Sample records for common replication-partitioning system

  1. Replication-dependent and independent mechanisms for the chromosome-coupled persistence of a selfish genome.

    PubMed

    Liu, Yen-Ting; Chang, Keng-Ming; Ma, Chien-Hui; Jayaram, Makkuni

    2016-09-30

    The yeast 2-micron plasmid epitomizes the evolutionary optimization of selfish extra-chromosomal genomes for stable persistence without jeopardizing their hosts' fitness. Analyses of fluorescence-tagged single-copy reporter plasmids and/or the plasmid partitioning proteins in native and non-native hosts reveal chromosome-hitchhiking as the likely means for plasmid segregation. The contribution of the partitioning system to equal segregation is bipartite- replication-independent and replication-dependent. The former nearly eliminates 'mother bias' (preferential plasmid retention in the mother cell) according to binomial distribution, thus limiting equal segregation of a plasmid pair to 50%. The latter enhances equal segregation of plasmid sisters beyond this level, elevating the plasmid close to chromosome status. Host factors involved in plasmid partitioning can be functionally separated by their participation in the replication-independent and/or replication-dependent steps. In the hitchhiking model, random tethering of a pair of plasmids to chromosomes signifies the replication-independent component of segregation; the symmetric tethering of plasmid sisters to sister chromatids embodies the replication-dependent component. The 2-micron circle broadly resembles the episomes of certain mammalian viruses in its chromosome-associated propagation. This unifying feature among otherwise widely differing selfish genomes suggests their evolutionary convergence to the common logic of exploiting, albeit via distinct molecular mechanisms, host chromosome segregation machineries for self-preservation. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Replication-dependent and independent mechanisms for the chromosome-coupled persistence of a selfish genome

    PubMed Central

    Liu, Yen-Ting; Chang, Keng-Ming; Ma, Chien-Hui; Jayaram, Makkuni

    2016-01-01

    The yeast 2-micron plasmid epitomizes the evolutionary optimization of selfish extra-chromosomal genomes for stable persistence without jeopardizing their hosts’ fitness. Analyses of fluorescence-tagged single-copy reporter plasmids and/or the plasmid partitioning proteins in native and non-native hosts reveal chromosome-hitchhiking as the likely means for plasmid segregation. The contribution of the partitioning system to equal segregation is bipartite- replication-independent and replication-dependent. The former nearly eliminates ‘mother bias’ (preferential plasmid retention in the mother cell) according to binomial distribution, thus limiting equal segregation of a plasmid pair to 50%. The latter enhances equal segregation of plasmid sisters beyond this level, elevating the plasmid close to chromosome status. Host factors involved in plasmid partitioning can be functionally separated by their participation in the replication-independent and/or replication-dependent steps. In the hitchhiking model, random tethering of a pair of plasmids to chromosomes signifies the replication-independent component of segregation; the symmetric tethering of plasmid sisters to sister chromatids embodies the replication-dependent component. The 2-micron circle broadly resembles the episomes of certain mammalian viruses in its chromosome-associated propagation. This unifying feature among otherwise widely differing selfish genomes suggests their evolutionary convergence to the common logic of exploiting, albeit via distinct molecular mechanisms, host chromosome segregation machineries for self-preservation. PMID:27492289

  3. Using Replicates in Information Retrieval Evaluation.

    PubMed

    Voorhees, Ellen M; Samarov, Daniel; Soboroff, Ian

    2017-09-01

    This article explores a method for more accurately estimating the main effect of the system in a typical test-collection-based evaluation of information retrieval systems, thus increasing the sensitivity of system comparisons. Randomly partitioning the test document collection allows for multiple tests of a given system and topic (replicates). Bootstrap ANOVA can use these replicates to extract system-topic interactions-something not possible without replicates-yielding a more precise value for the system effect and a narrower confidence interval around that value. Experiments using multiple TREC collections demonstrate that removing the topic-system interactions substantially reduces the confidence intervals around the system effect as well as increases the number of significant pairwise differences found. Further, the method is robust against small changes in the number of partitions used, against variability in the documents that constitute the partitions, and the measure of effectiveness used to quantify system effectiveness.

  4. Using Replicates in Information Retrieval Evaluation

    PubMed Central

    VOORHEES, ELLEN M.; SAMAROV, DANIEL; SOBOROFF, IAN

    2018-01-01

    This article explores a method for more accurately estimating the main effect of the system in a typical test-collection-based evaluation of information retrieval systems, thus increasing the sensitivity of system comparisons. Randomly partitioning the test document collection allows for multiple tests of a given system and topic (replicates). Bootstrap ANOVA can use these replicates to extract system-topic interactions—something not possible without replicates—yielding a more precise value for the system effect and a narrower confidence interval around that value. Experiments using multiple TREC collections demonstrate that removing the topic-system interactions substantially reduces the confidence intervals around the system effect as well as increases the number of significant pairwise differences found. Further, the method is robust against small changes in the number of partitions used, against variability in the documents that constitute the partitions, and the measure of effectiveness used to quantify system effectiveness. PMID:29905334

  5. Orderly Replication and Segregation of the Four Replicons of Burkholderia cenocepacia J2315

    PubMed Central

    Kamgoué, Alain; Murray, Heath; Pasta, Franck

    2016-01-01

    Bacterial genomes typically consist of a single chromosome and, optionally, one or more plasmids. But whole-genome sequencing reveals about ten per-cent of them to be multipartite, with additional replicons which by size and indispensability are considered secondary chromosomes. This raises the questions of how their replication and partition is managed without compromising genome stability and of how such genomes arose. Vibrio cholerae, with a 1 Mb replicon in addition to its 3 Mb chromosome, is the only species for which maintenance of a multipartite genome has been investigated. In this study we have explored the more complex genome of Burkholderia cenocepacia (strain J2315). It comprises an extra replicon (c2) of 3.21 Mb, comparable in size to the3.87Mb main chromosome (c1), another extra replicon(c3) of 0.87 Mb and a plasmid of 0.09 Mb. The replication origin of c1 is typically chromosomal and those of c2 and c3 are plasmid-like; all are replicated bidirectionally. Fluorescence microscopy of tagged origins indicates that all initiate replication at mid-cell and segregate towards the cell quarter positions sequentially, c1-c2-p1/c3. c2 segregation is as well-phased with the cell cycle as c1, implying that this plasmid-like origin has become subject to regulation not typical of plasmids; in contrast, c3 segregates more randomly through the cycle. Disruption of individual Par systems by deletion of parAB or by addition of parS sites showed each Par system to govern the positioning of its own replicon only. Inactivation of c1, c2 and c3 Par systems not only reduced growth rate, generated anucleate cells and compromised viability but influenced processes beyond replicon partition, notably regulation of replication, chromosome condensation and cell size determination. In particular, the absence of the c1 ParA protein altered replication of all three chromosomes, suggesting that the partition system of the main chromosome is a major participant in the choreography of the cell cycle. PMID:27428258

  6. Stencils and problem partitionings: Their influence on the performance of multiple processor systems

    NASA Technical Reports Server (NTRS)

    Reed, D. A.; Adams, L. M.; Patrick, M. L.

    1986-01-01

    Given a discretization stencil, partitioning the problem domain is an important first step for the efficient solution of partial differential equations on multiple processor systems. Partitions are derived that minimize interprocessor communication when the number of processors is known a priori and each domain partition is assigned to a different processor. This partitioning technique uses the stencil structure to select appropriate partition shapes. For square problem domains, it is shown that non-standard partitions (e.g., hexagons) are frequently preferable to the standard square partitions for a variety of commonly used stencils. This investigation is concluded with a formalization of the relationship between partition shape, stencil structure, and architecture, allowing selection of optimal partitions for a variety of parallel systems.

  7. CDF trigger interface board 'FRED'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, M.; Dell' Orso, M.; Giannetti, P.

    1985-08-01

    We describe FASTBUS boards which interface sixteen different trigger interrupts to the Collider Detector Facility (CDF) data acquisition system. The boards are known to CDF by the acronym 'FRED'. The data acquisition scheme for CDF allows for up to 16 different parts of the detector, called 'Partitions', to run independently. Four partitions are reserved for physics runs and sophisticated calibration and debugging: they use the common Level 1 and Level 2 trigger logic and have access to information from all the components of the CDF detector. These four partitions are called ''CDF Partitions''. The remaining twelve partitions have no accessmore » to the common trigger logic and provide their own Level 1 and Level 2 signals: they are called ''Autonomous Partitions''. Fred collects and interprets signals from independent parts of the CDF trigger system and delivers Level 1 and Level 2 responses to the Trigger Supervisors (FASTBUS masters which control the data acquisition process in each partition).« less

  8. Integrated data lookup and replication scheme in mobile ad hoc networks

    NASA Astrophysics Data System (ADS)

    Chen, Kai; Nahrstedt, Klara

    2001-11-01

    Accessing remote data is a challenging task in mobile ad hoc networks. Two problems have to be solved: (1) how to learn about available data in the network; and (2) how to access desired data even when the original copy of the data is unreachable. In this paper, we develop an integrated data lookup and replication scheme to solve these problems. In our scheme, a group of mobile nodes collectively host a set of data to improve data accessibility for all members of the group. They exchange data availability information by broadcasting advertising (ad) messages to the group using an adaptive sending rate policy. The ad messages are used by other nodes to derive a local data lookup table, and to reduce data redundancy within a connected group. Our data replication scheme predicts group partitioning based on each node's current location and movement patterns, and replicates data to other partitions before partitioning occurs. Our simulations show that data availability information can quickly propagate throughout the network, and that the successful data access ratio of each node is significantly improved.

  9. Gause's Principle and the Effect of Resource Partitioning on the Dynamical Coexistence of Replicating Templates

    PubMed Central

    Szilágyi, András; Zachar, István; Szathmáry, Eörs

    2013-01-01

    Models of competitive template replication, although basic for replicator dynamics and primordial evolution, have not yet taken different sequences explicitly into account, neither have they analyzed the effect of resource partitioning (feeding on different resources) on coexistence. Here we show by analytical and numerical calculations that Gause's principle of competitive exclusion holds for template replicators if resources (nucleotides) affect growth linearly and coexistence is at fixed point attractors. Cases of complementary or homologous pairing between building blocks with parallel or antiparallel strands show no deviation from the rule that the nucleotide compositions of stably coexisting species must be different and there cannot be more coexisting replicator species than nucleotide types. Besides this overlooked mechanism of template coexistence we show also that interesting sequence effects prevail as parts of sequences that are copied earlier affect coexistence more strongly due to the higher concentration of the corresponding replication intermediates. Template and copy always count as one species due their constraint of strict stoichiometric coupling. Stability of fixed-point coexistence tends to decrease with the length of sequences, although this effect is unlikely to be detrimental for sequences below 100 nucleotides. In sum, resource partitioning (niche differentiation) is the default form of competitive coexistence for replicating templates feeding on a cocktail of different nucleotides, as it may have been the case in the RNA world. Our analysis of different pairing and strand orientation schemes is relevant for artificial and potentially astrobiological genetics. PMID:23990769

  10. Brownian Ratchet Mechanism for Faithful Segregation of Low-Copy-Number Plasmids.

    PubMed

    Hu, Longhua; Vecchiarelli, Anthony G; Mizuuchi, Kiyoshi; Neuman, Keir C; Liu, Jian

    2017-04-11

    Bacterial plasmids are extrachromosomal DNA that provides selective advantages for bacterial survival. Plasmid partitioning can be remarkably robust. For high-copy-number plasmids, diffusion ensures that both daughter cells inherit plasmids after cell division. In contrast, most low-copy-number plasmids need to be actively partitioned by a conserved tripartite ParA-type system. ParA is an ATPase that binds to chromosomal DNA; ParB is the stimulator of the ParA ATPase and specifically binds to the plasmid at a centromere-like site, parS. ParB stimulation of the ParA ATPase releases ParA from the bacterial chromosome, after which it takes a long time to reset its DNA-binding affinity. We previously demonstrated in vitro that the ParA system can exploit this biochemical asymmetry for directed cargo transport. Multiple ParA-ParB bonds can bridge a parS-coated cargo to a DNA carpet, and they can work collectively as a Brownian ratchet that directs persistent cargo movement with a ParA-depletion zone trailing behind. By extending this model, we suggest that a similar Brownian ratchet mechanism recapitulates the full range of actively segregated plasmid motilities observed in vivo. We demonstrate that plasmid motility is tuned as the replenishment rate of the ParA-depletion zone progressively increases relative to the cargo speed, evolving from diffusion to pole-to-pole oscillation, local excursions, and, finally, immobility. When the plasmid replicates, the daughters largely display motilities similar to that of their mother, except that when the single-focus progenitor is locally excursive, the daughter foci undergo directed segregation. We show that directed segregation maximizes the fidelity of plasmid partition. Given that local excursion and directed segregation are the most commonly observed modes of plasmid motility in vivo, we suggest that the operation of the ParA-type partition system has been shaped by evolution for high fidelity of plasmid segregation. Published by Elsevier Inc.

  11. A methodology for commonality analysis, with applications to selected space station systems

    NASA Technical Reports Server (NTRS)

    Thomas, Lawrence Dale

    1989-01-01

    The application of commonality in a system represents an attempt to reduce costs by reducing the number of unique components. A formal method for conducting commonality analysis has not been established. In this dissertation, commonality analysis is characterized as a partitioning problem. The cost impacts of commonality are quantified in an objective function, and the solution is that partition which minimizes this objective function. Clustering techniques are used to approximate a solution, and sufficient conditions are developed which can be used to verify the optimality of the solution. This method for commonality analysis is general in scope. It may be applied to the various types of commonality analysis required in the conceptual, preliminary, and detail design phases of the system development cycle.

  12. Finding reproducible cluster partitions for the k-means algorithm

    PubMed Central

    2013-01-01

    K-means clustering is widely used for exploratory data analysis. While its dependence on initialisation is well-known, it is common practice to assume that the partition with lowest sum-of-squares (SSQ) total i.e. within cluster variance, is both reproducible under repeated initialisations and also the closest that k-means can provide to true structure, when applied to synthetic data. We show that this is generally the case for small numbers of clusters, but for values of k that are still of theoretical and practical interest, similar values of SSQ can correspond to markedly different cluster partitions. This paper extends stability measures previously presented in the context of finding optimal values of cluster number, into a component of a 2-d map of the local minima found by the k-means algorithm, from which not only can values of k be identified for further analysis but, more importantly, it is made clear whether the best SSQ is a suitable solution or whether obtaining a consistently good partition requires further application of the stability index. The proposed method is illustrated by application to five synthetic datasets replicating a real world breast cancer dataset with varying data density, and a large bioinformatics dataset. PMID:23369085

  13. Finding reproducible cluster partitions for the k-means algorithm.

    PubMed

    Lisboa, Paulo J G; Etchells, Terence A; Jarman, Ian H; Chambers, Simon J

    2013-01-01

    K-means clustering is widely used for exploratory data analysis. While its dependence on initialisation is well-known, it is common practice to assume that the partition with lowest sum-of-squares (SSQ) total i.e. within cluster variance, is both reproducible under repeated initialisations and also the closest that k-means can provide to true structure, when applied to synthetic data. We show that this is generally the case for small numbers of clusters, but for values of k that are still of theoretical and practical interest, similar values of SSQ can correspond to markedly different cluster partitions. This paper extends stability measures previously presented in the context of finding optimal values of cluster number, into a component of a 2-d map of the local minima found by the k-means algorithm, from which not only can values of k be identified for further analysis but, more importantly, it is made clear whether the best SSQ is a suitable solution or whether obtaining a consistently good partition requires further application of the stability index. The proposed method is illustrated by application to five synthetic datasets replicating a real world breast cancer dataset with varying data density, and a large bioinformatics dataset.

  14. Designing for Peta-Scale in the LSST Database

    NASA Astrophysics Data System (ADS)

    Kantor, J.; Axelrod, T.; Becla, J.; Cook, K.; Nikolaev, S.; Gray, J.; Plante, R.; Nieto-Santisteban, M.; Szalay, A.; Thakar, A.

    2007-10-01

    The Large Synoptic Survey Telescope (LSST), a proposed ground-based 8.4 m telescope with a 10 deg^2 field of view, will generate 15 TB of raw images every observing night. When calibration and processed data are added, the image archive, catalogs, and meta-data will grow 15 PB yr^{-1} on average. The LSST Data Management System (DMS) must capture, process, store, index, replicate, and provide open access to this data. Alerts must be triggered within 30 s of data acquisition. To do this in real-time at these data volumes will require advances in data management, database, and file system techniques. This paper describes the design of the LSST DMS and emphasizes features for peta-scale data. The LSST DMS will employ a combination of distributed database and file systems, with schema, partitioning, and indexing oriented for parallel operations. Image files are stored in a distributed file system with references to, and meta-data from, each file stored in the databases. The schema design supports pipeline processing, rapid ingest, and efficient query. Vertical partitioning reduces disk input/output requirements, horizontal partitioning allows parallel data access using arrays of servers and disks. Indexing is extensive, utilizing both conventional RAM-resident indexes and column-narrow, row-deep tag tables/covering indices that are extracted from tables that contain many more attributes. The DMS Data Access Framework is encapsulated in a middleware framework to provide a uniform service interface to all framework capabilities. This framework will provide the automated work-flow, replication, and data analysis capabilities necessary to make data processing and data quality analysis feasible at this scale.

  15. The partitioning and copy number control systems of the selfish yeast plasmid: an optimized molecular design for stable persistence in host cells

    PubMed Central

    Yen-Ting-Liu; Sau, Saumitra; Ma, Chien-Hui; Kachroo, Aashiq H; Rowley, Paul A; Chang, Keng-Ming; Fan, Hsiu-Fang; Jayaram, Makkuni

    2014-01-01

    Summary The multi-copy 2 micron plasmid of Saccharomyces cerevisiae, a resident of the nucleus, is remarkable for its high chromosome-like stability. The plasmid does not appear to contribute to the fitness of the host, nor does it impose a significant metabolic burden on the host at its steady state copy number. The plasmid may be viewed as a highly optimized selfish DNA element whose genome design is devoted entirely towards efficient replication, equal segregation and copy number maintenance. A partitioning system comprised of two plasmid coded proteins, Rep1 and Rep2, and a partitioning locus STB is responsible for equal or nearly equal segregation of plasmid molecules to mother and daughter cells. Current evidence supports a model in which the Rep-STB system promotes the physical association of the plasmid with chromosomes and thus plasmid segregation by a hitchhiking mechanism. The Flp site-specific recombination system housed by the plasmid plays a critical role in maintaining steady state plasmid copy number. A decrease in plasmid population due to rare missegregation events is rectified by plasmid amplification via a recombination induced rolling circle replication mechanism. Appropriate plasmid amplification, without runaway increase in copy number, is ensured by positive and negative regulation of FLP gene expression by plasmid coded proteins and by the control of Flp level/activity through host mediated post-translational modification(s) of Flp. The Flp system has been successfully utilized to understand mechanisms of site-specific recombination, to bring about directed genetic alterations for addressing fundamental problems in biology, and as a tool in biotechnological applications. PMID:25541598

  16. The partitioning and copy number control systems of the selfish yeast plasmid: an optimized molecular design for stable persistence in host cells.

    PubMed

    Yen-Ting-Liu; Sau, Saumitra; Ma, Chien-Hui; Kachroo, Aashiq H; Rowley, Paul A; Chang, Keng-Ming; Fan, Hsiu-Fang; Jayaram, Makkuni

    2014-10-01

    The multi-copy 2 micron plasmid of Saccharomyces cerevisiae, a resident of the nucleus, is remarkable for its high chromosome-like stability. The plasmid does not appear to contribute to the fitness of the host, nor does it impose a significant metabolic burden on the host at its steady state copy number. The plasmid may be viewed as a highly optimized selfish DNA element whose genome design is devoted entirely towards efficient replication, equal segregation and copy number maintenance. A partitioning system comprised of two plasmid coded proteins, Rep1 and Rep2, and a partitioning locus STB is responsible for equal or nearly equal segregation of plasmid molecules to mother and daughter cells. Current evidence supports a model in which the Rep-STB system promotes the physical association of the plasmid with chromosomes and thus plasmid segregation by a hitchhiking mechanism. The Flp site-specific recombination system housed by the plasmid plays a critical role in maintaining steady state plasmid copy number. A decrease in plasmid population due to rare missegregation events is rectified by plasmid amplification via a recombination induced rolling circle replication mechanism. Appropriate plasmid amplification, without runaway increase in copy number, is ensured by positive and negative regulation of FLP gene expression by plasmid coded proteins and by the control of Flp level/activity through host mediated post-translational modification(s) of Flp. The Flp system has been successfully utilized to understand mechanisms of site-specific recombination, to bring about directed genetic alterations for addressing fundamental problems in biology, and as a tool in biotechnological applications.

  17. Evidence that compatibility of closely related replicons in Clostridium perfringens depends on linkage to parMRC-like partitioning systems of different subfamilies.

    PubMed

    Watts, Thomas D; Johanesen, Priscilla A; Lyras, Dena; Rood, Julian I; Adams, Vicki

    2017-05-01

    Clostridium perfringens produces an extensive repertoire of toxins and extracellular enzymes, many of which are intimately involved in the progression of disease and are encoded by genes on conjugative plasmids. In addition, many C. perfringens strains can carry up to five of these conjugative toxin or antimicrobial resistance plasmids, each of which has a similar 35kb backbone. This conserved backbone includes the tcp conjugation locus and the central control region (CCR), which encodes genes involved in plasmid regulation, replication and partitioning, including a parMRC partitioning locus. Most conjugative plasmids in C. perfringens have a conserved replication protein, raising questions as to how multiple, closely related plasmids are maintained within a single strain. Bioinformatics analysis has highlighted the presence of at least 10 different parMRC partitioning system families (parMRC A-J ) in these plasmids, with differences in amino acid sequence identity between each ParM family ranging from 15% to 54%. No two plasmids that encode genes belonging to the same partitioning family have been observed in a single strain, suggesting that these families represent the basis for plasmid incompatibility. In an attempt to validate the proposed parMRC incompatibility groups, genetically marked C. perfringens plasmids encoding identical parMRC C or parMRC D homologues or different combinations of parMRC A , parMRC C and parMRC D family homologues were introduced into a single strain via conjugation. The stability of each plasmid was determined using an incompatibility assay in which the plasmid profile of each strain was monitored over the course of two days in the absence of direct selection. The results showed that plasmids with identical parMRC C or parMRC D homologues were incompatible and could not coexist in the absence of external selection. By contrast, plasmids that encoded different parMRC homologues were compatible and could coexist in the same cell in the absence of selection, with the exception of strains housing parMRC C and parMRC D combinations, which showed a minor incompatibility phenotype. In conclusion, we have provided the first direct evidence of plasmid incompatibility in Clostridium spp. and have shown experimentally that the compatibility of conjugative C. perfringens plasmids correlates with the presence of parMRC-like partitioning systems of different phylogenetic subfamilies. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Megabase replication domains along the human genome: relation to chromatin structure and genome organisation.

    PubMed

    Audit, Benjamin; Zaghloul, Lamia; Baker, Antoine; Arneodo, Alain; Chen, Chun-Long; d'Aubenton-Carafa, Yves; Thermes, Claude

    2013-01-01

    In higher eukaryotes, the absence of specific sequence motifs, marking the origins of replication has been a serious hindrance to the understanding of (i) the mechanisms that regulate the spatio-temporal replication program, and (ii) the links between origins activation, chromatin structure and transcription. In this chapter, we review the partitioning of the human genome into megabased-size replication domains delineated as N-shaped motifs in the strand compositional asymmetry profiles. They collectively span 28.3% of the genome and are bordered by more than 1,000 putative replication origins. We recapitulate the comparison of this partition of the human genome with high-resolution experimental data that confirms that replication domain borders are likely to be preferential replication initiation zones in the germline. In addition, we highlight the specific distribution of experimental and numerical chromatin marks along replication domains. Domain borders correspond to particular open chromatin regions, possibly encoded in the DNA sequence, and around which replication and transcription are highly coordinated. These regions also present a high evolutionary breakpoint density, suggesting that susceptibility to breakage might be linked to local open chromatin fiber state. Altogether, this chapter presents a compartmentalization of the human genome into replication domains that are landmarks of the human genome organization and are likely to play a key role in genome dynamics during evolution and in pathological situations.

  19. Topologically associating domains are stable units of replication-timing regulation.

    PubMed

    Pope, Benjamin D; Ryba, Tyrone; Dileep, Vishnu; Yue, Feng; Wu, Weisheng; Denas, Olgert; Vera, Daniel L; Wang, Yanli; Hansen, R Scott; Canfield, Theresa K; Thurman, Robert E; Cheng, Yong; Gülsoy, Günhan; Dennis, Jonathan H; Snyder, Michael P; Stamatoyannopoulos, John A; Taylor, James; Hardison, Ross C; Kahveci, Tamer; Ren, Bing; Gilbert, David M

    2014-11-20

    Eukaryotic chromosomes replicate in a temporal order known as the replication-timing program. In mammals, replication timing is cell-type-specific with at least half the genome switching replication timing during development, primarily in units of 400-800 kilobases ('replication domains'), whose positions are preserved in different cell types, conserved between species, and appear to confine long-range effects of chromosome rearrangements. Early and late replication correlate, respectively, with open and closed three-dimensional chromatin compartments identified by high-resolution chromosome conformation capture (Hi-C), and, to a lesser extent, late replication correlates with lamina-associated domains (LADs). Recent Hi-C mapping has unveiled substructure within chromatin compartments called topologically associating domains (TADs) that are largely conserved in their positions between cell types and are similar in size to replication domains. However, TADs can be further sub-stratified into smaller domains, challenging the significance of structures at any particular scale. Moreover, attempts to reconcile TADs and LADs to replication-timing data have not revealed a common, underlying domain structure. Here we localize boundaries of replication domains to the early-replicating border of replication-timing transitions and map their positions in 18 human and 13 mouse cell types. We demonstrate that, collectively, replication domain boundaries share a near one-to-one correlation with TAD boundaries, whereas within a cell type, adjacent TADs that replicate at similar times obscure replication domain boundaries, largely accounting for the previously reported lack of alignment. Moreover, cell-type-specific replication timing of TADs partitions the genome into two large-scale sub-nuclear compartments revealing that replication-timing transitions are indistinguishable from late-replicating regions in chromatin composition and lamina association and accounting for the reduced correlation of replication timing to LADs and heterochromatin. Our results reconcile cell-type-specific sub-nuclear compartmentalization and replication timing with developmentally stable structural domains and offer a unified model for large-scale chromosome structure and function.

  20. Achieving AFRL Universal FADEC Vision With Open Architecture Addressing Capability and Obsolescence for Military and Commercial Applications (Preprint)

    DTIC Science & Technology

    2006-11-01

    engines will involve a family of common components. It will consist of a real - time operating system and partitioned application software (AS...system will employ a standard hardware and software architecture. It will consist of a real time operating system and partitioned application...Inputs - Enables Large Cost Reduction 3. Software - FAA Certified Auto Code - Real Time Operating System - Commercial

  1. Common modular avionics - Partitioning and design philosophy

    NASA Astrophysics Data System (ADS)

    Scott, D. M.; Mulvaney, S. P.

    The design objectives and definition criteria for common modular hardware that will perform digital processing functions in multiple avionic subsystems are examined. In particular, attention is given to weapon system-level objectives, such as increased supportability, reduced life cycle costs, and increased upgradability. These objectives dictate the following overall modular design goals: reduce test equipment requirements; have a large number of subsystem applications; design for architectural growth; and standardize for technology transparent implementations. Finally, specific partitioning criteria are derived on the basis of the weapon system-level objectives and overall design goals.

  2. Design and Implementation of Replicated Object Layer

    NASA Technical Reports Server (NTRS)

    Koka, Sudhir

    1996-01-01

    One of the widely used techniques for construction of fault tolerant applications is the replication of resources so that if one copy fails sufficient copies may still remain operational to allow the application to continue to function. This thesis involves the design and implementation of an object oriented framework for replicating data on multiple sites and across different platforms. Our approach, called the Replicated Object Layer (ROL) provides a mechanism for consistent replication of data over dynamic networks. ROL uses the Reliable Multicast Protocol (RMP) as a communication protocol that provides for reliable delivery, serialization and fault tolerance. Besides providing type registration, this layer facilitates distributed atomic transactions on replicated data. A novel algorithm called the RMP Commit Protocol, which commits transactions efficiently in reliable multicast environment is presented. ROL provides recovery procedures to ensure that site and communication failures do not corrupt persistent data, and male the system fault tolerant to network partitions. ROL will facilitate building distributed fault tolerant applications by performing the burdensome details of replica consistency operations, and making it completely transparent to the application.Replicated databases are a major class of applications which could be built on top of ROL.

  3. Mapping EBNA-1 Domains Involved in Binding to Metaphase Chromosomes

    PubMed Central

    Marechal, Vincent; Dehee, Axelle; Chikhi-Brachet, Roxane; Piolot, Tristan; Coppey-Moisan, Maité; Nicolas, Jean-Claude

    1999-01-01

    The Epstein-Barr virus (EBV) genome can persist in dividing human B cells as multicopy circular episomes. Viral episomes replicate in synchrony with host cell DNA and are maintained at a relatively constant copy number for a long time. Only two viral elements, the replication origin OriP and the EBNA-1 protein, are required for the persistence of viral genomes during latency. EBNA-1 activates OriP during the S phase and may also contribute to the partition and/or retention of viral genomes during mitosis. Indeed, EBNA-1 has been shown to interact with mitotic chromatin. Moreover, viral genomes are noncovalently associated with metaphase chromosomes. This suggests that EBNA-1 may facilitate the anchorage of viral genomes on cellular chromosomes, thus ensuring proper partition and retention. In the present paper, we have investigated the chromosome-binding activity of EBV EBNA-1, herpesvirus papio (HVP) EBNA-1, and various derivatives of EBV EBNA-1, fused to a variant of the green fluorescent protein. The results show that binding to metaphase chromosomes is a common property of EBV and HVP EBNA-1. Further studies indicated that at least three independent domains (CBS-1, -2, and -3) mediate EBNA-1 binding to metaphase chromosomes. In agreement with the anchorage model, two of these domains mapped to a region that has been previously demonstrated to be required for the long-term persistence of OriP-containing plasmids. PMID:10196336

  4. Topologically-associating domains are stable units of replication-timing regulation

    PubMed Central

    Pope, Benjamin D.; Ryba, Tyrone; Dileep, Vishnu; Yue, Feng; Wu, Weisheng; Denas, Olgert; Vera, Daniel L.; Wang, Yanli; Hansen, R. Scott; Canfield, Theresa K.; Thurman, Robert E.; Cheng, Yong; Gülsoy, Günhan; Dennis, Jonathan H.; Snyder, Michael P.; Stamatoyannopoulos, John A.; Taylor, James; Hardison, Ross C.; Kahveci, Tamer; Ren, Bing; Gilbert, David M.

    2014-01-01

    Summary Eukaryotic chromosomes replicate in a temporal order known as the replication-timing program1. During mammalian development, at least half the genome changes replication timing, primarily in units of 400–800 kb (“replication domains”; RDs), whose positions are preserved in different cell types, conserved between species, and appear to confine long-range effects of chromosome rearrangements2–7. Early and late replication correlate strongly with open and closed chromatin compartments identified by high-resolution chromosome conformation capture (Hi-C), and, to a lesser extent, lamina-associated domains (LADs)4,5,8,9. Recent Hi-C mapping has unveiled a substructure of topologically-associating domains (TADs) that are largely conserved in their positions between cell types and are similar in size to RDs8,10. However, TADs can be further sub-stratified into smaller domains, challenging the significance of structures at any particular scale11,12. Moreover, attempts to reconcile TADs and LADs to replication-timing data have not revealed a common, underlying domain structure8,9,13. Here, we localize boundaries of RDs to the early-replicating border of replication-timing transitions and map their positions in 18 human and 13 mouse cell types. We demonstrate that, collectively, RD boundaries share a near one-to-one correlation with TAD boundaries, whereas within a cell type, adjacent TADs that replicate at similar times obscure RD boundaries, largely accounting for the previously reported lack of alignment. Moreover, cell-type specific replication timing of TADs partitions the genome into two large-scale sub-nuclear compartments revealing that replication-timing transitions are indistinguishable from late-replicating regions in chromatin composition and lamina association and accounting for the reduced correlation of replication timing to LADs and heterochromatin. Our results reconcile cell type specific sub-nuclear compartmentalization with developmentally stable chromosome domains and offer a unified model for large-scale chromosome structure and function. PMID:25409831

  5. Evaluating white LEDs for outdoor landscape lighting application

    NASA Astrophysics Data System (ADS)

    Shakir, Insiya; Narendran, Nadarajah

    2002-11-01

    A laboratory experiment was conducted to understand the acceptability of different white light emitting diodes (LEDs) for outdoor landscape lighting. The study used a scaled model setup. The scene was designed to replicate the exterior of a typical upscale suburban restaurant including the exterior facade of the building, an approach with steps, and a garden. The lighting was designed to replicate light levels commonly found in nighttime outdoor conditions. The model had a central dividing partition with symmetrical scenes on both sides for side-by-side evaluations of the two scenes with different light sources. While maintaining equal luminance levels and distribution between the two scenes, four types of light sources were evaluated. These include, halogen, phosphor white LED, and two white light systems using RGB LEDs. These light sources were tested by comparing two sources at a time placed side-by-side and by individual assessment of each lighting condition. The results showed that the RGB LEDs performed equal or better than the most widely used halogen light source in this given setting. A majority of the subjects found slightly dimmer ambient lighting to be more typical for restaurants and therefore found RGB LED and halogen light sources to be more inviting. The phosphor white LEDs made the space look brighter, however a majority of the subjects disliked them.

  6. Similarity in replication timing between polytene and diploid cells is associated with the organization of the Drosophila genome

    PubMed Central

    Goncharov, Fedor P.; Zhimulev, Igor F.

    2018-01-01

    Morphologically, polytene chromosomes of Drosophila melanogaster consist of compact “black” bands alternating with less compact “grey” bands and interbands. We developed a comprehensive approach that combines cytological mapping data of FlyBase-annotated genes and novel tools for predicting cytogenetic features of chromosomes on the basis of their protein composition and determined the genomic coordinates for all black bands of polytene chromosome 2R. By a PCNA immunostaining assay, we obtained the replication timetable for all the bands mapped. The results allowed us to compare replication timing between polytene chromosomes in salivary glands and chromosomes from cultured diploid cell lines and to observe a substantial similarity in the global replication patterns at the band resolution level. In both kinds of chromosomes, the intervals between black bands correspond to early replication initiation zones. Black bands are depleted of replication initiation events and are characterized by a gradient of replication timing; therefore, the time of replication completion correlates with the band length. The bands are characterized by low gene density, contain predominantly tissue-specific genes, and are represented by silent chromatin types in various tissues. The borders of black bands correspond well to the borders of topological domains as well as to the borders of the zones showing H3K27me3, SUUR, and LAMIN enrichment. In conclusion, the characteristic pattern of polytene chromosomes reflects partitioning of the Drosophila genome into two global types of domains with contrasting properties. This partitioning is conserved in different tissues and determines replication timing in Drosophila. PMID:29659604

  7. Origin of life in a digital microcosm

    NASA Astrophysics Data System (ADS)

    C G, Nitash; LaBar, Thomas; Hintze, Arend; Adami, Christoph

    2017-11-01

    While all organisms on Earth share a common descent, there is no consensus on whether the origin of the ancestral self-replicator was a one-off event or whether it only represented the final survivor of multiple origins. Here, we use the digital evolution system Avida to study the origin of self-replicating computer programs. By using a computational system, we avoid many of the uncertainties inherent in any biochemical system of self-replicators (while running the risk of ignoring a fundamental aspect of biochemistry). We generated the exhaustive set of minimal-genome self-replicators and analysed the network structure of this fitness landscape. We further examined the evolvability of these self-replicators and found that the evolvability of a self-replicator is dependent on its genomic architecture. We also studied the differential ability of replicators to take over the population when competed against each other, akin to a primordial-soup model of biogenesis, and found that the probability of a self-replicator outcompeting the others is not uniform. Instead, progenitor (most-recent common ancestor) genotypes are clustered in a small region of the replicator space. Our results demonstrate how computational systems can be used as test systems for hypotheses concerning the origin of life. This article is part of the themed issue 'Reconceptualizing the origins of life'.

  8. High Throughput Analyses of Budding Yeast ARSs Reveal New DNA Elements Capable of Conferring Centromere-Independent Plasmid Propagation

    PubMed Central

    Hoggard, Timothy; Liachko, Ivan; Burt, Cassaundra; Meikle, Troy; Jiang, Katherine; Craciun, Gheorghe; Dunham, Maitreya J.; Fox, Catherine A.

    2016-01-01

    The ability of plasmids to propagate in Saccharomyces cerevisiae has been instrumental in defining eukaryotic chromosomal control elements. Stable propagation demands both plasmid replication, which requires a chromosomal replication origin (i.e., an ARS), and plasmid distribution to dividing cells, which requires either a chromosomal centromere for segregation or a plasmid-partitioning element. While our knowledge of yeast ARSs and centromeres is relatively advanced, we know less about chromosomal regions that can function as plasmid partitioning elements. The Rap1 protein-binding site (RAP1) present in transcriptional silencers and telomeres of budding yeast is a known plasmid-partitioning element that functions to anchor a plasmid to the inner nuclear membrane (INM), which in turn facilitates plasmid distribution to daughter cells. This Rap1-dependent INM-anchoring also has an important chromosomal role in higher-order chromosomal structures that enhance transcriptional silencing and telomere stability. Thus, plasmid partitioning can reflect fundamental features of chromosome structure and biology, yet a systematic screen for plasmid partitioning elements has not been reported. Here, we couple deep sequencing with competitive growth experiments of a plasmid library containing thousands of short ARS fragments to identify new plasmid partitioning elements. Competitive growth experiments were performed with libraries that differed only in terms of the presence or absence of a centromere. Comparisons of the behavior of ARS fragments in the two experiments allowed us to identify sequences that were likely to drive plasmid partitioning. In addition to the silencer RAP1 site, we identified 74 new putative plasmid-partitioning motifs predicted to act as binding sites for DNA binding proteins enriched for roles in negative regulation of gene expression and G2/M-phase associated biology. These data expand our knowledge of chromosomal elements that may function in plasmid partitioning and suggest underlying biological roles shared by such elements. PMID:26865697

  9. Parallelization Issues and Particle-In Codes.

    NASA Astrophysics Data System (ADS)

    Elster, Anne Cathrine

    1994-01-01

    "Everything should be made as simple as possible, but not simpler." Albert Einstein. The field of parallel scientific computing has concentrated on parallelization of individual modules such as matrix solvers and factorizers. However, many applications involve several interacting modules. Our analyses of a particle-in-cell code modeling charged particles in an electric field, show that these accompanying dependencies affect data partitioning and lead to new parallelization strategies concerning processor, memory and cache utilization. Our test-bed, a KSR1, is a distributed memory machine with a globally shared addressing space. However, most of the new methods presented hold generally for hierarchical and/or distributed memory systems. We introduce a novel approach that uses dual pointers on the local particle arrays to keep the particle locations automatically partially sorted. Complexity and performance analyses with accompanying KSR benchmarks, have been included for both this scheme and for the traditional replicated grids approach. The latter approach maintains load-balance with respect to particles. However, our results demonstrate it fails to scale properly for problems with large grids (say, greater than 128-by-128) running on as few as 15 KSR nodes, since the extra storage and computation time associated with adding the grid copies, becomes significant. Our grid partitioning scheme, although harder to implement, does not need to replicate the whole grid. Consequently, it scales well for large problems on highly parallel systems. It may, however, require load balancing schemes for non-uniform particle distributions. Our dual pointer approach may facilitate this through dynamically partitioned grids. We also introduce hierarchical data structures that store neighboring grid-points within the same cache -line by reordering the grid indexing. This alignment produces a 25% savings in cache-hits for a 4-by-4 cache. A consideration of the input data's effect on the simulation may lead to further improvements. For example, in the case of mean particle drift, it is often advantageous to partition the grid primarily along the direction of the drift. The particle-in-cell codes for this study were tested using physical parameters, which lead to predictable phenomena including plasma oscillations and two-stream instabilities. An overview of the most central references related to parallel particle codes is also given.

  10. 27nt-RNAs guide histone variant deposition via 'RNA-induced DNA replication interference' and thus transmit parental genome partitioning in Stylonychia.

    PubMed

    Postberg, Jan; Jönsson, Franziska; Weil, Patrick Philipp; Bulic, Aneta; Juranek, Stefan Andreas; Lipps, Hans-Joachim

    2018-06-12

    During sexual reproduction in the unicellular ciliate Stylonychia somatic macronuclei differentiate from germline micronuclei. Thereby, programmed sequence reduction takes place, leading to the elimination of > 95% of germline sequences, which priorly adopt heterochromatin structure via H3K27me3. Simultaneously, 27nt-ncRNAs become synthesized from parental transcripts and are bound by the Argonaute protein PIWI1. These 27nt-ncRNAs cover sequences destined to the developing macronucleus and are thought to protect them from degradation. We provide evidence and propose that RNA/DNA base-pairing guides PIWI1/27nt-RNA complexes to complementary macronucleus-destined DNA target sequences, hence transiently causing locally stalled replication during polytene chromosome formation. This spatiotemporal delay enables the selective deposition of temporarily available histone H3.4K27me3 nucleosomes at all other sequences being continuously replicated, thus dictating their prospective heterochromatin structure before becoming developmentally eliminated. Concomitantly, 27nt-RNA-covered sites remain protected. We introduce the concept of 'RNA-induced DNA replication interference' and explain how the parental functional genome partition could become transmitted to the progeny.

  11. Investigating Uranium Mobility Using Stable Isotope Partitioning of 238U/235U and a Reactive Transport Model

    NASA Astrophysics Data System (ADS)

    Bizjack, M.; Johnson, T. M.; Druhan, J. L.; Shiel, A. E.

    2015-12-01

    We report a numerical reactive transport model which explicitly incorporates the effectively stable isotopes of uranium (U) and the factors that influence their partitioning in bioactive systems. The model reproduces trends observed in U isotope ratios and concentration measurements from a field experiment, thereby improving interpretations of U isotope ratios as a tracer for U reactive transport. A major factor contributing to U storage and transport is its redox state, which is commonly influenced by the availability of organic carbon to support metal-reducing microbial communities. Both laboratory and field experiments have demonstrated that biogenic reduction of U(VI) fractionates the stable isotope ratio 238U/235U, producing an isotopically heavy solid U(IV) product. It has also been shown that other common reactive transport processes involving U do not fractionate isotopes to a consistently measurable level, which suggests the capacity to quantify the extent of bioreduction occurring in groundwater containing U using 238U/235U ratios. A recent study of a U bioremediation experiment at the Rifle IFRC site (Colorado, USA) applied Rayleigh distillation models to quantify U stable isotope fractionation observed during acetate amendment. The application of these simplified models were fit to the observations only by invoking a "memory-effect," or a constant source of low-concentration, unfractionated U(VI). In order to more accurately interpret the measured U isotope ratios, we present a multi-component reactive transport model using the CrunchTope software. This approach is capable of quantifying the cycling and partitioning of individual U isotopes through a realistic network of transport and reaction pathways including reduction, oxidation, and microbial growth. The model incorporates physical heterogeneity of the aquifer sediments through zones of decreased permeability, which replicate the observed bromide tracer, major ion chemistry, U concentration, and U isotope ratios. These results suggest that the rate-limited transport properties of U in the Rifle aquifer are governed by the presence of low-permeability regions in the modeling domain and that these zones are responsible for the suggested "memory" effect observed in previous U isotope studies at this site.

  12. Hierarchical Data Distribution Scheme for Peer-to-Peer Networks

    NASA Astrophysics Data System (ADS)

    Bhushan, Shashi; Dave, M.; Patel, R. B.

    2010-11-01

    In the past few years, peer-to-peer (P2P) networks have become an extremely popular mechanism for large-scale content sharing. P2P systems have focused on specific application domains (e.g. music files, video files) or on providing file system like capabilities. P2P is a powerful paradigm, which provides a large-scale and cost-effective mechanism for data sharing. P2P system may be used for storing data globally. Can we implement a conventional database on P2P system? But successful implementation of conventional databases on the P2P systems is yet to be reported. In this paper we have presented the mathematical model for the replication of the partitions and presented a hierarchical based data distribution scheme for the P2P networks. We have also analyzed the resource utilization and throughput of the P2P system with respect to the availability, when a conventional database is implemented over the P2P system with variable query rate. Simulation results show that database partitions placed on the peers with higher availability factor perform better. Degradation index, throughput, resource utilization are the parameters evaluated with respect to the availability factor.

  13. Cell Partition in Two Polymer Aqueous Phases

    NASA Technical Reports Server (NTRS)

    Harris, J. M.

    1985-01-01

    Partition of biological cells in two phase aqueous polymer systems is recognized as a powerful separation technique which is limited by gravity. The synthesis of new, selective polymer ligand conjugates to be used in affinity partition separations is of interest. The two most commonly used polymers in two phase partitioning are dextran and polyethylene glycol. A thorough review of the chemistry of these polymers was begun, particularly in the area of protein attachment. Preliminary studies indicate the importance in affinity partitioning of minimizing gravity induced randomizing forces in the phase separation process. The PEG-protein conjugates that were prepared appear to be ideally suited for achieving high quality purifications in a microgravity environment. An interesting spin-off of this synthetic work was the observation of catalytic activity for certain of our polymer derivatives.

  14. The logic of DNA replication in double-stranded DNA viruses: insights from global analysis of viral genomes

    PubMed Central

    Kazlauskas, Darius; Krupovic, Mart; Venclovas, Česlovas

    2016-01-01

    Abstract Genomic DNA replication is a complex process that involves multiple proteins. Cellular DNA replication systems are broadly classified into only two types, bacterial and archaeo-eukaryotic. In contrast, double-stranded (ds) DNA viruses feature a much broader diversity of DNA replication machineries. Viruses differ greatly in both completeness and composition of their sets of DNA replication proteins. In this study, we explored whether there are common patterns underlying this extreme diversity. We identified and analyzed all major functional groups of DNA replication proteins in all available proteomes of dsDNA viruses. Our results show that some proteins are common to viruses infecting all domains of life and likely represent components of the ancestral core set. These include B-family polymerases, SF3 helicases, archaeo-eukaryotic primases, clamps and clamp loaders of the archaeo-eukaryotic type, RNase H and ATP-dependent DNA ligases. We also discovered a clear correlation between genome size and self-sufficiency of viral DNA replication, the unanticipated dominance of replicative helicases and pervasive functional associations among certain groups of DNA replication proteins. Altogether, our results provide a comprehensive view on the diversity and evolution of replication systems in the DNA virome and uncover fundamental principles underlying the orchestration of viral DNA replication. PMID:27112572

  15. Replicative intermediates of porcine circovirus in animal tissue cultured cells or in bacteria undergoing copy-release replication

    USDA-ARS?s Scientific Manuscript database

    Porcine circovirus (PCV) has been assumed to replicate its genome via the rolling-circle replication (RCR) mechanism because it encodes a Rep protein that contains several amino acid motifs commonly found in other RCR biological systems. Two proteins, Rep and Rep', are essential for PCV DNA replicat...

  16. Bipolar localization of the group II intron Ll.LtrB is maintained in Escherichia coli deficient in nucleoid condensation, chromosome partitioning and DNA replication.

    PubMed

    Beauregard, Arthur; Chalamcharla, Venkata R; Piazza, Carol Lyn; Belfort, Marlene; Coros, Colin J

    2006-11-01

    Group II introns are mobile genetic elements that invade their cognate intron-minus alleles via an RNA intermediate, in a process known as retrohoming. They can also retrotranspose to ectopic sites at low frequency. In Escherichia coli, retrotransposition of the lactococcal group II intron, Ll.LtrB, occurs preferentially within the Ori and Ter macrodomains of the E. coli chromosome. These macrodomains migrate towards the poles of the cell, where the intron-encoded protein, LtrA, localizes. Here we investigate whether alteration of nucleoid condensation, chromosome partitioning and replication affect retrotransposition frequencies, as well as bipolar localization of the Ll.LtrB intron integration and LtrA distribution in E. coli. We thus examined these properties in the absence of the nucleoid-associated proteins H-NS, StpA and MukB, in variants of partitioning functions including the centromere-like sequence migS and the actin homologue MreB, as well as in the replication mutants DeltaoriC, seqA, tus and topoIV (ts). Although there were some dramatic fluctuations in retrotransposition levels in these hosts, bipolar localization of integration events was maintained. LtrA was consistently found in nucleoid-free regions, with its localization to the cellular poles being largely preserved in these hosts. Together, these results suggest that bipolar localization of group II intron retrotransposition results from the residence of the intron-encoded protein at the poles of the cell.

  17. Regulated Eukaryotic DNA Replication Origin Firing with Purified Proteins

    PubMed Central

    Yeeles, Joseph T.P.; Deegan, Tom D.; Janska, Agnieszka; Early, Anne; Diffley, John F. X.

    2016-01-01

    Eukaryotic cells initiate DNA replication from multiple origins, which must be tightly regulated to promote precise genome duplication in every cell cycle. To accomplish this, initiation is partitioned into two temporally discrete steps: a double hexameric MCM complex is first loaded at replication origins during G1 phase, and then converted to the active CMG (Cdc45, MCM, GINS) helicase during S phase. Here we describe the reconstitution of budding yeast DNA replication initiation with 16 purified replication factors, made from 42 polypeptides. Origin-dependent initiation recapitulates regulation seen in vivo. Cyclin dependent kinase (CDK) inhibits MCM loading by phosphorylating the origin recognition complex (ORC) and promotes CMG formation by phosphorylating Sld2 and Sld3. Dbf4 dependent kinase (DDK) promotes replication by phosphorylating MCM, and can act either before or after CDK. These experiments define the minimum complement of proteins, protein kinase substrates and co-factors required for regulated eukaryotic DNA replication. PMID:25739503

  18. Regulated eukaryotic DNA replication origin firing with purified proteins.

    PubMed

    Yeeles, Joseph T P; Deegan, Tom D; Janska, Agnieszka; Early, Anne; Diffley, John F X

    2015-03-26

    Eukaryotic cells initiate DNA replication from multiple origins, which must be tightly regulated to promote precise genome duplication in every cell cycle. To accomplish this, initiation is partitioned into two temporally discrete steps: a double hexameric minichromosome maintenance (MCM) complex is first loaded at replication origins during G1 phase, and then converted to the active CMG (Cdc45-MCM-GINS) helicase during S phase. Here we describe the reconstitution of budding yeast DNA replication initiation with 16 purified replication factors, made from 42 polypeptides. Origin-dependent initiation recapitulates regulation seen in vivo. Cyclin-dependent kinase (CDK) inhibits MCM loading by phosphorylating the origin recognition complex (ORC) and promotes CMG formation by phosphorylating Sld2 and Sld3. Dbf4-dependent kinase (DDK) promotes replication by phosphorylating MCM, and can act either before or after CDK. These experiments define the minimum complement of proteins, protein kinase substrates and co-factors required for regulated eukaryotic DNA replication.

  19. Variability in Pesticide Deposition and Source Contributions to Snowpack in Western US National Parks

    PubMed Central

    Hageman, Kimberly J.; Hafner, William D.; Campbell, Donald H.; Jaffe, Daniel A; Landers, Dixon H.; Simonic, Staci L. Massey

    2010-01-01

    Fifty-six seasonal snowpack samples were collected at remote alpine, sub-arctic, and arctic sites in eight Western US national parks during three consecutive years (2003–2005). Four current-use pesticides (CUPs) (dacthal (DCPA), chlorpyrifos, endosulfan, and γ-hexachlorocyclohexane (HCH)) and four historic-use pesticides (HUPs) (dieldrin, α-HCH, chlordane, and hexachlorobenzene (HCB)) were commonly measured at all sites, during all years. The mean coefficient of variation for pesticide concentrations was 15% for site replicate samples, 41% for intra-park replicate samples, and 59% for inter-annual replicate samples. The relative pesticide concentration profiles were consistent from year to year but unique for individual parks, indicating a regional source effect. HUP concentrations were well-correlated with regional cropland intensity when the effect of temperature on snow-air partitioning was considered. The mass of individual CUPs used in regions located one-day upwind of the parks was calculated using air mass back trajectories and this was used to explain the distribution of CUPs among the parks. The percent of the snowpack pesticide concentration due to regional transport was high (>75%) for the majority of pesticides in all parks. These results suggest that the majority of pesticide contamination in US national parks is due to pesticide use in North America. PMID:20499934

  20. Variability in pesticide deposition and source contributions to snowpack in western U.S. National Parks

    USGS Publications Warehouse

    Hageman, Kimberly J.; Hafner, William D.; Campbell, Donald H.; Jaffe, Daniel A.; Landers, Dixon H.; Massey Simonich, Staci L.

    2010-01-01

    Fifty-six seasonal snowpack samples were collected at remote alpine, subarctic, and arctic sites in eight Western U.S. national parks during three consecutive years (2003−2005). Four current-use pesticides (CUPs) (dacthal (DCPA), chlorpyrifos, endosulfans, and γ-hexachlorocyclohexane (HCH)) and four historic-use pesticides (HUPs) (dieldrin, α-HCH, chlordanes, and hexachlorobenzene (HCB)) were commonly measured at all sites, during all years. The mean coefficient of variation for pesticide concentrations was 15% for site replicate samples, 41% for intrapark replicate samples, and 59% for interannual replicate samples. The relative pesticide concentration profiles were consistent from year to year but unique for individual parks, indicating a regional source effect. HUP concentrations were well-correlated with regional cropland intensity when the effect of temperature on snow-air partitioning was considered. The mass of individual CUPs used in regions located one-day upwind of the parks was calculated using air mass back trajectories, and this was used to explain the distribution of CUPs among the parks. The percent of the snowpack pesticide concentration due to regional transport was high (>75%) for the majority of pesticides in all parks. These results suggest that the majority of pesticide contamination in U.S. national parks is due to regional pesticide use in North America.

  1. Variability in pesticide deposition and source contributions to snowpack in Western U.S. national parks.

    PubMed

    Hageman, Kimberly J; Hafner, William D; Campbell, Donald H; Jaffe, Daniel A; Landers, Dixon H; Simonich, Staci L Massey

    2010-06-15

    Fifty-six seasonal snowpack samples were collected at remote alpine, subarctic, and arctic sites in eight Western U.S. national parks during three consecutive years (2003-2005). Four current-use pesticides (CUPs) (dacthal (DCPA), chlorpyrifos, endosulfans, and gamma-hexachlorocyclohexane (HCH)) and four historic-use pesticides (HUPs) (dieldrin, alpha-HCH, chlordanes, and hexachlorobenzene (HCB)) were commonly measured at all sites, during all years. The mean coefficient of variation for pesticide concentrations was 15% for site replicate samples, 41% for intrapark replicate samples, and 59% for interannual replicate samples. The relative pesticide concentration profiles were consistent from year to year but unique for individual parks, indicating a regional source effect. HUP concentrations were well-correlated with regional cropland intensity when the effect of temperature on snow-air partitioning was considered. The mass of individual CUPs used in regions located one-day upwind of the parks was calculated using air mass back trajectories, and this was used to explain the distribution of CUPs among the parks. The percent of the snowpack pesticide concentration due to regional transport was high (>75%) for the majority of pesticides in all parks. These results suggest that the majority of pesticide contamination in U.S. national parks is due to regional pesticide use in North America.

  2. The logic of DNA replication in double-stranded DNA viruses: insights from global analysis of viral genomes.

    PubMed

    Kazlauskas, Darius; Krupovic, Mart; Venclovas, Česlovas

    2016-06-02

    Genomic DNA replication is a complex process that involves multiple proteins. Cellular DNA replication systems are broadly classified into only two types, bacterial and archaeo-eukaryotic. In contrast, double-stranded (ds) DNA viruses feature a much broader diversity of DNA replication machineries. Viruses differ greatly in both completeness and composition of their sets of DNA replication proteins. In this study, we explored whether there are common patterns underlying this extreme diversity. We identified and analyzed all major functional groups of DNA replication proteins in all available proteomes of dsDNA viruses. Our results show that some proteins are common to viruses infecting all domains of life and likely represent components of the ancestral core set. These include B-family polymerases, SF3 helicases, archaeo-eukaryotic primases, clamps and clamp loaders of the archaeo-eukaryotic type, RNase H and ATP-dependent DNA ligases. We also discovered a clear correlation between genome size and self-sufficiency of viral DNA replication, the unanticipated dominance of replicative helicases and pervasive functional associations among certain groups of DNA replication proteins. Altogether, our results provide a comprehensive view on the diversity and evolution of replication systems in the DNA virome and uncover fundamental principles underlying the orchestration of viral DNA replication. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. The Genetic Architecture of Major Depressive Disorder in Han Chinese Women.

    PubMed

    Peterson, Roseann E; Cai, Na; Bigdeli, Tim B; Li, Yihan; Reimers, Mark; Nikulova, Anna; Webb, Bradley T; Bacanu, Silviu-Alin; Riley, Brien P; Flint, Jonathan; Kendler, Kenneth S

    2017-02-01

    Despite the moderate, well-demonstrated heritability of major depressive disorder (MDD), there has been limited success in identifying replicable genetic risk loci, suggesting a complex genetic architecture. Research is needed to quantify the relative contribution of classes of genetic variation across the genome to inform future genetic studies of MDD. To apply aggregate genetic risk methods to clarify the genetic architecture of MDD by estimating and partitioning heritability by chromosome, minor allele frequency, and functional annotations and to test for enrichment of rare deleterious variants. The CONVERGE (China, Oxford, and Virginia Commonwealth University Experimental Research on Genetic Epidemiology) study collected data on 5278 patients with recurrent MDD from 58 provincial mental health centers and psychiatric departments of general medical hospitals in 45 cities and 23 provinces of China. Screened controls (n = 5196) were recruited from a range of locations, including general hospitals and local community centers. Data were collected from August 1, 2008, to October 31, 2012. Genetic risk for liability to recurrent MDD was partitioned using sparse whole-genome sequencing. In aggregate, common single-nucleotide polymorphisms (SNPs) explained between 20% and 29% of the variance in MDD risk, and the heritability in MDD explained by each chromosome was proportional to its length (r = 0.680; P = .0003), supporting a common polygenic etiology. Partitioning heritability by minor allele frequency indicated that the variance explained was distributed across the allelic frequency spectrum, although relatively common SNPs accounted for a disproportionate fraction of risk. Partitioning by genic annotation indicated a greater contribution of SNPs in protein-coding regions and within 3'-UTR regions of genes. Enrichment of SNPs associated with DNase I-hypersensitive sites was also found in many tissue types, including brain tissue. Examining burden scores from singleton exonic SNPs predicted to be deleterious indicated that cases had significantly more mutations than controls (odds ratio, 1.009; 95% CI, 1.003-1.014; P = .003), including those occurring in genes expressed in the brain (odds ratio, 1.011; 95% CI, 1.003-1.018; P = .004) and within nuclear-encoded genes with mitochondrial gene products (odds ratio, 1.075; 95% CI, 1.018-1.135; P = .009). Results support a complex etiology for MDD and highlight the value of analyzing components of heritability to clarify genetic architecture.

  4. The Genetic Architecture of Major Depressive Disorder in Han Chinese Women

    PubMed Central

    Peterson, Roseann E.; Cai, Na; Bigdeli, Tim B.; Li, Yihan; Reimers, Mark; Nikulova, Anna; Webb, Bradley T.; Bacanu, Silviu-Alin; Riley, Brien P.; Flint, Jonathan; Kendler, Kenneth S.

    2017-01-01

    IMPORTANCE Despite the moderate, well-demonstrated heritability of major depressive disorder (MDD), there has been limited success in identifying replicable genetic risk loci, suggesting a complex genetic architecture. Research is needed to quantify the relative contribution of classes of genetic variation across the genome to inform future genetic studies of MDD. OBJECTIVES To apply aggregate genetic risk methods to clarify the genetic architecture of MDD by estimating and partitioning heritability by chromosome, minor allele frequency, and functional annotations and to test for enrichment of rare deleterious variants. DESIGN, SETTING, AND PARTICIPANTS The CONVERGE (China, Oxford, and Virginia Commonwealth University Experimental Research on Genetic Epidemiology) study collected data on 5278 patients with recurrent MDD from 58 provincial mental health centers and psychiatric departments of general medical hospitals in 45 cities and 23 provinces of China. Screened controls (n = 5196) were recruited from a range of locations, including general hospitals and local community centers. Data were collected from August 1, 2008, to October 31, 2012. MAIN OUTCOMES AND MEASURES Genetic risk for liability to recurrent MDD was partitioned using sparse whole-genome sequencing. RESULTS In aggregate, common single-nucleotide polymorphisms (SNPs) explained between 20% and 29% of the variance in MDD risk, and the heritability in MDD explained by each chromosome was proportional to its length (r = 0.680; P = .0003), supporting a common polygenic etiology. Partitioning heritability by minor allele frequency indicated that the variance explained was distributed across the allelic frequency spectrum, although relatively common SNPs accounted for a disproportionate fraction of risk. Partitioning by genic annotation indicated a greater contribution of SNPs in protein-coding regions and within 3′-UTR regions of genes. Enrichment of SNPs associated with DNase I-hypersensitive sites was also found in many tissue types, including brain tissue. Examining burden scores from singleton exonic SNPs predicted to be deleterious indicated that cases had significantly more mutations than controls (odds ratio, 1.009; 95% CI, 1.003–1.014; P = .003), including those occurring in genes expressed in the brain (odds ratio, 1.011; 95% CI, 1.003–1.018; P = .004) and within nuclear-encoded genes with mitochondrial gene products (odds ratio, 1.075; 95% CI, 1.018–1.135; P = .009). CONCLUSIONS AND RELEVANCE Results support a complex etiology for MDD and highlight the value of analyzing components of heritability to clarify genetic architecture. PMID:28002544

  5. Standardized Sky Partitioning for the Next Generation Astronomy and Space Science Archives

    NASA Technical Reports Server (NTRS)

    Lal, Nand (Technical Monitor); McLean, Brian

    2004-01-01

    The Johns Hopkins University and Space Telescope Science Institute are working together on this project to develop a library of standard software for data archives that will benefit the wider astronomical community. The ultimate goal was to develop and distribute a software library aimed at providing a common system for partitioning and indexing the sky in manageable sized regions and provide complex queries on the objects stored in this system. Whilst ongoing maintenance work will continue the primary goal has been completed. Most of the next generation sky surveys in the different wavelengths like 2MASS, GALEX, SDSS, GSC-II, DPOSS and FIRST have agreed on this common set of utilities. In this final report, we summarize work on the work elements assigned to the STScI project team.

  6. Requirements for implementing real-time control functional modules on a hierarchical parallel pipelined system

    NASA Technical Reports Server (NTRS)

    Wheatley, Thomas E.; Michaloski, John L.; Lumia, Ronald

    1989-01-01

    Analysis of a robot control system leads to a broad range of processing requirements. One fundamental requirement of a robot control system is the necessity of a microcomputer system in order to provide sufficient processing capability.The use of multiple processors in a parallel architecture is beneficial for a number of reasons, including better cost performance, modular growth, increased reliability through replication, and flexibility for testing alternate control strategies via different partitioning. A survey of the progression from low level control synchronizing primitives to higher level communication tools is presented. The system communication and control mechanisms of existing robot control systems are compared to the hierarchical control model. The impact of this design methodology on the current robot control systems is explored.

  7. Defining Noble Gas Partitioning for Carbon Capture and Storage Environments

    NASA Astrophysics Data System (ADS)

    Warr, O.; Masters, A.; Rochelle, C.; Ballentine, C. J.

    2014-12-01

    For viable CCS implementation variables such as CO2 dissolution rates, reactions with the host rock and the extent of groundwater interaction must be accurately constrained. Noble gases play an important role in these systems [e.g. 1,2]. Their application, however, requires accurate Henry's constants within dense CO2-H2O systems. Current interpretations use pure noble gas-H2O partitioning data [3,4] and assume CO2-noble gas interactions are negligible, even at high (>700 kg/m3) CO2 densities [2]. To test this assumption we experimentally determined noble gas CO2-H2O partitioning for the 170-656 kg/m3 CO2 density range; representative of most CCS environments. Contrary to assumption, CO2 density significantly affected noble gas partition coefficients. For helium, increasing CO2 density resulted in a negative deviation trend from CO2-free values whilst for argon, krypton and xenon strong, positive deviations were observed. At 656 kg/m3 these deviations were -35%, 74%, 114% and 321% respectively. This is interpreted as the CO2 phase acting as a polar solvent inducing polarisation in the noble gases. Deviation trends are well defined using a 2nd order polynomial. The effect of a dense CO2 phase can now be incorporated into existing noble gas models. We also present results from a Gibbs-Ensemble Monte Carlo molecular simulation to model partitioning for this binary system. This fundamental technique makes predictions based on the pair-potentials of interaction between the molecules. Here it gives the phase compositions and Henry coefficients for noble gases. With a proven ability in accurately replicating both the CO2-H2O system and low pressure noble gas Henry constants the focus is now on fully optimising the model to match high pressure observations. [1] Gilfillan et al. (2009) Nature 458 614-618 [2] Gilfillan et al. (2008) GCA 72 1174-1198 [3] Crovetto et al. (1982) J.Chem.Phys. 76 1077-1086 [4] Ballentine et al. in Porcelli et al. (eds.) (2002) Rev.Min.Geo. 47 539-614.

  8. Pumping performance of a slow-rotating paddlewheel for split-pond aquaculture systems

    USDA-ARS?s Scientific Manuscript database

    Commercial catfish farmers are intensifying production by retrofitting ponds with variations of the partitioned aquaculture system (PAS). The split-pond system is the most common variation used commercially. The split-pond consists of a small fish-holding basin connected to a waste treatment lagoon ...

  9. Suppression of initiation defects of chromosome replication in Bacillus subtilis dnaA and oriC-deleted mutants by integration of a plasmid replicon into the chromosomes.

    PubMed

    Hassan, A K; Moriya, S; Ogura, M; Tanaka, T; Kawamura, F; Ogasawara, N

    1997-04-01

    We constructed Bacillus subtilis strains in which chromosome replication initiates from the minimal replicon of a plasmid isolated from Bacillus natto, independently of oriC. Integration of the replicon in either orientation at the proA locus (115 degrees on the genetic map) suppressed the temperature-sensitive phenotype caused by a mutation in dnaA, a gene required for initiation of replication from oriC. In addition, in a strain with the plasmid replicon integrated into the chromosome, we were able to delete sequences required for oriC function. These strains were viable but had a slower growth rate than the oriC+ strains. Marker frequency analysis revealed that both pyrD and metD, genes close to proA, showed the highest values among the markers (genes) measured, and those of other markers decreased symmetrically with distance from the site of the integration (proA). These results indicated that the integrated plasmid replicon operated as a new and sole origin of chromosome replication in these strains and that the mode of replication was bidirectional. Interestingly, these mutants produced anucleate cells at a high frequency (about 40% in exponential culture), and the distribution of chromosomes in the cells was irregular. A change in the site and mechanism (from oriC to a plasmid system) of initiation appears to have resulted in a drastic alteration in coordination between chromosome replication and chromosome partition or cell division.

  10. Can Moral Hazard Be Resolved by Common-Knowledge in S4n-Knowledge?

    NASA Astrophysics Data System (ADS)

    Matsuhisa, Takashi

    This article investigates the relationship between common-knowledge and agreement in multi-agent system, and to apply the agreement result by common-knowledge to the principal-agent model under non-partition information. We treat the two problems: (1) how we capture the fact that the agents agree on an event or they get consensus on it from epistemic point of view, and (2) how the agreement theorem will be able to make progress to settle a moral hazard problem in the principal-agents model under non-partition information. We shall propose a solution program for the moral hazard in the principal-agents model under non-partition information by common-knowledge. Let us start that the agents have the knowledge structure induced from a reflexive and transitive relation associated with the multi-modal logic S4n. Each agent obtains the membership value of an event under his/her private information, so he/she considers the event as fuzzy set. Specifically consider the situation that the agents commonly know all membership values of the other agents. In this circumstance we shall show the agreement theorem that consensus on the membership values among all agents can still be guaranteed. Furthermore, under certain assumptions we shall show that the moral hazard can be resolved in the principal-agent model when all the expected marginal costs are common-knowledge among the principal and agents.

  11. The putative hydrolase YycJ (WalJ) affects the coordination of cell division with DNA replication in Bacillus subtilis and may play a conserved role in cell wall metabolism.

    PubMed

    Biller, Steven J; Wayne, Kyle J; Winkler, Malcolm E; Burkholder, William F

    2011-02-01

    Bacteria must accurately replicate and segregate their genetic information to ensure the production of viable daughter cells. The high fidelity of chromosome partitioning is achieved through mechanisms that coordinate cell division with DNA replication. We report that YycJ (WalJ), a predicted member of the metallo-β-lactamase superfamily found in most low-G+C Gram-positive bacteria, contributes to the fidelity of cell division in Bacillus subtilis. B. subtilis ΔwalJ (ΔwalJ(Bsu)) mutants divide over unsegregated chromosomes more frequently than wild-type cells, and this phenotype is exacerbated when DNA replication is inhibited. Two lines of evidence suggest that WalJ(Bsu) and its ortholog in the Gram-positive pathogen Streptococcus pneumoniae, WalJ(Spn) (VicX), play a role in cell wall metabolism: (i) strains of B. subtilis and S. pneumoniae lacking walJ exhibit increased sensitivity to a narrow spectrum of cephalosporin antibiotics, and (ii) reducing the expression of a two-component system that regulates genes involved in cell wall metabolism, WalRK (YycFG), renders walJ essential for growth in B. subtilis, as observed previously with S. pneumoniae. Together, these results suggest that the enzymatic activity of WalJ directly or indirectly affects cell wall metabolism and is required for accurate coordination of cell division with DNA replication.

  12. Sting, Carry and Stock: How Corpse Availability Can Regulate De-Centralized Task Allocation in a Ponerine Ant Colony

    PubMed Central

    Schmickl, Thomas; Karsai, Istvan

    2014-01-01

    We develop a model to produce plausible patterns of task partitioning in the ponerine ant Ectatomma ruidum based on the availability of living prey and prey corpses. The model is based on the organizational capabilities of a “common stomach” through which the colony utilizes the availability of a natural (food) substance as a major communication channel to regulate the income and expenditure of the very same substance. This communication channel has also a central role in regulating task partitioning of collective hunting behavior in a supply&demand-driven manner. Our model shows that task partitioning of the collective hunting behavior in E. ruidum can be explained by regulation due to a common stomach system. The saturation of the common stomach provides accessible information to individual ants so that they can adjust their hunting behavior accordingly by engaging in or by abandoning from stinging or transporting tasks. The common stomach is able to establish and to keep stabilized an effective mix of workforce to exploit the prey population and to transport food into the nest. This system is also able to react to external perturbations in a de-centralized homeostatic way, such as to changes in the prey density or to accumulation of food in the nest. In case of stable conditions the system develops towards an equilibrium concerning colony size and prey density. Our model shows that organization of work through a common stomach system can allow Ectatomma ruidum to collectively forage for food in a robust, reactive and reliable way. The model is compared to previously published models that followed a different modeling approach. Based on our model analysis we also suggest a series of experiments for which our model gives plausible predictions. These predictions are used to formulate a set of testable hypotheses that should be investigated empirically in future experimentation. PMID:25493558

  13. Effect of Sulfur on Siderophile Element Partitioning Between Olivine and Martian Primary Melt

    NASA Technical Reports Server (NTRS)

    Usui, T.; Shearer, C. K.; Righter, K.; Jones, J. H.

    2011-01-01

    Since olivine is a common early crystallizing phase in basaltic magmas that have produced planetary and asteroidal crusts, a number of experimental studies have investigated elemental partitioning between olivine and silicate melt [e.g., 1, 2, 3]. In particular, olivine/melt partition coefficients of Ni and Co (DNi and DCo) have been intensively studied because these elements are preferentially partitioned into olivine and thus provide a uniquely useful insight into the basalt petrogenesis [e.g., 4, 5]. However, none of these experimental studies are consistent with incompatible signatures of Co [e.g., 6, 7, 8] and Ni [7] in olivines from Martian meteorites. Chemical analyses of undegassed MORB samples suggest that S dissolved in silicate melts can reduce DNi up to 50 % compared to S-free experimental systems [9]. High S solubility (up to 4000 ppm) for primitive shergottite melts [10] implies that S might have significantly influenced the Ni and Co partitioning into shergottite olivines. This study conducts melting experiments on Martian magmatic conditions to investigate the effect of S on the partitioning of siderophile elements between olivine and Martian primary melt.

  14. Non-steady state partitioning of dry cleaning surfactants between tetrachloroethylene (PCE) and water in porous media.

    PubMed

    Hoggan, James L; Bae, Keonbeom; Kibbey, Tohren C G

    2007-08-15

    Trapped organic solvents, in both the vadose zone and below the water table, are frequent sources of environmental contamination. A common source of organic solvent contamination is spills, leaks, and improper solvent disposal associated with dry cleaning processes. Dry cleaning solvents, such as tetrachloroethylene (PCE), are typically enhanced with the addition of surfactants to improve cleaning performance. The objective of this work was to examine the partitioning behavior of surfactants from PCE in contact with water. The relative rates of surfactants partitioning and PCE dissolution are important for modeling the behavior of waste PCE in the subsurface, in that they influence the interfacial tension of the PCE, and how (or if) interfacial tension changes over time in the subsurface. The work described here uses a flow-through system to examine simultaneous partitioning and PCE dissolution in a porous medium. Results indicate that both nonylphenol ethoxylate nonionic surfactants and a sulfosuccinate anionic surfactant partition out of residual PCE much more rapidly than the PCE dissolves, suggesting that in many cases interfacial tension changes caused by partitioning may influence infiltration and distribution of PCE in the subsurface. Non-steady-state partitioning is found to be well-described by a linear driving force model incorporating measured surfactant partition coefficients.

  15. Pumping performance of a slow-rotating paddlewheel for split-ponds

    USDA-ARS?s Scientific Manuscript database

    Commercial catfish farmers are intensifying production by retrofitting ponds with variations of the partitioned aquaculture system. The split-pond system is the most common variation used commercially. The split-pond consists of a small fish-holding basin connected to a waste treatment lagoon by two...

  16. Heavy metal distribution and partitioning in the vicinity of the discharge areas of Lisbon drainage basins (Tagus Estuary, Portugal)

    NASA Astrophysics Data System (ADS)

    Duarte, Bernardo; Silva, Gilda; Costa, José Lino; Medeiros, João Paulo; Azeda, Carla; Sá, Erica; Metelo, Inês; Costa, Maria José; Caçador, Isabel

    2014-10-01

    Worldwide estuarine ecosystems are by their privileged geographic location, anthropogenically impacted systems. Heavy metal contamination in estuarine waters and sediments are well known to be one of the most important outcomes driven from human activities. The partitioning of these elements has been widely focused, due to its importance not only on the estuarine biogeochemistry but also on its bioavailability to the trophic webs. As observed in other estuaries, in the Tagus basin, no increase in the partition coefficients with the increasing suspended particulate matter concentrations was observed, mostly due to a permanent dilution process of the suspended matter, rich in heavy metals and less contaminated and resuspended bottom sediments. Another important outcome of this study was the common origin of all the analysed heavy metals, probably due to the large industrialization process that the margins of the Tagus estuary suffered in the past, although no relationship was found with the presence of the different discharge areas. In fact, metal partitioning seems to be mostly influenced by the chemical species in which the pollutant is delivered to the system and on water chemistry, with a higher emphasis on the metal cycling essentially between the particulate and dissolved phase. This partitioning system acquires a relevant importance while evaluating the impacts of marine construction and the associated dredging operations, and consequent changes in the estuarine water chemistry.

  17. Plutonium partitioning in water-granite and water-α-FeOOH systems: from a viewpoint of a three-phase system.

    PubMed

    Lin, Jianfeng; Dang, Haijun; Xie, Jinchuan; Zhou, Guoqing; Li, Mei; Zhang, Jihong

    2015-09-01

    Traditional sorption experiments commonly treat the colloidal species of low-solubility contaminants as immobile species when separated by centrifugation or ultrafiltration. This study shows that, from a viewpoint of a three-phase system, the mobile Pu species, especially the colloidal species, play an important role in Pu partitioning in water-granite and water-α-FeOOH systems. A new distribution coefficient term Ks/(d+c) was defined to take the mobile colloidal species into consideration, and it differs to the traditional distribution coefficient Ks/d by orders of magnitude in the water-granite and water-α-FeOOH systems. This term, Ks/(d+c), can quantitatively describe Pu partitioning in the suspension, in particular the fraction of mobile species that dominate Pu migration in the environment. The effects of ionic strength (I) and pH on the Pu partitioning in water-granite and water-α-FeOOH systems are well interpreted with respect to the zeta potential change of granite grains, α-FeOOH colloid particles and polymeric Pu. It is concluded that the presence of the α-FeOOH colloid with a low concentration (<10 mg L(-1)) is favorable for the stability of colloidal Pu and leads to large proportion of mobile Pu, especially colloid-associated Pu, which will migrate much faster than dissolved Pu in groundwater.

  18. Modelling a real-world buried valley system with vertical non-stationarity using multiple-point statistics

    NASA Astrophysics Data System (ADS)

    He, Xiulan; Sonnenborg, Torben O.; Jørgensen, Flemming; Jensen, Karsten H.

    2017-03-01

    Stationarity has traditionally been a requirement of geostatistical simulations. A common way to deal with non-stationarity is to divide the system into stationary sub-regions and subsequently merge the realizations for each region. Recently, the so-called partition approach that has the flexibility to model non-stationary systems directly was developed for multiple-point statistics simulation (MPS). The objective of this study is to apply the MPS partition method with conventional borehole logs and high-resolution airborne electromagnetic (AEM) data, for simulation of a real-world non-stationary geological system characterized by a network of connected buried valleys that incise deeply into layered Miocene sediments (case study in Denmark). The results show that, based on fragmented information of the formation boundaries, the MPS partition method is able to simulate a non-stationary system including valley structures embedded in a layered Miocene sequence in a single run. Besides, statistical information retrieved from the AEM data improved the simulation of the geology significantly, especially for the deep-seated buried valley sediments where borehole information is sparse.

  19. Partial Storage Optimization and Load Control Strategy of Cloud Data Centers

    PubMed Central

    2015-01-01

    We present a novel approach to solve the cloud storage issues and provide a fast load balancing algorithm. Our approach is based on partitioning and concurrent dual direction download of the files from multiple cloud nodes. Partitions of the files are saved on the cloud rather than the full files, which provide a good optimization to the cloud storage usage. Only partial replication is used in this algorithm to ensure the reliability and availability of the data. Our focus is to improve the performance and optimize the storage usage by providing the DaaS on the cloud. This algorithm solves the problem of having to fully replicate large data sets, which uses up a lot of precious space on the cloud nodes. Reducing the space needed will help in reducing the cost of providing such space. Moreover, performance is also increased since multiple cloud servers will collaborate to provide the data to the cloud clients in a faster manner. PMID:25973444

  20. Partial storage optimization and load control strategy of cloud data centers.

    PubMed

    Al Nuaimi, Klaithem; Mohamed, Nader; Al Nuaimi, Mariam; Al-Jaroodi, Jameela

    2015-01-01

    We present a novel approach to solve the cloud storage issues and provide a fast load balancing algorithm. Our approach is based on partitioning and concurrent dual direction download of the files from multiple cloud nodes. Partitions of the files are saved on the cloud rather than the full files, which provide a good optimization to the cloud storage usage. Only partial replication is used in this algorithm to ensure the reliability and availability of the data. Our focus is to improve the performance and optimize the storage usage by providing the DaaS on the cloud. This algorithm solves the problem of having to fully replicate large data sets, which uses up a lot of precious space on the cloud nodes. Reducing the space needed will help in reducing the cost of providing such space. Moreover, performance is also increased since multiple cloud servers will collaborate to provide the data to the cloud clients in a faster manner.

  1. Chronology in lesion tolerance gives priority to genetic variability

    PubMed Central

    Naiman, Karel; Philippin, Gaëlle; Fuchs, Robert P.; Pagès, Vincent

    2014-01-01

    The encounter of a replication fork with a blocking DNA lesion is a common event that cells need to address properly to preserve genome integrity. Cells possess two main strategies to tolerate unrepaired lesions: potentially mutagenic translesion synthesis (TLS) and nonmutagenic damage avoidance (DA). Little is known about the partitioning between these two strategies. Because genes involved in DA mechanisms (i.e., recA) are expressed early and genes involved in TLS (i.e., Pol V) are expressed late during the bacterial SOS response, it has long been thought that TLS was the last recourse to bypass DNA lesions when repair and nonmutagenic DA mechanisms have failed. By using a recently described methodology, we followed the fate of a single replication-blocking lesion introduced in the Escherichia coli genome during acute genotoxic stress. We show that lesion tolerance events (i) only occur when the SOS response is fully induced and (ii) are executed in chronological order, with TLS coming first, followed by DA. Therefore, in response to genotoxic stress, bacterial cells give priority to TLS, a minor pathway able to generate genetic diversity before implementing the major nonmutagenic pathway that ensures survival. PMID:24706928

  2. Sharing the cell's bounty - organelle inheritance in yeast.

    PubMed

    Knoblach, Barbara; Rachubinski, Richard A

    2015-02-15

    Eukaryotic cells replicate and partition their organelles between the mother cell and the daughter cell at cytokinesis. Polarized cells, notably the budding yeast Saccharomyces cerevisiae, are well suited for the study of organelle inheritance, as they facilitate an experimental dissection of organelle transport and retention processes. Much progress has been made in defining the molecular players involved in organelle partitioning in yeast. Each organelle uses a distinct set of factors - motor, anchor and adaptor proteins - that ensures its inheritance by future generations of cells. We propose that all organelles, regardless of origin or copy number, are partitioned by the same fundamental mechanism involving division and segregation. Thus, the mother cell keeps, and the daughter cell receives, their fair and equitable share of organelles. This mechanism of partitioning moreover facilitates the segregation of organelle fragments that are not functionally equivalent. In this Commentary, we describe how this principle of organelle population control affects peroxisomes and other organelles, and outline its implications for yeast life span and rejuvenation. © 2015. Published by The Company of Biologists Ltd.

  3. Mesoscopic-microscopic spatial stochastic simulation with automatic system partitioning.

    PubMed

    Hellander, Stefan; Hellander, Andreas; Petzold, Linda

    2017-12-21

    The reaction-diffusion master equation (RDME) is a model that allows for efficient on-lattice simulation of spatially resolved stochastic chemical kinetics. Compared to off-lattice hard-sphere simulations with Brownian dynamics or Green's function reaction dynamics, the RDME can be orders of magnitude faster if the lattice spacing can be chosen coarse enough. However, strongly diffusion-controlled reactions mandate a very fine mesh resolution for acceptable accuracy. It is common that reactions in the same model differ in their degree of diffusion control and therefore require different degrees of mesh resolution. This renders mesoscopic simulation inefficient for systems with multiscale properties. Mesoscopic-microscopic hybrid methods address this problem by resolving the most challenging reactions with a microscale, off-lattice simulation. However, all methods to date require manual partitioning of a system, effectively limiting their usefulness as "black-box" simulation codes. In this paper, we propose a hybrid simulation algorithm with automatic system partitioning based on indirect a priori error estimates. We demonstrate the accuracy and efficiency of the method on models of diffusion-controlled networks in 3D.

  4. Metal biogeochemistry in surface-water systems; a review of principles and concepts

    USGS Publications Warehouse

    Elder, John F.

    1988-01-01

    Metals are ubiquitous in natural surface-water systems, both as dissolved constituents and as particulate constituents. Although concentrations of many metals are generally very low (hence the common term 'trace metals'), their effects on the water quality and the biota of surfacewater systems are likely to be substantial. Biogeochemical partitioning of metals results in a diversity of forms, including hydrated or 'free' ions, colloids, precipitates, adsorbed phases, and various coordination complexes with dissolved organic and inorganic ligands. Much research has been dedicated to answering questions about the complexities of metal behavior and effects in aquatic systems. Voluminous literature on the subject has been produced. This paper synthesizes the findings of aquatic metal studies and describes some general concepts that emerge from such a synthesis. Emphasis is on sources, occurrence, partitioning, transport, and biological interactions of metals in freshwater systems of North America. Biological interactions, in this case, refer to bioavailability, effects of metals on ecological characteristics and functions of aquatic systems, and roles of biota in controlling metal partitioning. This discussion is devoted primarily to the elements aluminum, arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel, and zinc and secondarily to cobalt, molybdenum, selenium, silver, and vanadium. Sources of these elements are both natural and anthropogenic. Significant anthropogenic sources are atmospheric deposition, discharges of municipal and industrial wastes, mine drainage, and urban and agricultural runoff. Biogeochemical partitioning of metals is controlled by various characteristics of the water and sediments in which the metals are found. Among the most important controlling factors are pH, oxidation-reduction potential, hydrologic features, sediment grain size, and the existence and nature of clay minerals, organic matter, and hydrous oxides of manganese and iron. Partitioning is also controlled by biological processes that provide mechanisms for detoxification of metals and for enhanced uptake of nutritive metals. Partitioning is important largely because availability to biota is highly variable among different phases. Hence, accumulation in biological tissues and toxicity of an element are dependent not only on total concentration of the element but also on the factors that control partitioning.

  5. Intuitive visual impressions (cogs) for identifying clusters of diversity within potato species

    USDA-ARS?s Scientific Manuscript database

    One of the basic research activities of genebanks is to partition stocks into groups that facilitate the efficient preservation and evaluation of the full range of useful phenotype diversity. We sought to test the usefulness of making of infra-specific groups by replicated rapid visual intuitive imp...

  6. Understanding the I/O Performance Gap Between Cori KNL and Haswell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jialin; Koziol, Quincey; Tang, Houjun

    2017-05-01

    The Cori system at NERSC has two compute partitions with different CPU architectures: a 2,004 node Haswell partition and a 9,688 node KNL partition, which ranked as the 5th most powerful and fastest supercomputer on the November 2016 Top 500 list. The compute partitions share a common storage configuration, and understanding the IO performance gap between them is important, impacting not only to NERSC/LBNL users and other national labs, but also to the relevant hardware vendors and software developers. In this paper, we have analyzed performance of single core and single node IO comprehensively on the Haswell and KNL partitions,more » and have discovered the major bottlenecks, which include CPU frequencies and memory copy performance. We have also extended our performance tests to multi-node IO and revealed the IO cost difference caused by network latency, buffer size, and communication cost. Overall, we have developed a strong understanding of the IO gap between Haswell and KNL nodes and the lessons learned from this exploration will guide us in designing optimal IO solutions in many-core era.« less

  7. 47 CFR 22.948 - Partitioning and Disaggregation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Partitioning and Disaggregation. 22.948 Section 22.948 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Cellular Radiotelephone Service § 22.948 Partitioning and Disaggregation. (a) Eligibility...

  8. Establishment of a promoter-based chromatin architecture on recently replicated DNA can accommodate variable inter-nucleosome spacing.

    PubMed

    Fennessy, Ross T; Owen-Hughes, Tom

    2016-09-06

    Nucleosomes, the fundamental subunits of eukaryotic chromatin, are organized with respect to transcriptional start sites. A major challenge to the persistence of this organization is the disassembly of nucleosomes during DNA replication. Here, we use complimentary approaches to map the locations of nucleosomes on recently replicated DNA. We find that nucleosomes are substantially realigned with promoters during the minutes following DNA replication. As a result, the nucleosomal landscape is largely re-established before newly replicated chromosomes are partitioned into daughter cells and can serve as a platform for the re-establishment of gene expression programmes. When the supply of histones is disrupted through mutation of the chaperone Caf1, a promoter-based architecture is generated, but with increased inter-nucleosomal spacing. This indicates that the chromatin remodelling enzymes responsible for spacing nucleosomes are capable of organizing nucleosomes with a range of different linker DNA lengths. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Dynamic partitioning as a way to exploit new computing paradigms: the cloud use case.

    NASA Astrophysics Data System (ADS)

    Ciaschini, Vincenzo; Dal Pra, Stefano; dell'Agnello, Luca

    2015-12-01

    The WLCG community and many groups in the HEP community have based their computing strategy on the Grid paradigm, which proved successful and still ensures its goals. However, Grid technology has not spread much over other communities; in the commercial world, the cloud paradigm is the emerging way to provide computing services. WLCG experiments aim to achieve integration of their existing current computing model with cloud deployments and take advantage of the so-called opportunistic resources (including HPC facilities) which are usually not Grid compliant. One missing feature in the most common cloud frameworks, is the concept of job scheduler, which plays a key role in a traditional computing centre, by enabling a fairshare based access at the resources to the experiments in a scenario where demand greatly outstrips availability. At CNAF we are investigating the possibility to access the Tier-1 computing resources as an OpenStack based cloud service. The system, exploiting the dynamic partitioning mechanism already being used to enable Multicore computing, allowed us to avoid a static splitting of the computing resources in the Tier-1 farm, while permitting a share friendly approach. The hosts in a dynamically partitioned farm may be moved to or from the partition, according to suitable policies for request and release of computing resources. Nodes being requested in the partition switch their role and become available to play a different one. In the cloud use case hosts may switch from acting as Worker Node in the Batch system farm to cloud compute node member, made available to tenants. In this paper we describe the dynamic partitioning concept, its implementation and integration with our current batch system, LSF.

  10. Effects of distributed database modeling on evaluation of transaction rollbacks

    NASA Technical Reports Server (NTRS)

    Mukkamala, Ravi

    1991-01-01

    Data distribution, degree of data replication, and transaction access patterns are key factors in determining the performance of distributed database systems. In order to simplify the evaluation of performance measures, database designers and researchers tend to make simplistic assumptions about the system. The effect is studied of modeling assumptions on the evaluation of one such measure, the number of transaction rollbacks, in a partitioned distributed database system. Six probabilistic models and expressions are developed for the numbers of rollbacks under each of these models. Essentially, the models differ in terms of the available system information. The analytical results so obtained are compared to results from simulation. From here, it is concluded that most of the probabilistic models yield overly conservative estimates of the number of rollbacks. The effect of transaction commutativity on system throughout is also grossly undermined when such models are employed.

  11. Effects of distributed database modeling on evaluation of transaction rollbacks

    NASA Technical Reports Server (NTRS)

    Mukkamala, Ravi

    1991-01-01

    Data distribution, degree of data replication, and transaction access patterns are key factors in determining the performance of distributed database systems. In order to simplify the evaluation of performance measures, database designers and researchers tend to make simplistic assumptions about the system. Here, researchers investigate the effect of modeling assumptions on the evaluation of one such measure, the number of transaction rollbacks in a partitioned distributed database system. The researchers developed six probabilistic models and expressions for the number of rollbacks under each of these models. Essentially, the models differ in terms of the available system information. The analytical results obtained are compared to results from simulation. It was concluded that most of the probabilistic models yield overly conservative estimates of the number of rollbacks. The effect of transaction commutativity on system throughput is also grossly undermined when such models are employed.

  12. 47 CFR 22.513 - Partitioning and disaggregation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Partitioning and disaggregation. 22.513 Section 22.513 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Paging and Radiotelephone Service § 22.513 Partitioning and disaggregation. MEA and EA...

  13. 47 CFR 22.513 - Partitioning and disaggregation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Partitioning and disaggregation. 22.513 Section 22.513 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Paging and Radiotelephone Service § 22.513 Partitioning and disaggregation. MEA and EA...

  14. 47 CFR 22.513 - Partitioning and disaggregation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Partitioning and disaggregation. 22.513 Section 22.513 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Paging and Radiotelephone Service § 22.513 Partitioning and disaggregation. MEA and EA...

  15. 47 CFR 22.513 - Partitioning and disaggregation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Partitioning and disaggregation. 22.513 Section 22.513 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Paging and Radiotelephone Service § 22.513 Partitioning and disaggregation. MEA and EA...

  16. Modular architecture of the T4 phage superfamily: A conserved core genome and a plastic periphery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comeau, Andre M.; Bertrand, Claire; Letarov, Andrei

    2007-06-05

    Among the most numerous objects in the biosphere, phages show enormous diversity in morphology and genetic content. We have sequenced 7 T4-like phages and compared their genome architecture. All seven phages share a core genome with T4 that is interrupted by several hyperplastic regions (HPRs) where most of their divergence occurs. The core primarily includes homologues of essential T4 genes, such as the virion structure and DNA replication genes. In contrast, the HPRs contain mostly novel genes of unknown function and origin. A few of the HPR genes that can be assigned putative functions, such as a series of novelmore » Internal Proteins, are implicated in phage adaptation to the host. Thus, the T4-like genome appears to be partitioned into discrete segments that fulfil different functions and behave differently in evolution. Such partitioning may be critical for these large and complex phages to maintain their flexibility, while simultaneously allowing them to conserve their highly successful virion design and mode of replication.« less

  17. Venous tree separation in the liver: graph partitioning using a non-ising model.

    PubMed

    O'Donnell, Thomas; Kaftan, Jens N; Schuh, Andreas; Tietjen, Christian; Soza, Grzegorz; Aach, Til

    2011-01-01

    Entangled tree-like vascular systems are commonly found in the body (e.g., in the peripheries and lungs). Separation of these systems in medical images may be formulated as a graph partitioning problem given an imperfect segmentation and specification of the tree roots. In this work, we show that the ubiquitous Ising-model approaches (e.g., Graph Cuts, Random Walker) are not appropriate for tackling this problem and propose a novel method based on recursive minimal paths for doing so. To motivate our method, we focus on the intertwined portal and hepatic venous systems in the liver. Separation of these systems is critical for liver intervention planning, in particular when resection is involved. We apply our method to 34 clinical datasets, each containing well over a hundred vessel branches, demonstrating its effectiveness.

  18. Brain Network Regional Synchrony Analysis in Deafness

    PubMed Central

    Xu, Lei; Liang, Mao-Jin

    2018-01-01

    Deafness, the most common auditory disease, has greatly affected people for a long time. The major treatment for deafness is cochlear implantation (CI). However, till today, there is still a lack of objective and precise indicator serving as evaluation of the effectiveness of the cochlear implantation. The goal of this EEG-based study is to effectively distinguish CI children from those prelingual deafened children without cochlear implantation. The proposed method is based on the functional connectivity analysis, which focuses on the brain network regional synchrony. Specifically, we compute the functional connectivity between each channel pair first. Then, we quantify the brain network synchrony among regions of interests (ROIs), where both intraregional synchrony and interregional synchrony are computed. And finally the synchrony values are concatenated to form the feature vector for the SVM classifier. What is more, we develop a new ROI partition method of 128-channel EEG recording system. That is, both the existing ROI partition method and the proposed ROI partition method are used in the experiments. Compared with the existing EEG signal classification methods, our proposed method has achieved significant improvements as large as 87.20% and 86.30% when the existing ROI partition method and the proposed ROI partition method are used, respectively. It further demonstrates that the new ROI partition method is comparable to the existing ROI partition method. PMID:29854776

  19. An epigenetic state associated with areas of gene duplication

    PubMed Central

    Gimelbrant, Alexander A.; Chess, Andrew

    2006-01-01

    Asynchronous DNA replication is an epigenetically determined feature found in all cases of monoallelic expression, including genomic imprinting, X-inactivation, and random monoallelic expression of autosomal genes such as immunoglobulins and olfactory receptor genes. Most genes of the latter class were identified in experiments focused on genes functioning in the chemosensory and immune systems. We performed an unbiased survey of asynchronous replication in the mouse genome, excluding known asynchronously replicated genes. Fully 10% (eight of 80) of the genes tested exhibited asynchronous replication. A common feature of the newly identified asynchronously replicated areas is their proximity to areas of tandem gene duplication. Testing of other clustered areas supported the idea that such regions are enriched with asynchronously replicated genes. PMID:16687731

  20. Recessive resistance to Bean common mosaic virus conferred by the bc-1 and bc-2 genes in common bean (Phaseolus vulgaris L.) affects long distance movement of the virus.

    PubMed

    Feng, Xue; Orellana, Gardenia; Myers, James; Karasev, Alexander V

    2018-04-12

    Recessive resistance to Bean common mosaic virus (BCMV) in common bean (Phaseolus vulgaris L.) is governed by four genes that include one strain-nonspecific helper gene bc-u, and three strain-specific genes bc-1, bc-2, and bc-3. The bc-3 gene was identified as an eIF4E translation initiation factor gene mediating resistance through disruption of the interaction between this protein and the VPg protein of the virus. The mode of action of bc-1 and bc-2 in expression of BCMV resistance is unknown, although bc-1 gene was found to affect systemic spread of a related potyvirus, Bean common mosaic necrosis virus. To investigate the possible role of both bc-1 and bc-2 genes in replication, cell-to-cell, and long distance movement of BCMV in P. vulgaris, we tested virus spread of eight BCMV isolates representing pathogroups I, IV, VI, VII, and VIII, in a set of bean differentials expressing different combinations of six resistance alleles including bc-u, bc-1, bc-1 2 , bc-2, bc-2 2 , and bc-3. All studied BCMV isolates were able to replicate and spread in inoculated leaves of bean cultivars harboring bc-u, bc-1, bc-1 2 , bc-2, and bc-2 2 alleles and their combinations, while no BCMV replication was found in inoculated leaves of 'IVT7214' carrying the bc-u, bc-2 and bc-3 genes, except for isolate 1755a capable of overcoming the resistance conferred by bc-2 and bc-3. In contrast, the systemic spread of all BCMV isolates from pathogroups I, IV,VI, VII, and VIII was impaired in common bean cultivars carrying bc-1, bc-1 2 , bc-2, and bc-2 2 alleles. The data suggest that bc-1 and bc-2 recessive resistance genes have no effect on the replication and cell-to-cell movement of BCMV, but affect systemic spread of BCMV in common bean. The BCMV resistance conferred by bc-1 and bc-2 and affecting systemic spread was found only partially effective when these two genes were expressed singly. The efficiency of the restriction of the systemic spread of the virus was greatly enhanced when the alleles of bc-1 and bc-2 genes were combined together.

  1. Entanglement replication in driven dissipative many-body systems.

    PubMed

    Zippilli, S; Paternostro, M; Adesso, G; Illuminati, F

    2013-01-25

    We study the dissipative dynamics of two independent arrays of many-body systems, locally driven by a common entangled field. We show that in the steady state the entanglement of the driving field is reproduced in an arbitrarily large series of inter-array entangled pairs over all distances. Local nonclassical driving thus realizes a scale-free entanglement replication and long-distance entanglement distribution mechanism that has immediate bearing on the implementation of quantum communication networks.

  2. Confocal Raman Microscopy for In-situ Measurement of Phospholipid-Water Partitioning into Model Phospholipid Bilayers within Individual Chromatographic Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitt, Jay P.; Bryce, David A.; Minteer, Shelley D.

    The phospholipid-water partition coefficient is a commonly measured parameter that correlates with drug efficacy, small-molecule toxicity, and accumulation of molecules in biological systems in the environment. Despite the utility of this parameter, methods for measuring phospholipid-water partition coefficients are limited. This is due to the difficulty of making quantitative measurements in vesicle membranes or supported phospholipid bilayers, both of which are small-volume phases that challenge the sensitivity of many analytical techniques. In this paper, we employ in-situ confocal Raman microscopy to probe the partitioning of a model membrane-active compound, 2-(4-isobutylphenyl) propionic acid or ibuprofen, into both hybrid- and supported-phospholipid bilayersmore » deposited on the pore walls of individual chromatographic particles. The large surface-area-to-volume ratio of chromatographic silica allows interrogation of a significant lipid bilayer area within a very small volume. The local phospholipid concentration within a confocal probe volume inside the particle can be as high as 0.5 M, which overcomes the sensitivity limitations of making measurements in the limited membrane areas of single vesicles or planar supported bilayers. Quantitative determination of ibuprofen partitioning is achieved by using the phospholipid acyl-chains of the within-particle bilayer as an internal standard. This approach is tested for measurements of pH-dependent partitioning of ibuprofen into both hybrid-lipid and supported-lipid bilayers within silica particles, and the results are compared with octanol-water partitioning and with partitioning into individual optically-trapped phospholipid vesicle membranes. Finally and additionally, the impact of ibuprofen partitioning on bilayer structure is evaluated for both within-particle model membranes and compared with the structural impacts of partitioning into vesicle lipid bilayers.« less

  3. Confocal Raman Microscopy for In-situ Measurement of Phospholipid-Water Partitioning into Model Phospholipid Bilayers within Individual Chromatographic Particles

    DOE PAGES

    Kitt, Jay P.; Bryce, David A.; Minteer, Shelley D.; ...

    2018-05-14

    The phospholipid-water partition coefficient is a commonly measured parameter that correlates with drug efficacy, small-molecule toxicity, and accumulation of molecules in biological systems in the environment. Despite the utility of this parameter, methods for measuring phospholipid-water partition coefficients are limited. This is due to the difficulty of making quantitative measurements in vesicle membranes or supported phospholipid bilayers, both of which are small-volume phases that challenge the sensitivity of many analytical techniques. In this paper, we employ in-situ confocal Raman microscopy to probe the partitioning of a model membrane-active compound, 2-(4-isobutylphenyl) propionic acid or ibuprofen, into both hybrid- and supported-phospholipid bilayersmore » deposited on the pore walls of individual chromatographic particles. The large surface-area-to-volume ratio of chromatographic silica allows interrogation of a significant lipid bilayer area within a very small volume. The local phospholipid concentration within a confocal probe volume inside the particle can be as high as 0.5 M, which overcomes the sensitivity limitations of making measurements in the limited membrane areas of single vesicles or planar supported bilayers. Quantitative determination of ibuprofen partitioning is achieved by using the phospholipid acyl-chains of the within-particle bilayer as an internal standard. This approach is tested for measurements of pH-dependent partitioning of ibuprofen into both hybrid-lipid and supported-lipid bilayers within silica particles, and the results are compared with octanol-water partitioning and with partitioning into individual optically-trapped phospholipid vesicle membranes. Finally and additionally, the impact of ibuprofen partitioning on bilayer structure is evaluated for both within-particle model membranes and compared with the structural impacts of partitioning into vesicle lipid bilayers.« less

  4. Confocal Raman Microscopy for in Situ Measurement of Phospholipid-Water Partitioning into Model Phospholipid Bilayers within Individual Chromatographic Particles.

    PubMed

    Kitt, Jay P; Bryce, David A; Minteer, Shelley D; Harris, Joel M

    2018-06-05

    The phospholipid-water partition coefficient is a commonly measured parameter that correlates with drug efficacy, small-molecule toxicity, and accumulation of molecules in biological systems in the environment. Despite the utility of this parameter, methods for measuring phospholipid-water partition coefficients are limited. This is due to the difficulty of making quantitative measurements in vesicle membranes or supported phospholipid bilayers, both of which are small-volume phases that challenge the sensitivity of many analytical techniques. In this work, we employ in situ confocal Raman microscopy to probe the partitioning of a model membrane-active compound, 2-(4-isobutylphenyl) propionic acid or ibuprofen, into both hybrid- and supported-phospholipid bilayers deposited on the pore walls of individual chromatographic particles. The large surface-area-to-volume ratio of chromatographic silica allows interrogation of a significant lipid bilayer area within a very small volume. The local phospholipid concentration within a confocal probe volume inside the particle can be as high as 0.5 M, which overcomes the sensitivity limitations of making measurements in the limited membrane areas of single vesicles or planar supported bilayers. Quantitative determination of ibuprofen partitioning is achieved by using the phospholipid acyl-chains of the within-particle bilayer as an internal standard. This approach is tested for measurements of pH-dependent partitioning of ibuprofen into both hybrid-lipid and supported-lipid bilayers within silica particles, and the results are compared with octanol-water partitioning and with partitioning into individual optically trapped phospholipid vesicle membranes. Additionally, the impact of ibuprofen partitioning on bilayer structure is evaluated for both within-particle model membranes and compared with the structural impacts of partitioning into vesicle lipid bilayers.

  5. Equilibrium partitioning of organic compounds to OASIS HLB® as a function of compound concentration, pH, temperature and salinity.

    PubMed

    Jeong, Yoonah; Schäffer, Andreas; Smith, Kilian

    2017-05-01

    Oasis hydrophilic lipophilic balance ® (Oasis HLB) is commonly employed in solid phase extraction (SPE) of environmental contaminants and within polar organic chemical integrative passive samplers (POCIS). In this study batch experiments were carried out to evaluate the relative affinity of a range of relevant organic pollutants to Oasis HLB in aqueous systems. The influence of sorbate concentration, temperature, pH, and salinity on the equilibrium sorption was investigated. Equilibrium partition ratios (K D ) of 28 compounds were determined, ranging over three orders of magnitude from 1.16 × 10 3  L/kg (atenolol) to 1.07 × 10 6  L/kg (isoproturon). The Freundlich model was able to describe the equilibrium partitioning to Oasis HLB, and an analysis of the thermodynamic parameters revealed the spontaneous and exothermic nature of the partitioning process. Ionic strength had only a minor effect on the partitioning, whereas pH had a considerable effect but only for ionizable compounds. The results show that apolar interactions between the Oasis HLB and analyte mainly determine the equilibrium partitioning. These research findings can be used to optimize the application of SPE and POCIS for analyses of environmental contaminants even in complex mixtures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. A priA Mutant Expressed in Two Pieces Has Almost Full Activity in Escherichia coli K-12

    PubMed Central

    Leroux, Maxime; Jani, Niketa

    2017-01-01

    ABSTRACT The ability to restart broken DNA replication forks is essential across all domains of life. In Escherichia coli, the priA, priB, priC, and dnaT genes encode the replication restart proteins (RRPs) to accomplish this task. PriA plays a critical role in replication restart such that its absence reveals a dramatic phenotype: poor growth, high basal levels of SOS expression, poorly partitioned nucleoids (Par−), UV sensitivity, and recombination deficiency (Rec−). PriA has 733 amino acids, and its structure is composed of six domains that enable it to bind to DNA replication fork-like structures, remodel the strands of DNA, interact with SSB (single-stranded DNA binding protein), PriB, and DnaT, and display ATPase, helicase, and translocase activities. We have characterized a new priA mutation called priA316::cat. It is a composite mutation involving an insertion that truncates the protein within the winged-helix domain (at the 154th codon) and an ACG (Thr)-to-ATG (Met) mutation that allows reinitiation of translation at the 157th codon such that PriA is expressed in two pieces. priA316::cat phenotypes are like those of the wild type for growth, recombination, and UV resistance, revealing only a slightly increased level of SOS expression and defects in nucleoid partitioning in the mutant. Both parts of PriA are required for activity, and the N-terminal fragment can be optimized to yield wild-type activity. A deletion of the lon protease suppresses priA316::cat phenotypes. We hypothesize the two parts of PriA form a complex that supplies most of the PriA activity needed in the cell. IMPORTANCE PriA is a highly conserved multifunctional protein that plays a crucial role in the essential process of replication restart. Here we characterize an insertion mutation of priA with an intragenic suppressor such that it is now made in two parts. These two pieces split the winged-helix domain to separate the N-terminal 3′ DNA-binding domain from the C-terminal domain of PriA. It is hypothesized that the two pieces form a complex that is capable of almost wild type priA function. The composite mutation leads to a moderate level of SOS expression and defects in partitioning of the chromosomes. Full function is restored by deletion of lon, suggesting that stability of this complex may be a reason for the partial phenotypes seen. PMID:28607160

  7. Analysis of ParB-centromere interactions by multiplex SPR imaging reveals specific patterns for binding ParB in six centromeres of Burkholderiales chromosomes and plasmids

    PubMed Central

    Pillet, Flavien; Passot, Fanny Marie

    2017-01-01

    Bacterial centromeres–also called parS, are cis-acting DNA sequences which, together with the proteins ParA and ParB, are involved in the segregation of chromosomes and plasmids. The specific binding of ParB to parS nucleates the assembly of a large ParB/DNA complex from which ParA—the motor protein, segregates the sister replicons. Closely related families of partition systems, called Bsr, were identified on the chromosomes and large plasmids of the multi-chromosomal bacterium Burkholderia cenocepacia and other species from the order Burkholeriales. The centromeres of the Bsr partition families are 16 bp palindromes, displaying similar base compositions, notably a central CG dinucleotide. Despite centromeres bind the cognate ParB with a narrow specificity, weak ParB-parS non cognate interactions were nevertheless detected between few Bsr partition systems of replicons not belonging to the same genome. These observations suggested that Bsr partition systems could have a common ancestry but that evolution mostly erased the possibilities of cross-reactions between them, in particular to prevent replicon incompatibility. To detect novel similarities between Bsr partition systems, we have analyzed the binding of six Bsr parS sequences and a wide collection of modified derivatives, to their cognate ParB. The study was carried out by Surface Plasmon Resonance imaging (SPRi) mulitplex analysis enabling a systematic survey of each nucleotide position within the centromere. We found that in each parS some positions could be changed while maintaining binding to ParB. Each centromere displays its own pattern of changes, but some positions are shared more or less widely. In addition from these changes we could speculate evolutionary links between these centromeres. PMID:28562673

  8. Analysis of ParB-centromere interactions by multiplex SPR imaging reveals specific patterns for binding ParB in six centromeres of Burkholderiales chromosomes and plasmids.

    PubMed

    Pillet, Flavien; Passot, Fanny Marie; Pasta, Franck; Anton Leberre, Véronique; Bouet, Jean-Yves

    2017-01-01

    Bacterial centromeres-also called parS, are cis-acting DNA sequences which, together with the proteins ParA and ParB, are involved in the segregation of chromosomes and plasmids. The specific binding of ParB to parS nucleates the assembly of a large ParB/DNA complex from which ParA-the motor protein, segregates the sister replicons. Closely related families of partition systems, called Bsr, were identified on the chromosomes and large plasmids of the multi-chromosomal bacterium Burkholderia cenocepacia and other species from the order Burkholeriales. The centromeres of the Bsr partition families are 16 bp palindromes, displaying similar base compositions, notably a central CG dinucleotide. Despite centromeres bind the cognate ParB with a narrow specificity, weak ParB-parS non cognate interactions were nevertheless detected between few Bsr partition systems of replicons not belonging to the same genome. These observations suggested that Bsr partition systems could have a common ancestry but that evolution mostly erased the possibilities of cross-reactions between them, in particular to prevent replicon incompatibility. To detect novel similarities between Bsr partition systems, we have analyzed the binding of six Bsr parS sequences and a wide collection of modified derivatives, to their cognate ParB. The study was carried out by Surface Plasmon Resonance imaging (SPRi) mulitplex analysis enabling a systematic survey of each nucleotide position within the centromere. We found that in each parS some positions could be changed while maintaining binding to ParB. Each centromere displays its own pattern of changes, but some positions are shared more or less widely. In addition from these changes we could speculate evolutionary links between these centromeres.

  9. Effects of three different nucleoid-associated proteins encoded on IncP-7 plasmid pCAR1 on host Pseudomonas putida KT2440.

    PubMed

    Suzuki-Minakuchi, Chiho; Hirotani, Ryusuke; Shintani, Masaki; Takeda, Toshiharu; Takahashi, Yurika; Matsui, Kazuhiro; Vasileva, Delyana; Yun, Choong-Soo; Okada, Kazunori; Yamane, Hisakazu; Nojiri, Hideaki

    2015-04-01

    Nucleoid-associated proteins (NAPs), which fold bacterial DNA and influence gene transcription, are considered to be global transcriptional regulators of genes on both plasmids and the host chromosome. Incompatibility P-7 group plasmid pCAR1 carries genes encoding three NAPs: H-NS family protein Pmr, NdpA-like protein Pnd, and HU-like protein Phu. In this study, the effects of single or double disruption of pmr, pnd, and phu were assessed in host Pseudomonas putida KT2440. When pmr and pnd or pmr and phu were simultaneously disrupted, both the segregational stability and the structural stability of pCAR1 were markedly decreased, suggesting that Pmr, Pnd, and Phu act as plasmid-stabilizing factors in addition to their established roles in replication and partition systems. The transfer frequency of pCAR1 was significantly decreased in these double mutants. The segregational and structural instability of pCAR1 in the double mutants was recovered by complementation of pmr, whereas no recovery of transfer deficiency was observed. Comprehensive phenotype comparisons showed that the host metabolism of carbon compounds, which was reduced by pCAR1 carriage, was restored by disruption of the NAP gene(s). Transcriptome analyses of mutants indicated that transcription of genes for energy production, conversion, inorganic ion transport, and metabolism were commonly affected; however, how their products altered the phenotypes of mutants was not clear. The findings of this study indicated that Pmr, Pnd, and Phu act synergistically to affect pCAR1 replication, maintenance, and transfer, as well as to alter the host metabolic phenotype. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Effects of Three Different Nucleoid-Associated Proteins Encoded on IncP-7 Plasmid pCAR1 on Host Pseudomonas putida KT2440

    PubMed Central

    Suzuki-Minakuchi, Chiho; Hirotani, Ryusuke; Shintani, Masaki; Takeda, Toshiharu; Takahashi, Yurika; Matsui, Kazuhiro; Vasileva, Delyana; Yun, Choong-Soo; Okada, Kazunori; Yamane, Hisakazu

    2015-01-01

    Nucleoid-associated proteins (NAPs), which fold bacterial DNA and influence gene transcription, are considered to be global transcriptional regulators of genes on both plasmids and the host chromosome. Incompatibility P-7 group plasmid pCAR1 carries genes encoding three NAPs: H-NS family protein Pmr, NdpA-like protein Pnd, and HU-like protein Phu. In this study, the effects of single or double disruption of pmr, pnd, and phu were assessed in host Pseudomonas putida KT2440. When pmr and pnd or pmr and phu were simultaneously disrupted, both the segregational stability and the structural stability of pCAR1 were markedly decreased, suggesting that Pmr, Pnd, and Phu act as plasmid-stabilizing factors in addition to their established roles in replication and partition systems. The transfer frequency of pCAR1 was significantly decreased in these double mutants. The segregational and structural instability of pCAR1 in the double mutants was recovered by complementation of pmr, whereas no recovery of transfer deficiency was observed. Comprehensive phenotype comparisons showed that the host metabolism of carbon compounds, which was reduced by pCAR1 carriage, was restored by disruption of the NAP gene(s). Transcriptome analyses of mutants indicated that transcription of genes for energy production, conversion, inorganic ion transport, and metabolism were commonly affected; however, how their products altered the phenotypes of mutants was not clear. The findings of this study indicated that Pmr, Pnd, and Phu act synergistically to affect pCAR1 replication, maintenance, and transfer, as well as to alter the host metabolic phenotype. PMID:25681185

  11. Statistical physics of self-replication.

    PubMed

    England, Jeremy L

    2013-09-28

    Self-replication is a capacity common to every species of living thing, and simple physical intuition dictates that such a process must invariably be fueled by the production of entropy. Here, we undertake to make this intuition rigorous and quantitative by deriving a lower bound for the amount of heat that is produced during a process of self-replication in a system coupled to a thermal bath. We find that the minimum value for the physically allowed rate of heat production is determined by the growth rate, internal entropy, and durability of the replicator, and we discuss the implications of this finding for bacterial cell division, as well as for the pre-biotic emergence of self-replicating nucleic acids.

  12. Chemical amplification based on fluid partitioning

    DOEpatents

    Anderson, Brian L [Lodi, CA; Colston, Jr., Billy W.; Elkin, Chris [San Ramon, CA

    2006-05-09

    A system for nucleic acid amplification of a sample comprises partitioning the sample into partitioned sections and performing PCR on the partitioned sections of the sample. Another embodiment of the invention provides a system for nucleic acid amplification and detection of a sample comprising partitioning the sample into partitioned sections, performing PCR on the partitioned sections of the sample, and detecting and analyzing the partitioned sections of the sample.

  13. Application of ultrafiltration and stable isotopic amendments to field studies of mercury partitioning to filterable carbon in lake water and overland runoff.

    PubMed

    Babiarz, Christopher L; Hurley, James P; Krabbenhoft, David P; Gilmour, Cynthia; Branfireun, Brian A

    2003-03-20

    Results from pilot studies on colloidal phase transport of newly deposited mercury in lake water and overland runoff demonstrate that the combination of ultrafiltration, and stable isotope amendment techniques is a viable tool for the study of mercury partitioning to filterable carbon. Ultrafiltration mass balance calculations were generally excellent, averaging 97.3, 96.1 and 99.8% for dissolved organic carbon (DOC), total mercury (Hg(T)), and methylmercury (MeHg), respectively. Sub nanogram per liter quantities of isotope were measurable, and the observed phase distribution from replicate ultrafiltration separations on lake water agreed within 20%. We believe the data presented here are the first published colloidal phase mercury data on lake water and overland runoff from uncontaminated sites. Initial results from pilot-scale lake amendment experiments indicate that the choice of matrix used to dissolve the isotope did not affect the initial phase distribution of the added mercury in the lake. In addition there was anecdotal evidence that native MeHg was either recently produced in the system, or at a minimum, that this 'old' MeHg partitions to the same subset of DOC that binds the amended mercury. Initial results from pilot-scale overland runoff experiments indicate that less than 20% of newly deposited mercury was transported in the filterable fraction (<0.7 microm). There is some indication of colloidal phase enrichment of mercury in runoff compared to the phase distribution of organic carbon, but the mechanism of this enrichment is unclear. The phase distribution of newly deposited mercury can differ from that of organic carbon and native mercury, suggesting that the quality of the carbon (available ligands), not the quantity of carbon, regulates partitioning. Further characterization of DOC is needed to clarify the underlying mechanisms.

  14. Environmental Media Phase-Tracking Units in the Classroom

    ERIC Educational Resources Information Center

    Langseth, David E.

    2009-01-01

    When teaching phase partitioning concepts for solutes in porous media, and other multi-phase environmental systems, explicitly tracking the environmental media phase with which a substance of interest (S0I) is associated can enhance the students' understanding of the fundamental concepts and derivations. It is common to explicitly track the…

  15. Epstein-Barr virus nuclear antigen-1 is highly colocalized with interphase chromatin and its newly replicated regions in particular.

    PubMed

    Ito, Sayuri; Gotoh, Eisuke; Ozawa, Shigeru; Yanagi, Kazuo

    2002-10-01

    Epstein-Barr virus (EBV) nuclear antigen-1 (EBNA-1), which binds to both the EBV origin of replication (oriP) and metaphase chromosomes, is essential for the replication/retention and segregation/partition of oriP-containing plasmids. Here the chromosomal localization of EBNA-1 fused to green fluorescent protein (GFP-EBNA-1) is examined by confocal microscopy combined with a 'premature chromosome condensation' (PCC) procedure. Analyses show that GFP-EBNA-1 expressed in living cells that lack oriP plasmids is associated with cellular chromatin that has been condensed rapidly by the PCC procedure into identifiable forms that are unique to each phase of interphase as well as metaphase chromosomes. Studies of cellular chromosomal DNAs labelled with BrdU or Cy3-dUTP indicate that GFP-EBNA-1 colocalizes highly with the labelled, newly replicated regions of interphase chromatin in cells. These results suggest that EBNA-1 is associated not only with cellular metaphase chromosomes but also with condensing chromatin/chromosomes and probably with interphase chromatin, especially with its newly replicated regions.

  16. Control of Initiation of DNA Replication in Bacillus subtilis and Escherichia coli

    PubMed Central

    Jameson, Katie H.; Wilkinson, Anthony J.

    2017-01-01

    Initiation of DNA Replication is tightly regulated in all cells since imbalances in chromosomal copy number are deleterious and often lethal. In bacteria such as Bacillus subtilis and Escherichia coli, at the point of cytokinesis, there must be two complete copies of the chromosome to partition into the daughter cells following division at mid-cell during vegetative growth. Under conditions of rapid growth, when the time taken to replicate the chromosome exceeds the doubling time of the cells, there will be multiple initiations per cell cycle and daughter cells will inherit chromosomes that are already undergoing replication. In contrast, cells entering the sporulation pathway in B. subtilis can do so only during a short interval in the cell cycle when there are two, and only two, chromosomes per cell, one destined for the spore and one for the mother cell. Here, we briefly describe the overall process of DNA replication in bacteria before reviewing initiation of DNA replication in detail. The review covers DnaA-directed assembly of the replisome at oriC and the multitude of mechanisms of regulation of initiation, with a focus on the similarities and differences between E. coli and B. subtilis. PMID:28075389

  17. Chemical amplification based on fluid partitioning in an immiscible liquid

    DOEpatents

    Anderson, Brian L.; Colston, Bill W.; Elkin, Christopher J.

    2010-09-28

    A system for nucleic acid amplification of a sample comprises partitioning the sample into partitioned sections and performing PCR on the partitioned sections of the sample. Another embodiment of the invention provides a system for nucleic acid amplification and detection of a sample comprising partitioning the sample into partitioned sections, performing PCR on the partitioned sections of the sample, and detecting and analyzing the partitioned sections of the sample.

  18. Partition behavior of virgin olive oil phenolic compounds in oil-brine mixtures during thermal processing for fish canning.

    PubMed

    Sacchi, Raffaele; Paduano, Antonello; Fiore, Francesca; Della Medaglia, Dorotea; Ambrosino, Maria Luisa; Medina, Isabel

    2002-05-08

    The chemical modifications and partitioning toward the brine phase (5% salt) of major phenol compounds of extra virgin olive oil (EVOO) were studied in a model system formed by sealed cans filled with oil-brine mixtures (5:1, v/v) simulating canned-in-oil food systems. Filled cans were processed in an industrial plant using two sterilization conditions commonly used during fish canning. The partitioning of phenolic compounds toward brine induced by thermal processing was studied by reversed-phase high-performance liquid chromatographic analysis of the phenol fraction extracted from oils and brine. Hydroxytyrosol (1), tyrosol (2), and the complex phenolic compounds containing 1 and 2 (i.e., the dialdehydic form of decarboxymethyl oleuropein aglycon 3, the dialdehydic form of decarboxymethyl ligstroside aglycon 4, and the oleuropein aglycon 6) decreased in the oily phase after sterilization with a marked partitioning toward the brine phase. The increase of the total amount of 1 and 2 after processing, as well as the presence of elenolic acid 7 released in brine, revealed the hydrolysis of the ester bond of hydrolyzable phenolic compounds 3, 4, and 6 during thermal processing. Both phenomena (partitioning toward the water phase and hydrolysis) contribute to explain the loss of phenolic compounds exhibited by EVOO used as filling medium in canned foods, as well as the protection of n-3 polyunsaturated fatty acids in canned-in-EVOO fish products.

  19. A Comparison of Heuristic Procedures for Minimum within-Cluster Sums of Squares Partitioning

    ERIC Educational Resources Information Center

    Brusco, Michael J.; Steinley, Douglas

    2007-01-01

    Perhaps the most common criterion for partitioning a data set is the minimization of the within-cluster sums of squared deviation from cluster centroids. Although optimal solution procedures for within-cluster sums of squares (WCSS) partitioning are computationally feasible for small data sets, heuristic procedures are required for most practical…

  20. Persistence of an Oncogenic Papillomavirus Genome Requires cis Elements from the Viral Transcriptional Enhancer

    PubMed Central

    Van Doorslaer, Koenraad; Chen, Dan; Chapman, Sandra; Khan, Jameela

    2017-01-01

    ABSTRACT Human papillomavirus (HPV) genomes are replicated and maintained as extrachromosomal plasmids during persistent infection. The viral E2 proteins are thought to promote stable maintenance replication by tethering the viral DNA to host chromatin. However, this has been very difficult to prove genetically, as the E2 protein is involved in transcriptional regulation and initiation of replication, as well as its assumed role in genome maintenance. This makes mutational analysis of viral trans factors and cis elements in the background of the viral genome problematic and difficult to interpret. To circumvent this problem, we have developed a complementation assay in which the complete wild-type HPV18 genome is transfected into primary human keratinocytes along with subgenomic or mutated replicons that contain the minimal replication origin. The wild-type genome provides the E1 and E2 proteins in trans, allowing us to determine additional cis elements that are required for long-term replication and partitioning of the replicon. We found that, in addition to the core replication origin (and the three E2 binding sites located therein), additional sequences from the transcriptional enhancer portion of the URR (upstream regulatory region) are required in cis for long-term genome replication. PMID:29162712

  1. 47 CFR 27.1333 - Geographic partitioning, spectrum disaggregation, license assignment, and transfer.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES 700 MHz Public/Private Partnership § 27.1333 Geographic partitioning, spectrum disaggregation, license...

  2. 47 CFR 27.1333 - Geographic partitioning, spectrum disaggregation, license assignment, and transfer.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES 700 MHz Public/Private Partnership § 27.1333 Geographic partitioning, spectrum disaggregation, license...

  3. 47 CFR 27.1333 - Geographic partitioning, spectrum disaggregation, license assignment, and transfer.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES 700 MHz Public/Private Partnership § 27.1333 Geographic partitioning, spectrum disaggregation, license...

  4. Apparatus for chemical amplification based on fluid partitioning in an immiscible liquid

    DOEpatents

    Anderson, Brian L [Lodi, CA; Colston, Bill W [San Ramon, CA; Elkin, Christopher J [San Ramon, CA

    2012-05-08

    A system for nucleic acid amplification of a sample comprises partitioning the sample into partitioned sections and performing PCR on the partitioned sections of the sample. Another embodiment of the invention provides a system for nucleic acid amplification and detection of a sample comprising partitioning the sample into partitioned sections, performing PCR on the partitioned sections of the sample, and detecting and analyzing the partitioned sections of the sample.

  5. Method for chemical amplification based on fluid partitioning in an immiscible liquid

    DOEpatents

    Anderson, Brian L.; Colston, Bill W.; Elkin, Christopher J.

    2015-06-02

    A system for nucleic acid amplification of a sample comprises partitioning the sample into partitioned sections and performing PCR on the partitioned sections of the sample. Another embodiment of the invention provides a system for nucleic acid amplification and detection of a sample comprising partitioning the sample into partitioned sections, performing PCR on the partitioned sections of the sample, and detecting and analyzing the partitioned sections of the sample.

  6. Method for chemical amplification based on fluid partitioning in an immiscible liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Brian L.; Colston, Bill W.; Elkin, Christopher J.

    A system for nucleic acid amplification of a sample comprises partitioning the sample into partitioned sections and performing PCR on the partitioned sections of the sample. Another embodiment of the invention provides a system for nucleic acid amplification and detection of a sample comprising partitioning the sample into partitioned sections, performing PCR on the partitioned sections of the sample, and detecting and analyzing the partitioned sections of the sample.

  7. Large transcription units unify copy number variants and common fragile sites arising under replication stress.

    PubMed

    Wilson, Thomas E; Arlt, Martin F; Park, So Hae; Rajendran, Sountharia; Paulsen, Michelle; Ljungman, Mats; Glover, Thomas W

    2015-02-01

    Copy number variants (CNVs) resulting from genomic deletions and duplications and common fragile sites (CFSs) seen as breaks on metaphase chromosomes are distinct forms of structural chromosome instability precipitated by replication inhibition. Although they share a common induction mechanism, it is not known how CNVs and CFSs are related or why some genomic loci are much more prone to their occurrence. Here we compare large sets of de novo CNVs and CFSs in several experimental cell systems to each other and to overlapping genomic features. We first show that CNV hotpots and CFSs occurred at the same human loci within a given cultured cell line. Bru-seq nascent RNA sequencing further demonstrated that although genomic regions with low CNV frequencies were enriched in transcribed genes, the CNV hotpots that matched CFSs specifically corresponded to the largest active transcription units in both human and mouse cells. Consistently, active transcription units >1 Mb were robust cell-type-specific predictors of induced CNV hotspots and CFS loci. Unlike most transcribed genes, these very large transcription units replicated late and organized deletion and duplication CNVs into their transcribed and flanking regions, respectively, supporting a role for transcription in replication-dependent lesion formation. These results indicate that active large transcription units drive extreme locus- and cell-type-specific genomic instability under replication stress, resulting in both CNVs and CFSs as different manifestations of perturbed replication dynamics. © 2015 Wilson et al.; Published by Cold Spring Harbor Laboratory Press.

  8. Large transcription units unify copy number variants and common fragile sites arising under replication stress

    PubMed Central

    Park, So Hae; Rajendran, Sountharia; Paulsen, Michelle; Ljungman, Mats; Glover, Thomas W.

    2015-01-01

    Copy number variants (CNVs) resulting from genomic deletions and duplications and common fragile sites (CFSs) seen as breaks on metaphase chromosomes are distinct forms of structural chromosome instability precipitated by replication inhibition. Although they share a common induction mechanism, it is not known how CNVs and CFSs are related or why some genomic loci are much more prone to their occurrence. Here we compare large sets of de novo CNVs and CFSs in several experimental cell systems to each other and to overlapping genomic features. We first show that CNV hotpots and CFSs occurred at the same human loci within a given cultured cell line. Bru-seq nascent RNA sequencing further demonstrated that although genomic regions with low CNV frequencies were enriched in transcribed genes, the CNV hotpots that matched CFSs specifically corresponded to the largest active transcription units in both human and mouse cells. Consistently, active transcription units >1 Mb were robust cell-type-specific predictors of induced CNV hotspots and CFS loci. Unlike most transcribed genes, these very large transcription units replicated late and organized deletion and duplication CNVs into their transcribed and flanking regions, respectively, supporting a role for transcription in replication-dependent lesion formation. These results indicate that active large transcription units drive extreme locus- and cell-type-specific genomic instability under replication stress, resulting in both CNVs and CFSs as different manifestations of perturbed replication dynamics. PMID:25373142

  9. An automated and objective method for age partitioning of reference intervals based on continuous centile curves.

    PubMed

    Yang, Qian; Lew, Hwee Yeong; Peh, Raymond Hock Huat; Metz, Michael Patrick; Loh, Tze Ping

    2016-10-01

    Reference intervals are the most commonly used decision support tool when interpreting quantitative laboratory results. They may require partitioning to better describe subpopulations that display significantly different reference values. Partitioning by age is particularly important for the paediatric population since there are marked physiological changes associated with growth and maturation. However, most partitioning methods are either technically complex or require prior knowledge of the underlying physiology/biological variation of the population. There is growing interest in the use of continuous centile curves, which provides seamless laboratory reference values as a child grows, as an alternative to rigidly described fixed reference intervals. However, the mathematical functions that describe these curves can be complex and may not be easily implemented in laboratory information systems. Hence, the use of fixed reference intervals is expected to continue for a foreseeable time. We developed a method that objectively proposes optimised age partitions and reference intervals for quantitative laboratory data (http://research.sph.nus.edu.sg/pp/ppResult.aspx), based on the sum of gradient that best describes the underlying distribution of the continuous centile curves. It is hoped that this method may improve the selection of age intervals for partitioning, which is receiving increasing attention in paediatric laboratory medicine. Copyright © 2016 Royal College of Pathologists of Australasia. Published by Elsevier B.V. All rights reserved.

  10. Computational identification of obligatorily autocatalytic replicators embedded in metabolic networks

    PubMed Central

    Kun, Ádám; Papp, Balázs; Szathmáry, Eörs

    2008-01-01

    Background If chemical A is necessary for the synthesis of more chemical A, then A has the power of replication (such systems are known as autocatalytic systems). We provide the first systems-level analysis searching for small-molecular autocatalytic components in the metabolisms of diverse organisms, including an inferred minimal metabolism. Results We find that intermediary metabolism is invariably autocatalytic for ATP. Furthermore, we provide evidence for the existence of additional, organism-specific autocatalytic metabolites in the forms of coenzymes (NAD+, coenzyme A, tetrahydrofolate, quinones) and sugars. Although the enzymatic reactions of a number of autocatalytic cycles are present in most of the studied organisms, they display obligatorily autocatalytic behavior in a few networks only, hence demonstrating the need for a systems-level approach to identify metabolic replicators embedded in large networks. Conclusion Metabolic replicators are apparently common and potentially both universal and ancestral: without their presence, kick-starting metabolic networks is impossible, even if all enzymes and genes are present in the same cell. Identification of metabolic replicators is also important for attempts to create synthetic cells, as some of these autocatalytic molecules will presumably be needed to be added to the system as, by definition, the system cannot synthesize them without their initial presence. PMID:18331628

  11. Ecological bioavailability of permethrin and p,p'-DDT: toxicity depends on type of organic matter resource.

    PubMed

    de Perre, Chloé; Trimble, Andrew J; Maul, Jonathan D; Lydy, Michael J

    2014-02-01

    Hydrophobic organic contaminants readily partition from aqueous to organic phases in aquatic systems with past research largely focusing on sediment. However, within many aquatic systems, matrices such as leaf material and detritus are abundant and ecologically important, as they may represent a primary exposure route for aquatic invertebrates. The objectives of the present study were to examine partitioning and toxicity to Hyalella azteca among permethrin and p,p'-DDT contaminated sediment, leaf, and a sediment-leaf mixture. Log organic carbon-water partitioning coefficients ranged from 4.21 to 5.82 for both insecticides, and were greatest within sediment and lowest in coarse leaf material. H. azteca lethal concentrations for 50% of the population (LC50s) ranged from 0.5 to 111μgg(-1) organic carbon, and were dependent on the matrix composition. The variation in sorption and toxicity among matrices common within stream ecosystems suggests that the ecological niche of aquatic organisms may be important for estimating risk of hydrophobic pesticides. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. A New Replicator: A theoretical framework for analysing replication

    PubMed Central

    2010-01-01

    Background Replicators are the crucial entities in evolution. The notion of a replicator, however, is far less exact than the weight of its importance. Without identifying and classifying multiplying entities exactly, their dynamics cannot be determined appropriately. Therefore, it is importance to decide the nature and characteristics of any multiplying entity, in a detailed and formal way. Results Replication is basically an autocatalytic process which enables us to rest on the notions of formal chemistry. This statement has major implications. Simple autocatalytic cycle intermediates are considered as non-informational replicators. A consequence of which is that any autocatalytically multiplying entity is a replicator, be it simple or overly complex (even nests). A stricter definition refers to entities which can inherit acquired changes (informational replicators). Simple autocatalytic molecules (and nests) are excluded from this group. However, in turn, any entity possessing copiable information is to be named a replicator, even multicellular organisms. In order to deal with the situation, an abstract, formal framework is presented, which allows the proper identification of various types of replicators. This sheds light on the old problem of the units and levels of selection and evolution. A hierarchical classification for the partition of the replicator-continuum is provided where specific replicators are nested within more general ones. The classification should be able to be successfully applied to known replicators and also to future candidates. Conclusion This paper redefines the concept of the replicator from a bottom-up theoretical approach. The formal definition and the abstract models presented can distinguish between among all possible replicator types, based on their quantity of variable and heritable information. This allows for the exact identification of various replicator types and their underlying dynamics. The most important claim is that replication, in general, is basically autocatalysis, with a specific defined environment and selective force. A replicator is not valid unless its working environment, and the selective force to which it is subject, is specified. PMID:20219099

  13. Partitioning of monomethylmercury between freshwater algae and water.

    PubMed

    Miles, C J; Moye, H A; Phlips, E J; Sargent, B

    2001-11-01

    Phytoplankton-water monomethylmercury (MeHg) partition constants (KpI) have been determined in the laboratory for two green algae Selenastrum capricornutum and Cosmarium botrytis, the blue-green algae Schizothrix calcicola, and the diatom Thallasiosira spp., algal species that are commonly found in natural surface waters. Two methods were used to determine KpI, the Freundlich isotherm method and the flow-through/dialysis bag method. Both methods yielded KpI values of about 10(6.6) for S. capricornutum and were not significantly different. The KpI for the four algae studied were similar except for Schizothrix, which was significantly lower than S. capricornutum. The KpI for MeHg and S. capricornutum (exponential growth) was not significantly different in systems with predominantly MeHgOH or MeHgCl species. This is consistent with other studies that show metal speciation controls uptake kinetics, but the reactivity with intracellular components controls steady-state concentrations. Partitioning constants determined with exponential and stationary phase S. capricornutum cells at the same conditions were not significantly different, while the partitioning constant for exponential phase, phosphorus-limited cells was significantly lower, suggesting that P-limitation alters the ecophysiology of S. capricornutum sufficiently to impact partitioning, which may then ultimately affect mercury levels in higher trophic species.

  14. Apatite/Melt Partitioning Experiments Reveal Redox Sensitivity to Cr, V, Mn, Ni, Eu, W, Th, and U

    NASA Technical Reports Server (NTRS)

    Righter, K.; Yang, S.; Humayun, M.

    2016-01-01

    Apatite is a common mineral in terrestrial, planetary, and asteroidal materials. It is commonly used for geochronology (U-Pb), sensing volatiles (H, F, Cl, S), and can concentrate rare earth elements (REE) during magmatic fractionation and in general. Some recent studies have shown that some kinds of phosphate may fractionate Hf and W and that Mn may be redox sensitive. Experimental studies have focused on REE and other lithophile elements and at simplified or not specified oxygen fugacities. There is a dearth of partitioning data for chalcophile, siderophile and other elements between apatite and melt. Here we carry out several experiments at variable fO2 to study the partitioning of a broad range of trace elements. We compare to existing data and then focus on several elements that exhibit redox dependent partitioning behavior.

  15. Rescue of replication failure by Fanconi anaemia proteins.

    PubMed

    Constantinou, Angelos

    2012-02-01

    Chromosomal aberrations are often associated with incomplete genome duplication, for instance at common fragile sites, or as a consequence of chemical alterations in the DNA template that block replication forks. Studies of the cancer-prone disease Fanconi anaemia (FA) have provided important insights into the resolution of replication problems. The repair of interstrand DNA crosslinks induced by chemotherapy drugs is coupled with DNA replication and controlled by FA proteins. We discuss here the recent discovery of new FA-associated proteins and the development of new tractable repair systems that have dramatically improved our understanding of crosslink repair. We focus also on how FA proteins protect against replication failure in the context of fragile sites and on the identification of reactive metabolites that account for the development of Fanconi anaemia symptoms.

  16. Comparison of the Marcus and Pekar partitions in the context of non-equilibrium, polarizable-continuum solvation models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Zhi-Qiang; Herbert, John M., E-mail: herbert@chemistry.ohio-state.edu; Mewes, Jan-Michael

    2015-11-28

    The Marcus and Pekar partitions are common, alternative models to describe the non-equilibrium dielectric polarization response that accompanies instantaneous perturbation of a solute embedded in a dielectric continuum. Examples of such a perturbation include vertical electronic excitation and vertical ionization of a solution-phase molecule. Here, we provide a general derivation of the accompanying polarization response, for a quantum-mechanical solute described within the framework of a polarizable continuum model (PCM) of electrostatic solvation. Although the non-equilibrium free energy is formally equivalent within the two partitions, albeit partitioned differently into “fast” versus “slow” polarization contributions, discretization of the PCM integral equations failsmore » to preserve certain symmetries contained in these equations (except in the case of the conductor-like models or when the solute cavity is spherical), leading to alternative, non-equivalent matrix equations. Unlike the total equilibrium solvation energy, however, which can differ dramatically between different formulations, we demonstrate that the equivalence of the Marcus and Pekar partitions for the non-equilibrium solvation correction is preserved to high accuracy. Differences in vertical excitation and ionization energies are <0.2 eV (and often <0.01 eV), even for systems specifically selected to afford a large polarization response. Numerical results therefore support the interchangeability of the Marcus and Pekar partitions, but also caution against relying too much on the fast PCM charges for interpretive value, as these charges differ greatly between the two partitions, especially in polar solvents.« less

  17. Programmable partitioning for high-performance coherence domains in a multiprocessor system

    DOEpatents

    Blumrich, Matthias A [Ridgefield, CT; Salapura, Valentina [Chappaqua, NY

    2011-01-25

    A multiprocessor computing system and a method of logically partitioning a multiprocessor computing system are disclosed. The multiprocessor computing system comprises a multitude of processing units, and a multitude of snoop units. Each of the processing units includes a local cache, and the snoop units are provided for supporting cache coherency in the multiprocessor system. Each of the snoop units is connected to a respective one of the processing units and to all of the other snoop units. The multiprocessor computing system further includes a partitioning system for using the snoop units to partition the multitude of processing units into a plurality of independent, memory-consistent, adjustable-size processing groups. Preferably, when the processor units are partitioned into these processing groups, the partitioning system also configures the snoop units to maintain cache coherency within each of said groups.

  18. Effect of silicon on trace element partitioning in iron-bearing metallic melts

    NASA Astrophysics Data System (ADS)

    Chabot, Nancy L.; Safko, Trevor M.; McDonough, William F.

    2010-08-01

    Despite the fact that Si is considered a potentially important metalloid in planetary systems, little is known about the effect of Si in metallic melts on trace element partitioning behavior. Previous studies have established the effects of S, C, and P, nonmetals, through solid metal/liquid metal experiments in the corresponding Fe binary systems, but the Fe-Si system is not appropriate for similar experiments because of the high solubility of Si in solid metal. In this work, we present the results from 0.1MPa experiments with two coexisting immiscible metallic liquids in the Fe-S-Si system. By leveraging the extensive available knowledge about the effect of S on trace element partitioning behavior, we explore the effect of Si. Results for 22 trace elements are presented. Strong Si avoidance behavior is demonstrated by As, Au, Ga, Ge, Sb, Sn, and Zn. Iridium, Os, Pt, Re, Ru, and W exhibit weak Si avoidance tendencies. Silicon appears to have no significant effect on the partitioning behaviors of Ag, Co, Cu, Cr, Ni, Pd, and V, all of which had similar partition coefficients over a wide range of Si liquid concentrations from Si-free to 13 wt%. The only elements in our experiments to show evidence of a potentially weak attraction to Si were Mo and Rh. Applications of the newly determined effects of Si to problems in planetary science indicate that (1) The elements Ni, Co, Mo, and W, which are commonly used in planetary differentiation models, are minimally affected by the presence of Si in the metal, especially in comparison to other effects such as from oxygen fugacity. 2) Reduced enstatite-rich meteorites may record a chemical signature due to Si in the metallic melts during partial melting, and if so, elements identified by this study as having strong Si avoidance may offer unique insight into unraveling the history of these meteorites.

  19. Partitioning of zinc among common ferromagnesian minerals and implications for hydrothermal mobilization

    USGS Publications Warehouse

    Johnson, C.A.

    1994-01-01

    In systems where metals are scavenging from crystalline rocks by through-flowing fluids, the important host minerals must be dissolved or must undergo cation-exchange reactions with the fluid. Whereas copper resides in sulfides, zinc resides in magnetic and, to a lesser extent, in biotite, clinopyroxene and olivine. Magnetite is known from petrographic studies to be more resistant to alteration than sulfides. For metals extracted from crystalline rocks, the Cu:Zn mass ratio may thus decrease with progressive alteration. In systems where metals are scavenged from cooling magmas by exsolving fluids, the metals are partitioned among melt, fluid and any crystals that have fractionated. For zinc, crystal fractionation may be an important sink if magnetite or biotite crystallize before fluid saturation. The zinc concentrations of magmatic fluids will thus be reduced. -from Author

  20. Global-view coefficients: a data management solution for parallel quantum Monte Carlo applications: A DATA MANAGEMENT SOLUTION FOR QMC APPLICATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu, Qingpeng; Dinan, James; Tirukkovalur, Sravya

    2016-01-28

    Quantum Monte Carlo (QMC) applications perform simulation with respect to an initial state of the quantum mechanical system, which is often captured by using a cubic B-spline basis. This representation is stored as a read-only table of coefficients and accesses to the table are generated at random as part of the Monte Carlo simulation. Current QMC applications, such as QWalk and QMCPACK, replicate this table at every process or node, which limits scalability because increasing the number of processors does not enable larger systems to be run. We present a partitioned global address space approach to transparently managing this datamore » using Global Arrays in a manner that allows the memory of multiple nodes to be aggregated. We develop an automated data management system that significantly reduces communication overheads, enabling new capabilities for QMC codes. Experimental results with QWalk and QMCPACK demonstrate the effectiveness of the data management system.« less

  1. Partition in aqueous two-phase system: its application in downstream processing of tannase from Aspergillus niger.

    PubMed

    Rodríguez-Durán, Luis V; Spelzini, Darío; Boeris, Valeria; Aguilar, Cristóbal N; Picó, Guillermo A

    2013-01-01

    Tannase from Aspergillus niger was partitioned in aqueous two-phase systems composed by polyethyleneglycol of molar mass 400, 600 and 1000 and potassium phosphate. Tannase was found to be partitioned toward the salt-rich phase in all systems, with partition coefficients lower than 0.5. Partition coefficients values and low entropic and enthalpic changes associated with tannase partition suggest that the entropic effect may be the driving force of the concentration of the enzyme in the bottom phase due to the high molar mass of the enzyme. The process was significantly influenced by the top phase/bottom phase volume ratio. When the fungal culture broth was partitioned in these systems, a good performance was found, since the enzyme recovery in the bottom phase of the system composed by polyethyleneglycol 1000 was around 96% with a 7.0-fold increase in purity. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Replication Proteins and Human Disease

    PubMed Central

    Jackson, Andrew P.; Laskey, Ronald A.; Coleman, Nicholas

    2014-01-01

    In this article, we discuss the significance of DNA replication proteins in human disease. There is a broad range of mutations in genes encoding replication proteins, which result in several distinct clinical disorders that share common themes. One group of replication proteins, the MCMs, has emerged as effective biomarkers for early detection of a range of common cancers. They offer practical and theoretical advantages over other replication proteins and have been developed for widespread clinical use. PMID:23881941

  3. Using Wireless Response Systems to Replicate Behavioral Research Findings in the Classroom

    ERIC Educational Resources Information Center

    Cleary, Anne M.

    2008-01-01

    College instructors are increasingly relying on wireless clicker systems as instructional tools in the classroom. Instructors commonly use clicker systems for such classroom activities as taking attendance, giving quizzes, and taking opinion polls. However, these systems are uniquely well suited for the teaching of psychology and other courses…

  4. Association and haplotype analysis of the insulin-degrading enzyme (IDE) gene, a strong positional and biological candidate for type 2 diabetes susceptibility.

    PubMed

    Groves, Christopher J; Wiltshire, Steven; Smedley, Damian; Owen, Katherine R; Frayling, Timothy M; Walker, Mark; Hitman, Graham A; Levy, Jonathan C; O'Rahilly, Stephen; Menzel, Stephan; Hattersley, Andrew T; McCarthy, Mark I

    2003-05-01

    The gene for insulin-degrading enzyme (IDE) represents a strong positional and biological candidate for type 2 diabetes susceptibility. IDE maps to chromosome 10q23.3, a region linked to diabetes in several populations; the rat homolog has been directly implicated in diabetes susceptibility; and known functions of IDE support an important role in glucose homeostasis. We sought evidence for association between IDE variation and diabetes by mutation screening, defining local haplotype structure, and genotyping variants delineating common haplotypic diversity. An initial case-control analysis (628 diabetic probands from multiplex sibships and 604 control subjects) found no haplotypic associations, although one variant (IDE2, -179T-->C) showed modest association with diabetes (odds ratio [OR]1.25, P = 0.03). Linkage partitioning analyses failed to support this association, but provided borderline evidence for a different variant (IDE10, IVS20-405A-->G) (P = 0.06). Neither variant was associated with diabetes when replication was sought in 377 early onset diabetic subjects and 825 control subjects, though combined analysis of all typed cohorts indicated a nominally significant effect at IDE2 (OR 1.21 [1.04-1.40], P = 0.013). In the absence of convincing support for this association from linkage partitioning or analyses of continuous measures of glycemia, we conclude that analysis of over 2,400 samples provides no compelling evidence that variation in IDE contributes to diabetes susceptibility in humans.

  5. Virtually-synchronous communication based on a weak failure suspector

    NASA Technical Reports Server (NTRS)

    Schiper, Andre; Ricciardi, Aleta

    1993-01-01

    Failure detectors (or, more accurately Failure Suspectors (FS)) appear to be a fundamental service upon which to build fault-tolerant, distributed applications. This paper shows that a FS with very weak semantics (i.e., that delivers failure and recovery information in no specific order) suffices to implement virtually-synchronous communication (VSC) in an asynchronous system subject to process crash failures and network partitions. The VSC paradigm is particularly useful in asynchronous systems and greatly simplifies building fault-tolerant applications that mask failures by replicating processes. We suggest a three-component architecture to implement virtually-synchronous communication: (1) at the lowest level, the FS component; (2) on top of it, a component (2a) that defines new views; and (3) a component (2b) that reliably multicasts messages within a view. The issues covered in this paper also lead to a better understanding of the various membership service semantics proposed in recent literature.

  6. Models for liquid-liquid partition in the system dimethyl sulfoxide-organic solvent and their use for estimating descriptors for organic compounds.

    PubMed

    Karunasekara, Thushara; Poole, Colin F

    2011-07-15

    Partition coefficients for varied compounds were determined for the organic solvent-dimethyl sulfoxide biphasic partition system where the organic solvent is n-heptane or isopentyl ether. These partition coefficient databases are analyzed using the solvation parameter model facilitating a quantitative comparison of the dimethyl sulfoxide-based partition systems with other totally organic partition systems. Dimethyl sulfoxide is a moderately cohesive solvent, reasonably dipolar/polarizable and strongly hydrogen-bond basic. Although generally considered to be non-hydrogen-bond acidic, analysis of the partition coefficient database strongly supports reclassification as a weak hydrogen-bond acid in agreement with recent literature. The system constants for the n-heptane-dimethyl sulfoxide biphasic system provide an explanation of the mechanism for the selective isolation of polycyclic aromatic compounds from mixtures containing low-polarity hydrocarbons based on the capability of the polar interactions (dipolarity/polarizability and hydrogen-bonding) to overcome the opposing cohesive forces in dimethyl sulfoxide that are absent for the interactions with hydrocarbons of low polarity. In addition, dimethyl sulfoxide-organic solvent systems afford a complementary approach to other totally organic biphasic partition systems for descriptor measurements of compounds virtually insoluble in water. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Replication of Salmonella enterica Serovar Typhimurium in Human Monocyte-Derived Macrophages

    PubMed Central

    Lathrop, Stephanie K.; Binder, Kelsey A.; Starr, Tregei; Cooper, Kendal G.; Chong, Audrey; Carmody, Aaron B.

    2015-01-01

    Salmonella enterica serovar Typhimurium is a common cause of food-borne gastrointestinal illness, but additionally it causes potentially fatal bacteremia in some immunocompromised patients. In mice, systemic spread and replication of the bacteria depend upon infection of and replication within macrophages, but replication in human macrophages is not widely reported or well studied. In order to assess the ability of Salmonella Typhimurium to replicate in human macrophages, we infected primary monocyte-derived macrophages (MDM) that had been differentiated under conditions known to generate different phenotypes. We found that replication in MDM depends greatly upon the phenotype of the cells, as M1-skewed macrophages did not allow replication, while M2a macrophages and macrophages differentiated with macrophage colony-stimulating factor (M-CSF) alone (termed M0) did. We describe how additional conditions that alter the macrophage phenotype or the gene expression of the bacteria affect the outcome of infection. In M0 MDM, the temporal expression of representative genes from Salmonella pathogenicity islands 1 and 2 (SPI1 and SPI2) and the importance of the PhoP/Q two-component regulatory system are similar to what has been shown in mouse macrophages. However, in contrast to mouse macrophages, where replication is SPI2 dependent, we observed early SPI2-independent replication in addition to later SPI2-dependent replication in M0 macrophages. Only SPI2-dependent replication was associated with death of the host cell at later time points. Altogether, our results reveal a very nuanced interaction between Salmonella and human macrophages. PMID:25895967

  8. Replication of Salmonella enterica Serovar Typhimurium in Human Monocyte-Derived Macrophages.

    PubMed

    Lathrop, Stephanie K; Binder, Kelsey A; Starr, Tregei; Cooper, Kendal G; Chong, Audrey; Carmody, Aaron B; Steele-Mortimer, Olivia

    2015-07-01

    Salmonella enterica serovar Typhimurium is a common cause of food-borne gastrointestinal illness, but additionally it causes potentially fatal bacteremia in some immunocompromised patients. In mice, systemic spread and replication of the bacteria depend upon infection of and replication within macrophages, but replication in human macrophages is not widely reported or well studied. In order to assess the ability of Salmonella Typhimurium to replicate in human macrophages, we infected primary monocyte-derived macrophages (MDM) that had been differentiated under conditions known to generate different phenotypes. We found that replication in MDM depends greatly upon the phenotype of the cells, as M1-skewed macrophages did not allow replication, while M2a macrophages and macrophages differentiated with macrophage colony-stimulating factor (M-CSF) alone (termed M0) did. We describe how additional conditions that alter the macrophage phenotype or the gene expression of the bacteria affect the outcome of infection. In M0 MDM, the temporal expression of representative genes from Salmonella pathogenicity islands 1 and 2 (SPI1 and SPI2) and the importance of the PhoP/Q two-component regulatory system are similar to what has been shown in mouse macrophages. However, in contrast to mouse macrophages, where replication is SPI2 dependent, we observed early SPI2-independent replication in addition to later SPI2-dependent replication in M0 macrophages. Only SPI2-dependent replication was associated with death of the host cell at later time points. Altogether, our results reveal a very nuanced interaction between Salmonella and human macrophages. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Graph Partitioning for Parallel Applications in Heterogeneous Grid Environments

    NASA Technical Reports Server (NTRS)

    Bisws, Rupak; Kumar, Shailendra; Das, Sajal K.; Biegel, Bryan (Technical Monitor)

    2002-01-01

    The problem of partitioning irregular graphs and meshes for parallel computations on homogeneous systems has been extensively studied. However, these partitioning schemes fail when the target system architecture exhibits heterogeneity in resource characteristics. With the emergence of technologies such as the Grid, it is imperative to study the partitioning problem taking into consideration the differing capabilities of such distributed heterogeneous systems. In our model, the heterogeneous system consists of processors with varying processing power and an underlying non-uniform communication network. We present in this paper a novel multilevel partitioning scheme for irregular graphs and meshes, that takes into account issues pertinent to Grid computing environments. Our partitioning algorithm, called MiniMax, generates and maps partitions onto a heterogeneous system with the objective of minimizing the maximum execution time of the parallel distributed application. For experimental performance study, we have considered both a realistic mesh problem from NASA as well as synthetic workloads. Simulation results demonstrate that MiniMax generates high quality partitions for various classes of applications targeted for parallel execution in a distributed heterogeneous environment.

  10. Constraining the volatile budget of the lunar interior

    NASA Astrophysics Data System (ADS)

    Potts, N. J.; Bromiley, G. D.

    2017-12-01

    Measurements of volatiles (F, Cl, S, H2O) in a range of lunar samples confirm the presence of volatile material in lunar magmas. It remains unknown, however, where this volatile material is stored and when it was delivered to the Moon. On Earth, point defects within mantle olivine, and its high-pressure polymorphs, are thought to be the largest reservoir of volatile material. However, as volatiles have been cycled into and out of the Earth's mantle throughout geological time, via subduction and volcanism, this masks any original volatile signatures. As the Moon has no plate tectonics, it is expected that any volatile material present in the deep lunar interior would have been inherited during accretion and differentiation, providing insight into the delivery of volatiles to the early Earth-Moon system. Our aim was, therefore, to test the volatile storage capacity of the deep lunar mantle and determine mineral/melt partitioning for key volatiles. Experiments were performed in a primitive lunar mantle composition and run at relevant T, P, and at fO2 below the IW buffer. Experiments replicated the initial stages of LMO solidification with either olivine + melt, olivine + pyroxene + melt, or pyroxene + melt as the only phases present. Mineral-melt partition coefficients (Dx) derived for volatile material (F, Cl, S, H2O) vary significantly compared to those derived for terrestrial conditions. An order of magnitude more H2O was found to partition into lunar olivine compared to the terrestrial upper mantle. DF derived for lunar olivine are comparable to the highest terrestrial derived values whilst no Cl was found to partition into lunar olivine under these conditions. Furthermore, an inverse trend between DF and DOH hints towards coupled-substitution mechanisms between H and F under low-fO2/lunar bulk composition. These results suggest that if volatile material was present in the LMO a significant proportion could be partitioned into the lower lunar mantle. The implications of this are not only important for understanding the behaviour of volatiles during planetary differentiation but would impact any future seismic study of the Moon.

  11. Comparison of twin-cell centrifugal partition chromatographic columns with different cell volume.

    PubMed

    Goll, Johannes; Audo, Gregoire; Minceva, Mirjana

    2015-08-07

    Two twin-cell centrifugal partition chromatographic columns (SCPC 250 and SCPE-250-BIO, Armen Instrument, France) with the same column volume but different cell size and number were compared in terms of stationary phase retention and column efficiency. The columns were tested with two types of solvent systems: a commonly used organic solvent based biphasic system from the ARIZONA solvent system family and a polymer/salt based aqueous two phase system (ATPS). The efficiency of the columns was evaluated by pulse injection experiments of two benzenediols (pyrocatechol and hydroquinone) in the case of the ARIZONA system and a protein mixture (myoglobin and lysozyme) in the case of the ATPS. As result of high stationary phase retention, the column with the lower number of larger twin-cells (SCPE-250-BIO) is suitable for protein separations using ATPS. On the other hand, due to higher column efficiency, the column with the greater number of smaller cells (SCPC 250) is superior for batch elution separations performed with standard liquid-liquid chromatography organic solvent based biphasic systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Kinetic limitations on tracer partitioning in ganglia dominated source zones.

    PubMed

    Ervin, Rhiannon E; Boroumand, Ali; Abriola, Linda M; Ramsburg, C Andrew

    2011-11-01

    Quantification of the relationship between dense nonaqueous phase liquid (DNAPL) source strength, source longevity and spatial distribution is increasingly recognized as important for effective remedial design. Partitioning tracers are one tool that may permit interrogation of DNAPL architecture. Tracer data are commonly analyzed under the assumption of linear, equilibrium partitioning, although the appropriateness of these assumptions has not been fully explored. Here we focus on elucidating the nonlinear and nonequilibrium partitioning behavior of three selected alcohol tracers - 1-pentanol, 1-hexanol and 2-octanol in a series of batch and column experiments. Liquid-liquid equilibria for systems comprising water, TCE and the selected alcohol illustrate the nonlinear distribution of alcohol between the aqueous and organic phases. Complete quantification of these equilibria facilitates delineation of the limits of applicability of the linear partitioning assumption, and assessment of potential inaccuracies associated with measurement of partition coefficients at a single concentration. Column experiments were conducted under conditions of non-equilibrium to evaluate the kinetics of the reversible absorption of the selected tracers in a sandy medium containing a uniform entrapped saturation of TCE-DNAPL. Experimental tracer breakthrough data were used, in conjunction with mathematical models and batch measurements, to evaluate alternative hypotheses for observed deviations from linear equilibrium partitioning behavior. Analyses suggest that, although all tracers accumulate at the TCE-DNAPL/aqueous interface, surface accumulation does not influence transport at concentrations typically employed for tracer tests. Moreover, results reveal that the kinetics of the reversible absorption process are well described using existing mass transfer correlations originally developed to model aqueous boundary layer resistance for pure-component NAPL dissolution. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. The swiss army knife of job submission tools: grid-control

    NASA Astrophysics Data System (ADS)

    Stober, F.; Fischer, M.; Schleper, P.; Stadie, H.; Garbers, C.; Lange, J.; Kovalchuk, N.

    2017-10-01

    grid-control is a lightweight and highly portable open source submission tool that supports all common workflows in high energy physics (HEP). It has been used by a sizeable number of HEP analyses to process tasks that sometimes consist of up to 100k jobs. grid-control is built around a powerful plugin and configuration system, that allows users to easily specify all aspects of the desired workflow. Job submission to a wide range of local or remote batch systems or grid middleware is supported. Tasks can be conveniently specified through the parameter space that will be processed, which can consist of any number of variables and data sources with complex dependencies on each other. Dataset information is processed through a configurable pipeline of dataset filters, partition plugins and partition filters. The partition plugins can take the number of files, size of the work units, metadata or combinations thereof into account. All changes to the input datasets or variables are propagated through the processing pipeline and can transparently trigger adjustments to the parameter space and the job submission. While the core functionality is completely experiment independent, full integration with the CMS computing environment is provided by a small set of plugins.

  14. Partitioning-based mechanisms under personalized differential privacy.

    PubMed

    Li, Haoran; Xiong, Li; Ji, Zhanglong; Jiang, Xiaoqian

    2017-05-01

    Differential privacy has recently emerged in private statistical aggregate analysis as one of the strongest privacy guarantees. A limitation of the model is that it provides the same privacy protection for all individuals in the database. However, it is common that data owners may have different privacy preferences for their data. Consequently, a global differential privacy parameter may provide excessive privacy protection for some users, while insufficient for others. In this paper, we propose two partitioning-based mechanisms, privacy-aware and utility-based partitioning, to handle personalized differential privacy parameters for each individual in a dataset while maximizing utility of the differentially private computation. The privacy-aware partitioning is to minimize the privacy budget waste, while utility-based partitioning is to maximize the utility for a given aggregate analysis. We also develop a t -round partitioning to take full advantage of remaining privacy budgets. Extensive experiments using real datasets show the effectiveness of our partitioning mechanisms.

  15. Partitioning-based mechanisms under personalized differential privacy

    PubMed Central

    Li, Haoran; Xiong, Li; Ji, Zhanglong; Jiang, Xiaoqian

    2017-01-01

    Differential privacy has recently emerged in private statistical aggregate analysis as one of the strongest privacy guarantees. A limitation of the model is that it provides the same privacy protection for all individuals in the database. However, it is common that data owners may have different privacy preferences for their data. Consequently, a global differential privacy parameter may provide excessive privacy protection for some users, while insufficient for others. In this paper, we propose two partitioning-based mechanisms, privacy-aware and utility-based partitioning, to handle personalized differential privacy parameters for each individual in a dataset while maximizing utility of the differentially private computation. The privacy-aware partitioning is to minimize the privacy budget waste, while utility-based partitioning is to maximize the utility for a given aggregate analysis. We also develop a t-round partitioning to take full advantage of remaining privacy budgets. Extensive experiments using real datasets show the effectiveness of our partitioning mechanisms. PMID:28932827

  16. Binary-space-partitioned images for resolving image-based visibility.

    PubMed

    Fu, Chi-Wing; Wong, Tien-Tsin; Tong, Wai-Shun; Tang, Chi-Keung; Hanson, Andrew J

    2004-01-01

    We propose a novel 2D representation for 3D visibility sorting, the Binary-Space-Partitioned Image (BSPI), to accelerate real-time image-based rendering. BSPI is an efficient 2D realization of a 3D BSP tree, which is commonly used in computer graphics for time-critical visibility sorting. Since the overall structure of a BSP tree is encoded in a BSPI, traversing a BSPI is comparable to traversing the corresponding BSP tree. BSPI performs visibility sorting efficiently and accurately in the 2D image space by warping the reference image triangle-by-triangle instead of pixel-by-pixel. Multiple BSPIs can be combined to solve "disocclusion," when an occluded portion of the scene becomes visible at a novel viewpoint. Our method is highly automatic, including a tensor voting preprocessing step that generates candidate image partition lines for BSPIs, filters the noisy input data by rejecting outliers, and interpolates missing information. Our system has been applied to a variety of real data, including stereo, motion, and range images.

  17. Comments on the Parameters and Processes that Affect the Preservation Potential and Style of Oblique-Divergent Plate Boundaries

    NASA Astrophysics Data System (ADS)

    Umhoefer, P. J.

    2014-12-01

    Oblique-divergent or transtensional zones present particular challenges in ancient belts because of the poor preservation potential of the thinned continental crust and young oceanic crust. Many oblique belts will preferentially preserve their boundary zones that lie within continents rather than the main plate boundary zone, which will be at a much lower elevation and composed of denser crust. Zones of tectonic escape or strike-slip overprinting of arcs or plateaus deform continental crust and may be better preserved. Here I highlight parameters and processes that have major effects on oblique divergent belts. Strain partitioning is common, but not ubiquitous, along and across oblique boundaries; the causes of partitioning are not always clear and make this especially vexing for work in ancient belts. Partitioning causes complexity in the patterns of structures at all scales. Inherited structures commonly determine the orientation and style of structures along oblique boundaries and can control the pattern of faults across transtensional belts. Regionally, inherited trends of arcs or other 1000-km-scale features can control boundary structures. Experiments and natural examples suggest that oblique boundary zones contain less of a record of strike-slip faulting and more extensional structures. The obliquity of divergence produces predictable families of structures that typify (i) strike-slip dominated zones (obliquity <~20°), (ii) mixed zones (~20° - ~35°), and (iii) extension dominated zones (>~35°). The combination of partitioning and mixed structures in oblique zones means that the boundaries of belts with large-magnitude strike-slip faulting will commonly preserve little of no record of that faulting history. Plate boundaries localize strain onto the main plate boundary structures from the broader plate boundary and therefore the boundary zones commonly preserve the earlier structures more than later structures, a major problem in interpreting ancient belts. Sediment input is critical in some oblique plate boundaries because these belts become more pronounced sediment sinks over time. The evolving topography of oblique boundaries means that they have great variability of sediment flux into differing parts of the system; large rivers enter these belts only in special circumstances.

  18. An Integrative Genetic Study of Rice Metabolism, Growth and Stochastic Variation Reveals Potential C/N Partitioning Loci

    NASA Astrophysics Data System (ADS)

    Li, Baohua; Zhang, Yuanyuan; Mohammadi, Seyed Abolghasem; Huai, Dongxin; Zhou, Yongming; Kliebenstein, Daniel J.

    2016-07-01

    Studying the genetic basis of variation in plant metabolism has been greatly facilitated by genomic and metabolic profiling advances. In this study, we use metabolomics and growth measurements to map QTL in rice, a major staple crop. Previous rice metabolism studies have largely focused on identifying genes controlling major effect loci. To complement these studies, we conducted a replicated metabolomics analysis on a japonica (Lemont) by indica (Teqing) rice recombinant inbred line population and focused on the genetic variation for primary metabolism. Using independent replicated studies, we show that in contrast to other rice studies, the heritability of primary metabolism is similar to Arabidopsis. The vast majority of metabolic QTLs had small to moderate effects with significant polygenic epistasis. Two metabolomics QTL hotspots had opposing effects on carbon and nitrogen rich metabolites suggesting that they may influence carbon and nitrogen partitioning, with one locus co-localizing with SUSIBA2 (WRKY78). Comparing QTLs for metabolomic and a variety of growth related traits identified few overlaps. Interestingly, the rice population displayed fewer loci controlling stochastic variation for metabolism than was found in Arabidopsis. Thus, it is possible that domestication has differentially impacted stochastic metabolite variation more than average metabolite variation.

  19. Molecular regionalization of the developing amphioxus neural tube challenges major partitions of the vertebrate brain.

    PubMed

    Albuixech-Crespo, Beatriz; López-Blanch, Laura; Burguera, Demian; Maeso, Ignacio; Sánchez-Arrones, Luisa; Moreno-Bravo, Juan Antonio; Somorjai, Ildiko; Pascual-Anaya, Juan; Puelles, Eduardo; Bovolenta, Paola; Garcia-Fernàndez, Jordi; Puelles, Luis; Irimia, Manuel; Ferran, José Luis

    2017-04-01

    All vertebrate brains develop following a common Bauplan defined by anteroposterior (AP) and dorsoventral (DV) subdivisions, characterized by largely conserved differential expression of gene markers. However, it is still unclear how this Bauplan originated during evolution. We studied the relative expression of 48 genes with key roles in vertebrate neural patterning in a representative amphioxus embryonic stage. Unlike nonchordates, amphioxus develops its central nervous system (CNS) from a neural plate that is homologous to that of vertebrates, allowing direct topological comparisons. The resulting genoarchitectonic model revealed that the amphioxus incipient neural tube is unexpectedly complex, consisting of several AP and DV molecular partitions. Strikingly, comparison with vertebrates indicates that the vertebrate thalamus, pretectum, and midbrain domains jointly correspond to a single amphioxus region, which we termed Di-Mesencephalic primordium (DiMes). This suggests that these domains have a common developmental and evolutionary origin, as supported by functional experiments manipulating secondary organizers in zebrafish and mice.

  20. Molecular regionalization of the developing amphioxus neural tube challenges major partitions of the vertebrate brain

    PubMed Central

    Albuixech-Crespo, Beatriz; Maeso, Ignacio; Sánchez-Arrones, Luisa; Moreno-Bravo, Juan Antonio; Somorjai, Ildiko; Pascual-Anaya, Juan; Puelles, Eduardo; Bovolenta, Paola; Garcia-Fernàndez, Jordi; Puelles, Luis; Ferran, José Luis

    2017-01-01

    All vertebrate brains develop following a common Bauplan defined by anteroposterior (AP) and dorsoventral (DV) subdivisions, characterized by largely conserved differential expression of gene markers. However, it is still unclear how this Bauplan originated during evolution. We studied the relative expression of 48 genes with key roles in vertebrate neural patterning in a representative amphioxus embryonic stage. Unlike nonchordates, amphioxus develops its central nervous system (CNS) from a neural plate that is homologous to that of vertebrates, allowing direct topological comparisons. The resulting genoarchitectonic model revealed that the amphioxus incipient neural tube is unexpectedly complex, consisting of several AP and DV molecular partitions. Strikingly, comparison with vertebrates indicates that the vertebrate thalamus, pretectum, and midbrain domains jointly correspond to a single amphioxus region, which we termed Di-Mesencephalic primordium (DiMes). This suggests that these domains have a common developmental and evolutionary origin, as supported by functional experiments manipulating secondary organizers in zebrafish and mice. PMID:28422959

  1. Convergent evolution of reduced energy demands in extremophile fish

    PubMed Central

    Arias-Rodriguez, Lenin; Tobler, Michael

    2017-01-01

    Convergent evolution in organismal function can arise from nonconvergent changes in traits that contribute to that function. Theory predicts that low resource availability and high maintenance costs in extreme environments select for reductions in organismal energy demands, which could be attained through modifications of body size or metabolic rate. We tested for convergence in energy demands and underlying traits by investigating livebearing fish (genus Poecilia) that have repeatedly colonized toxic, hydrogen sulphide-rich springs. We quantified variation in body size and routine metabolism across replicated sulphidic and non-sulphidic populations in nature, modelled total organismal energy demands, and conducted a common-garden experiment to test whether population differences had a genetic basis. Sulphidic populations generally exhibited smaller body sizes and lower routine metabolic rates compared to non-sulphidic populations, which together caused significant reductions in total organismal energy demands in extremophile populations. Although both mechanisms contributed to variation in organismal energy demands, variance partitioning indicated reductions of body size overall had a greater effect than reductions of routine metabolism. Finally, population differences in routine metabolism documented in natural populations were maintained in common-garden reared individuals, indicating evolved differences. In combination with other studies, these results suggest that reductions in energy demands may represent a common theme in adaptation to physiochemical stressors. Selection for reduced energy demand may particularly affect body size, which has implications for life history evolution in extreme environments. PMID:29077740

  2. The Papillomavirus E2 proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBride, Alison A., E-mail: amcbride@nih.gov

    2013-10-15

    The papillomavirus E2 proteins are pivotal to the viral life cycle and have well characterized functions in transcriptional regulation, initiation of DNA replication and partitioning the viral genome. The E2 proteins also function in vegetative DNA replication, post-transcriptional processes and possibly packaging. This review describes structural and functional aspects of the E2 proteins and their binding sites on the viral genome. It is intended to be a reference guide to this viral protein. - Highlights: • Overview of E2 protein functions. • Structural domains of the papillomavirus E2 proteins. • Analysis of E2 binding sites in different genera of papillomaviruses.more » • Compilation of E2 associated proteins. • Comparison of key mutations in distinct E2 functions.« less

  3. The selfish yeast plasmid uses the nuclear motor Kip1p but not Cin8p for its localization and equal segregation.

    PubMed

    Cui, Hong; Ghosh, Santanu K; Jayaram, Makkuni

    2009-04-20

    The 2 micron plasmid of Saccharomyces cerevisiae uses the Kip1 motor, but not the functionally redundant Cin8 motor, for its precise nuclear localization and equal segregation. The timing and lifetime of Kip1p association with the plasmid partitioning locus STB are consistent with Kip1p being an authentic component of the plasmid partitioning complex. Kip1-STB association is not blocked by disassembling the mitotic spindle. Lack of Kip1p disrupts recruitment of the cohesin complex at STB and cohesion of replicated plasmid molecules. Colocalization of a 2 micron reporter plasmid with Kip1p in close proximity to the spindle pole body is reminiscent of that of a CEN reporter plasmid. Absence of Kip1p displaces the plasmid from this nuclear address, where it has the potential to tether to a chromosome or poach chromosome segregation factors. Exploiting Kip1p, which is subsidiary to Cin8p for chromosome segregation, to direct itself to a "partitioning center" represents yet another facet of the benign parasitism of the yeast plasmid.

  4. The importance of replication in wildlife research

    USGS Publications Warehouse

    Johnson, D.H.

    2002-01-01

    Wildlife ecology and management studies have been widely criticized for deficiencies in design or analysis. Manipulative experiments--with controls, randomization, and replication in space and time--provide powerful ways of learning about natural systems and establishing causal relationships, but such studies are rare in our field. Observational studies and sample surveys are more common; they also require appropriate design and analysis. More important than the design and analysis of individual studies is metareplication: replication of entire studies. Similar conclusions obtained from studies of the same phenomenon conducted under widely differing conditions will give us greater confidence in the generality of those findings than would any single study, however well designed and executed.

  5. Application of ultrafiltration and stable isotopic amendments to field studies of mercury partitioning to filterable carbon in lake water and overland runoff

    USGS Publications Warehouse

    Babiarz, Christopher L.; Hurley, J.P.; Krabbenhoft, D.P.; Gilmour, C.; Branfireun, B.A.

    2003-01-01

    Results from pilot studies on colloidal phase transport of newly deposited mercury in lake water and overland runoff demonstrate that the combination of ultrafiltration, and stable isotope amendment techniques is a viable tool for the study of mercury partitioning to filterable carbon. Ultrafiltration mass balance calculations were generally excellent, averaging 97.3, 96.1 and 99.8% for dissolved organic carbon (DOC), total mercury (HgT), and methylmercury (MeHg), respectively. Sub nanogram per liter quantities of isotope were measurable, and the observed phase distribution from replicate ultrafiltration separations on lake water agreed within 20%. We believe the data presented here are the first published colloidal phase mercury data on lake water and overland runoff from uncontaminated sites. Initial results from pilot-scale lake amendment experiments indicate that the choice of matrix used to dissolve the isotope did not affect the initial phase distribution of the added mercury in the lake. In addition there was anecdotal evidence that native MeHg was either recently produced in the system, or at a minimum, that this 'old' MeHg partitions to the same subset of DOC that binds the amended mercury. Initial results from pilot-scale overland runoff experiments indicate that less than 20% of newly deposited mercury was transported in the filterable fraction (<0.7 ??m). There is some indication of colloidal phase enrichment of mercury in runoff compared to the phase distribution of organic carbon, but the mechanism of this enrichment is unclear. The phase distribution of newly deposited mercury can differ from that of organic carbon and native mercury, suggesting that the quality of the carbon (available ligands), not the quantity of carbon, regulates partitioning. Further characterization of DOC is needed to clarify the underlying mechanisms. ?? 2002 Elsevier Science B.V. All rights reserved.

  6. Scoring and staging systems using cox linear regression modeling and recursive partitioning.

    PubMed

    Lee, J W; Um, S H; Lee, J B; Mun, J; Cho, H

    2006-01-01

    Scoring and staging systems are used to determine the order and class of data according to predictors. Systems used for medical data, such as the Child-Turcotte-Pugh scoring and staging systems for ordering and classifying patients with liver disease, are often derived strictly from physicians' experience and intuition. We construct objective and data-based scoring/staging systems using statistical methods. We consider Cox linear regression modeling and recursive partitioning techniques for censored survival data. In particular, to obtain a target number of stages we propose cross-validation and amalgamation algorithms. We also propose an algorithm for constructing scoring and staging systems by integrating local Cox linear regression models into recursive partitioning, so that we can retain the merits of both methods such as superior predictive accuracy, ease of use, and detection of interactions between predictors. The staging system construction algorithms are compared by cross-validation evaluation of real data. The data-based cross-validation comparison shows that Cox linear regression modeling is somewhat better than recursive partitioning when there are only continuous predictors, while recursive partitioning is better when there are significant categorical predictors. The proposed local Cox linear recursive partitioning has better predictive accuracy than Cox linear modeling and simple recursive partitioning. This study indicates that integrating local linear modeling into recursive partitioning can significantly improve prediction accuracy in constructing scoring and staging systems.

  7. Partitioning Rectangular and Structurally Nonsymmetric Sparse Matrices for Parallel Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B. Hendrickson; T.G. Kolda

    1998-09-01

    A common operation in scientific computing is the multiplication of a sparse, rectangular or structurally nonsymmetric matrix and a vector. In many applications the matrix- transpose-vector product is also required. This paper addresses the efficient parallelization of these operations. We show that the problem can be expressed in terms of partitioning bipartite graphs. We then introduce several algorithms for this partitioning problem and compare their performance on a set of test matrices.

  8. The importance of considering rainfall partitioning in afforestation initiatives in semiarid climates: A comparison of common planted tree species in Tehran, Iran.

    PubMed

    Sadeghi, Seyed Mohammad Moein; Attarod, Pedram; Van Stan, John Toland; Pypker, Thomas Grant

    2016-10-15

    As plantations become increasingly important sources of wood and fiber in arid/semiarid places, they have also become increasingly criticized for their hydrological impacts. An examination and comparison of gross rainfall (GR) partitioning across commonly-planted tree species (Pinus eldarica, Cupressus arizonica, Robinia pseudoacacia, and Fraxinus rotundifolia) in semiarid regions has great value for watershed and forest managers interested in managing canopy hydrological processes for societal benefit. Therefore, we performed a field study examining GR partitioning into throughfall (TF), stemflow (SF), and rainfall interception (I) for these species in the semiarid Chitgar Forest Park, Tehran, Iran. An advantage to our study is that we explore the effects of forest structural differences in plantation forests experiencing similar climatic factors and storm conditions. As such, variability in GR partitioning due to different meteorological conditions is minimized, allowing comparison of structural attributes across plantations. Our results show that commonly-selected afforestation species experiencing the same climate produced differing stand structures that differentially partition GR into TF, SF, and I. P. eldarica might be the best of the four species to plant if the primary goal of afforestation is to limit erosion and stormwater runoff as it intercepted more rainfall than other species. However, the high SF generation from F. rotundifolia, and low GR necessary to initiate SF, could maximize retention of water in the soils since SF has been shown to infiltrate along root pathways and access groundwater. A consideration of GR partitioning should be considered when selecting a species for afforestation/reforestation in water-limited ecosystems. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Scheduling Independent Partitions in Integrated Modular Avionics Systems

    PubMed Central

    Du, Chenglie; Han, Pengcheng

    2016-01-01

    Recently the integrated modular avionics (IMA) architecture has been widely adopted by the avionics industry due to its strong partition mechanism. Although the IMA architecture can achieve effective cost reduction and reliability enhancement in the development of avionics systems, it results in a complex allocation and scheduling problem. All partitions in an IMA system should be integrated together according to a proper schedule such that their deadlines will be met even under the worst case situations. In order to help provide a proper scheduling table for all partitions in IMA systems, we study the schedulability of independent partitions on a multiprocessor platform in this paper. We firstly present an exact formulation to calculate the maximum scaling factor and determine whether all partitions are schedulable on a limited number of processors. Then with a Game Theory analogy, we design an approximation algorithm to solve the scheduling problem of partitions, by allowing each partition to optimize its own schedule according to the allocations of the others. Finally, simulation experiments are conducted to show the efficiency and reliability of the approach proposed in terms of time consumption and acceptance ratio. PMID:27942013

  10. Partitioning evapotranspiration via continuous sampling of water vapor isotopes over common row crops and candidate biofuel crops.

    NASA Astrophysics Data System (ADS)

    Miller, J. N.; Black, C. K.; Bernacchi, C.

    2014-12-01

    Global demand for renewable energy is accelerating land conversion from common row crops such as maize and soybean to cellulosic biofuel crops such as miscanthus and switchgrass. This land conversion is expected to alter ecohydrology via changes in evapotranspiration (ET). However, the direction in which evapotranspiration will shift, either partitioning more moisture through soil evaporation (E) or through plant transpiration (T) is uncertain. To investigate how land conversion from maize to miscanthus affects ET partitioning we measured the isotopic composition of water vapor via continuous air sampling. We obtained continuous diurnal measurements of δ2H and δ18O for miscanthus and maize on multiple days over the course of the growing season. Water vapor isotopes drawn from two heights were measured at 2 Hz using a cavity ringdown spectrometer and partitioned into components of E and T using a simple mixing equation. A second approach to partitioning was accomplished by subtracting transpiration measurements, obtained through sap flow sensors, from total ET, measured via eddy covariance. Preliminary results reveal that both methods compare favorably and that transpiration dominates variations in ET in miscanthus fields more so than in fields of maize.

  11. IcmS-dependent translocation of SdeA into macrophages by the Legionella pneumophila type IV secretion system.

    PubMed

    Bardill, J Patrick; Miller, Jennifer L; Vogel, Joseph P

    2005-04-01

    Legionella pneumophila replicates inside alveolar macrophages and causes an acute, potentially fatal pneumonia called Legionnaires' disease. The ability of this bacterium to grow inside of macrophages is dependent on the presence of a functional dot/icm type IV secretion system (T4SS). Proteins secreted by the Dot/Icm T4SS are presumed to alter the host endocytic pathway, allowing L. pneumophila to establish a replicative niche within the host cell. Here we show that a member of the SidE family of proteins interacts with IcmS and is required for full virulence in the protozoan host Acanthamoeba castellanii. Using immunofluorescence microscopy and adenylate cyclase fusions, we show that SdeA is secreted into host cells by L. pneumophila in an IcmS-dependent manner. The SidE-like proteins are secreted very early during macrophage infection, suggesting that they are important in the initial formation of the replicative phagosome. Secreted SidE family members show a similar localization to other Dot/Icm substrates, specifically, to the poles of the replicative phagosome. This common localization of secreted substrates of the Dot/Icm system may indicate the formation of a multiprotein complex on the cytoplasmic face of the replicative phagosome.

  12. Leveraging Genomic Annotations and Pleiotropic Enrichment for Improved Replication Rates in Schizophrenia GWAS

    PubMed Central

    Wang, Yunpeng; Thompson, Wesley K.; Schork, Andrew J.; Holland, Dominic; Chen, Chi-Hua; Bettella, Francesco; Desikan, Rahul S.; Li, Wen; Witoelar, Aree; Zuber, Verena; Devor, Anna; Nöthen, Markus M.; Rietschel, Marcella; Chen, Qiang; Werge, Thomas; Cichon, Sven; Weinberger, Daniel R.; Djurovic, Srdjan; O’Donovan, Michael; Visscher, Peter M.; Andreassen, Ole A.; Dale, Anders M.

    2016-01-01

    Most of the genetic architecture of schizophrenia (SCZ) has not yet been identified. Here, we apply a novel statistical algorithm called Covariate-Modulated Mixture Modeling (CM3), which incorporates auxiliary information (heterozygosity, total linkage disequilibrium, genomic annotations, pleiotropy) for each single nucleotide polymorphism (SNP) to enable more accurate estimation of replication probabilities, conditional on the observed test statistic (“z-score”) of the SNP. We use a multiple logistic regression on z-scores to combine information from auxiliary information to derive a “relative enrichment score” for each SNP. For each stratum of these relative enrichment scores, we obtain nonparametric estimates of posterior expected test statistics and replication probabilities as a function of discovery z-scores, using a resampling-based approach that repeatedly and randomly partitions meta-analysis sub-studies into training and replication samples. We fit a scale mixture of two Gaussians model to each stratum, obtaining parameter estimates that minimize the sum of squared differences of the scale-mixture model with the stratified nonparametric estimates. We apply this approach to the recent genome-wide association study (GWAS) of SCZ (n = 82,315), obtaining a good fit between the model-based and observed effect sizes and replication probabilities. We observed that SNPs with low enrichment scores replicate with a lower probability than SNPs with high enrichment scores even when both they are genome-wide significant (p < 5x10-8). There were 693 and 219 independent loci with model-based replication rates ≥80% and ≥90%, respectively. Compared to analyses not incorporating relative enrichment scores, CM3 increased out-of-sample yield for SNPs that replicate at a given rate. This demonstrates that replication probabilities can be more accurately estimated using prior enrichment information with CM3. PMID:26808560

  13. Partition of nonionic organic compounds in aquatic systems

    USGS Publications Warehouse

    Smith, James A.; Witkowski, Patrick J.; Chiou, Cary T.

    1988-01-01

    In aqueous systems, the distribution of many nonionic organic solutes in soil-sediment, aquatic organisms, and dissolved organic matter can be explained in terms of a partition model. The nonionic organic solute is distributed between water and different organic phases that behave as bulk solvents. Factors such as polarity, composition, and molecular size of the solute and organic phase determine the relative importance of partition to the environmental distribution of the solute. This chapter reviews these factors in the context of a partition model and also examines several environmental applications of the partition model for surface- and ground-water systems.

  14. Acute inactivation of the replicative helicase in human cells triggers MCM8–9-dependent DNA synthesis

    PubMed Central

    Natsume, Toyoaki; Nishimura, Kohei; Minocherhomji, Sheroy; Bhowmick, Rahul; Hickson, Ian D.; Kanemaki, Masato T.

    2017-01-01

    DNA replication fork progression can be disrupted at difficult to replicate loci in the human genome, which has the potential to challenge chromosome integrity. This replication fork disruption can lead to the dissociation of the replisome and the formation of DNA damage. To model the events stemming from replisome dissociation during DNA replication perturbation, we used a degron-based system for inducible proteolysis of a subunit of the replicative helicase. We show that MCM2-depleted cells activate a DNA damage response pathway and generate replication-associated DNA double-strand breaks (DSBs). Remarkably, these cells maintain some DNA synthesis in the absence of MCM2, and this requires the MCM8–9 complex, a paralog of the MCM2–7 replicative helicase. We show that MCM8–9 functions in a homologous recombination-based pathway downstream from RAD51, which is promoted by DSB induction. This RAD51/MCM8–9 axis is distinct from the recently described RAD52-dependent DNA synthesis pathway that operates in early mitosis at common fragile sites. We propose that stalled replication forks can be restarted in S phase via homologous recombination using MCM8–9 as an alternative replicative helicase. PMID:28487407

  15. Effects of Gas-Wall Partitioning in Teflon Tubing, Instrumentation and Other Materials on Time-Resolved Measurements of Gas-Phase Organic Compounds

    NASA Astrophysics Data System (ADS)

    Pagonis, D.; Deming, B.; Krechmer, J. E.; De Gouw, J. A.; Jimenez, J. L.; Ziemann, P. J.

    2017-12-01

    Recently it has been shown that gas-phase organic compounds partition to and from the walls of Teflon environmental chambers. This process is fast, reversible, and can be modeled as absorptive partitioning. Here these studies were extended to investigate gas-wall partitioning inside Teflon tubing by introducing step function changes in the concentration of compounds being sampled and measuring the delay in the response of a proton transfer reaction-mass spectrometer (PTR-MS). We find that these delays are significant for compounds with a saturation vapor concentration (c*) below 106 μg m-3, and that the Teflon tubing and the PTR-MS both contribute to the delays. Tubing delays range from minutes to hours under common sampling conditions and can be accurately predicted by a simple chromatography model across a range of tubing lengths and diameters, flow rates, compound functional groups, and c*. This method also allows one to determine the volatility-dependent response function of an instrument, which can be convolved with the output of the tubing model to correct for delays in instrument response time for these "sticky" compounds. This correction is expected to be of particular interest to researchers utilizing and developing chemical ionization mass spectrometry (CIMS) techniques, since many of the multifunctional organic compounds detected by CIMS show significant tubing and instrument delays. These results also enable better design of sampling systems, in particular when fast instrument response is needed, such as for rapid transients, aircraft, or eddy covariance measurements. Additional results presented here extend this method to quantify the relative sorptive capacities for other commonly used tubing materials, including PFA, FEP, PTFE, PEEK, glass, copper, stainless steel, and passivated steel.

  16. 49 CFR 571.118 - Standard No. 118; Power-operated window, partition, and roof panel systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-operated window, partition, and roof panel systems. S1. Purpose and scope. This standard specifies requirements for power operated window, partition, and roof panel systems to minimize the likelihood of death... Figure 2. Power operated roof panel systems mean moveable panels in the vehicle roof which close by...

  17. 49 CFR 571.118 - Standard No. 118; Power-operated window, partition, and roof panel systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-operated window, partition, and roof panel systems. S1. Purpose and scope. This standard specifies requirements for power operated window, partition, and roof panel systems to minimize the likelihood of death... Figure 2. Power operated roof panel systems mean moveable panels in the vehicle roof which close by...

  18. 49 CFR 571.118 - Standard No. 118; Power-operated window, partition, and roof panel systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-operated window, partition, and roof panel systems. S1. Purpose and scope. This standard specifies requirements for power operated window, partition, and roof panel systems to minimize the likelihood of death... Figure 2. Power operated roof panel systems mean moveable panels in the vehicle roof which close by...

  19. 49 CFR 571.118 - Standard No. 118; Power-operated window, partition, and roof panel systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-operated window, partition, and roof panel systems. S1. Purpose and scope. This standard specifies requirements for power operated window, partition, and roof panel systems to minimize the likelihood of death... Figure 2. Power operated roof panel systems mean moveable panels in the vehicle roof which close by...

  20. 49 CFR 571.118 - Standard No. 118; Power-operated window, partition, and roof panel systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-operated window, partition, and roof panel systems. S1. Purpose and scope. This standard specifies requirements for power operated window, partition, and roof panel systems to minimize the likelihood of death... Figure 2. Power operated roof panel systems mean moveable panels in the vehicle roof which close by...

  1. Information management in DNA replication modeled by directional, stochastic chains with memory

    NASA Astrophysics Data System (ADS)

    Arias-Gonzalez, J. Ricardo

    2016-11-01

    Stochastic chains represent a key variety of phenomena in many branches of science within the context of information theory and thermodynamics. They are typically approached by a sequence of independent events or by a memoryless Markov process. Stochastic chains are of special significance to molecular biology, where genes are conveyed by linear polymers made up of molecular subunits and transferred from DNA to proteins by specialized molecular motors in the presence of errors. Here, we demonstrate that when memory is introduced, the statistics of the chain depends on the mechanism by which objects or symbols are assembled, even in the slow dynamics limit wherein friction can be neglected. To analyze these systems, we introduce a sequence-dependent partition function, investigate its properties, and compare it to the standard normalization defined by the statistical physics of ensembles. We then apply this theory to characterize the enzyme-mediated information transfer involved in DNA replication under the real, non-equilibrium conditions, reproducing measured error rates and explaining the typical 100-fold increase in fidelity that is experimentally found when proofreading and edition take place. Our model further predicts that approximately 1 kT has to be consumed to elevate fidelity in one order of magnitude. We anticipate that our results are necessary to interpret configurational order and information management in many molecular systems within biophysics, materials science, communication, and engineering.

  2. Genome-Wide Analysis of the Core DNA Replication Machinery in the Higher Plants Arabidopsis and Rice1[W][OA

    PubMed Central

    Shultz, Randall W.; Tatineni, Vinaya M.; Hanley-Bowdoin, Linda; Thompson, William F.

    2007-01-01

    Core DNA replication proteins mediate the initiation, elongation, and Okazaki fragment maturation functions of DNA replication. Although this process is generally conserved in eukaryotes, important differences in the molecular architecture of the DNA replication machine and the function of individual subunits have been reported in various model systems. We have combined genome-wide bioinformatic analyses of Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) with published experimental data to provide a comprehensive view of the core DNA replication machinery in plants. Many components identified in this analysis have not been studied previously in plant systems, including the GINS (go ichi ni san) complex (PSF1, PSF2, PSF3, and SLD5), MCM8, MCM9, MCM10, NOC3, POLA2, POLA3, POLA4, POLD3, POLD4, and RNASEH2. Our results indicate that the core DNA replication machinery from plants is more similar to vertebrates than single-celled yeasts (Saccharomyces cerevisiae), suggesting that animal models may be more relevant to plant systems. However, we also uncovered some important differences between plants and vertebrate machinery. For example, we did not identify geminin or RNASEH1 genes in plants. Our analyses also indicate that plants may be unique among eukaryotes in that they have multiple copies of numerous core DNA replication genes. This finding raises the question of whether specialized functions have evolved in some cases. This analysis establishes that the core DNA replication machinery is highly conserved across plant species and displays many features in common with other eukaryotes and some characteristics that are unique to plants. PMID:17556508

  3. Impact of water use efficiency on eddy covariance flux partitioning using correlation structure analysis

    USDA-ARS?s Scientific Manuscript database

    Partitioned land surfaces fluxes (e.g. evaporation, transpiration, photosynthesis, and ecosystem respiration) are needed as input, calibration, and validation data for numerous hydrological and land surface models. However, one of the most commonly used techniques for measuring land surface fluxes,...

  4. Prediction of Partition Coefficients of Organic Compounds between SPME/PDMS and Aqueous Solution

    PubMed Central

    Chao, Keh-Ping; Lu, Yu-Ting; Yang, Hsiu-Wen

    2014-01-01

    Polydimethylsiloxane (PDMS) is commonly used as the coated polymer in the solid phase microextraction (SPME) technique. In this study, the partition coefficients of organic compounds between SPME/PDMS and the aqueous solution were compiled from the literature sources. The correlation analysis for partition coefficients was conducted to interpret the effect of their physicochemical properties and descriptors on the partitioning process. The PDMS-water partition coefficients were significantly correlated to the polarizability of organic compounds (r = 0.977, p < 0.05). An empirical model, consisting of the polarizability, the molecular connectivity index, and an indicator variable, was developed to appropriately predict the partition coefficients of 61 organic compounds for the training set. The predictive ability of the empirical model was demonstrated by using it on a test set of 26 chemicals not included in the training set. The empirical model, applying the straightforward calculated molecular descriptors, for estimating the PDMS-water partition coefficient will contribute to the practical applications of the SPME technique. PMID:24534804

  5. Extended Decentralized Linear-Quadratic-Gaussian Control

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell

    2000-01-01

    A straightforward extension of a solution to the decentralized linear-Quadratic-Gaussian problem is proposed that allows its use for commonly encountered classes of problems that are currently solved with the extended Kalman filter. This extension allows the system to be partitioned in such a way as to exclude the nonlinearities from the essential algebraic relationships that allow the estimation and control to be optimally decentralized.

  6. Adaptive hybrid simulations for multiscale stochastic reaction networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hepp, Benjamin; Gupta, Ankit; Khammash, Mustafa

    2015-01-21

    The probability distribution describing the state of a Stochastic Reaction Network (SRN) evolves according to the Chemical Master Equation (CME). It is common to estimate its solution using Monte Carlo methods such as the Stochastic Simulation Algorithm (SSA). In many cases, these simulations can take an impractical amount of computational time. Therefore, many methods have been developed that approximate sample paths of the underlying stochastic process and estimate the solution of the CME. A prominent class of these methods include hybrid methods that partition the set of species and the set of reactions into discrete and continuous subsets. Such amore » partition separates the dynamics into a discrete and a continuous part. Simulating such a stochastic process can be computationally much easier than simulating the exact discrete stochastic process with SSA. Moreover, the quasi-stationary assumption to approximate the dynamics of fast subnetworks can be applied for certain classes of networks. However, as the dynamics of a SRN evolves, these partitions may have to be adapted during the simulation. We develop a hybrid method that approximates the solution of a CME by automatically partitioning the reactions and species sets into discrete and continuous components and applying the quasi-stationary assumption on identifiable fast subnetworks. Our method does not require any user intervention and it adapts to exploit the changing timescale separation between reactions and/or changing magnitudes of copy-numbers of constituent species. We demonstrate the efficiency of the proposed method by considering examples from systems biology and showing that very good approximations to the exact probability distributions can be achieved in significantly less computational time. This is especially the case for systems with oscillatory dynamics, where the system dynamics change considerably throughout the time-period of interest.« less

  7. Adaptive hybrid simulations for multiscale stochastic reaction networks.

    PubMed

    Hepp, Benjamin; Gupta, Ankit; Khammash, Mustafa

    2015-01-21

    The probability distribution describing the state of a Stochastic Reaction Network (SRN) evolves according to the Chemical Master Equation (CME). It is common to estimate its solution using Monte Carlo methods such as the Stochastic Simulation Algorithm (SSA). In many cases, these simulations can take an impractical amount of computational time. Therefore, many methods have been developed that approximate sample paths of the underlying stochastic process and estimate the solution of the CME. A prominent class of these methods include hybrid methods that partition the set of species and the set of reactions into discrete and continuous subsets. Such a partition separates the dynamics into a discrete and a continuous part. Simulating such a stochastic process can be computationally much easier than simulating the exact discrete stochastic process with SSA. Moreover, the quasi-stationary assumption to approximate the dynamics of fast subnetworks can be applied for certain classes of networks. However, as the dynamics of a SRN evolves, these partitions may have to be adapted during the simulation. We develop a hybrid method that approximates the solution of a CME by automatically partitioning the reactions and species sets into discrete and continuous components and applying the quasi-stationary assumption on identifiable fast subnetworks. Our method does not require any user intervention and it adapts to exploit the changing timescale separation between reactions and/or changing magnitudes of copy-numbers of constituent species. We demonstrate the efficiency of the proposed method by considering examples from systems biology and showing that very good approximations to the exact probability distributions can be achieved in significantly less computational time. This is especially the case for systems with oscillatory dynamics, where the system dynamics change considerably throughout the time-period of interest.

  8. Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site.

    PubMed

    Letessier, Anne; Millot, Gaël A; Koundrioukoff, Stéphane; Lachagès, Anne-Marie; Vogt, Nicolas; Hansen, R Scott; Malfoy, Bernard; Brison, Olivier; Debatisse, Michelle

    2011-02-03

    Common fragile sites have long been identified by cytogeneticists as chromosomal regions prone to breakage upon replication stress. They are increasingly recognized to be preferential targets for oncogene-induced DNA damage in pre-neoplastic lesions and hotspots for chromosomal rearrangements in various cancers. Common fragile site instability was attributed to the fact that they contain sequences prone to form secondary structures that may impair replication fork movement, possibly leading to fork collapse resulting in DNA breaks. Here we show, in contrast to this view, that the fragility of FRA3B--the most active common fragile site in human lymphocytes--does not rely on fork slowing or stalling but on a paucity of initiation events. Indeed, in lymphoblastoid cells, but not in fibroblasts, initiation events are excluded from a FRA3B core extending approximately 700 kilobases, which forces forks coming from flanking regions to cover long distances in order to complete replication. We also show that origins of the flanking regions fire in mid-S phase, leaving the site incompletely replicated upon fork slowing. Notably, FRA3B instability is specific to cells showing this particular initiation pattern. The fact that both origin setting and replication timing are highly plastic in mammalian cells explains the tissue specificity of common fragile site instability we observed. Thus, we propose that common fragile sites correspond to the latest initiation-poor regions to complete replication in a given cell type. For historical reasons, common fragile sites have been essentially mapped in lymphocytes. Therefore, common fragile site contribution to chromosomal rearrangements in tumours should be reassessed after mapping fragile sites in the cell type from which each tumour originates.

  9. Overlapped Partitioning for Ensemble Classifiers of P300-Based Brain-Computer Interfaces

    PubMed Central

    Onishi, Akinari; Natsume, Kiyohisa

    2014-01-01

    A P300-based brain-computer interface (BCI) enables a wide range of people to control devices that improve their quality of life. Ensemble classifiers with naive partitioning were recently applied to the P300-based BCI and these classification performances were assessed. However, they were usually trained on a large amount of training data (e.g., 15300). In this study, we evaluated ensemble linear discriminant analysis (LDA) classifiers with a newly proposed overlapped partitioning method using 900 training data. In addition, the classification performances of the ensemble classifier with naive partitioning and a single LDA classifier were compared. One of three conditions for dimension reduction was applied: the stepwise method, principal component analysis (PCA), or none. The results show that an ensemble stepwise LDA (SWLDA) classifier with overlapped partitioning achieved a better performance than the commonly used single SWLDA classifier and an ensemble SWLDA classifier with naive partitioning. This result implies that the performance of the SWLDA is improved by overlapped partitioning and the ensemble classifier with overlapped partitioning requires less training data than that with naive partitioning. This study contributes towards reducing the required amount of training data and achieving better classification performance. PMID:24695550

  10. Overlapped partitioning for ensemble classifiers of P300-based brain-computer interfaces.

    PubMed

    Onishi, Akinari; Natsume, Kiyohisa

    2014-01-01

    A P300-based brain-computer interface (BCI) enables a wide range of people to control devices that improve their quality of life. Ensemble classifiers with naive partitioning were recently applied to the P300-based BCI and these classification performances were assessed. However, they were usually trained on a large amount of training data (e.g., 15300). In this study, we evaluated ensemble linear discriminant analysis (LDA) classifiers with a newly proposed overlapped partitioning method using 900 training data. In addition, the classification performances of the ensemble classifier with naive partitioning and a single LDA classifier were compared. One of three conditions for dimension reduction was applied: the stepwise method, principal component analysis (PCA), or none. The results show that an ensemble stepwise LDA (SWLDA) classifier with overlapped partitioning achieved a better performance than the commonly used single SWLDA classifier and an ensemble SWLDA classifier with naive partitioning. This result implies that the performance of the SWLDA is improved by overlapped partitioning and the ensemble classifier with overlapped partitioning requires less training data than that with naive partitioning. This study contributes towards reducing the required amount of training data and achieving better classification performance.

  11. Random Partition Distribution Indexed by Pairwise Information

    PubMed Central

    Dahl, David B.; Day, Ryan; Tsai, Jerry W.

    2017-01-01

    We propose a random partition distribution indexed by pairwise similarity information such that partitions compatible with the similarities are given more probability. The use of pairwise similarities, in the form of distances, is common in some clustering algorithms (e.g., hierarchical clustering), but we show how to use this type of information to define a prior partition distribution for flexible Bayesian modeling. A defining feature of the distribution is that it allocates probability among partitions within a given number of subsets, but it does not shift probability among sets of partitions with different numbers of subsets. Our distribution places more probability on partitions that group similar items yet keeps the total probability of partitions with a given number of subsets constant. The distribution of the number of subsets (and its moments) is available in closed-form and is not a function of the similarities. Our formulation has an explicit probability mass function (with a tractable normalizing constant) so the full suite of MCMC methods may be used for posterior inference. We compare our distribution with several existing partition distributions, showing that our formulation has attractive properties. We provide three demonstrations to highlight the features and relative performance of our distribution. PMID:29276318

  12. Building Ecology and Partition Design. Technical Bulletin.

    ERIC Educational Resources Information Center

    Maryland State Dept. of Education, Baltimore.

    This bulletin is intended as a resource for school system facility planners and architects who design schools. Ways in which decision makers can incorporate environmental concerns in the design of school buildings are detailed. Focus is on the design of interior partition systems. Partition systems in schools serve several purposes; they define…

  13. An interactive ocean surface albedo scheme (OSAv1.0): formulation and evaluation in ARPEGE-Climat (V6.1) and LMDZ (V5A)

    NASA Astrophysics Data System (ADS)

    Séférian, Roland; Baek, Sunghye; Boucher, Olivier; Dufresne, Jean-Louis; Decharme, Bertrand; Saint-Martin, David; Roehrig, Romain

    2018-01-01

    Ocean surface represents roughly 70 % of the Earth's surface, playing a large role in the partitioning of the energy flow within the climate system. The ocean surface albedo (OSA) is an important parameter in this partitioning because it governs the amount of energy penetrating into the ocean or reflected towards space. The old OSA schemes in the ARPEGE-Climat and LMDZ models only resolve the latitudinal dependence in an ad hoc way without an accurate representation of the solar zenith angle dependence. Here, we propose a new interactive OSA scheme suited for Earth system models, which enables coupling between Earth system model components like surface ocean waves and marine biogeochemistry. This scheme resolves spectrally the various contributions of the surface for direct and diffuse solar radiation. The implementation of this scheme in two Earth system models leads to substantial improvements in simulated OSA. At the local scale, models using the interactive OSA scheme better replicate the day-to-day distribution of OSA derived from ground-based observations in contrast to old schemes. At global scale, the improved representation of OSA for diffuse radiation reduces model biases by up to 80 % over the tropical oceans, reducing annual-mean model-data error in surface upwelling shortwave radiation by up to 7 W m-2 over this domain. The spatial correlation coefficient between modeled and observed OSA at monthly resolution has been increased from 0.1 to 0.8. Despite its complexity, this interactive OSA scheme is computationally efficient for enabling precise OSA calculation without penalizing the elapsed model time.

  14. An additional k-means clustering step improves the biological features of WGCNA gene co-expression networks.

    PubMed

    Botía, Juan A; Vandrovcova, Jana; Forabosco, Paola; Guelfi, Sebastian; D'Sa, Karishma; Hardy, John; Lewis, Cathryn M; Ryten, Mina; Weale, Michael E

    2017-04-12

    Weighted Gene Co-expression Network Analysis (WGCNA) is a widely used R software package for the generation of gene co-expression networks (GCN). WGCNA generates both a GCN and a derived partitioning of clusters of genes (modules). We propose k-means clustering as an additional processing step to conventional WGCNA, which we have implemented in the R package km2gcn (k-means to gene co-expression network, https://github.com/juanbot/km2gcn ). We assessed our method on networks created from UKBEC data (10 different human brain tissues), on networks created from GTEx data (42 human tissues, including 13 brain tissues), and on simulated networks derived from GTEx data. We observed substantially improved module properties, including: (1) few or zero misplaced genes; (2) increased counts of replicable clusters in alternate tissues (x3.1 on average); (3) improved enrichment of Gene Ontology terms (seen in 48/52 GCNs) (4) improved cell type enrichment signals (seen in 21/23 brain GCNs); and (5) more accurate partitions in simulated data according to a range of similarity indices. The results obtained from our investigations indicate that our k-means method, applied as an adjunct to standard WGCNA, results in better network partitions. These improved partitions enable more fruitful downstream analyses, as gene modules are more biologically meaningful.

  15. SPECIES-SPECIFIC PARTITIONING OF SOIL WATER RESOURCES IN AN OLD-GROWTH DOUGLAS-FIR/WESTERN HEMLOCK FOREST

    EPA Science Inventory

    Although tree- and stand-level estimates of forest water use are increasingly common, relatively little is known about partitioning of soil water resources among co-occurring tree species. We studied seasonal courses of soil water utilization in a 450-year-old Pseudotsuga menzies...

  16. EMPIRICAL MODELS OF PB AND CD PARTITIONING USING DATA FROM 13 SOILS, SEDIMENTS AND AQUIFER MATERIALS

    EPA Science Inventory

    Lead (Pb) and cadmium (Cd) are two of the most common toxicants found in contaminated environments. Because solubilization of these metallic elements from the solid phase can influence their fate, transport and bioavailability, the partitioning coefficient (Kd) for these metals ...

  17. Plasmids as stochastic model systems

    NASA Astrophysics Data System (ADS)

    Paulsson, Johan

    2003-05-01

    Plasmids are self-replicating gene clusters present in on average 2-100 copies per bacterial cell. To reduce random fluctuations and thereby avoid extinction, they ubiquitously autoregulate their own synthesis using negative feedback loops. Here I use van Kampen's Ω-expansion for a two-dimensional model of negative feedback including plasmids and ther replication inhibitors. This analytically summarizes the standard perspective on replication control -- including the effects of sensitivity amplification, exponential time-delays and noisy signaling. I further review the two most common molecular sensitivity mechanisms: multistep control and cooperativity. Finally, I discuss more controversial sensitivity schemes, such as noise-enhanced sensitivity, the exploitation of small-number combinatorics and double-layered feedback loops to suppress noise in disordered environments.

  18. Instantons on ALE spaces and orbifold partitions

    NASA Astrophysics Data System (ADS)

    Dijkgraaf, Robbert; Sułkowski, Piotr

    2008-03-01

    We consider Script N = 4 theories on ALE spaces of Ak-1 type. As is well known, their partition functions coincide with Ak-1 affine characters. We show that these partition functions are equal to the generating functions of some peculiar classes of partitions which we introduce under the name 'orbifold partitions'. These orbifold partitions turn out to be related to the generalized Frobenius partitions introduced by G. E. Andrews some years ago. We relate the orbifold partitions to the blended partitions and interpret explicitly in terms of a free fermion system.

  19. Analysis of Wind Tunnel Polar Replicates Using the Modern Design of Experiments

    NASA Technical Reports Server (NTRS)

    Deloach, Richard; Micol, John R.

    2010-01-01

    The role of variance in a Modern Design of Experiments analysis of wind tunnel data is reviewed, with distinctions made between explained and unexplained variance. The partitioning of unexplained variance into systematic and random components is illustrated, with examples of the elusive systematic component provided for various types of real-world tests. The importance of detecting and defending against systematic unexplained variance in wind tunnel testing is discussed, and the random and systematic components of unexplained variance are examined for a representative wind tunnel data set acquired in a test in which a missile is used as a test article. The adverse impact of correlated (non-independent) experimental errors is described, and recommendations are offered for replication strategies that facilitate the quantification of random and systematic unexplained variance.

  20. Stem cell identity and template DNA strand segregation.

    PubMed

    Tajbakhsh, Shahragim

    2008-12-01

    The quest for stem cell properties to distinguish their identity from that of committed daughters has led to a re-investigation of the notion that DNA strands are not equivalent, and 'immortal' DNA strands are retained in stem cells whereas newly replicated DNA strands segregate to the differentiating daughter cell during mitosis. Whether this process occurs only in stem cells, and also in all tissues, remains unclear. That individual chromosomes can be also partitioned non-randomly raises the question if this phenomenon is related to the immortal DNA hypothesis, and it underscores the need for high-resolution techniques to observe these events empirically. Although initially postulated as a mechanism to avoid DNA replication errors, alternative views including epigenetic regulation and sister chromatid silencing may provide insights into this process.

  1. The IMPORTance of the Nucleus during Flavivirus Replication

    PubMed Central

    Lopez-Denman, Adam J.; Mackenzie, Jason M.

    2017-01-01

    Flaviviruses are a large group of arboviruses of significant medical concern worldwide. With outbreaks a common occurrence, the need for efficient viral control is required more than ever. It is well understood that flaviviruses modulate the composition and structure of membranes in the cytoplasm that are crucial for efficient replication and evading immune detection. As the flavivirus genome consists of positive sense RNA, replication can occur wholly within the cytoplasm. What is becoming more evident is that some viral proteins also have the ability to translocate to the nucleus, with potential roles in replication and immune system perturbation. In this review, we discuss the current understanding of flavivirus nuclear localisation, and the function it has during flavivirus infection. We also describe—while closely related—the functional differences between similar viral proteins in their nuclear translocation. PMID:28106839

  2. Separation and recovery of food coloring dyes using aqueous biphasic extraction chromatographic resins.

    PubMed

    Huddleston, J G; Willauer, H D; Boaz, K R; Rogers, R D

    1998-06-26

    Aqueous biphasic systems (ABS) and aqueous biphasic extraction chromatographic (ABEC) resins are currently under investigation for their utility in the removal of color from textile plant wastes. The structures of several widely used food colorings, suggest that these dyes would also be retained on the resins. In work currently in progress, we have begun to investigate the retention and resolution of several common food colorings including indigo carmine, amaranth, carminic acid. erythrosin B, tartrazine and quinoline yellow. The relationship between the uptake of these dyes on ABEC resins in terms of the binding strengths and capacities of the resins and their partitioning behavior in ABS is illustrated. Some possible theoretical and practical approaches to the prediction of the partitioning and retention behavior is discussed.

  3. Software Partitioning Schemes for Advanced Simulation Computer Systems. Final Report.

    ERIC Educational Resources Information Center

    Clymer, S. J.

    Conducted to design software partitioning techniques for use by the Air Force to partition a large flight simulator program for optimal execution on alternative configurations, this study resulted in a mathematical model which defines characteristics for an optimal partition, and a manually demonstrated partitioning algorithm design which…

  4. Pathways for maintenance of telomeres and common fragile sites during DNA replication stress

    PubMed Central

    Özer, Özgün

    2018-01-01

    Oncogene activation during tumour development leads to changes in the DNA replication programme that enhance DNA replication stress. Certain regions of the human genome, such as common fragile sites and telomeres, are particularly sensitive to DNA replication stress due to their inherently ‘difficult-to-replicate’ nature. Indeed, it appears that these regions sometimes fail to complete DNA replication within the period of interphase when cells are exposed to DNA replication stress. Under these conditions, cells use a salvage pathway, termed ‘mitotic DNA repair synthesis (MiDAS)’, to complete DNA synthesis in the early stages of mitosis. If MiDAS fails, the ensuing mitotic errors threaten genome integrity and cell viability. Recent studies have provided an insight into how MiDAS helps cells to counteract DNA replication stress. However, our understanding of the molecular mechanisms and regulation of MiDAS remain poorly defined. Here, we provide an overview of how DNA replication stress triggers MiDAS, with an emphasis on how common fragile sites and telomeres are maintained. Furthermore, we discuss how a better understanding of MiDAS might reveal novel strategies to target cancer cells that maintain viability in the face of chronic oncogene-induced DNA replication stress. PMID:29695617

  5. Arthropod Distribution in a Tropical Rainforest: Tackling a Four Dimensional Puzzle.

    PubMed

    Basset, Yves; Cizek, Lukas; Cuénoud, Philippe; Didham, Raphael K; Novotny, Vojtech; Ødegaard, Frode; Roslin, Tomas; Tishechkin, Alexey K; Schmidl, Jürgen; Winchester, Neville N; Roubik, David W; Aberlenc, Henri-Pierre; Bail, Johannes; Barrios, Héctor; Bridle, Jonathan R; Castaño-Meneses, Gabriela; Corbara, Bruno; Curletti, Gianfranco; Duarte da Rocha, Wesley; De Bakker, Domir; Delabie, Jacques H C; Dejean, Alain; Fagan, Laura L; Floren, Andreas; Kitching, Roger L; Medianero, Enrique; Gama de Oliveira, Evandro; Orivel, Jérôme; Pollet, Marc; Rapp, Mathieu; Ribeiro, Sérvio P; Roisin, Yves; Schmidt, Jesper B; Sørensen, Line; Lewinsohn, Thomas M; Leponce, Maurice

    2015-01-01

    Quantifying the spatio-temporal distribution of arthropods in tropical rainforests represents a first step towards scrutinizing the global distribution of biodiversity on Earth. To date most studies have focused on narrow taxonomic groups or lack a design that allows partitioning of the components of diversity. Here, we consider an exceptionally large dataset (113,952 individuals representing 5,858 species), obtained from the San Lorenzo forest in Panama, where the phylogenetic breadth of arthropod taxa was surveyed using 14 protocols targeting the soil, litter, understory, lower and upper canopy habitats, replicated across seasons in 2003 and 2004. This dataset is used to explore the relative influence of horizontal, vertical and seasonal drivers of arthropod distribution in this forest. We considered arthropod abundance, observed and estimated species richness, additive decomposition of species richness, multiplicative partitioning of species diversity, variation in species composition, species turnover and guild structure as components of diversity. At the scale of our study (2 km of distance, 40 m in height and 400 days), the effects related to the vertical and seasonal dimensions were most important. Most adult arthropods were collected from the soil/litter or the upper canopy and species richness was highest in the canopy. We compared the distribution of arthropods and trees within our study system. Effects related to the seasonal dimension were stronger for arthropods than for trees. We conclude that: (1) models of beta diversity developed for tropical trees are unlikely to be applicable to tropical arthropods; (2) it is imperative that estimates of global biodiversity derived from mass collecting of arthropods in tropical rainforests embrace the strong vertical and seasonal partitioning observed here; and (3) given the high species turnover observed between seasons, global climate change may have severe consequences for rainforest arthropods.

  6. Arthropod Distribution in a Tropical Rainforest: Tackling a Four Dimensional Puzzle

    PubMed Central

    Basset, Yves; Cizek, Lukas; Cuénoud, Philippe; Didham, Raphael K.; Novotny, Vojtech; Ødegaard, Frode; Roslin, Tomas; Tishechkin, Alexey K.; Schmidl, Jürgen; Winchester, Neville N.; Roubik, David W.; Aberlenc, Henri-Pierre; Bail, Johannes; Barrios, Héctor; Bridle, Jonathan R.; Castaño-Meneses, Gabriela; Corbara, Bruno; Curletti, Gianfranco; Duarte da Rocha, Wesley; De Bakker, Domir; Delabie, Jacques H. C.; Dejean, Alain; Fagan, Laura L.; Floren, Andreas; Kitching, Roger L.; Medianero, Enrique; Gama de Oliveira, Evandro; Orivel, Jérôme; Pollet, Marc; Rapp, Mathieu; Ribeiro, Sérvio P.; Roisin, Yves; Schmidt, Jesper B.; Sørensen, Line; Lewinsohn, Thomas M.; Leponce, Maurice

    2015-01-01

    Quantifying the spatio-temporal distribution of arthropods in tropical rainforests represents a first step towards scrutinizing the global distribution of biodiversity on Earth. To date most studies have focused on narrow taxonomic groups or lack a design that allows partitioning of the components of diversity. Here, we consider an exceptionally large dataset (113,952 individuals representing 5,858 species), obtained from the San Lorenzo forest in Panama, where the phylogenetic breadth of arthropod taxa was surveyed using 14 protocols targeting the soil, litter, understory, lower and upper canopy habitats, replicated across seasons in 2003 and 2004. This dataset is used to explore the relative influence of horizontal, vertical and seasonal drivers of arthropod distribution in this forest. We considered arthropod abundance, observed and estimated species richness, additive decomposition of species richness, multiplicative partitioning of species diversity, variation in species composition, species turnover and guild structure as components of diversity. At the scale of our study (2km of distance, 40m in height and 400 days), the effects related to the vertical and seasonal dimensions were most important. Most adult arthropods were collected from the soil/litter or the upper canopy and species richness was highest in the canopy. We compared the distribution of arthropods and trees within our study system. Effects related to the seasonal dimension were stronger for arthropods than for trees. We conclude that: (1) models of beta diversity developed for tropical trees are unlikely to be applicable to tropical arthropods; (2) it is imperative that estimates of global biodiversity derived from mass collecting of arthropods in tropical rainforests embrace the strong vertical and seasonal partitioning observed here; and (3) given the high species turnover observed between seasons, global climate change may have severe consequences for rainforest arthropods. PMID:26633187

  7. Common Chemical Inductors of Replication Stress:  Focus on Cell-Based Studies.

    PubMed

    Vesela, Eva; Chroma, Katarina; Turi, Zsofia; Mistrik, Martin

    2017-02-21

    DNA replication is a highly demanding process regarding the energy and material supply and must be precisely regulated, involving multiple cellular feedbacks. The slowing down or stalling of DNA synthesis and/or replication forks is referred to as replication stress (RS). Owing to the complexity and requirements of replication, a plethora of factors may interfere and challenge the genome stability, cell survival or affect the whole organism. This review outlines chemical compounds that are known inducers of RS and commonly used in laboratory research. These compounds act on replication by direct interaction with DNA causing DNA crosslinks and bulky lesions (cisplatin), chemical interference with the metabolism of deoxyribonucleotide triphosphates (hydroxyurea), direct inhibition of the activity of replicative DNA polymerases (aphidicolin) and interference with enzymes dealing with topological DNA stress (camptothecin, etoposide). As a variety of mechanisms can induce RS, the responses of mammalian cells also vary. Here, we review the activity and mechanism of action of these compounds based on recent knowledge, accompanied by examples of induced phenotypes, cellular readouts and commonly used doses.

  8. Common Chemical Inductors of Replication Stress: Focus on Cell-Based Studies

    PubMed Central

    Vesela, Eva; Chroma, Katarina; Turi, Zsofia; Mistrik, Martin

    2017-01-01

    DNA replication is a highly demanding process regarding the energy and material supply and must be precisely regulated, involving multiple cellular feedbacks. The slowing down or stalling of DNA synthesis and/or replication forks is referred to as replication stress (RS). Owing to the complexity and requirements of replication, a plethora of factors may interfere and challenge the genome stability, cell survival or affect the whole organism. This review outlines chemical compounds that are known inducers of RS and commonly used in laboratory research. These compounds act on replication by direct interaction with DNA causing DNA crosslinks and bulky lesions (cisplatin), chemical interference with the metabolism of deoxyribonucleotide triphosphates (hydroxyurea), direct inhibition of the activity of replicative DNA polymerases (aphidicolin) and interference with enzymes dealing with topological DNA stress (camptothecin, etoposide). As a variety of mechanisms can induce RS, the responses of mammalian cells also vary. Here, we review the activity and mechanism of action of these compounds based on recent knowledge, accompanied by examples of induced phenotypes, cellular readouts and commonly used doses. PMID:28230817

  9. An oscillating tragedy of the commons in replicator dynamics with game-environment feedback.

    PubMed

    Weitz, Joshua S; Eksin, Ceyhun; Paarporn, Keith; Brown, Sam P; Ratcliff, William C

    2016-11-22

    A tragedy of the commons occurs when individuals take actions to maximize their payoffs even as their combined payoff is less than the global maximum had the players coordinated. The originating example is that of overgrazing of common pasture lands. In game-theoretic treatments of this example, there is rarely consideration of how individual behavior subsequently modifies the commons and associated payoffs. Here, we generalize evolutionary game theory by proposing a class of replicator dynamics with feedback-evolving games in which environment-dependent payoffs and strategies coevolve. We initially apply our formulation to a system in which the payoffs favor unilateral defection and cooperation, given replete and depleted environments, respectively. Using this approach, we identify and characterize a class of dynamics: an oscillatory tragedy of the commons in which the system cycles between deplete and replete environmental states and cooperation and defection behavior states. We generalize the approach to consider outcomes given all possible rational choices of individual behavior in the depleted state when defection is favored in the replete state. In so doing, we find that incentivizing cooperation when others defect in the depleted state is necessary to avert the tragedy of the commons. In closing, we propose directions for the study of control and influence in games in which individual actions exert a substantive effect on the environmental state.

  10. An oscillating tragedy of the commons in replicator dynamics with game-environment feedback

    PubMed Central

    Weitz, Joshua S.; Eksin, Ceyhun; Paarporn, Keith; Brown, Sam P.; Ratcliff, William C.

    2016-01-01

    A tragedy of the commons occurs when individuals take actions to maximize their payoffs even as their combined payoff is less than the global maximum had the players coordinated. The originating example is that of overgrazing of common pasture lands. In game-theoretic treatments of this example, there is rarely consideration of how individual behavior subsequently modifies the commons and associated payoffs. Here, we generalize evolutionary game theory by proposing a class of replicator dynamics with feedback-evolving games in which environment-dependent payoffs and strategies coevolve. We initially apply our formulation to a system in which the payoffs favor unilateral defection and cooperation, given replete and depleted environments, respectively. Using this approach, we identify and characterize a class of dynamics: an oscillatory tragedy of the commons in which the system cycles between deplete and replete environmental states and cooperation and defection behavior states. We generalize the approach to consider outcomes given all possible rational choices of individual behavior in the depleted state when defection is favored in the replete state. In so doing, we find that incentivizing cooperation when others defect in the depleted state is necessary to avert the tragedy of the commons. In closing, we propose directions for the study of control and influence in games in which individual actions exert a substantive effect on the environmental state. PMID:27830651

  11. Fractionation of lithium isotopes in magmatic systems as a natural consequence of cooling

    NASA Astrophysics Data System (ADS)

    Gallagher, Kerry; Elliott, Tim

    2009-02-01

    High-temperature, diffusive fractionation has been invoked to account for striking Li isotopic variability recently observed within individual phenocrysts and xenolith minerals. It has been argued that chemical potential gradients required to drive such diffusion arise from changes in Li partitioning between coexisting phases during cooling. If so, Li isotopic zoning should be a common occurrence but the role of temperature-dependent partition coefficients in generating Li isotopic variability remains to be tested in a quantitative manner. Here we consider a basic scenario of a phenocryst in a cooling lava, using simple parameterisations of the temperature dependence of Li partitioning and diffusivity in clinopyroxene. Our model initially produces an asymmetric isotope profile across the crystal with a δ7Li minimum that remains close to the edge of a crystal. Such a distinctive shape mimics Li isotopic profiles documented in some olivine and clinopyroxene phenocrysts, which have isotopically normal cores but anomalously light rims. The temperature dependence of both the diffusivity and the partition coefficient of Li are key factors in generating this form of diffusion profile. Continued diffusion leads to an inversion in the sense of isotopic change between core and rim and results in the whole phenocryst attaining markedly light isotopic values. Our calculations show that significant Li isotopic zoning can occur as a natural consequence of cooling magmatic systems. Crystals that have experienced more complex thermal histories (e.g. re-entrained cumulates versus true phenocrysts) will therefore exhibit contrasting isotopic profiles and, as such, these data may be useful for tracing sub-volcanic processes.

  12. An assessment of the liquid-gas partitioning behavior of major wastewater odorants using two comparative experimental approaches: liquid sample-based vaporization vs. impinger-based dynamic headspace extraction into sorbent tubes.

    PubMed

    Iqbal, Mohammad Asif; Kim, Ki-Hyun; Szulejko, Jan E; Cho, Jinwoo

    2014-01-01

    The gas-liquid partitioning behavior of major odorants (acetic acid, propionic acid, isobutyric acid, n-butyric acid, i-valeric acid, n-valeric acid, hexanoic acid, phenol, p-cresol, indole, skatole, and toluene (as a reference)) commonly found in microbially digested wastewaters was investigated by two experimental approaches. Firstly, a simple vaporization method was applied to measure the target odorants dissolved in liquid samples with the aid of sorbent tube/thermal desorption/gas chromatography/mass spectrometry. As an alternative method, an impinger-based dynamic headspace sampling method was also explored to measure the partitioning of target odorants between the gas and liquid phases with the same detection system. The relative extraction efficiency (in percent) of the odorants by dynamic headspace sampling was estimated against the calibration results derived by the vaporization method. Finally, the concentrations of the major odorants in real digested wastewater samples were also analyzed using both analytical approaches. Through a parallel application of the two experimental methods, we intended to develop an experimental approach to be able to assess the liquid-to-gas phase partitioning behavior of major odorants in a complex wastewater system. The relative sensitivity of the two methods expressed in terms of response factor ratios (RFvap/RFimp) of liquid standard calibration between vaporization and impinger-based calibrations varied widely from 981 (skatole) to 6,022 (acetic acid). Comparison of this relative sensitivity thus highlights the rather low extraction efficiency of the highly soluble and more acidic odorants from wastewater samples in dynamic headspace sampling.

  13. Nuclear proteins hijacked by mammalian cytoplasmic plus strand RNA viruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lloyd, Richard E., E-mail: rlloyd@bcm.edu

    Plus strand RNA viruses that replicate in the cytoplasm face challenges in supporting the numerous biosynthetic functions required for replication and propagation. Most of these viruses are genetically simple and rely heavily on co-opting cellular proteins, particularly cellular RNA-binding proteins, into new roles for support of virus infection at the level of virus-specific translation, and building RNA replication complexes. In the course of infectious cycles many nuclear-cytoplasmic shuttling proteins of mostly nuclear distribution are detained in the cytoplasm by viruses and re-purposed for their own gain. Many mammalian viruses hijack a common group of the same factors. This review summarizesmore » recent gains in our knowledge of how cytoplasmic RNA viruses use these co-opted host nuclear factors in new functional roles supporting virus translation and virus RNA replication and common themes employed between different virus groups. - Highlights: • Nuclear shuttling host proteins are commonly hijacked by RNA viruses to support replication. • A limited group of ubiquitous RNA binding proteins are commonly hijacked by a broad range of viruses. • Key virus proteins alter roles of RNA binding proteins in different stages of virus replication.« less

  14. Methods and Systems for Authorizing an Effector Command in an Integrated Modular Environment

    NASA Technical Reports Server (NTRS)

    Sunderland, Dean E. (Inventor); Ahrendt, Terry J. (Inventor); Moore, Tim (Inventor)

    2013-01-01

    Methods and systems are provided for authorizing a command of an integrated modular environment in which a plurality of partitions control actions of a plurality of effectors is provided. A first identifier, a second identifier, and a third identifier are determined. The first identifier identifies a first partition of the plurality of partitions from which the command originated. The second identifier identifies a first effector of the plurality of effectors for which the command is intended. The third identifier identifies a second partition of the plurality of partitions that is responsible for controlling the first effector. The first identifier and the third identifier are compared to determine whether the first partition is the same as the second partition for authorization of the command.

  15. Activation of human herpesvirus replication by apoptosis.

    PubMed

    Prasad, Alka; Remick, Jill; Zeichner, Steven L

    2013-10-01

    A central feature of herpesvirus biology is the ability of herpesviruses to remain latent within host cells. Classically, exposure to inducing agents, like activating cytokines or phorbol esters that stimulate host cell signal transduction events, and epigenetic agents (e.g., butyrate) was thought to end latency. We recently showed that Kaposi's sarcoma-associated herpesvirus (KSHV, or human herpesvirus-8 [HHV-8]) has another, alternative emergency escape replication pathway that is triggered when KSHV's host cell undergoes apoptosis, characterized by the lack of a requirement for the replication and transcription activator (RTA) protein, accelerated late gene kinetics, and production of virus with decreased infectivity. Caspase-3 is necessary and sufficient to initiate the alternative replication program. HSV-1 was also recently shown to initiate replication in response to host cell apoptosis. These observations suggested that an alternative apoptosis-triggered replication program might be a general feature of herpesvirus biology and that apoptosis-initiated herpesvirus replication may have clinical implications, particularly for herpesviruses that almost universally infect humans. To explore whether an alternative apoptosis-initiated replication program is a common feature of herpesvirus biology, we studied cell lines latently infected with Epstein-Barr virus/HHV-4, HHV-6A, HHV-6B, HHV-7, and KSHV. We found that apoptosis triggers replication for each HHV studied, with caspase-3 being necessary and sufficient for HHV replication. An alternative apoptosis-initiated replication program appears to be a common feature of HHV biology. We also found that commonly used cytotoxic chemotherapeutic agents activate HHV replication, which suggests that treatments that promote apoptosis may lead to activation of latent herpesviruses, with potential clinical significance.

  16. Activation of Human Herpesvirus Replication by Apoptosis

    PubMed Central

    Prasad, Alka; Remick, Jill

    2013-01-01

    A central feature of herpesvirus biology is the ability of herpesviruses to remain latent within host cells. Classically, exposure to inducing agents, like activating cytokines or phorbol esters that stimulate host cell signal transduction events, and epigenetic agents (e.g., butyrate) was thought to end latency. We recently showed that Kaposi's sarcoma-associated herpesvirus (KSHV, or human herpesvirus-8 [HHV-8]) has another, alternative emergency escape replication pathway that is triggered when KSHV's host cell undergoes apoptosis, characterized by the lack of a requirement for the replication and transcription activator (RTA) protein, accelerated late gene kinetics, and production of virus with decreased infectivity. Caspase-3 is necessary and sufficient to initiate the alternative replication program. HSV-1 was also recently shown to initiate replication in response to host cell apoptosis. These observations suggested that an alternative apoptosis-triggered replication program might be a general feature of herpesvirus biology and that apoptosis-initiated herpesvirus replication may have clinical implications, particularly for herpesviruses that almost universally infect humans. To explore whether an alternative apoptosis-initiated replication program is a common feature of herpesvirus biology, we studied cell lines latently infected with Epstein-Barr virus/HHV-4, HHV-6A, HHV-6B, HHV-7, and KSHV. We found that apoptosis triggers replication for each HHV studied, with caspase-3 being necessary and sufficient for HHV replication. An alternative apoptosis-initiated replication program appears to be a common feature of HHV biology. We also found that commonly used cytotoxic chemotherapeutic agents activate HHV replication, which suggests that treatments that promote apoptosis may lead to activation of latent herpesviruses, with potential clinical significance. PMID:23885073

  17. The selfish yeast plasmid uses the nuclear motor Kip1p but not Cin8p for its localization and equal segregation

    PubMed Central

    Cui, Hong; Ghosh, Santanu K.

    2009-01-01

    The 2 micron plasmid of Saccharomyces cerevisiae uses the Kip1 motor, but not the functionally redundant Cin8 motor, for its precise nuclear localization and equal segregation. The timing and lifetime of Kip1p association with the plasmid partitioning locus STB are consistent with Kip1p being an authentic component of the plasmid partitioning complex. Kip1–STB association is not blocked by disassembling the mitotic spindle. Lack of Kip1p disrupts recruitment of the cohesin complex at STB and cohesion of replicated plasmid molecules. Colocalization of a 2 micron reporter plasmid with Kip1p in close proximity to the spindle pole body is reminiscent of that of a CEN reporter plasmid. Absence of Kip1p displaces the plasmid from this nuclear address, where it has the potential to tether to a chromosome or poach chromosome segregation factors. Exploiting Kip1p, which is subsidiary to Cin8p for chromosome segregation, to direct itself to a “partitioning center” represents yet another facet of the benign parasitism of the yeast plasmid. PMID:19364922

  18. Improved parallel data partitioning by nested dissection with applications to information retrieval.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Michael M.; Chevalier, Cedric; Boman, Erik Gunnar

    The computational work in many information retrieval and analysis algorithms is based on sparse linear algebra. Sparse matrix-vector multiplication is a common kernel in many of these computations. Thus, an important related combinatorial problem in parallel computing is how to distribute the matrix and the vectors among processors so as to minimize the communication cost. We focus on minimizing the total communication volume while keeping the computation balanced across processes. In [1], the first two authors presented a new 2D partitioning method, the nested dissection partitioning algorithm. In this paper, we improve on that algorithm and show that it ismore » a good option for data partitioning in information retrieval. We also show partitioning time can be substantially reduced by using the SCOTCH software, and quality improves in some cases, too.« less

  19. The potential of cloud point system as a novel two-phase partitioning system for biotransformation.

    PubMed

    Wang, Zhilong

    2007-05-01

    Although the extractive biotransformation in two-phase partitioning systems have been studied extensively, such as the water-organic solvent two-phase system, the aqueous two-phase system, the reverse micelle system, and the room temperature ionic liquid, etc., this has not yet resulted in a widespread industrial application. Based on the discussion of the main obstacles, an exploitation of a cloud point system, which has already been applied in a separation field known as a cloud point extraction, as a novel two-phase partitioning system for biotransformation, is reviewed by analysis of some topical examples. At the end of the review, the process control and downstream processing in the application of the novel two-phase partitioning system for biotransformation are also briefly discussed.

  20. Reducing vertices in property graphs

    PubMed Central

    Pąk, Karol

    2018-01-01

    Graph databases are constantly growing, and, at the same time, some of their data is the same or similar. Our experience with the management of the existing databases, especially the bigger ones, shows that certain vertices are particularly replicated there numerous times. Eliminating repetitive or even very similar data speeds up the access to database resources. We present a modification of this approach, where similarly we group together vertices of identical properties, but then additionally we join together groups of data that are located in distant parts of a graph. The second part of our approach is non-trivial. We show that the search for a partition of a given graph where each member of the partition has only pairwise distant vertices is NP-hard. We indicate a group of heuristics that try to solve our difficult computational problems and then we apply them to check the the effectiveness of our approach. PMID:29444127

  1. Two novel solvent system compositions for protected synthetic peptide purification by centrifugal partition chromatography.

    PubMed

    Amarouche, Nassima; Giraud, Matthieu; Forni, Luciano; Butte, Alessandro; Edwards, F; Borie, Nicolas; Renault, Jean-Hugues

    2014-04-11

    Protected synthetic peptide intermediates are often hydrophobic and not soluble in most common solvents. They are thus difficult to purify by preparative reversed-phase high-performance liquid chromatography (RP-HPLC), usually used for industrial production. It is then challenging to develop alternative chromatographic purification processes. Support-free liquid-liquid chromatographic techniques, including both hydrostatic (centrifugal partition chromatography or CPC) and hydrodynamic (counter-current chromatography or CCC) devices, are mainly involved in phytochemical studies but have also been applied to synthetic peptide purification. In this framework, two new biphasic solvent system compositions covering a wide range of polarity were developed to overcome solubility problems mentioned above. The new systems composed of heptane/tetrahydrofuran/acetonitrile/dimethylsulfoxide/water and heptane/methyl-tetrahydrofuran/N-methylpyrrolidone/water were efficiently used for the CPC purification of a 39-mer protected exenatide (Byetta®) and a 8-mer protected peptide intermediate of bivalirudin (Angiox®) synthesis. Phase compositions of the different biphasic solvent systems were determined by (1)H nuclear magnetic resonance. Physico-chemical properties including viscosity, density and interfacial tension of these biphasic systems are also described. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Canonical Commonality Analysis.

    ERIC Educational Resources Information Center

    Leister, K. Dawn

    Commonality analysis is a method of partitioning variance that has advantages over more traditional "OVA" methods. Commonality analysis indicates the amount of explanatory power that is "unique" to a given predictor variable and the amount of explanatory power that is "common" to or shared with at least one predictor…

  3. Controls on continental strain partitioning above an oblique subduction zone, Northern Andes

    NASA Astrophysics Data System (ADS)

    Schütt, Jorina M.; Whipp, David M., Jr.

    2016-04-01

    Strain partitioning is a common process at obliquely convergent plate margins dividing oblique convergence into margin-normal slip on the plate-bounding fault and horizontal shearing on a strike-slip system parallel to the subduction margin. In subduction zones, strain partitioning in the upper continental plate is mainly controlled by the shear forces acting on the plate interface and the strength of the continental crust. The plate interface forces are influenced by the subducting plate dip angle and the obliquity angle between the normal to the plate margin and the convergence velocity vector, and the crustal strength of the continent is strongly affected by the presence or absence of a volcanic arc, with the presence of the volcanic arcs being common at steep subduction zones. Along the ˜7000 km western margin of South America the convergence obliquity, subduction dip angles and presence of a volcanic arc all vary, but strain partitioning is only observed along parts of it. This raises the questions, to what extent do subduction zone characteristics control strain partitioning in the overriding continental plate, and which factors have the largest influence? We address these questions using lithospheric-scale 3D numerical geodynamic experiments to investigate the influence of subduction dip angle, convergence obliquity, and weaknesses in the crust owing to the volcanic arc on strain partitioning behavior. We base the model design on the Northern Volcanic Zone of the Andes (5° N - 2° S), characterized by steep subduction (˜ 35°), a convergence obliquity between 31° -45° and extensive arc volcanism, and where strain partitioning is observed. The numerical modelling software (DOUAR) solves the Stokes flow and heat transfer equations for a viscous-plastic creeping flow to calculate velocity fields, thermal evolution, rock uplift and strain rates in a 1600 km x 1600 km box with depth 160 km. Subduction geometry and material properties are based on a simplified, generic subduction zone similar to the northern Andes. The upper surface is initially defined to resemble the Andes, but is free to deform during the experiments. We consider two main model designs, one with and one without a volcanic arc (weak continental zone). A relatively high angle of convergence obliquity is predicted to favor strain partitioning, but preliminary model results show no strain partitioning for a uniform continental crustal strength with a friction angle of Φ = 15° . However, strain partitioning does occur when including a weak zone in the continental crust resulting from arc volcanic activity with Φ = 5° . This results in margin-parallel northeastward translation of a continental sliver at 3.2 cm/year. The presence of the sliver agrees well with observations of a continental sliver identified by GPS measurements in the Northern Volcanic Zone with a translation velocity of about 1 cm/year, though the GPS-derived velocity may not be representative of the long-term rate of translation depending on whether the observation period includes one or more seismic cycles. Regardless, the observed behavior is consistent with the observed earthquake focal mechanisms and GPS measurements, suggesting significant northeastward transport of Andean crust along the margin of the northern Andes.

  4. Biomolecular Force Field Parameterization via Atoms-in-Molecule Electron Density Partitioning.

    PubMed

    Cole, Daniel J; Vilseck, Jonah Z; Tirado-Rives, Julian; Payne, Mike C; Jorgensen, William L

    2016-05-10

    Molecular mechanics force fields, which are commonly used in biomolecular modeling and computer-aided drug design, typically treat nonbonded interactions using a limited library of empirical parameters that are developed for small molecules. This approach does not account for polarization in larger molecules or proteins, and the parametrization process is labor-intensive. Using linear-scaling density functional theory and atoms-in-molecule electron density partitioning, environment-specific charges and Lennard-Jones parameters are derived directly from quantum mechanical calculations for use in biomolecular modeling of organic and biomolecular systems. The proposed methods significantly reduce the number of empirical parameters needed to construct molecular mechanics force fields, naturally include polarization effects in charge and Lennard-Jones parameters, and scale well to systems comprised of thousands of atoms, including proteins. The feasibility and benefits of this approach are demonstrated by computing free energies of hydration, properties of pure liquids, and the relative binding free energies of indole and benzofuran to the L99A mutant of T4 lysozyme.

  5. Molecular features determining different partitioning patterns of papain and bromelain in aqueous two-phase systems.

    PubMed

    Rocha, Maria Victoria; Nerli, Bibiana Beatriz

    2013-10-01

    The partitioning patterns of papain (PAP) and bromelain (BR), two well-known cysteine-proteases, in polyethyleneglycol/sodium citrate aqueous two-phase systems (ATPSs) were determined. Polyethyleneglycols of different molecular weight (600, 1000, 2000, 4600 and 8000) were assayed. Thermodynamic characterization of partitioning process, spectroscopy measurements and computational calculations of protein surface properties were also carried out in order to explain their differential partitioning behavior. PAP was observed to be displaced to the salt-enriched phase in all the assayed systems with partition coefficients (KpPAP) values between 0.2 and 0.9, while BR exhibited a high affinity for the polymer phase in systems formed by PEGs of low molecular weight (600 and 1000) with partition coefficients (KpBR) values close to 3. KpBR values resulted higher than KpPAP in all the cases. This difference could be assigned neither to the charge nor to the size of the partitioned biomolecules since PAP and BR possess similar molecular weight (23,000) and isoelectric point (9.60). The presence of highly exposed tryptophans and positively charged residues (Lys, Arg and His) in BR molecule would be responsible for a charge transfer interaction between PEG and the protein and, therefore, the uneven distribution of BR in these systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Safe Computing: An Overview of Viruses.

    ERIC Educational Resources Information Center

    Wodarz, Nan

    2001-01-01

    A computer virus is a program that replicates itself, in conjunction with an additional program that can harm a computer system. Common viruses include boot-sector, macro, companion, overwriting, and multipartite. Viruses can be fast, slow, stealthy, and polymorphic. Anti-virus products are described. (MLH)

  7. Partitioning in Avionics Architectures: Requirements, Mechanisms, and Assurance

    NASA Technical Reports Server (NTRS)

    Rushby, John

    1999-01-01

    Automated aircraft control has traditionally been divided into distinct "functions" that are implemented separately (e.g., autopilot, autothrottle, flight management); each function has its own fault-tolerant computer system, and dependencies among different functions are generally limited to the exchange of sensor and control data. A by-product of this "federated" architecture is that faults are strongly contained within the computer system of the function where they occur and cannot readily propagate to affect the operation of other functions. More modern avionics architectures contemplate supporting multiple functions on a single, shared, fault-tolerant computer system where natural fault containment boundaries are less sharply defined. Partitioning uses appropriate hardware and software mechanisms to restore strong fault containment to such integrated architectures. This report examines the requirements for partitioning, mechanisms for their realization, and issues in providing assurance for partitioning. Because partitioning shares some concerns with computer security, security models are reviewed and compared with the concerns of partitioning.

  8. Parallel file system with metadata distributed across partitioned key-value store c

    DOEpatents

    Bent, John M.; Faibish, Sorin; Grider, Gary; Torres, Aaron

    2017-09-19

    Improved techniques are provided for storing metadata associated with a plurality of sub-files associated with a single shared file in a parallel file system. The shared file is generated by a plurality of applications executing on a plurality of compute nodes. A compute node implements a Parallel Log Structured File System (PLFS) library to store at least one portion of the shared file generated by an application executing on the compute node and metadata for the at least one portion of the shared file on one or more object storage servers. The compute node is also configured to implement a partitioned data store for storing a partition of the metadata for the shared file, wherein the partitioned data store communicates with partitioned data stores on other compute nodes using a message passing interface. The partitioned data store can be implemented, for example, using Multidimensional Data Hashing Indexing Middleware (MDHIM).

  9. Sensitivity of Aerosol Mass and Microphysics to varying treatments of Condensational Growth of Secondary Organic Compounds in a regional model

    NASA Astrophysics Data System (ADS)

    Lowe, Douglas; Topping, David; McFiggans, Gordon

    2017-04-01

    Gas to particle partitioning of atmospheric compounds occurs through disequilibrium mass transfer rather than through instantaneous equilibrium. However, it is common to treat only the inorganic compounds as partitioning dynamically whilst organic compounds, represented by the Volatility Basis Set (VBS), are partitioned instantaneously. In this study we implement a more realistic dynamic partitioning of organic compounds in a regional framework and assess impact on aerosol mass and microphysics. It is also common to assume condensed phase water is only associated with inorganic components. We thus also assess sensitivity to assuming all organics are hygroscopic according to their prescribed molecular weight. For this study we use WRF-Chem v3.4.1, focusing on anthropogenic dominated North-Western Europe. Gas-phase chemistry is represented using CBM-Z whilst aerosol dynamics are simulated using the 8-section MOSAIC scheme, including a 9-bin VBS treatment of organic aerosol. Results indicate that predicted mass loadings can vary significantly. Without gas phase ageing of higher volatility compounds, dynamic partitioning always results in lower mass loadings downwind of emission sources. The inclusion of condensed phase water in both partitioning models increases the predicted PM mass, resulting from a larger contribution from higher volatility organics, if present. If gas phase ageing of VBS compounds is allowed to occur in a dynamic model, this can often lead to higher predicted mass loadings, contrary to expected behaviour from a simple non-reactive gas phase box model. As descriptions of aerosol phase processes improve within regional models, the baseline descriptions of partitioning should retain the ability to treat dynamic partitioning of organics compounds. Using our simulations, we discuss whether derived sensitivities to aerosol processes in existing models may be inherently biased. This work was supported by the Natural Environment Research Council within the RONOCO (NE/F004656/1) and CCN-Vol (NE/L007827/1) projects.

  10. Sensitivity of Aerosol Mass and Microphysics to Treatments of Condensational Growth of Secondary Organic Compounds in a Regional Model

    NASA Astrophysics Data System (ADS)

    Topping, D. O.; Lowe, D.; McFiggans, G.; Zaveri, R. A.

    2016-12-01

    Gas to particle partitioning of atmospheric compounds occurs through disequilibrium mass transfer rather than through instantaneous equilibrium. However, it is common to treat only the inorganic compounds as partitioning dynamically whilst organic compounds, represented by the Volatility Basis Set (VBS), are partitioned instantaneously. In this study we implement a more realistic dynamic partitioning of organic compounds in a regional framework and assess impact on aerosol mass and microphysics. It is also common to assume condensed phase water is only associated with inorganic components. We thus also assess sensitivity to assuming all organics are hygroscopic according to their prescribed molecular weight.For this study we use WRF-Chem v3.4.1, focusing on anthropogenic dominated North-Western Europe. Gas-phase chemistry is represented using CBM-Z whilst aerosol dynamics are simulated using the 8-section MOSAIC scheme, including a 9-bin volatility basis set (VBS) treatment of organic aerosol. Results indicate that predicted mass loadings can vary significantly. Without gas phase ageing of higher volatility compounds, dynamic partitioning always results in lower mass loadings downwind of emission sources. The inclusion of condensed phase water in both partitioning models increases the predicted PM mass, resulting from a larger contribution from higher volatility organics, if present. If gas phase ageing of VBS compounds is allowed to occur in a dynamic model, this can often lead to higher predicted mass loadings, contrary to expected behaviour from a simple non-reactive gas phase box model. As descriptions of aerosol phase processes improve within regional models, the baseline descriptions of partitioning should retain the ability to treat dynamic partitioning of organic compounds. Using our simulations, we discuss whether derived sensitivities to aerosol processes in existing models may be inherently biased.This work was supported by the Nature Environment Research Council within the RONOCO (NE/F004656/1) and CCN-Vol (NE/L007827/1) projects.

  11. Na, Rb and Cs partitioning between metal, silicate and sulfide: Implications for volatile depletion in terrestrial planets

    NASA Astrophysics Data System (ADS)

    Boujibar, A.; Fei, Y.; Du, Z.; Righter, K.; Bullock, E. S.

    2017-12-01

    Inner Solar System materials are known for their depletion in volatile elements, including the moderately volatile alkalis: Na, K, Rb, and Cs. The origin of this depletion is still uncertain, as several processes could have been involved, during the nebular condensation or planetary accretion. Volatile depletion is commonly estimated through comparison of alkali concentrations relatively to those of chondrites, assuming they remain in planetary mantles during core segregation. However, experimental studies show that substantial K can partition into metals that are enriched in sulfur and oxygen. Several models have also suggested that sulfides may have played an important role during episodes of sulfide segregation from a crystallizing magma ocean (sulfide matte) or accretion of S-rich planetary embryos. For Mercury, a sulfide layer could be present between core and mantle, due to immiscibility between Si-rich and S-rich metals. Therefore, here we investigate whether alkali elements (Na, Cs and Rb) could be partly sequestered in planetary cores during their differentiation. We conducted experiments at high pressure and temperature (1 to 5 GPa and up to 1900 °C) to determine partition coefficients of Na, Rb and Cs between metal and silicate. Our results show that pressure, temperature, sulfur and oxygen in metals enhance the partitioning of Na, Rb and Cs into metals, as previously found for K. For all three investigated alkalis (Na, Rb and Cs), we found a maximum partition coefficient of 1 between sulfides containing 13 wt% O and silicate melt. Therefore, S-rich cores or sulfide layers formed due to immiscibility in Fe-S-O systems could have acted as important geochemical reservoirs for alkali elements. Using our experimental data and different assumptions on initial bulk abundances, we evaluate volatile depletion in terrestrial planets, by comparing resulting mantle alkali concentrations after core segregation, with actual concentrations in the Earth's mantle.

  12. Defining life: connecting robotics and chemistry.

    PubMed

    Brack, André; Troublé, Michel

    2010-04-01

    Life is commonly referred as open systems driven by organic chemistry capable to self reproduce and to evolve. The notion of life has also been extended to non chemical systems such as robots. The key characteristics of living systems, i.e. autonomy, self-replication, self-reproduction, self-organization, self-aggregation, autocatalysis, as defined in chemistry and in robotics, are compared in a dialogue between a chemist and a robotitian.

  13. Assembling the bacterial segrosome.

    PubMed

    Hayes, Finbarr; Barillà, Daniela

    2006-05-01

    Genome segregation in prokaryotes is a highly ordered process that integrates with DNA replication, cytokinesis and other fundamental facets of the bacterial cell cycle. The segrosome is the nucleoprotein complex that mediates DNA segregation in bacteria, its assembly and organization is best understood for plasmid partition. The recent elucidation of structures of the ParB plasmid segregation protein bound to centromeric DNA, and of the tertiary structures of other segregation proteins, are key milestones in the path to deciphering the molecular basis of bacterial DNA segregation.

  14. 47 CFR 95.823 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Geographic partitioning and spectrum... Geographic partitioning and spectrum disaggregation. (a) Eligibility. Parties seeking Commission approval of geographic partitioning or spectrum disaggregation of 218-219 MHz Service system licenses shall request an...

  15. 47 CFR 95.823 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Geographic partitioning and spectrum... Geographic partitioning and spectrum disaggregation. (a) Eligibility. Parties seeking Commission approval of geographic partitioning or spectrum disaggregation of 218-219 MHz Service system licenses shall request an...

  16. 47 CFR 95.823 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Geographic partitioning and spectrum... Geographic partitioning and spectrum disaggregation. (a) Eligibility. Parties seeking Commission approval of geographic partitioning or spectrum disaggregation of 218-219 MHz Service system licenses shall request an...

  17. 47 CFR 95.823 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Geographic partitioning and spectrum... Geographic partitioning and spectrum disaggregation. (a) Eligibility. Parties seeking Commission approval of geographic partitioning or spectrum disaggregation of 218-219 MHz Service system licenses shall request an...

  18. 47 CFR 95.823 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Geographic partitioning and spectrum... Geographic partitioning and spectrum disaggregation. (a) Eligibility. Parties seeking Commission approval of geographic partitioning or spectrum disaggregation of 218-219 MHz Service system licenses shall request an...

  19. Reprint of "versatile and stable vectors for efficient gene expression in Ralstonia eutropha H16".

    PubMed

    Gruber, Steffen; Hagen, Jeremias; Schwab, Helmut; Koefinger, Petra

    2014-12-20

    The Gram-negative β-proteobacterium Ralstonia eutropha H16 is primarily known for polyhydroxybutyrate (PHB) production and its ability to grow chemolithoautotrophically by using CO2 and H2 as sole carbon and energy sources. The majority of metabolic engineering and heterologous expression studies conducted so far rely on a small number of suitable expression systems. Particularly the plasmid based expression systems already developed for the use in R. eutropha H16 suffer from high segregational instability and plasmid loss after a short time of fermentation. In order to develop efficient and highly stable plasmid expression vectors for the use in R. eutropha H16, a new plasmid design was created including the RP4 partitioning system, as well as various promoters and origins of replication. The application of minireplicons derived from broad-host-range plasmids RSF1010, pBBR1, RP4 and pSa for the construction of expression vectors and the use of numerous, versatile promoters extend the range of feasible expression levels considerably. In particular, the use of promoters derived from the bacteriophage T5 was described for the first time in this work, characterizing the j5 promoter as the strongest promoter yet to be applied in R. eutropha H16. Moreover, the implementation of the RP4 partition sequence in plasmid design increased plasmid stability significantly and enables fermentations with marginal plasmid loss of recombinant R. eutropha H16 for at least 96h. The utility of the new vector family in R. eutropha H16 is demonstrated by providing expression data with different model proteins and consequently further raises the value of this organism as cell factory for biotechnological applications including protein and metabolite production. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Versatile and stable vectors for efficient gene expression in Ralstonia eutropha H16.

    PubMed

    Gruber, Steffen; Hagen, Jeremias; Schwab, Helmut; Koefinger, Petra

    2014-09-30

    The Gram-negative β-proteobacterium Ralstonia eutropha H16 is primarily known for polyhydroxybutyrate (PHB) production and its ability to grow chemolithoautotrophically by using CO2 and H2 as sole carbon and energy sources. The majority of metabolic engineering and heterologous expression studies conducted so far rely on a small number of suitable expression systems. Particularly the plasmid based expression systems already developed for the use in R. eutropha H16 suffer from high segregational instability and plasmid loss after a short time of fermentation. In order to develop efficient and highly stable plasmid expression vectors for the use in R. eutropha H16, a new plasmid design was created including the RP4 partitioning system, as well as various promoters and origins of replication. The application of minireplicons derived from broad-host-range plasmids RSF1010, pBBR1, RP4 and pSa for the construction of expression vectors and the use of numerous, versatile promoters extend the range of feasible expression levels considerably. In particular, the use of promoters derived from the bacteriophage T5 was described for the first time in this work, characterizing the j5 promoter as the strongest promoter yet to be applied in R. eutropha H16. Moreover, the implementation of the RP4 partition sequence in plasmid design increased plasmid stability significantly and enables fermentations with marginal plasmid loss of recombinant R. eutropha H16 for at least 96 h. The utility of the new vector family in R. eutropha H16 is demonstrated by providing expression data with different model proteins and consequently further raises the value of this organism as cell factory for biotechnological applications including protein and metabolite production. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Generalized Cahn-Hilliard equation for solutions with drastically different diffusion coefficients. Application to exsolution in ternary feldspar

    NASA Astrophysics Data System (ADS)

    Petrishcheva, E.; Abart, R.

    2012-04-01

    We address mathematical modeling and computer simulations of phase decomposition in a multicomponent system. As opposed to binary alloys with one common diffusion parameter, our main concern is phase decomposition in real geological systems under influence of strongly different interdiffusion coefficients, as it is frequently encountered in mineral solid solutions with coupled diffusion on different sub-lattices. Our goal is to explain deviations from equilibrium element partitioning which are often observed in nature, e.g., in a cooled ternary feldspar. To this end we first adopt the standard Cahn-Hilliard model to the multicomponent diffusion problem and account for arbitrary diffusion coefficients. This is done by using Onsager's approach such that flux of each component results from the combined action of chemical potentials of all components. In a second step the generalized Cahn-Hilliard equation is solved numerically using finite-elements approach. We introduce and investigate several decomposition scenarios that may produce systematic deviations from the equilibrium element partitioning. Both ideal solutions and ternary feldspar are considered. Typically, the slowest component is initially "frozen" and the decomposition effectively takes place only for two "fast" components. At this stage the deviations from the equilibrium element partitioning are indeed observed. These deviations may became "frozen" under conditions of cooling. The final equilibration of the system occurs on a considerably slower time scale. Therefore the system may indeed remain unaccomplished at the observation point. Our approach reveals the intrinsic reasons for the specific phase separation path and rigorously describes it by direct numerical solution of the generalized Cahn-Hilliard equation.

  2. The Tcp conjugation system of Clostridium perfringens.

    PubMed

    Wisniewski, Jessica A; Rood, Julian I

    2017-05-01

    The Gram-positive pathogen Clostridium perfringens possesses a family of large conjugative plasmids that is typified by the tetracycline resistance plasmid pCW3. Since these plasmids may carry antibiotic resistance genes or genes encoding extracellular or sporulation-associated toxins, the conjugative transfer of these plasmids appears to be important for the epidemiology of C. perfringens-mediated diseases. Sequence analysis of members of this plasmid family identified a highly conserved 35kb region that encodes proteins with various functions, including plasmid replication and partitioning. The tcp conjugation locus also was identified in this region, initially based on low-level amino acid sequence identity to conjugation proteins from the integrative conjugative element Tn916. Genetic studies confirmed that the tcp locus is required for conjugative transfer and combined with biochemical and structural analyses have led to the development of a functional model of the Tcp conjugation apparatus. This review summarises our current understanding of the Tcp conjugation system, which is now one of the best-characterized conjugation systems in Gram-positive bacteria. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Certificate Revocation Using Fine Grained Certificate Space Partitioning

    NASA Astrophysics Data System (ADS)

    Goyal, Vipul

    A new certificate revocation system is presented. The basic idea is to divide the certificate space into several partitions, the number of partitions being dependent on the PKI environment. Each partition contains the status of a set of certificates. A partition may either expire or be renewed at the end of a time slot. This is done efficiently using hash chains.

  4. Adoption of the B2SAFE EUDAT replication service by the EPOS community

    NASA Astrophysics Data System (ADS)

    Cacciari, Claudio; Fares, Massimo; Fiameni, Giuseppe; Michelini, Alberto; Danecek, Peter; Wittenburg, Peter

    2014-05-01

    B2SAFE is the EUDAT service for moving and replicating data between sites and storage systems for different purposes. The goal of B2SAFE is to keep the data from a repository safe by replicating it across different geographical and administrative zones according to a set of well-defined policies. It is also a way to store large volumes of data permanently at those sites which are providing powerful on-demand data analysis facilities. In particular, B2SAFE operates on the domain of registered data where data objects are referable via persistent identifiers (PIDs). B2SAFE is more than just copying data because the PIDs must be carefully managed when data objects are moved or replicated. The EUDAT B2SAFE Service offers functionality to replicate datasets across different data centres in a safe and efficient way while maintaining all information required to easily find and query information about the replica locations. The information about the replica locations and other important information is stored in PID records, each managed in separate administrative domains. The B2SAFE Service is implemented as an iRODS module providing a set of iRODS rules or policies to interface with the EPIC handle API and uses the iRODS middleware to replicate datasets from a source data (or community) centre to a destination data centre. The definition of the dataset(s) to replicate is flexible and up to the communities using the B2SAFE service. While the B2SAFE is internally using the EPIC handle API, communities have the choice to use any PID system they prefer to assign PIDs to their digital objects. A reference to one or more EUDAT B2SAFE PIDs is returned by the B2SAFE service when a dataset is replicated. The presentation will introduce the problem space of B2SAFE, presents the achievements that have been made during the last year for enabling communities to make use of the B2SAFE service, demonstrates a EPOS use cases, outlines the commonalities and differences between the policies for B2SAFE, presents new developments towards a common service layer interface and a data policy management framework.

  5. Identification of two new genes, mukE and mukF, involved in chromosome partitioning in Escherichia coli.

    PubMed

    Yamanaka, K; Ogura, T; Niki, H; Hiraga, S

    1996-02-25

    We have previously reported that the MukB protein is essential for chromosome partitioning in Escherichia coli and that mukB mutants produce anucleate cells and are temperature-sensitive for colony formation. The mukB gene maps at 21 min on the E. coli chromosome and smtA-mukF-mukE-mukB genes might comprise an operon, which is transcribed in a clockwise direction. Here, we report that mukF and mukE null mutants are both temperature-sensitive for colony formation and produce anucleate cells even at the permissive temperature. These phenotypes are the same as those observed in the mukB null mutant. The primary sequence of MukF includes a leucine zipper structure and an acidic domain. Mutational analysis revealed that both are required for MukF function. When the MukF protein was overproduced in the wild-type strain, anucleate cells were produced. In contrast, overproduction of either MukE or MukB did not cause the defect. In null mutants for the mukF, mukE, and mukB genes, the synchronous initiation of chromosome replication was not affected. The mini-F plasmid was as stably maintained in these mutants as in the wild-type strain. These results indicate that the MukF, MukE, and MukB proteins are involved in the chromosome partitioning steps, but are not required for mini-F plasmid partitioning.

  6. Parallel Processing of Big Point Clouds Using Z-Order Partitioning

    NASA Astrophysics Data System (ADS)

    Alis, C.; Boehm, J.; Liu, K.

    2016-06-01

    As laser scanning technology improves and costs are coming down, the amount of point cloud data being generated can be prohibitively difficult and expensive to process on a single machine. This data explosion is not only limited to point cloud data. Voluminous amounts of high-dimensionality and quickly accumulating data, collectively known as Big Data, such as those generated by social media, Internet of Things devices and commercial transactions, are becoming more prevalent as well. New computing paradigms and frameworks are being developed to efficiently handle the processing of Big Data, many of which utilize a compute cluster composed of several commodity grade machines to process chunks of data in parallel. A central concept in many of these frameworks is data locality. By its nature, Big Data is large enough that the entire dataset would not fit on the memory and hard drives of a single node hence replicating the entire dataset to each worker node is impractical. The data must then be partitioned across worker nodes in a manner that minimises data transfer across the network. This is a challenge for point cloud data because there exist different ways to partition data and they may require data transfer. We propose a partitioning based on Z-order which is a form of locality-sensitive hashing. The Z-order or Morton code is computed by dividing each dimension to form a grid then interleaving the binary representation of each dimension. For example, the Z-order code for the grid square with coordinates (x = 1 = 012, y = 3 = 112) is 10112 = 11. The number of points in each partition is controlled by the number of bits per dimension: the more bits, the fewer the points. The number of bits per dimension also controls the level of detail with more bits yielding finer partitioning. We present this partitioning method by implementing it on Apache Spark and investigating how different parameters affect the accuracy and running time of the k nearest neighbour algorithm for a hemispherical and a triangular wave point cloud.

  7. Plasmid DNA partitioning and separation using poly(ethylene glycol)/poly(acrylate)/salt aqueous two-phase systems.

    PubMed

    Johansson, Hans-Olof; Matos, Tiago; Luz, Juliana S; Feitosa, Eloi; Oliveira, Carla C; Pessoa, Adalberto; Bülow, Leif; Tjerneld, Folke

    2012-04-13

    Phase diagrams of poly(ethylene glycol)/polyacrylate/Na(2)SO(4) systems have been investigated with respect to polymer size and pH. Plasmid DNA from Escherichia coli can depending on pH and polymer molecular weight be directed to a poly(ethylene glycol) or to a polyacrylate-rich phase in an aqueous two-phase system formed by these polymers. Bovine serum albumin (BSA) and E. coli homogenate proteins can be directed opposite to the plasmid partitioning in these systems. Two bioseparation processes have been developed where in the final step the pDNA is partitioned to a salt-rich phase giving a total process yield of 60-70%. In one of them the pDNA is partitioned between the polyacrylate and PEG-phases in order to remove proteins. In a more simplified process the plasmid is partitioned to a PEG-phase and back-extracted into a Na(2)SO(4)-rich phase. The novel polyacrylate/PEG system allows a strong change of the partitioning between the phases with relatively small changes in composition or pH. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. The Influence of Fuel Properties on Combustion Efficiency and the Partitioning of Pyrogenic Carbon

    NASA Astrophysics Data System (ADS)

    Urbanski, S. P.; Baker, S. P.; Lincoln, E.; Richardson, M.

    2016-12-01

    The partitioning of volatized pyrogenic carbon into CO2, CO, CH4, non-methane organic carbon, and particulate organic carbon (POC) and elemental carbon (PEC) depends on the combustion characteristics of biomass fires which are influenced by the moisture content, structure and arrangement of the fuels. Flaming combustion is characterized by efficient conversion of volatized carbon into CO2. In contrast, smoldering is less efficient and produces incomplete combustion products like CH4 and carbonaceous particles. This paper presents a laboratory study that has examined the relationship between the partitioning of volatized pyrogenic carbon and specific fuel properties. The study focused on fuel beds composed of simple fuel particles — ponderosa pine needles. Ponderosa pine was selected because it contains a common wildland fuel component, conifer needles, which can be easily arranged into fuel beds of variable structure (bulk density and depth) and moisture contents that are both representative of natural conditions and are easily replicated. Modified combustion efficiency (MCE, ΔCO2/[ΔCO2+ ΔCO]) and emission factors (EF) for CO2, CO, CH4, POC, and PEC were measured over a range of needle moisture content and fuel bed bulk density and depth representative of naturally occurring fuel beds. We found that, as expected, MCE decreases as the fuel bed bulk density increases and emissions of CO, CH4, PM2.5, and POC increased. However, fuel bed depth did not appear to have an effect on how effect on MCE or emission factors. Surprisingly, a consistent relationship between the needle moisture content and emissions was not identified. At the high bulk densities, moisture content had a strong influence on MCE which explained variability in EFCH4. However, moisture content appeared to have an influence EFPOC and EFPEC that was independent of MCE. These findings may have significant implications since many models of biomass burning assume that litter fuels, such as ponderosa pine needles, burn almost exclusively via flaming combustion with a high efficiency. Our results indicate that for fuel bed properties typical of many conifer forests, pollutants generated from fires will be higher than that predicted using standard biomass burning models.

  9. DNA recombination-initiation plays a role in the extremely biased inheritance of yeast [rho-] mitochondrial DNA that contains the replication origin ori5.

    PubMed

    Ling, Feng; Hori, Akiko; Shibata, Takehiko

    2007-02-01

    Hypersuppressiveness, as observed in Saccharomyces cerevisiae, is an extremely biased inheritance of a small mitochondrial DNA (mtDNA) fragment that contains a replication origin (HS [rho(-)] mtDNA). Our previous studies showed that concatemers (linear head-to-tail multimers) are obligatory intermediates for mtDNA partitioning and are primarily formed by rolling-circle replication mediated by Mhr1, a protein required for homologous mtDNA recombination. In this study, we found that Mhr1 is required for the hypersuppressiveness of HS [ori5] [rho(-)] mtDNA harboring ori5, one of the replication origins of normal ([rho(+)]) mtDNA. In addition, we detected an Ntg1-stimulated double-strand break at the ori5 locus. Purified Ntg1, a base excision repair enzyme, introduced a double-stranded break by itself into HS [ori5] [rho(-)] mtDNA at ori5 isolated from yeast cells. Both hypersuppressiveness and concatemer formation of HS [ori5] [rho(-)] mtDNA are simultaneously suppressed by the ntg1 null mutation. These results support a model in which, like homologous recombination, rolling-circle HS [ori5] [rho(-)] mtDNA replication is initiated by double-stranded breakage in ori5, followed by Mhr1-mediated homologous pairing of the processed nascent DNA ends with circular mtDNA. The hypersuppressiveness of HS [ori5] [rho(-)] mtDNA depends on a replication advantage furnished by the higher density of ori5 sequences and on a segregation advantage furnished by the higher genome copy number on transmitted concatemers.

  10. Carbon isotope effects associated with autotrophic acetogenesis

    NASA Technical Reports Server (NTRS)

    Gelwicks, J. T.; Risatti, J. B.; Hayes, J. M.

    1989-01-01

    The carbon kinetic isotope effects associated with synthesis of acetate from CO2 and H2 during autotrophic growth of Acetobacterium woodii at 30 degrees C have been measured by isotopic analyses of CO2, methyl-carbon, and total acetate. Closed systems allowing construction of complete mass balances at varying stages of growth were utilized, and the effects of the partitioning of carbon between CO2 and HCO3- were taken account. For the overall reaction, total carbonate --> total acetate, isotope effects measured in replicate experiments ranged from -59.0 +/- 0.9% to -57.2 +/- 2.3%. Taking into account all measurements, the weighted mean and standard deviation are -58.6 +/- 0.7%. There is no evidence for intramolecular ordering in the acetate. The carbon isotopic composition of sedimentary acetate, otherwise expected to be near that of sedimentary organic carbon, is likely to be depleted in environments in which autotrophic acetogenesis is occurring.

  11. Managing Network Partitions in Structured P2P Networks

    NASA Astrophysics Data System (ADS)

    Shafaat, Tallat M.; Ghodsi, Ali; Haridi, Seif

    Structured overlay networks form a major class of peer-to-peer systems, which are touted for their abilities to scale, tolerate failures, and self-manage. Any long-lived Internet-scale distributed system is destined to face network partitions. Consequently, the problem of network partitions and mergers is highly related to fault-tolerance and self-management in large-scale systems. This makes it a crucial requirement for building any structured peer-to-peer systems to be resilient to network partitions. Although the problem of network partitions and mergers is highly related to fault-tolerance and self-management in large-scale systems, it has hardly been studied in the context of structured peer-to-peer systems. Structured overlays have mainly been studied under churn (frequent joins/failures), which as a side effect solves the problem of network partitions, as it is similar to massive node failures. Yet, the crucial aspect of network mergers has been ignored. In fact, it has been claimed that ring-based structured overlay networks, which constitute the majority of the structured overlays, are intrinsically ill-suited for merging rings. In this chapter, we motivate the problem of network partitions and mergers in structured overlays. We discuss how a structured overlay can automatically detect a network partition and merger. We present an algorithm for merging multiple similar ring-based overlays when the underlying network merges. We examine the solution in dynamic conditions, showing how our solution is resilient to churn during the merger, something widely believed to be difficult or impossible. We evaluate the algorithm for various scenarios and show that even when falsely detecting a merger, the algorithm quickly terminates and does not clutter the network with many messages. The algorithm is flexible as the tradeoff between message complexity and time complexity can be adjusted by a parameter.

  12. Constant-Time Pattern Matching For Real-Time Production Systems

    NASA Astrophysics Data System (ADS)

    Parson, Dale E.; Blank, Glenn D.

    1989-03-01

    Many intelligent systems must respond to sensory data or critical environmental conditions in fixed, predictable time. Rule-based systems, including those based on the efficient Rete matching algorithm, cannot guarantee this result. Improvement in execution-time efficiency is not all that is needed here; it is important to ensure constant, 0(1) time limits for portions of the matching process. Our approach is inspired by two observations about human performance. First, cognitive psychologists distinguish between automatic and controlled processing. Analogously, we partition the matching process across two networks. The first is the automatic partition; it is characterized by predictable 0(1) time and space complexity, lack of persistent memory, and is reactive in nature. The second is the controlled partition; it includes the search-based goal-driven and data-driven processing typical of most production system programming. The former is responsible for recognition and response to critical environmental conditions. The latter is responsible for the more flexible problem-solving behaviors consistent with the notion of intelligence. Support for learning and refining the automatic partition can be placed in the controlled partition. Our second observation is that people are able to attend to more critical stimuli or requirements selectively. Our match algorithm uses priorities to focus matching. It compares priority of information during matching, rather than deferring this comparison until conflict resolution. Messages from the automatic partition are able to interrupt the controlled partition, enhancing system responsiveness. Our algorithm has numerous applications for systems that must exhibit time-constrained behavior.

  13. A novel method for calculating relative free energy of similar molecules in two environments

    NASA Astrophysics Data System (ADS)

    Farhi, Asaf; Singh, Bipin

    2017-03-01

    Calculating relative free energies is a topic of substantial interest and has many applications including solvation and binding free energies, which are used in computational drug discovery. However, there remain the challenges of accuracy, simple implementation, robustness and efficiency, which prevent the calculations from being automated and limit their use. Here we present an exact and complete decoupling analysis in which the partition functions of the compared systems decompose into the partition functions of the common and different subsystems. This decoupling analysis is applicable to submolecules with coupled degrees of freedom such as the methyl group and to any potential function (including the typical dihedral potentials), enabling to remove less terms in the transformation which results in a more efficient calculation. Then we show mathematically, in the context of partition function decoupling, that the two compared systems can be simulated separately, eliminating the need to design a composite system. We demonstrate the decoupling analysis and the separate transformations in a relative free energy calculation using MD simulations for a general force field and compare to another calculation and to experimental results. We present a unified soft-core technique that ensures the monotonicity of the numerically integrated function (analytical proof) which is important for the selection of intermediates. We show mathematically that in this soft-core technique the numerically integrated function can be non-steep only when we transform the systems separately, which can simplify the numerical integration. Finally, we show that when the systems have rugged energy landscape they can be equilibrated without introducing another sampling dimension which can also enable to use the simulation results for other free energy calculations.

  14. Partitioning of Alkali Metal Salts and Boric Acid from Aqueous Phase into the Polyamide Active Layers of Reverse Osmosis Membranes.

    PubMed

    Wang, Jingbo; Kingsbury, Ryan S; Perry, Lamar A; Coronell, Orlando

    2017-02-21

    The partition coefficient of solutes into the polyamide active layer of reverse osmosis (RO) membranes is one of the three membrane properties (together with solute diffusion coefficient and active layer thickness) that determine solute permeation. However, no well-established method exists to measure solute partition coefficients into polyamide active layers. Further, the few studies that measured partition coefficients for inorganic salts report values significantly higher than one (∼3-8), which is contrary to expectations from Donnan theory and the observed high rejection of salts. As such, we developed a benchtop method to determine solute partition coefficients into the polyamide active layers of RO membranes. The method uses a quartz crystal microbalance (QCM) to measure the change in the mass of the active layer caused by the uptake of the partitioned solutes. The method was evaluated using several inorganic salts (alkali metal salts of chloride) and a weak acid of common concern in water desalination (boric acid). All partition coefficients were found to be lower than 1, in general agreement with expectations from Donnan theory. Results reported in this study advance the fundamental understanding of contaminant transport through RO membranes, and can be used in future studies to decouple the contributions of contaminant partitioning and diffusion to contaminant permeation.

  15. Ultraaccurate genome sequencing and haplotyping of single human cells.

    PubMed

    Chu, Wai Keung; Edge, Peter; Lee, Ho Suk; Bansal, Vikas; Bafna, Vineet; Huang, Xiaohua; Zhang, Kun

    2017-11-21

    Accurate detection of variants and long-range haplotypes in genomes of single human cells remains very challenging. Common approaches require extensive in vitro amplification of genomes of individual cells using DNA polymerases and high-throughput short-read DNA sequencing. These approaches have two notable drawbacks. First, polymerase replication errors could generate tens of thousands of false-positive calls per genome. Second, relatively short sequence reads contain little to no haplotype information. Here we report a method, which is dubbed SISSOR (single-stranded sequencing using microfluidic reactors), for accurate single-cell genome sequencing and haplotyping. A microfluidic processor is used to separate the Watson and Crick strands of the double-stranded chromosomal DNA in a single cell and to randomly partition megabase-size DNA strands into multiple nanoliter compartments for amplification and construction of barcoded libraries for sequencing. The separation and partitioning of large single-stranded DNA fragments of the homologous chromosome pairs allows for the independent sequencing of each of the complementary and homologous strands. This enables the assembly of long haplotypes and reduction of sequence errors by using the redundant sequence information and haplotype-based error removal. We demonstrated the ability to sequence single-cell genomes with error rates as low as 10 -8 and average 500-kb-long DNA fragments that can be assembled into haplotype contigs with N50 greater than 7 Mb. The performance could be further improved with more uniform amplification and more accurate sequence alignment. The ability to obtain accurate genome sequences and haplotype information from single cells will enable applications of genome sequencing for diverse clinical needs. Copyright © 2017 the Author(s). Published by PNAS.

  16. Site Partitioning for Redundant Arrays of Distributed Disks

    NASA Technical Reports Server (NTRS)

    Mourad, Antoine N.; Fuchs, W. Kent; Saab, Daniel G.

    1996-01-01

    Redundant arrays of distributed disks (RADD) can be used in a distributed computing system or database system to provide recovery in the presence of disk crashes and temporary and permanent failures of single sites. In this paper, we look at the problem of partitioning the sites of a distributed storage system into redundant arrays in such a way that the communication costs for maintaining the parity information are minimized. We show that the partitioning problem is NP-hard. We then propose and evaluate several heuristic algorithms for finding approximate solutions. Simulation results show that significant reduction in remote parity update costs can be achieved by optimizing the site partitioning scheme.

  17. Applications of Replicating-Competent Reporter-Expressing Viruses in Diagnostic and Molecular Virology.

    PubMed

    Li, Yongfeng; Li, Lian-Feng; Yu, Shaoxiong; Wang, Xiao; Zhang, Lingkai; Yu, Jiahui; Xie, Libao; Li, Weike; Ali, Razim; Qiu, Hua-Ji

    2016-05-06

    Commonly used tests based on wild-type viruses, such as immunostaining, cannot meet the demands for rapid detection of viral replication, high-throughput screening for antivirals, as well as for tracking viral proteins or virus transport in real time. Notably, the development of replicating-competent reporter-expressing viruses (RCREVs) has provided an excellent option to detect directly viral replication without the use of secondary labeling, which represents a significant advance in virology. This article reviews the applications of RCREVs in diagnostic and molecular virology, including rapid neutralization tests, high-throughput screening systems, identification of viral receptors and virus-host interactions, dynamics of viral infections in vitro and in vivo, vaccination approaches and others. However, there remain various challenges associated with RCREVs, including pathogenicity alterations due to the insertion of a reporter gene, instability or loss of the reporter gene expression, or attenuation of reporter signals in vivo. Despite all these limitations, RCREVs have become powerful tools for both basic and applied virology with the development of new technologies for generating RCREVs, the inventions of novel reporters and the better understanding of regulation of viral replication.

  18. Genome complexity, robustness and genetic interactions in digital organisms

    NASA Astrophysics Data System (ADS)

    Lenski, Richard E.; Ofria, Charles; Collier, Travis C.; Adami, Christoph

    1999-08-01

    Digital organisms are computer programs that self-replicate, mutate and adapt by natural selection. They offer an opportunity to test generalizations about living systems that may extend beyond the organic life that biologists usually study. Here we have generated two classes of digital organism: simple programs selected solely for rapid replication, and complex programs selected to perform mathematical operations that accelerate replication through a set of defined `metabolic' rewards. To examine the differences in their genetic architecture, we introduced millions of single and multiple mutations into each organism and measured the effects on the organism's fitness. The complex organisms are more robust than the simple ones with respect to the average effects of single mutations. Interactions among mutations are common and usually yield higher fitness than predicted from the component mutations assuming multiplicative effects; such interactions are especially important in the complex organisms. Frequent interactions among mutations have also been seen in bacteria, fungi and fruitflies. Our findings support the view that interactions are a general feature of genetic systems.

  19. Genome complexity, robustness and genetic interactions in digital organisms.

    PubMed

    Lenski, R E; Ofria, C; Collier, T C; Adami, C

    1999-08-12

    Digital organisms are computer programs that self-replicate, mutate and adapt by natural selection. They offer an opportunity to test generalizations about living systems that may extend beyond the organic life that biologists usually study. Here we have generated two classes of digital organism: simple programs selected solely for rapid replication, and complex programs selected to perform mathematical operations that accelerate replication through a set of defined 'metabolic' rewards. To examine the differences in their genetic architecture, we introduced millions of single and multiple mutations into each organism and measured the effects on the organism's fitness. The complex organisms are more robust than the simple ones with respect to the average effects of single mutations. Interactions among mutations are common and usually yield higher fitness than predicted from the component mutations assuming multiplicative effects; such interactions are especially important in the complex organisms. Frequent interactions among mutations have also been seen in bacteria, fungi and fruitflies. Our findings support the view that interactions are a general feature of genetic systems.

  20. The importance of having an appropriate relational data segmentation in ATLAS

    NASA Astrophysics Data System (ADS)

    Dimitrov, G.

    2015-12-01

    In this paper we describe specific technical solutions put in place in various database applications of the ATLAS experiment at LHC where we make use of several partitioning techniques available in Oracle 11g. With the broadly used range partitioning and its option of automatic interval partitioning we add our own logic in PLSQL procedures and scheduler jobs to sustain data sliding windows in order to enforce various data retention policies. We also make use of the new Oracle 11g reference partitioning in the Nightly Build System to achieve uniform data segmentation. However the most challenging issue was to segment the data of the new ATLAS Distributed Data Management system (Rucio), which resulted in tens of thousands list type partitions and sub-partitions. Partition and sub-partition management, index strategy, statistics gathering and queries execution plan stability are important factors when choosing an appropriate physical model for the application data management. The so-far accumulated knowledge and analysis on the new Oracle 12c version features that could be beneficial will be shared with the audience.

  1. High-throughput state-machine replication using software transactional memory.

    PubMed

    Zhao, Wenbing; Yang, William; Zhang, Honglei; Yang, Jack; Luo, Xiong; Zhu, Yueqin; Yang, Mary; Luo, Chaomin

    2016-11-01

    State-machine replication is a common way of constructing general purpose fault tolerance systems. To ensure replica consistency, requests must be executed sequentially according to some total order at all non-faulty replicas. Unfortunately, this could severely limit the system throughput. This issue has been partially addressed by identifying non-conflicting requests based on application semantics and executing these requests concurrently. However, identifying and tracking non-conflicting requests require intimate knowledge of application design and implementation, and a custom fault tolerance solution developed for one application cannot be easily adopted by other applications. Software transactional memory offers a new way of constructing concurrent programs. In this article, we present the mechanisms needed to retrofit existing concurrency control algorithms designed for software transactional memory for state-machine replication. The main benefit for using software transactional memory in state-machine replication is that general purpose concurrency control mechanisms can be designed without deep knowledge of application semantics. As such, new fault tolerance systems based on state-machine replications with excellent throughput can be easily designed and maintained. In this article, we introduce three different concurrency control mechanisms for state-machine replication using software transactional memory, namely, ordered strong strict two-phase locking, conventional timestamp-based multiversion concurrency control, and speculative timestamp-based multiversion concurrency control. Our experiments show that speculative timestamp-based multiversion concurrency control mechanism has the best performance in all types of workload, the conventional timestamp-based multiversion concurrency control offers the worst performance due to high abort rate in the presence of even moderate contention between transactions. The ordered strong strict two-phase locking mechanism offers the simplest solution with excellent performance in low contention workload, and fairly good performance in high contention workload.

  2. High-throughput state-machine replication using software transactional memory

    PubMed Central

    Yang, William; Zhang, Honglei; Yang, Jack; Luo, Xiong; Zhu, Yueqin; Yang, Mary; Luo, Chaomin

    2017-01-01

    State-machine replication is a common way of constructing general purpose fault tolerance systems. To ensure replica consistency, requests must be executed sequentially according to some total order at all non-faulty replicas. Unfortunately, this could severely limit the system throughput. This issue has been partially addressed by identifying non-conflicting requests based on application semantics and executing these requests concurrently. However, identifying and tracking non-conflicting requests require intimate knowledge of application design and implementation, and a custom fault tolerance solution developed for one application cannot be easily adopted by other applications. Software transactional memory offers a new way of constructing concurrent programs. In this article, we present the mechanisms needed to retrofit existing concurrency control algorithms designed for software transactional memory for state-machine replication. The main benefit for using software transactional memory in state-machine replication is that general purpose concurrency control mechanisms can be designed without deep knowledge of application semantics. As such, new fault tolerance systems based on state-machine replications with excellent throughput can be easily designed and maintained. In this article, we introduce three different concurrency control mechanisms for state-machine replication using software transactional memory, namely, ordered strong strict two-phase locking, conventional timestamp-based multiversion concurrency control, and speculative timestamp-based multiversion concurrency control. Our experiments show that speculative timestamp-based multiversion concurrency control mechanism has the best performance in all types of workload, the conventional timestamp-based multiversion concurrency control offers the worst performance due to high abort rate in the presence of even moderate contention between transactions. The ordered strong strict two-phase locking mechanism offers the simplest solution with excellent performance in low contention workload, and fairly good performance in high contention workload. PMID:29075049

  3. Integrated Payload Data Handling Systems Using Software Partitioning

    NASA Astrophysics Data System (ADS)

    Taylor, Alun; Hann, Mark; Wishart, Alex

    2015-09-01

    An integrated Payload Data Handling System (I-PDHS) is one in which multiple instruments share a central payload processor for their on-board data processing tasks. This offers a number of advantages over the conventional decentralised architecture. Savings in payload mass and power can be realised because the total processing resource is matched to the requirements, as opposed to the decentralised architecture here the processing resource is in effect the sum of all the applications. Overall development cost can be reduced using a common processor. At individual instrument level the potential benefits include a standardised application development environment, and the opportunity to run the instrument data handling application on a fully redundant and more powerful processing platform [1]. This paper describes a joint program by SCISYS UK Limited, Airbus Defence and Space, Imperial College London and RAL Space to implement a realistic demonstration of an I-PDHS using engineering models of flight instruments (a magnetometer and camera) and a laboratory demonstrator of a central payload processor which is functionally representative of a flight design. The objective is to raise the Technology Readiness Level of the centralised data processing technique by address the key areas of task partitioning to prevent fault propagation and the use of a common development process for the instrument applications. The project is supported by a UK Space Agency grant awarded under the National Space Technology Program SpaceCITI scheme. [1].

  4. Cell partition in two phase polymer systems

    NASA Technical Reports Server (NTRS)

    Brooks, D. E.

    1979-01-01

    Aqueous phase-separated polymer solutions can be used as support media for the partition of biological macromolecules, organelles and cells. Cell separations using the technique have proven to be extremely sensitive to cell surface properties but application of the systems are limited to cells or aggregates which do not significantly while the phases are settling. Partition in zero g in principle removes this limitation but an external driving force must be applied to induce the phases to separate since their density difference disappears. We have recently shown that an applied electric field can supply the necessary driving force. We are proposing to utilize the NASA FES to study field-driven phase separation and cell partition on the ground and in zero g to help define the separation/partition process, with the ultimate goal being to develop partition as a zero g cell separation technique.

  5. Intersecting surface defects and instanton partition functions

    NASA Astrophysics Data System (ADS)

    Pan, Yiwen; Peelaers, Wolfger

    2017-07-01

    We analyze intersecting surface defects inserted in interacting four-dimensional N=2 supersymmetric quantum field theories. We employ the realization of a class of such systems as the infrared fixed points of renormalization group flows from larger theories, triggered by perturbed Seiberg-Witten monopole-like configurations, to compute their partition functions. These results are cast into the form of a partition function of 4d/2d/0d coupled systems. Our computations provide concrete expressions for the instanton partition function in the presence of intersecting defects and we study the corresponding ADHM model.

  6. Overlapping community detection in weighted networks via a Bayesian approach

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Wang, Xiaolong; Xiang, Xin; Tang, Buzhou; Chen, Qingcai; Fan, Shixi; Bu, Junzhao

    2017-02-01

    Complex networks as a powerful way to represent complex systems have been widely studied during the past several years. One of the most important tasks of complex network analysis is to detect communities embedded in networks. In the real world, weighted networks are very common and may contain overlapping communities where a node is allowed to belong to multiple communities. In this paper, we propose a novel Bayesian approach, called the Bayesian mixture network (BMN) model, to detect overlapping communities in weighted networks. The advantages of our method are (i) providing soft-partition solutions in weighted networks; (ii) providing soft memberships, which quantify 'how strongly' a node belongs to a community. Experiments on a large number of real and synthetic networks show that our model has the ability in detecting overlapping communities in weighted networks and is competitive with other state-of-the-art models at shedding light on community partition.

  7. Dynamic JUNQ inclusion bodies are asymmetrically inherited in mammalian cell lines through the asymmetric partitioning of vimentin.

    PubMed

    Ogrodnik, Mikołaj; Salmonowicz, Hanna; Brown, Rachel; Turkowska, Joanna; Średniawa, Władysław; Pattabiraman, Sundararaghavan; Amen, Triana; Abraham, Ayelet-chen; Eichler, Noam; Lyakhovetsky, Roman; Kaganovich, Daniel

    2014-06-03

    Aging is associated with the accumulation of several types of damage: in particular, damage to the proteome. Recent work points to a conserved replicative rejuvenation mechanism that works by preventing the inheritance of damaged and misfolded proteins by specific cells during division. Asymmetric inheritance of misfolded and aggregated proteins has been shown in bacteria and yeast, but relatively little evidence exists for a similar mechanism in mammalian cells. Here, we demonstrate, using long-term 4D imaging, that the vimentin intermediate filament establishes mitotic polarity in mammalian cell lines and mediates the asymmetric partitioning of damaged proteins. We show that mammalian JUNQ inclusion bodies containing soluble misfolded proteins are inherited asymmetrically, similarly to JUNQ quality-control inclusions observed in yeast. Mammalian IPOD-like inclusion bodies, meanwhile, are not always inherited by the same cell as the JUNQ. Our study suggests that the mammalian cytoskeleton and intermediate filaments provide the physical scaffold for asymmetric inheritance of dynamic quality-control JUNQ inclusions. Mammalian IPOD inclusions containing amyloidogenic proteins are not partitioned as effectively during mitosis as their counterparts in yeast. These findings provide a valuable mechanistic basis for studying the process of asymmetric inheritance in mammalian cells, including cells potentially undergoing polar divisions, such as differentiating stem cells and cancer cells.

  8. Effects of gas-wall partitioning in Teflon tubing and instrumentation on time-resolved measurements of gas-phase organic compounds

    NASA Astrophysics Data System (ADS)

    Pagonis, Demetrios; Krechmer, Jordan E.; de Gouw, Joost; Jimenez, Jose L.; Ziemann, Paul J.

    2017-12-01

    Recent studies have demonstrated that organic compounds can partition from the gas phase to the walls in Teflon environmental chambers and that the process can be modeled as absorptive partitioning. Here these studies were extended to investigate gas-wall partitioning of organic compounds in Teflon tubing and inside a proton-transfer-reaction mass spectrometer (PTR-MS) used to monitor compound concentrations. Rapid partitioning of C8-C14 2-ketones and C11-C16 1-alkenes was observed for compounds with saturation concentrations (c∗) in the range of 3 × 104 to 1 × 107 µg m-3, causing delays in instrument response to step-function changes in the concentration of compounds being measured. These delays vary proportionally with tubing length and diameter and inversely with flow rate and c∗. The gas-wall partitioning process that occurs in tubing is similar to what occurs in a gas chromatography column, and the measured delay times (analogous to retention times) were accurately described using a linear chromatography model where the walls were treated as an equivalent absorbing mass that is consistent with values determined for Teflon environmental chambers. The effect of PTR-MS surfaces on delay times was also quantified and incorporated into the model. The model predicts delays of an hour or more for semivolatile compounds measured under commonly employed conditions. These results and the model can enable better quantitative design of sampling systems, in particular when fast response is needed, such as for rapid transients, aircraft, or eddy covariance measurements. They may also allow estimation of c∗ values for unidentified organic compounds detected by mass spectrometry and could be employed to introduce differences in time series of compounds for use with factor analysis methods. Best practices are suggested for sampling organic compounds through Teflon tubing.

  9. Kaposi’s sarcoma–associated herpesvirus stably clusters its genomes across generations to maintain itself extrachromosomally

    PubMed Central

    Chiu, Ya-Fang; Sugden, Arthur U.

    2017-01-01

    Genetic elements that replicate extrachromosomally are rare in mammals; however, several human tumor viruses, including the papillomaviruses and the gammaherpesviruses, maintain their plasmid genomes by tethering them to cellular chromosomes. We have uncovered an unprecedented mechanism of viral replication: Kaposi’s sarcoma–associated herpesvirus (KSHV) stably clusters its genomes across generations to maintain itself extrachromosomally. To identify and characterize this mechanism, we developed two complementary, independent approaches: live-cell imaging and a predictive computational model. The clustering of KSHV requires the viral protein, LANA1, to bind viral genomes to nucleosomes arrayed on both cellular and viral DNA. Clustering affects both viral partitioning and viral genome numbers of KSHV. The clustering of KSHV plasmids provides it with an effective evolutionary strategy to rapidly increase copy numbers of genomes per cell at the expense of the total numbers of cells infected. PMID:28696226

  10. Kaposi’s sarcoma–associated herpesvirus stably clusters its genomes across generations to maintain itself extrachromosomally

    DOE PAGES

    Chiu, Ya-Fang; Sugden, Arthur U.; Fox, Kathryn; ...

    2017-07-10

    Genetic elements that replicate extrachromosomally are rare in mammals; however, several human tumor viruses, including the papillomaviruses and the gammaherpesviruses, maintain their plasmid genomes by tethering them to cellular chromosomes. We have uncovered an unprecedented mechanism of viral replication: Kaposi’s sarcoma–associated herpesvirus (KSHV) stably clusters its genomes across generations to maintain itself extrachromosomally. To identify and characterize this mechanism, we developed two complementary, independent approaches: live-cell imaging and a predictive computational model. The clustering of KSHV requires the viral protein, LANA1, to bind viral genomes to nucleosomes arrayed on both cellular and viral DNA. Clustering affects both viral partitioning andmore » viral genome numbers of KSHV. The clustering of KSHV plasmids provides it with an effective evolutionary strategy to rapidly increase copy numbers of genomes per cell at the expense of the total numbers of cells infected.« less

  11. Kaposi’s sarcoma–associated herpesvirus stably clusters its genomes across generations to maintain itself extrachromosomally

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, Ya-Fang; Sugden, Arthur U.; Fox, Kathryn

    Genetic elements that replicate extrachromosomally are rare in mammals; however, several human tumor viruses, including the papillomaviruses and the gammaherpesviruses, maintain their plasmid genomes by tethering them to cellular chromosomes. We have uncovered an unprecedented mechanism of viral replication: Kaposi’s sarcoma–associated herpesvirus (KSHV) stably clusters its genomes across generations to maintain itself extrachromosomally. To identify and characterize this mechanism, we developed two complementary, independent approaches: live-cell imaging and a predictive computational model. The clustering of KSHV requires the viral protein, LANA1, to bind viral genomes to nucleosomes arrayed on both cellular and viral DNA. Clustering affects both viral partitioning andmore » viral genome numbers of KSHV. The clustering of KSHV plasmids provides it with an effective evolutionary strategy to rapidly increase copy numbers of genomes per cell at the expense of the total numbers of cells infected.« less

  12. Cell-free study of F plasmid partition provides evidence for cargo transport by a diffusion-ratchet mechanism

    PubMed Central

    Vecchiarelli, Anthony G.; Hwang, Ling Chin; Mizuuchi, Kiyoshi

    2013-01-01

    Increasingly diverse types of cargo are being found to be segregated and positioned by ParA-type ATPases. Several minimalistic systems described in bacteria are self-organizing and are known to affect the transport of plasmids, protein machineries, and chromosomal loci. One well-studied model is the F plasmid partition system, SopABC. In vivo, SopA ATPase forms dynamic patterns on the nucleoid in the presence of the ATPase stimulator, SopB, which binds to the sopC site on the plasmid, demarcating it as the cargo. To understand the relationship between nucleoid patterning and plasmid transport, we established a cell-free system to study plasmid partition reactions in a DNA-carpeted flowcell. We observed depletion zones of the partition ATPase on the DNA carpet surrounding partition complexes. The findings favor a diffusion-ratchet model for plasmid motion whereby partition complexes create an ATPase concentration gradient and then climb up this gradient toward higher concentrations of the ATPase. Here, we report on the dynamic properties of the Sop system on a DNA-carpet substrate, which further support the proposed diffusion-ratchet mechanism. PMID:23479605

  13. Isotope Tales: Remaining Problems, Unsolvable Questions, and Gentle Successes

    NASA Astrophysics Data System (ADS)

    fogel, marilyn; bradley, christina; newsome, seth; filipp, fabian

    2014-05-01

    Earth's biomes function and adapt today as climate changes and ecosystems and the organisms within them adapt. Stable isotope biogeochemistry has had a major influence in understanding climate perturbations and continues to be an active area of research on many fronts. Banking on the success of compound specific stable isotope analyses of amino acids, nitrogen, carbon, and hydrogen isotopes continue to reveal subtle shifts in oceanic food webs and metabolic changes in microbes, plants, and animals. A biochemical understanding of exactly how organisms process and partition stable isotopes during metabolism remains unsolved, but is required if this field is to move beyond description to quantitation. Although the patterns of carbon and nitrogen isotopes are fairly well established in the common amino acids, we need to consider specifics: How do shifting metabolic pathways (metabolomics) influence the outcome of stable isotope partitioning? What influence does the gut microflora in animals have on isotopic labeling? What are the intramolecular isotope patterns of common amino acids and what do they tell us? What can be learned with other isotope systems, such as hydrogen? Results and ideas of how to move forward in this field will be presented starting at the molecular level and ending with ecosystems.

  14. Effects of full-stream carbon filtration on the development of head and lateral line erosion syndrome (HLLES) in ocean surgeon.

    PubMed

    Stamper, M Andrew; Kittell, Michele M; Patel, Erin E; Corwin, Allison L

    2011-09-01

    Head and lateral line erosion syndrome (HLLES) is a common but very poorly understood disease of marine aquarium fish. One suspected etiology is the use of granulated activated carbon (GAC) to filter the water. Seventy-two ocean surgeons Acanthurus bahianus were distributed among three carbon-negative control systems and three GAC-treated systems such that each tank contained approximately the same total body mass. Each replicate system was made up of two 250-L circular tanks with a common filtration system (6 fish per tank, 12 fish per replicate system). The GAC-treated tanks were exposed to full-stream, extruded coconut shell activated carbon, which produced a mean total organic carbon content of 0.4 mg/L. The results of this study indicate that extruded coconut shell activated carbon filtering at full-stream rates can cause HLLES-type lesions in ocean surgeons. The HLLES developed exponentially over 15 d, beginning in the chin region. This was followed by pitting in the cheek region, which expanded until erosions coalesced. Once the carbon was discontinued, the processes reversed in a mean time of 49 d. As the lesions healed, they reverted from the coalesced to the pitted stage and then darkened before returning to normal.

  15. Improving Design Efficiency for Large-Scale Heterogeneous Circuits

    NASA Astrophysics Data System (ADS)

    Gregerson, Anthony

    Despite increases in logic density, many Big Data applications must still be partitioned across multiple computing devices in order to meet their strict performance requirements. Among the most demanding of these applications is high-energy physics (HEP), which uses complex computing systems consisting of thousands of FPGAs and ASICs to process the sensor data created by experiments at particles accelerators such as the Large Hadron Collider (LHC). Designing such computing systems is challenging due to the scale of the systems, the exceptionally high-throughput and low-latency performance constraints that necessitate application-specific hardware implementations, the requirement that algorithms are efficiently partitioned across many devices, and the possible need to update the implemented algorithms during the lifetime of the system. In this work, we describe our research to develop flexible architectures for implementing such large-scale circuits on FPGAs. In particular, this work is motivated by (but not limited in scope to) high-energy physics algorithms for the Compact Muon Solenoid (CMS) experiment at the LHC. To make efficient use of logic resources in multi-FPGA systems, we introduce Multi-Personality Partitioning, a novel form of the graph partitioning problem, and present partitioning algorithms that can significantly improve resource utilization on heterogeneous devices while also reducing inter-chip connections. To reduce the high communication costs of Big Data applications, we also introduce Information-Aware Partitioning, a partitioning method that analyzes the data content of application-specific circuits, characterizes their entropy, and selects circuit partitions that enable efficient compression of data between chips. We employ our information-aware partitioning method to improve the performance of the hardware validation platform for evaluating new algorithms for the CMS experiment. Together, these research efforts help to improve the efficiency and decrease the cost of the developing large-scale, heterogeneous circuits needed to enable large-scale application in high-energy physics and other important areas.

  16. Replication intermediates of the linear mitochondrial DNA of Candida parapsilosis suggest a common recombination based mechanism for yeast mitochondria.

    PubMed

    Gerhold, Joachim M; Sedman, Tiina; Visacka, Katarina; Slezakova, Judita; Tomaska, Lubomir; Nosek, Jozef; Sedman, Juhan

    2014-08-15

    Variation in the topology of mitochondrial DNA (mtDNA) in eukaryotes evokes the question if differently structured DNAs are replicated by a common mechanism. RNA-primed DNA synthesis has been established as a mechanism for replicating the circular animal/mammalian mtDNA. In yeasts, circular mtDNA molecules were assumed to be templates for rolling circle DNA-replication. We recently showed that in Candida albicans, which has circular mapping mtDNA, recombination driven replication is a major mechanism for replicating a complex branched mtDNA network. Careful analyses of C. albicans-mtDNA did not reveal detectable amounts of circular DNA molecules. In the present study we addressed the question of how the unit sized linear mtDNA of Candida parapsilosis terminating at both ends with arrays of tandem repeats (mitochondrial telomeres) is replicated. Originally, we expected to find replication intermediates diagnostic of canonical bi-directional replication initiation at the centrally located bi-directional promoter region. However, we found that the linear mtDNA of Candida parapsilosis also employs recombination for replication initiation. The most striking findings were that the mitochondrial telomeres appear to be hot spots for recombination driven replication, and that stable RNA:DNA hybrids, with a potential role in mtDNA replication, are also present in the mtDNA preparations. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Replication Intermediates of the Linear Mitochondrial DNA of Candida parapsilosis Suggest a Common Recombination Based Mechanism for Yeast Mitochondria*

    PubMed Central

    Gerhold, Joachim M.; Sedman, Tiina; Visacka, Katarina; Slezakova, Judita; Tomaska, Lubomir; Nosek, Jozef; Sedman, Juhan

    2014-01-01

    Variation in the topology of mitochondrial DNA (mtDNA) in eukaryotes evokes the question if differently structured DNAs are replicated by a common mechanism. RNA-primed DNA synthesis has been established as a mechanism for replicating the circular animal/mammalian mtDNA. In yeasts, circular mtDNA molecules were assumed to be templates for rolling circle DNA-replication. We recently showed that in Candida albicans, which has circular mapping mtDNA, recombination driven replication is a major mechanism for replicating a complex branched mtDNA network. Careful analyses of C. albicans-mtDNA did not reveal detectable amounts of circular DNA molecules. In the present study we addressed the question of how the unit sized linear mtDNA of Candida parapsilosis terminating at both ends with arrays of tandem repeats (mitochondrial telomeres) is replicated. Originally, we expected to find replication intermediates diagnostic of canonical bi-directional replication initiation at the centrally located bi-directional promoter region. However, we found that the linear mtDNA of Candida parapsilosis also employs recombination for replication initiation. The most striking findings were that the mitochondrial telomeres appear to be hot spots for recombination driven replication, and that stable RNA:DNA hybrids, with a potential role in mtDNA replication, are also present in the mtDNA preparations. PMID:24951592

  18. Simple, Script-Based Science Processing Archive

    NASA Technical Reports Server (NTRS)

    Lynnes, Christopher; Hegde, Mahabaleshwara; Barth, C. Wrandle

    2007-01-01

    The Simple, Scalable, Script-based Science Processing (S4P) Archive (S4PA) is a disk-based archival system for remote sensing data. It is based on the data-driven framework of S4P and is used for data transfer, data preprocessing, metadata generation, data archive, and data distribution. New data are automatically detected by the system. S4P provides services such as data access control, data subscription, metadata publication, data replication, and data recovery. It comprises scripts that control the data flow. The system detects the availability of data on an FTP (file transfer protocol) server, initiates data transfer, preprocesses data if necessary, and archives it on readily available disk drives with FTP and HTTP (Hypertext Transfer Protocol) access, allowing instantaneous data access. There are options for plug-ins for data preprocessing before storage. Publication of metadata to external applications such as the Earth Observing System Clearinghouse (ECHO) is also supported. S4PA includes a graphical user interface for monitoring the system operation and a tool for deploying the system. To ensure reliability, S4P continuously checks stored data for integrity, Further reliability is provided by tape backups of disks made once a disk partition is full and closed. The system is designed for low maintenance, requiring minimal operator oversight.

  19. Insensitivity of chromosome I and the cell cycle to blockage of replication and segregation of Vibrio cholerae chromosome II.

    PubMed

    Kadoya, Ryosuke; Chattoraj, Dhruba K

    2012-01-01

    Vibrio cholerae has two chromosomes (chrI and chrII) whose replication and segregation are under different genetic controls. The region covering the replication origin of chrI resembles that of the Escherichia coli chromosome, and both origins are under control of the highly conserved initiator, DnaA. The origin region of chrII resembles that of plasmids that have iterated initiator-binding sites (iterons) and is under control of the chrII-specific initiator, RctB. Both chrI and chrII encode chromosome-specific orthologs of plasmid partitioning proteins, ParA and ParB. Here, we have interfered with chrII replication, segregation, or both, using extra copies of sites that titrate RctB or ParB. Under these conditions, replication and segregation of chrI remain unaffected for at least 1 cell cycle. In this respect, chrI behaves similarly to the E. coli chromosome when plasmid maintenance is disturbed in the same cell. Apparently, no checkpoint exists to block cell division before the crippled chromosome is lost by a failure to replicate or to segregate. Whether blocking chrI replication can affect chrII replication remains to be tested. Chromosome replication, chromosome segregation, and cell division are the three main events of the cell cycle. They occur in an orderly fashion once per cell cycle. How the sequence of events is controlled is only beginning to be answered in bacteria. The finding of bacteria that possess more than one chromosome raises the important question: how are different chromosomes coordinated in their replication and segregation? It appears that in the evolution of the two-chromosome genome of V. cholerae, either the secondary chromosome adapted to the main chromosome to ensure its maintenance or it is maintained independently, as are bacterial plasmids. An understanding of chromosome coordination is expected to bear on the evolutionary process of chromosome acquisition and on the efficacy of possible strategies for selective elimination of a pathogen by targeting a specific chromosome.

  20. Partitioning a macroscopic system into independent subsystems

    NASA Astrophysics Data System (ADS)

    Delle Site, Luigi; Ciccotti, Giovanni; Hartmann, Carsten

    2017-08-01

    We discuss the problem of partitioning a macroscopic system into a collection of independent subsystems. The partitioning of a system into replica-like subsystems is nowadays a subject of major interest in several fields of theoretical and applied physics. The thermodynamic approach currently favoured by practitioners is based on a phenomenological definition of an interface energy associated with the partition, due to a lack of easily computable expressions for a microscopic (i.e. particle-based) interface energy. In this article, we outline a general approach to derive sharp and computable bounds for the interface free energy in terms of microscopic statistical quantities. We discuss potential applications in nanothermodynamics and outline possible future directions.

  1. Effects of solvation on partition and dimerization of benzoic acid in mixed solvent systems.

    PubMed

    Yamada, H; Yajima, K; Wada, H; Nakagawa, G

    1995-06-01

    The partition of benzoic acid between 0.1M perchloric acid solution and two kinds of mixed solvents has been carried out at 25 degrees C. The partition and dimerization constants of benzoic acid have been determined in the 1-octanol-benzene and 2-octanone-benzene systems. In both the mixed solvent systems, with increasing content of 1-octanol and 2-octanone in each mixed solvent, the partition constant of benzoic acid has been found to increase, and the dimerization constant of benzoic acid in each organic phase to decrease. These phenomena are attributable to solvation of monomeric benzoic acid by 1-octanol and 2-octanone molecules in each mixed solvent.

  2. Partial purification of penicillin acylase from Escherichia coli in poly(ethylene glycol)-sodium citrate aqueous two-phase systems.

    PubMed

    Marcos, J C; Fonseca, L P; Ramalho, M T; Cabral, J M

    1999-10-29

    Studies on the partition and purification of penicillin acylase from Escherichia coli osmotic shock extract were performed in poly(ethylene glycol)-sodium citrate systems. Partition coefficient behavior of the enzyme and total protein are similar to those described in other reports, increasing with pH and tie line length and decreasing with PEG molecular weight. However, some selectivity could be attained with PEG 1000 systems and long tie line at pH 6.9. Under these conditions 2.6-fold purification with 83% yield were achieved. Influence of pH on partition shows that is the composition of the system and not the net charge of the enzyme that determines the behaviour in these conditions. Addition of NaCl to PEG 3350 systems significantly increases the partition of the enzyme. Although protein partition also increased, purification conditions were possible with 1.5 M NaCl where 5.7-fold purification and 85% yield was obtained. This was possible due to the higher hydrophobicity of the enzyme compared to that of most contaminants proteins.

  3. Partitioning behavior of aromatic components in jet fuel into diverse membrane-coated fibers.

    PubMed

    Baynes, Ronald E; Xia, Xin-Rui; Barlow, Beth M; Riviere, Jim E

    2007-11-01

    Jet fuel components are known to partition into skin and produce occupational irritant contact dermatitis (OICD) and potentially adverse systemic effects. The purpose of this study was to determine how jet fuel components partition (1) from solvent mixtures into diverse membrane-coated fibers (MCFs) and (2) from biological media into MCFs to predict tissue distribution. Three diverse MCFs, polydimethylsiloxane (PDMS, lipophilic), polyacrylate (PA, polarizable), and carbowax (CAR, polar), were selected to simulate the physicochemical properties of skin in vivo. Following an appropriate equilibrium time between the MCF and dosing solutions, the MCF was injected directly into a gas chromatograph/mass spectrometer (GC-MS) to quantify the amount that partitioned into the membrane. Three vehicles (water, 50% ethanol-water, and albumin-containing media solution) were studied for selected jet fuel components. The more hydrophobic the component, the greater was the partitioning into the membranes across all MCF types, especially from water. The presence of ethanol as a surrogate solvent resulted in significantly reduced partitioning into the MCFs with discernible differences across the three fibers based on their chemistries. The presence of a plasma substitute (media) also reduced partitioning into the MCF, with the CAR MCF system being better correlated to the predicted partitioning of aromatic components into skin. This study demonstrated that a single or multiple set of MCF fibers may be used as a surrogate for octanol/water systems and skin to assess partitioning behavior of nine aromatic components frequently formulated with jet fuels. These diverse inert fibers were able to assess solute partitioning from a blood substitute such as media into a membrane possessing physicochemical properties similar to human skin. This information may be incorporated into physiologically based pharmacokinetic (PBPK) models to provide a more accurate assessment of tissue dosimetry of related toxicants.

  4. Lymphatic endothelial cells are a replicative niche for Mycobacterium tuberculosis

    PubMed Central

    Lerner, Thomas R.; de Souza Carvalho-Wodarz, Cristiane; Repnik, Urska; Russell, Matthew R.G.; Borel, Sophie; Diedrich, Collin R.; Rohde, Manfred; Wainwright, Helen; Collinson, Lucy M.; Wilkinson, Robert J.; Griffiths, Gareth; Gutierrez, Maximiliano G.

    2016-01-01

    In extrapulmonary tuberculosis, the most common site of infection is within the lymphatic system, and there is growing recognition that lymphatic endothelial cells (LECs) are involved in immune function. Here, we identified LECs, which line the lymphatic vessels, as a niche for Mycobacterium tuberculosis in the lymph nodes of patients with tuberculosis. In cultured primary human LECs (hLECs), we determined that M. tuberculosis replicates both in the cytosol and within autophagosomes, but the bacteria failed to replicate when the virulence locus RD1 was deleted. Activation by IFN-γ induced a cell-autonomous response in hLECs via autophagy and NO production that restricted M. tuberculosis growth. Thus, depending on the activation status of LECs, autophagy can both promote and restrict replication. Together, these findings reveal a previously unrecognized role for hLECs and autophagy in tuberculosis pathogenesis and suggest that hLECs are a potential niche for M. tuberculosis that allows establishment of persistent infection in lymph nodes. PMID:26901813

  5. The partition dimension of cycle books graph

    NASA Astrophysics Data System (ADS)

    Santoso, Jaya; Darmaji

    2018-03-01

    Let G be a nontrivial and connected graph with vertex set V(G), edge set E(G) and S ⊆ V(G) with v ∈ V(G), the distance between v and S is d(v,S) = min{d(v,x)|x ∈ S}. For an ordered partition ∏ = {S 1, S 2, S 3,…, Sk } of V(G), the representation of v with respect to ∏ is defined by r(v|∏) = (d(v, S 1), d(v, S 2),…, d(v, Sk )). The partition ∏ is called a resolving partition of G if all representations of vertices are distinct. The partition dimension pd(G) is the smallest integer k such that G has a resolving partition set with k members. In this research, we will determine the partition dimension of Cycle Books {B}{Cr,m}. Cycle books graph {B}{Cr,m} is a graph consisting of m copies cycle Cr with the common path P 2. It is shown that the partition dimension of cycle books graph, pd({B}{C3,m}) is 3 for m = 2, 3, and m for m ≥ 4. pd({B}{C4,m}) is 3 + 2k for m = 3k + 2, 4 + 2(k ‑ 1) for m = 3k + 1, and 3 + 2(k ‑ 1) for m = 3k. pd({B}{C5,m}) is m + 1.

  6. Cycles in metabolism and heat loss

    NASA Technical Reports Server (NTRS)

    Annis, J. F.; Troutman, S. J.; Webb, P.

    1974-01-01

    Using calorimetric techniques, subjects' metabolism, thermoregulation, and body temperatures were monitored continuously for 24-hour days, using three types of experimental routines. A water cooling garment (WCG) was used for direct calorimetry, while partitional calorimetry was used to establish a non-suited comparison for one of the routines. In this replicated routine, called the quiet day, the subjects were sedentary throughout the daytime hours and slept normally at night. Results indicate that the WCG may act to reduce 24-hour total oxygen consumption (VO2) or heat production, possibly due to the lowered energy cost of thermoregulation.

  7. Dengue Virus Selectively Annexes Endoplasmic Reticulum-Associated Translation Machinery as a Strategy for Co-opting Host Cell Protein Synthesis.

    PubMed

    Reid, David W; Campos, Rafael K; Child, Jessica R; Zheng, Tianli; Chan, Kitti Wing Ki; Bradrick, Shelton S; Vasudevan, Subhash G; Garcia-Blanco, Mariano A; Nicchitta, Christopher V

    2018-04-01

    A primary question in dengue virus (DENV) biology is the molecular strategy for recruitment of host cell protein synthesis machinery. Here, we combined cell fractionation, ribosome profiling, and transcriptome sequencing (RNA-seq) to investigate the subcellular organization of viral genome translation and replication as well as host cell translation and its response to DENV infection. We report that throughout the viral life cycle, DENV plus- and minus-strand RNAs were highly partitioned to the endoplasmic reticulum (ER), identifying the ER as the primary site of DENV translation. DENV infection was accompanied by an ER compartment-specific remodeling of translation, where ER translation capacity was subverted from host transcripts to DENV plus-strand RNA, particularly at late stages of infection. Remarkably, translation levels and patterns in the cytosol compartment were only modestly affected throughout the experimental time course of infection. Comparisons of ribosome footprinting densities of the DENV plus-strand RNA and host mRNAs indicated that DENV plus-strand RNA was only sparsely loaded with ribosomes. Combined, these observations suggest a mechanism where ER-localized translation and translational control mechanisms, likely cis encoded, are used to repurpose the ER for DENV virion production. Consistent with this view, we found ER-linked cellular stress response pathways commonly associated with viral infection, namely, the interferon response and unfolded protein response, to be only modestly activated during DENV infection. These data support a model where DENV reprograms the ER protein synthesis and processing environment to promote viral survival and replication while minimizing the activation of antiviral and proteostatic stress response pathways. IMPORTANCE DENV, a prominent human health threat with no broadly effective or specific treatment, depends on host cell translation machinery for viral replication, immune evasion, and virion biogenesis. The molecular mechanism by which DENV commandeers the host cell protein synthesis machinery and the subcellular organization of DENV replication and viral protein synthesis is poorly understood. Here, we report that DENV has an almost exclusively ER-localized life cycle, with viral replication and translation largely restricted to the ER. Surprisingly, DENV infection largely affects only ER-associated translation, with relatively modest effects on host cell translation in the cytosol. DENV RNA translation is very inefficient, likely representing a strategy to minimize disruption of ER proteostasis. Overall these findings demonstrate that DENV has evolved an ER-compartmentalized life cycle; thus, targeting the molecular signatures and regulation of the DENV-ER interaction landscape may reveal strategies for therapeutic intervention. Copyright © 2018 American Society for Microbiology.

  8. Acoustic and temporal partitioning of cicada assemblages in city and mountain environments.

    PubMed

    Shieh, Bao-Sen; Liang, Shih-Hsiung; Chiu, Yuh-Wen

    2015-01-01

    Comparing adaptations to noisy city environments with those to natural mountain environments on the community level can provide significant insights that allow an understanding of the impact of anthropogenic noise on invertebrates that employ loud calling songs for mate attraction, especially when each species has its distinct song, as in the case of cicadas. In this study, we investigated the partitioning strategy of cicada assemblages in city and mountain environments by comparing the acoustic features and calling activity patterns of each species, recorded using automated digital recording systems. Our comparison of activity patterns of seasonal and diel calling revealed that there was no significant temporal partitioning of cicada assemblages in either environment. In addition, there was no correlation between the acoustic distance based on spectral features and temporal segregation. Heterospecific spectral overlap was low in both city and mountain environments, although city and mountain cicada assemblages were subject to significantly different levels of anthropogenic or interspecific noise. Furthermore, for the common species found in both environments, the calling activity patterns at both seasonal and diel time scales were significantly consistent across sites and across environments. We suggest that the temporal calling activity is constrained by endogenous factors for each species and is less flexible in response to external factors, such as anthropogenic noise. As a result, cicada assemblages in city environments with low species diversity do not demonstrate a more significant temporal partitioning than those in mountain environments with high species diversity.

  9. Acoustic and Temporal Partitioning of Cicada Assemblages in City and Mountain Environments

    PubMed Central

    Shieh, Bao-Sen; Liang, Shih-Hsiung; Chiu, Yuh-Wen

    2015-01-01

    Comparing adaptations to noisy city environments with those to natural mountain environments on the community level can provide significant insights that allow an understanding of the impact of anthropogenic noise on invertebrates that employ loud calling songs for mate attraction, especially when each species has its distinct song, as in the case of cicadas. In this study, we investigated the partitioning strategy of cicada assemblages in city and mountain environments by comparing the acoustic features and calling activity patterns of each species, recorded using automated digital recording systems. Our comparison of activity patterns of seasonal and diel calling revealed that there was no significant temporal partitioning of cicada assemblages in either environment. In addition, there was no correlation between the acoustic distance based on spectral features and temporal segregation. Heterospecific spectral overlap was low in both city and mountain environments, although city and mountain cicada assemblages were subject to significantly different levels of anthropogenic or interspecific noise. Furthermore, for the common species found in both environments, the calling activity patterns at both seasonal and diel time scales were significantly consistent across sites and across environments. We suggest that the temporal calling activity is constrained by endogenous factors for each species and is less flexible in response to external factors, such as anthropogenic noise. As a result, cicada assemblages in city environments with low species diversity do not demonstrate a more significant temporal partitioning than those in mountain environments with high species diversity. PMID:25590620

  10. SPCC- Software Elements for Security Partition Communication Controller

    NASA Astrophysics Data System (ADS)

    Herpel, H. J.; Willig, G.; Montano, G.; Tverdyshev, S.; Eckstein, K.; Schoen, M.

    2016-08-01

    Future satellite missions like Earth Observation, Telecommunication or any other kind are likely to be exposed to various threats aiming at exploiting vulnerabilities of the involved systems and communications. Moreover, the growing complexity of systems coupled with more ambitious types of operational scenarios imply increased security vulnerabilities in the future. In the paper we will describe an architecture and software elements to ensure high level of security on-board a spacecraft. First the threats to the Security Partition Communication Controller (SPCC) will be addressed including the identification of specific vulnerabilities to the SPCC. Furthermore, appropriate security objectives and security requirements are identified to be counter the identified threats. The security evaluation of the SPCC will be done in accordance to the Common Criteria (CC). The Software Elements for SPCC has been implemented on flight representative hardware which consists of two major elements: the I/O board and the SPCC board. The SPCC board provides the interfaces with ground while the I/O board interfaces with typical spacecraft equipment busses. Both boards are physically interconnected by a high speed spacewire (SpW) link.

  11. Cluster formation and drag reduction-proposed mechanism of particle recirculation within the partition column of the bottom spray fluid-bed coater.

    PubMed

    Wang, Li Kun; Heng, Paul Wan Sia; Liew, Celine Valeria

    2015-04-01

    Bottom spray fluid-bed coating is a common technique for coating multiparticulates. Under the quality-by-design framework, particle recirculation within the partition column is one of the main variability sources affecting particle coating and coat uniformity. However, the occurrence and mechanism of particle recirculation within the partition column of the coater are not well understood. The purpose of this study was to visualize and define particle recirculation within the partition column. Based on different combinations of partition gap setting, air accelerator insert diameter, and particle size fraction, particle movements within the partition column were captured using a high-speed video camera. The particle recirculation probability and voidage information were mapped using a visiometric process analyzer. High-speed images showed that particles contributing to the recirculation phenomenon were behaving as clustered colonies. Fluid dynamics analysis indicated that particle recirculation within the partition column may be attributed to the combined effect of cluster formation and drag reduction. Both visiometric process analysis and particle coating experiments showed that smaller particles had greater propensity toward cluster formation than larger particles. The influence of cluster formation on coating performance and possible solutions to cluster formation were further discussed. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  12. The gas/particle partitioning of nitro- and oxy-polycyclic aromatic hydrocarbons in the atmosphere of northern China

    NASA Astrophysics Data System (ADS)

    Li, Wei; Shen, Guofeng; Yuan, Chenyi; Wang, Chen; Shen, Huizhong; Jiang, Huai; Zhang, Yanyan; Chen, Yuanchen; Su, Shu; Lin, Nan; Tao, Shu

    2016-05-01

    The gas/particle partitioning of nitro-polycyclic aromatic hydrocarbons (nPAHs) and oxy-PAHs (oPAHs) is pivotal to estimate their environmental fate. Simultaneously measured atmospheric concentrations of nPAHs and oPAHs in both gaseous and particulate phases at 18 sites in northern China make it possible to investigate their partitioning process in a large region. The gas/particle partitioning coefficients (Kp) in this study were higher than those measured in the emission exhausts. The Kp for most individual nPAHs was higher than those for their corresponding parent PAHs. Generally higher Kp values were found at rural field sites compared to values in the rural villages and cities. Temperature, subcooled liquid-vapor pressure (Pl0) and octanol-air partition coefficient (Koa) were all significantly correlated with Kp. The slope values between log Kp and log Pl0, ranging from - 0.54 to - 0.34, indicate that the equilibrium of gas/particle partitioning might not be reached, which could be also revealed from a positive correlation between log Kp and particulate matter (PM) concentrations. Underestimation commonly exists in all three partitioning models, but the predicted values of Kp from the dual model are closer to the measured Kp for derivative PAHs in northern China.

  13. Intersecting surface defects and instanton partition functions

    DOE PAGES

    Pan, Yiwen; Peelaers, Wolfger

    2017-07-14

    We analyze intersecting surface defects inserted in interacting four-dimensional N = 2 supersymmetric quantum field theories. We employ the realization of a class of such systems as the infrared xed points of renormalization group flows from larger theories, triggered by perturbed Seiberg-Witten monopole-like con gurations, to compute their partition functions. These results are cast into the form of a partition function of 4d/2d/0d coupled systems. In conclusion, our computations provide concrete expressions for the instanton partition function in the presence of intersecting defects and we study the corresponding ADHM model.

  14. Intersecting surface defects and instanton partition functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Yiwen; Peelaers, Wolfger

    We analyze intersecting surface defects inserted in interacting four-dimensional N = 2 supersymmetric quantum field theories. We employ the realization of a class of such systems as the infrared xed points of renormalization group flows from larger theories, triggered by perturbed Seiberg-Witten monopole-like con gurations, to compute their partition functions. These results are cast into the form of a partition function of 4d/2d/0d coupled systems. In conclusion, our computations provide concrete expressions for the instanton partition function in the presence of intersecting defects and we study the corresponding ADHM model.

  15. Endonuclease EEPD1 Is a Gatekeeper for Repair of Stressed Replication Forks*

    PubMed Central

    Kim, Hyun-Suk; Nickoloff, Jac A.; Wu, Yuehan; Williamson, Elizabeth A.; Sidhu, Gurjit Singh; Reinert, Brian L.; Jaiswal, Aruna S.; Srinivasan, Gayathri; Patel, Bhavita; Kong, Kimi; Burma, Sandeep; Lee, Suk-Hee; Hromas, Robert A.

    2017-01-01

    Replication is not as continuous as once thought, with DNA damage frequently stalling replication forks. Aberrant repair of stressed replication forks can result in cell death or genome instability and resulting transformation to malignancy. Stressed replication forks are most commonly repaired via homologous recombination (HR), which begins with 5′ end resection, mediated by exonuclease complexes, one of which contains Exo1. However, Exo1 requires free 5′-DNA ends upon which to act, and these are not commonly present in non-reversed stalled replication forks. To generate a free 5′ end, stalled replication forks must therefore be cleaved. Although several candidate endonucleases have been implicated in cleavage of stalled replication forks to permit end resection, the identity of such an endonuclease remains elusive. Here we show that the 5′-endonuclease EEPD1 cleaves replication forks at the junction between the lagging parental strand and the unreplicated DNA parental double strands. This cleavage creates the structure that Exo1 requires for 5′ end resection and HR initiation. We observed that EEPD1 and Exo1 interact constitutively, and Exo1 repairs stalled replication forks poorly without EEPD1. Thus, EEPD1 performs a gatekeeper function for replication fork repair by mediating the fork cleavage that permits initiation of HR-mediated repair and restart of stressed forks. PMID:28049724

  16. Crystal-chemistry and partitioning of REE in whitlockite

    NASA Technical Reports Server (NTRS)

    Colson, R. O.; Jolliff, B. L.

    1993-01-01

    Partitioning of Rare Earth Elements (REE) in whitlockite is complicated by the fact that two or more charge-balancing substitutions are involved and by the fact that concentrations of REE in natural whitlockites are sufficiently high such that simple partition coefficients are not expected to be constant even if mixing in the system is completely ideal. The present study combines preexisting REE partitioning data in whitlockites with new experiments in the same compositional system and at the same temperature (approximately 1030 C) to place additional constraints on the complex variations of REE partition coefficients and to test theoretical models for how REE partitioning should vary with REE concentration and other compositional variables. With this data set, and by combining crystallographic and thermochemical constraints with a SAS simultaneous-equation best-fitting routine, it is possible to infer answers to the following questions: what is the speciation on the individual sites Ca(B), Mg, and Ca(IIA) (where the ideal structural formula is Ca(B)18 Mg2Ca(IIA)2P14O56); how are REE's charge-balanced in the crystal; and is mixing of REE in whitlockite ideal or non-ideal. This understanding is necessary in order to extrapolate derived partition coefficients to other compositional systems and provides a broadened understanding of the crystal chemistry of whitlockite.

  17. Physicochemical properties/descriptors governing the solubility and partitioning of chemicals in water-solvent-gas systems. Part 1. Partitioning between octanol and air.

    PubMed

    Raevsky, O A; Grigor'ev, V J; Raevskaja, O E; Schaper, K-J

    2006-06-01

    QSPR analyses of a data set containing experimental partition coefficients in the three systems octanol-water, water-gas, and octanol-gas for 98 chemicals have shown that it is possible to calculate any partition coefficient in the system 'gas phase/octanol/water' by three different approaches: (1) from experimental partition coefficients obtained in the corresponding two other subsystems. However, in many cases these data may not be available. Therefore, a solution may be approached (2), a traditional QSPR analysis based on e.g. HYBOT descriptors (hydrogen bond acceptor and donor factors, SigmaCa and SigmaCd, together with polarisability alpha, a steric bulk effect descriptor) and supplemented with substructural indicator variables. (3) A very promising approach which is a combination of the similarity concept and QSPR based on HYBOT descriptors. In this approach observed partition coefficients of structurally nearest neighbours of a compound-of-interest are used. In addition, contributions arising from differences in alpha, SigmaCa, and SigmaCd values between the compound-of-interest and its nearest neighbour(s), respectively, are considered. In this investigation highly significant relationships were obtained by approaches (1) and (3) for the octanol/gas phase partition coefficient (log Log).

  18. Automated Design of Board and MCM Level Digital Systems.

    DTIC Science & Technology

    1997-10-01

    Partitioning for Multicomponent Synthesis 159 Appendix K: Resource Constrained RTL Partitioning for Synthesis of Multi- FPGA Designs 169 Appendix L...digital signal processing) ar- chitectures. These target architectures, illustrated in Figure 1, can contain application-specific ASICS, FPGAs ...synthesis tools for ASIC, FPGA and MCM synthesis (Figure 8). Multicomponent Partitioning Engine The par- titioning engine is a hierarchical partitioning

  19. Diffusion, phase equilibria and partitioning experiments in the Ni-Fe-Ru system

    NASA Technical Reports Server (NTRS)

    Blum, Joel D.; Wasserburg, G. J.; Hutcheon, I. D.; Beckett, J. R.; Stolper, E. M.

    1989-01-01

    Results are presented on thin-film diffusion experiments designed to investigate phase equilibria in systems containing high concentrations of Pt-group elements, such as Ni-Fe-Ru-rich systems containing Pt, at temperatures of 1273, 1073, and 873 K. The rate of Ru diffusion in Ni was determined as a function of temperature, and, in addition, the degree of Pt and Ir partitioning between phases in a Ni-Fe-Ru-rich system and of V between phases in a Ni-Fe-O-rich system at 873 were determined. It was found that Pt preferentially partitions into the (gamma)Ni-Fe phase, whereas Ir prefers the (epsilon)Ru-Fe phase. V partitions strongly into Fe oxides relative to (gamma)Ni-Fe. These results have direct application to the origin and thermal history of the alloys rich in Pt-group elements in meteorites.

  20. Effects of riparian buffers on hydrology of northern seasonal ponds

    Treesearch

    Randall K. Kolka; Brian J. Palik; Daniel P. Tersteeg; James C. Bell

    2011-01-01

    Although seasonal ponds are common in northern, glaciated, forested landscapes, forest management guidelines are generally lacking for these systems. The objective of this study was to determine the effect of riparian buffer type on seasonal pond hydrology following harvest of the adjacent upland forest. A replicated block design consisting of four buffer treatments...

  1. Exception to the Rule: Genomic Characterization of Naturally Occurring Unusual Vibrio cholerae Strains with a Single Chromosome

    DOE PAGES

    Xie, Gary; Johnson, Shannon Lyn; Davenport, Karen Walston; ...

    2017-08-29

    Here, the genetic make-up of most bacteria is encoded in a single chromosome while about 10% have more than one chromosome. Among these, Vibrio cholerae, with two chromosomes, has served as a model system to study various aspects of chromosome maintenance, mainly replication, and faithful partitioning of multipartite genomes. Here, we describe the genomic characterization of strains that are an exception to the two chromosome rules: naturally occurring single-chromosome V. cholerae. Whole genome sequence analyses of NSCV1 and NSCV2 (natural single-chromosome vibrio) revealed that the Chr1 and Chr2 fusion junctions contain prophages, IS elements, and direct repeats, in addition tomore » large-scale chromosomal rearrangements such as inversions, insertions, and long tandem repeats elsewhere in the chromosome compared to prototypical two chromosome V. cholerae genomes. Many of the known cholera virulence factors are absent. The two origins of replication and associated genes are generally intact with synonymous mutations in some genes, as arerecAand mismatch repair (MMR) genes dam, mutH, and mutL; MutS function is probably impaired in NSCV2. These strains are ideal tools for studying mechanistic aspects of maintenance of chromosomes with multiple origins and other rearrangements and the biological, functional, and evolutionary significance of multipartite genome architecture in general.« less

  2. Exception to the Rule: Genomic Characterization of Naturally Occurring Unusual Vibrio cholerae Strains with a Single Chromosome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Gary; Johnson, Shannon Lyn; Davenport, Karen Walston

    Here, the genetic make-up of most bacteria is encoded in a single chromosome while about 10% have more than one chromosome. Among these, Vibrio cholerae, with two chromosomes, has served as a model system to study various aspects of chromosome maintenance, mainly replication, and faithful partitioning of multipartite genomes. Here, we describe the genomic characterization of strains that are an exception to the two chromosome rules: naturally occurring single-chromosome V. cholerae. Whole genome sequence analyses of NSCV1 and NSCV2 (natural single-chromosome vibrio) revealed that the Chr1 and Chr2 fusion junctions contain prophages, IS elements, and direct repeats, in addition tomore » large-scale chromosomal rearrangements such as inversions, insertions, and long tandem repeats elsewhere in the chromosome compared to prototypical two chromosome V. cholerae genomes. Many of the known cholera virulence factors are absent. The two origins of replication and associated genes are generally intact with synonymous mutations in some genes, as arerecAand mismatch repair (MMR) genes dam, mutH, and mutL; MutS function is probably impaired in NSCV2. These strains are ideal tools for studying mechanistic aspects of maintenance of chromosomes with multiple origins and other rearrangements and the biological, functional, and evolutionary significance of multipartite genome architecture in general.« less

  3. Analysis of polychlorinated biphenyls in transformer oil by using liquid-liquid partitioning in a microfluidic device.

    PubMed

    Aota, Arata; Date, Yasumoto; Terakado, Shingo; Sugiyama, Hideo; Ohmura, Naoya

    2011-10-15

    Polychlorinated biphenyls (PCBs) that are present in transformer oil are a common global problem because of their toxicity and environmental persistence. The development of a rapid, low-cost method for measurement of PCBs in oil has been a matter of priority because of the large number of PCB-contaminated transformers still in service. Although one of the rapid, low-cost methods involves an immunoassay, which uses multilayer column separation, hexane evaporation, dimethyl sulfoxide (DMSO) partitioning, antigen-antibody reaction, and a measurement system, there is a demand for more cost-effective and simpler procedures. In this paper, we report a DMSO partitioning method that utilizes a microfluidic device with microrecesses along the microchannel. In this method, PCBs are extracted and enriched into the DMSO confined in the microrecesses under the oil flow condition. The enrichment factor was estimated to be 2.69, which agreed well with the anticipated value. The half-maximal inhibitory concentration of PCBs in oil was found to be 0.38 mg/kg, which satisfies the much stricter criterion of 0.5 mg/kg in Japan. The developed method can realize the pretreatment of oil without the use of centrifugation for phase separation. Furthermore, the amount of expensive reagents required can be reduced considerably. Therefore, our method can serve as a powerful tool for achieving a simpler, low-cost procedure and an on-site analysis system. © 2011 American Chemical Society

  4. Kinetics of large-scale chromosomal movement during asymmetric cell division in Escherichia coli

    PubMed Central

    Männik, Jaana; O’Neill, Jordan C.

    2017-01-01

    Coordination between cell division and chromosome replication is essential for a cell to produce viable progeny. In the commonly accepted view, Escherichia coli realize this coordination via the accurate positioning of its cell division apparatus relative to the nucleoids. However, E. coli lacking proper positioning of its cell division planes can still successfully propagate. Here, we characterize how these cells partition their chromosomes into daughters during such asymmetric divisions. Using quantitative time-lapse imaging, we show that DNA translocase, FtsK, can pump as much as 80% (3.7 Mb) of the chromosome between daughters at an average rate of 1700±800 bp/s. Pauses in DNA translocation are rare, and in no occasions did we observe reversals at experimental time scales of a few minutes. The majority of DNA movement occurs at the latest stages of cell division when the cell division protein ZipA has already dissociated from the septum, and the septum has closed to a narrow channel with a diameter much smaller than the resolution limit of the microscope (~250 nm). Our data suggest that the narrow constriction is necessary for effective translocation of DNA by FtsK. PMID:28234902

  5. Highly functionalized organic nitrates in the southeast United States: Contribution to secondary organic aerosol and reactive nitrogen budgets

    PubMed Central

    Mohr, Claudia; Lopez-Hilfiker, Felipe D.; Lutz, Anna; Hallquist, Mattias; Lee, Lance; Romer, Paul; Cohen, Ronald C.; Iyer, Siddharth; Kurtén, Theo; Hu, Weiwei; Day, Douglas A.; Campuzano-Jost, Pedro; Jimenez, Jose L.; Xu, Lu; Ng, Nga Lee; Guo, Hongyu; Weber, Rodney J.; Wild, Robert J.; Brown, Steven S.; Koss, Abigail; de Gouw, Joost; Olson, Kevin; Goldstein, Allen H.; Seco, Roger; Kim, Saewung; McAvey, Kevin; Shepson, Paul B.; Starn, Tim; Baumann, Karsten; Edgerton, Eric S.; Liu, Jiumeng; Shilling, John E.; Miller, David O.; Brune, William; Schobesberger, Siegfried; D'Ambro, Emma L.; Thornton, Joel A.

    2016-01-01

    Speciated particle-phase organic nitrates (pONs) were quantified using online chemical ionization MS during June and July of 2013 in rural Alabama as part of the Southern Oxidant and Aerosol Study. A large fraction of pONs is highly functionalized, possessing between six and eight oxygen atoms within each carbon number group, and is not the common first generation alkyl nitrates previously reported. Using calibrations for isoprene hydroxynitrates and the measured molecular compositions, we estimate that pONs account for 3% and 8% of total submicrometer organic aerosol mass, on average, during the day and night, respectively. Each of the isoprene- and monoterpenes-derived groups exhibited a strong diel trend consistent with the emission patterns of likely biogenic hydrocarbon precursors. An observationally constrained diel box model can replicate the observed pON assuming that pONs (i) are produced in the gas phase and rapidly establish gas–particle equilibrium and (ii) have a short particle-phase lifetime (∼2–4 h). Such dynamic behavior has significant implications for the production and phase partitioning of pONs, organic aerosol mass, and reactive nitrogen speciation in a forested environment. PMID:26811465

  6. Investigating Planetesimal Evolution by Experiments with Fe-Ni Metallic Melts: Light Element Composition Effects on Trace Element Partitioning Behavior

    NASA Astrophysics Data System (ADS)

    Chabot, N. L.

    2017-12-01

    As planetesimals were heated up in the early Solar System, the formation of Fe-Ni metallic melts was a common occurrence. During planetesimal differentiation, the denser Fe-Ni metallic melts separated from the less dense silicate components, though some meteorites suggest that their parent bodies only experienced partial differentiation. If the Fe-Ni metallic melts did form a central metallic core, the core eventually crystallized to a solid, some of which we sample as iron meteorites. In all of these planetesimal evolution processes, the composition of the Fe-Ni metallic melt influenced the process and the resulting trace element chemical signatures. In particular, the metallic melt's "light element" composition, those elements present in the metallic melt in a significant concentration but with lower atomic masses than Fe, can strongly affect trace element partitioning. Experimental studies have provided critical data to determine the effects of light elements in Fe-Ni metallic melts on trace element partitioning behavior. Here I focus on combining numerous experimental results to identify trace elements that provide unique insight into constraining the light element composition of early Solar System Fe-Ni metallic melts. Experimental studies have been conducted at 1 atm in a variety of Fe-Ni systems to investigate the effects of light elements on trace element partitioning behavior. A frequent experimental examination of the effects of light elements in metallic systems involves producing run products with coexisting solid metal and liquid metal phases. Such solid-metal-liquid-metal experiments have been conducted in the Fe-Ni binary system as well as Fe-Ni systems with S, P, and C. Experiments with O-bearing or Si-bearing Fe-Ni metallic melts do not lend themselves to experiments with coexisting solid metal and liquid metal phases, due to the phase diagrams of these elements, but experiments with two immiscible Fe-Ni metallic melts have provided insight into the qualitative effects of O and Si relative to the well-determined effects of S. Together, these experimental studies provide a robust dataset to identify key elements that are predicted to produce distinct chemical signatures as a function of different Fe-Ni metallic melt compositions during planetesimal evolution processes.

  7. Cell separation by immunoaffinity partitioning with polyethylene glycol-modified Protein A in aqueous polymer two-phase systems

    NASA Technical Reports Server (NTRS)

    Karr, Laurel J.; Van Alstine, James M.; Snyder, Robert S.; Shafer, Steven G.; Harris, J. Milton

    1988-01-01

    Previous work has shown that polyethylene glycol (PEG)-bound antibodies can be used as affinity ligands in PEG-dextran two-phase systems to provide selective partitioning of cells to the PEG-rich phase. In the present work it is shown that immunoaffinity partitioning can be simplified by use of PEG-modified Protein A which complexes with unmodified antibody and cells and shifts their partitioning into the PEG-rich phase, thus eliminating the need to prepare a PEG-modified antibody for each cell type. In addition, the paper provides a more rigorous test of the original technique with PEG-bound antibodies by showing that it is effective at shifting the partitioning of either cell type of a mixture of two cell populations.

  8. Dietary fat sources affect feed intake, digestibility, rumen microbial populations, energy partition and methane emissions in different beef cattle genotypes.

    PubMed

    Kaewpila, C; Sommart, K; Mitsumori, M

    2018-03-20

    The mitigation of enteric methane emission in beef cattle production is important for reducing feed energy loss and increasing environmental sustainability. The main objective of this study was to evaluate the effect of different oilseeds included in fermented total mixed rations (whole soyabean seed (SBS, control), whole kapok seed (KPS) and cracked oil palm fruit (OPF)) on feed intake, digestibility, rumen microbial populations, energy partition and methane emissions in different cattle genotypes (Charolais crossbred v. Japanese Black crossbred). Three Charolais crossbred and three Japanese Black crossbred bulls were studied in a replicated 3×3 Latin square experimental design; genotypes were analysed in separate squares including three periods of 21 days each and three dietary oilseed treatments fed ad libitum. The cattle were placed in a metabolic cage equipped with a ventilated head box respiration system for evaluating digestibility and energy balance. As compared with Charolais crossbred individuals, Japanese Black crossbred bulls showed consistently lower dry matter intake (15.5%, P0.05) or diet (P>0.05) under the experimental conditions and ranged from 5.8% to 6.0% of gross energy intake. This value is lower than that reported by the Intergovernmental Panel on Climate Change (6.5%) for cattle fed with low-quality crop residues or by-products. Thus, our results imply that the Japanese Black crossbred cattle consume less feed and emits less enteric methane than the Charolais crossbred does, mainly owing to its lower ME requirement for maintenance. The OPF diet could be used to replace SBS for high beef production, although further studies are required to evaluate their application across a wide range of beef production systems.

  9. IncC of broad-host-range plasmid RK2 modulates KorB transcriptional repressor activity In vivo and operator binding in vitro.

    PubMed

    Jagura-Burdzy, G; Kostelidou, K; Pole, J; Khare, D; Jones, A; Williams, D R; Thomas, C M

    1999-05-01

    The korAB operon of broad-host-range plasmid RK2 encodes five genes, two of which, incC and korB, belong to the parA and parB families, respectively, of genome partitioning functions. Both korB and a third gene, korA, are responsible for coordinate regulation of operons encoding replication, transfer, and stable inheritance functions. Overexpression of incC alone caused rapid displacement of RK2. Using two different reporter systems, we show that incC modulates the action of KorB. Using promoter fusions to the reporter gene xylE, we show that incC potentiates the repression of transcription by korB. This modulation of korB activity was only observed with incC1, which encodes the full-length IncC (364 amino acids [aa]), whereas no effect was observed with incC2, which encodes a polypeptide of 259 aa that lacks the N-terminal 105 aa. Using bacterial extracts with IncC1 and IncC2 or IncC1 purified through the use of a His6 tail and Ni-agarose chromatography, we showed that IncC1 potentiates the binding of KorB to DNA at representative KorB operators. The ability of IncC to stabilize KorB-DNA complexes suggests that these two proteins work together in the global regulation of many operons on the IncP-1 genomes, as well in plasmid partitioning.

  10. Proteomic Analysis of Cytoskeleton Proteins in Fish.

    PubMed

    Gotesman, Michael; Menanteau-Ledouble, Simon; El-Matbouli, Mansour

    2016-01-01

    In this chapter, we describe laboratory protocols for rearing fish and a simple and efficient method of extracting and identifying pathogen and host proteins that may be involved in entry and replication of commercially important fish viruses. We have used the common carp (Cyprinus carpio L.) and goldfish (Cyprinus auratus) as a model system for studies of proteins involved in viral entry and replication. The chapter describes detailed protocols for maintenance of carp, cell culture, antibody purification of proteins, and use of electrospray-ionization mass spectrometry analysis to screen and identify cytoskeleton and other proteins that may be involved in viral infection and propagation in fish.

  11. The iron-nickel-phosphorus system: Effects on the distribution of trace elements during the evolution of iron meteorites

    NASA Astrophysics Data System (ADS)

    Corrigan, Catherine M.; Chabot, Nancy L.; McCoy, Timothy J.; McDonough, William F.; Watson, Heather C.; Saslow, Sarah A.; Ash, Richard D.

    2009-05-01

    To better understand the partitioning behavior of elements during the formation and evolution of iron meteorites, two sets of experiments were conducted at 1 atm in the Fe-Ni-P system. The first set examined the effect of P on solid metal/liquid metal partitioning behavior of 22 elements, while the other set explored the effect of the crystal structures of body-centered cubic (α)- and face-centered cubic (γ)-solid Fe alloys on partitioning behavior. Overall, the effect of P on the partition coefficients for the majority of the elements was minimal. As, Au, Ga, Ge, Ir, Os, Pt, Re, and Sb showed slightly increasing partition coefficients with increasing P-content of the metallic liquid. Co, Cu, Pd, and Sn showed constant partition coefficients. Rh, Ru, W, and Mo showed phosphorophile (P-loving) tendencies. Parameterization models were applied to solid metal/liquid metal results for 12 elements. As, Au, Pt, and Re failed to match previous parameterization models, requiring the determination of separate parameters for the Fe-Ni-S and Fe-Ni-P systems. Experiments with coexisting α and γ Fe alloy solids produced partitioning ratios close to unity, indicating that an α versus γ Fe alloy crystal structure has only a minor influence on the partitioning behaviors of the trace element studied. A simple relationship between an element's natural crystal structure and its α/γ partitioning ratio was not observed. If an iron meteorite crystallizes from a single metallic liquid that contains both S and P, the effect of P on the distribution of elements between the crystallizing solids and the residual liquid will be minor in comparison to the effect of S. This indicates that to a first order, fractional crystallization models of the Fe-Ni-S-P system that do not take into account P are appropriate for interpreting the evolution of iron meteorites if the effects of S are appropriately included in the effort.

  12. Mining of hospital laboratory information systems: a model study defining age- and gender-specific reference intervals and trajectories for plasma creatinine in a pediatric population.

    PubMed

    Søeby, Karen; Jensen, Peter Bjødstrup; Werge, Thomas; Sørensen, Steen

    2015-09-01

    The knowledge of physiological fluctuation and variation of even commonly used biochemical quantities in extreme age groups and during development is sparse. This challenges the clinical interpretation and utility of laboratory tests in these age groups. To explore the utility of hospital laboratory data as a source of information, we analyzed enzymatic plasma creatinine as a model analyte in two large pediatric hospital samples. Plasma creatinine measurements from 9700 children aged 0-18 years were obtained from hospital laboratory databases and partitioned into high-resolution gender- and age-groups. Normal probability plots were used to deduce parameters of the normal distributions from healthy creatinine values in the mixed hospital datasets. Furthermore, temporal trajectories were generated from repeated measurements to examine developmental patterns in periods of changing creatinine levels. Creatinine shows great age dependence from birth throughout childhood. We computed and replicated 95% reference intervals in narrow gender and age bins and showed them to be comparable to those determined in healthy population studies. We identified pronounced transitions in creatinine levels at different time points after birth and around the early teens, which challenges the establishment and usefulness of reference intervals in those age groups. The study documents that hospital laboratory data may inform on the developmental aspects of creatinine, on periods with pronounced heterogeneity and valid reference intervals. Furthermore, part of the heterogeneity in creatinine distribution is likely due to differences in biological and chronological age of children and should be considered when using age-specific reference intervals.

  13. TARSIA: An Intelligent System for Underwater Tracking

    DTIC Science & Technology

    1986-11-17

    about temporal trends in events and/or data, and understand symbolic con- Tyres of Knowlede cepto such as before, during, and after. The knowledge...TWO LEGS. PROCEDURAL * DETERMINE ALL POSSIBLE MEASUREMENT PARTITIONS, PRUNE PARTITIONS TO A MANAGEABLE NUMBER, AND SEND PARTITIONS TO THE BATCH

  14. Genomic Selection in Multi-environment Crop Trials.

    PubMed

    Oakey, Helena; Cullis, Brian; Thompson, Robin; Comadran, Jordi; Halpin, Claire; Waugh, Robbie

    2016-05-03

    Genomic selection in crop breeding introduces modeling challenges not found in animal studies. These include the need to accommodate replicate plants for each line, consider spatial variation in field trials, address line by environment interactions, and capture nonadditive effects. Here, we propose a flexible single-stage genomic selection approach that resolves these issues. Our linear mixed model incorporates spatial variation through environment-specific terms, and also randomization-based design terms. It considers marker, and marker by environment interactions using ridge regression best linear unbiased prediction to extend genomic selection to multiple environments. Since the approach uses the raw data from line replicates, the line genetic variation is partitioned into marker and nonmarker residual genetic variation (i.e., additive and nonadditive effects). This results in a more precise estimate of marker genetic effects. Using barley height data from trials, in 2 different years, of up to 477 cultivars, we demonstrate that our new genomic selection model improves predictions compared to current models. Analyzing single trials revealed improvements in predictive ability of up to 5.7%. For the multiple environment trial (MET) model, combining both year trials improved predictive ability up to 11.4% compared to a single environment analysis. Benefits were significant even when fewer markers were used. Compared to a single-year standard model run with 3490 markers, our partitioned MET model achieved the same predictive ability using between 500 and 1000 markers depending on the trial. Our approach can be used to increase accuracy and confidence in the selection of the best lines for breeding and/or, to reduce costs by using fewer markers. Copyright © 2016 Oakey et al.

  15. Mgm101p Is a Novel Component of the Mitochondrial Nucleoid That Binds DNA and Is Required for the Repair of Oxidatively Damaged Mitochondrial DNA

    PubMed Central

    Meeusen, Shelly; Tieu, Quinton; Wong, Edith; Weiss, Eric; Schieltz, David; Yates, John R.; Nunnari, Jodi

    1999-01-01

    Maintenance of mitochondrial DNA (mtDNA) during cell division is required for progeny to be respiratory competent. Maintenance involves the replication, repair, assembly, segregation, and partitioning of the mitochondrial nucleoid. MGM101 has been identified as a gene essential for mtDNA maintenance in S. cerevisiae, but its role is unknown. Using liquid chromatography coupled with tandem mass spectrometry, we identified Mgm101p as a component of highly enriched nucleoids, suggesting that it plays a nucleoid-specific role in maintenance. Subcellular fractionation, indirect immunofluorescence and GFP tagging show that Mgm101p is exclusively associated with the mitochondrial nucleoid structure in cells. Furthermore, DNA affinity chromatography of nucleoid extracts indicates that Mgm101p binds to DNA, suggesting that its nucleoid localization is in part due to this activity. Phenotypic analysis of cells containing a temperature sensitive mgm101 allele suggests that Mgm101p is not involved in mtDNA packaging, segregation, partitioning or required for ongoing mtDNA replication. We examined Mgm101p's role in mtDNA repair. As compared with wild-type cells, mgm101 cells were more sensitive to mtDNA damage induced by UV irradiation and were hypersensitive to mtDNA damage induced by gamma rays and H2O2 treatment. Thus, we propose that Mgm101p performs an essential function in the repair of oxidatively damaged mtDNA that is required for the maintenance of the mitochondrial genome. PMID:10209025

  16. Bovine serum albumin partitioning in an aqueous two-phase system: effect of pH and sodium chloride concentration.

    PubMed

    Gündüz, U; Korkmaz, K

    2000-06-23

    The partitioning of bovine serum albumin (BSA) in a polyethylene glycol 3350 (8% w/w)-dextran 37 500 (6% w/w)-0.05 M phosphate aqueous two-phase was investigated at different pHs, at varying concentrations of sodium chloride at 20 degrees C. The effect of NaCl concentration on the partition coefficient of BSA was studied for the PEG-dx systems with initial pH values of 4.2, 5.0, 7.0, 9.0, and 9.8. The NaCl concentrations in the phase systems with constant pH value were 0.06, 0.1, 0.2, 0.3, and 0.34 M. It was observed that the BSA partition coefficient decreased at concentrations smaller than 0.2 M NaCl and increased at concentrations greater than 0.2 M NaCl for all systems with initial pHs of 4.2, 5.0, 7.0, 9.0, and 9.8. It was also seen that the partition coefficient of BSA decreased as the pH of the aqueous two-phase systems increased at any NaCl salt concentration studied.

  17. Linear scaling computation of the Fock matrix. VI. Data parallel computation of the exchange-correlation matrix

    NASA Astrophysics Data System (ADS)

    Gan, Chee Kwan; Challacombe, Matt

    2003-05-01

    Recently, early onset linear scaling computation of the exchange-correlation matrix has been achieved using hierarchical cubature [J. Chem. Phys. 113, 10037 (2000)]. Hierarchical cubature differs from other methods in that the integration grid is adaptive and purely Cartesian, which allows for a straightforward domain decomposition in parallel computations; the volume enclosing the entire grid may be simply divided into a number of nonoverlapping boxes. In our data parallel approach, each box requires only a fraction of the total density to perform the necessary numerical integrations due to the finite extent of Gaussian-orbital basis sets. This inherent data locality may be exploited to reduce communications between processors as well as to avoid memory and copy overheads associated with data replication. Although the hierarchical cubature grid is Cartesian, naive boxing leads to irregular work loads due to strong spatial variations of the grid and the electron density. In this paper we describe equal time partitioning, which employs time measurement of the smallest sub-volumes (corresponding to the primitive cubature rule) to load balance grid-work for the next self-consistent-field iteration. After start-up from a heuristic center of mass partitioning, equal time partitioning exploits smooth variation of the density and grid between iterations to achieve load balance. With the 3-21G basis set and a medium quality grid, equal time partitioning applied to taxol (62 heavy atoms) attained a speedup of 61 out of 64 processors, while for a 110 molecule water cluster at standard density it achieved a speedup of 113 out of 128. The efficiency of equal time partitioning applied to hierarchical cubature improves as the grid work per processor increases. With a fine grid and the 6-311G(df,p) basis set, calculations on the 26 atom molecule α-pinene achieved a parallel efficiency better than 99% with 64 processors. For more coarse grained calculations, superlinear speedups are found to result from reduced computational complexity associated with data parallelism.

  18. Determination of partition coefficients of biomolecules in a microfluidic aqueous two phase system platform using fluorescence microscopy.

    PubMed

    Silva, D F C; Azevedo, A M; Fernandes, P; Chu, V; Conde, J P; Aires-Barros, M R

    2017-03-03

    Aqueous two phase systems (ATPS) offer great potential for selective separation of a wide range of biomolecules by exploring differences in molecular solubility in each of the two immiscible phases. However, ATPS use has been limited due to the difficulty in predicting the behavior of a given biomolecule in the partition environment together with the empirical and time-consuming techniques that are used for the determination of partition and extraction parameters. In this work, a fast and novel technique based on a microfluidic platform and using fluorescence microscopy was developed to determine the partition coefficients of biomolecules in different ATPS. This method consists of using a microfluidic device with a single microchannel and three inlets. In two of the inlets, solutions containing the ATPS forming components were loaded while the third inlet was fed with the FITC tagged biomolecule of interest prepared in milli-Q water. Using fluorescence microscopy, it was possible to follow the location of the FITC-tagged biomolecule and, by simply varying the pumping rates of the solutions, to quickly test a wide variety of ATPS compositions. The ATPS system is allowed 4min for stabilization and fluorescence micrographs are used to determine the partition coefficient.The partition coefficients obtained were shown to be consistent with results from macroscale ATPS partition. This process allows for faster screening of partition coefficients using only a few microliters of material for each ATPS composition and is amenable to automation. The partitioning behavior of several biomolecules with molecular weights (MW) ranging from 5.8 to 150kDa, and isoelectric points (pI) ranging from 4.7 to 6.4 was investigated, as well as the effect of the molecular weight of the polymer ATPS component. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Spatial and Temporal Variations in Slip Partitioning During Oblique Convergence Experiments

    NASA Astrophysics Data System (ADS)

    Beyer, J. L.; Cooke, M. L.; Toeneboehn, K.

    2017-12-01

    Physical experiments of oblique convergence in wet kaolin demonstrate the development of slip partitioning, where two faults accommodate strain via different slip vectors. In these experiments, the second fault forms after the development of the first fault. As one strain component is relieved by one fault, the local stress field then favors the development of a second fault with different slip sense. A suite of physical experiments reveals three styles of slip partitioning development controlled by the convergence angle and presence of a pre-existing fault. In experiments with low convergence angles, strike-slip faults grow prior to reverse faults (Type 1) regardless of whether the fault is precut or not. In experiments with moderate convergence angles, slip partitioning is dominantly controlled by the presence of a pre-existing fault. In all experiments, the primarily reverse fault forms first. Slip partitioning then develops with the initiation of strike-slip along the precut fault (Type 2) or growth of a secondary reverse fault where the first fault is steepest. Subsequently, the slip on the first fault transitions to primarily strike-slip (Type 3). Slip rates and rakes along the slip partitioned faults for both precut and uncut experiments vary temporally, suggesting that faults in these slip-partitioned systems are constantly adapting to the conditions produced by slip along nearby faults in the system. While physical experiments show the evolution of slip partitioning, numerical simulations of the experiments provide information about both the stress and strain fields, which can be used to compute the full work budget, providing insight into the mechanisms that drive slip partitioning. Preliminary simulations of precut experiments show that strain energy density (internal work) can be used to predict fault growth, highlighting where fault growth can reduce off-fault deformation in the physical experiments. In numerical simulations of uncut experiments with a first non-planar oblique slip fault, strain energy density is greatest where the first fault is steepest, as less convergence is accommodated along this portion of the fault. The addition of a second slip-partitioning fault to the system decreases external work indicating that these faults increase the mechanical efficiency of the system.

  20. Lieb-Robinson bounds on n -partite connected correlation functions

    NASA Astrophysics Data System (ADS)

    Tran, Minh Cong; Garrison, James R.; Gong, Zhe-Xuan; Gorshkov, Alexey V.

    2017-11-01

    Lieb and Robinson provided bounds on how fast bipartite connected correlations can arise in systems with only short-range interactions. We generalize Lieb-Robinson bounds on bipartite connected correlators to multipartite connected correlators. The bounds imply that an n -partite connected correlator can reach unit value in constant time. Remarkably, the bounds also allow for an n -partite connected correlator to reach a value that is exponentially large with system size in constant time, a feature which stands in contrast to bipartite connected correlations. We provide explicit examples of such systems.

  1. Canonical partition functions: ideal quantum gases, interacting classical gases, and interacting quantum gases

    NASA Astrophysics Data System (ADS)

    Zhou, Chi-Chun; Dai, Wu-Sheng

    2018-02-01

    In statistical mechanics, for a system with a fixed number of particles, e.g. a finite-size system, strictly speaking, the thermodynamic quantity needs to be calculated in the canonical ensemble. Nevertheless, the calculation of the canonical partition function is difficult. In this paper, based on the mathematical theory of the symmetric function, we suggest a method for the calculation of the canonical partition function of ideal quantum gases, including ideal Bose, Fermi, and Gentile gases. Moreover, we express the canonical partition functions of interacting classical and quantum gases given by the classical and quantum cluster expansion methods in terms of the Bell polynomial in mathematics. The virial coefficients of ideal Bose, Fermi, and Gentile gases are calculated from the exact canonical partition function. The virial coefficients of interacting classical and quantum gases are calculated from the canonical partition function by using the expansion of the Bell polynomial, rather than calculated from the grand canonical potential.

  2. 5-O-caffeoylshikimic acid from Solanum somalense leaves: advantage of centrifugal partition chromatography over conventional column chromatography.

    PubMed

    Chideh, Saïda; Pilard, Serge; Attoumbré, Jacques; Saguez, Robert; Hassan-Abdallah, Alshaimaa; Cailleu, Dominique; Wadouachi, Anne; Baltora-Rosset, Sylvie

    2014-09-01

    Solanum somalense leaves, used in Djibouti for their medicinal properties, were extracted by MeOH. Because of the high polyphenol and flavonoid contents of the extract, respectively, determined at 80.80 ± 2.13 mg gallic acid equivalent/g dry weight and 24.4 ± 1.01 mg quercetin equivalent/g dry weight, the isolation and purification of the main polyphenols were carried out by silica gel column chromatography and centrifugal partition chromatography. Column chromatography led to 11 enriched fractions requiring further purification, while centrifugal partition chromatography allowed the easy recovery of the main compound of the extract. In a solvent system composed of CHCl3/MeOH/H2O (9.5:10:5), 21.8 mg of this compound at 97% purity was obtained leading to a yield of 2.63%. Its structure was established as 5-O-caffeoylshikimic acid by mass spectrometry and NMR spectroscopy. This work shows that S. somalense leaves contain very high level of 5-O-caffeoylshikimic acid (0.74% dry weight), making it a potential source of production of this secondary metabolite that is not commonly found in nature but could be partly responsible of the medicinal properties of S. somalense leaves. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Ultra-low background DNA cloning system.

    PubMed

    Goto, Kenta; Nagano, Yukio

    2013-01-01

    Yeast-based in vivo cloning is useful for cloning DNA fragments into plasmid vectors and is based on the ability of yeast to recombine the DNA fragments by homologous recombination. Although this method is efficient, it produces some by-products. We have developed an "ultra-low background DNA cloning system" on the basis of yeast-based in vivo cloning, by almost completely eliminating the generation of by-products and applying the method to commonly used Escherichia coli vectors, particularly those lacking yeast replication origins and carrying an ampicillin resistance gene (Amp(r)). First, we constructed a conversion cassette containing the DNA sequences in the following order: an Amp(r) 5' UTR (untranslated region) and coding region, an autonomous replication sequence and a centromere sequence from yeast, a TRP1 yeast selectable marker, and an Amp(r) 3' UTR. This cassette allowed conversion of the Amp(r)-containing vector into the yeast/E. coli shuttle vector through use of the Amp(r) sequence by homologous recombination. Furthermore, simultaneous transformation of the desired DNA fragment into yeast allowed cloning of this DNA fragment into the same vector. We rescued the plasmid vectors from all yeast transformants, and by-products containing the E. coli replication origin disappeared. Next, the rescued vectors were transformed into E. coli and the by-products containing the yeast replication origin disappeared. Thus, our method used yeast- and E. coli-specific "origins of replication" to eliminate the generation of by-products. Finally, we successfully cloned the DNA fragment into the vector with almost 100% efficiency.

  4. Dynamic Airspace Configuration

    NASA Technical Reports Server (NTRS)

    Bloem, Michael J.

    2014-01-01

    In air traffic management systems, airspace is partitioned into regions in part to distribute the tasks associated with managing air traffic among different systems and people. These regions, as well as the systems and people allocated to each, are changed dynamically so that air traffic can be safely and efficiently managed. It is expected that new air traffic control systems will enable greater flexibility in how airspace is partitioned and how resources are allocated to airspace regions. In this talk, I will begin by providing an overview of some previous work and open questions in Dynamic Airspace Configuration research, which is concerned with how to partition airspace and assign resources to regions of airspace. For example, I will introduce airspace partitioning algorithms based on clustering, integer programming optimization, and computational geometry. I will conclude by discussing the development of a tablet-based tool that is intended to help air traffic controller supervisors configure airspace and controllers in current operations.

  5. Partitioning problems in parallel, pipelined and distributed computing

    NASA Technical Reports Server (NTRS)

    Bokhari, S.

    1985-01-01

    The problem of optimally assigning the modules of a parallel program over the processors of a multiple computer system is addressed. A Sum-Bottleneck path algorithm is developed that permits the efficient solution of many variants of this problem under some constraints on the structure of the partitions. In particular, the following problems are solved optimally for a single-host, multiple satellite system: partitioning multiple chain structured parallel programs, multiple arbitrarily structured serial programs and single tree structured parallel programs. In addition, the problems of partitioning chain structured parallel programs across chain connected systems and across shared memory (or shared bus) systems are also solved under certain constraints. All solutions for parallel programs are equally applicable to pipelined programs. These results extend prior research in this area by explicitly taking concurrency into account and permit the efficient utilization of multiple computer architectures for a wide range of problems of practical interest.

  6. Relationship between carbohydrate partitioning and drought resistance in common bean.

    PubMed

    Cuellar-Ortiz, Sonia M; De La Paz Arrieta-Montiel, Maria; Acosta-Gallegos, Jorge; Covarrubias, Alejandra A

    2008-10-01

    Drought is a major yield constraint in common bean (Phaseolus vulgaris L.). Pulse-chase (14)C-labelling experiments were performed using Pinto Villa (drought resistant) and Canario 60 (drought sensitive) cultivars, grown under optimal irrigation and water-deficit conditions. Starch and the radioactive label incorporated into starch were measured in leaves and pods at different time points, between the initiation of pod development and the production of mature pods. The water-stress treatment induced a higher starch accumulation in the drought-resistant cultivar pods than in those of the drought-sensitive cultivar. This effect was more noticeable during the early stages of pod development. Consistently, a reduction of starch content occurred in the leaves of the drought-resistant cultivar during the grain-filling stage. Furthermore, a synchronized accumulation of sucrose was observed in immature pods of this cultivar. These data indicate that carbohydrate partitioning is affected by drought in common bean, and that the modulation of this partitioning towards seed filling has been a successful strategy in the development of drought-resistant cultivars. In addition, our results suggest that, in the drought-resistant cultivar, the efficient carbon mobilization towards the seeds in response to water limitation is favoured by a mechanism that implies a more effective sucrose transport.

  7. Smoothing spline analysis of variance models: A new tool for the analysis of cyclic biomechanical data.

    PubMed

    Helwig, Nathaniel E; Shorter, K Alex; Ma, Ping; Hsiao-Wecksler, Elizabeth T

    2016-10-03

    Cyclic biomechanical data are commonplace in orthopedic, rehabilitation, and sports research, where the goal is to understand and compare biomechanical differences between experimental conditions and/or subject populations. A common approach to analyzing cyclic biomechanical data involves averaging the biomechanical signals across cycle replications, and then comparing mean differences at specific points of the cycle. This pointwise analysis approach ignores the functional nature of the data, which can hinder one׳s ability to find subtle differences between experimental conditions and/or subject populations. To overcome this limitation, we propose using mixed-effects smoothing spline analysis of variance (SSANOVA) to analyze differences in cyclic biomechanical data. The SSANOVA framework makes it possible to decompose the estimated function into the portion that is common across groups (i.e., the average cycle, AC) and the portion that differs across groups (i.e., the contrast cycle, CC). By partitioning the signal in such a manner, we can obtain estimates of the CC differences (CCDs), which are the functions directly describing group differences in the cyclic biomechanical data. Using both simulated and experimental data, we illustrate the benefits of using SSANOVA models to analyze differences in noisy biomechanical (gait) signals collected from multiple locations (joints) of subjects participating in different experimental conditions. Using Bayesian confidence intervals, the SSANOVA results can be used in clinical and research settings to reliably quantify biomechanical differences between experimental conditions and/or subject populations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Site partitioning for distributed redundant disk arrays

    NASA Technical Reports Server (NTRS)

    Mourad, Antoine N.; Fuchs, W. K.; Saab, Daniel G.

    1992-01-01

    Distributed redundant disk arrays can be used in a distributed computing system or database system to provide recovery in the presence of temporary and permanent failures of single sites. In this paper, we look at the problem of partitioning the sites into redundant arrays in such way that the communication costs for maintaining the parity information are minimized. We show that the partitioning problem is NP-complete and we propose two heuristic algorithms for finding approximate solutions.

  9. Hydrological partitioning in the critical zone: Recent advances and opportunities for developing transferable understanding of water cycle dynamics

    DOE PAGES

    Brooks, Paul D.; Chorover, Jon; Fan, Ying; ...

    2015-08-07

    Here, hydrology is an integrative discipline linking the broad array of water–related research with physical, ecological, and social sciences. The increasing breadth of hydrological research, often where subdisciplines of hydrology partner with related sciences, reflects the central importance of water to environmental science, while highlighting the fractured nature of the discipline itself. This lack of coordination among hydrologic subdisciplines has hindered the development of hydrologic theory and integrated models capable of predicting hydrologic partitioning across time and space. The recent development of the concept of the critical zone (CZ), an open system extending from the top of the canopy tomore » the base of groundwater, brings together multiple hydrological subdisciplines with related physical and ecological sciences. Observations obtained by CZ researchers provide a diverse range of complementary process and structural data to evaluate both conceptual and numerical models. Consequently, a cross–site focus on “critical zone hydrology” has potential to advance the discipline of hydrology and to facilitate the transition of CZ observatories into a research network with immediate societal relevance. Here we review recent work in catchment hydrology and hydrochemistry, hydrogeology, and ecohydrology that highlights a common knowledge gap in how precipitation is partitioned in the critical zone: “how is the amount, routing, and residence time of water in the subsurface related to the biogeophysical structure of the CZ?” Addressing this question will require coordination among hydrologic subdisciplines and interfacing sciences, and catalyze rapid progress in understanding current CZ structure and predicting how climate and land cover changes will affect hydrologic partitioning.« less

  10. Hydrological partitioning in the critical zone: Recent advances and opportunities for developing transferable understanding of water cycle dynamics

    NASA Astrophysics Data System (ADS)

    Brooks, Paul D.; Chorover, Jon; Fan, Ying; Godsey, Sarah E.; Maxwell, Reed M.; McNamara, James P.; Tague, Christina

    2015-09-01

    Hydrology is an integrative discipline linking the broad array of water-related research with physical, ecological, and social sciences. The increasing breadth of hydrological research, often where subdisciplines of hydrology partner with related sciences, reflects the central importance of water to environmental science, while highlighting the fractured nature of the discipline itself. This lack of coordination among hydrologic subdisciplines has hindered the development of hydrologic theory and integrated models capable of predicting hydrologic partitioning across time and space. The recent development of the concept of the critical zone (CZ), an open system extending from the top of the canopy to the base of groundwater, brings together multiple hydrological subdisciplines with related physical and ecological sciences. Observations obtained by CZ researchers provide a diverse range of complementary process and structural data to evaluate both conceptual and numerical models. Consequently, a cross-site focus on "critical zone hydrology" has potential to advance the discipline of hydrology and to facilitate the transition of CZ observatories into a research network with immediate societal relevance. Here we review recent work in catchment hydrology and hydrochemistry, hydrogeology, and ecohydrology that highlights a common knowledge gap in how precipitation is partitioned in the critical zone: "how is the amount, routing, and residence time of water in the subsurface related to the biogeophysical structure of the CZ?" Addressing this question will require coordination among hydrologic subdisciplines and interfacing sciences, and catalyze rapid progress in understanding current CZ structure and predicting how climate and land cover changes will affect hydrologic partitioning.

  11. Multipartite entanglement in fermionic systems via a geometric measure

    NASA Astrophysics Data System (ADS)

    Lari, Behzad; Durganandini, P.; Joag, Pramod S.

    2010-12-01

    We study multipartite entanglement in a system consisting of indistinguishable fermions. Specifically, we have proposed a geometric entanglement measure for N spin-(1)/(2) fermions distributed over 2L modes (single-particle states). The measure is defined on the 2L qubit space isomorphic to the Fock space for 2L single-particle states. This entanglement measure is defined for a given partition of 2L modes containing m⩾2 subsets. Thus this measure applies to m⩽2L partite fermionic systems where L is any finite number, giving the number of sites. The Hilbert spaces associated with these subsets may have different dimensions. Further, we have defined the local quantum operations with respect to a given partition of modes. This definition is generic and unifies different ways of dividing a fermionic system into subsystems. We have shown, using a representative case, that the geometric measure is invariant under local unitary operators corresponding to a given partition. We explicitly demonstrate the use of the measure to calculate multipartite entanglement in some correlated electron systems.

  12. Modelling the petrogenesis of high Rb/Sr silicic magmas

    USGS Publications Warehouse

    Halliday, A.N.; Davidson, J.P.; Hildreth, W.; Holden, P.

    1991-01-01

    Rhyolites can be highly evolved with Sr contents as low as 0.1 ppm and Rb Sr > 2,000. In contrast, granite batholiths are commonly comprised of rocks with Rb Sr 100. Mass-balance modelling of source compositions, differentiation and contamination using the trace-element geochemistry of granites are therefore commonly in error because of the failure to account for evolved differentiates that may have been erupted from the system. Rhyolitic magmas with very low Sr concentrations (???1 ppm) cannot be explained by any partial melting models involving typical crustal source compositions. The only plausible mechanism for the production of such rhyolites is Rayleigh fractional crystallization involving substantial volumes of cumulates. A variety of methods for modelling the differentiation of magmas with extremely high Rb/Sr is discussed. In each case it is concluded that the bulk partition coefficients for Sr have to be large. In the simplest models, the bulk DSr of the most evolved types is modelled as > 50. Evidence from phenocryst/glass/whole-rock concentrations supports high Sr partition coefficients in feldspars from high silica rhyolites. However, the low modal abundance of plagioclase commonly observed in such rocks is difficult to reconcile with such simple fractionation models of the observed trace-element trends. In certain cases, this may be because the apparent trace-element trend defined by the suite of cognetic rhyolites is the product of different batches of magma with separate differentiation histories accumulating in the magma chamber roof zone. ?? 1991.

  13. Geometrically robust image watermarking by sector-shaped partitioning of geometric-invariant regions.

    PubMed

    Tian, Huawei; Zhao, Yao; Ni, Rongrong; Cao, Gang

    2009-11-23

    In a feature-based geometrically robust watermarking system, it is a challenging task to detect geometric-invariant regions (GIRs) which can survive a broad range of image processing operations. Instead of commonly used Harris detector or Mexican hat wavelet method, a more robust corner detector named multi-scale curvature product (MSCP) is adopted to extract salient features in this paper. Based on such features, disk-like GIRs are found, which consists of three steps. First, robust edge contours are extracted. Then, MSCP is utilized to detect the centers for GIRs. Third, the characteristic scale selection is performed to calculate the radius of each GIR. A novel sector-shaped partitioning method for the GIRs is designed, which can divide a GIR into several sector discs with the help of the most important corner (MIC). The watermark message is then embedded bit by bit in each sector by using Quantization Index Modulation (QIM). The GIRs and the divided sector discs are invariant to geometric transforms, so the watermarking method inherently has high robustness against geometric attacks. Experimental results show that the scheme has a better robustness against various image processing operations including common processing attacks, affine transforms, cropping, and random bending attack (RBA) than the previous approaches.

  14. The critical role of fire in catchment coevolution in South Eastern Australia

    NASA Astrophysics Data System (ADS)

    Nyman, P.; Inbar, A.; Lane, P. N. J.; Sheridan, G. J.

    2016-12-01

    Temperate south east Australian forested uplands are characterised by complex spatial patterns in forest types, soils and fire regimes, even within areas with similar geologies and landscape position. Preliminary measurements and experiments suggest that positive and negative feedbacks between the vegetation, fuels, fire frequency and soil erosion may control the coevolution of these observed system states. Here we propose the hypotheses that in this landscape post-fire soil erosion has played a dominant role in the coevolved system-state combinations of standing biomass, fire frequency and soil depth. To test the hypothesis a 1D simulation model was developed that links together an ecohydrological model to drive the biomass production and water and energy partitioning, a stochastic fire model that is controlled by climate, fuel load and moisture conditions, and a geomorphic model that controls soil production and fluvial and diffusive sediment transport rates. The model was calibrated to the range of existing observed quasi-equalibrium system-states of soil depth, standing biomass, fuel loading and fire frequency using field measurements from 12 instrumented eco-hydrologic microclimate research sites. The long-term partitioning of rainfall into evaporation, transpiration, and streamflow was calibrated against field and literature values. Fuel moisture and micro-climate variables were calibrated to the field microclimate stations. The calibrated model was able to reasonably replicate the observed quasi-equilibrium system-states and hydrologic outputs using current climate forcings operating over a 10,000 year period, providing confidence in the model structure and performance. The model was then used to test the hypothesis stated above, by alternatively including or excluding the post fire erosion process. An alternate hypothesis, whereby the observed system states are dominated by climate related differences in soil production rates was also tested in this way. The results support the hypothesis that feedbacks between fire, ecology, hydrology and geomorphology have played a critical role in the coevolution of south east Australian forested uplands. Similar pyro-eco-hydrologic feedbacks may play a critical role in catchment coevolution in other forested systems globally.

  15. Checkpoint-dependent and independent roles of the Werner syndrome protein in preserving genome integrity in response to mild replication stress

    PubMed Central

    Basile, Giorgia; Leuzzi, Giuseppe; Pichierri, Pietro; Franchitto, Annapaola

    2014-01-01

    Werner syndrome (WS) is a human chromosomal instability disorder associated with cancer predisposition and caused by mutations in the WRN gene. WRN helicase activity is crucial in limiting breakage at common fragile sites (CFS), which are the preferential targets of genome instability in precancerous lesions. However, the precise function of WRN in response to mild replication stress, like that commonly used to induce breaks at CFS, is still missing. Here, we establish that WRN plays a role in mediating CHK1 activation under moderate replication stress. We provide evidence that phosphorylation of CHK1 relies on the ATR-mediated phosphorylation of WRN, but not on WRN helicase activity. Analysis of replication fork dynamics shows that loss of WRN checkpoint mediator function as well as of WRN helicase activity hamper replication fork progression, and lead to new origin activation to allow recovery from replication slowing upon replication stress. Furthermore, bypass of WRN checkpoint mediator function through overexpression of a phospho-mimic form of CHK1 restores fork progression and chromosome stability to the wild-type levels. Together, these findings are the first demonstration that WRN regulates the ATR-checkpoint activation upon mild replication stress, preventing chromosome fragility. PMID:25352544

  16. What are the structural features that drive partitioning of proteins in aqueous two-phase systems?

    PubMed

    Wu, Zhonghua; Hu, Gang; Wang, Kui; Zaslavsky, Boris Yu; Kurgan, Lukasz; Uversky, Vladimir N

    2017-01-01

    Protein partitioning in aqueous two-phase systems (ATPSs) represents a convenient, inexpensive, and easy to scale-up protein separation technique. Since partition behavior of a protein dramatically depends on an ATPS composition, it would be highly beneficial to have reliable means for (even qualitative) prediction of partitioning of a target protein under different conditions. Our aim was to understand which structural features of proteins contribute to partitioning of a query protein in a given ATPS. We undertook a systematic empirical analysis of relations between 57 numerical structural descriptors derived from the corresponding amino acid sequences and crystal structures of 10 well-characterized proteins and the partition behavior of these proteins in 29 different ATPSs. This analysis revealed that just a few structural characteristics of proteins can accurately determine behavior of these proteins in a given ATPS. However, partition behavior of proteins in different ATPSs relies on different structural features. In other words, we could not find a unique set of protein structural features derived from their crystal structures that could be used for the description of the protein partition behavior of all proteins in all ATPSs analyzed in this study. We likely need to gain better insight into relationships between protein-solvent interactions and protein structure peculiarities, in particular given limitations of the used here crystal structures, to be able to construct a model that accurately predicts protein partition behavior across all ATPSs. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Experimenting Maintenance of Flight Software in an Integrated Modular Avionics for Space

    NASA Astrophysics Data System (ADS)

    Hardy, Johan; Laroche, Thomas; Creten, Philippe; Parisis, Paul; Hiller, Martin

    2014-08-01

    This paper presents an experiment of Flight Software partitioning in an Integrated Modular Avionics for Space (IMA-SP) system. This experiment also tackles the maintenance aspects of IMA-SP systems. The presented case study is PROBA-2 Flight Software. The paper addresses and discusses the following subjects: On-Board Software Maintenance in IMA- SP, boot strategy for Time and Space Partitioning, considerations about the ground segment related to On-Board Software Maintenance in IMA-SP, and architectural impacts of Time and Space Partitioning for PROBA software's. Finally, this paper presents the results and the achievements of the study and it appeals at further perspectives for IMA-SP and Time and Space Partitioning.

  18. Early Word Comprehension in Infants: Replication and Extension

    ERIC Educational Resources Information Center

    Bergelson, Elika; Swingley, Daniel

    2015-01-01

    A handful of recent experimental reports have shown that infants of 6-9 months know the meanings of some common words. Here, we replicate and extend these findings. With a new set of items, we show that when young infants (age 6-16 months, n = 49) are presented with side-by-side video clips depicting various common early words, and one clip is…

  19. Identification and DNA annotation of a plasmid isolated from Chromobacterium violaceum.

    PubMed

    Lima, Daniel C; Nyberg, Lena K; Westerlund, Fredrik; Batistuzzo de Medeiros, Silvia R

    2018-03-28

    Chromobacterium violaceum is a ß-proteobacterium found widely worldwide with important biotechnological properties and is associated to lethal sepsis in immune-depressed individuals. In this work, we report the discover, complete sequence and annotation of a plasmid detected in C. violaceum that has been unnoticed until now. We used DNA single-molecule analysis to confirm that the episome found was a circular molecule and then proceeded with NGS sequencing. After DNA annotation, we found that this extra-chromosomal DNA is probably a defective bacteriophage of approximately 44 kilobases, with 39 ORFs comprising, mostly hypothetical proteins. We also found DNA sequences that ensure proper plasmid replication and partitioning as well as a toxin addiction system. This report sheds light on the biology of this important species, helping us to understand the mechanisms by which C. violaceum endures to several harsh conditions. This discovery could also be a first step in the development of a DNA manipulation tool in this bacterium.

  20. IMPACT OF REDOX DISEQUILIBRIA ON CONTAMINANT TRANSPORT AND REMEDIATION IN SUBSURFACE SYSTEMS

    EPA Science Inventory

    Partitioning to mineral surfaces exerts significant control on inorganic contaminant transport in subsurface systems. Remedial technologies for in-situ treatment of subsurface contamination are frequently designed to optimize the efficiency of contaminant partitioning to solid s...

  1. Wigner expansions for partition functions of nonrelativistic and relativistic oscillator systems

    NASA Technical Reports Server (NTRS)

    Zylka, Christian; Vojta, Guenter

    1993-01-01

    The equilibrium quantum statistics of various anharmonic oscillator systems including relativistic systems is considered within the Wigner phase space formalism. For this purpose the Wigner series expansion for the partition function is generalized to include relativistic corrections. The new series for partition functions and all thermodynamic potentials yield quantum corrections in terms of powers of h(sup 2) and relativistic corrections given by Kelvin functions (modified Hankel functions) K(sub nu)(mc(sup 2)/kT). As applications, the symmetric Toda oscillator, isotonic and singular anharmonic oscillators, and hindered rotators, i.e. oscillators with cosine potential, are addressed.

  2. Partitioning Strategy Using Static Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Seo, Yongjin; Soo Kim, Hyeon

    2016-08-01

    Flight software is software used in satellites' on-board computers. It has requirements such as real time and reliability. The IMA architecture is used to satisfy these requirements. The IMA architecture has the concept of partitions and this affected the configuration of flight software. That is, situations occurred in which software that had been loaded on one system was divided into many partitions when being loaded. For new issues, existing studies use experience based partitioning methods. However, these methods have a problem that they cannot be reused. In this respect, this paper proposes a partitioning method that is reusable and consistent.

  3. Model for the partition of neutral compounds between n-heptane and formamide.

    PubMed

    Karunasekara, Thushara; Poole, Colin F

    2010-04-01

    Partition coefficients for 84 varied compounds were determined for n-heptane-formamide biphasic partition system and used to derive a model for the distribution of neutral compounds between the n-heptane-rich and formamide-rich layers. The partition coefficients, log K(p), were correlated through the solvation parameter model giving log K(p)=0.083+0.559E-2.244S-3.250A-1.614B+2.387V with a multiple correlation coefficient of 0.996, standard error of the estimate 0.139, and Fisher statistic 1791. In the model, the solute descriptors are excess molar refraction, E, dipolarity/polarizability, S, overall hydrogen-bond acidity, A, overall hydrogen-bond basicity, B, and McGowan's characteristic volume, V. The model is expected to be able to estimate further values of the partition coefficient to about 0.13 log units for the same descriptor space covered by the calibration compounds (E=-0.26-2.29, S=0-1.93, A=0-1.25, B=0.02-1.58, and V=0.78-2.50). The n-heptane-formamide partition system is shown to have different selectivity to other totally organic biphasic systems and to be suitable for estimating descriptor values for compounds of low water solubility and/or stability.

  4. Characterization of clinical signs in the human interactome.

    PubMed

    Chagoyen, Monica; Pazos, Florencio

    2016-06-15

    Many diseases are related by shared associated molecules and pathways, exhibiting comorbidities and common phenotypes, an indication of the continuous nature of the human pathological landscape. Although it is continuous, this landscape is always partitioned into discrete diseases when studied at the molecular level. Clinical signs are also important phenotypic descriptors that can reveal the molecular mechanisms that underlie pathological states, but have seldom been the subject of systemic research. Here, we quantify the modular nature of the clinical signs associated with genetic diseases in the human interactome. We found that clinical signs are reflected as modules at the molecular network level, to at least to the same extent as diseases. They can thus serve as a valid complementary partition of the human pathological landscape, with implications for etiology research, diagnosis and treatment. monica.chagoyen@cnb.csic.es Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. An Adaptive Insertion and Promotion Policy for Partitioned Shared Caches

    NASA Astrophysics Data System (ADS)

    Mahrom, Norfadila; Liebelt, Michael; Raof, Rafikha Aliana A.; Daud, Shuhaizar; Hafizah Ghazali, Nur

    2018-03-01

    Cache replacement policies in chip multiprocessors (CMP) have been investigated extensively and proven able to enhance shared cache management. However, competition among multiple processors executing different threads that require simultaneous access to a shared memory may cause cache contention and memory coherence problems on the chip. These issues also exist due to some drawbacks of the commonly used Least Recently Used (LRU) policy employed in multiprocessor systems, which are because of the cache lines residing in the cache longer than required. In image processing analysis of for example extra pulmonary tuberculosis (TB), an accurate diagnosis for tissue specimen is required. Therefore, a fast and reliable shared memory management system to execute algorithms for processing vast amount of specimen image is needed. In this paper, the effects of the cache replacement policy in a partitioned shared cache are investigated. The goal is to quantify whether better performance can be achieved by using less complex replacement strategies. This paper proposes a Middle Insertion 2 Positions Promotion (MI2PP) policy to eliminate cache misses that could adversely affect the access patterns and the throughput of the processors in the system. The policy employs a static predefined insertion point, near distance promotion, and the concept of ownership in the eviction policy to effectively improve cache thrashing and to avoid resource stealing among the processors.

  6. Plants as models for the study of human pathogenesis.

    PubMed

    Guttman, David S

    2004-05-01

    There are many common disease mechanisms used by bacterial pathogens of plants and humans. They use common means of attachment, secretion and genetic regulation. They share many virulence factors, such as extracellular polysaccharides and some type III secreted effectors. Plant and human innate immune systems also share many similarities. Many of these shared bacterial virulence mechanisms are homologous, but even more appear to have independently converged on a common function. This combination of homologous and analogous systems reveals conserved and critical steps in the disease process. Given these similarities, and the many experimental advantages of plant biology, including ease of replication, stringent genetic and reproductive control, and high throughput with low cost, it is proposed that plants would make excellent models for the study of human pathogenesis.

  7. Hierarchical Modeling and Robust Synthesis for the Preliminary Design of Large Scale Complex Systems

    NASA Technical Reports Server (NTRS)

    Koch, Patrick N.

    1997-01-01

    Large-scale complex systems are characterized by multiple interacting subsystems and the analysis of multiple disciplines. The design and development of such systems inevitably requires the resolution of multiple conflicting objectives. The size of complex systems, however, prohibits the development of comprehensive system models, and thus these systems must be partitioned into their constituent parts. Because simultaneous solution of individual subsystem models is often not manageable iteration is inevitable and often excessive. In this dissertation these issues are addressed through the development of a method for hierarchical robust preliminary design exploration to facilitate concurrent system and subsystem design exploration, for the concurrent generation of robust system and subsystem specifications for the preliminary design of multi-level, multi-objective, large-scale complex systems. This method is developed through the integration and expansion of current design techniques: Hierarchical partitioning and modeling techniques for partitioning large-scale complex systems into more tractable parts, and allowing integration of subproblems for system synthesis; Statistical experimentation and approximation techniques for increasing both the efficiency and the comprehensiveness of preliminary design exploration; and Noise modeling techniques for implementing robust preliminary design when approximate models are employed. Hierarchical partitioning and modeling techniques including intermediate responses, linking variables, and compatibility constraints are incorporated within a hierarchical compromise decision support problem formulation for synthesizing subproblem solutions for a partitioned system. Experimentation and approximation techniques are employed for concurrent investigations and modeling of partitioned subproblems. A modified composite experiment is introduced for fitting better predictive models across the ranges of the factors, and an approach for constructing partitioned response surfaces is developed to reduce the computational expense of experimentation for fitting models in a large number of factors. Noise modeling techniques are compared and recommendations are offered for the implementation of robust design when approximate models are sought. These techniques, approaches, and recommendations are incorporated within the method developed for hierarchical robust preliminary design exploration. This method as well as the associated approaches are illustrated through their application to the preliminary design of a commercial turbofan turbine propulsion system. The case study is developed in collaboration with Allison Engine Company, Rolls Royce Aerospace, and is based on the Allison AE3007 existing engine designed for midsize commercial, regional business jets. For this case study, the turbofan system-level problem is partitioned into engine cycle design and configuration design and a compressor modules integrated for more detailed subsystem-level design exploration, improving system evaluation. The fan and low pressure turbine subsystems are also modeled, but in less detail. Given the defined partitioning, these subproblems are investigated independently and concurrently, and response surface models are constructed to approximate the responses of each. These response models are then incorporated within a commercial turbofan hierarchical compromise decision support problem formulation. Five design scenarios are investigated, and robust solutions are identified. The method and solutions identified are verified by comparison with the AE3007 engine. The solutions obtained are similar to the AE3007 cycle and configuration, but are better with respect to many of the requirements.

  8. Parameterizing the equilibrium distribution of chemicals between the dissolved, solid particulate matter, and colloidal matter compartments in aqueous systems

    USGS Publications Warehouse

    Pankow, J.F.; McKenzie, S.W.

    1991-01-01

    The manner in which a chemical material partitions among the dissolved (D), participate (P), and colloidal (C) phases affects both its chemical and physical behavior in the aquatic environment. The fractions of the chemical that are present in each of these three phases will be determined by the values of two simple parameters, KpSp/??w and KcSc/??w. The variables Kp and Kc are the particle/water and colloid/water partition constants (mL/g), respectively, Sp and Sc are the volume concentrations of particulate and colloidal material (mg/L), respectively, and ??w is the fractional volume of the system that is aqueous. This parameterization allows a rapid overview of how partitioning (1) changes as a function of chemical partitioning properties and water type, (2) affects apparent partition constants (i.e., Kpapp values) computed between the particulate phase and the remainder of the system, and (3) causes Kpapp values to become independent of chemical properties at high values of KcSc/??w. ?? 1991 American Chemical Society.

  9. PARTITIONING OF THE REFRACTORY METALS, NICKEL AND CHROMIUM, IN COMBUSTION SYSTEMS

    EPA Science Inventory

    The partitioning of nickel (Ni) and Chromium (Cr) in combustion systems was investigated theoretically and experimentally. In comparison to other volatile and semi-volatile metals, both Ni and Cr are usually considered to be refractory (non-volatile). Theoretical predictions ba...

  10. Apatite-Melt Partitioning of Volatiles in Basaltic Systems: Implications for Determining Volatile Abundances in Planetary Bodies from Apatite

    NASA Technical Reports Server (NTRS)

    McCubbin, F. M.

    2017-01-01

    Apatite [Ca5(PO4)3(F,Cl,OH)] is present in a wide range of planetary materials, and due to the presence of volatiles within its crystal structure (X-site), many recent studies have attempted to use apatite to constrain the volatile contents of planetary magmas and mantle sources [i.e., 1]. Experimental studies have investigated the apatite-melt partitioning behavior of F, Cl, and OH in basaltic systems [e.g., 2- 3], reporting that apatite-melt partitioning of volatiles is best described as exchange equilibria similar to Fe-Mg partitioning between olivine and silicate melt. However, exchange coefficients may vary as a function of temperature, pressure, melt composition, and/or oxygen fugacity. Furthermore, exchange coefficients may vary in portions of apatite compositional space where F, Cl, and OH do not mix ideally in apatite [3]. In these regions of ternary space, we anticipate that crystal chemistry could influence partitioning behavior. Consequently, we conducted experiments to investigate the effect of apatite crystal chemistry on apatite-melt partitioning of F, Cl, and OH.

  11. Spacecraft On-Board Information Extraction Computer (SOBIEC)

    NASA Technical Reports Server (NTRS)

    Eisenman, David; Decaro, Robert E.; Jurasek, David W.

    1994-01-01

    The Jet Propulsion Laboratory is the Technical Monitor on an SBIR Program issued for Irvine Sensors Corporation to develop a highly compact, dual use massively parallel processing node known as SOBIEC. SOBIEC couples 3D memory stacking technology provided by nCUBE. The node contains sufficient network Input/Output to implement up to an order-13 binary hypercube. The benefit of this network, is that it scales linearly as more processors are added, and it is a superset of other commonly used interconnect topologies such as: meshes, rings, toroids, and trees. In this manner, a distributed processing network can be easily devised and supported. The SOBIEC node has sufficient memory for most multi-computer applications, and also supports external memory expansion and DMA interfaces. The SOBIEC node is supported by a mature set of software development tools from nCUBE. The nCUBE operating system (OS) provides configuration and operational support for up to 8000 SOBIEC processors in an order-13 binary hypercube or any subset or partition(s) thereof. The OS is UNIX (USL SVR4) compatible, with C, C++, and FORTRAN compilers readily available. A stand-alone development system is also available to support SOBIEC test and integration.

  12. Field-Scale Partitioning of Ecosystem Respiration Components Suggests Carbon Stabilization in a Bioenergy Grass Ecosystem

    NASA Astrophysics Data System (ADS)

    Black, C. K.; Miller, J. N.; Masters, M. D.; Bernacchi, C.; DeLucia, E. H.

    2014-12-01

    Annually-harvested agroecosystems have the potential to be net carbon sinks only if their root systems allocate sufficient carbon belowground and if this carbon is then retained as stable soil organic matter. Soil respiration measurements are the most common approach to evaluate the stability of soil carbon at experimental time scales, but valid inferences require the partitioning of soil respiration into root-derived (current-year C) and heterotrophic (older C) components. This partitioning is challenging at the field scale because roots and soil are intricately mixed and physical separation in impossible without disturbing the fluxes to be measured. To partition soil flux and estimate the C sink potential of bioenergy crops, we used the carbon isotope difference between C3 and C4 plant species to quantify respiration from roots of three C4 grasses (maize, Miscanthus, and switchgrass) grown in a site with a mixed cropping history where respiration from the breakdown of old soil carbon has a mixed C3-C4 signature. We used a Keeling plot approach to partition fluxes both at the soil surface using soil chambers and from the whole field using continuous flow sampling of air within and above the canopy. Although soil respiration rates from perennial grasses were higher than those from maize, the isotopic signature of respired carbon indicated that the fraction of soil CO2 flux attributable to current-year vegetation was 1.5 (switchgrass) to 2 (Miscanthus) times greater in perennials than that from maize, indicating that soil CO2 flux came mostly from roots and turnover of soil organic matter was reduced in the perennial crops. This reduction in soil heterotrophic respiration, combined with the much greater quantities of C allocated belowground by perennial grasses compared to maize, suggests that perennial grasses grown as bioenergy crops may be able to provide an additional climate benefit by acting as carbon sinks in addition to reducing fossil fuel consumption.

  13. Dry matter partitioning models for the simulation of individual fruit growth in greenhouse cucumber canopies

    PubMed Central

    Wiechers, Dirk; Kahlen, Katrin; Stützel, Hartmut

    2011-01-01

    Background and Aims Growth imbalances between individual fruits are common in indeterminate plants such as cucumber (Cucumis sativus). In this species, these imbalances can be related to differences in two growth characteristics, fruit growth duration until reaching a given size and fruit abortion. Both are related to distribution, and environmental factors as well as canopy architecture play a key role in their differentiation. Furthermore, events leading to a fruit reaching its harvestable size before or simultaneously with a prior fruit can be observed. Functional–structural plant models (FSPMs) allow for interactions between environmental factors, canopy architecture and physiological processes. Here, we tested hypotheses which account for these interactions by introducing dominance and abortion thresholds for the partitioning of assimilates between growing fruits. Methods Using the L-System formalism, an FSPM was developed which combined a model for architectural development, a biochemical model of photosynthesis and a model for assimilate partitioning, the last including a fruit growth model based on a size-related potential growth rate (RP). Starting from a distribution proportional to RP, the model was extended by including abortion and dominance. Abortion was related to source strength and dominance to sink strength. Both thresholds were varied to test their influence on fruit growth characteristics. Simulations were conducted for a dense row and a sparse isometric canopy. Key Results The simple partitioning models failed to simulate individual fruit growth realistically. The introduction of abortion and dominance thresholds gave the best results. Simulations of fruit growth durations and abortion rates were in line with measurements, and events in which a fruit was harvestable earlier than an older fruit were reproduced. Conclusions Dominance and abortion events need to be considered when simulating typical fruit growth traits. By integrating environmental factors, the FSPM can be a valuable tool to analyse and improve existing knowledge about the dynamics of assimilates partitioning. PMID:21715366

  14. Computational solvent system screening for the separation of tocopherols with centrifugal partition chromatography using deep eutectic solvent-based biphasic systems.

    PubMed

    Bezold, Franziska; Weinberger, Maria E; Minceva, Mirjana

    2017-03-31

    Tocopherols are a class of molecules with vitamin E activity. Among those, α-tocopherol is the most important vitamin E source in the human diet. The purification of tocopherols involving biphasic liquid systems can be challenging since these vitamins are poorly soluble in water. Deep eutectic solvents (DES) can be used to form water-free biphasic systems and have already proven applicable for centrifugal partition chromatography separations. In this work, a computational solvent system screening was performed using the predictive thermodynamic model COSMO-RS. Liquid-liquid equilibria of solvent systems composed of alkanes, alcohols and DES, as well as partition coefficients of α-tocopherol, β-tocopherol, γ-tocopherol, and σ-tocopherol in these biphasic solvent systems were calculated. From the results the best suited biphasic solvent system, namely heptane/ethanol/choline chloride-1,4-butanediol, was chosen and a batch injection of a tocopherol mixture, mainly consisting of α- and γ-tocopherol, was performed using a centrifugal partition chromatography set up (SCPE 250-BIO). A separation factor of 1.74 was achieved for α- and γ-tocopherol. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Partition-free approach to open quantum systems in harmonic environments: An exact stochastic Liouville equation

    NASA Astrophysics Data System (ADS)

    McCaul, G. M. G.; Lorenz, C. D.; Kantorovich, L.

    2017-03-01

    We present a partition-free approach to the evolution of density matrices for open quantum systems coupled to a harmonic environment. The influence functional formalism combined with a two-time Hubbard-Stratonovich transformation allows us to derive a set of exact differential equations for the reduced density matrix of an open system, termed the extended stochastic Liouville-von Neumann equation. Our approach generalizes previous work based on Caldeira-Leggett models and a partitioned initial density matrix. This provides a simple, yet exact, closed-form description for the evolution of open systems from equilibriated initial conditions. The applicability of this model and the potential for numerical implementations are also discussed.

  16. Unexpected Learning Competencies of Grades 5 and 6 Pupils in Public Elementary Schools: A Philippine Report

    ERIC Educational Resources Information Center

    Felipe, Abraham I.

    2006-01-01

    The present study tested the assumption of a positive and linear relation between years of schooling and school learning in the Philippine setting. It replicated a 1976 study that had cast doubt on this assumption in the Philippine public educational system. It tested three competing hypotheses for that finding: common sense, the 1976 arrested…

  17. Zone fluidics for measurement of octanol-water partition coefficient of drugs.

    PubMed

    Wattanasin, Panwadee; Saetear, Phoonthawee; Wilairat, Prapin; Nacapricha, Duangjai; Teerasong, Saowapak

    2015-02-20

    A novel zone fluidics (ZF) system for the determination of the octanol-water partition coefficient (Pow) of drugs was developed. The ZF system consisted of a syringe pump with a selection valve, a holding column, a silica capillary flow-cell and an in-line spectrophotometer. Exact microliter volumes of solvents (octanol and phosphate buffer saline) and a solution of the drug, sandwiched between air segments, were sequentially loaded into the vertically aligned holding column. Distribution of the drug between the aqueous and octanol phases occurred by the oscillation movement of the syringe pump piston. Phase separation occurred due to the difference in densities. The liquid zones were then pushed into the detection flow cell. In this method, absorbance measurements in only one of the phase (octanol or aqueous) were employed, which together with the volumes of the solvents and pure drug sample, allowed the calculation of the Pow. The developed system was applied to the determination of the Pow of some common drugs. The log (Pow) values agreed well with a batch method (R(2)=0.999) and literature (R(2)=0.997). Standard deviations for intra- and inter-day analyses were both less than 0.1log unit. This ZF system provides a robust and automated method for screening of Pow values in the drug discovery process. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Convergence in the Bilingual Lexicon: A Pre-registered Replication of Previous Studies.

    PubMed

    White, Anne; Malt, Barbara C; Storms, Gert

    2016-01-01

    Naming patterns of bilinguals have been found to converge and form a new intermediate language system from elements of both the bilinguals' languages. This converged naming pattern differs from the monolingual naming patterns of both a bilingual's languages. We conducted a pre-registered replication study of experiments addressing the question whether there is a convergence between a bilingual's both lexicons. The replication used an enlarged set of stimuli of common household containers, providing generalizability, and more reliable representations of the semantic domain. Both an analysis at the group-level and at the individual level of the correlations between naming patterns reject the two-pattern hypothesis that poses that bilinguals use two monolingual-like naming patterns, one for each of their two languages. However, the results of the original study and the replication comply with the one-pattern hypothesis, which poses that bilinguals converge the naming patterns of their two languages and form a compromise. Since this convergence is only partial the naming pattern in bilinguals corresponds to a moderate version of the one-pattern hypothesis. These findings are further confirmed by a representation of the semantic domain in a multidimensional space and the finding of shorter distances between bilingual category centers than monolingual category centers in this multidimensional space both in the original and in the replication study.

  19. Iron Partitioning in Ferropericlase and Consequences for the Magma Ocean.

    NASA Astrophysics Data System (ADS)

    Braithwaite, J. W. H.; Stixrude, L. P.; Holmstrom, E.; Pinilla, C.

    2016-12-01

    The relative buoyancy of crystals and liquid is likely to exert a strong influence on the thermal and chemical evolution of the magma ocean. Theory indicates that liquids approach, but do not exceed the density of iso-chemical crystals in the deep mantle. The partitioning of heavy elements, such as Fe, is therefore likely to control whether crystals sink or float. While some experimental results exist, our knowledge of silicate liquid-crystal element partitioning is still limited in the deep mantle. We have developed a method for computing the Mg-Fe partitioning of Fe in such systems. We have focused initially on ferropericlase, as a relatively simple system where the buoyancy effects of Fe partitioning are likely to be large. The method is based on molecular dynamics driven by density functional theory (spin polarized, PBEsol+U). We compute the free energy of Mg for Fe substitution in simulations of liquid and B1 crystalline phases via adiabatic switching. We investigate the dependence of partitioning on pressure, temperature, and iron concentration. We find that the liquid is denser than the coexisting crystalline phase at all conditions studies. We also find that the high-spin to low-spin transition in the crystal and the liquid, have an important influence on partitioning behavior.

  20. Nationwide Multicenter Reference Interval Study for 28 Common Biochemical Analytes in China.

    PubMed

    Xia, Liangyu; Chen, Ming; Liu, Min; Tao, Zhihua; Li, Shijun; Wang, Liang; Cheng, Xinqi; Qin, Xuzhen; Han, Jianhua; Li, Pengchang; Hou, Li'an; Yu, Songlin; Ichihara, Kiyoshi; Qiu, Ling

    2016-03-01

    A nationwide multicenter study was conducted in the China to explore sources of variation of reference values and establish reference intervals for 28 common biochemical analytes, as a part of the International Federation of Clinical Chemistry and Laboratory Medicine, Committee on Reference Intervals and Decision Limits (IFCC/C-RIDL) global study on reference values. A total of 3148 apparently healthy volunteers were recruited in 6 cities covering a wide area in China. Blood samples were tested in 2 central laboratories using Beckman Coulter AU5800 chemistry analyzers. Certified reference materials and value-assigned serum panel were used for standardization of test results. Multiple regression analysis was performed to explore sources of variation. Need for partition of reference intervals was evaluated based on 3-level nested ANOVA. After secondary exclusion using the latent abnormal values exclusion method, reference intervals were derived by a parametric method using the modified Box-Cox formula. Test results of 20 analytes were made traceable to reference measurement procedures. By the ANOVA, significant sex-related and age-related differences were observed in 12 and 12 analytes, respectively. A small regional difference was observed in the results for albumin, glucose, and sodium. Multiple regression analysis revealed BMI-related changes in results of 9 analytes for man and 6 for woman. Reference intervals of 28 analytes were computed with 17 analytes partitioned by sex and/or age. In conclusion, reference intervals of 28 common chemistry analytes applicable to Chinese Han population were established by use of the latest methodology. Reference intervals of 20 analytes traceable to reference measurement procedures can be used as common reference intervals, whereas others can be used as the assay system-specific reference intervals in China.

  1. Nationwide Multicenter Reference Interval Study for 28 Common Biochemical Analytes in China

    PubMed Central

    Xia, Liangyu; Chen, Ming; Liu, Min; Tao, Zhihua; Li, Shijun; Wang, Liang; Cheng, Xinqi; Qin, Xuzhen; Han, Jianhua; Li, Pengchang; Hou, Li’an; Yu, Songlin; Ichihara, Kiyoshi; Qiu, Ling

    2016-01-01

    Abstract A nationwide multicenter study was conducted in the China to explore sources of variation of reference values and establish reference intervals for 28 common biochemical analytes, as a part of the International Federation of Clinical Chemistry and Laboratory Medicine, Committee on Reference Intervals and Decision Limits (IFCC/C-RIDL) global study on reference values. A total of 3148 apparently healthy volunteers were recruited in 6 cities covering a wide area in China. Blood samples were tested in 2 central laboratories using Beckman Coulter AU5800 chemistry analyzers. Certified reference materials and value-assigned serum panel were used for standardization of test results. Multiple regression analysis was performed to explore sources of variation. Need for partition of reference intervals was evaluated based on 3-level nested ANOVA. After secondary exclusion using the latent abnormal values exclusion method, reference intervals were derived by a parametric method using the modified Box–Cox formula. Test results of 20 analytes were made traceable to reference measurement procedures. By the ANOVA, significant sex-related and age-related differences were observed in 12 and 12 analytes, respectively. A small regional difference was observed in the results for albumin, glucose, and sodium. Multiple regression analysis revealed BMI-related changes in results of 9 analytes for man and 6 for woman. Reference intervals of 28 analytes were computed with 17 analytes partitioned by sex and/or age. In conclusion, reference intervals of 28 common chemistry analytes applicable to Chinese Han population were established by use of the latest methodology. Reference intervals of 20 analytes traceable to reference measurement procedures can be used as common reference intervals, whereas others can be used as the assay system-specific reference intervals in China. PMID:26945390

  2. Perturbations and gradients as fundamental tests for modeling the soil carbon cycle

    NASA Astrophysics Data System (ADS)

    Bond-Lamberty, B. P.; Bailey, V. L.; Becker, K.; Fansler, S.; Hinkle, C.; Liu, C.

    2013-12-01

    An important step in matching process-level knowledge to larger-scale measurements and model results is to challenge those models with site-specific perturbations and/or changing environmental conditions. Here we subject modified versions of an ecosystem process model to two stringent tests: replicating a long-term climate change dryland experiment (Rattlesnake Mountain) and partitioning the carbon fluxes of a soil drainage gradient in the northern Everglades (Disney Wilderness Preserve). For both sites, on-site measurements were supplemented by laboratory incubations of soil columns. We used a parameter-space search algorithm to optimize, within observational limits, the model's influential inputs, so that the spun-up carbon stocks and fluxes matched observed values. Modeled carbon fluxes (net primary production and net ecosystem exchange) agreed with measured values, within observational error limits, but the model's partitioning of soil fluxes (autotrophic versus heterotrophic), did not match laboratory measurements from either site. Accounting for site heterogeneity at DWP, modeled carbon exchange was reasonably consistent with values from eddy covariance. We discuss the implications of this work for ecosystem- to global scale modeling of ecosystems in a changing climate.

  3. The impact of aerosol composition on the particle to gas partitioning of reactive mercury.

    PubMed

    Rutter, Andrew P; Schauer, James J

    2007-06-01

    A laboratory system was developed to study the gas-particle partitioning of reactive mercury (RM) as a function of aerosol composition in synthetic atmospheric particulate matter. The collection of RM was achieved by filter- and sorbent-based methods. Analyses of the RM collected on the filters and sorbents were performed using thermal extraction combined with cold vapor atomic fluorescence spectroscopy (CVAFS), allowing direct measurement of the RM load on the substrates. Laboratory measurements of the gas-particle partitioning coefficients of RM to atmospheric aerosol particles revealed a strong dependence on aerosol composition, with partitioning coefficients that varied by orders of magnitude depending on the composition of the particles. Particles of sodium nitrate and the chlorides of potassium and sodium had high partitioning coefficients, shifting the RM partitioning toward the particle phase, while ammonium sulfate, levoglucosan, and adipic acid caused the RM to partition toward the gas phase and, therefore, had partitioning coefficients that were lower by orders of magnitude.

  4. An Effective Cache Algorithm for Heterogeneous Storage Systems

    PubMed Central

    Li, Yong; Feng, Dan

    2013-01-01

    Modern storage environment is commonly composed of heterogeneous storage devices. However, traditional cache algorithms exhibit performance degradation in heterogeneous storage systems because they were not designed to work with the diverse performance characteristics. In this paper, we present a new cache algorithm called HCM for heterogeneous storage systems. The HCM algorithm partitions the cache among the disks and adopts an effective scheme to balance the work across the disks. Furthermore, it applies benefit-cost analysis to choose the best allocation of cache block to improve the performance. Conducting simulations with a variety of traces and a wide range of cache size, our experiments show that HCM significantly outperforms the existing state-of-the-art storage-aware cache algorithms. PMID:24453890

  5. Mechanisms of DNA replication termination.

    PubMed

    Dewar, James M; Walter, Johannes C

    2017-08-01

    Genome duplication is carried out by pairs of replication forks that assemble at origins of replication and then move in opposite directions. DNA replication ends when converging replication forks meet. During this process, which is known as replication termination, DNA synthesis is completed, the replication machinery is disassembled and daughter molecules are resolved. In this Review, we outline the steps that are likely to be common to replication termination in most organisms, namely, fork convergence, synthesis completion, replisome disassembly and decatenation. We briefly review the mechanism of termination in the bacterium Escherichia coli and in simian virus 40 (SV40) and also focus on recent advances in eukaryotic replication termination. In particular, we discuss the recently discovered E3 ubiquitin ligases that control replisome disassembly in yeast and higher eukaryotes, and how their activity is regulated to avoid genome instability.

  6. pH recycling aqueous two-phase systems applied in extraction of Maitake β-Glucan and mechanism analysis using low-field nuclear magnetic resonance.

    PubMed

    Hou, Huiyun; Cao, Xuejun

    2015-07-31

    In this paper, a recycling aqueous two-phase systems (ATPS) based on two pH-response copolymers PADB and PMDM were used in purification of β-Glucan from Grifola frondosa. The main parameters, such as polymer concentration, type and concentration of salt, extraction temperature and pH, were investigated to optimize partition conditions. The results demonstrated that β-Glucan was extracted into PADB-rich phase, while impurities were extracted into PMDM-rich phase. In this 2.5% PADB/2.5% PMDM ATPS, 7.489 partition coefficient and 96.92% extraction recovery for β-Glucan were obtained in the presence of 30mmol/L KBr, at pH 8.20, 30°C. The phase-forming copolymers could be recycled by adjusting pH, with recoveries of over 96.0%. Furthermore, the partition mechanism of Maitake β-Glucan in PADB/PMDM aqueous two-phase systems was studied. Fourier transform infrared spectra, ForteBio Octet system and low-field nuclear magnetic resonance (LF-NMR) were introduced for elucidating the partition mechanism of β-Glucan. Especially, LF-NMR was firstly used in the mechanism analysis in partition of aqueous two-phase systems. The change of transverse relaxation time (T2) in ATPS could reflect the interaction between polymers and β-Glucan. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. UManSysProp: An online and open-source facility for molecular property prediction and atmospheric aerosol calculations

    NASA Astrophysics Data System (ADS)

    Topping, David; Barley, Mark; McFiggans, Gordon; Aumont, Bernard

    2016-04-01

    The many thousands of individual aerosol components ensure that explicit manual calculation of properties that influence their environmental impacts is laborious and time-consuming. The emergence of explicit automatic mechanism generation techniques, including up to many millions of individual gas phase products as aerosol precursors, renders manual calculations impossible and automation is necessary. It can be difficult to establish what factors are responsible for the outcome of a model prediction. This is particularly true when the number of components might be high in, for example, SOA mass partitioning simulations. It then becomes difficult for others in the community to assess the results presented. This might be complicated by the need to include pure component vapour pressures or activity coefficient predictions for a wide range of highly multifunctional compounds. It isn't clear to what extent replication of results is ever achieved for a range of aerosol simulations. Whilst this might also be an issue with results from instrumentation, the development of community driven software at least enables modellers to tackle this problem directly. Here we describe the development and application of a new web based facility, UManSysProp, to tackle such issues. Current facilities include: pure component vapour pressures, critical properties and sub-cooled densities of organic molecules; activity coefficient predictions for mixed inorganic-organic liquid systems; hygroscopic growth factors and CCN activation potential of mixed inorganic/organic aerosol particles with associated Kappa-Kohler values; absorptive partitioning calculations with/without a treatment of non-ideality. The website can be found here: http://umansysprop.seaes.manchester.ac.uk/

  8. The effect of glycerol, propylene glycol and polyethylene glycol 400 on the partition coefficient of benzophenone-3 (oxybenzone).

    PubMed

    Mbah, C J

    2007-01-01

    Sunscreen products are widely used to protect the skin from sun-related deleterious effects. The objective of the study was to investigate the potential effect of glycerol, propylene glycol and polyethylene glycol 400 on dermal absorption of oxybenzone by studying their effects on its partition coefficient. The partition coefficient was evaluated in a chloroform-water system at room temperature. It was found that glycerol and propylene glycol decreased the partition coefficient of oxybenzone, while an increase in partition coefficient was observed with polyethylene glycol 400. The findings suggest that polyethylene glycol 400 in contrast to glycerol and propylene glycol has the potential of increasing the vehicle-skin partition coefficient of oxybenzone when cosmetic products containing such an UV absorber are topically applied to the skin.

  9. Transgenic approaches to altering carbon and nitrogen partitioning in whole plants: assessing the potential to improve crop yields and nutritional quality

    DOE PAGES

    Yadav, Umesh P.; Ayre, Brian G.; Bush, Daniel R.

    2015-04-22

    The principal components of plant productivity and nutritional value, from the standpoint of modern agriculture, are the acquisition and partitioning of organic carbon (C) and nitrogen (N) compounds among the various organs of the plant. The flow of essential organic nutrients among the plant organ systems is mediated by its complex vascular system, and is driven by a series of transport steps including export from sites of primary assimilation, transport into and out of the phloem and xylem, and transport into the various import-dependent organs. Manipulating C and N partitioning to enhance yield of harvested organs is evident in themore » earliest crop domestication events and continues to be a goal for modern plant biology. Research on the biochemistry, molecular and cellular biology, and physiology of C and N partitioning has now matured to an extent that strategic manipulation of these transport systems through biotechnology are being attempted to improve movement from source to sink tissues in general, but also to target partitioning to specific organs. These nascent efforts are demonstrating the potential of applied biomass targeting but are also identifying interactions between essential nutrients that require further basic research. In this review, we summarize the key transport steps involved in C and N partitioning, and discuss various transgenic approaches for directly manipulating key C and N transporters involved. In addition, we propose several experiments that could enhance biomass accumulation in targeted organs while simultaneously testing current partitioning models.« less

  10. Transgenic approaches to altering carbon and nitrogen partitioning in whole plants: assessing the potential to improve crop yields and nutritional quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Umesh P.; Ayre, Brian G.; Bush, Daniel R.

    The principal components of plant productivity and nutritional value, from the standpoint of modern agriculture, are the acquisition and partitioning of organic carbon (C) and nitrogen (N) compounds among the various organs of the plant. The flow of essential organic nutrients among the plant organ systems is mediated by its complex vascular system, and is driven by a series of transport steps including export from sites of primary assimilation, transport into and out of the phloem and xylem, and transport into the various import-dependent organs. Manipulating C and N partitioning to enhance yield of harvested organs is evident in themore » earliest crop domestication events and continues to be a goal for modern plant biology. Research on the biochemistry, molecular and cellular biology, and physiology of C and N partitioning has now matured to an extent that strategic manipulation of these transport systems through biotechnology are being attempted to improve movement from source to sink tissues in general, but also to target partitioning to specific organs. These nascent efforts are demonstrating the potential of applied biomass targeting but are also identifying interactions between essential nutrients that require further basic research. In this review, we summarize the key transport steps involved in C and N partitioning, and discuss various transgenic approaches for directly manipulating key C and N transporters involved. In addition, we propose several experiments that could enhance biomass accumulation in targeted organs while simultaneously testing current partitioning models.« less

  11. Expanding the capability of reaction-diffusion codes using pseudo traps and temperature partitioning: Applied to hydrogen uptake and release from tungsten

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmonds, M. J.; Yu, J. H.; Wang, Y. Q.

    Simulating the implantation and thermal desorption evolution in a reaction-diffusion model requires solving a set of coupled differential equations that describe the trapping and release of atomic species in Plasma Facing Materials (PFMs). These fundamental equations are well outlined by the Tritium Migration Analysis Program (TMAP) which can model systems with no more than three active traps per atomic species. To overcome this limitation, we have developed a Pseudo Trap and Temperature Partition (PTTP) scheme allowing us to lump multiple inactive traps into one pseudo trap, simplifying the system of equations to be solved. For all temperatures, we show themore » trapping of atoms from solute is exactly accounted for when using a pseudo trap. However, a single effective pseudo trap energy can not well replicate the release from multiple traps, each with its own detrapping energy. However, atoms held in a high energy trap will remain trapped at relatively low temperatures, and thus there is a temperature range in which release from high energy traps is effectively inactive. By partitioning the temperature range into segments, a pseudo trap can be defined for each segment to account for multiple high energy traps that are actively trapping but are effectively not releasing atoms. With increasing temperature, as in controlled thermal desorption, the lowest energy trap is nearly emptied and can be removed from the set of coupled equations, while the next higher energy trap becomes an actively releasing trap. Each segment is thus calculated sequentially, with the last time step of a given segment solution being used as an initial input for the next segment as only the pseudo and actively releasing traps are modeled. This PTTP scheme is then applied to experimental thermal desorption data for tungsten (W) samples damaged with heavy ions, which display six distinct release peaks during thermal desorption. Without modifying the TMAP7 source code the PTTP scheme is shown to successfully model the D retention in all six traps. In conclusion, we demonstrate the full reconstruction from the plasma implantation phase through the controlled thermal desorption phase with detrapping energies near 0.9, 1.1, 1.4, 1.7, 1.9 and 2.1 eV for a W sample damaged at room temperature.« less

  12. Expanding the capability of reaction-diffusion codes using pseudo traps and temperature partitioning: Applied to hydrogen uptake and release from tungsten

    DOE PAGES

    Simmonds, M. J.; Yu, J. H.; Wang, Y. Q.; ...

    2018-06-04

    Simulating the implantation and thermal desorption evolution in a reaction-diffusion model requires solving a set of coupled differential equations that describe the trapping and release of atomic species in Plasma Facing Materials (PFMs). These fundamental equations are well outlined by the Tritium Migration Analysis Program (TMAP) which can model systems with no more than three active traps per atomic species. To overcome this limitation, we have developed a Pseudo Trap and Temperature Partition (PTTP) scheme allowing us to lump multiple inactive traps into one pseudo trap, simplifying the system of equations to be solved. For all temperatures, we show themore » trapping of atoms from solute is exactly accounted for when using a pseudo trap. However, a single effective pseudo trap energy can not well replicate the release from multiple traps, each with its own detrapping energy. However, atoms held in a high energy trap will remain trapped at relatively low temperatures, and thus there is a temperature range in which release from high energy traps is effectively inactive. By partitioning the temperature range into segments, a pseudo trap can be defined for each segment to account for multiple high energy traps that are actively trapping but are effectively not releasing atoms. With increasing temperature, as in controlled thermal desorption, the lowest energy trap is nearly emptied and can be removed from the set of coupled equations, while the next higher energy trap becomes an actively releasing trap. Each segment is thus calculated sequentially, with the last time step of a given segment solution being used as an initial input for the next segment as only the pseudo and actively releasing traps are modeled. This PTTP scheme is then applied to experimental thermal desorption data for tungsten (W) samples damaged with heavy ions, which display six distinct release peaks during thermal desorption. Without modifying the TMAP7 source code the PTTP scheme is shown to successfully model the D retention in all six traps. In conclusion, we demonstrate the full reconstruction from the plasma implantation phase through the controlled thermal desorption phase with detrapping energies near 0.9, 1.1, 1.4, 1.7, 1.9 and 2.1 eV for a W sample damaged at room temperature.« less

  13. Replication stress-induced chromosome breakage is correlated with replication fork progression and is preceded by single-stranded DNA formation.

    PubMed

    Feng, Wenyi; Di Rienzi, Sara C; Raghuraman, M K; Brewer, Bonita J

    2011-10-01

    Chromosome breakage as a result of replication stress has been hypothesized to be the direct consequence of defective replication fork progression, or "collapsed" replication forks. However, direct and genome-wide evidence that collapsed replication forks give rise to chromosome breakage is still lacking. Previously we showed that a yeast replication checkpoint mutant mec1-1, after transient exposure to replication impediment imposed by hydroxyurea (HU), failed to complete DNA replication, accumulated single-stranded DNA (ssDNA) at the replication forks, and fragmented its chromosomes. In this study, by following replication fork progression genome-wide via ssDNA detection and by direct mapping of chromosome breakage after HU exposure, we have tested the hypothesis that the chromosome breakage in mec1 cells occurs at collapsed replication forks. We demonstrate that sites of chromosome breakage indeed correlate with replication fork locations. Moreover, ssDNA can be detected prior to chromosome breakage, suggesting that ssDNA accumulation is the common precursor to double strand breaks at collapsed replication forks.

  14. Control of adaptive immunity by the innate immune system.

    PubMed

    Iwasaki, Akiko; Medzhitov, Ruslan

    2015-04-01

    Microbial infections are recognized by the innate immune system both to elicit immediate defense and to generate long-lasting adaptive immunity. To detect and respond to vastly different groups of pathogens, the innate immune system uses several recognition systems that rely on sensing common structural and functional features associated with different classes of microorganisms. These recognition systems determine microbial location, viability, replication and pathogenicity. Detection of these features by recognition pathways of the innate immune system is translated into different classes of effector responses though specialized populations of dendritic cells. Multiple mechanisms for the induction of immune responses are variations on a common design principle wherein the cells that sense infections produce one set of cytokines to induce lymphocytes to produce another set of cytokines, which in turn activate effector responses. Here we discuss these emerging principles of innate control of adaptive immunity.

  15. Hydrological partitioning in the critical zone: Recent advances and opportunities for developing transferable understanding of water cycle dynamics: CRITICAL ZONE HYDROLOGY

    DOE PAGES

    Brooks, Paul D.; Chorover, Jon; Fan, Ying; ...

    2015-09-01

    Hydrology is an integrative discipline linking the broad array of water‐related research with physical, ecological, and social sciences. The increasing breadth of hydrological research, often where subdisciplines of hydrology partner with related sciences, reflects the central importance of water to environmental science, while highlighting the fractured nature of the discipline itself. This lack of coordination among hydrologic subdisciplines has hindered the development of hydrologic theory and integrated models capable of predicting hydrologic partitioning across time and space. The recent development of the concept of the critical zone (CZ), an open system extending from the top of the canopy to themore » base of groundwater, brings together multiple hydrological subdisciplines with related physical and ecological sciences. Observations obtained by CZ researchers provide a diverse range of complementary process and structural data to evaluate both conceptual and numerical models. Consequently, a cross‐site focus on “critical zone hydrology” has potential to advance the discipline of hydrology and to facilitate the transition of CZ observatories into a research network with immediate societal relevance. Here we review recent work in catchment hydrology and hydrochemistry, hydrogeology, and ecohydrology that highlights a common knowledge gap in how precipitation is partitioned in the critical zone: “how is the amount, routing, and residence time of water in the subsurface related to the biogeophysical structure of the CZ?” Addressing this question will require coordination among hydrologic subdisciplines and interfacing sciences, and catalyze rapid progress in understanding current CZ structure and predicting how climate and land cover changes will affect hydrologic partitioning.« less

  16. Surveillance system and method having an operating mode partitioned fault classification model

    NASA Technical Reports Server (NTRS)

    Bickford, Randall L. (Inventor)

    2005-01-01

    A system and method which partitions a parameter estimation model, a fault detection model, and a fault classification model for a process surveillance scheme into two or more coordinated submodels together providing improved diagnostic decision making for at least one determined operating mode of an asset.

  17. The Colonization Dynamics of the Gut Microbiota in Tilapia Larvae

    PubMed Central

    Giatsis, Christos; Sipkema, Detmer; Smidt, Hauke; Verreth, Johan; Verdegem, Marc

    2014-01-01

    The gut microbiota of fish larvae evolves fast towards a complex community. Both host and environment affect the development of the gut microbiota; however, the relative importance of both is poorly understood. Determining specific changes in gut microbial populations in response to a change in an environmental factor is very complicated. Interactions between factors are difficult to separate and any response could be masked due to high inter-individual variation even for individuals that share a common environment. In this study we characterized and quantified the spatio-temporal variation in the gut microbiota of tilapia larvae, reared in recirculating aquaculture systems (RAS) or active suspension tanks (AS). Our results showed that variation in gut microbiota between replicate tanks was not significantly higher than within tank variation, suggesting that there is no tank effect on water and gut microbiota. However, when individuals were reared in replicate RAS, gut microbiota differed significantly. The highest variation was observed between individuals reared in different types of system (RAS vs. AS). Our data suggest that under experimental conditions in which the roles of deterministic and stochastic factors have not been precisely determined, compositional replication of the microbial communities of an ecosystem is not predictable. PMID:25072852

  18. A Formal Model of Partitioning for Integrated Modular Avionics

    NASA Technical Reports Server (NTRS)

    DiVito, Ben L.

    1998-01-01

    The aviation industry is gradually moving toward the use of integrated modular avionics (IMA) for civilian transport aircraft. An important concern for IMA is ensuring that applications are safely partitioned so they cannot interfere with one another. We have investigated the problem of ensuring safe partitioning and logical non-interference among separate applications running on a shared Avionics Computer Resource (ACR). This research was performed in the context of ongoing standardization efforts, in particular, the work of RTCA committee SC-182, and the recently completed ARINC 653 application executive (APEX) interface standard. We have developed a formal model of partitioning suitable for evaluating the design of an ACR. The model draws from the mathematical modeling techniques developed by the computer security community. This report presents a formulation of partitioning requirements expressed first using conventional mathematical notation, then formalized using the language of SRI'S Prototype Verification System (PVS). The approach is demonstrated on three candidate designs, each an abstraction of features found in real systems.

  19. Adsorption mechanisms of the nonequilibrium incorporation of admixtures in a growing crystal

    NASA Astrophysics Data System (ADS)

    Franke, V. D.; Punin, Yu. O.; Smetannikova, O. G.; Kenunen, D. S.

    2007-12-01

    The nonequilibrium partition of components between a crystal and solution is mainly controlled by impurity adsorption on the surface of the growing crystal. The specificity of adsorption on the faces of various simple forms leads to the sectorial zoning of crystals. This effect was studied experimentally for several crystallizing systems with different impurities, including isomorphous, 2d-isomorphous, and nonisomorphous, readily adsorbed impurities. In all systems, the sectorial selectivity of impurity incorporation into host crystals has been detected with partition coefficients many times higher than in the case of equilibrium partition. Specific capture of impurities by certain faces is accompanied by inhibition of their growth and modification of habit. The decrease in nonequilibrium partition coefficients with degree of oversaturation provides entrapment of impurities in the growing crystals. Thereby, the adsorption mechanism works in much the same mode for impurities of quite different nature. The behavior of partition coefficient differs drastically from impurity capturing by diffusion mechanism.

  20. Identifying influential user communities on the social network

    NASA Astrophysics Data System (ADS)

    Hu, Weishu; Gong, Zhiguo; Hou U, Leong; Guo, Jingzhi

    2015-10-01

    Nowadays social network services have been popularly used in electronic commerce systems. Users on the social network can develop different relationships based on their common interests and activities. In order to promote the business, it is interesting to explore hidden relationships among users developed on the social network. Such knowledge can be used to locate target users for different advertisements and to provide effective product recommendations. In this paper, we define and study a novel community detection problem that is to discover the hidden community structure in large social networks based on their common interests. We observe that the users typically pay more attention to those users who share similar interests, which enable a way to partition the users into different communities according to their common interests. We propose two algorithms to detect influential communities using common interests in large social networks efficiently and effectively. We conduct our experimental evaluation using a data set from Epinions, which demonstrates that our method achieves 4-11.8% accuracy improvement over the state-of-the-art method.

  1. Integrative and conjugative elements and their hosts: composition, distribution and organization

    PubMed Central

    Touchon, Marie; Rocha, Eduardo P. C.

    2017-01-01

    Abstract Conjugation of single-stranded DNA drives horizontal gene transfer between bacteria and was widely studied in conjugative plasmids. The organization and function of integrative and conjugative elements (ICE), even if they are more abundant, was only studied in a few model systems. Comparative genomics of ICE has been precluded by the difficulty in finding and delimiting these elements. Here, we present the results of a method that circumvents these problems by requiring only the identification of the conjugation genes and the species’ pan-genome. We delimited 200 ICEs and this allowed the first large-scale characterization of these elements. We quantified the presence in ICEs of a wide set of functions associated with the biology of mobile genetic elements, including some that are typically associated with plasmids, such as partition and replication. Protein sequence similarity networks and phylogenetic analyses revealed that ICEs are structured in functional modules. Integrases and conjugation systems have different evolutionary histories, even if the gene repertoires of ICEs can be grouped in function of conjugation types. Our characterization of the composition and organization of ICEs paves the way for future functional and evolutionary analyses of their cargo genes, composed of a majority of unknown function genes. PMID:28911112

  2. Robust and efficient overset grid assembly for partitioned unstructured meshes

    NASA Astrophysics Data System (ADS)

    Roget, Beatrice; Sitaraman, Jayanarayanan

    2014-03-01

    This paper presents a method to perform efficient and automated Overset Grid Assembly (OGA) on a system of overlapping unstructured meshes in a parallel computing environment where all meshes are partitioned into multiple mesh-blocks and processed on multiple cores. The main task of the overset grid assembler is to identify, in parallel, among all points in the overlapping mesh system, at which points the flow solution should be computed (field points), interpolated (receptor points), or ignored (hole points). Point containment search or donor search, an algorithm to efficiently determine the cell that contains a given point, is the core procedure necessary for accomplishing this task. Donor search is particularly challenging for partitioned unstructured meshes because of the complex irregular boundaries that are often created during partitioning.

  3. The partition function of the Bures ensemble as the τ-function of BKP and DKP hierarchies: continuous and discrete

    NASA Astrophysics Data System (ADS)

    Hu, Xing-Biao; Li, Shi-Hao

    2017-07-01

    The relationship between matrix integrals and integrable systems was revealed more than 20 years ago. As is known, matrix integrals over a Gaussian ensemble used in random matrix theory could act as the τ-function of several hierarchies of integrable systems. In this article, we will show that the time-dependent partition function of the Bures ensemble, whose measure has many interesting geometric properties, could act as the τ-function of BKP and DKP hierarchies. In addition, if discrete time variables are introduced, then this partition function could act as the τ-function of discrete BKP and DKP hierarchies. In particular, there are some links between the partition function of the Bures ensemble and Toda-type equations.

  4. How peroxisomes partition between cells. A story of yeast, mammals and filamentous fungi.

    PubMed

    Knoblach, Barbara; Rachubinski, Richard A

    2016-08-01

    Eukaryotic cells are subcompartmentalized into discrete, membrane-enclosed organelles. These organelles must be preserved in cells over many generations to maintain the selective advantages afforded by compartmentalization. Cells use complex molecular mechanisms of organelle inheritance to achieve high accuracy in the sharing of organelles between daughter cells. Here we focus on how a multi-copy organelle, the peroxisome, is partitioned in yeast, mammalian cells, and filamentous fungi, which differ in their mode of cell division. Cells achieve equidistribution of their peroxisomes through organelle transport and retention processes that act coordinately, although the strategies employed vary considerably by organism. Nevertheless, we propose that mechanisms common across species apply to the partitioning of all membrane-enclosed organelles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Brd4 Is Required for E2-Mediated Transcriptional Activation but Not Genome Partitioning of All Papillomaviruses†

    PubMed Central

    McPhillips, M. G.; Oliveira, J. G.; Spindler, J. E.; Mitra, R.; McBride, A. A.

    2006-01-01

    Bromodomain protein 4 (Brd4) has been identified as the cellular binding target through which the E2 protein of bovine papillomavirus type 1 links the viral genome to mitotic chromosomes. This tethering ensures retention and efficient partitioning of genomes to daughter cells following cell division. E2 is also a regulator of viral gene expression and a replication factor, in association with the viral E1 protein. In this study, we show that E2 proteins from a wide range of papillomaviruses interact with Brd4, albeit with variations in efficiency. Moreover, disruption of the E2-Brd4 interaction abrogates the transactivation function of E2, indicating that Brd4 is required for E2-mediated transactivation of all papillomaviruses. However, the interaction of E2 and Brd4 is not required for genome partitioning of all papillomaviruses since a number of papillomavirus E2 proteins associate with mitotic chromosomes independently of Brd4 binding. Furthermore, mutations in E2 that disrupt the interaction with Brd4 do not affect the ability of these E2s to associate with chromosomes. Thus, while all papillomaviruses attach their genomes to cellular chromosomes to facilitate genome segregation, they target different cellular binding partners. In summary, the E2 proteins from many papillomaviruses, including the clinically important alpha genus human papillomaviruses, interact with Brd4 to mediate transcriptional activation function but not all depend on this interaction to efficiently associate with mitotic chromosomes. PMID:16973557

  6. Mutations in DONSON disrupt replication fork stability and cause microcephalic dwarfism

    PubMed Central

    Reynolds, John J; Bicknell, Louise S; Carroll, Paula; Higgs, Martin R; Shaheen, Ranad; Murray, Jennie E; Papadopoulos, Dimitrios K; Leitch, Andrea; Murina, Olga; Tarnauskaitė, Žygimantė; Wessel, Sarah R; Zlatanou, Anastasia; Vernet, Audrey; von Kriegsheim, Alex; Mottram, Rachel MA; Logan, Clare V; Bye, Hannah; Li, Yun; Brean, Alexander; Maddirevula, Sateesh; Challis, Rachel C; Skouloudaki, Kassiani; Almoisheer, Agaadir; Alsaif, Hessa S; Amar, Ariella; Prescott, Natalie J; Bober, Michael B; Duker, Angela; Faqeih, Eissa; Seidahmed, Mohammed Zain; Al Tala, Saeed; Alswaid, Abdulrahman; Ahmed, Saleem; Al-Aama, Jumana Yousuf; Altmüller, Janine; Al Balwi, Mohammed; Brady, Angela F; Chessa, Luciana; Cox, Helen; Fischetto, Rita; Heller, Raoul; Henderson, Bertram D; Hobson, Emma; Nürnberg, Peter; Percin, E Ferda; Peron, Angela; Spaccini, Luigina; Quigley, Alan J; Thakur, Seema; Wise, Carol A; Yoon, Grace; Alnemer, Maha; Tomancak, Pavel; Yigit, Gökhan; Taylor, A Malcolm R; Reijns, Martin AM; Simpson, Michael A; Cortez, David; Alkuraya, Fowzan S; Mathew, Christopher G; Jackson, Andrew P; Stewart, Grant S

    2017-01-01

    To ensure efficient genome duplication, cells have evolved numerous factors that promote unperturbed DNA replication, and protect, repair and restart damaged forks. Here we identify DONSON as a novel fork protection factor, and report biallelic DONSON mutations in 29 individuals with microcephalic dwarfism. We demonstrate that DONSON is a replisome component that stabilises forks during genome replication. Loss of DONSON leads to severe replication-associated DNA damage arising from nucleolytic cleavage of stalled replication forks. Furthermore, ATR-dependent signalling in response to replication stress is impaired in DONSON-deficient cells, resulting in decreased checkpoint activity, and potentiating chromosomal instability. Hypomorphic mutations substantially reduce DONSON protein levels and impair fork stability in patient cells, consistent with defective DNA replication underlying the disease phenotype. In summary, we identify mutations in DONSON as a common cause of microcephalic dwarfism, and establish DONSON as a critical replication fork protein required for mammalian DNA replication and genome stability. PMID:28191891

  7. Ecological succession in long-term experimentally evolved biofilms produces synergistic communities

    PubMed Central

    Poltak, Steffen R; Cooper, Vaughn S

    2011-01-01

    Many biofilm populations are known for their exceptional biodiversity, but the relative contributions of the forces that could produce this diversity are poorly understood. This uncertainty grows in the old, well-established communities found on many natural surfaces and in long-term, chronic infections. If the prevailing interactions among species within biofilms are positive, productivity should increase with diversity, but if they tend towards competition or antagonism, productivity should decrease. Here, we describe the parallel evolution of synergistic communities derived from a clone of Burkholderia cenocepacia during ∼1500 generations of biofilm selection. This long-term evolution was enabled by a new experimental method that selects for daily cycles of colonization, biofilm assembly and dispersal. Each of the six replicate biofilm populations underwent a common pattern of adaptive morphological diversification, in which three ecologically distinct morphotypes arose in the same order of succession and persisted. In two focal populations, mixed communities were more productive than any monoculture and each variant benefited from the mixture. These gains in output resulted from asymmetrical cross-feeding between ecotypes and the expansion and partitioning of biofilm space that constructed new niches. Therefore, even in the absence of starting genetic variation, prolonged selection for surface colonization generates a dynamic of ecological succession that enhances productivity. PMID:20811470

  8. Ecological succession in long-term experimentally evolved biofilms produces synergistic communities.

    PubMed

    Poltak, Steffen R; Cooper, Vaughn S

    2011-03-01

    Many biofilm populations are known for their exceptional biodiversity, but the relative contributions of the forces that could produce this diversity are poorly understood. This uncertainty grows in the old, well-established communities found on many natural surfaces and in long-term, chronic infections. If the prevailing interactions among species within biofilms are positive, productivity should increase with diversity, but if they tend towards competition or antagonism, productivity should decrease. Here, we describe the parallel evolution of synergistic communities derived from a clone of Burkholderia cenocepacia during ~1500 generations of biofilm selection. This long-term evolution was enabled by a new experimental method that selects for daily cycles of colonization, biofilm assembly and dispersal. Each of the six replicate biofilm populations underwent a common pattern of adaptive morphological diversification, in which three ecologically distinct morphotypes arose in the same order of succession and persisted. In two focal populations, mixed communities were more productive than any monoculture and each variant benefited from the mixture. These gains in output resulted from asymmetrical cross-feeding between ecotypes and the expansion and partitioning of biofilm space that constructed new niches. Therefore, even in the absence of starting genetic variation, prolonged selection for surface colonization generates a dynamic of ecological succession that enhances productivity.

  9. Dynamics of vacuum-sealed, double-leaf partitions

    NASA Astrophysics Data System (ADS)

    Kavanaugh, Joshua Stephen

    The goal of this research is to investigate the feasibility and potential effectiveness of using vacuum-sealed, double-leaf partitions for applications in noise control. Substantial work has been done previously on double-leaf partitions where the acoustics of the inner chamber and mechanical vibrations of structural supports are passively and actively controlled. The work presented here is unique in that the proposed system aims to eliminate the need for active acoustic control of transmitted acoustic energy by removing all the air between the two panels of the double partition. Therefore, the only remaining energy paths would be along the boundary and at the points where there are intermediate structural supports connecting the two panels. The eventual goal of the research is to develop a high-loss double-leaf partition that simplifies active control by removing the need for control of the air cavity and channeling all the energy into discrete structural paths. The work presented here is a first step towards the goal of designing a high-loss, actively-controlled double-leaf partition with an air-evacuated inner chamber. One experiment is conducted to investigate the effects of various levels of vacuum on the response of a double-leaf partition whose panels are mechanically coupled only at the boundary. Another experiment is conducted which investigates the effect of changing the stiffness of an intermediate support coupling the two panels of a double-leaf partition in which a vacuum has been applied to the inner cavity. The available equipment was able to maintain a 99% vacuum between the panels. Both experiments are accompanied by analytical models used to investigate the importance of various dynamic parameters. Results show that the vacuum-sealed system shows some potential for increased transmission loss, primarily by the changing the natural frequencies of the double-leaf partition.

  10. The nature and barium partitioning between immiscible melts - A comparison of experimental and natural systems with reference to lunar granite petrogenesis

    NASA Technical Reports Server (NTRS)

    Neal, C. R.; Taylor, L. A.

    1989-01-01

    Elemental partitioning between immiscible melts has been studied using experimental liquid-liquid Kds and those determined by analysis of immiscible glasses in basalt mesostases in order to investigate lunar granite petrogenesis. Experimental data show that Ba is partitioned into the basic immiscible melt, while probe analysis results show that Ba is partitioned into the granitic immiscible melt. It is concluded that lunar granite of significant size can only occur in a plutonic or deep hypabyssal environment.

  11. Performance of chromatographic systems to model soil-water sorption.

    PubMed

    Hidalgo-Rodríguez, Marta; Fuguet, Elisabet; Ràfols, Clara; Rosés, Martí

    2012-08-24

    A systematic approach for evaluating the goodness of chromatographic systems to model the sorption of neutral organic compounds by soil from water is presented in this work. It is based on the examination of the three sources of error that determine the overall variance obtained when soil-water partition coefficients are correlated against chromatographic retention factors: the variance of the soil-water sorption data, the variance of the chromatographic data, and the variance attributed to the dissimilarity between the two systems. These contributions of variance are easily predicted through the characterization of the systems by the solvation parameter model. According to this method, several chromatographic systems besides the reference octanol-water partition system have been selected to test their performance in the emulation of soil-water sorption. The results from the experimental correlations agree with the predicted variances. The high-performance liquid chromatography system based on an immobilized artificial membrane and the micellar electrokinetic chromatography systems of sodium dodecylsulfate and sodium taurocholate provide the most precise correlation models. They have shown to predict well soil-water sorption coefficients of several tested herbicides. Octanol-water partitions and high-performance liquid chromatography measurements using C18 columns are less suited for the estimation of soil-water partition coefficients. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. ParABS Systems of the Four Replicons of Burkholderia cenocepacia: New Chromosome Centromeres Confer Partition Specificity†

    PubMed Central

    Dubarry, Nelly; Pasta, Franck; Lane, David

    2006-01-01

    Most bacterial chromosomes carry an analogue of the parABS systems that govern plasmid partition, but their role in chromosome partition is ambiguous. parABS systems might be particularly important for orderly segregation of multipartite genomes, where their role may thus be easier to evaluate. We have characterized parABS systems in Burkholderia cenocepacia, whose genome comprises three chromosomes and one low-copy-number plasmid. A single parAB locus and a set of ParB-binding (parS) centromere sites are located near the origin of each replicon. ParA and ParB of the longest chromosome are phylogenetically similar to analogues in other multichromosome and monochromosome bacteria but are distinct from those of smaller chromosomes. The latter form subgroups that correspond to the taxa of their hosts, indicating evolution from plasmids. The parS sites on the smaller chromosomes and the plasmid are similar to the “universal” parS of the main chromosome but with a sequence specific to their replicon. In an Escherichia coli plasmid stabilization test, each parAB exhibits partition activity only with the parS of its own replicon. Hence, parABS function is based on the independent partition of individual chromosomes rather than on a single communal system or network of interacting systems. Stabilization by the smaller chromosome and plasmid systems was enhanced by mutation of parS sites and a promoter internal to their parAB operons, suggesting autoregulatory mechanisms. The small chromosome ParBs were found to silence transcription, a property relevant to autoregulation. PMID:16452432

  13. Enhanced inhibition of parvovirus B19 replication by cidofovir in extendedly exposed erythroid progenitor cells.

    PubMed

    Bonvicini, Francesca; Bua, Gloria; Manaresi, Elisabetta; Gallinella, Giorgio

    2016-07-15

    Human parvovirus B19 (B19V) commonly induces self-limiting infections but can also cause severe clinical manifestations in patients with underlying haematological disorders or with immune system deficits. Currently, therapeutic options for B19V entirely rely on symptomatic and supportive treatments since a specific antiviral therapy is not yet available. Recently a first step in the research for active compounds inhibiting B19V replication has allowed identifying the acyclic nucleoside phosphonate cidofovir (CDV). Herein, the effect of CDV against B19V replication was characterized in human erythroid progenitor cells (EPCs) cultured and infected following different experimental approaches to replicate in vitro the infection of an expanding erythroid cell population in the bone marrow. B19V replication was selectively inhibited both in infected EPCs extendedly exposed to CDV 500μM (viral inhibition 82%) and in serially infected EPCs cultures with passage of the virus progeny, constantly under drug exposure (viral inhibition 99%). In addition, a potent inhibitory effect against B19V (viral inhibition 92%) was assessed in a short-term infection of EPCs treated with CDV 500μM 1day before viral infection. In the evaluated experimental conditions, the enhanced effect of CDV against B19V might be ascribed both to the increased intracellular drug concentration achieved by extended exposure, and to a progressive reduction in efficiency of the replicative process within treated EPCs population. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Experimental Partitioning of Chalcophile Elements between Mantle Silicate Minerals and Basaltic Melt at High Pressures and Temperatures - Implications for Sulfur Geochemistry of Mantle and Crust

    NASA Astrophysics Data System (ADS)

    Dasgupta, R.; Jego, S.; Ding, S.; Li, Y.; Lee, C. T.

    2015-12-01

    The behavior of chalcophile elements during mantle melting, melt extraction, and basalt differentiation is critical for formation of ore deposits and geochemical model and evolution of crust-mantle system. While chalcophile elements are strongly partitioned into sulfides, their behavior with different extent of melting, in particular, in the absence of sulfides, can only be modeled with complete knowledge of the partitioning behavior of these elements between dominant mantle minerals and basaltic melt with or without dissolved sulfide (S2-). However, experimental data on mineral-melt partitioning are lacking for many chalcophile elements. Crystallization experiments were conducted at 3 GPa and 1450-1600 °C using a piston cylinder and synthetic silicate melt compositions similar to low-degree partial melt of peridotite. Starting silicate mixes doped with 100-300 ppm of each of various chalcophile elements were loaded into Pt/graphite double capsules. To test the effect of dissolved sulfur in silicate melt on mineral-melt partitioning of chalcophile elements, experiments were conducted on both sulfur-free and sulfur-bearing (1100-1400 ppm S in melt) systems. Experimental phases were analyzed by EPMA (for major elements and S) and LA-ICP-MS (for trace elements). All experiments produced an assemblage of cpx + melt ± garnet ± olivine ± spinel and yielded new partition coefficients (D) for Sn, Zn, Mo, Sb, Bi, Pb, and Se for cpx/melt, olivine/melt, and garnet/melt pairs. Derived Ds (mineral/basalt) reveal little effect of S2- in the melt on mineral-melt partition coefficients of the measured chalcophile elements, with Ds for Zn, Mo, Bi, Pb decreasing by less than a factor of 2 from S-free to S-bearing melt systems or remaining similar, within error, between S-free and S-bearing melt systems. By combining our data with existing partitioning data between sulfide phases and silicate melt we model the fractionation of these elements during mantle melting and basalt crystallization. The model results are compared with the chalcophile element abundance in oceanic basalts. We will discuss the implications of our new partitioning data and model results on sulfur and chalcophile element geochemistry of mantle source regions of ocean floor basalts and the fate of sulfides during mantle melting.

  15. Sampling design trade-offs in occupancy studies with imperfect detection: examples and software

    USGS Publications Warehouse

    Bailey, L.L.; Hines, J.E.; Nichols, J.D.

    2007-01-01

    Researchers have used occupancy, or probability of occupancy, as a response or state variable in a variety of studies (e.g., habitat modeling), and occupancy is increasingly favored by numerous state, federal, and international agencies engaged in monitoring programs. Recent advances in estimation methods have emphasized that reliable inferences can be made from these types of studies if detection and occupancy probabilities are simultaneously estimated. The need for temporal replication at sampled sites to estimate detection probability creates a trade-off between spatial replication (number of sample sites distributed within the area of interest/inference) and temporal replication (number of repeated surveys at each site). Here, we discuss a suite of questions commonly encountered during the design phase of occupancy studies, and we describe software (program GENPRES) developed to allow investigators to easily explore design trade-offs focused on particularities of their study system and sampling limitations. We illustrate the utility of program GENPRES using an amphibian example from Greater Yellowstone National Park, USA.

  16. To peep into Pif1 helicase: multifaceted all the way from genome stability to repair-associated DNA synthesis.

    PubMed

    Chung, Woo-Hyun

    2014-02-01

    Pif1 DNA helicase is the prototypical member of a 5' to 3' helicase superfamily conserved from bacteria to humans. In Saccharomyces cerevisiae, Pif1 and its homologue Rrm3, localize in both mitochondria and nucleus playing multiple roles in the maintenance of genomic homeostasis. They display relatively weak processivities in vitro, but have largely non-overlapping functions on common genomic loci such as mitochondrial DNA, telomeric ends, and many replication forks especially at hard-to-replicate regions including ribosomal DNA and G-quadruplex structures. Recently, emerging evidence shows that Pif1, but not Rrm3, has a significant new role in repair-associated DNA synthesis with Polδ during homologous recombination stimulating D-loop migration for conservative DNA replication. Comparative genetic and biochemical studies on the structure and function of Pif1 family helicases across different biological systems are further needed to elucidate both diversity and specificity of their mechanisms of action that contribute to genome stability.

  17. Adaptive scaling of reward in episodic memory: a replication study.

    PubMed

    Mason, Alice; Ludwig, Casimir; Farrell, Simon

    2017-11-01

    Reward is thought to enhance episodic memory formation via dopaminergic consolidation. Bunzeck, Dayan, Dolan, and Duzel [(2010). A common mechanism for adaptive scaling of reward and novelty. Human Brain Mapping, 31, 1380-1394] provided functional magnetic resonance imaging (fMRI) and behavioural evidence that reward and episodic memory systems are sensitive to the contextual value of a reward-whether it is relatively higher or lower-as opposed to absolute value or prediction error. We carried out a direct replication of their behavioural study and did not replicate their finding that memory performance associated with reward follows this pattern of adaptive scaling. An effect of reward outcome was in the opposite direction to that in the original study, with lower reward outcomes leading to better memory than higher outcomes. There was a marginal effect of reward context, suggesting that expected value affected memory performance. We discuss the robustness of the reward memory relationship to variations in reward context, and whether other reward-related factors have a more reliable influence on episodic memory.

  18. Nonlinear phase noise tolerance for coherent optical systems using soft-decision-aided ML carrier phase estimation enhanced with constellation partitioning

    NASA Astrophysics Data System (ADS)

    Li, Yan; Wu, Mingwei; Du, Xinwei; Xu, Zhuoran; Gurusamy, Mohan; Yu, Changyuan; Kam, Pooi-Yuen

    2018-02-01

    A novel soft-decision-aided maximum likelihood (SDA-ML) carrier phase estimation method and its simplified version, the decision-aided and soft-decision-aided maximum likelihood (DA-SDA-ML) methods are tested in a nonlinear phase noise-dominant channel. The numerical performance results show that both the SDA-ML and DA-SDA-ML methods outperform the conventional DA-ML in systems with constant-amplitude modulation formats. In addition, modified algorithms based on constellation partitioning are proposed. With partitioning, the modified SDA-ML and DA-SDA-ML are shown to be useful for compensating the nonlinear phase noise in multi-level modulation systems.

  19. Nuclear Proteins Hijacked by Mammalian Cytoplasmic Plus Strand RNA Viruses

    PubMed Central

    Lloyd, Richard E.

    2015-01-01

    Plus strand RNA viruses that replicate in the cytoplasm face challenges in supporting the numerous biosynthetic functions required for replication and propagation. Most of these viruses are genetically simple and rely heavily on co-opting cellular proteins, particularly cellular RNA-binding proteins, into new roles for support of virus infection at the level of virus-specific translation, and building RNA replication complexes. In the course of infectious cycles many nuclear-cytoplasmic shuttling proteins of mostly nuclear distribution are detained in the cytoplasm by viruses and re-purposed for their own gain. Many mammalian viruses hijack a common group of the same factors. This review summarizes recent gains in our knowledge of how cytoplasmic RNA viruses use these co-opted host nuclear factors in new functional roles supporting virus translation and virus RNA replication and common themes employed between different virus groups. PMID:25818028

  20. A parameter optimization approach to controller partitioning for integrated flight/propulsion control application

    NASA Technical Reports Server (NTRS)

    Schmidt, Phillip; Garg, Sanjay; Holowecky, Brian

    1992-01-01

    A parameter optimization framework is presented to solve the problem of partitioning a centralized controller into a decentralized hierarchical structure suitable for integrated flight/propulsion control implementation. The controller partitioning problem is briefly discussed and a cost function to be minimized is formulated, such that the resulting 'optimal' partitioned subsystem controllers will closely match the performance (including robustness) properties of the closed-loop system with the centralized controller while maintaining the desired controller partitioning structure. The cost function is written in terms of parameters in a state-space representation of the partitioned sub-controllers. Analytical expressions are obtained for the gradient of this cost function with respect to parameters, and an optimization algorithm is developed using modern computer-aided control design and analysis software. The capabilities of the algorithm are demonstrated by application to partitioned integrated flight/propulsion control design for a modern fighter aircraft in the short approach to landing task. The partitioning optimization is shown to lead to reduced-order subcontrollers that match the closed-loop command tracking and decoupling performance achieved by a high-order centralized controller.

  1. A parameter optimization approach to controller partitioning for integrated flight/propulsion control application

    NASA Technical Reports Server (NTRS)

    Schmidt, Phillip H.; Garg, Sanjay; Holowecky, Brian R.

    1993-01-01

    A parameter optimization framework is presented to solve the problem of partitioning a centralized controller into a decentralized hierarchical structure suitable for integrated flight/propulsion control implementation. The controller partitioning problem is briefly discussed and a cost function to be minimized is formulated, such that the resulting 'optimal' partitioned subsystem controllers will closely match the performance (including robustness) properties of the closed-loop system with the centralized controller while maintaining the desired controller partitioning structure. The cost function is written in terms of parameters in a state-space representation of the partitioned sub-controllers. Analytical expressions are obtained for the gradient of this cost function with respect to parameters, and an optimization algorithm is developed using modern computer-aided control design and analysis software. The capabilities of the algorithm are demonstrated by application to partitioned integrated flight/propulsion control design for a modern fighter aircraft in the short approach to landing task. The partitioning optimization is shown to lead to reduced-order subcontrollers that match the closed-loop command tracking and decoupling performance achieved by a high-order centralized controller.

  2. DNA polymerases eta and kappa exchange with the polymerase delta holoenzyme to complete common fragile site synthesis.

    PubMed

    Barnes, Ryan P; Hile, Suzanne E; Lee, Marietta Y; Eckert, Kristin A

    2017-09-01

    Common fragile sites (CFSs) are inherently unstable genomic loci that are recurrently altered in human tumor cells. Despite their instability, CFS are ubiquitous throughout the human genome and associated with large tumor suppressor genes or oncogenes. CFSs are enriched with repetitive DNA sequences, one feature postulated to explain why these loci are inherently difficult to replicate, and sensitive to replication stress. We have shown that specialized DNA polymerases (Pols) η and κ replicate CFS-derived sequences more efficiently than the replicative Pol δ. However, we lacked an understanding of how these enzymes cooperate to ensure efficient CFS replication. Here, we designed a model of lagging strand replication with RFC loaded PCNA that allows for maximal activity of the four-subunit human Pol δ holoenzyme, Pol η, and Pol κ in polymerase mixing assays. We discovered that Pol η and κ are both able to exchange with Pol δ stalled at repetitive CFS sequences, enhancing Normalized Replication Efficiency. We used this model to test the impact of PCNA mono-ubiquitination on polymerase exchange, and found no change in polymerase cooperativity in CFS replication compared with unmodified PCNA. Finally, we modeled replication stress in vitro using aphidicolin and found that Pol δ holoenzyme synthesis was significantly inhibited in a dose-dependent manner, preventing any replication past the CFS. Importantly, Pol η and κ were still proficient in rescuing this stalled Pol δ synthesis, which may explain, in part, the CFS instability phenotype of aphidicolin-treated Pol η and Pol κ-deficient cells. In total, our data support a model wherein Pol δ stalling at CFSs allows for free exchange with a specialized polymerase that is not driven by PCNA. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Improving the extraction of l-phenylalanine by the use of ionic liquids as adjuvants in aqueous biphasic systems.

    PubMed

    Yang, Hongpeng; Chen, Li; Zhou, Cunshan; Yu, Xiaojie; Yagoub, Abu ElGasim A; Ma, Haile

    2018-04-15

    Polyethylene glycol (PEG) is widely used in the polymer-salt systems. However, the low polarity of the PEG-rich phase limits the application of aqueous biphasic systems (ABS). To overcome this disadvantage, a small quantity of ionic liquid (IL) was used as an adjuvant in ABS to enlarge the polarity range. Therefore, an innovative study involving addition of 4wt% imidazolium-based ILs to the PEG 600/NaH 2 PO 4 ABS, aiming at controlling the phase behavior and extraction ability, was carried out. The phase diagrams, the tie-lines and the partitioning behavior of l-phenylalanine and ILs were studied in these systems. The results reveal that l-phenylalanine preferentially partitions for the PEG-rich phase. The addition of 4wt% IL to ABS controls the partitioning behavior of l-phenylalanine, which depends on the type of IL employed. Moreover, it is verified that increasing temperature lead to a decrease in the partition coefficient of l-phenylalanine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Computation of liquid-liquid equilibria and phase stabilities: implications for RH-dependent gas/particle partitioning of organic-inorganic aerosols

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Marcolli, C.; Peter, T.; Seinfeld, J. H.

    2010-08-01

    Semivolatile organic and inorganic aerosol species partition between the gas and aerosol particle phases to maintain thermodynamic equilibrium. Liquid-liquid phase separation into an organic-rich and an aqueous electrolyte phase can occur in the aerosol as a result of the salting-out effect. Such liquid-liquid equilibria (LLE) affect the gas/particle partitioning of the different semivolatile compounds and might significantly alter both particle mass and composition as compared to a one-phase particle. We present a new liquid-liquid equilibrium and gas/particle partitioning model, using as a basis the group-contribution model AIOMFAC (Zuend et al., 2008). This model allows the reliable computation of the liquid-liquid coexistence curve (binodal), corresponding tie-lines, the limit of stability/metastability (spinodal), and further thermodynamic properties of multicomponent systems. Calculations for ternary and multicomponent alcohol/polyol-water-salt mixtures suggest that LLE are a prevalent feature of organic-inorganic aerosol systems. A six-component polyol-water-ammonium sulphate system is used to simulate effects of relative humidity (RH) and the presence of liquid-liquid phase separation on the gas/particle partitioning. RH, salt concentration, and hydrophilicity (water-solubility) are identified as key features in defining the region of a miscibility gap and govern the extent to which compound partitioning is affected by changes in RH. The model predicts that liquid-liquid phase separation can lead to either an increase or decrease in total particulate mass, depending on the overall composition of a system and the particle water content, which is related to the hydrophilicity of the different organic and inorganic compounds. Neglecting non-ideality and liquid-liquid phase separations by assuming an ideal mixture leads to an overestimation of the total particulate mass by up to 30% for the composition and RH range considered in the six-component system simulation. For simplified partitioning parametrizations, we suggest a modified definition of the effective saturation concentration, Cj*, by including water and other inorganics in the absorbing phase. Such a Cj* definition reduces the RH-dependency of the gas/particle partitioning of semivolatile organics in organic-inorganic aerosols by an order of magnitude as compared to the currently accepted definition, which considers the organic species only.

  5. Cooperative working of bacterial chromosome replication proteins generated by a reconstituted protein expression system

    PubMed Central

    Fujiwara, Kei; Katayama, Tsutomu; Nomura, Shin-ichiro M.

    2013-01-01

    Replication of all living cells relies on the multirounds flow of the central dogma. Especially, expression of DNA replication proteins is a key step to circulate the processes of the central dogma. Here we achieved the entire sequential transcription–translation–replication process by autonomous expression of chromosomal DNA replication machineries from a reconstituted transcription–translation system (PURE system). We found that low temperature is essential to express a complex protein, DNA polymerase III, in a single tube using the PURE system. Addition of the 13 genes, encoding initiator, DNA helicase, helicase loader, RNA primase and DNA polymerase III to the PURE system gave rise to a DNA replication system by a coupling manner. An artificial genetic circuit demonstrated that the DNA produced as a result of the replication is able to provide genetic information for proteins, indicating the in vitro central dogma can sequentially undergo two rounds. PMID:23737447

  6. Characterization of bovine serum albumin partitioning behaviors in polymer-salt aqueous two-phase systems.

    PubMed

    Chow, Yin Hui; Yap, Yee Jiun; Tan, Chin Ping; Anuar, Mohd Shamsul; Tejo, Bimo Ario; Show, Pau Loke; Ariff, Arbakariya Bin; Ng, Eng-Poh; Ling, Tau Chuan

    2015-07-01

    In this paper, a linear relationship is proposed relating the natural logarithm of partition coefficient, ln K for protein partitioning in poly (ethylene glycol) (PEG)-phosphate aqueous two-phase system (ATPS) to the square of tie-line length (TLL(2)). This relationship provides good fits (r(2) > 0.98) to the partition of bovine serum albumin (BSA) in PEG (1450 g/mol, 2000 g/mol, 3350 g/mol, and 4000 g/mol)-phosphate ATPS with TLL of 25.0-50.0% (w/w) at pH 7.0. Results also showed that the plot of ln K against pH for BSA partitioning in the ATPS containing 33.0% (w/w) PEG1450 and 8.0% (w/w) phosphate with varied working pH between 6.0 and 9.0 exhibited a linear relationship which is in good agreement (r(2) = 0.94) with the proposed relationship, ln K = α' pH + β'. These results suggested that both the relationships proposed could be applied to correlate and elucidate the partition behavior of biomolecules in the polymer-salt ATPS. The influence of other system parameters on the partition behavior of BSA was also investigated. An optimum BSA yield of 90.80% in the top phase and K of 2.40 was achieved in an ATPS constituted with 33.0% (w/w) PEG 1450 and 8.0% (w/w) phosphate in the presence of 8.5% (w/w) sodium chloride (NaCl) at pH 9.0 for 0.3% (w/w) BSA load. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Visualizing double-stranded RNA distribution and dynamics in living cells by dsRNA binding-dependent fluorescence complementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Xiaofei; College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036; Deng, Ping

    Double-stranded RNA (dsRNA) is an important type of RNA that plays essential roles in diverse cellular processes in eukaryotic organisms and a hallmark in infections by positive-sense RNA viruses. Currently, no in vivo technology has been developed for visualizing dsRNA in living cells. Here, we report a dsRNA binding-dependent fluorescence complementation (dRBFC) assay that can be used to efficiently monitor dsRNA distribution and dynamics in vivo. The system consists of two dsRNA-binding proteins, which are fused to the N- and C-terminal halves of the yellow fluorescent protein (YFP). Binding of the two fusion proteins to a common dsRNA brings themore » split YFP halves in close proximity, leading to the reconstitution of the fluorescence-competent structure and restoration of fluorescence. Using this technique, we were able to visualize the distribution and trafficking of the replicative RNA intermediates of positive-sense RNA viruses in living cells. - Highlights: • A live-cell imaging system was developed for visualizing dsRNA in vivo. • It uses dsRNA binding proteins fused with two halves of a fluorescent protein. • Binding to a common dsRNA enables the reporter to become fluorescent. • The system can efficiently monitor viral RNA replication in living cells.« less

  8. Solving Autonomy Technology Gaps through Wireless Technology and Orion Avionics Architectural Principles

    NASA Astrophysics Data System (ADS)

    Black, Randy; Bai, Haowei; Michalicek, Andrew; Shelton, Blaine; Villela, Mark

    2008-01-01

    Currently, autonomy in space applications is limited by a variety of technology gaps. Innovative application of wireless technology and avionics architectural principles drawn from the Orion crew exploration vehicle provide solutions for several of these gaps. The Vision for Space Exploration envisions extensive use of autonomous systems. Economic realities preclude continuing the level of operator support currently required of autonomous systems in space. In order to decrease the number of operators, more autonomy must be afforded to automated systems. However, certification authorities have been notoriously reluctant to certify autonomous software in the presence of humans or when costly missions may be jeopardized. The Orion avionics architecture, drawn from advanced commercial aircraft avionics, is based upon several architectural principles including partitioning in software. Robust software partitioning provides "brick wall" separation between software applications executing on a single processor, along with controlled data movement between applications. Taking advantage of these attributes, non-deterministic applications can be placed in one partition and a "Safety" application created in a separate partition. This "Safety" partition can track the position of astronauts or critical equipment and prevent any unsafe command from executing. Only the Safety partition need be certified to a human rated level. As a proof-of-concept demonstration, Honeywell has teamed with the Ultra WideBand (UWB) Working Group at NASA Johnson Space Center to provide tracking of humans, autonomous systems, and critical equipment. Using UWB the NASA team can determine positioning to within less than one inch resolution, allowing a Safety partition to halt operation of autonomous systems in the event that an unplanned collision is imminent. Another challenge facing autonomous systems is the coordination of multiple autonomous agents. Current approaches address the issue as one of networking and coordination of multiple independent units, each with its own mission. As a proof-of-concept Honeywell is developing and testing various algorithms that lead to a deterministic, fault tolerant, reliable wireless backplane. Just as advanced avionics systems control several subsystems, actuators, sensors, displays, etc.; a single "master" autonomous agent (or base station computer) could control multiple autonomous systems. The problem is simplified to controlling a flexible body consisting of several sensors and actuators, rather than one of coordinating multiple independent units. By filling technology gaps associated with space based autonomous system, wireless technology and Orion architectural principles provide the means for decreasing operational costs and simplifying problems associated with collaboration of multiple autonomous systems.

  9. The scenario on the origin of translation in the RNA world: in principle of replication parsimony

    PubMed Central

    2010-01-01

    Background It is now believed that in the origin of life, proteins should have been "invented" in an RNA world. However, due to the complexity of a possible RNA-based proto-translation system, this evolving process seems quite complicated and the associated scenario remains very blurry. Considering that RNA can bind amino acids with specificity, it has been reasonably supposed that initial peptides might have been synthesized on "RNA templates" containing multiple amino acid binding sites. This "Direct RNA Template (DRT)" mechanism is attractive because it should be the simplest mechanism for RNA to synthesize peptides, thus very likely to have been adopted initially in the RNA world. Then, how this mechanism could develop into a proto-translation system mechanism is an interesting problem. Presentation of the hypothesis Here an explanation to this problem is shown considering the principle of "replication parsimony" --- genetic information tends to be utilized in a parsimonious way under selection pressure, due to its replication cost (e.g., in the RNA world, nucleotides and ribozymes for RNA replication). Because a DRT would be quite long even for a short peptide, its replication cost would be great. Thus the diversity and the length of functional peptides synthesized by the DRT mechanism would be seriously limited. Adaptors (proto-tRNAs) would arise to allow a DRT's complementary strand (called "C-DRT" here) to direct the synthesis of the same peptide synthesized by the DRT itself. Because the C-DRT is a necessary part in the DRT's replication, fewer turns of the DRT's replication would be needed to synthesize definite copies of the functional peptide, thus saving the replication cost. Acting through adaptors, C-DRTs could transform into much shorter templates (called "proto-mRNAs" here) and substitute the role of DRTs, thus significantly saving the replication cost. A proto-rRNA corresponding to the small subunit rRNA would then emerge to aid the binding of proto-tRNAs and proto-mRNAs, allowing the reduction of base pairs between them (ultimately resulting in the triplet anticodon/codon pair), thus further saving the replication cost. In this context, the replication cost saved would allow the appearance of more and longer functional peptides and, finally, proteins. The hypothesis could be called "DRT-RP" ("RP" for "replication parsimony"). Testing the hypothesis The scenario described here is open for experimental work at some key scenes, including the compact DRT mechanism, the development of adaptors from aa-aptamers, the synthesis of peptides by proto-tRNAs and proto-mRNAs without the participation of proto-rRNAs, etc. Interestingly, a recent computer simulation study has demonstrated the plausibility of one of the evolving processes driven by replication parsimony in the scenario. Implication of the hypothesis An RNA-based proto-translation system could arise gradually from the DRT mechanism according to the principle of "replication parsimony" --- to save the replication cost of RNA templates for functional peptides. A surprising side deduction along the logic of the hypothesis is that complex, biosynthetic amino acids might have entered the genetic code earlier than simple, prebiotic amino acids, which is opposite to the common sense. Overall, the present discussion clarifies the blurry scenario concerning the origin of translation with a major clue, which shows vividly how life could "manage" to exploit potential chemical resources in nature, eventually in an efficient way over evolution. Reviewers This article was reviewed by Eugene V. Koonin, Juergen Brosius, and Arcady Mushegian. PMID:21110883

  10. A Novel Coarsening Method for Scalable and Efficient Mesh Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, A; Hysom, D; Gunney, B

    2010-12-02

    In this paper, we propose a novel mesh coarsening method called brick coarsening method. The proposed method can be used in conjunction with any graph partitioners and scales to very large meshes. This method reduces problem space by decomposing the original mesh into fixed-size blocks of nodes called bricks, layered in a similar way to conventional brick laying, and then assigning each node of the original mesh to appropriate brick. Our experiments indicate that the proposed method scales to very large meshes while allowing simple RCB partitioner to produce higher-quality partitions with significantly less edge cuts. Our results further indicatemore » that the proposed brick-coarsening method allows more complicated partitioners like PT-Scotch to scale to very large problem size while still maintaining good partitioning performance with relatively good edge-cut metric. Graph partitioning is an important problem that has many scientific and engineering applications in such areas as VLSI design, scientific computing, and resource management. Given a graph G = (V,E), where V is the set of vertices and E is the set of edges, (k-way) graph partitioning problem is to partition the vertices of the graph (V) into k disjoint groups such that each group contains roughly equal number of vertices and the number of edges connecting vertices in different groups is minimized. Graph partitioning plays a key role in large scientific computing, especially in mesh-based computations, as it is used as a tool to minimize the volume of communication and to ensure well-balanced load across computing nodes. The impact of graph partitioning on the reduction of communication can be easily seen, for example, in different iterative methods to solve a sparse system of linear equation. Here, a graph partitioning technique is applied to the matrix, which is basically a graph in which each edge is a non-zero entry in the matrix, to allocate groups of vertices to processors in such a way that many of matrix-vector multiplication can be performed locally on each processor and hence to minimize communication. Furthermore, a good graph partitioning scheme ensures the equal amount of computation performed on each processor. Graph partitioning is a well known NP-complete problem, and thus the most commonly used graph partitioning algorithms employ some forms of heuristics. These algorithms vary in terms of their complexity, partition generation time, and the quality of partitions, and they tend to trade off these factors. A significant challenge we are currently facing at the Lawrence Livermore National Laboratory is how to partition very large meshes on massive-size distributed memory machines like IBM BlueGene/P, where scalability becomes a big issue. For example, we have found that the ParMetis, a very popular graph partitioning tool, can only scale to 16K processors. An ideal graph partitioning method on such an environment should be fast and scale to very large meshes, while producing high quality partitions. This is an extremely challenging task, as to scale to that level, the partitioning algorithm should be simple and be able to produce partitions that minimize inter-processor communications and balance the load imposed on the processors. Our goals in this work are two-fold: (1) To develop a new scalable graph partitioning method with good load balancing and communication reduction capability. (2) To study the performance of the proposed partitioning method on very large parallel machines using actual data sets and compare the performance to that of existing methods. The proposed method achieves the desired scalability by reducing the mesh size. For this, it coarsens an input mesh into a smaller size mesh by coalescing the vertices and edges of the original mesh into a set of mega-vertices and mega-edges. A new coarsening method called brick algorithm is developed in this research. In the brick algorithm, the zones in a given mesh are first grouped into fixed size blocks called bricks. These brick are then laid in a way similar to conventional brick laying technique, which reduces the number of neighboring blocks each block needs to communicate. Contributions of this research are as follows: (1) We have developed a novel method that scales to a really large problem size while producing high quality mesh partitions; (2) We measured the performance and scalability of the proposed method on a machine of massive size using a set of actual large complex data sets, where we have scaled to a mesh with 110 million zones using our method. To the best of our knowledge, this is the largest complex mesh that a partitioning method is successfully applied to; and (3) We have shown that proposed method can reduce the number of edge cuts by as much as 65%.« less

  11. Ribosomal DNA replication fork barrier and HOT1 recombination hot spot: shared sequences but independent activities.

    PubMed

    Ward, T R; Hoang, M L; Prusty, R; Lau, C K; Keil, R L; Fangman, W L; Brewer, B J

    2000-07-01

    In the ribosomal DNA of Saccharomyces cerevisiae, sequences in the nontranscribed spacer 3' of the 35S ribosomal RNA gene are important to the polar arrest of replication forks at a site called the replication fork barrier (RFB) and also to the cis-acting, mitotic hyperrecombination site called HOT1. We have found that the RFB and HOT1 activity share some but not all of their essential sequences. Many of the mutations that reduce HOT1 recombination also decrease or eliminate fork arrest at one of two closely spaced RFB sites, RFB1 and RFB2. A simple model for the juxtaposition of RFB and HOT1 sequences is that the breakage of strands in replication forks arrested at RFB stimulates recombination. Contrary to this model, we show here that HOT1-stimulated recombination does not require the arrest of forks at the RFB. Therefore, while HOT1 activity is independent of replication fork arrest, HOT1 and RFB require some common sequences, suggesting the existence of a common trans-acting factor(s).

  12. Multipurpose Cargo Transfer Bag

    NASA Technical Reports Server (NTRS)

    Broyan, James; Baccus, Shelley

    2014-01-01

    The Logistics Reduction (LR) project within the Advanced Exploration Systems (AES) program is tasked with reducing logistical mass and repurposing logistical items. Multipurpose Cargo Transfer Bags (MCTB) have been designed such that they can serve the same purpose as a Cargo Transfer Bag, the suitcase-shaped common logistics carrying bag for Shuttle and the International Space Station. After use as a cargo carrier, a regular CTB becomes trash, whereas the MCTB can be unzipped, unsnapped, and unfolded to be reused. Reuse ideas that have been investigated include partitions, crew quarters, solar radiation storm shelters, acoustic blankets, and forward osmosis water processing.

  13. Hierarchical modeling and robust synthesis for the preliminary design of large scale complex systems

    NASA Astrophysics Data System (ADS)

    Koch, Patrick Nathan

    Large-scale complex systems are characterized by multiple interacting subsystems and the analysis of multiple disciplines. The design and development of such systems inevitably requires the resolution of multiple conflicting objectives. The size of complex systems, however, prohibits the development of comprehensive system models, and thus these systems must be partitioned into their constituent parts. Because simultaneous solution of individual subsystem models is often not manageable iteration is inevitable and often excessive. In this dissertation these issues are addressed through the development of a method for hierarchical robust preliminary design exploration to facilitate concurrent system and subsystem design exploration, for the concurrent generation of robust system and subsystem specifications for the preliminary design of multi-level, multi-objective, large-scale complex systems. This method is developed through the integration and expansion of current design techniques: (1) Hierarchical partitioning and modeling techniques for partitioning large-scale complex systems into more tractable parts, and allowing integration of subproblems for system synthesis, (2) Statistical experimentation and approximation techniques for increasing both the efficiency and the comprehensiveness of preliminary design exploration, and (3) Noise modeling techniques for implementing robust preliminary design when approximate models are employed. The method developed and associated approaches are illustrated through their application to the preliminary design of a commercial turbofan turbine propulsion system; the turbofan system-level problem is partitioned into engine cycle and configuration design and a compressor module is integrated for more detailed subsystem-level design exploration, improving system evaluation.

  14. Management and control of self-replicating systems: A systems model

    NASA Technical Reports Server (NTRS)

    Vontiesenhausen, G.

    1982-01-01

    In 1980, a conceptual engineering approach to self-replicating systems was achieved. The design was based on von Newmann's kinematic version of self-replicating automata. The systems management and control and the organization of the control elements are reported. After developing the functional requirements of such a system, a hierarchy of three management and control levels is described. These are an autonomous, an external, and an intelligent management and control system. Systems recycling, systems specialization, and information replication are discussed.

  15. Many-body formalism for fermions: The partition function

    NASA Astrophysics Data System (ADS)

    Watson, D. K.

    2017-09-01

    The partition function, a fundamental tenet in statistical thermodynamics, contains in principle all thermodynamic information about a system. It encapsulates both microscopic information through the quantum energy levels and statistical information from the partitioning of the particles among the available energy levels. For identical particles, this statistical accounting is complicated by the symmetry requirements of the allowed quantum states. In particular, for Fermi systems, the enforcement of the Pauli principle is typically a numerically demanding task, responsible for much of the cost of the calculations. The interplay of these three elements—the structure of the many-body spectrum, the statistical partitioning of the N particles among the available levels, and the enforcement of the Pauli principle—drives the behavior of mesoscopic and macroscopic Fermi systems. In this paper, we develop an approach for the determination of the partition function, a numerically difficult task, for systems of strongly interacting identical fermions and apply it to a model system of harmonically confined, harmonically interacting fermions. This approach uses a recently introduced many-body method that is an extension of the symmetry-invariant perturbation method (SPT) originally developed for bosons. It uses group theory and graphical techniques to avoid the heavy computational demands of conventional many-body methods which typically scale exponentially with the number of particles. The SPT application of the Pauli principle is trivial to implement since it is done "on paper" by imposing restrictions on the normal-mode quantum numbers at first order in the perturbation. The method is applied through first order and represents an extension of the SPT method to excited states. Our method of determining the partition function and various thermodynamic quantities is accurate and efficient and has the potential to yield interesting insight into the role played by the Pauli principle and the influence of large degeneracies on the emergence of the thermodynamic behavior of large-N systems.

  16. Countercurrent distribution of biological cells

    NASA Technical Reports Server (NTRS)

    Brooks, D. E.

    1982-01-01

    Detailed physiochemical studies of dextran/poly(ethylene glycol) (PEG) two phase systems were carried out to characterize and provide understanding of the properties of the systems which determine cell partition and the electrophoretic behavior of phase drops responsible for electric field driven phase separation. A detailed study of the electrostatic and electrokinetic potentials developed in these systems was carried out. The salt partition was examined both in phase systems and with pure polymer solutions via equilibrium dialysis and mechanism of sulfate, chloride and phosphate partition shown to be exclusion by PEG rather than binding by dextran. Salt partition was shown to have a strong effect on the polymer compositions of the phases as well, an effect which produces large changes in the interfacial tension between them. These effects were characterized and the interfacial tension shown to obey a power law with respect to its dependence on the length of the tie line describing the system composition on a phase diagram. The electrostatic potential differences measured via salt bridges were shown to obey thermodynamic predictions. The electrophoretic mobilities measured were utilized to provide a partial test of Levine's incomplete theory of phase drop electrophoresis. The data were consistent with Levine's expression over a limited range of the variables tested.

  17. A Dual Super-Element Domain Decomposition Approach for Parallel Nonlinear Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Jokhio, G. A.; Izzuddin, B. A.

    2015-05-01

    This article presents a new domain decomposition method for nonlinear finite element analysis introducing the concept of dual partition super-elements. The method extends ideas from the displacement frame method and is ideally suited for parallel nonlinear static/dynamic analysis of structural systems. In the new method, domain decomposition is realized by replacing one or more subdomains in a "parent system," each with a placeholder super-element, where the subdomains are processed separately as "child partitions," each wrapped by a dual super-element along the partition boundary. The analysis of the overall system, including the satisfaction of equilibrium and compatibility at all partition boundaries, is realized through direct communication between all pairs of placeholder and dual super-elements. The proposed method has particular advantages for matrix solution methods based on the frontal scheme, and can be readily implemented for existing finite element analysis programs to achieve parallelization on distributed memory systems with minimal intervention, thus overcoming memory bottlenecks typically faced in the analysis of large-scale problems. Several examples are presented in this article which demonstrate the computational benefits of the proposed parallel domain decomposition approach and its applicability to the nonlinear structural analysis of realistic structural systems.

  18. The impact of overgrazing on dung beetle diversity in the Italian Maritime Alps.

    PubMed

    Negro, Matteo; Rolando, Antonio; Palestrini, Claudia

    2011-10-01

    Dung beetles (Coleoptera: Scarabaeidae) are undoubtedly the most typical and ecologically relevant insects of grazed alpine habitats because they provide valuable ecological services such as biological pest control and soil fertilization. Despite the great ecological contribution of these insects to pasture ecosystem functioning, little is known about their direct or indirect relationships with pastoral activities. The main aim of the study was to assess whether dung beetle diversity was influenced by different intensities of cattle grazing. Dung beetle communities of two adjacent alpine valleys within the Maritime Alps Natural Park (north-western Italian Alps), representing overgrazed and ungrazed pastures, were studied by pitfall trapping. A hierarchical design (three levels: valleys, transects, and replicates) was established for additive partitioning of γ-diversity and Indicator Species Analysis. Evenness and Shannon diversity were significantly higher at the ungrazed than at the overgrazed site because abundances were much more evenly distributed at the former than at the latter site (where one species was dominant over all the others). Dung beetle abundance and species richness of the overgrazed graminaceous pasture vegetation types were in most cases significantly lower than those of the ungrazed nongraminaceous vegetation type. In the additive partitioning of γ -diversity analysis relative to the whole study area, the randomization procedure indicated that the contribution of β to γ-diversity was significantly different from that expected by chance, suggesting that one or more environmental factors has intervened to change the partition of total diversity in the system considered. The analysis of the preferences and fidelity of species (Indicator Species Analysis) showed that only one species chose overgrazed pastures; all the others positively selected the ungrazed site, or the only ungrazed pasture vegetation type (Rumicetum alpini Beger) occurring at the overgrazed site. Results conformed to evidences that overgrazing represents a serious threat to the conservation of alpine dung beetles. To conserve local dung beetle assemblages, especially in protected areas, cattle overgrazing should be avoided. This does not mean, however, that pastoral activities are incompatible with biodiversity conservation. The contemporaneous presence of wild ungulates and low intensity extensive pastoral activities may be useful to preserve both local dung beetle assemblages and alpine pasture ecosystems.

  19. On the monogamy of holographic n -partite information

    NASA Astrophysics Data System (ADS)

    Mirabi, S.; Tanhayi, M. Reza; Vazirian, R.

    2016-05-01

    We investigate the monogamy of holographic n -partite information for a system consisting of n disjoint parallel strips with the same width and separation in AdS and AdS black brane geometries. More precisely, we study the sign of this quantity, e.g., for n =4 , 5, in various dimensions and for different parameters. Our results show that for quantum field theories with holographic duals, the holographic 4-partite information is always positive, and the sign of holographic 5-partite information is found to be negative in the dual strongly coupled 1 +1 dimensional conformal field theory. This latter result indicates that the holographic 4-partite information is monogamous. We also find the critical points corresponding to the possible phase transitions of these quantities.

  20. Time and Space Partitioning the EagleEye Reference Misson

    NASA Astrophysics Data System (ADS)

    Bos, Victor; Mendham, Peter; Kauppinen, Panu; Holsti, Niklas; Crespo, Alfons; Masmano, Miguel; de la Puente, Juan A.; Zamorano, Juan

    2013-08-01

    We discuss experiences gained by porting a Software Validation Facility (SVF) and a satellite Central Software (CSW) to a platform with support for Time and Space Partitioning (TSP). The SVF and CSW are part of the EagleEye Reference mission of the European Space Agency (ESA). As a reference mission, EagleEye is a perfect candidate to evaluate practical aspects of developing satellite CSW for and on TSP platforms. The specific TSP platform we used consists of a simulated LEON3 CPU controlled by the XtratuM separation micro-kernel. On top of this, we run five separate partitions. Each partition runs its own real-time operating system or Ada run-time kernel, which in turn are running the application software of the CSW. We describe issues related to partitioning; inter-partition communication; scheduling; I/O; and fault-detection, isolation, and recovery (FDIR).

  1. Adrenergic antagonists restrict replication of Legionella.

    PubMed

    Harrison, Christopher F; Kicka, Sébastien; Kranjc, Agata; Finsel, Ivo; Chiriano, Gianpaolo; Ouertatani-Sakouhi, Hajer; Soldati, Thierry; Scapozza, Leonardo; Hilbi, Hubert

    2015-07-01

    Legionella pneumophila is a facultative intracellular bacterium, which upon inhalation can cause a potentially fatal pneumonia termed Legionnaires' disease. The opportunistic pathogen grows in environmental amoebae and mammalian macrophages within a unique membrane-bound compartment, the 'Legionella-containing vacuole'. Bacteria are exposed to many environmental cues including small signalling molecules from eukaryotic cells. A number of pathogenic bacteria sense and respond to catecholamine hormones, such as adrenalin and noradrenalin, a process mediated via the QseBC two-component system in some bacteria. In this study, we examined the effect of adrenergic compounds on L. pneumophila, and discovered that the adrenergic receptor antagonists benoxathian, naftopidil, propranolol and labetalol, as well as the QseC sensor kinase inhibitor LED209, reduced the growth of L. pneumophila in broth or amoebae, while replication in macrophages was enhanced. Growth restriction was common to members of the genus Legionella and Mycobacterium, and was observed for L. pneumophila in the replicative but not stationary phase of the biphasic life cycle. Deletion of the L. pneumophila qseBC genes indicated that growth inhibition by adrenergics or LED209 is mediated only to a minor extent by this two-component system, implying the presence of other adrenergic sensing systems. This study identifies adrenergic molecules as novel inhibitors of extra- and intracellular growth of Legionella and reveals LED209 as a potential lead compound to combat infections with Legionella or Mycobacterium spp.

  2. T CELL REPLICATIVE SENESCENCE IN HUMAN AGING

    PubMed Central

    Chou, Jennifer P.; Effros, Rita B.

    2013-01-01

    The decline of the immune system appears to be an intractable consequence of aging, leading to increased susceptibility to infections, reduced effectiveness of vaccination and higher incidences of many diseases including osteoporosis and cancer in the elderly. These outcomes can be attributed, at least in part, to a phenomenon known as T cell replicative senescence, a terminal state characterized by dysregulated immune function, loss of the CD28 costimulatory molecule, shortened telomeres and elevated production of pro-inflammatory cytokines. Senescent CD8 T cells, which accumulate in the elderly, have been shown to frequently bear antigen specificity against cytomegalovirus (CMV), suggesting that this common and persistent infection may drive immune senescence and result in functional and phenotypic changes to the T cell repertoire. Senescent T cells have also been identified in patients with certain cancers, autoimmune diseases and chronic infections, such as HIV. This review discusses the in vivo and in vitro evidence for the contribution of CD8 T cell replicative senescence to a plethora of age-related pathologies and a few possible therapeutic avenues to delay or prevent this differentiative end-state in T cells. The age-associated remodeling of the immune system, through accumulation of senescent T cells has far-reaching consequences on the individual and society alike, for the current healthcare system needs to meet the urgent demands of the increasing proportions of the elderly in the US and abroad. PMID:23061726

  3. Investigation of foam flotation and phase partitioning techniques

    NASA Technical Reports Server (NTRS)

    Currin, B. L.

    1985-01-01

    The present status of foam flotation as a separation process is evaluated and limitations for cells and proteins are determined. Possible applications of foam flotation to separations in microgravity are discussed. Application of the fluid mechanical aspects of foam separation techniques is made to phase partitioning in order to investigate the viscous drag forces that may effect the partitioning of cells in a two phase poly(ethylene glycol) and dextran system.

  4. A Framework for an Automated Compilation System for Reconfigurable Architectures

    DTIC Science & Technology

    1997-03-01

    HDLs, Hardware C requires the designer to be thoroughly familiar with digital hardware design. 48 Vahid, Gong, and Gajski focus on the partitioning...of hardware used. Vahid, Gong, and Gajski suggest that the greedy approach used by Gupta and De Micheli is easily trapped in local minimums [46:216...iterative algorithm. To overcome this limitation, the Vahid, Gong, and Gajski suggest a binary constraint partitioning approach. The partitioning

  5. Symmetry of interactions rules in incompletely connected random replicator ecosystems.

    PubMed

    Kärenlampi, Petri P

    2014-06-01

    The evolution of an incompletely connected system of species with speciation and extinction is investigated in terms of random replicators. It is found that evolving random replicator systems with speciation do become large and complex, depending on speciation parameters. Antisymmetric interactions result in large systems, whereas systems with symmetric interactions remain small. A co-dominating feature is within-species interaction pressure: large within-species interaction increases species diversity. Average fitness evolves in all systems, however symmetry and connectivity evolve in small systems only. Newcomers get extinct almost immediately in symmetric systems. The distribution in species lifetimes is determined for antisymmetric systems. The replicator systems investigated do not show any sign of self-organized criticality. The generalized Lotka-Volterra system is shown to be a tedious way of implementing the replicator system.

  6. Comparison in partition efficiency of protein separation between four different tubing modifications in spiral high-speed countercurrent chromatography

    PubMed Central

    Ito, Yoichiro; Clary, Robert

    2016-01-01

    High-speed countercurrent chromatography with a spiral tube assembly can retain a satisfactory amount of stationary phase of polymer phase systems used for protein separation. In order to improve the partition efficiency a simple tool to modify the tubing shapes was fabricated, and the following four different tubing modifications were made: intermittently pressed at 10 mm width, flat, flat-wave, and flat-twist. Partition efficiencies of the separation column made from these modified tubing were examined in protein separation with an aqueous-aqueous polymer phase system at flow rates of 1–2 ml/min under 800 rpm. The results indicated that the column with all modified tubing improved the partition efficiency at a flow rate of 1 ml/min, but at a higher flow rate of 2 ml/min the columns made of flattened tubing showed lowered partition efficiency apparently due to the loss of the retained stationary phase. Among all the modified columns, the column with intermittently pressed tubing gave the best peak resolution. It may be concluded that the intermittently pressed and flat-twist improve the partition efficiency in a semi-preparative separation while other modified tubing of flat and flat-wave configurations may be used for analytical separations with a low flow rate. PMID:27790621

  7. Comparison in partition efficiency of protein separation between four different tubing modifications in spiral high-speed countercurrent chromatography.

    PubMed

    Ito, Yoichiro; Clary, Robert

    2016-12-01

    High-speed countercurrent chromatography with a spiral tube assembly can retain a satisfactory amount of stationary phase of polymer phase systems used for protein separation. In order to improve the partition efficiency a simple tool to modify the tubing shapes was fabricated, and the following four different tubing modifications were made: intermittently pressed at 10 mm width, flat, flat-wave, and flat-twist. Partition efficiencies of the separation column made from these modified tubing were examined in protein separation with an aqueous-aqueous polymer phase system at flow rates of 1-2 ml/min under 800 rpm. The results indicated that the column with all modified tubing improved the partition efficiency at a flow rate of 1 ml/min, but at a higher flow rate of 2 ml/min the columns made of flattened tubing showed lowered partition efficiency apparently due to the loss of the retained stationary phase. Among all the modified columns, the column with intermittently pressed tubing gave the best peak resolution. It may be concluded that the intermittently pressed and flat-twist improve the partition efficiency in a semi-preparative separation while other modified tubing of flat and flat-wave configurations may be used for analytical separations with a low flow rate.

  8. Automatic selection of dynamic data partitioning schemes for distributed memory multicomputers

    NASA Technical Reports Server (NTRS)

    Palermo, Daniel J.; Banerjee, Prithviraj

    1995-01-01

    For distributed memory multicomputers such as the Intel Paragon, the IBM SP-2, the NCUBE/2, and the Thinking Machines CM-5, the quality of the data partitioning for a given application is crucial to obtaining high performance. This task has traditionally been the user's responsibility, but in recent years much effort has been directed to automating the selection of data partitioning schemes. Several researchers have proposed systems that are able to produce data distributions that remain in effect for the entire execution of an application. For complex programs, however, such static data distributions may be insufficient to obtain acceptable performance. The selection of distributions that dynamically change over the course of a program's execution adds another dimension to the data partitioning problem. In this paper, we present a technique that can be used to automatically determine which partitionings are most beneficial over specific sections of a program while taking into account the added overhead of performing redistribution. This system is being built as part of the PARADIGM (PARAllelizing compiler for DIstributed memory General-purpose Multicomputers) project at the University of Illinois. The complete system will provide a fully automated means to parallelize programs written in a serial programming model obtaining high performance on a wide range of distributed-memory multicomputers.

  9. Testing an Open Source installation and server provisioning tool for the INFN CNAF Tierl Storage system

    NASA Astrophysics Data System (ADS)

    Pezzi, M.; Favaro, M.; Gregori, D.; Ricci, P. P.; Sapunenko, V.

    2014-06-01

    In large computing centers, such as the INFN CNAF Tier1 [1], is essential to be able to configure all the machines, depending on use, in an automated way. For several years at the Tier1 has been used Quattor[2], a server provisioning tool, which is currently used in production. Nevertheless we have recently started a comparison study involving other tools able to provide specific server installation and configuration features and also offer a proper full customizable solution as an alternative to Quattor. Our choice at the moment fell on integration between two tools: Cobbler [3] for the installation phase and Puppet [4] for the server provisioning and management operation. The tool should provide the following properties in order to replicate and gradually improve the current system features: implement a system check for storage specific constraints such as kernel modules black list at boot time to avoid undesired SAN (Storage Area Network) access during disk partitioning; a simple and effective mechanism for kernel upgrade and downgrade; the ability of setting package provider using yum, rpm or apt; easy to use Virtual Machine installation support including bonding and specific Ethernet configuration; scalability for managing thousands of nodes and parallel installations. This paper describes the results of the comparison and the tests carried out to verify the requirements and the new system suitability in the INFN-T1 environment.

  10. Universal biology and the statistical mechanics of early life.

    PubMed

    Goldenfeld, Nigel; Biancalani, Tommaso; Jafarpour, Farshid

    2017-12-28

    All known life on the Earth exhibits at least two non-trivial common features: the canonical genetic code and biological homochirality, both of which emerged prior to the Last Universal Common Ancestor state. This article describes recent efforts to provide a narrative of this epoch using tools from statistical mechanics. During the emergence of self-replicating life far from equilibrium in a period of chemical evolution, minimal models of autocatalysis show that homochirality would have necessarily co-evolved along with the efficiency of early-life self-replicators. Dynamical system models of the evolution of the genetic code must explain its universality and its highly refined error-minimization properties. These have both been accounted for in a scenario where life arose from a collective, networked phase where there was no notion of species and perhaps even individuality itself. We show how this phase ultimately terminated during an event sometimes known as the Darwinian transition, leading to the present epoch of tree-like vertical descent of organismal lineages. These examples illustrate concrete examples of universal biology: the quest for a fundamental understanding of the basic properties of living systems, independent of precise instantiation in chemistry or other media.This article is part of the themed issue 'Reconceptualizing the origins of life'. © 2017 The Author(s).

  11. Universal biology and the statistical mechanics of early life

    NASA Astrophysics Data System (ADS)

    Goldenfeld, Nigel; Biancalani, Tommaso; Jafarpour, Farshid

    2017-11-01

    All known life on the Earth exhibits at least two non-trivial common features: the canonical genetic code and biological homochirality, both of which emerged prior to the Last Universal Common Ancestor state. This article describes recent efforts to provide a narrative of this epoch using tools from statistical mechanics. During the emergence of self-replicating life far from equilibrium in a period of chemical evolution, minimal models of autocatalysis show that homochirality would have necessarily co-evolved along with the efficiency of early-life self-replicators. Dynamical system models of the evolution of the genetic code must explain its universality and its highly refined error-minimization properties. These have both been accounted for in a scenario where life arose from a collective, networked phase where there was no notion of species and perhaps even individuality itself. We show how this phase ultimately terminated during an event sometimes known as the Darwinian transition, leading to the present epoch of tree-like vertical descent of organismal lineages. These examples illustrate concrete examples of universal biology: the quest for a fundamental understanding of the basic properties of living systems, independent of precise instantiation in chemistry or other media. This article is part of the themed issue 'Reconceptualizing the origins of life'.

  12. Replicating research in ecology and evolution: feasibility, incentives, and the cost-benefit conundrum.

    PubMed

    Nakagawa, Shinichi; Parker, Timothy H

    2015-10-28

    We believe that replicating studies in ecology and evolution is extremely valuable, but replication within species and systems is troublingly rare, and even 'quasi-replications' in different systems are often insufficient. We make a case for supporting multiple types of replications and point out that the current incentive structure needs to change if ecologists and evolutionary biologist are to value scientific replication sufficiently.

  13. Thermodynamic controls on element partitioning between titanomagnetite and andesitic-dacitic silicate melts

    NASA Astrophysics Data System (ADS)

    Sievwright, R. H.; Wilkinson, J. J.; O'Neill, H. St. C.; Berry, A. J.

    2017-08-01

    Titanomagnetite-melt partitioning of Mg, Mn, Al, Ti, Sc, V, Co, Ni, Cu, Zn, Ga, Zr, Nb, Mo, Hf and Ta was investigated experimentally as a function of oxygen fugacity ( fO2) and temperature ( T) in an andesitic-dacitic bulk-chemical compositional range. In these bulk systems, at constant T, there are strong increases in the titanomagnetite-melt partitioning of the divalent cations (Mg2+, Mn2+, Co2+, Ni2+, Zn2+) and Cu2+/Cu+ with increasing fO2 between 0.2 and 3.7 log units above the fayalite-magnetite-quartz buffer. This is attributed to a coupling between magnetite crystallisation and melt composition. Although melt structure has been invoked to explain the patterns of mineral-melt partitioning of divalent cations, a more rigorous justification of magnetite-melt partitioning can be derived from thermodynamic principles, which accounts for much of the supposed influence ascribed to melt structure. The presence of magnetite-rich spinel in equilibrium with melt over a range of fO2 implies a reciprocal relationship between a(Fe2+O) and a(Fe3+O1.5) in the melt. We show that this relationship accounts for the observed dependence of titanomagnetite-melt partitioning of divalent cations with fO2 in magnetite-rich spinel. As a result of this, titanomagnetite-melt partitioning of divalent cations is indirectly sensitive to changes in fO2 in silicic, but less so in mafic bulk systems.

  14. Spatial coding-based approach for partitioning big spatial data in Hadoop

    NASA Astrophysics Data System (ADS)

    Yao, Xiaochuang; Mokbel, Mohamed F.; Alarabi, Louai; Eldawy, Ahmed; Yang, Jianyu; Yun, Wenju; Li, Lin; Ye, Sijing; Zhu, Dehai

    2017-09-01

    Spatial data partitioning (SDP) plays a powerful role in distributed storage and parallel computing for spatial data. However, due to skew distribution of spatial data and varying volume of spatial vector objects, it leads to a significant challenge to ensure both optimal performance of spatial operation and data balance in the cluster. To tackle this problem, we proposed a spatial coding-based approach for partitioning big spatial data in Hadoop. This approach, firstly, compressed the whole big spatial data based on spatial coding matrix to create a sensing information set (SIS), including spatial code, size, count and other information. SIS was then employed to build spatial partitioning matrix, which was used to spilt all spatial objects into different partitions in the cluster finally. Based on our approach, the neighbouring spatial objects can be partitioned into the same block. At the same time, it also can minimize the data skew in Hadoop distributed file system (HDFS). The presented approach with a case study in this paper is compared against random sampling based partitioning, with three measurement standards, namely, the spatial index quality, data skew in HDFS, and range query performance. The experimental results show that our method based on spatial coding technique can improve the query performance of big spatial data, as well as the data balance in HDFS. We implemented and deployed this approach in Hadoop, and it is also able to support efficiently any other distributed big spatial data systems.

  15. Habitat partitioning and morphological differentiation: the Southeast Asian Draco lizards and Caribbean Anolis lizards compared.

    PubMed

    Ord, Terry J; Klomp, Danielle A

    2014-06-01

    Sympatric species that initially overlap in resource use are expected to partition the environment in ways that will minimize interspecific competition. This shift in resource use can in turn prompt evolutionary changes in morphology. A classic example of habitat partitioning and morphological differentiation are the Caribbean Anolis lizards. Less well studied, but nevertheless striking analogues to the Anolis are the Southeast Asian Draco lizards. Draco and Anolis have evolved independently of each other for at least 80 million years. Their comparison subsequently offers a special opportunity to examine mechanisms of phenotypic differentiation between two ecologically diverse, but phylogenetically distinct groups. We tested whether Draco shared ecological axes of differentiation with Anolis (e.g., habitat use), whether this differentiation reflected interspecific competition, and to what extent adaptive change in morphology has occurred along these ecological axes. Using existing data on Anolis, we compared the habitat use and morphology of Draco in a field study of allopatric and sympatric species on the Malay Peninsula, Borneo and in the Philippines. Sympatric Draco lizards partitioned the environment along common resource axes to the Anolis lizards, especially in perch use. Furthermore, the morphology of Draco was correlated with perch use in the same way as it was in Anolis: species that used wider perches exhibited longer limb lengths. These results provide an important illustration of how interspecific competition can occur along common ecological axes in different animal groups, and how natural selection along these axes can generate the same type of adaptive change in morphology.

  16. Evaluating aggregate effects of rare and common variants in the 1000 Genomes Project exon sequencing data using latent variable structural equation modeling.

    PubMed

    Nock, Nl; Zhang, Lx

    2011-11-29

    Methods that can evaluate aggregate effects of rare and common variants are limited. Therefore, we applied a two-stage approach to evaluate aggregate gene effects in the 1000 Genomes Project data, which contain 24,487 single-nucleotide polymorphisms (SNPs) in 697 unrelated individuals from 7 populations. In stage 1, we identified potentially interesting genes (PIGs) as those having at least one SNP meeting Bonferroni correction using univariate, multiple regression models. In stage 2, we evaluate aggregate PIG effects on trait, Q1, by modeling each gene as a latent construct, which is defined by multiple common and rare variants, using the multivariate statistical framework of structural equation modeling (SEM). In stage 1, we found that PIGs varied markedly between a randomly selected replicate (replicate 137) and 100 other replicates, with the exception of FLT1. In stage 1, collapsing rare variants decreased false positives but increased false negatives. In stage 2, we developed a good-fitting SEM model that included all nine genes simulated to affect Q1 (FLT1, KDR, ARNT, ELAV4, FLT4, HIF1A, HIF3A, VEGFA, VEGFC) and found that FLT1 had the largest effect on Q1 (βstd = 0.33 ± 0.05). Using replicate 137 estimates as population values, we found that the mean relative bias in the parameters (loadings, paths, residuals) and their standard errors across 100 replicates was on average, less than 5%. Our latent variable SEM approach provides a viable framework for modeling aggregate effects of rare and common variants in multiple genes, but more elegant methods are needed in stage 1 to minimize type I and type II error.

  17. Mutations in DONSON disrupt replication fork stability and cause microcephalic dwarfism.

    PubMed

    Reynolds, John J; Bicknell, Louise S; Carroll, Paula; Higgs, Martin R; Shaheen, Ranad; Murray, Jennie E; Papadopoulos, Dimitrios K; Leitch, Andrea; Murina, Olga; Tarnauskaitė, Žygimantė; Wessel, Sarah R; Zlatanou, Anastasia; Vernet, Audrey; von Kriegsheim, Alex; Mottram, Rachel M A; Logan, Clare V; Bye, Hannah; Li, Yun; Brean, Alexander; Maddirevula, Sateesh; Challis, Rachel C; Skouloudaki, Kassiani; Almoisheer, Agaadir; Alsaif, Hessa S; Amar, Ariella; Prescott, Natalie J; Bober, Michael B; Duker, Angela; Faqeih, Eissa; Seidahmed, Mohammed Zain; Al Tala, Saeed; Alswaid, Abdulrahman; Ahmed, Saleem; Al-Aama, Jumana Yousuf; Altmüller, Janine; Al Balwi, Mohammed; Brady, Angela F; Chessa, Luciana; Cox, Helen; Fischetto, Rita; Heller, Raoul; Henderson, Bertram D; Hobson, Emma; Nürnberg, Peter; Percin, E Ferda; Peron, Angela; Spaccini, Luigina; Quigley, Alan J; Thakur, Seema; Wise, Carol A; Yoon, Grace; Alnemer, Maha; Tomancak, Pavel; Yigit, Gökhan; Taylor, A Malcolm R; Reijns, Martin A M; Simpson, Michael A; Cortez, David; Alkuraya, Fowzan S; Mathew, Christopher G; Jackson, Andrew P; Stewart, Grant S

    2017-04-01

    To ensure efficient genome duplication, cells have evolved numerous factors that promote unperturbed DNA replication and protect, repair and restart damaged forks. Here we identify downstream neighbor of SON (DONSON) as a novel fork protection factor and report biallelic DONSON mutations in 29 individuals with microcephalic dwarfism. We demonstrate that DONSON is a replisome component that stabilizes forks during genome replication. Loss of DONSON leads to severe replication-associated DNA damage arising from nucleolytic cleavage of stalled replication forks. Furthermore, ATM- and Rad3-related (ATR)-dependent signaling in response to replication stress is impaired in DONSON-deficient cells, resulting in decreased checkpoint activity and the potentiation of chromosomal instability. Hypomorphic mutations in DONSON substantially reduce DONSON protein levels and impair fork stability in cells from patients, consistent with defective DNA replication underlying the disease phenotype. In summary, we have identified mutations in DONSON as a common cause of microcephalic dwarfism and established DONSON as a critical replication fork protein required for mammalian DNA replication and genome stability.

  18. Genotypic variability-based genome-wide association study identifies non-additive loci HLA-C and IL12B for psoriasis.

    PubMed

    Wei, Wen-Hua; Massey, Jonathan; Worthington, Jane; Barton, Anne; Warren, Richard B

    2018-03-01

    Genome-wide association studies (GWASs) have identified a number of loci for psoriasis but largely ignored non-additive effects. We report a genotypic variability-based GWAS (vGWAS) that can prioritize non-additive loci without requiring prior knowledge of interaction types or interacting factors in two steps, using a mixed model to partition dichotomous phenotypes into an additive component and non-additive environmental residuals on the liability scale and then the Levene's (Brown-Forsythe) test to assess equality of the residual variances across genotype groups genome widely. The vGWAS identified two genome-wide significant (P < 5.0e-08) non-additive loci HLA-C and IL12B that were also genome-wide significant in an accompanying GWAS in the discovery cohort. Both loci were statistically replicated in vGWAS of an independent cohort with a small sample size. HLA-C and IL12B were reported in moderate gene-gene and/or gene-environment interactions in several occasions. We found a moderate interaction with age-of-onset of psoriasis, which was replicated indirectly. The vGWAS also revealed five suggestive loci (P < 6.76e-05) including FUT2 that was associated with psoriasis with environmental aspects triggered by virus infection and/or metabolic factors. Replication and functional investigation are needed to validate the suggestive vGWAS loci.

  19. CyDNA: Synthesis and Replication of Highly Cy-Dye Substituted DNA by an Evolved Polymerase

    PubMed Central

    2010-01-01

    DNA not only transmits genetic information but can also serve as a versatile supramolecular scaffold. Here we describe a strategy for the synthesis and replication of DNA displaying hundreds of substituents using directed evolution of polymerase function by short-patch compartmentalized self-replication (spCSR) and the widely used fluorescent dye labeled deoxinucleotide triphosphates Cy3-dCTP and Cy5-dCTP as substrates. In just two rounds of spCSR selection, we have isolated a polymerase that allows the PCR amplification of double stranded DNA fragments up to 1kb, in which all dC bases are substituted by its fluorescent dye-labeled equivalent Cy3- or Cy5-dC. The resulting “CyDNA” displays hundreds of aromatic heterocycles on the outside of the DNA helix and is brightly colored and highly fluorescent. CyDNA also exhibits significantly altered physicochemical properties compared to standard B-form DNA, including loss of silica and intercalating dye binding, resistance to cleavage by some endonucleases, an up to 40% increased apparent diameter as judged by atomic force microscopy and organic phase partitioning during phenol extraction. CyDNA also displays very bright fluorescence enabling significant signal gains in microarray and microfluidic applications. CyDNA represents a step toward a long-term goal of the encoded synthesis of DNA-based polymers of programmable and evolvable sequence and properties. PMID:20235594

  20. CyDNA: synthesis and replication of highly Cy-dye substituted DNA by an evolved polymerase.

    PubMed

    Ramsay, Nicola; Jemth, Ann-Sofie; Brown, Anthony; Crampton, Neal; Dear, Paul; Holliger, Philipp

    2010-04-14

    DNA not only transmits genetic information but can also serve as a versatile supramolecular scaffold. Here we describe a strategy for the synthesis and replication of DNA displaying hundreds of substituents using directed evolution of polymerase function by short-patch compartmentalized self-replication (spCSR) and the widely used fluorescent dye labeled deoxinucleotide triphosphates Cy3-dCTP and Cy5-dCTP as substrates. In just two rounds of spCSR selection, we have isolated a polymerase that allows the PCR amplification of double stranded DNA fragments up to 1kb, in which all dC bases are substituted by its fluorescent dye-labeled equivalent Cy3- or Cy5-dC. The resulting "CyDNA" displays hundreds of aromatic heterocycles on the outside of the DNA helix and is brightly colored and highly fluorescent. CyDNA also exhibits significantly altered physicochemical properties compared to standard B-form DNA, including loss of silica and intercalating dye binding, resistance to cleavage by some endonucleases, an up to 40% increased apparent diameter as judged by atomic force microscopy and organic phase partitioning during phenol extraction. CyDNA also displays very bright fluorescence enabling significant signal gains in microarray and microfluidic applications. CyDNA represents a step toward a long-term goal of the encoded synthesis of DNA-based polymers of programmable and evolvable sequence and properties.

  1. DEIsoM: a hierarchical Bayesian model for identifying differentially expressed isoforms using biological replicates

    PubMed Central

    Peng, Hao; Yang, Yifan; Zhe, Shandian; Wang, Jian; Gribskov, Michael; Qi, Yuan

    2017-01-01

    Abstract Motivation High-throughput mRNA sequencing (RNA-Seq) is a powerful tool for quantifying gene expression. Identification of transcript isoforms that are differentially expressed in different conditions, such as in patients and healthy subjects, can provide insights into the molecular basis of diseases. Current transcript quantification approaches, however, do not take advantage of the shared information in the biological replicates, potentially decreasing sensitivity and accuracy. Results We present a novel hierarchical Bayesian model called Differentially Expressed Isoform detection from Multiple biological replicates (DEIsoM) for identifying differentially expressed (DE) isoforms from multiple biological replicates representing two conditions, e.g. multiple samples from healthy and diseased subjects. DEIsoM first estimates isoform expression within each condition by (1) capturing common patterns from sample replicates while allowing individual differences, and (2) modeling the uncertainty introduced by ambiguous read mapping in each replicate. Specifically, we introduce a Dirichlet prior distribution to capture the common expression pattern of replicates from the same condition, and treat the isoform expression of individual replicates as samples from this distribution. Ambiguous read mapping is modeled as a multinomial distribution, and ambiguous reads are assigned to the most probable isoform in each replicate. Additionally, DEIsoM couples an efficient variational inference and a post-analysis method to improve the accuracy and speed of identification of DE isoforms over alternative methods. Application of DEIsoM to an hepatocellular carcinoma (HCC) dataset identifies biologically relevant DE isoforms. The relevance of these genes/isoforms to HCC are supported by principal component analysis (PCA), read coverage visualization, and the biological literature. Availability and implementation The software is available at https://github.com/hao-peng/DEIsoM Contact pengh@alumni.purdue.edu Supplementary information Supplementary data are available at Bioinformatics online. PMID:28595376

  2. Development of TLSER model and QSAR model for predicting partition coefficients of hydrophobic organic chemicals between low density polyethylene film and water.

    PubMed

    Liu, Huihui; Wei, Mengbi; Yang, Xianhai; Yin, Cen; He, Xiao

    2017-01-01

    Partition coefficients are vital parameters for measuring accurately the chemicals concentrations by passive sampling devices. Given the wide use of low density polyethylene (LDPE) film in passive sampling, we developed a theoretical linear solvation energy relationship (TLSER) model and a quantitative structure-activity relationship (QSAR) model for the prediction of the partition coefficient of chemicals between LDPE and water (K pew ). For chemicals with the octanol-water partition coefficient (log K ow ) <8, a TLSER model with V x (McGowan volume) and qA - (the most negative charge on O, N, S, X atoms) as descriptors was developed, but the model had relatively low determination coefficient (R 2 ) and cross-validated coefficient (Q 2 ). In order to further explore the theoretical mechanisms involved in the partition process, a QSAR model with four descriptors (MLOGP (Moriguchi octanol-water partition coeff.), P_VSA_s_3 (P_VSA-like on I-state, bin 3), Hy (hydrophilic factor) and NssO (number of atoms of type ssO)) was established, and statistical analysis indicated that the model had satisfactory goodness-of-fit, robustness and predictive ability. For chemicals with log K OW >8, a TLSER model with V x and a QSAR model with MLOGP as descriptor were developed. This is the first paper to explore the models for highly hydrophobic chemicals. The applicability domain of the models, characterized by the Euclidean distance-based method and Williams plot, covered a large number of structurally diverse chemicals, which included nearly all the common hydrophobic organic compounds. Additionally, through mechanism interpretation, we explored the structural features those governing the partition behavior of chemicals between LDPE and water. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Partition coefficients of organic compounds in lipid-water systems and correlations with fish bioconcentration factors

    USGS Publications Warehouse

    Chiou, C.T.

    1985-01-01

    Triolein-water partition coefficients (KtW) have been determined for 38 slightly water-soluble organic compounds, and their magnitudes have been compared with the corresponding octanol-water partition coefficients (KOW). In the absence of major solvent-solute interaction effects in the organic solvent phase, the conventional treatment (based on Raoult's law) predicts sharply lower partition coefficients for most of the solutes in triolein because of its considerably higher molecular weight, whereas the Flory-Huggins treatment predicts higher partition coefficients with triolein. The data are in much better agreement with the Flory-Huggins model. As expected from the similarity in the partition coefficients, the water solubility (which was previously found to be the major determinant of the KOW) is also the major determinant for the Ktw. When the published BCF values (bioconcentration factors) of organic compounds in fish are based on the lipid content rather than on total mass, they are approximately equal to the Ktw, which suggests at least near equilibrium for solute partitioning between water and fish lipid. The close correlation between Ktw and Kow suggests that Kow is also a good predictor for lipid-water partition coefficients and bioconcentration factors.

  4. Evidence for melt partitioning between olivine and orthopyroxene in partially molten harzburgite

    NASA Astrophysics Data System (ADS)

    Miller, K.; Zhu, W.; Montesi, L. G.; Le Roux, V.; Gaetani, G. A.

    2013-12-01

    During melting at mid-ocean ridges, melt is driven into an equilibrium, minimum-energy configuration by surface energy gradients between solid-solid and solid-liquid phase boundaries. Such a configuration, where melt is mostly restricted to three and four-grain junctions, acts as a porous medium through which melt can percolate to the surface. For a monomineralic system, melt is distributed evenly among all grains. However, in mineralogical heterogeneous systems, melt partitions unevenly between the various solid phases to minimize the total energy of the system. In a ocean ridge melting environment, where olivine is often juxtaposed against orthopyroxene (opx), lithologic partitioning is expected to turn olivine-rich regions into high-permeability conduits, through which melt can be quickly extracted, drastically increasing the permeability of the mantle [Zhu and Hirth, 2003]. Lithologic partitioning has been demonstrated in experiments using analogue systems [Watson, 1999]; however, to date, no experiment has confirmed its existence in partially molten mantle systems. We present experimental results that determine the degree of melt partitioning between olivine and opx in partially molten harzburgites. Samples were prepared from a powdered mixture of oxides and carbonates and then hot-pressed in a solid-media piston-cylinder apparatus at 1350°C and 1.5GPa [Zhu et al., 2011] to achieve an 82/18 vol. % ratio of olivine to opx. Prior to hot-pressing, basalt was added to the powdered mixtures in various proportions to test for lithologic partitioning across a range of melt fractions. Three-dimensional, 700nm-resolution images of our samples were obtained using synchrotron X-ray microtomography on the 2BM station of the Advanced Photon Source at Argonne National Labs. Image data were filtered using an anisotropic diffusion filter to enhance phase contrast and then segmented to produce binary representations of each phase. In order to quantitatively demonstrate lithologic melt partitioning in our samples, we digitally segment each grain and then fit a sample window, slightly larger than the grain, to calculate the local melt volume fraction. Our results show strong evidence for lithologic partitioning in partially molten harzburgite systems, in a ~2 to 1 ratio of local melt fraction, between olivine and opx across the range of melt fractions tested. We also present permeability, grain size, and connectivity analyses of our samples in order to evaluate the effects of melt partitioning on melt migration rates at mid-ocean ridges, as well as at other locations in the Earth where partial melting occurs. References Watson, E. B. (1999), Lithologic partitioning of fluids and melts, American Minerologist, 84, 1693-1710. Zhu, W., and G. Hirth (2003), A network model for permeability in partially molten rocks, Earth Planet. Sci. Lett., 212(3-4), 407-416, doi:10.1016/S0012-821X(03)00264-4. Zhu, W., G. A. Gaetani, F. Fusseis, L. G. J. Montési, and F. De Carlo (2011), Microtomography of partially molten rocks: three-dimensional melt distribution in mantle peridotite, Science, 332(6025), 88-91, doi:10.1126/science.1202221.

  5. Understanding how replication processes can maintain systems away from equilibrium using Algorithmic Information Theory.

    PubMed

    Devine, Sean D

    2016-02-01

    Replication can be envisaged as a computational process that is able to generate and maintain order far-from-equilibrium. Replication processes, can self-regulate, as the drive to replicate can counter degradation processes that impact on a system. The capability of replicated structures to access high quality energy and eject disorder allows Landauer's principle, in conjunction with Algorithmic Information Theory, to quantify the entropy requirements to maintain a system far-from-equilibrium. Using Landauer's principle, where destabilising processes, operating under the second law of thermodynamics, change the information content or the algorithmic entropy of a system by ΔH bits, replication processes can access order, eject disorder, and counter the change without outside interventions. Both diversity in replicated structures, and the coupling of different replicated systems, increase the ability of the system (or systems) to self-regulate in a changing environment as adaptation processes select those structures that use resources more efficiently. At the level of the structure, as selection processes minimise the information loss, the irreversibility is minimised. While each structure that emerges can be said to be more entropically efficient, as such replicating structures proliferate, the dissipation of the system as a whole is higher than would be the case for inert or simpler structures. While a detailed application to most real systems would be difficult, the approach may well be useful in understanding incremental changes to real systems and provide broad descriptions of system behaviour. Copyright © 2016 The Author. Published by Elsevier Ireland Ltd.. All rights reserved.

  6. Thermodynamic holography.

    PubMed

    Wei, Bo-Bo; Jiang, Zhan-Feng; Liu, Ren-Bao

    2015-10-19

    The holographic principle states that the information about a volume of a system is encoded on the boundary surface of the volume. Holography appears in many branches of physics, such as optics, electromagnetism, many-body physics, quantum gravity, and string theory. Here we show that holography is also an underlying principle in thermodynamics, a most important foundation of physics. The thermodynamics of a system is fully determined by its partition function. We prove that the partition function of a finite but arbitrarily large system is an analytic function on the complex plane of physical parameters, and therefore the partition function in a region on the complex plane is uniquely determined by its values along the boundary. The thermodynamic holography has applications in studying thermodynamics of nano-scale systems (such as molecule engines, nano-generators and macromolecules) and provides a new approach to many-body physics.

  7. A Molecular Toolbox to Engineer Site-Specific DNA Replication Perturbation.

    PubMed

    Larsen, Nicolai B; Hickson, Ian D; Mankouri, Hocine W

    2018-01-01

    Site-specific arrest of DNA replication is a useful tool for analyzing cellular responses to DNA replication perturbation. The E. coli Tus-Ter replication barrier can be reconstituted in eukaryotic cells as a system to engineer an unscheduled collision between a replication fork and an "alien" impediment to DNA replication. To further develop this system as a versatile tool, we describe a set of reagents and a detailed protocol that can be used to engineer Tus-Ter barriers into any locus in the budding yeast genome. Because the Tus-Ter complex is a bipartite system with intrinsic DNA replication-blocking activity, the reagents and protocols developed and validated in yeast could also be optimized to engineer site-specific replication fork barriers into other eukaryotic cell types.

  8. The Homotopic Probability Distribution and the Partition Function for the Entangled System Around a Ribbon Segment Chain

    NASA Astrophysics Data System (ADS)

    Qian, Shang-Wu; Gu, Zhi-Yu

    2001-12-01

    Using the Feynman's path integral with topological constraints arising from the presence of one singular line, we find the homotopic probability distribution P_L^n for the winding number n and the partition function P_L of the entangled system around a ribbon segment chain. We find that when the width of the ribbon segment chain 2a increases,the partition function exponentially decreases, whereas the free energy increases an amount, which is proportional to the square of the width. When the width tends to zero we obtain the same results as those of a single chain with one singular point.

  9. Approaching the design of a failsafe turbine monitor with simple microcontroller blocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zapolin, R.E.

    1995-12-31

    The proper approach to early instrumentation design for tasks like failsafe turbine monitoring permits meeting requirements without resorting to traditional complex special-purpose electronics. Instead a small network of basic microcontroller building blocks can split the effort with each block optimized for its portion of the overall system. This paper discusses approaching design by partitioning intricate system specifications to permit each block to be optimized to the safety level appropriate for its portion of the overall task while retaining and production and reliability advantages of having common simple modules. It illustrates that approach with a modular microcontroller-based speed monitor which metmore » user needs for the latest in power plant monitoring equipment.« less

  10. Scheduling multicore workload on shared multipurpose clusters

    NASA Astrophysics Data System (ADS)

    Templon, J. A.; Acosta-Silva, C.; Flix Molina, J.; Forti, A. C.; Pérez-Calero Yzquierdo, A.; Starink, R.

    2015-12-01

    With the advent of workloads containing explicit requests for multiple cores in a single grid job, grid sites faced a new set of challenges in workload scheduling. The most common batch schedulers deployed at HEP computing sites do a poor job at multicore scheduling when using only the native capabilities of those schedulers. This paper describes how efficient multicore scheduling was achieved at the sites the authors represent, by implementing dynamically-sized multicore partitions via a minimalistic addition to the Torque/Maui batch system already in use at those sites. The paper further includes example results from use of the system in production, as well as measurements on the dependence of performance (especially the ramp-up in throughput for multicore jobs) on node size and job size.

  11. Improvement of lipophilicity and membrane transport of cefuroxime using in vitro models.

    PubMed

    Mrestani, Yahya; Mrestani-Klaus, Carmen; Bretschneider, Beate; Neubert, Reinhard H H

    2004-11-01

    Most beta-lactam antibiotics cannot be absorbed orally and, therefore, must be administered intravenously (i.v.) or intramuscularly (i.m.). Because of the obvious drawbacks of drug delivery by injection, the development of alternatives with enhanced oral bioavailability is receiving much attention in pharmaceutical research. Cefuroxime exhibiting significant advantages in the parental treatment of common infections, was used as model drug in the present study. The effect of the cationic absorption enhancers (four quaternary ammonium salts) on the lipophilicity of cefuroxime was investigated by means of the n-octanol/water system. The results on partitioning coefficients in the n-octanol/buffer system were confirmed using an in vitro transport model with artificial (dodecanol collodium membrane) and biological membranes (Charles-River guinea pig).

  12. LHCb experience with running jobs in virtual machines

    NASA Astrophysics Data System (ADS)

    McNab, A.; Stagni, F.; Luzzi, C.

    2015-12-01

    The LHCb experiment has been running production jobs in virtual machines since 2013 as part of its DIRAC-based infrastructure. We describe the architecture of these virtual machines and the steps taken to replicate the WLCG worker node environment expected by user and production jobs. This relies on the uCernVM system for providing root images for virtual machines. We use the CernVM-FS distributed filesystem to supply the root partition files, the LHCb software stack, and the bootstrapping scripts necessary to configure the virtual machines for us. Using this approach, we have been able to minimise the amount of contextualisation which must be provided by the virtual machine managers. We explain the process by which the virtual machine is able to receive payload jobs submitted to DIRAC by users and production managers, and how this differs from payloads executed within conventional DIRAC pilot jobs on batch queue based sites. We describe our operational experiences in running production on VM based sites managed using Vcycle/OpenStack, Vac, and HTCondor Vacuum. Finally we show how our use of these resources is monitored using Ganglia and DIRAC.

  13. Along-strike variations of the partitioning of convergence across the Haiyuan fault system detected by InSAR

    NASA Astrophysics Data System (ADS)

    Daout, S.; Jolivet, R.; Lasserre, C.; Doin, M.-P.; Barbot, S.; Tapponnier, P.; Peltzer, G.; Socquet, A.; Sun, J.

    2016-04-01

    Oblique convergence across Tibet leads to slip partitioning with the coexistence of strike-slip, normal and thrust motion on major fault systems. A key point is to understand and model how faults interact and accumulate strain at depth. Here, we extract ground deformation across the Haiyuan Fault restraining bend, at the northeastern boundary of the Tibetan plateau, from Envisat radar data spanning the 2001-2011 period. We show that the complexity of the surface displacement field can be explained by the partitioning of a uniform deep-seated convergence. Mountains and sand dunes in the study area make the radar data processing challenging and require the latest developments in processing procedures for Synthetic Aperture Radar interferometry. The processing strategy is based on a small baseline approach. Before unwrapping, we correct for atmospheric phase delays from global atmospheric models and digital elevation model errors. A series of filtering steps is applied to improve the signal-to-noise ratio across high ranges of the Tibetan plateau and the phase unwrapping capability across the fault, required for reliable estimate of fault movement. We then jointly invert our InSAR time-series together with published GPS displacements to test a proposed long-term slip-partitioning model between the Haiyuan and Gulang left-lateral Faults and the Qilian Shan thrusts. We explore the geometry of the fault system at depth and associated slip rates using a Bayesian approach and test the consistency of present-day geodetic surface displacements with a long-term tectonic model. We determine a uniform convergence rate of 10 [8.6-11.5] mm yr-1 with an N89 [81-97]°E across the whole fault system, with a variable partitioning west and east of a major extensional fault-jog (the Tianzhu pull-apart basin). Our 2-D model of two profiles perpendicular to the fault system gives a quantitative understanding of how crustal deformation is accommodated by the various branches of this thrust/strike-slip fault system and demonstrates how the geometry of the Haiyuan fault system controls the partitioning of the deep secular motion.

  14. A Novel Feature Extraction Method for Monitoring (Vehicular) Fuel Storage System Leaks

    DTIC Science & Technology

    2014-10-02

    gives a continuous output of the DPDF with predefined partitions . Resolution a DPDF is dependent on pre-determined signal range and number of... partitions within that range. Conceptually, proposed implementation is identical to the creation of a histogram with a moving data windown given some...window. The crisp partitions within specified signal range act as “competing and possible” scenarios or alternatives where we impose a “winner takes all

  15. Recombination-dependent mtDNA partitioning: in vivo role of Mhr1p to promote pairing of homologous DNA.

    PubMed

    Ling, Feng; Shibata, Takehiko

    2002-09-02

    Yeast mhr1-1 was isolated as a defective mutation in mitochondrial DNA (mtDNA) recombination. About half of mhr1-1 cells lose mtDNA during growth at a higher temperature. Here, we show that mhr1-1 exhibits a defect in the partitioning of nascent mtDNA into buds and is a base-substitution mutation in MHR1 encoding a mitochondrial matrix protein. We found that the Mhr1 protein (Mhr1p) has activity to pair single-stranded DNA and homologous double-stranded DNA to form heteroduplex joints in vitro, and that mhr1-1 causes the loss of this activity, indicating its role in homologous mtDNA recombination. While the majority of the mtDNA in the mother cells consists of head-to-tail concatemers, more than half of the mtDNA in the buds exists as genome-sized monomers. The mhr1-1 deltacce1 double mutant cells do not maintain any mtDNA, indicating the strict dependence of mtDNA maintenance on recombination functions. These results suggest a mechanism for mtDNA inheritance similar to that operating in the replication and packaging of phage DNA.

  16. Use of AMMI and linear regression models to analyze genotype-environment interaction in durum wheat.

    PubMed

    Nachit, M M; Nachit, G; Ketata, H; Gauch, H G; Zobel, R W

    1992-03-01

    The joint durum wheat (Triticum turgidum L var 'durum') breeding program of the International Maize and Wheat Improvement Center (CIMMYT) and the International Center for Agricultural Research in the Dry Areas (ICARDA) for the Mediterranean region employs extensive multilocation testing. Multilocation testing produces significant genotype-environment (GE) interaction that reduces the accuracy for estimating yield and selecting appropriate germ plasm. The sum of squares (SS) of GE interaction was partitioned by linear regression techniques into joint, genotypic, and environmental regressions, and by Additive Main effects and the Multiplicative Interactions (AMMI) model into five significant Interaction Principal Component Axes (IPCA). The AMMI model was more effective in partitioning the interaction SS than the linear regression technique. The SS contained in the AMMI model was 6 times higher than the SS for all three regressions. Postdictive assessment recommended the use of the first five IPCA axes, while predictive assessment AMMI1 (main effects plus IPCA1). After elimination of random variation, AMMI1 estimates for genotypic yields within sites were more precise than unadjusted means. This increased precision was equivalent to increasing the number of replications by a factor of 3.7.

  17. Stepwise pH-gradient elution for the preparative separation of natural anthraquinones by multiple liquid-liquid partition.

    PubMed

    Hynninen, P H; Räisänen, R

    2001-01-01

    Preparative-scale separation of substituted anthraquinones by multiple liquid-liquid partition was studied using isopropylmethyl ketone (IMK)/aqueous phosphate buffer (aq.) as the solvent system and the Hietala apparatus with 100 partition units as the partition equipment. The lower (aq.) phase was chosen as mobile, while the upper (IMK) phase remained stationary. Hence, the principle of stepwise pH-gradient elution could be utilized to separate the components in two complex mixtures of hydroxyanthraquinones and hydroxyanthraquinone carboxylic acids, isolated from the fungus Dermocybe sanguinea. In spite of the nonlinearity of the partition isotherms for these anthraquinones, implying deviations from the Nernst partition law, remarkable separations were achieved for the components in each mixture. Every anthraquinone carboxylic acid showed markedly irregular partition behavior, appearing in the effluent as two more or less resolved concentration zones. Such splitting was attributed to the formation of relatively stable sandwich-dimers, which were in a slow equilibrium with the monomers in the more nonpolar organic phase. At lower pH-values, only the polar monomers were distributed into the mobile aqueous phase and moved forward, whereas the nonpolar sandwich-dimers remained almost entirely in the stationary organic phase and lagged behind. When the pH of the mobile aqueous phase was raised high enough, the firmly linked dimers were monomerized and emerged from the apparatus as a second concentration profile. Intermolecular hydrogen bonding and pi-pi interaction between the pi-systems of two anthraquinone molecules in a parallel orientation were considered responsible for the nonlinear and markedly irregular partition behavior of the natural anthraquinones studied. The nonlinearity of the partition behavior of the hydroxyanthraquinones lacking the carboxyl group, appeared merely as excessive broadening of the experimental concentration profile, which impaired the resolution between the components only insignificantly. Thus, e.g. the main components, dermocybin and emodin, could both be obtained from Separation 1 in a purity of at least 99%.

  18. The influence of precipitation kinetics on trace element partitioning between solid and liquid solutions: A coupled fluid dynamics/thermodynamics framework to predict distribution coefficients

    NASA Astrophysics Data System (ADS)

    Kavner, A.

    2017-12-01

    In a multicomponent multiphase geochemical system undergoing a chemical reaction such as precipitation and/or dissolution, the partitioning of species between phases is determined by a combination of thermodynamic properties and transport processes. The interpretation of the observed distribution of trace elements requires models integrating coupled chemistry and mechanical transport. Here, a framework is presented that predicts the kinetic effects on the distribution of species between two reacting phases. Based on a perturbation theory combining Navier-Stokes fluid flow and chemical reactivity, the framework predicts rate-dependent partition coefficients in a variety of different systems. We present the theoretical framework, with applications to two systems: 1. species- and isotope-dependent Soret diffusion of species in a multicomponent silicate melt subjected to a temperature gradient, and 2. Elemental partitioning and isotope fractionation during precipitation of a multicomponent solid from a multicomponent liquid phase. Predictions will be compared with results from experimental studies. The approach has applications for understanding chemical exchange in at boundary layers such as the Earth's surface magmatic systems and at the core/mantle boundary.

  19. Variation in the oxytocin receptor gene (OXTR) is associated with differences in moral judgment

    PubMed Central

    Chaponis, Jonathan; Siburian, Richie; Gallagher, Patience; Ransohoff, Katherine; Wikler, Daniel; Perlis, Roy H.; Greene, Joshua D.

    2016-01-01

    Moral judgments are produced through the coordinated interaction of multiple neural systems, each of which relies on a characteristic set of neurotransmitters. Genes that produce or regulate these neurotransmitters may have distinctive influences on moral judgment. Two studies examined potential genetic influences on moral judgment using dilemmas that reliably elicit competing automatic and controlled responses, generated by dissociable neural systems. Study 1 (N = 228) examined 49 common variants (SNPs) within 10 candidate genes and identified a nominal association between a polymorphism (rs237889) of the oxytocin receptor gene (OXTR) and variation in deontological vs utilitarian moral judgment (that is, judgments favoring individual rights vs the greater good). An association was likewise observed for rs1042615 of the arginine vasopressin receptor gene (AVPR1A). Study 2 (N = 322) aimed to replicate these findings using the aforementioned dilemmas as well as a new set of structurally similar medical dilemmas. Study 2 failed to replicate the association with AVPR1A, but replicated the OXTR finding using both the original and new dilemmas. Together, these findings suggest that moral judgment is influenced by variation in the oxytocin receptor gene and, more generally, that single genetic polymorphisms can have a detectable effect on complex decision processes. PMID:27497314

  20. Variation in the oxytocin receptor gene (OXTR) is associated with differences in moral judgment.

    PubMed

    Bernhard, Regan M; Chaponis, Jonathan; Siburian, Richie; Gallagher, Patience; Ransohoff, Katherine; Wikler, Daniel; Perlis, Roy H; Greene, Joshua D

    2016-12-01

    Moral judgments are produced through the coordinated interaction of multiple neural systems, each of which relies on a characteristic set of neurotransmitters. Genes that produce or regulate these neurotransmitters may have distinctive influences on moral judgment. Two studies examined potential genetic influences on moral judgment using dilemmas that reliably elicit competing automatic and controlled responses, generated by dissociable neural systems. Study 1 (N = 228) examined 49 common variants (SNPs) within 10 candidate genes and identified a nominal association between a polymorphism (rs237889) of the oxytocin receptor gene (OXTR) and variation in deontological vs utilitarian moral judgment (that is, judgments favoring individual rights vs the greater good). An association was likewise observed for rs1042615 of the arginine vasopressin receptor gene (AVPR1A). Study 2 (N = 322) aimed to replicate these findings using the aforementioned dilemmas as well as a new set of structurally similar medical dilemmas. Study 2 failed to replicate the association with AVPR1A, but replicated the OXTR finding using both the original and new dilemmas. Together, these findings suggest that moral judgment is influenced by variation in the oxytocin receptor gene and, more generally, that single genetic polymorphisms can have a detectable effect on complex decision processes. © The Author (2016). Published by Oxford University Press.

  1. A Recursive Method for Calculating Certain Partition Functions.

    ERIC Educational Resources Information Center

    Woodrum, Luther; And Others

    1978-01-01

    Describes a simple recursive method for calculating the partition function and average energy of a system consisting of N electrons and L energy levels. Also, presents an efficient APL computer program to utilize the recursion relation. (Author/GA)

  2. Computation of liquid-liquid equilibria and phase stabilities: implications for RH-dependent gas/particle partitioning of organic-inorganic aerosols

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Marcolli, C.; Peter, T.; Seinfeld, J. H.

    2010-05-01

    Semivolatile organic and inorganic aerosol species partition between the gas and aerosol particle phases to maintain thermodynamic equilibrium. Liquid-liquid phase separation into an organic-rich and an aqueous electrolyte phase can occur in the aerosol as a result of the salting-out effect. Such liquid-liquid equilibria (LLE) affect the gas/particle partitioning of the different semivolatile compounds and might significantly alter both particle mass and composition as compared to a one-phase particle. We present a new liquid-liquid equilibrium and gas/particle partitioning model, using as a basis the group-contribution model AIOMFAC (Zuend et al., 2008). This model allows the reliable computation of the liquid-liquid coexistence curve (binodal), corresponding tie-lines, the limit of stability/metastability (spinodal), and further thermodynamic properties of the phase diagram. Calculations for ternary and multicomponent alcohol/polyol-water-salt mixtures suggest that LLE are a prevalent feature of organic-inorganic aerosol systems. A six-component polyol-water-ammonium sulphate system is used to simulate effects of relative humidity (RH) and the presence of liquid-liquid phase separation on the gas/particle partitioning. RH, salt concentration, and hydrophilicity (water-solubility) are identified as key features in defining the region of a miscibility gap and govern the extent to which compound partitioning is affected by changes in RH. The model predicts that liquid-liquid phase separation can lead to either an increase or decrease in total particulate mass, depending on the overall composition of a system and the particle water content, which is related to the hydrophilicity of the different organic and inorganic compounds. Neglecting non-ideality and liquid-liquid phase separations by assuming an ideal mixture leads to an overestimation of the total particulate mass by up to 30% for the composition and RH range considered in the six-component system simulation. For simplified partitioning parametrizations, we suggest a modified definition of the effective saturation concentration, C*j, by including water and other inorganics in the absorbing phase. Such a C*j definition reduces the RH-dependency of the gas/particle partitioning of semivolatile organics in organic-inorganic aerosols by an order of magnitude as compared to the currently accepted definition, which considers the organic species only.

  3. Human ribonuclease H1 resolves R-loops and thereby enables progression of the DNA replication fork.

    PubMed

    Parajuli, Shankar; Teasley, Daniel C; Murali, Bhavna; Jackson, Jessica; Vindigni, Alessandro; Stewart, Sheila A

    2017-09-15

    Faithful DNA replication is essential for genome stability. To ensure accurate replication, numerous complex and redundant replication and repair mechanisms function in tandem with the core replication proteins to ensure DNA replication continues even when replication challenges are present that could impede progression of the replication fork. A unique topological challenge to the replication machinery is posed by RNA-DNA hybrids, commonly referred to as R-loops. Although R-loops play important roles in gene expression and recombination at immunoglobulin sites, their persistence is thought to interfere with DNA replication by slowing or impeding replication fork progression. Therefore, it is of interest to identify DNA-associated enzymes that help resolve replication-impeding R-loops. Here, using DNA fiber analysis, we demonstrate that human ribonuclease H1 (RNH1) plays an important role in replication fork movement in the mammalian nucleus by resolving R-loops. We found that RNH1 depletion results in accumulation of RNA-DNA hybrids, slowing of replication forks, and increased DNA damage. Our data uncovered a role for RNH1 in global DNA replication in the mammalian nucleus. Because accumulation of RNA-DNA hybrids is linked to various human cancers and neurodegenerative disorders, our study raises the possibility that replication fork progression might be impeded, adding to increased genomic instability and contributing to disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Genetic variation in bioaccumulation and partitioning of cadmium in Theobroma cacao L.

    PubMed

    Lewis, Caleb; Lennon, Adrian M; Eudoxie, Gaius; Umaharan, Pathmanathan

    2018-06-02

    Cadmium (Cd) is a non-essential heavy metal that is toxic to both plants and animals and chocolates have been identified as a contributor to the human dietary Cd intake. One hundred accessions representing the various genetic groups and hybrid populations in Theobroma cacao L. held at the International Cocoa Genebank, Trinidad were evaluated for leaf and bean cadmium levels with three tree replications. Representative samples of soil from the drip zone around each tree were evaluated for bioavailable cadmium. Although there were significant differences (P ≤ 0.05) among genetic groups for leaf and bean Cd much of the variation was between accessions. There was a 13-fold variation in bean Cd and a 7-fold variation in leaf Cd between accessions despite the bioavailable Cd in the soil being uniform. There were differences in the level of partitioning into beans evident by significant variation (P ≤ 0.05) in bean Cd as a percentage of the cumulative leaf and bean Cd concentration (15-52%) between accessions. Although in general there was a higher concentration of cadmium in the testa than the cotyledon of the cocoa bean there was considerable genetic variation. These results point to the potential of using a genetic strategy to mitigate cadmium within cocoa beans either through breeding or through the use of low cadmium uptake rootstocks in grafting. The results will fuel further work into the understanding of mechanisms and genetics of cadmium uptake and partitioning in cocoa. Copyright © 2018. Published by Elsevier B.V.

  5. The evolution of replicators.

    PubMed Central

    Szathmáry, E

    2000-01-01

    Replicators of interest in chemistry, biology and culture are briefly surveyed from a conceptual point of view. Systems with limited heredity have only a limited evolutionary potential because the number of available types is too low. Chemical cycles, such as the formose reaction, are holistic replicators since replication is not based on the successive addition of modules. Replicator networks consisting of catalytic molecules (such as reflexively autocatalytic sets of proteins, or reproducing lipid vesicles) are hypothetical ensemble replicators, and their functioning rests on attractors of their dynamics. Ensemble replicators suffer from the paradox of specificity: while their abstract feasibility seems to require a high number of molecular types, the harmful effect of side reactions calls for a small system size. No satisfactory solution to this problem is known. Phenotypic replicators do not pass on their genotypes, only some aspects of the phenotype are transmitted. Phenotypic replicators with limited heredity include genetic membranes, prions and simple memetic systems. Memes in human culture are unlimited hereditary, phenotypic replicators, based on language. The typical path of evolution goes from limited to unlimited heredity, and from attractor-based to modular (digital) replicators. PMID:11127914

  6. The evolution of replicators.

    PubMed

    Szathmáry, E

    2000-11-29

    Replicators of interest in chemistry, biology and culture are briefly surveyed from a conceptual point of view. Systems with limited heredity have only a limited evolutionary potential because the number of available types is too low. Chemical cycles, such as the formose reaction, are holistic replicators since replication is not based on the successive addition of modules. Replicator networks consisting of catalytic molecules (such as reflexively autocatalytic sets of proteins, or reproducing lipid vesicles) are hypothetical ensemble replicators, and their functioning rests on attractors of their dynamics. Ensemble replicators suffer from the paradox of specificity: while their abstract feasibility seems to require a high number of molecular types, the harmful effect of side reactions calls for a small system size. No satisfactory solution to this problem is known. Phenotypic replicators do not pass on their genotypes, only some aspects of the phenotype are transmitted. Phenotypic replicators with limited heredity include genetic membranes, prions and simple memetic systems. Memes in human culture are unlimited hereditary, phenotypic replicators, based on language. The typical path of evolution goes from limited to unlimited heredity, and from attractor-based to modular (digital) replicators.

  7. Partition functions of thermally dissociating diatomic molecules and related momentum problem

    NASA Astrophysics Data System (ADS)

    Buchowiecki, Marcin

    2017-11-01

    The anharmonicity and ro-vibrational coupling in ro-vibrational partition functions of diatomic molecules are analyzed for the high temperatures of the thermal dissociation regime. The numerically exact partition functions and thermal energies are calculated. At the high temperatures the proper integration of momenta is important if the partition function of the molecule, understood as bounded system, is to be obtained. The problem of proper treatment of momentum is crucial for correctness of high temperature molecular simulations as the decomposition of simulated molecule have to be avoided; the analysis of O2, H2+, and NH3 molecules allows to show importance of βDe value.

  8. Inter-Fork Strand Annealing causes genomic deletions during the termination of DNA replication.

    PubMed

    Morrow, Carl A; Nguyen, Michael O; Fower, Andrew; Wong, Io Nam; Osman, Fekret; Bryer, Claire; Whitby, Matthew C

    2017-06-06

    Problems that arise during DNA replication can drive genomic alterations that are instrumental in the development of cancers and many human genetic disorders. Replication fork barriers are a commonly encountered problem, which can cause fork collapse and act as hotspots for replication termination. Collapsed forks can be rescued by homologous recombination, which restarts replication. However, replication restart is relatively slow and, therefore, replication termination may frequently occur by an active fork converging on a collapsed fork. We find that this type of non-canonical fork convergence in fission yeast is prone to trigger deletions between repetitive DNA sequences via a mechanism we call Inter-Fork Strand Annealing (IFSA) that depends on the recombination proteins Rad52, Exo1 and Mus81, and is countered by the FANCM-related DNA helicase Fml1. Based on our findings, we propose that IFSA is a potential threat to genomic stability in eukaryotes.

  9. New Linear Partitioning Models Based on Experimental Water: Supercritical CO2 Partitioning Data of Selected Organic Compounds.

    PubMed

    Burant, Aniela; Thompson, Christopher; Lowry, Gregory V; Karamalidis, Athanasios K

    2016-05-17

    Partitioning coefficients of organic compounds between water and supercritical CO2 (sc-CO2) are necessary to assess the risk of migration of these chemicals from subsurface CO2 storage sites. Despite the large number of potential organic contaminants, the current data set of published water-sc-CO2 partitioning coefficients is very limited. Here, the partitioning coefficients of thiophene, pyrrole, and anisole were measured in situ over a range of temperatures and pressures using a novel pressurized batch-reactor system with dual spectroscopic detectors: a near-infrared spectrometer for measuring the organic analyte in the CO2 phase and a UV detector for quantifying the analyte in the aqueous phase. Our measured partitioning coefficients followed expected trends based on volatility and aqueous solubility. The partitioning coefficients and literature data were then used to update a published poly parameter linear free-energy relationship and to develop five new linear free-energy relationships for predicting water-sc-CO2 partitioning coefficients. A total of four of the models targeted a single class of organic compounds. Unlike models that utilize Abraham solvation parameters, the new relationships use vapor pressure and aqueous solubility of the organic compound at 25 °C and CO2 density to predict partitioning coefficients over a range of temperature and pressure conditions. The compound class models provide better estimates of partitioning behavior for compounds in that class than does the model built for the entire data set.

  10. New Linear Partitioning Models Based on Experimental Water: Supercritical CO 2 Partitioning Data of Selected Organic Compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burant, Aniela; Thompson, Christopher; Lowry, Gregory V.

    2016-05-17

    Partitioning coefficients of organic compounds between water and supercritical CO2 (sc-CO2) are necessary to assess the risk of migration of these chemicals from subsurface CO2 storage sites. Despite the large number of potential organic contaminants, the current data set of published water-sc-CO2 partitioning coefficients is very limited. Here, the partitioning coefficients of thiophene, pyrrole, and anisole were measured in situ over a range of temperatures and pressures using a novel pressurized batch reactor system with dual spectroscopic detectors: a near infrared spectrometer for measuring the organic analyte in the CO2 phase, and a UV detector for quantifying the analyte inmore » the aqueous phase. Our measured partitioning coefficients followed expected trends based on volatility and aqueous solubility. The partitioning coefficients and literature data were then used to update a published poly-parameter linear free energy relationship and to develop five new linear free energy relationships for predicting water-sc-CO2 partitioning coefficients. Four of the models targeted a single class of organic compounds. Unlike models that utilize Abraham solvation parameters, the new relationships use vapor pressure and aqueous solubility of the organic compound at 25 °C and CO2 density to predict partitioning coefficients over a range of temperature and pressure conditions. The compound class models provide better estimates of partitioning behavior for compounds in that class than the model built for the entire dataset.« less

  11. Cell-autonomous-like silencing of GFP-partitioned transgenic Nicotiana benthamiana.

    PubMed

    Sohn, Seong-Han; Frost, Jennifer; Kim, Yoon-Hee; Choi, Seung-Kook; Lee, Yi; Seo, Mi-Suk; Lim, Sun-Hyung; Choi, Yeonhee; Kim, Kook-Hyung; Lomonossoff, George

    2014-08-01

    We previously reported the novel partitioning of regional GFP-silencing on leaves of 35S-GFP transgenic plants, coining the term "partitioned silencing". We set out to delineate the mechanism of partitioned silencing. Here, we report that the partitioned plants were hemizygous for the transgene, possessing two direct-repeat copies of 35S-GFP. The detection of both siRNA expression (21 and 24 nt) and DNA methylation enrichment specifically at silenced regions indicated that both post-transcriptional gene silencing (PTGS) and transcriptional gene silencing (TGS) were involved in the silencing mechanism. Using in vivo agroinfiltration of 35S-GFP/GUS and inoculation of TMV-GFP RNA, we demonstrate that PTGS, not TGS, plays a dominant role in the partitioned silencing, concluding that the underlying mechanism of partitioned silencing is analogous to RNA-directed DNA methylation (RdDM). The initial pattern of partitioned silencing was tightly maintained in a cell-autonomous manner, although partitioned-silenced regions possess a potential for systemic spread. Surprisingly, transcriptome profiling through next-generation sequencing demonstrated that expression levels of most genes involved in the silencing pathway were similar in both GFP-expressing and silenced regions although a diverse set of region-specific transcripts were detected.This suggests that partitioned silencing can be triggered and regulated by genes other than the genes involved in the silencing pathway. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Science - Image in Action

    NASA Astrophysics Data System (ADS)

    Zavidovique, Bertrand; Lo Bosco, Giosue'

    pt. A. Information: data organization and communication. Statistical information: a Bayesian perspective / R. B. Stern, C. A. de B. Pereira. Multi-a(ge)nt graph patrolling and partitioning / Y. Elor, A. M. Bruckstein. The role of noise in brain function / S. Roy, R. Llinas. F-granulation, generalized rough entropy and image analysis / S. K. Pal. Fast redshift clustering with the Baire (ultra) metric / F. Murtagh, P. Contreras. Interactive classification oriented superresolution of multispectral images / P. Ruiz ... [et al.]. Blind processing in astrophysical data analysis / E. Salerno, L. Bedini. The extinction map of the orion molecular cloud / G. Scandariato (best student's paper), I. Pagano, M. Robberto -- pt. B. System: structure and behaviour. Common grounds: the role of perception in science and the nature of transitions / G. Bernroider. Looking the world from inside: intrinsic geometry of complex systems / L. Boi. The butterfly and the photon: new perspectives on unpredictability, and the notion of casual reality, in quantum physics / T. N. Palmer. Self-replicated wave patterns in neural networks with complex threshold / V. I. Nekorkin. A local explication of causation / G. Boniolo, R. Faraldo, A. Saggion. Evolving complexity, cognition, and consciousness / H. Liljenstrom. Self-assembly, modularity and physical complexity / S. E. Ahnert. The category of topological thermodynamics / R. M. Kiehn. Anti-phase spiking patterns / M. P. Igaev, A. S. Dmitrichev, V. I. Nekorkin -- pt. C. Data/system representation. Reality, models and representations: the case of galaxies, intelligence and avatars / J-C. Heudin. Astronomical images and data mining in the international virtual observatory context / F. Pasian, M. Brescia, G. Longo. Dame: a web oriented infrastructure for scientific data mining and exploration / S. Cavuoti ... [et al.]. Galactic phase spaces / D. Chakrabarty. From data to images: a shape based approach for fluorescence tomography / O. Dorn, K. E. Prieto. The influence of texture symmetry in marker pointing: experimenting with humans and algorithms / M. Cardaci, M. E. Tabacchi. A multiscale autocorrelation function for anisotropy studies / M. Scuderi ... [et al.]. A multiscale, lacunarity and neural network method for [symbol]/h discrimination in extensive air showers / A. Pagliaro, F. D'anna, G. D'ali Staiti. Bayesian semi-parametric curve-fitting and clustering in SDSS data / S. Mukkhopadhyay, S. Roy, S. Bhattacharya.

  13. Covariate-free and Covariate-dependent Reliability.

    PubMed

    Bentler, Peter M

    2016-12-01

    Classical test theory reliability coefficients are said to be population specific. Reliability generalization, a meta-analysis method, is the main procedure for evaluating the stability of reliability coefficients across populations. A new approach is developed to evaluate the degree of invariance of reliability coefficients to population characteristics. Factor or common variance of a reliability measure is partitioned into parts that are, and are not, influenced by control variables, resulting in a partition of reliability into a covariate-dependent and a covariate-free part. The approach can be implemented in a single sample and can be applied to a variety of reliability coefficients.

  14. A law of order estimation and leading-order terms for a family of averaged quantities on a multibaker chain system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishida, Hideshi, E-mail: ishida@me.es.osaka-u.ac.jp

    2014-06-15

    In this study, a family of local quantities defined on each partition and its averaging on a macroscopic small region, site, are defined on a multibaker chain system. On its averaged quantities, a law of order estimation in the bulk system is proved, making it possible to estimate the order of the quantities with respect to the representative partition scale parameter Δ. Moreover, the form of the leading-order terms of the averaged quantities is obtained, and the form enables us to have the macroscopic quantity in the continuum limit, as Δ → 0, and to confirm its partitioning independency. Thesemore » deliverables fully explain the numerical results obtained by Ishida, consistent with the irreversible thermodynamics.« less

  15. Use of a highly sensitive strand-specific quantitative PCR to identify abortive replication in the mouse model of respiratory syncytial virus disease

    PubMed Central

    2010-01-01

    Background The BALB/c mouse is commonly used to study RSV infection and disease. However, despite the many advantages of this well-characterised model, the inoculum is large, viral replication is restricted and only a very small amount of virus can be recovered from infected animals. A key question in this model is the fate of the administered virus. Is replication really being measured or is the model measuring the survival of the virus over time? To answer these questions we developed a highly sensitive strand-specific quantitative PCR (QPCR) able to accurately quantify the amount of RSV replication in the BALB/c mouse lung, allowing characterisation of RSV negative and positive strand RNA dynamics. Results In the mouse lung, no increase in RSV genome was seen above the background of the original inoculum whilst only a limited transient increase (< 1 log) in positive strand, replicative intermediate (RI) RNA occurred. This RNA did however persist at detectable levels for 59 days post infection. As expected, ribavirin therapy reduced levels of infectious virus and RI RNA in the mouse lung. However, whilst Palivizumab therapy was also able to reduce levels of infectious virus, it failed to prevent production of intracellular RI RNA. A comparison of RSV RNA kinetics in human (A549) and mouse (KLN205) cell lines demonstrated that RSV replication was also severely delayed and impaired in vitro in the mouse cells. Conclusions This is the first time that such a sensitive strand-specific QPCR technique has been to the RSV mouse system. We have accurately quantified the restricted and abortive nature of RSV replication in the mouse. Further in vitro studies in human and mouse cells suggest this restricted replication is due at least in part to species-specific host cell-viral interactions. PMID:20860795

  16. Adaptive laboratory evolution resolves energy depletion to maintain high aromatic metabolite phenotypes in Escherichia coli strains lacking the Phosphotransferase System.

    PubMed

    McCloskey, Douglas; Xu, Sibei; Sandberg, Troy E; Brunk, Elizabeth; Hefner, Ying; Szubin, Richard; Feist, Adam M; Palsson, Bernhard O

    2018-06-15

    Aromatic metabolites provide the backbone for numerous industrial and pharmaceutical compounds of high value. The Phosphotransferase System (PTS) is common to many bacteria, and is the primary mechanism for glucose uptake by Escherichia coli. The PTS was removed to conserve phosphoenolpyruvate (pep), which is a precursor for aromatic metabolites and consumed by the PTS, for aromatic metabolite production. Replicate adaptive laboratory evolution (ALE) of PTS and detailed omics data sets collected revealed that the PTS bridged the gap between respiration and fermentation, leading to distinct high fermentative and high respiratory rate phenotypes. It was also found that while all strains retained high levels of aromatic amino acid (AAA) biosynthetic precursors, only one replicate from the high glycolytic clade retained high levels of intracellular AAAs. The fast growth and high AAA precursor phenotypes could provide a starting host for cell factories targeting the overproduction aromatic metabolites. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  17. Transient dominant host-range selection using Chinese hamster ovary cells to generate marker-free recombinant viral vectors from vaccinia virus.

    PubMed

    Liu, Liang; Cooper, Tamara; Eldi, Preethi; Garcia-Valtanen, Pablo; Diener, Kerrilyn R; Howley, Paul M; Hayball, John D

    2017-04-01

    Recombinant vaccinia viruses (rVACVs) are promising antigen-delivery systems for vaccine development that are also useful as research tools. Two common methods for selection during construction of rVACV clones are (i) co-insertion of drug resistance or reporter protein genes, which requires the use of additional selection drugs or detection methods, and (ii) dominant host-range selection. The latter uses VACV variants rendered replication-incompetent in host cell lines by the deletion of host-range genes. Replicative ability is restored by co-insertion of the host-range genes, providing for dominant selection of the recombinant viruses. Here, we describe a new method for the construction of rVACVs using the cowpox CP77 protein and unmodified VACV as the starting material. Our selection system will expand the range of tools available for positive selection of rVACV during vector construction, and it is substantially more high-fidelity than approaches based on selection for drug resistance.

  18. 47 CFR 90.365 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Partitioned licenses and disaggregated spectrum. 90.365 Section 90.365 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Intelligent Transportation Systems Radio Service...

  19. Cache Sharing and Isolation Tradeoffs in Multicore Mixed-Criticality Systems

    DTIC Science & Technology

    2015-05-01

    of lockdown registers, to provide way-based partitioning. These alternatives are illustrated in Fig. 1 with respect to a quad-core ARM Cortex A9...presented a cache-partitioning scheme that allows multiple tasks to share the same cache partition on a single processor (as we do for Level-A and...sets and determined the fraction that were schedulable on our target hardware platform, the quad-core ARM Cortex A9 machine mentioned earlier, the LLC

  20. FNAS phase partitions

    NASA Technical Reports Server (NTRS)

    Vanalstine, James M.

    1993-01-01

    Project NAS8-36955 D.O. #100 initially involved the following tasks: (1) evaluation of various coatings' ability to control wall wetting and surface zeta potential expression; (2) testing various methods to mix and control the demixing of phase systems; and (3) videomicroscopic investigation of cell partition. Three complementary areas were identified for modification and extension of the original contract. They were: (1) identification of new supports for column cell partition; (2) electrokinetic detection of protein adsorption; and (3) emulsion studies related to bioseparations.

  1. Aegirine-melt element partitioning and implications for the formation of nepheline syenite REE deposits

    NASA Astrophysics Data System (ADS)

    Beard, Charles; van Hinsberg, Vincent; Stix, John; Wilke, Max

    2017-04-01

    Sodic clinopyroxene is a key fractionating phase in alkaline magmatic systems but its impact on metal enrichment processes, and the formation of REE + HFSE mineralizations in particular, is not fully understood. Sodic pyroxenes appear to more readily incorporate REE than their calcic equivalents1. Despite this, melts in evolved alkaline systems can attain high REE contents, even up to economic levels (e.g. the Nechalacho layered suite in Canada2). To constrain the control of pyroxene on REE + HFSE behaviour in alkaline magmas, a series of internally heated pressure vessel experiments was performed to determine pyroxene-melt element partitioning systematics. Synthetic trachy-andesite to phonolite compositions were run water saturated at 650-825°C with fO2 buffered by ca. 1 bar of H2 (QFM + 1) or by Hm-Mt (QFM +5). Fluorine was added to selected experiments (0.3 to 2.5 wt %) to ascertain its effect on element partitioning. Run products were analysed by EMP for major elements and LA-ICP-MS for trace elements. Mineral and glass compositions bracket the compositions of natural alkaline systems, allowing for direct application of our experimental results to nature. Our results indicate that REE partitioning systematics vary strongly with pyroxene composition: Diopside-rich pyroxenes (Aeg5-25) prefer the MREE, medium aegirine pyroxenes (Aeg25-50) preferentially incorporate the LREE, whereas high aegirine pyroxenes (Aeg55-95) strongly prefer HREE. REE partitioning coefficients are 0.3-40, typically 2-6, with minima for high aegirine pyroxenes. Melt composition (e.g. (Na+K)/Al) also impacts partitioning although to a lesser extent, except for the F-content, which shows no impact at all. The composition of fractionating pyroxene has a major impact on the REE pattern of the residual melt, and thus on the ability of a system to develop economic concentrations of the REE. Element partitioning systematics suggest that late-crystallising aegirine-rich cumulates would be HREE-rich, in accord with the composition of mineralised intrusions, such as Nechalacho2. 1 - Marks, M., Halama, R., Wenzel, T. & Markl, G., 2004. Chem. Geol. 211, 185-215. 2 - Möller, V. & Williams-Jones, A. E., 2016. J. Petrology 57, 229-276.

  2. Controlling bi-partite entanglement in multi-qubit systems

    NASA Astrophysics Data System (ADS)

    Plesch, Martin; Novotný, Jaroslav; Dzuráková, Zuzana; Buzek, Vladimír

    2004-02-01

    Bi-partite entanglement in multi-qubit systems cannot be shared freely. The rules of quantum mechanics impose bounds on how multi-qubit systems can be correlated. In this paper, we utilize a concept of entangled graphs with weighted edges in order to analyse pure quantum states of multi-qubit systems. Here qubits are represented by vertexes of the graph, while the presence of bi-partite entanglement is represented by an edge between corresponding vertexes. The weight of each edge is defined to be the entanglement between the two qubits connected by the edge, as measured by the concurrence. We prove that each entangled graph with entanglement bounded by a specific value of the concurrence can be represented by a pure multi-qubit state. In addition, we present a logic network with O(N2) elementary gates that can be used for preparation of the weighted entangled graphs of N qubits.

  3. State-dependent metabolic partitioning and energy conservation: A theoretical framework for understanding the function of sleep.

    PubMed

    Schmidt, Markus H; Swang, Theodore W; Hamilton, Ian M; Best, Janet A

    2017-01-01

    Metabolic rate reduction has been considered the mechanism by which sleep conserves energy, similar to torpor or hibernation. This mechanism of energy savings is in conflict with the known upregulation (compared to wake) of diverse functions during sleep and neglects a potential role in energy conservation for partitioning of biological operations by behavioral state. Indeed, energy savings as derived from state-dependent resource allocations have yet to be examined. A mathematical model is presented based on relative rates of energy deployment for biological processes upregulated during either wake or sleep. Using this model, energy savings from sleep-wake cycling over constant wakefulness is computed by comparing stable limit cycles for systems of differential equations. A primary objective is to compare potential energy savings derived from state-dependent metabolic partitioning versus metabolic rate reduction. Additionally, energy conservation from sleep quota and the circadian system are also quantified in relation to a continuous wake condition. As a function of metabolic partitioning, our calculations show that coupling of metabolic operations with behavioral state may provide comparatively greater energy savings than the measured decrease in metabolic rate, suggesting that actual energy savings derived from sleep may be more than 4-fold greater than previous estimates. A combination of state-dependent metabolic partitioning and modest metabolic rate reduction during sleep may enhance energy savings beyond what is achievable through metabolic partitioning alone; however, the relative contribution from metabolic partitioning diminishes as metabolic rate is decreased during the rest phase. Sleep quota and the circadian system further augment energy savings in the model. Finally, we propose that state-dependent resource allocation underpins both sleep homeostasis and the optimization of daily energy conservation across species. This new paradigm identifies an evolutionary selective advantage for the upregulation of central and peripheral biological processes during sleep, presenting a unifying construct to understand sleep function.

  4. [Relationships between soil nutrients and rhizospheric soil microbial communities and enzyme activities in a maize-capsicum intercropping system].

    PubMed

    Xu, Qiang; Cheng, Zhi-Hui; Meng, Huan-Wen; Zhang, Yu

    2007-12-01

    By using plastic sheet and nylon mesh to partition the root systems of maize and capsicum in a maize-capsicum intercropping system, this paper studied the relationships between soil biological factors and nutritive status in the intercropping system, with no partitioning and maize monoculture and capsicum monoculture as the control. The results showed that intercropping maize and capsicum had its high superiority. In the treatments of no partitioning and nylon mesh portioning in the intercropping system, soil enzyme activities, microbial individuals and nutrient contents were significantly higher, compared with those in the treatments of nylon mesh partitioning and monocultures. All kinds of soil available nutrients showed significant or very significant positive correlations with soil biological factors, except that soil available Mg was negatively correlated with soil fungi and catalase activity. Pathway analysis indicated that in the intercropping system, soil urease, catalase, protease, and bacteria were the main factors affecting the accumulation of soil organic matter, saccharase was the most important factor affecting soil alkali-hydrolyzable N, urease was the most important factor affecting soil available P, and bacteria largely determined soil available K. Soil alkaline phosphatase and fungi selectively affected the accumulation of soil organic matter and available N, P and K. There was a slight negative correlation between soil actinomycetes and soil nutrients, suggesting that actinomycetes had little effect on soil nutrient formation.

  5. How psychological framing affects economic market prices in the lab and field.

    PubMed

    Sonnemann, Ulrich; Camerer, Colin F; Fox, Craig R; Langer, Thomas

    2013-07-16

    A fundamental debate in social sciences concerns how individual judgments and choices, resulting from psychological mechanisms, are manifested in collective economic behavior. Economists emphasize the capacity of markets to aggregate information distributed among traders into rational equilibrium prices. However, psychologists have identified pervasive and systematic biases in individual judgment that they generally assume will affect collective behavior. In particular, recent studies have found that judged likelihoods of possible events vary systematically with the way the entire event space is partitioned, with probabilities of each of N partitioned events biased toward 1/N. Thus, combining events into a common partition lowers perceived probability, and unpacking events into separate partitions increases their perceived probability. We look for evidence of such bias in various prediction markets, in which prices can be interpreted as probabilities of upcoming events. In two highly controlled experimental studies, we find clear evidence of partition dependence in a 2-h laboratory experiment and a field experiment on National Basketball Association (NBA) and Federation Internationale de Football Association (FIFA World Cup) sports events spanning several weeks. We also find evidence consistent with partition dependence in nonexperimental field data from prediction markets for economic derivatives (guessing the values of important macroeconomic statistics) and horse races. Results in any one of the studies might be explained by a specialized alternative theory, but no alternative theories can explain the results of all four studies. We conclude that psychological biases in individual judgment can affect market prices, and understanding those effects requires combining a variety of methods from psychology and economics.

  6. How psychological framing affects economic market prices in the lab and field

    PubMed Central

    Sonnemann, Ulrich; Camerer, Colin F.; Fox, Craig R.; Langer, Thomas

    2013-01-01

    A fundamental debate in social sciences concerns how individual judgments and choices, resulting from psychological mechanisms, are manifested in collective economic behavior. Economists emphasize the capacity of markets to aggregate information distributed among traders into rational equilibrium prices. However, psychologists have identified pervasive and systematic biases in individual judgment that they generally assume will affect collective behavior. In particular, recent studies have found that judged likelihoods of possible events vary systematically with the way the entire event space is partitioned, with probabilities of each of N partitioned events biased toward 1/N. Thus, combining events into a common partition lowers perceived probability, and unpacking events into separate partitions increases their perceived probability. We look for evidence of such bias in various prediction markets, in which prices can be interpreted as probabilities of upcoming events. In two highly controlled experimental studies, we find clear evidence of partition dependence in a 2-h laboratory experiment and a field experiment on National Basketball Association (NBA) and Federation Internationale de Football Association (FIFA World Cup) sports events spanning several weeks. We also find evidence consistent with partition dependence in nonexperimental field data from prediction markets for economic derivatives (guessing the values of important macroeconomic statistics) and horse races. Results in any one of the studies might be explained by a specialized alternative theory, but no alternative theories can explain the results of all four studies. We conclude that psychological biases in individual judgment can affect market prices, and understanding those effects requires combining a variety of methods from psychology and economics. PMID:23818628

  7. Metal/Silicate Partitioning at High Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Shofner, G.; Campbell, A.; Danielson, L.; Righter, K.; Rahman, Z.

    2010-01-01

    The behavior of siderophile elements during metal-silicate segregation, and their resulting distributions provide insight into core formation processes. Determination of partition coefficients allows the calculation of element distributions that can be compared to established values of element abundances in the silicate (mantle) and metallic (core) portions of the Earth. Moderately siderophile elements, including W, are particularly useful in constraining core formation conditions because they are sensitive to variations in T, P, oxygen fugacity (fO2), and silicate composition. To constrain the effect of pressure on W metal/silicate partitioning, we performed experiments at high pressures and temperatures using a multi anvil press (MAP) at NASA Johnson Space Center and laser-heated diamond anvil cells (LHDAC) at the University of Maryland. Starting materials consisted of natural peridotite mixed with Fe and W metals. Pressure conditions in the MAP experiments ranged from 10 to 16 GPa at 2400 K. Pressures in the LHDAC experiments ranged from 26 to 58 GPa, and peak temperatures ranged up to 5000 K. LHDAC experimental run products were sectioned by focused ion beam (FIB) at NASA JSC. Run products were analyzed by electron microprobe using wavelength dispersive spectroscopy. Liquid metal/liquid silicate partition coefficients for W were calculated from element abundances determined by microprobe analyses, and corrected to a common fO2 condition of IW-2 assuming +4 valence for W. Within analytical uncertainties, W partitioning shows a flat trend with increasing pressure from 10 to 16 GPa. At higher pressures, W becomes more siderophile, with an increase in partition coefficient of approximately 0.5 log units.

  8. Revisiting the choice of the driving temperature for eddy covariance CO2 flux partitioning

    PubMed Central

    Wohlfahrt, Georg; Galvagno, Marta

    2017-01-01

    So-called CO2 flux partitioning algorithms are widely used to partition the net ecosystem CO2 exchange into the two component fluxes, gross primary productivity and ecosystem respiration. Common CO2 flux partitioning algorithms conceptualize ecosystem respiration to originate from a single source, requiring the choice of a corresponding driving temperature. Using a conceptual dual-source respiration model, consisting of an above- and a below-ground respiration source each driven by a corresponding temperature, we demonstrate that the typical phase shift between air and soil temperature gives rise to a hysteresis relationship between ecosystem respiration and temperature. The hysteresis proceeds in a clockwise fashion if soil temperature is used to drive ecosystem respiration, while a counter-clockwise response is observed when ecosystem respiration is related to air temperature. As a consequence, nighttime ecosystem respiration is smaller than daytime ecosystem respiration when referenced to soil temperature, while the reverse is true for air temperature. We confirm these qualitative modelling results using measurements of day and night ecosystem respiration made with opaque chambers in a short-statured mountain grassland. Inferring daytime from nighttime ecosystem respiration or vice versa, as attempted by CO2 flux partitioning algorithms, using a single-source respiration model is thus an oversimplification resulting in biased estimates of ecosystem respiration. We discuss the likely magnitude of the bias, options for minimizing it and conclude by emphasizing that the systematic uncertainty of gross primary productivity and ecosystem respiration inferred through CO2 flux partitioning needs to be better quantified and reported. PMID:28439145

  9. [PVFS 2000: An operational parallel file system for Beowulf

    NASA Technical Reports Server (NTRS)

    Ligon, Walt

    2004-01-01

    The approach has been to develop Parallel Virtual File System version 2 (PVFS2) , retaining the basic philosophy of the original file system but completely rewriting the code. It shows the architecture of the server and client components. BMI - BMI is the network abstraction layer. It is designed with a common driver and modules for each protocol supported. The interface is non-blocking, and provides mechanisms for optimizations including pinning user buffers. Currently TCP/IP and GM(Myrinet) modules have been implemented. Trove -Trove is the storage abstraction layer. It provides for storing both data spaces and name/value pairs. Trove can also be implemented using different underlying storage mechanisms including native files, raw disk partitions, SQL and other databases. The current implementation uses native files for data spaces and Berkeley db for name/value pairs.

  10. Environmental Containment Property Estimation Using QSARs in an Expert System

    DTIC Science & Technology

    1991-10-15

    economical method to estimate aqueous solubility, octanol/ water partition coefficients, vapor pressures, organic carbon, normalized soil sorption...PROPERTY ESTIMATION USING QSARs IN AN EXPERT SYSTEM William J. Doucette Mark S. Holt Doug J. Denne Joan E. McLean Utah State University Utah Water ...persistence of a chemical are aqueous solubility, octanol/ water partition coefficient, soil/ water sorption coefficient, Henry’s Law constant

  11. GPS/INS integration by functional partitioning

    NASA Astrophysics Data System (ADS)

    Diesel, John W.

    It is shown that a GPS/INS system integrated by functional partitioning can satisfy all of the RTCA navigation requirements and goals. This is accomplished by accurately calibrating the INS using GPS after the inertial instruments are thermally stabilized and by exploiting the very slow subsequent error growth in the INS information. In this way, autonomous integrity monitoring can be achieved using only existing or presently planned systems.

  12. Rule groupings in expert systems using nearest neighbour decision rules, and convex hulls

    NASA Technical Reports Server (NTRS)

    Anastasiadis, Stergios

    1991-01-01

    Expert System shells are lacking in many areas of software engineering. Large rule based systems are not semantically comprehensible, difficult to debug, and impossible to modify or validate. Partitioning a set of rules found in CLIPS (C Language Integrated Production System) into groups of rules which reflect the underlying semantic subdomains of the problem, will address adequately the concerns stated above. Techniques are introduced to structure a CLIPS rule base into groups of rules that inherently have common semantic information. The concepts involved are imported from the field of A.I., Pattern Recognition, and Statistical Inference. Techniques focus on the areas of feature selection, classification, and a criteria of how 'good' the classification technique is, based on Bayesian Decision Theory. A variety of distance metrics are discussed for measuring the 'closeness' of CLIPS rules and various Nearest Neighbor classification algorithms are described based on the above metric.

  13. Fidelity of DNA Replication in Normal and Malignant Human Breast Cells.

    DTIC Science & Technology

    1997-08-01

    enzyme) into the multiple cloning site (MCS). This template will not only replicate inside a mammalian cell (utilizing the E-B virus origin), and...Maniatis, T. Commonly used techniques in molecular cloning . In: Molecular cloning : REFERENCES a laboratory manual, 2nd edition. Cold Spring Harbor...A vatit"Y Of DNA synthesis and the typt of DNA replica~tion Products " celular prca including DNA rsplicatlon. DNA repsair. R~NA formed in experiments

  14. Parallelisation study of a three-dimensional environmental flow model

    NASA Astrophysics Data System (ADS)

    O'Donncha, Fearghal; Ragnoli, Emanuele; Suits, Frank

    2014-03-01

    There are many simulation codes in the geosciences that are serial and cannot take advantage of the parallel computational resources commonly available today. One model important for our work in coastal ocean current modelling is EFDC, a Fortran 77 code configured for optimal deployment on vector computers. In order to take advantage of our cache-based, blade computing system we restructured EFDC from serial to parallel, thereby allowing us to run existing models more quickly, and to simulate larger and more detailed models that were previously impractical. Since the source code for EFDC is extensive and involves detailed computation, it is important to do such a port in a manner that limits changes to the files, while achieving the desired speedup. We describe a parallelisation strategy involving surgical changes to the source files to minimise error-prone alteration of the underlying computations, while allowing load-balanced domain decomposition for efficient execution on a commodity cluster. The use of conjugate gradient posed particular challenges due to implicit non-local communication posing a hindrance to standard domain partitioning schemes; a number of techniques are discussed to address this in a feasible, computationally efficient manner. The parallel implementation demonstrates good scalability in combination with a novel domain partitioning scheme that specifically handles mixed water/land regions commonly found in coastal simulations. The approach presented here represents a practical methodology to rejuvenate legacy code on a commodity blade cluster with reasonable effort; our solution has direct application to other similar codes in the geosciences.

  15. Regulating DNA Replication in Plants

    PubMed Central

    Sanchez, Maria de la Paz; Costas, Celina; Sequeira-Mendes, Joana; Gutierrez, Crisanto

    2012-01-01

    Chromosomal DNA replication in plants has requirements and constraints similar to those in other eukaryotes. However, some aspects are plant-specific. Studies of DNA replication control in plants, which have unique developmental strategies, can offer unparalleled opportunities of comparing regulatory processes with yeast and, particularly, metazoa to identify common trends and basic rules. In addition to the comparative molecular and biochemical studies, genomic studies in plants that started with Arabidopsis thaliana in the year 2000 have now expanded to several dozens of species. This, together with the applicability of genomic approaches and the availability of a large collection of mutants, underscores the enormous potential to study DNA replication control in a whole developing organism. Recent advances in this field with particular focus on the DNA replication proteins, the nature of replication origins and their epigenetic landscape, and the control of endoreplication will be reviewed. PMID:23209151

  16. Comparison of the Transcription and Replication Strategies of Marburg Virus and Ebola Virus by Using Artificial Replication Systems

    PubMed Central

    Mühlberger, Elke; Weik, Michael; Volchkov, Viktor E.; Klenk, Hans-Dieter; Becker, Stephan

    1999-01-01

    The members of the family Filoviridae, Marburg virus (MBGV) and Ebola virus (EBOV), are very similar in terms of morphology, genome organization, and protein composition. To compare the replication and transcription strategies of both viruses, an artificial replication system based on the vaccinia virus T7 expression system was established for EBOV. Specific transcription and replication of an artificial monocistronic minireplicon was demonstrated by reporter gene expression and detection of the transcribed and replicated RNA species. As it was shown previously for MBGV, three of the four EBOV nucleocapsid proteins, NP, VP35, and L, were essential and sufficient for replication. In contrast to MBGV, EBOV-specific transcription was dependent on the presence of the fourth nucleocapsid protein, VP30. When EBOV VP30 was replaced by MBGV VP30, EBOV-specific transcription was observed but with lower efficiency. Exchange of NP, VP35, and L between the two replication systems did not lead to detectable reporter gene expression. It was further observed that neither MBGV nor EBOV were able to replicate the heterologous minigenomes. A chimeric minigenome, however, containing the EBOV leader and the MBGV trailer was encapsidated, replicated, transcribed, and packaged by both viruses. PMID:9971816

  17. Who Let the CAT Out of the Bag? Accurately Dealing with Substitutional Heterogeneity in Phylogenomic Analyses.

    PubMed

    Whelan, Nathan V; Halanych, Kenneth M

    2017-03-01

    As phylogenetic datasets have increased in size, site-heterogeneous substitution models such as CAT-F81 and CAT-GTR have been advocated in favor of other models because they purportedly suppress long-branch attraction (LBA). These models are two of the most commonly used models in phylogenomics, and they have been applied to a variety of taxa, ranging from Drosophila to land plants. However, many arguments in favor of CAT models have been based on tenuous assumptions about the true phylogeny, rather than rigorous testing with known trees via simulation. Moreover, CAT models have not been compared to other approaches for handling substitutional heterogeneity such as data partitioning with site-homogeneous substitution models. We simulated amino acid sequence datasets with substitutional heterogeneity on a variety of tree shapes including those susceptible to LBA. Data were analyzed with both CAT models and partitioning to explore model performance; in total over 670,000 CPU hours were used, of which over 97% was spent running analyses with CAT models. In many cases, all models recovered branching patterns that were identical to the known tree. However, CAT-F81 consistently performed worse than other models in inferring the correct branching patterns, and both CAT models often overestimated substitutional heterogeneity. Additionally, reanalysis of two empirical metazoan datasets supports the notion that CAT-F81 tends to recover less accurate trees than data partitioning and CAT-GTR. Given these results, we conclude that partitioning and CAT-GTR perform similarly in recovering accurate branching patterns. However, computation time can be orders of magnitude less for data partitioning, with commonly used implementations of CAT-GTR often failing to reach completion in a reasonable time frame (i.e., for Bayesian analyses to converge). Practices such as removing constant sites and parsimony uninformative characters, or using CAT-F81 when CAT-GTR is deemed too computationally expensive, cannot be logically justified. Given clear problems with CAT-F81, phylogenies previously inferred with this model should be reassessed. [Data partitioning; phylogenomics, simulation, site-heterogeneity, substitution models.]. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Development of a floating photobioreactor with internal partitions for efficient utilization of ocean wave into improved mass transfer and algal culture mixing.

    PubMed

    Kim, Z-Hun; Park, Hanwool; Hong, Seong-Joo; Lim, Sang-Min; Lee, Choul-Gyun

    2016-05-01

    Culturing microalgae in the ocean has potentials that may reduce the production cost and provide an option for an economic biofuel production from microalgae. The ocean holds great potentials for mass microalgal cultivation with its high specific heat, mixing energy from waves, and large cultivable area. Suitable photobioreactors (PBRs) that are capable of integrating marine energy into the culture systems need to be developed for the successful ocean cultivation. In this study, prototype floating PBRs were designed and constructed using transparent low-density polyethylene film for microalgal culture in the ocean. To improve the mixing efficiency, various types of internal partitions were introduced within PBRs. Three different types of internal partitions were evaluated for their effects on the mixing efficiency in terms of mass transfer (k(L)a) and mixing time in the PBRs. The partition type with the best mixing efficiency was selected, and the number of partitions was varied from one to three for investigation of its effect on mixing efficiency. When the number of partitions is increased, mass transfer increased in proportion to the number of partitions. However, mixing time was not directly related to the number of partitions. When a green microalga, Tetraselmis sp. was cultivated using PBRs with the selected partition under semi-continuous mode in the ocean, biomass and fatty acid productivities in the PBRs were increased by up to 50 % and 44% at high initial cell density, respectively, compared to non-partitioned ones. The results of internally partitioned PBRs demonstrated potentials for culturing microalgae by efficiently utilizing ocean wave energy into culture mixing in the ocean.

  19. Multiple Regulatory Systems Coordinate DNA Replication with Cell Growth in Bacillus subtilis

    PubMed Central

    Murray, Heath; Koh, Alan

    2014-01-01

    In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s) that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes. PMID:25340815

  20. Multiple regulatory systems coordinate DNA replication with cell growth in Bacillus subtilis.

    PubMed

    Murray, Heath; Koh, Alan

    2014-10-01

    In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s) that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes.

  1. Two Replicable Suppressor Situations in Personality Research

    ERIC Educational Resources Information Center

    Paulhus, Delroy L.; Robins, Richard W.; Trzesniewski, Kali H.; Tracy, Jessica L.

    2004-01-01

    Suppressor situations occur when the simultaneous inclusion of two predictors improves one or both validities. A common allegation is that suppressor effects rarely replicate and have little substantive import. We present substantive examples from two established research domains to counter this skepticism. In the first domain, we show how…

  2. Common y-intercept and single compound regressions of gas-particle partitioning data vs 1/T

    NASA Astrophysics Data System (ADS)

    Pankow, James F.

    Confidence intervals are placed around the log Kp vs 1/ T correlation equations obtained using simple linear regressions (SLR) with the gas-particle partitioning data set of Yamasaki et al. [(1982) Env. Sci. Technol.16, 189-194]. The compounds and groups of compounds studied include the polycylic aromatic hydrocarbons phenanthrene + anthracene, me-phenanthrene + me-anthracene, fluoranthene, pyrene, benzo[ a]fluorene + benzo[ b]fluorene, chrysene + benz[ a]anthracene + triphenylene, benzo[ b]fluoranthene + benzo[ k]fluoranthene, and benzo[ a]pyrene + benzo[ e]pyrene (note: me = methyl). For any given compound, at equilibrium, the partition coefficient Kp equals ( F/ TSP)/ A where F is the particulate-matter associated concentration (ng m -3), A is the gas-phase concentration (ng m -3), and TSP is the concentration of particulate matter (μg m -3). At temperatures more than 10°C from the mean sampling temperature of 17°C, the confidence intervals are quite wide. Since theory predicts that similar compounds sorbing on the same particulate matter should possess very similar y-intercepts, the data set was also fitted using a special common y-intercept regression (CYIR). For most of the compounds, the CYIR equations fell inside of the SLR 95% confidence intervals. The CYIR y-intercept value is -18.48, and is reasonably close to the type of value that can be predicted for PAH compounds. The set of CYIR regression equations is probably more reliable than the set of SLR equations. For example, the CYIR-derived desorption enthalpies are much more highly correlated with vaporization enthalpies than are the SLR-derived desorption enthalpies. It is recommended that the CYIR approach be considered whenever analysing temperature-dependent gas-particle partitioning data.

  3. Lactoferrin for prevention of common viral infections.

    PubMed

    Wakabayashi, Hiroyuki; Oda, Hirotsugu; Yamauchi, Koji; Abe, Fumiaki

    2014-11-01

    Although lactoferrin has many biological functions, the host-protective effects against pathogenic microorganisms including bacteria, fungi, and viruses are regarded as one of the most important. Here, we review research on the protective role of lactoferrin administration against common viral infections. Many studies have shown the in vitro antiviral activity of lactoferrin against viral pathogens that cause common infections such as the common cold, influenza, gastroenteritis, summer cold, and herpes, where lactoferrin inhibits mainly viral attachment to the target cells. Recently, studies indicating the in vivo protective effects of lactoferrin by oral administration against common viral infections have been increasing. For instance, norovirus is an extremely important emerging human pathogen that causes a majority of gastroenteritis outbreaks worldwide that may be a target candidate for lactoferrin. Lactoferrin consumption reduced the incidence of noroviral gastroenteritis in children and a similar effect was observed in a wide range of ages in a preliminary survey. A recent in vitro study reported that lactoferrin inhibits both cellular attachment of the murine norovirus, a virus closely-related to the human norovirus, and viral replication in the cells by inducing antiviral cytokines interferon (IFN)-α/β. Lactoferrin administration also enhances NK cell activity and Th1 cytokine responses, which lead to protection against viral infections. In conclusion, lactoferrin consumption may protect the host from viral infections through inhibiting the attachment of a virus to the cells, replication of the virus in the cells, and enhancement of systemic immune functions. Copyright © 2014 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  4. Integrative and conjugative elements and their hosts: composition, distribution and organization.

    PubMed

    Cury, Jean; Touchon, Marie; Rocha, Eduardo P C

    2017-09-06

    Conjugation of single-stranded DNA drives horizontal gene transfer between bacteria and was widely studied in conjugative plasmids. The organization and function of integrative and conjugative elements (ICE), even if they are more abundant, was only studied in a few model systems. Comparative genomics of ICE has been precluded by the difficulty in finding and delimiting these elements. Here, we present the results of a method that circumvents these problems by requiring only the identification of the conjugation genes and the species' pan-genome. We delimited 200 ICEs and this allowed the first large-scale characterization of these elements. We quantified the presence in ICEs of a wide set of functions associated with the biology of mobile genetic elements, including some that are typically associated with plasmids, such as partition and replication. Protein sequence similarity networks and phylogenetic analyses revealed that ICEs are structured in functional modules. Integrases and conjugation systems have different evolutionary histories, even if the gene repertoires of ICEs can be grouped in function of conjugation types. Our characterization of the composition and organization of ICEs paves the way for future functional and evolutionary analyses of their cargo genes, composed of a majority of unknown function genes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. A Lego Mindstorms NXT based test bench for multiagent exploratory systems and distributed network partitioning

    NASA Astrophysics Data System (ADS)

    Patil, Riya Raghuvir

    Networks of communicating agents require distributed algorithms for a variety of tasks in the field of network analysis and control. For applications such as swarms of autonomous vehicles, ad hoc and wireless sensor networks, and such military and civilian applications as exploring and patrolling a robust autonomous system that uses a distributed algorithm for selfpartitioning can be significantly helpful. A single team of autonomous vehicles in a field may need to self-dissemble into multiple teams, conducive to completing multiple control tasks. Moreover, because communicating agents are subject to changes, namely, addition or failure of an agent or link, a distributed or decentralized algorithm is favorable over having a central agent. A framework to help with the study of self-partitioning of such multi agent systems that have most basic mobility model not only saves our time in conception but also gives us a cost effective prototype without negotiating the physical realization of the proposed idea. In this thesis I present my work on the implementation of a flexible and distributed stochastic partitioning algorithm on the LegoRTM Mindstorms' NXT on a graphical programming platform using National Instruments' LabVIEW(TM) forming a team of communicating agents via NXT-Bee radio module. We single out mobility, communication and self-partition as the core elements of the work. The goal is to randomly explore a precinct for reference sites. Agents who have discovered the reference sites announce their target acquisition to form a network formed based upon the distance of each agent with the other wherein the self-partitioning begins to find an optimal partition. Further, to illustrate the work, an experimental test-bench of five Lego NXT robots is presented.

  6. Characterization of Nonlinear Systems with Memory by Means of Volterra Expansions with Frequency Partitioning: Application to a Cicada Mating Call

    DTIC Science & Technology

    2010-06-15

    Partitioning Application to a Cicada Mating Call Albert H. Nuttall Adaptive Methods Inc. Derke R. Hughes NUWC Division Newport IVAVSEA WARFARE...Frequency Partitioning: Application to a Cicada Mating Call 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Albert H... cicada mating call with a distinctly non-white and non-Gaussian excitation gives good results for the estimated first- and second-order kernels and

  7. Analysis of Partitioned Methods for the Biot System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bukac, Martina; Layton, William; Moraiti, Marina

    2015-02-18

    In this work, we present a comprehensive study of several partitioned methods for the coupling of flow and mechanics. We derive energy estimates for each method for the fully-discrete problem. We write the obtained stability conditions in terms of a key control parameter defined as a ratio of the coupling strength and the speed of propagation. Depending on the parameters in the problem, give the choice of the partitioned method which allows the largest time step. (C) 2015 Wiley Periodicals, Inc.

  8. Fourier transform spectrometer controller for partitioned architectures

    NASA Astrophysics Data System (ADS)

    Tamas-Selicean, D.; Keymeulen, D.; Berisford, D.; Carlson, R.; Hand, K.; Pop, P.; Wadsworth, W.; Levy, R.

    The current trend in spacecraft computing is to integrate applications of different criticality levels on the same platform using no separation. This approach increases the complexity of the development, verification and integration processes, with an impact on the whole system life cycle. Researchers at ESA and NASA advocated for the use of partitioned architecture to reduce this complexity. Partitioned architectures rely on platform mechanisms to provide robust temporal and spatial separation between applications. Such architectures have been successfully implemented in several industries, such as avionics and automotive. In this paper we investigate the challenges of developing and the benefits of integrating a scientific instrument, namely a Fourier Transform Spectrometer, in such a partitioned architecture.

  9. Space and Time Partitioning with Hardware Support for Space Applications

    NASA Astrophysics Data System (ADS)

    Pinto, S.; Tavares, A.; Montenegro, S.

    2016-08-01

    Complex and critical systems like airplanes and spacecraft implement a very fast growing amount of functions. Typically, those systems were implemented with fully federated architectures, but the number and complexity of desired functions of todays systems led aerospace industry to follow another strategy. Integrated Modular Avionics (IMA) arose as an attractive approach for consolidation, by combining several applications into one single generic computing resource. Current approach goes towards higher integration provided by space and time partitioning (STP) of system virtualization. The problem is existent virtualization solutions are not ready to fully provide what the future of aerospace are demanding: performance, flexibility, safety, security while simultaneously containing Size, Weight, Power and Cost (SWaP-C).This work describes a real time hypervisor for space applications assisted by commercial off-the-shell (COTS) hardware. ARM TrustZone technology is exploited to implement a secure virtualization solution with low overhead and low memory footprint. This is demonstrated by running multiple guest partitions of RODOS operating system on a Xilinx Zynq platform.

  10. ORGANIC-HIGH IONIC STRENGTH AQUEOUS SOLVENT SYSTEMS FOR SPIRAL COUNTER-CURRENT CHROMATOGRAPHY: GRAPHIC OPTIMIZATION OF PARTITION COEFFICIENT

    PubMed Central

    Zeng, Yun; Liu, Gang; Ma, Ying; Chen, Xiaoyuan; Ito, Yoichiro

    2012-01-01

    A new series of organic-high ionic strength aqueous two-phase solvents systems was designed for separation of highly polar compounds by spiral high-speed counter-current chromatography. A total of 21 solvent systems composed of 1-butanol-ethanol-saturated ammonium sulfate-water at various volume ratios are arranged according to an increasing order of polarity. Selection of the two-phase solvent system for a single compound or a multiple sample mixture can be achieved by two steps of partition coefficient measurements using a graphic method. The capability of the method is demonstrated by optimization of partition coefficient for seven highly polar samples including tartrazine (K=0.77), tryptophan (K=1.00), methyl green (K= 0.93), tyrosine (0.81), metanephrine (K=0.89), tyramine (K=0.98), and normetanephrine (K=0.96). Three sulfonic acid components in D&C Green No. 8 were successfully separated by HSCCC using the graphic selection of the two-phase solvent system. PMID:23467197

  11. Passive cooling safety system for liquid metal cooled nuclear reactors

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.; Hui, Marvin M.; Berglund, Robert C.

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  12. Indirect passive cooling system for liquid metal cooled nuclear reactors

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1990-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  13. High Pressure and Temperature Core Formation as an Alternative to the "Late Veneer" Hypothesis

    NASA Technical Reports Server (NTRS)

    Righter, Kevin; Pando, K.; Humayun, M.; Danielson, L.

    2011-01-01

    The highly siderophile elements (HSE; Re, Au and the Platinum Group Elements - Pd Pt, Rh, Ru, Ir, Os) are commonly utilized to constrain accretion processes in terrestrial differentiated bodies due to their affinity for FeNi metal [1]. These eight elements exhibit highly siderophile behavior, but nonetheless have highly diverse metal-silicate partition coefficients [2]. Therefore the near chondritic relative concentrations of HSEs in the terrestrial and lunar mantles, as well as some other bodies, are attributed to late accretion rather than core formation [1]. Evaluation of competing theories, such as high pressure metal-silicate partitioning or magma ocean hypotheses has been hindered by a lack of relevant partitioning data for this group of eight elements. In particular, systematic studies isolating the effect of one variable (e.g. temperature or melt compositions) are lacking. Here we undertake new experiments on all eight elements, using Fe metal and FeO-bearing silicate melts at fixed pressure, but variable temperatures. These experiments, as well as some additional planned experiments should allow partition coefficients to be more accurately calculated or estimated at the PT conditions and compositions at which core formation is thought to have occurred.

  14. Trophic niche partitioning of littoral fish species from the rocky intertidal of Helgoland, Germany

    NASA Astrophysics Data System (ADS)

    Hielscher, N. N.; Malzahn, A. M.; Diekmann, R.; Aberle, N.

    2015-12-01

    During a 3-year field study, interspecific and interannual differences in the trophic ecology of littoral fish species were investigated in the rocky intertidal of Helgoland island (North Sea). We investigated trophic niche partitioning of common coexisting littoral fish species based on a multi-tracer approach using stable isotope and fatty acids in order to show differences and similarities in resource use and feeding modes. The results of the dual-tracer approach showed clear trophic niche partitioning of the five target fish species, the goldsinny wrasse Ctenolabrus rupestris, the sand goby Pomatoschistus minutus, the painted goby Pomatoschistus pictus, the short-spined sea scorpion Myoxocephalus scorpius and the long-spined sea scorpion Taurulus bubalis. Both stable isotopes and fatty acids showed distinct differences in the trophic ecology of the studied fish species. However, the combined use of the two techniques added an additional resolution on the interannual scale. The sand goby P. minutus showed the largest trophic plasticity with a pronounced variability between years. The present data analysis provides valuable information on trophic niche partitioning of fish species in the littoral zones of Helgoland and on complex benthic food webs in general.

  15. Complete Sequence of Four Multidrug-Resistant MOBQ1 Plasmids Harboring blaGES-5 Isolated from Escherichia coli and Serratia marcescens Persisting in a Hospital in Canada.

    PubMed

    Boyd, David; Taylor, Geoffrey; Fuller, Jeff; Bryce, Elizabeth; Embree, Joanne; Gravel, Denise; Katz, Kevin; Kibsey, Pamela; Kuhn, Magdalena; Langley, Joanne; Mataseje, Laura; Mitchell, Robyn; Roscoe, Diane; Simor, Andrew; Thomas, Eva; Turgeon, Nathalie; Mulvey, Michael

    2015-06-01

    The usefulness of carbapenems for gram-negative infections is becoming compromised by organisms harboring carbapenemases, enzymes which can hydrolyze the drug. Currently KPC (class A), NDM (class B), and OXA-48 types (class D) are the most globally widespread carbapenemases. However, among the GES-type class A extended-spectrum β-lactamases (ESBLs) there are variants that hydrolyze carbapenems, with blaGES-5 being the most common. Two Escherichia coli and two Serratia marcescens harboring blaGES-5 on plasmids were isolated by the Canadian Nosocomial Infection Surveillance Program (CNISP) from four different patients in a single hospital over a 2-year period. Complete sequencing of the blaGES-5 plasmids indicated that all four had nearly identical backbones consisting of genes for replication, partitioning, and stability, but contained variant accessory regions consisting of mobile elements and antimicrobial resistance genes. The plasmids were of a novel replicon type, but belonged to the MOBQ1 group based on relaxase sequences, and appeared to be mobilizable, but not self-transmissible. Considering the time periods of bacterial isolation, it would appear the blaGES-5 plasmid has persisted in an environmental niche for at least 2 years in the hospital. This has implications for infection control and clinical care when it is transferred to clinically relevant gram-negative organisms.

  16. Partitioning of Mg, Ca, and Na between carbonatite melt and hydrous fluid at 0.1-0.2 GPa

    NASA Astrophysics Data System (ADS)

    Veksler, Ilya V.; Keppler, Hans

    Experimental studies of the element distribution between carbonatite melts and hydrous fluids are hampered by the fact that neither the fluid nor the melt can be isochemically quenched in conventional high-pressure vessels. In order to overcome this problem, we used a double-capsule technique to separate immiscible fluid and melt phases during and after the runs. The inner platinum capsules were charged with carbonate mixtures (CaCO3, MgCO3 and Na2CO3) and placed inside the outer capsules charged with distilled water and diamond powder. The latter was used as an inert trap for solids precipitating from the fluid on quenching. Carbonate melt and hydrous fluid equilibrated through a small hole left in the upper end of the inner capsule. The runs were performed in rapid-quench cold-seal pressure vessels at 0.1-0.2 GPa and 700-900°C in the two-phase (fluid+melt) stability region. Both quenched melt and quenched fluid were dissolved in dilute HCl and analysed by inductively coupled plasma atomic emission spectroscopy. The results show that under all conditions investigated, fluid/melt partition coefficients for Ca and Mg are similar and several times smaller than those for Na. At 0.1 GPa and a water/carbonatite ratio of 1 (by weight), the partition coefficients are DNa= 0.35+/- 0.02, DCa=0.09+/-0.02, and DMg=0.13+/- 0.01. Between 700 and 900°C, the effect of temperature on partitioning is negligible. However, DNa increases significantly with decreasing water/carbonatite ratio in the system. Our data show that the release of a hydrous fluid enriched in sodium and simultaneous crystallisation of calcite can transform an alkaline, vapour-saturated carbonatite melt into a body of pure calcite surrounded by zones of sodium metasomatism. Thus, it is quite possible that carbonate magmas with substantial amounts of alkalies were common parental liquids of plutonic carbonatites.

  17. Two-lattice models of trace element behavior: A response

    NASA Astrophysics Data System (ADS)

    Ellison, Adam J. G.; Hess, Paul C.

    1990-08-01

    Two-lattice melt components of Bottinga and Weill (1972), Nielsen and Drake (1979), and Nielsen (1985) are applied to major and trace element partitioning between coexisting immiscible liquids studied by RYERSON and Hess (1978) and Watson (1976). The results show that (1) the set of components most successful in one system is not necessarily portable to another system; (2) solution non-ideality within a sublattice severely limits applicability of two-lattice models; (3) rigorous application of two-lattice melt components may yield effective partition coefficients for major element components with no physical interpretation; and (4) the distinction between network-forming and network-modifying components in the sense of the two-lattice models is not clear cut. The algebraic description of two-lattice models is such that they will most successfully limit the compositional dependence of major and trace element solution behavior when the effective partition coefficient of the component of interest is essentially the same as the bulk partition coefficient of all other components within its sublattice.

  18. Toward prediction of alkane/water partition coefficients.

    PubMed

    Toulmin, Anita; Wood, J Matthew; Kenny, Peter W

    2008-07-10

    Partition coefficients were measured for 47 compounds in the hexadecane/water ( P hxd) and 1-octanol/water ( P oct) systems. Some types of hydrogen bond acceptor presented by these compounds to the partitioning systems are not well represented in the literature of alkane/water partitioning. The difference, DeltalogP, between logP oct and logP hxd is a measure of the hydrogen bonding potential of a molecule and is identified as a target for predictive modeling. Minimized molecular electrostatic potential ( V min) was shown to be an effective predictor of the contribution of hydrogen bond acceptors to DeltalogP. Carbonyl oxygen atoms were found to be stronger hydrogen bond acceptors for their electrostatic potential than heteroaromatic nitrogen or oxygen bound to hypervalent sulfur or nitrogen. Values of V min calculated for hydrogen-bonded complexes were used to explore polarization effects. Predicted logP hxd and DeltalogP were shown to be more effective than logP oct for modeling brain penetration for a data set of 18 compounds.

  19. The photochemical formation and gas-particle partitioning of oxidation products of decamethyl cyclopentasiloxane and decamethyl tetrasiloxane in the atmosphere

    NASA Astrophysics Data System (ADS)

    Chandramouli, Bharadwaj; Kamens, Richard M.

    Decamethyl cyclopentasiloxane (D 5) and decamethyl tetrasiloxane (MD 2M) were injected into a smog chamber containing fine Arizona road dust particles (95% surface area <2.6 μM) and an urban smog atmosphere in the daytime. A photochemical reaction - gas-particle partitioning reaction scheme, was implemented to simulate the formation and gas-particle partitioning of hydroxyl oxidation products of D 5 and MD 2M. This scheme incorporated the reactions of D 5 and MD 2M into an existing urban smog chemical mechanism carbon bond IV and partitioned the products between gas and particle phase by treating gas-particle partitioning as a kinetic process and specifying an uptake and off-gassing rate. A photochemical model PKSS was used to simulate this set of reactions. A Langmuirian partitioning model was used to convert the measured and estimated mass-based partitioning coefficients ( KP) to a molar or volume-based form. The model simulations indicated that >99% of all product silanol formed in the gas-phase partition immediately to particle phase and the experimental data agreed with model predictions. One product, D 4TOH was observed and confirmed for the D 5 reaction and this system was modeled successfully. Experimental data was inadequate for MD 2M reaction products and it is likely that more than one product formed. The model set up a framework into which more reaction and partitioning steps can be easily added.

  20. Carbon partitioning between oil and carbohydrates in developing oat (Avena sativa L.) seeds.

    PubMed

    Ekman, Asa; Hayden, Daniel M; Dehesh, Katayoon; Bülow, Leif; Stymne, Sten

    2008-01-01

    Cereals accumulate starch in the endosperm as their major energy reserve in the grain. In most cereals the embryo, scutellum, and aleurone layer are high in oil, but these tissues constitute a very small part of the total seed weight. However, in oat (Avena sativa L.) most of the oil in kernels is deposited in the same endosperm cells that accumulate starch. Thus oat endosperm is a desirable model system to study the metabolic switches responsible for carbon partitioning between oil and starch synthesis. A prerequisite for such investigations is the development of an experimental system for oat that allows for metabolic flux analysis using stable and radioactive isotope labelling. An in vitro liquid culture system, developed for detached oat panicles and optimized to mimic kernel composition during different developmental stages in planta, is presented here. This system was subsequently used in analyses of carbon partitioning between lipids and carbohydrates by the administration of 14C-labelled sucrose to two cultivars having different amounts of kernel oil. The data presented in this study clearly show that a higher amount of oil in the high-oil cultivar compared with the medium-oil cultivar was due to a higher proportion of carbon partitioning into oil during seed filling, predominantly at the earlier stages of kernel development.

Top