Science.gov

Sample records for common structural motif

  1. Two common structural motifs for TCR recognition by staphylococcal enterotoxins

    PubMed Central

    Rödström, Karin E. J.; Regenthal, Paulina; Bahl, Christopher; Ford, Alex; Baker, David; Lindkvist-Petersson, Karin

    2016-01-01

    Superantigens are toxins produced by Staphylococcus aureus, called staphylococcal enterotoxins (abbreviated SEA to SEU). They can cross-link the T cell receptor (TCR) and major histocompatibility complex class II, triggering a massive T cell activation and hence disease. Due to high stability and toxicity, superantigens are potential agents of bioterrorism. Hence, antagonists may not only be useful in the treatment of disease but also serve as countermeasures to biological warfare. Of particular interest are inhibitors against SEA and SEB. SEA is the main cause of food poisoning, while SEB is a common toxin manufactured as a biological weapon. Here, we present the crystal structures of SEA in complex with TCR and SEE in complex with the same TCR, complemented with computational alanine-scanning mutagenesis of SEA, SEB, SEC3, SEE, and SEH. We have identified two common areas that contribute to the general TCR binding for these superantigens. This paves the way for design of single antagonists directed towards multiple toxins. PMID:27180909

  2. Improved K-means clustering algorithm for exploring local protein sequence motifs representing common structural property.

    PubMed

    Zhong, Wei; Altun, Gulsah; Harrison, Robert; Tai, Phang C; Pan, Yi

    2005-09-01

    Information about local protein sequence motifs is very important to the analysis of biologically significant conserved regions of protein sequences. These conserved regions can potentially determine the diverse conformation and activities of proteins. In this work, recurring sequence motifs of proteins are explored with an improved K-means clustering algorithm on a new dataset. The structural similarity of these recurring sequence clusters to produce sequence motifs is studied in order to evaluate the relationship between sequence motifs and their structures. To the best of our knowledge, the dataset used by our research is the most updated dataset among similar studies for sequence motifs. A new greedy initialization method for the K-means algorithm is proposed to improve traditional K-means clustering techniques. The new initialization method tries to choose suitable initial points, which are well separated and have the potential to form high-quality clusters. Our experiments indicate that the improved K-means algorithm satisfactorily increases the percentage of sequence segments belonging to clusters with high structural similarity. Careful comparison of sequence motifs obtained by the improved and traditional algorithms also suggests that the improved K-means clustering algorithm may discover some relatively weak and subtle sequence motifs, which are undetectable by the traditional K-means algorithms. Many biochemical tests reported in the literature show that these sequence motifs are biologically meaningful. Experimental results also indicate that the improved K-means algorithm generates more detailed sequence motifs representing common structures than previous research. Furthermore, these motifs are universally conserved sequence patterns across protein families, overcoming some weak points of other popular sequence motifs. The satisfactory result of the experiment suggests that this new K-means algorithm may be applied to other areas of bioinformatics

  3. A database of protein structure families with common folding motifs.

    PubMed

    Holm, L; Ouzounis, C; Sander, C; Tuparev, G; Vriend, G

    1992-12-01

    The availability of fast and robust algorithms for protein structure comparison provides an opportunity to produce a database of three-dimensional comparisons, called families of structurally similar proteins (FSSP). The database currently contains an extended structural family for each of 154 representative (below 30% sequence identity) protein chains. Each data set contains: the search structure; all its relatives with 70-30% sequence identity, aligned structurally; and all other proteins from the representative set that contain substructures significantly similar to the search structure. Very close relatives (above 70% sequence identity) rarely have significant structural differences and are excluded. The alignments of remote relatives are the result of pairwise all-against-all structural comparisons in the set of 154 representative protein chains. The comparisons were carried out with each of three novel automatic algorithms that cover different aspects of protein structure similarity. The user of the database has the choice between strict rigid-body comparisons and comparisons that take into account interdomain motion or geometrical distortions; and, between comparisons that require strictly sequential ordering of segments and comparisons, which allow altered topology of loop connections or chain reversals. The data sets report the structurally equivalent residues in the form of a multiple alignment and as a list of matching fragments to facilitate inspection by three-dimensional graphics. If substructures are ignored, the result is a database of structure alignments of full-length proteins, including those in the twilight zone of sequence similarity.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Disordered amyloidogenic peptides may insert into the membrane and assemble into common cyclic structural motifs

    PubMed Central

    Jang, Hyunbum; Arce, Fernando Teran; Ramachandran, Srinivasan; Kagan, Bruce L.; Lal, Ratnesh; Nussinov, Ruth

    2014-01-01

    Aggregation of disordered amyloidogenic peptides into oligomers is the causative agent of amyloid-related diseases. In solution, disordered protein states are characterized by heterogeneous ensembles. Among these, β-rich conformers self-assemble via a conformational selection mechanism to form energetically-favored cross-β structures, regardless of their precise sequences. These disordered peptides can also penetrate the membrane, and electrophysiological data indicate that they form ion-conducting channels. Based on these and additional data, including imaging and molecular dynamic simulations of a range of amyloid peptides, Alzheimer’s amyloid-β (Aβ) peptide, its disease-related variants with point mutations and N-terminal truncated species, other amyloidogenic peptides, as well as a cytolytic peptide and a synthetic gel-forming peptide, we suggest that disordered amyloidogenic peptides can also present a common motif in the membrane. The motif consists of curved, moon-like β-rich oligomers associated into annular organizations. The motif is favored in the lipid bilayer since it permits hydrophobic side chains to face and interact with the membrane and the charged/polar residues to face the solvated channel pores. Such channels are toxic since their pores allow uncontrolled leakage of ions into/out of the cell, destabilizing cellular ionic homeostasis. Here we detail Aβ, whose aggregation is associated with Alzheimer’s disease (AD) and for which there are the most abundant data. AD is a protein misfolding disease characterized by a build-up of Aβ peptide as senile plaques, neurodegeneration, and memory loss. Excessively produced Aβ peptides may directly induce cellular toxicity, even without the involvement of membrane receptors through Aβ peptide-plasma membrane interactions. PMID:24566672

  5. A Common Structural Motif in the Binding of Virulence Factors to Bacterial Secretion Chaperones

    SciTech Connect

    Lilic,M.; Vujanac, M.; Stebbins, C.

    2006-01-01

    Salmonella invasion protein A (SipA) is translocated into host cells by a type III secretion system (T3SS) and comprises two regions: one domain binds its cognate type III secretion chaperone, InvB, in the bacterium to facilitate translocation, while a second domain functions in the host cell, contributing to bacterial uptake by polymerizing actin. We present here the crystal structures of the SipA chaperone binding domain (CBD) alone and in complex with InvB. The SipA CBD is found to consist of a nonglobular polypeptide as well as a large globular domain, both of which are necessary for binding to InvB. We also identify a structural motif that may direct virulence factors to their cognate chaperones in a diverse range of pathogenic bacteria. Disruption of this structural motif leads to a destabilization of several chaperone-substrate complexes from different species, as well as an impairment of secretion in Salmonella.

  6. Decavanadate possesses alpha-adrenergic agonist activity and a structural motif common with trans-beta form of noradrenaline.

    PubMed

    Venkataraman, B V; Ravishankar, H N; Rao, A V; Kalyani, P; Sharada, G; Namboodiri, K; Gabor, B; Ramasarma, T

    1997-04-01

    Decavanadate, an inorganic polymer of vanadate, produced contraction of rat aortic rings at a relatively high concentration compared to phenylephrine, an agonist of alpha-adrenergic receptor. This effect was blocked by two known alpha-adrenergic receptor antagonists, prazosin and phenoxybenzamine. Decavanadate, formed by possible dimerization of V5 under acid conditions, possessed a structural feature of two pairs of unshared oxygen atoms at a distance of 3.12 A, not found in its constituents of V4 or V5. A structural motif of O..O..O using such oxygen atoms is recognized in decavanadate. This matches with a similar motif of N..O..O that uses the essential amino and hydroxyl groups of the side-chain and the m-hydroxyl group in trans-beta form of noradrenaline. The interaction of such a structural motif with the membrane receptor is likely to be the basis of the unusual noradrenaline-mimic action of decavanadate.

  7. The common and the distinctive features of the bulged-G motif based on a 1.04 Å resolution RNA structure

    PubMed Central

    Correll, Carl C.; Beneken, Jutta; Plantinga, Matthew J.; Lubbers, Melissa; Chan, Yuen-Ling

    2003-01-01

    Bulged-G motifs are ubiquitous internal RNA loops that provide specific recognition sites for proteins and RNAs. To establish the common and distinctive features of the motif we determined the structures of three variants and compared them with related structures. The variants are 27-nt mimics of the sarcin/ricin loop (SRL) from Escherichia coli 23S ribosomal RNA that is an essential part of the binding site for elongation factors (EFs). The wild-type SRL has now been determined at 1.04 Å resolution, supplementing data obtained before at 1.11 Å and allowing the first calculation of coordinate error for an RNA motif. The other two structures, having a viable (C2658U•G2663A) or a lethal mutation (C2658G• G2663C), were determined at 1.75 and 2.25 Å resolution, respectively. Comparisons reveal that bulged-G motifs have a common hydration and geometry, with flexible junctions at flanking structural elements. Six conserved nucleotides preserve the fold of the motif; the remaining seven to nine vary in sequence and alter contacts in both grooves. Differences between accessible functional groups of the lethal mutation and those of the viable mutation and wild-type SRL may account for the impaired elongation factor binding to ribosomes with the C2658G•G2663C mutation and may underlie the lethal phenotype. PMID:14627814

  8. Betaine 0.77-perhydrate 0.23-hydrate and common structural motifs in crystals of amino acid perhydrates.

    PubMed

    Minkov, Vasily S; Kapustin, Evgeny A; Boldyreva, Elena V

    2013-04-01

    The title compound, betaine 0.77-perhydrate 0.23-hydrate, (CH3)3N(+)CH2COO(-)·0.77H2O2·0.23H2O, crystallizes in the orthorhombic noncentrosymmetric space group Pca2(1). Chiral molecules of hydrogen peroxide are positionally disordered with water molecules in a ratio of 0.77:0.23. Betaine, 2-(trimethylazaniumyl)acetate, preserves its zwitterionic state, with a positively charged ammonium group and a negatively charged carboxylate group. The molecular conformation of betaine here differs from the conformations of both anhydrous betaine and its hydrate, mainly in the orientation of the carboxylate group with respect to the C-C-N skeleton. Hydrogen peroxide is linked via two hydrogen bonds to carboxylate groups, forming infinite chains along the crystallographic a axis, which are very similar to those in the crystal structure of betaine hydrate. The present work contributes to the understanding of the structure-forming factors for amino acid perhydrates, which are presently attracting much attention. A correlation is suggested between the ratio of amino acid zwitterions and hydrogen peroxide in the unit cell and the structural motifs present in the crystal structures of all currently known amino acids perhydrates. This can help to classify the crystal structures of amino acid perhydrates and to design new crystal structures.

  9. North American Species of Cerambycid Beetles in the Genus Neoclytus Share a Common Hydroxyhexanone-Hexanediol Pheromone Structural Motif.

    PubMed

    Ray, Ann M; Millar, Jocelyn G; Moreira, Jardel A; McElfresh, J Steven; Mitchell, Robert F; Barbour, James D; Hanks, Lawrence M

    2015-08-01

    Many species of cerambycid beetles in the subfamily Cerambycinae are known to use male-produced pheromones composed of one or a few components such as 3-hydroxyalkan-2-ones and the related 2,3-alkanediols. Here, we show that this pheromone structure is characteristic of the cerambycine genus Neoclytus Thomson, based on laboratory and field studies of 10 species and subspecies. Males of seven taxa produced pheromones composed of (R)-3-hydroxyhexan-2-one as a single component, and the synthetic pheromone attracted adults of both sexes in field bioassays, including the eastern North American taxa Neoclytus caprea (Say), Neoclytus mucronatus mucronatus (F.), and Neoclytus scutellaris (Olivier), and the western taxa Neoclytus conjunctus (LeConte), Neoclytus irroratus (LeConte), and Neoclytus modestus modestus Fall. Males of the eastern Neoclytus acuminatus acuminatus (F.) and the western Neoclytus tenuiscriptus Fall produced (2S,3S)-2,3-hexanediol as their dominant or sole pheromone component. Preliminary data also revealed that males of the western Neoclytus balteatus LeConte produced a blend of (R)-3-hydroxyhexan-2-one and (2S,3S)-2,3-hexanediol but also (2S,3S)-2,3-octanediol as a minor component. The fact that the hydroxyketone-hexanediol structural motif is consistent among these North American species provides further evidence of the high degree of conservation of pheromone structures among species in the subfamily Cerambycinae.

  10. Cofunctional Subpathways Were Regulated by Transcription Factor with Common Motif, Common Family, or Common Tissue.

    PubMed

    Su, Fei; Shang, Desi; Xu, Yanjun; Feng, Li; Yang, Haixiu; Liu, Baoquan; Su, Shengyang; Chen, Lina; Li, Xia

    2015-01-01

    Dissecting the characteristics of the transcription factor (TF) regulatory subpathway is helpful for understanding the TF underlying regulatory function in complex biological systems. To gain insight into the influence of TFs on their regulatory subpathways, we constructed a global TF-subpathways network (TSN) to analyze systematically the regulatory effect of common-motif, common-family, or common-tissue TFs on subpathways. We performed cluster analysis to show that the common-motif, common-family, or common-tissue TFs that regulated the same pathway classes tended to cluster together and contribute to the same biological function that led to disease initiation and progression. We analyzed the Jaccard coefficient to show that the functional consistency of subpathways regulated by the TF pairs with common motif, common family, or common tissue was significantly greater than the random TF pairs at the subpathway level, pathway level, and pathway class level. For example, HNF4A (hepatocyte nuclear factor 4, alpha) and NR1I3 (nuclear receptor subfamily 1, group I, member 3) were a pair of TFs with common motif, common family, and common tissue. They were involved in drug metabolism pathways and were liver-specific factors required for physiological transcription. In short, we inferred that the cofunctional subpathways were regulated by common-motif, common-family, or common-tissue TFs.

  11. Caveats in modeling a common motif in genetic circuits

    NASA Astrophysics Data System (ADS)

    Labavić, Darka; Nagel, Hannes; Janke, Wolfhard; Meyer-Ortmanns, Hildegard

    2013-06-01

    From a coarse-grained perspective, the motif of a self-activating species, activating a second species that acts as its own repressor, is widely found in biological systems, in particular in genetic systems with inherent oscillatory behavior. Here we consider a specific realization of this motif as a genetic circuit, termed the bistable frustrated unit, in which genes are described as directly producing proteins. Upon an improved resolution in time, we focus on the effect that inherent time scales on the underlying scale can have on the bifurcation patterns on a coarser scale. Time scales are set by the binding and unbinding rates of the transcription factors to the promoter regions of the genes. Depending on the ratio of these rates to the decay times of both proteins, the appropriate averaging procedure for obtaining a coarse-grained description changes and leads to sets of deterministic equations, which considerably differ in their bifurcation structure. In particular, the desired intermediate range of regular limit cycles fades away when the binding rates of genes are not fast as compared to the decay time of the proteins. Our analysis illustrates that the common topology of the widely found motif alone does not imply universal features in the dynamics.

  12. Motifs and structural blocks retrieval by GHT

    NASA Astrophysics Data System (ADS)

    Cantoni, Virginio; Ferone, Alessio; Petrosino, Alfredo; Polat, Ozlem

    2014-06-01

    The structure of a protein gives more insight on the protein function than its amino acid sequence. Protein structure analysis and comparison are important for understanding the evolutionary relationships among proteins, predicting protein functions, and predicting protein folding. Proteins are formed by two basic regular 3D structural patterns, called Secondary Structures (SSs): helices and sheets. A structural motif is a compact 3D protein block referring to a small specific combination of secondary structural elements, which appears in a variety of molecules. In this paper we compare a few approaches for motif retrieval based on the Generalized Hough Transform (GHT). A primary technique is to adopt the single SS as structural primitives; alternatives are to adopt a SSs pair as primitive structural element, or a SSs triplet, and so on up-to an entire motif. The richer the primitive, the higher the time for pre-analysis and search, and the simpler the inspection process on the parameter space for analyzing the peaks. Performance comparisons, in terms of precision and computation time, are here presented considering the retrieval of motifs composed by three to five SSs for more than 15 million searches. The approach can be easily applied to the retrieval of greater blocks, up to protein domains, or even entire proteins.

  13. Analyzing network reliability using structural motifs.

    PubMed

    Khorramzadeh, Yasamin; Youssef, Mina; Eubank, Stephen; Mowlaei, Shahir

    2015-04-01

    This paper uses the reliability polynomial, introduced by Moore and Shannon in 1956, to analyze the effect of network structure on diffusive dynamics such as the spread of infectious disease. We exhibit a representation for the reliability polynomial in terms of what we call structural motifs that is well suited for reasoning about the effect of a network's structural properties on diffusion across the network. We illustrate by deriving several general results relating graph structure to dynamical phenomena.

  14. RNA structural motif recognition based on least-squares distance.

    PubMed

    Shen, Ying; Wong, Hau-San; Zhang, Shaohong; Zhang, Lin

    2013-09-01

    RNA structural motifs are recurrent structural elements occurring in RNA molecules. RNA structural motif recognition aims to find RNA substructures that are similar to a query motif, and it is important for RNA structure analysis and RNA function prediction. In view of this, we propose a new method known as RNA Structural Motif Recognition based on Least-Squares distance (LS-RSMR) to effectively recognize RNA structural motifs. A test set consisting of five types of RNA structural motifs occurring in Escherichia coli ribosomal RNA is compiled by us. Experiments are conducted for recognizing these five types of motifs. The experimental results fully reveal the superiority of the proposed LS-RSMR compared with four other state-of-the-art methods.

  15. A multi-pronged search for a common structural motif in the secretion signal of Salmonella enterica serovar Typhimurium type III effector proteins

    SciTech Connect

    Buchko, Garry W.; Niemann, George; Baker, Erin Shammel; Belov, Mikhail E.; Smith, Richard D.; Heffron, Fred; Adkins, Joshua N.; McDermott, Jason E.

    2010-11-08

    Many pathogenic Gram-negative bacteria use a type III secretion system (T3SS) to deliver effector proteins into the host cell where they reprogram host defenses and facilitate pathogenesis. While it has been determined that the first 20 - 30 N-terminal residues usually contain the ‘secretion signal’ that targets effector proteins for translocation, the molecular basis for recognition of this signal is not understood. Recent machine-learning approaches, such as SVM-based Identification and Evaluation of Virulence Effectors (SIEVE), have improved the ability to identify effector proteins from genomics sequence information. While these methods all suggest that the T3SS secretion signal has a characteristic amino acid composition bias, it is still unclear if the amino acid pattern is important and if there are any unifying structural properties that direct recognition. To address these issues a peptide corresponding to the secretion signal for Salmonella enterica serovar Typhimurium effector SseJ was synthesized (residues 1-30, SseJ) along with scrambled peptides of the same amino acid composition that produced high (SseJ-H) and low (SseJ-L) SIEVE scores. The secretion properties of these three peptides were tested using a secretion signal-CyaA fusion assay and their structures systematically probed using circular dichroism, nuclear magnetic resonance, and ion mobility spectrometry-mass spectrometry. The signal-CyaA fusion assay showed that the native and SseJ-H fusion constructs were secreted into J774 macrophage at similar levels via the SPI-2 secretion pathway while secretion of the SseJ-L fusion construct was substantially retarded, suggesting that the SseJ secretion signal was sequence order dependent. The structural studies showed that the SseJ, SseJ-H, and SseJ-L peptides were intrinsically disordered in aqueous solution with only a small predisposition to adopt nascent helical structure in the presence of the powerful structure stabilizing agent, 1

  16. Occurrence probability of structured motifs in random sequences.

    PubMed

    Robin, S; Daudin, J-J; Richard, H; Sagot, M-F; Schbath, S

    2002-01-01

    The problem of extracting from a set of nucleic acid sequences motifs which may have biological function is more and more important. In this paper, we are interested in particular motifs that may be implicated in the transcription process. These motifs, called structured motifs, are composed of two ordered parts separated by a variable distance and allowing for substitutions. In order to assess their statistical significance, we propose approximations of the probability of occurrences of such a structured motif in a given sequence. An application of our method to evaluate candidate promoters in E. coli and B. subtilis is presented. Simulations show the goodness of the approximations.

  17. SLiMDisc: short, linear motif discovery, correcting for common evolutionary descent

    PubMed Central

    Davey, Norman E.; Shields, Denis C.; Edwards, Richard J.

    2006-01-01

    Many important interactions of proteins are facilitated by short, linear motifs (SLiMs) within a protein's primary sequence. Our aim was to establish robust methods for discovering putative functional motifs. The strongest evidence for such motifs is obtained when the same motifs occur in unrelated proteins, evolving by convergence. In practise, searches for such motifs are often swamped by motifs shared in related proteins that are identical by descent. Prediction of motifs among sets of biologically related proteins, including those both with and without detectable similarity, were made using the TEIRESIAS algorithm. The number of motif occurrences arising through common evolutionary descent were normalized based on treatment of BLAST local alignments. Motifs were ranked according to a score derived from the product of the normalized number of occurrences and the information content. The method was shown to significantly outperform methods that do not discount evolutionary relatedness, when applied to known SLiMs from a subset of the eukaryotic linear motif (ELM) database. An implementation of Multiple Spanning Tree weighting outperformed two other weighting schemes, in a variety of settings. PMID:16855291

  18. Binding Mode of Acetylated Histones to Bromodomains: Variations on a Common Motif.

    PubMed

    Marchand, Jean-Rémy; Caflisch, Amedeo

    2015-08-01

    Bromodomains, epigenetic readers that recognize acetylated lysine residues in histone tails, are potential drug targets in cancer and inflammation. Herein we review the crystal structures of human bromodomains in complex with histone tails and analyze the main interaction motifs. The histone backbone is extended and occupies, in one of the two possible orientations, the bromodomain surface groove lined by the ZA and BC loops. The acetyl-lysine side chain is buried in the cavity between the four helices of the bromodomain, and its oxygen atom accepts hydrogen bonds from a structural water molecule and a conserved asparagine residue in the BC loop. In stark contrast to this common binding motif, a large variety of ancillary interactions emerge from our analysis. In 10 of 26 structures, a basic side chain (up to five residues up- or downstream in sequence with respect to the acetyl-lysine) interacts with the carbonyl groups of the C-terminal turn of helix αB. Furthermore, the complexes reveal many heterogeneous backbone hydrogen bonds (direct or water-bridged). These interactions contribute unselectively to the binding of acetylated histone tails to bromodomains, which provides further evidence that specific recognition is modulated by combinations of multiple histone modifications and multiple modules of the proteins involved in transcription.

  19. Automated motif extraction and classification in RNA tertiary structures

    PubMed Central

    Djelloul, Mahassine; Denise, Alain

    2008-01-01

    We used a novel graph-based approach to extract RNA tertiary motifs. We cataloged them all and clustered them using an innovative graph similarity measure. We applied our method to three widely studied structures: Haloarcula marismortui 50S (H.m 50S), Escherichia coli 50S (E. coli 50S), and Thermus thermophilus 16S (T.th 16S) RNAs. We identified 10 known motifs without any prior knowledge of their shapes or positions. We additionally identified four putative new motifs. PMID:18957493

  20. A novel secondary structure based on fused five-membered rings motif

    PubMed Central

    Dhar, Jesmita; Kishore, Raghuvansh; Chakrabarti, Pinak

    2016-01-01

    An analysis of protein structures indicates the existence of a novel, fused five-membered rings motif, comprising of two residues (i and i + 1), stabilized by interresidue Ni+1–H∙∙∙Ni and intraresidue Ni+1–H∙∙∙O=Ci+1 hydrogen bonds. Fused-rings geometry is the common thread running through many commonly occurring motifs, such as β-turn, β-bulge, Asx-turn, Ser/Thr-turn, Schellman motif, and points to its structural robustness. A location close to the beginning of a β-strand is rather common for the motif. Devoid of side chain, Gly seems to be a key player in this motif, occurring at i, for which the backbone torsion angles cluster at ~(−90°, −10°) and (70°, 20°). The fused-rings structures, distant from each other in sequence, can hydrogen bond with each other, and the two segments aligned to each other in a parallel fashion, give rise to a novel secondary structure, topi, which is quite common in proteins, distinct from two major secondary structures, α-helix and β-sheet. Majority of the peptide segments making topi are identified as aggregation-prone and the residues tend to be conserved among homologous proteins. PMID:27511362

  1. Conditional graphical models for protein structural motif recognition.

    PubMed

    Liu, Yan; Carbonell, Jaime; Gopalakrishnan, Vanathi; Weigele, Peter

    2009-05-01

    Determining protein structures is crucial to understanding the mechanisms of infection and designing drugs. However, the elucidation of protein folds by crystallographic experiments can be a bottleneck in the development process. In this article, we present a probabilistic graphical model framework, conditional graphical models, for predicting protein structural motifs. It represents the structure characteristics of a structural motif using a graph, where the nodes denote the secondary structure elements, and the edges indicate the side-chain interactions between the components either within one protein chain or between chains. Then the model defines the optimal segmentation of a protein sequence against the graph by maximizing its "conditional" probability so that it can take advantages of the discriminative training approach. Efficient approximate inference algorithms using reversible jump Markov Chain Monte Carlo (MCMC) algorithm are developed to handle the resulting complex graphical models. We test our algorithm on four important structural motifs, and our method outperforms other state-of-art algorithms for motif recognition. We also hypothesize potential membership proteins of target folds from Swiss-Prot, which further supports the evolutionary hypothesis about viral folds.

  2. Structural Relationships in the Lysozyme Superfamily: Significant Evidence for Glycoside Hydrolase Signature Motifs

    PubMed Central

    Wohlkönig, Alexandre; Huet, Joëlle; Looze, Yvan; Wintjens, René

    2010-01-01

    Background Chitin is a polysaccharide that forms the hard, outer shell of arthropods and the cell walls of fungi and some algae. Peptidoglycan is a polymer of sugars and amino acids constituting the cell walls of most bacteria. Enzymes that are able to hydrolyze these cell membrane polymers generally play important roles for protecting plants and animals against infection with insects and pathogens. A particular group of such glycoside hydrolase enzymes share some common features in their three-dimensional structure and in their molecular mechanism, forming the lysozyme superfamily. Results Besides having a similar fold, all known catalytic domains of glycoside hydrolase proteins of lysozyme superfamily (families and subfamilies GH19, GH22, GH23, GH24 and GH46) share in common two structural elements: the central helix of the all-α domain, which invariably contains the catalytic glutamate residue acting as general-acid catalyst, and a β-hairpin pointed towards the substrate binding cleft. The invariant β-hairpin structure is interestingly found to display the highest amino acid conservation in aligned sequences of a given family, thereby allowing to define signature motifs for each GH family. Most of such signature motifs are found to have promising performances for searching sequence databases. Our structural analysis further indicates that the GH motifs participate in enzymatic catalysis essentially by containing the catalytic water positioning residue of inverting mechanism. Conclusions The seven families and subfamilies of the lysozyme superfamily all have in common a β-hairpin structure which displays a family-specific sequence motif. These GH β-hairpin motifs contain potentially important residues for the catalytic activity, thereby suggesting the participation of the GH motif to catalysis and also revealing a common catalytic scheme utilized by enzymes of the lysozyme superfamily. PMID:21085702

  3. Defining and searching for structural motifs using DeepView/Swiss-PdbViewer

    PubMed Central

    2012-01-01

    Background Today, recognition and classification of sequence motifs and protein folds is a mature field, thanks to the availability of numerous comprehensive and easy to use software packages and web-based services. Recognition of structural motifs, by comparison, is less well developed and much less frequently used, possibly due to a lack of easily accessible and easy to use software. Results In this paper, we describe an extension of DeepView/Swiss-PdbViewer through which structural motifs may be defined and searched for in large protein structure databases, and we show that common structural motifs involved in stabilizing protein folds are present in evolutionarily and structurally unrelated proteins, also in deeply buried locations which are not obviously related to protein function. Conclusions The possibility to define custom motifs and search for their occurrence in other proteins permits the identification of recurrent arrangements of residues that could have structural implications. The possibility to do so without having to maintain a complex software/hardware installation on site brings this technology to experts and non-experts alike. PMID:22823337

  4. A Common Molecular Motif Characterizes Extracellular Allosteric Enhancers of GPCR Aminergic Receptors and Suggests Enhancer Mechanism of Action

    PubMed Central

    Bernstein, Robert Root; Dillon, Patrick F

    2014-01-01

    Several classes of compounds that have no intrinsic activity on aminergic systems nonetheless enhance the potency of aminergic receptor ligands three-fold or more while significantly increasing their duration of activity, preventing tachyphylaxis and reversing fade. Enhancer compounds include ascorbic acid, ethylenediaminetetraacetic acid, cortico-steroids, opioid peptides, opiates and opiate antagonists. This paper provides the first review of aminergic enhancement, demonstrating that all enhancers have a common, inobvious molecular motif and work through a common mechanism that is manifested by three common characteristics. First, aminergic enhancers bind directly to the amines they enhance, suggesting that the common structural motif is reflected in common binding targets. Second, one common target is the first extracellular loop of aminergic receptors. Third, at least some enhancers are antiphosphodiesterases. These observations suggest that aminergic enhancers act on the extracellular surface of aminergic receptors to keep the receptor in its high affinity state, trapping the ligand inside the receptor. Enhancer binding produces allosteric modifications of the receptor structure that interfere with phosphorylation of the receptor, thereby inhibiting down-regulation of the receptor. The mechanism explains how enhancers potentiate aminergic activity and increase duration of activity and makes testable predictions about additional compounds that should act as aminergic enhancers. PMID:25174918

  5. New structural motif for carboxylic acid perhydrolases.

    PubMed

    Yin, DeLu Tyler; Purpero, Vince M; Fujii, Ryota; Jing, Qing; Kazlauskas, Romas J

    2013-02-25

    Some serine hydrolases also catalyze a promiscuous reaction--reversible perhydrolysis of carboxylic acids to make peroxycarboxylic acids. Five X-ray crystal structures of these carboxylic acid perhydrolases show a proline in the oxyanion loop. Here, we test whether this proline is essential for high perhydrolysis activity using Pseudomonas fluorescens esterase (PFE). The L29P variant of this esterase catalyzes perhydrolysis 43-fold faster (k(cat) comparison) than the wild type. Surprisingly, saturation mutagenesis at the 29 position of PFE identified six other amino acid substitutions that increase perhydrolysis of acetic acid at least fourfold over the wild type. The best variant, L29I PFE, catalyzed perhydrolysis 83-times faster (k(cat) comparison) than wild-type PFE and twice as fast as L29P PFE. Despite the different amino acid in the oxyanion loop, L29I PFE shows a similar selectivity for hydrogen peroxide over water as L29P PFE (β(0)=170 vs. 160 M(-1)), and a similar fast formation of acetyl-enzyme (140 vs. 62 U mg(-1)). X-ray crystal structures of L29I PFE with and without bound acetate show an unusual mixture of two different oxyanion loop conformations. The type II β-turn conformation resembles the wild-type structure and is unlikely to increase perhydrolysis, but the type I β-turn conformation creates a binding site for a second acetate. Modeling suggests that a previously proposed mechanism for L29P PFE can be extended to include L29I PFE, so that an acetate accepts a hydrogen bond to promote faster formation of the acetyl-enzyme.

  6. Maximum likelihood density modification by pattern recognition of structural motifs

    DOEpatents

    Terwilliger, Thomas C.

    2004-04-13

    An electron density for a crystallographic structure having protein regions and solvent regions is improved by maximizing the log likelihood of a set of structures factors {F.sub.h } using a local log-likelihood function: (x)+p(.rho.(x).vertline.SOLV)p.sub.SOLV (x)+p(.rho.(x).vertline.H)p.sub.H (x)], where p.sub.PROT (x) is the probability that x is in the protein region, p(.rho.(x).vertline.PROT) is the conditional probability for .rho.(x) given that x is in the protein region, and p.sub.SOLV (x) and p(.rho.(x).vertline.SOLV) are the corresponding quantities for the solvent region, p.sub.H (x) refers to the probability that there is a structural motif at a known location, with a known orientation, in the vicinity of the point x; and p(.rho.(x).vertline.H) is the probability distribution for electron density at this point given that the structural motif actually is present. One appropriate structural motif is a helical structure within the crystallographic structure.

  7. Structural assessment of glycyl mutations in invariantly conserved motifs.

    PubMed

    Prakash, Tulika; Sandhu, Kuljeet Singh; Singh, Nitin Kumar; Bhasin, Yasha; Ramakrishnan, C; Brahmachari, Samir K

    2007-11-15

    Motifs that are evolutionarily conserved in proteins are crucial to their structure and function. In one of our earlier studies, we demonstrated that the conserved motifs occurring invariantly across several organisms could act as structural determinants of the proteins. We observed the abundance of glycyl residues in these invariantly conserved motifs. The role of glycyl residues in highly conserved motifs has not been studied extensively. Thus, it would be interesting to examine the structural perturbations induced by mutation in these conserved glycyl sites. In this work, we selected a representative set of invariant signature (IS) peptides for which both the PDB structure and mutation information was available. We thoroughly analyzed the conformational features of the glycyl sites and their local interactions with the surrounding residues. Using Ramachandran angles, we showed that the glycyl residues occurring in these IS peptides, which have undergone mutation, occurred more often in the L-disallowed as compared with the L-allowed region of the Ramachandran plot. Short range contacts around the mutation site were analyzed to study the steric effects. With the results obtained from our analysis, we hypothesize that any change of activity arising because of such mutations must be attributed to the long-range interaction(s) of the new residue if the glycyl residue in the IS peptide occurred in the L-allowed region of the Ramachandran plot. However, the mutation of those conserved glycyl residues that occurred in the L-disallowed region of the Ramachandran plot might lead to an altered activity of the protein as a result of an altered conformation of the backbone in the immediate vicinity of the glycyl residue, in addition to long range effects arising from the long side chains of the new residue. Thus, the loss of activity because of mutation in the conserved glycyl site might either relate to long range interactions or to local perturbations around the site

  8. Functional implications of local DNA structures in regulatory motifs.

    PubMed

    Xiang, Qian

    2013-01-01

    The three-dimensional structure of DNA has been proposed to be a major determinant for functional transcription factors (TFs) and DNA interaction. Here, we use hydroxyl radical cleavage pattern as a measure of local DNA structure. We compared the conservation between DNA sequence and structure in terms of information content and attempted to assess the functional implications of DNA structures in regulatory motifs. We used statistical methods to evaluate the structural divergence of substituting a single position within a binding site and applied them to a collection of putative regulatory motifs. The following are our major observations: (i) we observed more information in structural alignment than in the corresponding sequence alignment for most of the transcriptional factors; (ii) for each TF, majority of positions have more information in the structural alignment as compared to the sequence alignment; (iii) we further defined a DNA structural divergence score (SD score) for each wild-type and mutant pair that is distinguished by single-base mutation. The SD score for benign mutations is significantly lower than that of switch mutations. This indicates structural conservation is also important for TFBS to be functional and DNA structures will provide previously unappreciated information for TF to realize the binding specificity.

  9. Structural motifs recurring in different folds recognize the same ligand fragments

    PubMed Central

    Ausiello, Gabriele; Gherardini, Pier Federico; Gatti, Elena; Incani, Ottaviano; Helmer-Citterich, Manuela

    2009-01-01

    Background The structural analysis of protein ligand binding sites can provide information relevant for assigning functions to unknown proteins, to guide the drug discovery process and to infer relations among distant protein folds. Previous approaches to the comparative analysis of binding pockets have usually been focused either on the ligand or the protein component. Even though several useful observations have been made with these approaches they both have limitations. In the former case the analysis is restricted to binding pockets interacting with similar ligands, while in the latter it is difficult to systematically check whether the observed structural similarities have a functional significance. Results Here we propose a novel methodology that takes into account the structure of both the binding pocket and the ligand. We first look for local similarities in a set of binding pockets and then check whether the bound ligands, even if completely different, share a common fragment that can account for the presence of the structural motif. Thanks to this method we can identify structural motifs whose functional significance is explained by the presence of shared features in the interacting ligands. Conclusion The application of this method to a large dataset of binding pockets allows the identification of recurring protein motifs that bind specific ligand fragments, even in the context of molecules with a different overall structure. In addition some of these motifs are present in a high number of evolutionarily unrelated proteins. PMID:19527512

  10. Nucleic Acid i-Motif Structures in Analytical Chemistry.

    PubMed

    Alba, Joan Josep; Sadurní, Anna; Gargallo, Raimundo

    2016-09-02

    Under the appropriate experimental conditions of pH and temperature, cytosine-rich segments in DNA or RNA sequences may produce a characteristic folded structure known as an i-motif. Besides its potential role in vivo, which is still under investigation, this structure has attracted increasing interest in other fields due to its sharp, fast and reversible pH-driven conformational changes. This "on/off" switch at molecular level is being used in nanotechnology and analytical chemistry to develop nanomachines and sensors, respectively. This paper presents a review of the latest applications of this structure in the field of chemical analysis.

  11. Structure and ubiquitin binding of the ubiquitin-interacting motif

    SciTech Connect

    Fisher,R.; Wang, B.; Alam, S.; Higginson, D.; Robinson, H.; Sundquist, C.; Hill, C.

    2003-01-01

    Ubiquitylation is used to target proteins into a large number of different biological processes including proteasomal degradation, endocytosis, virus budding, and vacuolar protein sorting (Vps). Ubiquitylated proteins are typically recognized using one of several different conserved ubiquitin binding modules. Here, we report the crystal structure and ubiquitin binding properties of one such module, the ubiquitin-interacting motif (UIM). We found that UIM peptides from several proteins involved in endocytosis and vacuolar protein sorting including Hrs, Vps27p, Stam1, and Eps15 bound specifically, but with modest affinity (K{sub d} = 0.1-1 mM), to free ubiquitin. Full affinity ubiquitin binding required the presence of conserved acidic patches at the N and C terminus of the UIM, as well as highly conserved central alanine and serine residues. NMR chemical shift perturbation mapping experiments demonstrated that all of these UIM peptides bind to the I44 surface of ubiquitin. The 1.45 {angstrom} resolution crystal structure of the second yeast Vps27p UIM (Vps27p-2) revealed that the ubiquitin-interacting motif forms an amphipathic helix. Although Vps27p-2 is monomeric in solution, the motif unexpectedly crystallized as an antiparallel four-helix bundle, and the potential biological implications of UIM oligomerization are therefore discussed.

  12. Spectral Barcoding of Quantum Dots: Deciphering Structural Motifs from the Excitonic Spectra

    SciTech Connect

    Mlinar, V.; Zunger, A.

    2009-01-01

    Self-assembled semiconductor quantum dots (QDs) show in high-resolution single-dot spectra a multitude of sharp lines, resembling a barcode, due to various neutral and charged exciton complexes. Here we propose the 'spectral barcoding' method that deciphers structural motifs of dots by using such barcode as input to an artificial-intelligence learning system. Thus, we invert the common practice of deducing spectra from structure by deducing structure from spectra. This approach (i) lays the foundation for building a much needed structure-spectra understanding for large nanostructures and (ii) can guide future design of desired optical features of QDs by controlling during growth only those structural motifs that decide given optical features.

  13. WildSpan: mining structured motifs from protein sequences

    PubMed Central

    2011-01-01

    Background Automatic extraction of motifs from biological sequences is an important research problem in study of molecular biology. For proteins, it is desired to discover sequence motifs containing a large number of wildcard symbols, as the residues associated with functional sites are usually largely separated in sequences. Discovering such patterns is time-consuming because abundant combinations exist when long gaps (a gap consists of one or more successive wildcards) are considered. Mining algorithms often employ constraints to narrow down the search space in order to increase efficiency. However, improper constraint models might degrade the sensitivity and specificity of the motifs discovered by computational methods. We previously proposed a new constraint model to handle large wildcard regions for discovering functional motifs of proteins. The patterns that satisfy the proposed constraint model are called W-patterns. A W-pattern is a structured motif that groups motif symbols into pattern blocks interleaved with large irregular gaps. Considering large gaps reflects the fact that functional residues are not always from a single region of protein sequences, and restricting motif symbols into clusters corresponds to the observation that short motifs are frequently present within protein families. To efficiently discover W-patterns for large-scale sequence annotation and function prediction, this paper first formally introduces the problem to solve and proposes an algorithm named WildSpan (sequential pattern mining across large wildcard regions) that incorporates several pruning strategies to largely reduce the mining cost. Results WildSpan is shown to efficiently find W-patterns containing conserved residues that are far separated in sequences. We conducted experiments with two mining strategies, protein-based and family-based mining, to evaluate the usefulness of W-patterns and performance of WildSpan. The protein-based mining mode of WildSpan is developed for

  14. DNA nanotechnology based on i-motif structures.

    PubMed

    Dong, Yuanchen; Yang, Zhongqiang; Liu, Dongsheng

    2014-06-17

    CONSPECTUS: Most biological processes happen at the nanometer scale, and understanding the energy transformations and material transportation mechanisms within living organisms has proved challenging. To better understand the secrets of life, researchers have investigated artificial molecular motors and devices over the past decade because such systems can mimic certain biological processes. DNA nanotechnology based on i-motif structures is one system that has played an important role in these investigations. In this Account, we summarize recent advances in functional DNA nanotechnology based on i-motif structures. The i-motif is a DNA quadruplex that occurs as four stretches of cytosine repeat sequences form C·CH(+) base pairs, and their stabilization requires slightly acidic conditions. This unique property has produced the first DNA molecular motor driven by pH changes. The motor is reliable, and studies show that it is capable of millisecond running speeds, comparable to the speed of natural protein motors. With careful design, the output of these types of motors was combined to drive micrometer-sized cantilevers bend. Using established DNA nanostructure assembly and functionalization methods, researchers can easily integrate the motor within other DNA assembled structures and functional units, producing DNA molecular devices with new functions such as suprahydrophobic/suprahydrophilic smart surfaces that switch, intelligent nanopores triggered by pH changes, molecular logic gates, and DNA nanosprings. Recently, researchers have produced motors driven by light and electricity, which have allowed DNA motors to be integrated within silicon-based nanodevices. Moreover, some devices based on i-motif structures have proven useful for investigating processes within living cells. The pH-responsiveness of the i-motif structure also provides a way to control the stepwise assembly of DNA nanostructures. In addition, because of the stability of the i-motif, this

  15. Crystal Structures of IAPP Amyloidogenic Segments Reveal a Novel Packing Motif of Out-of-Register Beta Sheets.

    PubMed

    Soriaga, Angela B; Sangwan, Smriti; Macdonald, Ramsay; Sawaya, Michael R; Eisenberg, David

    2016-07-07

    Structural studies of amyloidogenic segments by X-ray crystallography have revealed a novel packing motif, consisting of out-of-register β sheets, which may constitute one of the toxic species in aggregation related diseases. Here we sought to determine the presence of such a motif in islet amyloid polypeptide (IAPP), whose amyloidogenic properties are associated with type 2 diabetes. We determined four new crystal structures of segments within IAPP, all forming steric zippers. Most interestingly, one of the segments in the fibril core of IAPP forms an out-of-register steric zipper. Analysis of this structure reveals several commonalities with previously solved out-of-register fibrils. Our results provide additional evidence of out-of-register β sheets as a common structural motif in amyloid aggregates.

  16. Sulfur-induced structural motifs on copper and gold surfaces

    SciTech Connect

    Walen, Holly

    2016-01-01

    The interaction of sulfur with copper and gold surfaces plays a fundamental role in important phenomena that include coarsening of surface nanostructures, and self-assembly of alkanethiols. Here, we identify and analyze unique sulfur-induced structural motifs observed on the low-index surfaces of these two metals. We seek out these structures in an effort to better understand the fundamental interactions between these metals and sulfur that lends to the stability and favorability of metal-sulfur complexes vs. chemisorbed atomic sulfur. The experimental observations presented here—made under identical conditions—together with extensive DFT analyses, allow comparisons and insights into factors that favor the existence of metal-sulfur complexes, vs. chemisorbed atomic sulfur, on metal terraces. We believe this data will be instrumental in better understanding the complex phenomena occurring between the surfaces of coinage metals and sulfur.

  17. The 'helix clamp' in HIV-1 reverse transcriptase: a new nucleic acid binding motif common in nucleic acid polymerases.

    PubMed Central

    Hermann, T; Meier, T; Götte, M; Heumann, H

    1994-01-01

    Amino acid sequences homologous to 259KLVGKL (X)16KLLR284 of human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) are conserved in several nucleotide polymerizing enzymes. This amino acid motif has been identified in the crystal structure model as an element of the enzyme's nucleic acid binding apparatus. It is part of the helix-turn-helix structure, alpha H-turn-alpha I, within the 'thumb' region of HIV-1 RT. The motif grasps the complexed nucleic acid at one side. Molecular modeling studies on HIV-1 RT in complex with a nucleic acid fragment suggest that the motif has binding function in the p66 subunit as well as in the p51 subunit, acting as a kind of 'helix clamp'. Given its wide distribution within the nucleic acid polymerases, the helix clamp motif is assumed to be a structure of general significance for nucleic acid binding. Images PMID:7527138

  18. Highly sampled tetranucleotide and tetraloop motifs enable evaluation of common RNA force fields.

    PubMed

    Bergonzo, Christina; Henriksen, Niel M; Roe, Daniel R; Cheatham, Thomas E

    2015-09-01

    Recent modifications and improvements to standard nucleic acid force fields have attempted to fix problems and issues that have been observed as longer timescale simulations have become routine. Although previous work has shown the ability to fold the UUCG stem-loop structure, until now no group has attempted to quantify the performance of current force fields using highly converged structural populations of the tetraloop conformational ensemble. In this study, we report the use of multiple independent sets of multidimensional replica exchange molecular dynamics (M-REMD) simulations with different initial conditions to generate well-converged conformational ensembles for the tetranucleotides r(GACC) and r(CCCC), as well as the larger UUCG tetraloop motif. By generating what is to our knowledge the most complete RNA structure ensembles reported to date for these systems, we remove the coupling between force field errors and errors due to incomplete sampling, providing a comprehensive comparison between current top-performing MD force fields for RNA. Of the RNA force fields tested in this study, none demonstrate the ability to correctly identify the most thermodynamically stable structure for all three systems. We discuss the deficiencies present in each potential function and suggest areas where improvements can be made. The results imply that although "short" (nsec-μsec timescale) simulations may stay close to their respective experimental structures and may well reproduce experimental observables, inevitably the current force fields will populate alternative incorrect structures that are more stable than those observed via experiment.

  19. Plasticity of the RNA Kink Turn Structural Motif

    SciTech Connect

    Antonioli, A.; Cochrane, J; Lipchock, S; Strobel, S

    2010-01-01

    The kink turn (K-turn) is an RNA structural motif found in many biologically significant RNAs. While most examples of the K-turn have a similar fold, the crystal structure of the Azoarcus group I intron revealed a novel RNA conformation, a reverse kink turn bent in the direction opposite that of a consensus K-turn. The reverse K-turn is bent toward the major grooves rather than the minor grooves of the flanking helices, yet the sequence differs from the K-turn consensus by only a single nucleotide. Here we demonstrate that the reverse bend direction is not solely defined by internal sequence elements, but is instead affected by structural elements external to the K-turn. It bends toward the major groove under the direction of a tetraloop-tetraloop receptor. The ability of one sequence to form two distinct structures demonstrates the inherent plasticity of the K-turn sequence. Such plasticity suggests that the K-turn is not a primary element in RNA folding, but instead is shaped by other structural elements within the RNA or ribonucleoprotein assembly.

  20. Peptoid nanosheets exhibit a new secondary-structure motif

    NASA Astrophysics Data System (ADS)

    Mannige, Ranjan V.; Haxton, Thomas K.; Proulx, Caroline; Robertson, Ellen J.; Battigelli, Alessia; Butterfoss, Glenn L.; Zuckermann, Ronald N.; Whitelam, Stephen

    2015-10-01

    A promising route to the synthesis of protein-mimetic materials that are capable of complex functions, such as molecular recognition and catalysis, is provided by sequence-defined peptoid polymers--structural relatives of biologically occurring polypeptides. Peptoids, which are relatively non-toxic and resistant to degradation, can fold into defined structures through a combination of sequence-dependent interactions. However, the range of possible structures that are accessible to peptoids and other biological mimetics is unknown, and our ability to design protein-like architectures from these polymer classes is limited. Here we use molecular-dynamics simulations, together with scattering and microscopy data, to determine the atomic-resolution structure of the recently discovered peptoid nanosheet, an ordered supramolecular assembly that extends macroscopically in only two dimensions. Our simulations show that nanosheets are structurally and dynamically heterogeneous, can be formed only from peptoids of certain lengths, and are potentially porous to water and ions. Moreover, their formation is enabled by the peptoids' adoption of a secondary structure that is not seen in the natural world. This structure, a zigzag pattern that we call a Σ(`sigma')-strand, results from the ability of adjacent backbone monomers to adopt opposed rotational states, thereby allowing the backbone to remain linear and untwisted. Linear backbones tiled in a brick-like way form an extended two-dimensional nanostructure, the Σ-sheet. The binary rotational-state motif of the Σ-strand is not seen in regular protein structures, which are usually built from one type of rotational state. We also show that the concept of building regular structures from multiple rotational states can be generalized beyond the peptoid nanosheet system.

  1. Crossover among structural motifs in Pd-Au nanoalloys.

    PubMed

    Zhu, Beien; Guesmi, Hazar; Creuze, Jérôme; Legrand, Bernard; Mottet, Christine

    2015-11-14

    The crossovers among the most abundant structural motifs (icosahedra, decahedra and truncated octahedra) of Pd-Au nanoalloys have been determined theoretically in a size range between 2 and 7 nm and for three compositions equivalent to Pd3Au, PdAu and PdAu3. The chemical ordering and segregation optimisation are performed via Monte Carlo simulations using semi-empirical tight-binding potentials fitted to ab initio calculations. The chemical configurations are then quenched via molecular dynamic simulations in order to compare their energy and characterize the equilibrium structures as a function of the cluster size. For the smaller sizes (of around 300 atoms and fewer) the structures are also optimized at the electronic level within ab initio calculations in order to validate the semi-empirical potential. The predictions of the crossover sizes for the nanoalloys cannot be simply extrapolated from the crossover of the pure nanoparticles but imply stress release phenomena related to the size misfit between the two metals. Indeed, alloying extends the range of stability of the icosahedron beyond that of the pure systems and the energy differences between decahedra and truncated octahedra become asymptotic, around the sizes of 5-6 nm. Nevertheless, such equilibrium results should be modulated regarding kinetic considerations or possible gas adsorption under experimental conditions.

  2. Common Functional Genetic Variants in Catecholamine Storage Vesicle Protein Promoter Motifs Interact to Trigger Systemic Hypertension

    PubMed Central

    Zhang, Kuixing; Rao, Fangwen; Wang, Lei; Rana, Brinda K.; Ghosh, Sajalendu; Mahata, Manjula; Salem, Rany M.; Rodriguez-Flores, Juan L.; Fung, Maple M.; Waalen, Jill; Tayo, Bamidele; Taupenot, Laurent; Mahata, Sushil K.; O'Connor, Daniel T.

    2010-01-01

    Objectives The purpose of this study was to explore transcriptional mechanisms whereby genetic variation in the CHGB promoter influence BP and hypertension. Background Hypertension is a complex trait in which deranged autonomic control of the circulation may be an etiological culprit. Chromogranin B (CHGB) is a major soluble protein in the core of catecholamine storage vesicles, playing a necessary (catalytic) role in the biogenesis of secretory vesicles. Previously we found that genetic variation at CHGB influenced plasma CHGB expression as well as autonomic function, and that BP association was maximal towards the 5′ end of the gene. Methods After polymorphism discovery, we functionally characterized the 2 common variants in the proximal CHGB promoter, A-296C and A-261T, which lay within the same haplotype block in black and white populations. CHGB promoter activity was studied by haplotype/luciferase reporter transfection. Transcriptional mechanisms were probed by EMSA and ChIP. Results The A-296C variant disrupted a c-FOS motif, and exhibited differential mobility shifting to chromaffin cell nuclear proteins during EMSA, differential binding of endogenous c-FOS on ChIP, and differential transcriptional response to exogenous c-FOS. A-261T disrupted motifs for SRY and YY1, with similar consequences for gel mobility during EMSA, endogenous factor binding during ChIP, and transcriptional responses to the exogenous factors. 2-SNP haplotype analyses demonstrated a profound (p∼3×10-20) effect of CHGB promoter variation on BP in the European ancestry population, with a rank order of CT

  3. RNAMotifScanX: a graph alignment approach for RNA structural motif identification.

    PubMed

    Zhong, Cuncong; Zhang, Shaojie

    2015-03-01

    RNA structural motifs are recurrent three-dimensional (3D) components found in the RNA architecture. These RNA structural motifs play important structural or functional roles and usually exhibit highly conserved 3D geometries and base-interaction patterns. Analysis of the RNA 3D structures and elucidation of their molecular functions heavily rely on efficient and accurate identification of these motifs. However, efficient RNA structural motif search tools are lacking due to the high complexity of these motifs. In this work, we present RNAMotifScanX, a motif search tool based on a base-interaction graph alignment algorithm. This novel algorithm enables automatic identification of both partially and fully matched motif instances. RNAMotifScanX considers noncanonical base-pairing interactions, base-stacking interactions, and sequence conservation of the motifs, which leads to significantly improved sensitivity and specificity as compared with other state-of-the-art search tools. RNAMotifScanX also adopts a carefully designed branch-and-bound technique, which enables ultra-fast search of large kink-turn motifs against a 23S rRNA. The software package RNAMotifScanX is implemented using GNU C++, and is freely available from http://genome.ucf.edu/RNAMotifScanX.

  4. Stabilization of i-motif structures by 2′-β-fluorination of DNA

    PubMed Central

    Assi, Hala Abou; Harkness, Robert W.; Martin-Pintado, Nerea; Wilds, Christopher J.; Campos-Olivas, Ramón; Mittermaier, Anthony K.; González, Carlos; Damha, Masad J.

    2016-01-01

    i-Motifs are four-stranded DNA structures consisting of two parallel DNA duplexes held together by hemi-protonated and intercalated cytosine base pairs (C:CH+). They have attracted considerable research interest for their potential role in gene regulation and their use as pH responsive switches and building blocks in macromolecular assemblies. At neutral and basic pH values, the cytosine bases deprotonate and the structure unfolds into single strands. To avoid this limitation and expand the range of environmental conditions supporting i-motif folding, we replaced the sugar in DNA by 2-deoxy-2-fluoroarabinose. We demonstrate that such a modification significantly stabilizes i-motif formation over a wide pH range, including pH 7. Nuclear magnetic resonance experiments reveal that 2-deoxy-2-fluoroarabinose adopts a C2′-endo conformation, instead of the C3′-endo conformation usually found in unmodified i-motifs. Nevertheless, this substitution does not alter the overall i-motif structure. This conformational change, together with the changes in charge distribution in the sugar caused by the electronegative fluorine atoms, leads to a number of favorable sequential and inter-strand electrostatic interactions. The availability of folded i-motifs at neutral pH will aid investigations into the biological function of i-motifs in vitro, and will expand i-motif applications in nanotechnology. PMID:27166371

  5. Virus-Host Coevolution: Common Patterns of Nucleotide Motif Usage in Flaviviridae and Their Hosts

    PubMed Central

    Lobo, Francisco P.; Mota, Bruno E. F.; Pena, Sérgio D. J.; Azevedo, Vasco; Macedo, Andréa M.; Tauch, Andreas; Machado, Carlos R.; Franco, Glória R.

    2009-01-01

    Virus-host biological interaction is a continuous coevolutionary process involving both host immune system and viral escape mechanisms. Flaviviridae family is composed of fast evolving RNA viruses that infects vertebrate (mammals and birds) and/or invertebrate (ticks and mosquitoes) organisms. These host groups are very distinct life forms separated by a long evolutionary time, so lineage-specific anti-viral mechanisms are likely to have evolved. Flaviviridae viruses which infect a single host lineage would be subjected to specific host-induced pressures and, therefore, selected by them. In this work we compare the genomic evolutionary patterns of Flaviviridae viruses and their hosts in an attempt to uncover coevolutionary processes inducing common features in such disparate groups. Especially, we have analyzed dinucleotide and codon usage patterns in the coding regions of vertebrate and invertebrate organisms as well as in Flaviviridae viruses which specifically infect one or both host types. The two host groups possess very distinctive dinucleotide and codon usage patterns. A pronounced CpG under-representation was found in the vertebrate group, possibly induced by the methylation-deamination process, as well as a prominent TpA decrease. The invertebrate group displayed only a TpA frequency reduction bias. Flaviviridae viruses mimicked host nucleotide motif usage in a host-specific manner. Vertebrate-infecting viruses possessed under-representation of CpG and TpA, and insect-only viruses displayed only a TpA under-representation bias. Single-host Flaviviridae members which persistently infect mammals or insect hosts (Hepacivirus and insect-only Flavivirus, respectively) were found to posses a codon usage profile more similar to that of their hosts than to related Flaviviridae. We demonstrated that vertebrates and mosquitoes genomes are under very distinct lineage-specific constraints, and Flaviviridae viruses which specifically infect these lineages appear to be

  6. Motif discovery with data mining in 3D protein structure databases: discovery, validation and prediction of the U-shape zinc binding ("Huf-Zinc") motif.

    PubMed

    Maurer-Stroh, Sebastian; Gao, He; Han, Hao; Baeten, Lies; Schymkowitz, Joost; Rousseau, Frederic; Zhang, Louxin; Eisenhaber, Frank

    2013-02-01

    Data mining in protein databases, derivatives from more fundamental protein 3D structure and sequence databases, has considerable unearthed potential for the discovery of sequence motif--structural motif--function relationships as the finding of the U-shape (Huf-Zinc) motif, originally a small student's project, exemplifies. The metal ion zinc is critically involved in universal biological processes, ranging from protein-DNA complexes and transcription regulation to enzymatic catalysis and metabolic pathways. Proteins have evolved a series of motifs to specifically recognize and bind zinc ions. Many of these, so called zinc fingers, are structurally independent globular domains with discontinuous binding motifs made up of residues mostly far apart in sequence. Through a systematic approach starting from the BRIX structure fragment database, we discovered that there exists another predictable subset of zinc-binding motifs that not only have a conserved continuous sequence pattern but also share a characteristic local conformation, despite being included in totally different overall folds. While this does not allow general prediction of all Zn binding motifs, a HMM-based web server, Huf-Zinc, is available for prediction of these novel, as well as conventional, zinc finger motifs in protein sequences. The Huf-Zinc webserver can be freely accessed through this URL (http://mendel.bii.a-star.edu.sg/METHODS/hufzinc/).

  7. A common sequence motif determines the Cajal body-specific localization of box H/ACA scaRNAs.

    PubMed

    Richard, Patricia; Darzacq, Xavier; Bertrand, Edouard; Jády, Beáta E; Verheggen, Céline; Kiss, Tamás

    2003-08-15

    Post-transcriptional synthesis of 2'-O-methylated nucleotides and pseudouridines in Sm spliceosomal small nuclear RNAs takes place in the nucleoplasmic Cajal bodies and it is directed by guide RNAs (scaRNAs) that are structurally and functionally indistinguishable from small nucleolar RNAs (snoRNAs) directing rRNA modification in the nucleolus. The scaRNAs are synthesized in the nucleoplasm and specifically targeted to Cajal bodies. Here, mutational analysis of the human U85 box C/D-H/ACA scaRNA, followed by in situ localization, demonstrates that box H/ACA scaRNAs share a common Cajal body-specific localization signal, the CAB box. Two copies of the evolutionarily conserved CAB consensus (UGAG) are located in the terminal loops of the 5' and 3' hairpins of the box H/ACA domains of mammalian, Drosophila and plant scaRNAs. Upon alteration of the CAB boxes, mutant scaRNAs accumulate in the nucleolus. In turn, authentic snoRNAs can be targeted into Cajal bodies by addition of exogenous CAB box motifs. Our results indicate that scaRNAs represent an ancient group of small nuclear RNAs which are localized to Cajal bodies by an evolutionarily conserved mechanism.

  8. Excluded volume effects on the kinetic assembling of a structural motif for RNA catalysis

    NASA Astrophysics Data System (ADS)

    Fernández, Ariel

    1991-09-01

    We establish the role of excluded volume effects on the loss of conformational entropy due to pseudoknot formation in RNA. This pseudoknot appears to be the structural motif responsible for shaping the splicing site of certain noncoding RNA transcriptional products. Focusing on the illustrative example of the YC4 intron, we show that the emergence of this motif is kinetically driven and prevails over competing catalytically inert secondary structure due to excluded volume effects which favor the correlation of interacting intramolecular loops.

  9. Molybdenum and tungsten oxygen transferases--and functional diversity within a common active site motif.

    PubMed

    Pushie, M Jake; Cotelesage, Julien J; George, Graham N

    2014-01-01

    Molybdenum and tungsten are the only second and third-row transition elements with a known function in living organisms. The molybdenum and tungsten enzymes show common structural features, with the metal being bound by a pyranopterin-dithiolene cofactor called molybdopterin. They catalyze a variety of oxygen transferase reactions coupled with two-electron redox chemistry in which the metal cycles between the +6 and +4 oxidation states usually with water, either product or substrate, providing the oxygen. The functional roles filled by the molybdenum and tungsten enzymes are diverse; for example, they play essential roles in microbial respiration, in the uptake of nitrogen in green plants, and in human health. Together, the enzymes form a superfamily which is among the most prevalent known, being found in all kingdoms of life. This review discusses what is known of the active site structures and the mechanisms, together with some recent insights into the evolution of these important enzyme systems.

  10. Pressure-dependent formation of i-motif and G-quadruplex DNA structures.

    PubMed

    Takahashi, S; Sugimoto, N

    2015-12-14

    Pressure is an important physical stimulus that can influence the fate of cells by causing structural changes in biomolecules such as DNA. We investigated the effect of high pressure on the folding of duplex, DNA i-motif, and G-quadruplex (G4) structures; the non-canonical structures may be modulators of expression of genes involved in cancer progression. The i-motif structure was stabilized by high pressure, whereas the G4 structure was destabilized. The melting temperature of an intramolecular i-motif formed by 5'-dCGG(CCT)10CGG-3' increased from 38.8 °C at atmospheric pressure to 61.5 °C at 400 MPa. This effect was also observed in the presence of 40 wt% ethylene glycol, a crowding agent. In the presence of 40 wt% ethylene glycol, the G4 structure was less destabilized than in the absence of the crowding agent. P-T stability diagrams of duplex DNA with a telomeric sequence indicated that the duplex is more stable than G4 and i-motif structures under low pressure, but the i-motif dominates the structural composition under high pressure. Under crowding conditions, the P-T diagrams indicated that the duplex does not form under high pressure, and i-motif and G4 structures dominate. Our findings imply that temperature regulates the formation of the duplex structure, whereas pressure triggers the formation of non-canonical DNA structures like i-motif and G4. These results suggest that pressure impacts the function of nucleic acids by stabilizing non-canonical structures; this may be relevant to deep sea organisms and during evolution under prebiotic conditions.

  11. Recurring sequence-structure motifs in (βα)8-barrel proteins and experimental optimization of a chimeric protein designed based on such motifs.

    PubMed

    Wang, Jichao; Zhang, Tongchuan; Liu, Ruicun; Song, Meilin; Wang, Juncheng; Hong, Jiong; Chen, Quan; Liu, Haiyan

    2017-02-01

    An interesting way of generating novel artificial proteins is to combine sequence motifs from natural proteins, mimicking the evolutionary path suggested by natural proteins comprising recurring motifs. We analyzed the βα and αβ modules of TIM barrel proteins by structure alignment-based sequence clustering. A number of preferred motifs were identified. A chimeric TIM was designed by using recurring elements as mutually compatible interfaces. The foldability of the designed TIM protein was then significantly improved by six rounds of directed evolution. The melting temperature has been improved by more than 20°C. A variety of characteristics suggested that the resulting protein is well-folded. Our analysis provided a library of peptide motifs that is potentially useful for different protein engineering studies. The protein engineering strategy of using recurring motifs as interfaces to connect partial natural proteins may be applied to other protein folds.

  12. Minimal motif peptide structure of metzincin clan zinc peptidases in micelles.

    PubMed

    Onoda, Akira; Suzuki, Takako; Ishizuka, Hiroaki; Sugiyama, Rumiko; Ariyasu, Shinya; Yamamura, Takeshi

    2009-12-01

    It is well known that the functions of metalloproteins generally originate from their metal-binding motifs. However, the intrinsic nature of individual motifs remains unknown, particularly the details about metal-binding effects on the folding of motifs; the converse is also unknown, although there is no doubt that the motif is the core of the reactivity for each metalloprotein. In this study, we focused our attention on the zinc-binding motif of the metzincin clan family, HEXXHXXGXXH; this family contains the general zinc-binding sequence His-Glu-Xaa-Xaa-His (HEXXH) and the extended GXXH region. We adopted the motif sequence of stromelysin-1 and investigated the folding properties of the Trp-labeled peptides WAHEIAHSLGLFHA (STR-W1), AWHEIAHSLGLFHA (STR-W2), AHEIAHSLGWFHA (STR-W11), and AHEIAHSLGLFHWA (STR-W14) in the presence and absence of zinc ions in hydrophobic micellar environments by circular dichroism (CD) measurements. We accessed successful incorporation of these zinc peptides into micelles using quenching of Trp fluorescence. Results of CD studies indicated that two of the Trp-incorporated peptides, STR-W1 and STR-W14, exhibited helical folding in the hydrophobic region of cetyltrimethylammonium chloride micelle. The NMR structural analysis of the apo STR-W14 revealed that the conformation in the C-terminus GXXH region significantly differred between the apo state in the micelle and the reported Zn-bound state of stromelysin-1 in crystal structures. The structural analyses of the qualitative Zn-binding properties of this motif peptide provide an interesting Zn-binding mechanism: the minimum consensus motif in the metzincin clan, a basic zinc-binding motif with an extended GXXH region, has the potential to serve as a preorganized Zn binding scaffold in a hydrophobic environment.

  13. Ionic polymers as a new structural motif for high-energy-density materials.

    PubMed

    Bushuyev, Oleksandr S; Brown, Preston; Maiti, Amitesh; Gee, Richard H; Peterson, Geneva R; Weeks, Brandon L; Hope-Weeks, Louisa J

    2012-01-25

    Energetic materials have been used for nearly two centuries in military affairs and to cut labor costs and expedite laborious processes in mining, tunneling, construction, demolition, and agriculture, making a tremendous contribution to the world economy. Yet there has been little advancement in the development of altogether new energetic motifs despite long-standing research efforts to develop superior materials. We report the discovery of new energetic compounds of exceptionally high energy content and novel polymeric structure which avoid the use of lead and mercury salts common in conventional primary explosives. Laboratory tests indicate the remarkable performance of these Ni- and Co-based energetic materials, while DFT calculations indicate that these are possibly the most powerful metal-based energetic materials known to date, with heats of detonation comparable with those of the most powerful organic-based high explosives currently in use.

  14. A common set of conserved motifs in a vast variety of putative nucleic acid-dependent ATPases including MCM proteins involved in the initiation of eukaryotic DNA replication.

    PubMed Central

    Koonin, E V

    1993-01-01

    A new superfamily of (putative) DNA-dependent ATPases is described that includes the ATPase domains of prokaryotic NtrC-related transcription regulators, MCM proteins involved in the initiation of eukaryotic DNA replication, and a group of uncharacterized bacterial and chloroplast proteins. MCM proteins are shown to contain a modified form of the ATP-binding motif and are predicted to mediate ATP-dependent opening of double-stranded DNA in the replication origins. In a second line of investigation, it is demonstrated that the products of unidentified open reading frames from Marchantia mitochondria and from yeast, and a domain of a baculovirus protein involved in viral DNA replication are related to the superfamily III of DNA and RNA helicases that previously has been known to include only proteins of small viruses. Comparison of the multiple alignments showed that the proteins of the NtrC superfamily and the helicases of superfamily III share three related sequence motifs tightly packed in the ATPase domain that consists of 100-150 amino acid residues. A similar array of conserved motifs is found in the family of DnaA-related ATPases. It is hypothesized that the three large groups of nucleic acid-dependent ATPases have similar structure of the core ATPase domain and have evolved from a common ancestor. PMID:8332451

  15. The ARTT motif and a unified structural understanding of substraterecognition in ADP ribosylating bacterial toxins and eukaryotic ADPribosyltransferases

    SciTech Connect

    Han, S.; Tainer, J.A.

    2001-08-01

    ADP-ribosylation is a widely occurring and biologically critical covalent chemical modification process in pathogenic mechanisms, intracellular signaling systems, DNA repair, and cell division. The reaction is catalyzed by ADP-ribosyltransferases, which transfer the ADP-ribose moiety of NAD to a target protein with nicotinamide release. A family of bacterial toxins and eukaryotic enzymes has been termed the mono-ADP-ribosyltransferases, in distinction to the poly-ADP-ribosyltransferases, which catalyze the addition of multiple ADP-ribose groups to the carboxyl terminus of eukaryotic nucleoproteins. Despite the limited primary sequence homology among the different ADP-ribosyltransferases, a central cleft bearing NAD-binding pocket formed by the two perpendicular b-sheet core has been remarkably conserved between bacterial toxins and eukaryotic mono- and poly-ADP-ribosyltransferases. The majority of bacterial toxins and eukaryotic mono-ADP-ribosyltransferases are characterized by conserved His and catalytic Glu residues. In contrast, Diphtheria toxin, Pseudomonas exotoxin A, and eukaryotic poly-ADP-ribosyltransferases are characterized by conserved Arg and catalytic Glu residues. The NAD-binding core of a binary toxin and a C3-like toxin family identified an ARTT motif (ADP-ribosylating turn-turn motif) that is implicated in substrate specificity and recognition by structural and mutagenic studies. Here we apply structure-based sequence alignment and comparative structural analyses of all known structures of ADP-ribosyltransfeases to suggest that this ARTT motif is functionally important in many ADP-ribosylating enzymes that bear a NAD binding cleft as characterized by conserved Arg and catalytic Glu residues. Overall, structure-based sequence analysis reveals common core structures and conserved active sites of ADP-ribosyltransferases to support similar NAD binding mechanisms but differing mechanisms of target protein binding via sequence variations within the ARTT

  16. Designing synthetic RNAs to determine the relevance of structural motifs in picornavirus IRES elements

    NASA Astrophysics Data System (ADS)

    Fernandez-Chamorro, Javier; Lozano, Gloria; Garcia-Martin, Juan Antonio; Ramajo, Jorge; Dotu, Ivan; Clote, Peter; Martinez-Salas, Encarnacion

    2016-04-01

    The function of Internal Ribosome Entry Site (IRES) elements is intimately linked to their RNA structure. Viral IRES elements are organized in modular domains consisting of one or more stem-loops that harbor conserved RNA motifs critical for internal initiation of translation. A conserved motif is the pyrimidine-tract located upstream of the functional initiation codon in type I and II picornavirus IRES. By computationally designing synthetic RNAs to fold into a structure that sequesters the polypyrimidine tract in a hairpin, we establish a correlation between predicted inaccessibility of the pyrimidine tract and IRES activity, as determined in both in vitro and in vivo systems. Our data supports the hypothesis that structural sequestration of the pyrimidine-tract within a stable hairpin inactivates IRES activity, since the stronger the stability of the hairpin the higher the inhibition of protein synthesis. Destabilization of the stem-loop immediately upstream of the pyrimidine-tract also decreases IRES activity. Our work introduces a hybrid computational/experimental method to determine the importance of structural motifs for biological function. Specifically, we show the feasibility of using the software RNAiFold to design synthetic RNAs with particular sequence and structural motifs that permit subsequent experimental determination of the importance of such motifs for biological function.

  17. Novel DNA binding motifs in the DNA repair enzyme endonuclease III crystal structure.

    PubMed Central

    Thayer, M M; Ahern, H; Xing, D; Cunningham, R P; Tainer, J A

    1995-01-01

    The 1.85 A crystal structure of endonuclease III, combined with mutational analysis, suggests the structural basis for the DNA binding and catalytic activity of the enzyme. Helix-hairpin-helix (HhH) and [4Fe-4S] cluster loop (FCL) motifs, which we have named for their secondary structure, bracket the cleft separating the two alpha-helical domains of the enzyme. These two novel DNA binding motifs and the solvent-filled pocket in the cleft between them all lie within a positively charged and sequence-conserved surface region. Lys120 and Asp138, both shown by mutagenesis to be catalytically important, lie at the mouth of this pocket, suggesting that this pocket is part of the active site. The positions of the HhH motif and protruding FCL motif, which contains the DNA binding residue Lys191, can accommodate B-form DNA, with a flipped-out base bound within the active site pocket. The identification of HhH and FCL sequence patterns in other DNA binding proteins suggests that these motifs may be a recurrent structural theme for DNA binding proteins. Images PMID:7664751

  18. Structural coalescence underlies the aggregation propensity of a β-barrel protein motif

    PubMed Central

    Angelani, Carla R.; Caramelo, Julio J.; Curto, Lucrecia M.; Delfino, José M.

    2017-01-01

    A clear understanding of the structural foundations underlying protein aggregation is an elusive goal of central biomedical importance. A step toward this aim is exemplified by the β-barrel motif represented by the intestinal fatty acid binding protein (IFABP) and two abridged all-β sheet forms (Δ98Δ and Δ78Δ). At odds with the established notion that a perturbation of the native fold should necessarily favor a buildup of intermediate forms with an enhanced tendency to aggregate, the intrinsic stability (ΔG°H2O) of these proteins does not bear a straightforward correlation with their trifluoroethanol (TFE)-induced aggregation propensity. In view of this fact, we found it more insightful to delve into the connection between structure and stability under sub-aggregating conditions (10% TFE). In the absence of the co-solvent, the abridged variants display a common native-like region decorated with a disordered C-terminal stretch. Upon TFE addition, an increase in secondary structure content is observed, assimilating them to the parent protein. In this sense, TFE perturbs a common native like region while exerting a global compaction effect. Importantly, in all cases, fatty acid binding function is preserved. Interestingly, energetic as well as structural diversity in aqueous solution evolves into a common conformational ensemble more akin in stability. These facts reconcile apparent paradoxical findings related to stability and rates of aggregation. This scenario likely mimics the accrual of aggregation-prone species in the population, an early critical event for the development of fibrillation. PMID:28187186

  19. Structural coalescence underlies the aggregation propensity of a β-barrel protein motif.

    PubMed

    Angelani, Carla R; Caramelo, Julio J; Curto, Lucrecia M; Delfino, José M

    2017-01-01

    A clear understanding of the structural foundations underlying protein aggregation is an elusive goal of central biomedical importance. A step toward this aim is exemplified by the β-barrel motif represented by the intestinal fatty acid binding protein (IFABP) and two abridged all-β sheet forms (Δ98Δ and Δ78Δ). At odds with the established notion that a perturbation of the native fold should necessarily favor a buildup of intermediate forms with an enhanced tendency to aggregate, the intrinsic stability (ΔG°H2O) of these proteins does not bear a straightforward correlation with their trifluoroethanol (TFE)-induced aggregation propensity. In view of this fact, we found it more insightful to delve into the connection between structure and stability under sub-aggregating conditions (10% TFE). In the absence of the co-solvent, the abridged variants display a common native-like region decorated with a disordered C-terminal stretch. Upon TFE addition, an increase in secondary structure content is observed, assimilating them to the parent protein. In this sense, TFE perturbs a common native like region while exerting a global compaction effect. Importantly, in all cases, fatty acid binding function is preserved. Interestingly, energetic as well as structural diversity in aqueous solution evolves into a common conformational ensemble more akin in stability. These facts reconcile apparent paradoxical findings related to stability and rates of aggregation. This scenario likely mimics the accrual of aggregation-prone species in the population, an early critical event for the development of fibrillation.

  20. 'Size leap' algorithm: an efficient extraction of the longest common motifs from a molecular sequence set. Application to the DNA sequence reconstruction.

    PubMed

    Danckaert, A; Chappey, C; Hazout, S

    1991-10-01

    We propose a new method, called 'size leap' algorithm, of search for motifs of maximum size and common to two fragments at least. It allows the creation of a reduced database of motifs from a set of sequences whose size obeys the series of Fibonacci numbers. The convenience lies in the efficiency of the motif extraction. It can be applied in the establishment of overlap regions for DNA sequence reconstruction and multiple alignment of biological sequences. The method of complete DNA sequence reconstruction by extraction of the longest motifs ('anchor motifs') is presented as an application of the size leap algorithm. The details of a reconstruction from three sequenced fragments are given as an example.

  1. Exploration of tetrahedral structures in silicate cathodes using a motif-network scheme

    PubMed Central

    Zhao, Xin; Wu, Shunqing; Lv, Xiaobao; Nguyen, Manh Cuong; Wang, Cai-Zhuang; Lin, Zijing; Zhu, Zi-Zhong; Ho, Kai-Ming

    2015-01-01

    Using a motif-network search scheme, we studied the tetrahedral structures of the dilithium/disodium transition metal orthosilicates A2MSiO4 with A = Li or Na and M = Mn, Fe or Co. In addition to finding all previously reported structures, we discovered many other different tetrahedral-network-based crystal structures which are highly degenerate in energy. These structures can be classified into structures with 1D, 2D and 3D M-Si-O frameworks. A clear trend of the structural preference in different systems was revealed and possible indicators that affect the structure stabilities were introduced. For the case of Na systems which have been much less investigated in the literature relative to the Li systems, we predicted their ground state structures and found evidence for the existence of new structural motifs. PMID:26497381

  2. Exploration of tetrahedral structures in silicate cathodes using a motif-network scheme

    SciTech Connect

    Zhao, Xin; Wu, Shunqing; Lv, Xiaobao; Nguyen, Manh Cuong; Wang, Cai -Zhuang; Lin, Zijing; Zhu, Zi -Zhong; Ho, Kai -Ming

    2015-10-26

    Using a motif-network search scheme, we studied the tetrahedral structures of the dilithium/disodium transition metal orthosilicates A2MSiO4 with A = Li or Na and M = Mn, Fe or Co. In addition to finding all previously reported structures, we discovered many other different tetrahedral-network-based crystal structures which are highly degenerate in energy. In addition, these structures can be classified into structures with 1D, 2D and 3D M-Si-O frameworks. A clear trend of the structural preference in different systems was revealed and possible indicators that affect the structure stabilities were introduced. For the case of Na systems which have been much less investigated in the literature relative to the Li systems, we predicted their ground state structures and found evidence for the existence of new structural motifs.

  3. Exploration of tetrahedral structures in silicate cathodes using a motif-network scheme.

    PubMed

    Zhao, Xin; Wu, Shunqing; Lv, Xiaobao; Nguyen, Manh Cuong; Wang, Cai-Zhuang; Lin, Zijing; Zhu, Zi-Zhong; Ho, Kai-Ming

    2015-10-26

    Using a motif-network search scheme, we studied the tetrahedral structures of the dilithium/disodium transition metal orthosilicates A2MSiO4 with A = Li or Na and M = Mn, Fe or Co. In addition to finding all previously reported structures, we discovered many other different tetrahedral-network-based crystal structures which are highly degenerate in energy. These structures can be classified into structures with 1D, 2D and 3D M-Si-O frameworks. A clear trend of the structural preference in different systems was revealed and possible indicators that affect the structure stabilities were introduced. For the case of Na systems which have been much less investigated in the literature relative to the Li systems, we predicted their ground state structures and found evidence for the existence of new structural motifs.

  4. Exploration of tetrahedral structures in silicate cathodes using a motif-network scheme

    DOE PAGES

    Zhao, Xin; Wu, Shunqing; Lv, Xiaobao; ...

    2015-10-26

    Using a motif-network search scheme, we studied the tetrahedral structures of the dilithium/disodium transition metal orthosilicates A2MSiO4 with A = Li or Na and M = Mn, Fe or Co. In addition to finding all previously reported structures, we discovered many other different tetrahedral-network-based crystal structures which are highly degenerate in energy. In addition, these structures can be classified into structures with 1D, 2D and 3D M-Si-O frameworks. A clear trend of the structural preference in different systems was revealed and possible indicators that affect the structure stabilities were introduced. For the case of Na systems which have been muchmore » less investigated in the literature relative to the Li systems, we predicted their ground state structures and found evidence for the existence of new structural motifs.« less

  5. Intramolecular i-motif structure at acidic pH for progressive myoclonus epilepsy (EPM1) repeat d(CCCCGCCCCGCG)n.

    PubMed

    Pataskar, S S; Dash, D; Brahmachari, S K

    2001-10-01

    The most common mutation associated with Progressive Myoclonus Epilepsy (EPM1) of Unverricht-Lundberg type is the expansion of a dodecamer repeat, d(CCCCGCCCCGCG)n. We show that the C-rich strand of this repeat (2-3 copies) forms intercalated i-motif structure at acidic pH as judged by CD spectroscopy and anomalous gel electrophoretic mobility. The stability of the structure increases with the increase in the length of the repeat. Transient formation of stable, folded back structure like i-motif could play an important role in the mechanism of expansion of this repeat.

  6. Structural basis for the binding of tryptophan-based motifs by δ-COP

    PubMed Central

    Suckling, Richard J.; Poon, Pak Phi; Travis, Sophie M.; Majoul, Irina V.; Hughson, Frederick M.; Evans, Philip R.; Duden, Rainer; Owen, David J.

    2015-01-01

    Coatomer consists of two subcomplexes: the membrane-targeting, ADP ribosylation factor 1 (Arf1):GTP-binding βγδζ-COP F-subcomplex, which is related to the adaptor protein (AP) clathrin adaptors, and the cargo-binding αβ’ε-COP B-subcomplex. We present the structure of the C-terminal μ-homology domain of the yeast δ-COP subunit in complex with the WxW motif from its binding partner, the endoplasmic reticulum-localized Dsl1 tether. The motif binds at a site distinct from that used by the homologous AP μ subunits to bind YxxΦ cargo motifs with its two tryptophan residues sitting in compatible pockets. We also show that the Saccharomyces cerevisiae Arf GTPase-activating protein (GAP) homolog Gcs1p uses a related WxxF motif at its extreme C terminus to bind to δ-COP at the same site in the same way. Mutations designed on the basis of the structure in conjunction with isothermal titration calorimetry confirm the mode of binding and show that mammalian δ-COP binds related tryptophan-based motifs such as that from ArfGAP1 in a similar manner. We conclude that δ-COP subunits bind Wxn(1–6)[WF] motifs within unstructured regions of proteins that influence the lifecycle of COPI-coated vesicles; this conclusion is supported by the observation that, in the context of a sensitizing domain deletion in Dsl1p, mutating the tryptophan-based motif-binding site in yeast causes defects in both growth and carboxypeptidase Y trafficking/processing. PMID:26578768

  7. Structural basis for the binding of tryptophan-based motifs by δ-COP.

    PubMed

    Suckling, Richard J; Poon, Pak Phi; Travis, Sophie M; Majoul, Irina V; Hughson, Frederick M; Evans, Philip R; Duden, Rainer; Owen, David J

    2015-11-17

    Coatomer consists of two subcomplexes: the membrane-targeting, ADP ribosylation factor 1 (Arf1):GTP-binding βγδζ-COP F-subcomplex, which is related to the adaptor protein (AP) clathrin adaptors, and the cargo-binding αβ'ε-COP B-subcomplex. We present the structure of the C-terminal μ-homology domain of the yeast δ-COP subunit in complex with the WxW motif from its binding partner, the endoplasmic reticulum-localized Dsl1 tether. The motif binds at a site distinct from that used by the homologous AP μ subunits to bind YxxΦ cargo motifs with its two tryptophan residues sitting in compatible pockets. We also show that the Saccharomyces cerevisiae Arf GTPase-activating protein (GAP) homolog Gcs1p uses a related WxxF motif at its extreme C terminus to bind to δ-COP at the same site in the same way. Mutations designed on the basis of the structure in conjunction with isothermal titration calorimetry confirm the mode of binding and show that mammalian δ-COP binds related tryptophan-based motifs such as that from ArfGAP1 in a similar manner. We conclude that δ-COP subunits bind Wxn(1-6)[WF] motifs within unstructured regions of proteins that influence the lifecycle of COPI-coated vesicles; this conclusion is supported by the observation that, in the context of a sensitizing domain deletion in Dsl1p, mutating the tryptophan-based motif-binding site in yeast causes defects in both growth and carboxypeptidase Y trafficking/processing.

  8. Common Motifs in the Response of Cereal Primary Metabolism to Fungal Pathogens are not Based on Similar Transcriptional Reprogramming

    PubMed Central

    Voll, Lars Matthias; Horst, Robin Jonathan; Voitsik, Anna-Maria; Zajic, Doreen; Samans, Birgit; Pons-Kühnemann, Jörn; Doehlemann, Gunther; Münch, Steffen; Wahl, Ramon; Molitor, Alexandra; Hofmann, Jörg; Schmiedl, Alfred; Waller, Frank; Deising, Holger Bruno; Kahmann, Regine; Kämper, Jörg; Kogel, Karl-Heinz; Sonnewald, Uwe

    2011-01-01

    During compatible interactions with their host plants, biotrophic plant–pathogens subvert host metabolism to ensure the sustained provision of nutrient assimilates by the colonized host cells. To investigate, whether common motifs can be revealed in the response of primary carbon and nitrogen metabolism toward colonization with biotrophic fungi in cereal leaves, we have conducted a combined metabolome and transcriptome study of three quite divergent pathosystems, the barley powdery mildew fungus (Blumeria graminis f.sp. hordei), the corn smut fungus Ustilago maydis, and the maize anthracnose fungus Colletotrichum graminicola, the latter being a hemibiotroph that only exhibits an initial biotrophic phase during its establishment. Based on the analysis of 42 water-soluble metabolites, we were able to separate early biotrophic from late biotrophic interactions by hierarchical cluster analysis and principal component analysis, irrespective of the plant host. Interestingly, the corresponding transcriptome dataset could not discriminate between these stages of biotrophy, irrespective, of whether transcript data for genes of central metabolism or the entire transcriptome dataset was used. Strong differences in the transcriptional regulation of photosynthesis, glycolysis, the TCA cycle, lipid biosynthesis, and cell wall metabolism were observed between the pathosystems. However, increased contents of Gln, Asn, and glucose as well as diminished contents of PEP and 3-PGA were common to early post-penetration stages of all interactions. On the transcriptional level, genes of the TCA cycle, nucleotide energy metabolism and amino acid biosynthesis exhibited consistent trends among the compared biotrophic interactions, identifying the requirement for metabolic energy and the rearrangement of amino acid pools as common transcriptional motifs during early biotrophy. Both metabolome and transcript data were employed to generate models of leaf primary metabolism during early

  9. [Conserved motifs in the primary and secondary ITS1 structures in bryophytes].

    PubMed

    Milyutina, I A; Ignatov, M S

    2015-01-01

    A study of the ITS1 nucleotide sequences of 1000 moss species of 62 families, 11 liverwort species from five orders, and one hornwort Anthoceros agrestis identified five highly conserved motifs (CM1-CM5), which are presumably involved in pre-rRNA processing. Although the ITS1 sequences substantially differ in length and the extent of divergence, the conserved motifs are found in all of them. ITS1 secondary structures were constructed for 76 mosses, and main regularities at conserved motif positioning were observed. The positions of processing sites in the ITS1 secondary structure of the yeast Saccharomyces cerevisiae were found to be similar to the positions of the conserved motifs in the ITS1 secondary structures of mosses and liverworts. In addition, a potential hairpin formation in the putative secondary structure of a pre-rRNA fragment was considered for the region between ITS1 CM4-CM5 and a highly conserved region between hairpins 49 and 50 (H49 and H50) of the 18S rRNA.

  10. Crystal structure of interleukin-21 receptor (IL-21R) bound to IL-21 reveals that sugar chain interacting with WSXWS motif is integral part of IL-21R.

    PubMed

    Hamming, Ole J; Kang, Lishan; Svensson, Anders; Karlsen, Jesper L; Rahbek-Nielsen, Henrik; Paludan, Søren R; Hjorth, Siv A; Bondensgaard, Kent; Hartmann, Rune

    2012-03-16

    IL-21 is a class I cytokine that exerts pleiotropic effects on both innate and adaptive immune responses. It signals through a heterodimeric receptor complex consisting of the IL-21 receptor (IL-21R) and the common γ-chain. A hallmark of the class I cytokine receptors is the class I cytokine receptor signature motif (WSXWS). The exact role of this motif has not been determined yet; however, it has been implicated in diverse functions, including ligand binding, receptor internalization, proper folding, and export, as well as signal transduction. Furthermore, the WXXW motif is known to be a consensus sequence for C-mannosylation. Here, we present the crystal structure of IL-21 bound to IL-21R and reveal that the WSXWS motif of IL-21R is C-mannosylated at the first tryptophan. We furthermore demonstrate that a sugar chain bridges the two fibronectin domains that constitute the extracellular domain of IL-21R and anchors at the WSXWS motif through an extensive hydrogen bonding network, including mannosylation. The glycan thus transforms the V-shaped receptor into an A-frame. This finding offers a novel structural explanation of the role of the class I cytokine signature motif.

  11. Crystal Structure of Interleukin-21 Receptor (IL-21R) Bound to IL-21 Reveals That Sugar Chain Interacting with WSXWS Motif Is Integral Part of IL-21R*

    PubMed Central

    Hamming, Ole J.; Kang, Lishan; Svensson, Anders; Karlsen, Jesper L.; Rahbek-Nielsen, Henrik; Paludan, Søren R.; Hjorth, Siv A.; Bondensgaard, Kent; Hartmann, Rune

    2012-01-01

    IL-21 is a class I cytokine that exerts pleiotropic effects on both innate and adaptive immune responses. It signals through a heterodimeric receptor complex consisting of the IL-21 receptor (IL-21R) and the common γ-chain. A hallmark of the class I cytokine receptors is the class I cytokine receptor signature motif (WSXWS). The exact role of this motif has not been determined yet; however, it has been implicated in diverse functions, including ligand binding, receptor internalization, proper folding, and export, as well as signal transduction. Furthermore, the WXXW motif is known to be a consensus sequence for C-mannosylation. Here, we present the crystal structure of IL-21 bound to IL-21R and reveal that the WSXWS motif of IL-21R is C-mannosylated at the first tryptophan. We furthermore demonstrate that a sugar chain bridges the two fibronectin domains that constitute the extracellular domain of IL-21R and anchors at the WSXWS motif through an extensive hydrogen bonding network, including mannosylation. The glycan thus transforms the V-shaped receptor into an A-frame. This finding offers a novel structural explanation of the role of the class I cytokine signature motif. PMID:22235133

  12. How to find a leucine in a haystack? Structure, ligand recognition and regulation of leucine-aspartic acid (LD) motifs.

    PubMed

    Alam, Tanvir; Alazmi, Meshari; Gao, Xin; Arold, Stefan T

    2014-06-15

    LD motifs (leucine-aspartic acid motifs) are short helical protein-protein interaction motifs that have emerged as key players in connecting cell adhesion with cell motility and survival. LD motifs are required for embryogenesis, wound healing and the evolution of multicellularity. LD motifs also play roles in disease, such as in cancer metastasis or viral infection. First described in the paxillin family of scaffolding proteins, LD motifs and similar acidic LXXLL interaction motifs have been discovered in several other proteins, whereas 16 proteins have been reported to contain LDBDs (LD motif-binding domains). Collectively, structural and functional analyses have revealed a surprising multivalency in LD motif interactions and a wide diversity in LDBD architectures. In the present review, we summarize the molecular basis for function, regulation and selectivity of LD motif interactions that has emerged from more than a decade of research. This overview highlights the intricate multi-level regulation and the inherently noisy and heterogeneous nature of signalling through short protein-protein interaction motifs.

  13. Spectroscopic Signatures and Structural Motifs of Dopamine: a Computational Study

    NASA Astrophysics Data System (ADS)

    Srivastava, Santosh Kumar; Singh, Vipin Bahadur

    2016-06-01

    Dopamine (DA) is an essential neurotransmitter in the central nervous system and it plays integral role in numerous brain functions including behaviour, cognition, emotion, working memory and associated learning. In the present work the conformational landscapes of neutral and protonated dopamine have been investigated in the gas phase and in aqueous solution by MP2 and DFT (M06-2X, ωB97X-D, B3LYP and B3LYP-D3) methods. Twenty lowest energy structures of neutral DA were subjected to geometry optimization and the gauche conformer, GIa, was found to be the lowest gas phase structure at the each level of theory in agreement with the experimental rotational spectroscopy. All folded gauche conformers (GI) where lone electron pair of the NH2 group is directed towards the π system of the aromatic ring ( 'non up' ) are found more stable in the gas phase. While in aqueous solution, all those gauche conformers (GII) where lone electron pair of the NH2 group is directed opposite from the π system of the aromatic ring ('up' structures) are stabilized significantly.Nine lowest energy structures, protonated at the amino group, are optimized at the same MP2/aug-cc-pVDZ level of theory. In the most stable gauche structures, g-1 and g+1, mainly electrostatic cation - π interaction is further stabilized by significant dispersion forces as predicted by the substantial differences between the DFT and dispersion corrected DFT-D3 calculations. In aqueous environment the intra-molecular cation- π distance in g-1 and g+1 isomers, slightly increases compared to the gas phase and the magnitude of the cation- π interaction is reduced relative to the gas phase, because solvation of the cation decreases its interaction energy with the π face of aromatic system. The IR intensity of the bound N-H+ stretching mode provides characteristic 'IR spectroscopic signatures' which can reflect the strength of cation- π interaction energy. The CC2 lowest lying S1 ( 1ππ* ) excited state of neutral

  14. Flavin Adenine Dinucleotide Structural Motifs: From Solution to Gas Phase

    PubMed Central

    2015-01-01

    Flavin adenine dinucleotide (FAD) is involved in important metabolic reactions where the biological function is intrinsically related to changes in conformation. In the present work, FAD conformational changes were studied in solution and in gas phase by measuring the fluorescence decay time and ion-neutral collision cross sections (CCS, in a trapped ion mobility spectrometer, TIMS) as a function of the solvent conditions (i.e., organic content) and gas-phase collisional partner (i.e., N2 doped with organic molecules). Changes in the fluorescence decay suggest that FAD can exist in four conformations in solution, where the abundance of the extended conformations increases with the organic content. TIMS-MS experiments showed that FAD can exist in the gas phase as deprotonated (M = C27H31N9O15P2) and protonated forms (M = C27H33N9O15P2) and that multiple conformations (up to 12) can be observed as a function of the starting solution for the [M + H]+ and [M + Na]+molecular ions. In addition, changes in the relative abundances of the gas-phase structures were observed from a “stack” to a “close” conformation when organic molecules were introduced in the TIMS cell as collision partners. Candidate structures optimized at the DFT/B3LYP/6-31G(d,p) were proposed for each IMS band, and results showed that the most abundant IMS band corresponds to the most stable candidate structure. Solution and gas-phase experiments suggest that the driving force that stabilizes the different conformations is based on the interaction of the adenine and isoalloxazine rings that can be tailored by the “solvation” effect created with the organic molecules. PMID:25222439

  15. Investigation of structural mimetics of natural phosphate ion binding motifs.

    PubMed

    Kataev, Evgeny A; Shumilova, Tatiana A

    2015-02-16

    Phosphates are ubiquitous in biology and nearly half of all proteins interact with their partners by means of recognition of phosphate residues. Therefore, a better understanding of the phosphate ion binding by peptidic structures is highly desirable. Two new receptors have been designed and synthesized and their anion binding properties in an acetonitrile solution have been determined. The structure of hosts mimics a part of the kinase active site that is responsible for the recognition of the phosphate residue. New hosts contain additional free amino groups with the aim to facilitate coordination of protonated anions, such as dihydrogen phosphate. According to spectrophotometric measurements, stepwise 1:1 and 1:2 binding modes have been observed for both receptors in the presence of acetate, hydrogen sulfate and dihydrogen phosphate. Compared with the acyclic receptor, the macrocyclic receptor has demonstrated a remarkably enhanced selectivity for dihydrogen phosphate over other anions. Fluorometric measurements have revealed different responses of the acyclic and macrocyclic receptors towards anions. However, in both cases, a 5-8 nm hypsochromic shift of fluorescence maximum has been observed upon interaction of acetate and dihydrogen phosphate with receptors.

  16. Identification of multiple distinct Snf2 subfamilies with conserved structural motifs

    PubMed Central

    Flaus, Andrew; Martin, David M. A.; Barton, Geoffrey J.; Owen-Hughes, Tom

    2006-01-01

    The Snf2 family of helicase-related proteins includes the catalytic subunits of ATP-dependent chromatin remodelling complexes found in all eukaryotes. These act to regulate the structure and dynamic properties of chromatin and so influence a broad range of nuclear processes. We have exploited progress in genome sequencing to assemble a comprehensive catalogue of over 1300 Snf2 family members. Multiple sequence alignment of the helicase-related regions enables 24 distinct subfamilies to be identified, a considerable expansion over earlier surveys. Where information is known, there is a good correlation between biological or biochemical function and these assignments, suggesting Snf2 family motor domains are tuned for specific tasks. Scanning of complete genomes reveals all eukaryotes contain members of multiple subfamilies, whereas they are less common and not ubiquitous in eubacteria or archaea. The large sample of Snf2 proteins enables additional distinguishing conserved sequence blocks within the helicase-like motor to be identified. The establishment of a phylogeny for Snf2 proteins provides an opportunity to make informed assignments of function, and the identification of conserved motifs provides a framework for understanding the mechanisms by which these proteins function. PMID:16738128

  17. Motif co-regulation and co-operativity are common mechanisms in transcriptional, post-transcriptional and post-translational regulation.

    PubMed

    Van Roey, Kim; Davey, Norman E

    2015-12-01

    A substantial portion of the regulatory interactions in the higher eukaryotic cell are mediated by simple sequence motifs in the regulatory segments of genes and (pre-)mRNAs, and in the intrinsically disordered regions of proteins. Although these regulatory modules are physicochemically distinct, they share an evolutionary plasticity that has facilitated a rapid growth of their use and resulted in their ubiquity in complex organisms. The ease of motif acquisition simplifies access to basal housekeeping functions, facilitates the co-regulation of multiple biomolecules allowing them to respond in a coordinated manner to changes in the cell state, and supports the integration of multiple signals for combinatorial decision-making. Consequently, motifs are indispensable for temporal, spatial, conditional and basal regulation at the transcriptional, post-transcriptional and post-translational level. In this review, we highlight that many of the key regulatory pathways of the cell are recruited by motifs and that the ease of motif acquisition has resulted in large networks of co-regulated biomolecules. We discuss how co-operativity allows simple static motifs to perform the conditional regulation that underlies decision-making in higher eukaryotic biological systems. We observe that each gene and its products have a unique set of DNA, RNA or protein motifs that encode a regulatory program to define the logical circuitry that guides the life cycle of these biomolecules, from transcription to degradation. Finally, we contrast the regulatory properties of protein motifs and the regulatory elements of DNA and (pre-)mRNAs, advocating that co-regulation, co-operativity, and motif-driven regulatory programs are common mechanisms that emerge from the use of simple, evolutionarily plastic regulatory modules.

  18. Identification of sequence–structure RNA binding motifs for SELEX-derived aptamers

    PubMed Central

    Hoinka, Jan; Zotenko, Elena; Friedman, Adam; Sauna, Zuben E.; Przytycka, Teresa M.

    2012-01-01

    Motivation: Systematic Evolution of Ligands by EXponential Enrichment (SELEX) represents a state-of-the-art technology to isolate single-stranded (ribo)nucleic acid fragments, named aptamers, which bind to a molecule (or molecules) of interest via specific structural regions induced by their sequence-dependent fold. This powerful method has applications in designing protein inhibitors, molecular detection systems, therapeutic drugs and antibody replacement among others. However, full understanding and consequently optimal utilization of the process has lagged behind its wide application due to the lack of dedicated computational approaches. At the same time, the combination of SELEX with novel sequencing technologies is beginning to provide the data that will allow the examination of a variety of properties of the selection process. Results: To close this gap we developed, Aptamotif, a computational method for the identification of sequence–structure motifs in SELEX-derived aptamers. To increase the chances of identifying functional motifs, Aptamotif uses an ensemble-based approach. We validated the method using two published aptamer datasets containing experimentally determined motifs of increasing complexity. We were able to recreate the author's findings to a high degree, thus proving the capability of our approach to identify binding motifs in SELEX data. Additionally, using our new experimental dataset, we illustrate the application of Aptamotif to elucidate several properties of the selection process. Contact: przytyck@ncbi.nlm.nih.gov, Zuben.Sauna@fda.hhs.gov PMID:22689764

  19. Crystal structure of SEL1L: Insight into the roles of SLR motifs in ERAD pathway

    PubMed Central

    Jeong, Hanbin; Sim, Hyo Jung; Song, Eun Kyung; Lee, Hakbong; Ha, Sung Chul; Jun, Youngsoo; Park, Tae Joo; Lee, Changwook

    2016-01-01

    Terminally misfolded proteins are selectively recognized and cleared by the endoplasmic reticulum-associated degradation (ERAD) pathway. SEL1L, a component of the ERAD machinery, plays an important role in selecting and transporting ERAD substrates for degradation. We have determined the crystal structure of the mouse SEL1L central domain comprising five Sel1-Like Repeats (SLR motifs 5 to 9; hereafter called SEL1Lcent). Strikingly, SEL1Lcent forms a homodimer with two-fold symmetry in a head-to-tail manner. Particularly, the SLR motif 9 plays an important role in dimer formation by adopting a domain-swapped structure and providing an extensive dimeric interface. We identified that the full-length SEL1L forms a self-oligomer through the SEL1Lcent domain in mammalian cells. Furthermore, we discovered that the SLR-C, comprising SLR motifs 10 and 11, of SEL1L directly interacts with the N-terminus luminal loops of HRD1. Therefore, we propose that certain SLR motifs of SEL1L play a unique role in membrane bound ERAD machinery. PMID:27064360

  20. Reusable amine-based structural motifs for green house gas (CO2) fixation.

    PubMed

    Dalapati, Sasanka; Jana, Sankar; Saha, Rajat; Alam, Md Akhtarul; Guchhait, Nikhil

    2012-07-06

    A series of compounds with an amine based structural motif (ASM) have been synthesized for efficient atmospheric CO(2) fixation. The H-bonded ASM-bicarbonate complexes were formed with an in situ generated HCO(3)(-) ion. The complexes have been characterized by IR, (13)C NMR, and X-ray single-crystal structural analysis. ASM-bicarbonate salts have been converted to pure ASMs in quantitative yield under mild conditions for recycling processes.

  1. Protein Structure Determination by Assembling Super-Secondary Structure Motifs Using Pseudocontact Shifts.

    PubMed

    Pilla, Kala Bharath; Otting, Gottfried; Huber, Thomas

    2017-03-07

    Computational and nuclear magnetic resonance hybrid approaches provide efficient tools for 3D structure determination of small proteins, but currently available algorithms struggle to perform with larger proteins. Here we demonstrate a new computational algorithm that assembles the 3D structure of a protein from its constituent super-secondary structural motifs (Smotifs) with the help of pseudocontact shift (PCS) restraints for backbone amide protons, where the PCSs are produced from different metal centers. The algorithm, DINGO-PCS (3D assembly of Individual Smotifs to Near-native Geometry as Orchestrated by PCSs), employs the PCSs to recognize, orient, and assemble the constituent Smotifs of the target protein without any other experimental data or computational force fields. Using a universal Smotif database, the DINGO-PCS algorithm exhaustively enumerates any given Smotif. We benchmarked the program against ten different protein targets ranging from 100 to 220 residues with different topologies. For nine of these targets, the method was able to identify near-native Smotifs.

  2. Local motifs involved in the canonical structure of the ligand-binding domain in the nuclear receptor superfamily.

    PubMed

    Tsuji, Motonori

    2014-03-01

    Structural and sequence alignment analyses have revealed the existence of class-dependent and -independent local motifs involved in the overall fold of the ligand-binding domain (LBD) in the nuclear receptor (NR) superfamily. Of these local motifs, three local motifs, i.e., AF-2 fixed motifs, were involved in the agonist conformation of the activation function-2 (AF-2) region of the LBD. Receptor-agonist interactions increased the stability of these AF-2 fixed motifs in the agonist conformation. In contrast, perturbation of the AF-2 fixed motifs by a ligand or another protein molecule led the AF-2 architecture to adopt an antagonist conformation. Knowledge of this process should provide us with novel insights into the 'agonism' and 'antagonism' of NRs.

  3. Magnesium-binding architectures in RNA crystal structures: validation, binding preferences, classification and motif detection

    PubMed Central

    Zheng, Heping; Shabalin, Ivan G.; Handing, Katarzyna B.; Bujnicki, Janusz M.; Minor, Wladek

    2015-01-01

    The ubiquitous presence of magnesium ions in RNA has long been recognized as a key factor governing RNA folding, and is crucial for many diverse functions of RNA molecules. In this work, Mg2+-binding architectures in RNA were systematically studied using a database of RNA crystal structures from the Protein Data Bank (PDB). Due to the abundance of poorly modeled or incorrectly identified Mg2+ ions, the set of all sites was comprehensively validated and filtered to identify a benchmark dataset of 15 334 ‘reliable’ RNA-bound Mg2+ sites. The normalized frequencies by which specific RNA atoms coordinate Mg2+ were derived for both the inner and outer coordination spheres. A hierarchical classification system of Mg2+ sites in RNA structures was designed and applied to the benchmark dataset, yielding a set of 41 types of inner-sphere and 95 types of outer-sphere coordinating patterns. This classification system has also been applied to describe six previously reported Mg2+-binding motifs and detect them in new RNA structures. Investigation of the most populous site types resulted in the identification of seven novel Mg2+-binding motifs, and all RNA structures in the PDB were screened for the presence of these motifs. PMID:25800744

  4. Thermodynamic Features of Structural Motifs Formed by β-L-RNA

    PubMed Central

    Szabat, Marta; Gudanis, Dorota; Kotkowiak, Weronika; Gdaniec, Zofia; Kierzek, Ryszard; Pasternak, Anna

    2016-01-01

    This is the first report to provide comprehensive thermodynamic and structural data concerning duplex, hairpin, quadruplex and i-motif structures in β-L-RNA series. Herein we confirm that, within the limits of experimental error, the thermodynamic stability of enantiomeric structural motifs is the same as that of naturally occurring D-RNA counterparts. In addition, formation of D-RNA/L-RNA heterochiral duplexes is also observed; however, their thermodynamic stability is significantly reduced in reference to homochiral D-RNA duplexes. The presence of three locked nucleic acid (LNA) residues within the D-RNA strand diminishes the negative effect of the enantiomeric, complementary L-RNA strand in the formation of heterochiral RNA duplexes. Similar behavior is also observed for heterochiral LNA-2′-O-methyl-D-RNA/L-RNA duplexes. The formation of heterochiral duplexes was confirmed by 1H NMR spectroscopy. The CD curves of homochiral L-RNA structural motifs are always reversed, whereas CD curves of heterochiral duplexes present individual features dependent on the composition of chiral strands. PMID:26908023

  5. Structure determination of noncanonical RNA motifs guided by 1H NMR chemical shifts

    PubMed Central

    Sripakdeevong, Parin; Cevec, Mirko; Chang, Andrew T.; Erat, Michèle C.; Ziegeler, Melanie; Zhao, Qin; Fox, George E.; Gao, Xiaolian; Kennedy, Scott D.; Kierzek, Ryszard; Nikonowicz, Edward P.; Schwalbe, Harald; Sigel, Roland K. O.; Turner, Douglas H.; Das, Rhiju

    2014-01-01

    Structured non-coding RNAs underline fundamental cellular processes, but determining their 3D structures remains challenging. We demonstrate herein that integrating NMR 1H chemical shift data with Rosetta de novo modeling can consistently return high-resolution RNA structures. On a benchmark set of 23 noncanonical RNA motifs, including 11 blind targets, Chemical-Shift-ROSETTA for RNA (CS-ROSETTA-RNA) recovered the experimental structures with high accuracy (0.6 to 2.0 Å all-heavy-atom rmsd) in 18 cases. PMID:24584194

  6. Quasiracemate Crystal Structures of Magainin 2 Derivatives Support the Functional Significance of the Phenylalanine Zipper Motif.

    PubMed

    Hayouka, Zvi; Thomas, Nicole C; Mortenson, David E; Satyshur, Kenneth A; Weisblum, Bernard; Forest, Katrina T; Gellman, Samuel H

    2015-09-23

    Quasiracemic crystallography has been used to explore the significance of homochiral and heterochiral associations in a set of host-defense peptide derivatives. The previously reported racemic crystal structure of a magainin 2 derivative displayed a homochiral antiparallel dimer association featuring a "phenylalanine zipper" notable for the dual roles of phenylalanines in mediating dimerization and formation of an exposed hydrophobic swath. This motif is seen as well in two new quasiracemate crystals that contain the d form of the magainin 2 derivative along with an l-peptide in which one Ala has been replaced by a β-amino acid residue. This structural trend supports the hypothesis that the Phe zipper motif has functional significance.

  7. Structure and Mechanical Characterization of DNA i-Motif Nanowires by Molecular Dynamics Simulation

    PubMed Central

    Singh, Raghvendra Pratap; Blossey, Ralf; Cleri, Fabrizio

    2013-01-01

    We studied the structure and mechanical properties of DNA i-motif nanowires by means of molecular dynamics computer simulations. We built up to 230 nm-long nanowires, based on a repeated TC5 sequence from crystallographic data, fully relaxed and equilibrated in water. The unusual C⋅C+ stacked structure, formed by four ssDNA strands arranged in an intercalated tetramer, is here fully characterized both statically and dynamically. By applying stretching, compression, and bending deformations with the steered molecular dynamics and umbrella sampling methods, we extract the apparent Young’s and bending moduli of the nanowire, as well as estimates for the tensile strength and persistence length. According to our results, the i-motif nanowire shares similarities with structural proteins, as far as its tensile stiffness, but is closer to nucleic acids and flexible proteins, as far as its bending rigidity is concerned. Furthermore, thanks to its very thin cross section, the apparent tensile toughness is close to that of a metal. Besides their yet to be clarified biological significance, i-motif nanowires may qualify as interesting candidates for nanotechnology templates, due to such outstanding mechanical properties. PMID:24359754

  8. A conserved structural motif reveals the essential transcriptional repression function of Spen proteins and their role in developmental signaling.

    PubMed

    Ariyoshi, Mariko; Schwabe, John W R

    2003-08-01

    Spen proteins regulate the expression of key transcriptional effectors in diverse signaling pathways. They are large proteins characterized by N-terminal RNA-binding motifs and a highly conserved C-terminal SPOC domain. The specific biological role of the SPOC domain (Spen paralog and ortholog C-terminal domain), and hence, the common function of Spen proteins, has been unclear to date. The Spen protein, SHARP (SMRT/HDAC1-associated repressor protein), was identified as a component of transcriptional repression complexes in both nuclear receptor and Notch/RBP-Jkappa signaling pathways. We have determined the 1.8 A crystal structure of the SPOC domain from SHARP. This structure shows that essentially all of the conserved surface residues map to a positively charged patch. Structure-based mutational analysis indicates that this conserved region is responsible for the interaction between SHARP and the universal transcriptional corepressor SMRT/NCoR (silencing mediator for retinoid and thyroid receptors/nuclear receptor corepressor. We demonstrate that this interaction involves a highly conserved acidic motif at the C terminus of SMRT/NCoR. These findings suggest that the conserved function of the SPOC domain is to mediate interaction with SMRT/NCoR corepressors, and that Spen proteins play an essential role in the repression complex.

  9. The Structural and Functional Implications of Linked SNARE Motifs in SNAP25

    PubMed Central

    Wang, Li; Bittner, Mary A.; Axelrod, Daniel

    2008-01-01

    We investigated the functional and structural implications of SNAP25 having two SNARE motifs (SN1 and SN2). A membrane-bound, intramolecular FRET probe was constructed to report on the folding of N-terminal SN1 and C-terminal SN2 in living cells. Membrane-bound constructs containing either or both SNARE motifs were also singly labeled with donor or acceptor fluorophores. Interaction of probes with other SNAREs was monitored by the formation of SDS-resistant complexes and by changes in FRET measured in vitro using spectroscopy and in the plasma membrane of living cells using TIRF microscopy. The probes formed the predicted SDS-resistant SNARE complexes. FRET measurements revealed that syntaxin induced a close association of the N-termini of SN1 and SN2. This association required that the SNARE motifs reside in the same molecule. Unexpectedly, the syntaxin-induced FRET was prevented by VAMP. Both full-length SNAP25 constructs and the combination of its separated, membrane-bound constituent chains supported secretion in permeabilized chromaffin cells that had been allowed to rundown. However, only full-length SNAP25 constructs enabled robust secretion from intact cells or permeabilized cells before rundown. The experiments suggest that the bidentate structure permits specific conformations in complexes with syntaxin and VAMP and facilitates the function of SN1 and SN2 in exocytosis. PMID:18596234

  10. A Conserved Structural Motif Mediates Retrograde Trafficking of Shiga Toxin Types 1 and 2.

    PubMed

    Selyunin, Andrey S; Mukhopadhyay, Somshuvra

    2015-12-01

    Shiga toxin-producing Escherichia coli (STEC) produce two types of Shiga toxin (STx): STx1 and STx2. The toxin A-subunits block protein synthesis, while the B-subunits mediate retrograde trafficking. STEC infections do not have definitive treatments, and there is growing interest in generating toxin transport inhibitors for therapy. However, a comprehensive understanding of the mechanisms of toxin trafficking is essential for drug development. While STx2 is more toxic in vivo, prior studies focused on STx1 B-subunit (STx1B) trafficking. Here, we show that, compared with STx1B, trafficking of the B-subunit of STx2 (STx2B) to the Golgi occurs with slower kinetics. Despite this difference, similar to STx1B, endosome-to-Golgi transport of STx2B does not involve transit through degradative late endosomes and is dependent on dynamin II, epsinR, retromer and syntaxin5. Importantly, additional experiments show that a surface-exposed loop in STx2B (β4-β5 loop) is required for its endosome-to-Golgi trafficking. We previously demonstrated that residues in the corresponding β4-β5 loop of STx1B are required for interaction with GPP130, the STx1B-specific endosomal receptor, and for endosome-to-Golgi transport. Overall, STx1B and STx2B share a common pathway and use a similar structural motif to traffic to the Golgi, suggesting that the underlying mechanisms of endosomal sorting may be evolutionarily conserved.

  11. Solution Structure of the Cuz1 AN1 Zinc Finger Domain: An Exposed LDFLP Motif Defines a Subfamily of AN1 Proteins

    PubMed Central

    Sun, Zhen-Yu J.; Bhanu, Meera K.; Allan, Martin G.; Arthanari, Haribabu; Wagner, Gerhard; Hanna, John

    2016-01-01

    Zinc binding domains are common and versatile protein structural motifs that mediate diverse cellular functions. Among the many structurally distinct families of zinc finger (ZnF) proteins, the AN1 domain remains poorly characterized. Cuz1 is one of two AN1 ZnF proteins in the yeast S. cerevisiae, and is a stress-inducible protein that functions in protein degradation through direct interaction with the proteasome and Cdc48. Here we report the solution structure of the Cuz1 AN1 ZnF which reveals a compact C6H2 zinc-coordinating domain that resembles a two-finger hand holding a tri-helical clamp. A central phenylalanine residue sits between the two zinc-coordinating centers. The position of this phenylalanine, just before the penultimate zinc-chelating cysteine, is strongly conserved from yeast to man. This phenylalanine shows an exceptionally slow ring-flipping rate which likely contributes to the high rigidity and stability of the AN1 domain. In addition to the zinc-chelating residues, sequence analysis of Cuz1 indicates a second highly evolutionarily conserved motif. This LDFLP motif is shared with three human proteins—Zfand1, AIRAP, and AIRAP-L—the latter two of which share similar cellular functions with Cuz1. The LDFLP motif, while embedded within the zinc finger domain, is surface exposed, largely uninvolved in zinc chelation, and not required for the overall fold of the domain. The LDFLP motif was dispensable for Cuz1's major known functions, proteasome- and Cdc48-binding. These results provide the first structural characterization of the AN1 zinc finger domain, and suggest that the LDFLP motif may define a sub-family of evolutionarily conserved AN1 zinc finger proteins. PMID:27662200

  12. The structure of common-envelope remnants

    NASA Astrophysics Data System (ADS)

    Hall, Philip D.

    2015-05-01

    We investigate the structure and evolution of the remnants of common-envelope evolution in binary star systems. In a common-envelope phase, two stars become engulfed in a gaseous envelope and, under the influence of drag forces, spiral to smaller separations. They may merge to form a single star or the envelope may be ejected to leave the stars in a shorter period orbit. This process explains the short orbital periods of many observed binary systems, such as cataclysmic variables and low-mass X-ray binary systems. Despite the importance of these systems, and of common-envelope evolution to their formation, it remains poorly understood. Specifically, we are unable to confidently predict the outcome of a common-envelope phase from the properties at its onset. After presenting a review of work on stellar evolution, binary systems, common-envelope evolution and the computer programs used, we describe the results of three computational projects on common-envelope evolution. Our work specifically relates to the methods and prescriptions which are used for predicting the outcome. We use the Cambridge stellar-evolution code STARS to produce detailed models of the structure and evolution of remnants of common-envelope evolution. We compare different assumptions about the uncertain end-of-common envelope structure and envelope mass of remnants which successfully eject their common envelopes. In the first project, we use detailed remnant models to investigate whether planetary nebulae are predicted after common-envelope phases initiated by low-mass red giants. We focus on the requirement that a remnant evolves rapidly enough to photoionize the nebula and compare the predictions for different ideas about the structure at the end of a common-envelope phase. We find that planetary nebulae are possible for some prescriptions for the end-of-common envelope structure. In our second contribution, we compute a large set of single-star models and fit new formulae to the core radii of

  13. Identification of a common hyaluronan binding motif in the hyaluronan binding proteins RHAMM, CD44 and link protein.

    PubMed Central

    Yang, B; Yang, B L; Savani, R C; Turley, E A

    1994-01-01

    We have previously identified two hyaluronan (HA) binding domains in the HA receptor, RHAMM, that occur near the carboxyl-terminus of this protein. We show here that these two HA binding domains are the only HA binding regions in RHAMM, and that they contribute approximately equally to the HA binding ability of this receptor. Mutation of domain II using recombinant polypeptides of RHAMM demonstrates that K423 and R431, spaced seven amino acids apart, are critical for HA binding activity. Domain I contains two sets of two basic amino acids, each spaced seven residues apart, and mutation of these basic amino acids reduced their binding to HA--Sepharose. These results predict that two basic amino acids flanking a seven amino acid stretch [hereafter called B(X7)B] are minimally required for HA binding activity. To assess whether this motif predicts HA binding in the intact RHAMM protein, we mutated all basic amino acids in domains I and II that form part of these motifs using site-directed mutagenesis and prepared fusion protein from the mutated cDNA. The altered RHAMM protein did not bind HA, confirming that the basic amino acids and their spacing are critical for binding. A specific requirement for arginine or lysine residues was identified since mutation of K430, R431 and K432 to histidine residues abolished binding. Clustering of basic amino acids either within or at either end of the motif enhanced HA binding activity while the occurrence of acidic residues between the basic amino acids reduced binding. The B(X7)B motif, in which B is either R or K and X7 contains no acidic residues and at least one basic amino acid, was found in all HA binding proteins molecularly characterized to date. Recombinant techniques were used to generate chimeric proteins containing either the B(X7)B motifs present in CD44 or link protein, with the amino-terminus of RHAMM (amino acids 1-238) that does not bind HA. All chimeric proteins containing the motif bound HA in transblot analyses

  14. Structure of a (Cys3His) zinc ribbon, a ubiquitous motif in archaeal and eucaryal transcription.

    PubMed Central

    Chen, H. T.; Legault, P.; Glushka, J.; Omichinski, J. G.; Scott, R. A.

    2000-01-01

    Transcription factor IIB (TFIIB) is an essential component in the formation of the transcription initiation complex in eucaryal and archaeal transcription. TFIIB interacts with a promoter complex containing the TATA-binding protein (TBP) to facilitate interaction with RNA polymerase II (RNA pol II) and the associated transcription factor IIF (TFIIF). TFIIB contains a zinc-binding motif near the N-terminus that is directly involved in the interaction with RNA pol II/TFIIF and plays a crucial role in selecting the transcription initiation site. The solution structure of the N-terminal residues 2-59 of human TFIIB was determined by multidimensional NMR spectroscopy. The structure consists of a nearly tetrahedral Zn(Cys)3(His)1 site confined by type I and "rubredoxin" turns, three antiparallel beta-strands, and disordered loops. The structure is similar to the reported zinc-ribbon motifs in several transcription-related proteins from archaea and eucarya, including Pyrococcus furiosus transcription factor B (PfTFB), human and yeast transcription factor IIS (TFIIS), and Thermococcus celer RNA polymerase II subunit M (TcRPOM). The zinc-ribbon structure of TFIIB, in conjunction with the biochemical analyses, suggests that residues on the beta-sheet are involved in the interaction with RNA pol II/TFIIF, while the zinc-binding site may increase the stability of the beta-sheet. PMID:11045620

  15. Common structure-balance between spacetime structure and massenergy structure

    NASA Astrophysics Data System (ADS)

    Cao, Daqing; Cao, Dayong

    2017-01-01

    According to Einstein field equation, there is a balance between spacetime structure and massenergy structure. nd the paper consider it as a common structurewhich was brought forward by Daqing Cao in 2011 ecause it is general structure in the universe and everything have the same model of structure in their one system. The Jovian planets is spacetime structure of solar system because they are gas-sphere and they have more density of spacetime (spacetime/massenergy) than the density of massenergy (massenergy/spacetime). The terrestrial planets is massenergy structure of solar system because they are rock-ball and they have more density of massenergy than the density of spacetime. That can explain of that the Jovian planets of big mass is far away from sun. With the idea that the wave is spacetime and the wave effect is spacetime structure, the planets have elliptic orbits and the same direction of their revolution. Because sun is like a massenergy center of the massenergy structure and the terrestrial planets, the paper supposes there is a dark sun-a dark hole who has a spacetime center of spacetime structure and influences on the orbits of the Jovian planets. http://meetings.aps.org/Meeting/APR16/Session/M13.8

  16. Fragment Finder: a web-based software to identify similar three-dimensional structural motif

    PubMed Central

    Ananthalakshmi, P.; Kumar, Ch. Kiran; Jeyasimhan, M.; Sumathi, K.; Sekar, K.

    2005-01-01

    FF (Fragment Finder) is a web-based interactive search engine developed to retrieve the user-desired similar 3D structural fragments from the selected subset of 25 or 90% non-homologous protein chains. The search is based on the comparison of the main chain backbone conformational angles (φ and ϕ). Additionally, the queried motifs can be superimposed to find out how similar the structural fragments are, so that the information can be effectively used in molecular modeling. The engine has facilities to view the resultant superposed or individual 3D structure(s) on the client machine. The proposed web server is made freely accessible at the following URL: or . PMID:15980587

  17. Identification of Structural Motifs of Imidazolium Based Ionic Liquids from Jet-Cooled Infrared Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Young, Justin W.; Booth, Ryan S.; Annesley, Christopher; Stearns, Jaime A.

    2016-06-01

    Highly variable and potentially revolutionary, ionic liquids (IL) are a class of molecules with potential for numerous Air Force applications such as satellite propulsion, but the complex nature of IL structure and intermolecular interactions makes it difficult to adequately predict structure-property relationships in order to make new IL-based technology a reality. For example, methylation of imidazolium ionic liquids leads to a substantial increase in viscosity but the underlying physical mechanism is not understood. In addition the role of hydrogen bonding in ILs, especially its relationship to macroscopic properties, is a matter of ongoing research. Here, structural motifs are identified from jet-cooled infrared spectra of different imidazolium based ionic liquids, such as 1-ethyl-3-methylimidazolium bis(trifluoromethyl-sulfonyl)imide. Measurements of the C-H stretches indicate three structural families present in the gas phase.

  18. Structural basis of HP1/PXVXL motif peptide interactions and HP1 localisation to heterochromatin

    PubMed Central

    Thiru, Abarna; Nietlispach, Daniel; Mott, Helen R; Okuwaki, Mitsuru; Lyon, Debbie; Nielsen, Peter R; Hirshberg, Miriam; Verreault, Alain; Murzina, Natalia V; Laue, Ernest D

    2004-01-01

    HP1 family proteins are adaptor molecules, containing two related chromo domains that are required for chromatin packaging and gene silencing. Here we present the structure of the chromo shadow domain from mouse HP1β bound to a peptide containing a consensus PXVXL motif found in many HP1 binding partners. The shadow domain exhibits a novel mode of peptide recognition, where the peptide binds across the dimer interface, sandwiched in a β-sheet between strands from each monomer. The structure allows us to predict which other shadow domains bind similar PXVXL motif-containing peptides and provides a framework for predicting the sequence specificity of the others. We show that targeting of HP1β to heterochromatin requires shadow domain interactions with PXVXL-containing proteins in addition to chromo domain recognition of Lys-9-methylated histone H3. Interestingly, it also appears to require the simultaneous recognition of two Lys-9-methylated histone H3 molecules. This finding implies a further complexity to the histone code for regulation of chromatin structure and suggests how binding of HP1 family proteins may lead to its condensation. PMID:14765118

  19. A tyrosine-containing motif mediates ER retention of CD3-epsilon and adopts a helix-turn structure.

    PubMed Central

    Mallabiabarrena, A; Jiménez, M A; Rico, M; Alarcón, B

    1995-01-01

    The CD3-epsilon endoplasmic reticulum (ER) retention motif has been characterized by mutagenesis and NMR spectroscopy. Tyr177, Leu180 and Arg183 are involved in ER retention. The motif forms an elongated alpha-helix in which the tyrosine and leucine residues are closely apposed, followed by a beta I' turn that places Arg183 in the vicinity of Leu180. The structure formed by Tyr177 and the leucine in position +3 is reminiscent of the beta-turn structure adopted by tyrosine-containing endocytosis signals. Moreover, substitution of the transferrin receptor (TfR) internalization sequence by the CD3-epsilon motif still allowed the rapid internalization of the TfR and, conversely, the chimeric protein resulting from the substitution of the CD3-epsilon motif by the endocytosis signal of the low density lipoprotein receptor was ER located. These data support the idea of a functional homology between the two types of signal. Images PMID:7774584

  20. Immunity related genes in dipterans share common enrichment of AT-rich motifs in their 5' regulatory regions that are potentially involved in nucleosome formation

    PubMed Central

    Hernandez-Romano, Jesus; Carlos-Rivera, Francisco J; Salgado, Heladia; Lamadrid-Figueroa, Hector; Valverde-Garduño, Veronica; Rodriguez, Mario H; Martinez-Barnetche, Jesus

    2008-01-01

    Background Understanding the transcriptional regulation mechanisms in response to environmental challenges is of fundamental importance in biology. Transcription factors associated to response elements and the chromatin structure had proven to play important roles in gene expression regulation. We have analyzed promoter regions of dipteran genes induced in response to immune challenge, in search for particular sequence patterns involved in their transcriptional regulation. Results 5' upstream regions of D. melanogaster and A. gambiae immunity-induced genes and their corresponding orthologous genes in 11 non-melanogaster drosophilid species and Ae. aegypti share enrichment in AT-rich short motifs. AT-rich motifs are associated with nucleosome formation as predicted by two different algorithms. In A. gambiae and D. melanogaster, many immunity genes 5' upstream sequences also showed NFκB response elements, located within 500 bp from the transcription start site. In A. gambiae, the frequency of ATAA motif near the NFκB response elements was increased, suggesting a functional link between nucleosome formation/remodelling and NFκB regulation of transcription. Conclusion AT-rich motif enrichment in 5' upstream sequences in A. gambiae, Ae. aegypti and the Drosophila genus immunity genes suggests a particular pattern of nucleosome formation/chromatin organization. The co-occurrence of such motifs with the NFκB response elements suggests that these sequence signatures may be functionally involved in transcriptional activation during dipteran immune response. AT-rich motif enrichment in regulatory regions in this group of co-regulated genes could represent an evolutionary constrained signature in dipterans and perhaps other distantly species. PMID:18613977

  1. URS DataBase: universe of RNA structures and their motifs

    PubMed Central

    Baulin, Eugene; Yacovlev, Victor; Khachko, Denis; Spirin, Sergei; Roytberg, Mikhail

    2016-01-01

    The Universe of RNA Structures DataBase (URSDB) stores information obtained from all RNA-containing PDB entries (2935 entries in October 2015). The content of the database is updated regularly. The database consists of 51 tables containing indexed data on various elements of the RNA structures. The database provides a web interface allowing user to select a subset of structures with desired features and to obtain various statistical data for a selected subset of structures or for all structures. In particular, one can easily obtain statistics on geometric parameters of base pairs, on structural motifs (stems, loops, etc.) or on different types of pseudoknots. The user can also view and get information on an individual structure or its selected parts, e.g. RNA–protein hydrogen bonds. URSDB employs a new original definition of loops in RNA structures. That definition fits both pseudoknot-free and pseudoknotted secondary structures and coincides with the classical definition in case of pseudoknot-free structures. To our knowledge, URSDB is the first database supporting searches based on topological classification of pseudoknots and on extended loop classification. Database URL: http://server3.lpm.org.ru/urs/ PMID:27242032

  2. URS DataBase: universe of RNA structures and their motifs.

    PubMed

    Baulin, Eugene; Yacovlev, Victor; Khachko, Denis; Spirin, Sergei; Roytberg, Mikhail

    2016-01-01

    The Universe of RNA Structures DataBase (URSDB) stores information obtained from all RNA-containing PDB entries (2935 entries in October 2015). The content of the database is updated regularly. The database consists of 51 tables containing indexed data on various elements of the RNA structures. The database provides a web interface allowing user to select a subset of structures with desired features and to obtain various statistical data for a selected subset of structures or for all structures. In particular, one can easily obtain statistics on geometric parameters of base pairs, on structural motifs (stems, loops, etc.) or on different types of pseudoknots. The user can also view and get information on an individual structure or its selected parts, e.g. RNA-protein hydrogen bonds. URSDB employs a new original definition of loops in RNA structures. That definition fits both pseudoknot-free and pseudoknotted secondary structures and coincides with the classical definition in case of pseudoknot-free structures. To our knowledge, URSDB is the first database supporting searches based on topological classification of pseudoknots and on extended loop classification.Database URL: http://server3.lpm.org.ru/urs/.

  3. Characterization of the metal ion binding helix-hairpin-helix motifs in human DNA polymerase beta by X-ray structural analysis.

    PubMed

    Pelletier, H; Sawaya, M R

    1996-10-01

    X-ray crystallographic studies have shown that DNA binding by human polymerase beta (pol beta) occurs primarily through two structurally and sequentially homologous helix-hairpin-helix (HhH) motifs, one in the fingers subdomain and the other in the 8-kDa domain [Pelletier, H., Sawaya, M. R., Wolfle, W., Wilson, S. H., & Kraut, J. (1996a) Biochemistry 35, 12742-12761]. In that DNA binding by each HhH motif is facilitated by a metal ion, we set out to determine the identity of the metal ion that most likely binds to the HhH motif in vivo. Crystal soaking experiments were performed on human pol beta-DNA cocrystals with Mg2+, Ca2+, Na+, and K+, the four most prevalent metal ions in the cell, and in each case a data set was collected and the resulting structure was refined. Under the conditions tested, the HhH motifs of pol beta have an affinity for these biologically prevalent metal ions in the order Mg2+ < Ca2+ < Na+ < K+, with K+ displaying the strongest binding. Crystals soaked in the presence of Tl+, a commonly used spectroscopic probe for K+, were too X-ray-sensitive to establish the binding behavior of Tl+, but soaking experiments with Ba2+ and Cs+ resulted in relatively stable crystals that gave evidence of metal ion binding in both HhH motifs, confirming that larger monovalent and divalent metal ions are capable of binding to the HhH metal sites. Although Mn2+, which has been categorized as a potent polymerase mutagen, binds to the HhH motifs with a greater affinity than Mg2+, Mn2+ does not bind to the HhH motifs in the presence of equimolar concentrations of Na+. These results suggest that in vivo, where Mn2+ is present only in trace amounts, Mn2+ probably does not have a large effect on DNA binding and may instead manifest a mutagenic effect on pol beta primarily by distorting nucleotide binding or by directly affecting the catalytic step [Pelletier, H., Sawaya, M. R., Wolfle, W., Wilson, S. H., & Kraut, J. (1996b) Biochemistry 35, 12762-12777]. Crystal

  4. Input-dependent induction of oligonucleotide structural motifs for performing molecular logic.

    PubMed

    Li, Tao; Ackermann, Damian; Hall, Anna M; Famulok, Michael

    2012-02-22

    The K(+)-H(+)-triggered structural conversion of multiple nucleic acid helices involving duplexes, triplexes, G-quadruplexes, and i-motifs is studied by gel electrophoresis, circular dichroism, and thermal denaturation. We employ the structural interconversions for perfoming molecular logic operations, as verified by fluorimetry and colorimetry. Short G-rich and C-rich cDNA and RNA single strands are hybridized to produce four A-form and B-form duplexes. Addition of K(+) triggers the unwinding of the duplexes by inducing the folding of G-rich strands into DNA- or RNA G-quadruplex mono- and multimers, respectively. We found a decrease in pH to have different consequences on the resulting structural output, depending on whether the C-rich strand is DNA or RNA: while the protonated C-rich DNA strand folds into at least two isomers of a stable i-motif structure, the protonated C-rich RNA strand binds a DNA/RNA hybrid duplex to form a Y·RY parallel triplex. When using K(+) and H(+) as external stimuli, or inputs, and the induced G-quadruplexes as reporters, these structural interconversions of nucleic acid helices can be employed for performing logic-gate operations. The signaling mode for detecting these conversions relies on complex formation between DNA or RNA G-quadruplexes (G4) and the cofactor hemin. The G4/hemin complexes catalyze the H(2)O(2)-mediated oxidation of peroxidase substrates, resulting in a fluorescence or color change. Depending on the nature of the respective peroxidase substrate, distinct output signals can be generated, allowing one to operate multiple logic gates such as NOR, INH, or AND.

  5. The mammalian heterochromatin protein 1 binds diverse nuclear proteins through a common motif that targets the chromoshadow domain

    SciTech Connect

    Lechner, Mark S. . E-mail: msl27@drexel.edu; Schultz, David C.; Negorev, Dmitri; Maul, Gerd G.; Rauscher, Frank J.

    2005-06-17

    The HP1 proteins regulate epigenetic gene silencing by promoting and maintaining chromatin condensation. The HP1 chromodomain binds to methylated histone H3. More enigmatic is the chromoshadow domain (CSD), which mediates dimerization, transcription repression, and interaction with multiple nuclear proteins. Here we show that KAP-1, CAF-1 p150, and NIPBL carry a canonical amino acid motif, PxVxL, which binds directly to the CSD with high affinity. We also define a new class of variant PxVxL CSD-binding motifs in Sp100A, LBR, and ATRX. Both canonical and variant motifs recognize a similar surface of the CSD dimer as demonstrated by a panel of CSD mutants. These in vitro binding results were confirmed by the analysis of polypeptides found associated with nuclear HP1 complexes and we provide the first evidence of the NIPBL/delangin protein in human cells, a protein recently implicated in the developmental disorder, Cornelia de Lange syndrome. NIPBL is related to Nipped-B, a factor participating in gene activation by remote enhancers in Drosophila melanogaster. Thus, this spectrum of direct binding partners suggests an expanded role for HP1 as factor participating in promoter-enhancer communication, chromatin remodeling/assembly, and sub-nuclear compartmentalization.

  6. Structural basis for the recognition of two consecutive mutually interacting DPF motifs by the SGIP1 μ homology domain

    NASA Astrophysics Data System (ADS)

    Shimada, Atsushi; Yamaguchi, Atsuko; Kohda, Daisuke

    2016-01-01

    FCHo1, FCHo2, and SGIP1 are key regulators of clathrin-mediated endocytosis. Their μ homology domains (μHDs) interact with the C-terminal region of an endocytic scaffold protein, Eps15, containing fifteen Asp-Pro-Phe (DPF) motifs. Here, we show that the high-affinity μHD-binding site in Eps15 is a region encompassing six consecutive DPF motifs, while the minimal μHD-binding unit is two consecutive DPF motifs. We present the crystal structures of the SGIP1 μHD in complex with peptides containing two DPF motifs. The peptides bind to a novel ligand-binding site of the μHD, which is distinct from those of other distantly related μHD-containing proteins. The two DPF motifs, which adopt three-dimensional structures stabilized by sequence-specific intramotif and intermotif interactions, are extensively recognized by the μHD and are both required for binding. Thus, consecutive and singly scattered DPF motifs play distinct roles in μHD binding.

  7. Functional structural motifs for protein-ligand, protein-protein, and protein-nucleic acid interactions and their connection to supersecondary structures.

    PubMed

    Kinjo, Akira R; Nakamura, Haruki

    2013-01-01

    Protein functions are mediated by interactions between proteins and other molecules. One useful approach to analyze protein functions is to compare and classify the structures of interaction interfaces of proteins. Here, we describe the procedures for compiling a database of interface structures and efficiently comparing the interface structures. To do so requires a good understanding of the data structures of the Protein Data Bank (PDB). Therefore, we also provide a detailed account of the PDB exchange dictionary necessary for extracting data that are relevant for analyzing interaction interfaces and secondary structures. We identify recurring structural motifs by classifying similar interface structures, and we define a coarse-grained representation of supersecondary structures (SSS) which represents a sequence of two or three secondary structure elements including their relative orientations as a string of four to seven letters. By examining the correspondence between structural motifs and SSS strings, we show that no SSS string has particularly high propensity to be found interaction interfaces in general, indicating any SSS can be used as a binding interface. When individual structural motifs are examined, there are some SSS strings that have high propensity for particular groups of structural motifs. In addition, it is shown that while the SSS strings found in particular structural motifs for nonpolymer and protein interfaces are as abundant as in other structural motifs that belong to the same subunit, structural motifs for nucleic acid interfaces exhibit somewhat stronger preference for SSS strings. In regard to protein folds, many motif-specific SSS strings were found across many folds, suggesting that SSS may be a useful description to investigate the universality of ligand binding modes.

  8. Zinc fingers as protein recognition motifs: structural basis for the GATA-1/friend of GATA interaction.

    PubMed

    Liew, Chu Kong; Simpson, Raina J Y; Kwan, Ann H Y; Crofts, Linda A; Loughlin, Fionna E; Matthews, Jacqueline M; Crossley, Merlin; Mackay, Joel P

    2005-01-18

    GATA-1 and friend of GATA (FOG) are zinc-finger transcription factors that physically interact to play essential roles in erythroid and megakaryocytic development. Several naturally occurring mutations in the GATA-1 gene that alter the FOG-binding domain have been reported. The mutations are associated with familial anemias and thrombocytopenias of differing severity. To elucidate the molecular basis for the GATA-1/FOG interaction, we have determined the three-dimensional structure of a complex comprising the interaction domains of these proteins. The structure reveals how zinc fingers can act as protein recognition motifs. Details of the architecture of the contact domains and their physical properties provide a molecular explanation for how the GATA-1 mutations contribute to distinct but related genetic diseases.

  9. The ARTT motif and a unified structural understanding of substrate recognition in ADP-ribosylating bacterial toxins and eukaryotic ADP-ribosyltransferases.

    PubMed

    Han, Seungil; Tainer, John A

    2002-02-01

    ADP-ribosylation is a widely occurring and biologically critical covalent chemical modification process in pathogenic mechanisms, intracellular signaling systems, DNA repair, and cell division. The reaction is catalyzed by ADP-ribosyltransferases, which transfer the ADP-ribose moiety of NAD to a target protein with nicotinamide release. A family of bacterial toxins and eukaryotic enzymes has been termed the mono-ADP-ribosyltransferases, in distinction to the poly-ADP-ribosyltransferases, which catalyze the addition of multiple ADP-ribose groups to the carboxyl terminus of eukaryotic nucleoproteins. Despite the limited primary sequence homology among the different ADP-ribosyltransferases, a central cleft bearing the NAD-binding pocket formed by the two perpendicular beta-sheet cores has been remarkably conserved between bacterial toxins and eukaryotic mono- and poly-ADP-ribosyltransferases. The majority of bacterial toxins and eukaryotic mono-ADP-ribosyltransferases are characterized by conserved His and catalytic Glu residues. In contrast, diphtheria toxin, Pseudomonas exotoxin A, and eukaryotic poly-ADP-ribosytransferases are characterized by conserved Arg and catalytic Glu residues. Structural and mutagenic studies of the NAD-binding core of a binary toxin and a C3-like toxin identified an ARTT motif (ADP-ribosylating turn-turn motif) that is implicated in substrate specificity and recognition. Here we apply structure-based sequence alignment and comparative structural analyses of all known structures of ADP-ribosyltransfeases to suggest that this ARTT motif is functionally important in many ADP-ribosylating enzymes that bear a NAD-binding cleft as characterized by conserved Arg and catalytic Glu residues. Overall, structure-based sequence analysis reveals common core structures and conserved active sites of ADP-ribosyltransferases to support similar NAD-binding mechanisms but differing mechanisms of target protein binding via sequence variations within the ARTT

  10. Ser/Thr Motifs in Transmembrane Proteins: Conservation Patterns and Effects on Local Protein Structure and Dynamics

    PubMed Central

    del Val, Coral; White, Stephen H.

    2014-01-01

    We combined systematic bioinformatics analyses and molecular dynamics simulations to assess the conservation patterns of Ser and Thr motifs in membrane proteins, and the effect of such motifs on the structure and dynamics of α-helical transmembrane (TM) segments. We find that Ser/Thr motifs are often present in β-barrel TM proteins. At least one Ser/Thr motif is present in almost half of the sequences of α-helical proteins analyzed here. The extensive bioinformatics analyses and inspection of protein structures led to the identification of molecular transporters with noticeable numbers of Ser/Thr motifs within the TM region. Given the energetic penalty for burying multiple Ser/Thr groups in the membrane hydrophobic core, the observation of transporters with multiple membrane-embedded Ser/Thr is intriguing and raises the question of how the presence of multiple Ser/Thr affects protein local structure and dynamics. Molecular dynamics simulations of four different Ser-containing model TM peptides indicate that backbone hydrogen bonding of membrane-buried Ser/Thr hydroxyl groups can significantly change the local structure and dynamics of the helix. Ser groups located close to the membrane interface can hydrogen bond to solvent water instead of protein backbone, leading to an enhanced local solvation of the peptide. PMID:22836667

  11. Crystal Structure of a Luteoviral RNA Pseudoknot and Model for a Minimal Ribosomal Frameshifting Motif

    SciTech Connect

    Pallan, Pradeep S.; Marshall, William S.; Harp, Joel; Jewett III, Frederic C.; Wawrzak, Zdzislaw; Brown II, Bernard A.; Rich, Alexander; Egli, Martin

    2010-03-08

    To understand the role of structural elements of RNA pseudoknots in controlling the extent of -1-type ribosomal frameshifting, we determined the crystal structure of a high-efficiency frameshifting mutant of the pseudoknot from potato leaf roll virus (PLRV). Correlations of the structure with available in vitro frameshifting data for PLRV pseudoknot mutants implicate sequence and length of a stem-loop linker as modulators of frameshifting efficiency. Although the sequences and overall structures of the RNA pseudoknots from PLRV and beet western yellow virus (BWYV) are similar, nucleotide deletions in the linker and adjacent minor groove loop abolish frameshifting only with the latter. Conversely, mutant PLRV pseudoknots with up to four nucleotides deleted in this region exhibit nearly wild-type frameshifting efficiencies. The crystal structure helps rationalize the different tolerances for deletions in the PLRV and BWYV RNAs, and we have used it to build a three-dimensional model of the PRLV pseudoknot with a four-nucleotide deletion. The resulting structure defines a minimal RNA pseudoknot motif composed of 22 nucleotides capable of stimulating -1-type ribosomal frameshifts.

  12. A grammar based methodology for structural motif finding in ncRNA database search.

    PubMed

    Quest, Daniel; Tapprich, William; Ali, Hesham

    2007-01-01

    In recent years, sequence database searching has been conducted through local alignment heuristics, pattern-matching, and comparison of short statistically significant patterns. While these approaches have unlocked many clues as to sequence relationships, they are limited in that they do not provide context-sensitive searching capabilities (e.g. considering pseudoknots, protein binding positions, and complementary base pairs). Stochastic grammars (hidden Markov models HMMs and stochastic context-free grammars SCFG) do allow for flexibility in terms of local context, but the context comes at the cost of increased computational complexity. In this paper we introduce a new grammar based method for searching for RNA motifs that exist within a conserved RNA structure. Our method constrains computational complexity by using a chain of topology elements. Through the use of a case study we present the algorithmic approach and benchmark our approach against traditional methods.

  13. Genome-Wide Analyses of Recombination Prone Regions Predict Role of DNA Structural Motif in Recombination

    PubMed Central

    Das, Swapan Kumar; Chowdhury, Shantanu

    2009-01-01

    HapMap findings reveal surprisingly asymmetric distribution of recombinogenic regions. Short recombinogenic regions (hotspots) are interspersed between large relatively non-recombinogenic regions. This raises the interesting possibility of DNA sequence and/or other cis- elements as determinants of recombination. We hypothesized the involvement of non-canonical sequences that can result in local non-B DNA structures and tested this using the G-quadruplex DNA as a model. G-quadruplex or G4 DNA is a unique form of four-stranded non-B DNA structure that engages certain G-rich sequences, presence of such motifs has been noted within telomeres. In support of this hypothesis, genome-wide computational analyses presented here reveal enrichment of potential G4 (PG4) DNA forming sequences within 25618 human hotspots relative to 9290 coldspots (p<0.0001). Furthermore, co-occurrence of PG4 DNA within several short sequence elements that are associated with recombinogenic regions was found to be significantly more than randomly expected. Interestingly, analyses of more than 50 DNA binding factors revealed that co-occurrence of PG4 DNA with target DNA binding sites of transcription factors c-Rel, NF-kappa B (p50 and p65) and Evi-1 was significantly enriched in recombination-prone regions. These observations support involvement of G4 DNA in recombination, predicting a functional model that is consistent with duplex-strand separation induced by formation of G4 motifs in supercoiled DNA and/or when assisted by other cellular factors. PMID:19198658

  14. Temporal motifs in time-dependent networks

    NASA Astrophysics Data System (ADS)

    Kovanen, Lauri; Karsai, Márton; Kaski, Kimmo; Kertész, János; Saramäki, Jari

    2011-11-01

    Temporal networks are commonly used to represent systems where connections between elements are active only for restricted periods of time, such as telecommunication, neural signal processing, biochemical reaction and human social interaction networks. We introduce the framework of temporal motifs to study the mesoscale topological-temporal structure of temporal networks in which the events of nodes do not overlap in time. Temporal motifs are classes of similar event sequences, where the similarity refers not only to topology but also to the temporal order of the events. We provide a mapping from event sequences to coloured directed graphs that enables an efficient algorithm for identifying temporal motifs. We discuss some aspects of temporal motifs, including causality and null models, and present basic statistics of temporal motifs in a large mobile call network.

  15. Structural and functional insights into the regulation of Helicobacter pylori arginase activity by an evolutionary nonconserved motif.

    PubMed

    Srivastava, Abhishek; Meena, Shiv Kumar; Alam, Mashkoor; Nayeem, Shahid M; Deep, Shashank; Sau, Apurba Kumar

    2013-01-22

    Urea producing bimetallic arginases are essential for the synthesis of polyamine, DNA, and RNA. Despite conservation of the signature motifs in all arginases, a nonconserved ¹⁵³ESEEKAWQKLCSL¹⁶⁵ motif is found in the Helicobacter pylori enzyme, whose role is yet unknown. Using site-directed mutagenesis, kinetic assays, metal analyses, circular dichroism, heat-induced denaturation, molecular dynamics simulations and truncation studies, we report here the significance of this motif in catalytic function, metal retention, structural integrity, and stability of the protein. The enzyme did not exhibit detectable activity upon deletion of the motif as well as on individual mutation of Glu155 and Trp159 while Cys163Ala displayed significant decrease in the activity. Trp159Ala and Glu155Ala show severe loss of thermostability (14-17°) by a decrease in the α-helical structure. The role of Trp159 in stabilization of the structure with the surrounding aromatic residues is confirmed when Trp159Phe restored the structure and stability substantially compared to Trp159Ala. The simulation studies support the above results and show that the motif, which was previously solvent exposed, displays a loop-cum-small helix structure (Lys161-Cys163) and is located near the active-site through a novel Trp159-Asp126 interaction. This is consistent with the mutational analyses, where Trp159 and Asp126 are individually critical for retaining a bimetallic center and thereby for function. Furthermore, Cys163 of the helix is primarily important for dimerization, which is crucial for stimulation of the activity. Thus, these findings not only provide insights into the role of this motif but also offer a possibility to engineer it in human arginases for therapeutics against a number of carcinomas.

  16. Crystal structure of the human heterogeneous ribonucleoprotein A18 RNA-recognition motif.

    PubMed

    Coburn, Katherine; Melville, Zephan; Aligholizadeh, Ehson; Roth, Braden M; Varney, Kristen M; Carrier, France; Pozharski, Edwin; Weber, David J

    2017-04-01

    The heterogeneous ribonucleoprotein A18 (hnRNP A18) is upregulated in hypoxic regions of various solid tumors and promotes tumor growth via the coordination of mRNA transcripts associated with pro-survival genes. Thus, hnRNP A18 represents an important therapeutic target in tumor cells. Presented here is the first X-ray crystal structure to be reported for the RNA-recognition motif of hnRNP A18. By comparing this structure with those of homologous RNA-binding proteins (i.e. hnRNP A1), three residues on one face of an antiparallel β-sheet (Arg48, Phe50 and Phe52) and one residue in an unstructured loop (Arg41) were identified as likely to be involved in protein-nucleic acid interactions. This structure helps to serve as a foundation for biophysical studies of this RNA-binding protein and structure-based drug-design efforts for targeting hnRNP A18 in cancer, such as malignant melanoma, where hnRNP A18 levels are elevated and contribute to disease progression.

  17. Stabilization of telomeric i-motif structures by (2'S)-2'-deoxy-2'-C-methyl-cytidine residues.

    PubMed

    Aviñó, Anna; Dellafiore, Maria; Gargallo, Raimundo; González, Carlos; Iribarren, Adolfo M; Montserrat, Javier; Eritja, Ramon

    2017-04-13

    G-quadruplex and i-motif are tetraplex structures present in telomeres and promoter regions of oncogenes. The possibility of producing nanodevices with pH-sensitive functions has triggered the interest for modified oligonucleotides with improved structural properties. We synthesized C-rich oligonucleotides carrying conformationally restricted (2'S)-2'-deoxy-2'-C-methyl-cytidine units. The effect of this modified nucleoside on the stability of intramolecular i-motifs related to vertebrate telomere was investigated by means of spectroscopic methods (UV, CD and NMR). The replacement of selected positions of the C-core by the appropriate C-modified residues induces the formation of stable intercalated tetraplexes at pHs near neutrality. The study demonstrates the possibility of enhancing the stability of i-motif by chemical modifications.

  18. Polyproline II helix is a key structural motif of the elastic PEVK segment of titin.

    PubMed

    Ma, K; Kan, L; Wang, K

    2001-03-27

    Titin is a family of giant elastic proteins that constitute an elastic sarcomere matrix in striated muscle. In the I-band region of the sarcomere, where titin extends and develops passive force upon stretch, titin is composed of tandem repeats of approximately 100 residue immunoglobin domains and approximately 28-residue PEVK modules. We have performed 2D NMR and circular dichroism (CD) studies of the conformations of one representative 28-mer PEVK module from human fetal titin (PEPPKEVVPEKKAPVAPPKKPEVPPVKV). NMR data of synthetic peptides of this module as well as three constituent peptides of 9 to 12 residues in aqueous solutions reveal distinguishing features for left-handed three-residue per turn PPII helices: the lack of NOE NN(i, i+1), very large NOE alphaN(i, i+1)/NN(i, i+1), no medium range NOE alphaN(i, i+2), and dihedral angles phi and psi values of -78 and 146, respectively. Structural determinations indicate the presence of three short stretches of PPII helices of 4, 5, and 6 residues that are interposed with an unordered, and presumably flexible, spacer region to give one "polyproline II helix-coil" or "PhC" motif for roughly every 10 residues. These peptides also display the characteristic PPII CD spectra: positive peak or negative shoulder band at 223 nm, negative CD band near 200 nm, and biphasic thermal titration curves that reflect varied stability of these PPII helices. We propose that this PhC motif is a fundamental feature and that the number, length, stability, and distribution of PPII is important in the understanding of the elasticity and protein interactions of the PEVK region of titin.

  19. The transcription factor Spn1 regulates gene expression via a highly conserved novel structural motif

    PubMed Central

    Pujari, Venugopal; Radebaugh, Catherine A.; Chodaparambil, Jayanth V.; Muthurajan, Uma M.; Almeida, Adam R.; Fischbeck, Julie A.; Luger, Karolin; Stargell, Laurie A.

    2010-01-01

    Spn1 plays essential roles in the regulation of gene expression by RNA Polymerase II (RNAPII), and it is highly conserved in organisms ranging from yeast to humans. Spn1 physically and/or genetically interacts with RNAPII, TBP, TFIIS and a number of chromatin remodeling factors (Swi/Snf and Spt6). The central domain of Spn1 (residues 141-305 out of 410) is necessary and sufficient for performing the essential functions of SPN1 in yeast cells. Here we report the high-resolution (1.85Å) crystal structure of the conserved central domain of Saccharomyces cerevisiae Spn1. The central domain is comprised of eight alpha-helices in a right handed super helical arrangement, and exhibits structural similarity to domain I of TFIIS. A unique structural feature of Spn1 is a highly conserved loop, which defines one side of a pronounced cavity. The loop and the other residues forming the cavity are highly conserved at the amino acid level among all Spn1 family members, suggesting that this is a signature motif for Spn1 orthologs. The locations and the molecular characterization of temperature-sensitive mutations in Spn1 indicate that the cavity is a key attribute of Spn1 that is critical for its regulatory functions during RNAPII-mediated transcriptional activity. PMID:20875428

  20. The transcription factor Spn1 regulates gene expression via a highly conserved novel structural motif.

    PubMed

    Pujari, Venugopal; Radebaugh, Catherine A; Chodaparambil, Jayanth V; Muthurajan, Uma M; Almeida, Adam R; Fischbeck, Julie A; Luger, Karolin; Stargell, Laurie A

    2010-11-19

    Spn1/Iws1 plays essential roles in the regulation of gene expression by RNA polymerase II (RNAPII), and it is highly conserved in organisms ranging from yeast to humans. Spn1 physically and/or genetically interacts with RNAPII, TBP (TATA-binding protein), TFIIS (transcription factor IIS), and a number of chromatin remodeling factors (Swi/Snf and Spt6). The central domain of Spn1 (residues 141-305 out of 410) is necessary and sufficient for performing the essential functions of SPN1 in yeast cells. Here, we report the high-resolution (1.85 Å) crystal structure of the conserved central domain of Saccharomyces cerevisiae Spn1. The central domain is composed of eight α-helices in a right-handed superhelical arrangement and exhibits structural similarity to domain I of TFIIS. A unique structural feature of Spn1 is a highly conserved loop, which defines one side of a pronounced cavity. The loop and the other residues forming the cavity are highly conserved at the amino acid level among all Spn1 family members, suggesting that this is a signature motif for Spn1 orthologs. The locations and the molecular characterization of temperature-sensitive mutations in Spn1 indicate that the cavity is a key attribute of Spn1 that is critical for its regulatory functions during RNAPII-mediated transcriptional activity.

  1. SPRITE and ASSAM: web servers for side chain 3D-motif searching in protein structures

    PubMed Central

    Nadzirin, Nurul; Gardiner, Eleanor J.; Willett, Peter; Artymiuk, Peter J.; Firdaus-Raih, Mohd

    2012-01-01

    Similarities in the 3D patterns of amino acid side chains can provide insights into their function despite the absence of any detectable sequence or fold similarities. Search for protein sites (SPRITE) and amino acid pattern search for substructures and motifs (ASSAM) are graph theoretical programs that can search for 3D amino side chain matches in protein structures, by representing the amino acid side chains as pseudo-atoms. The geometric relationship of the pseudo-atoms to each other as a pattern can be represented as a labeled graph where the pseudo-atoms are the graph's nodes while the edges are the inter-pseudo-atomic distances. Both programs require the input file to be in the PDB format. The objective of using SPRITE is to identify matches of side chains in a query structure to patterns with characterized function. In contrast, a 3D pattern of interest can be searched for existing occurrences in available PDB structures using ASSAM. Both programs are freely accessible without any login requirement. SPRITE is available at http://mfrlab.org/grafss/sprite/ while ASSAM can be accessed at http://mfrlab.org/grafss/assam/. PMID:22573174

  2. 7-azabicyclo[2.2.1]heptane as a structural motif to block mutagenicity of nitrosamines.

    PubMed

    Ohwada, Tomohiko; Ishikawa, Satoko; Mine, Yusuke; Inami, Keiko; Yanagimoto, Takahiro; Karaki, Fumika; Kabasawa, Yoji; Otani, Yuko; Mochizuki, Masataka

    2011-04-15

    Nitrosamines are potent carcinogens and toxicants in the rat and potential genotoxins in humans. They are metabolically activated by hydroxylation at an α-carbon atom with respect to the nitrosoamino group, catalyzed by cytochrome P450. However, there has been little systematic investigation of the structure-mutagenic activity relationship of N-nitrosamines. Herein, we evaluated the mutagenicity of a series of 7-azabicyclo[2.2.1]heptane N-nitrosamines and related monocyclic nitrosamines by using the Ames assay. Our results show that the N-nitrosamine functionality embedded in the bicyclic 7-azabicylo[2.2.1]heptane structure lacks mutagenicity, that is, it is inert to α-hydroxylation, which is the trigger of mutagenic events. Further, the calculated α-C-H bond dissociation energies of the bicyclic nitrosamines are larger in magnitude than those of the corresponding monocyclic nitrosamines and N-nitrosodimethylamine by as much as 20-30 kcal/mol. These results are consistent with lower α-C-H bond reactivity of the bicyclic nitrosamines. Thus, the 7-azabicyclo[2.2.1]heptane structural motif may be useful for the design of nongenotoxic nitrosamine compounds with potential biological/medicinal applications.

  3. Crystal structure of the G3BP2 NTF2-like domain in complex with a canonical FGDF motif peptide.

    PubMed

    Kristensen, Ole

    2015-11-06

    The crystal structure of the NTF2-like domain of the human Ras GTPase SH3 Binding Protein (G3BP), isoform 2, was determined at a resolution of 2.75 Å in complex with a peptide containing a FGDF sequence motif. The overall structure of the protein is highly similar to the homodimeric N-terminal domains of the G3BP1 and Rasputin proteins. Recently, a subset of G3BP interacting proteins was recognized to share a common sequence motif, FGDF. The most studied binding partners, USP10 and viral nsP3, interfere with essential G3BP functions related to assembly of cellular stress granules. Reported molecular modeling suggested that FGDF-motif containing peptides bind in an extended conformation into a hydrophobic groove on the surface of the G3BP NTF2-like domain in a manner similar to the known binding of FxFG nucleoporin repeats. The results in this paper provide evidence for a different binding mode. The FGDF peptide binds and changes conformation of the protruding N-terminal residues by providing hydrophobic interactions to a symmetry related molecule that facilitated crystallization of the G3BP2 isoform.

  4. Defining RNA motif-aminoglycoside interactions via two-dimensional combinatorial screening and structure-activity relationships through sequencing.

    PubMed

    Velagapudi, Sai Pradeep; Disney, Matthew D

    2013-10-15

    RNA is an extremely important target for the development of chemical probes of function or small molecule therapeutics. Aminoglycosides are the most well studied class of small molecules to target RNA. However, the RNA motifs outside of the bacterial rRNA A-site that are likely to be bound by these compounds in biological systems is largely unknown. If such information were known, it could allow for aminoglycosides to be exploited to target other RNAs and, in addition, could provide invaluable insights into potential bystander targets of these clinically used drugs. We utilized two-dimensional combinatorial screening (2DCS), a library-versus-library screening approach, to select the motifs displayed in a 3×3 nucleotide internal loop library and in a 6-nucleotide hairpin library that bind with high affinity and selectivity to six aminoglycoside derivatives. The selected RNA motifs were then analyzed using structure-activity relationships through sequencing (StARTS), a statistical approach that defines the privileged RNA motif space that binds a small molecule. StARTS allowed for the facile annotation of the selected RNA motif-aminoglycoside interactions in terms of affinity and selectivity. The interactions selected by 2DCS generally have nanomolar affinities, which is higher affinity than the binding of aminoglycosides to a mimic of their therapeutic target, the bacterial rRNA A-site.

  5. Extra! Extra! Read All about It!: Structuring the U.S. History Survey around the Motif of the Newspaper

    ERIC Educational Resources Information Center

    Morin, Erica A.

    2013-01-01

    As a graduate instructor for HIST 152: United States Since 1877, the author structures the entire course around the motif of the newspaper. She models her curriculum after the newspaper both visually and symbolically and uses it as a theme throughout the class. The newspaper is not a gimmick or cliche, but rather a recurring stylistic theme, an…

  6. Structural alteration of the metal-organic pyrogallol[4]arene nano-capsule motif by incorporation of large metal centres.

    PubMed

    Jin, Ping; Kumari, Harshita; Kennedy, Stuart; Barnes, Charles L; Teat, Simon J; Dalgarno, Scott J; Atwood, Jerry L

    2014-05-04

    Addition of cadmium(II) nitrate to gallium-coordinated metal-organic C-alkylpyrogallol[4]arene nano-capsules affords a variation of the near spherical hexamer motif, structural changes in which are induced by the markedly different nature of the secondary incorporated metal.

  7. The noncatalytic triad of alpha-amylases: a novel structural motif involved in conformational stability.

    PubMed

    Marx, Jean-Claude; Poncin, Johan; Simorre, Jean-Pierre; Ramteke, Pramod W; Feller, Georges

    2008-02-01

    Chloride-activated alpha-amylases contain a noncatalytic triad, independent of the glycosidic active site, perfectly mimicking the catalytic triad of serine-proteases and of other active serine hydrolytic enzymes. Mutagenesis of Glu, His, and Ser residues in various alpha-amylases shows that this pattern is a structural determinant of the enzyme conformation that cannot be altered without losing the intrinsic stability of the protein. (1)H-(15)N NMR spectra of a bacterial alpha-amylase reveal proton signals that are identical with the NMR signature of catalytic triads and especially a deshielded proton involving a protonated histidine and displaying properties similar to that of a low barrier hydrogen bond. It is proposed that the H-bond between His and Glu of the noncatalytic triad is an unusually strong interaction, responsible for the observed NMR signal and for the weak stability of the triad mutants. Furthermore, a stringent template-based search of the Protein Data Bank demonstrated that this motif is not restricted to alpha-amylases, but is also found in 80 structures from 33 different proteins, amongst which SH2 domain-containing proteins are the best representatives.

  8. Recurring RNA structural motifs underlie the mechanics of L1 stalk movement

    PubMed Central

    Mohan, Srividya; Noller, Harry F

    2017-01-01

    The L1 stalk of the large ribosomal subunit undergoes large-scale movements coupled to the translocation of deacylated tRNA during protein synthesis. We use quantitative comparative structural analysis to localize the origins of L1 stalk movement and to understand its dynamic interactions with tRNA and other structural elements of the ribosome. Besides its stacking interactions with the tRNA elbow, stalk movement is directly linked to intersubunit rotation, rotation of the 30S head domain and contact of the acceptor arm of deacylated tRNA with helix 68 of 23S rRNA. Movement originates from pivoting at stacked non-canonical base pairs in a Family A three-way junction and bending in an internal G-U-rich zone. Use of these same motifs as hinge points to enable such dynamic events as rotation of the 30S subunit head domain and in flexing of the anticodon arm of tRNA suggests that they represent general strategies for movement of functional RNAs. PMID:28176782

  9. Recurring RNA structural motifs underlie the mechanics of L1 stalk movement

    NASA Astrophysics Data System (ADS)

    Mohan, Srividya; Noller, Harry F.

    2017-02-01

    The L1 stalk of the large ribosomal subunit undergoes large-scale movements coupled to the translocation of deacylated tRNA during protein synthesis. We use quantitative comparative structural analysis to localize the origins of L1 stalk movement and to understand its dynamic interactions with tRNA and other structural elements of the ribosome. Besides its stacking interactions with the tRNA elbow, stalk movement is directly linked to intersubunit rotation, rotation of the 30S head domain and contact of the acceptor arm of deacylated tRNA with helix 68 of 23S rRNA. Movement originates from pivoting at stacked non-canonical base pairs in a Family A three-way junction and bending in an internal G-U-rich zone. Use of these same motifs as hinge points to enable such dynamic events as rotation of the 30S subunit head domain and in flexing of the anticodon arm of tRNA suggests that they represent general strategies for movement of functional RNAs.

  10. Brickworx builds recurrent RNA and DNA structural motifs into medium- and low-resolution electron-density maps

    SciTech Connect

    Chojnowski, Grzegorz; Waleń, Tomasz; Piątkowski, Paweł; Potrzebowski, Wojciech; Bujnicki, Janusz M.

    2015-03-01

    A computer program that builds crystal structure models of nucleic acid molecules is presented. Brickworx is a computer program that builds crystal structure models of nucleic acid molecules using recurrent motifs including double-stranded helices. In a first step, the program searches for electron-density peaks that may correspond to phosphate groups; it may also take into account phosphate-group positions provided by the user. Subsequently, comparing the three-dimensional patterns of the P atoms with a database of nucleic acid fragments, it finds the matching positions of the double-stranded helical motifs (A-RNA or B-DNA) in the unit cell. If the target structure is RNA, the helical fragments are further extended with recurrent RNA motifs from a fragment library that contains single-stranded segments. Finally, the matched motifs are merged and refined in real space to find the most likely conformations, including a fit of the sequence to the electron-density map. The Brickworx program is available for download and as a web server at http://iimcb.genesilico.pl/brickworx.

  11. Intercellular network structure and regulatory motifs in the human hematopoietic system

    PubMed Central

    Qiao, Wenlian; Wang, Weijia; Laurenti, Elisa; Turinsky, Andrei L; Wodak, Shoshana J; Bader, Gary D; Dick, John E; Zandstra, Peter W

    2014-01-01

    The hematopoietic system is a distributed tissue that consists of functionally distinct cell types continuously produced through hematopoietic stem cell (HSC) differentiation. Combining genomic and phenotypic data with high-content experiments, we have built a directional cell–cell communication network between 12 cell types isolated from human umbilical cord blood. Network structure analysis revealed that ligand production is cell type dependent, whereas ligand binding is promiscuous. Consequently, additional control strategies such as cell frequency modulation and compartmentalization were needed to achieve specificity in HSC fate regulation. Incorporating the in vitro effects (quiescence, self-renewal, proliferation, or differentiation) of 27 HSC binding ligands into the topology of the cell–cell communication network allowed coding of cell type-dependent feedback regulation of HSC fate. Pathway enrichment analysis identified intracellular regulatory motifs enriched in these cell type- and ligand-coupled responses. This study uncovers cellular mechanisms of hematopoietic cell feedback in HSC fate regulation, provides insight into the design principles of the human hematopoietic system, and serves as a foundation for the analysis of intercellular regulation in multicellular systems. PMID:25028490

  12. Sarcosine and betaine crystals upon cooling: structural motifs unstable at high pressure become stable at low temperatures.

    PubMed

    Kapustin, E A; Minkov, V S; Boldyreva, E V

    2015-02-07

    The crystal structures of N-methyl derivatives of the simplest amino acid glycine, namely sarcosine (C3H7NO2) and betaine (C5H11NO2), were studied upon cooling by single-crystal X-ray diffraction and single-crystal polarized Raman spectroscopy. The effects of decreasing temperature and increasing hydrostatic pressure on the crystal structures were compared. In particular, we have studied the behavior upon cooling of those structural motifs in the crystals, which are involved in structural rearrangement during pressure-induced phase transitions. In contrast to their high sensitivity to hydrostatic compression, the crystals of both sarcosine and betaine are stable to cooling down to 5 K. Similarly to most α-amino acids, the crystal structures of the two compounds are most rigid upon cooling in the direction of the main structural motif, namely head-to-tail chains (linked via the strongest N-H···O hydrogen bonds and dipole-dipole interactions in the case of sarcosine, or exclusively by dipole-dipole interactions in the case of betaine). The anisotropy of linear strain in betaine does not differ much upon cooling and on hydrostatic compression, whereas this is not the case for sarcosine. Although the interactions between certain structural motifs in sarcosine and betaine weaken as a result of phase transitions induced by pressure, the same interactions strengthen when volume reduction results from cooling.

  13. A combined sequence and structure based method for discovering enriched motifs in RNA from in vivo binding data.

    PubMed

    Polishchuk, Maya; Paz, Inbal; Kohen, Refael; Mesika, Rona; Yakhini, Zohar; Mandel-Gutfreund, Yael

    2017-03-06

    RNA binding proteins (RBPs) play an important role in regulating many processes in the cell. RBPs often recognize their RNA targets in a specific manner. In addition to the RNA primary sequence, the structure of the RNA has been shown to play a central role in RNA recognition by RBPs. In recent years, many experimental approaches, both in vitro and in vivo, were developed and employed to identify and characterize RBP targets and extract their binding specificities. In vivo binding techniques, such as CrossLinking and ImmunoPrecipitation (CLIP)-based methods, enable the characterization of protein binding sites on RNA targets. However, these methods do not provide information regarding the structural preferences of the protein. While methods to obtain the structure of RNA are available, inferring both the sequence and the structure preferences of RBPs remains a challenge. Here we present SMARTIV, a novel computational tool for discovering combined sequence and structure binding motifs from in vivo RNA binding data relying on the sequences of the target sites, the ranking of their binding scores and their predicted secondary structure. The combined motifs are provided in a unified representation that is informative and easy for visual perception. We tested the method on CLIP-seq data from different platforms for a variety of RBPs. Overall, we show that our results are highly consistent with known binding motifs of RBPs, offering additional information on their structural preferences.

  14. Conserved XPB Core Structure and Motifs for DNA Unwinding:Implications for Pathway Selection of Transcription or ExcisionRepair

    SciTech Connect

    Fan, Li; Arval, Andrew S.; Cooper, Priscilla K.; Iwai, Shigenori; Hanaoka, Fumio; Tainer, John A.

    2005-04-01

    The human xeroderma pigmentosum group B (XPB) helicase is essential for transcription, nucleotide excision repair, and TFIIH functional assembly. Here, we determined crystal structures of an Archaeoglobus fulgidus XPB homolog (AfXPB) that characterize two RecA-like XPB helicase domains and discover a DNA damage recognition domain (DRD), a unique RED motif, a flexible thumb motif (ThM), and implied conformational changes within a conserved functional core. RED motif mutations dramatically reduce helicase activity, and the DRD and ThM, which flank the RED motif, appear structurally as well as functionally analogous to the MutS mismatch recognition and DNA polymerase thumb domains. Substrate specificity is altered by DNA damage, such that AfXPB unwinds dsDNA with 3' extensions, but not blunt-ended dsDNA, unless it contains a lesion, as shown for CPD or (6-4) photoproducts. Together, these results provide an unexpected mechanism of DNA unwinding with Implications for XPB damage verification in nucleotide excision repair.

  15. Nuclear Magnetic Resonance Structure of a Novel Globular Domain in RBM10 Containing OCRE, the Octamer Repeat Sequence Motif.

    PubMed

    Martin, Bryan T; Serrano, Pedro; Geralt, Michael; Wüthrich, Kurt

    2016-01-05

    The OCtamer REpeat (OCRE) has been annotated as a 42-residue sequence motif with 12 tyrosine residues in the spliceosome trans-regulatory elements RBM5 and RBM10 (RBM [RNA-binding motif]), which are known to regulate alternative splicing of Fas and Bcl-x pre-mRNA transcripts. Nuclear magnetic resonance structure determination showed that the RBM10 OCRE sequence motif is part of a 55-residue globular domain containing 16 aromatic amino acids, which consists of an anti-parallel arrangement of six β strands, with the first five strands containing complete or incomplete Tyr triplets. This OCRE globular domain is a distinctive component of RBM10 and is more widely conserved in RBM10s across the animal kingdom than the ubiquitous RNA recognition components. It is also found in the functionally related RBM5. Thus, it appears that the three-dimensional structure of the globular OCRE domain, rather than the 42-residue OCRE sequence motif alone, confers specificity on RBM10 intermolecular interactions in the spliceosome.

  16. Novel Structural and Functional Motifs in cellulose synthase (CesA) Genes of Bread Wheat (Triticum aestivum, L.)

    PubMed Central

    Kaur, Simerjeet; Dhugga, Kanwarpal S.; Gill, Kulvinder; Singh, Jaswinder

    2016-01-01

    Cellulose is the primary determinant of mechanical strength in plant tissues. Late-season lodging is inversely related to the amount of cellulose in a unit length of the stem. Wheat is the most widely grown of all the crops globally, yet information on its CesA gene family is limited. We have identified 22 CesA genes from bread wheat, which include homoeologs from each of the three genomes, and named them as TaCesAXA, TaCesAXB or TaCesAXD, where X denotes the gene number and the last suffix stands for the respective genome. Sequence analyses of the CESA proteins from wheat and their orthologs from barley, maize, rice, and several dicot species (Arabidopsis, beet, cotton, poplar, potato, rose gum and soybean) revealed motifs unique to monocots (Poales) or dicots. Novel structural motifs CQIC and SVICEXWFA were identified, which distinguished the CESAs involved in the formation of primary and secondary cell wall (PCW and SCW) in all the species. We also identified several new motifs specific to monocots or dicots. The conserved motifs identified in this study possibly play functional roles specific to PCW or SCW formation. The new insights from this study advance our knowledge about the structure, function and evolution of the CesA family in plants in general and wheat in particular. This information will be useful in improving culm strength to reduce lodging or alter wall composition to improve biofuel production. PMID:26771740

  17. Effect of trimerization motifs on quaternary structure, antigenicity, and immunogenicity of a noncleavable HIV-1 gp140 envelope glycoprotein

    SciTech Connect

    Du, Sean X.; Idiart, Rebecca J.; Mariano, Ellaine B.; Chen, Helen; Jiang Peifeng; Xu Li; Ostrow, Kristin M.; Wrin, Terri; Phung, Pham; Binley, James M.; Petropoulos, Christos J.; Ballantyne, John A.; Whalen, Robert G.

    2009-12-05

    The external domains of the HIV-1 envelope glycoprotein (gp120 and the gp41 ectodomain, collectively known as gp140) contain all known viral neutralization epitopes. Various strategies have been used to create soluble trimers of the envelope to mimic the structure of the native viral protein, including mutation of the gp120-gp41 cleavage site, introduction of disulfide bonds, and fusion to heterologous trimerization motifs. We compared the effects on quaternary structure, antigenicity, and immunogenicity of three such motifs: T4 fibritin, a GCN4 variant, and the Escherichia coli aspartate transcarbamoylase catalytic subunit. Fusion of each motif to the C-terminus of a noncleavable JRCSF gp140(-) envelope protein led to enhanced trimerization but had limited effects on the antigenic profile and CD4-binding ability of the trimers. Immunization of rabbits provided no evidence that the trimerized gp140(-) constructs induced significantly improved neutralizing antibodies to several HIV-1 pseudoviruses, compared to gp140 lacking a trimerization motif. However, modest differences in both binding specificity and neutralizing antibody responses were observed among the various immunogens.

  18. Novel Structural and Functional Motifs in cellulose synthase (CesA) Genes of Bread Wheat (Triticum aestivum, L.).

    PubMed

    Kaur, Simerjeet; Dhugga, Kanwarpal S; Gill, Kulvinder; Singh, Jaswinder

    2016-01-01

    Cellulose is the primary determinant of mechanical strength in plant tissues. Late-season lodging is inversely related to the amount of cellulose in a unit length of the stem. Wheat is the most widely grown of all the crops globally, yet information on its CesA gene family is limited. We have identified 22 CesA genes from bread wheat, which include homoeologs from each of the three genomes, and named them as TaCesAXA, TaCesAXB or TaCesAXD, where X denotes the gene number and the last suffix stands for the respective genome. Sequence analyses of the CESA proteins from wheat and their orthologs from barley, maize, rice, and several dicot species (Arabidopsis, beet, cotton, poplar, potato, rose gum and soybean) revealed motifs unique to monocots (Poales) or dicots. Novel structural motifs CQIC and SVICEXWFA were identified, which distinguished the CESAs involved in the formation of primary and secondary cell wall (PCW and SCW) in all the species. We also identified several new motifs specific to monocots or dicots. The conserved motifs identified in this study possibly play functional roles specific to PCW or SCW formation. The new insights from this study advance our knowledge about the structure, function and evolution of the CesA family in plants in general and wheat in particular. This information will be useful in improving culm strength to reduce lodging or alter wall composition to improve biofuel production.

  19. Interleukin-11 binds specific EF-hand proteins via their conserved structural motifs.

    PubMed

    Kazakov, Alexei S; Sokolov, Andrei S; Vologzhannikova, Alisa A; Permyakova, Maria E; Khorn, Polina A; Ismailov, Ramis G; Denessiouk, Konstantin A; Denesyuk, Alexander I; Rastrygina, Victoria A; Baksheeva, Viktoriia E; Zernii, Evgeni Yu; Zinchenko, Dmitry V; Glazatov, Vladimir V; Uversky, Vladimir N; Mirzabekov, Tajib A; Permyakov, Eugene A; Permyakov, Sergei E

    2017-01-01

    Interleukin-11 (IL-11) is a hematopoietic cytokine engaged in numerous biological processes and validated as a target for treatment of various cancers. IL-11 contains intrinsically disordered regions that might recognize multiple targets. Recently we found that aside from IL-11RA and gp130 receptors, IL-11 interacts with calcium sensor protein S100P. Strict calcium dependence of this interaction suggests a possibility of IL-11 interaction with other calcium sensor proteins. Here we probed specificity of IL-11 to calcium-binding proteins of various types: calcium sensors of the EF-hand family (calmodulin, S100B and neuronal calcium sensors: recoverin, NCS-1, GCAP-1, GCAP-2), calcium buffers of the EF-hand family (S100G, oncomodulin), and a non-EF-hand calcium buffer (α-lactalbumin). A specific subset of the calcium sensor proteins (calmodulin, S100B, NCS-1, GCAP-1/2) exhibits metal-dependent binding of IL-11 with dissociation constants of 1-19 μM. These proteins share several amino acid residues belonging to conservative structural motifs of the EF-hand proteins, 'black' and 'gray' clusters. Replacements of the respective S100P residues by alanine drastically decrease its affinity to IL-11, suggesting their involvement into the association process. Secondary structure and accessibility of the hinge region of the EF-hand proteins studied are predicted to control specificity and selectivity of their binding to IL-11. The IL-11 interaction with the EF-hand proteins is expected to occur under numerous pathological conditions, accompanied by disintegration of plasma membrane and efflux of cellular components into the extracellular milieu.

  20. The structure of an endogenous Drosophila centromere reveals the prevalence of tandemly repeated sequences able to form i-motifs

    PubMed Central

    Garavís, Miguel; Méndez-Lago, María; Gabelica, Valérie; Whitehead, Siobhan L.; González, Carlos; Villasante, Alfredo

    2015-01-01

    Centromeres are the chromosomal loci at which spindle microtubules attach to mediate chromosome segregation during mitosis and meiosis. In most eukaryotes, centromeres are made up of highly repetitive DNA sequences (satellite DNA) interspersed with middle repetitive DNA sequences (transposable elements). Despite the efforts to establish complete genomic sequences of eukaryotic organisms, the so-called ‘finished’ genomes are not actually complete because the centromeres have not been assembled due to the intrinsic difficulties in constructing both physical maps and complete sequence assemblies of long stretches of tandemly repetitive DNA. Here we show the first molecular structure of an endogenous Drosophila centromere and the ability of the C-rich dodeca satellite strand to form dimeric i-motifs. The finding of i-motif structures in simple and complex centromeric satellite DNAs leads us to suggest that these centromeric sequences may have been selected not by their primary sequence but by their ability to form noncanonical secondary structures. PMID:26289671

  1. Structure of PEP carboxykinase from the succinate-producing Actinobacillus succinogenes: a new conserved active-site motif.

    PubMed

    Leduc, Yvonne A; Prasad, Lata; Laivenieks, Maris; Zeikus, J Gregory; Delbaere, Louis T J

    2005-07-01

    Actinobacillus succinogenes can produce, via fermentation, high concentrations of succinate, an important industrial commodity. A key enzyme in this pathway is phosphoenolpyruvate carboxykinase (PCK), which catalyzes the production of oxaloacetate from phosphoenolpyruvate and carbon dioxide, with the concomitant conversion of adenosine 5'-diphosphate to adenosine 5'-triphosphate. 1.85 and 1.70 A resolution structures of the native and a pyruvate/Mn(2+)/phosphate complex have been solved, respectively. The structure of the complex contains sulfhydryl reducing agents covalently bound to three cysteine residues via disulfide bonds. One of these cysteine residues (Cys285) is located in the active-site cleft and may be analogous to the putative reactive cysteine of PCK from Trypanosoma cruzi. Cys285 is also part of a previously unreported conserved motif comprising residues 280-287 and containing the pattern NXEXGXY(/F)A(/G); this new motif appears to have a structural role in stabilizing and positioning side chains that bind substrates and metal ions. The first few residues of this motif connect the two domains of the enzyme and a fulcrum point appears to be located near Asn280. In addition, an active-site Asp residue forms two coordinate bonds with the Mn(2+) ion present in the structure of the complex in a symmetrical bidentate manner, unlike in other PCK structures that contain a manganese ion.

  2. The solution structure of an HMG-I(Y)-DNA complex defines a new architectural minor groove binding motif.

    PubMed

    Huth, J R; Bewley, C A; Nissen, M S; Evans, J N; Reeves, R; Gronenborn, A M; Clore, G M

    1997-08-01

    The solution structure of a complex between a truncated form of HMG-I(Y), consisting of the second and third DNA binding domains (residues 51-90), and a DNA dodecamer containing the PRDII site of the interferon-beta promoter has been solved by multidimensional nuclear magnetic resonance spectroscopy. The stoichiometry of the complex is one molecule of HMG-I(Y) to two molecules of DNA. The structure reveals a new architectural minor groove binding motif which stabilizes B-DNA, thereby facilitating the binding of other transcription factors in the opposing major groove. The interactions involve a central Arg-Gly-Arg motif together with two other modules that participate in extensive hydrophobic and polar contracts. The absence of one of these modules in the third DNA binding domain accounts for its-100 fold reduced affinity relative to the second one.

  3. Motivated Proteins: A web application for studying small three-dimensional protein motifs

    PubMed Central

    Leader, David P; Milner-White, E James

    2009-01-01

    Background Small loop-shaped motifs are common constituents of the three-dimensional structure of proteins. Typically they comprise between three and seven amino acid residues, and are defined by a combination of dihedral angles and hydrogen bonding partners. The most abundant of these are αβ-motifs, asx-motifs, asx-turns, β-bulges, β-bulge loops, β-turns, nests, niches, Schellmann loops, ST-motifs, ST-staples and ST-turns. We have constructed a database of such motifs from a range of high-quality protein structures and built a web application as a visual interface to this. Description The web application, Motivated Proteins, provides access to these 12 motifs (with 48 sub-categories) in a database of over 400 representative proteins. Queries can be made for specific categories or sub-categories of motif, motifs in the vicinity of ligands, motifs which include part of an enzyme active site, overlapping motifs, or motifs which include a particular amino acid sequence. Individual proteins can be specified, or, where appropriate, motifs for all proteins listed. The results of queries are presented in textual form as an (X)HTML table, and may be saved as parsable plain text or XML. Motifs can be viewed and manipulated either individually or in the context of the protein in the Jmol applet structural viewer. Cartoons of the motifs imposed on a linear representation of protein secondary structure are also provided. Summary information for the motifs is available, as are histograms of amino acid distribution, and graphs of dihedral angles at individual positions in the motifs. Conclusion Motivated Proteins is a publicly and freely accessible web application that enables protein scientists to study small three-dimensional motifs without requiring knowledge of either Structured Query Language or the underlying database schema. PMID:19210785

  4. The Thiamin Pyrophosphate-Motif

    NASA Technical Reports Server (NTRS)

    Dominiak, Paulina M.; Ciszak, Ewa M.

    2003-01-01

    Using databases the authors have identified a common thiamin pyrophosphate (TPP)-motif in the family of functionally diverse TPP-dependent enzymes. This common motif consists of multimeric organization of subunits, two catalytic centers, common amino acid sequence, and specific contacts to provide a flip-flop, or alternate site, mechanism of action. Each catalytic center [PP:PYR] is formed at the interface of the PP-domain binding the magnesium ion, pyrophosphate and aminopyrimidine ring of TPP, and the PYR-domain binding the aminopyrimidine ring of that cofactor. A pair of these catalytic centers constitutes the catalytic core [PP:PYR]* within these enzymes. Analysis of the structural elements of this catalytic core reveals novel definition of the common amino acid sequences, which are GX@&(G)@XXGQ, and GDGX25-30 within the PP- domain, and the E&(G)@XXG@ within the PYR-domain, where Q, corresponds to a hydrophobic amino acid. This TPP-motif provides a novel tool for annotation of TPP-dependent enzymes useful in advancing functional proteomics.

  5. Structure of human peptidyl-prolyl cis–trans isomerase FKBP22 containing two EF-hand motifs

    PubMed Central

    Boudko, Sergei P; Ishikawa, Yoshihiro; Nix, Jay; Chapman, Michael S; Bächinger, Hans Peter

    2014-01-01

    The FK506-binding protein (FKBP) family consists of proteins with a variety of protein–protein interaction domains and versatile cellular functions. It is assumed that all members are peptidyl-prolyl cis–trans isomerases with the enzymatic function attributed to the FKBP domain. Six members of this family localize to the mammalian endoplasmic reticulum (ER). Four of them, FKBP22 (encoded by the FKBP14 gene), FKBP23 (FKBP7), FKBP60 (FKBP9), and FKBP65 (FKBP10), are unique among all FKBPs as they contain the EF-hand motifs. Little is known about the biological roles of these proteins, but emerging genetics studies are attracting great interest to the ER resident FKBPs, as mutations in genes encoding FKBP10 and FKBP14 were shown to cause a variety of matrix disorders. Although the structural organization of the FKBP-type domain as well as of the EF-hand motif has been known for a while, it is difficult to conclude how these structures are combined and how it affects the protein functionality. We have determined a unique 1.9 Å resolution crystal structure for human FKBP22, which can serve as a prototype for other EF hand-containing FKBPs. The EF-hand motifs of two FKBP22 molecules form a dimeric complex with an elongated and predominantly hydrophobic cavity that can potentially be occupied by an aliphatic ligand. The FKBP-type domains are separated by a cleft and their putative active sites can catalyze isomerazation of two bonds within a polypeptide chain in extended conformation. These structural results are of prime interest for understanding biological functions of ER resident FKBPs containing EF-hand motifs. PMID:24272907

  6. Structure of the central RNA recognition motif of human TIA-1 at 1.95 A resolution

    SciTech Connect

    Kumar, Amit O.; Swenson, Matthew C.; Benning, Matthew M.; Kielkopf, Clara L.

    2008-03-21

    T-cell-restricted intracellular antigen-1 (TIA-1) regulates alternative pre-mRNA splicing in the nucleus, and mRNA translation in the cytoplasm, by recognizing uridine-rich sequences of RNAs. As a step towards understanding RNA recognition by this regulatory factor, the X-ray structure of the central RNA recognition motif (RRM2) of human TIA-1 is presented at 1.95 A resolution. Comparison with structurally homologous RRM-RNA complexes identifies residues at the RNA interfaces that are conserved in TIA-1-RRM2. The versatile capability of RNP motifs to interact with either proteins or RNA is reinforced by symmetry-related protein-protein interactions mediated by the RNP motifs of TIA-1-RRM2. Importantly, the TIA-1-RRM2 structure reveals the locations of mutations responsible for inhibiting nuclear import. In contrast with previous assumptions, the mutated residues are buried within the hydrophobic interior of the domain, where they would be likely to destabilize the RRM fold rather than directly inhibit RNA binding.

  7. Identification of common motifs in the regulation of light harvesting: The case of cyanobacteria IsiA.

    PubMed

    Wahadoszamen, Md; D'Haene, Sandrine; Ara, Anjue Mane; Romero, Elisabet; Dekker, Jan P; Grondelle, Rienk van; Berera, Rudi

    2015-01-01

    When cyanobacteria are grown under iron-limited or other oxidative stress conditions the iron stress inducible pigment-protein IsiA is synthesized in variable amounts. IsiA accumulates in aggregates inside the photosynthetic membrane that strongly dissipate chlorophyll excited state energy. In this paper we applied Stark fluorescence (SF) spectroscopy at 77K to IsiA aggregates to gain insight into the nature of the emitting and energy dissipating state(s). Our study shows that two emitting states are present in the system, one emitting at 684 nm and the other emitting at about 730 nm. The new 730 nm state exhibits strongly reduced fluorescence (F) together with a large charge transfer character. We discuss these findings in the light of the energy dissipation mechanisms involved in the regulation of photosynthesis in plants, cyanobacteria and diatoms. Our results suggest that photosynthetic organisms have adopted common mechanisms to cope with the deleterious effects of excess light under unfavorable growth conditions.

  8. Characterization of a novel alpha1,2-fucosyltransferase of Escherichia coli O128:b12 and functional investigation of its common motif.

    PubMed

    Li, Mei; Liu, Xian-Wei; Shao, Jun; Shen, Jie; Jia, Qiang; Yi, Wen; Song, Jing K; Woodward, Robert; Chow, Christine S; Wang, Peng George

    2008-01-08

    The wbsJ gene from Escherichia coli O128:B12 encodes an alpha1,2-fucosyltransferase responsible for adding a fucose onto the galactose residue of the O-antigen repeating unit via an alpha1,2 linkage. The wbsJ gene was overexpressed in E. coli BL21 (DE3) as a fusion protein with glutathione S-transferase (GST) at its N-terminus. GST-WbsJ fusion protein was purified to homogeneity via GST affinity chromatography followed by size exclusion chromatography. The enzyme showed broad acceptor specificity with Galbeta1,3GalNAc (T antigen), Galbeta1,4Man and Galbeta1,4Glc (lactose) being better acceptors than Galbeta-O-Me and galactose. Galbeta1,4Fru (lactulose), a natural sugar, was furthermore found to be the best acceptor for GST-WbsJ with a reaction rate four times faster than that of lactose. Kinetic studies showed that GST-WbsJ has a higher affinity for lactose than lactulose with apparent Km values of 7.81 mM and 13.26 mM, respectively. However, the kcat/appKm value of lactose (6.36 M(-1) x min(-1)) is two times lower than that of lactulose (13.39 M(-1) x min(-1)). In addition, the alpha1,2-fucosyltransferase activity of GST-WbsJ was found to be independent of divalent metal ions such as Mn2+ or Mg2+. This activity was competitively inhibited by GDP with a Ki value of 1.41 mM. Site-directed mutagenesis and a GDP-bead binding assay were also performed to investigate the functions of the highly conserved motif H152xR154R155xD157. In contrast to alpha1,6-fucosyltransferases, none of the mutants of WbsJ within this motif exhibited a complete loss of enzyme activity. However, residues R154 and D157 were found to play critical roles in donor binding and enzyme activity. The results suggest that the common motif shared by both alpha1,2-fucosyltransferases and alpha1,6-fucosyltransferases have similar functions. Enzymatic synthesis of fucosylated sugars in milligram scale was successfully performed using Galbeta-O-Me and Galbeta1,4Glcbeta-N3 as acceptors.

  9. Crystal Structure of (+)-[delta]-Cadinene Synthase from Gossypium arboreum and Evolutionary Divergence of Metal Binding Motifs for Catalysis

    SciTech Connect

    Gennadios, Heather A.; Gonzalez, Veronica; Di Costanzo, Luigi; Li, Amang; Yu, Fanglei; Miller, David J.; Allemann, Rudolf K.; Christianson, David W.

    2009-09-11

    (+)-{delta}-Cadinene synthase (DCS) from Gossypium arboreum (tree cotton) is a sesquiterpene cyclase that catalyzes the cyclization of farnesyl diphosphate in the first committed step of the biosynthesis of gossypol, a phytoalexin that defends the plant from bacterial and fungal pathogens. Here, we report the X-ray crystal structure of unliganded DCS at 2.4 {angstrom} resolution and the structure of its complex with three putative Mg{sup 2+} ions and the substrate analogue inhibitor 2-fluorofarnesyl diphosphate (2F-FPP) at 2.75 {angstrom} resolution. These structures illuminate unusual features that accommodate the trinuclear metal cluster required for substrate binding and catalysis. Like other terpenoid cyclases, DCS contains a characteristic aspartate-rich D{sup 307}DTYD{sup 311} motif on helix D that interacts with Mg{sub A}{sup 2+} and Mg{sub C}{sup 2+}. However, DCS appears to be unique among terpenoid cyclases in that it does not contain the 'NSE/DTE' motif on helix H that specifically chelates Mg{sub B}{sup 2+}, which is usually found as the signature sequence (N,D)D(L,I,V)X(S,T)XXXE (boldface indicates Mg{sub B}{sup 2+} ligands). Instead, DCS contains a second aspartate-rich motif, D{sup 451}DVAE{sup 455}, that interacts with Mg{sub B}{sup 2+}. In this regard, DCS is more similar to the isoprenoid chain elongation enzyme farnesyl diphosphate synthase, which also contains two aspartate-rich motifs, rather than the greater family of terpenoid cyclases. Nevertheless, the structure of the DCS-2F-FPP complex shows that the structure of the trinuclear magnesium cluster is generally similar to that of other terpenoid cyclases despite the alternative Mg{sub B}{sup 2+} binding motif. Analyses of DCS mutants with alanine substitutions in the D{sup 307}DTYD{sup 311} and D{sup 451}DVAE{sup 455} segments reveal the contributions of these segments to catalysis.

  10. Structural basis for the interaction of a vascular endothelial growth factor mimic peptide motif and its corresponding receptors.

    PubMed

    Giordano, Ricardo J; Anobom, Cristiane D; Cardó-Vila, Marina; Kalil, Jorge; Valente, Ana P; Pasqualini, Renata; Almeida, Fabio C L; Arap, Wadih

    2005-10-01

    Vascular endothelial growth factor (VEGF) is central to the survival and development of the vascular and nervous systems. We screened phage display libraries and built a peptide-based ligand-receptor map of binding sites within the VEGF family. We then validated a cyclic peptide, CPQPRPLC, as a VEGF-mimic that binds specifically to neuropilin-1 and VEGF receptor-1. Here, we use NMR spectroscopy to understand the structural basis of the interaction between our mimic peptide and the VEGF receptors. We show that: (1) CPQPRPLC has multiple interactive conformations; (2) receptor binding is mediated by the motif Arg-Pro-Leu; and (3) the Pro residue within Arg-Pro-Leu participates in binding to neuropilin-1 but not to VEGF receptor-1, perhaps representing an evolutionary gain-of-function. Therefore, Arg-Pro-Leu is a differential ligand motif to VEGF receptors and a candidate peptidomimetic lead for VEGF pathway modulation.

  11. The structure of FKBP38 in complex with the MEEVD tetratricopeptide binding-motif of Hsp90

    PubMed Central

    Blundell, Katie L. I. M.; Pal, Mohinder; Roe, S. Mark; Pearl, Laurence H.

    2017-01-01

    Tetratricopeptide (TPR) domains are known protein interaction domains. We show that the TPR domain of FKBP8 selectively binds Hsp90, and interactions upstream of the conserved MEEVD motif are critical for tight binding. In contrast FKBP8 failed to bind intact Hsp70. The PPIase domain was not essential for the interaction with Hsp90 and binding was completely encompassed by the TPR domain alone. The conformation adopted by Hsp90 peptides, containing the conserved MEEVD motif, in the crystal structure were similar to that seen for the TPR domains of CHIP, AIP and Tah1. The carboxylate clamp interactions with bound Hsp90 peptide were a critical component of the interaction and mutation of Lys 307, involved in the carboxylate clamp, completely disrupted the interaction with Hsp90. FKBP8 binding to Hsp90 did not substantially influence its ATPase activity. PMID:28278223

  12. [Psychopathological study of lie motif in schizophrenia].

    PubMed

    Otsuka, Koichiro; Kato, Satoshi

    2006-01-01

    The theme of a statement is called "lie motif" by the authors when schizophrenic patients say "I have lied to anybody". We tried to analyse of the psychopathological characteristics and anthropological meanings of the lie motifs in schizophrenia, which has not been thematically examined until now, based on 4 cases, and contrasting with the lie motif (Lügenmotiv) in depression taken up by A. Kraus (1989). We classified the lie motifs in schizophrenia into the following two types: a) the past directive lie motif: the patients speak about their real lie regarding it as a 'petty fault' in their distant past with self-guilty feeling, b) the present directive lie motif: the patients say repeatedly 'I have lied' (about their present speech and behavior), retreating from their previous commitments. The observed false confessions of innocent fault by the patients seem to belong to the present directed lie motif. In comparison with the lie motif in depression, it is characteristic for the lie motif in schizophrenia that the patients feel themselves to already have been caught out by others before they confess the lie. The lie motif in schizophrenia seems to come into being through the attribution process of taking the others' blame on ones' own shoulders, which has been pointed out to be common in the guilt experience in schizophrenia. The others' blame on this occasion is due to "the others' gaze" in the experience of the initial self-centralization (i.e. non delusional self-referential experience) in the early stage of schizophrenia (S. Kato 1999). The others' gaze is supposed to bring about the feeling of amorphous self-revelation which could also be regarded as the guilt feeling without content, to the patients. When the guilt feeling is bound with a past concrete fault, the patients tell the past directive lie motif. On the other hand, when the patients cannot find a past fixed content, and feel their present actions as uncertain and experience them as lies, the

  13. The Thiamin Pyrophosphate-Motif

    NASA Technical Reports Server (NTRS)

    Dominiak, P.; Ciszak, E.

    2003-01-01

    Using databases the authors have identified a common thiamin pyrophosphate (TPP)-motif in the family of functionally diverse TPP-dependent enzymes. This common motif consists of multimeric organization of subunits and two catalytic centers. Each catalytic center (PP:PYR) is formed at the interface of the PP-domain binding the magnesium ion, pyrophosphate and amhopyrimidine ring of TPP, and the PYR-domain binding the aminopyrimidine ring of that cofactor. A pair of these catalytic centers constitutes the catalytic core (PP:PYR)(sub 2) within these enzymes. Analysis of the structural elements of this catalytic core reveals novel definition of the common amino acid sequences, which are GXPhiX(sub 4)(G)PhiXXGQ and GDGX(sub 25-30)NN in the PP-domain, and the EX(sub 4)(G)PhiXXGPhi in the PYR-domain, where Phi corresponds to a hydrophobic amino acid. This TPP-motif provides a novel tool for annotation of TPP-dependent enzymes useful in advancing functional proteomics.

  14. Development of a motif-based topology-independent structure comparison method to identify evolutionarily related folds.

    PubMed

    Dybas, Joseph M; Fiser, Andras

    2016-12-01

    Structure conservation, functional similarities, and homologous relationships that exist across diverse protein topologies suggest that some regions of the protein fold universe are continuous. However, the current structure classification systems are based on hierarchical organizations, which cannot accommodate structural relationships that span fold definitions. Here, we describe a novel, super-secondary-structure motif-based, topology-independent structure comparison method (SmotifCOMP) that is able to quantitatively identify structural relationships between disparate topologies. The basis of SmotifCOMP is a systematically defined super-secondary-structure motif library whose representative geometries are shown to be saturated in the Protein Data Bank and exhibit a unique distribution within the known folds. SmotifCOMP offers a robust and quantitative technique to compare domains that adopt different topologies since the method does not rely on a global superposition. SmotifCOMP is used to perform an exhaustive comparison of the known folds and the identified relationships are used to produce a nonhierarchical representation of the fold space that reflects the notion of a continuous and connected fold universe. The current work offers insight into previously hypothesized evolutionary relationships between disparate folds and provides a resource for exploring novel ones. Proteins 2016; 84:1859-1874. © 2016 Wiley Periodicals, Inc.

  15. 47 CFR 74.22 - Use of common antenna structure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Use of common antenna structure. 74.22 Section... Applicable to All Services in Part 74 § 74.22 Use of common antenna structure. The simultaneous use of a common antenna structure by more than one station authorized under this part, or by one or more...

  16. 47 CFR 74.22 - Use of common antenna structure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Use of common antenna structure. 74.22 Section... Applicable to All Services in Part 74 § 74.22 Use of common antenna structure. The simultaneous use of a common antenna structure by more than one station authorized under this part, or by one or more...

  17. 47 CFR 74.22 - Use of common antenna structure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Use of common antenna structure. 74.22 Section... Applicable to All Services in Part 74 § 74.22 Use of common antenna structure. The simultaneous use of a common antenna structure by more than one station authorized under this part, or by one or more...

  18. 47 CFR 74.22 - Use of common antenna structure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Use of common antenna structure. 74.22 Section... Applicable to All Services in Part 74 § 74.22 Use of common antenna structure. The simultaneous use of a common antenna structure by more than one station authorized under this part, or by one or more...

  19. 47 CFR 74.22 - Use of common antenna structure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Use of common antenna structure. 74.22 Section... Applicable to All Services in Part 74 § 74.22 Use of common antenna structure. The simultaneous use of a common antenna structure by more than one station authorized under this part, or by one or more...

  20. Synergy between NMR measurements and MD simulations of protein/RNA complexes: application to the RRMs, the most common RNA recognition motifs

    PubMed Central

    Krepl, Miroslav; Cléry, Antoine; Blatter, Markus; Allain, Frederic H.T.; Sponer, Jiri

    2016-01-01

    RNA recognition motif (RRM) proteins represent an abundant class of proteins playing key roles in RNA biology. We present a joint atomistic molecular dynamics (MD) and experimental study of two RRM-containing proteins bound with their single-stranded target RNAs, namely the Fox-1 and SRSF1 complexes. The simulations are used in conjunction with NMR spectroscopy to interpret and expand the available structural data. We accumulate more than 50 μs of simulations and show that the MD method is robust enough to reliably describe the structural dynamics of the RRM–RNA complexes. The simulations predict unanticipated specific participation of Arg142 at the protein–RNA interface of the SRFS1 complex, which is subsequently confirmed by NMR and ITC measurements. Several segments of the protein–RNA interface may involve competition between dynamical local substates rather than firmly formed interactions, which is indirectly consistent with the primary NMR data. We demonstrate that the simulations can be used to interpret the NMR atomistic models and can provide qualified predictions. Finally, we propose a protocol for ‘MD-adapted structure ensemble’ as a way to integrate the simulation predictions and expand upon the deposited NMR structures. Unbiased μs-scale atomistic MD could become a technique routinely complementing the NMR measurements of protein–RNA complexes. PMID:27193998

  1. Solution NMR structure of Apo-calmodulin in complex with the IQ motif of human cardiac sodium channel NaV1.5.

    PubMed

    Chagot, Benjamin; Chazin, Walter J

    2011-02-11

    The function of the human voltage-gated sodium channel Na(V)1.5 is regulated in part by intracellular calcium signals. The ubiquitous calcium sensor protein calmodulin (CaM) is an important part of the complex calcium-sensing apparatus in Na(V)1.5. CaM interacts with an IQ (isoleucine-glutamine) motif in the large intracellular C-terminal domain of the channel. Using co-expression and co-purification, we have been able to isolate a CaM-IQ motif complex and to determine its high-resolution structure in absence of calcium using multi-dimensional solution NMR. Under these conditions, the Na(V)1.5 IQ motif interacts with the C-terminal domain (C-lobe) of CaM, with the N-terminal domain remaining free in solution. The structure reveals that the C-lobe adopts a semi-open conformation with the IQ motif bound in a narrow hydrophobic groove. Sequence similarities between voltage-gated sodium channels and voltage-gated calcium channels suggest that the structure of the CaM-Na(V)1.5 IQ motif complex can serve as a general model for the interaction between CaM and ion channel IQ motifs under low-calcium conditions. The structure also provides insight into the biochemical basis for disease-associated mutations that map to the IQ motif in Na(V)1.5.

  2. Knowledge discovery of multilevel protein motifs

    SciTech Connect

    Conklin, D.; Glasgow, J.; Fortier, S.

    1994-12-31

    A new category of protein motif is introduced. This type of motif captures, in addition to global structure, the nested structure of its component parts. A dataset of four proteins is represented using this scheme. A structured machine discovery procedure is used to discover recurrent amino acid motifs and this knowledge is utilized for the expression of subsequent protein motif discoveries. Examples of discovered multilevel motifs are presented.

  3. Crystal violet as an i-motif structure probe for reversible and label-free pH-driven electrochemical switch.

    PubMed

    Zhang, Xi Yuan; Luo, Hong Qun; Li, Nian Bing

    2014-06-15

    A simple pH-induced electrochemical switch based on an i-motif structure is developed by using crystal violet as a selective electrochemical probe for the i-motif structure. Thiol-modified cytosine-rich single-strand oligonucleotide (C-rich ssDNA) can be self-assembled on the gold electrode surface via gold-sulfur interaction. Crystal violet is employed as an electrochemical probe for the i-motif structure because of its capability of binding with the i-motif structure through an end-stacking mode. In acidic aqueous solution, crystal violet may approach the electrode surface owing to the formation of the i-motif structure, resulting in an obvious signal, so-called "ON" state. Whereas in neutral or basic aqueous solution, the i-motif structure unfolds to dissociative single strand, which causes crystal violet to leave from the electrode surface, and a weak signal is obtained, so-called "OFF" state. In addition, in the range of pH 4.6-7.3, the increase in current has a good linear relationship (R=0.989) with pH value in the testing solutions. This pH-driven electrochemical switch has the advantages of simplicity, sensitivity, high selectivity, and good reversibility. Furthermore, it provides a possible platform for pH measurement.

  4. A common structure for the potexviruses.

    PubMed

    Kendall, Amy; Bian, Wen; Maris, Alexander; Azzo, Caitlin; Groom, Joseph; Williams, Dewight; Shi, Jian; Stewart, Phoebe L; Wall, Joseph S; Stubbs, Gerald

    2013-02-05

    We have used fiber diffraction, cryo-electron microscopy, and scanning transmission electron microscopy to confirm the symmetry of three potexviruses, potato virus X, papaya mosaic virus, and narcissus mosaic virus, and to determine their low-resolution structures. All three viruses have slightly less than nine subunits per turn of the viral helix. Our data strongly support the view that all potexviruses have approximately the same symmetry. The structures are dominated by a large domain at high radius in the virion, with a smaller domain, which includes the putative RNA-binding site, extending to low radius.

  5. A common structure for the potexviruses

    SciTech Connect

    Kendall, Amy; Bian, Wen; Maris, Alexander; Azzo, Caitlin; Groom, Joseph; Williams, Dewight; Shi, Jian; Stewart, Phoebe L.; Wall, Joseph S.; Stubbs, Gerald

    2013-02-05

    We have used fiber diffraction, cryo-electron microscopy, and scanning transmission electron microscopy to confirm the symmetry of three potexviruses, potato virus X, papaya mosaic virus, and narcissus mosaic virus, and to determine their low-resolution structures. All three viruses have slightly less than nine subunits per turn of the viral helix. Our data strongly support the view that all potexviruses have approximately the same symmetry. The structures are dominated by a large domain at high radius in the virion, with a smaller domain, which includes the putative RNA-binding site, extending to low radius.

  6. Crystal Structure of FadA Adhesin from Fusobacterium nucleatum Reveals a Novel Oligomerization Motif, the Leucine Chain

    SciTech Connect

    Nithianantham, Stanley; Xu, Minghua; Yamada, Mitsunori; Ikegami, Akihiko; Shoham, Menachem; Han, Yiping W.

    2009-04-07

    Many bacterial appendages have filamentous structures, often composed of repeating monomers assembled in a head-to-tail manner. The mechanisms of such linkages vary. We report here a novel protein oligomerization motif identified in the FadA adhesin from the Gram-negative bacterium Fusobacterium nucleatum. The 2.0 {angstrom} crystal structure of the secreted form of FadA (mFadA) reveals two antiparallel {alpha}-helices connected by an intervening 8-residue hairpin loop. Leucine-leucine contacts play a prominent dual intra- and intermolecular role in the structure and function of FadA. First, they comprise the main association between the two helical arms of the monomer; second, they mediate the head-to-tail association of monomers to form the elongated polymers. This leucine-mediated filamentous assembly of FadA molecules constitutes a novel structural motif termed the 'leucine chain.' The essential role of these residues in FadA is corroborated by mutagenesis of selected leucine residues, which leads to the abrogation of oligomerization, filament formation, and binding to host cells.

  7. The Thiamine-Pyrophosphate-Motif

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa; Dominiak, Paulina

    2004-01-01

    Thiamin pyrophosphate (TPP), a derivative of vitamin B1, is a cofactor for enzymes performing catalysis in pathways of energy production including the well known decarboxylation of a-keto acid dehydrogenases followed by transketolation. TPP-dependent enzymes constitute a structurally and functionally diverse group exhibiting multimeric subunit organization, multiple domains and two chemically equivalent catalytic centers. Annotation of functional TPP-dependcnt enzymes, therefore, has not been trivial due to low sequence similarity related to this complex organization. Our approach to analysis of structures of known TPP-dependent enzymes reveals for the first time features common to this group, which we have termed the TPP-motif. The TPP-motif consists of specific spatial arrangements of structural elements and their specific contacts to provide for a flip-flop, or alternate site, enzymatic mechanism of action. Analysis of structural elements entrained in the flip-flop action displayed by TPP-dependent enzymes reveals a novel definition of the common amino acid sequences. These sequences allow for annotation of TPP-dependent enzymes, thus advancing functional proteomics. Further details of three-dimensional structures of TPP-dependent enzymes will be discussed.

  8. Oxidation-induced Structural Changes of Ceruloplasmin Foster NGR Motif Deamidation That Promotes Integrin Binding and Signaling

    PubMed Central

    Barbariga, Marco; Curnis, Flavio; Spitaleri, Andrea; Andolfo, Annapaola; Zucchelli, Chiara; Lazzaro, Massimo; Magnani, Giuseppe; Musco, Giovanna; Corti, Angelo; Alessio, Massimo

    2014-01-01

    Asparagine deamidation occurs spontaneously in proteins during aging; deamidation of Asn-Gly-Arg (NGR) sites can lead to the formation of isoAsp-Gly-Arg (isoDGR), a motif that can recognize the RGD-binding site of integrins. Ceruloplasmin (Cp), a ferroxidase present in the cerebrospinal fluid (CSF), contains two NGR sites in its sequence: one exposed on the protein surface (568NGR) and the other buried in the tertiary structure (962NGR). Considering that Cp can undergo oxidative modifications in the CSF of neurodegenerative diseases, we investigated the effect of oxidation on the deamidation of both NGR motifs and, consequently, on the acquisition of integrin binding properties. We observed that the exposed 568NGR site can deamidate under conditions mimicking accelerated Asn aging. In contrast, the hidden 962NGR site can deamidate exclusively when aging occurs under oxidative conditions, suggesting that oxidation-induced structural changes foster deamidation at this site. NGR deamidation in Cp was associated with gain of integrin-binding function, intracellular signaling, and cell pro-adhesive activity. Finally, Cp aging in the CSF from Alzheimer disease patients, but not in control CSF, causes Cp deamidation with gain of integrin-binding function, suggesting that this transition might also occur in pathological conditions. In conclusion, both Cp NGR sites can deamidate during aging under oxidative conditions, likely as a consequence of oxidative-induced structural changes, thereby promoting a gain of function in integrin binding, signaling, and cell adhesion. PMID:24366863

  9. Exploiting powder X-ray diffraction for direct structure determination in structural biology: the P2X4 receptor trafficking motif YEQGL.

    PubMed

    Fujii, Kotaro; Young, Mark T; Harris, Kenneth D M

    2011-06-01

    We report the crystal structure of the 5-residue peptide acetyl-YEQGL-amide, determined directly from powder X-ray diffraction data recorded on a conventional laboratory X-ray powder diffractometer. The YEQGL motif has a known biological role, as a trafficking motif in the C-terminus of mammalian P2X4 receptors. Comparison of the crystal structure of acetyl-YEQGL-amide determined here and that of a complex formed with the μ2 subunit of the clathrin adaptor protein complex AP2 reported previously, reveals differences in conformational properties, although there are nevertheless similarities concerning aspects of the hydrogen-bonding arrangement and the hydrophobic environment of the leucine sidechain. Our results demonstrate the potential for exploiting modern powder X-ray diffraction methodology to achieve complete structure determination of materials of biological interest that do not crystallize as single crystals of suitable size and quality for single-crystal X-ray diffraction.

  10. hCINAP is an atypical mammalian nuclear adenylate kinase with an ATPase motif: Structural and functional studies

    PubMed Central

    Drakou, Christina E.; Malekkou, Anna; Hayes, Joseph M.; Lederer, Carsten W.; Leonidas, Demetres D.; Lamond, Angus I.; Santama, Niovi; Zographos, Spyros E.

    2013-01-01

    Human coilin interacting nuclear ATPase protein (hCINAP) directly interacts with coilin, a marker protein of Cajal Bodies (CBs), nuclear organelles involved in the maturation of small nuclear ribonucleoproteins UsnRNPs and snoRNPs. hCINAP has previously been designated as an adenylate kinase (AK6), but is very atypical as it exhibits unusually broad substrate specificity, structural features characteristic of ATPase/GTPase proteins (Walker motifs A and B) and also intrinsic ATPase activity. Despite its intriguing structure, unique properties and cellular localization, the enzymatic mechanism and biological function of hCINAP have remained poorly characterized. Here, we offer the first high-resolution structure of hCINAP in complex with the substrate ADP (and dADP), the structure of hCINAP with a sulfate ion bound at the AMP binding site, and the structure of the ternary complex hCINAP-Mg2+ADP-Pi. Induced fit docking calculations are used to predict the structure of the hCINAP-Mg2+ATP-AMP ternary complex. Structural analysis suggested a functional role for His79 in the Walker B motif. Kinetic analysis of mutant hCINAP-H79G indicates that His79 affects both AK and ATPase catalytic efficiency and induces homodimer formation. Finally, we show that in vivo expression of hCINAP-H79G in human cells is toxic and drastically deregulates the number and appearance of CBs in the cell nucleus. Our findings suggest that hCINAP may not simply regulate nucleotide homeostasis, but may have broader functionality, including control of CB assembly and disassembly in the nucleus of human cells. PMID:22038794

  11. The 3'-5' exonuclease site of DNA polymerase III from gram-positive bacteria: definition of a novel motif structure.

    PubMed

    Barnes, M H; Spacciapoli, P; Li, D H; Brown, N C

    1995-11-07

    The primary structure of the 3'-5' exonuclease (Exo) site of the Gram+ bacterial DNA polymerase III (Pol III) was examined by site-directed mutagenesis of Bacillus subtilis Pol III (BsPol III). It was found to differ significantly from the conventional three-motif substructure established for the Exo site of DNA polymerase I of Escherichia coli (EcPol I) and the majority of other DNA polymerase-exonucleases. Motifs I and II were conventionally organized and anchored functionally by the predicted carboxylate residues. However, the conventional downstream motif, motif III, was replaced by motif III epsilon, a novel 55-amino-acid (aa) segment incorporating three essential aa (His565, Asp533 and Asp570) which are strictly conserved in three Gram+ Pol III and in the Ec Exo epsilon (epsilon). Despite its unique substructure, the Gram+ Pol III-specific Exo site was conventionally independent of Pol, the site of 2'-deoxyribonucleoside 5-triphosphate (dNTP) binding and polymerization. The entire Exo site, including motif III epsilon, could be deleted without profoundly affecting the enzyme's capacity to polymerize dNTPs. Conversely, Pol and all other sequences downstream of the Exo site could be deleted with little apparent effect on Exo activity. Whether the three essential aa within the unique motif III epsilon substructure participate in the conventional two-metal-ion mechanism elucidated for the model Exo site of EcPol I, remains to be established.

  12. Structural Basis for Phosphorylation and Lysine Acetylation Cross-talk in a Kinase Motif Associated with Myocardial Ischemia and Cardioprotection*

    PubMed Central

    Parker, Benjamin L.; Shepherd, Nicholas E.; Trefely, Sophie; Hoffman, Nolan J.; White, Melanie Y.; Engholm-Keller, Kasper; Hambly, Brett D.; Larsen, Martin R.; James, David E.; Cordwell, Stuart J.

    2014-01-01

    Myocardial ischemia and cardioprotection by ischemic pre-conditioning induce signal networks aimed at survival or cell death if the ischemic period is prolonged. These pathways are mediated by protein post-translational modifications that are hypothesized to cross-talk with and regulate each other. Phosphopeptides and lysine-acetylated peptides were quantified in isolated rat hearts subjected to ischemia or ischemic pre-conditioning, with and without splitomicin inhibition of lysine deacetylation. We show lysine acetylation (acetyl-Lys)-dependent activation of AMP-activated protein kinase, AKT, and PKA kinases during ischemia. Phosphorylation and acetyl-Lys sites mapped onto tertiary structures were proximal in >50% of proteins investigated, yet they were mutually exclusive in 50 ischemic pre-conditioning- and/or ischemia-associated peptides containing the KXXS basophilic protein kinase consensus motif. Modifications in this motif were modeled in the C terminus of muscle-type creatine kinase. Acetyl-Lys increased proximal dephosphorylation by 10-fold. Structural analysis of modified muscle-type creatine kinase peptide variants by two-dimensional NMR revealed stabilization via a lysine-phosphate salt bridge, which was disrupted by acetyl-Lys resulting in backbone flexibility and increased phosphatase accessibility. PMID:25008320

  13. Structure-Specific Nucleic Acid Recognition by L-motifs And Their Diverse Roles in Expression And Regulation Of The Genome

    PubMed Central

    Thapar, Roopa

    2015-01-01

    The high-mobility group (HMG) domain containing proteins regulate transcription, DNA replication and recombination. They adopt L-shaped folds and are structure-specific DNA binding motifs. Here, I define the L-motif super-family that consists of DNA-binding HMG-box proteins and the L-motif of the histone mRNA binding domain of Stem-Loop Binding Protein (SLBP). The SLBP L-motif and HMG-box domains adopt similar L-shaped folds with three α-helices and two or three small hydrophobic cores that stabilize the overall fold, but have very different and distinct modes of nucleic acid recognition. A comparison of the structure, dynamics, protein-protein and nucleic acid interactions, and regulation by PTMs of the SLBP and the HMG-box L-motifs reveals the versatile and diverse modes by which L-motifs utilize their surfaces for structure-specific recognition of nucleic acids to regulate gene expression. PMID:25748361

  14. Identification of common and cell type specific LXXLL motif EcR cofactors using a bioinformatics refined candidate RNAi screen in Drosophila melanogaster cell lines

    PubMed Central

    2011-01-01

    Background During Drosophila development, titers of the steroid ecdysone trigger and maintain temporal and tissue specific biological transitions. Decades of evidence reveal that the ecdysone response is both unique to specific tissues and distinct among developmental timepoints. To achieve this diversity in response, the several isoforms of the Ecdysone Receptor, which transduce the hormone signal to the genome level, are believed to interact with tissue specific cofactors. To date, little is known about the identity of these cofactor interactions; therefore, we conducted a bioinformatics informed, RNAi luciferase reporter screen against a subset of putative candidate cofactors identified through an in silico proteome screen. Candidates were chosen based on criteria obtained from bioinformatic consensus of known nuclear receptor cofactors and homologs, including amino acid sequence motif content and context. Results The bioinformatics pre-screen of the Drosophila melanogaster proteome was successful in identifying an enriched putative candidate gene cohort. Over 80% of the genes tested yielded a positive hit in our reporter screen. We have identified both cell type specific and common cofactors which appear to be necessary for proper ecdysone induced gene regulation. We have determined that certain cofactors act as co-repressors to reduce target gene expression, while others act as co-activators to increase target gene expression. Interestingly, we find that a few of the cofactors shared among cell types have a reversible roles to function as co-repressors in certain cell types while in other cell types they serve as co-activators. Lastly, these proteins are highly conserved, with higher order organism homologs also harboring the LXXLL steroid receptor interaction domains, suggesting a highly conserved mode of steroid cell target specificity. Conclusions In conclusion, we submit these cofactors as novel components of the ecdysone signaling pathway in order to

  15. Metal Ion Induced Pairing of Cytosine Bases: Formation of I-Motif Structures Identified by IR Ion Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gao, Juehan; Berden, Giel; Oomens, J.

    2015-06-01

    While the Watson-Crick structure of DNA is among the most well-known molecular structures of our time, alternative base-pairing motifs are also known to occur, often depending on base sequence, pH, or presence of cations. Pairing of two cytosine (C) bases induced by the sharing of a single proton (C-H^+-C) gives rise to the so-called i-motif, occurring particularly in the telomeric region of DNA, and particularly at low pH. At physiological pH, silver cations were recently suggested to form cytosine dimers in a C-Ag^+-C structure analogous to the hemiprotonated cytosine dimer, which was later confirmed by IR spectroscopy.^1 Here we investigate whether Ag^+ is unique in this behavior. Using infrared action spectroscopy employing the free-electron laser FELIX and a tandem mass spectrometer in combination with quantum-chemical computations, we investigate a series of C-M^+-C complexes, where M is Cu, Li and Na. The complexes are formed by electrospray ionization (ESI) from a solution of cytosine and the metal chloride salt in acetonitrile/water. The complexes of interest are mass-isolated in the cell of a FT ion cyclotron resonance mass spectrometer, where they are irradiated with the tunable IR radiation from FELIX in the 600 - 1800 wn range. Spectra in the H-stretching range are obtained with a LaserVision OPO. Both experimental spectra as well as theoretical calculations indicate that while Cu behaves as Ag, the alkali metal ions induce a clearly different dimer structure, in which the two cytosine units are parallelly displaced. In addition to coordination to the ring nitrogen atom, the alkali metal ions coordinate to the carbonyl oxygen atoms of both cytosine bases, indicating that the alkali metal ion coordination favorably competes with hydrogen bonding between the two cytosine sub-units of the i-motif like structure. 1. Berdakin, Steinmetz, Maitre, Pino, J. Phys. Chem. A 2014, 118, 3804

  16. Surface binding sites in amylase have distinct roles in recognition of starch structure motifs and degradation.

    PubMed

    Cockburn, Darrell; Nielsen, Morten M; Christiansen, Camilla; Andersen, Joakim M; Rannes, Julie B; Blennow, Andreas; Svensson, Birte

    2015-04-01

    Carbohydrate converting enzymes often possess extra substrate binding regions that enhance their activity. These can be found either on separate domains termed carbohydrate binding modules or as so-called surface binding sites (SBSs) situated on the catalytic domain. SBSs are common in starch degrading enzymes and critically important for their function. The affinity towards a variety of starch granules as well as soluble poly- and oligosaccharides of barley α-amylase 1 (AMY1) wild-type and mutants of two SBSs (SBS1 and SBS2) was investigated using Langmuir binding analysis, confocal laser scanning microscopy, affinity gel electrophoresis and surface plasmon resonance to unravel functional roles of the SBSs. SBS1 was critical for binding to different starch types as Kd increased by 7-62-fold or was not measurable upon mutation. By contrast SBS2 was particularly important for binding to soluble polysaccharides and oligosaccharides with α-1,6 linkages, suggesting that branch points are key structural elements in recognition by SBS2. Mutation at both SBS1 and SBS2 eliminated binding to all starch granule types tested. Taken together, the findings indicate that the two SBSs act in concert to localize AMY1 to the starch granule surface and that SBS2 works synergistically with the active site in the degradation of amylopectin.

  17. Trans-cleaving hammerhead ribozymes with tertiary stabilizing motifs: in vitro and in vivo activity against a structured viroid RNA

    PubMed Central

    Carbonell, Alberto; Flores, Ricardo; Gago, Selma

    2011-01-01

    Trans-cleaving hammerheads with discontinuous or extended stem I and with tertiary stabilizing motifs (TSMs) have been tested previously against short RNA substrates in vitro at low Mg2+ concentration. However, the potential of these ribozymes for targeting longer and structured RNAs in vitro and in vivo has not been examined. Here, we report the in vitro cleavage of short RNAs and of a 464-nt highly structured RNA from potato spindle tuber viroid (PSTVd) by hammerheads with discontinuous and extended formats at submillimolar Mg2+. Under these conditions, hammerheads derived from eggplant latent viroid and peach latent mosaic viroid (PLMVd) with discontinuous and extended formats, respectively, where the most active. Furthermore, a PLMVd-derived hammerhead with natural TSMs showed activity in vivo against the same long substrate and interfered with systemic PSTVd infection, thus reinforcing the idea that this class of ribozymes has potential to control pathogenic RNA replicons. PMID:21097888

  18. SMN2 exon 7 splicing is inhibited by binding of hnRNP A1 to a common ESS motif that spans the 3' splice site.

    PubMed

    Doktor, Thomas Koed; Schroeder, Lisbeth Dahl; Vested, Anne; Palmfeldt, Johan; Andersen, Henriette Skovgaard; Gregersen, Niels; Andresen, Brage Storstein

    2011-02-01

    Spinal Muscular Atrophy is caused by homozygous loss of SMN1 with phenotypic modulation by SMN2. SMN2 expresses only limited amounts of full-length transcript due to skipping of exon 7 caused by disruption of an SF2/ASF binding ESE. Additionally, hnRNP A1 has been reported to inhibit inclusion of SMN2 exon 7. We previously reported high similarity between the sequence spanning the 3' ss of SMN1 and SMN2 exon 7 and an hnRNP A1 binding ESS, which regulates MCAD exon 5 splicing. We show here that this 3' ss motif indeed functions as a crucial hnRNP A1 binding ESS, which inhibits inclusion of SMN1/2 exon 7 and is antagonized by the SMN1 ESE, but not by the inactive SMN2 sequence. Pull-down experiments revealed a specific interaction between hnRNP A1 and the 3' ss AG-dinucleotide, which could be disrupted by mutations shown to improve splicing in reporter minigenes. Genomic analyses revealed that in the human genome, 3' ss matching the SMN1/2 ESS motif region are much less abundant than 3' ss with a disrupted ESS motif. This indicates that this ESS may be a general splicing inhibitory motif, which binds hnRNP A1 and inhibits exon inclusion by binding to 3' ss harboring this ESS motif.

  19. The 'WS motif' common to v-mpl and members of the cytokine receptor superfamily is dispensable for myeloproliferative leukemia virus pathogenicity.

    PubMed

    Bénit, L; Charon, M; Cocault, L; Wendling, F; Gisselbrecht, S

    1993-03-01

    Several motifs are conserved in the extracellular domain of the cloned chains of the recently described cytokine receptor superfamily. One of them, usually close to the transmembrane region, is the 'WS motif'. Its function remains unknown, but it has been recently shown that the integrity of this motif is essential for interleukin 2 receptor beta-chain and erythropoietin receptor activity [Miyazaki, T., Maruyama, M., Yamada, G., Hatakeyama, M. & Taniguchi, T. (1991). EMBO J., 10, 3191-3197; Watowich, S.S., Yoshimura, A., Longmore, G.D., Hilton, D.J., Hoshimura, Y. & Lodish, H.R. (1992). Proc. Natl. Acad. Sci. USA, 89, 2140-2144]. This WS motif is present in the v-mpl oncogene, which has been transduced in the myeloproliferative leukemia virus (MPLV). v-mpl encodes a truncated transmembrane protein that belongs to this growth factor receptor family. We demonstrate that determinants of MPLV pathogenesis are encoded by the env-mpl fusion gene and that the complete deletion of the WS motif does not abolish MPLV oncogenic properties.

  20. Role of NH{sub 2}-terminal hydrophobic motif in the subcellular localization of ATP-binding cassette protein subfamily D: Common features in eukaryotic organisms

    SciTech Connect

    Lee, Asaka; Asahina, Kota; Okamoto, Takumi; Kawaguchi, Kosuke; Kostsin, Dzmitry G.; Kashiwayama, Yoshinori; Takanashi, Kojiro; Yazaki, Kazufumi; Imanaka, Tsuneo; Morita, Masashi

    2014-10-24

    Highlights: • ABCD proteins classifies based on with or without NH{sub 2}-terminal hydrophobic segment. • The ABCD proteins with the segment are targeted peroxisomes. • The ABCD proteins without the segment are targeted to the endoplasmic reticulum. • The role of the segment in organelle targeting is conserved in eukaryotic organisms. - Abstract: In mammals, four ATP-binding cassette (ABC) proteins belonging to subfamily D have been identified. ABCD1–3 possesses the NH{sub 2}-terminal hydrophobic region and are targeted to peroxisomes, while ABCD4 lacking the region is targeted to the endoplasmic reticulum (ER). Based on hydropathy plot analysis, we found that several eukaryotes have ABCD protein homologs lacking the NH{sub 2}-terminal hydrophobic segment (H0 motif). To investigate whether the role of the NH{sub 2}-terminal H0 motif in subcellular localization is conserved across species, we expressed ABCD proteins from several species (metazoan, plant and fungi) in fusion with GFP in CHO cells and examined their subcellular localization. ABCD proteins possessing the NH{sub 2}-terminal H0 motif were localized to peroxisomes, while ABCD proteins lacking this region lost this capacity. In addition, the deletion of the NH{sub 2}-terminal H0 motif of ABCD protein resulted in their localization to the ER. These results suggest that the role of the NH{sub 2}-terminal H0 motif in organelle targeting is widely conserved in living organisms.

  1. The MiiA motif is a common marker present in polytopic surface proteins of oral and urinary tract invasive bacteria.

    PubMed

    Martín-Galiano, Antonio J

    2017-04-01

    Many surface virulence factors of bacterial pathogens show mosaicism and confounding phylogenetic origin. The Streptococcus gordonii platelet-binding GspB protein, the Streptococcus sanguinis SrpA adhesin and the Streptococcus pneumoniae DiiA protein, share an imperfect 27-residue motif. Given the disparate domain architectures of these proteins and its association to invasive disease, this motif was named MiiA from Multiarchitecture invasion-involved motif A. MiiA is predicted to adopt a beta-sheet folding, probably related to the Ig-like fold, with a symmetrical positioning of two conserved aspartic residues. A specific hidden Markov model profiling MiiA was built, which specifically detected the motif in proteins from 58 species, mainly in cell-wall proteins from Gram-positive bacteria. These proteins contained one to ten MiiA motifs, which were embedded within larger repeat units of 70-82 residues. MiiA motifs combined to other domains and elements such as coiled-coils and low-complexity regions. The species carrying MiiA-proteins included commensals from the urogenital tract and the oral cavity, which can cause opportunistic endocarditis and sepsis. Intra-protein MiiA repeats showed a complex mixture of orthologal, paralogal and inter-species relationships, suggestive of a multistep origin. Presence of these repeats in proteins involved in oligosaccharide recognition and lifestyle of species suggest a putative function for MiiA repeats in sugars binding, probably those present in receptors of epithelial and blood cells. MiiA modules appear to have been transferred horizontally between species co-habiting in the same niche to create their own MiiA-containing determinants. The present work provides a global study and a catalog of potential MiiA virulence factors that should be analyzed experimentally.

  2. The solution structure of horseshoe crab antimicrobial peptide tachystatin B with an inhibitory cystine-knot motif.

    PubMed

    Fujitani, Naoki; Kouno, Takahide; Nakahara, Taku; Takaya, Kenji; Osaki, Tsukasa; Kawabata, Shun-Ichiro; Mizuguchi, Mineyuki; Aizawa, Tomoyasu; Demura, Makoto; Nishimura, Shin-Ichiro; Kawano, Keiichi

    2007-04-01

    Tachystatin B is an antimicrobial and a chitin-binding peptide isolated from the Japanese horseshoe crab (Tachypleus tridentatus) consisting of two isopeptides called tachystatin B1 and B2. We have determined their solution structures using NMR experiments and distance geometry calculations. The 20 best converged structures of tachystatin B1 and B2 exhibited root mean square deviations of 0.46 and 0.49 A, respectively, for the backbone atoms in Cys(4)-Arg(40). Both structures have identical conformations, and they contain a short antiparallel beta-sheet with an inhibitory cystine-knot (ICK) motif that is distributed widely in the antagonists for voltage-gated ion channels, although tachystatin B does not have neurotoxic activity. The structural homology search provided several peptides with structures similar to that of tachystatin B. However, most of them have the advanced functions such as insecticidal activity, suggesting that tachystatin B may be a kind of ancestor of antimicrobial peptide in the molecular evolutionary history. Tachystatin B also displays a significant structural similarity to tachystatin A, which is member of the tachystatin family. The structural comparison of both tachystatins indicated that Tyr(14) and Arg(17) in the long loop between the first and second strands might be the essential residues for binding to chitin.

  3. A Structurally-Tunable 3-Hydroxyflavone Motif for Visible Light-Induced Carbon Monoxide-Releasing Molecules (CORMs)**

    PubMed Central

    Anderson, Stacey N; Richards, Jason M; Esquer, Hector J; Benninghoff, Abby D; Arif, Atta M; Berreau, Lisa M

    2015-01-01

    Molecules that can be used to deliver a controlled amount of carbon monoxide (CO) have the potential to facilitate investigations into the roles of this gaseous molecule in biology and advance therapeutic treatments. This has led to the development of light-induced CO-releasing molecules (photoCORMs). A goal in this field of research is the development of molecules that exhibit a combination of controlled CO release, favorable biological properties (e.g., low toxicity and trackability in cells), and structural tunability to affect CO release. Herein, we report a new biologically-inspired organic photoCORM motif that exhibits several features that are desirable in a next-generation photoCORM. We show that 3-hydroxyflavone-based compounds are easily synthesized and modified to impart changes in absorption features and quantum yield for CO release, exhibit low toxicity, are trackable in cells, and can exhibit both O2-dependent and -independent CO release reactivity. PMID:26491637

  4. A Structurally-Tunable 3-Hydroxyflavone Motif for Visible Light-Induced Carbon Monoxide-Releasing Molecules (CORMs).

    PubMed

    Anderson, Stacey N; Richards, Jason M; Esquer, Hector J; Benninghoff, Abby D; Arif, Atta M; Berreau, Lisa M

    2015-10-01

    Molecules that can be used to deliver a controlled amount of carbon monoxide (CO) have the potential to facilitate investigations into the roles of this gaseous molecule in biology and advance therapeutic treatments. This has led to the development of light-induced CO-releasing molecules (photoCORMs). A goal in this field of research is the development of molecules that exhibit a combination of controlled CO release, favorable biological properties (e.g., low toxicity and trackability in cells), and structural tunability to affect CO release. Herein, we report a new biologically-inspired organic photoCORM motif that exhibits several features that are desirable in a next-generation photoCORM. We show that 3-hydroxyflavone-based compounds are easily synthesized and modified to impart changes in absorption features and quantum yield for CO release, exhibit low toxicity, are trackable in cells, and can exhibit both O2-dependent and -independent CO release reactivity.

  5. The structure of the translational initiation factor IF1 from E.coli contains an oligomer-binding motif.

    PubMed Central

    Sette, M; van Tilborg, P; Spurio, R; Kaptein, R; Paci, M; Gualerzi, C O; Boelens, R

    1997-01-01

    The structure of the translational initiation factor IF1 from Escherichia coli has been determined with multidimensional NMR spectroscopy. Using 1041 distance and 78 dihedral constraints, 40 distance geometry structures were calculated, which were refined by restrained molecular dynamics. From this set, 19 structures were selected, having low constraint energy and few constraint violations. The ensemble of 19 structures displays a root-mean-square deviation versus the average of 0.49 A for the backbone atoms and 1.12 A for all atoms for residues 6-36 and 46-67. The structure of IF1 is characterized by a five-stranded beta-barrel. The loop connecting strands three and four contains a short 3(10) helix but this region shows considerably higher flexibility than the beta-barrel. The fold of IF1 is very similar to that found in the bacterial cold shock proteins CspA and CspB, the N-terminal domain of aspartyl-tRNA synthetase and the staphylococcal nuclease, and can be identified as the oligomer-binding motif. Several proteins of this family are nucleic acid-binding proteins. This suggests that IF1 plays its role in the initiation of protein synthesis by nucleic acid interactions. Specific changes of NMR signals of IF1 upon titration with 30S ribosomal subunit identifies several residues that are involved in the interaction with ribosomes. PMID:9135158

  6. Modelling a 3D structure for EgDf1 from shape Echinococcus granulosus: putative epitopes, phosphorylation motifs and ligand

    NASA Astrophysics Data System (ADS)

    Paulino, M.; Esteves, A.; Vega, M.; Tabares, G.; Ehrlich, R.; Tapia, O.

    1998-07-01

    EgDf1 is a developmentally regulated protein from the parasite Echinococcus granulosus related to a family of hydrophobic ligand binding proteins. This protein could play a crucial role during the parasite life cycle development since this organism is unable to synthetize most of their own lipids de novo. Furthermore, it has been shown that two related protein from other parasitic platyhelminths (Fh15 from Fasciola hepatica and Sm14 from Schistosoma mansoni) are able to confer protective inmunity against experimental infection in animal models. A three-dimensional structure would help establishing structure/function relationships on a knowledge based manner. 3D structures for EgDf1 protein were modelled by using myelin P2 (mP2) and intestine fatty acid binding protein (I-FABP) as templates. Molecular dynamics techniques were used to validate the models. Template mP2 yielded the best 3D structure for EgDf1. Palmitic and oleic acids were docked inside EgDf1. The present theoretical results suggest definite location in the secondary structure of the epitopic regions, consensus phosphorylation motifs and oleic acid as a good ligand candidate to EgDf1. This protein might well be involved in the process of supplying hydrophobic metabolites for membrane biosynthesis and for signaling pathways.

  7. Effect of packing motifs on the energy ranking and electronic properties of putative crystal structures of tricyano-1,4-dithiino[c]-isothiazole.

    PubMed

    Curtis, Farren; Wang, Xiaopeng; Marom, Noa

    2016-08-01

    We present an analysis of putative structures of tricyano-1,4-dithiino[c]-isothiazole (TCS3), generated within the sixth crystal structure prediction blind test. Typical packing motifs are identified and characterized in terms of distinct patterns of close contacts and regions of electrostatic and dispersion interactions. We find that different dispersion-inclusive density functional theory (DFT) methods systematically favor specific packing motifs, which may affect the outcome of crystal structure prediction efforts. The effect of crystal packing on the electronic and optical properties of TCS3 is investigated using many-body perturbation theory within the GW approximation and the Bethe-Salpeter equation (BSE). We find that a structure with Pna21 symmetry and a bilayer packing motif exhibits intermolecular bonding patterns reminiscent of π-π stacking and has markedly different electronic and optical properties than the experimentally observed P21/n structure with a cyclic dimer motif, including a narrower band gap, enhanced band dispersion and broader optical absorption. The Pna21 bilayer structure is close in energy to the observed structure and may be feasible to grow.

  8. Common structure and toxic function of amyloid oligomers implies a common mechanism of pathogenesis.

    PubMed

    Glabe, Charles G; Kayed, Rakez

    2006-01-24

    Recent findings indicate that soluble amyloid oligomers may represent the primary pathologic species in degenerative diseases. These amyloid oligomers share common structural features and the ability to permeabilize membranes, suggesting that they also share a common primary mechanism of pathogenesis. Membrane permeabilization by amyloid oligomers may initiate a common group of downstream pathologic processes, including intracellular calcium dyshomeostasis, production of reactive oxygen species, altered signaling pathways, and mitochondrial dysfunction that represent key effectors of cellular dysfunction and cell death in amyloid-associated degenerative disease, such as sporadic inclusion-body myositis.

  9. Common and distinctive features of GNRA tetraloops based on a GUAA tetraloop structure at 1.4 Å resolution

    PubMed Central

    CORRELL, CARL C.; SWINGER, KERREN

    2003-01-01

    GNRA tetraloops (N is A, C, G, or U; R is A or G) are basic building blocks of RNA structure that often interact with proteins or other RNA structural elements. Understanding sequence-dependent structural variation among different GNRA tetraloops is an important step toward elucidating the molecular basis of specific GNRA tetraloop recognition by proteins and RNAs. Details of the geometry and hydration of this motif have been based on high-resolution crystallographic structures of the GRRA subset of tetraloops; less is known about the GYRA subset (Y is C or U). We report here the structure of a GUAA tetraloop determined to 1.4 Å resolution to better define these details and any distinctive features of GYRA tetraloops. The tetraloop is part of a 27-nt structure that mimics the universal sarcin/ricin loop from Escherichia coli 23S ribosomal RNA in which a GUAA tetraloop replaces the conserved GAGA tetraloop. The adenosines of the GUAA tetraloop form an intermolecular contact that is a commonplace RNA tertiary interaction called an A-minor motif. This is the first structure to reveal in great detail the geometry and hydration of a GUAA tetraloop and an A-minor motif. Comparison of tetraloop structures shows a common backbone geometry for each of the eight possible tetraloop sequences and suggests a common hydration. After backbone atom superposition, equivalent bases from different tetraloops unexpectedly depart from coplanarity by as much as 48°. This variation displaces the functional groups of tetraloops implicated in protein and RNA binding, providing a recognition feature. PMID:12592009

  10. Common and distinctive features of GNRA tetraloops based on a GUAA tetraloop structure at 1.4 A resolution.

    PubMed

    Correll, Carl C; Swinger, Kerren

    2003-03-01

    GNRA tetraloops (N is A, C, G, or U; R is A or G) are basic building blocks of RNA structure that often interact with proteins or other RNA structural elements. Understanding sequence-dependent structural variation among different GNRA tetraloops is an important step toward elucidating the molecular basis of specific GNRA tetraloop recognition by proteins and RNAs. Details of the geometry and hydration of this motif have been based on high-resolution crystallographic structures of the GRRA subset of tetraloops; less is known about the GYRA subset (Y is C or U). We report here the structure of a GUAA tetraloop determined to 1.4 A resolution to better define these details and any distinctive features of GYRA tetraloops. The tetraloop is part of a 27-nt structure that mimics the universal sarcin/ricin loop from Escherichia coli 23S ribosomal RNA in which a GUAA tetraloop replaces the conserved GAGA tetraloop. The adenosines of the GUAA tetraloop form an intermolecular contact that is a commonplace RNA tertiary interaction called an A-minor motif. This is the first structure to reveal in great detail the geometry and hydration of a GUAA tetraloop and an A-minor motif. Comparison of tetraloop structures shows a common backbone geometry for each of the eight possible tetraloop sequences and suggests a common hydration. After backbone atom superposition, equivalent bases from different tetraloops unexpectedly depart from coplanarity by as much as 48 degrees. This variation displaces the functional groups of tetraloops implicated in protein and RNA binding, providing a recognition feature.

  11. Crystal structure and novel recognition motif of rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis.

    PubMed

    Han, S; Arvai, A S; Clancy, S B; Tainer, J A

    2001-01-05

    Clostridium botulinum C3 exoenzyme inactivates the small GTP-binding protein family Rho by ADP-ribosylating asparagine 41, which depolymerizes the actin cytoskeleton. C3 thus represents a major family of the bacterial toxins that transfer the ADP-ribose moiety of NAD to specific amino acids in acceptor proteins to modify key biological activities in eukaryotic cells, including protein synthesis, differentiation, transformation, and intracellular signaling. The 1.7 A resolution C3 exoenzyme structure establishes the conserved features of the core NAD-binding beta-sandwich fold with other ADP-ribosylating toxins despite little sequence conservation. Importantly, the central core of the C3 exoenzyme structure is distinguished by the absence of an active site loop observed in many other ADP-ribosylating toxins. Unlike the ADP-ribosylating toxins that possess the active site loop near the central core, the C3 exoenzyme replaces the active site loop with an alpha-helix, alpha3. Moreover, structural and sequence similarities with the catalytic domain of vegetative insecticidal protein 2 (VIP2), an actin ADP-ribosyltransferase, unexpectedly implicates two adjacent, protruding turns, which join beta5 and beta6 of the toxin core fold, as a novel recognition specificity motif for this newly defined toxin family. Turn 1 evidently positions the solvent-exposed, aromatic side-chain of Phe209 to interact with the hydrophobic region of Rho adjacent to its GTP-binding site. Turn 2 evidently both places the Gln212 side-chain for hydrogen bonding to recognize Rho Asn41 for nucleophilic attack on the anomeric carbon of NAD ribose and holds the key Glu214 catalytic side-chain in the adjacent catalytic pocket. This proposed bipartite ADP-ribosylating toxin turn-turn (ARTT) motif places the VIP2 and C3 toxin classes into a single ARTT family characterized by analogous target protein recognition via turn 1 aromatic and turn 2 hydrogen-bonding side-chain moieties. Turn 2 centrally anchors

  12. Characterizing Structural Stability of Amyloid Motif Fibrils Mediated by Water Molecules.

    PubMed

    Choi, Hyunsung; Chang, Hyun Joon; Lee, Myeongsang; Na, Sungsoo

    2017-02-04

    In biological systems, structural confinements of amyloid fibrils can be mediated by the role of water molecules. However, the underlying effect of the dynamic behavior of water molecules on structural stabilities of amyloid fibrils is still unclear. By performing molecular dynamics simulations, we investigate the dynamic features and the effect of interior water molecules on conformations and mechanical characteristics of various amyloid fibrils. We find that a specific mechanism induced by the dynamic properties of interior water molecules can affect diffusion of water molecules inside amyloid fibrils, inducing their different structural stabilities. The conformation of amyloid fibrils induced by interior water molecules show the fibrils' different mechanical features. We elucidate the role of confined and movable interior water molecules in structural stabilities of various amyloid fibrils. Our results offer insights not only in further understanding of mechanical features of amyloids as mediated by water molecules, but also in the fine-tuning of the functional abilities of amyloid fibrils for applications.

  13. Joint Estimation of Multiple Precision Matrices with Common Structures

    PubMed Central

    Lee, Wonyul; Liu, Yufeng

    2015-01-01

    Estimation of inverse covariance matrices, known as precision matrices, is important in various areas of statistical analysis. In this article, we consider estimation of multiple precision matrices sharing some common structures. In this setting, estimating each precision matrix separately can be suboptimal as it ignores potential common structures. This article proposes a new approach to parameterize each precision matrix as a sum of common and unique components and estimate multiple precision matrices in a constrained l1 minimization framework. We establish both estimation and selection consistency of the proposed estimator in the high dimensional setting. The proposed estimator achieves a faster convergence rate for the common structure in certain cases. Our numerical examples demonstrate that our new estimator can perform better than several existing methods in terms of the entropy loss and Frobenius loss. An application to a glioblastoma cancer data set reveals some interesting gene networks across multiple cancer subtypes. PMID:26568704

  14. Structure of the GAF domain, a ubiquitous signaling motif and a new class of cyclic GMP receptor

    PubMed Central

    Ho, Yew-Seng J.; Burden, Lisa M.; Hurley, James H.

    2000-01-01

    GAF domains are ubiquitous motifs present in cyclic GMP (cGMP)-regulated cyclic nucleotide phosphodiesterases, certain adenylyl cyclases, the bacterial transcription factor FhlA, and hundreds of other signaling and sensory proteins from all three kingdoms of life. The crystal structure of the Saccharomyces cerevisiae YKG9 protein was determined at 1.9 Å resolution. The structure revealed a fold that resembles the PAS domain, another ubiquitous signaling and sensory transducer. YKG9 does not bind cGMP, but the isolated first GAF domain of phosphodiesterase 5 binds with Kd = 650 nM. The cGMP binding site of the phosphodiesterase GAF domain was identified by homology modeling and site-directed mutagenesis, and consists of conserved Arg, Asn, Lys and Asp residues. The structural and binding studies taken together show that the cGMP binding GAF domains form a new class of cyclic nucleotide receptors distinct from the regulatory domains of cyclic nucleotide-regulated protein kinases and ion channels. PMID:11032796

  15. Structure for common access and support of fuel cell stacks

    DOEpatents

    Walsh, Michael M.

    2000-01-01

    A structure provides common support and access to multiple fuel cells externally mounted thereto. The structure has openings leading to passages defined therein for providing the access. Various other fuel cell power system components are connected at the openings, such as reactant and coolant sources.

  16. On squaring triangles – Structural motifs in Cu–In–Sb compounds

    SciTech Connect

    Müller, C.J. Lidin, S.

    2015-11-15

    Two new ternary Cu–In–Sb compounds Cu{sub 7}In{sub 2.5}Sb{sub 0.5} and Cu{sub 2}In{sub 0.75}Sb{sub 0.25} are presented. Both compounds are Ni{sub 2}In type superstructures with vacancies in the pseudohexagonal network. Additionally, the pseudocubic nature of the compounds and Ni{sub 2}In type (super)structures, in general, is discussed. Remarkably, a large number of pseudo-five-fold and pseudo-three-fold axes contribute to generate a pseudocubic symmetry in the crystal structure that is reflected in pseudocubic axial ratios in Ni{sub 2}In type superstructures. We find that they belong to the family of tetrahedrally close packed structures which implies that pseudocubic axial relationships simply are to be expected. - Graphical abstract: Evolution of pseudocubic clusters in Sb-doped Cu{sub 7}In{sub 3} and the Cu–In–Sb 2:1 phase. - Highlights: • Two new ternary compounds Cu{sub 7}In{sub 2.5}Sb{sub 0.5} and Cu{sub 2}In{sub 0.75}Sn{sub 0.25}. • First ternary Ni{sub 2}In superstructures with vacancies in the pseudohexagonal network. • Pseudocubic clusters in the pseudohexagonal structures. • Pseudocubic c/a ratios due to the relation to tetrahedrally close packed structures.

  17. Combined structural, biochemical and cellular evidence demonstrates that both FGDF motifs in alphavirus nsP3 are required for efficient replication

    PubMed Central

    Schulte, Tim; Liu, Lifeng; Panas, Marc D.; Thaa, Bastian; Dickson, Nicole; Götte, Benjamin; Achour, Adnane

    2016-01-01

    Recent findings have highlighted the role of the Old World alphavirus non-structural protein 3 (nsP3) as a host defence modulator that functions by disrupting stress granules, subcellular phase-dense RNA/protein structures formed upon environmental stress. This disruption mechanism was largely explained through nsP3-mediated recruitment of the host G3BP protein via two tandem FGDF motifs. Here, we present the 1.9 Å resolution crystal structure of the NTF2-like domain of G3BP-1 in complex with a 25-residue peptide derived from Semliki Forest virus nsP3 (nsP3-25). The structure reveals a poly-complex of G3BP-1 dimers interconnected through the FGDF motifs in nsP3-25. Although in vitro and in vivo binding studies revealed a hierarchical interaction of the two FGDF motifs with G3BP-1, viral growth curves clearly demonstrated that two intact FGDF motifs are required for efficient viral replication. Chikungunya virus nsP3 also binds G3BP dimers via a hierarchical interaction, which was found to be critical for viral replication. These results highlight a conserved molecular mechanism in host cell modulation. PMID:27383630

  18. Structural complexity of Dengue virus untranslated regions: cis-acting RNA motifs and pseudoknot interactions modulating functionality of the viral genome

    PubMed Central

    Sztuba-Solinska, Joanna; Teramoto, Tadahisa; Rausch, Jason W.; Shapiro, Bruce A.; Padmanabhan, Radhakrishnan; Le Grice, Stuart F. J.

    2013-01-01

    The Dengue virus (DENV) genome contains multiple cis-acting elements required for translation and replication. Previous studies indicated that a 719-nt subgenomic minigenome (DENV-MINI) is an efficient template for translation and (−) strand RNA synthesis in vitro. We performed a detailed structural analysis of DENV-MINI RNA, combining chemical acylation techniques, Pb2+ ion-induced hydrolysis and site-directed mutagenesis. Our results highlight protein-independent 5′–3′ terminal interactions involving hybridization between recognized cis-acting motifs. Probing analyses identified tandem dumbbell structures (DBs) within the 3′ terminus spaced by single-stranded regions, internal loops and hairpins with embedded GNRA-like motifs. Analysis of conserved motifs and top loops (TLs) of these dumbbells, and their proposed interactions with downstream pseudoknot (PK) regions, predicted an H-type pseudoknot involving TL1 of the 5′ DB and the complementary region, PK2. As disrupting the TL1/PK2 interaction, via ‘flipping’ mutations of PK2, previously attenuated DENV replication, this pseudoknot may participate in regulation of RNA synthesis. Computer modeling implied that this motif might function as autonomous structural/regulatory element. In addition, our studies targeting elements of the 3′ DB and its complementary region PK1 indicated that communication between 5′–3′ terminal regions strongly depends on structure and sequence composition of the 5′ cyclization region. PMID:23531545

  19. Combined structural, biochemical and cellular evidence demonstrates that both FGDF motifs in alphavirus nsP3 are required for efficient replication.

    PubMed

    Schulte, Tim; Liu, Lifeng; Panas, Marc D; Thaa, Bastian; Dickson, Nicole; Götte, Benjamin; Achour, Adnane; McInerney, Gerald M

    2016-07-01

    Recent findings have highlighted the role of the Old World alphavirus non-structural protein 3 (nsP3) as a host defence modulator that functions by disrupting stress granules, subcellular phase-dense RNA/protein structures formed upon environmental stress. This disruption mechanism was largely explained through nsP3-mediated recruitment of the host G3BP protein via two tandem FGDF motifs. Here, we present the 1.9 Å resolution crystal structure of the NTF2-like domain of G3BP-1 in complex with a 25-residue peptide derived from Semliki Forest virus nsP3 (nsP3-25). The structure reveals a poly-complex of G3BP-1 dimers interconnected through the FGDF motifs in nsP3-25. Although in vitro and in vivo binding studies revealed a hierarchical interaction of the two FGDF motifs with G3BP-1, viral growth curves clearly demonstrated that two intact FGDF motifs are required for efficient viral replication. Chikungunya virus nsP3 also binds G3BP dimers via a hierarchical interaction, which was found to be critical for viral replication. These results highlight a conserved molecular mechanism in host cell modulation.

  20. Laser spectroscopic and theoretical studies of the structures and encapsulation motifs of functional molecules

    SciTech Connect

    Ebata, Takayuki; Kusaka, Ryoji; Xantheas, Sotiris S.

    2015-01-22

    Extensive laser spectroscopic and theoretical studies have been recently carried out with the aim to reveal the structure and dynamics of encapsulation complexes in the gas phase. The characteristics of the encapsulation complexes are governed by the fact that (i) most of the host molecules are flexible and (ii) the complexes form high dimensional structures by using weak non-covalent interactions. These characteristics result in the possibility of the coexistence of many conformers in close energetic proximity. The combination of supersonic jet/laser spectroscopy and high level quantum chemical calculations is essential in tackling these challenging problems. In this report we describe our recent studies on the structures and dynamics of the encapsulation complexes formed by calix[4]arene (C4A), dibenzo-18-crown-6-ether (DB18C6), and benzo-18-crown-6-ether (B18C6) 'hosts' interacting with N{sub 2}, acetylene, water, and ammonia 'guest' molecules. The gaseous host-guest complexes are generated under jet-cooled conditions. We apply various laser spectroscopic methods to obtain the conformer- and isomer-specified electronic and IR spectra. The experimental results are complemented with quantum chemical calculations ranging from density functional theory to high level first principles calculations at the MP2 and CCSD(T) levels of theory. We discuss the possible conformations of the bare host molecules, the structural changes they undergo upon complexation, and the key interactions that are responsible in stabilizing the specific complexes.

  1. Laser Spectroscopic and Theoretical Studies of the Structures and Encapsulation Motifs of Functional Molecules

    SciTech Connect

    Ebata, Takayuki; Kusaka, Ryoji; Xantheas, Sotiris S.

    2015-02-01

    Extensive laser spectroscopic and theoretical studies have been recently carried out with the aim to reveal the structure and dynamics of encapsulation complexes in the gas phase. The characteristics of the encapsulation complexes are governed by the fact that (i) most of the host molecules are flexible and (ii) the complexes form high dimensional structures by using weak non-covalent interactions. These characteristics result in the possibility of the coexistence of many conformers in close energetic proximity. The combination of supersonic jet/laser spectroscopy and high level quantum chemical calculations is essential in tackling these challenging problems. In this report we describe our recent studies on the structures and dynamics of the encapsulation complexes formed by calix[4]arene (C4A), dibenzo-18-crown-6-ether (DB18C6), and benzo-18-crown-6-ether (B18C6) "hosts" interacting with N2, acetylene, water, and ammonia "guest" molecules. The gaseous host-guest complexes are generated under jet-cooled conditions. We apply various laser spectroscopic methods to obtain the conformer- and isomer-specified electronic and IR spectra. The experimental results are complemented with quantum chemical calculations ranging from density functional theory to high level first principles calculations at the MP2 and CCSD(T) levels of theory. We discuss the possible conformations of the bare host molecules, the structural changes they undergo upon complexation, and the key interactions that are responsible in stabilizing the specific complexes

  2. Selective Targeting of G-Quadruplex Structures by a Benzothiazole-Based Binding Motif.

    PubMed

    Buchholz, Ina; Karg, Beatrice; Dickerhoff, Jonathan; Sievers-Engler, Adrian; Lämmerhofer, Michael; Weisz, Klaus

    2017-03-09

    A benzothiazole derivative was identified as potent ligand for DNA G-quadruplex structures. Fluorescence titrations revealed selective binding to quadruplexes of different topologies including parallel, antiparallel and (3+1) hybrid structures. The parallel c-MYC sequence was found to constitute the preferred target with dissociation constants in the micromolar range. Binding of the benzothiazole-based ligand to c-MYC was structurally and thermodynamically characterized in detail by employing a comprehensive set of spectroscopic and calorimetric techniques. Job plot analyses and mass spectral data indicate non-cooperative ligand binding to form 1:1 and 2:1 complex stoichiometries. Whereas stacking interactions are suggested by optical methods, NMR chemical shift perturbations also indicate significant rearrangements of both 5'- and 3'-flanking sequences upon ligand binding. Additional isothermal calorimetry studies yield a thermodynamic profile of the ligand-quadruplex association and reveal enthalpic contributions to be the major driving force for binding. The structural and thermodynamic information obtained in the present work provides the basis for the rational development of benzothiazole derivatives as promising quadruplex binding agents.

  3. Structural motif of polyglutamine amyloid fibrils discerned with mixed-isotope infrared spectroscopy

    PubMed Central

    Buchanan, Lauren E.; Carr, Joshua K.; Fluitt, Aaron M.; Hoganson, Andrew J.; Moran, Sean D.; de Pablo, Juan J.; Skinner, James L.; Zanni, Martin T.

    2014-01-01

    Polyglutamine (polyQ) sequences are found in a variety of proteins, and mutational expansion of the polyQ tract is associated with many neurodegenerative diseases. We study the amyloid fibril structure and aggregation kinetics of K2Q24K2W, a model polyQ sequence. Two structures have been proposed for amyloid fibrils formed by polyQ peptides. By forming fibrils composed of both 12C and 13C monomers, made possible by protein expression in Escherichia coli, we can restrict vibrational delocalization to measure 2D IR spectra of individual monomers within the fibrils. The spectra are consistent with a β-turn structure in which each monomer forms an antiparallel hairpin and donates two strands to a single β-sheet. Calculated spectra from atomistic molecular-dynamics simulations of the two proposed structures confirm the assignment. No spectroscopically distinct intermediates are observed in rapid-scan 2D IR kinetics measurements, suggesting that aggregation is highly cooperative. Although 2D IR spectroscopy has advantages over linear techniques, the isotope-mixing strategy will also be useful with standard Fourier transform IR spectroscopy. PMID:24550484

  4. A colorimetric strategy based on a water-soluble conjugated polymer for sensing pH-driven conformational conversion of DNA i-motif structure.

    PubMed

    Wang, Lihua; Liu, Xingfen; Yang, Qing; Fan, Quli; Song, Shiping; Fan, Chunhai; Huang, Wei

    2010-03-15

    Using a water-soluble conjugated polymer (CP) as a sensing probe, we developed a rapid colorimetric detection strategy for pH-driven conformational conversion of DNA i-motif structure. Two sensing configurations were designed: one used CP only to detect the conversion between i-motif and random-coiled state of a C-rich single-strand DNA, the other used CP and a complementary single-strand DNA to investigate the conversion of duplex to i-motif equilibrium. All the conversions would lead to color change observed directly with naked eyes within a few minutes. The limitation of detection (LOD) is as low as 40 nM. More importantly, reversible conformational conversions by adjusting the pH of the system could also be detected.

  5. Crystal structure and MD simulation of mouse EndoV reveal wedge motif plasticity in this inosine-specific endonuclease

    NASA Astrophysics Data System (ADS)

    Nawaz, Meh Sameen; Vik, Erik Sebastian; Ronander, Mia Elise; Solvoll, Anne Marthe; Blicher, Pernille; Bjørås, Magnar; Alseth, Ingrun; Dalhus, Bjørn

    2016-04-01

    Endonuclease V (EndoV) is an enzyme with specificity for deaminated adenosine (inosine) in nucleic acids. EndoV from Escherichia coli (EcEndoV) acts both on inosines in DNA and RNA, whereas the human homolog cleaves only at inosines in RNA. Inosines in DNA are mutagenic and the role of EndoV in DNA repair is well established. In contrast, the biological function of EndoV in RNA processing is largely unexplored. Here we have characterized a second mammalian EndoV homolog, mouse EndoV (mEndoV), and show that mEndoV shares the same RNA selectivity as human EndoV (hEndoV). Mouse EndoV cleaves the same inosine-containing substrates as hEndoV, but with reduced efficiencies. The crystal structure of mEndoV reveals a conformation different from the hEndoV and prokaryotic EndoV structures, particularly for the conserved tyrosine in the wedge motif, suggesting that this strand separating element has some flexibility. Molecular dynamics simulations of mouse and human EndoV reveal alternative conformations for the invariant tyrosine. The configuration of the active site, on the other hand, is very similar between the prokaryotic and mammalian versions of EndoV.

  6. Structures and Encapsulation Motifs of Functional Molecules Probed by Laser Spectroscopic and Theoretical Methods

    PubMed Central

    Kusaka, Ryoji; Inokuchi, Yoshiya; Xantheas, Sotiris S.; Ebata, Takayuki

    2010-01-01

    We report laser spectroscopic and computational studies of host/guest hydration interactions between functional molecules (hosts) and water (guest) in supersonic jets. The examined hosts include dibenzo-18-crown-6-ether (DB18C6), benzo-18-crown-6-ether (B18C6) and calix[4]arene (C4A). The gaseous complexes between the functional molecular hosts and water are generated under jet-cooled conditions. Various laser spectroscopic methods are applied for these species: the electronic spectra are observed by laser-induced fluorescence (LIF), mass-selected resonance enhanced multiphoton ionization (REMPI) and ultraviolet-ultraviolet hole-burning (UV-UV HB) spectroscopy, whereas the vibrational spectra for each individual species are observed by infrared-ultraviolet double resonance (IR-UV DR) spectroscopy. The obained results are analyzed by first principles electronic structure calculations. We discuss the conformations of the host molecules, the structures of the complexes, and key interactions forming the specific complexes. PMID:22319310

  7. Structural motifs in (t-butoxy) zirconium phosphinates, arsinates, and phosphates.

    PubMed

    Kumara Swamy, K C; Veith, Michael; Huch, Volker; Mathur, Sanjay

    2003-09-22

    Reaction of zirconium tetrakis(tert-butoxide) (1) with dicylohexylphosphinic acid in toluene leads to the dinuclear compound [Zr(mu,mu'-O(2)P(cycl-C(6)H(11))(2))(O-t-Bu)(3)](2) (2) in which the zirconium is pentacoordinated. An analogous reaction using diphenylphosphinic acid in tetrahydrofuran also leads to a dinuclear complex [Zr(mu,mu'-O(2)PPh(2))(THF)((O-t-Bu)(3)](2).C(6)H(5)CH(3) (3.C(6)H(5)CH(3)), in which zirconium is hexacoordinated. A novel exchange of tert-butoxy and phenoxy groups occurs when 1 is treated with diphenyl phosphate [(PhO)(2)PO(2)H] leading to the isolation of the exchange product [Zr(mu,mu'-O(2)P(O-t-Bu)(OPh))(mu-OPh)(O-t-Bu)(2)](2) (4). In contrast to the above, trinuclear zirconium compounds Zr(3(mu,mu'-O(2)AsMe(2))(2)(mu2,mu'-O(2)AsMe(2))(O-t-Bu)(7)(mu-O-t-Bu)(2) (5) and Zr(3(mu,mu'-O(2)P(O-t-Bu)(2))(5)(O-t-Bu)(7).(1)/(2)C(6)H(5)CH(3) (6.(1)/(2)C(6)H(5)CH(3)) have been isolated from the reaction of 1 with cacodylic acid and di-tert-butyl phosphate, respectively. The X-ray structures of 2, 3, 5, and 6 have been determined; although the X-ray structural analysis of 4 could not be satisfactorily finished, it reveals the disposition of the substituents. The solution state NMR data suggest that these compounds undergo structural changes in solution. Possible relationships among the various structures are discussed.

  8. Conserved structural motifs in the central pair complex of eukaryotic flagella.

    PubMed

    Carbajal-González, Blanca I; Heuser, Thomas; Fu, Xiaofeng; Lin, Jianfeng; Smith, Brandon W; Mitchell, David R; Nicastro, Daniela

    2013-02-01

    Cilia and flagella are conserved hair-like appendages of eukaryotic cells that function as sensing and motility generating organelles. Motility is driven by thousands of axonemal dyneins that require precise regulation. One essential motility regulator is the central pair complex (CPC) and many CPC defects cause paralysis of cilia/flagella. Several human diseases, such as immotile cilia syndrome, show CPC abnormalities, but little is known about the detailed three-dimensional (3D) structure and function of the CPC. The CPC is located in the center of typical [9+2] cilia/flagella and is composed of two singlet microtubules (MTs), each with a set of associated projections that extend toward the surrounding nine doublet MTs. Using cryo-electron tomography coupled with subtomogram averaging, we visualized and compared the 3D structures of the CPC in both the green alga Chlamydomonas and the sea urchin Strongylocentrotus at the highest resolution published to date. Despite the evolutionary distance between these species, their CPCs exhibit remarkable structural conservation. We identified several new projections, including those that form the elusive sheath, and show that the bridge has a more complex architecture than previously thought. Organism-specific differences include the presence of MT inner proteins in Chlamydomonas, but not Strongylocentrotus, and different overall outlines of the highly connected projection network, which forms a round-shaped cylinder in algae, but is more oval in sea urchin. These differences could be adaptations to the mechanical requirements of the rotating CPC in Chlamydomonas, compared to the Strongylocentrotus CPC which has a fixed orientation.

  9. Conserved Intramolecular Interactions Maintain Myosin Interacting-Heads Motifs Explaining Tarantula Muscle Super-Relaxed State Structural Basis.

    PubMed

    Alamo, Lorenzo; Qi, Dan; Wriggers, Willy; Pinto, Antonio; Zhu, Jingui; Bilbao, Aivett; Gillilan, Richard E; Hu, Songnian; Padrón, Raúl

    2016-03-27

    Tarantula striated muscle is an outstanding system for understanding the molecular organization of myosin filaments. Three-dimensional reconstruction based on cryo-electron microscopy images and single-particle image processing revealed that, in a relaxed state, myosin molecules undergo intramolecular head-head interactions, explaining why head activity switches off. The filament model obtained by rigidly docking a chicken smooth muscle myosin structure to the reconstruction was improved by flexibly fitting an atomic model built by mixing structures from different species to a tilt-corrected 2-nm three-dimensional map of frozen-hydrated tarantula thick filament. We used heavy and light chain sequences from tarantula myosin to build a single-species homology model of two heavy meromyosin interacting-heads motifs (IHMs). The flexibly fitted model includes previously missing loops and shows five intramolecular and five intermolecular interactions that keep the IHM in a compact off structure, forming four helical tracks of IHMs around the backbone. The residues involved in these interactions are oppositely charged, and their sequence conservation suggests that IHM is present across animal species. The new model, PDB 3JBH, explains the structural origin of the ATP turnover rates detected in relaxed tarantula muscle by ascribing the very slow rate to docked unphosphorylated heads, the slow rate to phosphorylated docked heads, and the fast rate to phosphorylated undocked heads. The conservation of intramolecular interactions across animal species and the presence of IHM in bilaterians suggest that a super-relaxed state should be maintained, as it plays a role in saving ATP in skeletal, cardiac, and smooth muscles.

  10. Potent antimicrobial agents against azole-resistant fungi based on pyridinohydrazide and hydrazomethylpyridine structural motifs.

    PubMed

    Backes, Gregory L; Jursic, Branko S; Neumann, Donna M

    2015-07-01

    Schiff base derivatives have recently been shown to possess antimicrobial activity, and these derivatives include a limited number of salicylaldehyde hydrazones. To further explore this structure-activity relationship between salicylaldehyde hydrazones and antifungal activity, we previously synthesized and analyzed a large series of salicylaldehyde and formylpyridinetrione hydrazones for their ability to inhibit fungal growth of both azole-susceptible and azole-resistant species of Candida. While many of these analogs showed excellent growth inhibition with low mammalian cell toxicity, their activity did not extend to azole-resistant species of Candida. To further dissect the structural features necessary to inhibit azole-resistant fungal species, we synthesized a new class of modified salicylaldehyde derivatives and subsequently identified a series of modified pyridine-based hydrazones that had potent fungicidal antifungal activity against multiple Candida spp. Here we would like to present our synthetic procedures as well as the results from fungal growth inhibition assays, mammalian cell toxicity assays, time-kill assays and synergy studies of these novel pyridine-based hydrazones on both azole-susceptible and azole-resistant fungal species.

  11. Crystal structure of a new hybrid compound based on an iodido-plumbate(II) anionic motif.

    PubMed

    Mokhnache, Oualid; Boughzala, Habib

    2016-01-01

    Crystals of the one-dimensional organic-inorganic lead iodide-based compound catena-poly[bis-(piperazine-1,4-diium) [[tetra-iodido-plumbate(II)]-μ-iodido] iodide monohydrate], (C4N2H12)2[PbI5]I·H2O, were obtained by slow evaporation at room temperature of a solution containing lead iodide and piperazine in a 1:2 molar ratio. Inorganic lead iodide chains, organic (C4N2H12)(2+) cations, water mol-ecules of crystallization and isolated I(-) anions are connected through N-H⋯·I, N-H⋯OW and OW-H⋯I hydrogen-bond inter-actions. Zigzag chains of corner-sharing [PbI6](4-) octa-hedra with composition [PbI4/1I2/2](3-) running parallel to the a axis are present in the structure packing.

  12. Unusual conformation of the SxN motif in the crystal structure of penicillin-binding protein A from Mycobacterium tuberculosis.

    SciTech Connect

    Fedarovich, Alena; Nicholas, Robert A.; Davies, Christopher

    2010-07-19

    PBPA from Mycobacterium tuberculosis is a class B-like penicillin-binding protein (PBP) that is not essential for cell growth in M. tuberculosis, but is important for proper cell division in Mycobacterium smegmatis. We have determined the crystal structure of PBPA at 2.05 {angstrom} resolution, the first published structure of a PBP from this important pathogen. Compared to other PBPs, PBPA has a relatively small N-terminal domain, and conservation of a cluster of charged residues within this domain suggests that PBPA is more related to class B PBPs than previously inferred from sequence analysis. The C-terminal domain is a typical transpeptidase fold and contains the three conserved active-site motifs characterisitic of penicillin-interacting enzymes. While the arrangement of the SxxK and KTG motifs is similar to that observed in other PBPs, the SxN motif is markedly displaced away from the active site, such that its serine (Ser281) is not involved in hydrogen bonding with residues of the other two motifs. A disulfide bridge between Cys282 (the 'x' of the SxN motif) and Cys266, which resides on an adjacent loop, may be responsible for this unusual conformation. Another interesting feature of the structure is a relatively long connection between {beta}5 and {alpha}11, which restricts the space available in the active site of PBPA and suggests that conformational changes would be required to accommodate peptide substrate or {beta}-lactam antibiotics during acylation. Finally, the structure shows that one of the two threonines postulated to be targets for phosphorylation is inaccessible (Thr362), whereas the other (Thr437) is well placed on a surface loop near the active site.

  13. Structure of GrlR and the Implication of its EDED Motif in Mediating the Regulation of Type III Secretion System in EHEC

    SciTech Connect

    Jobichen,C.; Li, M.; Yerushalmi, G.; Tan, Y.; Mok, Y.; Rosenshine, I.; Leung, K.; Sivaraman, J.

    2007-01-01

    Enterohemorrhagic Escherichia coli (EHEC) is a common cause of severe hemorrhagic colitis. EHEC's virulence is dependent upon a type III secretion system (TTSS) encoded by 41 genes. These genes are organized in several operons clustered in the locus of enterocyte effacement. Most of the locus of enterocyte effacement genes, including grlA and grlR, are positively regulated by Ler, and Ler expression is positively and negatively modulated by GrlA and GrlR, respectively. However, the molecular basis for the GrlA and GrlR activity is still elusive. We have determined the crystal structure of GrlR at 1.9 Angstroms resolution. It consists of a typical {beta}-barrel fold with eight {beta}-strands containing an internal hydrophobic cavity and a plug-like loop on one side of the barrel. Strong hydrophobic interactions between the two {beta}-barrels maintain the dimeric architecture of GrlR. Furthermore, a unique surface-exposed EDED (Glu-Asp-Glu-Asp) motif is identified to be critical for GrlA-GrlR interaction and for the repressive activity of GrlR. This study contributes a novel molecular insight into the mechanism of GrlR function.

  14. Structural Analysis of a Repetitive Protein Sequence Motif in Strepsirrhine Primate Amelogenin

    PubMed Central

    Bromley, Keith M.; Hacia, Joseph G.; Bromage, Timothy G.; Snead, Malcolm L.; Moradian-Oldak, Janet; Paine, Michael L.

    2011-01-01

    Strepsirrhines are members of a primate suborder that has a distinctive set of features associated with the development of the dentition. Amelogenin (AMEL), the better known of the enamel matrix proteins, forms 90% of the secreted organic matrix during amelogenesis. Although AMEL has been sequenced in numerous mammalian lineages, the only reported strepsirrhine AMEL sequences are those of the ring-tailed lemur and galago, which contain a set of additional proline-rich tandem repeats absent in all other primates species analyzed to date, but present in some non-primate mammals. Here, we first determined that these repeats are present in AMEL from three additional lemur species and thus are likely to be widespread throughout this group. To evaluate the functional relevance of these repeats in strepsirrhines, we engineered a mutated murine amelogenin sequence containing a similar proline-rich sequence to that of Lemur catta. In the monomeric form, the MQP insertions had no influence on the secondary structure or refolding properties, whereas in the assembled form, the insertions increased the hydrodynamic radii. We speculate that increased AMEL nanosphere size may influence enamel formation in strepsirrhine primates. PMID:21437261

  15. Triamidoamine thorium-arsenic complexes with parent arsenide, arsinidiide and arsenido structural motifs

    PubMed Central

    Wildman, Elizabeth P.; Balázs, Gábor; Wooles, Ashley J.; Scheer, Manfred; Liddle, Stephen T.

    2017-01-01

    Despite a major expansion of uranium–ligand multiple bond chemistry in recent years, analogous complexes involving other actinides (An) remain scarce. For thorium, under ambient conditions only a few multiple bonds to carbon, nitrogen, phosphorus and chalcogenides are reported, and none to arsenic are known; indeed only two complexes with thorium–arsenic single bonds have been structurally authenticated, reflecting the challenges of stabilizing polar linkages at the large thorium ion. Here, we report thorium parent–arsenide (ThAsH2), –arsinidiides (ThAs(H)K and ThAs(H)Th) and arsenido (ThAsTh) linkages stabilized by a bulky triamidoamine ligand. The ThAs(H)K and ThAsTh linkages exhibit polarized-covalent thorium–arsenic multiple bonding interactions, hitherto restricted to cryogenic matrix isolation experiments, and the AnAs(H)An and AnAsAn linkages reported here have no precedent in f-block chemistry. 7s, 6d and 5f orbital contributions to the Th–As bonds are suggested by quantum chemical calculations, and their compositions unexpectedly appear to be tensioned differently compared to phosphorus congeners. PMID:28276437

  16. Triamidoamine thorium-arsenic complexes with parent arsenide, arsinidiide and arsenido structural motifs

    NASA Astrophysics Data System (ADS)

    Wildman, Elizabeth P.; Balázs, Gábor; Wooles, Ashley J.; Scheer, Manfred; Liddle, Stephen T.

    2017-03-01

    Despite a major expansion of uranium-ligand multiple bond chemistry in recent years, analogous complexes involving other actinides (An) remain scarce. For thorium, under ambient conditions only a few multiple bonds to carbon, nitrogen, phosphorus and chalcogenides are reported, and none to arsenic are known; indeed only two complexes with thorium-arsenic single bonds have been structurally authenticated, reflecting the challenges of stabilizing polar linkages at the large thorium ion. Here, we report thorium parent-arsenide (ThAsH2), -arsinidiides (ThAs(H)K and ThAs(H)Th) and arsenido (ThAsTh) linkages stabilized by a bulky triamidoamine ligand. The ThAs(H)K and ThAsTh linkages exhibit polarized-covalent thorium-arsenic multiple bonding interactions, hitherto restricted to cryogenic matrix isolation experiments, and the AnAs(H)An and AnAsAn linkages reported here have no precedent in f-block chemistry. 7s, 6d and 5f orbital contributions to the Th-As bonds are suggested by quantum chemical calculations, and their compositions unexpectedly appear to be tensioned differently compared to phosphorus congeners.

  17. Structural Analysis of a β-Helical Protein Motif Stabilized by Targeted Replacements with Conformationally Constrained Amino Acids

    PubMed Central

    Ballano, Gema; Zanuy, David; Jiménez, Ana I.; Cativiela, Carlos; Nussinov, Ruth; Alemán, Carlos

    2009-01-01

    Here we study conformational stabilization induced in a β-helical nanostructure by position-specific mutations. The nanostructure is constructed through the self-assembly of the β-helical building block excised from E. coli galactoside acetyltransferase (PDB code 1krr, chain A; residues 131-165). The mutations involve substitutions by cyclic, conformationally constrained amino acids. Specifically, a complete structural analysis of the Pro-Xaa-Val sequence [with Xaa being Gly, Ac3c (1-aminocyclopropane-1-carboxylic acid) and Ac5c (1-aminocyclopentane-1-carboxylic acid)], corresponding to the 148-150 loop region in the wild-type (Gly) and mutated (Ac3c and Ac5c) 1krr, has been performed using Molecular Dynamics simulations and X-ray crystallography. Simulations have been performed for the wild-type and mutants of three different systems, namely the building block, the nanoconstruct and the isolated Pro-Xaa-Val tripeptide. Furthermore, the crystalline structures of five peptides of Pro-Xaa-Val or Xaa-Val sequences have been solved by X-ray diffraction analysis and compared with theoretical predictions. Both the theoretical and crystallographic studies indicate that the Pro-Acnc-Val sequences exhibit a high propensity to adopt turn-like conformations, and this propensity is little affected by the chemical environment. Overall, the results indicate that replacement of Gly149 by Ac3c or Ac5c significantly reduce the conformational flexibility of the target site enhancing the structural specificity of the building block and the nanoconstruct derived from the 1krr β-helical motif. PMID:18811190

  18. Ligand structural motifs can decouple glucocorticoid receptor transcriptional activation from target promoter occupancy.

    PubMed

    Blind, Raymond D; Pineda-Torra, Inés; Xu, Yong; Xu, H Eric; Garabedian, Michael J

    2012-04-20

    Glucocorticoid (GC) induction of the tyrosine aminotransferase (TAT) gene by the glucocorticoid receptor (GR) is a classic model used to investigate steroid-regulated gene expression. Classic studies analyzing GC-induction of the TAT gene demonstrated that despite having very high affinity for GR, some steroids cannot induce maximal TAT enzyme activity, but the molecular basis for this phenomenon is unknown. Here, we used RT-PCR and chromatin immunoprecipitation to determine TAT mRNA accumulation and GR recruitment to the TAT promoter (TAT-GRE) in rat hepatoma cells induced by seven GR ligands: dexamethasone (DEX), cortisol (CRT), corticosterone (CCS), 11-deoxycorticosterone (DOC), aldosterone (ALD), progesterone (PRG) and 17-hydroxyprogesterone (17P). As expected, DEX, CRT, CCS and ALD all induced both TAT mRNA and GR recruitment to the TAT-GRE, while PRG and 17P did not. However, while DOC could not induce significant TAT mRNA, it did induce robust GR occupancy of the TAT-GRE. DOC also induced recruitment of the histone acetyltransferase p300 to the TAT-GRE as efficiently as DEX. These DOC-induced effects recapitulated at another GR target gene (sulfonyltransferase 1A1), and DOC also failed to promote the multiple changes in gene expression required for glucocorticoid-dependent 3T3-L1 adipocyte differentiation. Structural simulations and protease sensitivity assays suggest that DOC and DEX induce different conformations in GR. Thus, although steroids that bind GR with high affinity can induce GR and p300 occupancy of target promoters, they may not induce a conformation of GR capable of activating transcription.

  19. Spectroscopic Signatures and Structural Motifs in Isolated and Hydrated Xanthine: a Computational Study

    NASA Astrophysics Data System (ADS)

    Singh, Vipin Bahadur

    2016-06-01

    The conformational landscapes of xanthine and its hydrated complex have been investigated by MP2 and DFT methods. The ground state geometry optimization yield five lowest energy conformers of xanth1-(H2O)1 complex at the MP2/6-311++G(d,p) level of theory for the first time. We investigated the low-lying excited states of bare xanthine by means of coupled cluster singles and approximate doubles (CC2) and TDDFT methods and a satisfactory interpretation of the electronic absorption spectra1 is obtained. The difference between the S0-S1 transition energy due to the most stable and the second most stable stable conformation of xanthine was found to be 859 wn. One striking feature is the coexistence of the blue and red shift of the vertical excitation energy of the optically bright state S1 of xanthine upon forming complex with a water at C2=O and C6=O carbonyl sites, respectively. The lowest singlet ππ* excited-state of the xanth1-(H2O)1 complex involving C2=O carbonyl are strongly blue shifted which is in agreement with the result of R2PI spectra of singly hydrated xanthine. While for the most stable and the second most stable xanth1-(H2O)1 complexes involving C6=O carbonyl, the lowest singlet ππ* excited-state is red shifted. The effect of hydration on S1 excited state due to bulk water environment was mimicked by a combination of polarizable continuum solvent model (PCM) and conductor like screening model (COSMO), which also shows a blue shift in accordance with the result of electronic absorption spectra in aqueous solution. This hypsochromic shift, is expected to be the result of the changes in the π-electron delocalization extent of molecule because of hydrogen bond formation. The optimized structure of xanthine dimer, computed the first time by MP2 and DFT methods. The binding energy of this dimer linked by double N-H…O=C hydrogen bonds was found to be 88 kj/mole at the MP2/6-311++G(d,p) level of theory. Computed IR spectra is found in remarkable agreement

  20. NMR structure of a 4 × 4 nucleotide RNA internal loop from an R2 retrotransposon: Identification of a three purine–purine sheared pair motif and comparison to MC-SYM predictions

    PubMed Central

    Lerman, Yelena V.; Kennedy, Scott D.; Shankar, Neelaabh; Parisien, Marc; Major, Francois; Turner, Douglas H.

    2011-01-01

    The NMR solution structure is reported of a duplex, 5′GUGAAGCCCGU/3′UCACAGGAGGC, containing a 4 × 4 nucleotide internal loop from an R2 retrotransposon RNA. The loop contains three sheared purine–purine pairs and reveals a structural element found in other RNAs, which we refer to as the 3RRs motif. Optical melting measurements of the thermodynamics of the duplex indicate that the internal loop is 1.6 kcal/mol more stable at 37°C than predicted. The results identify the 3RRs motif as a common structural element that can facilitate prediction of 3D structure. Known examples include internal loops having the pairings: 5′GAA/3′AGG, 5′GAG/3′AGG, 5′GAA/3′AAG, and 5′AAG/3′AGG. The structural information is compared with predictions made with the MC-Sym program. PMID:21778280

  1. Contribution of Sequence Motif, Chromatin State, and DNA Structure Features to Predictive Models of Transcription Factor Binding in Yeast.

    PubMed

    Tsai, Zing Tsung-Yeh; Shiu, Shin-Han; Tsai, Huai-Kuang

    2015-08-01

    Transcription factor (TF) binding is determined by the presence of specific sequence motifs (SM) and chromatin accessibility, where the latter is influenced by both chromatin state (CS) and DNA structure (DS) properties. Although SM, CS, and DS have been used to predict TF binding sites, a predictive model that jointly considers CS and DS has not been developed to predict either TF-specific binding or general binding properties of TFs. Using budding yeast as model, we found that machine learning classifiers trained with either CS or DS features alone perform better in predicting TF-specific binding compared to SM-based classifiers. In addition, simultaneously considering CS and DS further improves the accuracy of the TF binding predictions, indicating the highly complementary nature of these two properties. The contributions of SM, CS, and DS features to binding site predictions differ greatly between TFs, allowing TF-specific predictions and potentially reflecting different TF binding mechanisms. In addition, a "TF-agnostic" predictive model based on three DNA "intrinsic properties" (in silico predicted nucleosome occupancy, major groove geometry, and dinucleotide free energy) that can be calculated from genomic sequences alone has performance that rivals the model incorporating experiment-derived data. This intrinsic property model allows prediction of binding regions not only across TFs, but also across DNA-binding domain families with distinct structural folds. Furthermore, these predicted binding regions can help identify TF binding sites that have a significant impact on target gene expression. Because the intrinsic property model allows prediction of binding regions across DNA-binding domain families, it is TF agnostic and likely describes general binding potential of TFs. Thus, our findings suggest that it is feasible to establish a TF agnostic model for identifying functional regulatory regions in potentially any sequenced genome.

  2. Contribution of Sequence Motif, Chromatin State, and DNA Structure Features to Predictive Models of Transcription Factor Binding in Yeast

    PubMed Central

    Tsai, Zing Tsung-Yeh; Shiu, Shin-Han; Tsai, Huai-Kuang

    2015-01-01

    Transcription factor (TF) binding is determined by the presence of specific sequence motifs (SM) and chromatin accessibility, where the latter is influenced by both chromatin state (CS) and DNA structure (DS) properties. Although SM, CS, and DS have been used to predict TF binding sites, a predictive model that jointly considers CS and DS has not been developed to predict either TF-specific binding or general binding properties of TFs. Using budding yeast as model, we found that machine learning classifiers trained with either CS or DS features alone perform better in predicting TF-specific binding compared to SM-based classifiers. In addition, simultaneously considering CS and DS further improves the accuracy of the TF binding predictions, indicating the highly complementary nature of these two properties. The contributions of SM, CS, and DS features to binding site predictions differ greatly between TFs, allowing TF-specific predictions and potentially reflecting different TF binding mechanisms. In addition, a "TF-agnostic" predictive model based on three DNA “intrinsic properties” (in silico predicted nucleosome occupancy, major groove geometry, and dinucleotide free energy) that can be calculated from genomic sequences alone has performance that rivals the model incorporating experiment-derived data. This intrinsic property model allows prediction of binding regions not only across TFs, but also across DNA-binding domain families with distinct structural folds. Furthermore, these predicted binding regions can help identify TF binding sites that have a significant impact on target gene expression. Because the intrinsic property model allows prediction of binding regions across DNA-binding domain families, it is TF agnostic and likely describes general binding potential of TFs. Thus, our findings suggest that it is feasible to establish a TF agnostic model for identifying functional regulatory regions in potentially any sequenced genome. PMID:26291518

  3. Localization of proteins to the 1,2-propanediol utilization microcompartment by non-native signal sequences is mediated by a common hydrophobic motif.

    PubMed

    Jakobson, Christopher M; Kim, Edward Y; Slininger, Marilyn F; Chien, Alex; Tullman-Ercek, Danielle

    2015-10-02

    Various bacteria localize metabolic pathways to proteinaceous organelles known as bacterial microcompartments (MCPs), enabling the metabolism of carbon sources to enhance survival and pathogenicity in the gut. There is considerable interest in exploiting bacterial MCPs for metabolic engineering applications, but little is known about the interactions between MCP signal sequences and the protein shells of different MCP systems. We found that the N-terminal sequences from the ethanolamine utilization (Eut) and glycyl radical-generating protein MCPs are able to target reporter proteins to the 1,2-propanediol utilization (Pdu) MCP, and that this localization is mediated by a conserved hydrophobic residue motif. Recapitulation of this motif by the addition of a single amino acid conferred targeting function on an N-terminal sequence from the ethanol utilization MCP system that previously did not act as a Pdu signal sequence. Moreover, the Pdu-localized signal sequences competed with native Pdu targeting sequences for encapsulation in the Pdu MCP. Salmonella enterica natively possesses both the Pdu and Eut operons, and our results suggest that Eut proteins might be localized to the Pdu MCP in vivo. We further demonstrate that S. enterica LT2 retained the ability to grow on 1,2-propanediol as the sole carbon source when a Pdu enzyme was replaced with its Eut homolog. Although the relevance of this finding to the native system remains to be explored, we show that the Pdu-localized signal sequences described herein allow control over the ratio of heterologous proteins encapsulated within Pdu MCPs.

  4. Transcription factor and microRNA-regulated network motifs for cancer and signal transduction networks

    PubMed Central

    2015-01-01

    Abstract Background Molecular networks are the basis of biological processes. Such networks can be decomposed into smaller modules, also known as network motifs. These motifs show interesting dynamical behaviors, in which co-operativity effects between the motif components play a critical role in human diseases. We have developed a motif-searching algorithm, which is able to identify common motif types from the cancer networks and signal transduction networks (STNs). Some of the network motifs are interconnected which can be merged together and form more complex structures, the so-called coupled motif structures (CMS). These structures exhibit mixed dynamical behavior, which may lead biological organisms to perform specific functions. Results In this study, we integrate transcription factors (TFs), microRNAs (miRNAs), miRNA targets and network motifs information to build the cancer-related TF-miRNA-motif networks (TMMN). This allows us to examine the role of network motifs in cancer formation at different levels of regulation, i.e. transcription initiation (TF → miRNA), gene-gene interaction (CMS), and post-transcriptional regulation (miRNA → target genes). Among the cancer networks and STNs we considered, it is found that there is a substantial amount of crosstalking through motif interconnections, in particular, the crosstalk between prostate cancer network and PI3K-Akt STN. Conclusions To validate the role of network motifs in cancer formation, several examples are presented which demonstrated the effectiveness of the present approach. A web-based platform has been set up which can be accessed at: http://ppi.bioinfo.asia.edu.tw/pathway/. It is very likely that our results can supply very specific CMS missing information for certain cancer types, it is an indispensable tool for cancer biology research. PMID:25707690

  5. Prediction of common folding structures of homologous RNAs.

    PubMed Central

    Han, K; Kim, H J

    1993-01-01

    We have developed an algorithm and a computer program for simultaneously folding homologous RNA sequences. Given an alignment of M homologous sequences of length N, the program performs phylogenetic comparative analysis and predicts a common secondary structure conserved in the sequences. When the structure is not uniquely determined, it infers multiple structures which appear most plausible. This method is superior to energy minimization methods in the sense that it is not sensitive to point mutation of a sequence. It is also superior to usual phylogenetic comparative methods in that it does not require manual scrutiny for covariation or secondary structures. The most plausible 1-5 structures are produced in O(MN2 + N3) time and O(N2) space, which are the same requirements as those of widely used dynamic programs based on energy minimization for folding a single sequence. This is the first algorithm probably practical both in terms of time and space for finding secondary structures of homologous RNA sequences. The algorithm has been implemented in C on a Sun SparcStation, and has been verified by testing on tRNAs, 5S rRNAs, 16S rRNAs, TAR RNAs of human immunodeficiency virus type 1 (HIV-1), and RRE RNAs of HIV-1. We have also applied the program to cis-acting packaging sequences of HIV-1, for which no generally accepted structures yet exist, and propose potentially stable structures. Simulation of the program with random sequences with the same base composition and the same degree of similarity as the above sequences shows that structures common to homologous sequences are very unlikely to occur by chance in random sequences. PMID:7681944

  6. Structure prediction of LDLR-HNP1 complex based on docking enhanced by LDLR binding 3D motif.

    PubMed

    Esmaielbeiki, Reyhaneh; Naughton, Declan P; Nebel, Jean-Christophe

    2012-04-01

    Human antimicrobial peptides (AMPs), including defensins, have come under intense scrutiny owing to their key multiple roles as antimicrobial agents. Not only do they display direct action on microbes, but also recently they have been shown to interact with the immune system to increase antimicrobial activity. Unfortunately, since mechanisms involved in the binding of AMPs to mammalian cells are largely unknown, their potential as novel anti-infective agents cannot be exploited yet. Following the reported interaction of Human Neutrophil Peptide 1 dimer (HNP1) with a low density lipoprotein receptor (LDLR), a computational study was conducted to discover their putative mode of interaction. State-of-the-art docking software produced a set of LDLR-HNP1 complex 3D models. Creation of a 3D motif capturing atomic interactions of the LDLR binding interface allowed selection of the most plausible configurations. Eventually, only two models were in agreement with the literature. Binding energy estimations revealed that only one of them is particularly stable, but also interaction with LDLR weakens significantly bonds within the HNP1 dimer. This may be significant since it suggests a mechanism for internalisation of HNP1 in mammalian cells. In addition to a novel approach for complex structure prediction, this study proposes a 3D model of the LDLR-HNP1 complex which highlights the key residues which are involved in the interactions. The putative identification of the receptor binding mechanism should inform the future design of synthetic HNPs to afford maximum internalisation, which could lead to novel anti-infective drugs.

  7. Narcissistic Personality Disorder and the Structure of Common Mental Disorders.

    PubMed

    Eaton, Nicholas R; Rodriguez-Seijas, Craig; Krueger, Robert F; Campbell, W Keith; Grant, Bridget F; Hasin, Deborah S

    2016-09-12

    Narcissistic personality disorder (NPD) shows high rates of comorbidity with mood, anxiety, substance use, and other personality disorders. Previous bivariate comorbidity investigations have left NPD multivariate comorbidity patterns poorly understood. Structural psychopathology research suggests that two transdiagnostic factors, internalizing (with distress and fear subfactors) and externalizing, account for comorbidity among common mental disorders. NPD has rarely been evaluated within this framework, with studies producing equivocal results. We investigated how NPD related to other mental disorders in the internalizing-externalizing model using diagnoses from a nationally representative sample (N = 34,653). NPD was best conceptualized as a distress disorder. NPD variance accounted for by transdiagnostic factors was modest, suggesting its variance is largely unique in the context of other common mental disorders. Results clarify NPD multivariate comorbidity, suggest avenues for classification and clinical endeavors, and highlight the need to understand vulnerable and grandiose narcissism subtypes' comorbidity patterns and structural relations.

  8. The non-canonical hydroxylase structure of YfcM reveals a metal ion-coordination motif required for EF-P hydroxylation.

    PubMed

    Kobayashi, Kan; Katz, Assaf; Rajkovic, Andrei; Ishii, Ryohei; Branson, Owen E; Freitas, Michael A; Ishitani, Ryuichiro; Ibba, Michael; Nureki, Osamu

    2014-10-29

    EF-P is a bacterial tRNA-mimic protein, which accelerates the ribosome-catalyzed polymerization of poly-prolines. In Escherichia coli, EF-P is post-translationally modified on a conserved lysine residue. The post-translational modification is performed in a two-step reaction involving the addition of a β-lysine moiety and the subsequent hydroxylation, catalyzed by PoxA and YfcM, respectively. The β-lysine moiety was previously shown to enhance the rate of poly-proline synthesis, but the role of the hydroxylation is poorly understood. We solved the crystal structure of YfcM and performed functional analyses to determine the hydroxylation mechanism. In addition, YfcM appears to be structurally distinct from any other hydroxylase structures reported so far. The structure of YfcM is similar to that of the ribonuclease YbeY, even though they do not share sequence homology. Furthermore, YfcM has a metal ion-coordinating motif, similar to YbeY. The metal ion-coordinating motif of YfcM resembles a 2-His-1-carboxylate motif, which coordinates an Fe(II) ion and forms the catalytic site of non-heme iron enzymes. Our findings showed that the metal ion-coordinating motif of YfcM plays an essential role in the hydroxylation of the β-lysylated lysine residue of EF-P. Taken together, our results suggested the potential catalytic mechanism of hydroxylation by YfcM.

  9. Mechanisms of Zero-Lag Synchronization in Cortical Motifs

    PubMed Central

    Gollo, Leonardo L.; Mirasso, Claudio; Sporns, Olaf; Breakspear, Michael

    2014-01-01

    Zero-lag synchronization between distant cortical areas has been observed in a diversity of experimental data sets and between many different regions of the brain. Several computational mechanisms have been proposed to account for such isochronous synchronization in the presence of long conduction delays: Of these, the phenomenon of “dynamical relaying” – a mechanism that relies on a specific network motif – has proven to be the most robust with respect to parameter mismatch and system noise. Surprisingly, despite a contrary belief in the community, the common driving motif is an unreliable means of establishing zero-lag synchrony. Although dynamical relaying has been validated in empirical and computational studies, the deeper dynamical mechanisms and comparison to dynamics on other motifs is lacking. By systematically comparing synchronization on a variety of small motifs, we establish that the presence of a single reciprocally connected pair – a “resonance pair” – plays a crucial role in disambiguating those motifs that foster zero-lag synchrony in the presence of conduction delays (such as dynamical relaying) from those that do not (such as the common driving triad). Remarkably, minor structural changes to the common driving motif that incorporate a reciprocal pair recover robust zero-lag synchrony. The findings are observed in computational models of spiking neurons, populations of spiking neurons and neural mass models, and arise whether the oscillatory systems are periodic, chaotic, noise-free or driven by stochastic inputs. The influence of the resonance pair is also robust to parameter mismatch and asymmetrical time delays amongst the elements of the motif. We call this manner of facilitating zero-lag synchrony resonance-induced synchronization, outline the conditions for its occurrence, and propose that it may be a general mechanism to promote zero-lag synchrony in the brain. PMID:24763382

  10. Commonality.

    ERIC Educational Resources Information Center

    Beaton, Albert E., Jr.

    Commonality analysis is an attempt to understand the relative predictive power of the regressor variables, both individually and in combination. The squared multiple correlation is broken up into elements assigned to each individual regressor and to each possible combination of regressors. The elements have the property that the appropriate sums…

  11. Conserved structural motifs at the C-terminus of baculovirus protein IE0 are important for its functions in transactivation and supporting hr5-mediated DNA replication.

    PubMed

    Luria, Neta; Lu, Liqun; Chejanovsky, Nor

    2012-05-01

    IE0 and IE1 are transactivator proteins of the most studied baculovirus, the Autographa californica multiple nucleopolyhedrovirus (AcMNPV). IE0 is a 72.6 kDa protein identical to IE1 with the exception of its 54 N-terminal amino acid residues. To gain some insight about important structural motifs of IE0, we expressed the protein and C‑terminal mutants of it under the control of the Drosophila heat shock promoter and studied the transactivation and replication functions of the transiently expressed proteins. IE0 was able to promote replication of a plasmid bearing the hr5 origin of replication of AcMNPV in transient transfections with a battery of eight plasmids expressing the AcMNPV genes dnapol, helicase, lef-1, lef-2, lef-3, p35, ie-2 and lef-7. IE0 transactivated expression of the baculovirus 39K promoter. Both functions of replication and transactivation were lost after introduction of selected mutations at the basic domain II and helix-loop-helix conserved structural motifs in the C-terminus of the protein. These IE0 mutants were unable to translocate to the cell nucleus. Our results point out the important role of some structural conserved motifs to the proper functioning of IE0.

  12. Nuclear Magnetic Resonance Solution Structures of Lacticin Q and Aureocin A53 Reveal a Structural Motif Conserved among Leaderless Bacteriocins with Broad-Spectrum Activity.

    PubMed

    Acedo, Jeella Z; van Belkum, Marco J; Lohans, Christopher T; Towle, Kaitlyn M; Miskolzie, Mark; Vederas, John C

    2016-02-02

    Lacticin Q (LnqQ) and aureocin A53 (AucA) are leaderless bacteriocins from Lactococcus lactis QU5 and Staphylococcus aureus A53, respectively. These bacteriocins are characterized by the absence of an N-terminal leader sequence and are active against a broad range of Gram-positive bacteria. LnqQ and AucA consist of 53 and 51 amino acids, respectively, and have 47% identical sequences. In this study, their three-dimensional structures were elucidated using solution nuclear magnetic resonance and were shown to consist of four α-helices that assume a very similar compact, globular overall fold (root-mean-square deviation of 1.7 Å) with a highly cationic surface and a hydrophobic core. The structures of LnqQ and AucA resemble the shorter two-component leaderless bacteriocins, enterocins 7A and 7B, despite having low levels of sequence identity. Homology modeling revealed that the observed structural motif may be shared among leaderless bacteriocins with broad-spectrum activity against Gram-positive organisms. The elucidated structures of LnqQ and AucA also exhibit some resemblance to circular bacteriocins. Despite their similar overall fold, inhibition studies showed that LnqQ and AucA have different antimicrobial potency against the Gram-positive strains tested, suggesting that sequence disparities play a crucial role in their mechanisms of action.

  13. Syntax at hand: common syntactic structures for actions and language.

    PubMed

    Roy, Alice C; Curie, Aurore; Nazir, Tatjana; Paulignan, Yves; des Portes, Vincent; Fourneret, Pierre; Deprez, Viviane

    2013-01-01

    Evidence that the motor and the linguistic systems share common syntactic representations would open new perspectives on language evolution. Here, crossing disciplinary boundaries, we explore potential parallels between the structure of simple actions and that of sentences. First, examining Typically Developing (TD) children displacing a bottle with or without knowledge of its weight prior to movement onset, we provide kinematic evidence that the sub-phases of this displacing action (reaching + moving the bottle) manifest a structure akin to linguistic embedded dependencies. Then, using the same motor task, we reveal that children suffering from specific language impairment (SLI), whose core deficit affects syntactic embedding and dependencies, manifest specific structural motor anomalies parallel to their linguistic deficits. In contrast to TD children, SLI children performed the displacing-action as if its sub-phases were juxtaposed rather than embedded. The specificity of SLI's structural motor deficit was confirmed by testing an additional control group: Fragile-X Syndrome patients, whose language capacity, though delayed, comparatively spares embedded dependencies, displayed slower but structurally normal motor performances. By identifying the presence of structural representations and dependency computations in the motor system and by showing their selective deficit in SLI patients, these findings point to a potential motor origin for language syntax.

  14. Mass Efficiencies for Common Large-Scale Precision Space Structures

    NASA Technical Reports Server (NTRS)

    Williams, R. Brett; Agnes, Gregory S.

    2005-01-01

    This paper presents a mass-based trade study for large-scale deployable triangular trusses, where the longerons can be monocoque tubes, isogrid tubes, or coilable longeron trusses. Such structures are typically used to support heavy reflectors, solar panels, or other instruments, and are subject to thermal gradients that can vary a great deal based on orbital altitude, location in orbit, and self-shadowing. While multi layer insulation (MLI) blankets are commonly used to minimize the magnitude of these thermal disturbances, they subject the truss to a nonstructural mass penalty. This paper investigates the impact of these add-on thermal protection layers on selecting the lightest precision structure for a given loading scenario.

  15. Common genetic variants influence human subcortical brain structures.

    PubMed

    Hibar, Derrek P; Stein, Jason L; Renteria, Miguel E; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S; Armstrong, Nicola J; Bernard, Manon; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brown, Andrew A; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Olde Loohuis, Loes M; Luciano, Michelle; Macare, Christine; Mather, Karen A; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rose, Emma J; Salami, Alireza; Sämann, Philipp G; Schmaal, Lianne; Schork, Andrew J; Shin, Jean; Strike, Lachlan T; Teumer, Alexander; van Donkelaar, Marjolein M J; van Eijk, Kristel R; Walters, Raymond K; Westlye, Lars T; Whelan, Christopher D; Winkler, Anderson M; Zwiers, Marcel P; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M H; Hartberg, Cecilie B; Haukvik, Unn K; Heister, Angelien J G A M; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C M; Lopez, Lorna M; Makkinje, Remco R R; Matarin, Mar; Naber, Marlies A M; McKay, D Reese; Needham, Margaret; Nugent, Allison C; Pütz, Benno; Royle, Natalie A; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S L; van Hulzen, Kimm J E; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A; Bastin, Mark E; Brodaty, Henry; Bulayeva, Kazima B; Carless, Melanie A; Cichon, Sven; Corvin, Aiden; Curran, Joanne E; Czisch, Michael; de Zubicaray, Greig I; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Fedko, Iryna O; Ferrucci, Luigi; Foroud, Tatiana M; Fox, Peter T; Fukunaga, Masaki; Gibbs, J Raphael; Göring, Harald H H; Green, Robert C; Guelfi, Sebastian; Hansell, Narelle K; Hartman, Catharina A; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G; Heslenfeld, Dirk J; Hoekstra, Pieter J; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Liu, Xinmin; Longo, Dan L; McMahon, Katie L; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W; Mostert, Jeanette C; Mühleisen, Thomas W; Nalls, Michael A; Nichols, Thomas E; Nilsson, Lars G; Nöthen, Markus M; Ohi, Kazutaka; Olvera, Rene L; Perez-Iglesias, Rocio; Pike, G Bruce; Potkin, Steven G; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D; Rujescu, Dan; Schnell, Knut; Schofield, Peter R; Smith, Colin; Steen, Vidar M; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Valdés Hernández, Maria C; van 't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J A; van Tol, Marie-Jose; Veltman, Dick J; Wassink, Thomas H; Westman, Eric; Zielke, Ronald H; Zonderman, Alan B; Ashbrook, David G; Hager, Reinmar; Lu, Lu; McMahon, Francis J; Morris, Derek W; Williams, Robert W; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Cahn, Wiepke; Calhoun, Vince D; Cavalleri, Gianpiero L; Crespo-Facorro, Benedicto; Dale, Anders M; Davies, Gareth E; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C; Espeseth, Thomas; Gollub, Randy L; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W J H; Roffman, Joshua L; Sisodiya, Sanjay M; Smoller, Jordan W; van Bokhoven, Hans; van Haren, Neeltje E M; Völzke, Henry; Walter, Henrik; Weiner, Michael W; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A; Blangero, John; Boomsma, Dorret I; Brouwer, Rachel M; Cannon, Dara M; Cookson, Mark R; de Geus, Eco J C; Deary, Ian J; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E; Francks, Clyde; Glahn, David C; Grabe, Hans J; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E; Jönsson, Erik G; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M; Ophoff, Roel A; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S; Saykin, Andrew J; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M; Weale, Michael E; Weinberger, Daniel R; Adams, Hieab H H; Launer, Lenore J; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L; Becker, James T; Yanek, Lisa; van der Lee, Sven J; Ebling, Maritza; Fischl, Bruce; Longstreth, W T; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N; van Duijn, Cornelia M; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M Arfan; Martin, Nicholas G; Wright, Margaret J; Schumann, Gunter; Franke, Barbara; Thompson, Paul M; Medland, Sarah E

    2015-04-09

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.

  16. Common genetic variants influence human subcortical brain structures

    PubMed Central

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Olde Loohuis, Loes M.; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rose, Emma J.; Salami, Alireza; Sämann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Pütz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Göring, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Mühleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Nöthen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdés Hernández, Maria C.; van ’t Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Völzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E.; Jönsson, Erik G.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences1. Subcortical brain regions form circuits with cortical areas to coordinate movement2, learning, memory3 and motivation4, and altered circuits can lead to abnormal behaviour and disease2. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume5 and intracranial volume6. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10−33; 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability inhuman brain development, and may help to determine mechanisms of neuropsychiatric dysfunction. PMID:25607358

  17. Motif Yggdrasil: sampling sequence motifs from a tree mixture model.

    PubMed

    Andersson, Samuel A; Lagergren, Jens

    2007-06-01

    In phylogenetic foot-printing, putative regulatory elements are found in upstream regions of orthologous genes by searching for common motifs. Motifs in different upstream sequences are subject to mutations along the edges of the corresponding phylogenetic tree, consequently taking advantage of the tree in the motif search is an appealing idea. We describe the Motif Yggdrasil sampler; the first Gibbs sampler based on a general tree that uses unaligned sequences. Previous tree-based Gibbs samplers have assumed a star-shaped tree or partially aligned upstream regions. We give a probabilistic model (MY model) describing upstream sequences with regulatory elements and build a Gibbs sampler with respect to this model. The model allows toggling, i.e., the restriction of a position to a subset of nucleotides, but does not require aligned sequences nor edge lengths, which may be difficult to come by. We apply the collapsing technique to eliminate the need to sample nuisance parameters, and give a derivation of the predictive update formula. We show that the MY model improves the modeling of difficult motif instances and that the use of the tree achieves a substantial increase in nucleotide level correlation coefficient both for synthetic data and 37 bacterial lexA genes. We investigate the sensitivity to errors in the tree and show that using random trees MY sampler still has a performance similar to the original version.

  18. Structure of Rhodococcus equi virulence-associated protein B (VapB) reveals an eight-stranded antiparallel β-barrel consisting of two Greek-key motifs

    SciTech Connect

    Geerds, Christina; Wohlmann, Jens; Haas, Albert; Niemann, Hartmut H.

    2014-06-18

    The structure of VapB, a member of the Vap protein family that is involved in virulence of the bacterial pathogen R. equi, was determined by SAD phasing and reveals an eight-stranded antiparallel β-barrel similar to avidin, suggestive of a binding function. Made up of two Greek-key motifs, the topology of VapB is unusual or even unique. Members of the virulence-associated protein (Vap) family from the pathogen Rhodococcus equi regulate virulence in an unknown manner. They do not share recognizable sequence homology with any protein of known structure. VapB and VapA are normally associated with isolates from pigs and horses, respectively. To contribute to a molecular understanding of Vap function, the crystal structure of a protease-resistant VapB fragment was determined at 1.4 Å resolution. The structure was solved by SAD phasing employing the anomalous signal of one endogenous S atom and two bound Co ions with low occupancy. VapB is an eight-stranded antiparallel β-barrel with a single helix. Structural similarity to avidins suggests a potential binding function. Unlike other eight- or ten-stranded β-barrels found in avidins, bacterial outer membrane proteins, fatty-acid-binding proteins and lysozyme inhibitors, Vaps do not have a next-neighbour arrangement but consist of two Greek-key motifs with strand order 41238567, suggesting an unusual or even unique topology.

  19. Alliance: a common factor of psychotherapy modeled by structural theory

    PubMed Central

    Tschacher, Wolfgang; Haken, Hermann; Kyselo, Miriam

    2015-01-01

    There is broad consensus that the therapeutic alliance constitutes a core common factor for all modalities of psychotherapy. Meta-analyses corroborated that alliance, as it emerges from therapeutic process, is a significant predictor of therapy outcome. Psychotherapy process is traditionally described and explored using two categorically different approaches, the experiential (first-person) perspective and the behavioral (third-person) perspective. We propose to add to this duality a third, structural approach. Dynamical systems theory and synergetics on the one hand and enactivist theory on the other together can provide this structural approach, which contributes in specific ways to a clarification of the alliance factor. Systems theory offers concepts and tools for the modeling of the individual self and, building on this, of alliance processes. In the enactive perspective, the self is conceived as a socially enacted autonomous system that strives to maintain identity by observing a two-fold goal: to exist as an individual self in its own right (distinction) while also being open to others (participation). Using this conceptualization, we formalized the therapeutic alliance as a phase space whose potential minima (attractors) can be shifted by the therapist to approximate therapy goals. This mathematical formalization is derived from probability theory and synergetics. We draw the conclusion that structural theory provides powerful tools for the modeling of how therapeutic change is staged by the formation, utilization, and dissolution of the therapeutic alliance. In addition, we point out novel testable hypotheses and future applications. PMID:25954215

  20. Alliance: a common factor of psychotherapy modeled by structural theory.

    PubMed

    Tschacher, Wolfgang; Haken, Hermann; Kyselo, Miriam

    2015-01-01

    There is broad consensus that the therapeutic alliance constitutes a core common factor for all modalities of psychotherapy. Meta-analyses corroborated that alliance, as it emerges from therapeutic process, is a significant predictor of therapy outcome. Psychotherapy process is traditionally described and explored using two categorically different approaches, the experiential (first-person) perspective and the behavioral (third-person) perspective. We propose to add to this duality a third, structural approach. Dynamical systems theory and synergetics on the one hand and enactivist theory on the other together can provide this structural approach, which contributes in specific ways to a clarification of the alliance factor. Systems theory offers concepts and tools for the modeling of the individual self and, building on this, of alliance processes. In the enactive perspective, the self is conceived as a socially enacted autonomous system that strives to maintain identity by observing a two-fold goal: to exist as an individual self in its own right (distinction) while also being open to others (participation). Using this conceptualization, we formalized the therapeutic alliance as a phase space whose potential minima (attractors) can be shifted by the therapist to approximate therapy goals. This mathematical formalization is derived from probability theory and synergetics. We draw the conclusion that structural theory provides powerful tools for the modeling of how therapeutic change is staged by the formation, utilization, and dissolution of the therapeutic alliance. In addition, we point out novel testable hypotheses and future applications.

  1. MSDmotif: exploring protein sites and motifs

    PubMed Central

    Golovin, Adel; Henrick, Kim

    2008-01-01

    Background Protein structures have conserved features – motifs, which have a sufficient influence on the protein function. These motifs can be found in sequence as well as in 3D space. Understanding of these fragments is essential for 3D structure prediction, modelling and drug-design. The Protein Data Bank (PDB) is the source of this information however present search tools have limited 3D options to integrate protein sequence with its 3D structure. Results We describe here a web application for querying the PDB for ligands, binding sites, small 3D structural and sequence motifs and the underlying database. Novel algorithms for chemical fragments, 3D motifs, ϕ/ψ sequences, super-secondary structure motifs and for small 3D structural motif associations searches are incorporated. The interface provides functionality for visualization, search criteria creation, sequence and 3D multiple alignment options. MSDmotif is an integrated system where a results page is also a search form. A set of motif statistics is available for analysis. This set includes molecule and motif binding statistics, distribution of motif sequences, occurrence of an amino-acid within a motif, correlation of amino-acids side-chain charges within a motif and Ramachandran plots for each residue. The binding statistics are presented in association with properties that include a ligand fragment library. Access is also provided through the distributed Annotation System (DAS) protocol. An additional entry point facilitates XML requests with XML responses. Conclusion MSDmotif is unique by combining chemical, sequence and 3D data in a single search engine with a range of search and visualisation options. It provides multiple views of data found in the PDB archive for exploring protein structures. PMID:18637174

  2. Symmetry types, systems and their multiplicity in the structure of adenovirus capsid. I. Symmetry networks and general symmetry motifs.

    PubMed

    Nász, I; Adám, Eva

    2006-03-01

    Each of the more than 1500 polypeptide molecules of 7 different types building up the adenovirus capsid--probably even those of their amino-acids--are in symmetrical location. Every kind of polypeptide forms a separately also symmetrical network in the capsid distributed according to their functions in the inner and outer side and the inside of the facets and edges, but always in compliance with the icosahedral symmetry. Therefore, each different polypeptide also means a general symmetry motif in the capsid in its own symmetry network. Hexons can be considered as general symmetry motifs in some special association that is because of their environmental position four kinds of hexon types can be found, which are on every facet, next to one another, like three identical groups of four (GOF) according to the three-fold rotational symmetry. Two polypeptides of a peripentonal hexon of each GOF orient toward the penton and the third toward the other penton located further on the same edge. There are two versions of the arrangement of the GOFs: the hexons surround either a polypeptide IX or a polypeptide IlIa. The two versions of GOFs on 20 facets symmetrically recurring 60 times as general hexon symmetry motifs form the capsid in combination with the network of other polypeptides. Ideally, the surface of the hexon trimer shows three-fold rotational and three-fold reflexional symmetries. In the arrangement of hexons in the facets the translational, rotational, horizontal and vertical reflexional symmetry and the combination of these, as well as the glide reflexion and the antisymmetry can be found. Each hexon has six nearest neighbours and every hexon takes part in the construction of three hexon rows. Every facet and every vertex made up of five facets has an antisymmetrical pair located on the opposite side of the capsid. Every triangular facet participates in forming three vertices and every facet has three nearest neighbouring facets. In the facets, the polypeptide

  3. Specific Ca2+-binding motif in the LH1 complex from photosynthetic bacterium Thermochromatium tepidum as revealed by optical spectroscopy and structural modeling.

    PubMed

    Ma, Fei; Kimura, Yukihiro; Yu, Long-Jiang; Wang, Peng; Ai, Xi-Cheng; Wang, Zheng-Yu; Zhang, Jian-Ping

    2009-03-01

    Native and Ca(2+)-depleted light-harvesting-reaction center core complexes (LH1-RC) from the photosynthetic bacterium Thermochromatium (Tch.) tepidum exhibit maximal LH1-Q(y) absorption at 915 and 889 nm, respectively. To understand the structural origins of the spectral variation, we performed spectroscopic and structure modeling investigations. For the 889 nm form of LH1-RC, bacteriochlorophyll a (BChl a) in the native form was found by means of near-infrared Fourier-transform Raman spectroscopy, a higher degree of macrocycle distortion and a stronger hydrogen bond with the beta-Trp(-8) residue. SWISS-MODEL structure modeling suggests the presence of a specific coordination motif of Ca(2+) at the C-terminus of the alpha-subunit of LH1, while MODELLER reveals the tilt of alpha- and beta-polypeptides with reference to the structural template, as well as a change in the concentric orientation of BChl a molecules, both of which may be connected to the long-wavelength LH1-Q(y) absorption of the 915 nm form. The carotenoid spirilloxanthin shows a twisted all-trans configuration in both forms of LH1 as evidenced by the resonance Raman spectroscopic results. With regard to the thermal stability, the 915 nm form was shown by the use of temperature-dependent fluorescence spectroscopy to be approximately 20 K more stable than the 889 nm form, which may be ascribed to the specific Ca(2+)-binding motif of LH1.

  4. Automated classification of RNA 3D motifs and the RNA 3D Motif Atlas.

    PubMed

    Petrov, Anton I; Zirbel, Craig L; Leontis, Neocles B

    2013-10-01

    The analysis of atomic-resolution RNA three-dimensional (3D) structures reveals that many internal and hairpin loops are modular, recurrent, and structured by conserved non-Watson-Crick base pairs. Structurally similar loops define RNA 3D motifs that are conserved in homologous RNA molecules, but can also occur at nonhomologous sites in diverse RNAs, and which often vary in sequence. To further our understanding of RNA motif structure and sequence variability and to provide a useful resource for structure modeling and prediction, we present a new method for automated classification of internal and hairpin loop RNA 3D motifs and a new online database called the RNA 3D Motif Atlas. To classify the motif instances, a representative set of internal and hairpin loops is automatically extracted from a nonredundant list of RNA-containing PDB files. Their structures are compared geometrically, all-against-all, using the FR3D program suite. The loops are clustered into motif groups, taking into account geometric similarity and structural annotations and making allowance for a variable number of bulged bases. The automated procedure that we have implemented identifies all hairpin and internal loop motifs previously described in the literature. All motif instances and motif groups are assigned unique and stable identifiers and are made available in the RNA 3D Motif Atlas (http://rna.bgsu.edu/motifs), which is automatically updated every four weeks. The RNA 3D Motif Atlas provides an interactive user interface for exploring motif diversity and tools for programmatic data access.

  5. Automated classification of RNA 3D motifs and the RNA 3D Motif Atlas

    PubMed Central

    Petrov, Anton I.; Zirbel, Craig L.; Leontis, Neocles B.

    2013-01-01

    The analysis of atomic-resolution RNA three-dimensional (3D) structures reveals that many internal and hairpin loops are modular, recurrent, and structured by conserved non-Watson–Crick base pairs. Structurally similar loops define RNA 3D motifs that are conserved in homologous RNA molecules, but can also occur at nonhomologous sites in diverse RNAs, and which often vary in sequence. To further our understanding of RNA motif structure and sequence variability and to provide a useful resource for structure modeling and prediction, we present a new method for automated classification of internal and hairpin loop RNA 3D motifs and a new online database called the RNA 3D Motif Atlas. To classify the motif instances, a representative set of internal and hairpin loops is automatically extracted from a nonredundant list of RNA-containing PDB files. Their structures are compared geometrically, all-against-all, using the FR3D program suite. The loops are clustered into motif groups, taking into account geometric similarity and structural annotations and making allowance for a variable number of bulged bases. The automated procedure that we have implemented identifies all hairpin and internal loop motifs previously described in the literature. All motif instances and motif groups are assigned unique and stable identifiers and are made available in the RNA 3D Motif Atlas (http://rna.bgsu.edu/motifs), which is automatically updated every four weeks. The RNA 3D Motif Atlas provides an interactive user interface for exploring motif diversity and tools for programmatic data access. PMID:23970545

  6. Structure of the Brd4 ET domain bound to a C-terminal motif from γ-retroviral integrases reveals a conserved mechanism of interaction.

    PubMed

    Crowe, Brandon L; Larue, Ross C; Yuan, Chunhua; Hess, Sonja; Kvaratskhelia, Mamuka; Foster, Mark P

    2016-02-23

    The bromodomain and extraterminal domain (BET) protein family are promising therapeutic targets for a range of diseases linked to transcriptional activation, cancer, viral latency, and viral integration. Tandem bromodomains selectively tether BET proteins to chromatin by engaging cognate acetylated histone marks, and the extraterminal (ET) domain is the focal point for recruiting a range of cellular and viral proteins. BET proteins guide γ-retroviral integration to transcription start sites and enhancers through bimodal interaction with chromatin and the γ-retroviral integrase (IN). We report the NMR-derived solution structure of the Brd4 ET domain bound to a conserved peptide sequence from the C terminus of murine leukemia virus (MLV) IN. The complex reveals a protein-protein interaction governed by the binding-coupled folding of disordered regions in both interacting partners to form a well-structured intermolecular three-stranded β sheet. In addition, we show that a peptide comprising the ET binding motif (EBM) of MLV IN can disrupt the cognate interaction of Brd4 with NSD3, and that substitutions of Brd4 ET residues essential for binding MLV IN also impair interaction of Brd4 with a number of cellular partners involved in transcriptional regulation and chromatin remodeling. This suggests that γ-retroviruses have evolved the EBM to mimic a cognate interaction motif to achieve effective integration in host chromatin. Collectively, our findings identify key structural features of the ET domain of Brd4 that allow for interactions with both cellular and viral proteins.

  7. Conserved Patterns of Microbial Immune Escape: Pathogenic Microbes of Diverse Origin Target the Human Terminal Complement Inhibitor Vitronectin via a Single Common Motif

    PubMed Central

    Kraiczy, Peter; Hammerschmidt, Sven; Skerka, Christine; Zipfel, Peter F.; Riesbeck, Kristian

    2016-01-01

    Pathogenicity of many microbes relies on their capacity to resist innate immunity, and to survive and persist in an immunocompetent human host microbes have developed highly efficient and sophisticated complement evasion strategies. Here we show that different human pathogens including Gram-negative and Gram-positive bacteria, as well as the fungal pathogen Candida albicans, acquire the human terminal complement regulator vitronectin to their surface. By using truncated vitronectin fragments we found that all analyzed microbial pathogens (n = 13) bound human vitronectin via the same C-terminal heparin-binding domain (amino acids 352–374). This specific interaction leaves the terminal complement complex (TCC) regulatory region of vitronectin accessible, allowing inhibition of C5b-7 membrane insertion and C9 polymerization. Vitronectin complexed with the various microbes and corresponding proteins was thus functionally active and inhibited complement-mediated C5b-9 deposition. Taken together, diverse microbial pathogens expressing different structurally unrelated vitronectin-binding molecules interact with host vitronectin via the same conserved region to allow versatile control of the host innate immune response. PMID:26808444

  8. Diversification and population structure in common beans (Phaseolus vulgaris L.).

    PubMed

    Blair, Matthew W; Soler, Alvaro; Cortés, Andrés J

    2012-01-01

    Wild accessions of crops and landraces are valuable genetic resources for plant breeding and for conserving alleles and gene combinations in planta. The primary genepool of cultivated common beans includes wild accessions of Phaseolus vulgaris. These are of the same species as the domesticates and therefore are easily crossable with cultivated accessions. Molecular marker assessment of wild beans and landraces is important for the proper utilization and conservation of these important genetic resources. The goal of this research was to evaluate a collection of wild beans with fluorescent microsatellite or simple sequence repeat markers and to determine the population structure in combination with cultivated beans of all known races. Marker diversity in terms of average number of alleles per marker was high (13) for the combination of 36 markers and 104 wild genotypes that was similar to the average of 14 alleles per marker found for the 606 cultivated genotypes. Diversity in wild beans appears to be somewhat higher than in cultivated beans on a per genotype basis. Five populations or genepools were identified in structure analysis of the wild beans corresponding to segments of the geographical range, including Mesoamerican (Mexican), Guatemalan, Colombian, Ecuadorian-northern Peruvian and Andean (Argentina, Bolivia and Southern Peru). The combined analysis of wild and cultivated accessions showed that the first and last of these genepools were related to the cultivated genepools of the same names and the penultimate was found to be distinct but not ancestral to the others. The Guatemalan genepool was very novel and perhaps related to cultivars of race Guatemala, while the Colombian population was also distinct. Results suggest geographic isolation, founder effects or natural selection could have created the different semi-discrete populations of wild beans and that multiple domestications and introgression were involved in creating the diversity of cultivated beans.

  9. Diversification and Population Structure in Common Beans (Phaseolus vulgaris L.)

    PubMed Central

    Blair, Matthew W.; Soler, Alvaro; Cortés, Andrés J.

    2012-01-01

    Wild accessions of crops and landraces are valuable genetic resources for plant breeding and for conserving alleles and gene combinations in planta. The primary genepool of cultivated common beans includes wild accessions of Phaseolus vulgaris. These are of the same species as the domesticates and therefore are easily crossable with cultivated accessions. Molecular marker assessment of wild beans and landraces is important for the proper utilization and conservation of these important genetic resources. The goal of this research was to evaluate a collection of wild beans with fluorescent microsatellite or simple sequence repeat markers and to determine the population structure in combination with cultivated beans of all known races. Marker diversity in terms of average number of alleles per marker was high (13) for the combination of 36 markers and 104 wild genotypes that was similar to the average of 14 alleles per marker found for the 606 cultivated genotypes. Diversity in wild beans appears to be somewhat higher than in cultivated beans on a per genotype basis. Five populations or genepools were identified in structure analysis of the wild beans corresponding to segments of the geographical range, including Mesoamerican (Mexican), Guatemalan, Colombian, Ecuadorian-northern Peruvian and Andean (Argentina, Bolivia and Southern Peru). The combined analysis of wild and cultivated accessions showed that the first and last of these genepools were related to the cultivated genepools of the same names and the penultimate was found to be distinct but not ancestral to the others. The Guatemalan genepool was very novel and perhaps related to cultivars of race Guatemala, while the Colombian population was also distinct. Results suggest geographic isolation, founder effects or natural selection could have created the different semi-discrete populations of wild beans and that multiple domestications and introgression were involved in creating the diversity of cultivated beans

  10. Structure of Xanthomonas axonopodis pv. citri YaeQ reveals a new compact protein fold built around a variation of the PD-(D/E)XK nuclease motif.

    PubMed

    Guzzo, Cristiane R; Nagem, Ronaldo A P; Barbosa, João A R G; Farah, Chuck S

    2007-11-15

    The YaeQ family of proteins are found in many Gram-negative and a few Gram-positive bacteria. We have determined the first structure of a member of the YaeQ family by X-ray crystallography. Comparisons with other structures indicate that YaeQ represents a new compact protein fold built around a variation of the PD-(D/E)XK nuclease motif found in type II endonucleases and enzymes involved in DNA replication, repair, and recombination. We show that catalytically important residues in the PD-(D/E)XK nuclease superfamily are spatially conserved in YaeQ and other highly conserved YaeQ residues may be poised to interact with nucleic acid structures.

  11. Crystal structure of the N-terminal region of human Ash2L shows a winged-helix motif involved in DNA binding

    SciTech Connect

    Chen, Yong; Wan, Bingbing; Wang, Kevin C.; Cao, Fang; Yang, Yuting; Protacio, Angeline; Dou, Yali; Chang, Howard Y.; Lei, Ming

    2011-09-06

    Ash2L is a core component of the MLL family histone methyltransferases and has an important role in regulating the methylation of histone H3 on lysine 4. Here, we report the crystal structure of the N-terminal domain of Ash2L and reveal a new function of Ash2L. The structure shows that Ash2L contains an atypical PHD finger that does not have histone tail-binding activity. Unexpectedly, the structure shows a previously unrecognized winged-helix motif that directly binds to DNA. The DNA-binding-deficient mutants of Ash2L reduced Ash2L localization to the HOX locus. Strikingly, a single mutation in Ash2L{sub WH} (K131A) breaks the chromatin domain boundary, suggesting that Ash2L also has a role in chromosome demarcation.

  12. Spike Pattern Structure Influences Synaptic Efficacy Variability under STDP and Synaptic Homeostasis. I: Spike Generating Models on Converging Motifs

    PubMed Central

    Bi, Zedong; Zhou, Changsong

    2016-01-01

    In neural systems, synaptic plasticity is usually driven by spike trains. Due to the inherent noises of neurons and synapses as well as the randomness of connection details, spike trains typically exhibit variability such as spatial randomness and temporal stochasticity, resulting in variability of synaptic changes under plasticity, which we call efficacy variability. How the variability of spike trains influences the efficacy variability of synapses remains unclear. In this paper, we try to understand this influence under pair-wise additive spike-timing dependent plasticity (STDP) when the mean strength of plastic synapses into a neuron is bounded (synaptic homeostasis). Specifically, we systematically study, analytically and numerically, how four aspects of statistical features, i.e., synchronous firing, burstiness/regularity, heterogeneity of rates and heterogeneity of cross-correlations, as well as their interactions influence the efficacy variability in converging motifs (simple networks in which one neuron receives from many other neurons). Neurons (including the post-synaptic neuron) in a converging motif generate spikes according to statistical models with tunable parameters. In this way, we can explicitly control the statistics of the spike patterns, and investigate their influence onto the efficacy variability, without worrying about the feedback from synaptic changes onto the dynamics of the post-synaptic neuron. We separate efficacy variability into two parts: the drift part (DriftV) induced by the heterogeneity of change rates of different synapses, and the diffusion part (DiffV) induced by weight diffusion caused by stochasticity of spike trains. Our main findings are: (1) synchronous firing and burstiness tend to increase DiffV, (2) heterogeneity of rates induces DriftV when potentiation and depression in STDP are not balanced, and (3) heterogeneity of cross-correlations induces DriftV together with heterogeneity of rates. We anticipate our work

  13. FACT Disrupts Nucleosome Structure by Binding H2A-H2B with Conserved Peptide Motifs.

    PubMed

    Kemble, David J; McCullough, Laura L; Whitby, Frank G; Formosa, Tim; Hill, Christopher P

    2015-10-15

    FACT, a heterodimer of Spt16 and Pob3, is an essential histone chaperone. We show that the H2A-H2B binding activity that is central to FACT function resides in short acidic regions near the C termini of each subunit. Mutations throughout these regions affect binding and cause correlated phenotypes that range from mild to lethal, with the largest individual contributions unexpectedly coming from an aromatic residue and a nearby carboxylate residue within each domain. Spt16 and Pob3 bind overlapping sites on H2A-H2B, and Spt16-Pob3 heterodimers simultaneously bind two H2A-H2B dimers, the same stoichiometry as the components of a nucleosome. An Spt16:H2A-H2B crystal structure explains the biochemical and genetic data, provides a model for Pob3 binding, and implies a mechanism for FACT reorganization that we confirm biochemically. Moreover, unexpected similarity to binding of ANP32E and Swr1 with H2A.Z-H2B reveals that diverse H2A-H2B chaperones use common mechanisms of histone binding and regulating nucleosome functions.

  14. FACT disrupts nucleosome structure by binding H2A-H2B with conserved peptide motifs

    PubMed Central

    Kemble, David J.; McCullough, Laura L.; Whitby, Frank G.; Formosa, Tim; Hill, Christopher P.

    2015-01-01

    SUMMARY FACT, a heterodimer of Spt16 and Pob3, is an essential histone chaperone. We show that the H2A-H2B binding activity that is central to FACT function resides in short acidic regions near the C-termini of each subunit. Mutations throughout these regions impact binding and cause correlated phenotypes that range from mild to lethal, with the largest individual contributions unexpectedly coming from an aromatic residue and a nearby carboxylate residue within each domain. Spt16 and Pob3 bind overlapping sites on H2A-H2B, and Spt16-Pob3 heterodimers simultaneously bind two H2A-H2B dimers, the same stoichiometry as the components of a nucleosome. An Spt16:H2A-H2B crystal structure explains the biochemical and genetic data, provides a model for Pob3 binding, and implies a mechanism for FACT reorganization that we confirm biochemically. Moreover, unexpected similarity to binding of ANP32E and Swr1 with H2A.Z-H2B reveals that diverse H2A-H2B chaperones use common mechanisms of histone binding and regulating nucleosome functions. PMID:26455391

  15. Bioinformatics study of cancer-related mutations within p53 phosphorylation site motifs.

    PubMed

    Ji, Xiaona; Huang, Qiang; Yu, Long; Nussinov, Ruth; Ma, Buyong

    2014-07-29

    p53 protein has about thirty phosphorylation sites located at the N- and C-termini and in the core domain. The phosphorylation sites are relatively less mutated than other residues in p53. To understand why and how p53 phosphorylation sites are rarely mutated in human cancer, using a bioinformatics approaches, we examined the phosphorylation site and its nearby flanking residues, focusing on the consensus phosphorylation motif pattern, amino-acid correlations within the phosphorylation motifs, the propensity of structural disorder of the phosphorylation motifs, and cancer mutations observed within the phosphorylation motifs. Many p53 phosphorylation sites are targets for several kinases. The phosphorylation sites match 17 consensus sequence motifs out of the 29 classified. In addition to proline, which is common in kinase specificity-determining sites, we found high propensity of acidic residues to be adjacent to phosphorylation sites. Analysis of human cancer mutations in the phosphorylation motifs revealed that motifs with adjacent acidic residues generally have fewer mutations, in contrast to phosphorylation sites near proline residues. p53 phosphorylation motifs are mostly disordered. However, human cancer mutations within phosphorylation motifs tend to decrease the disorder propensity. Our results suggest that combination of acidic residues Asp and Glu with phosphorylation sites provide charge redundancy which may safe guard against loss-of-function mutations, and that the natively disordered nature of p53 phosphorylation motifs may help reduce mutational damage. Our results further suggest that engineering acidic amino acids adjacent to potential phosphorylation sites could be a p53 gene therapy strategy.

  16. Specific recognition of the collagen triple helix by chaperone HSP47. II. The HSP47-binding structural motif in collagens and related proteins.

    PubMed

    Koide, Takaki; Nishikawa, Yoshimi; Asada, Shinichi; Yamazaki, Chisato M; Takahara, Yoshifumi; Homma, Daisuke L; Otaka, Akira; Ohtani, Katsuki; Wakamiya, Nobutaka; Nagata, Kazuhiro; Kitagawa, Kouki

    2006-04-21

    The endoplasmic reticulum-resident chaperone heat-shock protein 47 (HSP47) plays an essential role in procollagen biosynthesis. The function of HSP47 relies on its specific interaction with correctly folded triple-helical regions comprised of Gly-Xaa-Yaa repeats, and Arg residues at Yaa positions have been shown to be important for this interaction. The amino acid at the Yaa position (Yaa(-3)) in the N-terminal-adjoining triplet containing the critical Arg (defined as Arg(0)) was also suggested to be directly recognized by HSP47 (Koide, T., Asada, S., Takahara, Y., Nishikawa, Y., Nagata, K., and Kitagawa, K. (2006) J. Biol. Chem. 281, 3432-3438). Based on this finding, we examined the relationship between the structure of Yaa(-3) and HSP47 binding using synthetic collagenous peptides. The results obtained indicated that the structure of Yaa(-3) determined the binding affinity for HSP47. Maximal binding was observed when Yaa(-3) was Thr. Moreover, the required relative spatial arrangement of these key residues in the triple helix was analyzed by taking advantage of heterotrimeric collagen-model peptides, each of which contains one Thr(-3) and one Arg(0). The results revealed that HSP47 recognizes the Yaa(-3) and Arg(0) residues only when they are on the same peptide strand. Taken together, the data obtained led us to define the HSP47-binding structural epitope in the collagen triple helix and also define the HSP47-binding motif in the primary structure. A motif search against human protein database predicted candidate clients for this molecular chaperone. The search result indicated that not all collagen family proteins require the chaperoning by HSP47.

  17. The Dynamic Character of the BCL2 Promoter i-Motif Provides a Mechanism for Modulation of Gene Expression by Compounds That Bind Selectively to the Alternative DNA Hairpin Structure

    PubMed Central

    2015-01-01

    It is generally accepted that DNA predominantly exists in duplex form in cells. However, under torsional stress imposed by active transcription, DNA can assume nonduplex structures. The BCL2 promoter region forms two different secondary DNA structures on opposite strands called the G-quadruplex and the i-motif. The i-motif is a highly dynamic structure that exists in equilibrium with a flexible hairpin species. Here we identify a pregnanol derivative and a class of piperidine derivatives that differentially modulate gene expression by stabilizing either the i-motif or the flexible hairpin species. Stabilization of the i-motif structure results in significant upregulation of the BCL2 gene and associated protein expression; in contrast, stabilization of the flexible hairpin species lowers BCL2 levels. The BCL2 levels reduced by the hairpin-binding compound led to chemosensitization to etoposide in both in vitro and in vivo models. Furthermore, we show antagonism between the two classes of compounds in solution and in cells. For the first time, our results demonstrate the principle of small molecule targeting of i-motif structures in vitro and in vivo to modulate gene expression. PMID:24559410

  18. Structure-Function Analyses of a Staphylococcus epidermidis Autoinducing Peptide Reveals Motifs Critical for AgrC-type Receptor Modulation.

    PubMed

    Yang, Tian; Tal-Gan, Yftah; Paharik, Alexandra E; Horswill, Alexander R; Blackwell, Helen E

    2016-07-15

    Staphylococcus epidermidis is frequently implicated in human infections associated with indwelling medical devices due to its ubiquity in the skin flora and formation of robust biofilms. The accessory gene regulator (agr) quorum sensing (QS) system plays a prominent role in the establishment of biofilms and infection by this bacterium. Agr activation is mediated by the binding of a peptide signal (or autoinducing peptide, AIP) to its cognate AgrC receptor. Many questions remain about the role of QS in S. epidermidis infections, as well as in mixed-microbial populations on a host, and chemical modulators of its agr system could provide novel insights into this signaling network. The AIP ligand provides an initial scaffold for the development of such probes; however, the structure-activity relationships (SARs) for activation of S. epidermidis AgrC receptors by AIPs are largely unknown. Herein, we report the first SAR analyses of an S. epidermidis AIP by performing systematic alanine and d-amino acid scans of the S. epidermidis AIP-I. On the basis of these results, we designed and identified potent, pan-group inhibitors of the AgrC receptors in the three S. epidermidis agr groups, as well as a set of AIP-I analogs capable of selective AgrC inhibition in either specific S. epidermidis agr groups or in another common staphylococcal species, S. aureus. In addition, we uncovered a non-native peptide agonist of AgrC-I that can strongly inhibit S. epidermidis biofilm growth. Together, these synthetic analogs represent new and readily accessible probes for investigating the roles of QS in S. epidermidis colonization and infections.

  19. The science commons in health research: structure, function, and value.

    PubMed

    Cook-Deegan, Robert

    The "science commons," knowledge that is widely accessible at low or no cost, is a uniquely important input to scientific advance and cumulative technological innovation. It is primarily, although not exclusively, funded by government and nonprofit sources. Much of it is produced at academic research centers, although some academic science is proprietary and some privately funded R&D enters the science commons. Science in general aspires to Mertonian norms of openness, universality, objectivity, and critical inquiry. The science commons diverges from proprietary science primarily in being open and being very broadly available. These features make the science commons particularly valuable for advancing knowledge, for training innovators who will ultimately work in both public and private sectors, and in providing a common stock of knowledge upon which all players-both public and private-can draw readily. Open science plays two important roles that proprietary R&D cannot: it enables practical benefits even in the absence of profitable markets for goods and services, and its lays a shared foundation for subsequent private R&D. The history of genomics in the period 1992-2004, covering two periods when genomic startup firms attracted significant private R&D investment, illustrates these features of how a science commons contributes value. Commercial interest in genomics was intense during this period. Fierce competition between private sector and public sector genomics programs was highly visible. Seemingly anomalous behavior, such as private firms funding "open science," can be explained by unusual business dynamics between established firms wanting to preserve a robust science commons to prevent startup firms from limiting established firms' freedom to operate. Deliberate policies to create and protect a large science commons were pursued by nonprofit and government funders of genomics research, such as the Wellcome Trust and National Institutes of Health. These

  20. A variety of DNA-binding and multimeric proteins contain the histone fold motif.

    PubMed Central

    Baxevanis, A D; Arents, G; Moudrianakis, E N; Landsman, D

    1995-01-01

    The histone fold motif has previously been identified as a structural feature common to all four core histones and is involved in both histone-histone and histone-DNA interactions. Through the use of a novel motif searching method, a group of proteins containing the histone fold motif has been established. The proteins in this group are involved in a wide variety of functions related mostly to DNA metabolism. Most of these proteins engage in protein-protein or protein-DNA interactions, as do their core histone counterparts. Among these, CCAAT-specific transcription factor CBF and its yeast homologue HAP are two examples of multimeric complexes with different component subunits that contain the histone fold motif. The histone fold proteins are distantly related, with a relatively small degree of absolute sequence similarity. It is proposed that these proteins may share a similar three-dimensional conformation despite the lack of significant sequence similarity. PMID:7651829

  1. NMR Structure of the C-Terminal Transmembrane Domain of the HDL Receptor, SR-BI, and a Functionally Relevant Leucine Zipper Motif.

    PubMed

    Chadwick, Alexandra C; Jensen, Davin R; Hanson, Paul J; Lange, Philip T; Proudfoot, Sarah C; Peterson, Francis C; Volkman, Brian F; Sahoo, Daisy

    2017-03-07

    The interaction of high-density lipoprotein (HDL) with its receptor, scavenger receptor BI (SR-BI), is critical for lowering plasma cholesterol levels and reducing the risk for cardiovascular disease. The HDL/SR-BI complex facilitates delivery of cholesterol into cells and is likely mediated by receptor dimerization. This work describes the use of nuclear magnetic resonance (NMR) spectroscopy to generate the first high-resolution structure of the C-terminal transmembrane domain of SR-BI. This region of SR-BI harbors a leucine zipper dimerization motif, which when mutated impairs the ability of the receptor to bind HDL and mediate cholesterol delivery. These losses in function correlate with the inability of SR-BI to form dimers. We also identify juxtamembrane regions of the extracellular domain of SR-BI that may interact with the lipid surface to facilitate cholesterol transport functions of the receptor.

  2. Structure-Based Analysis of Toxoplasma gondii Profilin: A Parasite-Specific Motif Is Required for Recognition by Toll-Like Receptor 11

    SciTech Connect

    K Kucera; A Koblansky; L Saunders; K Frederick; E De La Cruz; S Ghosh; Y Modis

    2011-12-31

    Profilins promote actin polymerization by exchanging ADP for ATP on monomeric actin and delivering ATP-actin to growing filament barbed ends. Apicomplexan protozoa such as Toxoplasma gondii invade host cells using an actin-dependent gliding motility. Toll-like receptor (TLR) 11 generates an innate immune response upon sensing T. gondii profilin (TgPRF). The crystal structure of TgPRF reveals a parasite-specific surface motif consisting of an acidic loop, followed by a long {beta}-hairpin. A series of structure-based profilin mutants show that TLR11 recognition of the acidic loop is responsible for most of the interleukin (IL)-12 secretion response to TgPRF in peritoneal macrophages. Deletion of both the acidic loop and the {beta}-hairpin completely abrogates IL-12 secretion. Insertion of the T. gondii acidic loop and {beta}-hairpin into yeast profilin is sufficient to generate TLR11-dependent signaling. Substitution of the acidic loop in TgPRF with the homologous loop from the apicomplexan parasite Cryptosporidium parvum does not affect TLR11-dependent IL-12 secretion, while substitution with the acidic loop from Plasmodium falciparum results in reduced but significant IL-12 secretion. We conclude that the parasite-specific motif in TgPRF is the key molecular pattern recognized by TLR11. Unlike other profilins, TgPRF slows nucleotide exchange on monomeric rabbit actin and binds rabbit actin weakly. The putative TgPRF actin-binding surface includes the {beta}-hairpin and diverges widely from the actin-binding surfaces of vertebrate profilins.

  3. Structural basis of Robo proline-rich motif recognition by the srGAP1 Src homology 3 domain in the Slit-Robo signaling pathway.

    PubMed

    Li, Xiaofeng; Chen, Yushu; Liu, Yiwei; Gao, Jia; Gao, Feng; Bartlam, Mark; Wu, Jane Y; Rao, Zihe

    2006-09-22

    The Slit-Robo (sr) GTPase-activating protein (GAPs) are important components in the intracellular pathway mediating Slit-Robo signaling in axon guidance and cell migration. We report the first crystal structure of the srGAP1 SH3 domain at 1.8-A resolution. The unusual side chain conformation of the conserved Phe-13 in the P1 pocket renders the ligand binding pocket shallow and narrow, which contributes toward the low binding affinity. Moreover, the opposing electrostatic charge and the hydrophobic properties of the P3 specificity pocket are consistent with the observed binding characteristics of the srGAP1 SH3 domain to its ligand. Surface plasmon resonance experiments indicate that the srGAP1 SH3 domain interacts with its natural ligand inaCtoN orientation. The srGAP1 SH3 domain can bind to both the CC2 and CC3 motifs in vitro. The N-terminal two acidic residues in the CC3 motif recognition site are necessary for srGAP1 SH3 domain binding. A longer CC3 peptide (CC3-FL) binds with greater affinity than its shorter counterpart, suggesting that the residues surrounding the proline-rich core are important for protein-peptide interactions. Our study reveals previously unknown properties of the srGAP-Robo interaction. Our data provide a structural basis for the srGAP-Robo interaction, consistent with the role of the Robo intracellular domain in interacting with other downstream signaling molecules and mediating versatile and dynamic responses to axon guidance and cell migration cues.

  4. Exploratory Study on the RNA-Binding Structural Motifs by Library Screening Targeting pre-miRNA-29 a.

    PubMed

    Fukuzumi, Takeo; Murata, Asako; Aikawa, Haruo; Harada, Yasue; Nakatani, Kazuhiko

    2015-11-16

    The metabolic stream of microRNA (miRNA) production, the so-called maturation process of miRNAs, became one of important metabolic paths for drug-targeting to modulate the expression of genes related to a number of diseases. We carried out discovery studies on small molecules binding to the precursor of miR-29a (pre-miR-29a) from a chemical library containing 41,119 compounds (AQ library) by the fluorescent indicator displacement (FID) assay using the xanthone derivative X2SdiMe as a fluorescent indicator. The FID assay provided 1075 compounds, which showed an increase of fluorescence. These compounds were subsequently submitted to a binding analysis in a surface plasmon resonance (SPR) assay on a pre-miR-29a immobilized surface. 21 hit compounds were identified with a good reproducibility in the binding. These compounds have not been reported to bind to RNA until now and can be classified into two groups on the basis of the kinetics in the binding. To gain more information on the motif structures that could be necessary for the binding to pre-miR-29a, 19 substructures were selected from the hit compounds. The substructure library (SS library) which consisted of 362 compounds was prepared from the AQ library. An SPR assay of the SS library on pre-miR-29a-immobilized surface suggested that five substructures could potentially be important structural motifs to bind to pre-miR-29a. These studies demonstrate that the combination of FID-based screening of chemical library and subsequent SPR assay would be one way for obtaining practical solutions for the discovery of molecules which bind to the target pre-miRNAs.

  5. Crystal structures of Cg1458 reveal a catalytic lid domain and a common catalytic mechanism for the FAH family.

    PubMed

    Ran, Tingting; Gao, Yanyan; Marsh, May; Zhu, Wenjun; Wang, Meitian; Mao, Xiang; Xu, Langlai; Xu, Dongqing; Wang, Weiwu

    2013-01-01

    Cg1458 was recently characterized as a novel soluble oxaloacetate decarboxylase. However, sequence alignment identified that Cg1458 has no similarity with other oxaloacetate decarboxylases and instead belongs to the FAH (fumarylacetoacetate hydrolase) family. Differences in the function of Cg1458 and other FAH proteins may suggest a different catalytic mechanism. To help elucidate the catalytic mechanism of Cg1458, crystal structures of Cg1458 in both the open and closed conformations have been determined for the first time up to a resolution of 1.9 Å (1 Å=0.1 nm) and 2.0 Å respectively. Comparison of both structures and detailed biochemical studies confirmed the presence of a catalytic lid domain which is missing in the native enzyme structure. In this lid domain, a glutamic acid-histidine dyad was found to be critical in mediating enzymatic catalysis. On the basis of structural modelling and comparison, as well as large-scale sequence alignment studies, we further determined that the catalytic mechanism of Cg1458 is actually through a glutamic acid-histidine-water triad, and this catalytic triad is common among FAH family proteins that catalyse the cleavage of the C-C bond of the substrate. Two sequence motifs, HxxE and Hxx…xxE have been identified as the basis for this mechanism.

  6. Protospacer recognition motifs

    PubMed Central

    Shah, Shiraz A.; Erdmann, Susanne; Mojica, Francisco J.M.; Garrett, Roger A.

    2013-01-01

    Protospacer adjacent motifs (PAMs) were originally characterized for CRISPR-Cas systems that were classified on the basis of their CRISPR repeat sequences. A few short 2–5 bp sequences were identified adjacent to one end of the protospacers. Experimental and bioinformatical results linked the motif to the excision of protospacers and their insertion into CRISPR loci. Subsequently, evidence accumulated from different virus- and plasmid-targeting assays, suggesting that these motifs were also recognized during DNA interference, at least for the recently classified type I and type II CRISPR-based systems. The two processes, spacer acquisition and protospacer interference, employ different molecular mechanisms, and there is increasing evidence to suggest that the sequence motifs that are recognized, while overlapping, are unlikely to be identical. In this article, we consider the properties of PAM sequences and summarize the evidence for their dual functional roles. It is proposed to use the terms protospacer associated motif (PAM) for the conserved DNA sequence and to employ spacer acqusition motif (SAM) and target interference motif (TIM), respectively, for acquisition and interference recognition sites. PMID:23403393

  7. iMotifs: an integrated sequence motif visualization and analysis environment

    PubMed Central

    Piipari, Matias; Down, Thomas A.; Saini, Harpreet; Enright, Anton; Hubbard, Tim J.P.

    2010-01-01

    Motivation: Short sequence motifs are an important class of models in molecular biology, used most commonly for describing transcription factor binding site specificity patterns. High-throughput methods have been recently developed for detecting regulatory factor binding sites in vivo and in vitro and consequently high-quality binding site motif data are becoming available for increasing number of organisms and regulatory factors. Development of intuitive tools for the study of sequence motifs is therefore important. iMotifs is a graphical motif analysis environment that allows visualization of annotated sequence motifs and scored motif hits in sequences. It also offers motif inference with the sensitive NestedMICA algorithm, as well as overrepresentation and pairwise motif matching capabilities. All of the analysis functionality is provided without the need to convert between file formats or learn different command line interfaces. The application includes a bundled and graphically integrated version of the NestedMICA motif inference suite that has no outside dependencies. Problems associated with local deployment of software are therefore avoided. Availability: iMotifs is licensed with the GNU Lesser General Public License v2.0 (LGPL 2.0). The software and its source is available at http://wiki.github.com/mz2/imotifs and can be run on Mac OS X Leopard (Intel/PowerPC). We also provide a cross-platform (Linux, OS X, Windows) LGPL 2.0 licensed library libxms for the Perl, Ruby, R and Objective-C programming languages for input and output of XMS formatted annotated sequence motif set files. Contact: matias.piipari@gmail.com; imotifs@googlegroups.com PMID:20106815

  8. Investigation on critical structural motifs of ligands for triggering glucocorticoid receptor nuclear migration through molecular docking simulations.

    PubMed

    Liu, Ya-Lin; Jang, Soonmin; Wang, Shih-Min; Chen, Chiu-Hao; Li, Feng-Yin

    2016-06-01

    The glucocorticoid receptor (GR), a transcription factor regulating gene expression in a ligand-dependent fashion, is known for flexibility in adapting various ligands with their structures ranging from steroid to non-steroid. However, in our previous study, GR shows a stringent discrimination against a set of steroid ligands with highly similar structures for triggering its nuclear migration. In order to resolve this puzzle, we employed molecular docking simulations to investigate the origin of this structural discrimination. By analyzing the docking orientations and the related ligand-GR interaction patterns, we found that the hydrophilicity mismatch between the docking ligand and the GR ligand-binding site is the main cause combined with the steric hindrance and structural rigidness of these steroid ligands. Furthermore, we utilized this knowledge to rationalize how the structure-binding interaction of non-steroid ligands triggers GR nuclear migration with their structures available in Protein Data Bank.

  9. Structural characterization and cytolytic activity of a potent antimicrobial motif in longicin, a defensin-like peptide in the tick Haemaphysalis longicornis.

    PubMed

    Rahman, Morshedur; Tsuji, Naotoshi; Boldbaatar, Damdinsuren; Battur, Banzragch; Liao, Min; Umemiya-Shirafuji, Rika; You, Myungjo; Tanaka, Tetsuya; Fujisaki, Kozo

    2010-02-01

    Longicin, a defensin-like peptide, was recently identified in the hard tick Haemaphysalis longicornis. Longicin and one of its synthetic partial analogs (P4) displayed antimicrobial/fungicidal/parasiticidal activity. In the present study, we compared longicin-derived synthetic analogs in order to characterize the antimicrobial motif (P4) by analyzing some structural features using various bioinformatic tools and/or CD spectroscopy. According to the chemicophysical characteristics, P4 is suggested to be a cationic peptide with hydrophobic and amphipathic character. The predicted secondary structure indicated the existence of a beta-sheet, which was also observed in the modeled tertiary structure. CD spectroscopic results also showed the existence of a beta-sheet and transition to a helical conformation in the presence of membrane-mimicking conditions. These structural observations on P4 suggested that the antimicrobial activity could be due to the beta-sheet as well as the alpha-helix. In addition, a sequence homology search showed that molecules identified in other ticks and organisms also have the P4 analogous domain at their C-terminal, which indicates P4 as a conserved domain. The peptide P4 also showed low cytolytic activity. Based on the present result and previously reported studies, the peptide P4 could be suggested as a novel antimicrobial domain indicating future therapeutic agent against bacteria.

  10. Nucleosomes, Linker DNA, and Linker Histone form a Unique Structural Motif that Directs the Higher-Order Folding and Compaction of Chromatin

    NASA Astrophysics Data System (ADS)

    Bednar, Jan; Horowitz, Rachel A.; Grigoryev, Sergei A.; Carruthers, Lenny M.; Hansen, Jeffrey C.; Koster, Abraham J.; Woodcock, Christopher L.

    1998-11-01

    The compaction level of arrays of nucleosomes may be understood in terms of the balance between the self-repulsion of DNA (principally linker DNA) and countering factors including the ionic strength and composition of the medium, the highly basic N termini of the core histones, and linker histones. However, the structural principles that come into play during the transition from a loose chain of nucleosomes to a compact 30-nm chromatin fiber have been difficult to establish, and the arrangement of nucleosomes and linker DNA in condensed chromatin fibers has never been fully resolved. Based on images of the solution conformation of native chromatin and fully defined chromatin arrays obtained by electron cryomicroscopy, we report a linker histone-dependent architectural motif beyond the level of the nucleosome core particle that takes the form of a stem-like organization of the entering and exiting linker DNA segments. DNA completes ≈ 1.7 turns on the histone octamer in the presence and absence of linker histone. When linker histone is present, the two linker DNA segments become juxtaposed ≈ 8 nm from the nucleosome center and remain apposed for 3-5 nm before diverging. We propose that this stem motif directs the arrangement of nucleosomes and linker DNA within the chromatin fiber, establishing a unique three-dimensional zigzag folding pattern that is conserved during compaction. Such an arrangement with peripherally arranged nucleosomes and internal linker DNA segments is fully consistent with observations in intact nuclei and also allows dramatic changes in compaction level to occur without a concomitant change in topology.

  11. Stochastic motif extraction using hidden Markov model

    SciTech Connect

    Fujiwara, Yukiko; Asogawa, Minoru; Konagaya, Akihiko

    1994-12-31

    In this paper, we study the application of an HMM (hidden Markov model) to the problem of representing protein sequences by a stochastic motif. A stochastic protein motif represents the small segments of protein sequences that have a certain function or structure. The stochastic motif, represented by an HMM, has conditional probabilities to deal with the stochastic nature of the motif. This HMM directive reflects the characteristics of the motif, such as a protein periodical structure or grouping. In order to obtain the optimal HMM, we developed the {open_quotes}iterative duplication method{close_quotes} for HMM topology learning. It starts from a small fully-connected network and iterates the network generation and parameter optimization until it achieves sufficient discrimination accuracy. Using this method, we obtained an HMM for a leucine zipper motif. Compared to the accuracy of a symbolic pattern representation with accuracy of 14.8 percent, an HMM achieved 79.3 percent in prediction. Additionally, the method can obtain an HMM for various types of zinc finger motifs, and it might separate the mixed data. We demonstrated that this approach is applicable to the validation of the protein databases; a constructed HMM b as indicated that one protein sequence annotated as {open_quotes}lencine-zipper like sequence{close_quotes} in the database is quite different from other leucine-zipper sequences in terms of likelihood, and we found this discrimination is plausible.

  12. A Review of Functional Motifs Utilized by Viruses

    PubMed Central

    Sobhy, Haitham

    2016-01-01

    Short linear motifs (SLiM) are short peptides that facilitate protein function and protein-protein interactions. Viruses utilize these motifs to enter into the host, interact with cellular proteins, or egress from host cells. Studying functional motifs may help to predict protein characteristics, interactions, or the putative cellular role of a protein. In virology, it may reveal aspects of the virus tropism and help find antiviral therapeutics. This review highlights the recent understanding of functional motifs utilized by viruses. Special attention was paid to the function of proteins harboring these motifs, and viruses encoding these proteins. The review highlights motifs involved in (i) immune response and post-translational modifications (e.g., ubiquitylation, SUMOylation or ISGylation); (ii) virus-host cell interactions, including virus attachment, entry, fusion, egress and nuclear trafficking; (iii) virulence and antiviral activities; (iv) virion structure; and (v) low-complexity regions (LCRs) or motifs enriched with residues (Xaa-rich motifs). PMID:28248213

  13. What Determines the Assembly of Transcriptional Network Motifs in Escherichia coli?

    PubMed Central

    Camas, Francisco M.; Poyatos, Juan F.

    2008-01-01

    Transcriptional networks are constituted by a collection of building blocks known as network motifs. Why do motifs appear? An adaptive model of motif emergence was recently questioned in favor of neutralist scenarios. Here, we provide a new picture of motif assembly in Escherichia coli which partially clarifies these contrasting explanations. This is based on characterizing the linkage between motifs and sensing or response specificity of their constituent transcriptional factors (TFs). We find that sensing specificity influences the distribution of autoregulation, while the tendency of a TF to establish feed-forward loops (FFLs) depends on response specificity, i.e., regulon size. Analysis of the latter pattern reveals that coregulation between large regulon-size TFs is common under a network neutral model, leading to the assembly of a great number of FFLs and bifans. In addition, neutral exclusive regulation also leads to a collection of single input modules -the fourth basic motif. On the whole, and even under the conservative neutralist scenario considered, a substantial group of regulatory structures revealed adaptive. These structures visibly function as fully-fledged working units. PMID:18987754

  14. The Leader AZIMUTH Check: Factor Structure of Common Competencies

    DTIC Science & Technology

    2009-06-01

    information and distort the factor structure (King, Fogg , & Downey, 2005; Schriesheim & Eisenbach, 1995). Simply put, factor analysis will clump...Research Institute. King, C.V., Fogg , R.J., & Downey, R.G. (2004, April). The positives and negatives of negatively worded items in scales. Paper

  15. An RNA motif that binds ATP

    NASA Technical Reports Server (NTRS)

    Sassanfar, M.; Szostak, J. W.

    1993-01-01

    RNAs that contain specific high-affinity binding sites for small molecule ligands immobilized on a solid support are present at a frequency of roughly one in 10(10)-10(11) in pools of random sequence RNA molecules. Here we describe a new in vitro selection procedure designed to ensure the isolation of RNAs that bind the ligand of interest in solution as well as on a solid support. We have used this method to isolate a remarkably small RNA motif that binds ATP, a substrate in numerous biological reactions and the universal biological high-energy intermediate. The selected ATP-binding RNAs contain a consensus sequence, embedded in a common secondary structure. The binding properties of ATP analogues and modified RNAs show that the binding interaction is characterized by a large number of close contacts between the ATP and RNA, and by a change in the conformation of the RNA.

  16. Substrate recognition by the Lyn protein-tyrosine kinase. NMR structure of the immunoreceptor tyrosine-based activation motif signaling region of the B cell antigen receptor.

    PubMed

    Gaul, B S; Harrison, M L; Geahlen, R L; Burton, R A; Post, C B

    2000-05-26

    The immunoreceptor tyrosine-based activation motif (ITAM) plays a central role in transmembrane signal transduction in hematopoietic cells by mediating responses leading to proliferation and differentiation. An initial signaling event following activation of the B cell antigen receptor is phosphorylation of the CD79a (Ig-alpha) ITAM by Lyn, a Src family protein-tyrosine kinase. To elucidate the structural basis for recognition between the ITAM substrate and activated Lyn kinase, the structure of an ITAM-derived peptide bound to Lyn was determined using exchange-transferred nuclear Overhauser NMR spectroscopy. The bound substrate structure has an irregular helix-like character. Docking based on the NMR data into the active site of the closely related Lck kinase strongly favors ITAM binding in an orientation similar to binding of cyclic AMP-dependent protein kinase rather than that of insulin receptor tyrosine kinase. The model of the complex provides a rationale for conserved ITAM residues, substrate specificity, and suggests that substrate binds only the active conformation of the Src family tyrosine kinase, unlike the ATP cofactor, which can bind the inactive form.

  17. Structure of bacteriophage phi29 head fibers has a supercoiled triple repeating helix-turn-helix motif.

    PubMed

    Xiang, Ye; Rossmann, Michael G

    2011-03-22

    The tailed bacteriophage 29 capsid is decorated with 55 fibers attached to quasi-3-fold symmetry positions. Each fiber is a homotrimer of gene product 8.5 (gp8.5) and consists of two major structural parts, a pseudohexagonal base and a protruding fibrous portion that is about 110 Å in length. The crystal structure of the C-terminal fibrous portion (residues 112-280) has been determined to a resolution of 1.6 Å. The structure is about 150 Å long and shows three distinct structural domains designated as head, neck, and stem. The stem region is a unique three-stranded helix-turn-helix supercoil that has not previously been described. When fitted into a cryoelectron microscope reconstruction of the virus, the head structure corresponded to a disconnected density at the distal end of the fiber and the neck structure was located in weak density connecting it to the fiber. Thin section studies of Bacillus subtilis cells infected with fibered or fiberless 29 suggest that the fibers might enhance the attachment of the virions onto the host cell wall.

  18. Structure of bacteriophage [phi]29 head fibers has a supercoiled triple repeating helix-turn-helix motif

    SciTech Connect

    Xiang, Ye; Rossmann, Michael G.

    2011-12-22

    The tailed bacteriophage {phi}29 capsid is decorated with 55 fibers attached to quasi-3-fold symmetry positions. Each fiber is a homotrimer of gene product 8.5 (gp8.5) and consists of two major structural parts, a pseudohexagonal base and a protruding fibrous portion that is about 110 {angstrom} in length. The crystal structure of the C-terminal fibrous portion (residues 112-280) has been determined to a resolution of 1.6 {angstrom}. The structure is about 150 {angstrom} long and shows three distinct structural domains designated as head, neck, and stem. The stem region is a unique three-stranded helix-turn-helix supercoil that has not previously been described. When fitted into a cryoelectron microscope reconstruction of the virus, the head structure corresponded to a disconnected density at the distal end of the fiber and the neck structure was located in weak density connecting it to the fiber. Thin section studies of Bacillus subtilis cells infected with fibered or fiberless {phi}29 suggest that the fibers might enhance the attachment of the virions onto the host cell wall.

  19. Circular code motifs in transfer and 16S ribosomal RNAs: a possible translation code in genes.

    PubMed

    Michel, Christian J

    2012-04-01

    In 1996, a common trinucleotide circular code, called X, is identified in genes of eukaryotes and prokaryotes (Arquès and Michel, 1996). This circular code X is a set of 20 trinucleotides allowing the reading frames in genes to be retrieved locally, i.e. anywhere in genes and in particular without start codons. This reading frame retrieval needs a window length l of 12 nucleotides (l ≥ 12). With a window length strictly less than 12 nucleotides (l < 12), some words of X, called ambiguous words, are found in the shifted frames (the reading frame shifted by one or two nucleotides) preventing the reading frame in genes to be retrieved. Since 1996, these ambiguous words of X were never studied. In the first part of this paper, we identify all the ambiguous words of the common trinucleotide circular code X. With a length l varying from 1 to 11 nucleotides, the type and the occurrence number (multiplicity) of ambiguous words of X are given in each shifted frame. Maximal ambiguous words of X, words which are not factors of another ambiguous words, are also determined. Two probability definitions based on these results show that the common trinucleotide circular code X retrieves the reading frame in genes with a probability of about 90% with a window length of 6 nucleotides, and a probability of 99.9% with a window length of 9 nucleotides (100% with a window length of 12 nucleotides, by definition of a circular code). In the second part of this paper, we identify X circular code motifs (shortly X motifs) in transfer RNA and 16S ribosomal RNA: a tRNA X motif of 26 nucleotides including the anticodon stem-loop and seven 16S rRNA X motifs of length greater or equal to 15 nucleotides. Window lengths of reading frame retrieval with each trinucleotide of these X motifs are also determined. Thanks to the crystal structure 3I8G (Jenner et al., 2010), a 3D visualization of X motifs in the ribosome shows several spatial configurations involving mRNA X motifs, A-tRNA and E-tRNA X

  20. Common antigen structures of HL-A antigens

    PubMed Central

    Miyakawa, Y.; Tanigaki, N.; Yagi, Y.; Pressman, D.

    1973-01-01

    Antigenic determinants recognizable by rabbits were found to be present on the molecular fragments (48,000 Daltons) which were obtained by papain-solubilization of the membrane fractions of cultured human lymphoid cells and which carried the HL-A determinants. Results were obtained which suggest that these antigenic determinants are present in common on these molecular fragments carrying HL-A determinants regardless of their HL-A specificity and are restricted to the molecular fragments which carry HL-A determinants. The study was made by use of radioimmune methods involving the binding of radioiodine-labelled soluble HL-A antigen preparations by anti-HL-A alloantisera and by rabbit antisera raised against the membrane fractions of cultured human lymphoid cells. PMID:4119543

  1. Childhood maltreatment and the structure of common psychiatric disorders†

    PubMed Central

    Keyes, Katherine M.; Eaton, Nicholas R.; Krueger, Robert F.; McLaughlin, Katie A.; Wall, Melanie M.; Grant, Bridget F.; Hasin, Deborah S.

    2012-01-01

    Background Previous research suggests that various types of childhood maltreatment frequently co-occur and confer risk for multiple psychiatric diagnoses. This non-specific pattern of risk may mean that childhood maltreatment increases vulnerability to numerous specific psychiatric disorders through diverse, specific mechanisms or that childhood maltreatment engenders a generalised liability to dimensions of psychopathology. Although these competing explanations have different implications for intervention, they have never been evaluated empirically. Aims We used a latent variable approach to estimate the associations of childhood maltreatment with underlying dimensions of internalising and externalising psychopathology and with specific disorders after accounting for the latent dimensions. We also examined gender differences in these associations. Method Data were drawn from a nationally representative survey of 34 653 US adults. Lifetime DSM-IV psychiatric disorders were assessed using the AUDADIS-IV. Physical, sexual and emotional abuse and neglect were assessed using validated measures. Analyses controlled for other childhood adversities and sociodemographics. Results The effects were fully mediated through the latent liability dimensions, with an impact on underlying liability levels to internalising and externalising psychopathology rather than specific psychiatric disorders. Important gender differences emerged with physical abuse associated only with externalising liability in men, and only with internalising liability in women. Neglect was not significantly associated with latent liability levels. Conclusions The association between childhood maltreatment and common psychiatric disorders operates through latent liabilities to experience internalising and externalising psychopathology, indicating that the prevention of maltreatment may have a wide range of benefits in reducing the prevalence of many common mental disorders. Different forms of abuse have

  2. The structure of Plasmodium vivax phosphatidylethanolamine-binding protein suggests a functional motif containing a left-handed helix

    PubMed Central

    Arakaki, Tracy; Neely, Helen; Boni, Erica; Mueller, Natasha; Buckner, Frederick S.; Van Voorhis, Wesley C.; Lauricella, Angela; DeTitta, George; Luft, Joseph; Hol, Wim G. J.; Merritt, Ethan A.

    2007-01-01

    The structure of a putative Raf kinase inhibitor protein (RKIP) homolog from the eukaryotic parasite Plasmodium vivax has been studied to a resolution of 1.3 Å using multiple-wavelength anomalous diffraction at the Se K edge. This protozoan protein is topologically similar to previously studied members of the phosphatidylethanolamine-binding protein (PEBP) sequence family, but exhibits a distinctive left-handed α-helical region at one side of the canonical phospholipid-binding site. Re-examination of previously determined PEBP structures suggests that the P. vivax protein and yeast carboxypeptidase Y inhibitor may represent a structurally distinct subfamily of the diverse PEBP-sequence family. PMID:17329808

  3. Structure of the Single-lobe Myosin Light Chain C in Complex with the Light Chain-binding Domains of Myosin-1C Provides Insights into Divergent IQ Motif Recognition.

    PubMed

    Langelaan, David N; Liburd, Janine; Yang, Yidai; Miller, Emily; Chitayat, Seth; Crawley, Scott W; Côté, Graham P; Smith, Steven P

    2016-09-09

    Myosin light chains are key regulators of class 1 myosins and typically comprise two domains, with calmodulin being the archetypal example. They bind IQ motifs within the myosin neck region and amplify conformational changes in the motor domain. A single lobe light chain, myosin light chain C (MlcC), was recently identified and shown to specifically bind to two sequentially divergent IQ motifs of the Dictyostelium myosin-1C. To provide a molecular basis of this interaction, the structures of apo-MlcC and a 2:1 MlcC·myosin-1C neck complex were determined. The two non-functional EF-hand motifs of MlcC pack together to form a globular four-helix bundle that opens up to expose a central hydrophobic groove, which interacts with the N-terminal portion of the divergent IQ1 and IQ2 motifs. The N- and C-terminal regions of MlcC make critical contacts that contribute to its specific interactions with the myosin-1C divergent IQ motifs, which are contacts that deviate from the traditional mode of calmodulin-IQ recognition.

  4. 47 CFR 101.119 - Simultaneous use of common antenna structures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Simultaneous use of common antenna structures. 101.119 Section 101.119 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... antenna structures. The simultaneous use of common antenna structures by more than one radio station,...

  5. 47 CFR 101.119 - Simultaneous use of common antenna structures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Simultaneous use of common antenna structures. 101.119 Section 101.119 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... antenna structures. The simultaneous use of common antenna structures by more than one radio station,...

  6. 47 CFR 101.119 - Simultaneous use of common antenna structures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Simultaneous use of common antenna structures. 101.119 Section 101.119 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... antenna structures. The simultaneous use of common antenna structures by more than one radio station,...

  7. 47 CFR 101.119 - Simultaneous use of common antenna structures.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Simultaneous use of common antenna structures. 101.119 Section 101.119 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... antenna structures. The simultaneous use of common antenna structures by more than one radio station,...

  8. 47 CFR 101.119 - Simultaneous use of common antenna structures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Simultaneous use of common antenna structures. 101.119 Section 101.119 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... antenna structures. The simultaneous use of common antenna structures by more than one radio station,...

  9. 30 CFR 778.22 - Facilities or structures used in common.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Facilities or structures used in common. 778.22 Section 778.22 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... INFORMATION § 778.22 Facilities or structures used in common. The plans of a facility or structure that is...

  10. The structure of Plasmodium vivax phosphatidylethanolamine-binding protein suggests a functional motif containing a left-handed helix

    SciTech Connect

    Arakaki, Tracy; Neely, Helen; Boni, Erica; Mueller, Natasha; Buckner, Frederick S.; Van Voorhis, Wesley C.; Lauricella, Angela; DeTitta, George; Luft, Joseph; Hol, Wim G. J.; Merritt, Ethan A.

    2007-03-01

    The crystal structure of a phosphatidylethanolamine-binding protein from P. vivax, a homolog of Raf-kinase inhibitor protein (RKIP), has been solved to a resolution of 1.3 Å. The inferred interaction surface near the anion-binding site is found to include a distinctive left-handed α-helix. The structure of a putative Raf kinase inhibitor protein (RKIP) homolog from the eukaryotic parasite Plasmodium vivax has been studied to a resolution of 1.3 Å using multiple-wavelength anomalous diffraction at the Se K edge. This protozoan protein is topologically similar to previously studied members of the phosphatidylethanolamine-binding protein (PEBP) sequence family, but exhibits a distinctive left-handed α-helical region at one side of the canonical phospholipid-binding site. Re-examination of previously determined PEBP structures suggests that the P. vivax protein and yeast carboxypeptidase Y inhibitor may represent a structurally distinct subfamily of the diverse PEBP-sequence family.

  11. Instituting Change in Classroom Discourse Structure: Human and Computer-Based Motif Analysis. WCER Working Paper No. 2009-1

    ERIC Educational Resources Information Center

    Nathan, Mitchell J.; Kim, Suyeon; Grant, Timothy S.

    2009-01-01

    We compared the structure of discussions in a middle school mathematics classroom before (Year 1) and after (Year 2) teacher participation in professional development activities aimed at enhancing students' participation and the co-construction of mathematical ideas. Changes in the role of teacher and student were accompanied by identifiable…

  12. VARUN: discovering extensible motifs under saturation constraints.

    PubMed

    Apostolico, Alberto; Comin, Matteo; Parida, Laxmi

    2010-01-01

    The discovery of motifs in biosequences is frequently torn between the rigidity of the model on one hand and the abundance of candidates on the other hand. In particular, motifs that include wild cards or "don't cares" escalate exponentially with their number, and this gets only worse if a don't care is allowed to stretch up to some prescribed maximum length. In this paper, a notion of extensible motif in a sequence is introduced and studied, which tightly combines the structure of the motif pattern, as described by its syntactic specification, with the statistical measure of its occurrence count. It is shown that a combination of appropriate saturation conditions and the monotonicity of probabilistic scores over regions of constant frequency afford us significant parsimony in the generation and testing of candidate overrepresented motifs. A suite of software programs called Varun is described, implementing the discovery of extensible motifs of the type considered. The merits of the method are then documented by results obtained in a variety of experiments primarily targeting protein sequence families. Of equal importance seems the fact that the sets of all surprising motifs returned in each experiment are extracted faster and come in much more manageable sizes than would be obtained in the absence of saturation constraints.

  13. Structural Fine-Tuning of MIT-Interacting Motif 2 (MIM2) and Allosteric Regulation of ESCRT-III by Vps4 in Yeast.

    PubMed

    Kojima, Rieko; Obita, Takayuki; Onoue, Kousuke; Mizuguchi, Mineyuki

    2016-06-05

    The endosomal sorting complex required for transport (ESCRT) facilitates roles in membrane remodeling, such as multivesicular body biogenesis, enveloped virus budding and cell division. In yeast, Vps4 plays a crucial role in intraluminal vesicle formation by disassembling ESCRT proteins. Vps4 is recruited by ESCRT-III proteins to the endosomal membrane through the interaction between the microtubule interacting and trafficking (MIT) domain of Vps4 and the C-terminal MIT-interacting motif (MIM) of ESCRT-III proteins. Here, we have determined the crystal structure of Vps4-MIT in a complex with Vps20, a member of ESCRT-III, and revealed that Vps20 adopts a unique MIM2 conformation. Based on structural comparisons with other known MIM2s, we have refined the consensus sequence of MIM2. We have shown that another ESCRT-III protein, Ist1, binds to Vps4-MIT via its C-terminal MIM1 with higher affinity than Vps2, but lacks MIM2 by surface plasmon resonance. Surprisingly, the Ist1 MIM1 competed with the MIM2 of Vfa1, a regulator of Vps4, for binding to Vps4-MIT, even though these MIMs bind in non-overlapping sites on the MIT. These findings provide insight into the allosteric recognition of MIMs of ESCRT-III by Vps4 and also the regulation of ESCRT machinery at the last step of membrane remodeling.

  14. The crystal structure of the Split End protein SHARP adds a new layer of complexity to proteins containing RNA recognition motifs.

    PubMed

    Arieti, Fabiana; Gabus, Caroline; Tambalo, Margherita; Huet, Tiphaine; Round, Adam; Thore, Stéphane

    2014-06-01

    The Split Ends (SPEN) protein was originally discovered in Drosophila in the late 1990s. Since then, homologous proteins have been identified in eukaryotic species ranging from plants to humans. Every family member contains three predicted RNA recognition motifs (RRMs) in the N-terminal region of the protein. We have determined the crystal structure of the region of the human SPEN homolog that contains these RRMs-the SMRT/HDAC1 Associated Repressor Protein (SHARP), at 2.0 Å resolution. SHARP is a co-regulator of the nuclear receptors. We demonstrate that two of the three RRMs, namely RRM3 and RRM4, interact via a highly conserved interface. Furthermore, we show that the RRM3-RRM4 block is the main platform mediating the stable association with the H12-H13 substructure found in the steroid receptor RNA activator (SRA), a long, non-coding RNA previously shown to play a crucial role in nuclear receptor transcriptional regulation. We determine that SHARP association with SRA relies on both single- and double-stranded RNA sequences. The crystal structure of the SHARP-RRM fragment, together with the associated RNA-binding studies, extend the repertoire of nucleic acid binding properties of RRM domains suggesting a new hypothesis for a better understanding of SPEN protein functions.

  15. The crystal structure of the Split End protein SHARP adds a new layer of complexity to proteins containing RNA recognition motifs

    PubMed Central

    Arieti, Fabiana; Gabus, Caroline; Tambalo, Margherita; Huet, Tiphaine; Round, Adam; Thore, Stéphane

    2014-01-01

    The Split Ends (SPEN) protein was originally discovered in Drosophila in the late 1990s. Since then, homologous proteins have been identified in eukaryotic species ranging from plants to humans. Every family member contains three predicted RNA recognition motifs (RRMs) in the N-terminal region of the protein. We have determined the crystal structure of the region of the human SPEN homolog that contains these RRMs—the SMRT/HDAC1 Associated Repressor Protein (SHARP), at 2.0 Å resolution. SHARP is a co-regulator of the nuclear receptors. We demonstrate that two of the three RRMs, namely RRM3 and RRM4, interact via a highly conserved interface. Furthermore, we show that the RRM3–RRM4 block is the main platform mediating the stable association with the H12–H13 substructure found in the steroid receptor RNA activator (SRA), a long, non-coding RNA previously shown to play a crucial role in nuclear receptor transcriptional regulation. We determine that SHARP association with SRA relies on both single- and double-stranded RNA sequences. The crystal structure of the SHARP–RRM fragment, together with the associated RNA-binding studies, extend the repertoire of nucleic acid binding properties of RRM domains suggesting a new hypothesis for a better understanding of SPEN protein functions. PMID:24748666

  16. Reversibly Bound Chloride in the Atrial Natriuretic Peptide Receptor Hormone Binding Domain: Possible Allosteric Regulation and a Conserved Structural Motif for the Chloride-binding Site

    SciTech Connect

    Ogawa, H.; Qiu, Y; Philo, J; Arakawa, T; Ogata, C; Misono, K

    2010-01-01

    The binding of atrial natriuretic peptide (ANP) to its receptor requires chloride, and it is chloride concentration dependent. The extracellular domain (ECD) of the ANP receptor (ANPR) contains a chloride near the ANP-binding site, suggesting a possible regulatory role. The bound chloride, however, is completely buried in the polypeptide fold, and its functional role has remained unclear. Here, we have confirmed that chloride is necessary for ANP binding to the recombinant ECD or the full-length ANPR expressed in CHO cells. ECD without chloride (ECD(-)) did not bind ANP. Its binding activity was fully restored by bromide or chloride addition. A new X-ray structure of the bromide-bound ECD is essentially identical to that of the chloride-bound ECD. Furthermore, bromide atoms are localized at the same positions as chloride atoms both in the apo and in the ANP-bound structures, indicating exchangeable and reversible halide binding. Far-UV CD and thermal unfolding data show that ECD(-) largely retains the native structure. Sedimentation equilibrium in the absence of chloride shows that ECD(-) forms a strongly associated dimer, possibly preventing the structural rearrangement of the two monomers that is necessary for ANP binding. The primary and tertiary structures of the chloride-binding site in ANPR are highly conserved among receptor-guanylate cyclases and metabotropic glutamate receptors. The chloride-dependent ANP binding, reversible chloride binding, and the highly conserved chloride-binding site motif suggest a regulatory role for the receptor bound chloride. Chloride-dependent regulation of ANPR may operate in the kidney, modulating ANP-induced natriuresis.

  17. The poly dA helix: a new structural motif for high performance DNA-based molecular switches

    PubMed Central

    Chakraborty, Saikat; Sharma, Suruchi; Maiti, Prabal K.; Krishnan, Yamuna

    2009-01-01

    We report a pH-dependent conformational transition in short, defined homopolymeric deoxyadenosines (dA15) from a single helical structure with stacked nucleobases at neutral pH to a double-helical, parallel-stranded duplex held together by AH+-H+A base pairs at acidic pH. Using native PAGE, 2D NMR, circular dichroism (CD) and fluorescence spectroscopy, we have characterized the two different pH dependent forms of dA15. The pH-triggered transition between the two defined helical forms of dA15 is characterized by CD and fluorescence. The kinetics of this conformational switch is found to occur on a millisecond time scale. This robust, highly reversible, pH-induced transition between the two well-defined structured states of dA15 represents a new molecular building block for the construction of quick-response, pH-switchable architectures in structural DNA nanotechnology. PMID:19279188

  18. Peptidoglycan perception--sensing bacteria by their common envelope structure.

    PubMed

    Bertsche, Ute; Mayer, Christoph; Götz, Friedrich; Gust, Andrea A

    2015-02-01

    Most Eubacteria possess peptidoglycan (PGN) or murein that surrounds the cytoplasmic membrane. While on the one hand this PGN sacculus is a very protective shield that provides resistance to the internal turgor and adverse effects of the environment, it serves on the other hand as a major pattern of recognition due to its unique structure. Eukaryotes harness this particular bacterial macromolecule to perceive (pathogenic) microorganisms and initiate their immune defence. PGN fragments are generated by bacteria as turnover products during bacterial cell wall growth and these fragments can be sensed by plants and animals to assess a potential bacterial threat. To increase the sensitivity the concentration of PGN fragments can be amplified by host hydrolytic enzymes such as lysozyme or amidase. But also bacteria themselves are able to perceive information about the state of their cell wall by sensing small soluble fragments released from its PGN, which eventually leads to the induction of antibiotic responses or cell differentiation. How PGN is sensed by bacteria, plants and animals, and how the antibacterial defence is modulated by PGN perception is the issue of this review.

  19. Common hippocampal structural and functional changes in migraine

    PubMed Central

    Maleki, Nasim; Becerra, Lino; Brawn, Jennifer; McEwen, Bruce; Burstein, Rami; Borsook, David

    2013-01-01

    The hippocampus is classically involved in memory consolidation, spatial navigation and is involved in the stress response. Migraine is an episodic disorder characterized by intermittent attacks with a number of physiological and emotional stressors associated with or provoking each attack. Given that migraine attacks can be viewed as repeated stressors, alterations in hippocampal function and structure may play an important role in migraine pathophysiology. Using high-resolution magnetic resonance imaging, hippocampal morphometric and functional differences (in response to noxious heat stimulation) were compared in age and gender-matched acute episodic migraineurs with high (HF) versus low (LF) frequency of migraine attacks. Morphometric results were compared with age and gender-matched healthy control (HC) cohort. Significant larger bilateral hippocampal volume was found in LF group relative to the HF and HC groups suggestive of an initial adaptive plasticity that may then become dysfunctional with increased frequency. Functional correlates of greater deactivation (LF > HF) in the same hippocampal regions in response to noxious stimulation was also accompanied by overall reduction in functional connectivity of the hippocampus with other brain regions involved in pain processing in the HF group. The results implicate involvement of hippocampus in the pathophysiology of the migraine. PMID:22760159

  20. Recognition and stabilization of a unique CPRI--structural motif in cucurbitaceae family trypsin inhibitor peptides: molecular dynamics based homology modeling using the X-ray structure of MCTI-II.

    PubMed

    Chakraborty, S; Haldar, U; Bera, A K; Pal, A K; Bhattacharya, S; Ghosh, S; Mukhopadhyay, B P; Banerjee, A

    2001-02-01

    The high resolution crystallographic structure of MCTI-II complexed with beta trypsin (PDB entry 1MCT) was used to model the corresponding structures of the six inhibitor peptides belonging to Cucurbitaceae family (MCTI-I, LA-1, LA-2, CMTI-I, CMTI-III, CMTI-IV). Two model inhibitors, LA-1 and LA-2 were refined by molecular dynamics to estimate the average solution structure. The difference accessible surface area (DASA) study of the inhibitors with and without trypsin revealed the Arginine and other residues of the inhibitors which bind to trypsin. The hydration dynamics study of LA1 and LA2 also confirm the suitability of water molecules at the active Arg site. Moreover, the presence of a unique 3D-structural motif comprises with the four CPRI residues from the amino terminal is thought to be conserved in all the six studied inhibitors, which seems essential for the directional fixation for proper complexation of the Arg (5) residue towards the trypsin S1-binding pocket. The role of the disulphide linkage in the geometrical stabilization of CPRI (Cysteine, Proline, Arginine, Isoleucine) motif has also been envisaged from the comparative higher intra molecular Cys (3) -Cys (20) disulphide dihedral energies.

  1. Structural Studies of the Nudix GDP-mannose Hydrolase from E. coli Reveals a New Motif for Mannose Recognition

    SciTech Connect

    A Boto; W Xu; J Jakoncic; A Pannuri; T Romeo; M Bessman; S Gabelli; L Amzel

    2011-12-31

    The Nudix hydrolase superfamily, characterized by the presence of the signature sequence GX5EX7REUXEEXGU (where U is I, L, or V), is a well-studied family in which relations have been established between primary sequence and substrate specificity for many members. For example, enzymes that hydrolyze the diphosphate linkage of ADP-ribose are characterized by having a proline 15 amino acids C-terminal of the Nudix signature sequence. GDPMK is a Nudix enzyme that conserves this characteristic proline but uses GDP-mannose as the preferred substrate. By investigating the structure of the GDPMK alone, bound to magnesium, and bound to substrate, the structural basis for this divergent substrate specificity and a new rule was identified by which ADP-ribose pyrophosphatases can be distinguished from purine-DP-mannose pyrophosphatases from primary sequence alone. Kinetic and mutagenesis studies showed that GDPMK hydrolysis does not rely on a single glutamate as the catalytic base. Instead, catalysis is dependent on residues that coordinate the magnesium ions and residues that position the substrate properly for catalysis. GDPMK was thought to play a role in biofilm formation because of its upregulation in response to RcsC signaling; however, GDPMK knockout strains show no defect in their capacity of forming biofilms.

  2. Motif enrichment tool.

    PubMed

    Blatti, Charles; Sinha, Saurabh

    2014-07-01

    The Motif Enrichment Tool (MET) provides an online interface that enables users to find major transcriptional regulators of their gene sets of interest. MET searches the appropriate regulatory region around each gene and identifies which transcription factor DNA-binding specificities (motifs) are statistically overrepresented. Motif enrichment analysis is currently available for many metazoan species including human, mouse, fruit fly, planaria and flowering plants. MET also leverages high-throughput experimental data such as ChIP-seq and DNase-seq from ENCODE and ModENCODE to identify the regulatory targets of a transcription factor with greater precision. The results from MET are produced in real time and are linked to a genome browser for easy follow-up analysis. Use of the web tool is free and open to all, and there is no login requirement. ADDRESS: http://veda.cs.uiuc.edu/MET/.

  3. Multitarget compounds bearing tacrine- and donepezil-like structural and functional motifs for the potential treatment of Alzheimer's disease.

    PubMed

    Ismaili, Lhassane; Refouvelet, Bernard; Benchekroun, Mohamed; Brogi, Simone; Brindisi, Margherita; Gemma, Sandra; Campiani, Giuseppe; Filipic, Slavica; Agbaba, Danica; Esteban, Gerard; Unzeta, Mercedes; Nikolic, Katarina; Butini, Stefania; Marco-Contelles, José

    2017-04-01

    Alzheimer's disease is a multifactorial and fatal neurodegenerative disorder characterized by decline of cholinergic function, deregulation of other neurotransmitter systems, β-amyloid fibril deposition, and β-amyloid oligomers formation. Based on the involvement of a relevant number of biological systems in Alzheimer's disease progression, multitarget compounds may enable therapeutic efficacy. Accordingly, compounds possessing, besides anticholinergic activity and β-amyloid aggregation inhibition properties, metal chelating and/or nitric oxide releasing properties with additional antioxidant capacity were developed. Other targets relevant to Alzheimer's disease have also been considered in the last years for producing multitarget compounds such as β-secretase, monoamino oxidases, serotonin receptors and sigma 1 receptors. The purpose of this review will be to highlight recent reports on the development of multitarget compounds for Alzheimer's disease published within the last years focusing on multifunctional ligands characterized by tacrine-like and donepezil-like structures.

  4. Synthesis-driven, structure-dependent optical behavior in phase-tunable NaYF4:Yb,Er-based motifs and associated heterostructures

    DOE PAGES

    Liu, Haiqing; Han, Jinkyu; McBean, Coray; ...

    2017-01-03

    Understanding the key parameters necessary for generating uniform Er,Yb co-activated NaYF4 possessing various selected phases (i.e. cubic or hexagonal) represents an important chemical strategy towards tailoring optical behavior in these systems. In this paper, we report on a straightforward hydrothermal synthesis in which the separate effects of reaction temperature, reaction time, and precursor stoichiometry in the absence of any surfactant were independently investigated. Interestingly, the presence and the concentration of NH4OH appear to be the most critical determinants of the phase and morphology. For example, with NH4OH as an additive, we have observed the formation of novel hierarchical nanowire bundlesmore » which possess overall lengths of ~5 μm and widths of ~1.5 μm but are composed of constituent component sub-units of long, ultrathin (~5 nm) nanowires. These motifs have yet to be reported as distinctive morphological manifestations of fluoride materials. The optical properties of as-generated structures have also been carefully analyzed. Specifically, we have observed tunable, structure-dependent energy transfer behavior associated with the formation of a unique class of NaYF4–CdSe quantum dot (QD) heterostructures, incorporating zero-dimensional (0D), one-dimensional (1D), and three-dimensional (3D) NaYF4 structures. Our results have demonstrated the key roles of the intrinsic morphology-specific physical surface area and porosity as factors in governing the resulting opto-electronic behavior. Finally and specifically, the trend in energy transfer efficiency correlates well with the corresponding QD loading within these heterostructures, thereby implying that the efficiency of FRET appears to be directly affected by the amount of QDs immobilized onto the external surfaces of the underlying fluoride host materials.« less

  5. Novel Binding Motif and New Flexibility Revealed by Structural Analyses of a Pyruvate Dehydrogenase-Dihydrolipoyl Acetyltransferase Subcomplex from the Escherichia coli Pyruvate Dehydrogenase Multienzyme Complex*

    PubMed Central

    Arjunan, Palaniappa; Wang, Junjie; Nemeria, Natalia S.; Reynolds, Shelley; Brown, Ian; Chandrasekhar, Krishnamoorthy; Calero, Guillermo; Jordan, Frank; Furey, William

    2014-01-01

    The Escherichia coli pyruvate dehydrogenase multienzyme complex contains multiple copies of three enzymatic components, E1p, E2p, and E3, that sequentially carry out distinct steps in the overall reaction converting pyruvate to acetyl-CoA. Efficient functioning requires the enzymatic components to assemble into a large complex, the integrity of which is maintained by tethering of the displaced, peripheral E1p and E3 components to the E2p core through non-covalent binding. We here report the crystal structure of a subcomplex between E1p and an E2p didomain containing a hybrid lipoyl domain along with the peripheral subunit-binding domain responsible for tethering to the core. In the structure, a region at the N terminus of each subunit in the E1p homodimer previously unseen due to crystallographic disorder was observed, revealing a new folding motif involved in E1p-E2p didomain interactions, and an additional, unexpected, flexibility was discovered in the E1p-E2p didomain subcomplex, both of which probably have consequences in the overall multienzyme complex assembly. This represents the first structure of an E1p-E2p didomain subcomplex involving a homodimeric E1p, and the results may be applicable to a large range of complexes with homodimeric E1 components. Results of HD exchange mass spectrometric experiments using the intact, wild type 3-lipoyl E2p and E1p are consistent with the crystallographic data obtained from the E1p-E2p didomain subcomplex as well as with other biochemical and NMR data reported from our groups, confirming that our findings are applicable to the entire E1p-E2p assembly. PMID:25210042

  6. [Personal motif in art].

    PubMed

    Gerevich, József

    2015-01-01

    One of the basic questions of the art psychology is whether a personal motif is to be found behind works of art and if so, how openly or indirectly it appears in the work itself. Analysis of examples and documents from the fine arts and literature allow us to conclude that the personal motif that can be identified by the viewer through symbols, at times easily at others with more difficulty, gives an emotional plus to the artistic product. The personal motif may be found in traumatic experiences, in communication to the model or with other emotionally important persons (mourning, disappointment, revenge, hatred, rivalry, revolt etc.), in self-searching, or self-analysis. The emotions are expressed in artistic activity either directly or indirectly. The intention nourished by the artist's identity (Kunstwollen) may stand in the way of spontaneous self-expression, channelling it into hidden paths. Under the influence of certain circumstances, the artist may arouse in the viewer, consciously or unconsciously, an illusionary, misleading image of himself. An examination of the personal motif is one of the important research areas of art therapy.

  7. Cross-disciplinary detection and analysis of network motifs.

    PubMed

    Tran, Ngoc Tam L; DeLuccia, Luke; McDonald, Aidan F; Huang, Chun-Hsi

    2015-01-01

    The detection of network motifs has recently become an important part of network analysis across all disciplines. In this work, we detected and analyzed network motifs from undirected and directed networks of several different disciplines, including biological network, social network, ecological network, as well as other networks such as airlines, power grid, and co-purchase of political books networks. Our analysis revealed that undirected networks are similar at the basic three and four nodes, while the analysis of directed networks revealed the distinction between networks of different disciplines. The study showed that larger motifs contained the three-node motif as a subgraph. Topological analysis revealed that similar networks have similar small motifs, but as the motif size increases, differences arise. Pearson correlation coefficient showed strong positive relationship between some undirected networks but inverse relationship between some directed networks. The study suggests that the three-node motif is a building block of larger motifs. It also suggests that undirected networks share similar low-level structures. Moreover, similar networks share similar small motifs, but larger motifs define the unique structure of individuals. Pearson correlation coefficient suggests that protein structure networks, dolphin social network, and co-authorships in network science belong to a superfamily. In addition, yeast protein-protein interaction network, primary school contact network, Zachary's karate club network, and co-purchase of political books network can be classified into a superfamily.

  8. Rapid loss of structural motifs in the manganese complex of oxygenic photosynthesis by X-ray irradiation at 10-300 K.

    PubMed

    Grabolle, Markus; Haumann, Michael; Müller, Claudia; Liebisch, Peter; Dau, Holger

    2006-02-24

    Structural changes upon photoreduction caused by x-ray irradiation of the water-oxidizing tetramanganese complex of photosystem II were investigated by x-ray absorption spectroscopy at the manganese K-edge. Photoreduction was directly proportional to the x-ray dose. It was faster in the higher oxidized S2 state than in S1; seemingly the oxidizing potential of the metal site governs the rate. X-ray irradiation of the S1 state at 15 K initially caused single-electron reduction to S0* accompanied by the conversion of one di-mu-oxo bridge between manganese atoms, previously separated by approximately 2.7 A, to a mono-mu-oxo motif. Thereafter, manganese photoreduction was 100 times slower, and the biphasic increase in its rate between 10 and 300 K with a breakpoint at approximately 200 K suggests that protein dynamics is rate-limiting the radical chemistry. For photoreduction at similar x-ray doses as applied in protein crystallography, halfway to the final Mn(II)4 state the complete loss of inter-manganese distances <3 A was observed, even at 10 K, because of the destruction of mu-oxo bridges between manganese ions. These results put into question some structural attributions from recent protein crystallography data on photosystem II. It is proposed to employ controlled x-ray photoreduction in metalloprotein research for: (i) population of distinct reduced states, (ii) estimating the redox potential of buried metal centers, and (iii) research on protein dynamics.

  9. Synthesis, X-ray crystal structures, and gas sorption properties of pillared square grid nets based on paddle-wheel motifs: implications for hydrogen storage in porous materials.

    PubMed

    Chun, Hyungphil; Dybtsev, Danil N; Kim, Hyunuk; Kim, Kimoon

    2005-06-06

    A systematic modulation of organic ligands connecting dinuclear paddle-wheel motifs leads to a series of isomorphous metal-organic porous materials that have a three-dimensional connectivity and interconnected pores. Aromatic dicarboxylates such as 1,4-benzenedicarboxylate (1,4-bdc), tetramethylterephthalate (tmbdc), 1,4-naphthalenedicarboxylate (1,4-ndc), tetrafluoroterephthalate (tfbdc), or 2,6-naphthalenedicarboxylate (2,6-ndc) are linear linkers that form two-dimensional layers, and diamine ligands, 4-diazabicyclo[2.2.2]octane (dabco) or 4,4'-dipyridyl (bpy), coordinate at both sides of Zn(2) paddle-wheel units to bridge the layers vertically. The resulting open frameworks [Zn(2)(1,4-bdc)(2)(dabco)] (1), [Zn(2)(1,4-bdc)(tmbdc)(dabco)] (2), [Zn(2)(tmbdc)(2)(dabco)] (3), [Zn(2)(1,4-ndc)(2)(dabco)] (4), [Zn(2)(tfbdc)(2)(dabco)] (5), and [Zn(2)(tmbdc)(2)(bpy)] (8) possess varying size of pores and free apertures originating from the side groups of the 1,4-bdc derivatives. [Zn(2)(1,4-bdc)(2)(bpy)] (6) and [Zn(2)(2,6-ndc)(2)(bpy)] (7) have two- and threefold interpenetrating structures, respectively. The non-interpenetrating frameworks (1-5 and 8) possess surface areas in the range of 1450-2090 m(2)g(-1) and hydrogen sorption capacities of 1.7-2.1 wt % at 78 K and 1 atm. A detailed analysis of the sorption data in conjunction with structural similarities and differences concludes that porous materials with straight channels and large openings do not perform better than those with wavy channels and small openings in terms of hydrogen storage through physisorption.

  10. Molecular dynamics simulations reveal the balance of forces governing the formation of a guanine tetrad—a common structural unit of G-quadruplex DNA

    PubMed Central

    Kogut, Mateusz; Kleist, Cyprian; Czub, Jacek

    2016-01-01

    G-quadruplexes (G4) are nucleic acid conformations of guanine-rich sequences, in which guanines are arranged in the square-planar G-tetrads, stacked on one another. G4 motifs form in vivo and are implicated in regulation of such processes as gene expression and chromosome maintenance. The structure and stability of various G4 topologies were determined experimentally; however, the driving forces for their formation are not fully understood at the molecular level. Here, we used all-atom molecular dynamics to probe the microscopic origin of the G4 motif stability. By computing the free energy profiles governing the dissociation of the 3′-terminal G-tetrad in the telomeric parallel-stranded G4, we examined the thermodynamic and kinetic stability of a single G-tetrad, as a common structural unit of G4 DNA. Our results indicate that the energetics of guanine association alone does not explain the overall stability of the G-tetrad and that interactions involving sugar–phosphate backbone, in particular, the constrained minimization of the phosphate–phosphate repulsion energy, are crucial in providing the observed enthalpic stabilization. This enthalpic gain is largely compensated by the unfavorable entropy change due to guanine association and optimization of the backbone topology. PMID:26980278

  11. Identification of tertiary structure resemblance in proteins using a maximal common subgraph isomorphism algorithm.

    PubMed

    Grindley, H M; Artymiuk, P J; Rice, D W; Willett, P

    1993-02-05

    A program called PROTEP is described that permits the rapid comparison of pairs of three-dimensional protein structures to identify the patterns of secondary structure elements that they have in common. The representation of the protein structures as labelled graphs, where the secondary structure elements in a protein and the spatial and angular relationships between them correspond to the nodes and edges of a graph, was developed for use with an earlier program, called POSSUM, which identified subgraph isomorphisms in protein structures. PROTEP takes this representation and uses a different and more flexible approach to locating structural patterns in pairs of proteins, using a maximal common subgraph isomorphism algorithm that is based on a clique detection procedure. A range of searches is described to demonstrate that areas of common structural overlap between protein structures taken from the Protein Data Bank can be identified both effectively and efficiently.

  12. Efficient Binding of the NOS1AP C-Terminus to the nNOS PDZ Pocket Requires the Concerted Action of the PDZ Ligand Motif, the Internal ExF Site and Structural Integrity of an Independent Element

    PubMed Central

    Li, Li-Li; Cisek, Katryna; Courtney, Michael J.

    2017-01-01

    Neuronal nitric oxide synthase is widely regarded as an important contributor to a number of disorders of excitable tissues. Recently the adaptor protein NOS1AP has emerged as a contributor to several nNOS-linked conditions. As a consequence, the unexpectedly complex mechanisms of interaction between nNOS and its effector NOS1AP have become a particularly interesting topic from the point of view of both basic research and the potential for therapeutic applications. Here we demonstrate that the concerted action of two previously described motif regions contributing to the interaction of nNOS with NOS1AP, the ExF region and the PDZ ligand motif, efficiently excludes an alternate ligand from the nNOS-PDZ ligand-binding pocket. Moreover, we identify an additional element with a denaturable structure that contributes to interaction of NOS1AP with nNOS. Denaturation does not affect the functions of the individual motifs and results in a relatively mild drop, ∼3-fold, of overall binding affinity of the C-terminal region of NOS1AP for nNOS. However, denaturation selectively prevents the concerted action of the two motifs that normally results in efficient occlusion of the PDZ ligand-binding pocket, and results in 30-fold reduction of competition between NOS1AP and an alternate PDZ ligand. PMID:28360833

  13. Discriminative motif analysis of high-throughput dataset

    PubMed Central

    Yao, Zizhen; MacQuarrie, Kyle L.; Fong, Abraham P.; Tapscott, Stephen J.; Ruzzo, Walter L.; Gentleman, Robert C.

    2014-01-01

    Motivation: High-throughput ChIP-seq studies typically identify thousands of peaks for a single transcription factor (TF). It is common for traditional motif discovery tools to predict motifs that are statistically significant against a naïve background distribution but are of questionable biological relevance. Results: We describe a simple yet effective algorithm for discovering differential motifs between two sequence datasets that is effective in eliminating systematic biases and scalable to large datasets. Tested on 207 ENCODE ChIP-seq datasets, our method identifies correct motifs in 78% of the datasets with known motifs, demonstrating improvement in both accuracy and efficiency compared with DREME, another state-of-art discriminative motif discovery tool. More interestingly, on the remaining more challenging datasets, we identify common technical or biological factors that compromise the motif search results and use advanced features of our tool to control for these factors. We also present case studies demonstrating the ability of our method to detect single base pair differences in DNA specificity of two similar TFs. Lastly, we demonstrate discovery of key TF motifs involved in tissue specification by examination of high-throughput DNase accessibility data. Availability: The motifRG package is publically available via the bioconductor repository. Contact: yzizhen@fhcrc.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24162561

  14. Structure and expression of fibulin-2, a novel extracellular matrix protein with multiple EGF-like repeats and consensus motifs for calcium binding

    PubMed Central

    1993-01-01

    A new protein, fibulin-2, was predicted from sequence analysis of cDNA clones obtained from a mouse fibroblast library. This protein consists of a 1195-residue polypeptide preceded by a 26-residue signal peptide. The COOH-terminal region of 787 amino acids contained three anaphylatoxin-related segments (domain I), 11 EGF-like repeats (domain II), 10 of which had a consensus motif for calcium-binding, and a 115- residue globular domain III. Except for two additional EGF-like repeats, this COOH-terminal region showed 43% sequence identity with the previously described fibulin-1 (BM-90). The NH2-terminal 408 residues, unique to fibulin-2, showed no sequence homology to other known proteins and presumably form two additional domains that differ in their cysteine content. Recombinant fibulin-2 was produced and secreted by human cell clones as a disulfide-bonded trimer. Rotary shadowing visualized the protein as three 40-45 nm long rods which are connected at one end in a globe-like structure. No significant immunological cross-reaction could be detected between fibulin-1 and fibulin-2. Production of the fibulin-2 was demonstrated by Northern blots and radioimmunoassay in fibroblasts but not in several tumor cell lines. Together with the observation that the serum level of fibulin-2 is 1,000-fold lower than that of fibulin-1, the data indicate that these two isoforms are not always coordinately expressed. This is also suggested by Northern blots of tissue mRNAs and by immunofluorescence localizations using mouse tissues. The latter studies also demonstrated an extracellular localization for fibulin-2 in basement membranes and other connective tissue compartments. PMID:8245130

  15. Characteristic motifs for families of allergenic proteins

    PubMed Central

    Ivanciuc, Ovidiu; Garcia, Tzintzuni; Torres, Miguel; Schein, Catherine H.; Braun, Werner

    2008-01-01

    The identification of potential allergenic proteins is usually done by scanning a database of allergenic proteins and locating known allergens with a high sequence similarity. However, there is no universally accepted cut-off value for sequence similarity to indicate potential IgE cross-reactivity. Further, overall sequence similarity may be less important than discrete areas of similarity in proteins with homologous structure. To identify such areas, we first classified all allergens and their subdomains in the Structural Database of Allergenic Proteins (SDAP, http://fermi.utmb.edu/SDAP/) to their closest protein families as defined in Pfam, and identified conserved physicochemical property motifs characteristic of each group of sequences. Allergens populate only a small subset of all known Pfam families, as all allergenic proteins in SDAP could be grouped to only 130 (of 9318 total) Pfams, and 31 families contain more than four allergens. Conserved physicochemical property motifs for the aligned sequences of the most populated Pfam families were identified with the PCPMer program suite and catalogued in the webserver Motif-Mate (http://born.utmb.edu/motifmate/summary.php). We also determined specific motifs for allergenic members of a family that could distinguish them from non-allergenic ones. These allergen specific motifs should be most useful in database searches for potential allergens. We found that sequence motifs unique to the allergens in three families (seed storage proteins, Bet v 1, and tropomyosin) overlap with known IgE epitopes, thus providing evidence that our motif based approach can be used to assess the potential allergenicity of novel proteins. PMID:18951633

  16. Definition of the consensus motif recognized by gamma-adaptin ear domains.

    PubMed

    Mattera, Rafael; Ritter, Brigitte; Sidhu, Sachdev S; McPherson, Peter S; Bonifacino, Juan S

    2004-02-27

    The heterotetrameric adaptor complex 1 (AP-1) and the monomeric Golgi-localized, gamma ear-containing, Arf-binding (GGA) proteins are components of clathrin coats associated with the trans-Golgi network and endosomes. The carboxyl-terminal ear domains (or gamma-adaptin ear (GAE) domains) of two gamma-adaptin subunit isoforms of AP-1 and of the GGAs are structurally similar and bind to a common set of accessory proteins. In this study, we have systematically defined a core tetrapeptide motif PsiG(P/D/E)(Psi/L/M) (where Psi is an aromatic residue), which is responsible for the interactions of accessory proteins with GAE domains. The definition of this motif has allowed us to identify novel GAE-binding partners named NECAP and aftiphilin, which also contain clathrin-binding motifs. These findings shed light on the mechanism of accessory protein recruitment to trans-Golgi network and endosomal clathrin coats.

  17. STEME: efficient EM to find motifs in large data sets.

    PubMed

    Reid, John E; Wernisch, Lorenz

    2011-10-01

    MEME and many other popular motif finders use the expectation-maximization (EM) algorithm to optimize their parameters. Unfortunately, the running time of EM is linear in the length of the input sequences. This can prohibit its application to data sets of the size commonly generated by high-throughput biological techniques. A suffix tree is a data structure that can efficiently index a set of sequences. We describe an algorithm, Suffix Tree EM for Motif Elicitation (STEME), that approximates EM using suffix trees. To the best of our knowledge, this is the first application of suffix trees to EM. We provide an analysis of the expected running time of the algorithm and demonstrate that STEME runs an order of magnitude more quickly than the implementation of EM used by MEME. We give theoretical bounds for the quality of the approximation and show that, in practice, the approximation has a negligible effect on the outcome. We provide an open source implementation of the algorithm that we hope will be used to speed up existing and future motif search algorithms.

  18. The bioactive acidic serine- and aspartate-rich motif peptide.

    PubMed

    Minamizaki, Tomoko; Yoshiko, Yuji

    2015-01-01

    The organic component of the bone matrix comprises 40% dry weight of bone. The organic component is mostly composed of type I collagen and small amounts of non-collagenous proteins (NCPs) (10-15% of the total bone protein content). The small integrin-binding ligand N-linked glycoprotein (SIBLING) family, a NCP, is considered to play a key role in bone mineralization. SIBLING family of proteins share common structural features and includes the arginine-glycine-aspartic acid (RGD) motif and acidic serine- and aspartic acid-rich motif (ASARM). Clinical manifestations of gene mutations and/or genetically modified mice indicate that SIBLINGs play diverse roles in bone and extraskeletal tissues. ASARM peptides might not be primary responsible for the functional diversity of SIBLINGs, but this motif is suggested to be a key domain of SIBLINGs. However, the exact function of ASARM peptides is poorly understood. In this article, we discuss the considerable progress made in understanding the role of ASARM as a bioactive peptide.

  19. Motif-role-fingerprints: the building-blocks of motifs, clustering-coefficients and transitivities in directed networks.

    PubMed

    McDonnell, Mark D; Yaveroğlu, Ömer Nebil; Schmerl, Brett A; Iannella, Nicolangelo; Ward, Lawrence M

    2014-01-01

    Complex networks are frequently characterized by metrics for which particular subgraphs are counted. One statistic from this category, which we refer to as motif-role fingerprints, differs from global subgraph counts in that the number of subgraphs in which each node participates is counted. As with global subgraph counts, it can be important to distinguish between motif-role fingerprints that are 'structural' (induced subgraphs) and 'functional' (partial subgraphs). Here we show mathematically that a vector of all functional motif-role fingerprints can readily be obtained from an arbitrary directed adjacency matrix, and then converted to structural motif-role fingerprints by multiplying that vector by a specific invertible conversion matrix. This result demonstrates that a unique structural motif-role fingerprint exists for any given functional motif-role fingerprint. We demonstrate a similar result for the cases of functional and structural motif-fingerprints without node roles, and global subgraph counts that form the basis of standard motif analysis. We also explicitly highlight that motif-role fingerprints are elemental to several popular metrics for quantifying the subgraph structure of directed complex networks, including motif distributions, directed clustering coefficient, and transitivity. The relationships between each of these metrics and motif-role fingerprints also suggest new subtypes of directed clustering coefficients and transitivities. Our results have potential utility in analyzing directed synaptic networks constructed from neuronal connectome data, such as in terms of centrality. Other potential applications include anomaly detection in networks, identification of similar networks and identification of similar nodes within networks. Matlab code for calculating all stated metrics following calculation of functional motif-role fingerprints is provided as S1 Matlab File.

  20. PRELIMINARY ANALYSIS OF COMMON LOON GENETIC STRUCTURE IN NORTH AMERICA BASED ON FIVE MICROSATELLITE LOCI

    EPA Science Inventory

    This study seeks to determine fine-scale genetic structure of Common Loon breeding populations in order to link wintering birds with their breeding regions. Common Loons are large piscivorous birds that breed in lakes of northern North America and Iceland. Loons are highly phil...

  1. Gibbs motif sampling: detection of bacterial outer membrane protein repeats.

    PubMed Central

    Neuwald, A. F.; Liu, J. S.; Lawrence, C. E.

    1995-01-01

    The detection and alignment of locally conserved regions (motifs) in multiple sequences can provide insight into protein structure, function, and evolution. A new Gibbs sampling algorithm is described that detects motif-encoding regions in sequences and optimally partitions them into distinct motif models; this is illustrated using a set of immunoglobulin fold proteins. When applied to sequences sharing a single motif, the sampler can be used to classify motif regions into related submodels, as is illustrated using helix-turn-helix DNA-binding proteins. Other statistically based procedures are described for searching a database for sequences matching motifs found by the sampler. When applied to a set of 32 very distantly related bacterial integral outer membrane proteins, the sampler revealed that they share a subtle, repetitive motif. Although BLAST (Altschul SF et al., 1990, J Mol Biol 215:403-410) fails to detect significant pairwise similarity between any of the sequences, the repeats present in these outer membrane proteins, taken as a whole, are highly significant (based on a generally applicable statistical test for motifs described here). Analysis of bacterial porins with known trimeric beta-barrel structure and related proteins reveals a similar repetitive motif corresponding to alternating membrane-spanning beta-strands. These beta-strands occur on the membrane interface (as opposed to the trimeric interface) of the beta-barrel. The broad conservation and structural location of these repeats suggests that they play important functional roles. PMID:8520488

  2. New model framework and structure and the commonality evaluation model. [concerning unmanned spacecraft projects

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The development of a framework and structure for shuttle era unmanned spacecraft projects and the development of a commonality evaluation model is documented. The methodology developed for model utilization in performing cost trades and comparative evaluations for commonality studies is discussed. The model framework consists of categories of activities associated with the spacecraft system's development process. The model structure describes the physical elements to be treated as separate identifiable entities. Cost estimating relationships for subsystem and program-level components were calculated.

  3. Motif-Role-Fingerprints: The Building-Blocks of Motifs, Clustering-Coefficients and Transitivities in Directed Networks

    PubMed Central

    McDonnell, Mark D.; Yaveroğlu, Ömer Nebil; Schmerl, Brett A.; Iannella, Nicolangelo; Ward, Lawrence M.

    2014-01-01

    Complex networks are frequently characterized by metrics for which particular subgraphs are counted. One statistic from this category, which we refer to as motif-role fingerprints, differs from global subgraph counts in that the number of subgraphs in which each node participates is counted. As with global subgraph counts, it can be important to distinguish between motif-role fingerprints that are ‘structural’ (induced subgraphs) and ‘functional’ (partial subgraphs). Here we show mathematically that a vector of all functional motif-role fingerprints can readily be obtained from an arbitrary directed adjacency matrix, and then converted to structural motif-role fingerprints by multiplying that vector by a specific invertible conversion matrix. This result demonstrates that a unique structural motif-role fingerprint exists for any given functional motif-role fingerprint. We demonstrate a similar result for the cases of functional and structural motif-fingerprints without node roles, and global subgraph counts that form the basis of standard motif analysis. We also explicitly highlight that motif-role fingerprints are elemental to several popular metrics for quantifying the subgraph structure of directed complex networks, including motif distributions, directed clustering coefficient, and transitivity. The relationships between each of these metrics and motif-role fingerprints also suggest new subtypes of directed clustering coefficients and transitivities. Our results have potential utility in analyzing directed synaptic networks constructed from neuronal connectome data, such as in terms of centrality. Other potential applications include anomaly detection in networks, identification of similar networks and identification of similar nodes within networks. Matlab code for calculating all stated metrics following calculation of functional motif-role fingerprints is provided as S1 Matlab File. PMID:25486535

  4. Structures of the first representatives of Pfam family PF06938 (DUF1285) reveal a new fold with repeated structural motifs and possible involvement in signal transduction

    PubMed Central

    Han, Gye Won; Bakolitsa, Constantina; Miller, Mitchell D.; Kumar, Abhinav; Carlton, Dennis; Najmanovich, Rafael J.; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L.; Chen, Connie; Chiu, Hsiu-Ju; Clayton, Thomas; Das, Debanu; Deller, Marc C.; Duan, Lian; Ernst, Dustin; Feuerhelm, Julie; Grant, Joanna C.; Grzechnik, Anna; Jaroszewski, Lukasz; Jin, Kevin K.; Johnson, Hope A.; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Krishna, S. Sri; Marciano, David; McMullan, Daniel; Morse, Andrew T.; Nigoghossian, Edward; Okach, Linda; Reyes, Ron; Rife, Christopher L.; Sefcovic, Natasha; Tien, Henry J.; Trame, Christine B.; van den Bedem, Henry; Weekes, Dana; Xu, Qingping; Hodgson, Keith O.; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2010-01-01

    The crystal structures of SPO0140 and Sbal_2486 were determined using the semiautomated high-throughput pipeline of the Joint Center for Structural Genomics (JCSG) as part of the NIGMS Protein Structure Initiative (PSI). The structures revealed a conserved core with domain duplication and a superficial similarity of the C-terminal domain to pleckstrin homology-like folds. The conservation of the domain interface indicates a potential binding site that is likely to involve a nucleotide-based ligand, with genome-context and gene-fusion analyses additionally supporting a role for this family in signal transduction, possibly during oxidative stress. PMID:20944214

  5. Nuclear Magnetic Resonance Structural Mapping Reveals Promiscuous Interactions between Clathrin-Box Motif Sequences and the N-Terminal Domain of the Clathrin Heavy Chain

    PubMed Central

    2016-01-01

    The recruitment and organization of clathrin at endocytic sites first to form coated pits and then clathrin-coated vesicles depend on interactions between the clathrin N-terminal domain (TD) and multiple clathrin binding sequences on the cargo adaptor and accessory proteins that are concentrated at such sites. Up to four distinct protein binding sites have been proposed to be present on the clathrin TD, with each site proposed to interact with a distinct clathrin binding motif. However, an understanding of how such interactions contribute to clathrin coat assembly must take into account observations that any three of these four sites on clathrin TD can be mutationally ablated without causing loss of clathrin-mediated endocytosis. To take an unbiased approach to mapping binding sites for clathrin-box motifs on clathrin TD, we used isothermal titration calorimetry (ITC) and nuclear magnetic resonance spectroscopy. Our ITC experiments revealed that a canonical clathrin-box motif peptide from the AP-2 adaptor binds to clathrin TD with a stoichiometry of 3:1. Assignment of 90% of the total visible amide resonances in the TROSY-HSQC spectrum of 13C-, 2H-, and 15N-labeled TD40 allowed us to map these three binding sites by analyzing the chemical shift changes as clathrin-box motif peptides were titrated into clathrin TD. We found that three different clathrin-box motif peptides can each simultaneously bind not only to the previously characterized clathrin-box site but also to the W-box site and the β-arrestin splice loop site on a single TD. The promiscuity of these binding sites can help explain why their mutation does not lead to larger effects on clathrin function and suggests a mechanism by which clathrin may be transferred between different proteins during the course of an endocytic event. PMID:25844500

  6. Network Motifs: Simple Building Blocks of Complex Networks

    NASA Astrophysics Data System (ADS)

    Milo, R.; Shen-Orr, S.; Itzkovitz, S.; Kashtan, N.; Chklovskii, D.; Alon, U.

    2002-10-01

    Complex networks are studied across many fields of science. To uncover their structural design principles, we defined ``network motifs,'' patterns of interconnections occurring in complex networks at numbers that are significantly higher than those in randomized networks. We found such motifs in networks from biochemistry, neurobiology, ecology, and engineering. The motifs shared by ecological food webs were distinct from the motifs shared by the genetic networks of Escherichia coli and Saccharomyces cerevisiae or from those found in the World Wide Web. Similar motifs were found in networks that perform information processing, even though they describe elements as different as biomolecules within a cell and synaptic connections between neurons in Caenorhabditis elegans. Motifs may thus define universal classes of networks. This approach may uncover the basic building blocks of most networks.

  7. Global/local methods research using a common structural analysis framework

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Ransom, Jonathan B.; Griffin, O. H., Jr.; Thompson, Danniella M.

    1991-01-01

    Methodologies for global/local stress analysis are described including both two- and three-dimensional analysis methods. These methods are being developed within a common structural analysis framework. Representative structural analysis problems are presented to demonstrate the global/local methodologies being developed.

  8. A novel human gene (SARM) at chromosome 17q11 encodes a protein with a SAM motif and structural similarity to Armadillo/beta-catenin that is conserved in mouse, Drosophila, and Caenorhabditis elegans.

    PubMed

    Mink, M; Fogelgren, B; Olszewski, K; Maroy, P; Csiszar, K

    2001-06-01

    A novel human gene, SARM, encodes the orthologue of a Drosophila protein (CG7915) and contains a unique combination of the sterile alpha (SAM) and the HEAT/Armadillo motifs. The SARM gene was identified on chromosome 17q11, between markers D17S783 and D17S841 on BAC clone AC002094, which also included a HERV repeat and keratin-18-like, MAC30, TNFAIP1, HSPC017, and vitronectin genes in addition to three unknown genes. The mouse SARM gene was located on a mouse chromosome 11 BAC clone (AC002324). The SARM gene is 1.8 kb centromeric to the vitronectin gene, and the two genes share a promoter region that directs a high level of liver-specific expression of both the SARM and the vitronectin genes. In addition to the liver, the SARM gene was highly expressed in the kidney. A 0.4-kb antisense transcript was coordinately expressed with the SARM gene in the kidney and liver, while in the brain and malignant cell lines, it appeared independent of SARM gene transcription. The SARM gene encodes a protein of 690 amino acids. Based on amino acid sequence homology, we have identified a SAM motif within this derived protein. Structure modeling and protein folding recognition studies confirmed the presence of alpha-alpha right-handed superhelix-like folds consistent with the structure of the Armadillo and HEAT repeats of the beta-catenin and importin protein families. Both motifs are known to be involved in protein-protein interactions promoting the formation of diverse protein complexes. We have identified the same conserved SAM/Armadillo motif combination in the mouse, Drosophila, and Caenorhabditis elegans SARM proteins.

  9. Structural Biology of The sequestration & Transport of Heavy Metal Toxins: NMR Structure Determination of Proteins Containing the CYS-X-Y-Metal Binding Motif

    SciTech Connect

    Stanley J. Opella

    2004-03-10

    The support from the Department of Energy enabled us to initiate research on several proteins from the bacterial mercury detoxification system; in particular, we were able to determine the structures of MerP and related metal binding sequences. We have also worked on the membrane transport proteins MerF and MerT.

  10. Characterization of Structural and Pigmentary Colors in Common Emigrant (Catopsilia Pomona) Butterfly

    SciTech Connect

    Ghate, Ekata; Kulkarni, G. R.; Bhoraskar, S. V.; Adhi, K. P.

    2011-10-20

    Study of structural colors in case of insects and butterflies is important for their biomimic and biophotonics applications. Structural color is the color which is produced by physical structures and their interaction with light while pigmentary color is produced by absorption of light by pigments. Common Emigrant butterfly is widely distributed in India. It is of moderate size with wing span of about 60-80 mm. The wings are broadly white with yellow or sulphur yellow coloration at places as well as few dark black patches. It belongs to family Pieridae. A study of structural color in case of Common Emigrant butterfly has been carried out in the present work. The characterization of wing color was performed using absorption spectroscopy. Scanning electron microscopic study of the wings of Common Emigrant butterfly showed that three different types of scales are present on the wing surface dorsally. Diffracting structures are present in certain parts of the surfaces of the various scales. Bead like structures are embedded in the intricate structures of the scales. Absorption spectra revealed that a strong absorption peak is seen in the UV-range. Crystalline structure of beads was confirmed by the X-ray diffraction analysis.

  11. Incorporating mesh-insensitive structural stress into the fatigue assessment procedure of common structural rules for bulk carriers

    NASA Astrophysics Data System (ADS)

    Kim, Seong-Min; Kim, Myung-Hyun

    2015-01-01

    This study introduces a fatigue assessment procedure using mesh-insensitive structural stress method based on the Common Structural Rules for Bulk Carriers by considering important factors, such as mean stress and thickness effects. The fatigue assessment result of mesh-insensitive structural stress method have been compared with CSR procedure based on equivalent notch stress at major hot spot points in the area near the ballast hold for a 180 K bulk carrier. The possibility of implementing mesh-insensitive structural stress method in the fatigue assessment procedure for ship structures is discussed.

  12. Hantzsch 1,4-dihydropyridine esters and analogs: candidates for generating reproducible one-dimensional packing motifs.

    PubMed

    Rathore, R S; Palakshi Reddy, B; Vijayakumar, V; Venkat Ragavan, R; Narasimhamurthy, T

    2009-06-01

    Examination of the symmetric Hantzsch 1,4-dihydropyridine ester derivatives of the prototypical nifedipine molecule indicates the tendency of this class of molecule to form a common packing motif. Crystal structure analysis of 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylic diesters and analogs reveals that they form extended chains, characterized as the C(6) packing motif, via intermolecular (amine) N-H...O=C (C3,C5 carbonyl) hydrogen bonds. In addition, all the prepared derivatives also satisfy the basic structural requirements for their high binding efficiency to the receptor. The reproducible C(6) packing motif observed among these compounds has a use in the design of solid-state materials.

  13. Structural characterization of an alpha-amylase inhibitor from a wild common bean (Phaseolus vulgaris): insight into the common structural features of leguminous alpha-amylase inhibitors.

    PubMed

    Nakaguchi, T; Arakawa, T; Philo, J S; Wen, J; Ishimoto, M; Yamaguchi, H

    1997-02-01

    The primary structures of two subunits of an alpha-amylase inhibitor (alpha AI-2) from a wild common bean (Phaseolus vulgaris) were revealed by a comparison of the amino acid sequence previously deduced from the nucleotide sequence with the amino- and carboxyl-terminal amino acid sequences determined by conventional methods. The polypeptide molecular weight of alpha AI-2 obtained by the light-scattering technique, considered together with the sequence molecular weights revealed for the subunits, indicated that alpha AI-2 has the subunit stoichiometry of an alpha 2 beta 2 complex. These structural features were closely similar to those recently elucidated for a white kidney bean (P. vulgaris) alpha-amylase inhibitor, which is quite different in the inhibitory specificity from alpha AI-2. The post-translational processing of the precursor glycoproteins to form the tetrameric structure appeared to require an Arg residue close to the processing site. Further, the proper associations of the subunits into the tetrameric structures seemed to be strictly controlled by a few amino acids on the subunit interfaces.

  14. Structural Determination of Functional Domains in Early B-cell Factor (EBF) Family of Transcription Factors Reveals Similarities to Rel DNA-binding Proteins and a Novel Dimerization Motif*

    PubMed Central

    Siponen, Marina I.; Wisniewska, Magdalena; Lehtiö, Lari; Johansson, Ida; Svensson, Linda; Raszewski, Grzegorz; Nilsson, Lennart; Sigvardsson, Mikael; Berglund, Helena

    2010-01-01

    The early B-cell factor (EBF) transcription factors are central regulators of development in several organs and tissues. This protein family shows low sequence similarity to other protein families, which is why structural information for the functional domains of these proteins is crucial to understand their biochemical features. We have used a modular approach to determine the crystal structures of the structured domains in the EBF family. The DNA binding domain reveals a striking resemblance to the DNA binding domains of the Rel homology superfamily of transcription factors but contains a unique zinc binding structure, termed zinc knuckle. Further the EBF proteins contain an IPT/TIG domain and an atypical helix-loop-helix domain with a novel type of dimerization motif. The data presented here provide insights into unique structural features of the EBF proteins and open possibilities for detailed molecular investigations of this important transcription factor family. PMID:20592035

  15. Structural modelling and phylogenetic analyses of PgeIF4A2 (Eukaryotic translation initiation factor) from Pennisetum glaucum reveal signature motifs with a role in stress tolerance and development

    PubMed Central

    Agarwal, Aakrati; Mudgil, Yashwanti; Pandey, Saurabh; Fartyal, Dhirendra; Reddy, Malireddy K

    2016-01-01

    Eukaryotic translation initiation factor 4A (eIF4A) is an indispensable component of the translation machinery and also play a role in developmental processes and stress alleviation in plants and animals. Different eIF4A isoforms are present in the cytosol of the cell, namely, eIF4A1, eIF4A2, and eIF4A3 and their expression is tightly regulated in cap-dependent translation. We revealed the structural model of PgeIF4A2 protein using the crystal structure of Homo sapiens eIF4A3 (PDB ID: 2J0S) as template by Modeller 9.12. The resultant PgeIF4A2 model structure was refined by PROCHECK, ProSA, Verify3D and RMSD that showed the model structure is reliable with 77 % amino acid sequence identity with template. Investigation revealed two conserved signatures for ATP-dependent RNA Helicase DEAD-box conserved site (VLDEADEML) and RNA helicase DEAD-box type, Q-motif in sheet-turn-helix and α-helical region respectively. All these conserved motifs are responsible for response during developmental stages and stress tolerance in plants. PMID:28358146

  16. Evidence for a Structural Motif in Toxins and Interleukin-2 That May Be Responsible for Binding to Endothelial Cells and Initiating Vascular Leak Syndrome

    NASA Astrophysics Data System (ADS)

    Baluna, Roxana; Rizo, Josep; Gordon, Brian E.; Ghetie, Victor; Vitetta, Ellen S.

    1999-03-01

    The dose-limiting toxicity of interleukin-2 (IL-2) and immunotoxin (IT) therapy in humans is vascular leak syndrome (VLS). VLS has a complex etiology involving damage to vascular endothelial cells (ECs), extravasation of fluids and proteins, interstitial edema, and organ failure. IL-2 and ITs prepared with the catalytic A chain of the plant toxin, ricin (RTA), and other toxins, damage human ECs in vitro and in vivo. Damage to ECs may initiate VLS; if this damage could be avoided without losing the efficacy of ITs or IL-2, larger doses could be administered. In this paper, we provide evidence that a three amino acid sequence motif, (x)D(y), in toxins and IL-2 damages ECs. Thus, when peptides from RTA or IL-2 containing this sequence motif are coupled to mouse IgG, they bind to and damage ECs both in vitro and, in the case of RTA, in vivo. In contrast, the same peptides with a deleted or mutated sequence do not. Furthermore, the peptide from RTA attached to mouse IgG can block the binding of intact RTA to ECs in vitro and vice versa. In addition, RTA, a fragment of Pseudomonas exotoxin A (PE38-lys), and fibronectin also block the binding of the mouse IgG-RTA peptide to ECs, suggesting that an (x)D(y) motif is exposed on all three molecules. Our results suggest that deletions or mutations in this sequence or the use of nondamaging blocking peptides may increase the therapeutic index of both IL-2, as well as ITs prepared with a variety of plant or bacterial toxins.

  17. Testing Structural Models of DSM-IV Symptoms of Common Forms of Child and Adolescent Psychopathology

    ERIC Educational Resources Information Center

    Lahey, Benjamin B.; Rathouz, Paul J.; Van Hulle, Carol; Urbano, Richard C.; Krueger, Robert F.; Applegate, Brooks; Garriock, Holly A.; Chapman, Derek A.; Waldman, Irwin D.

    2008-01-01

    Confirmatory factor analyses were conducted of "Diagnostic and Statistical Manual of Mental Disorders", Fourth Edition (DSM-IV) symptoms of common mental disorders derived from structured interviews of a representative sample of 4,049 twin children and adolescents and their adult caretakers. A dimensional model based on the assignment of symptoms…

  18. Structure-Odor Activity Studies on Monoterpenoid Mercaptans Synthesized by Changing the Structural Motifs of the Key Food Odorant 1-p-Menthene-8-thiol.

    PubMed

    Schoenauer, Sebastian; Schieberle, Peter

    2016-05-18

    1-p-Menthene-8-thiol (1) has been discovered as the key odorant in grapefruit juice several decades ago and contributes to the overall odor of the fruit with an extremely low odor threshold of 0.000034 ng/L in air. This value is among the lowest odor thresholds ever reported for a food odorant. To check whether modifications in the structure of 1 would lead to changes in odor threshold and odor quality, 34 mercapto-containing p-menthane and 1-p-menthene derivatives as well as several aromatic and open-chain mercapto monoterpenoids were synthesized. Eighteen of them are reported for the first time in the literature, and their odor thresholds and odor qualities as well as analytical data are supplied. A comparison of the sensory data with those of 1 showed that hydrogenation of the double bond led to a clear increase in the odor threshold. Furthermore, moving the mercapto group into the ring always resulted in higher odor thresholds compared to thiols with a mercapto group in the side chains. Although all tertiary thiols always exhibited low odor thresholds, none of the 31 compounds reached the extremely low threshold of 1. Also, none of the synthesized mercapto monoterpenoids showed a similar odor quality resembling grapefruit. Although the saturated and aromatic analogues exhibited similar scents as 1, the aromas of the majority of the other compounds were described as sulfury, rubber-like, burned, soapy, or even mushroom-like. NMR and MS data as well as retention indices of the 23 newly reported sulfur-containing compounds might aid in future research to identify terpene-derived mercaptans possibly present in trace levels in foods.

  19. Seeing the B-A-C-H motif

    NASA Astrophysics Data System (ADS)

    Catravas, Palmyra

    2005-09-01

    Musical compositions can be thought of as complex, multidimensional data sets. Compositions based on the B-A-C-H motif (a four-note motif of the pitches of the last name of Johann Sebastian Bach) span several centuries of evolving compositional styles and provide an intriguing set for analysis since they contain a common feature, the motif, buried in dissimilar contexts. We will present analyses which highlight the content of this unusual set of pieces, with emphasis on visual display of information.

  20. Analysis of proteins encoded in the bipartite genome of a new type of parvo-like virus isolated from silkworm - structural protein with DNA polymerase motif.

    PubMed

    Hayakawa, T; Kojima, K; Nonaka, K; Nakagaki, M; Sahara, K; Asano, S i; Iizuka, T; Bando, H

    2000-01-01

    Bombyx mori densonucleosis virus type 2 (BmDNV-2) is a small, spherical virus containing two complementary single-stranded linear DNA molecules (VD1, VD2). BmDNV-2 is a new type of virus with a unique, yet unspecified replication mechanism which is different from that of parvoviruses (Bando, H., Choi, H., Ito, Y., Nakagaki, M. , Kawase, S., 1992. Structural analysis on the single-stranded genomic DNAs of the virus newly isolated from silkworm: the DNA molecules share a common terminal sequence, Arch. Virol. 124, 187-193; Bando, H., Hayakawa, T., Asano, S., Sahara, K., Nakagaki, M. , Iizuka, T., 1995. Analysis of the genetic information of a DNA segment of a new virus from silkworm, Arch. Virol., 140, 1147-1155; Hayakawa, T., Asano, S., Sahara, K., Iizuka, T., Bando, H., 1997. Detection of replicative intermediate with closed terminus of Bombyx densonucleosis virus. Arch. Virol. 142, 1-7). Recent analyses on the genomic information of BmDNV-2 identified open reading frames which code for three tentative nonstructural proteins and four (VP1 to 4) of the six known structural proteins (Bando, H., Hayakawa, T., Asano, S., Sahara, K., Nakagaki, M., Iizuka, T., 1995. Analysis of the genetic information of a DNA segment of a new virus from silkworm, Arch. Virol., 140, 1147-1155; Nakagaki et al., in preparation). In this report we demonstrate that the two largest ORFs, VD1-ORF1 and VD2-ORF1, code for the two remaining structural proteins. In addition, computer-assisted analysis revealed that the structural protein encoded in VD1-ORF1 contains sequences conserved among various DNA polymerases, and showed an evolutionary relationship with the DNA polymerases involved in protein-primed replication.

  1. Chiral Alkyl Halides: Underexplored Motifs in Medicine

    PubMed Central

    Gál, Bálint; Bucher, Cyril; Burns, Noah Z.

    2016-01-01

    While alkyl halides are valuable intermediates in synthetic organic chemistry, their use as bioactive motifs in drug discovery and medicinal chemistry is rare in comparison. This is likely attributable to the common misconception that these compounds are merely non-specific alkylators in biological systems. A number of chlorinated compounds in the pharmaceutical and food industries, as well as a growing number of halogenated marine natural products showing unique bioactivity, illustrate the role that chiral alkyl halides can play in drug discovery. Through a series of case studies, we demonstrate in this review that these motifs can indeed be stable under physiological conditions, and that halogenation can enhance bioactivity through both steric and electronic effects. Our hope is that, by placing such compounds in the minds of the chemical community, they may gain more traction in drug discovery and inspire more synthetic chemists to develop methods for selective halogenation. PMID:27827902

  2. The Assembly Motif of a Bacterial Small Multidrug Resistance Protein*

    PubMed Central

    Poulsen, Bradley E.; Rath, Arianna; Deber, Charles M.

    2009-01-01

    Multidrug transporters such as the small multidrug resistance (SMR) family of bacterial integral membrane proteins are capable of conferring clinically significant resistance to a variety of common therapeutics. As antiporter proteins of ∼100 amino acids, SMRs must self-assemble into homo-oligomeric structures for efflux of drug molecules. Oligomerization centered at transmembrane helix four (TM4) has been implicated in SMR assembly, but the full complement of residues required to mediate its self-interaction remains to be characterized. Here, we use Hsmr, the 110-residue SMR family member of the archaebacterium Halobacterium salinarum, to determine the TM4 residue motif required to mediate drug resistance and SMR self-association. Twelve single point mutants that scan the central portion of the TM4 helix (residues 85–104) were constructed and were tested for their ability to confer resistance to the cytotoxic compound ethidium bromide. Six residues were found to be individually essential for drug resistance activity (Gly90, Leu91, Leu93, Ile94, Gly97, and Val98), defining a minimum activity motif of 90GLXLIXXGV98 within TM4. When the propensity of these mutants to dimerize on SDS-PAGE was examined, replacements of all but Ile resulted in ∼2-fold reduction of dimerization versus the wild-type antiporter. Our work defines a minimum activity motif of 90GLXLIXXGV98 within TM4 and suggests that this sequence mediates TM4-based SMR dimerization along a single helix surface, stabilized by a small residue heptad repeat sequence. These TM4-TM4 interactions likely constitute the highest affinity locus for disruption of SMR function by directly targeting its self-assembly mechanism. PMID:19224913

  3. Assessing the effects of common variation in the FOXP2 gene on human brain structure

    PubMed Central

    Hoogman, Martine; Guadalupe, Tulio; Zwiers, Marcel P.; Klarenbeek, Patricia; Francks, Clyde; Fisher, Simon E.

    2014-01-01

    The FOXP2 transcription factor is one of the most well-known genes to have been implicated in developmental speech and language disorders. Rare mutations disrupting the function of this gene have been described in different families and cases. In a large three-generation family carrying a missense mutation, neuroimaging studies revealed significant effects on brain structure and function, most notably in the inferior frontal gyrus, caudate nucleus, and cerebellum. After the identification of rare disruptive FOXP2 variants impacting on brain structure, several reports proposed that common variants at this locus may also have detectable effects on the brain, extending beyond disorder into normal phenotypic variation. These neuroimaging genetics studies used groups of between 14 and 96 participants. The current study assessed effects of common FOXP2 variants on neuroanatomy using voxel-based morphometry (VBM) and volumetric techniques in a sample of >1300 people from the general population. In a first targeted stage we analyzed single nucleotide polymorphisms (SNPs) claimed to have effects in prior smaller studies (rs2253478, rs12533005, rs2396753, rs6980093, rs7784315, rs17137124, rs10230558, rs7782412, rs1456031), beginning with regions proposed in the relevant papers, then assessing impact across the entire brain. In the second gene-wide stage, we tested all common FOXP2 variation, focusing on volumetry of those regions most strongly implicated from analyses of rare disruptive mutations. Despite using a sample that is more than 10 times that used for prior studies of common FOXP2 variation, we found no evidence for effects of SNPs on variability in neuroanatomy in the general population. Thus, the impact of this gene on brain structure may be largely limited to extreme cases of rare disruptive alleles. Alternatively, effects of common variants at this gene exist but are too subtle to be detected with standard volumetric techniques. PMID:25013396

  4. Sex-dependent association of common variants of microcephaly genes with brain structure.

    PubMed

    Rimol, Lars M; Agartz, Ingrid; Djurovic, Srdjan; Brown, Andrew A; Roddey, J Cooper; Kähler, Anna K; Mattingsdal, Morten; Athanasiu, Lavinia; Joyner, Alexander H; Schork, Nicholas J; Halgren, Eric; Sundet, Kjetil; Melle, Ingrid; Dale, Anders M; Andreassen, Ole A

    2010-01-05

    Loss-of-function mutations in the genes associated with primary microcephaly (MCPH) reduce human brain size by about two-thirds, without producing gross abnormalities in brain organization or physiology and leaving other organs largely unaffected [Woods CG, et al. (2005) Am J Hum Genet 76:717-728]. There is also evidence suggesting that MCPH genes have evolved rapidly in primates and humans and have been subjected to selection in recent human evolution [Vallender EJ, et al. (2008) Trends Neurosci 31:637-644]. Here, we show that common variants of MCPH genes account for some of the common variation in brain structure in humans, independently of disease status. We investigated the correlations of SNPs from four MCPH genes with brain morphometry phenotypes obtained with MRI. We found significant, sex-specific associations between common, nonexonic, SNPs of the genes CDK5RAP2, MCPH1, and ASPM, with brain volume or cortical surface area in an ethnically homogenous Norwegian discovery sample (n = 287), including patients with mental illness. The most strongly associated SNP findings were replicated in an independent North American sample (n = 656), which included patients with dementia. These results are consistent with the view that common variation in brain structure is associated with genetic variants located in nonexonic, presumably regulatory, regions.

  5. Nephila clavipes Flagelliform Silk-like GGX Motifs Contribute to Extensibility and Spacer Motifs Contribute to Strength in Synthetic Spider Silk Fibers

    PubMed Central

    Adrianos, Sherry L.; Teulé, Florence; Hinman, Michael B.; Jones, Justin A.; Weber, Warner S.; Yarger, Jeffery L.; Lewis, Randolph V.

    2013-01-01

    Flagelliform spider silk is the most extensible silk fiber produced by orb weaver spiders, though not as strong as the dragline silk of the spider. The motifs found in the core of the Nephila clavipes flagelliform Flag protein are: GGX, spacer, and GPGGX. Flag does not contain the polyalanine motif known to provide the strength of dragline silk. To investigate the source of flagelliform fiber strength, four recombinant proteins were produced containing variations of the three core motifs of the Nephila clavipes flagelliform Flag protein that produces this type of fiber. The as-spun fibers were processed in 80% aqueous isopropanol using a standardized process for all four fiber types, which produced improved mechanical properties. Mechanical testing of the recombinant proteins determined that the GGX motif contributes extensibility and the spacer motif contributes strength to the recombinant fibers. Recombinant protein fibers containing the spacer motif were stronger than the proteins constructed without the spacer that contained only the GGX motif or the combination of the GGX and GPGGX motifs. The mechanical and structural X-ray diffraction analysis of the recombinant fibers provide data that suggests a functional role of the spacer motif that produces tensile strength though the spacer motif is not clearly defined structurally. These results indicate that the spacer is likely a primary contributor of strength with the GGX motif supplying mobility to the protein network of native N. clavipes flagelliform silk fibers. PMID:23646825

  6. Nephila clavipes Flagelliform silk-like GGX motifs contribute to extensibility and spacer motifs contribute to strength in synthetic spider silk fibers.

    PubMed

    Adrianos, Sherry L; Teulé, Florence; Hinman, Michael B; Jones, Justin A; Weber, Warner S; Yarger, Jeffery L; Lewis, Randolph V

    2013-06-10

    Flagelliform spider silk is the most extensible silk fiber produced by orb weaver spiders, though not as strong as the dragline silk of the spider. The motifs found in the core of the Nephila clavipes flagelliform Flag protein are GGX, spacer, and GPGGX. Flag does not contain the polyalanine motif known to provide the strength of dragline silk. To investigate the source of flagelliform fiber strength, four recombinant proteins were produced containing variations of the three core motifs of the Nephila clavipes flagelliform Flag protein that produces this type of fiber. The as-spun fibers were processed in 80% aqueous isopropanol using a standardized process for all four fiber types, which produced improved mechanical properties. Mechanical testing of the recombinant proteins determined that the GGX motif contributes extensibility and the spacer motif contributes strength to the recombinant fibers. Recombinant protein fibers containing the spacer motif were stronger than the proteins constructed without the spacer that contained only the GGX motif or the combination of the GGX and GPGGX motifs. The mechanical and structural X-ray diffraction analysis of the recombinant fibers provide data that suggests a functional role of the spacer motif that produces tensile strength, though the spacer motif is not clearly defined structurally. These results indicate that the spacer is likely a primary contributor of strength, with the GGX motif supplying mobility to the protein network of native N. clavipes flagelliform silk fibers.

  7. A common glycan structure on immunoglobulin G for enhancement of effector functions

    PubMed Central

    Lin, Chin-Wei; Tsai, Ming-Hung; Li, Shiou-Ting; Tsai, Tsung-I; Chu, Kuo-Ching; Liu, Ying-Chih; Lai, Meng-Yu; Wu, Chia-Yu; Tseng, Yung-Chieh; Shivatare, Sachin S.; Wang, Chia-Hung; Chao, Ping; Wang, Shi-Yun; Shih, Hao-Wei; Zeng, Yi-Fang; You, Tsai-Hong; Liao, Jung-Yu; Tu, Yu-Chen; Lin, Yih-Shyan; Chuang, Hong-Yang; Chen, Chia-Lin; Tsai, Charng-Sheng; Huang, Chiu-Chen; Lin, Nan-Horng; Ma, Che; Wu, Chung-Yi; Wong, Chi-Huey

    2015-01-01

    Antibodies have been developed as therapeutic agents for the treatment of cancer, infection, and inflammation. In addition to binding activity toward the target, antibodies also exhibit effector-mediated activities through the interaction of the Fc glycan and the Fc receptors on immune cells. To identify the optimal glycan structures for individual antibodies with desired activity, we have developed an effective method to modify the Fc-glycan structures to a homogeneous glycoform. In this study, it was found that the biantennary N-glycan structure with two terminal alpha-2,6-linked sialic acids is a common and optimized structure for the enhancement of antibody-dependent cell-mediated cytotoxicity, complement-dependent cytotoxicity, and antiinflammatory activities. PMID:26253764

  8. Inferring R0 in emerging epidemics—the effect of common population structure is small

    PubMed Central

    Ball, Frank; Dhersin, Jean-Stéphane; Tran, Viet Chi; Wallinga, Jacco; Britton, Tom

    2016-01-01

    When controlling an emerging outbreak of an infectious disease, it is essential to know the key epidemiological parameters, such as the basic reproduction number R0 and the control effort required to prevent a large outbreak. These parameters are estimated from the observed incidence of new cases and information about the infectious contact structures of the population in which the disease spreads. However, the relevant infectious contact structures for new, emerging infections are often unknown or hard to obtain. Here, we show that, for many common true underlying heterogeneous contact structures, the simplification to neglect such structures and instead assume that all contacts are made homogeneously in the whole population results in conservative estimates for R0 and the required control effort. This means that robust control policies can be planned during the early stages of an outbreak, using such conservative estimates of the required control effort. PMID:27581480

  9. Therapeutic approaches against common structural features of toxic oligomers shared by multiple amyloidogenic proteins.

    PubMed

    Guerrero-Muñoz, Marcos J; Castillo-Carranza, Diana L; Kayed, Rakez

    2014-04-15

    Impaired proteostasis is one of the main features of all amyloid diseases, which are associated with the formation of insoluble aggregates from amyloidogenic proteins. The aggregation process can be caused by overproduction or poor clearance of these proteins. However, numerous reports suggest that amyloid oligomers are the most toxic species, rather than insoluble fibrillar material, in Alzheimer's, Parkinson's, and Prion diseases, among others. Although the exact protein that aggregates varies between amyloid disorders, they all share common structural features that can be used as therapeutic targets. In this review, we focus on therapeutic approaches against shared features of toxic oligomeric structures and future directions.

  10. Ab initio coordination chemistry for nickel chelation motifs.

    PubMed

    Sudan, R Jesu Jaya; Kumari, J Lesitha Jeeva; Sudandiradoss, C

    2015-01-01

    Chelation therapy is one of the most appreciated methods in the treatment of metal induced disease predisposition. Coordination chemistry provides a way to understand metal association in biological structures. In this work we have implemented coordination chemistry to study nickel coordination due to its high impact in industrial usage and thereby health consequences. This paper reports the analysis of nickel coordination from a large dataset of nickel bound structures and sequences. Coordination patterns predicted from the structures are reported in terms of donors, chelate length, coordination number, chelate geometry, structural fold and architecture. The analysis revealed histidine as the most favored residue in nickel coordination. The most common chelates identified were histidine based namely HHH, HDH, HEH and HH spaced at specific intervals. Though a maximum coordination number of 8 was observed, the presence of a single protein donor was noted to be mandatory in nickel coordination. The coordination pattern did not reveal any specific fold, nevertheless we report preferable residue spacing for specific structural architecture. In contrast, the analysis of nickel binding proteins from bacterial and archeal species revealed no common coordination patterns. Nickel binding sequence motifs were noted to be organism specific and protein class specific. As a result we identified about 13 signatures derived from 13 classes of nickel binding proteins. The specifications on nickel coordination presented in this paper will prove beneficial for developing better chelation strategies.

  11. Internal translation initiation from HIV-1 transcripts is conferred by a common RNA structure.

    PubMed

    Plank, Terra-Dawn M; Whitehurst, James T; Cencic, Regina; Pelletier, Jerry; Kieft, Jeffrey S

    2014-01-01

    Alternative splicing of the human immunodeficiency virus 1 (HIV-1) RNA transcripts produces mRNAs encoding nine different viral proteins. The leader of each contains a common non-coding exon at the 5' end. Previous studies showed that the leaders from the common exon-containing transcripts gag, nef, vif, vpr and vpu can direct protein synthesis through internal ribosome entry sites (IRESs) with varying efficiencies. Here we explored whether the common exon acts as an IRES element in the context of all the 5' leaders or if each harbors a distinct IRES. We also explored the relationship between the IRESs and initiation codon selection. We find that the common exon adopts a similar conformation in every leader we explored and that the sequence and structure is required for IRES activity. We also find that each leader uses a scanning mechanism for start codon identification. Together, our data point to a model in which the common exon on HIV-1 transcripts acts as the ribosome landing pad, recruiting preinitiation complexes upstream of the initiation codon, followed by scanning to each transcript's initiator AUG.

  12. Internal translation initiation from HIV-1 transcripts is conferred by a common RNA structure

    PubMed Central

    Plank, Terra-Dawn M; Whitehurst, James T; Cencic, Regina; Pelletier, Jerry; Kieft, Jeffrey S

    2014-01-01

    Alternative splicing of the human immunodeficiency virus 1 (HIV-1) RNA transcripts produces mRNAs encoding nine different viral proteins. The leader of each contains a common non-coding exon at the 5' end. Previous studies showed that the leaders from the common exon-containing transcripts gag, nef, vif, vpr and vpu can direct protein synthesis through internal ribosome entry sites (IRESs) with varying efficiencies. Here we explored whether the common exon acts as an IRES element in the context of all the 5' leaders or if each harbors a distinct IRES. We also explored the relationship between the IRESs and initiation codon selection. We find that the common exon adopts a similar conformation in every leader we explored and that the sequence and structure is required for IRES activity. We also find that each leader uses a scanning mechanism for start codon identification. Together, our data point to a model in which the common exon on HIV-1 transcripts acts as the ribosome landing pad, recruiting preinitiation complexes upstream of the initiation codon, followed by scanning to each transcript's initiator AUG. PMID:26779399

  13. Polyproline and triple helix motifs in host-pathogen recognition.

    PubMed

    Berisio, Rita; Vitagliano, Luigi

    2012-12-01

    Secondary structure elements often mediate protein-protein interactions. Despite their low abundance in folded proteins, polyproline II (PPII) and its variant, the triple helix, are frequently involved in protein-protein interactions, likely due to their peculiar propensity to be solvent-exposed. We here review the role of PPII and triple helix in mediating hostpathogen interactions, with a particular emphasis to the structural aspects of these processes. After a brief description of the basic structural features of these elements, examples of host-pathogen interactions involving these motifs are illustrated. Literature data suggest that the role played by PPII motif in these processes is twofold. Indeed, PPII regions may directly mediate interactions between proteins of the host and the pathogen. Alternatively, PPII may act as structural spacers needed for the correct positioning of the elements needed for adhesion and infectivity. Recent investigations have highlighted that collagen triple helix is also a common target for bacterial adhesins. Although structural data on complexes between adhesins and collagen models are rather limited, experimental and theoretical studies have unveiled some interesting clues of the recognition process. Interestingly, very recent data show that not only is the triple helix used by pathogens as a target in the host-pathogen interaction but it may also act as a bait in these processes since bacterial proteins containing triple helix regions have been shown to interact with host proteins. As both PPII and triple helix expose several main chain non-satisfied hydrogen bond acceptors and donors, both elements are highly solvated. The preservation of the solvation state of both PPII and triple helix upon protein-protein interaction is an emerging aspect that will be here thoroughly discussed.

  14. The helix bundle: A reversible lipid binding motif

    PubMed Central

    Narayanaswami, Vasanthy; Kiss, Robert S.; Weers, Paul M.M.

    2009-01-01

    Apolipoproteins are the protein components of lipoproteins that have the innate ability to inter convert between a lipid-free and a lipid-bound form in a facile manner, a remarkable property conferred by the helix bundle motif. Composed of a series of four or five amphipathic α-helices that fold to form a helix bundle, this motif allows the en face orientation of the hydrophobic faces of the α-helices in the protein interior in the lipid-free state. A conformational switch then permits helix-helix interactions to be substituted by helix-lipid interactions upon lipid binding interaction. This review compares the apolipoprotein high resolution structures and the factors that trigger this switch in insect apolipophorin III and the mammalian apolipoproteins, apolipoprotein E and apolipoprotein A-I, pointing out the commonalities and key differences in the mode of lipid interaction. Further insights into the lipid bound conformation of apolipoproteins are required to fully understand their functional role under physiological conditions. PMID:19770066

  15. Convergent evolution and mimicry of protein linear motifs in host-pathogen interactions.

    PubMed

    Chemes, Lucía Beatriz; de Prat-Gay, Gonzalo; Sánchez, Ignacio Enrique

    2015-06-01

    Pathogen linear motif mimics are highly evolvable elements that facilitate rewiring of host protein interaction networks. Host linear motifs and pathogen mimics differ in sequence, leading to thermodynamic and structural differences in the resulting protein-protein interactions. Moreover, the functional output of a mimic depends on the motif and domain repertoire of the pathogen protein. Regulatory evolution mediated by linear motifs can be understood by measuring evolutionary rates, quantifying positive and negative selection and performing phylogenetic reconstructions of linear motif natural history. Convergent evolution of linear motif mimics is widespread among unrelated proteins from viral, prokaryotic and eukaryotic pathogens and can also take place within individual protein phylogenies. Statistics, biochemistry and laboratory models of infection link pathogen linear motifs to phenotypic traits such as tropism, virulence and oncogenicity. In vitro evolution experiments and analysis of natural sequences suggest that changes in linear motif composition underlie pathogen adaptation to a changing environment.

  16. Structure-function analyses of the Pth11 receptor reveal an important role for CFEM motif and redox regulation in rice blast.

    PubMed

    Kou, Yanjun; Tan, Yi Han; Ramanujam, Ravikrishna; Naqvi, Naweed I

    2017-04-01

    The interaction of Magnaporthe oryzae, the rice blast fungus, and rice begins when M. oryzae establishes contact with the host plant surface. On perception of appropriate surface signals, M. oryzae forms appressoria and initiates host invasion. Pth11, an important G-protein-coupled receptor necessary for appressorium formation in M. oryzae, contains seven transmembrane regions and a CFEM (common in several fungal extracellular membrane proteins) domain with the characteristic eight cysteine residues. We focused on gaining further insight into the role of the CFEM domain in the putative surface sensing/response function of Pth11. Increased/constitutive expression of CFEM resulted in precocious, albeit defective, appressoria formation in wild-type M. oryzae. The Pth11(C63A/C65A) mutant, probably with disrupted disulfide bonds in the CFEM, showed delayed appressorium formation and reduced virulence. Furthermore, the accumulation of reactive oxygen species (ROS) was found to be altered in the pth11Δ strain. Strikingly, antioxidant treatment induced appressorium formation in pth11Δ. The Gα subunit MagB and the mitogen-activated protein (MAP) kinase Pmk1 were required for the formation of antioxidant-induced appressoria. We conclude that the CFEM domain of Pth11 is required for proper development of the appressoria, appressoria-like structures and pathogenicity. Highly regulated ROS homeostasis is important for Pth11-mediated appressorium formation in M. oryzae.

  17. A Novel Bayesian DNA Motif Comparison Method for Clustering and Retrieval

    PubMed Central

    Margalit, Hanah; Friedman, Nir

    2008-01-01

    Characterizing the DNA-binding specificities of transcription factors is a key problem in computational biology that has been addressed by multiple algorithms. These usually take as input sequences that are putatively bound by the same factor and output one or more DNA motifs. A common practice is to apply several such algorithms simultaneously to improve coverage at the price of redundancy. In interpreting such results, two tasks are crucial: clustering of redundant motifs, and attributing the motifs to transcription factors by retrieval of similar motifs from previously characterized motif libraries. Both tasks inherently involve motif comparison. Here we present a novel method for comparing and merging motifs, based on Bayesian probabilistic principles. This method takes into account both the similarity in positional nucleotide distributions of the two motifs and their dissimilarity to the background distribution. We demonstrate the use of the new comparison method as a basis for motif clustering and retrieval procedures, and compare it to several commonly used alternatives. Our results show that the new method outperforms other available methods in accuracy and sensitivity. We incorporated the resulting motif clustering and retrieval procedures in a large-scale automated pipeline for analyzing DNA motifs. This pipeline integrates the results of various DNA motif discovery algorithms and automatically merges redundant motifs from multiple training sets into a coherent annotated library of motifs. Application of this pipeline to recent genome-wide transcription factor location data in S. cerevisiae successfully identified DNA motifs in a manner that is as good as semi-automated analysis reported in the literature. Moreover, we show how this analysis elucidates the mechanisms of condition-specific preferences of transcription factors. PMID:18463706

  18. Food Insecurity and Common Mental Disorders among Ethiopian Youth: Structural Equation Modeling

    PubMed Central

    Lindstrom, David; Belachew, Tefera; Hadley, Craig; Lachat, Carl; Verstraeten, Roos; De Cock, Nathalie; Kolsteren, Patrick

    2016-01-01

    Background Although the consequences of food insecurity on physical health and nutritional status of youth living have been reported, its effect on their mental health remains less investigated in developing countries. The aim of this study was to examine the pathways through which food insecurity is associated with poor mental health status among youth living in Ethiopia. Methods We used data from Jimma Longitudinal Family Survey of Youth (JLFSY) collected in 2009/10. A total of 1,521 youth were included in the analysis. We measured food insecurity using a 5-items scale and common mental disorders using the 20-item Self-Reporting Questionnaire (SRQ-20). Structural and generalized equation modeling using maximum likelihood estimation method was used to analyze the data. Results The prevalence of common mental disorders was 30.8% (95% CI: 28.6, 33.2). Food insecurity was independently associated with common mental disorders (β = 0.323, P<0.05). Most (91.8%) of the effect of food insecurity on common mental disorders was direct and only 8.2% of their relationship was partially mediated by physical health. In addition, poor self-rated health (β = 0.285, P<0.05), high socioeconomic status (β = -0.076, P<0.05), parental education (β = 0.183, P<0.05), living in urban area (β = 0.139, P<0.05), and female-headed household (β = 0.192, P<0.05) were associated with common mental disorders. Conclusions Food insecurity is directly associated with common mental disorders among youth in Ethiopia. Interventions that aim to improve mental health status of youth should consider strategies to improve access to sufficient, safe and nutritious food. PMID:27846283

  19. The crystal structure of phosphorylated MAPK13 reveals common structural features and differences in p38 MAPK family activation

    PubMed Central

    Yurtsever, Zeynep; Scheaffer, Suzanne M.; Romero, Arthur G.; Holtzman, Michael J.; Brett, Tom J.

    2015-01-01

    The p38 MAP kinases (p38 MAPKs) represent an important family centrally involved in mediating extracellular signaling. Recent studies indicate that family members such as MAPK13 (p38δ) display a selective cellular and tissue expression and are therefore involved in specific diseases. Detailed structural studies of all p38 MAPK family members are crucial for the design of specific inhibitors. In order to facilitate such ventures, the structure of MAPK13 was determined in both the inactive (unphosphorylated; MAPK13) and active (dual phosphorylated; MAPK13/pTpY) forms. Here, the first preparation, crystallization and structure determination of MAPK13/pTpY are presented and the structure is compared with the previously reported structure of MAPK13 in order to facilitate studies for structure-based drug design. A comprehensive analysis of inactive versus active structures for the p38 MAPK family is also presented. It is found that MAPK13 undergoes a larger interlobe configurational rearrangement upon activation compared with MAPK14. Surprisingly, the analysis of activated p38 MAPK structures (MAP12/pTpY, MAPK13/pTpY and MAPK14/pTpY) reveals that, despite a high degree of sequence similarity, different side chains are used to coordinate the phosphorylated residues. There are also differences in the rearrangement of the hinge region that occur in MAPK14 compared with MAPK13 which would affect inhibitor binding. A thorough examination of all of the active (phosphorylated) and inactive (unphosphorylated) p38 MAPK family member structures was performed to reveal a common structural basis of activation for the p38 MAP kinase family and to identify structural differences that may be exploited for developing family member-specific inhibitors. PMID:25849390

  20. The crystal structure of phosphorylated MAPK13 reveals common structural features and differences in p38 MAPK family activation.

    PubMed

    Yurtsever, Zeynep; Scheaffer, Suzanne M; Romero, Arthur G; Holtzman, Michael J; Brett, Tom J

    2015-04-01

    The p38 MAP kinases (p38 MAPKs) represent an important family centrally involved in mediating extracellular signaling. Recent studies indicate that family members such as MAPK13 (p38δ) display a selective cellular and tissue expression and are therefore involved in specific diseases. Detailed structural studies of all p38 MAPK family members are crucial for the design of specific inhibitors. In order to facilitate such ventures, the structure of MAPK13 was determined in both the inactive (unphosphorylated; MAPK13) and active (dual phosphorylated; MAPK13/pTpY) forms. Here, the first preparation, crystallization and structure determination of MAPK13/pTpY are presented and the structure is compared with the previously reported structure of MAPK13 in order to facilitate studies for structure-based drug design. A comprehensive analysis of inactive versus active structures for the p38 MAPK family is also presented. It is found that MAPK13 undergoes a larger interlobe configurational rearrangement upon activation compared with MAPK14. Surprisingly, the analysis of activated p38 MAPK structures (MAP12/pTpY, MAPK13/pTpY and MAPK14/pTpY) reveals that, despite a high degree of sequence similarity, different side chains are used to coordinate the phosphorylated residues. There are also differences in the rearrangement of the hinge region that occur in MAPK14 compared with MAPK13 which would affect inhibitor binding. A thorough examination of all of the active (phosphorylated) and inactive (unphosphorylated) p38 MAPK family member structures was performed to reveal a common structural basis of activation for the p38 MAP kinase family and to identify structural differences that may be exploited for developing family member-specific inhibitors.

  1. Genetic structure of the Common Eider in the western Aleutian Islands prior to fox eradication

    USGS Publications Warehouse

    Sonsthagen, Sarah A.; Talbot, Sandra L.; Wilson, Robert E.; Petersen, Margaret R.; Williams, Jeffrey C.; Byrd, G. Vernon; McCracken, Kevin G.

    2013-01-01

    Since the late 18th century bird populations residing in the Aleutian Archipelago have been greatly reduced by introduced arctic foxes (Alopex lagopus). We analyzed data from microsatellite, nuclear intron, and mitochondrial (mtDNA) loci to examine the spatial genetic structure, demography, and gene flow among four Aleutian Island populations of the Common Eider (Somateria mollissima) much reduced by introduced foxes. In mtDNA, we found high levels of genetic structure within and between island groups (ΦST = 0.643), but we found no population subdivision in microsatellites or nuclear introns. Differences in genetic structure between the mitochondrial and nuclear genomes are consistent with the Common Eider's breeding and winter biology, as females are highly philopatric and males disperse. Nevertheless, significant differences between islands in the mtDNA of males and marginal significance (P =0.07) in the Z-linked locus Smo 1 suggest that males may also have some level of fidelity to island groups. Severe reduction of populations by the fox, coupled with females' high philopatry, may have left the genetic signature of a bottleneck effect, resulting in the high levels of genetic differentiation observed in mtDNA (ΦST = 0.460–0.807) between islands only 440 km apart. Reestablishment of the Common Eider following the fox's eradication was likely through recruitment from within the islands and bolstered by dispersal from neighboring islands, as suggested by the lack of genetic structure and asymmetry in gene flow between Attu and the other Near Islands.

  2. Ancient Humans Influenced the Current Spatial Genetic Structure of Common Walnut Populations in Asia

    PubMed Central

    Pollegioni, Paola; Woeste, Keith E.; Chiocchini, Francesca; Del Lungo, Stefano; Olimpieri, Irene; Tortolano, Virginia; Clark, Jo; Hemery, Gabriel E.; Mapelli, Sergio; Malvolti, Maria Emilia

    2015-01-01

    Common walnut (Juglans regia L) is an economically important species cultivated worldwide for its wood and nuts. It is generally accepted that J. regia survived and grew spontaneously in almost completely isolated stands in its Asian native range after the Last Glacial Maximum. Despite its natural geographic isolation, J. regia evolved over many centuries under the influence of human management and exploitation. We evaluated the hypothesis that the current distribution of natural genetic resources of common walnut in Asia is, at least in part, the product of ancient anthropogenic dispersal, human cultural interactions, and afforestation. Genetic analysis combined with ethno-linguistic and historical data indicated that ancient trade routes such as the Persian Royal Road and Silk Road enabled long-distance dispersal of J. regia from Iran and Trans-Caucasus to Central Asia, and from Western to Eastern China. Ancient commerce also disrupted the local spatial genetic structure of autochthonous walnut populations between Tashkent and Samarkand (Central-Eastern Uzbekistan), where the northern and central routes of the Northern Silk Road converged. A significant association between ancient language phyla and the genetic structure of walnut populations is reported even after adjustment for geographic distances that could have affected both walnut gene flow and human commerce over the centuries. Beyond the economic importance of common walnut, our study delineates an alternative approach for understanding how the genetic resources of long-lived perennial tree species may be affected by the interaction of geography and human history. PMID:26332919

  3. Ancient Humans Influenced the Current Spatial Genetic Structure of Common Walnut Populations in Asia.

    PubMed

    Pollegioni, Paola; Woeste, Keith E; Chiocchini, Francesca; Del Lungo, Stefano; Olimpieri, Irene; Tortolano, Virginia; Clark, Jo; Hemery, Gabriel E; Mapelli, Sergio; Malvolti, Maria Emilia

    2015-01-01

    Common walnut (Juglans regia L) is an economically important species cultivated worldwide for its wood and nuts. It is generally accepted that J. regia survived and grew spontaneously in almost completely isolated stands in its Asian native range after the Last Glacial Maximum. Despite its natural geographic isolation, J. regia evolved over many centuries under the influence of human management and exploitation. We evaluated the hypothesis that the current distribution of natural genetic resources of common walnut in Asia is, at least in part, the product of ancient anthropogenic dispersal, human cultural interactions, and afforestation. Genetic analysis combined with ethno-linguistic and historical data indicated that ancient trade routes such as the Persian Royal Road and Silk Road enabled long-distance dispersal of J. regia from Iran and Trans-Caucasus to Central Asia, and from Western to Eastern China. Ancient commerce also disrupted the local spatial genetic structure of autochthonous walnut populations between Tashkent and Samarkand (Central-Eastern Uzbekistan), where the northern and central routes of the Northern Silk Road converged. A significant association between ancient language phyla and the genetic structure of walnut populations is reported even after adjustment for geographic distances that could have affected both walnut gene flow and human commerce over the centuries. Beyond the economic importance of common walnut, our study delineates an alternative approach for understanding how the genetic resources of long-lived perennial tree species may be affected by the interaction of geography and human history.

  4. Herbarium specimens reveal a historical shift in phylogeographic structure of common ragweed during native range disturbance.

    PubMed

    Martin, Michael D; Zimmer, Elizabeth A; Olsen, Morten T; Foote, Andrew D; Gilbert, M Thomas P; Brush, Grace S

    2014-04-01

    Invasive plants provide ample opportunity to study evolutionary shifts that occur after introduction to novel environments. However, although genetic characters pre-dating introduction can be important determinants of later success, large-scale investigations of historical genetic structure have not been feasible. Common ragweed (Ambrosia artemisiifolia L.) is an invasive weed native to North America that is known for its allergenic pollen. Palynological records from sediment cores indicate that this species was uncommon before European colonization of North America, and ragweed populations expanded rapidly as settlers deforested the landscape on a massive scale, later becoming an aggressive invasive with populations established globally. Towards a direct comparison of genetic structure now and during intense anthropogenic disturbance of the late 19th century, we sampled 45 natural populations of common ragweed across its native range as well as historical herbarium specimens collected up to 140 years ago. Bayesian clustering analyses of 453 modern and 473 historical samples genotyped at three chloroplast spacer regions and six nuclear microsatellite loci reveal that historical ragweed's spatial genetic structure mirrors both the palaeo-record of Ambrosia pollen deposition and the historical pattern of agricultural density across the landscape. Furthermore, for unknown reasons, this spatial genetic pattern has changed substantially in the intervening years. Following on previous work relating morphology and genetic expression between plants collected from eastern North America and Western Europe, we speculate that the cluster associated with humans' rapid transformation of the landscape is a likely source of these aggressive invasive populations.

  5. Genetic Structure in the Northern Range Margins of Common Ash, Fraxinus excelsior L.

    PubMed Central

    Tollefsrud, Mari Mette; Myking, Tor; Sønstebø, Jørn Henrik; Lygis, Vaidotas; Hietala, Ari Mikko; Heuertz, Myriam

    2016-01-01

    During post glacial colonization, loss of genetic diversity due to leading edge effects may be attenuated in forest trees because of their prolonged juvenile phase, allowing many migrants to reach the colonizing front before populations become reproductive. The northern range margins of temperate tree taxa in Europe are particularly suitable to study the genetic processes that follow colonization because they have been little affected by northern refugia. Here we examined how post glacial range dynamics have shaped the genetic structure of common ash (Fraxinus excelsior L.) in its northern range compared to its central range in Europe. We used four chloroplast and six nuclear microsatellites to screen 42 populations (1099 trees), half of which corresponded to newly sampled populations in the northern range and half of which represented reference populations from the central range obtained from previously studies. We found that northern range populations of common ash have the same chloroplast haplotypes as south-eastern European populations, suggesting that colonization of the northern range took place along a single migration route, a result confirmed by the structure at the nuclear microsatellites. Along this route, diversity strongly decreased only in the northern range, concomitantly with increasing population differentiation and complex population substructures, a pattern consistent with a leading edge colonization model. Our study highlights that while diversity is maintained in the central range of common ash due to broad colonizing fronts and high levels of gene flow, it profoundly decreases in the northern range, where colonization was unidirectional and probably involved repeated founder events and population fluctuations. Currently, common ash is threatened by ash dieback, and our results on northern populations will be valuable for developing gene conservation strategies. PMID:27907032

  6. [Prediction of Promoter Motifs in Virophages].

    PubMed

    Gong, Chaowen; Zhou, Xuewen; Pan, Yingjie; Wang, Yongjie

    2015-07-01

    Virophages have crucial roles in ecosystems and are the transport vectors of genetic materials. To shed light on regulation and control mechanisms in virophage--host systems as well as evolution between virophages and their hosts, the promoter motifs of virophages were predicted on the upstream regions of start codons using an analytical tool for prediction of promoter motifs: Multiple EM for Motif Elicitation. Seventeen potential promoter motifs were identified based on the E-value, location, number and length of promoters in genomes. Sputnik and zamilon motif 2 with AT-rich regions were distributed widely on genomes, suggesting that these motifs may be associated with regulation of the expression of various genes. Motifs containing the TCTA box were predicted to be late promoter motif in mavirus; motifs containing the ATCT box were the potential late promoter motif in the Ace Lake mavirus . AT-rich regions were identified on motif 2 in the Organic Lake virophage, motif 3 in Yellowstone Lake virophage (YSLV)1 and 2, motif 1 in YSLV3, and motif 1 and 2 in YSLV4, respectively. AT-rich regions were distributed widely on the genomes of virophages. All of these motifs may be promoter motifs of virophages. Our results provide insights into further exploration of temporal expression of genes in virophages as well as associations between virophages and giant viruses.

  7. Detecting Remote Sequence Homology in Disordered Proteins: Discovery of Conserved Motifs in the N-Termini of Mononegavirales phosphoproteins

    PubMed Central

    Karlin, David; Belshaw, Robert

    2012-01-01

    Paramyxovirinae are a large group of viruses that includes measles virus and parainfluenza viruses. The viral Phosphoprotein (P) plays a central role in viral replication. It is composed of a highly variable, disordered N-terminus and a conserved C-terminus. A second viral protein alternatively expressed, the V protein, also contains the N-terminus of P, fused to a zinc finger. We suspected that, despite their high variability, the N-termini of P/V might all be homologous; however, using standard approaches, we could previously identify sequence conservation only in some Paramyxovirinae. We now compared the N-termini using sensitive sequence similarity search programs, able to detect residual similarities unnoticeable by conventional approaches. We discovered that all Paramyxovirinae share a short sequence motif in their first 40 amino acids, which we called soyuz1. Despite its short length (11–16aa), several arguments allow us to conclude that soyuz1 probably evolved by homologous descent, unlike linear motifs. Conservation across such evolutionary distances suggests that soyuz1 plays a crucial role and experimental data suggest that it binds the viral nucleoprotein to prevent its illegitimate self-assembly. In some Paramyxovirinae, the N-terminus of P/V contains a second motif, soyuz2, which might play a role in blocking interferon signaling. Finally, we discovered that the P of related Mononegavirales contain similarly overlooked motifs in their N-termini, and that their C-termini share a previously unnoticed structural similarity suggesting a common origin. Our results suggest several testable hypotheses regarding the replication of Mononegavirales and suggest that disordered regions with little overall sequence similarity, common in viral and eukaryotic proteins, might contain currently overlooked motifs (intermediate in length between linear motifs and disordered domains) that could be detected simply by comparing orthologous proteins. PMID:22403617

  8. Ionized trilysine: a model system for understanding the nonrandom structure of poly-L-lysine and lysine-containing motifs in proteins.

    PubMed

    Verbaro, Daniel J; Mathieu, Daniel; Toal, Siobhan E; Schwalbe, Harald; Schweitzer-Stenner, Reinhard

    2012-07-19

    It is now well-established that different amino acid residues can exhibit different conformational distributions in the unfolded state of peptides and proteins. These conformational propensities can be modulated by nearest neighbors. In the current study, we combined vibrational and NMR spectroscopy to determine the conformational distributions of the central and C-terminal residues in trilysine peptides in aqueous solution. The study was motivated by earlier observations suggesting that interactions between ionized nearest neighbor residues can substantially change conformational propensities. We found that the central lysine residue predominantly adopts conformations that are located at the upper border of the upper left quadrant of the Ramachandran plot and the left border of the polyproline II region. We term this type of conformation deformed polyproline II (pPII(d)). The structures of less populated subensembles of trilysine resemble are comparable with structures at the i + 1 position of type I and type II β-turns. For the C-terminal residue, however, we obtained a mixture of polyproline II, β-strand, and right-handed helical conformations, which is typical for lysine residues in alanine- and glycine-based peptides. Our data thus indicate that the terminal lysines modify and restrict the conformational distribution of the central lysine residue. DFT calculations for ionized trilysine and lysyllysyllysylglycine in vacuo indicate that the pPII(d) is stabilized by a rather strong hydrogen bond between the NH3(+) group of the central lysine and the carbonyl group of the C-terminal peptide. This intramolecular hydrogen bonding induces optical activity in the C-terminal CO stretching vibration, which leads to an unusual and relatively intense positive Cotton band. Additionally, we analyzed the amide I' band profile of ionized triornithine in water. Ornithine is structurally similar to lysine in that its side chain is terminated with an amino group; however, the

  9. Mathematics, thermodynamics, and modeling to address ten common misconceptions about protein structure, folding, and stability.

    PubMed

    Robic, Srebrenka

    2010-01-01

    To fully understand the roles proteins play in cellular processes, students need to grasp complex ideas about protein structure, folding, and stability. Our current understanding of these topics is based on mathematical models and experimental data. However, protein structure, folding, and stability are often introduced as descriptive, qualitative phenomena in undergraduate classes. In the process of learning about these topics, students often form incorrect ideas. For example, by learning about protein folding in the context of protein synthesis, students may come to an incorrect conclusion that once synthesized on the ribosome, a protein spends its entire cellular life time in its fully folded native confirmation. This is clearly not true; proteins are dynamic structures that undergo both local fluctuations and global unfolding events. To prevent and address such misconceptions, basic concepts of protein science can be introduced in the context of simple mathematical models and hands-on explorations of publicly available data sets. Ten common misconceptions about proteins are presented, along with suggestions for using equations, models, sequence, structure, and thermodynamic data to help students gain a deeper understanding of basic concepts relating to protein structure, folding, and stability.

  10. Common failure modes for composite aircraft structures due to secondary loads

    NASA Astrophysics Data System (ADS)

    Rubin, A. M.

    The most common examples of composite laminate failure in typical aircraft structures are discussed, with particular consideration given to the effects of out-of-plane loads (and the resulting interlaminar shear/interlaminar tension) and bolted joint failure modes on the composite substructure and skins. It is noted that design allowables and environmental strength reduction factors for these types of failure model can be easily developed by performing simple element tests under RT/Dry and worst-case environmental conditions. The strength/stiffness factors identified during these tests may then be used to modify data obtained during full-scale RT/Dry tests.

  11. Evolutionary Analysis and Classification of OATs, OCTs, OCTNs, and Other SLC22 Transporters: Structure-Function Implications and Analysis of Sequence Motifs.

    PubMed

    Zhu, Christopher; Nigam, Kabir B; Date, Rishabh C; Bush, Kevin T; Springer, Stevan A; Saier, Milton H; Wu, Wei; Nigam, Sanjay K

    2015-01-01

    The SLC22 family includes organic anion transporters (OATs), organic cation transporters (OCTs) and organic carnitine and zwitterion transporters (OCTNs). These are often referred to as drug transporters even though they interact with many endogenous metabolites and signaling molecules (Nigam, S.K., Nature Reviews Drug Discovery, 14:29-44, 2015). Phylogenetic analysis of SLC22 supports the view that these transporters may have evolved over 450 million years ago. Many OAT members were found to appear after a major expansion of the SLC22 family in mammals, suggesting a physiological and/or toxicological role during the mammalian radiation. Putative SLC22 orthologs exist in worms, sea urchins, flies, and ciona. At least six groups of SLC22 exist. OATs and OCTs form two Major clades of SLC22, within which (apart from Oat and Oct subclades), there are also clear Oat-like, Octn, and Oct-related subclades, as well as a distantly related group we term "Oat-related" (which may have different functions). Based on available data, it is arguable whether SLC22A18, which is related to bacterial drug-proton antiporters, should be assigned to SLC22. Disease-causing mutations, single nucleotide polymorphisms (SNPs) and other functionally analyzed mutations in OAT1, OAT3, URAT1, OCT1, OCT2, OCTN1, and OCTN2 map to the first extracellular domain, the large central intracellular domain, and transmembrane domains 9 and 10. These regions are highly conserved within subclades, but not between subclades, and may be necessary for SLC22 transporter function and functional diversification. Our results not only link function to evolutionarily conserved motifs but indicate the need for a revised sub-classification of SLC22.

  12. A multiplex PCR system for 13 RM Y-STRs with separate amplification of two different repeat motif structures in DYF403S1a.

    PubMed

    Lee, Eun Young; Lee, Hwan Young; Kwon, So Yeun; Oh, Yu Na; Yang, Woo Ick; Shin, Kyoung-Jin

    2017-01-01

    In forensic science and human genetics, Y-chromosomal short tandem repeats (Y-STRs) have been used as very useful markers. Recently, more Y-STR markers have been analyzed to enhance the resolution power in haplotype analysis, and 13 rapidly mutating (RM) Y-STRs have been suggested as revolutionary tools that can widen Y-chromosomal application from paternal lineage differentiation to male individualization. We have constructed two multiplex PCR sets for the amplification of 13 RM Y-STRs, which yield small-sized amplicons (<400bp) and a more balanced PCR efficiency with minimum PCR cycling. In particular, with the developed multiplex PCR system, we could separate three copies of DYF403S1a into two copies of DYF403S1a and one of DYF403S1b1. This is because DYF403S1b1 possesses distinguishable sequences from DYF403S1a at both the front and rear flanking regions of the repeat motif; therefore, the locus could be separately amplified using sequence-specific primers. In addition, the other copy, defined as DYF403S1b by Ballantyne et al., was renamed DYF403S1b2 because of its similar flanking region sequence to DYF403S1b1. By redefining DYF403S1 with the developed multiplex system, all genotypes of four copies could be successfully typed and more diverse haplotypes were obtained. We analyzed haplotype distributions in 705 Korean males based on four different Y-STR subsets: Yfiler, PowerPlex Y23, Yfiler Plus, and RM Y-STRs. All haplotypes obtained from RM Y-STRs were the most diverse and showed strong discriminatory power in Korean population.

  13. Evolutionary Analysis and Classification of OATs, OCTs, OCTNs, and Other SLC22 Transporters: Structure-Function Implications and Analysis of Sequence Motifs

    PubMed Central

    Date, Rishabh C.; Bush, Kevin T.; Springer, Stevan A.; Saier, Milton H.; Wu, Wei; Nigam, Sanjay K.

    2015-01-01

    The SLC22 family includes organic anion transporters (OATs), organic cation transporters (OCTs) and organic carnitine and zwitterion transporters (OCTNs). These are often referred to as drug transporters even though they interact with many endogenous metabolites and signaling molecules (Nigam, S.K., Nature Reviews Drug Discovery, 14:29–44, 2015). Phylogenetic analysis of SLC22 supports the view that these transporters may have evolved over 450 million years ago. Many OAT members were found to appear after a major expansion of the SLC22 family in mammals, suggesting a physiological and/or toxicological role during the mammalian radiation. Putative SLC22 orthologs exist in worms, sea urchins, flies, and ciona. At least six groups of SLC22 exist. OATs and OCTs form two Major clades of SLC22, within which (apart from Oat and Oct subclades), there are also clear Oat-like, Octn, and Oct-related subclades, as well as a distantly related group we term “Oat-related” (which may have different functions). Based on available data, it is arguable whether SLC22A18, which is related to bacterial drug-proton antiporters, should be assigned to SLC22. Disease-causing mutations, single nucleotide polymorphisms (SNPs) and other functionally analyzed mutations in OAT1, OAT3, URAT1, OCT1, OCT2, OCTN1, and OCTN2 map to the first extracellular domain, the large central intracellular domain, and transmembrane domains 9 and 10. These regions are highly conserved within subclades, but not between subclades, and may be necessary for SLC22 transporter function and functional diversification. Our results not only link function to evolutionarily conserved motifs but indicate the need for a revised sub-classification of SLC22. PMID:26536134

  14. Do common eiders nest in kin groups? Microgeographic genetic structure in a philopatric sea duck

    USGS Publications Warehouse

    Sonsthagen, S.A.; Talbot, S.L.; Lanctot, Richard B.; McCracken, K.G.

    2010-01-01

    We investigated local genetic associations among female Pacific common eiders (Somateria mollissima v-nigrum) nesting in a stochastic Arctic environment within two groups of barrier islands (Simpson Lagoon and Mikkelsen Bay) in the Beaufort Sea, Alaska. Nonrandom genetic associations were observed among nesting females using regional spatial autocorrelation analyses for distance classes up to 1000 m in Simpson Lagoon. Nearest-neighbour analyses identified clusters of genetically related females with positive lr values observed for 0-13% and 0-7% of the comparisons in Simpson Lagoon and Mikkelsen Bay, respectively, across years. These results indicate that a proportion of females are nesting in close proximity to more genetically related individuals, albeit at low frequency. Such kin groupings may form through active association between relatives or through natal philopatry and breeding site fidelity. Eiders nest in close association with driftwood, which is redistributed annually by seasonal storms. Yet, genetic associations were still observed. Microgeographic structure may thus be more attributable to kin association than natal philopatry and site fidelity. However, habitat availability may also influence the level of structure observed. Regional structure was present only within Simpson Lagoon and this island group includes at least three islands with sufficient driftwood for colonies, whereas only one island at Mikkelsen Bay has these features. A long-term demographic study is needed to understand more fully the mechanisms that lead to fine-scale genetic structure observed in common eiders breeding in the Beaufort Sea. ?? Published 2010. This article is a US Government work and is in the public domain in the USA.

  15. Sequential visibility-graph motifs

    NASA Astrophysics Data System (ADS)

    Iacovacci, Jacopo; Lacasa, Lucas

    2016-04-01

    Visibility algorithms transform time series into graphs and encode dynamical information in their topology, paving the way for graph-theoretical time series analysis as well as building a bridge between nonlinear dynamics and network science. In this work we introduce and study the concept of sequential visibility-graph motifs, smaller substructures of n consecutive nodes that appear with characteristic frequencies. We develop a theory to compute in an exact way the motif profiles associated with general classes of deterministic and stochastic dynamics. We find that this simple property is indeed a highly informative and computationally efficient feature capable of distinguishing among different dynamics and robust against noise contamination. We finally confirm that it can be used in practice to perform unsupervised learning, by extracting motif profiles from experimental heart-rate series and being able, accordingly, to disentangle meditative from other relaxation states. Applications of this general theory include the automatic classification and description of physical, biological, and financial time series.

  16. Internal Structural Design of the Common Research Model Wing Box for Aeroelastic Tailoring

    NASA Technical Reports Server (NTRS)

    Jutte, Christine V.; Stanford, Bret K.; Wieseman, Carol D.

    2015-01-01

    This work explores the use of alternative internal structural designs within a full-scale wing box structure for aeroelastic tailoring, with a focus on curvilinear spars, ribs, and stringers. The baseline wing model is a fully-populated, cantilevered wing box structure of the Common Research Model (CRM). Metrics of interest include the wing weight, the onset of dynamic flutter, and the static aeroelastic stresses. Twelve parametric studies alter the number of internal structural members along with their location, orientation, and curvature. Additional evaluation metrics are considered to identify design trends that lead to lighter-weight, aeroelastically stable wing designs. The best designs of the individual studies are compared and discussed, with a focus on weight reduction and flutter resistance. The largest weight reductions were obtained by removing the inner spar, and performance was maintained by shifting stringers forward and/or using curvilinear ribs: 5.6% weight reduction, a 13.9% improvement in flutter speed, but a 3.0% increase in stress levels. Flutter resistance was also maintained using straight-rotated ribs although the design had a 4.2% lower flutter speed than the curved ribs of similar weight and stress levels were higher. For some configurations, the differences between curved and straight ribs were smaller, which provides motivation for future optimization-based studies to fully exploit the trade-offs.

  17. Structural Similarities between Thiamin-Binding Protein and Thiaminase-I Suggest a Common Ancestor

    SciTech Connect

    Soriano, Erika V.; Rajashankar, Kanagalaghatta R.; Hanes, Jeremiah W.; Bale, Shridhar; Begley, Tadhg P.; Ealick, Steven E.

    2008-06-30

    ATP-binding cassette (ABC) transporters are responsible for the transport of a wide variety of water-soluble molecules and ions into prokaryotic cells. In Gram-negative bacteria, periplasmic-binding proteins deliver ions or molecules such as thiamin to the membrane-bound ABC transporter. The gene for the thiamin-binding protein tbpA has been identified in both Escherichia coli and Salmonella typhimurium. Here we report the crystal structure of TbpA from E. coli with bound thiamin monophosphate. The structure was determined at 2.25 {angstrom} resolution using single-wavelength anomalous diffraction experiments, despite the presence of nonmerohedral twinning. The crystal structure shows that TbpA belongs to the group II periplasmic-binding protein family. Equilibrium binding measurements showed similar dissociation constants for thiamin, thiamin monophosphate, and thiamin pyrophosphate. Analysis of the binding site by molecular modeling demonstrated how TbpA binds all three forms of thiamin. A comparison of TbpA and thiaminase-I, a thiamin-degrading enzyme, revealed structural similarity between the two proteins, especially in domain 1, suggesting that the two proteins evolved from a common ancestor.

  18. ON THE COMMONALITY OF 10–30 AU SIZED AXISYMMETRIC DUST STRUCTURES IN PROTOPLANETARY DISKS

    SciTech Connect

    Zhang, Ke; Bergin, Edwin A.; Schwarz, Kamber R.; Blake, Geoffrey A.; Cleeves, L. Ilsedore; Hogerheijde, Michiel; Salinas, Vachail

    2016-02-10

    An unsolved problem in step-wise core-accretion planet formation is that rapid radial drift in gas-rich protoplanetary disks should drive millimeter-/meter-sized particles inward to the central star before large bodies can form. One promising solution is to confine solids within small-scale structures. Here, we investigate dust structures in the (sub)millimeter continuum emission of four disks (TW Hya, HL Tau, HD 163296, and DM Tau), a sample of disks with the highest spatial resolution Atacama Large Millimeter/submillimeter Array observations to date. We retrieve the surface brightness distributions using synthesized images and fitting visibilities with analytical functions. We find that the continuum emission of the four disks is ∼axisymmetric but rich in 10–30 AU-sized radial structures, possibly due to physical gaps, surface density enhancements, or localized dust opacity variations within the disks. These results suggest that small-scale axisymmetric dust structures are likely to be common, as a result of ubiquitous processes in disk evolution and planet formation. Compared with recent spatially resolved observations of CO snow lines in these same disks, all four systems show enhanced continuum emission from regions just beyond the CO condensation fronts, potentially suggesting a causal relationship between dust growth/trapping and snow lines.

  19. A million peptide motifs for the molecular biologist.

    PubMed

    Tompa, Peter; Davey, Norman E; Gibson, Toby J; Babu, M Madan

    2014-07-17

    A molecular description of functional modules in the cell is the focus of many high-throughput studies in the postgenomic era. A large portion of biomolecular interactions in virtually all cellular processes is mediated by compact interaction modules, referred to as peptide motifs. Such motifs are typically less than ten residues in length, occur within intrinsically disordered regions, and are recognized and/or posttranslationally modified by structured domains of the interacting partner. In this review, we suggest that there might be over a million instances of peptide motifs in the human proteome. While this staggering number suggests that peptide motifs are numerous and the most understudied functional module in the cell, it also holds great opportunities for new discoveries.

  20. The distribution of RNA motifs in natural sequences.

    PubMed

    Bourdeau, V; Ferbeyre, G; Pageau, M; Paquin, B; Cedergren, R

    1999-11-15

    Functional analysis of genome sequences has largely ignored RNA genes and their structures. We introduce here the notion of 'ribonomics' to describe the search for the distribution of and eventually the determination of the physiological roles of these RNA structures found in the sequence databases. The utility of this approach is illustrated here by the identification in the GenBank database of RNA motifs having known binding or chemical activity. The frequency of these motifs indicates that most have originated from evolutionary drift and are selectively neutral. On the other hand, their distribution among species and their location within genes suggest that the destiny of these motifs may be more elaborate. For example, the hammerhead motif has a skewed organismal presence, is phylogenetically stable and recent work on a schistosome version confirms its in vivo biological activity. The under-representation of the valine-binding motif and the Rev-binding element in GenBank hints at a detrimental effect on cell growth or viability. Data on the presence and the location of these motifs may provide critical guidance in the design of experiments directed towards the understanding and the manipulation of RNA complexes and activities in vivo.

  1. The Common Data Elements for Cancer Research: Remarks on Functions and Structure

    PubMed Central

    Nadkarni, Prakash M.; Brandt, Cynthia A.

    2010-01-01

    Objectives The National Cancer Institute (NCI) has developed the Common Data Elements (CDE) to serve as a controlled vocabulary of data descriptors for cancer research, to facilitate data interchange and inter-operability between cancer research centers. We evaluated CDE’s structure to see whether it could represent the elements necessary to support its intended purpose, and whether it could prevent errors and inconsistencies from being accidentally introduced. We also performed automated checks for certain types of content errors that provided a rough measure of curation quality. Methods Evaluation was performed on CDE content downloaded via the NCI’s CDE Browser, and transformed into relational database form. Evaluation was performed under three categories: 1) compatibility with the ISO/IEC 11179 metadata model, on which CDE structure is based, 2) features necessary for controlled vocabulary support, and 3) support for a stated NCI goal, set up of data collection forms for cancer research. Results Various limitations were identified both with respect to content (inconsistency, insufficient definition of elements, redundancy) as well as structure – particularly the need for term and relationship support, as well as the need for metadata supporting the explicit representation of electronic forms that utilize sets of common data elements. Conclusions While there are numerous positive aspects to the CDE effort, there is considerable opportunity for improvement. Our recommendations include review of existing content by diverse experts in the cancer community; integration with the NCI thesaurus to take advantage of the latter’s links to nationally used controlled vocabularies, and various schema enhancements required for electronic form support. PMID:17149500

  2. Multilocus phylogeography and population structure of common eiders breeding in North America and Scandinavia

    USGS Publications Warehouse

    Sonsthagen, S.A.; Talbot, S.L.; Scribner, K.T.; McCracken, K.G.

    2011-01-01

    Aim Glacial refugia during the Pleistocene had major impacts on the levels and spatial apportionment of genetic diversity of species in northern latitude ecosystems. We characterized patterns of population subdivision, and tested hypotheses associated with locations of potential Pleistocene refugia and the relative contribution of these refugia to the post-glacial colonization of North America and Scandinavia by common eiders (Somateria mollissima). Specifically, we evaluated localities hypothesized as ice-free areas or glacial refugia for other Arctic vertebrates, including Beringia, the High Arctic Canadian Archipelago, Newfoundland Bank, Spitsbergen Bank and north-west Norway. Location Alaska, Canada, Norway and Sweden. Methods Molecular data from 12 microsatellite loci, the mitochondrial DNA (mtDNA) control region, and two nuclear introns were collected and analysed for 15 populations of common eiders (n=716) breeding throughout North America and Scandinavia. Population genetic structure, historical population fluctuations and gene flow were inferred using F-statistics, analyses of molecular variance, and multilocus coalescent analyses. Results Significant inter-population variation in allelic and haplotypic frequencies were observed (nuclear DNA FST=0.004-0.290; mtDNA ??ST=0.051-0.927). Whereas spatial differentiation in nuclear genes was concordant with subspecific designations, geographic proximity was more predictive of inter-population variance in mitochondrial DNA haplotype frequency. Inferences of historical population demography were consistent with restriction of common eiders to four geographic areas during the Last Glacial Maximum: Belcher Islands, Newfoundland Bank, northern Alaska and Svalbard. Three of these areas coincide with previously identified glacial refugia: Newfoundland Bank, Beringia and Spitsbergen Bank. Gene-flow and clustering analyses indicated that the Beringian refugium contributed little to common eider post-glacial colonization

  3. Multilocus phylogeography and population structure of common eiders breeding in North America and Scandinavia

    USGS Publications Warehouse

    Sonsthagen, Sarah A.; Talbot, Sandra L.; Scribner, Kim T.; McCracken, Kevin G.

    2014-01-01

    Aim:  Glacial refugia during the Pleistocene had major impacts on the levels and spatial apportionment of genetic diversity of species in northern latitude ecosystems. We characterized patterns of population subdivision, and tested hypotheses associated with locations of potential Pleistocene refugia and the relative contribution of these refugia to the post-glacial colonization of North America and Scandinavia by common eiders (Somateria mollissima). Specifically, we evaluated localities hypothesized as ice-free areas or glacial refugia for other Arctic vertebrates, including Beringia, the High Arctic Canadian Archipelago, Newfoundland Bank, Spitsbergen Bank and north-west Norway. Location: Alaska, Canada, Norway and Sweden. Methods: Molecular data from 12 microsatellite loci, the mitochondrial DNA (mtDNA) control region, and two nuclear introns were collected and analysed for 15 populations of common eiders (n = 716) breeding throughout North America and Scandinavia. Population genetic structure, historical population fluctuations and gene flow were inferred using F-statistics, analyses of molecular variance, and multilocus coalescent analyses. Results: Significant inter-population variation in allelic and haplotypic frequencies were observed (nuclear DNA FST = 0.004–0.290; mtDNA ΦST = 0.051–0.927). Whereas spatial differentiation in nuclear genes was concordant with subspecific designations, geographic proximity was more predictive of inter-population variance in mitochondrial DNA haplotype frequency. Inferences of historical population demography were consistent with restriction of common eiders to four geographic areas during the Last Glacial Maximum: Belcher Islands, Newfoundland Bank, northern Alaska and Svalbard. Three of these areas coincide with previously identified glacial refugia: Newfoundland Bank, Beringia and Spitsbergen Bank. Gene-flow and clustering analyses indicated that the Beringian refugium contributed little to common eider post

  4. Experimental Constraints on Microbial Liberation of Structural Iron from Common Clay Minerals in Marine Sediments

    NASA Astrophysics Data System (ADS)

    Metcalfe, K. S.; Gaines, R. R.; Trang, J.; Scott, S. W.; Crane, E. J.; Lackey, J.; Prokopenko, M. G.; Berelson, W.

    2013-12-01

    Iron is a limiting nutrient in many marine settings. The marine Fe-cycle is complex because Fe may be used as an electron donor or acceptor and cycled many times before ultimate burial in sediments. Thus, the availability of iron plays a large role in the marine carbon cycle, influencing not only the extent of primary productivity but also the oxidation of organic matter in sediments. The primary constituents of marine sediments are clay minerals, which commonly contain lattice-bound Fe in octahedral sites. In marine settings, the pool of Fe bound within silicate mineral lattices has long been considered reactive only over long timescales, and thus non-bioavailable. In vitro experimental evidence has shown that lab cultures of Fe-reducing bacteria are able to utilize structurally-bound Fe (III) from the crystal lattice of nontronite, an uncommon but particularly Fe-rich (> 12 wt.%) smectite. Importantly, this process is capable of liberating Fe (II) to solution, where it is available to biotic processes as an electron donor. In order to constrain the capacity of naturally-occurring marine bacteria to liberate structurally-coordinated Fe from the lattices of common clay minerals, we exposed a suite of 16 different clay minerals (0.8-13.9 wt.% Fe) to lab cultures of known Fe-reducer S. onenidensis MR-1 and to a natural consortium of Fe-reducing microbes from the San Pedro and Santa Monica Basins over timescales ranging from 7-120 days. Clay minerals were treated with Na-dithionite to extract surface-bound Fe prior to exposure. Crystallographic data and direct measurements of Fe in solution demonstrate the release of structural Fe from all clay minerals analyzed. Neoformation of illite and amorphous quartz were observed. The array of clay minerals and microbes used in this experiment complement past findings and suggest that common clay minerals may represent a large and previously unrecognized pool of bioavailable Fe in the world ocean that contributes significantly

  5. Crystal, Solution and In silico Structural Studies of Dihydrodipicolinate Synthase from the Common Grapevine

    PubMed Central

    Atkinson, Sarah C.; Dogovski, Con; Downton, Matthew T.; Pearce, F. Grant; Reboul, Cyril F.; Buckle, Ashley M.; Gerrard, Juliet A.; Dobson, Renwick C. J.; Wagner, John; Perugini, Matthew A.

    2012-01-01

    Dihydrodipicolinate synthase (DHDPS) catalyzes the rate limiting step in lysine biosynthesis in bacteria and plants. The structure of DHDPS has been determined from several bacterial species and shown in most cases to form a homotetramer or dimer of dimers. However, only one plant DHDPS structure has been determined to date from the wild tobacco species, Nicotiana sylvestris (Blickling et al. (1997) J. Mol. Biol. 274, 608–621). Whilst N. sylvestris DHDPS also forms a homotetramer, the plant enzyme adopts a ‘back-to-back’ dimer of dimers compared to the ‘head-to-head’ architecture observed for bacterial DHDPS tetramers. This raises the question of whether the alternative quaternary architecture observed for N. sylvestris DHDPS is common to all plant DHDPS enzymes. Here, we describe the structure of DHDPS from the grapevine plant, Vitis vinifera, and show using analytical ultracentrifugation, small-angle X-ray scattering and X-ray crystallography that V. vinifera DHDPS forms a ‘back-to-back’ homotetramer, consistent with N. sylvestris DHDPS. This study is the first to demonstrate using both crystal and solution state measurements that DHDPS from the grapevine plant adopts an alternative tetrameric architecture to the bacterial form, which is important for optimizing protein dynamics as suggested by molecular dynamics simulations reported in this study. PMID:22761676

  6. Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes.

    PubMed

    Hobley, Laura; Harkins, Catriona; MacPhee, Cait E; Stanley-Wall, Nicola R

    2015-09-01

    Biofilms are communities of microbial cells that underpin diverse processes including sewage bioremediation, plant growth promotion, chronic infections and industrial biofouling. The cells resident in the biofilm are encased within a self-produced exopolymeric matrix that commonly comprises lipids, proteins that frequently exhibit amyloid-like properties, eDNA and exopolysaccharides. This matrix fulfils a variety of functions for the community, from providing structural rigidity and protection from the external environment to controlling gene regulation and nutrient adsorption. Critical to the development of novel strategies to control biofilm infections, or the capability to capitalize on the power of biofilm formation for industrial and biotechnological uses, is an in-depth knowledge of the biofilm matrix. This is with respect to the structure of the individual components, the nature of the interactions between the molecules and the three-dimensional spatial organization. We highlight recent advances in the understanding of the structural and functional role that carbohydrates and proteins play within the biofilm matrix to provide three-dimensional architectural integrity and functionality to the biofilm community. We highlight, where relevant, experimental techniques that are allowing the boundaries of our understanding of the biofilm matrix to be extended using Escherichia coli, Staphylococcus aureus, Vibrio cholerae, and Bacillus subtilis as exemplars.

  7. Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes

    PubMed Central

    Hobley, Laura; Harkins, Catriona; MacPhee, Cait E.; Stanley-Wall, Nicola R.

    2015-01-01

    Biofilms are communities of microbial cells that underpin diverse processes including sewage bioremediation, plant growth promotion, chronic infections and industrial biofouling. The cells resident in the biofilm are encased within a self-produced exopolymeric matrix that commonly comprises lipids, proteins that frequently exhibit amyloid-like properties, eDNA and exopolysaccharides. This matrix fulfils a variety of functions for the community, from providing structural rigidity and protection from the external environment to controlling gene regulation and nutrient adsorption. Critical to the development of novel strategies to control biofilm infections, or the capability to capitalize on the power of biofilm formation for industrial and biotechnological uses, is an in-depth knowledge of the biofilm matrix. This is with respect to the structure of the individual components, the nature of the interactions between the molecules and the three-dimensional spatial organization. We highlight recent advances in the understanding of the structural and functional role that carbohydrates and proteins play within the biofilm matrix to provide three-dimensional architectural integrity and functionality to the biofilm community. We highlight, where relevant, experimental techniques that are allowing the boundaries of our understanding of the biofilm matrix to be extended using Escherichia coli, Staphylococcus aureus, Vibrio cholerae, and Bacillus subtilis as exemplars. PMID:25907113

  8. Neural Circuits: Male Mating Motifs.

    PubMed

    Benton, Richard

    2015-09-02

    Characterizing microcircuit motifs in intact nervous systems is essential to relate neural computations to behavior. In this issue of Neuron, Clowney et al. (2015) identify recurring, parallel feedforward excitatory and inhibitory pathways in male Drosophila's courtship circuitry, which might explain decisive mate choice.

  9. MINER: software for phylogenetic motif identification.

    PubMed

    La, David; Livesay, Dennis R

    2005-07-01

    MINER is web-based software for phylogenetic motif (PM) identification. PMs are sequence regions (fragments) that conserve the overall familial phylogeny. PMs have been shown to correspond to a wide variety of catalytic regions, substrate-binding sites and protein interfaces, making them ideal functional site predictions. The MINER output provides an intuitive interface for interactive PM sequence analysis and structural visualization. The web implementation of MINER is freely available at http://www.pmap.csupomona.edu/MINER/. Source code is available to the academic community on request.

  10. Ca(2+)-Induced Rigidity Change of the Myosin VIIa IQ Motif-Single α Helix Lever Arm Extension.

    PubMed

    Li, Jianchao; Chen, Yiyun; Deng, Yisong; Unarta, Ilona Christy; Lu, Qing; Huang, Xuhui; Zhang, Mingjie

    2017-04-04

    Several unconventional myosins contain a highly charged single α helix (SAH) immediately following the calmodulin (CaM) binding IQ motifs, functioning to extend lever arms of these myosins. How such SAH is connected to the IQ motifs and whether the conformation of the IQ motifs-SAH segments are regulated by Ca(2+) fluctuations are not known. Here, we demonstrate by solving its crystal structure that the predicted SAH of myosin VIIa (Myo7a) forms a stable SAH. The structure of Myo7a IQ5-SAH segment in complex with apo-CaM reveals that the SAH sequence can extend the length of the Myo7a lever arm. Although Ca(2+)-CaM remains bound to IQ5-SAH, the Ca(2+)-induced CaM binding mode change softens the conformation of the IQ5-SAH junction, revealing a Ca(2+)-induced lever arm flexibility change for Myo7a. We further demonstrate that the last IQ motif of several other myosins also binds to both apo- and Ca(2+)-CaM, suggesting a common Ca(2+)-induced conformational regulation mechanism.

  11. Hierarchical spatial genetic structure of Common Eiders (Somateria Mollissima) breeding along a migratory corridor

    USGS Publications Warehouse

    Sonsthagen, S.A.; Talbot, S.L.; Lanctot, Richard B.; Scribner, K.T.; McCracken, K.G.

    2009-01-01

    Documentation of spatial genetic discordance among breeding populations of Arctic-nesting avian species is important, because anthropogenic change is altering environmental linkages at micro- and macrogeographic scales. We estimated levels of population subdivision within Pacific Common Eiders (Somateria mollissima v-nigrum) breeding on 12 barrier islands in the western Beaufort Sea, Alaska, using molecular markers and capture-mark-recapture (CMR) data. Common Eider populations were genetically structured on a microgeographic scale. Regional comparisons between populations breeding on island groups separated by 90 km (Mikkelsen Bay and Simpson Lagoon) revealed structuring at 14 microsatellite loci (FST = 0.004, P < 0.01), a nuclear intron (FST = 0.022, P = 0.02), and mitochondrial DNA (??ST = 0.082, P < 0.05). The CMR data (n = 34) did not indicate female dispersal between island groups. Concordance between genetic and CMR data indicates that females breeding in the western Beaufort Sea are strongly philopatric to island groups rather than to a particular island. Despite the apparent high site fidelity of females, coalescence-based models of gene flow suggest that asymmetrical western dispersal occurs between island groups and is likely mediated by Mikkelsen Bay females stopping early on spring migration at Simpson Lagoon to breed. Alternatively, late-arriving females may be predisposed to nest in Simpson Lagoon because of the greater availability and wider distribution of nesting habitat. Our results indicate that genetic discontinuities, mediated by female philopatry, can exist at microgeographic scales along established migratory corridors. ?? The American Ornithologists' Union, 2009.

  12. Common and Distant Structural Characteristics of Feruloyl Esterase Families from Aspergillus oryzae

    PubMed Central

    Udatha, D. B. R. K. Gupta; Mapelli, Valeria; Panagiotou, Gianni; Olsson, Lisbeth

    2012-01-01

    Background Feruloyl esterases (FAEs) are important biomass degrading accessory enzymes due to their capability of cleaving the ester links between hemicellulose and pectin to aromatic compounds of lignin, thus enhancing the accessibility of plant tissues to cellulolytic and hemicellulolytic enzymes. FAEs have gained increased attention in the area of biocatalytic transformations for the synthesis of value added compounds with medicinal and nutritional applications. Following the increasing attention on these enzymes, a novel descriptor based classification system has been proposed for FAEs resulting into 12 distinct families and pharmacophore models for three FAE sub-families have been developed. Methodology/Principal Findings The feruloylome of Aspergillus oryzae contains 13 predicted FAEs belonging to six sub-families based on our recently developed descriptor-based classification system. The three-dimensional structures of the 13 FAEs were modeled for structural analysis of the feruloylome. The three genes coding for three enzymes, viz., A.O.2, A.O.8 and A.O.10 from the feruloylome of A. oryzae, representing sub-families with unknown functional features, were heterologously expressed in Pichia pastoris, characterized for substrate specificity and structural characterization through CD spectroscopy. Common feature-based pharamacophore models were developed according to substrate specificity characteristics of the three enzymes. The active site residues were identified for the three expressed FAEs by determining the titration curves of amino acid residues as a function of the pH by applying molecular simulations. Conclusions/Significance Our findings on the structure-function relationships and substrate specificity of the FAEs of A. oryzae will be instrumental for further understanding of the FAE families in the novel classification system. The developed pharmacophore models could be applied for virtual screening of compound databases for short listing the

  13. Finding specific RNA motifs: Function in a zeptomole world?

    PubMed Central

    KNIGHT, ROB; YARUS, MICHAEL

    2003-01-01

    We have developed a new method for estimating the abundance of any modular (piecewise) RNA motif within a longer random region. We have used this method to estimate the size of the active motifs available to modern SELEX experiments (picomoles of unique sequences) and to a plausible RNA World (zeptomoles of unique sequences: 1 zmole = 602 sequences). Unexpectedly, activities such as specific isoleucine binding are almost certainly present in zeptomoles of molecules, and even ribozymes such as self-cleavage motifs may appear (depending on assumptions about the minimal structures). The number of specified nucleotides is not the only important determinant of a motif’s rarity: The number of modules into which it is divided, and the details of this division, are also crucial. We propose three maxims for easily isolated motifs: the Maxim of Minimization, the Maxim of Multiplicity, and the Maxim of the Median. These maxims together state that selected motifs should be small and composed of as many separate, equally sized modules as possible. For evenly divided motifs with four modules, the largest accessible activity in picomole scale (1–1000 pmole) pools of length 100 is about 34 nucleotides; while for zeptomole scale (1–1000 zmole) pools it is about 20 specific nucleotides (50% probability of occurrence). This latter figure includes some ribozymes and aptamers. Consequently, an RNA metabolism apparently could have begun with only zeptomoles of RNA molecules. PMID:12554865

  14. Protein Chaperones Q8ZP25_SALTY from Salmonella Typhimurium and HYAE_ECOLI from Escherichia coli Exhibit Thioredoxin-like Structures Despite Lack of Canonical Thioredoxin Active Site Sequence Motif

    SciTech Connect

    Parish, D.; Benach, J; Liu, G; Singarapu, K; Xiao, R; Acton, T; Hunt, J; Montelione, G; Szyperski, T; et. al.

    2008-01-01

    The structure of the 142-residue protein Q8ZP25 SALTY encoded in the genome of Salmonella typhimurium LT2 was determined independently by NMR and X-ray crystallography, and the structure of the 140-residue protein HYAE ECOLI encoded in the genome of Escherichia coli was determined by NMR. The two proteins belong to Pfam (Finn et al. 34:D247-D251, 2006) PF07449, which currently comprises 50 members, and belongs itself to the 'thioredoxin-like clan'. However, protein HYAE ECOLI and the other proteins of Pfam PF07449 do not contain the canonical Cys-X-X-Cys active site sequence motif of thioredoxin. Protein HYAE ECOLI was previously classified as a (NiFe) hydrogenase-1 specific chaperone interacting with the twin-arginine translocation (Tat) signal peptide. The structures presented here exhibit the expected thioredoxin-like fold and support the view that members of Pfam family PF07449 specifically interact with Tat signal peptides.

  15. The Rcs signal transduction pathway is triggered by enterobacterial common antigen structure alterations in Serratia marcescens.

    PubMed

    Castelli, María E; Véscovi, Eleonora García

    2011-01-01

    The enterobacterial common antigen (ECA) is a highly conserved exopolysaccharide in Gram-negative bacteria whose role remains largely uncharacterized. In a previous work, we have demonstrated that disrupting the integrity of the ECA biosynthetic pathway imposed severe deficiencies to the Serratia marcescens motile (swimming and swarming) capacity. In this work, we show that alterations in the ECA structure activate the Rcs phosphorelay, which results in the repression of the flagellar biogenesis regulatory cascade. In addition, a detailed analysis of wec cluster mutant strains, which provoke the disruption of the ECA biosynthesis at different levels of the pathway, suggests that the absence of the periplasmic ECA cyclic structure could constitute a potential signal detected by the RcsF-RcsCDB phosphorelay. We also identify SMA1167 as a member of the S. marcescens Rcs regulon and show that high osmolarity induces Rcs activity in this bacterium. These results provide a new perspective from which to understand the phylogenetic conservation of ECA among enterobacteria and the basis for the virulence attenuation detected in wec mutant strains in other pathogenic bacteria.

  16. Temperature Effects on Adhesive Bond Strengths and Modulus for Commonly Used Spacecraft Structural Adhesives

    NASA Technical Reports Server (NTRS)

    Ojeda, Cassandra E.; Oakes, Eric J.; Hill, Jennifer R.; Aldi, Dominic; Forsberg, Gustaf A.

    2011-01-01

    A study was performed to observe how changes in temperature and substrate material affected the strength and modulus of an adhesive bondline. Seven different adhesives commonly used in aerospace bonded structures were tested. Aluminum, titanium and Invar adherends were cleaned and primed, then bonded using the manufacturer's recommendations. Following surface preparation, the coupons were bonded with the adhesives. The single lap shear coupons were then pull tested per ASTM D 1002 Standard Test Method for Apparent Shear Strength of Single- Lap-Joint over a temperature range from -150 deg C up to +150 deg C. The ultimate strength was calculated and the resulting data were converted into B-basis design allowables. Average and Bbasis results were compared. Results obtained using aluminum adherends are reported. The effects of using different adherend materials and temperature were also studied and will be reported in a subsequent paper. Dynamic Mechanical Analysis (DMA) was used to study variations in adhesive modulus with temperature. This work resulted in a highly useful database for comparing adhesive performance over a wide range of temperatures, and has facilitated selection of the appropriate adhesive for spacecraft structure applications.

  17. The structure of the cyclic enterobacterial common antigen (ECA) from Yersinia pestis.

    PubMed

    Vinogradov, E V; Knirel, Y A; Thomas-Oates, J E; Shashkov, A S; L'vov, V L

    1994-05-20

    Two antigenic acidic polysaccharides related to enterobacterial common antigen (ECA) were isolated from a vaccine strain of a pathogenic microorganism Yersinia pestis. The low molecular weight polysaccharide (LMP) is composed of equal amounts of 2-acetamido-2-deoxy-D-mannuronic acid, 4-acetamido-4,6-dideoxy-D-galactose (Fuc4NAc), and 2-amino-2-deoxy-D-glucose which is partially N- and partially 6-O-acetylated. The structure of the trisaccharide repeating unit was established by analyses of LMP and the completely N-acetylated LMP (LMP-NAc) using 1H and 13C NMR spectroscopy, including 2D COSY and 1D NOE spectroscopy. Deamination of LMP with nitrous acid gave a set of oligomers terminated with 2,5-anhydromannose and ranging from tri- to dodeca-saccharides, thus indicating a random distribution of free amino groups. FABMS analyses of LMP and LMP-NAc showed that LMP consists mainly of the cyclic tetramer of the trisaccharide repeating unit together with a small amount of the cyclic trimer and a very small amount of the cyclic pentamer and has, thus, the following structure: [formula: see text] where R is Ac or H (approximately 1:1), R' is Ac or H (approximately 1:4), and n = 4 (major), 3, 5 (minor). Small proportions of the linear trimer and the linear tetramer were also detected in the preparations. The high molecular weight polysaccharide is linear and has the same (or a very similar) repeating unit as LMP.

  18. Fitting the structurally diverse animal mitochondrial tRNAs(Ser) to common three-dimensional constraints.

    PubMed

    Steinberg, S; Gautheret, D; Cedergren, R

    1994-03-04

    We propose three-dimensional models for animal mitochondrial (amt) tRNAs lacking the D-domain based on consideration of universal constraints on tRNA to maintain functionality. The available tRNA sequences are classified into two groups, and distinct models are proposed for both classes derived from common structural features. The distance between the anticodon and the acceptor stem is comparable in the models and corresponds to that observed in conventional tRNAs. This fact averts the problem of how a shorter mitochondrial tRNA could function within the context of a protein synthesis machinery suited to full-sized tRNAs. In the models, the angle which defines the relationship between the helical domains composed of the acceptor/T-stem and the anticodon/D-stem is greater than in conventional tRNAs. These structures resemble more a "boomerang" than an "L". However, even in the boomerang model, the inner surface of tRNA would be sufficiently uncluttered to avoid steric clashes when two tRNA molecules cohabit the ribosome.

  19. Competition--a common motif for the imprinting mechanism?

    PubMed Central

    Barlow, D P

    1997-01-01

    Imprinted genes, in contrast to the majority of mammalian genes, are able to restrict expression to one of the two parental alleles in somatic diploid cells. Although the silent allele of an imprinted gene appears to be transcriptionally repressed, it often bears little other resemblance to normal genes in an inactive state. The key to the imprinting mechanism may be a form of parental-specific expression-competition between cis-linked genes and not parental-specific expression versus repression. Thus, the imprinting mechanism may be better understood if the chromosomal region containing imprinted genes is viewed as 'active' on both parental chromosomes. PMID:9384569

  20. Multiple linear combination (MLC) regression tests for common variants adapted to linkage disequilibrium structure

    PubMed Central

    Yoo, Yun Joo; Sun, Lei; Poirier, Julia G.; Paterson, Andrew D.

    2016-01-01

    ABSTRACT By jointly analyzing multiple variants within a gene, instead of one at a time, gene‐based multiple regression can improve power, robustness, and interpretation in genetic association analysis. We investigate multiple linear combination (MLC) test statistics for analysis of common variants under realistic trait models with linkage disequilibrium (LD) based on HapMap Asian haplotypes. MLC is a directional test that exploits LD structure in a gene to construct clusters of closely correlated variants recoded such that the majority of pairwise correlations are positive. It combines variant effects within the same cluster linearly, and aggregates cluster‐specific effects in a quadratic sum of squares and cross‐products, producing a test statistic with reduced degrees of freedom (df) equal to the number of clusters. By simulation studies of 1000 genes from across the genome, we demonstrate that MLC is a well‐powered and robust choice among existing methods across a broad range of gene structures. Compared to minimum P‐value, variance‐component, and principal‐component methods, the mean power of MLC is never much lower than that of other methods, and can be higher, particularly with multiple causal variants. Moreover, the variation in gene‐specific MLC test size and power across 1000 genes is less than that of other methods, suggesting it is a complementary approach for discovery in genome‐wide analysis. The cluster construction of the MLC test statistics helps reveal within‐gene LD structure, allowing interpretation of clustered variants as haplotypic effects, while multiple regression helps to distinguish direct and indirect associations. PMID:27885705

  1. Assessing Genetic Structure in Common but Ecologically Distinct Carnivores: The Stone Marten and Red Fox.

    PubMed

    Basto, Mafalda P; Santos-Reis, Margarida; Simões, Luciana; Grilo, Clara; Cardoso, Luís; Cortes, Helder; Bruford, Michael W; Fernandes, Carlos

    2016-01-01

    The identification of populations and spatial genetic patterns is important for ecological and conservation research, and spatially explicit individual-based methods have been recognised as powerful tools in this context. Mammalian carnivores are intrinsically vulnerable to habitat fragmentation but not much is known about the genetic consequences of fragmentation in common species. Stone martens (Martes foina) and red foxes (Vulpes vulpes) share a widespread Palearctic distribution and are considered habitat generalists, but in the Iberian Peninsula stone martens tend to occur in higher quality habitats. We compared their genetic structure in Portugal to see if they are consistent with their differences in ecological plasticity, and also to illustrate an approach to explicitly delineate the spatial boundaries of consistently identified genetic units. We analysed microsatellite data using spatial Bayesian clustering methods (implemented in the software BAPS, GENELAND and TESS), a progressive partitioning approach and a multivariate technique (Spatial Principal Components Analysis-sPCA). Three consensus Bayesian clusters were identified for the stone marten. No consensus was achieved for the red fox, but one cluster was the most probable clustering solution. Progressive partitioning and sPCA suggested additional clusters in the stone marten but they were not consistent among methods and were geographically incoherent. The contrasting results between the two species are consistent with the literature reporting stricter ecological requirements of the stone marten in the Iberian Peninsula. The observed genetic structure in the stone marten may have been influenced by landscape features, particularly rivers, and fragmentation. We suggest that an approach based on a consensus clustering solution of multiple different algorithms may provide an objective and effective means to delineate potential boundaries of inferred subpopulations. sPCA and progressive partitioning

  2. Assessing Genetic Structure in Common but Ecologically Distinct Carnivores: The Stone Marten and Red Fox

    PubMed Central

    Basto, Mafalda P.; Santos-Reis, Margarida; Simões, Luciana; Grilo, Clara; Cardoso, Luís; Cortes, Helder; Bruford, Michael W.; Fernandes, Carlos

    2016-01-01

    The identification of populations and spatial genetic patterns is important for ecological and conservation research, and spatially explicit individual-based methods have been recognised as powerful tools in this context. Mammalian carnivores are intrinsically vulnerable to habitat fragmentation but not much is known about the genetic consequences of fragmentation in common species. Stone martens (Martes foina) and red foxes (Vulpes vulpes) share a widespread Palearctic distribution and are considered habitat generalists, but in the Iberian Peninsula stone martens tend to occur in higher quality habitats. We compared their genetic structure in Portugal to see if they are consistent with their differences in ecological plasticity, and also to illustrate an approach to explicitly delineate the spatial boundaries of consistently identified genetic units. We analysed microsatellite data using spatial Bayesian clustering methods (implemented in the software BAPS, GENELAND and TESS), a progressive partitioning approach and a multivariate technique (Spatial Principal Components Analysis-sPCA). Three consensus Bayesian clusters were identified for the stone marten. No consensus was achieved for the red fox, but one cluster was the most probable clustering solution. Progressive partitioning and sPCA suggested additional clusters in the stone marten but they were not consistent among methods and were geographically incoherent. The contrasting results between the two species are consistent with the literature reporting stricter ecological requirements of the stone marten in the Iberian Peninsula. The observed genetic structure in the stone marten may have been influenced by landscape features, particularly rivers, and fragmentation. We suggest that an approach based on a consensus clustering solution of multiple different algorithms may provide an objective and effective means to delineate potential boundaries of inferred subpopulations. sPCA and progressive partitioning

  3. The Crystal Structure of the Extracellular 11-heme Cytochrome UndA Reveals a Conserved 10-heme Motif and Defined Binding Site for Soluble Iron Chelates.

    SciTech Connect

    Edwards, Marcus; Hall, Andrea; Shi, Liang; Fredrickson, Jim K.; Zachara, John M.; Butt, Julea N.; Richardson, David; Clarke, Thomas A.

    2012-07-03

    Members of the genus Shewanella translocate deca- or undeca-heme cytochromes to the external cell surface thus enabling respiration using extracellular minerals and polynuclear Fe(III) chelates. The high resolution structure of the first undeca-heme outer membrane cytochrome, UndA, reveals a crossed heme chain with four potential electron ingress/egress sites arranged within four domains. Sequence and structural alignment of UndA and the deca-heme MtrF reveals the extra heme of UndA is inserted between MtrF hemes 6 and 7. The remaining UndA hemes can be superposed over the heme chain of the decaheme MtrF, suggesting that a ten heme core is conserved between outer membrane cytochromes. The UndA structure is the first outer membrane cytochrome to be crystallographically resolved in complex with substrates, an Fe(III)-nitrilotriacetate dimer or an Fe(III)-citrate trimer. The structural resolution of these UndA-Fe(III)-chelate complexes provides a rationale for previous kinetic measurements on UndA and other outer membrane cytochromes.

  4. Structural Motif-Based Homology Modeling of CYP27A1 and Site-Directed Mutational Analyses Affecting Vitamin D Hydroxylation

    PubMed Central

    Prosser, David E.; Guo, YuDing; Jia, Zongchao; Jones, Glenville

    2006-01-01

    Human CYP27A1 is a mitochondrial cytochrome P450, which is principally found in the liver and plays important roles in the biological activation of vitamin D3 and in the biosynthesis of bile acids. We have applied a systematic analysis of hydrogen bonding patterns in 11 prokaryotic and mammalian CYP crystal structures to construct a homology-based model of CYP27A1. Docking of vitamin D3 structures into the active site of this model identified potential substrate contact residues in the F-helix, the β-3 sheet, and the β-5 sheet. Site-directed mutagenesis and expression in COS-1 cells confirmed that these positions affect enzymatic activity, in some cases shifting metabolism of 1α-hydroxyvitamin D3 to favor 25- or 27-hydroxylation. The results suggest that conserved hydrophobic residues in the β-5 hairpin help define the shape of the substrate binding cavity and that this structure interacts with Phe-248 in the F-helix. Mutations directed toward the β-3a strand suggested a possible heme-binding interaction centered on Asn-403 and a structural role for substrate contact residues Thr-402 and Ser-404. PMID:16500955

  5. Promoter Motifs in NCLDVs: An Evolutionary Perspective.

    PubMed

    Oliveira, Graziele Pereira; Andrade, Ana Cláudia Dos Santos Pereira; Rodrigues, Rodrigo Araújo Lima; Arantes, Thalita Souza; Boratto, Paulo Victor Miranda; Silva, Ludmila Karen Dos Santos; Dornas, Fábio Pio; Trindade, Giliane de Souza; Drumond, Betânia Paiva; La Scola, Bernard; Kroon, Erna Geessien; Abrahão, Jônatas Santos

    2017-01-20

    For many years, gene expression in the three cellular domains has been studied in an attempt to discover sequences associated with the regulation of the transcription process. Some specific transcriptional features were described in viruses, although few studies have been devoted to understanding the evolutionary aspects related to the spread of promoter motifs through related viral families. The discovery of giant viruses and the proposition of the new viral order Megavirales that comprise a monophyletic group, named nucleo-cytoplasmic large DNA viruses (NCLDV), raised new questions in the field. Some putative promoter sequences have already been described for some NCLDV members, bringing new insights into the evolutionary history of these complex microorganisms. In this review, we summarize the main aspects of the transcription regulation process in the three domains of life, followed by a systematic description of what is currently known about promoter regions in several NCLDVs. We also discuss how the analysis of the promoter sequences could bring new ideas about the giant viruses' evolution. Finally, considering a possible common ancestor for the NCLDV group, we discussed possible promoters' evolutionary scenarios and propose the term "MEGA-box" to designate an ancestor promoter motif ('TATATAAAATTGA') that could be evolved gradually by nucleotides' gain and loss and point mutations.

  6. Promoter Motifs in NCLDVs: An Evolutionary Perspective

    PubMed Central

    Oliveira, Graziele Pereira; Andrade, Ana Cláudia dos Santos Pereira; Rodrigues, Rodrigo Araújo Lima; Arantes, Thalita Souza; Boratto, Paulo Victor Miranda; Silva, Ludmila Karen dos Santos; Dornas, Fábio Pio; Trindade, Giliane de Souza; Drumond, Betânia Paiva; La Scola, Bernard; Kroon, Erna Geessien; Abrahão, Jônatas Santos

    2017-01-01

    For many years, gene expression in the three cellular domains has been studied in an attempt to discover sequences associated with the regulation of the transcription process. Some specific transcriptional features were described in viruses, although few studies have been devoted to understanding the evolutionary aspects related to the spread of promoter motifs through related viral families. The discovery of giant viruses and the proposition of the new viral order Megavirales that comprise a monophyletic group, named nucleo-cytoplasmic large DNA viruses (NCLDV), raised new questions in the field. Some putative promoter sequences have already been described for some NCLDV members, bringing new insights into the evolutionary history of these complex microorganisms. In this review, we summarize the main aspects of the transcription regulation process in the three domains of life, followed by a systematic description of what is currently known about promoter regions in several NCLDVs. We also discuss how the analysis of the promoter sequences could bring new ideas about the giant viruses’ evolution. Finally, considering a possible common ancestor for the NCLDV group, we discussed possible promoters’ evolutionary scenarios and propose the term “MEGA-box” to designate an ancestor promoter motif (‘TATATAAAATTGA’) that could be evolved gradually by nucleotides’ gain and loss and point mutations. PMID:28117683

  7. Virion Structure of Black Queen Cell Virus, a Common Honeybee Pathogen

    PubMed Central

    Spurny, Radovan; Přidal, Antonín; Pálková, Lenka; Kiem, Hoa Khanh Tran; de Miranda, Joachim R.

    2017-01-01

    ABSTRACT Viral diseases are a major threat to honeybee (Apis mellifera) populations worldwide and therefore an important factor in reliable crop pollination and food security. Black queen cell virus (BQCV) is the etiological agent of a fatal disease of honeybee queen larvae and pupae. The virus belongs to the genus Triatovirus from the family Dicistroviridae, which is part of the order Picornavirales. Here we present a crystal structure of BQCV determined to a resolution of 3.4 Å. The virion is formed by 60 copies of each of the major capsid proteins VP1, VP2, and VP3; however, there is no density corresponding to a 75-residue-long minor capsid protein VP4 encoded by the BQCV genome. We show that the VP4 subunits are present in the crystallized virions that are infectious. This aspect of the BQCV virion is similar to that of the previously characterized triatoma virus and supports the recent establishment of the separate genus Triatovirus within the family Dicistroviridae. The C terminus of VP1 and CD loops of capsid proteins VP1 and VP3 of BQCV form 34-Å-tall finger-like protrusions at the virion surface. The protrusions are larger than those of related dicistroviruses. IMPORTANCE The western honeybee is the most important pollinator of all, and it is required to sustain the agricultural production and biodiversity of wild flowering plants. However, honeybee populations worldwide are suffering from virus infections that cause colony losses. One of the most common, and least known, honeybee pathogens is black queen cell virus (BQCV), which at high titers causes queen larvae and pupae to turn black and die. Here we present the three-dimensional virion structure of BQCV, determined by X-ray crystallography. The structure of BQCV reveals large protrusions on the virion surface. Capsid protein VP1 of BQCV does not contain a hydrophobic pocket. Therefore, the BQCV virion structure provides evidence that capsid-binding antiviral compounds that can prevent the

  8. Supramolecular motifs in s-block metal-bound sulfonated monoazo dyes, part 1: structural class controlled by cation type and modulated by sulfonate aryl ring position.

    PubMed

    Kennedy, Alan R; Kirkhouse, Jennifer B A; McCarney, Karen M; Puissegur, Olivier; Smith, W Ewen; Staunton, Edward; Teat, Simon J; Cherryman, Julian C; James, Rachel

    2004-09-20

    The solid-state structures of 43 Li, Na, K, Rb, Mg, Ca and Ba salts of para- and meta-sulfonated azo dyes have been examined and can be categorised into three structural classes. All form alternating organic and inorganic layers, however, the nature of the coordination network that forms these layers differs from class to class. The class of structure formed was found to be primarily governed by metal type, but can also be influenced by the nature and position of the organic substituents. Thus, for the para-sulfonated azo dyes, Mg compounds form solvent-separated ion-pair solids; Ca, Ba and Li compounds form simple coordination networks based on metal-sulfonate bonding; and Na, K and Rb compounds form more complex, higher dimensional coordination networks. Compounds of meta-sulfonated azo dyes follow a similar pattern, but here, Ca species may also form solvent-separated ion-pair solids. Significantly, this first attempt to classify such dyestuffs using the principles of supramolecular chemistry succeeds not only for the simple dyes used here as model compounds, but also for more complex molecules, similar to modern colourants.

  9. The right motifs for plant cell adhesion: what makes an adhesive site?

    PubMed

    Langhans, Markus; Weber, Wadim; Babel, Laura; Grunewald, Miriam; Meckel, Tobias

    2017-01-01

    Cells of multicellular organisms are surrounded by and attached to a matrix of fibrous polysaccharides and proteins known as the extracellular matrix. This fibrous network not only serves as a structural support to cells and tissues but also plays an integral part in the process as important as proliferation, differentiation, or defense. While at first sight, the extracellular matrices of plant and animals do not have much in common, a closer look reveals remarkable similarities. In particular, the proteins involved in the adhesion of the cell to the extracellular matrix share many functional properties. At the sequence level, however, a surprising lack of homology is found between adhesion-related proteins of plants and animals. Both protein machineries only reveal similarities between small subdomains and motifs, which further underlines their functional relationship. In this review, we provide an overview on the similarities between motifs in proteins known to be located at the plant cell wall-plasma membrane-cytoskeleton interface to proteins of the animal adhesome. We also show that by comparing the proteome of both adhesion machineries at the level of motifs, we are also able to identify potentially new candidate proteins that functionally contribute to the adhesion of the plant plasma membrane to the cell wall.

  10. Aeroelastic Tailoring of the NASA Common Research Model via Novel Material and Structural Configurations

    NASA Technical Reports Server (NTRS)

    Jutte, Christine V.; Stanford, Bret K.; Wieseman, Carol D.; Moore, James B.

    2014-01-01

    This work explores the use of tow steered composite laminates, functionally graded metals (FGM), thickness distributions, and curvilinear rib/spar/stringer topologies for aeroelastic tailoring. Parameterized models of the Common Research Model (CRM) wing box have been developed for passive aeroelastic tailoring trade studies. Metrics of interest include the wing weight, the onset of dynamic flutter, and the static aeroelastic stresses. Compared to a baseline structure, the lowest aggregate static wing stresses could be obtained with tow steered skins (47% improvement), and many of these designs could reduce weight as well (up to 14%). For these structures, the trade-off between flutter speed and weight is generally strong, although one case showed both a 100% flutter improvement and a 3.5% weight reduction. Material grading showed no benefit in the skins, but moderate flutter speed improvements (with no weight or stress increase) could be obtained by grading the spars (4.8%) or ribs (3.2%), where the best flutter results were obtained by grading both thickness and material. For the topology work, large weight reductions were obtained by removing an inner spar, and performance was maintained by shifting stringers forward and/or using curvilinear ribs: 5.6% weight reduction, a 13.9% improvement in flutter speed, but a 3.0% increase in stress levels. Flutter resistance was also maintained using straightrotated ribs although the design had a 4.2% lower flutter speed than the curved ribs of similar weight and stress levels were higher. These results will guide the development of a future design optimization scheme established to exploit and combine the individual attributes of these technologies.

  11. The Structure of Psychopathology in Adolescence and Its Common Personality and Cognitive Correlates

    PubMed Central

    2016-01-01

    The traditional view that mental disorders are distinct, categorical disorders has been challenged by evidence that disorders are highly comorbid and exist on a continuum (e.g., Caspi et al., 2014; Tackett et al., 2013). The first objective of this study was to use structural equation modeling to model the structure of psychopathology in an adolescent community-based sample (N = 2,144) including conduct disorder, attention-deficit/hyperactivity disorder (ADHD), oppositional-defiant disorder (ODD), obsessive–compulsive disorder, eating disorders, substance use, anxiety, depression, phobias, and other emotional symptoms, assessed at 16 years. The second objective was to identify common personality and cognitive correlates of psychopathology, assessed at 14 years. Results showed that psychopathology at 16 years fit 2 bifactor models equally well: (a) a bifactor model, reflecting a general psychopathology factor, as well as specific externalizing (representing mainly substance misuse and low ADHD) and internalizing factors; and (b) a bifactor model with a general psychopathology factor and 3 specific externalizing (representing mainly ADHD and ODD), substance use and internalizing factors. The general psychopathology factor was related to high disinhibition/impulsivity, low agreeableness, high neuroticism and hopelessness, high delay-discounting, poor response inhibition and low performance IQ. Substance use was specifically related to high novelty-seeking, sensation-seeking, extraversion, high verbal IQ, and risk-taking. Internalizing psychopathology was specifically related to high neuroticism, hopelessness and anxiety-sensitivity, low novelty-seeking and extraversion, and an attentional bias toward negatively valenced verbal stimuli. Findings reveal several nonspecific or transdiagnostic personality and cognitive factors that may be targeted in new interventions to potentially prevent the development of multiple psychopathologies. PMID:27819466

  12. The structure of common emotion regulation strategies: A meta-analytic examination.

    PubMed

    Naragon-Gainey, Kristin; McMahon, Tierney P; Chacko, Thomas P

    2017-04-01

    Emotion regulation has been examined extensively with regard to important outcomes, including psychological and physical health. However, the literature includes many different emotion regulation strategies but little examination of how they relate to one another, making it difficult to interpret and synthesize findings. The goal of this meta-analysis was to examine the underlying structure of common emotion regulation strategies (i.e., acceptance, behavioral avoidance, distraction, experiential avoidance, expressive suppression, mindfulness, problem solving, reappraisal, rumination, worry), and to evaluate this structure in light of theoretical models of emotion regulation. We also examined how distress tolerance-an important emotion regulation ability -relates to strategy use. We conducted meta-analyses estimating the correlations between emotion regulation strategies (based on 331 samples and 670 effect sizes), as well as between distress tolerance and strategies. The resulting meta-analytic correlation matrix was submitted to confirmatory and exploratory factor analyses. None of the confirmatory models, based on prior theory, was an acceptable fit to the data. Exploratory factor analysis suggested that 3 underlying factors best characterized these data. Two factors-labeled Disengagement and Aversive Cognitive Perseveration-emerged as strongly correlated but distinct factors, with the latter consisting of putatively maladaptive strategies. The third factor, Adaptive Engagement, was a less unified factor and weakly related to the other 2 factors. Distress tolerance was most closely associated with low levels of repetitive negative thought and experiential avoidance, and high levels of acceptance and mindfulness. We discuss the theoretical implications of these findings and applications to emotion regulation assessment. (PsycINFO Database Record

  13. IQ-motif peptides as novel anti-microbial agents.

    PubMed

    McLean, Denise T F; Lundy, Fionnuala T; Timson, David J

    2013-04-01

    The IQ-motif is an amphipathic, often positively charged, α-helical, calmodulin binding sequence found in a number of eukaryote signalling, transport and cytoskeletal proteins. They share common biophysical characteristics with established, cationic α-helical antimicrobial peptides, such as the human cathelicidin LL-37. Therefore, we tested eight peptides encoding the sequences of IQ-motifs derived from the human cytoskeletal scaffolding proteins IQGAP2 and IQGAP3. Some of these peptides were able to inhibit the growth of Escherichia coli and Staphylococcus aureus with minimal inhibitory concentrations (MIC) comparable to LL-37. In addition some IQ-motifs had activity against the fungus Candida albicans. This antimicrobial activity is combined with low haemolytic activity (comparable to, or lower than, that of LL-37). Those IQ-motifs with anti-microbial activity tended to be able to bind to lipopolysaccharide. Some of these were also able to permeabilise the cell membranes of both Gram positive and Gram negative bacteria. These results demonstrate that IQ-motifs are viable lead sequences for the identification and optimisation of novel anti-microbial peptides. Thus, further investigation of the anti-microbial properties of this diverse group of sequences is merited.

  14. Structure of a beta-alanine-linked polyamide bound to a full helical turn of purine tract DNA in the 1:1 motif.

    PubMed

    Urbach, Adam R; Love, John J; Ross, Scott A; Dervan, Peter B

    2002-06-28

    Polyamides composed of N-methylpyrrole (Py), N-methylimidazole (Im) and N-methylhydroxypyrrole (Hp) amino acids linked by beta-alanine (beta) bind the minor groove of DNA in 1:1 and 2:1 ligand to DNA stoichiometries. Although the energetics and structure of the 2:1 complex has been explored extensively, there is remarkably less understood about 1:1 recognition beyond the initial studies on netropsin and distamycin. We present here the 1:1 solution structure of ImPy-beta-Im-beta-ImPy-beta-Dp bound in a single orientation to its match site within the DNA duplex 5'-CCAAAGAGAAGCG-3'.5'-CGCTTCTCTTTGG-3' (match site in bold), as determined by 2D (1)H NMR methods. The representative ensemble of 12 conformers has no distance constraint violations greater than 0.13 A and a pairwise RMSD over the binding site of 0.80 A. Intermolecular NOEs place the polyamide deep inside the minor groove, and oriented N-C with the 3'-5' direction of the purine-rich strand. Analysis of the high-resolution structure reveals the ligand bound 1:1 completely within the minor groove for a full turn of the DNA helix. The DNA is B-form (average rise=3.3 A, twist=38 degrees ) with a narrow minor groove closing down to 3.0-4.5 A in the binding site. The ligand and DNA are aligned in register, with each polyamide NH group forming bifurcated hydrogen bonds of similar length to purine N3 and pyrimidine O2 atoms on the floor of the minor groove. Each imidazole group is hydrogen bonded via its N3 atom to its proximal guanine's exocyclic amino group. The important roles of beta-alanine and imidazole for 1:1 binding are discussed.

  15. Comprehensive discovery of DNA motifs in 349 human cells and tissues reveals new features of motifs.

    PubMed

    Zheng, Yiyu; Li, Xiaoman; Hu, Haiyan

    2015-01-01

    Comprehensive motif discovery under experimental conditions is critical for the global understanding of gene regulation. To generate a nearly complete list of human DNA motifs under given conditions, we employed a novel approach to de novo discover significant co-occurring DNA motifs in 349 human DNase I hypersensitive site datasets. We predicted 845 to 1325 motifs in each dataset, for a total of 2684 non-redundant motifs. These 2684 motifs contained 54.02 to 75.95% of the known motifs in seven large collections including TRANSFAC. In each dataset, we also discovered 43 663 to 2 013 288 motif modules, groups of motifs with their binding sites co-occurring in a significant number of short DNA regions. Compared with known interacting transcription factors in eight resources, the predicted motif modules on average included 84.23% of known interacting motifs. We further showed new features of the predicted motifs, such as motifs enriched in proximal regions rarely overlapped with motifs enriched in distal regions, motifs enriched in 5' distal regions were often enriched in 3' distal regions, etc. Finally, we observed that the 2684 predicted motifs classified the cell or tissue types of the datasets with an accuracy of 81.29%. The resources generated in this study are available at http://server.cs.ucf.edu/predrem/.

  16. Effects of commonly used cryoprotectants on glycogen phosphorylase activity and structure.

    PubMed Central

    Tsitsanou, K. E.; Oikonomakos, N. G.; Zographos, S. E.; Skamnaki, V. T.; Gregoriou, M.; Watson, K. A.; Johnson, L. N.; Fleet, G. W.

    1999-01-01

    The effects of a number of cryoprotectants on the kinetic and structural properties of glycogen phosphorylase b have been investigated. Kinetic studies showed that glycerol, one of the most commonly used cryoprotectants in X-ray crystallographic studies, is a competitive inhibitor with respect to substrate glucose-1-P with an apparent Ki value of 3.8% (v/v). Cryogenic experiments, with the enzyme, have shown that glycerol binds at the catalytic site and competes with glucose analogues that bind at the catalytic site, thus preventing the formation of complexes. This necessitated a change in the conditions for cryoprotection in crystallographic binding experiments with glycogen phosphorylase. It was found that 2-methyl-2,4-pentanediol (MPD), polyethylene glycols (PEGs) of various molecular weights, and dimethyl sulfoxide (DMSO) activated glycogen phosphorylase b to different extents, by stabilizing its most active conformation, while sucrose acted as a noncompetitive inhibitor and ethylene glycol as an uncompetitive inhibitor with respect to glucose-1-P. A parallel experimental investigation by X-ray crystallography showed that, at 100 K, both MPD and DMSO do not bind at the catalytic site, do not induce any significant conformational change on the enzyme molecule, and hence, are more suitable cryoprotectants than glycerol for binding studies with glycogen phosphorylase. PMID:10211820

  17. Correlation between the variation in observed melting temperatures and structural motifs of the global minima of gallium clusters: an ab initio study.

    PubMed

    Susan, Anju; Kibey, Aniruddha; Kaware, Vaibhav; Joshi, Kavita

    2013-01-07

    We have investigated the correlation between the variation in the melting temperature and the growth pattern of small positively charged gallium clusters. Significant shift in the melting temperatures was observed for a change of only few atoms in the size of the cluster. Clusters with size between 31-42 atoms melt between 500-600 K whereas those with 46-48 atoms melt around 800 K. Density functional theory based first principles simulations have been carried out on Ga(n)(+) clusters with n = 31, ..., 48. At least 150 geometry optimizations have been performed towards the search for the global minima for each size resulting in about 3000 geometry optimizations. For gallium clusters in this size range, the emergence of spherical structures as the ground state leads to higher melting temperature. The well-separated core and surface shells in these clusters delay isomerization, which results in the enhanced stability of these clusters at elevated temperatures. The observed variation in the melting temperature of these clusters therefore has a structural origin.

  18. Crystal Structure of the Bovine lactadherin C2 Domain, a Membrane Binding Motif, Shows Similarity to the C2 Domains of Factor V and Factor VIII

    SciTech Connect

    Lin,L.

    2007-01-01

    Lactadherin, a glycoprotein secreted by a variety of cell types, contains two EGF domains and two C domains with sequence homology to the C domains of blood coagulation proteins factor V and factor VIII. Like these proteins, lactadherin binds to phosphatidylserine (PS)-containing membranes with high affinity. We determined the crystal structure of the bovine lactadherin C2 domain (residues 1 to 158) at 2.4 {angstrom}. The lactadherin C2 structure is similar to the C2 domains of factors V and VIII (rmsd of C{sub {alpha}} atoms of 0.9 {angstrom} and 1.2 {angstrom}, and sequence identities of 43% and 38%, respectively). The lactadherin C2 domain has a discoidin-like fold containing two {beta}-sheets of five and three antiparallel {beta}-strands packed against one another. The N and C termini are linked by a disulfide bridge between Cys1 and Cys158. One {beta}-turn and two loops containing solvent-exposed hydrophobic residues extend from the C2 domain {beta}-sandwich core. In analogy with the C2 domains of factors V and VIII, some or all of these solvent-exposed hydrophobic residues, Trp26, Leu28, Phe31, and Phe81, likely participate in membrane binding. The C2 domain of lactadherin may serve as a marker of cell surface phosphatidylserine exposure and may have potential as a unique anti-thrombotic agent.

  19. Crystal Structure of the Bovine lactadherin C2 Domain, a Membrane Binding Motif, Shows Similarity of the C2 Domains of Factor V and Factor VIII

    SciTech Connect

    Lin,L.; Huai, Q.; Huang, M.; Furie, B.; Furie, B.

    2007-01-01

    Lactadherin, a glycoprotein secreted by a variety of cell types, contains two EGF domains and two C domains with sequence homology to the C domains of blood coagulation proteins factor V and factor VIII. Like these proteins, lactadherin binds to phosphatidylserine (PS)-containing membranes with high affinity. We determined the crystal structure of the bovine lactadherin C2 domain (residues 1 to 158) at 2.4 Angstroms. The lactadherin C2 structure is similar to the C2 domains of factors V and VIII (rmsd of C? atoms of 0.9 Angstroms and 1.2 Angstroms, and sequence identities of 43% and 38%, respectively). The lactadherin C2 domain has a discoidin-like fold containing two ?-sheets of five and three antiparallel ?-strands packed against one another. The N and C termini are linked by a disulfide bridge between Cys1 and Cys158. One ?-turn and two loops containing solvent-exposed hydrophobic residues extend from the C2 domain ?-sandwich core. In analogy with the C2 domains of factors V and VIII, some or all of these solvent-exposed hydrophobic residues, Trp26, Leu28, Phe31, and Phe81, likely participate in membrane binding. The C2 domain of lactadherin may serve as a marker of cell surface phosphatidylserine exposure and may have potential as a unique anti-thrombotic agent.

  20. Correlation between the variation in observed melting temperatures and structural motifs of the global minima of gallium clusters: An ab initio study

    NASA Astrophysics Data System (ADS)

    Susan, Anju; Kibey, Aniruddha; Kaware, Vaibhav; Joshi, Kavita

    2013-01-01

    We have investigated the correlation between the variation in the melting temperature and the growth pattern of small positively charged gallium clusters. Significant shift in the melting temperatures was observed for a change of only few atoms in the size of the cluster. Clusters with size between 31-42 atoms melt between 500-600 K whereas those with 46-48 atoms melt around 800 K. Density functional theory based first principles simulations have been carried out on Ga+n clusters with n = 31, …, 48. At least 150 geometry optimizations have been performed towards the search for the global minima for each size resulting in about 3000 geometry optimizations. For gallium clusters in this size range, the emergence of spherical structures as the ground state leads to higher melting temperature. The well-separated core and surface shells in these clusters delay isomerization, which results in the enhanced stability of these clusters at elevated temperatures. The observed variation in the melting temperature of these clusters therefore has a structural origin.

  1. Physical and structural basis for the strong interactions of the -ImPy- central pairing motif in the polyamide f-ImPyIm.

    PubMed

    Buchmueller, Karen L; Bailey, Suzanna L; Matthews, David A; Taherbhai, Zarmeen T; Register, Janna K; Davis, Zachary S; Bruce, Chrystal D; O'Hare, Caroline; Hartley, John A; Lee, Moses

    2006-11-14

    The polyamide f-ImPyIm has a higher affinity for its cognate DNA than either the parent analogue, distamycin A (10-fold), or the structural isomer, f-PyImIm (250-fold), has for its respective cognate DNA sequence. These findings have led to the formulation of a two-letter polyamide "language" in which the -ImPy- central pairings associate more strongly with Watson-Crick DNA than -PyPy-, -PyIm-, and -ImIm-. Herein, we further characterize f-ImPyIm and f-PyImIm, and we report thermodynamic and structural differences between -ImPy- (f-ImPyIm) and -PyIm- (f-PyImIm) central pairings. DNase I footprinting studies confirmed that f-ImPyIm is a stronger binder than distamycin A and f-PyImIm and that f-ImPyIm preferentially binds CGCG over multiple competing sequences. The difference in the binding of f-ImPyIm and f-PyImIm to their cognate sequences was supported by the Na(+)-dependent nature of DNA melting studies, in which significantly higher Na(+) concentrations were needed to match the ability of f-ImPyIm to stabilize CGCG with that of f-PyImIm stabilizing CCGG. The selectivity of f-ImPyIm beyond the four-base CGCG recognition site was tested by circular dichroism and isothermal titration microcalorimetry, which shows that f-ImPyIm has marginal selectivity for (A.T)CGCG(A.T) over (G.C)CGCG(G.C). In addition, changes adjacent to this 6 bp binding site do not affect f-ImPyIm affinity. Calorimetric studies revealed that binding of f-ImPyIm, f-PyImIm, and distamycin A to their respective hairpin cognate sequences is exothermic; however, changes in enthalpy, entropy, and heat capacity (DeltaC(p)) contribute differently to formation of the 2:1 complexes for each triamide. Experimental and theoretical determinations of DeltaC(p) for binding of f-ImPyIm to CGCG were in good agreement (-142 and -177 cal mol(-)(1) K(-)(1), respectively). (1)H NMR of f-ImPyIm and f-PyImIm complexed with their respective cognate DNAs confirmed positively cooperative formation of distinct 2

  2. Structural alignment of proteins by a novel TOPOFIT method, as a superimposition of common volumes at a topomax point

    PubMed Central

    Ilyin, Valentin A.; Abyzov, Alexej; Leslin, Chesley M.

    2004-01-01

    Similarity of protein structures has been analyzed using three-dimensional Delaunay triangulation patterns derived from the backbone representation. It has been found that structurally related proteins have a common spatial invariant part, a set of tetrahedrons, mathematically described as a common spatial subgraph volume of the three-dimensional contact graph derived from Delaunay tessellation (DT). Based on this property of protein structures, we present a novel common volume superimposition (TOPOFIT) method to produce structural alignments. Structural alignments usually evaluated by a number of equivalent (aligned) positions (Ne) with corresponding root mean square deviation (RMSD). The superimposition of the DT patterns allows one to uniquely identify a maximal common number of equivalent residues in the structural alignment. In other words, TOPOFIT identifies a feature point on the RMSD Ne curve, a topomax point, until which the topologies of two structures correspond to each other, including backbone and interresidue contacts, whereas the growing number of mismatches between the DT patterns occurs at larger RMSD (Ne) after the topomax point. It has been found that the topomax point is present in all alignments from different protein structural classes; therefore, the TOPOFIT method identifies common, invariant structural parts between proteins. The alignments produced by the TOPOFIT method have a good correlation with alignments produced by other current methods. This novel method opens new opportunities for the comparative analysis of protein structures and for more detailed studies on understanding the molecular principles of tertiary structure organization and functionality. The TOPOFIT method also helps to detect conformational changes, topological differences in variable parts, which are particularly important for studies of variations in active/ binding sites and protein classification. PMID:15215530

  3. Complex lasso: new entangled motifs in proteins

    NASA Astrophysics Data System (ADS)

    Niemyska, Wanda; Dabrowski-Tumanski, Pawel; Kadlof, Michal; Haglund, Ellinor; Sułkowski, Piotr; Sulkowska, Joanna I.

    2016-11-01

    We identify new entangled motifs in proteins that we call complex lassos. Lassos arise in proteins with disulfide bridges (or in proteins with amide linkages), when termini of a protein backbone pierce through an auxiliary surface of minimal area, spanned on a covalent loop. We find that as much as 18% of all proteins with disulfide bridges in a non-redundant subset of PDB form complex lassos, and classify them into six distinct geometric classes, one of which resembles supercoiling known from DNA. Based on biological classification of proteins we find that lassos are much more common in viruses, plants and fungi than in other kingdoms of life. We also discuss how changes in the oxidation/reduction potential may affect the function of proteins with lassos. Lassos and associated surfaces of minimal area provide new, interesting and possessing many potential applications geometric characteristics not only of proteins, but also of other biomolecules.

  4. Complex lasso: new entangled motifs in proteins

    PubMed Central

    Niemyska, Wanda; Dabrowski-Tumanski, Pawel; Kadlof, Michal; Haglund, Ellinor; Sułkowski, Piotr; Sulkowska, Joanna I.

    2016-01-01

    We identify new entangled motifs in proteins that we call complex lassos. Lassos arise in proteins with disulfide bridges (or in proteins with amide linkages), when termini of a protein backbone pierce through an auxiliary surface of minimal area, spanned on a covalent loop. We find that as much as 18% of all proteins with disulfide bridges in a non-redundant subset of PDB form complex lassos, and classify them into six distinct geometric classes, one of which resembles supercoiling known from DNA. Based on biological classification of proteins we find that lassos are much more common in viruses, plants and fungi than in other kingdoms of life. We also discuss how changes in the oxidation/reduction potential may affect the function of proteins with lassos. Lassos and associated surfaces of minimal area provide new, interesting and possessing many potential applications geometric characteristics not only of proteins, but also of other biomolecules. PMID:27874096

  5. Magnetic coupling in discrete cyano-bridged Mn(III)-Fe(III) motifs: synthesis, crystal structure, magnetic properties and theoretical study.

    PubMed

    Visinescu, Diana; Toma, Luminita Marilena; Cano, Joan; Fabelo, Oscar; Ruiz-Pérez, Catalina; Labrador, Ana; Lloret, Francesc; Julve, Miguel

    2010-05-28

    The preparation, crystal structures and magnetic properties of the heterobimetallic complexes of formula [Mn(III)(n-MeOsalen)(H(2)O)(mu-CN)Fe(III)(bpym)(CN)(3)]·mH(2)O with n = m = 3 (1) and n = 4 and m = 2 (2) [n-MeOsalen(2-) = N,N'-ethylenebis(n-methoxysalicylideneiminate) dianion and bpym = 2,2'-bipyrimidine] are reported. 1 and 2 are dinuclear neutral species where the cyano-bearing low-spin unit [Fe(III)(bpym)(CN)(4)](-) acts as a monodentate ligand towards the [Mn(III)(SB)(solv)(x)](+) entity (SB = tetradentate Schiff-base) through one of its four cyano groups. Adjacent heterobimetallic units are interlinked through hydrogen bonds involving the coordinated water molecule of one dinuclear unit and the phenolate oxygen atoms of the neighbouring one to afford pairs of dimers with values of the interdimer Mn···Mn distance of 4.925(20) (1) and 5.0508(25) Å (2). The analysis of the magnetic data of 1 and 2 in the temperature range 1.9-300 K shows the coexistence of weak ferro- [J = +2.95 (1) and +3.88 cm(-1) (2)] and antiferromagnetic interactions [j = -1.91 (1) and -0.70 cm(-1) (2)] through the single cyano bridge and hydrogen bonds, respectively (the Hamiltonian being of the type Ĥ = J[Ŝ(Fe)·Ŝ(Mn) + Ŝ(Fe')·Ŝ(Mn')] -jŜ(Mn)·Ŝ(Mn')). Theoretical calculations using methods based on density functional theory (DFT) have been used to substantiate the nature and magnitude of the magnetic coupling observed in 1 and 2 and also to analyze the dependence of the magnetic coupling on the structural parameters for the Fe-C-N-Mn skeleton. An extension of the calculations to selected examples of heterobimetallic Fe(III)-C-N-Mn(III) compounds with a different number of cyano groups on the low-spin iron(III) precursor has been carried out allowing us to illustrate the influence of the symmetry of the magnetic orbital of the iron center on the magnetic coupling in this heterobimetallic unit.

  6. Structure-Activity Studies of Cysteine-Rich α-Conotoxins that Inhibit High-Voltage-Activated Calcium Channels via GABA(B) Receptor Activation Reveal a Minimal Functional Motif.

    PubMed

    Carstens, Bodil B; Berecki, Géza; Daniel, James T; Lee, Han Siean; Jackson, Kathryn A V; Tae, Han-Shen; Sadeghi, Mahsa; Castro, Joel; O'Donnell, Tracy; Deiteren, Annemie; Brierley, Stuart M; Craik, David J; Adams, David J; Clark, Richard J

    2016-04-04

    α-Conotoxins are disulfide-rich peptides that target nicotinic acetylcholine receptors. Recently we identified several α-conotoxins that also modulate voltage-gated calcium channels by acting as G protein-coupled GABA(B) receptor (GABA(B)R) agonists. These α-conotoxins are promising drug leads for the treatment of chronic pain. To elucidate the diversity of α-conotoxins that act through this mechanism, we synthesized and characterized a set of peptides with homology to α-conotoxins known to inhibit high voltage-activated calcium channels via GABA(B)R activation. Remarkably, all disulfide isomers of the active α-conotoxins Pu1.2 and Pn1.2, and the previously studied Vc1.1 showed similar levels of biological activity. Structure determination by NMR spectroscopy helped us identify a simplified biologically active eight residue peptide motif containing a single disulfide bond that is an excellent lead molecule for developing a new generation of analgesic peptide drugs.

  7. Structural and biochemical characterization of an RNA/DNA binding motif in the N-terminal domain of RecQ4 helicases

    PubMed Central

    Marino, Francesca; Mojumdar, Aditya; Zucchelli, Chiara; Bhardwaj, Amit; Buratti, Emanuele; Vindigni, Alessandro; Musco, Giovanna; Onesti, Silvia

    2016-01-01

    The RecQ4 helicase belongs to the ubiquitous RecQ family but its exact role in the cell is not completely understood. In addition to the helicase domain, RecQ4 has a unique N-terminal part that is essential for viability and is constituted by a region homologous to the yeast Sld2 replication initiation factor, followed by a cysteine-rich region, predicted to fold as a Zn knuckle. We carried out a structural and biochemical analysis of both the human and Xenopus laevis RecQ4 cysteine-rich regions, and showed by NMR spectroscopy that the Xenopus fragment indeed assumes the canonical Zn knuckle fold, whereas the human sequence remains unstructured, consistent with the mutation of one of the Zn ligands. Both the human and Xenopus Zn knuckles bind to a variety of nucleic acid substrates, with a mild preference for RNA. We also investigated the effect of a segment located upstream the Zn knuckle that is highly conserved and rich in positively charged and aromatic residues, partially overlapping with the C-terminus of the Sld2-like domain. In both the human and Xenopus proteins, the presence of this region strongly enhances binding to nucleic acids. These results reveal novel possible roles of RecQ4 in DNA replication and genome stability. PMID:26888063

  8. Structure of L-Xylulose-5-Phosphate 3-Epimerase (UlaE) from the Anaerobic L-Ascorbate Utilization Pathway of Escherichia coli: Identification of a Novel Phosphate Binding Motif within a TIM Barrel Fold

    SciTech Connect

    Shi, Rong; Pineda, Marco; Ajamian, Eunice; Cui, Qizhi; Matte, Allan; Cygler, Miroslaw

    2009-01-15

    Three catabolic enzymes, UlaD, UlaE, and UlaF, are involved in a pathway leading to fermentation of L-ascorbate under anaerobic conditions. UlaD catalyzes a {beta}-keto acid decarboxylation reaction to produce L-xylulose-5-phosphate, which undergoes successive epimerization reactions with UlaE (L-xylulose-5-phosphate 3-epimerase) and UlaF (L-ribulose-5-phosphate 4-epimerase), yielding D-xylulose-5-phosphate, an intermediate in the pentose phosphate pathway. We describe here crystallographic studies of UlaE from Escherichia coli O157:H7 that complete the structural characterization of this pathway. UlaE has a triosephosphate isomerase (TIM) barrel fold and forms dimers. The active site is located at the C-terminal ends of the parallel {beta}-strands. The enzyme binds Zn{sup 2+}, which is coordinated by Glu155, Asp185, His211, and Glu251. We identified a phosphate-binding site formed by residues from the {beta}1/{alpha}1 loop and {alpha}3' helix in the N-terminal region. This site differs from the well-characterized phosphate-binding motif found in several TIM barrel superfamilies that is located at strands {beta}7 and {beta}8. The intrinsic flexibility of the active site region is reflected by two different conformations of loops forming part of the substrate-binding site. Based on computational docking of the L-xylulose 5-phosphate substrate to UlaE and structural similarities of the active site of this enzyme to the active sites of other epimerases, a metal-dependent epimerization mechanism for UlaE is proposed, and Glu155 and Glu251 are implicated as catalytic residues. Mutation and activity measurements for structurally equivalent residues in related epimerases supported this mechanistic proposal.

  9. Solution structure of the first RNA recognition motif domain of human spliceosomal protein SF3b49 and its mode of interaction with a SF3b145 fragment

    PubMed Central

    Nameki, Nobukazu; Tsuda, Kengo; Takahashi, Mari; Sato, Atsuko; Tochio, Naoya; Inoue, Makoto; Terada, Takaho; Kigawa, Takanori; Kobayashi, Naohiro; Shirouzu, Mikako; Ito, Takuhiro; Sakamoto, Taiichi; Wakamatsu, Kaori; Güntert, Peter; Takahashi, Seizo; Yokoyama, Shigeyuki

    2016-01-01

    Abstract The spliceosomal protein SF3b49, a component of the splicing factor 3b (SF3b) protein complex in the U2 small nuclear ribonucleoprotein, contains two RNA recognition motif (RRM) domains. In yeast, the first RRM domain (RRM1) of Hsh49 protein (yeast orthologue of human SF3b49) reportedly interacts with another component, Cus1 protein (orthologue of human SF3b145). Here, we solved the solution structure of the RRM1 of human SF3b49 and examined its mode of interaction with a fragment of human SF3b145 using NMR methods. Chemical shift mapping showed that the SF3b145 fragment spanning residues 598–631 interacts with SF3b49 RRM1, which adopts a canonical RRM fold with a topology of β1‐α1‐β2‐β3‐α2‐β4. Furthermore, a docking model based on NOESY measurements suggests that residues 607–616 of the SF3b145 fragment adopt a helical structure that binds to RRM1 predominantly via α1, consequently exhibiting a helix–helix interaction in almost antiparallel. This mode of interaction was confirmed by a mutational analysis using GST pull‐down assays. Comparison with structures of all RRM domains when complexed with a peptide found that this helix–helix interaction is unique to SF3b49 RRM1. Additionally, all amino acid residues involved in the interaction are well conserved among eukaryotes, suggesting evolutionary conservation of this interaction mode between SF3b49 RRM1 and SF3b145. PMID:27862552

  10. Structural studies of E73 from a hyperthermophilic archaeal virus identify the “RH3” domain, an elaborated ribbon-helix-helix motif involved in DNA recognition†

    PubMed Central

    Schlenker, Casey; Goel, Anupam; Tripet, Brian P.; Menon, Smita; Willi, Taylor; Dlakić, Mensur; Young, Mark J.; Lawrence, C Martin; Copié, Valérie

    2012-01-01

    Hyperthermophilic archaeal viruses including Sulfolobus spindle-shaped viruses (SSVs) such as SSV-1 and SSV-Ragged Hills exhibit remarkable morphology and genetic diversity. However, they remain poorly understood, in part because their genomes exhibit limited or unrecognizable sequence similarity to genes with known function. Here we report structural and functional studies of E73, a 73-residue homodimeric protein encoded within the SSV-Ragged Hills genome. Despite lacking significant sequence similarity, the NMR structure reveals clear similarity to ribbon-helix-helix (RHH) domains present in numerous proteins involved in transcriptional regulation. In vitro dsDNA binding experiments confirm the ability of E73 to bind dsDNA in a non-specific manner with micromolar affinity, and characterization of the K11E variant confirms the location of the predicted DNA binding surface. E73 is distinct, however, from known RHHs. The RHH motif is elaborated upon by the insertion of a third helix that is tightly integrated into the structural domain, giving rise to the “RH3” fold. Within the homodimer, this helix results in the formation of a conserved, symmetric cleft distal to the DNA binding surface, where it may mediate protein-protein interactions, or contribute to the high thermal stability of E73. Analysis of backbone amide dynamics by NMR provides evidence for a rigid core, and fast ps-ns timescale NH bond vector motions for residues located within the antiparallel β-sheet region of the proposed DNA-binding surface, and slower μs to ms timescale motions for residues in the α1-α2 loop. The role of E73 and its SSV homologs in the viral life cycle are discussed. PMID:22409376

  11. Solution structure of the first RNA recognition motif domain of human spliceosomal protein SF3b49 and its mode of interaction with a SF3b145 fragment.

    PubMed

    Kuwasako, Kanako; Nameki, Nobukazu; Tsuda, Kengo; Takahashi, Mari; Sato, Atsuko; Tochio, Naoya; Inoue, Makoto; Terada, Takaho; Kigawa, Takanori; Kobayashi, Naohiro; Shirouzu, Mikako; Ito, Takuhiro; Sakamoto, Taiichi; Wakamatsu, Kaori; Güntert, Peter; Takahashi, Seizo; Yokoyama, Shigeyuki; Muto, Yutaka

    2017-02-01

    The spliceosomal protein SF3b49, a component of the splicing factor 3b (SF3b) protein complex in the U2 small nuclear ribonucleoprotein, contains two RNA recognition motif (RRM) domains. In yeast, the first RRM domain (RRM1) of Hsh49 protein (yeast orthologue of human SF3b49) reportedly interacts with another component, Cus1 protein (orthologue of human SF3b145). Here, we solved the solution structure of the RRM1 of human SF3b49 and examined its mode of interaction with a fragment of human SF3b145 using NMR methods. Chemical shift mapping showed that the SF3b145 fragment spanning residues 598-631 interacts with SF3b49 RRM1, which adopts a canonical RRM fold with a topology of β1-α1-β2-β3-α2-β4. Furthermore, a docking model based on NOESY measurements suggests that residues 607-616 of the SF3b145 fragment adopt a helical structure that binds to RRM1 predominantly via α1, consequently exhibiting a helix-helix interaction in almost antiparallel. This mode of interaction was confirmed by a mutational analysis using GST pull-down assays. Comparison with structures of all RRM domains when complexed with a peptide found that this helix-helix interaction is unique to SF3b49 RRM1. Additionally, all amino acid residues involved in the interaction are well conserved among eukaryotes, suggesting evolutionary conservation of this interaction mode between SF3b49 RRM1 and SF3b145.

  12. A survey of DNA motif finding algorithms

    PubMed Central

    Das, Modan K; Dai, Ho-Kwok

    2007-01-01

    Background Unraveling the mechanisms that regulate gene expression is a major challenge in biology. An important task in this challenge is to identify regulatory elements, especially the binding sites in deoxyribonucleic acid (DNA) for transcription factors. These binding sites are short DNA segments that are called motifs. Recent advances in genome sequence availability and in high-throughput gene expression analysis technologies have allowed for the development of computational methods for motif finding. As a result, a large number of motif finding algorithms have been implemented and applied to various motif models over the past decade. This survey reviews the latest developments in DNA motif finding algorithms. Results Earlier algorithms use promoter sequences of coregulated genes from single genome and search for statistically overrepresented motifs. Recent algorithms are designed to use phylogenetic footprinting or orthologous sequences and also an integrated approach where promoter sequences of coregulated genes and phylogenetic footprinting are used. All the algorithms studied have been reported to correctly detect the motifs that have been previously detected by laboratory experimental approaches, and some algorithms were able to find novel motifs. However, most of these motif finding algorithms have been shown to work successfully in yeast and other lower organisms, but perform significantly worse in higher organisms. Conclusion Despite considerable efforts to date, DNA motif finding remains a complex challenge for biologists and computer scientists. Researchers have taken many different approaches in developing motif discovery tools and the progress made in this area of research is very encouraging. Performance comparison of different motif finding tools and identification of the best tools have proven to be a difficult task because tools are designed based on algorithms and motif models that are diverse and complex and our incomplete understanding of

  13. Imidazol-2-ylidene-N'-phenylureate ligands in alkali and alkaline earth metal coordination spheres--heterocubane core to polymeric structural motif formation.

    PubMed

    Naktode, Kishor; Bhattacharjee, Jayeeta; Nayek, Hari Pada; Panda, Tarun K

    2015-04-28

    The synthesis and isolation of two potassium, one lithium and two calcium complexes of imidazol-2-ylidene-N'-phenylureate ligands [Im(R)NCON(H)Ph] [(R = tBu (1a); Mes (1b) and Dipp (1c); Mes = mesityl, Dipp = 2,6-diisopropylphenyl] are described. Potassium complexes, [{κ(2)-(Im(Mes)NCONPh)K}4] (2b) and [{κ(3)-(Im(Dipp)NCONPh)K}2{KN(SiMe3)2}2]n (2c), were prepared in good yields by the reactions of 1b and 1c, respectively, with potassium bis(trimethyl)silyl amide at ambient temperature in toluene. Lithium complex [{(2,6-tBu2-4-Me-C6H2O)Li(Im(tBu)NCON(H)Ph)}2{Im(tBu)NCON(H)Ph}] (3a) was isolated by a one-pot reaction between 1a and LiCH2SiMe3, followed by the addition of 2,6-tBu2-4-Me-C6H2OH in toluene. Calcium complex [{κ(2)-(Im(tBu)NCONPh)Ca{N(SiMe3)2}-{KN(SiMe3)2}]n (4a) was isolated by the one-pot reaction of 1a with [KN(SiMe3)2] and calcium diiodide in THF at ambient temperature. The solid-state structures of ligand 1a and complexes 2b, 2c, 3a and 4a were confirmed by single-crystal X-ray diffraction analysis. It was observed that potassium was coordinated to the oxygen atom of urea group and to the nitrogen atom of the imidazolin-2-imine group, in the solid-state structure of 2b. In complex 4a, the calcium ion was ligated to the monoanionic imidazol-2-ylidene-N'-phenylureate ligand in a bi-dentate (κ(2)) fashion through the oxygen and nitrogen atoms of the isocyanate building block leaving the imidazolin-2-imine fragment uncoordinated. In the solid state of the potassium complex 2c, tri-dentate (κ(3)) coordination from the imidazol-2-ylidene-N'-phenylureate ligand was observed through the oxygen and nitrogen atoms of the isocyanate building block and of the imidazolin-2-imine fragment. In contrast, in the dimeric lithium complex 3a, the neutral imidazol-2-ylidene-N'-phenylureate ligand was bound to the lithium centre in a mono-dentate fashion (κ(1)) through an oxygen atom of the isocyanate moiety. It is to be noted that in each complex thus observed, the

  14. Haplotype structure enables prioritization of common markers and candidate genes in autism spectrum disorder

    PubMed Central

    Vardarajan, B N; Eran, A; Jung, J-Y; Kunkel, L M; Wall, D P

    2013-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental condition that results in behavioral, social and communication impairments. ASD has a substantial genetic component, with 88–95% trait concordance among monozygotic twins. Efforts to elucidate the causes of ASD have uncovered hundreds of susceptibility loci and candidate genes. However, owing to its polygenic nature and clinical heterogeneity, only a few of these markers represent clear targets for further analyses. In the present study, we used the linkage structure associated with published genetic markers of ASD to simultaneously improve candidate gene detection while providing a means of prioritizing markers of common genetic variation in ASD. We first mined the literature for linkage and association studies of single-nucleotide polymorphisms, copy-number variations and multi-allelic markers in Autism Genetic Resource Exchange (AGRE) families. From markers that reached genome-wide significance, we calculated male-specific genetic distances, in light of the observed strong male bias in ASD. Four of 67 autism-implicated regions, 3p26.1, 3p26.3, 3q25-27 and 5p15, were enriched with differentially expressed genes in blood and brain from individuals with ASD. Of 30 genes differentially expressed across multiple expression data sets, 21 were within 10 cM of an autism-implicated locus. Among them, CNTN4, CADPS2, SUMF1, SLC9A9, NTRK3 have been previously implicated in autism, whereas others have been implicated in neurological disorders comorbid with ASD. This work leverages the rich multimodal genomic information collected on AGRE families to present an efficient integrative strategy for prioritizing autism candidates and improving our understanding of the relationships among the vast collection of past genetic studies. PMID:23715297

  15. Analysis of Genomic Sequence Motifs for Deciphering Transcription Factor Binding and Transcriptional Regulation in Eukaryotic Cells

    PubMed Central

    Boeva, Valentina

    2016-01-01

    Eukaryotic genomes contain a variety of structured patterns: repetitive elements, binding sites of DNA and RNA associated proteins, splice sites, and so on. Often, these structured patterns can be formalized as motifs and described using a proper mathematical model such as position weight matrix and IUPAC consensus. Two key tasks are typically carried out for motifs in the context of the analysis of genomic sequences. These are: identification in a set of DNA regions of over-represented motifs from a particular motif database, and de novo discovery of over-represented motifs. Here we describe existing methodology to perform these two tasks for motifs characterizing transcription factor binding. When applied to the output of ChIP-seq and ChIP-exo experiments, or to promoter regions of co-modulated genes, motif analysis techniques allow for the prediction of transcription factor binding events and enable identification of transcriptional regulators and co-regulators. The usefulness of motif analysis is further exemplified in this review by how motif discovery improves peak calling in ChIP-seq and ChIP-exo experiments and, when coupled with information on gene expression, allows insights into physical mechanisms of transcriptional modulation. PMID:26941778

  16. Mining bridge and brick motifs from complex biological networks for functionally and statistically significant discovery.

    PubMed

    Cheng, Chia-Ying; Huang, Chung-Yuan; Sun, Chuen-Tsai

    2008-02-01

    A major task for postgenomic systems biology researchers is to systematically catalogue molecules and their interactions within living cells. Advancements in complex-network theory are being made toward uncovering organizing principles that govern cell formation and evolution, but we lack understanding of how molecules and their interactions determine how complex systems function. Molecular bridge motifs include isolated motifs that neither interact nor overlap with others, whereas brick motifs act as network foundations that play a central role in defining global topological organization. To emphasize their structural organizing and evolutionary characteristics, we define bridge motifs as consisting of weak links only and brick motifs as consisting of strong links only, then propose a method for performing two tasks simultaneously, which are as follows: 1) detecting global statistical features and local connection structures in biological networks and 2) locating functionally and statistically significant network motifs. To further understand the role of biological networks in system contexts, we examine functional and topological differences between bridge and brick motifs for predicting biological network behaviors and functions. After observing brick motif similarities between E. coli and S. cerevisiae, we note that bridge motifs differentiate C. elegans from Drosophila and sea urchin in three types of networks. Similarities (differences) in bridge and brick motifs imply similar (different) key circuit elements in the three organisms. We suggest that motif-content analyses can provide researchers with global and local data for real biological networks and assist in the search for either isolated or functionally and topologically overlapping motifs when investigating and comparing biological system functions and behaviors.

  17. Comparison of the structural motifs and packing arrangements of six novel derivatives and one polymorph of 2-(1-phenyl-1H-1,2,3-triazol-4-yl)pyridine.

    PubMed

    Tawfiq, Kinaan M; Miller, Gary J; Al-Jeboori, Mohamad J; Fennell, Paul S; Coles, Simon J; Tizzard, Graham J; Wilson, Claire; Potgieter, Herman

    2014-04-01

    The crystal structures of a new polymorph and seven new derivatives of 2-(1-phenyl-1H-1,2,3-triazol-4-yl)pyridine have been characterized and examined along with three structures from the literature to identify trends in their intermolecular contact patterns and packing arrangements in order to develop an insight into the crystallization behaviour of this class of compound. Seven unique C-H···X contacts were identified in the structures and three of these are present in four or more structures, indicating that these are reliable supramolecular synthons. Analysis of the packing arrangements of the molecules using XPac identified two closely related supramolecular constructs that are present in eight of the 11 structures; in all cases, the structures feature at least one of the three most common intermolecular contacts, suggesting a clear relationship between the intermolecular contacts and the packing arrangements of the structures. Both the intermolecular contacts and packing arrangements appear to be remarkably consistent between structures featuring different functional groups, with the expected exception of the carboxylic acid derivative 4-(4-(pyridin-2-yl)-1H-1,2,3-triazol-1-yl) benzoic acid (L11), where the introduction of a strong hydrogen-bonding group results in a markedly different supramolecular structure being adopted. The occurrence of these structural features has been compared with the packing efficiency of the structures and their melting points in order to assess the relative favourability of the supramolecular structural features in stabilizing the crystal structures.

  18. [Specific motifs in the genomes of the family Chlamydiaceae].

    PubMed

    Demkin, V V; Kirillova, N V

    2012-01-01

    Specific motifs in the genomes of the family Chlamydiaceae were discussed. The search for genetic markers ofbacteria identification and typing is an urgent problem. The progress in sequencing technology resulted in compilation of the database of genomic nucleotide sequences of bacteria. This raised the problem of the search and selection of genetic targets for identification and typing in bacterial genes based on comparative analysis of complete genomic sequences. The goal of this work was to implement comparative genetic analysis of different species of the family Chlamydiaceae. This analysis was focused to detection of specific motifs capable of serving as genetic marker of this family. The consensus domains were detected using the Visual Basic for Application software for MS Excel. Complete coincidence of segments 25 nucleotide long was used as the test for consensus domain selection. One complete genomic sequence for each of 8 bacterial species was taken for the experiment. The experimental sample did not contain complete sequence of C. suis, because at the moment of this research this species was absence in the database GenBank. Comparative assay of the sequences of the C. trachomatis and other representatives of the family Chlamydiaceae revealed 41 common motifs for 8 Chlamydiaceae species tested in this work. The maximal number of consensus motifs was observed in genes of ribosomal RNA and t-RNA. In addition to genes of r-RNA and t-RNA consensus motifs were observed in 5 genes and 6 intergene segments. The gene CTL0299, CTLO800, dagA, and hctA consensus motifs detected in this work can be regarded as identification domains of the family Chlamydiaceae.

  19. Combinatorial Information Theoretical Measurement of the Semantic Significance of Semantic Graph Motifs

    SciTech Connect

    Joslyn, Cliff A.; al-Saffar, Sinan; Haglin, David J.; Holder, Larry

    2011-06-14

    Given an arbitrary semantic graph data set, perhaps one lacking in explicit ontological information, we wish to first identify its significant semantic structures, and then measure the extent of their significance. Casting a semantic graph dataset as an edge-labeled, directed graph, this task can be built on the ability to mine frequent {\\em labeled} subgraphs in edge-labeled, directed graphs. We begin by considering the fundamentals of the enumerative combinatorics of subgraph motif structures in edge-labeled directed graphs. We identify its frequent labeled, directed subgraph motif patterns, and measure the significance of the resulting motifs by the information gain relative to the expected value of the motif based on the empirical frequency distribution of the link types which compose them, assuming indpendence. We illustrate the method on a small test graph, and discuss results obtained for small linear motifs (link type bigrams and trigrams) in a larger graph structure.

  20. Clays, common

    USGS Publications Warehouse

    Virta, R.L.

    1998-01-01

    Part of a special section on the state of industrial minerals in 1997. The state of the common clay industry worldwide for 1997 is discussed. Sales of common clay in the U.S. increased from 26.2 Mt in 1996 to an estimated 26.5 Mt in 1997. The amount of common clay and shale used to produce structural clay products in 1997 was estimated at 13.8 Mt.

  1. Common Structural Errors in Paleomagnetic Analysis of Fold-And Belts

    NASA Astrophysics Data System (ADS)

    Pueyo, E.

    2013-05-01

    Paleomagnetism is essential to decipher vertical axis rotations (VAR) in orogens, an elusive variable in tectonic studies. While unraveling the significance of VAR in the internal parts of orogenic belts might be made difficult due to the complex superposition of deformation events, it has provided timely insights into the geometry and kinematics of the external parts; the fold-and-thrust belts (FAT belts). Accurate quantification of VAR demands a reliable recording of the Earth's magnetic field. Inclination flattening or non-dipolar geometries of the geomagnetic field are well known to affect the reliability of paleomagnetic directions. Other factors are related to the geometry and mechanisms of deformation and are often overlooked: 1) Overlapping of vectors has to do with the technical limitation to isolating components in the laboratory. Secondary remagnetizations may be a common post tectonic process. The orientation of the overlapped vector will change along the fold geometry. Their restoration will result in different DEC and INC errors depending upon the degree of overlapping, the fold axis orientation (FAO), dip of the beds and the polarity of the components. 2) Many paleomagnetic studies implicitly assume the rigid-body behavior of rock volumes during deformation (absence of internal strain). However, pure shear may appear at the fold hinges and simple shear is frequent at the fold limbs and around fault planes. The bedding correction (BC) will induce DEC and INC errors controlled by the FAO and shear magnitude. 3) Different stages of folding and thrusting may happen in FAT belts and may be responsible for the superposition of non-coaxial axis of deformation. Besides, folds are not always cylindrical. These factors are responsible for the generation of plunging, conical and superposed folds, etc… The BC, instead of the reverse sequential restoration, will produce declination errors that depend upon the non-coaxility angle and the folding and tilting

  2. Bimetallic alloys in action: dynamic atomistic motifs for electrochemistry and catalysis.

    PubMed

    Mueller, Jonathan E; Krtil, Petr; Kibler, Ludwig A; Jacob, Timo

    2014-08-07

    Bimetallic alloys show great promise for applications in a wide range of technologies related to electrochemistry and heterogeneous catalysis. The alloyed nature of these materials supports the existence of surface phenomena and structural motifs not present in single-component materials. These novel features result in electrochemical and catalytic behaviors, requiring entirely new categories of explanations. In this perspective concrete examples are used to illustrate several of these chemical and structural features, which are unique to multi-component metal surfaces. The influence of the surface's structure and surroundings (e.g. adsorbates) on each other provides a common thread, with the emergence of dynamic surfaces as its terminus. In considering three model systems (PtRu, PtNi and AuPd), we discuss not only a selection of surface phenomena relevant to each, but also the implications of these alloy-related behaviors for the electrochemical and catalytic properties of each surface.

  3. Common and pathogen-specific virulence factors are different in function and structure

    PubMed Central

    Niu, Chao; Yu, Dong; Wang, Yuelan; Ren, Hongguang; Jin, Yuan; Zhou, Wei; Li, Beiping; Cheng, Yiyong; Yue, Junjie; Gao, Zhixian; Liang, Long

    2013-01-01

    In the process of host–pathogen interactions, bacterial pathogens always employ some special genes, e.g., virulence factors (VFs) to interact with host and cause damage or diseases to host. A number of VFs have been identified in bacterial pathogens that confer upon bacterial pathogens the ability to cause various types of damage or diseases. However, it has been clarified that some of the identified VFs are also encoded in the genomes of nonpathogenic bacteria, and this finding gives rise to considerable controversy about the definition of virulence factor. Here 1988 virulence factors of 51 sequenced pathogenic bacterial genomes from the virulence factor database (VFDB) were collected, and an orthologous comparison to a non-pathogenic bacteria protein database was conducted using the reciprocal-best-BLAST-hits approach. Six hundred and twenty pathogen-specific VFs and 1368 common VFs (present in both pathogens and nonpathogens) were identified, which account for 31.19% and 68.81% of the total VFs, respectively. The distribution of pathogen-specific VFs and common VFs in pathogenicity islands (PAIs) was systematically investigated, and pathogen-specific VFs were more likely to be located in PAIs than common VFs. The function of the two classes of VFs were also analyzed and compared in depth. Our results indicated that most but not all T3SS proteins are pathogen-specific. T3SS effector proteins tended to be distributed in pathogen-specific VFs, whereas T3SS translocation proteins, apparatus proteins, and chaperones were inclined to be distributed in common VFs. We also observed that exotoxins were located in both pathogen-specific and common VFs. In addition, the architecture of the two classes of VFs was compared, and the results indicated that common VFs had a higher domain number and lower domain coverage value, revealed that common VFs tend to be more complex and less compact proteins. PMID:23863604

  4. Computational generation and screening of RNA motifs in large nucleotide sequence pools

    PubMed Central

    Kim, Namhee; Izzo, Joseph A.; Elmetwaly, Shereef; Gan, Hin Hark; Schlick, Tamar

    2010-01-01

    Although identification of active motifs in large random sequence pools is central to RNA in vitro selection, no systematic computational equivalent of this process has yet been developed. We develop a computational approach that combines target pool generation, motif scanning and motif screening using secondary structure analysis for applications to 1012–1014-sequence pools; large pool sizes are made possible using program redesign and supercomputing resources. We use the new protocol to search for aptamer and ribozyme motifs in pools up to experimental pool size (1014 sequences). We show that motif scanning, structure matching and flanking sequence analysis, respectively, reduce the initial sequence pool by 6–8, 1–2 and 1 orders of magnitude, consistent with the rare occurrence of active motifs in random pools. The final yields match the theoretical yields from probability theory for simple motifs and overestimate experimental yields, which constitute lower bounds, for aptamers because screening analyses beyond secondary structure information are not considered systematically. We also show that designed pools using our nucleotide transition probability matrices can produce higher yields for RNA ligase motifs than random pools. Our methods for generating, analyzing and designing large pools can help improve RNA design via simulation of aspects of in vitro selection. PMID:20448026

  5. The Bacterial Helicase-Primase Interaction: A Common Structural/Functional Module

    PubMed Central

    Soultanas, Panos

    2011-01-01

    The lack of a high-resolution structure for the bacterial helicase-primase complex and the fragmented structural information for the individual proteins have been hindering our detailed understanding of this crucial binary protein interaction. Two new structures for the helicase-interacting domain of the bacterial primases from Escherichia coli and Bacillus stearothermophilus have recently been solved and both revealed a unique and surprising structural similarity to the amino-terminal domain of the helicase itself. In this minireview, the current data are discussed and important new structural and functional aspects of the helicase-primase interaction are highlighted. An attractive structural model with direct biological significance for the function of this complex and also for the development of new antibacterial compounds is examined. PMID:15939015

  6. Specific RNA self-assembly with minimal paranemic motifs.

    PubMed

    Afonin, Kirill A; Cieply, Dennis J; Leontis, Neocles B

    2008-01-09

    The paranemic crossover (PX) is a motif for assembling two nucleic acid molecules using Watson-Crick (WC) basepairing without unfolding preformed secondary structure in the individual molecules. Once formed, the paranemic assembly motif comprises adjacent parallel double helices that crossover at every possible point over the length of the motif. The interaction is reversible as it does not require denaturation of basepairs internal to each interacting molecular unit. Paranemic assembly has been demonstrated for DNA but not for RNA and only for motifs with four or more crossover points and lengths of five or more helical half-turns. Here we report the design of RNA molecules that paranemically assemble with the minimum number of two crossovers spanning the major groove to form paranemic motifs with a length of three half turns (3HT). Dissociation constants (Kd's) were measured for a series of molecules in which the number of basepairs between the crossover points was varied from five to eight basepairs. The paranemic 3HT complex with six basepairs (3HT_6M) was found to be the most stable with Kd = 1 x 10-8 M. The half-time for kinetic exchange of the 3HT_6M complex was determined to be approximately 100 min, from which we calculated association and dissociation rate constants ka = 5.11 x 103 M-1s-1 and kd = 5.11 x 10-5 s-1. RNA paranemic assembly of 3HT and 5HT complexes is blocked by single-base substitutions that disrupt individual intermolecular Watson-Crick basepairs and is restored by compensatory substitutions that restore those basepairs. The 3HT motif appears suitable for specific, programmable, and reversible tecto-RNA self-assembly for constructing artificial RNA molecular machines.

  7. Mitoxantrone and Analogues Bind and Stabilize i-Motif Forming DNA Sequences

    PubMed Central

    Wright, Elisé P.; Day, Henry A.; Ibrahim, Ali M.; Kumar, Jeethendra; Boswell, Leo J. E.; Huguin, Camille; Stevenson, Clare E. M.; Pors, Klaus; Waller, Zoë A. E.

    2016-01-01

    There are hundreds of ligands which can interact with G-quadruplex DNA, yet very few which target i-motif. To appreciate an understanding between the dynamics between these structures and how they can be affected by intervention with small molecule ligands, more i-motif binding compounds are required. Herein we describe how the drug mitoxantrone can bind, induce folding of and stabilise i-motif forming DNA sequences, even at physiological pH. Additionally, mitoxantrone was found to bind i-motif forming sequences preferentially over double helical DNA. We also describe the stabilisation properties of analogues of mitoxantrone. This offers a new family of ligands with potential for use in experiments into the structure and function of i-motif forming DNA sequences. PMID:28004744

  8. Mitoxantrone and Analogues Bind and Stabilize i-Motif Forming DNA Sequences

    NASA Astrophysics Data System (ADS)

    Wright, Elisé P.; Day, Henry A.; Ibrahim, Ali M.; Kumar, Jeethendra; Boswell, Leo J. E.; Huguin, Camille; Stevenson, Clare E. M.; Pors, Klaus; Waller, Zoë A. E.

    2016-12-01

    There are hundreds of ligands which can interact with G-quadruplex DNA, yet very few which target i-motif. To appreciate an understanding between the dynamics between these structures and how they can be affected by intervention with small molecule ligands, more i-motif binding compounds are required. Herein we describe how the drug mitoxantrone can bind, induce folding of and stabilise i-motif forming DNA sequences, even at physiological pH. Additionally, mitoxantrone was found to bind i-motif forming sequences preferentially over double helical DNA. We also describe the stabilisation properties of analogues of mitoxantrone. This offers a new family of ligands with potential for use in experiments into the structure and function of i-motif forming DNA sequences.

  9. Growing scale-free networks with tunable distributions of triad motifs

    NASA Astrophysics Data System (ADS)

    Li, Shuguang; Yuan, Jianping; Shi, Yong; Zagal, Juan Cristóbal

    2015-06-01

    Network motifs are local structural patterns and elementary functional units of complex networks in real world, which can have significant impacts on the global behavior of these systems. Many models are able to reproduce complex networks mimicking a series of global features of real systems, however the local features such as motifs in real networks have not been well represented. We propose a model to grow scale-free networks with tunable motif distributions through a combined operation of preferential attachment and triad motif seeding steps. Numerical experiments show that the constructed networks have adjustable distributions of the local triad motifs, meanwhile preserving the global features of power-law distributions of node degree, short average path lengths of nodes, and highly clustered structures.

  10. Big Atoms for Small Children: Building Atomic Models from Common Materials to Better Visualize and Conceptualize Atomic Structure

    ERIC Educational Resources Information Center

    Cipolla, Laura; Ferrari, Lia A.

    2016-01-01

    A hands-on approach to introduce the chemical elements and the atomic structure to elementary/middle school students is described. The proposed classroom activity presents Bohr models of atoms using common and inexpensive materials, such as nested plastic balls, colored modeling clay, and small-sized pasta (or small plastic beads).

  11. A new structural motif for biological iron: iron K-edge XAS reveals a [Fe4-mu-(OR)5(OR)(9-10)] cluster in the ascidian Perophora annectens.

    PubMed

    Frank, Patrick; DeTomaso, Anthony; Hedman, Britt; Hodgson, Keith O

    2006-05-15

    The Phlebobranch ascidian Perophora annectens surprisingly exhibited a biological Fe/V ratio of approximately 15:1 on multichannel X-ray fluorescence analysis of two independent collections of organisms. Iron K-edge X-ray absorption spectroscopy (XAS) indicated a single form of iron. The XAS K-edge of the first collection of blood cells was shifted approximately +1 eV relative to that of the second, indicating redox activity with average iron oxidation states of 2.67+ and 2.60+. The first-derivative iron XAS K-edge features at 7120.5, 7124, and 7128 eV resembled the XAS of magnetite but not of ferritin or of dissolved Fe(II) or Fe(III). Pseudo-Voigt fits to blood-cell iron K-edge XAS spectra yielded 12.4 integrated units of preedge intensity, indicating a noncentrosymmetric environment. The non-phase-corrected extended X-ray absorption fine structure (EXAFS) Fourier transform spectrum showed a first-shell O/N peak at 1.55 angstroms and an intense Fe-Fe feature at 2.65 angstroms. Fits to the EXAFS required a split first shell with two O at 1.93 angstroms and three O at 2.07 angstroms, consistent with terminal and bridging alkoxide ligands, respectively. More distant shells included three C at 2.87 angstroms, two Fe at 3.08 angstroms, three O at 3.29 angstroms, and one Fe at 3.8 angstroms. Structural models consistent with these findings include a [Fe4(OR)13](2-/3-) broken-edged Fe4O5 cuboid or a [Fe4(OR)14](3-/4-) "Jacob's ladder" with three edge-fused Fe2(OR)2 rhombs. Either of these models represents an entirely new structural motif for biological iron. Vanadium domination of blood-cell metals cannot be a defining trait of Phlebobranch tunicates so long as P. annectens is included among them.

  12. Mathematics, Thermodynamics, and Modeling to Address Ten Common Misconceptions about Protein Structure, Folding, and Stability

    ERIC Educational Resources Information Center

    Robic, Srebrenka

    2010-01-01

    To fully understand the roles proteins play in cellular processes, students need to grasp complex ideas about protein structure, folding, and stability. Our current understanding of these topics is based on mathematical models and experimental data. However, protein structure, folding, and stability are often introduced as descriptive, qualitative…