global governance which have a direct and indirect health impact, such as the United Nations, World Trade Organization or the Human Rights Council; governance for global health refers to the institutions and mechanisms established at the national and regional level to contribute to global health governance and/or to governance for global health--such as national global health strategies or regional strategies for global health. It can also refer to club strategies, such as agreements by a group of countries such as the BRICS. In all three political spaces, the involvement of a multitude of state and non-state actors has become the norm--that is why issues of legitimacy, accountability and transparency have moved to the fore. The transnational nature of global health will require the engagement of all actors to produce global public goods for health (GPGH) and to ensure a rules-based and reliably financed global public health domain.

  9. Sensory integration of a light touch reference in human standing balance.

    PubMed

    Assländer, Lorenz; Smith, Craig P; Reynolds, Raymond F

    2018-01-01

    In upright stance, light touch of a space-stationary touch reference reduces spontaneous sway. Moving the reference evokes sway responses which exhibit non-linear behavior that has been attributed to sensory reweighting. Reweighting refers to a change in the relative contribution of sensory cues signaling body sway in space and light touch cues signaling finger position with respect to the body. Here we test the hypothesis that the sensory fusion process involves a transformation of light touch signals into the same reference frame as other sensory inputs encoding body sway in space, or vice versa. Eight subjects lightly gripped a robotic manipulandum which moved in a circular arc around the ankle joint. A pseudo-randomized motion sequence with broad spectral characteristics was applied at three amplitudes. The stimulus was presented at two different heights and therefore different radial distances, which were matched in terms of angular motion. However, the higher stimulus evoked a significantly larger sway response, indicating that the response was not matched to stimulus angular motion. Instead, the body sway response was strongly related to the horizontal translation of the manipulandum. The results suggest that light touch is integrated as the horizontal distance between body COM and the finger. The data were well explained by a model with one feedback loop minimizing changes in horizontal COM-finger distance. The model further includes a second feedback loop estimating the horizontal finger motion and correcting the first loop when the touch reference is moving. The second loop includes the predicted transformation of sensory signals into the same reference frame and a non-linear threshold element that reproduces the non-linear sway responses, thus providing a mechanism that can explain reweighting.

  10. Sensory integration of a light touch reference in human standing balance

    PubMed Central

    Smith, Craig P.; Reynolds, Raymond F.

    2018-01-01

    In upright stance, light touch of a space-stationary touch reference reduces spontaneous sway. Moving the reference evokes sway responses which exhibit non-linear behavior that has been attributed to sensory reweighting. Reweighting refers to a change in the relative contribution of sensory cues signaling body sway in space and light touch cues signaling finger position with respect to the body. Here we test the hypothesis that the sensory fusion process involves a transformation of light touch signals into the same reference frame as other sensory inputs encoding body sway in space, or vice versa. Eight subjects lightly gripped a robotic manipulandum which moved in a circular arc around the ankle joint. A pseudo-randomized motion sequence with broad spectral characteristics was applied at three amplitudes. The stimulus was presented at two different heights and therefore different radial distances, which were matched in terms of angular motion. However, the higher stimulus evoked a significantly larger sway response, indicating that the response was not matched to stimulus angular motion. Instead, the body sway response was strongly related to the horizontal translation of the manipulandum. The results suggest that light touch is integrated as the horizontal distance between body COM and the finger. The data were well explained by a model with one feedback loop minimizing changes in horizontal COM-finger distance. The model further includes a second feedback loop estimating the horizontal finger motion and correcting the first loop when the touch reference is moving. The second loop includes the predicted transformation of sensory signals into the same reference frame and a non-linear threshold element that reproduces the non-linear sway responses, thus providing a mechanism that can explain reweighting. PMID:29874252

  11. Statistical considerations for harmonization of the global multicenter study on reference values.

    PubMed

    Ichihara, Kiyoshi

    2014-05-15

    The global multicenter study on reference values coordinated by the Committee on Reference Intervals and Decision Limits (C-RIDL) of the IFCC was launched in December 2011, targeting 45 commonly tested analytes with the following objectives: 1) to derive reference intervals (RIs) country by country using a common protocol, and 2) to explore regionality/ethnicity of reference values by aligning test results among the countries. To achieve these objectives, it is crucial to harmonize 1) the protocol for recruitment and sampling, 2) statistical procedures for deriving the RI, and 3) test results through measurement of a panel of sera in common. For harmonized recruitment, very lenient inclusion/exclusion criteria were adopted in view of differences in interpretation of what constitutes healthiness by different cultures and investigators. This policy may require secondary exclusion of individuals according to the standard of each country at the time of deriving RIs. An iterative optimization procedure, called the latent abnormal values exclusion (LAVE) method, can be applied to automate the process of refining the choice of reference individuals. For global comparison of reference values, test results must be harmonized, based on the among-country, pair-wise linear relationships of test values for the panel. Traceability of reference values can be ensured based on values assigned indirectly to the panel through collaborative measurement of certified reference materials. The validity of the adopted strategies is discussed in this article, based on interim results obtained to date from five countries. Special considerations are made for dissociation of RIs by parametric and nonparametric methods and between-country difference in the effect of body mass index on reference values. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Space Nuclear Power and Propulsion: Materials Challenges for the 21st Century

    NASA Technical Reports Server (NTRS)

    Houts, Mike

    2008-01-01

    The current focus of NASA s space fission effort is Fission Surface Power (FSP). FSP systems could be used to provide power anytime, anywhere on the surface of the Moon or Mars. FSP systems could be used at locations away from the lunar poles or in permanently shaded regions, with no performance penalty. A potential reference 40 kWe option has been devised that is cost-competitive with alternatives while providing more power for less mass. The potential reference system is readily extensible for use on Mars. At Mars the system could be capable of operating through global dust storms and providing year-round power at any Martian latitude. To ensure affordability, the potential near-term, 40 kWe reference concept is designed to use only well established materials and fuels. However, if various materials challenges could be overcome, extremely high performance fission systems could be devised. These include high power, low mass fission surface power systems; in-space systems with high specific power; and high performance nuclear thermal propulsion systems. This tutorial will provide a brief overview of space fission systems and will focus on materials challenges that, if overcome, could help enable advanced exploration and utilization of the solar system.

  13. A general number-to-space mapping deficit in developmental dyscalculia.

    PubMed

    Huber, S; Sury, D; Moeller, K; Rubinsten, O; Nuerk, H-C

    2015-01-01

    Previous research on developmental dyscalculia (DD) suggested that deficits in the number line estimation task are related to a failure to represent number magnitude linearly. This conclusion was derived from the observation of logarithmically shaped estimation patterns. However, recent research questioned this idea of an isomorphic relationship between estimation patterns and number magnitude representation. In the present study, we evaluated an alternative hypothesis: impairments in the number line estimation task are due to a general deficit in mapping numbers onto space. Adults with DD and a matched control group had to learn linear and non-linear layouts of the number line via feedback. Afterwards, we assessed their performance how well they learnt the new number-space mappings. We found irrespective of the layouts worse performance of adults with DD. Additionally, in case of the linear layout, we observed that their performance did not differ from controls near reference points, but that differences between groups increased as the distance to reference point increased. We conclude that worse performance of adults with DD in the number line task might be due a deficit in mapping numbers onto space which can be partly overcome relying on reference points. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Practised Intelligence Testing Based on a Modern Test Conceptualization and Its Reference to the Common Intelligence Theories

    ERIC Educational Resources Information Center

    Kubinger, Klaus D.; Litzenberger, Margarete; Mrakotsky, Christine

    2006-01-01

    The question is to what extent intelligence test-batteries prove any kind of empirical reference to common intelligence theories. Of particular interest are conceptualized tests that are of a high psychometric standard--those that fit the Rasch model--and hence are not exposed to fundamental critique. As individualized testing, i.e., a…

  15. Environmental assessment for the satellite power system concept development and evaluation program: nonmicrowave health and ecological effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, M R

    1980-11-01

    A Concept Development and Evaluation Program is being carried out for a proposed Satellite Power System (SPS). For purposes of this evaluation, a preliminary reference system has been developed. SPS, as described in the reference system, would collect solar energy on satellites in geosychronous orbit in space. The energy would be converted to microwaves and beamed to an earth-receiving antenna (rectenna). One task in the environmental part of the program is the assessment of the nonmicrowave effects on health and the environment. These effects would result from all phases of SPS development and operation. This report covers the current knowledgemore » regarding these effects, and is based on the reference system. The assessment is summarized as to scope, methodology, impacts of terrestrial development, launch and recovery of spacecraft, space activities (including health effects of the space environment, ionizing radiation, electromagnetic exposure, spacecraft charging and environmental interactions, occupational hazards, etc.) and construction and operation of rectenna (ground receiving station).« less

  16. 14 CFR 150.13 - Incorporations by reference.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 150.13 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... Level Meters,” dated 1973. (d) Availability for purchase. Published material incorporated by reference... Chief Counsel, Rules Docket, AGC-200, Federal Aviation Administration Headquarters Building, 800...

  17. 14 CFR 150.13 - Incorporations by reference.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 150.13 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... Level Meters,” dated 1973. (d) Availability for purchase. Published material incorporated by reference... Chief Counsel, Rules Docket, AGC-200, Federal Aviation Administration Headquarters Building, 800...

  18. 14 CFR 150.13 - Incorporations by reference.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 150.13 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... Level Meters,” dated 1973. (d) Availability for purchase. Published material incorporated by reference... Chief Counsel, Rules Docket, AGC-200, Federal Aviation Administration Headquarters Building, 800...

  19. Design Reference Missions for Deep-Space Optical Communication

    NASA Astrophysics Data System (ADS)

    Breidenthal, J.; Abraham, D.

    2016-05-01

    We examined the potential, but uncertain, NASA mission portfolio out to a time horizon of 20 years, to identify mission concepts that potentially could benefit from optical communication, considering their communications needs, the environments in which they would operate, and their notional size, weight, and power constraints. A set of 12 design reference missions was selected to represent the full range of potential missions. These design reference missions span the space of potential customer requirements, and encompass the wide range of applications that an optical ground segment might eventually be called upon to serve. The design reference missions encompass a range of orbit types, terminal sizes, and positions in the solar system that reveal the chief system performance variables of an optical ground segment, and may be used to enable assessments of the ability of alternative systems to meet various types of customer needs.

  20. Common lines modeling for reference free Ab-initio reconstruction in cryo-EM.

    PubMed

    Greenberg, Ido; Shkolnisky, Yoel

    2017-11-01

    We consider the problem of estimating an unbiased and reference-free ab initio model for non-symmetric molecules from images generated by single-particle cryo-electron microscopy. The proposed algorithm finds the globally optimal assignment of orientations that simultaneously respects all common lines between all images. The contribution of each common line to the estimated orientations is weighted according to a statistical model for common lines' detection errors. The key property of the proposed algorithm is that it finds the global optimum for the orientations given the common lines. In particular, any local optima in the common lines energy landscape do not affect the proposed algorithm. As a result, it is applicable to thousands of images at once, very robust to noise, completely reference free, and not biased towards any initial model. A byproduct of the algorithm is a set of measures that allow to asses the reliability of the obtained ab initio model. We demonstrate the algorithm using class averages from two experimental data sets, resulting in ab initio models with resolutions of 20Å or better, even from class averages consisting of as few as three raw images per class. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Personal digital assistant applications for the healthcare provider.

    PubMed

    Keplar, Kristine E; Urbanski, Christopher J

    2003-02-01

    To review some common medical applications available for personal digital assistants (PDAs), with brief discussion of the different PDA operating systems and memory requirements. Key search terms included handheld, PDA, personal digital assistants, and medical applications. The literature was accessed through MEDLINE (1999-August 2002). Other information was obtained through secondary sources such as Web sites describing common PDAs. Medical applications available on PDAs are numerous and include general drug references, specialized drug references (e.g., pediatrics, geriatrics, cardiology, infectious disease), diagnostic guides, medical calculators, herbal medication references, nursing references, toxicology references, and patient tracking databases. Costs and memory requirements for these programs can vary; consequently, the healthcare provider must limit the medication applications that are placed on the handheld computer. This article attempts to systematically describe the common medical applications available for the handheld computer along with cost, memory and download requirements, and Web site information. This review found many excellent PDA drug information applications offering many features which will aid the healthcare provider. Very likely, after using these PDA applications, the healthcare provider will find them indispensable, as their multifunctional capabilities can save time, improve accuracy, and allow for general business procedures as well as being a quick reference tool. To avoid the benefits of this technology might be a step backward.

  2. Adaptable, modular, multi-purpose space vehicle backplane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judd, Stephen; Dallmann, Nicholas; McCabe, Kevin

    An adaptable, modular, multi-purpose (AMM) space vehicle backplane may accommodate boards and components for various missions. The AMM backplane may provide a common hardware interface and common board-to-board communications. Components, connectors, test points, and sensors may be embedded directly into the backplane to provide additional functionality, diagnostics, and system access. Other space vehicle sections may plug directly into the backplane.

  3. On the Essence of Space

    NASA Astrophysics Data System (ADS)

    Kalanov, Temur Z.

    2003-04-01

    A new theory of space is suggested. It represents the new point of view which has arisen from the critical analysis of the foundations of physics (in particular the theory of relativity and quantum mechanics), mathematics, cosmology and philosophy. The main idea following from the analysis is that the concept of movement represents a key to understanding of the essence of space. The starting-point of the theory is represented by the following philosophical (dialectical materialistic) principles. (a) The principle of the materiality (of the objective reality) of the Nature: the Nature (the Universe) is a system (a set) of material objects (particles, bodies, fields); each object has properties, features, and the properties, the features are inseparable characteristics of material object and belong only to material object. (b) The principle of the existence of material object: an object exists as the objective reality, and movement is a form of existence of object. (c) The principle (definition) of movement of object: the movement is change (i.e. transition of some states into others) in general; the movement determines a direction, and direction characterizes the movement. (d) The principle of existence of time: the time exists as the parameter of the system of reference. These principles lead to the following statements expressing the essence of space. (1) There is no space in general, and there exist space only as a form of existence of the properties and features of the object. It means that the space is a set of the measures of the object (the measure is the philosophical category meaning unity of the qualitative and quantitative determinacy of the object). In other words, the space of the object is a set of the states of the object. (2) The states of the object are manifested only in a system of reference. The main informational property of the unitary system researched physical object + system of reference is that the system of reference determines (measures, calculates) the parameters of the subsystem researched physical object (for example, the coordinates of the object M); the parameters characterize the system of reference (for example, the system of coordinates S). (3) Each parameter of the object is its measure. Total number of the mutually independent parameters of the object is called dimension of the space of the object. (4) The set of numerical values (i.e. the range, the spectrum) of each parameter is the subspace of the object. (The coordinate space, the momentum space and the energy space are examples of the subspaces of the object). (5) The set of the parameters of the object is divided into two non intersecting (opposite) classes: the class of the internal parameters and the class of the non internal (i.e. external) parameters. The class of the external parameters is divided into two non intersecting (opposite) subclasses: the subclass of the absolute parameters (characterizing the form, the sizes of the object) and the subclass of the non absolute (relative) parameters (characterizing the position, the coordinates of the object). (6) Set of the external parameters forms the external space of object. It is called geometrical space of object. (7) Since a macroscopic object has three mutually independent sizes, the dimension of its external absolute space is equal to three. Consequently, the dimension of its external relative space is also equal to three. Thus, the total dimension of the external space of the macroscopic object is equal to six. (8) In general case, the external absolute space (i.e. the form, the sizes) and the external relative space (i.e. the position, the coordinates) of any object are mutually dependent because of influence of a medium. The geometrical space of such object is called non Euclidean space. If the external absolute space and the external relative space of some object are mutually independent, then the external relative space of such object is the homogeneous and isotropic geometrical space. It is called Euclidean space of the object. Consequences: (i) the question of true geometry of the Universe is incorrect; (ii) the theory of relativity has no physical meaning.

  4. Prevalence of spinal disorders and their relationships with age and gender

    PubMed Central

    Alshami, Ali M.

    2015-01-01

    Objectives: To establish the period prevalence of spinal disorders referred to physical therapy in a university hospital over a 3-year period, and to determine the relationships of common spinal disorders with patients’ age and gender. Methods: This retrospective study was conducted in the Physical Therapy Department, King Fahd Hospital of the University, Dammam, Saudi Arabia. Computer data of all new electronic referrals from January 2011 to December 2013 were retrieved and reviewed. The computer data included demographic information, referring facility, and diagnosis/disorder. Results: One thousand six hundred and sixty-nine (28.1%) of all referred patients (5929) had spinal disorders. The most common disorders affected the lumbar spine (53.1%) and cervical spine (27.1%), and pain was the most common disorder. Neck pain (60.5%) was more common in patients <30 years old (p<0.001). Cervical spondylosis was common (~30%) in the >30 age groups. Spondylosis and low back pain were more prevalent in women (7.8% and 76.2%) than in men (73.9% and 3.3%). Conclusion: Spinal disorders were common compared with other disorders. Low back pain and neck pain were the most common spinal disorders. Age and gender were weakly related to some of the disorders that affected the lumbar and cervical spine. PMID:25987116

  5. U.S. commercial space activities - Returning the U.S. to preeminence in space

    NASA Technical Reports Server (NTRS)

    Stone, Barbara A.

    1987-01-01

    The current status of NASA's activities related to the commercial development of space is reviewed with particular reference to the emerging new commercial space activities and the post-Challenger policy developments affecting space commerce. The discussion covers the development of U.S. private sector launching capabilities, cooperative agreements with the private sector, the NASA technology utilization program, the technology applications activities of the Office of Commercial Programs, and the activities of the Centers for the Commercial Development of Space program.

  6. Adaptive control of dual-arm robots

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1987-01-01

    Three strategies for adaptive control of cooperative dual-arm robots are described. In the position-position control strategy, the adaptive controllers ensure that the end-effector positions of both arms track desired trajectories in Cartesian space despite unknown time-varying interaction forces exerted through the load. In the position-hybrid control strategy, the adaptive controller of one arm controls end-effector motions in the free directions and applied forces in the constraint directions, while the adaptive controller of the other arm ensures that the end-effector tracks desired position trajectories. In the hybrid-hybrid control strategy, the adaptive controllers ensure that both end-effectors track reference position trajectories while simultaneously applying desired forces on the load. In all three control strategies, the cross-coupling effects between the arms are treated as disturbances which are rejected by the adaptive controllers while following desired commands in a common frame of reference. The adaptive controllers do not require the complex mathematical model of the arm dynamics or any knowledge of the arm dynamic parameters or the load parameters such as mass and stiffness. The controllers have simple structures and are computationally fast for on-line implementation with high sampling rates.

  7. Focus control system for stretched-membrane mirror module

    DOEpatents

    Butler, B.L.; Beninga, K.J.

    1991-05-21

    A focus control system dynamically sets and controls the focal length of a reflective membrane supported between a perimeter frame. A rear membrane is also supported between the perimeter frame rearward and spaced apart from a back side of the reflective membrane. The space between the membranes defines a plenum space into which a mass of gas at a first pressure is inserted. The pressure differential between the first pressure and an external pressure, such as the atmospheric pressure, causes the reflective membrane to assume a first curvature relative to a reference plane associated with the perimeter frame. This curvature defines the focal length of the reflective membrane. The focal length is dynamically controlled by changing the volume of the plenum space, thereby changing the first pressure. The system can be used to change or maintain the pressure differential and hence the front membrane curvature. The plenum volume is changed by pushing or pulling on a central section of the rear membrane using a suitable actuator. Sensing means continuously sense the location of the reflective membrane relative to the reference plane. This sensed position is compared to a reference position, and a resulting error signal, comprising the difference between the sensed position and reference position, drives the actuator in a direction to minimize the difference. A vent value compensates for temperature changes or leaks in the closed volume by allowing the pressure differential to be adjusted as required to center the working range of the actuator about the desired focal length. 13 figures.

  8. Focus control system for stretched-membrane mirror module

    DOEpatents

    Butler, Barry L.; Beninga, Kelly J.

    1991-01-01

    A focus control system dynamically sets and controls the focal length of a reflective membrane supported between a perimeter frame. A rear membrane is also supported between the perimeter frame rearward and spaced apart from a back side of the reflective membrane. The space between the membranes defines a plenum space into which a mass of gas at a first pressure is inserted. The pressure differential between the first pressure and an external pressure, such as the atmospheric pressure, causes the reflective membrane to assume a first curvature relative to a reference plane associated with the perimeter frame. This curvature defines the focal length of the reflective membrane. The focal length is dynamically controlled by changing the volume of the plenum space, thereby changing the first pressure. The system can be used to change or maintain the pressure differential and hence the front membrane curvature. The plenum volume is changed by pushing or pulling on a central section of the rear membrane using a suitable actuator. Sensing means continuously sense the location of the reflective membrane relative to the reference plane. This sensed position is compared to a reference position, and a resulting error signal, comprising the difference between the sensed position and reference position, drives the actuator in a direction to minimize the difference. A vent value compensates for temperature changes or leaks in the closed volume by allowing the pressure differential to be adjusted as required to center the working range of the actuator about the desired focal length.

  9. 29 CFR 1910.30 - Other working surfaces.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... published by the U.S. Department of Commerce, which is incorporated by reference as specified in § 1910.6... removing material. This aisle space is to be independent of working and storage space. (3) Wood platforms...

  10. Research opportunities in space motion sickness, phase 2

    NASA Technical Reports Server (NTRS)

    Talbot, J. M.

    1983-01-01

    Space and motion sickness, the current and projected NASA research program, and the conclusions and suggestions of the ad hoc Working Group are summarized. The frame of reference for the report is ground-based research.

  11. Automated design of paralogue ratio test assays for the accurate and rapid typing of copy number variation

    PubMed Central

    Veal, Colin D.; Xu, Hang; Reekie, Katherine; Free, Robert; Hardwick, Robert J.; McVey, David; Brookes, Anthony J.; Hollox, Edward J.; Talbot, Christopher J.

    2013-01-01

    Motivation: Genomic copy number variation (CNV) can influence susceptibility to common diseases. High-throughput measurement of gene copy number on large numbers of samples is a challenging, yet critical, stage in confirming observations from sequencing or array Comparative Genome Hybridization (CGH). The paralogue ratio test (PRT) is a simple, cost-effective method of accurately determining copy number by quantifying the amplification ratio between a target and reference amplicon. PRT has been successfully applied to several studies analyzing common CNV. However, its use has not been widespread because of difficulties in assay design. Results: We present PRTPrimer (www.prtprimer.org) software for automated PRT assay design. In addition to stand-alone software, the web site includes a database of pre-designed assays for the human genome at an average spacing of 6 kb and a web interface for custom assay design. Other reference genomes can also be analyzed through local installation of the software. The usefulness of PRTPrimer was tested within known CNV, and showed reproducible quantification. This software and database provide assays that can rapidly genotype CNV, cost-effectively, on a large number of samples and will enable the widespread adoption of PRT. Availability: PRTPrimer is available in two forms: a Perl script (version 5.14 and higher) that can be run from the command line on Linux systems and as a service on the PRTPrimer web site (www.prtprimer.org). Contact: cjt14@le.ac.uk Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:23742985

  12. Application of GPS radio occultation to the assessment of temperature profile retrievals from microwave and infrared sounders

    NASA Astrophysics Data System (ADS)

    Feltz, M.; Knuteson, R.; Ackerman, S.; Revercomb, H.

    2014-05-01

    Comparisons of satellite temperature profile products from GPS radio occultation (RO) and hyperspectral infrared (IR)/microwave (MW) sounders are made using a previously developed matchup technique. The profile matchup technique matches GPS RO and IR/MW sounder profiles temporally, within 1 h, and spatially, taking into account the unique RO profile geometry and theoretical spatial resolution by calculating a ray-path averaged sounder profile. The comparisons use the GPS RO dry temperature product. Sounder minus GPS RO differences are computed and used to calculate bias and RMS profile statistics, which are created for global and 30° latitude zones for selected time periods. These statistics are created from various combinations of temperature profile data from the Constellation Observing System for Meteorology, Ionosphere & Climate (COSMIC) network, Global Navigation Satellite System Receiver for Atmospheric Sounding (GRAS) instrument, and the Atmospheric Infrared Sounder (AIRS)/Advanced Microwave Sounding Unit (AMSU), Infrared Atmospheric Sounding Interferometer (IASI)/AMSU, and Crosstrack Infrared Sounder (CrIS)/Advanced Technology Microwave Sounder (ATMS) sounding systems. By overlaying combinations of these matchup statistics for similar time and space domains, comparisons of different sounders' products, sounder product versions, and GPS RO products can be made. The COSMIC GPS RO network has the spatial coverage, time continuity, and stability to provide a common reference for comparison of the sounder profile products. The results of this study demonstrate that GPS RO has potential to act as a common temperature reference and can help facilitate inter-comparison of sounding retrieval methods and also highlight differences among sensor product versions.

  13. Application of GPS radio occultation to the assessment of temperature profile retrievals from microwave and infrared sounders

    NASA Astrophysics Data System (ADS)

    Feltz, M.; Knuteson, R.; Ackerman, S.; Revercomb, H.

    2014-11-01

    Comparisons of satellite temperature profile products from GPS radio occultation (RO) and hyperspectral infrared (IR)/microwave (MW) sounders are made using a previously developed matchup technique. The profile matchup technique matches GPS RO and IR/MW sounder profiles temporally, within 1 h, and spatially, taking into account the unique RO profile geometry and theoretical spatial resolution by calculating a ray-path averaged sounder profile. The comparisons use the GPS RO dry temperature product. Sounder minus GPS RO differences are computed and used to calculate bias and rms profile statistics, which are created for global and 30° latitude zones for selected time periods. These statistics are created from various combinations of temperature profile data from the Constellation Observing System for Meteorology, Ionosphere & Climate (COSMIC) network, Global Navigation Satellite System Receiver for Atmospheric Sounding (GRAS) instrument, and the Atmospheric Infrared Sounder (AIRS)/Advanced Microwave Sounding Unit (AMSU), Infrared Atmospheric Sounding Interferometer (IASI)/AMSU, and Crosstrack Infrared Sounder (CrIS)/Advanced Technology Microwave Sounder (ATMS) sounding systems. By overlaying combinations of these matchup statistics for similar time and space domains, comparisons of different sounders' products, sounder product versions, and GPS RO products can be made. The COSMIC GPS RO network has the spatial coverage, time continuity, and stability to provide a common reference for comparison of the sounder profile products. The results of this study demonstrate that GPS RO has potential to act as a common temperature reference and can help facilitate inter-comparison of sounding retrieval methods and also highlight differences among sensor product versions.

  14. Modular space vehicle boards, control software, reprogramming, and failure recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judd, Stephen; Dallmann, Nicholas; McCabe, Kevin

    A space vehicle may have a modular board configuration that commonly uses some or all components and a common operating system for at least some of the boards. Each modular board may have its own dedicated processing, and processing loads may be distributed. The space vehicle may be reprogrammable, and may be launched without code that enables all functionality and/or components. Code errors may be detected and the space vehicle may be reset to a working code version to prevent system failure.

  15. Phase space interrogation of the empirical response modes for seismically excited structures

    NASA Astrophysics Data System (ADS)

    Paul, Bibhas; George, Riya C.; Mishra, Sudib K.

    2017-07-01

    Conventional Phase Space Interrogation (PSI) for structural damage assessment relies on exciting the structure with low dimensional chaotic waveform, thereby, significantly limiting their applicability to large structures. The PSI technique is presently extended for structure subjected to seismic excitations. The high dimensionality of the phase space for seismic response(s) are overcome by the Empirical Mode Decomposition (EMD), decomposing the responses to a number of intrinsic low dimensional oscillatory modes, referred as Intrinsic Mode Functions (IMFs). Along with their low dimensionality, a few IMFs, retain sufficient information of the system dynamics to reflect the damage induced changes. The mutually conflicting nature of low-dimensionality and the sufficiency of dynamic information are taken care by the optimal choice of the IMF(s), which is shown to be the third/fourth IMFs. The optimal IMF(s) are employed for the reconstruction of the Phase space attractor following Taken's embedding theorem. The widely referred Changes in Phase Space Topology (CPST) feature is then employed on these Phase portrait(s) to derive the damage sensitive feature, referred as the CPST of the IMFs (CPST-IMF). The legitimacy of the CPST-IMF is established as a damage sensitive feature by assessing its variation with a number of damage scenarios benchmarked in the IASC-ASCE building. The damage localization capability, remarkable tolerance to noise contamination and the robustness under different seismic excitations of the feature are demonstrated.

  16. In-flight angular alignment of inertial navigation systems by means of radio aids

    NASA Technical Reports Server (NTRS)

    Tanner, W.

    1972-01-01

    The principles involved in the angular alignment of the inertial reference by nondirectional data from radio aids are developed and compared with conventional methods of alignment such as gyro-compassing and pendulous vertical determination. The specific problem is considered of the space shuttle reentry and a proposed technique for the alignment of the inertial reference system some time before landing. A description is given of the digital simulation of a transponder interrogation system and of its interaction with the inertial navigation system. Data from reentry simulations are used to demonstrate the effectiveness of in-flight inertial system alignment. Concluding remarks refer to other potential applications such as space shuttle orbit insertion and air navigation of conventional aircraft.

  17. Request for Naval Reactors Comment on Proposed Prometheus Space Flight Nuclear Reactor High Tier Reactor Safety Requirements and for Naval Reactors Approval to Transmit These Requirements to JPL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. Kokkinos

    2005-04-28

    The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophymore » on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory.« less

  18. The Implementation and Evaluation of a New Learning Space: A Pilot Study

    ERIC Educational Resources Information Center

    Wilson, Gail; Randall, Marcus

    2012-01-01

    A dramatic, pedagogical shift has occurred in recent years in educational environments in higher education, supported largely by the use of ubiquitous technologies. Increasingly, emphasis is being placed on the design of new learning spaces, often referred to as "Next Generation Learning Spaces" (NGLS) and their impact on pedagogy. The…

  19. 14 CFR § 1203.100 - Legal basis.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Legal basis. § 1203.100 Section § 1203.100 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM Scope § 1203.100 Legal basis. (a) Executive Order 13526 (hereinafter referred to as “the Order”). The...

  20. Farm Fair Voices, Space, History, the Middle Ground and "The Future" of Rural Communities

    ERIC Educational Resources Information Center

    Halsey, John

    2011-01-01

    This article is essentially written as two linked parts. The first part considers how space, spatiality and history can contribute to understanding and "doing something about" the sustainability of rural communities. This is done by extensive reference to Soja's (1989 & 1996) space and spatial theorising and selective perspectives of…

  1. Aperture Averaging of Scintillation for Space-to-Ground Optical Communication Applications.

    DTIC Science & Technology

    1983-08-15

    SCINTILLATION FOR SPACE-TO-GROUND OPTICAL COMUNICATION APPLICATIONS ........................ 5 REFERENCES...theoretical investigations necessary for the evaluation and applica- tion of scientific advances to now military space systems. Versatility and flexibility...systems. Expertise in the latest scientific developments is vital to the accomplishment of tasks related to these problems. The laboratories that con

  2. Personal Space Regulation in Williams Syndrome: The Effect of Familiarity

    ERIC Educational Resources Information Center

    Lough, Emma; Flynn, Emma; Riby, Deborah M.

    2016-01-01

    Personal space refers to a protective barrier that we strive to maintain around our body. We examined personal space regulation in young people with Williams syndrome (WS) and their typically developing, chronological age-matched peers using a parent report questionnaire and a stop-distance paradigm. Individuals with WS were reported by their…

  3. Goals, History and Current Programs of Workshop

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Mr. Robert Fusaro, coordinator for the Glenn Research Center Space Mechanisms program, presented the goals of the workshop, history of previous workshops and gave an overview of current space mechanisms work performed by Glenn Research Center. Highlights of his presentation are shown. Following the presentation, Mr. Fusaro demonstrated the new NASA Space Mechanisms Handbook and Reference Guide CD ROM, which was featured as a highlight of the workshop. The handbook is an authoritative guide for design and testing of space mechanisms and related components. Over 600 pages of guidelines written by 25 experts in the field provide in-depth information on how to design space mechanisms and components, including: deployables, release devices, latches, rotating and pointing mechanisms, dampers, motors, gears, fasteners, valves, etc. The handbook provides details on appropriate environmental and tribological testing methods and practices required to evaluate new mechanisms and components. Distribution of the Handbook and Reference Guide is limited by ITAR (International Traffic in Arms Regulations). It is available only to US companies and citizens. A request form for the CD ROM can be found on the Space Mechanisms Project website at http://www.grc.nasa.gov/WWW/spacemech/.

  4. Exploring the Unknown: Selected Documents in the History of the U.S. Civil Space Program. Volume 4; Accessing Space

    NASA Technical Reports Server (NTRS)

    Logsdon, John M. (Editor); Williamson, Ray A. (Editor); Launius, Roger D. (Editor); Acker, Russell J. (Editor); Garber, Stephen J. (Editor); Friedman, Jonathan L. (Editor)

    1999-01-01

    The documents selected for inclusion in this volume are presented in four major chapters, each covering a particular aspect of access to space and the manner in which it has developed over time. These chapters focus on the evolution toward the giant Saturn V rocket, the development of the Space Shuttle, space transportation commercialization, and future space transportation possibilities. Each chapter in this volume is introduced by an overview essay, prepared by individuals who are particularly well qualified to write on the topic. In the main, these essays are intended to introduce and complement the documents in the chapter and to place them, for the most part, in a chronological and substantive context. Each essay contains references to the documents in the chapter it introduces, and many also contain references to documents in other chapters of the collection. These introductory essays are the responsibility of their individual authors, and the views and conclusions contained therein do not necessarily represent the opinions of either George Washington University or NASA.

  5. Cross support overview and operations concept for future space missions

    NASA Technical Reports Server (NTRS)

    Stallings, William; Kaufeler, Jean-Francois

    1994-01-01

    Ground networks must respond to the requirements of future missions, which include smaller sizes, tighter budgets, increased numbers, and shorter development schedules. The Consultative Committee for Space Data Systems (CCSDS) is meeting these challenges by developing a general cross support concept, reference model, and service specifications for Space Link Extension services for space missions involving cross support among Space Agencies. This paper identifies and bounds the problem, describes the need to extend Space Link services, gives an overview of the operations concept, and introduces complimentary CCSDS work on standardizing Space Link Extension services.

  6. UV meteor observation from a space platform

    NASA Astrophysics Data System (ADS)

    Scarsi, P.

    2004-07-01

    The paper reports on the evaluation of the meteor light curve in the 300-400 nm UV band produced by meteoroids and space debris interacting with the Earth atmosphere; the aim is to assess the visibility of the phenomenon by a near-Earth space platform and to estimate the capability for measuring the solid-body influx on the Earth from outer space. The simulations have been conceived on the basis of general processes only, without introducing a priori observational inputs: the calibration with real data can be made in orbit by validation with "characterized" meteor streams. Computations are made for different values of the entry velocity (12 to 72 km/s) and angle of impact of the meteoroid when entering the atmosphere, with initial-mass values ranging from 10-12 kg to the kg size encompassing the transition from micrometeorites ( m < 10-9-10-8kg) to the "ablation" regime typical of larger masses. The data are presented using units in UV Magnitudo to facilitate direct comparison with the common literature in the field. The results concern observations of the atmosphere up to M UV = 18 by a height of 400 km above the Earth surface (average for the International Space Station--ISS), with reference to the mission "Extreme Universe Space Observatory--EUSO" designed as an external payload for the module "Columbus" of the European Space Agency. Meteors represent for EUSO an observable as a slow UV phenomenon with seconds to minutes characteristic time duration, to be compared to the fast phenomenon typical of the Extensive Air Shower (EAS) induced by the energetic cosmic radiation, ranging from microseconds to milliseconds. Continuous wide-angle observation by EUSO with its high inclination orbit and sensitivity reaching M UV = 18 will allow the in-depth exploration of the meteor "sporadic" component and to isolate the contribution of minor "streams".

  7. Three-Dimensional Messages for Interstellar Communication

    NASA Astrophysics Data System (ADS)

    Vakoch, Douglas A.

    One of the challenges facing independently evolved civilizations separated by interstellar distances is to communicate information unique to one civilization. One commonly proposed solution is to begin with two-dimensional pictorial representations of mathematical concepts and physical objects, in the hope that this will provide a foundation for overcoming linguistic barriers. However, significant aspects of such representations are highly conventional, and may not be readily intelligible to a civilization with different conventions. The process of teaching conventions of representation may be facilitated by the use of three-dimensional representations redundantly encoded in multiple formats (e.g., as both vectors and as rasters). After having illustrated specific conventions for representing mathematical objects in a three-dimensional space, this method can be used to describe a physical environment shared by transmitter and receiver: a three-dimensional space defined by the transmitter--receiver axis, and containing stars within that space. This method can be extended to show three-dimensional representations varying over time. Having clarified conventions for representing objects potentially familiar to both sender and receiver, novel objects can subsequently be depicted. This is illustrated through sequences showing interactions between human beings, which provide information about human behavior and personality. Extensions of this method may allow the communication of such culture-specific features as aesthetic judgments and religious beliefs. Limitations of this approach will be noted, with specific reference to ETI who are not primarily visual.

  8. Vacuum deposited optical coatings experiment (AO 138-4)

    NASA Technical Reports Server (NTRS)

    Charlier, Jean

    1991-01-01

    The aim of this experiment was to test the optical behavior of 20 components and coatings subjected to space exposure. Most of them are commonly used for their reflective or transmittive properties in spaceborne optics. They consist in several kind of metallic and dielectric mirrors designed for the 0.12 to 10 microns spectrum, UV, and NIR bandpass filters, visible, and IR antireflecting coatings, visible/IR dichroic beam splitters, and visible beam splitter. The coatings were deposited on various substrates such as glasses, germanium, magnesium fluoride, quartz, zinc selenide, and kanigened aluminum. Several coating materials were used such as Al, Ag, Au, MgF2, LaF3, ThF3, ThF4, SiO2, TiO2, ZrO2, Al2O3, MgO, Ge, and ZnSe. Five samples of each component were manufactured. Two flight samples were mounted in such a way that one was directly exposed to space and the other looking backwards. The same arrangement was used for the spare samples stored on ground in a box identical to the flight one and they were kept under vacuum during the LDEF mission. Finally, one set of reference components was stocked in a sealed box under a dry nitrogen atmosphere. By comparing the preflight and postflight optical performances of the five samples of each component, it is possible to detect the degradations due to the space exposure.

  9. A Novel Multilayer Correlation Maximization Model for Improving CCA-Based Frequency Recognition in SSVEP Brain-Computer Interface.

    PubMed

    Jiao, Yong; Zhang, Yu; Wang, Yu; Wang, Bei; Jin, Jing; Wang, Xingyu

    2018-05-01

    Multiset canonical correlation analysis (MsetCCA) has been successfully applied to optimize the reference signals by extracting common features from multiple sets of electroencephalogram (EEG) for steady-state visual evoked potential (SSVEP) recognition in brain-computer interface application. To avoid extracting the possible noise components as common features, this study proposes a sophisticated extension of MsetCCA, called multilayer correlation maximization (MCM) model for further improving SSVEP recognition accuracy. MCM combines advantages of both CCA and MsetCCA by carrying out three layers of correlation maximization processes. The first layer is to extract the stimulus frequency-related information in using CCA between EEG samples and sine-cosine reference signals. The second layer is to learn reference signals by extracting the common features with MsetCCA. The third layer is to re-optimize the reference signals set in using CCA with sine-cosine reference signals again. Experimental study is implemented to validate effectiveness of the proposed MCM model in comparison with the standard CCA and MsetCCA algorithms. Superior performance of MCM demonstrates its promising potential for the development of an improved SSVEP-based brain-computer interface.

  10. 47 CFR 61.25 - References to other instruments.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false References to other instruments. 61.25 Section 61.25 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) TARIFFS General Rules for Nondominant Carriers § 61.25 References to other instruments. In...

  11. 76 FR 12358 - Common Formats for Patient Safety Data Collection and Event Reporting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-07

    ... HHS, AHRQ coordinates the development of a set of common definitions and reporting formats (Common... unsafe conditions that increase risks and hazards to patients. Definitions and other details about PSOs... hospitals and skilled nursing facilities. Definition of Common Formats The term ``Common Formats'' refers to...

  12. The Problems in Experimental Foundation of Causal Mechanics

    NASA Astrophysics Data System (ADS)

    Parkhomov, A. G.

    Causal mechanics developed by N.A.Kozyrev (1958,1968) and based on the concept of active properties of time has been a subject for emotional scientific discussions for four decades running. An unusual combination of the attributes "emotional" and "scientific" refers not only to the fact that N.A.Kozyrev's theory provides insight into a number of "dark" effects and phenomena of science such as quantum nonlocality, violation of parity, asymmetry of the right-hand and l-hand in biological objects. The most important thing is that the theory infers the everyday correlation between all objects and processes in the universe — even the most widely spaced ones. What is most appealing is that the universal correlation results from a few simple postulates that are consistent with common sense. Equally important is that causal mechanics is consistent with both classic and quantum mechanics…

  13. Orion Crew Member Injury Predictions during Land and Water Landings

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Littell, Justin D.; Fasanella, Edwin L.; Tabiei, Ala

    2008-01-01

    A review of astronaut whole body impact tolerance is discussed for land or water landings of the next generation manned space capsule named Orion. LS-DYNA simulations of Orion capsule landings are performed to produce a low, moderate, and high probability of injury. The paper evaluates finite element (FE) seat and occupant simulations for assessing injury risk for the Orion crew and compares these simulations to whole body injury models commonly referred to as the Brinkley criteria. The FE seat and crash dummy models allow for varying the occupant restraint systems, cushion materials, side constraints, flailing of limbs, and detailed seat/occupant interactions to minimize landing injuries to the crew. The FE crash test dummies used in conjunction with the Brinkley criteria provides a useful set of tools for predicting potential crew injuries during vehicle landings.

  14. Actively stabilized optical fiber interferometry technique for online/in-process surface measurement.

    PubMed

    Wang, Kaiwei; Martin, Haydn; Jiang, Xiangqian

    2008-02-01

    In this paper, we report the recent progress in optical-beam scanning fiber interferometry for potential online nanoscale surface measurement based on the previous research. It attempts to generate a robust and miniature measurement device for future development into a multiprobe array measurement system. In this research, both fiber-optic-interferometry and the wavelength-division-multiplexing techniques have been used, so that the optical probe and the optical interferometer are well spaced and fast surface scanning can be carried out, allowing flexibility for online measurement. In addition, this system provides a self-reference signal to stabilize the optical detection with high common-mode noise suppression by adopting an active phase tracking and stabilization technique. Low-frequency noise was significantly reduced compared with unstabilized result. The measurement of a sample surface shows an attained repeatability of 3.3 nm.

  15. Boundary-fitted coordinate systems for numerical solution of partial differential equations - A review

    NASA Technical Reports Server (NTRS)

    Thompson, J. F.; Warsi, Z. U. A.; Mastin, C. W.

    1982-01-01

    A comprehensive review of methods of numerically generating curvilinear coordinate systems with coordinate lines coincident with all boundary segments is given. Some general mathematical framework and error analysis common to such coordinate systems is also included. The general categories of generating systems are those based on conformal mapping, orthogonal systems, nearly orthogonal systems, systems produced as the solution of elliptic and hyperbolic partial differential equations, and systems generated algebraically by interpolation among the boundaries. Also covered are the control of coordinate line spacing by functions embedded in the partial differential operators of the generating system and by subsequent stretching transformation. Dynamically adaptive coordinate systems, coupled with the physical solution, and time-dependent systems that follow moving boundaries are treated. References reporting experience using such coordinate systems are reviewed as well as those covering the system development.

  16. [Sex and gender: Two different scientific domains to be clarified].

    PubMed

    Fernández, Juan

    2010-05-01

    Nowadays, the word sex and its related terms (sexual differences, sexual roles and stereotypes), so common not long ago, seems to have been replaced by gender and its related terms (gender differences, gender roles and stereotypes). We can sometimes find both sex and gender sharing the same space in scientific articles, although referring to different domains. In this paper, I try to explain the need for a model that can integrate both of these complex domains of sex and gender, leading to two independent, although complementary, disciplines: Sexology and Genderology. In both cases, I start from a functional standpoint, which will give meaning to both disciplines' specificities, as it is meant to link contributions from different fields of knowledge. This approach can have consequences for research, education, the experience of women, men, and ambiguous individuals, and therapy.

  17. US and foreign alloy cross-reference database

    NASA Technical Reports Server (NTRS)

    Springer, John M.; Morgan, Steven H.

    1991-01-01

    Marshall Space Flight Center and other NASA installations have a continuing requirement for materials data from other countries involved with the development of joint international Spacelab experiments and other hardware. This need includes collecting data for common alloys to ascertain composition, physical properties, specifications, and designations. This data is scattered throughout a large number of specification statements, standards, handbooks, and other technical literature which make a manual search both tedious and often limited in extent. In recognition of this problem, a computerized database of information on alloys was developed along with the software necessary to provide the desired functions to access this data. The intention was to produce an initial database covering aluminum alloys, along with the program to provide a user-interface to the data, and then later to extend and refine the database to include other nonferrous and ferrous alloys.

  18. The common objectives of the European Nordic countries and the role of space

    NASA Astrophysics Data System (ADS)

    Lehnert, Christopher; Giannopapa, Christina; Vaudo, Ersilia

    2016-11-01

    The European Space Agency (ESA) has twenty two Member States with common goals of engaging in European space activities. However, the various Member States have a variety of governance structures, strategic priorities regarding space and other sectorial areas depending on their cultural and geopolitical aspirations. The Nordic countries, namely Denmark, Finland, Norway and Sweden, have similarities which result often in common geopolitical and cultural aspects. These in turn shape their respective priorities and interests in setting up their policies in a number of sectorial areas like shipping and fisheries, energy, immigration, agriculture, security and defence, infrastructures, climate change and the Arctic. Space technology, navigation, earth observation, telecommunication and integrated applications can assist the Nordic countries in developing, implementing and monitoring policies of common interest. This paper provides an in-depth overview and a comprehensive assessment of these common interests in policy areas where space can provide support in their realisation. The first part provides a synthesis of the Nordic countries respective priorities through analysing their government programmes and plans. The priorities are classified according to the six areas of sustainability: energy, environment and climate change, transport, knowledge and innovation, natural resources (fisheries, agriculture, forestry, mining, etc), and security and external relations. Although the national strategies present different national perspectives, at the same time, there are a number of similarities when it comes to overall policy objectives in a number of areas such as the Arctic and climate change. In other words, even though the Arctic plays a different role in each country's national context and there are clear differences as regards geography, access to resources and security policies, the strategies display common general interest in sustainable development and management of resources, protection of the environment, international cooperation and regional security. The second part of this paper focuses on the national space strategies and indicates the main priorities and trends. The priorities vary from one country to the other and can include science, navigation, earth observation, human space flight, launchers, technology development, and/or applications. The motivation for investing in space activities also change (e.g. international cooperation, industrial competitiveness, societal benefits, job creation).

  19. Teaching Writing within the Common European Framework of Reference (CEFR): A Supplement Asynchronous Blended Learning Approach in an EFL Undergraduate Course in Egypt

    ERIC Educational Resources Information Center

    Shaarawy, Hanaa Youssef; Lotfy, Nohayer Esmat

    2013-01-01

    Based on the Common European Framework of Reference (CEFR) and following a blended learning approach (a supplement model), this article reports on a quasi-experiment where writing was taught evenly with other language skills in everyday language contexts and where asynchronous online activities were required from students to extend learning beyond…

  20. SU-E-T-459: Dosimetric Consequences of Rotated Elliptical Proton Spots in Modeling In-Air Proton Fluence for Calculating Doses in Water of Proton Pencil Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matysiak, W; Yeung, D; Hsi, W

    2014-06-01

    Purpose: We present a study of dosimetric consequences on doses in water in modeling in-air proton fluence independently along principle axes for rotated elliptical spots. Methods: Phase-space parameters for modeling in-air fluence are the position sigma for the spatial distribution, the angle sigma for the angular distribution, and the correlation between position and angle distributions. Proton spots of the McLaren proton therapy system were measured at five locations near the isocenter for the energies of 180 MeV and 250 MeV. An elongated elliptical spot rotated with respect to the principle axes was observed for the 180 MeV, while a circular-likemore » spot was observed for the 250 MeV. In the first approach, the phase-space parameters were derived in the principle axes without rotation. In the second approach, the phase space parameters were derived in the reference frame with axes rotated to coincide with the major axes of the elliptical spot. Monte-Carlo simulations with derived phase-space parameters using both approaches to tally doses in water were performed and analyzed. Results: For the rotated elliptical 180 MeV spots, the position sigmas were 3.6 mm and 3.2 mm in principle axes, but were 4.3 mm and 2.0 mm when the reference frame was rotated. Measured spots fitted poorly the uncorrelated 2D Gaussian, but the quality of fit was significantly improved after the reference frame was rotated. As a Result, phase space parameters in the rotated frame were more appropriate for modeling in-air proton fluence of 180 MeV protons. Considerable differences were observed in Monte Carlo simulated dose distributions in water with phase-space parameters obtained with the two approaches. Conclusion: For rotated elliptical proton spots, phase-space parameters obtained in the rotated reference frame are better for modeling in-air proton fluence, and can be introduced into treatment planning systems.« less

  1. Method of pedestal and common-mode noise correction for switched-capacitor analog memories

    DOEpatents

    Britton, C.L.

    1997-09-23

    A method and apparatus are disclosed for correcting common-mode noise and pedestal noise in a multichannel array of switched-capacitor analog memories wherein each analog memory is connected to an associated analog-to-digital converter. The apparatus comprises a single differential element in two different embodiments. In a first embodiment, the differential element is a reference analog memory connected to a buffer. In the second embodiment, the differential dement is a reference analog memory connected to a reference analog-to-digital connected to an array of digital summing circuits. 4 figs.

  2. Method of pedestal and common-mode noise correction for switched-capacitor analog memories

    DOEpatents

    Britton, C.L.

    1996-12-31

    A method and apparatus are disclosed for correcting common-mode noise and pedestal noise in a multichannel array of switched-capacitor analog memories wherein each analog memory is connected to an associated analog-to-digital converter. The apparatus comprises a single differential element in two different embodiments. In a first embodiment, the differential element is a reference analog memory connected to a buffer. In the second embodiment, the differential element is a reference analog memory connected to a reference analog-to-digital connected to an array of digital summing circuits. 4 figs.

  3. Space Construction System Analysis. Part 2: Executive summary

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A detailed, end-to-end analysis of the activities, techniques, equipment and Shuttle provisions required to construct a reference project system is described. Included are: platform definition; construction analysis; cost and programmatics; and space construction experiments concepts.

  4. Conceptual Match as a Determinant of Reference Reuse in Dialogue

    ERIC Educational Resources Information Center

    Knutsen, Dominique; Le Bigot, Ludovic

    2017-01-01

    As speakers interact, they add references to their common ground, which they can then reuse to facilitate listener comprehension. However, all references are not equally likely to be reused. The purpose of this study was to shed light on how the speakers' conceptualizations of the referents under discussion affect reuse (along with a generation…

  5. Study on the calibration and optimization of double theodolites baseline

    NASA Astrophysics Data System (ADS)

    Ma, Jing-yi; Ni, Jin-ping; Wu, Zhi-chao

    2018-01-01

    For the double theodolites measurement system baseline as the benchmark of the scale of the measurement system and affect the accuracy of the system, this paper puts forward a method for calibration and optimization of the double theodolites baseline. Using double theodolites to measure the known length of the reference ruler, and then reverse the baseline formula. Based on the error propagation law, the analyses show that the baseline error function is an important index to measure the accuracy of the system, and the reference ruler position, posture and so on have an impact on the baseline error. The optimization model is established and the baseline error function is used as the objective function, and optimizes the position and posture of the reference ruler. The simulation results show that the height of the reference ruler has no effect on the baseline error; the posture is not uniform; when the reference ruler is placed at x=500mm and y=1000mm in the measurement space, the baseline error is the smallest. The experimental results show that the experimental results are consistent with the theoretical analyses in the measurement space. In this paper, based on the study of the placement of the reference ruler, for improving the accuracy of the double theodolites measurement system has a reference value.

  6. A Common Communications, Navigation and Surveillance Infrastructure for Accommodating Space Vehicles in the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    VanSuetendael, RIchard; Hayes, Alan; Birr, Richard

    2008-01-01

    Suborbital space flight and space tourism are new potential markets that could significantly impact the National Airspace System (NAS). Numerous private companies are developing space flight capabilities to capture a piece of an emerging commercial space transportation market. These entrepreneurs share a common vision that sees commercial space flight as a profitable venture. Additionally, U.S. space exploration policy and national defense will impose significant additional demands on the NAS. Air traffic service providers must allow all users fair access to limited airspace, while ensuring that the highest levels of safety, security, and efficiency are maintained. The FAA's Next Generation Air Transportation System (NextGen) will need to accommodate spacecraft transitioning to and from space through the NAS. To accomplish this, space and air traffic operations will need to be seamlessly integrated under some common communications, navigation and surveillance (CNS) infrastructure. As part of NextGen, the FAA has been developing the Automatic Dependent Surveillance Broadcast (ADS-B) which utilizes the Global Positioning System (GPS) to track and separate aircraft. Another key component of NextGen, System-Wide Information Management/ Network Enabled Operations (SWIM/NEO), is an open architecture network that will provide NAS data to various customers, system tools and applications. NASA and DoD are currently developing a space-based range (SBR) concept that also utilizes GPS, communications satellites and other CNS assets. The future SBR will have very similar utility for space operations as ADS-B and SWIM has for air traffic. Perhaps the FAA, NASA, and DoD should consider developing a common space-based CNS infrastructure to support both aviation and space transportation operations. This paper suggests specific areas of research for developing a CNS infrastructure that can accommodate spacecraft and other new types of vehicles as an integrated part of NextGen.

  7. Habitability in Advanced Space Mission Design. Part 2; Evaluation of Habitation Elements

    NASA Technical Reports Server (NTRS)

    Adams, Constance M.; McCurdy, Matthew R.

    2000-01-01

    Habitability is a fundamental component of any long-duration human habitat. Due to the pressures on the crew and the criticality of their performance, this is particularly true of habitats or vehicles proposed for use in any human space mission of duration over 30 days. This paper, the second of three on this subject, will focus on evaluating all the vehicles currently under consideration for the Mars Design Reference Mission through application of metrics for habitability (proposed in a previous paper, see references Adams/McCurdy 1999).

  8. Manned space flight nuclear system safety. Volume 3: Reactor system preliminary nuclear safety analysis. Part 2A: Accident model document, appendix

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The detailed abort sequence trees for the reference zirconium hydride (ZrH) reactor power module that have been generated for each phase of the reference Space Base program mission are presented. The trees are graphical representations of causal sequences. Each tree begins with the phase identification and the dichotomy between success and failure. The success branch shows the mission phase objective as being achieved. The failure branch is subdivided, as conditions require, into various primary initiating abort conditions.

  9. Error assessment of local tie vectors in space geodesy

    NASA Astrophysics Data System (ADS)

    Falkenberg, Jana; Heinkelmann, Robert; Schuh, Harald

    2014-05-01

    For the computation of the ITRF, the data of the geometric space-geodetic techniques on co-location sites are combined. The combination increases the redundancy and offers the possibility to utilize the strengths of each technique while mitigating their weaknesses. To enable the combination of co-located techniques each technique needs to have a well-defined geometric reference point. The linking of the geometric reference points enables the combination of the technique-specific coordinate to a multi-technique site coordinate. The vectors between these reference points are called "local ties". The realization of local ties is usually reached by local surveys of the distances and or angles between the reference points. Identified temporal variations of the reference points are considered in the local tie determination only indirectly by assuming a mean position. Finally, the local ties measured in the local surveying network are to be transformed into the ITRF, the global geocentric equatorial coordinate system of the space-geodetic techniques. The current IERS procedure for the combination of the space-geodetic techniques includes the local tie vectors with an error floor of three millimeters plus a distance dependent component. This error floor, however, significantly underestimates the real accuracy of local tie determination. To fullfill the GGOS goals of 1 mm position and 0.1 mm/yr velocity accuracy, an accuracy of the local tie will be mandatory at the sub-mm level, which is currently not achievable. To assess the local tie effects on ITRF computations, investigations of the error sources will be done to realistically assess and consider them. Hence, a reasonable estimate of all the included errors of the various local ties is needed. An appropriate estimate could also improve the separation of local tie error and technique-specific error contributions to uncertainties and thus access the accuracy of space-geodetic techniques. Our investigations concern the simulation of the error contribution of each component of the local tie definition and determination. A closer look into the models of reference point definition, of accessibility, of measurement, and of transformation is necessary to properly model the error of the local tie. The effect of temporal variations on the local ties will be studied as well. The transformation of the local survey into the ITRF can be assumed to be the largest error contributor, in particular the orientation of the local surveying network to the ITRF.

  10. 47 CFR 61.74 - References to other instruments.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... other document or instrument. (b) Tariffs for end-on-end through services may reference the tariffs of... 47 Telecommunication 3 2010-10-01 2010-10-01 false References to other instruments. 61.74 Section 61.74 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES...

  11. Laser guide stars for optical free-space communications

    NASA Astrophysics Data System (ADS)

    Mata-Calvo, Ramon; Bonaccini Calia, Domenico; Barrios, Ricardo; Centrone, Mauro; Giggenbach, Dirk; Lombardi, Gianluca; Becker, Peter; Zayer, Igor

    2017-02-01

    The German Aerospace Center (DLR) and the European Southern Observatory (ESO) performed a measurement campaign together in April and July 2016 at Teide-Observatory (Tenerife), with the support of the European Space Agency (ESA), to investigate the use of laser guide stars (LGS) in ground to space optical communications. Atmospheric turbulence causes strong signal fluctuations in the uplink, due to scintillation and beam wander. In space communications, the use of the downlink channel as reference for pointing and for pre-distortion adaptive optics is limited by the size of the isokinetic and isoplanatic angle in relation to the required point-ahead angle. Pointing and phase errors due to the decorrelation between downward and upward beam due to the point-ahead angle may have a severe impact on the required transmit power and the stability of the communications link. LGSs provide a self-tailored reference to any optical ground-to-space link, independently of turbulence conditions and required point-ahead angle. In photon-starved links, typically in deep-space scenarios, LGSs allow dedicating all downlink received signal to communications purposes, increasing the available link margin. The scope of the joint DLR-ESO measurement campaign was, first, to measure the absolute value of the beam wander (uplink-tilt) using a LGS, taking a natural star as a reference, and, second, to characterize the decrease of correlation between uplink-tilt and downlink-tilt with respect to the angular separation between both sources. This paper describes the experiments performed during the measurement campaigns, providing an overview of the measured data and the first outcomes of the data post-processing.

  12. Geoscience laser altimeter system-stellar reference system

    NASA Astrophysics Data System (ADS)

    Millar, Pamela S.; Sirota, J. Marcos

    1998-01-01

    GLAS is an EOS space-based laser altimeter being developed to profile the height of the Earth's ice sheets with ~15 cm single shot accuracy from space under NASA's Mission to Planet Earth (MTPE). The primary science goal of GLAS is to determine if the ice sheets are increasing or diminishing for climate change modeling. This is achieved by measuring the ice sheet heights over Greenland and Antarctica to 1.5 cm/yr over 100 km×100 km areas by crossover analysis (Zwally 1994). This measurement performance requires the instrument to determine the pointing of the laser beam to ~5 urad (1 arcsecond), 1-sigma, with respect to the inertial reference frame. The GLAS design incorporates a stellar reference system (SRS) to relate the laser beam pointing angle to the star field with this accuracy. This is the first time a spaceborne laser altimeter is measuring pointing to such high accuracy. The design for the stellar reference system combines an attitude determination system (ADS) with a laser reference system (LRS) to meet this requirement. The SRS approach and expected performance are described in this paper.

  13. A Ka-Band Celestial Reference Frame with Applications to Deep Space Navigation

    NASA Technical Reports Server (NTRS)

    Jacobs, Christopher S.; Clark, J. Eric; Garcia-Miro, Cristina; Horiuchi, Shinji; Sotuela, Ioana

    2011-01-01

    The Ka-band radio spectrum is now being used for a wide variety of applications. This paper highlights the use of Ka-band as a frequency for precise deep space navigation based on a set of reference beacons provided by extragalactic quasars which emit broadband noise at Ka-band. This quasar-based celestial reference frame is constructed using X/Ka-band (8.4/32 GHz) from fifty-five 24-hour sessions with the Deep Space Network antennas in California, Australia, and Spain. We report on observations which have detected 464 sources covering the full 24 hours of Right Ascension and declinations down to -45 deg. Comparison of this X/Ka-band frame to the international standard S/X-band (2.3/8.4 GHz) ICRF2 shows wRMS agreement of approximately 200 micro-arcsec in alpha cos(delta) and approximately 300 micro-arcsec in delta. There is evidence for systematic errors at the 100 micro-arcsec level. Known errors include limited SNR, lack of instrumental phase calibration, tropospheric refraction mis-modeling, and limited southern geometry. The motivation for extending the celestial reference frame to frequencies above 8 GHz is to access more compact source morphology for improved frame stability and to support spacecraft navigation for Ka-band based NASA missions.

  14. Learning to Explain Astronomy Across Moving Frames of Reference: Exploring the role of classroom and planetarium-based instructional contexts

    NASA Astrophysics Data System (ADS)

    Plummer, Julia Diane; Kocareli, Alicia; Slagle, Cynthia

    2014-05-01

    Learning astronomy involves significant spatial reasoning, such as learning to describe Earth-based phenomena and understanding space-based explanations for those phenomena as well as using the relevant size and scale information to interpret these frames of reference. This study examines daily celestial motion (DCM) as one case of how children learn to move between frames of reference in astronomy wherein one explains Earth-based descriptions of the Sun's, Moon's, and stars' apparent motion using the Earth's daily rotation. We analysed interviews with 8-9-year-old students (N = 99) who participated in one of four instructional conditions emphasizing: the space-based perspective; the Earth-based perspective in the planetarium; constructing explanations for the Earth-based observations; and a combination of the planetarium plus constructing explanations in the classroom. We used an embodied cognition framework to analyse outcomes while also considering challenges learners face due to the high cognitive demands of spatial reasoning. Results support the hypothesis that instruction should engage students in learning both the Earth-based observations and space-based explanations, as focusing on a single frame of reference resulted in less sophisticated explanations; however, few students were able to construct a fully scientific explanation after instruction.

  15. Modeling extracellular electrical stimulation: I. Derivation and interpretation of neurite equations.

    PubMed

    Meffin, Hamish; Tahayori, Bahman; Grayden, David B; Burkitt, Anthony N

    2012-12-01

    Neuroprosthetic devices, such as cochlear and retinal implants, work by directly stimulating neurons with extracellular electrodes. This is commonly modeled using the cable equation with an applied extracellular voltage. In this paper a framework for modeling extracellular electrical stimulation is presented. To this end, a cylindrical neurite with confined extracellular space in the subthreshold regime is modeled in three-dimensional space. Through cylindrical harmonic expansion of Laplace's equation, we derive the spatio-temporal equations governing different modes of stimulation, referred to as longitudinal and transverse modes, under types of boundary conditions. The longitudinal mode is described by the well-known cable equation, however, the transverse modes are described by a novel ordinary differential equation. For the longitudinal mode, we find that different electrotonic length constants apply under the two different boundary conditions. Equations connecting current density to voltage boundary conditions are derived that are used to calculate the trans-impedance of the neurite-plus-thin-extracellular-sheath. A detailed explanation on depolarization mechanisms and the dominant current pathway under different modes of stimulation is provided. The analytic results derived here enable the estimation of a neurite's membrane potential under extracellular stimulation, hence bypassing the heavy computational cost of using numerical methods.

  16. Goddard with Vacuum Tube Device

    NASA Image and Video Library

    2017-12-08

    Robert H. Goddard with vacuum tube apparatus he built in 1916 to research rocket efficiency. Dr. Robert Hutchings Goddard is commonly referred to as the father of American rocketry. The same year he built the apparatus, Goddard wrote a study requesting funding from the Smithsonian Institution so that he could continue his rocket research, which he had begun in 1907 while still a student at Worcester Polytechnic Institute. A brilliant physicist, with a unique genius for invention, Goddard may not have succeeded had it not been for the Smithsonian Institution and later the Daniel Guggenheim Foundation and his employer the Worcester Polytechnic Institute of Clark University. The former gave him research monies while the Institute provided leaves of absence so that he could continue his life's work. He was the first scientist who not only realized the potential of missiles and space flight, but also contributed directly to making them a reality. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  17. Profits and prophets: Derrida on linguistic bereavement and (Im)possibility in nursing.

    PubMed

    Pesut, Barbara

    2018-01-01

    The work of Jacques Derrida has received relatively little attention within nursing philosophy. Perhaps this is because Derrida is known best for deconstructing philosophy itself, a task he performed by making language unintelligible to make a point. This in itself makes his work daunting for nurses who do applied philosophy. Despite these difficulties, Derrida's focus on holding open a space for ideas, particularly those ideas that are invisible or unpopular, holds potential for enhancing the diversity of ideas within nursing. His work, liberally scattered with religious references, and focused on deconstructing language that served the profits of a few, earned him the characterization of a prophet without religion. This idea was further supported in the way his deconstruction attempted to keep spaces open for the un-representable and its generativity in opening new possibilities in life. A deconstruction for generative purposes is particularly helpful within palliative care where language quickly takes on dogma in the face of mystery and where new possibilities support life amidst the irrevocable nature of death. In this article, I discuss Derrida's deconstructive approach of differance and then apply that approach to language common in palliative care. © 2017 John Wiley & Sons Ltd.

  18. Current Status of NASA's Heavy Lift Plans

    NASA Technical Reports Server (NTRS)

    Creech, Steve

    2010-01-01

    Numerous studies since the Apollo Program of the 1960s have highlighted the benefits of - and the need for - a national heavy lift launch capability to support human exploration, science, national security, and commercial development of space. NASA's most recent and most refined effort to develop that heavy lift capability is the Ares V. Ares V is a key element of NASA's Constellation Program. It s overall goal s part of approved national space policy is to retire the Space Shuttle and develop its successor, complete the International Space Station, and resume human exploration beyond low Earth orbit (LEO), beginning with exploration of the Moon as a step to other destinations in the Solar System. Ares V s first role is that of cargo vehicle to carry a lunar lander into Earth orbit, rendezvous with astronauts launched on the smaller Ares I crew launch vehicle, and perform the trans lunar injection (TLI) mission to send the mated crew and lander vehicles to the Moon. The design reference missions (DRMs) envisioned for it also include direct lunar cargo flights and a human Mars mission. Although NASA's priority from the start of the Constellation Program to the present has been development of the Ares I and Orion crew vehicle to replace the retiring Shuttle fleet, the Ares team has made significant progress in understanding the performance, design trades, technology needs, mission scenarios, ground and flight operations, cost, and other factors associated with heavy lift development. The current reference configuration was selected during the Lunar Capabilities Concept Review (LCCR) in fall 2008. That design has served since then as a point of departure for further refinements and trades among five participating NASA field centers. Ares V development to date has benefited from progress on the Ares I due to commonality between the vehicles. The Ares I first stage completed a successful firing of a 5-segment solid rocket motor. The Ares I-X launch Numerous studies since the Apollo Program of the 1960s have highlighted the benefits of and the need for - a national heavy lift launch capability to support human exploration, science, national security, and commercial development of space. NASA s most recent and most refined effort to develop that heavy lift capability is the Ares V. Ares V is a key element of NASA s Constellation Program. It s overall goal s part of approved national space policy is to retire the Space Shuttle and develop its successor, complete the International Space Station, and resume human exploration beyond low Earth orbit (LEO), beginning with exploration of the Moon as a step to other destinations in the Solar System. Ares V s first role is that of cargo vehicle to carry a lunar lander into Earth orbit, rendezvous with astronauts launched on the smaller Ares I crew launch vehicle, and perform the trans lunar injection (TLI) mission to send the mated crew and lander vehicles to the Moon. The design reference missions (DRMs) envisioned for it also include direct lunar cargo flights and a human Mars mission. Although NASA s priority from the start of the Constellation Program to the present has been development of the Ares I and Orion crew vehicle to replace the retiring Shuttle fleet, the Ares team has made significant progress in understanding the performance, design trades, technology needs, mission scenarios, ground and flight operations, cost, and other factors associated with heavy lift development. The current reference configuration was selected during the Lunar Capabilities Concept Review (LCCR) in fall 2008. That design has served since then as a point of departure for further refinements and trades among five participating NASA field centers. Ares V development to date has benefited from progress on the Ares I due to commonality between the vehicles. The Ares I first stage completed a successful firing of a 5-segment solid rocket motor. The Ares I-X launch successfully demonstrated in suborbital flighhe ability to assemble, prepare, launch, control and recover the Ares I configuration and compare performance to computer models. Component tests continue on the J-2X engine, which will put both the Ares I and Ares V upper stages into orbit. In addition, more than 100,000 parts have been manufactured or on the assembly line for the first J-2X powerpack and the first two development engines, with hot fire tests to begin in 2011. This paper will further detail the progress to date on the Ares V and planned activities for the remainder of 2010. In addition, the Ares V team has continued its outreach to potential user communities in science and national security. Through the Constellation Program, NASA has amassed an enormous knowledge base in the design, technologies, and operations of heavy lift launch vehicles that will be a national asset for any future launch vehicle decision. This early phase of the design presents the best opportunity to incorporate where possible the insights and needs of other users.

  19. Augmenting the Funding Sources for Space Science and the ASTRO-1 Space Telescope

    NASA Astrophysics Data System (ADS)

    Morse, Jon

    2015-08-01

    The BoldlyGo Institute was formed in 2013 to augment the planned space science portfolio through philanthropically funded robotic space missions, similar to how some U.S. medical institutes and ground-based telescopes are funded. I introduce BoldlyGo's two current projects: the SCIM mission to Mars and the ASTRO-1 space telescope. In particular, ASTRO-1 is a 1.8-meter off-axis (unobscured) ultraviolet-visible space observatory to be located in a Lagrange point or heliocentric orbit with a wide-field panchromatic camera, medium- and high-resolution spectrograph, and high-contrast imaging coronagraph and/or an accompanying starshade/occulter. It is intended for the post-Hubble Space Telescope era in the 2020s, enabling unique measurements of a broad range of celestial targets, while providing vital complementary capabilities to other ground- and space-based facilities such as the JWST, ALMA, WFIRST-AFTA, LSST, TESS, Euclid, and PLATO. The ASTRO-1 architecture simultaneously wields great scientific power while being technically viable and affordable. A wide variety of scientific programs can be accomplished, addressing topics across space astronomy, astrophysics, fundamental physics, and solar system science, as well as being technologically informative to future large-aperture programs. ASTRO-1 is intended to be a new-generation research facility serving a broad national and international community, as well as a vessel for impactful public engagement. Traditional institutional partnerships and consortia, such as are common with private ground-based observatories, may play a role in the support and governance of ASTRO-1; we are currently engaging interested international organizations. In addition to our planned open guest observer program and accessible data archive, we intend to provide a mechanism whereby individual scientists can buy in to a fraction of the gauranteed observing time. Our next step in ASTRO-1 development is to form the ASTRO-1 Requirements Team (ART), to which international scientists are invited to apply. The ART will be tasked with anchoring the science case, optimizing the observatory design, and constructing a design reference mission during late-2015 and 2016.

  20. Laser communications through the atmosphere

    NASA Technical Reports Server (NTRS)

    Shaik, Kamran; Churnside, J. H.

    1988-01-01

    Atmospheric properties affecting laser propagation with reference to optical communications are reviewed. Some of the optical space network configurations and various diversity techniques that may need to be utilized to develop robust bi-directional space-earth laser communication links are explored.

  1. Comparison of ITRF2014 station coordinate input time series of DORIS, VLBI and GNSS

    NASA Astrophysics Data System (ADS)

    Tornatore, Vincenza; Tanır Kayıkçı, Emine; Roggero, Marco

    2016-12-01

    In this paper station coordinate time series from three space geodesy techniques that have contributed to the realization of the International Terrestrial Reference Frame 2014 (ITRF2014) are compared. In particular the height component time series extracted from official combined intra-technique solutions submitted for ITRF2014 by DORIS, VLBI and GNSS Combination Centers have been investigated. The main goal of this study is to assess the level of agreement among these three space geodetic techniques. A novel analytic method, modeling time series as discrete-time Markov processes, is presented and applied to the compared time series. The analysis method has proven to be particularly suited to obtain quasi-cyclostationary residuals which are an important property to carry out a reliable harmonic analysis. We looked for common signatures among the three techniques. Frequencies and amplitudes of the detected signals have been reported along with their percentage of incidence. Our comparison shows that two of the estimated signals, having one-year and 14 days periods, are common to all the techniques. Different hypotheses on the nature of the signal having a period of 14 days are presented. As a final check we have compared the estimated velocities and their standard deviations (STD) for the sites that co-located the VLBI, GNSS and DORIS stations, obtaining a good agreement among the three techniques both in the horizontal (1.0 mm/yr mean STD) and in the vertical (0.7 mm/yr mean STD) component, although some sites show larger STDs, mainly due to lack of data, different data spans or noisy observations.

  2. A synergic simulation-optimization approach for analyzing biomolecular dynamics in living organisms.

    PubMed

    Sadegh Zadeh, Kouroush

    2011-01-01

    A synergic duo simulation-optimization approach was developed and implemented to study protein-substrate dynamics and binding kinetics in living organisms. The forward problem is a system of several coupled nonlinear partial differential equations which, with a given set of kinetics and diffusion parameters, can provide not only the commonly used bleached area-averaged time series in fluorescence microscopy experiments but more informative full biomolecular/drug space-time series and can be successfully used to study dynamics of both Dirac and Gaussian fluorescence-labeled biomacromolecules in vivo. The incomplete Cholesky preconditioner was coupled with the finite difference discretization scheme and an adaptive time-stepping strategy to solve the forward problem. The proposed approach was validated with analytical as well as reference solutions and used to simulate dynamics of GFP-tagged glucocorticoid receptor (GFP-GR) in mouse cancer cell during a fluorescence recovery after photobleaching experiment. Model analysis indicates that the commonly practiced bleach spot-averaged time series is not an efficient approach to extract physiological information from the fluorescence microscopy protocols. It was recommended that experimental biophysicists should use full space-time series, resulting from experimental protocols, to study dynamics of biomacromolecules and drugs in living organisms. It was also concluded that in parameterization of biological mass transfer processes, setting the norm of the gradient of the penalty function at the solution to zero is not an efficient stopping rule to end the inverse algorithm. Theoreticians should use multi-criteria stopping rules to quantify model parameters by optimization. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Energy Efficiency in Small Server Rooms: Field Surveys and Findings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, Iris; Greenberg, Steve; Mahdavi, Roozbeh

    Fifty-seven percent of US servers are housed in server closets, server rooms, and localized data centers, in what are commonly referred to as small server rooms, which comprise 99percent of all server spaces in the US. While many mid-tier and enterprise-class data centers are owned by large corporations that consider energy efficiency a goal to minimize business operating costs, small server rooms typically are not similarly motivated. They are characterized by decentralized ownership and management and come in many configurations, which creates a unique set of efficiency challenges. To develop energy efficiency strategies for these spaces, we surveyed 30 smallmore » server rooms across eight institutions, and selected four of them for detailed assessments. The four rooms had Power Usage Effectiveness (PUE) values ranging from 1.5 to 2.1. Energy saving opportunities ranged from no- to low-cost measures such as raising cooling set points and better airflow management, to more involved but cost-effective measures including server consolidation and virtualization, and dedicated cooling with economizers. We found that inefficiencies mainly resulted from organizational rather than technical issues. Because of the inherent space and resource limitations, the most effective measure is to operate servers through energy-efficient cloud-based services or well-managed larger data centers, rather than server rooms. Backup power requirement, and IT and cooling efficiency should be evaluated to minimize energy waste in the server space. Utility programs are instrumental in raising awareness and spreading technical knowledge on server operation, and the implementation of energy efficiency measures in small server rooms.« less

  4. SOLAR CYCLE PROPAGATION, MEMORY, AND PREDICTION: INSIGHTS FROM A CENTURY OF MAGNETIC PROXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munoz-Jaramillo, Andres; DeLuca, Edward E.; Dasi-Espuig, Maria

    The solar cycle and its associated magnetic activity are the main drivers behind changes in the interplanetary environment and Earth's upper atmosphere (commonly referred to as space weather). These changes have a direct impact on the lifetime of space-based assets and can create hazards to astronauts in space. In recent years there has been an effort to develop accurate solar cycle predictions (with aims at predicting the long-term evolution of space weather), leading to nearly a hundred widely spread predictions for the amplitude of solar cycle 24. A major contributor to the disagreement is the lack of direct long-term databasesmore » covering different components of the solar magnetic field (toroidal versus poloidal). Here, we use sunspot area and polar faculae measurements spanning a full century (as our toroidal and poloidal field proxies) to study solar cycle propagation, memory, and prediction. Our results substantiate predictions based on the polar magnetic fields, whereas we find sunspot area to be uncorrelated with cycle amplitude unless multiplied by area-weighted average tilt. This suggests that the joint assimilation of tilt and sunspot area is a better choice (with aims to cycle prediction) than sunspot area alone, and adds to the evidence in favor of active region emergence and decay as the main mechanism of poloidal field generation (i.e., the Babcock-Leighton mechanism). Finally, by looking at the correlation between our poloidal and toroidal proxies across multiple cycles, we find solar cycle memory to be limited to only one cycle.« less

  5. The "Common European Framework of Reference for Languages," the European Language Portfolio, and Language Teaching/Learning at University: An Argument and Some Proposals

    ERIC Educational Resources Information Center

    Little, David

    2016-01-01

    I begin this article by briefly explaining why I think CercleS should encourage university language centres to align their courses and assessment with the proficiency levels of the "Common European Framework of Reference for Languages" (CEFR) and why they should use a version of the European Language Portfolio (ELP) to support the…

  6. Space disposal of nuclear wastes

    NASA Technical Reports Server (NTRS)

    Priest, C. C.; Nixon, R. F.; Rice, E. E.

    1980-01-01

    The DOE has been studying several options for nuclear waste disposal, among them space disposal, which NASA has been assessing. Attention is given to space disposal destinations noting that a circular heliocentric orbit about halfway between Earth and Venus is the reference option in space disposal studies. Discussion also covers the waste form, showing that parameters to be considered include high waste loading, high thermal conductivity, thermochemical stability, resistance to leaching, fabrication, resistance to oxidation and to thermal shock. Finally, the Space Shuttle nuclear waste disposal mission profile is presented.

  7. Reference earth orbital research and applications investigations (blue book). Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The criteria, guidelines, and an organized approach for use in the space station and space shuttle program definition phase are presented. Subjects discussed are: (1) background information and evolution of the studies, (2) definition of terms used, (3) concepts of the space shuttle, space station, experiment modules, shuttle-sortie operations and modular space station, and (4) summary of functional program element (FPE) requirements. Diagrams of the various configurations and the experimental equipment to be installed in the structures are included.

  8. Wide field of view common-path lateral-shearing digital holographic interference microscope

    NASA Astrophysics Data System (ADS)

    Vora, Priyanka; Trivedi, Vismay; Mahajan, Swapnil; Patel, Nimit; Joglekar, Mugdha; Chhaniwal, Vani; Moradi, Ali-Reza; Javidi, Bahram; Anand, Arun

    2017-12-01

    Quantitative three-dimensional (3-D) imaging of living cells provides important information about the cell morphology and its time variation. Off-axis, digital holographic interference microscopy is an ideal tool for 3-D imaging, parameter extraction, and classification of living cells. Two-beam digital holographic microscopes, which are usually employed, provide high-quality 3-D images of micro-objects, albeit with lower temporal stability. Common-path digital holographic geometries, in which the reference beam is derived from the object beam, provide higher temporal stability along with high-quality 3-D images. Self-referencing geometry is the simplest of the common-path techniques, in which a portion of the object beam itself acts as the reference, leading to compact setups using fewer optical elements. However, it has reduced field of view, and the reference may contain object information. Here, we describe the development of a common-path digital holographic microscope, employing a shearing plate and converting one of the beams into a separate reference by employing a pin-hole. The setup is as compact as self-referencing geometry, while providing field of view as wide as that of a two-beam microscope. The microscope is tested by imaging and quantifying the morphology and dynamics of human erythrocytes.

  9. Wide field of view common-path lateral-shearing digital holographic interference microscope.

    PubMed

    Vora, Priyanka; Trivedi, Vismay; Mahajan, Swapnil; Patel, Nimit; Joglekar, Mugdha; Chhaniwal, Vani; Moradi, Ali-Reza; Javidi, Bahram; Anand, Arun

    2017-12-01

    Quantitative three-dimensional (3-D) imaging of living cells provides important information about the cell morphology and its time variation. Off-axis, digital holographic interference microscopy is an ideal tool for 3-D imaging, parameter extraction, and classification of living cells. Two-beam digital holographic microscopes, which are usually employed, provide high-quality 3-D images of micro-objects, albeit with lower temporal stability. Common-path digital holographic geometries, in which the reference beam is derived from the object beam, provide higher temporal stability along with high-quality 3-D images. Self-referencing geometry is the simplest of the common-path techniques, in which a portion of the object beam itself acts as the reference, leading to compact setups using fewer optical elements. However, it has reduced field of view, and the reference may contain object information. Here, we describe the development of a common-path digital holographic microscope, employing a shearing plate and converting one of the beams into a separate reference by employing a pin-hole. The setup is as compact as self-referencing geometry, while providing field of view as wide as that of a two-beam microscope. The microscope is tested by imaging and quantifying the morphology and dynamics of human erythrocytes. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  10. A system study of the solar power satellite concept

    NASA Technical Reports Server (NTRS)

    Piland, R. O.

    1983-01-01

    The paper summarizes a system study of the solar power satellite (SPS) concept which was conducted in the 1977-1980 time period. The system study was sponsored by the U.S. Department of Energy and the National Aeronautics and Space Administration as part of an SPS Concept Development and Evaluation Program. A reference system, developed during the study is described. The reference system was subsequently used as a basis for environmental, economic, and societal assessments. The reference system was recognized as probably not being an optimized approach. A number of alternate approaches which were studied in less depth are also described. The paper concludes with a number of observations regarding the SPS concept, and the pertinence of ongoing space technology, development, and flight programs to various aspects of the concept.

  11. Satellite power system concept development and evaluation program. Volume 1: Technical assessment summary report

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Candidate satellite power system (SPS) concepts were identified and evaluated in terms of technical and cost factors. A number of alternative technically feasible approaches and system concepts were investigated. A reference system was defined to facilitate economic, environmental, and societal assessments by the Department of Energy. All elements of the reference system were defined including the satellite and all its subsystems, the orbital construction and maintenance bases, all elements of the space transportation system, the ground receiving station, and the associated industrial facilities for manufacturing the required hardware. The reference conclusions and remaining issues are stated for the following topical areas: system definition; energy conversion and power management; power transmission and reception; structures, controls, and materials; construction and operations; and space transportation.

  12. Ground System Harmonization Efforts at NASA's Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Smith, Dan

    2011-01-01

    This slide presentation reviews the efforts made at Goddard Space Flight Center in harmonizing the ground systems to assist in collaboration in space ventures. The key elements of this effort are: (1) Moving to a Common Framework (2) Use of Consultative Committee for Space Data Systems (CCSDS) Standards (3) Collaboration Across NASA Centers (4) Collaboration Across Industry and other Space Organizations. These efforts are working to bring into harmony the GSFC systems with CCSDS standards to allow for common software, use of Commercial Off the Shelf Software and low risk development and operations and also to work toward harmonization with other NASA centers

  13. Single-particle cryo-EM using alignment by classification (ABC): the structure of Lumbricus terrestris haemoglobin

    PubMed Central

    Seer-Linnemayr, Charlotte; Ravelli, Raimond B. G.; Matadeen, Rishi; De Carlo, Sacha; Alewijnse, Bart; Portugal, Rodrigo V.; Pannu, Navraj S.; Schatz, Michael; van Heel, Marin

    2017-01-01

    Single-particle cryogenic electron microscopy (cryo-EM) can now yield near-atomic resolution structures of biological complexes. However, the reference-based alignment algorithms commonly used in cryo-EM suffer from reference bias, limiting their applicability (also known as the ‘Einstein from random noise’ problem). Low-dose cryo-EM therefore requires robust and objective approaches to reveal the structural information contained in the extremely noisy data, especially when dealing with small structures. A reference-free pipeline is presented for obtaining near-atomic resolution three-dimensional reconstructions from heterogeneous (‘four-dimensional’) cryo-EM data sets. The methodologies integrated in this pipeline include a posteriori camera correction, movie-based full-data-set contrast transfer function determination, movie-alignment algorithms, (Fourier-space) multivariate statistical data compression and unsupervised classification, ‘random-startup’ three-dimensional reconstructions, four-dimensional structural refinements and Fourier shell correlation criteria for evaluating anisotropic resolution. The procedures exclusively use information emerging from the data set itself, without external ‘starting models’. Euler-angle assignments are performed by angular reconstitution rather than by the inherently slower projection-matching approaches. The comprehensive ‘ABC-4D’ pipeline is based on the two-dimensional reference-free ‘alignment by classification’ (ABC) approach, where similar images in similar orientations are grouped by unsupervised classification. Some fundamental differences between X-ray crystallography versus single-particle cryo-EM data collection and data processing are discussed. The structure of the giant haemoglobin from Lumbricus terrestris at a global resolution of ∼3.8 Å is presented as an example of the use of the ABC-4D procedure. PMID:28989723

  14. Space-to-Ground: A Learning Doubleheader: 04/06/2018

    NASA Image and Video Library

    2018-04-05

    The SpaceX Dragon arrives at the space station, more Lettuce leaves are growing onboard, and what do baseball and astronauts have in common? NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  15. A standard satellite control reference model

    NASA Technical Reports Server (NTRS)

    Golden, Constance

    1994-01-01

    This paper describes a Satellite Control Reference Model that provides the basis for an approach to identify where standards would be beneficial in supporting space operations functions. The background and context for the development of the model and the approach are described. A process for using this reference model to trace top level interoperability directives to specific sets of engineering interface standards that must be implemented to meet these directives is discussed. Issues in developing a 'universal' reference model are also identified.

  16. Cyberinfrastructure for the digital brain: spatial standards for integrating rodent brain atlases

    PubMed Central

    Zaslavsky, Ilya; Baldock, Richard A.; Boline, Jyl

    2014-01-01

    Biomedical research entails capture and analysis of massive data volumes and new discoveries arise from data-integration and mining. This is only possible if data can be mapped onto a common framework such as the genome for genomic data. In neuroscience, the framework is intrinsically spatial and based on a number of paper atlases. This cannot meet today's data-intensive analysis and integration challenges. A scalable and extensible software infrastructure that is standards based but open for novel data and resources, is required for integrating information such as signal distributions, gene-expression, neuronal connectivity, electrophysiology, anatomy, and developmental processes. Therefore, the International Neuroinformatics Coordinating Facility (INCF) initiated the development of a spatial framework for neuroscience data integration with an associated Digital Atlasing Infrastructure (DAI). A prototype implementation of this infrastructure for the rodent brain is reported here. The infrastructure is based on a collection of reference spaces to which data is mapped at the required resolution, such as the Waxholm Space (WHS), a 3D reconstruction of the brain generated using high-resolution, multi-channel microMRI. The core standards of the digital atlasing service-oriented infrastructure include Waxholm Markup Language (WaxML): XML schema expressing a uniform information model for key elements such as coordinate systems, transformations, points of interest (POI)s, labels, and annotations; and Atlas Web Services: interfaces for querying and updating atlas data. The services return WaxML-encoded documents with information about capabilities, spatial reference systems (SRSs) and structures, and execute coordinate transformations and POI-based requests. Key elements of INCF-DAI cyberinfrastructure have been prototyped for both mouse and rat brain atlas sources, including the Allen Mouse Brain Atlas, UCSD Cell-Centered Database, and Edinburgh Mouse Atlas Project. PMID:25309417

  17. Cyberinfrastructure for the digital brain: spatial standards for integrating rodent brain atlases.

    PubMed

    Zaslavsky, Ilya; Baldock, Richard A; Boline, Jyl

    2014-01-01

    Biomedical research entails capture and analysis of massive data volumes and new discoveries arise from data-integration and mining. This is only possible if data can be mapped onto a common framework such as the genome for genomic data. In neuroscience, the framework is intrinsically spatial and based on a number of paper atlases. This cannot meet today's data-intensive analysis and integration challenges. A scalable and extensible software infrastructure that is standards based but open for novel data and resources, is required for integrating information such as signal distributions, gene-expression, neuronal connectivity, electrophysiology, anatomy, and developmental processes. Therefore, the International Neuroinformatics Coordinating Facility (INCF) initiated the development of a spatial framework for neuroscience data integration with an associated Digital Atlasing Infrastructure (DAI). A prototype implementation of this infrastructure for the rodent brain is reported here. The infrastructure is based on a collection of reference spaces to which data is mapped at the required resolution, such as the Waxholm Space (WHS), a 3D reconstruction of the brain generated using high-resolution, multi-channel microMRI. The core standards of the digital atlasing service-oriented infrastructure include Waxholm Markup Language (WaxML): XML schema expressing a uniform information model for key elements such as coordinate systems, transformations, points of interest (POI)s, labels, and annotations; and Atlas Web Services: interfaces for querying and updating atlas data. The services return WaxML-encoded documents with information about capabilities, spatial reference systems (SRSs) and structures, and execute coordinate transformations and POI-based requests. Key elements of INCF-DAI cyberinfrastructure have been prototyped for both mouse and rat brain atlas sources, including the Allen Mouse Brain Atlas, UCSD Cell-Centered Database, and Edinburgh Mouse Atlas Project.

  18. Photons and Ground-Based

    NASA Technical Reports Server (NTRS)

    Spann, James F.; Moore, Thomas E.

    2017-01-01

    A Conference on Measurement Techniques for Solar and Space Physics was held on 20-24 April 2015 in Boulder, Colorado, at the National Center for Atmospheric Research Center Green Campus. The present volume collects together the conference papers for photons and ground-based categories. This gathering of over 200 scientists and instrumentalists was born out of the desire to collect in one place the latest experiment and instrument technologies required for advancement of scientific knowledge in the disciplines of solar and space physics. The two goals for this conference and the subsequent publication of its content are (a) to describe measurement techniques and technology development needed to advance high priority science in the fields of solar and space physics; and (b) to provide a survey or reference of techniques for in situ measurement and remote sensing of space plasmas. Towards this end, our goal has always been inspired by the two 1998 Geophysical Monographs (Nos. 102 and 103) entitled, "Measurement Techniques in Space Plasmas" (particles and fields) [Pfaff et al., 1998a, 1998b], which have served as a reference and resource for advanced students, engineers, and scientists who wish to learn the fundamentals of measurement techniques and technology in this field. Those monographs were the product of an American Geophysical Union Chapman Conference that took place in Santa Fe, NM, in 1995: "Measurement Techniques in Space Plasmas-What Works, What Doesn't." Two decades later, we believe that it is appropriate to revisit this subject, in light of recent advances in technology, research platforms, and analysis techniques. Moreover, we now include direct measurements of neutral gases in the upper atmosphere, optical imaging techniques, and remote observations in space and on the ground. Accordingly, the workshop was organized among four areas of measurement techniques: particles, fields, photons, and ground-based. This two-set volume is largely composed of the content of that workshop. Special attention is given to those techniques and technologies that demonstrate promise of significant advancement in measurements that will enable the highest priority science as described in the 2012 National Research Council Decadal Survey [Baker and Zurbuchen et al., 2013]. Additionally, a broad tutorial survey of the current technologies is provided to serve as reference material and as a basis from which advanced and innovative ideas can be discussed and pursued. Included are instrumentation and techniques to observe the solar environment from its interior to its outer atmosphere, the heliosphere out to the interstellar regions, in geospace, and other planetary magnetospheres and atmospheres. To make significant progress in priority science as expressed in the National Research Council solar and space physics decadal survey and recent NASA Heliophysics roadmaps, identification of enabling new measurement techniques and technologies to be developed is required. Also, it is valuable to the community and future scientists and engineers to have a complete survey of the techniques and technologies used by the practitioners of solar and space physics. As with the 1995 conference and subsequent 1998 publication, it is incumbent on the community to identify those measurements that are particularly challenging and still require new techniques to be identified and tested to enable the necessary accuracy and resolution of certain parameters to be achieved. The following is a partial list of the measurement technique categories that are featured in these special publications: Particles; Thermal plasma to MeV energetic particles, neutral gas properties including winds, density, temperature, and composition, and enhanced neutral atom imaging; Fields; DC electric and magnetic fields, plasma waves, and electron drift instruments from which the plasma velocity information provides a measure of the DC electric field; Photons; Instruments sensitive from the near-infrared to X-rays; Contributions of techniques and technology for optical design, optical components, sensors, material selection for cameras, telescopes, and spectrographs; Ground based; Remote sensing methods for solar and geospace activity and space weather. The focus includes solar observatories, all-sky cameras, lidars, and ionosphere thermosphere mesosphere observatory systems such as radars, ionosondes, GPS receivers, magnetometers, conjugate observations, and airborne campaigns. The present volume collects together the papers for photons and ground-based categories. The companion volume collects together the papers for particles and fields categories. It is recognized that there are measurement techniques that overlap among the four categories. For example, use of microchannel plate detectors is used in photon and particle measurement techniques or the observation of visible photons and magnetic fields in space and on the ground share common technologies. Therefore, the reader should consider the entire collection of papers as they seek to understand particular applications. We hope that these volumes will be as valuable as a reference for our community as the earlier 1998 volumes have been.

  19. Introduction: Photons and Ground-Based

    NASA Technical Reports Server (NTRS)

    Spann, James; Moore, Thomas

    2017-01-01

    A Conference on Measurement Techniques for Solar and Space Physics was held on 20-24 April 2015 in Boulder, Colorado, at the National Center for Atmospheric Research Center Green Campus. The present volume collects together the conference papers for photons and ground-based categories. This gathering of over 200 scientists and instrumentalists was born out of the desire to collect in one place the latest experiment and instrument technologies required for advancement of scientific knowledge in the disciplines of solar and space physics. The two goals for this conference and the subsequent publication of its content are (a) to describe measurement techniques and technology development needed to advance high priority science in the fields of solar and space physics; and (b) to provide a survey or reference of techniques for in situ measurement and remote sensing of space plasmas. Towards this end, our goal has always been inspired by the two 1998 Geophysical Monographs (Nos. 102 and 103) entitled, "Measurement Techniques in Space Plasmas" (particles and fields) [Pfaff et al., 1998a, 1998b], which have served as a reference and resource for advanced students, engineers, and scientists who wish to learn the fundamentals of measurement techniques and technology in this field. Those monographs were the product of an American Geophysical Union Chapman Conference that took place in Santa Fe, NM, in 1995: "Measurement Techniques in Space Plasmas-What Works, What Doesn't." Two decades later, we believe that it is appropriate to revisit this subject, in light of recent advances in technology, research platforms, and analysis techniques. Moreover, we now include direct measurements of neutral gases in the upper atmosphere, optical imaging techniques, and remote observations in space and on the ground. Accordingly, the workshop was organized among four areas of measurement techniques: particles, fields, photons, and ground-based. This two-set volume is largely composed of the content of that workshop. Special attention is given to those techniques and technologies that demonstrate promise of significant advancement in measurements that will enable the highest priority science as described in the 2012 National Research Council Decadal Survey [Baker and Zurbuchen et al., 2013]. Additionally, a broad tutorial survey of the current technologies is provided to serve as reference material and as a basis from which advanced and innovative ideas can be discussed and pursued. Included are instrumentation and techniques to observe the solar environment from its interior to its outer atmosphere, the heliosphere out to the interstellar regions, in geospace, and other planetary magnetospheres and atmospheres. To make significant progress in priority science as expressed in the National Research Council solar and space physics decadal survey and recent NASA Heliophysics roadmaps, identification of enabling new measurement techniques and technologies to be developed is required. Also, it is valuable to the community and future scientists and engineers to have a complete survey of the techniques and technologies used by the practitioners of solar and space physics. As with the 1995 conference and subsequent 1998 publication, it is incumbent on the community to identify those measurements that are particularly challenging and still require new techniques to be identified and tested to enable the necessary accuracy and resolution of certain parameters to be achieved. The following is a partial list of the measurement technique categories that are featured in these special publications: Particles; Thermal plasma to MeV energetic particles, neutral gas properties including winds, density, temperature, and composition, and enhanced neutral atom imaging; Fields; DC electric and magnetic fields, plasma waves, and electron drift instruments from which the plasma velocity information provides a measure of the DC electric field; Photons; Instruments sensitive from the near-infrared to X-rays; Contributions of techniques and technology for optical design, optical components, sensors, material selection for cameras, telescopes, and spectrographs; Ground based; Remote sensing methods for solar and geospace activity and space weather. The focus includes solar observatories, all-sky cameras, lidars, and ionosphere thermosphere mesosphere observatory systems such as radars, ionosondes, GPS receivers, magnetometers, conjugate observations, and airborne campaigns. The present volume collects together the papers for photons and ground-based categories. The companion volume collects together the papers for particles and fields categories. It is recognized that there are measurement techniques that overlap among the four categories. For example, use of microchannel plate detectors is used in photon and particle measurement techniques or the observation of visible photons and magnetic fields in space and on the ground share common technologies. Therefore, the reader should consider the entire collection of papers as they seek to understand particular applications. We hope that these volumes will be as valuable as a reference for our community as the earlier 1998 volumes have been.

  20. Obsolescence, Weeding, and the Utilization of Space.

    ERIC Educational Resources Information Center

    Lancaster, F. W.

    1988-01-01

    Suggests an objective approach to weeding library materials and discusses ways of measuring obsolescence and of controlling variables to provide a true picture of aging. Weeding is shown to improve space utilization and the quality of a collection. (5 references) (MES)

  1. Operational test results of the passive final approach spacing tool

    DOT National Transportation Integrated Search

    1997-06-01

    A prototype decision support tool for terminal area air traffic controllers, : referred to as the Final Approach Spacing Tool (FAST), was recently evaluated in : operation with live air traffic at the Dallas/Fort Worth, Texas Airport, : Controllers u...

  2. Space Transportation System Thermal Environmental Flux Reference Book

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The information necessary to estimate the thermal environment in which proposed instruments will be expected to operate is presented in curves and tables which indicate the magnitude of the environmental fluxes which can be expected for various space transportation system missions.

  3. Space Station Freedom electrical power system hardware commonality with the United States Polar Platform

    NASA Technical Reports Server (NTRS)

    Rieker, Lorra L.; Haraburda, Francis M.

    1989-01-01

    Information is presented on how the concept of commonality is being implemented with respect to electric power system hardware for the Space Station Freedom and the U.S. Polar Platform. Included is a historical account of the candidate common items which have the potential to serve the same power system functions on both Freedom and the Polar Platform. The Space Station program and objectives are described, focusing on the test and development responsibilities. The program definition and preliminary design phase and the design and development phase are discussed. The goal of this work is to reduce the program cost.

  4. Design of H2-O2 space shuttle APU. Volume 1: APU design

    NASA Technical Reports Server (NTRS)

    Harris, E.

    1974-01-01

    The H2-O2 space shuttle auxiliary power unit (APU) program is a NASA-Lewis effort aimed at hardware demonstration of the technology required for potential use on the space shuttle. It has been shown that a hydrogen-oxygen power unit (APU) system is an attractive alternate to the space shuttle baseline hydrazine APU system for minimum weight. It has the capability for meeting many of the heat sink requirements for the space shuttle vehicle, thereby reducing the amount of expendable evaporants required for cooling in the baseline APU. Volume 1 of this report covers preliminary design and analysis of the current reference system and detail design of the test version of this reference system. Combustor test results are also included. Volume 2 contains the results of the analysis of an initial version of the reference system and the computer printouts of system performance. The APU consists of subsystems for propellant feed and conditioning, turbopower, and control. Propellant feed and conditioning contains all heat exchangers, valves, and the combustor. The turbopower subsystem contains a two-stage partial-admission pressure-modulated, 400-hp, 63,000-rpm turbine, a 0-to 4-g lubrication system, and a gearbox with output pads for two hydraulic pumps and an alternator (alternator not included on test unit). The electronic control functions include regulation of speed and system temperatures; and start-and-stop sequences, overspeed (rpm) and temperature limits, failsafe provisions, and automatic shutdown provisions.

  5. Assessment of the possible contribution of space ties on-board GNSS satellites to the terrestrial reference frame

    NASA Astrophysics Data System (ADS)

    Bruni, Sara; Rebischung, Paul; Zerbini, Susanna; Altamimi, Zuheir; Errico, Maddalena; Santi, Efisio

    2018-04-01

    The realization of the international terrestrial reference frame (ITRF) is currently based on the data provided by four space geodetic techniques. The accuracy of the different technique-dependent materializations of the frame physical parameters (origin and scale) varies according to the nature of the relevant observables and to the impact of technique-specific errors. A reliable computation of the ITRF requires combining the different inputs, so that the strengths of each technique can compensate for the weaknesses of the others. This combination, however, can only be performed providing some additional information which allows tying together the independent technique networks. At present, the links used for that purpose are topometric surveys (local/terrestrial ties) available at ITRF sites hosting instruments of different techniques. In principle, a possible alternative could be offered by spacecrafts accommodating the positioning payloads of multiple geodetic techniques realizing their co-location in orbit (space ties). In this paper, the GNSS-SLR space ties on-board GPS and GLONASS satellites are thoroughly examined in the framework of global reference frame computations. The investigation focuses on the quality of the realized physical frame parameters. According to the achieved results, the space ties on-board GNSS satellites cannot, at present, substitute terrestrial ties in the computation of the ITRF. The study is completed by a series of synthetic simulations investigating the impact that substantial improvements in the volume and quality of SLR observations to GNSS satellites would have on the precision of the GNSS frame parameters.

  6. GCR Simulator Development Status at the NASA Space Radiation Laboratory

    NASA Technical Reports Server (NTRS)

    Slaba, T. C.; Norbury, J. W.; Blattnig, S. R.

    2015-01-01

    There are large uncertainties connected to the biological response for exposure to galactic cosmic rays (GCR) on long duration deep space missions. In order to reduce the uncertainties and gain understanding about the basic mechanisms through which space radiation initiates cancer and other endpoints, radiobiology experiments are performed with mono-energetic ions beams. Some of the accelerator facilities supporting such experiments have matured to a point where simulating the broad range of particles and energies characteristic of the GCR environment in a single experiment is feasible from a technology, usage, and cost perspective. In this work, several aspects of simulating the GCR environment at the NASA Space Radiation Laboratory (NSRL) are discussed. First, comparisons are made between direct simulation of the external, free space GCR field, and simulation of the induced tissue field behind shielding. It is found that upper energy constraints at NSRL limit the ability to simulate the external, free space field directly (i.e. shielding placed in the beam line in front of a biological target and exposed to a free space spectrum). Second, a reference environment for the GCR simulator and suitable for deep space missions is identified and described in terms of fluence and integrated dosimetric quantities. Analysis results are given to justify the use of a single reference field over a range of shielding conditions and solar activities. Third, an approach for simulating the reference field at NSRL is presented. The approach directly considers the hydrogen and helium energy spectra, and the heavier ions are collectively represented by considering the linear energy transfer (LET) spectrum. While many more aspects of the experimental setup need to be considered before final implementation of the GCR simulator, this preliminary study provides useful information that should aid the final design. Possible drawbacks of the proposed methodology are discussed and weighed against alternative simulation strategies.

  7. Common Cause Failure Modeling

    NASA Technical Reports Server (NTRS)

    Hark, Frank; Britton, Paul; Ring, Robert; Novack, Steven

    2015-01-01

    Space Launch System (SLS) Agenda: Objective; Key Definitions; Calculating Common Cause; Examples; Defense against Common Cause; Impact of varied Common Cause Failure (CCF) and abortability; Response Surface for various CCF Beta; Takeaways.

  8. Space science and applications: Strategic plan 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Office of Space Science and Applications (OSSA) 1991 Strategic Plan reflects a transitional year in which we respond to changes and focus on carrying out a vital space science program and strengthening our research base to reap the benefits of current and future missions. The Plan is built on interrelated, complementary strategies for the core space science program, for Mission to Planet Earth, and for Mission from Planet Earth. Each strategy has its own unique themes and mission priorities, but they share a common set of principles and a common goal - leadership through the achievement of excellence. Discussed here is the National Space Policy; an overview of OSSA activities, goals, and objectives; and the implications of the OSSA space science and applications strategy.

  9. PILOT STUDY FOR ESTABLISHMENT OF A NETWORK OF COASTAL REFERENCE SITES

    EPA Science Inventory

    The National Oceanic and Atmospheric Administration (NOAA), U.S. Environmental Protection Agency (EPA), and the National Aeronautics and Space Administration (NASA) have joined in partnership for a pilot study for the establishment of a network of reference sites, the Coastal Int...

  10. Paraquat Dichloride

    EPA Pesticide Factsheets

    Paraquat dichloride, commonly referred to as “paraquat,” is one of the most widely used herbicides registered in the United States. Paraquat is also often referred to as Gramoxone (a popular end-use product).

  11. Lunar Regolith Characterization for Simulant Design and Evaluation using Figure of Merit Algorithms

    NASA Technical Reports Server (NTRS)

    Schrader, Christian M.; Rickman, Douglas L.; Melemore, Carole A.; Fikes, John C.; Stoeser, Douglas B.; Wentworth, Susan J.; McKay, David S.

    2009-01-01

    NASA's Marshall Space Flight Center (MSFC), in conjunction with the United States Geological Survey (USGS) and aided by personnel from the Astromaterials Research and Exploration Science group at Johnson Space Center (ARES-JSC), is implementing a new data acquisition strategy to support the development and evaluation of lunar regolith simulants. The first analyses of lunar regolith samples by the simulant group were carried out in early 2008 on samples from Apollo 16 core 64001/64002. The results of these analyses are combined with data compiled from the literature to generate a reference composition and particle size distribution (PSD)) for lunar highlands regolith. In this paper we present the specifics of particle type composition and PSD for this reference composition. Furthermore. we use Figure-of-Merit (FoM) routines to measure the characteristics of a number of lunar regolith simulants against this reference composition. The lunar highlands regolith reference composition and the FoM results are presented to guide simulant producers and simulant users in their research and development processes.

  12. Space prospects. [european space programs

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A strategy for keeping the Common Market's space effort independent of and competitive with NASA and the space shuttle is discussed. Limited financing is the chief obstacle to this. Proposals include an outer space materials processing project and further development of the Ariane rocket. A manned space program is excluded for the foreseeable future.

  13. National Space Transportation System Reference. Volume 2: Operations

    NASA Technical Reports Server (NTRS)

    1988-01-01

    An overview of the Space Transportation System is presented in which aspects of the program operations are discussed. The various mission preparation and prelaunch operations are described including astronaut selection and training, Space Shuttle processing, Space Shuttle integration and rollout, Complex 39 launch pad facilities, and Space Shuttle cargo processing. Also, launch and flight operations and space tracking and data acquisition are described along with the mission control and payload operations control center. In addition, landing, postlanding, and solid rocket booster retrieval operations are summarized. Space Shuttle program management is described and Space Shuttle mission summaries and chronologies are presented. A glossary of acronyms and abbreviations are provided.

  14. Harmonising Reference Intervals for Three Calculated Parameters used in Clinical Chemistry.

    PubMed

    Hughes, David; Koerbin, Gus; Potter, Julia M; Glasgow, Nicholas; West, Nic; Abhayaratna, Walter P; Cavanaugh, Juleen; Armbruster, David; Hickman, Peter E

    2016-08-01

    For more than a decade there has been a global effort to harmonise all phases of the testing process, with particular emphasis on the most frequently utilised measurands. In addition, it is recognised that calculated parameters derived from these measurands should also be a target for harmonisation. Using data from the Aussie Normals study we report reference intervals for three calculated parameters: serum osmolality, serum anion gap and albumin-adjusted serum calcium. The Aussie Normals study was an a priori study that analysed samples from 1856 healthy volunteers. The nine analytes used for the calculations in this study were measured on Abbott Architect analysers. The data demonstrated normal (Gaussian) distributions for the albumin-adjusted serum calcium, the anion gap (using potassium in the calculation) and the calculated serum osmolality (using both the Bhagat et al. and Smithline and Gardner formulae). To assess the suitability of these reference intervals for use as harmonised reference intervals, we reviewed data from the Royal College of Pathologists of Australasia/Australasian Association of Clinical Biochemists (RCPA/AACB) bias survey. We conclude that the reference intervals for the calculated serum osmolality (using the Smithline and Gardner formulae) may be suitable for use as a common reference interval. Although a common reference interval for albumin-adjusted serum calcium may be possible, further investigations (including a greater range of albumin concentrations) are needed. This is due to the bias between the Bromocresol Green (BCG) and Bromocresol Purple (BCP) methods at lower serum albumin concentrations. Problems with the measurement of Total CO 2 in the bias survey meant that we could not use the data for assessing the suitability of a common reference interval for the anion gap. Further study is required.

  15. Dispersion analysis for baseline reference mission 1. [flight simulation and trajectory analysis for space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Kuhn, A. E.

    1975-01-01

    A dispersion analysis considering 3 sigma uncertainties (or perturbations) in platform, vehicle, and environmental parameters was performed for the baseline reference mission (BRM) 1 of the space shuttle orbiter. The dispersion analysis is based on the nominal trajectory for the BRM 1. State vector and performance dispersions (or variations) which result from the indicated 3 sigma uncertainties were studied. The dispersions were determined at major mission events and fixed times from lift-off (time slices) and the results will be used to evaluate the capability of the vehicle to perform the mission within a 3 sigma level of confidence and to determine flight performance reserves. A computer program is given that was used for dynamic flight simulations of the space shuttle orbiter.

  16. NASA/NBS (National Aeronautics and Space Administration/National Bureau of Standards) standard reference model for telerobot control system architecture (NASREM)

    NASA Technical Reports Server (NTRS)

    Albus, James S.; Mccain, Harry G.; Lumia, Ronald

    1989-01-01

    The document describes the NASA Standard Reference Model (NASREM) Architecture for the Space Station Telerobot Control System. It defines the functional requirements and high level specifications of the control system for the NASA space Station document for the functional specification, and a guideline for the development of the control system architecture, of the 10C Flight Telerobot Servicer. The NASREM telerobot control system architecture defines a set of standard modules and interfaces which facilitates software design, development, validation, and test, and make possible the integration of telerobotics software from a wide variety of sources. Standard interfaces also provide the software hooks necessary to incrementally upgrade future Flight Telerobot Systems as new capabilities develop in computer science, robotics, and autonomous system control.

  17. Application of a global reference for fetal-weight and birthweight percentiles in predicting infant mortality.

    PubMed

    Ding, G; Tian, Y; Zhang, Y; Pang, Y; Zhang, J S; Zhang, J

    2013-12-01

    To determine whether the recently published A global reference for fetal-weight and birthweight percentiles (Global Reference) improves small- (SGA), appropriate- (AGA), and large-for-gestational-age (LGA) definitions in predicting infant mortality. Population-based cohort study. The US Linked Livebirth and Infant Death records between 1995 and 2004. Singleton births with birthweight >500 g born at 24-41 weeks of gestation. We compared infant mortality rates of SGA, AGA, and LGA infants classified by three different references: the Global Reference; a commonly used birthweight reference; and Hadlock's ultrasound reference. Infant mortality rates. Among 33 997 719 eligible liveborn singleton births, 25% of preterm and 9% of term infants were classified differently for SGA, AGA, and LGA by the Global Reference and the birthweight reference. The Global Reference indicated higher mortality rates in preterm SGA and preterm LGA infants than the birthweight reference. The mortality rate was considerably higher in infants classified as preterm SGA by the Global Reference but not by the birthweight reference, compared with the corresponding infants classified by the birthweight reference but not by the Global Reference (105.7 versus 12.9 per 1000, RR 8.17, 95% CI 7.38-9.06). Yet, the differences in mortality rates were much smaller in term infants than in preterm infants. Black infants had a particularly higher mortality rate than other races in AGA and LGA preterm and term infants. In respect to the commonly used birthweight reference, the Global Reference increases the identification of infant deaths by improved classification of abnormal newborn size at birth, and these advantages were more obvious in preterm than in term infants. © 2013 RCOG.

  18. Spanish Language Equivalents for a Glossary of Terms Used in the Field of Space Exploration

    NASA Technical Reports Server (NTRS)

    Bullock, G. D.

    1985-01-01

    A need was identified for a reference to provide translations into Spanish of terms used in space exploration. A search for such a resource bore no fruit, so the author compiled his own glossary and obtained the translations. It was printed as a Goddard Space Flight Center X Document (X-602-82-11).

  19. Interdisciplinary knowledge exchange across scales in a globally changing marine environment.

    PubMed

    McDonald, Karlie S; Hobday, Alistair J; Fulton, Elizabeth A; Thompson, Peter A

    2018-07-01

    The effects of anthropogenic global environmental change on biotic and abiotic processes have been reported in aquatic systems across the world. Complex synergies between concurrent environmental stressors and the resilience of the system to regime shifts, which vary in space and time, determine the capacity for marine systems to maintain structure and function with global environmental change. Consequently, an interdisciplinary approach that facilitates the development of new methods for the exchange of knowledge between scientists across multiple scales is required to effectively understand, quantify and predict climate impacts on marine ecosystem services. We use a literature review to assess the limitations and assumptions of current pathways to exchange interdisciplinary knowledge and the transferability of research findings across spatial and temporal scales and levels of biological organization to advance scientific understanding of global environmental change in marine systems. We found that species-specific regional scale climate change research is most commonly published, and "supporting" is the ecosystem service most commonly referred to in publications. In addition, our paper outlines a trajectory for the future development of integrated climate change science for sustaining marine ecosystem services such as investment in interdisciplinary education and connectivity between disciplines. © 2018 John Wiley & Sons Ltd.

  20. Superconducting gravity gradiometer for sensitive gravity measurements. I. Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, H.A.; Paik, H.J.

    1987-06-15

    Because of the equivalence principle, a global measurement is necessary to distinguish gravity from acceleration of the reference frame. A gravity gradiometer is therefore an essential instrument needed for precision tests of gravity laws and for applications in gravity survey and inertial navigation. Superconductivity and SQUID (superconducting quantum interference device) technology can be used to obtain a gravity gradiometer with very high sensitivity and stability. A superconducting gravity gradiometer has been developed for a null test of the gravitational inverse-square law and space-borne geodesy. Here we present a complete theoretical model of this instrument. Starting from dynamical equations for themore » device, we derive transfer functions, a common mode rejection characteristic, and an error model of the superconducting instrument. Since a gradiometer must detect a very weak differential gravity signal in the midst of large platform accelerations and other environmental disturbances, the scale factor and common mode rejection stability of the instrument are extremely important in addition to its immunity to temperature and electromagnetic fluctuations. We show how flux quantization, the Meissner effect, and properties of liquid helium can be utilized to meet these challenges.« less

Top