ORAC-DR -- SCUBA Pipeline Data Reduction
NASA Astrophysics Data System (ADS)
Jenness, Tim; Economou, Frossie
ORAC-DR is a flexible data reduction pipeline designed to reduce data from many different instruments. This document describes how to use the ORAC-DR pipeline to reduce data taken with the Submillimetre Common-User Bolometer Array (SCUBA) obtained from the James Clerk Maxwell Telescope.
NASA Astrophysics Data System (ADS)
Battistelli, E. S.; Amiri, M.; Burger, B.; Halpern, M.; Knotek, S.; Ellis, M.; Gao, X.; Kelly, D.; Macintosh, M.; Irwin, K.; Reintsema, C.
2008-05-01
We have developed multi-channel electronics (MCE) which work in concert with time-domain multiplexors developed at NIST, to control and read signals from large format bolometer arrays of superconducting transition edge sensors (TESs). These electronics were developed as part of the Submillimeter Common-User Bolometer Array-2 (SCUBA2 ) camera, but are now used in several other instruments. The main advantages of these electronics compared to earlier versions is that they are multi-channel, fully programmable, suited for remote operations and provide a clean geometry, with no electrical cabling outside of the Faraday cage formed by the cryostat and the electronics chassis. The MCE is used to determine the optimal operating points for the TES and the superconducting quantum interference device (SQUID) amplifiers autonomously. During observation, the MCE execute a running PID-servo and apply to each first stage SQUID a feedback signal necessary to keep the system in a linear regime at optimal gain. The feedback and error signals from a ˜1000-pixel array can be written to hard drive at up to 2 kHz.
Infrared-Bolometer Arrays with Reflective Backshorts
NASA Technical Reports Server (NTRS)
Miller, Timothy M.; Abrahams, John; Allen, Christine A.
2011-01-01
Integrated circuits that incorporate square arrays of superconducting-transition- edge bolometers with optically reflective backshorts are being developed for use in image sensors in the spectral range from far infrared to millimeter wavelengths. To maximize the optical efficiency (and, thus, sensitivity) of such a sensor at a specific wavelength, resonant optical structures are created by placing the backshorts at a quarter wavelength behind the bolometer plane. The bolometer and backshort arrays are fabricated separately, then integrated to form a single unit denoted a backshort-under-grid (BUG) bolometer array. In a subsequent fabrication step, the BUG bolometer array is connected, by use of single-sided indium bump bonding, to a readout device that comprises mostly a superconducting quantum interference device (SQUID) multiplexer circuit. The resulting sensor unit comprising the BUG bolometer array and the readout device is operated at a temperature below 1 K. The concept of increasing optical efficiency by use of backshorts at a quarter wavelength behind the bolometers is not new. Instead, the novelty of the present development lies mainly in several features of the design of the BUG bolometer array and the fabrication sequence used to implement the design. Prior to joining with the backshort array, the bolometer array comprises, more specifically, a square grid of free-standing molybdenum/gold superconducting-transition-edge bolometer elements on a 1.4- m-thick top layer of silicon that is part of a silicon support frame made from a silicon-on-insulator wafer. The backshort array is fabricated separately as a frame structure that includes support beams and contains a correspond - ing grid of optically reflective patches on a single-crystal silicon substrate. The process used to fabricate the bolometer array includes standard patterning and etching steps that result in the formation of deep notches in the silicon support frame. These notches are designed to interlock with the support beams on the backshort-array structure to provide structural support and precise relative positioning. The backshort-array structure is inserted in the silicon support frame behind the bolometer array, and the notches in the frame serve to receive the support beams of the backshort-array structure and thus determine the distance between the backshort and bolometer planes. The depth of the notches and, thus, the distance between the backshort and bolometer planes, can be tailored to a value between 25 to 300 m adjusting only a few process steps. The backshort array is designed so as not to interfere with the placement of indium bumps for subsequent indium bump-bonding to the multiplexing readout circuitry
5,120 Superconducting Bolometers for the PIPER Balloon-Borne CMB Polarization Experiment
NASA Technical Reports Server (NTRS)
Benford, Dominic J.; Chuss, David T.; Hilton, Gene C.; Irwin, Kent D.; Jethava, Nikhil; Jhabvala, Christine A.; Kogut, Alan J.; Miller, Timothy M.; Moseley, S. Harvey; Rostem, Karwan;
2010-01-01
We are constructing the Primordial Inflation Polarization Explorer (PIPER) to measure the polarization of the cosmic microwave background (CMB) and search for the imprint of gravity waves produced during an inflationary epoch in the early universe. The signal is faint and lies behind confusing foregrounds, both astrophysical and cosmological, and so many detectors are required to complete the measurement in a limited time. We will use four of our matured 1,280 pixel, high-filling-factor backshort-under-grid bolometer arrays for efficient operation at the PIPER CMB wavelengths. All four arrays observe at a common wavelength set by passband filters in the optical path. PIPER will fly four times to observe at wavelengths of 1500, 1100, 850, and 500 microns in order to separate CMB from foreground emission. The arrays employ leg-isolated superconducting transition edge sensor bolometers operated at 145 mK; tuned resonant backshorts for efficient optical coupling; and a second-generation superconducting quantum interference device multiplexer readout. We describe the design, development, and performance of PIPER bolometer array technology to achieve background-limited sensitivity for a cryogenic balloon-borne telescope.
Automated Reduction and Calibration of SCUBA Archive Data Using ORAC-DR
NASA Astrophysics Data System (ADS)
Jenness, T.; Stevens, J. A.; Archibald, E. N.; Economou, F.; Jessop, N.; Robson, E. I.; Tilanus, R. P. J.; Holland, W. S.
The Submillimetre Common User Bolometer Array (SCUBA) instrument has been operating on the James Clerk Maxwell Telescope (JCMT) since 1997. The data archive is now sufficiently large that it can be used for investigating instrumental properties and the variability of astronomical sources. This paper describes the automated calibration and reduction scheme used to process the archive data with particular emphasis on the pointing observations. This is made possible by using the ORAC-DR data reduction pipeline, a flexible and extensible data reduction pipeline that is used on UKIRT and the JCMT.
Antenna-Coupled Bolometer Arrays for Astrophysics
NASA Astrophysics Data System (ADS)
Bock, James
Bolometers offer the best sensitivity in the far-infrared to millimeter-wave region of the electromagnetic spectrum. We are developing arrays of feedhorn-coupled bolometers for the ESA/NASA Planck Surveyor and Herschel Space Observatory. Advances in the format and sensitivity of bolometric focal plane array enables future astrophysics mission opportunities, such as CMB polarimetry and far-infrared/submillimeter spectral line surveys. Compared to bolometers with extended area radiation absorbers, antenna-coupled bolometers offer active volumes that are orders of magnitude smaller. Coupled to lithographed micro-strip filters and antennas, antenna-coupled bolometer arrays allow flexible focal plane architectures specialized for imaging, polarimetry, and spectroscopy. These architectures greatly reduce the mass of sub-Kelvin bolometer focal planes that drive the design of bolometric instrumentation.
Ultralow-Background Large-Format Bolometer Arrays
NASA Technical Reports Server (NTRS)
Benford, Dominic; Chervenak, Jay; Irwin, Kent; Moseley, S. Harvey; Oegerle, William (Technical Monitor)
2002-01-01
In the coming decade, work will commence in earnest on large cryogenic far-infrared telescopes and interferometers. All such observatories - for example, SAFIR, SPIRIT, and SPECS - require large format, two dimensional arrays of close-packed detectors capable of reaching the fundamental limits imposed by the very low photon backgrounds present in deep space. In the near term, bolometer array architectures which permit 1000 pixels - perhaps sufficient for the next generation of space-based instruments - can be arrayed efficiently. Demonstrating the necessary performance, with Noise Equivalent Powers (NEPs) of order 10-20 W/square root of Hz, will be a hurdle in the coming years. Superconducting bolometer arrays are a promising technology for providing both the performance and the array size necessary. We discuss the requirements for future detector arrays in the far-infrared and submillimeter, describe the parameters of superconducting bolometer arrays able to meet these requirements, and detail the present and near future technology of superconducting bolometer arrays. Of particular note is the coming development of large format planar arrays with absorber-coupled and antenna-coupled bolometers.
Superconducting Bolometer Array Architectures
NASA Technical Reports Server (NTRS)
Benford, Dominic; Chervenak, Jay; Irwin, Kent; Moseley, S. Harvey; Shafer, Rick; Staguhn, Johannes; Wollack, Ed; Oegerle, William (Technical Monitor)
2002-01-01
The next generation of far-infrared and submillimeter instruments require large arrays of detectors containing thousands of elements. These arrays will necessarily be multiplexed, and superconducting bolometer arrays are the most promising present prospect for these detectors. We discuss our current research into superconducting bolometer array technologies, which has recently resulted in the first multiplexed detections of submillimeter light and the first multiplexed astronomical observations. Prototype arrays containing 512 pixels are in production using the Pop-Up Detector (PUD) architecture, which can be extended easily to 1000 pixel arrays. Planar arrays of close-packed bolometers are being developed for the GBT (Green Bank Telescope) and for future space missions. For certain applications, such as a slewed far-infrared sky survey, feedhorncoupling of a large sparsely-filled array of bolometers is desirable, and is being developed using photolithographic feedhorn arrays. Individual detectors have achieved a Noise Equivalent Power (NEP) of -10(exp 17) W/square root of Hz at 300mK, but several orders of magnitude improvement are required and can be reached with existing technology. The testing of such ultralow-background detectors will prove difficult, as this requires optical loading of below IfW. Antenna-coupled bolometer designs have advantages for large format array designs at low powers due to their mode selectivity.
Silicon nitride Micromesh Bolometer Array for Submillimeter Astrophysics.
Turner, A D; Bock, J J; Beeman, J W; Glenn, J; Hargrave, P C; Hristov, V V; Nguyen, H T; Rahman, F; Sethuraman, S; Woodcraft, A L
2001-10-01
We present the design and performance of a feedhorn-coupled bolometer array intended for a sensitive 350-mum photometer camera. Silicon nitride micromesh absorbers minimize the suspended mass and heat capacity of the bolometers. The temperature transducers, neutron-transmutation-doped Ge thermistors, are attached to the absorber with In bump bonds. Vapor-deposited electrical leads address the thermistors and determine the thermal conductance of the bolometers. The bolometer array demonstrates a dark noise-equivalent power of 2.9 x 10(-17) W/ radicalHz and a mean heat capacity of 1.3 pJ/K at 390 mK. We measure the optical efficiency of the bolometer and feedhorn to be 0.45-0.65 by comparing the response to blackbody calibration sources. The bolometer array demonstrates theoretical noise performance arising from the photon and the phonon and Johnson noise, with photon noise dominant under the design background conditions. We measure the ratio of total noise to photon noise to be 1.21 under an absorbed optical power of 2.4 pW. Excess noise is negligible for audio frequencies as low as 30 mHz. We summarize the trade-offs between bare and feedhorn-coupled detectors and discuss the estimated performance limits of micromesh bolometers. The bolometer array demonstrates the sensitivity required for photon noise-limited performance from a spaceborne, passively cooled telescope.
5,120 Superconducting Bolometers for the PIPER Balloon-Borne CMB Polarization Experiment
NASA Technical Reports Server (NTRS)
Benford, Dominic J.; Chuss, David T.; Hilton, Gene C.; Irwin, Kent D.; Jethava, Nikhil S.; Jhabvala, Christine A.; Kogut, Alan J.; Miller, Timothy M.; Mirel, Paul; Moseley, S. Harvey;
2010-01-01
We are constructing the Primordial Inflation Polarization Explorer (PIPER) to measure the polarization o[ the cosmic microwave background (CMB) and search for the imprint of gravity waves produced during an inflationary epoch in the early universe. The signal is faint and lies behind confusing foregrounds, both astrophysical and cosmological, and so many detectors are required to complete the measurement in a limited time. We will use four of our matured 1,280 pixel, high-filling-factor backshort-under-grid bolometer arrays for efficient operation at the PIPER CMB wavelengths. All four arrays observe at a common wavelength set by passband filters in the optical path. PIPER will fly four times to observe at wavelengths of 1500, 1100, 850, and 500 microns in order to separate CMB from foreground emission. The arrays employ leg-isolated superconducting transition edge sensor bolometers operated at 128mK; tuned resonant backshorts for efficient optical coupling; and a second-generation superconducting quantum interference device (SQUID) multiplexer readout. We describe the design, development, and performance of PIPER bo|ometer array technology to achieve background-limited sensitivity for a cryogenic balloon-borne telescope.
Submillimeter Bolometer Array for the CSO
NASA Astrophysics Data System (ADS)
Wang, Ning; Hunter, T. R.; Benford, D. J.; Phillips, T. G.
We are building a bolometer array for use as a submillimeter continuum camera for the Caltech Submillimeter Observatory (CSO) located on Mauna Kea. This effort is a collaboration with Moseley et al. at Goddard Space Flight Center, who have developed the technique for fabricating monolithic bolometer arrays on Si wafers, as well as a sophisticated data taking system to use with these arrays (Moseley et al. 1984). Our primary goal is to construct a camera with 1x24 bolometer pixels operating at 350 and 450 microns using a 3He refrigerator. The monolithic bolometer arrays are fabricated using the techniques of photolithography and micromachining. Each pixel of the array is suspended by four thin Si legs 2 mm long and 12x14 square microns in cross section. These thin legs, obtained by wet Si etching, provide the weak thermal link between the bolometer pixel and the heat sink. A thermistor is formed on each bolometer pixel by P implantation compensated with 50% B. The bolometer array to be used for the camera will have a pixel size of 1x2 square millimeters, which is about half of the CSO beam size at a wavelength of 400 microns. We plan to use mirrors to focus the beam onto the pixels intead of Winston cones. In order to eliminate background radiation from warm surroundings reaching the bolometers, cold baffles will be inserted along the beam passages. To increase the bolometer absorption to radiation, a thin metal film will be deposited on the back of each bolometer pixel. It has been demonstrated that a proper impedance match of the bolometer element can increase the bolometer absorption efficiency to about 50% (Clarke et al., 1978). The use of baffle approach to illumination will make it easier for us to expand to more pixels in the future. The first stage amplification will be performed with cold FETs, connected to each bolometer pixel. Signals from each bolometer will be digitized using a 16 bit A/D with differential inputs. The digitizing frequency will be up to 40 kHz, though 1 kHz should be sufficient for our application. The output from the A/D will be fed to a digital signal processing (DSP) board via fiber optic cables, which will minimize the RF interference to the bolometers. To date, we have assembled a 1x24 bolometer array, and we are in the process of testing it. We are also designing and bulding cryogenic optics. The data acquisition hardware is nearly completed, as well as the electronics. Our goal is to get the instrument working after a new chopping secondary mirror in installed at the CSO in the summer of 1994. References: Moseley, S.H. et al. 1984, J. Appl. Phys.,56,1257; Clarke et al. 1977, J. Appl. Phys., 48, 4865.
Two-dimensional array of cold-electron bolometers for high-sensitivity polarization measurements
NASA Astrophysics Data System (ADS)
Kuzmin, L. S.
2012-01-01
A new concept of a two-dimensional array of cold-electron bolometers with distributed dipole antennas in the focal plane for high-sensitivity polarization measurements is proposed. The concept gives a unique combination of high polarization resolution due to a large uniforms array of cold-electron bolometers and optimal matching with junction field effect transistor (JFET) amplifiers because of flexibility in direct-current connections. The noise characteristics are improved due to arriving-signal power distribution among numerous cold-electron bolometers and an increase in their response. This should lead to a significant increase in the sensitivity and dynamic range compared with competing alternative bolometer technologies. The reliability of the twodimensional array significantly increases due to a series-parallel connection of a large number of cold-electron bolometers. High polarization resolution should be ensured due to uniform covering of a substrate by a two-dimensional array over a large area and the absence of the beam compression to small lumped elements. The fundamental sensitivity limit of the cold-electron bolometer array is smaller than photon noise which is considered to be the ultimate level restricted by the background radiation. Estimates of noise of bolometers with the JFET reading system show the possibility of realizing the ultimate sensitivity below the photon-noise level 5 ・10-17 W/Hz1/2 at a frequency of 350 GHz for an optical load with a power of 5 pW. These parameters correspond to the requirements to the receiving system of a BOOMERanG balloon telescope.
A 65 nm CMOS LNA for Bolometer Application
NASA Astrophysics Data System (ADS)
Huang, Tom Nan; Boon, Chirn Chye; Zhu, Forest Xi; Yi, Xiang; He, Xiaofeng; Feng, Guangyin; Lim, Wei Meng; Liu, Bei
2016-04-01
Modern bolometers generally consist of large-scale arrays of detectors. Implemented in conventional technologies, such bolometer arrays suffer from integrability and productivity issues. Recently, the development of CMOS technologies has presented an opportunity for the massive production of high-performance and highly integrated bolometers. This paper presents a 65-nm CMOS LNA designed for a millimeter-wave bolometer's pre-amplification stage. By properly applying some positive feedback, the noise figure of the proposed LNA is minimized at under 6 dB and the bandwidth is extended to 30 GHz.
Dobbs, M A; Lueker, M; Aird, K A; Bender, A N; Benson, B A; Bleem, L E; Carlstrom, J E; Chang, C L; Cho, H-M; Clarke, J; Crawford, T M; Crites, A T; Flanigan, D I; de Haan, T; George, E M; Halverson, N W; Holzapfel, W L; Hrubes, J D; Johnson, B R; Joseph, J; Keisler, R; Kennedy, J; Kermish, Z; Lanting, T M; Lee, A T; Leitch, E M; Luong-Van, D; McMahon, J J; Mehl, J; Meyer, S S; Montroy, T E; Padin, S; Plagge, T; Pryke, C; Richards, P L; Ruhl, J E; Schaffer, K K; Schwan, D; Shirokoff, E; Spieler, H G; Staniszewski, Z; Stark, A A; Vanderlinde, K; Vieira, J D; Vu, C; Westbrook, B; Williamson, R
2012-07-01
A technological milestone for experiments employing transition edge sensor bolometers operating at sub-Kelvin temperature is the deployment of detector arrays with 100s-1000s of bolometers. One key technology for such arrays is readout multiplexing: the ability to read out many sensors simultaneously on the same set of wires. This paper describes a frequency-domain multiplexed readout system which has been developed for and deployed on the APEX-SZ and South Pole Telescope millimeter wavelength receivers. In this system, the detector array is divided into modules of seven detectors, and each bolometer within the module is biased with a unique ∼MHz sinusoidal carrier such that the individual bolometer signals are well separated in frequency space. The currents from all bolometers in a module are summed together and pre-amplified with superconducting quantum interference devices operating at 4 K. Room temperature electronics demodulate the carriers to recover the bolometer signals, which are digitized separately and stored to disk. This readout system contributes little noise relative to the detectors themselves, is remarkably insensitive to unwanted microphonic excitations, and provides a technology pathway to multiplexing larger numbers of sensors.
The HERSCHEL/PACS early Data Products
NASA Astrophysics Data System (ADS)
Wieprecht, E.; Wetzstein, M.; Huygen, R.; Vandenbussche, B.; De Meester, W.
2006-07-01
ESA's Herschel Space Observatory to be launched in 2007, is the first space observatory covering the full far-infrared and submillimeter wavelength range (60 - 670 microns). The Photodetector Array Camera & Spectrometer (PACS) is one of the three science instruments. It contains two Ge:Ga photoconductor arrays and two bolometer arrays to perform imaging line spectroscopy and imaging photometry in the 60 - 210 micron wavelength band. The HERSCHEL ground segment (Herschel Common Science System - HCSS) is implemented using JAVA technology and written in a common effort by the HERSCHEL Science Center and the three instrument teams. The PACS Common Software System (PCSS) is based on the HCSS and used for the online and offline analysis of PACS data. For telemetry bandwidth reasons PACS science data are partially processed on board, compressed, cut into telemetry packets and transmitted to the ground. These steps are instrument mode dependent. We will present the software model which allows to reverse the discrete on board processing steps and evaluate the data. After decompression and reconstruction the detector data and instrument status information are organized in two main PACS Products. The design of these JAVA classes considers the individual sampling rates, data formats, memory and performance optimization aspects and comfortable user interfaces.
Enhancing the spectral response of filled bolometer arrays for submillimeter astronomy.
Revéret, Vincent; Rodriguez, Louis; Agnèse, Patrick
2010-12-10
Future missions for astrophysical studies in the submillimeter region will need detectors with very high sensitivity and large fields of view. Bolometer arrays can fulfill these requirements over a very broad band. We describe a technique that enables bolometer arrays that use quarter-wave cavities to have a high spectral response over most of the submillimeter band. This technique is based on the addition on the front of the array of an antireflecting dielectric layer. The optimum parameters (layer thickness and distance to the array) are determined by a 2D analytic code. This general principle is applied to the case of Herschel PACS bolometers (optimized for the 60 to 210 μm band). As an example, we demonstrate experimentally that a PACS array covered by a 138 μm thick silicon layer can improve the spectral response by a factor of 1.7 in the 450 μm band.
Bolometers for millimeter-wave Cosmology
NASA Astrophysics Data System (ADS)
Bock, James J.
2002-05-01
Bolometers offer high sensitivity for observations of the cosmic microwave background, Sunyaev-Zel'Dovich effect in clusters, and far-infrared galaxies. Near background-limited performance may be realized even under the low background conditions available from a space-borne platform. We discuss the achieved performance of silicon nitride micromesh (`spider web') bolometers readout by NTD Ge thermistors. We are developing arrays of such bolometers coupled to single-mode feedhorns. CMB polarization may be studies using a new absorber geometry allowing simultaneous detection of both linear polarizations in a single feedhorn with two individual detectors. Finally we discuss a new bolometer architecture consisting of an array of slot antennae coupled to filters and bolometers via superconducting microstrip. .
Design and fabrication of two-dimensional semiconducting bolometer arrays for HAWC and SHARC-II
NASA Astrophysics Data System (ADS)
Voellmer, George M.; Allen, Christine A.; Amato, Michael J.; Babu, Sachidananda R.; Bartels, Arlin E.; Benford, Dominic J.; Derro, Rebecca J.; Dowell, C. D.; Harper, D. A.; Jhabvala, Murzy D.; Moseley, S. H.; Rennick, Timothy; Shirron, Peter J.; Smith, W. W.; Staguhn, Johannes G.
2003-02-01
The High resolution Airborne Wideband Camera (HAWC) and the Submillimeter High Angular Resolution Camera II (SHARC II) will use almost identical versions of an ion-implanted silicon bolometer array developed at the National Aeronautics and Space Administration's Goddard Space Flight Center (GSFC). The GSFC "Pop-Up" Detectors (PUD's) use a unique folding technique to enable a 12 × 32-element close-packed array of bolometers with a filling factor greater than 95 percent. A kinematic Kevlar suspension system isolates the 200 mK bolometers from the helium bath temperature, and GSFC - developed silicon bridge chips make electrical connection to the bolometers, while maintaining thermal isolation. The JFET preamps operate at 120 K. Providing good thermal heat sinking for these, and keeping their conduction and radiation from reaching the nearby bolometers, is one of the principal design challenges encountered. Another interesting challenge is the preparation of the silicon bolometers. They are manufactured in 32-element, planar rows using Micro Electro Mechanical Systems (MEMS) semiconductor etching techniques, and then cut and folded onto a ceramic bar. Optical alignment using specialized jigs ensures their uniformity and correct placement. The rows are then stacked to create the 12 × 32-element array. Engineering results from the first light run of SHARC II at the Caltech Submillimeter Observatory (CSO) are presented.
Comparison of the Effects of Magnetic Field on Low Noise MoAu and TiAu TES Bolometers
NASA Astrophysics Data System (ADS)
Hijmering, R. A.; Khosropanah, P.; Ridder, M.; Gao, J. R.; Hoevers, H.; Jackson, B.; Goldie, D.; Withington, S.; Kozorezov, A. G.
2014-08-01
Recently we have reported on the effects of magnetic field on our low noise (NEP = 4 W/Hz) [1] TiAu TES bolometers that are being developed at SRON for the SAFARI FIR Imaging Spectrometer on SPICA telescope that will be operated in three different wavelength bands: S-band for 30-60 , M-band for 60-110 and L-band for 110-210 . The arrays for the S- and M- band will be based on TiAu TES bolometer arrays, developed by SRON. The L-band array will be based on a MoAu TES bolometer developed by University of Cambridge. We have investigated the effect of the magnetic field on the current, responsivity, speed and critical current for both the TiAu and MoAu TES bolometers in our high accuracy magnetic field set-up. A clear difference in weak link behavior is observed between the two types of TES bolometers in both strength of the effect and period of the oscillations.
Arrays of membrane isolated yttrium-barium-copper-oxide kinetic inductance bolometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindeman, M. A., E-mail: mark.a.lindeman@jpl.nasa.gov; Bonetti, J. A.; Bumble, B.
We are developing of arrays of membrane isolated resonator-bolometers, each with a kinetic inductance device (KID) to measure the temperature of the membrane. The KIDs are fabricated out of the high temperature superconductor YBCO to allow operation at relatively high temperatures. The bolometers are designed to offer higher sensitivity than sensors operating at 300 K, but they require less expensive and lighter weight cooling than even more sensitive conventional superconducting detectors operating at lower temperatures. The bolometer arrays are applicable as focal planes in infrared imaging spectrometers, such as for planetary science missions or earth observing satellites. We describe the devicesmore » and present measurements of their sensitivity.« less
NASA Technical Reports Server (NTRS)
Voellmer, George M.; Allen, Christine A.; Amato, Michael J.; Babu, Sachidananda R.; Bartels, Arlin E.; Benford, Dominic J.; Derro, Rebecca J.; Dowell, C. Darren; Harper, D. Al; Jhabvala, Murzy D.;
2002-01-01
The High resolution Airborne Wideband Camera (HAWC) and the Submillimeter High Angular Resolution Camera II (SHARC 11) will use almost identical versions of an ion-implanted silicon bolometer array developed at the National Aeronautics and Space Administration's Goddard Space Flight Center (GSFC). The GSFC "Pop-Up" Detectors (PUD's) use a unique folding technique to enable a 12 x 32-element close-packed array of bolometers with a filling factor greater than 95 percent. A kinematic Kevlar(Registered Trademark) suspension system isolates the 200 mK bolometers from the helium bath temperature, and GSFC - developed silicon bridge chips make electrical connection to the bolometers, while maintaining thermal isolation. The JFET preamps operate at 120 K. Providing good thermal heat sinking for these, and keeping their conduction and radiation from reaching the nearby bolometers, is one of the principal design challenges encountered. Another interesting challenge is the preparation of the silicon bolometers. They are manufactured in 32-element, planar rows using Micro Electro Mechanical Systems (MEMS) semiconductor etching techniques, and then cut and folded onto a ceramic bar. Optical alignment using specialized jigs ensures their uniformity and correct placement. The rows are then stacked to create the 12 x 32-element array. Engineering results from the first light run of SHARC II at the CalTech Submillimeter Observatory (CSO) are presented.
NASA Technical Reports Server (NTRS)
Voellmer, George M.; Allen, Christine A.; Amato, Michael J.; Babu, Sachidananda R.; Bartels, Arlin E.; Benford, Dominic J.; Derro, Rebecca J.; Dowell, C. Darren; Harper, D. Al; Jhabvala, Murzy D.
2002-01-01
The High resolution Airborne Wideband Camera (HAWC) and the Submillimeter High Angular Resolution Camera II (SHARC II) will use almost identical versions of an ion-implanted silicon bolometer array developed at the National Aeronautics and Space Administration's Goddard Space Flight Center (GSFC). The GSFC 'Pop-up' Detectors (PUD's) use a unique folding technique to enable a 12 x 32-element close-packed array of bolometers with a filling factor greater than 95 percent. A kinematic Kevlar(trademark) suspension system isolates the 200 mK bolometers from the helium bath temperature, and GSFC - developed silicon bridge chips make electrical connection to the bolometers, while maintaining thermal isolation. The JFET preamps operate at 120 K. Providing good thermal heat sinking for these, and keeping their conduction and radiation from reaching the nearby bolometers, is one of the principal design challenges encountered. Another interesting challenge is the preparation of the silicon bolometers. They are manufactured in 32-element, planar rows using Micro Electro Mechanical Systems (MEMS) semiconductor etching techniques, and then cut and folded onto a ceramic bar. Optical alignment using specialized jigs ensures their uniformity and correct placement. The rows are then stacked to create the 12 x 32-element array. Engineering results from the first light run of SHARC II at the Caltech Submillimeter Observatory (CSO) are presented.
Kilopixel Pop-Up Bolometer Arrays for the Atacama Cosmology Telescope
NASA Technical Reports Server (NTRS)
Chervenak, J. A.; Wollack, E.; Henry, R.; Moseley, S. H.; Niemack, M.; Staggs, S.; Page, L.; Doriese, R.; Hilton, G. c.; Irwin, K. D.
2007-01-01
The recently deployed Atacama Cosmology Telescope (ACT) anticipates first light on its kilopixel array of close-packed transition-edge-sensor bolometers in November of 2007. The instrument will represent a full implementation of the next-generation, large format arrays for millimeter wave astronomy that use superconducting electronics and detectors. Achieving the practical construction of such an array is a significant step toward producing advanced detector arrays for future SOFIA instruments. We review the design considerations for the detector array produced for the ACT instrument. The first light imager consists of 32 separately instrumented 32-channel pop-up bolometer arrays (to create a 32x32 filled array of mm-wave sensors). Each array is instrumented with a 32-channel bias resistor array, Nyquist filter array, and time-division SQUID multiplexer. Each component needed to be produced in relatively large quantities with suitable uniformity to meet tolerances for array operation. An optical design was chosen to maximize absorption at the focal plane while mitigating reflections and stray light. The pop-up geometry (previously implemented with semiconducting detectors and readout on the SHARC II and HAWC instruments) enabled straightforward interface of the superconducting bias and readout circuit with the 2D array of superconducting bolometers. The array construction program balanced fabrication challenges with assembly challenges to deliver the instrument in a timely fashion. We present some of the results of the array build and characterization of its performance.
A Planar Two-Dimensional Superconducting Bolometer Array for the Green Bank Telescope
NASA Technical Reports Server (NTRS)
Benford, Dominic; Staguhn, Johannes G.; Chervenak, James A.; Chen, Tina C.; Moseley, S. Harvey; Wollack, Edward J.; Devlin, Mark J.; Dicker, Simon R.; Supanich, Mark
2004-01-01
In order to provide high sensitivity rapid imaging at 3.3mm (90GHz) for the Green Bank Telescope - the world's largest steerable aperture - a camera is being built by the University of Pennsylvania, NASA/GSFC, and NRAO. The heart of this camera is an 8x8 close-packed, Nyquist-sampled detector array. We have designed and are fabricating a functional superconducting bolometer array system using a monolithic planar architecture. Read out by SQUID multiplexers, the superconducting transition edge sensors will provide fast, linear, sensitive response for high performance imaging. This will provide the first ever superconducting bolometer array on a facility instrument.
Electromagnetic Considerations for Planar Bolometer Arrays in the Single Mode Limit
NASA Technical Reports Server (NTRS)
Wollack, Edward J.; Chuss, David T.; Moseley, Samuel
2006-01-01
Filled arrays of planar bolometers are finding astronomical applications at wavelengths as long as several millimeters. In an effort to keep focal planes to a reasonable size while maintaining large numbers of detectors, a common strategy is to push these arrays to operate close to or at the single mode limit. Doing so introduces several new challenges that are not experienced in the multi-mode case of far-infrared detectors having similar pixel sizes. First, diffractive effects of the pixels themselves are no longer insignificant and will ultimately contribute to the resolution limit of the optical system in which they reside. We use the method of Withlngton et al. (2003) to model the polarized diffraction in this limit. Second, it is necessary to re-examine the coupling between the radiation and the absorbing element that is thermally connected to the bolometers. The small f-numbers that are often employed to make use of large focal planes makes backshort construction problematic. We introduce a new strategy to increase detector efficiency that uses an antireflective layer on the front side of the detector array. In addition, typical methods for stray light control that rely on multiple reflections in a lossy medium fail due to physical size constraints. For this application, we find that resonant absorbers are a more effective strategy that can be implemented in the space available.
Infrared technology for satellite power conversion. [antenna arrays and bolometers
NASA Technical Reports Server (NTRS)
Campbell, D. P.; Gouker, M. A.; Gallagher, J. J.
1984-01-01
Successful fabrication of bismuth bolometers led to the observation of antenna action rom array elements. Fabrication of the best antennas arrays was made more facile with finding that increased argon flow during the dc sputtering produced more uniform bismuth films and bonding to antennas must be done with the substrate temperaure below 100 C. Higher temperatures damaged the bolometers. During the testing of the antennas, it was found that the use of a quasi-optical system provided a uniform radiation field. Groups of antennas were bonded in series and in parallel with the parallel configuration showing the greater response.
New technologies for the detection of millimeter and submillimeter waves
NASA Technical Reports Server (NTRS)
Richards, P. L.; Clarke, J.; Gildemeister, J. M.; Lanting, T.; Lee, A. T.
2001-01-01
Voltage-biased superconducting bolometers have many operational advantages over conventional bolometer technology including sensitivity, linearity, speed, and immunity from environmental disturbance. A review is given of the Berkeley program for developing this new technology. Developments include fully lithographed individual bolometers in the spiderweb configuration, arrays of 1024 close-packed absorber-coupled bolometers, antenna-coupled bolometers, and a frequency-domain SQUID (superconducting quantum interference device) readout multiplexer.
Array of Bolometers for Submillimeter- Wavelength Operation
NASA Technical Reports Server (NTRS)
Bock, James; Turner, Anthony
2007-01-01
A feed-horn-coupled monolithic array of micromesh bolometers is undergoing development for use in a photometric camera. The array is designed for conducting astrophysical observations in a wavelength band centered at 350 m. The bolometers are improved versions of previously developed bolometers comprising metalized Si3N4 micromesh radiation absorbers coupled with neutron- transmutation-doped Ge thermistors. Incident radiation heats the absorbers above a base temperature, changing the electrical resistance of each thermistor. In the present array of improved bolometers (see figure), the thermistors are attached to the micromesh absorbers by indium bump bonds and are addressed by use of lithographed, vapor-deposited electrical leads. This architecture reduces the heat capacity and minimizes the thermal conductivity to 1/20 and 1/300, respectively, of earlier versions of these detectors, with consequent improvement in sensitivity and speed of response. The micromesh bolometers, intended to operate under an optical background set by thermal emission from an ambient-temperature space-borne telescope, are designed such that the random arrival of photons ("photon noise") dominates the noise sources arising from the detector and readout electronics. The micromesh is designed to be a highly thermally and optically efficient absorber with a limiting response time of about 100 s. The absorber and thermistor heat capacity are minimized in order to give rapid speed of response. Due to the minimization of the absorber volume, the dominant source of heat capacity arises from the thermistor.
BIG MAC: A bolometer array for mid-infrared astronomy, Center Director's Discretionary Fund
NASA Technical Reports Server (NTRS)
Telesco, C. M.; Decher, R.; Baugher, C.
1985-01-01
The infrared array referred to as Big Mac (for Marshall Array Camera), was designed for ground based astronomical observations in the wavelength range 5 to 35 microns. It contains 20 discrete gallium-doped germanium bolometer detectors at a temperature of 1.4K. Each bolometer is irradiated by a square field mirror constituting a single pixel of the array. The mirrors are arranged contiguously in four columns and five rows, thus defining the array configuration. Big Mac utilized cold reimaging optics and an up looking dewar. The total Big Mac system also contains a telescope interface tube for mounting the dewar and a computer for data acquisition and processing. Initial astronomical observations at a major infrared observatory indicate that Big Mac performance is excellent, having achieved the design specifications and making this instrument an outstanding tool for astrophysics.
Light curves of flat-spectrum radio sources (Jenness+, 2010)
NASA Astrophysics Data System (ADS)
Jenness, T.; Robson, E. I.; Stevens, J. A.
2010-05-01
Calibrated data for 143 flat-spectrum extragalactic radio sources are presented at a wavelength of 850um covering a 5-yr period from 2000 April. The data, obtained at the James Clerk Maxwell Telescope using the Submillimetre Common-User Bolometer Array (SCUBA) camera in pointing mode, were analysed using an automated pipeline process based on the Observatory Reduction and Acquisition Control - Data Reduction (ORAC-DR) system. This paper describes the techniques used to analyse and calibrate the data, and presents the data base of results along with a representative sample of the better-sampled light curves. A re-analysis of previously published data from 1997 to 2000 is also presented. The combined catalogue, comprising 10493 flux density measurements, provides a unique and valuable resource for studies of extragalactic radio sources. (2 data files).
Design and Fabrication Highlights Enabling a 2 mm, 128 Element Bolometer Array for GISMO
NASA Technical Reports Server (NTRS)
Allen, Christine; Benford, Dominic; Miller, Timothy; Staguhn, Johannes; Wollack, Edward; Moseley, Harvey
2007-01-01
The Backshort-Under-Grid (BUG) superconducting bolometer array architecture is intended to be highly versatile, operating in a large range of wavelengths and background conditions. We have undertaken a three-year program to develop key technologies and processes required to build kilopixel arrays. To validate the basic array design and to demonstrate its applicability for future kilopixel arrays, we have chosen to demonstrate a 128 element bolometer array optimized for 2 mm wavelength using a newly built Goddard instrument, GISMO (Goddard /RAM Superconducting 2-millimeter Observer). The arrays are fabricated using batch wafer processing developed and optimized for high pixel yield, low noise, and high uniformity. The molybdenum-gold superconducting transition edge sensors are fabricated using batch sputter deposition and are patterned using dry etch techniques developed at Goddard. With a detector pitch of 2 mm 8x16 array for GISMO occupies nearly one half of the processing area of a 100 mm silicon-on-insulator starting wafer. Two such arrays are produced from a single wafer along with witness samples for process characterization. To provide thermal isolation for the detector elements, at the end of the process over 90% of the silicon must be removed using deep reactive ion etching techniques. The electrical connections for each bolometer element are patterned on the top edge of the square grid supporting the array. The design considerations unique to GISMO, key fabrication challenges, and laboratory experimental results will be presented.
NASA Technical Reports Server (NTRS)
Staguhn, Johannes G.; Benford, Dominic J.; Fixsen, Dale J.; Hilton, Gene; Irwin, Kent D.; Jhabvala, Christine A.; Kovacs, Attila; Leclercq, Samuel; Maher, Stephen F.; Miller, Timothy M.;
2012-01-01
We present the concept for the GISMO-2 bolometer camera) which we build for background-limited operation at the IRAM 30 m telescope on Pico Veleta, Spain. GISM0-2 will operate Simultaneously in the 1 mm and 2 mm atmospherical windows. The 1 mm channel uses a 32 x 40 TES-based Backshort Under Grid (BUG) bolometer array, the 2 mm channel operates with a 16 x 16 BUG array. The camera utilizes almost the entire full field of view provided by the telescope. The optical design of GISM0-2 was strongly influenced by our experience with the GISMO 2 mm bolometer camera which is successfully operating at the 30m telescope. GISMO is accessible to the astronomical community through the regular IRAM call for proposals.
Backshort-Under-Grid arrays for infrared astronomy
NASA Astrophysics Data System (ADS)
Allen, C. A.; Benford, D. J.; Chervenak, J. A.; Chuss, D. T.; Miller, T. M.; Moseley, S. H.; Staguhn, J. G.; Wollack, E. J.
2006-04-01
We are developing a kilopixel, filled bolometer array for space infrared astronomy. The array consists of three individual components, to be merged into a single, working unit; (1) a transition edge sensor bolometer array, operating in the milliKelvin regime, (2) a quarter-wave backshort grid, and (3) superconducting quantum interference device multiplexer readout. The detector array is designed as a filled, square grid of suspended, silicon bolometers with superconducting sensors. The backshort arrays are fabricated separately and will be positioned in the cavities created behind each detector during fabrication. The grids have a unique interlocking feature machined into the walls for positioning and mechanical stability. The spacing of the backshort beneath the detector grid can be set from ˜30 300 μm, by independently adjusting two process parameters during fabrication. The ultimate goal is to develop a large-format array architecture with background-limited sensitivity, suitable for a wide range of wavelengths and applications, to be directly bump bonded to a multiplexer circuit. We have produced prototype two-dimensional arrays having 8×8 detector elements. We present detector design, fabrication overview, and assembly technologies.
The detector calibration system for the CUORE cryogenic bolometer array
Cushman, Jeremy S.; Dally, Adam; Davis, Christopher J.; ...
2016-11-14
The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale cryogenic experiment designed to search for neutrinoless double-beta decay of 130Te and other rare events. The CUORE detector consists of 988 TeO 2 bolometers operated underground at 10 mK in a dilution refrigerator at the Laboratori Nazionali del Gran Sasso. Candidate events are identified through a precise measurement of their energy. The absolute energy response of the detectors is established by the regular calibration of each individual bolometer using gamma sources. The close-packed configuration of the CUORE bolometer array combined with the extensive shielding surrounding the detectors requires themore » placement of calibration sources within the array itself. The CUORE Detector Calibration System is designed to insert radioactive sources into and remove them from the cryostat while respecting the stringent heat load, radiopurity, and operational requirements of the experiment. In conclusion, this paper describes the design, commissioning, and performance of this novel source calibration deployment system for ultra-low-temperature environments.« less
Far infrared through millimeter backshort-under-grid arrays
NASA Astrophysics Data System (ADS)
Allen, Christine A.; Abrahams, John; Benford, Dominic J.; Chervenak, James A.; Chuss, David T.; Staguhn, Johannes G.; Miller, Timothy M.; Moseley, S. Harvey; Wollack, Edward J.
2006-06-01
We are developing a large-format, versatile, bolometer array for a wide range of infrared through millimeter astronomical applications. The array design consists of three key components - superconducting transition edge sensor bolometer arrays, quarter-wave reflective backshort grids, and Superconducting Quantum Interference Device (SQUID) multiplexer readouts. The detector array is a filled, square grid of bolometers with superconducting sensors. The backshort arrays are fabricated separately and are positioned in the etch cavities behind the detector grid. The grids have unique three-dimensional interlocking features micromachined into the walls for positioning and mechanical stability. The ultimate goal of the program is to produce large-format arrays with background-limited sensitivity, suitable for a wide range of wavelengths and applications. Large-format (kilopixel) arrays will be directly indium bump bonded to a SQUID multiplexer circuit. We have produced and tested 8×8 arrays of 1 mm detectors to demonstrate proof of concept. 8×16 arrays of 2 mm detectors are being produced for a new Goddard Space Flight Center instrument. We have also produced models of a kilopixel detector grid and dummy multiplexer chip for bump bonding development. We present detector design overview, several unique fabrication highlights, and assembly technologies.
NASA Technical Reports Server (NTRS)
Hubmayr, J.; Austermann, J.; Beall, J.; Becker, D.; Cho, H.-M.; Datta, R.; Duff, S. M.; Grace, E.; Halverson, N.; Henderson, S. W.;
2015-01-01
NIST produces large-format, dual-polarization-sensitive detector arrays for a broad range of frequencies (30-1400 GHz). Such arrays enable a host of astrophysical measurements. Detectors optimized for cosmic microwave background observations are monolithic, polarization-sensitive arrays based on feedhorn and planar Nb antenna-coupled transition-edge superconducting (TES) bolometers. Recent designs achieve multiband, polarimetric sensing within each spatial pixel. In this proceeding, we describe our multichroic, feedhorn-coupled design; demonstrate performance at 70-380 GHz; and comment on current developments for implementation of these detector arrays in the advanced Atacama Cosmology Telescope receiver
NASA Astrophysics Data System (ADS)
Miller, Timothy M.; Abrahams, John H.; Allen, Christine A.
2006-04-01
We report a fabrication process for deep etching silicon to different depths with a single masking layer, using standard masking and exposure techniques. Using this technique, we have incorporated a deep notch in the support walls of a transition-edge-sensor (TES) bolometer array during the detector back-etch, while simultaneously creating a cavity behind the detector. The notches serve to receive the support beams of a separate component, the Backshort-Under-Grid (BUG), an array of adjustable height quarter-wave backshorts that fill the cavities behind each pixel in the detector array. The backshort spacing, set prior to securing to the detector array, can be controlled from 25 to 300 μm by adjusting only a few process steps. In addition to backshort spacing, the interlocking beams and notches provide positioning and structural support for the ˜1 mm pitch, 8×8 array. This process is being incorporated into developing a TES bolometer array with an adjustable backshort for use in far-infrared astronomy. The masking technique and machining process used to fabricate the interlocking walls will be discussed.
NASA Astrophysics Data System (ADS)
Simoens, François; Meilhan, Jérôme; Nicolas, Jean-Alain
2015-10-01
Sensitive and large-format terahertz focal plane arrays (FPAs) integrated in compact and hand-held cameras that deliver real-time terahertz (THz) imaging are required for many application fields, such as non-destructive testing (NDT), security, quality control of food, and agricultural products industry. Two technologies of uncooled THz arrays that are being studied at CEA-Leti, i.e., bolometer and complementary metal oxide semiconductor (CMOS) field effect transistors (FET), are able to meet these requirements. This paper reminds the followed technological approaches and focuses on the latest modeling and performance analysis. The capabilities of application of these arrays to NDT and security are then demonstrated with experimental tests. In particular, high technological maturity of the THz bolometer camera is illustrated with fast scanning of large field of view of opaque scenes achieved in a complete body scanner prototype.
NASA Technical Reports Server (NTRS)
Miller, Timothy M.; Costen, Nick; Allen, Christine
2007-01-01
This conference poster reviews the Indium hybridization of the large format TES bolometer arrays. We are developing a key technology to enable the next generation of detectors. That is the Hybridization of Large Format Arrays using Indium bonded detector arrays containing 32x40 elements which conforms to the NIST multiplexer readout architecture of 1135 micron pitch. We have fabricated and hybridized mechanical models with the detector chips bonded after being fully back-etched. The mechanical support consists of 30 micron walls between elements Demonstrated electrical continuity for each element. The goal is to hybridize fully functional array of TES detectors to NIST readout.
NASA Technical Reports Server (NTRS)
Forgione, J.; Benford, D. J.; Buchanan, E. D.; Moseley, S. H.; Rebar, J.; Shafer, R. A.
2004-01-01
Far-infrared detector arrays such as the 16x32 superconducting bolometer array for the SAFIRE instrument (flying on the SOFIA airborne observatory) require systems of readout and control electronics to provide translation between a user-driven, digital PC and the cold, analog world of the cryogenic detector. In 2001, the National Institute of Standards and Technology (NIST) developed their Mark III electronics for purposes of control and readout of their 1x32 SQUID Multiplexer chips. We at NASA s Goddard Space Flight Center acquired a Mark 111 system and subsequently designed upgrades to suit our and our collaborators purposes. We developed an arbitrary, programmable multiplexing system that allows the user to cycle through rows in a SQUID array in an infinite number of combinations. We provided hooks in the Mark III system to allow readout of signals from outside the Mark 111 system, such as telescope status information. Finally, we augmented the heart of the system with a new feedback algorithm implementation, flexible diagnostic tools, and informative telemetry.
NASA Astrophysics Data System (ADS)
Forgione, Joshua B.; Benford, Dominic J.; Buchanan, Ernest D.; Moseley, S. H., Jr.; Rebar, Joyce; Shafer, Richard A.
2004-10-01
Far-infrared detector arrays such as the 16x32 superconducting bolometer array for the SAFIRE instrument (flying on the SOFIA airborne observatory) require systems of readout and control electronics to provide translation between a user-driven, digital PC and the cold, analog world of the cryogenic detector. In 2001, the National Institute of Standards and Technology (NIST) developed their Mark III electronics for purposes of control and readout of their 1x32 SQUID Multiplexer chips. We at NASA's Goddard Space Flight Center acquired a Mark III system and subsequently designed upgrades to suit our and our collaborators' purposes. We developed an arbitrary, programmable multiplexing system that allows the user to cycle through rows in a SQUID array in an infinite number of combinations. We provided 'hooks' in the Mark III system to allow readout of signals from outside the Mark III system, such as telescope status information. Finally, we augmented the heart of the system with a new feedback algorithm implementation, flexible diagnostic tools, and informative telemetry.
First Tests of Prototype SCUBA-2 Superconducting Bolometer Array
NASA Astrophysics Data System (ADS)
Woodcraft, Adam L.; Ade, Peter A. R.; Bintley, Dan; Hunt, Cynthia L.; Sudiwala, Rashmi V.; Hilton, Gene C.; Irwin, Kent D.; Reintsema, Carl D.; Audley, Michael D.; Holland, Wayne S.; MacIntosh, Mike
2006-09-01
We present results of the first tests on a 1280 pixel superconducting bolometer array, a prototype for SCUBA-2, a sub-mm camera being built for the James Clerk Maxwell Telescope in Hawaii. The bolometers are TES (transition edge sensor) detectors; these take advantage of the large variation of resistance with temperature through the superconducting transition. To keep the number of wires reasonable, a multiplexed read-out is used. Each pixel is read out through an individual DC SQUID; room temperature electronics switch between rows in the array by biasing the appropriate SQUIDs in turn. Arrays of 100 SQUIDs in series for each column then amplify the output. Unlike previous TES arrays, the multiplexing elements are located beneath each pixel, making large arrays possible, but construction more challenging. The detectors are constructed from Mo/Cu bi-layers; this technique enables the transition temperature to be tuned using the proximity effect by choosing the thickness of the normal and superconducting materials. To achieve the required performance, the detectors are operated at a temperature of approximately 120 mK. We describe the results of a basic characterisation of the array, demonstrating that it is fully operational, and give the results of signal to noise measurements.
NASA Astrophysics Data System (ADS)
Jenness, T.; Robson, E. I.; Stevens, J. A.
2010-01-01
Calibrated data for 143 flat-spectrum extragalactic radio sources are presented at a wavelength of 850μm covering a 5-yr period from 2000 April. The data, obtained at the James Clerk Maxwell Telescope using the Submillimetre Common-User Bolometer Array (SCUBA) camera in pointing mode, were analysed using an automated pipeline process based on the Observatory Reduction and Acquisition Control - Data Reduction (ORAC-DR) system. This paper describes the techniques used to analyse and calibrate the data, and presents the data base of results along with a representative sample of the better-sampled light curves. A re-analysis of previously published data from 1997 to 2000 is also presented. The combined catalogue, comprising 10493 flux density measurements, provides a unique and valuable resource for studies of extragalactic radio sources.
Towards the automated reduction and calibration of SCUBA data from the James Clerk Maxwell Telescope
NASA Astrophysics Data System (ADS)
Jenness, T.; Stevens, J. A.; Archibald, E. N.; Economou, F.; Jessop, N. E.; Robson, E. I.
2002-10-01
The Submillimetre Common User Bolometer Array (SCUBA) instrument has been operating on the James Clerk Maxwell Telescope (JCMT) since 1997. The data archive is now sufficiently large that it can be used to investigate instrumental properties and the variability of astronomical sources. This paper describes the automated calibration and reduction scheme used to process the archive data, with particular emphasis on `jiggle-map' observations of compact sources. We demonstrate the validity of our automated approach at both 850 and 450 μm, and apply it to several of the JCMT secondary flux calibrators. We determine light curves for the variable sources IRC +10216 and OH 231.8. This automation is made possible by using the ORAC-DR data reduction pipeline, a flexible and extensible data reduction pipeline that is used on the United Kingdom Infrared Telescope (UKIRT) and the JCMT.
A report on the laboratory performance of the spectroscopic detector arrays for SPIRE/HSO
NASA Astrophysics Data System (ADS)
Nguyen, Hien T.; Bock, James J.; Ringold, Peter; Battle, John; Elliott, Steven C.; Turner, Anthony D.; Weilert, Mark; Hristov, Viktor V.; Schulz, Bernhard; Ganga, Ken; Zhang, L.; Beeman, Jeffrey W.; Ade, Peter A. R.; Hargrave, Peter C.
2004-10-01
We report the performance of the flight bolometer arrays for the Spectral and Photometric Imaging REceiver (SPIRE) instrument to be on board of the Herschel Space Observatory (HSO). We describe the test setup for the flight Bolometric Detector Assembly (BDA) that allows the characterization of its performance, both dark and optical, in one instrument's cool down. We summarize the laboratory procedure to measure the basic bolometer parameters, optical response time, optical efficiency of bolometer and feedhorn, dark and optical noise, and the overall thermal conductance of the BDA unit. Finally, we present the test results obtained from the two flight units, Spectroscopic Long Wavelength (SLW) and Spectroscopic Short Wavelength (SSW).
NASA Astrophysics Data System (ADS)
Forsberg, Fredrik; Roxhed, Niclas; Fischer, Andreas C.; Samel, Björn; Ericsson, Per; Hoivik, Nils; Lapadatu, Adriana; Bring, Martin; Kittilsland, Gjermund; Stemme, Göran; Niklaus, Frank
2013-09-01
Imaging in the long wavelength infrared (LWIR) range from 8 to 14 μm is an extremely useful tool for non-contact measurement and imaging of temperature in many industrial, automotive and security applications. However, the cost of the infrared (IR) imaging components has to be significantly reduced to make IR imaging a viable technology for many cost-sensitive applications. This paper demonstrates new and improved fabrication and packaging technologies for next-generation IR imaging detectors based on uncooled IR bolometer focal plane arrays. The proposed technologies include very large scale heterogeneous integration for combining high-performance, SiGe quantum-well bolometers with electronic integrated read-out circuits and CMOS compatible wafer-level vacuum packing. The fabrication and characterization of bolometers with a pitch of 25 μm × 25 μm that are arranged on read-out-wafers in arrays with 320 × 240 pixels are presented. The bolometers contain a multi-layer quantum well SiGe thermistor with a temperature coefficient of resistance of -3.0%/K. The proposed CMOS compatible wafer-level vacuum packaging technology uses Cu-Sn solid-liquid interdiffusion (SLID) bonding. The presented technologies are suitable for implementation in cost-efficient fabless business models with the potential to bring about the cost reduction needed to enable low-cost IR imaging products for industrial, security and automotive applications.
Integrated Electron-tunneling Refrigerator and TES Bolometer for Millimeter Wave Astronomy
NASA Technical Reports Server (NTRS)
Silverberg, R. F.; Benford, D. J.; Chen, T. C.; Chervenak, J.; Finkbeiner, F.; Moseley, S. H.; Duncan, W.; Miller, N.; Schmidt, D.; Ullom, J.
2005-01-01
We describe progress in the development of a close-packed array of bolometers intended for use in photometric applications at millimeter wavelengths from ground- based telescopes. Each bolometer in the may uses a proximity-effect Transition Edge Sensor (TES) sensing element and each will have integrated Normal-Insulator-Superconductor (NIS) refrigerators to cool the bolometer below the ambient bath temperature. The NIS refrigerators and acoustic-phonon-mode-isolated bolometers are fabricated on silicon. The radiation-absorbing element is mechanically suspended by four legs, whose dimensions are used to control and optimize the thermal conductance of the bolometer. Using the technology developed at NIST, we fabricate NIS refrigerators at the base of each of the suspension legs. The NIS refrigerators remove hot electrons by quantum-mechanical tunneling and are expected to cool the biased (approx.10 pW) bolometers to <170 mK while the bolometers are inside a pumped 3He-cooled cryostat operating at approx.280 mK. This significantly lower temperature at the bolometer allows the detectors to approach background-limited performance despite the simple cryogenic system.
Integrated focal plane arrays for millimeter-wave astronomy
NASA Astrophysics Data System (ADS)
Bock, James J.; Goldin, Alexey; Hunt, Cynthia; Lange, Andrew E.; Leduc, Henry G.; Day, Peter K.; Vayonakis, Anastasios; Zmuidzinas, Jonas
2002-02-01
We are developing focal plane arrays of bolometric detectors for sub-millimeter and millimeter-wave astrophysics. We propose a flexible array architecture using arrays of slot antennae coupled via low-loss superconducting Nb transmission line to microstrip filters and antenna-coupled bolometers. By combining imaging and filtering functions with transmission line, we are able to realize unique structures such as a multi-band polarimeter and a planar, dispersive spectrometer. Micro-strip bolometers have significantly smaller active volume than standard detectors with extended absorbers, and can realize higher sensitivity and speed of response. The integrated array has natural immunity to stray radiation or spectral leaks, and minimizes the suspended mass operating at 0.1-0.3 K. We also discuss future space-borne spectroscopy and polarimetry applications. .
NASA Astrophysics Data System (ADS)
Myers, Michael James
We describe the development of a novel millimeter-wave cryogenic detector. The device integrates a planar antenna, superconducting transmission line, bandpass filter, and bolometer onto a single silicon wafer. The bolometer uses a superconducting Transition-Edge Sensor (TES) thermistor, which provides substantial advantages over conventional semiconductor bolometers. The detector chip is fabricated using standard micro-fabrication techniques. This highly-integrated detector architecture is particularly well-suited for use in the de- velopment of polarization-sensitive cryogenic receivers with thousands of pixels. Such receivers are needed to meet the sensitivity requirements of next-generation cosmic microwave background polarization experiments. The design, fabrication, and testing of prototype array pixels are described. Preliminary considerations for a full array design are also discussed. A set of on-chip millimeter-wave test structures were developed to help understand the performance of our millimeter-wave microstrip circuits. These test structures produce a calibrated transmission measurement for an arbitrary two-port circuit using optical techniques, rather than a network analyzer. Some results of fabricated test structures are presented.
A 90GHz Bolometer Camera Detector System for the Green Bank Telescope
NASA Technical Reports Server (NTRS)
Benford, Dominic J.; Allen, Christine A.; Buchanan, Ernest D.; Chen, Tina C.; Chervenak, James A.; Devlin, Mark J.; Dicker, Simon R.; Forgione, Joshua B.
2004-01-01
We describe a close-packed, two-dimensional imaging detector system for operation at 90GHz (3.3mm) for the 100 m Green Bank Telescope (GBT) This system will provide high sensitivity (<1mjy in 1s rapid imaging (15'x15' to 250 microJy in 1 hr) at the world's largest steerable aperture. The heart of this camera is an 8x8 close packed, Nyquist-sampled array of superconducting transition edge sensor bolometers. We have designed and are producing a functional superconducting bolometer array system using a monolithic planar architecture and high-speed multiplexed readout electronics. With an NEP of approx. 2.10(exp 17) W/square root Hz, the TES bolometers will provide fast linear sensitive response for high performance imaging. The detectors are read out by and 8x8 time domain SQUID multiplexer. A digital/analog electronics system has been designed to enable read out by SQUID multiplexers. First light for this instrument on the GBT is expected within a year.
A 90GHz Bolometer Camera Detector System for the Green
NASA Technical Reports Server (NTRS)
Benford, Dominic J.; Allen, Christine A.; Buchanan, Ernest; Chen, Tina C.; Chervenak, James A.; Devlin, Mark J.; Dicker, Simon R.; Forgione, Joshua B.
2004-01-01
We describe a close-packed, two-dimensional imaging detector system for operation at 90GHz (3.3 mm) for the 100m Green Bank Telescope (GBT). This system will provide high sensitivity (less than 1mJy in 1s) rapid imaging (15'x15' to 150 micron Jy in 1 hr) at the world's largest steerable aperture. The heart of this camera is an 8x8 close-packed, Nyquist-sampled array of superconducting transition edge sensor (TES) bolometers. We have designed and are producing a functional superconducting bolometer array system using a monolithic planar architecture and high-speed multiplexed readout electronics. With an NEP of approximately 2 x 10(exp -17) W/square root of Hz, the TES bolometers will provide fast, linear, sensitive response for high performance imaging. The detectors are read out by an 8x8 time domain SQUID multiplexer. A digital/analog electronics system has been designed to enable read out by SQUID multiplexers. First light for this instrument on the GBT is expected within a year.
NASA Astrophysics Data System (ADS)
Todd, Michael A.; Donohue, Paul P.; Watton, Rex; Williams, Dennis J.; Anthony, Carl J.; Blamire, Mark G.
2002-12-01
This paper discusses the potential thermal imaging performance achievable from thermal detector arrays and concludes that the current generation of thin-film ferroelectric and resistance bolometer based detector arrays are limited by the detector materials used. It is proposed that the next generation of large uncooled focal plane arrays will need to look towards higher performance detector materials - particularly if they aim to approach the fundamental performance limits and compete with cooled photon detector arrays. Two examples of bolometer thin-film materials are described that achieve high performance from operating around phase transitions. The material Lead Scandium Tantalate (PST) has a paraelectric-to-ferroelectric phase transition around room temperature and is used with an applied field in the dielectric bolometer mode for thermal imaging. PST films grown by sputtering and liquid-source CVD have shown merit figures for thermal imaging a factor of 2 to 3 times higher than PZT-based pyroelectric thin films. The material Lanthanum Calcium Manganite (LCMO) has a paramagnetic to ferromagnetic phase transition around -20oC. This paper describes recent measurements of TCR and 1/f noise in pulsed laser-deposited LCMO films on Neodymium Gallate substrates. These results show that LCMO not only has high TCR's - up to 30%/K - but also low 1/f excess noise, with bolometer merit figures at least an order of magnitude higher than Vanadium Oxide, making it ideal for the next generation of microbolometer arrays. These high performance properties come at the expense of processing complexities and novel device designs will need to be introduced to realize the potential of these materials in the next generation of thermal detectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hattori, K.; Akiba, Y.; Arnold, K.
The readout of transition-edge sensor (TES) bolometers with a large multiplexing factor is key for the next generation cosmic microwave background (CMB) experiment, Polarbear-2, having 7588 TES bolometers. To enable the large arrays, we have been developing a readout system with a multiplexing factor of 40 in the frequency domain. Extending that architecture to 40 bolometers requires an increase in the bandwidth of the SQUID electronics, above 4 MHz. This paper focuses on cryogenic readout and shows how it affects cross talk and the responsivity of the TES bolometers. A series resistance, such as equivalent series resistance of capacitors formore » LC filters, leads to non-linear response of the bolometers. A wiring inductance modulates a voltage across the bolometers and causes cross talk. They should be controlled well to reduce systematic errors in CMB observations. As a result, we have been developing a cryogenic readout with a low series impedance and have tuned bolometers in the middle of their transition at a high frequency (>3 MHz).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Posada, C. M.; Ade, P. A. R.; Ahmed, Z.
2015-08-11
This work presents the procedures used by Argonne National Laboratory to fabricate large arrays of multichroic transition-edge sensor (TES) bolometers for cosmic microwave background (CMB) measurements. These detectors will be assembled into the focal plane for the SPT-3G camera, the third generation CMB camera to be installed in the South Pole Telescope. The complete SPT-3G camera will have approximately 2690 pixels, for a total of 16,140 TES bolometric detectors. Each pixel is comprised of a broad-band sinuous antenna coupled to a Nb microstrip line. In-line filters are used to define the different band-passes before the millimeter-wavelength signal is fed tomore » the respective Ti/Au TES bolometers. There are six TES bolometer detectors per pixel, which allow for measurements of three band-passes (95 GHz, 150 GHz and 220 GHz) and two polarizations. The steps involved in the monolithic fabrication of these detector arrays are presented here in detail. Patterns are defined using a combination of stepper and contact lithography. The misalignment between layers is kept below 200 nm. The overall fabrication involves a total of 16 processes, including reactive and magnetron sputtering, reactive ion etching, inductively coupled plasma etching and chemical etching.« less
Neutron transmutation doped Ge bolometers
NASA Technical Reports Server (NTRS)
Haller, E. E.; Kreysa, E.; Palaio, N. P.; Richards, P. L.; Rodder, M.
1983-01-01
Some conclusions reached are as follow. Neutron Transmutation Doping (NTD) of high quality Ge single crystals provides perfect control of doping concentration and uniformity. The resistivity can be tailored to any given bolometer operating temperature down to 0.1 K and probably lower. The excellent uniformity is advantaged for detector array development.
The 160 TES bolometer read-out using FDM for SAFARI
NASA Astrophysics Data System (ADS)
Hijmering, R. A.; den Hartog, R. H.; van der Linden, A. J.; Ridder, M.; Bruijn, M. P.; van der Kuur, J.; van Leeuwen, B. J.; van Winden, P.; Jackson, B.
2014-07-01
For the read out of the Transition Edge Sensors (TES) bolometer arrays of the SAFARI instrument on the Japanese background-limited far-IR SPICA mission SRON is developing a Frequency Domain Multiplexing (FDM) read-out system. The next step after the successful demonstration of the read out of 38 TES bolometers using FDM was to demonstrate the FDM readout of the required 160 TES bolometers. Of the 160 LC filter and TES bolometer chains 151 have been connected and after cooldown 148 of the resonances could be identified. Although initial operation and locking of the pixels went smoothly the experiment revealed several complications. In this paper we describe the 160 pixel FDM set-up, show the results and discuss the issues faced during operation of the 160 pixel FDM experiment.
The Herschel Space Observatory, Opening the Far Infrared
NASA Astrophysics Data System (ADS)
Pearson, John C.
2009-06-01
The Herschel Space Observatory (Herschel) is a multi user observatory operated by the European Space Agency with a significant NASA contribution. Herschel features a passively cooled 3.5 meter telescope expected to operate near 78 Kelvin and three cryogenic instruments covering the 670 to 57 μm spectral region. The mission life time, determined by the consumption of 2500 liters of liquid helium, is expected to be at least 3.5 years with at least 3 years of operational lifetime in an L2 orbit. The three payload instruments are the Spectral and Photometric Imaging Receiver (SPIRE), Photodetector Array Camera and Spectrometer (PACS), and the Heterodyne Instrument for Far Infrared (HIFI). SPIRE covers 200-670 μm and is a three band bolometer based photometer and a two band imaging Martin-Puplett FTS with a spectral resolution of up to 600. PACS covers 57-200 μm and is a three band bolometer based photometer and a grating slit spectrometer illuminating photoconductor arrays in two bands with a resolution of up to 5000. HIFI covers 480-1272 GHz and 1440-1910 GHz and is a series of seven dual polarization heterodyne receivers with a spectral resolution up to 5×10^6. The observatory performance, selected science program and upcoming opportunities will be discussed.
Low-cost far infrared bolometer camera for automotive use
NASA Astrophysics Data System (ADS)
Vieider, Christian; Wissmar, Stanley; Ericsson, Per; Halldin, Urban; Niklaus, Frank; Stemme, Göran; Källhammer, Jan-Erik; Pettersson, Håkan; Eriksson, Dick; Jakobsen, Henrik; Kvisterøy, Terje; Franks, John; VanNylen, Jan; Vercammen, Hans; VanHulsel, Annick
2007-04-01
A new low-cost long-wavelength infrared bolometer camera system is under development. It is designed for use with an automatic vision algorithm system as a sensor to detect vulnerable road users in traffic. Looking 15 m in front of the vehicle it can in case of an unavoidable impact activate a brake assist system or other deployable protection system. To achieve our cost target below €100 for the sensor system we evaluate the required performance and can reduce the sensitivity to 150 mK and pixel resolution to 80 x 30. We address all the main cost drivers as sensor size and production yield along with vacuum packaging, optical components and large volume manufacturing technologies. The detector array is based on a new type of high performance thermistor material. Very thin Si/SiGe single crystal multi-layers are grown epitaxially. Due to the resulting valence barriers a high temperature coefficient of resistance is achieved (3.3%/K). Simultaneously, the high quality crystalline material provides very low 1/f-noise characteristics and uniform material properties. The thermistor material is transferred from the original substrate wafer to the read-out circuit using adhesive wafer bonding and subsequent thinning. Bolometer arrays can then be fabricated using industry standard MEMS process and materials. The inherently good detector performance allows us to reduce the vacuum requirement and we can implement wafer level vacuum packaging technology used in established automotive sensor fabrication. The optical design is reduced to a single lens camera. We develop a low cost molding process using a novel chalcogenide glass (GASIR®3) and integrate anti-reflective and anti-erosion properties using diamond like carbon coating.
NASA Technical Reports Server (NTRS)
Staguhn, Johannes G.; Benford, Dominic J.; Dwek, Eli; Hilton, Gene; Fixsen, Dale J.; Irwin, Kent; Jhabvala, Christine; Kovacs, Attila; Leclercq, Samuel; Maher, Stephen F.;
2014-01-01
We present the main design features for the GISMO-2 bolometer camera, which we build for background-limited operation at the IRAM 30 m telescope on Pico Veleta, Spain. GISMO-2 will operate simultaneously in the 1 and 2 mm atmospherical windows. The 1 mm channel uses a 32 × 40 TES-based backshort under grid (BUG) bolometer array, the 2 mm channel operates with a 16 × 16 BUG array. The camera utilizes almost the entire full field of view provided by the telescope. The optical design of GISMO-2 was strongly influenced by our experience with the GISMO 2mm bolometer camera, which is successfully operating at the 30 m telescope. GISMO is accessible to the astronomical community through the regularIRAMcall for proposals.
[Contrast of Z-Pinch X-Ray Yield Measure Technique].
Li, Mo; Wang, Liang-ping; Sheng, Liang; Lu, Yi
2015-03-01
Resistive bolometer and scintillant detection system are two mainly Z-pinch X-ray yield measure techniques which are based on different diagnostic principles. Contrasting the results from two methods can help with increasing precision of X-ray yield measurement. Experiments with different load material and shape were carried out on the "QiangGuang-I" facility. For Al wire arrays, X-ray yields measured by the two techniques were largely consistent. However, for insulating coating W wire arrays, X-ray yields taken from bolometer changed with load parameters while data from scintillant detection system hardly changed. Simulation and analysis draw conclusions as follows: (1) Scintillant detection system is much more sensitive to X-ray photons with low energy and its spectral response is wider than the resistive bolometer. Thus, results from the former method are always larger than the latter. (2) The responses of the two systems are both flat to Al plasma radiation. Thus, their results are consistent for Al wire array loads. (3) Radiation form planar W wire arrays is mainly composed of sub-keV soft X-ray. X-ray yields measured by the bolometer is supposed to be accurate because of the nickel foil can absorb almost all the soft X-ray. (4) By contrast, using planar W wire arrays, data from scintillant detection system hardly change with load parameters. A possible explanation is that while the distance between wires increases, plasma temperature at stagnation reduces and spectra moves toward the soft X-ray region. Scintillator is much more sensitive to the soft X-ray below 200 eV. Thus, although the total X-ray yield reduces with large diameter load, signal from the scintillant detection system is almost the same. (5) Both Techniques affected by electron beams produced by the loads.
Submillimeter video imaging with a superconducting bolometer array
NASA Astrophysics Data System (ADS)
Becker, Daniel Thomas
Millimeter wavelength radiation holds promise for detection of security threats at a distance, including suicide bombers and maritime threats in poor weather. The high sensitivity of superconducting Transition Edge Sensor (TES) bolometers makes them ideal for passive imaging of thermal signals at millimeter and submillimeter wavelengths. I have built a 350 GHz video-rate imaging system using an array of feedhorn-coupled TES bolometers. The system operates at standoff distances of 16 m to 28 m with a measured spatial resolution of 1.4 cm (at 17 m). It currently contains one 251-detector sub-array, and can be expanded to contain four sub-arrays for a total of 1004 detectors. The system has been used to take video images that reveal the presence of weapons concealed beneath a shirt in an indoor setting. This dissertation describes the design, implementation and characterization of this system. It presents an overview of the challenges associated with standoff passive imaging and how these problems can be overcome through the use of large-format TES bolometer arrays. I describe the design of the system and cover the results of detector and optical characterization. I explain the procedure used to generate video images using the system, and present a noise analysis of those images. This analysis indicates that the Noise Equivalent Temperature Difference (NETD) of the video images is currently limited by artifacts of the scanning process. More sophisticated image processing algorithms can eliminate these artifacts and reduce the NETD to 100 mK, which is the target value for the most demanding passive imaging scenarios. I finish with an overview of future directions for this system.
Design of 280 GHz feedhorn-coupled TES arrays for the balloon-borne polarimeter SPIDER
NASA Astrophysics Data System (ADS)
Hubmayr, Johannes; Austermann, Jason E.; Beall, James A.; Becker, Daniel T.; Benton, Steven J.; Bergman, A. Stevie; Bond, J. Richard; Bryan, Sean; Duff, Shannon M.; Duivenvoorden, Adri J.; Eriksen, H. K.; Filippini, Jeffrey P.; Fraisse, A.; Galloway, Mathew; Gambrel, Anne E.; Ganga, K.; Grigorian, Arpi L.; Gualtieri, Riccardo; Gudmundsson, Jon E.; Hartley, John W.; Halpern, M.; Hilton, Gene C.; Jones, William C.; McMahon, Jeffrey J.; Moncelsi, Lorenzo; Nagy, Johanna M.; Netterfield, C. B.; Osherson, Benjamin; Padilla, Ivan; Rahlin, Alexandra S.; Racine, B.; Ruhl, John; Rudd, T. M.; Shariff, J. A.; Soler, J. D.; Song, Xue; Ullom, Joel N.; Van Lanen, Jeff; Vissers, Michael R.; Wehus, I. K.; Wen, Shyang; Wiebe, D. V.; Young, Edward
2016-07-01
We describe 280 GHz bolometric detector arrays that instrument the balloon-borne polarimeter spider. A primary science goal of spider is to measure the large-scale B-mode polarization of the cosmic microwave background (cmb) in search of the cosmic-inflation, gravitational-wave signature. 280 GHz channels aid this science goal by constraining the level of B-mode contamination from galactic dust emission. We present the focal plane unit design, which consists of a 16x16 array of conical, corrugated feedhorns coupled to a monolithic detector array fabricated on a 150 mm diameter silicon wafer. Detector arrays are capable of polarimetric sensing via waveguide probe-coupling to a multiplexed array of transition-edge-sensor (TES) bolometers. The spider receiver has three focal plane units at 280 GHz, which in total contains 765 spatial pixels and 1,530 polarization sensitive bolometers. By fabrication and measurement of single feedhorns, we demonstrate 14.7° FHWM Gaussian-shaped beams with <1% ellipticity in a 30% fractional bandwidth centered at 280 GHz. We present electromagnetic simulations of the detection circuit, which show 94% band-averaged, single-polarization coupling efficiency, 3% reflection and 3% radiative loss. Lastly, we demonstrate a low thermal conductance bolometer, which is well-described by a simple TES model and exhibits an electrical noise equivalent power (NEP) = 2.6 x 10-17 W/√Hz, consistent with the phonon noise prediction.
Development of readout electronics for POLARBEAR-2 cosmic microwave background experiment
Hattori, K.; Akiba, Y.; Arnold, K.; ...
2016-01-06
The readout of transition-edge sensor (TES) bolometers with a large multiplexing factor is key for the next generation cosmic microwave background (CMB) experiment, Polarbear-2, having 7588 TES bolometers. To enable the large arrays, we have been developing a readout system with a multiplexing factor of 40 in the frequency domain. Extending that architecture to 40 bolometers requires an increase in the bandwidth of the SQUID electronics, above 4 MHz. This paper focuses on cryogenic readout and shows how it affects cross talk and the responsivity of the TES bolometers. A series resistance, such as equivalent series resistance of capacitors formore » LC filters, leads to non-linear response of the bolometers. A wiring inductance modulates a voltage across the bolometers and causes cross talk. They should be controlled well to reduce systematic errors in CMB observations. As a result, we have been developing a cryogenic readout with a low series impedance and have tuned bolometers in the middle of their transition at a high frequency (>3 MHz).« less
NASA Astrophysics Data System (ADS)
Koopman, B. J.; Cothard, N. F.; Choi, S. K.; Crowley, K. T.; Duff, S. M.; Henderson, S. W.; Ho, S. P.; Hubmayr, J.; Gallardo, P. A.; Nati, F.; Niemack, M. D.; Simon, S. M.; Staggs, S. T.; Stevens, J. R.; Vavagiakis, E. M.; Wollack, E. J.
2018-05-01
Advanced ACTPol (AdvACT) is a third-generation polarization upgrade to the Atacama Cosmology Telescope, designed to observe the cosmic microwave background (CMB). AdvACT expands on the 90 and 150 GHz transition edge sensor (TES) bolometer arrays of the ACT Polarimeter (ACTPol), adding both high-frequency (HF, 150/230 GHz) and low-frequency (LF, 27/39 GHz) multichroic arrays. The addition of the high- and low-frequency detectors allows for the characterization of synchrotron and spinning dust emission at the low frequencies and foreground emission from galactic dust and dusty star-forming galaxies at the high frequencies. The increased spectral coverage of AdvACT will enable a wide range of CMB science, such as improving constraints on dark energy, the sum of the neutrino masses, and the existence of primordial gravitational waves. The LF array will be the final AdvACT array, replacing one of the MF arrays for a single season. Prior to the fabrication of the final LF detector array, we designed and characterized prototype TES bolometers. Detector geometries in these prototypes are varied in order to inform and optimize the bolometer designs for the LF array, which requires significantly lower noise levels and saturation powers (as low as {˜ } 1 pW) than the higher-frequency detectors. Here we present results from tests of the first LF prototype TES detectors for AdvACT, including measurements of the saturation power, critical temperature, thermal conductance, and time constants. We also describe the modifications to the time-division SQUID readout architecture compared to the MF and HF arrays.
Micromachined poly-SiGe bolometer arrays for infrared imaging and spectroscopy
NASA Astrophysics Data System (ADS)
Leonov, Vladimir N.; Perova, Natalia A.; De Moor, Piet; Du Bois, Bert; Goessens, Claus; Grietens, Bob; Verbist, Agnes; Van Hoof, Chris A.; Vermeiren, Jan P.
2003-03-01
The state-of-the-art characteristics of micromachined polycrystalline SiGe microbolometer arrays are reported. An average NETD of 85 mK at a time constant of 14 ms is already achievable on typical self-supported 50 μm pixels in a linear 64-element array. In order to reach these values, the design optimization was performed based on the performance characteristics of linear 32-, 64- and 128-element arrays of 50-, 60- and 75-μm-pixel bolometers on several detector lots. The infrared and thermal modeling accounting for the read-out properties and self-heating effect in bolometers resulted in improved designs and competitive NETD values of 80 mK on 50 μm pixels in a 160x128 format at standard frame rates and f-number of 1. In parallel, the TCR-to-1/f noise ratio and the mechanical design of the pixels were improved making poly-SiGe a good candidate for a low-cost uncooled thermal array. The technological CMOS-based process possesses an attractive balance between characteristics and price, and allows the micromachining of thin structures, less than 0.2 μm. The resistance and TCR non-uniformity with σ/μ better than 0.2% combined with 99.93% yield are demonstrated. The first lots of fully processed linear arrays have already come from the IMEC process line and the results of characterization are presented. Next year, the first linear and small 2D arrays will be introduced on the market.
VizieR Online Data Catalog: Selecting IRAC counterparts to SMGs (Alberts+, 2013)
NASA Astrophysics Data System (ADS)
Alberts, S.; Wilson, G. W.; Lu, Y.; Johnson, S.; Yun, M. S.; Scott, K. S.; Pope, A.; Aretxaga, I.; Ezawa, H.; Hughes, D. H.; Kawabe, R.; Kim, S.; Kohno, K.; Oshima, T.
2014-05-01
We present a new submm/mm galaxy counterpart identification technique which builds on the use of Spitzer Infrared Array Camera (IRAC) colours as discriminators between likely counterparts and the general IRAC galaxy population. Using 102 radio- and Submillimeter Array-confirmed counterparts to AzTEC sources across three fields [Great Observatories Origins Deep Survey-North, -South and Cosmic Evolution Survey (COSMOS)], we develop a non-parametric IRAC colour-colour characteristic density distribution, which, when combined with positional uncertainty information via likelihood ratios, allows us to rank all potential IRAC counterparts around submillimetre galaxies (SMGs) and calculate the significance of each ranking via the reliability factor. We report all robust and tentative radio counterparts to SMGs, the first such list available for AzTEC/COSMOS, as well as the highest ranked IRAC counterparts for all AzTEC SMGs in these fields as determined by our technique. We demonstrate that the technique is free of radio bias and thus applicable regardless of radio detections. For observations made with a moderate beam size (~18"), this technique identifies ~85% of SMG counterparts. For much larger beam sizes (>~30"), we report identification rates of 33-49%. Using simulations, we demonstrate that this technique is an improvement over using positional information alone for observations with facilities such as AzTEC on the Large Millimeter Telescope and Submillimeter Common User Bolometer Array 2 on the James Clerk Maxwell Telescope. (3 data files).
Enhanced performance of VOx-based bolometer using patterned gold black absorber
NASA Astrophysics Data System (ADS)
Smith, Evan M.; Panjwani, Deep; Ginn, James; Warren, Andrew; Long, Christopher; Figuieredo, Pedro; Smith, Christian; Perlstein, Joshua; Walter, Nick; Hirschmugl, Carol; Peale, Robert E.; Shelton, David J.
2015-06-01
Patterned highly absorbing gold black film has been selectively deposited on the active surfaces of a vanadium-oxide-based infrared bolometer array. Patterning by metal lift-off relies on protection of the fragile gold black with an evaporated oxide, which preserves gold black's near unity absorption. This patterned gold black also survives the dry-etch removal of the sacrificial polyimide used to fabricate the air-bridge bolometers. Infrared responsivity is substantially improved by the gold black coating without significantly increasing noise. The increase in the time constant caused by the additional mass of gold black is a modest 14%.
Novel Multiplexing Technique for Detector and Mixer Arrays
NASA Technical Reports Server (NTRS)
Karasik, Boris S.; McGrath, William R.
2001-01-01
Future submillimeter and far-infrared space telescopes will require large-format (many 1000's of elements) imaging detector arrays to perform state-of-the-art astronomical observations. A crucial issue related to a focal plane array is a readout scheme which is compatible with large numbers of cryogenically-cooled (typically < 1 K) detectors elements. When the number of elements becomes of the order of thousands, the physical layout for individual readout amplifiers becomes nearly impossible to realize for practical systems. Another important concern is the large number of wires leading to a 0.1-0.3 K platform. In the case of superconducting transition edge sensors (TES), a scheme for time-division multiplexing of SQUID read-out amplifiers has been recently demonstrated. In this scheme the number of SQUIDs is equal to the number (N) of the detectors, but only one SQUID is turned on at a time. The SQUIDs are connected in series in each column of the array, so the number of wires leading to the amplifiers can be reduced, but it is still of the order of N. Another approach uses a frequency domain multiplexing scheme of the bolometer array. The bolometers are biased with ac currents whose frequencies are individual for each element and are much higher than the bolometer bandwidth. The output signals are connected in series in a summing loop which is coupled to a single SQUID amplifier. The total number of channels depends on the ratio between the SQUID bandwidth and the bolometer bandwidth and can be at least 100 according to the authors. An important concern about this technique is a contribution of the out-of-band Johnson noise which multiplies by factor N(exp 1/2) for each frequency channel. We propose a novel solution for large format arrays based on the Hadamard transform coding technique which requires only one amplifier to read out the entire array of potentially many 1000's of elements and uses approximately 10 wires between the cold stage and room temperature electronics. This can significantly reduce the complexity of the readout circuits.
First Astronomical Use of Multiplexed Transition Edge Sensor Bolometers
NASA Technical Reports Server (NTRS)
Staguhn, J. G.; Ames, T. A.; Benford, D. J.; Chervenak, J. A.; Grossman, E. N.; Irwin, K. D.; Khan, S. A.; Maffei, B.; Moseley, S. H.; Pajot, F.
2004-01-01
We present performance results based on the first astronomical use of multiplexed superconducting bolometers. The Fabry-Perot Interferometer Bolometer Research Experiment (FIBRE) is a broadband submillimeter spectrometer that achieved first light in June 2001 at the Caltech Submillimeter Observatory (CSO). FIBRE's detectors are superconducting transition edge sensor (TES) bolometers read out by a SQUID multiplexer. The Fabry-Perot uses a low resolution grating to order sort the incoming light. A linear bolometer array consisting of 16 elements detects this dispersed light, capturing 5 orders simultaneously from one position on the sky. With tuning of the Fabry-Perot over one free spectral range, a spectrum covering Delta lambda/lambda = 1/7 at a resolution of delta lambda/lambda approx. 1/1200 can be acquired. This spectral resolution is sufficient to resolve Doppler-broadened line emission from external galaxies. FIBRE operates in the 350 m and 450 m bands. These bands cover line emission from the important star formation tracers neutral carbon (CI) and carbon monoxide (CO). We have verified that the multiplexed bolometers are photon noise limited even with the low power present in moderate resolution spectrometry.
First Astronomical Use Of Multiplexed Transition Edge Bolometers
NASA Technical Reports Server (NTRS)
Benford, D. J.; Chervenak, J. A.; Grossman, E. N.; Irwin, K. D.; DeKotwara, S. A.; Maffei, B.; Moseley, S. H.; Pajot, F.; Phillips, T. G.; Reintsema, C. D.
2001-01-01
We present performance results based on the first astronomical use of multiplexed superconducting bolometers. The Fabry-Perot Interferometer Bolometer Research Experiment (FIBRE) is a broadband submillimeter spectrometer that achieved first light in June 2001 at the Caltech Submillimeter Observatory (CSO). FIBRE's detectors are superconducting transition edge sensor (TES) bolometers read out by a SQUID multiplexer. The Fabry-Perot uses a low resolution grating to order sort the incoming light. A linear bolometer array consisting of 16 elements detects this dispersed light, capturing five orders simultaneously from one position on the sky. With tuning of the Fabry-Perot over one free spectral range, a spectrum covering delta-lamda/lamda = 1/7 at a resolution of delta-lamda/lamda = 1/1200 can be acquired. This spectral resolution is sufficient to resolve doppler broadened line emission from external galaxies. FIBRE operates in the 350 micrometer and 450 micrometer bands. These bands cover line emission from the important PDR tracers neutral carbon [CI] and carbon monoxide (CO). We have verified that the multiplexed bolometers are photon noise limited even with the low power present in moderate resolution spectrometry.
The ORAC-DR data reduction pipeline
NASA Astrophysics Data System (ADS)
Cavanagh, B.; Jenness, T.; Economou, F.; Currie, M. J.
2008-03-01
The ORAC-DR data reduction pipeline has been used by the Joint Astronomy Centre since 1998. Originally developed for an infrared spectrometer and a submillimetre bolometer array, it has since expanded to support twenty instruments from nine different telescopes. By using shared code and a common infrastructure, rapid development of an automated data reduction pipeline for nearly any astronomical data is possible. This paper discusses the infrastructure available to developers and estimates the development timescales expected to reduce data for new instruments using ORAC-DR.
NASA Technical Reports Server (NTRS)
Benford, D. J.; Ames, T. A.; Chervenak, J. A.; Moseley, S. H.; Shafer, R. A.; Staguhn, J. G.; Voellmer, G. M.; Pajot, F.; Rioux, C.; Phillips, T. G.;
2002-01-01
We present performance results based on the first astronomical use of multiplexed superconducting bolometers as direct detectors (i.e., with cold electrons) for spectroscopy. The Fabry-Perot Interferometer Bolometer Research Experiment (FIBRE) is a broadband submillimeter spectrometer for the Caltech Submillimeter Observatory (CSO). FIBRE's detectors are superconducting transition edge sensor (TES) bolometers read out by a SQUID multiplexer. The Fabry-Perot uses a low resolution grating to order sort the incoming light. A linear bolometer array consisting of 16 elements detects this dispersed light, capturing 5 orders simultaneously from one position on the sky. With tuning of the Fabry-Perot over one free spectral range, a spectrum covering Delta lambda/lambda = 1/7 at a resolution of delta lambda/lambda = 1/1200 can be acquired. This spectral resolution is sufficient to resolve Doppler-broadened line emission from external galaxies. FIBRE has been operated in the 350 Am (850 GHz) band. These bands cover line emission from the important star formation tracers neutral carbon [CI] and carbon monoxide (CO).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cushman, Jeremy S.; Dally, Adam; Davis, Christopher J.
The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale cryogenic experiment designed to search for neutrinoless double-beta decay of 130Te and other rare events. The CUORE detector consists of 988 TeO 2 bolometers operated underground at 10 mK in a dilution refrigerator at the Laboratori Nazionali del Gran Sasso. Candidate events are identified through a precise measurement of their energy. The absolute energy response of the detectors is established by the regular calibration of each individual bolometer using gamma sources. The close-packed configuration of the CUORE bolometer array combined with the extensive shielding surrounding the detectors requires themore » placement of calibration sources within the array itself. The CUORE Detector Calibration System is designed to insert radioactive sources into and remove them from the cryostat while respecting the stringent heat load, radiopurity, and operational requirements of the experiment. In conclusion, this paper describes the design, commissioning, and performance of this novel source calibration deployment system for ultra-low-temperature environments.« less
Bolometric Array Detectors for Space-Borne Astronomy
NASA Technical Reports Server (NTRS)
Lange, Andrew E.
2000-01-01
Funding from the NASA Innovative Research Grant was used to develop bolometric detectors. As described in the proposal, silicon nitride micromesh ('spider-web') absorbers had been demonstrated at U.C. Berkeley but not developed to be flight-worthy devices. We proceeded to first fabricate bolometers with Neutron Transmutation Doped (NTD) Ge thermistors that demonstrated high optical coupling (Church et al. 1996) and were developed for a ground-based millimeter-wave receiver (Mauskopf et al. 1997). The next generation of devices used In bump-bonded thermistors to achieve devices with performance product NEP*sqrt(tau) = 3e - 18 j at 300 mK, demonstrating a full order of magnitude improvement over pervious devices. These devices achieved an NEP = 1e-18 W/rtHz (Murray et al. 1996) as promised in the proposal. Sensitivities as good as 1e - 19 W/rtHz appear achievable with the silicon nitride architecture (Bock et al. 1997). Finally, arrays of micromesh bolometers were shown to be feasible in the last year of the program by etching a large number of devices on a single silicon wafer (75 mm). Full arrays were subsequently demonstrated for selection on the ESA/NASA Far-Infrared Space Telescope (FIRST) in competition with detectors provided by CEA in France and GSFC in the US Micromesh bolometer arrays are now baselined for both the ESA/NASA Planck and FIRST missions.
Submm/mm galaxy counterpart identification using a characteristic density distribution
NASA Astrophysics Data System (ADS)
Alberts, Stacey; Wilson, Grant W.; Lu, Yu; Johnson, Seth; Yun, Min S.; Scott, Kimberly S.; Pope, Alexandra; Aretxaga, Itziar; Ezawa, Hajime; Hughes, David H.; Kawabe, Ryohei; Kim, Sungeun; Kohno, Kotaro; Oshima, Tai
2013-05-01
We present a new submm/mm galaxy counterpart identification technique which builds on the use of Spitzer Infrared Array Camera (IRAC) colours as discriminators between likely counterparts and the general IRAC galaxy population. Using 102 radio- and Submillimeter Array-confirmed counterparts to AzTEC sources across three fields [Great Observatories Origins Deep Survey-North, -South and Cosmic Evolution Survey (COSMOS)], we develop a non-parametric IRAC colour-colour characteristic density distribution, which, when combined with positional uncertainty information via likelihood ratios, allows us to rank all potential IRAC counterparts around submillimetre galaxies (SMGs) and calculate the significance of each ranking via the reliability factor. We report all robust and tentative radio counterparts to SMGs, the first such list available for AzTEC/COSMOS, as well as the highest ranked IRAC counterparts for all AzTEC SMGs in these fields as determined by our technique. We demonstrate that the technique is free of radio bias and thus applicable regardless of radio detections. For observations made with a moderate beam size (˜18 arcsec), this technique identifies ˜85 per cent of SMG counterparts. For much larger beam sizes (≳30 arcsec), we report identification rates of 33-49 per cent. Using simulations, we demonstrate that this technique is an improvement over using positional information alone for observations with facilities such as AzTEC on the Large Millimeter Telescope and Submillimeter Common User Bolometer Array 2 on the James Clerk Maxwell Telescope.
Development of Radiated Power Diagnostics for NSTX-U
NASA Astrophysics Data System (ADS)
Reinke, Matthew; van Eden, G. G.; Lovell, Jack; Peterson, Byron; Gray, Travis; Chandra, Rian; Stratton, Brent; Ellis, Robert; NSTX-U Team
2016-10-01
New tools to measure radiated power in NSTX-U are under development to support a range of core and boundary physics research. Multiple resistive bolometer pinhole cameras are being built and calibrated to support FY17 operations, all utilizing standard Au-foil sensors from IPT-Albrecht. The radiation in the lower divertor will be measured using two, 8 channel arrays viewing both vertically and radially to enable estimates of the 2D radiation structure. The core radiation will be measured using a 24 channel array viewing tangentially near the midplane, observing the full cross-section from the inner to outer limiter. This enables characterization of the centrifugally-driven in/out radiation asymmetry expected from mid-Z and high-Z impurities in highly rotating NSTX-U plasmas. All sensors utilize novel FPGA-based BOLO8BLF analyzers from D-tAcq Solutions. Resistive bolometer measurements are complemented by an InfraRed Video Bolometer (IRVB) which measures the temperature change of radiation absorber using an IR camera. A prototype IRVB system viewing the lower divertor was installed on NSTX-U for FY16 operations. Initial results from the plasma and benchtop testing are used to demonstrate the relative advantages between IRVB and resistive bolometers. Supported in Part by DE-AC05-00OR22725 & DE-AC02-09CH11466.
Superconducting noise bolometer with microwave bias and readout for array applications
NASA Astrophysics Data System (ADS)
Kuzmin, A. A.; Semenov, A. D.; Shitov, S. V.; Merker, M.; Wuensch, S. H.; Ustinov, A. V.; Siegel, M.
2017-07-01
We present a superconducting noise bolometer for terahertz radiation, which is suitable for large-format arrays. It is based on an antenna-coupled superconducting micro-bridge embedded in a high-quality factor superconducting resonator for a microwave bias and readout with frequency-division multiplexing in the GHz range. The micro-bridge is kept below its critical temperature and biased with a microwave current of slightly lower amplitude than the critical current of the micro-bridge. The response of the detector is the rate of superconducting fluctuations, which depends exponentially on the concentration of quasiparticles in the micro-bridge. Excess quasiparticles are generated by an incident THz signal. Since the quasiparticle lifetime increases exponentially at lower operation temperature, the noise equivalent power rapidly decreases. This approach allows for large arrays of noise bolometers operating above 1 K with sensitivity, limited by 300-K background noise. Moreover, the response of the bolometer always dominates the noise of the readout due to relatively large amplitude of the bias current. We performed a feasibility study on a proof-of-concept device with a 1.0 × 0.5 μm2 micro-bridge from a 9-nm thin Nb film on a sapphire substrate. Having a critical temperature of 5.8 K, it operates at 4.2 K and is biased at the frequency 5.6 GHz. For the quasioptical input at 0.65 THz, we measured the noise equivalent power ≈3 × 10-12 W/Hz1/2, which is close to expectations for this particular device in the noise-response regime.
NASA Technical Reports Server (NTRS)
Miller, Timothy M.; Costen, Nick; Allen, Christine
2007-01-01
The advance of new detector technologies combined with enhanced fabrication methods has resulted in an increase in development of large format arrays. The next generation of scientific instruments will utilize detectors containing hundreds to thousands of elements providing a more efficient means to conduct large area sky surveys. Some notable detectors include a 32x32 x-ray microcalorimeter for Constellation-X, an infrared bolometer called SAFIRE to fly on the airborne observatory SOFIA, and the sub-millimeter bolometer SCUBA-2 to be deployed at the JCMT which will use more than 10,000 elements for two colors, each color using four 32x40 arrays. Of these detectors, SCUBA-2 is farthest along in development and uses indium hybridization to multiplexers for readout of the large number of elements, a technology that will be required to enable the next generation of large format arrays. Our current efforts in working toward large format arrays have produced GISMO, the Goddard IRAM Superconducting 2-Millimeter observer. GISMO is a far infrared instrument to be field tested later this year at the IRAM 30 meter telescope in Spain. GISMO utilizes transition edge sensor (TES) technology in an 8x16 filled array format that allows for typical fan-out wiring and wire-bonding to four 1x32 NIST multiplexers. GISMO'S electrical wiring is routed along the tops of 30 micron walls which also serve as the mechanical framework for the array. This architecture works well for the 128 element array, but is approaching the limit for routing the necessary wires along the surface while maintaining a high fill factor. Larger format arrays will benefit greatly from making electrical connections through the wafer to the backside, where they can be hybridized to a read-out substrate tailored to handling the wiring scheme. The next generation array we are developing is a 32x40 element array on a pitch of 1135 microns that conforms to the NIST multiplexer, already developed for the SCUBA-2 instrument This architecture will utilize electrical connections that route from the TES to the support frame and through the wafer. The detector chip will then be hybridized to the NIST multiplexer via indium bump bonding. In our development scheme we are using substrates that allow for diagnostic testing of electrical continuity across the entire array and we are testing our process to minimize or eliminate any contact resistance at metal interfaces. Our goal is hybridizing a fully functional 32x40 array of TES bolometers to a NIST multiplexer. The following work presents our current progress toward enabling this technology.
Comparison of Thermal Detector Arrays for Off-Axis THz Holography and Real-Time THz Imaging
Hack, Erwin; Valzania, Lorenzo; Gäumann, Gregory; Shalaby, Mostafa; Hauri, Christoph P.; Zolliker, Peter
2016-01-01
In terahertz (THz) materials science, imaging by scanning prevails when low power THz sources are used. However, the application of array detectors operating with high power THz sources is increasingly reported. We compare the imaging properties of four different array detectors that are able to record THz radiation directly. Two micro-bolometer arrays are designed for infrared imaging in the 8–14 μm wavelength range, but are based on different absorber materials (i) vanadium oxide; (ii) amorphous silicon; (iii) a micro-bolometer array optimized for recording THz radiation based on silicon nitride; and (iv) a pyroelectric array detector for THz beam profile measurements. THz wavelengths of 96.5 μm, 118.8 μm, and 393.6 μm from a powerful far infrared laser were used to assess the technical performance in terms of signal to noise ratio, detector response and detectivity. The usefulness of the detectors for beam profiling and digital holography is assessed. Finally, the potential and limitation for real-time digital holography are discussed. PMID:26861341
Comparison of Thermal Detector Arrays for Off-Axis THz Holography and Real-Time THz Imaging.
Hack, Erwin; Valzania, Lorenzo; Gäumann, Gregory; Shalaby, Mostafa; Hauri, Christoph P; Zolliker, Peter
2016-02-06
In terahertz (THz) materials science, imaging by scanning prevails when low power THz sources are used. However, the application of array detectors operating with high power THz sources is increasingly reported. We compare the imaging properties of four different array detectors that are able to record THz radiation directly. Two micro-bolometer arrays are designed for infrared imaging in the 8-14 μm wavelength range, but are based on different absorber materials (i) vanadium oxide; (ii) amorphous silicon; (iii) a micro-bolometer array optimized for recording THz radiation based on silicon nitride; and (iv) a pyroelectric array detector for THz beam profile measurements. THz wavelengths of 96.5 μm, 118.8 μm, and 393.6 μm from a powerful far infrared laser were used to assess the technical performance in terms of signal to noise ratio, detector response and detectivity. The usefulness of the detectors for beam profiling and digital holography is assessed. Finally, the potential and limitation for real-time digital holography are discussed.
Overview of the Atacama Cosmology Telescope: Receiver, Instrumentation, and Telescope Systems
NASA Astrophysics Data System (ADS)
Swetz, D. S.; Ade, P. A. R.; Amiri, M.; Appel, J. W.; Battistelli, E. S.; Burger, B.; Chervenak, J.; Devlin, M. J.; Dicker, S. R.; Doriese, W. B.; Dünner, R.; Essinger-Hileman, T.; Fisher, R. P.; Fowler, J. W.; Halpern, M.; Hasselfield, M.; Hilton, G. C.; Hincks, A. D.; Irwin, K. D.; Jarosik, N.; Kaul, M.; Klein, J.; Lau, J. M.; Limon, M.; Marriage, T. A.; Marsden, D.; Martocci, K.; Mauskopf, P.; Moseley, H.; Netterfield, C. B.; Niemack, M. D.; Nolta, M. R.; Page, L. A.; Parker, L.; Staggs, S. T.; Stryzak, O.; Switzer, E. R.; Thornton, R.; Tucker, C.; Wollack, E.; Zhao, Y.
2011-06-01
The Atacama Cosmology Telescope was designed to measure small-scale anisotropies in the cosmic microwave background and detect galaxy clusters through the Sunyaev-Zel'dovich effect. The instrument is located on Cerro Toco in the Atacama Desert, at an altitude of 5190 m. A 6 m off-axis Gregorian telescope feeds a new type of cryogenic receiver, the Millimeter Bolometer Array Camera. The receiver features three 1000-element arrays of transition-edge sensor bolometers for observations at 148 GHz, 218 GHz, and 277 GHz. Each detector array is fed by free space millimeter-wave optics. Each frequency band has a field of view of approximately 22' × 26'. The telescope was commissioned in 2007 and has completed its third year of operations. We discuss the major components of the telescope, camera, and related systems, and summarize the instrument performance.
The Atacama Cosmology Telescope: The Receiver and Instrumentation
NASA Technical Reports Server (NTRS)
Swetz, D. S.; Ade, P. A. R.; Amiri, M.; Appel, J. W.; Burger, B.; Devlin, M. J.; Dicker, S. R.; Doriese, W. B.; Essinger-Hileman, T.; Fisher, R. P.;
2010-01-01
The Atacama Cosmology Telescope was designed to measure small-scale anisotropies in the Cosmic Microwave Background and detect galaxy clusters through the Sunyaev-Zel'dovich effect. The instrument is located on Cerro Taco in the Atacama Desert, at an altitude of 5190 meters. A six-met.er off-axis Gregorian telescope feeds a new type of cryogenic receiver, the Millimeter Bolometer Array Camera. The receiver features three WOO-element arrays of transition-edge sensor bolometers for observations at 148 GHz, 218 GHz, and 277 GHz. Each detector array is fed by free space mm-wave optics. Each frequency band has a field of view of approximately 22' x 26'. The telescope was commissioned in 2007 and has completed its third year of operations. We discuss the major components of the telescope, camera, and related systems, and summarize the instrument performance.
Strong Electron Self-Cooling in the Cold-Electron Bolometers Designed for CMB Measurements
NASA Astrophysics Data System (ADS)
Kuzmin, L. S.; Pankratov, A. L.; Gordeeva, A. V.; Zbrozhek, V. O.; Revin, L. S.; Shamporov, V. A.; Masi, S.; de Bernardis, P.
2018-03-01
We have realized cold-electron bolometers (CEB) with direct electron self-cooling of the nanoabsorber by SIN (Superconductor-Insulator-Normal metal) tunnel junctions. This electron self-cooling acts as a strong negative electrothermal feedback, improving noise and dynamic properties. Due to this cooling the photon-noise-limited operation of CEBs was realized in array of bolometers developed for the 345 GHz channel of the OLIMPO Balloon Telescope in the power range from 10 pW to 20 pW at phonon temperature Tph =310 mK. The negative electrothermal feedback in CEB is analogous to TES but instead of artificial heating we use cooling of the absorber. The high efficiency of the electron self-cooling to Te =100 mK without power load and to Te=160 mK under power load is achieved by: - a very small volume of the nanoabsorber (0.02 μm3) and a large area of the SIN tunnel junctions, - effective removal of hot quasiparticles by arranging double stock at both sides of the junctions and close position of the normal metal traps, - self-protection of the 2D array of CEBs against interferences by dividing them between N series CEBs (for voltage interferences) and M parallel CEBs (for current interferences), - suppression of Andreev reflection by a thin layer of Fe in the AlFe absorber. As a result even under high power load the CEBs are working at electron temperature Te less than Tph . To our knowledge, there is no analogue in the bolometers technology in the world for bolometers working at electron temperature colder than phonon temperature.
Instrument Performance of GISMO, a 2 Millimeter TES Bolometer Camera used at the IRAM 30 m Telescope
NASA Technical Reports Server (NTRS)
Staguhn, Johannes
2008-01-01
In November of 2007 we demonstrated a monolithic Backshort-Under-Grid (BUG) 8x16 array in the field using our 2 mm wavelength imager GISMO (Goddard IRAM Superconducting 2 Millimeter Observer) at the IRAM 30 m telescope in Spain for astronomical observations. The 2 mm spectral range provides a unique terrestrial window enabling ground-based observations of the earliest active dusty galaxies in the universe and thereby allowing a better constraint on the star formation rate in these objects. The optical design incorporates a 100 mm diameter silicon lens cooled to 4 K, which provides the required fast beam yielding 0.9 lambda/D pixels. With this spatial sampling, GISMO will be very efficient at detecting sources serendipitously in large sky surveys, while the capability for diffraction limited imaging is preserved. The camera provides significantly greater detection sensitivity and mapping speed at this wavelength than has previously been possible. The instrument will fill in the spectral energy distribution of high redshift galaxies at the Rayleigh-Jeans part of the dust emission spectrum, even at the highest redshifts. Here1 will we present early results from our observing run with the first fielded BUG bolometer array. We have developed key technologies to enable highly versatile, kilopixel, infrared through millimeter wavelength bolometer arrays. The Backshort-Under-Grid (BUG) array consists of three components: 1) a transition-edge-sensor (TES) based bolometer array with background-limited sensitivity and high filling factor, 2) a quarter-wave reflective backshort grid providing high optical efficiency, and 3) a superconducting bump-bonded large format Superconducting Quantum Interference Device (SQUID) multiplexer readout. The array is described in more detail elsewhere (Allen et al., this conference). In November of 2007 we demonstrated a monolithic 8x 16 array with 2 mm-pitch detectors in the field using our 2 mm wavelength imager GISMO (Goddard IRAM Superconducting 2 Millimeter Observer) at the IRAM 30 m telescope in Spain for astronomical observations. The 2 mm spectral range provides a unique terrestrial window enabling ground-based observations of the earliest active dusty galaxies in the universe and thereby allowing a better constraint on the star formation rate in these objects. The optical design incorporates a 100 mm diameter silicon lens cooled to 4 K, which provides the required fast beam yielding 0.9 lambda1D pixels. With this spatial sampling, GISMO will be very efficient at detecting sources serendipitously in large sky surveys, while the capability for diffraction limited imaging is preserved. The camera provides significantly greater detection sensitivity and mapping speed at this wavelength than has previously been possible. The instrument will fill in the spectral energy distribution of high redshift galaxies at the Rayleigh-Jeans part of the dust emission spectrum, even at the highest redshifts. Here I will we present early results from our observing run with the first fielded BUG bolometer array.
NASA Technical Reports Server (NTRS)
Ward, Jonathan T.; Austermann, Jason; Beall, James A.; Choi, Steve K.; Crowley, Kevin T.; Devlin, Mark J.; Duff, Shannon M.; Gallardo, Patricio M.; Henderson, Shawn W.; Ho, Shuay-Pwu Patty;
2016-01-01
The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling 5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150 mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline pro le leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modi ed to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.
NASA Astrophysics Data System (ADS)
Ward, Jonathan T.; Austermann, Jason; Beall, James A.; Choi, Steve K.; Crowley, Kevin T.; Devlin, Mark J.; Duff, Shannon M.; Gallardo, Patricio A.; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; Hilton, Gene; Hubmayr, Johannes; Khavari, Niloufar; Klein, Jeffrey; Koopman, Brian J.; Li, Dale; McMahon, Jeffrey; Mumby, Grace; Nati, Federico; Niemack, Michael D.; Page, Lyman A.; Salatino, Maria; Schillaci, Alessandro; Schmitt, Benjamin L.; Simon, Sara M.; Staggs, Suzanne T.; Thornton, Robert; Ullom, Joel N.; Vavagiakis, Eve M.; Wollack, Edward J.
2016-07-01
The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling 5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150 mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline profile leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modified to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.
Investigation of the Neutral Gas Pressure Effect on the Metal Resistive Bolometer
NASA Astrophysics Data System (ADS)
Zhang, D.; Giannone, L.; Grulke, O.; Piechotka, M.; Windisch, T.; Stark, A.; Klinger, T.
2008-03-01
The bolometer system planned for W7-X consists mainly of metal (Au) resistive detector arrays. All the detectors are exposed to neutral gas environment. The thin bolometer foil used for detecting the radiated power loss may be sensitive to the neutral gas pressure due to the strain gauge effect. Recently, a prototype of this kind of bolometer camera consisting of 12 channels has been installed on the cylindrical plasma device VINETA in order to investigate the influences of the neutral gas pressure on the bolometer signals. Experiments are carried out for Ar-discharges under different gas pressure conditions. It is found that the pressure effect of the neutral gas can make considerable contributions, thus inducing non-negligible errors of the results in most of the investigated cases. Using the VINETA plasmas (Ar, Te<10 eV, ne<10-19 m-3) as examples, the paper demonstrates and discusses how to minimize the neutral gas effects, especially in the data analysis process. The radiated power and the radiation intensity profile obtained in helicon discharges are presented.
Large-format 17μm high-end VOx μ-bolometer infrared detector
NASA Astrophysics Data System (ADS)
Mizrahi, U.; Argaman, N.; Elkind, S.; Giladi, A.; Hirsh, Y.; Labilov, M.; Pivnik, I.; Shiloah, N.; Singer, M.; Tuito, A.; Ben-Ezra, M.; Shtrichman, I.
2013-06-01
Long range sights and targeting systems require a combination of high spatial resolution, low temporal NETD, and wide field of view. For practical electro-optical systems it is hard to support these constraints simultaneously. Moreover, achieving these needs with the relatively low-cost Uncooled μ-Bolometer technology is a major challenge in the design and implementation of both the bolometer pixel and the Readout Integrated Circuit (ROIC). In this work we present measured results from a new, large format (1024×768) detector array, with 17μm pitch. This detector meets the demands of a typical armored vehicle sight with its high resolution and large format, together with low NETD of better than 35mK (at F/1, 30Hz). We estimate a Recognition Range for a NATO target of better than 4 km at all relevant atmospheric conditions, which is better than standard 2nd generation scanning array cooled detector. A new design of the detector package enables improved stability of the Non-Uniformity Correction (NUC) to environmental temperature drifts.
The Atacama Cosmology Telescope: Instrument
NASA Astrophysics Data System (ADS)
Thornton, Robert J.; Atacama Cosmology Telescope Team
2010-01-01
The 6-meter Atacama Cosmology Telescope (ACT) is making detailed maps of the Cosmic Microwave Background at Cerro Toco in northern Chile. In this talk, I focus on the design and operation of the telescope and its commissioning instrument, the Millimeter Bolometer Array Camera. The camera contains three independent sets of optics that operate at 148 GHz, 217 GHz, and 277 GHz with arcminute resolution, each of which couples to a 1024-element array of Transition Edge Sensor (TES) bolometers. I will report on the camera performance, including the beam patterns, optical efficiencies, and detector sensitivities. Under development for ACT is a new polarimeter based on feedhorn-coupled TES devices that have improved sensitivity and are planned to operate at 0.1 K.
Proceedings of the Second Infrared Detector Technology Workshop
NASA Technical Reports Server (NTRS)
Mccreight, C. R. (Compiler)
1986-01-01
The workshop focused on infrared detector, detector array, and cryogenic electronic technologies relevant to low-background space astronomy. Papers are organized into the following categories: discrete infrared detectors and readout electronics; advanced bolometers; intrinsic integrated infrared arrays; and extrinsic integrated infrared arrays. Status reports on the Space Infrared Telescope Facility (SIRTF) and Infrared Space Observatory (ISO) programs are also included.
NASA Astrophysics Data System (ADS)
Roberts, Hayley; POLARBEAR
2018-06-01
Simons Array is a cosmic microwave background (CMB) polarization experiment located at 5,200 meter altitude site in the Atacama desert in Chile. The science goals of the Simons Array are to characterize the CMB B-mode signal from gravitational lensing, and search for B-mode polarization generated from inflationary gravitational waves.In 2012, POLARBEAR-1 (PB-1) began observations and the POLARBEAR team has published the first measurements of non-zero polarization B-mode polarization angular power spectrum where gravitational lensing of CMB is the dominant signal.POLARBEAR-2A (PB-2A), the first of three receivers of Simons Array, will have 7,588 polarization sensitive Transition Edge Sensor (TES) bolometers with frequencies 90 GHz and 150 GHz. This represents a factor of 6 increase in detector count compared to PB-1. Once Simons Array is fully deployed, the focal plane array will consist 22,764 TES bolometers across 90 GHz, 150 GHz, 220 GHz, and 270 GHz with a projected instantaneous sensitivity of 2.5 µK√s. Here we present the status of PB-2A and characterization of the integrated focal plane to be deployed summer of 2018.
Antenna-coupled TES bolometers used in BICEP2, Keck Array, and SPIDER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ade, P. A. R.; Aikin, R. W.; Amiri, M.
We have developed antenna-coupled transition-edge sensor bolometers for a wide range of cosmic microwave background (CMB) polarimetry experiments, including Bicep2, Keck Array, and the balloon borne Spider. These detectors have reached maturity and this paper reports on their design principles, overall performance, and key challenges associated with design and production. Our detector arrays repeatedly produce spectral bands with 20%–30% bandwidth at 95, 150, or 230 GHz. The integrated antenna arrays synthesize symmetric co-aligned beams with controlled side-lobe levels. Cross-polarized response on boresight is typicallymore » $$\\sim 0.5\\%$$, consistent with cross-talk in our multiplexed readout system. End-to-end optical efficiencies in our cameras are routinely 35% or higher, with per detector sensitivities of NET ~ 300 $$\\mu {{\\rm{K}}}_{\\mathrm{CMB}}\\sqrt{{\\rm{s}}}$$. Thanks to the scalability of this design, we have deployed 2560 detectors as 1280 matched pairs in Keck Array with a combined instantaneous sensitivity of $$\\sim 9\\;\\mu {{\\rm{K}}}_{\\mathrm{CMB}}\\sqrt{{\\rm{s}}}$$, as measured directly from CMB maps in the 2013 season. Furthermore, similar arrays have recently flown in the Spider instrument, and development of this technology is ongoing.« less
Antenna-coupled TES bolometers used in BICEP2, Keck Array, and SPIDER
Ade, P. A. R.; Aikin, R. W.; Amiri, M.; ...
2015-10-20
We have developed antenna-coupled transition-edge sensor bolometers for a wide range of cosmic microwave background (CMB) polarimetry experiments, including Bicep2, Keck Array, and the balloon borne Spider. These detectors have reached maturity and this paper reports on their design principles, overall performance, and key challenges associated with design and production. Our detector arrays repeatedly produce spectral bands with 20%–30% bandwidth at 95, 150, or 230 GHz. The integrated antenna arrays synthesize symmetric co-aligned beams with controlled side-lobe levels. Cross-polarized response on boresight is typicallymore » $$\\sim 0.5\\%$$, consistent with cross-talk in our multiplexed readout system. End-to-end optical efficiencies in our cameras are routinely 35% or higher, with per detector sensitivities of NET ~ 300 $$\\mu {{\\rm{K}}}_{\\mathrm{CMB}}\\sqrt{{\\rm{s}}}$$. Thanks to the scalability of this design, we have deployed 2560 detectors as 1280 matched pairs in Keck Array with a combined instantaneous sensitivity of $$\\sim 9\\;\\mu {{\\rm{K}}}_{\\mathrm{CMB}}\\sqrt{{\\rm{s}}}$$, as measured directly from CMB maps in the 2013 season. Furthermore, similar arrays have recently flown in the Spider instrument, and development of this technology is ongoing.« less
Progress on the FDM Development at SRON: Toward 160 Pixels
NASA Astrophysics Data System (ADS)
den Hartog, R. H.; Bruijn, M. P.; Clenet, A.; Gottardi, L.; Hijmering, R.; Jackson, B. D.; van der Kuur, J.; van Leeuwen, B. J.; van der Linden, A. J.; van Loon, D.; Nieuwenhuizen, A.; Ridder, M.; van Winden, P.
2014-08-01
SRON is developing the electronic read-out for arrays of transition edge sensors using frequency domain multiplexing in combination with base-band feedback. The astronomical applications of this system are the read-out of soft X-ray micro-calorimeters in a potential instrument on the European X-ray mission-under-study Athena+ and far-IR bolometers for the Safari instrument on the Japanese mission SPICA. In this paper we demonstrate the simultaneous read-out of 38 bolometer pixels at a 12 aW/Hz dark NEP level. The stability of the read-out is assessed over 400 s. time spans. Although some 1/f noise is present, there are several bolometers for which 1/f-free read-out can be demonstrated.
Polarization measurements made on LFRA and OASIS emitter arrays
NASA Astrophysics Data System (ADS)
Geske, Jon; Sparkman, Kevin; Oleson, Jim; Laveigne, Joe; Sieglinger, Breck; Marlow, Steve; Lowry, Heard; Burns, James
2008-04-01
Polarization is increasingly being considered as a method of discrimination in passive sensing applications. In this paper the degree of polarization of the thermal emission from the emitter arrays of two new Santa Barbara Infrared (SBIR) micro-bolometer resistor array scene projectors was characterized at ambient temperature and at 77 K. The emitter arrays characterized were from the Large Format Resistive Array (LFRA) and the Optimized Arrays for Space-Background Infrared Simulation (OASIS) scene projectors. This paper reports the results of this testing.
NASA Astrophysics Data System (ADS)
De Breuck, Carlos
2018-03-01
The APEX telescope has a range instruments that are highly complementary to ALMA. The single pixel heterodyne receivers cover virtually all atmospheric windows from 157 GHz to above 1 THz, augmented by 7-pixel heterodyne arrays covering 280 to 950 GHz, while the bolometer arrays cover the 870, 450 and 350µm bands.
Neutron Transmutation Doped (NTD) germanium thermistors for sub-mm bolometer applications
NASA Technical Reports Server (NTRS)
Haller, E. E.; Itoh, K. M.; Beeman, J. W.
1996-01-01
Recent advances in the development of neutron transmutation doped (NTD) semiconductor thermistors fabricated from natural and controlled isotopic composition germanium are reported. The near ideal doping uniformity that can be achieved with the NTD process, the device simplicity of NTD Ge thermistors and the high performance of cooled junction field effect transistor preamplifiers led to the widespread acceptance of these thermal sensors in ground-based, airborne and spaceborne radio telescopes. These features made possible the development of efficient bolometer arrays.
Bloch oscillating transistor as the readout element for hot electron bolometers
NASA Astrophysics Data System (ADS)
Hassel, Juha; Seppä, Heikki; Lindell, Rene; Hakonen, Pertti
2004-10-01
In this paper we analyse the properties of the Bloch oscillating transistor as a preamplifier in cryogenic devices. We consider here especially the readout of hot electron bolometers (HEBs) based on Normal-Superconductor-Insulator tunnel junctions, but the results also apply more generally. We show that one can get an equivalent noise voltage below 1 nV/√Hz with a single BOT. By using N BOTs in a parallel array configuration, a further reduction by factor √N may be achieved.
Experimental study of a SINIS detector response time at 350 GHz signal frequency
NASA Astrophysics Data System (ADS)
Lemzyakov, S.; Tarasov, M.; Mahashabde, S.; Yusupov, R.; Kuzmin, L.; Edelman, V.
2018-03-01
Response time constant of a SINIS bolometer integrated in an annular ring antenna was measured at a bath temperature of 100 mK. Samples comprising superconducting aluminium electrodes and normal-metal Al/Fe strip connected to electrodes via tunnel junctions were fabricated on oxidized Si substrate using shadow evaporation. The bolometer was illuminated by a fast black-body radiation source through a band-pass filter centered at 350 GHz with a passband of 7 GHz. Radiation source is a thin NiCr film on sapphire substrate. For rectangular 10÷100 μs current pulse the radiation front edge was rather sharp due to low thermal capacitance of NiCr film and low thermal conductivity of substrate at temperatures in the range 1-4 K. The rise time of the response was ~1-10 μs. This time presumably is limited by technical reasons: high dynamic resistance of series array of bolometers and capacitance of a long twisted pair wiring from SINIS bolometer to a room-temperature amplifier.
Auxiliary Components for Kilopixel Transition Edge Sensor Arrays
NASA Technical Reports Server (NTRS)
Brown, Ari-David; Chervenak, James A.; Chuss, David; Hilton Gene C.; Mikula, Vilem; Henry, ROss; Wollack, Edward; Zhao, Yue
2007-01-01
We have fabricated transition edge sensor bolometer focal plane arrays sensitive to mm-submillimeter (0.1-3 THz) radiation for the Atacama Cosmology Telescope (ACT), which will probe the cosmic microwave background at 0.147,0.215, and 0.279 GHz. Central to the performance of these bolometers is a set of auxiliary resistive components. Here we discuss shunt resistors, which allow for tight optimization of bolometer time constant and sensitivity. Our shunt resistors consist of AuPd strips grown atop of interdigitated superconducting MoN, wires. We can tailor the shunt resistance by altering the dimensions of the AuPd strips and the pitch and width of the MoN, wires and can fabricate over 1000 shunts on a single 4" wafer. By modeling the resistance dependence of these parameters, a variety of different 0.77 +I-0.13 mOhm shunt resistors have been fabricated. This variety includes different shunts possessing MoN, wires with wire width equal to 1.5 and 10 microns and pitch equal to 4.5 and 26 microns, respectively. Our ability to set the resistance of the shunts hints at the scalability of our design. We have also integrated a Si02 capping layer into our shunt resistor fabrication scheme, which inhibits metal corrosion and eventual degradation of the shunt. Consequently, their robustness coupled with their high packing density makes these resistive components attractive for future kilopixel detector arrays.
Imaging antenna array at 119 microns. [for plasma diagnostics
NASA Technical Reports Server (NTRS)
Neikirk, N. P.; Tong, P. P.; Putledge, D. B.; Park, H.; Young, P. E.
1982-01-01
A focal-plane imaging antenna array has been demonstrated at 119 microns. The array is a line of evaporated silver bow-tie antennas with bismuth microbolometer detectors on a silicon substrate. Radiation is coupled into the array by a lens placed on the back of the substrate. The bolometers are thermally isolated from the silicon substrate with a half-micron layer of polyimide. The array performance is demonstrated by coherent imaging of a series of holes at half the diffraction-limited cut-off frequency.
Smith, Evan M; Panjwani, Deep; Ginn, James; Warren, Andrew P; Long, Christopher; Figuieredo, Pedro; Smith, Christian; Nath, Janardan; Perlstein, Joshua; Walter, Nick; Hirschmugl, Carol; Peale, Robert E; Shelton, David
2016-03-10
Infrared-absorbing gold black has been selectively patterned onto the active surfaces of a vanadium-oxide-based infrared bolometer array. Patterning by metal lift-off relies on protection of the fragile gold black with an evaporated oxide, which preserves much of gold black's high absorptance. This patterned gold black also survives the dry-etch removal of the sacrificial polyimide used to fabricate the air-bridge bolometers. For our fabricated devices, infrared responsivity is improved 22% in the long-wave IR and 70% in the mid-wave IR by the gold black coating, with no significant change in detector noise, using a 300°C blackbody and 80 Hz chopping rate. The increase in the time constant caused by the additional mass of gold black is ∼15%.
First array of enriched Zn$$^{82}$$Se bolometers to search for double beta decay
Artusa, D. R.; Balzoni, A.; Beeman, J. W.; ...
2016-07-01
The R&D activity performed during the last years proved the potential of ZnSe scintillating bolometers to the search for neutrino-less double beta decay, motivating the realization of the first large-mass experiment based on this technology: CUPID-0. The isotopic enrichment in 82Se, the Zn 82Se crystals growth, as well as the light detectors production have been accomplished, and the experiment is now in construction at Laboratori Nazionali del Gran Sasso (Italy). In this paper we present the results obtained testing the first three Zn 82Se crystals operated as scintillating bolometers, and we prove that their performance in terms of energy resolution,more » background rejection capability and intrinsic radio-purity complies with the requirements of CUPID-o.« less
Infrared Spectroscopy Data Reduction with ORAC-DR
NASA Astrophysics Data System (ADS)
Economou, F.; Jenness, T.; Cavanagh, B.; Wright, G. S.; Bridger, A. B.; Kerr, T. H.; Hirst, P.; Adamson, A. J.
ORAC-DR is a flexible and extensible data reduction pipeline suitable for both on-line and off-line use. Since its development it has been in use on-line at UKIRT for data from the infrared cameras UFTI and IRCAM and at JCMT for data from the sub-millimetre bolometer array SCUBA. We have now added a suite of on-line reduction recipes that produces publication quality (or nearly so) data from the CGS4 near-infrared spectrometer and the MICHELLE mid-infrared Echelle spectrometer. As an example, this paper briefly describes some pipeline features for one of the more commonly used observing modes.
NASA Astrophysics Data System (ADS)
Pattle, Kate; Ward-Thompson, Derek; Hasegawa, Tetsuo; Bastien, Pierre; Kwon, Woojin; Lai, Shih-Ping; Qiu, Keping; Furuya, Ray; Berry, David; JCMT BISTRO Survey Team
2018-06-01
We present the first high-resolution, submillimeter-wavelength polarimetric observations of—and thus direct observations of the magnetic field morphology within—the dense gas of the Pillars of Creation in M16. These 850 μm observations, taken as part of the B-Fields in Star-forming Region Observations Survey (BISTRO) using the POL-2 polarimeter on the Submillimeter Common-User Bolometer Array 2 (SCUBA-2) camera on the James Clerk Maxwell Telescope (JCMT), show that the magnetic field runs along the length of the Pillars, perpendicular to and decoupled from the field in the surrounding photoionized cloud. Using the Chandrasekhar–Fermi method we estimate a plane-of-sky magnetic field strength of 170–320 μG in the Pillars, consistent with their having been formed through the compression of gas with initially weak magnetization. The observed magnetic field strength and morphology suggests that the magnetic field may be slowing the Pillars’ evolution into cometary globules. We thus hypothesize that the evolution and lifetime of the Pillars may be strongly influenced by the strength of the coupling of their magnetic field to that of their parent photoionized cloud—i.e., that the Pillars’ longevity results from magnetic support.
Carbon Nanotube Array for Infrared Detection
2011-09-28
Scientific Progress Technology Transfer 1 Carbon Nanotube Array for Infrared Detection Final Report Jimmy Xu...devices. In contrast to photocarrier generation across a band gap, nature’s bolometers convert infrared radiation into heating of tissues thereby...been investigated. [5, 6] High TCR is, however, not the only important parameter for bolometric sensing. Heat capacity, thermal conductivity
A millimetre-wave redshift search for the unlensed HyLIRG, HS1700.850.1
NASA Astrophysics Data System (ADS)
Chapman, S. C.; Bertoldi, F.; Smail, Ian; Steidel, C. C.; Blain, A. W.; Geach, J. E.; Gurwell, M.; Ivison, R. J.; Petitpas, G. R.; Reddy, N.
2015-10-01
We report the redshift of an unlensed, highly obscured submillimetre galaxy (SMG), HS1700.850.1, the brightest SMG (S850 μm = 19.1 mJy) detected in the James Clerk Maxwell Telescope/Submillimetre Common-user Bolometer Array-2 (JCMT/SCUBA-2) Baryonic Structure Survey, based on the detection of its 12CO line emission. Using the Institute Radio Astronomie Millimetrique Plateau de Bure Interferometer with 3.6 GHz band width, we serendipitously detect an emission line at 150.6 GHz. From a search over 14.5 GHz in the 3- and 2-mm atmospheric windows, we confirm the identification of this line as 12CO(5-4) at z = 2.816, meaning that it does not reside in the z ˜ 2.30 proto-cluster in this field. Measurement of the 870 μm source size (<0.85 arcsec) from the Sub-Millimetre Array (SMA) confirms a compact emission in a S870 μm = 14.5 mJy, LIR ˜ 1013 L⊙ component, suggesting an Eddington-limited starburst. We use the double-peaked 12CO line profile measurements along with the SMA size constraints to study the gas dynamics of a HyLIRG, estimating the gas and dynamical masses of HS1700.850.1. While HS1700.850.1 is one of the most extreme galaxies known in the Universe, we find that it occupies a relative void in the Lyman-Break Galaxy distribution in this field. Comparison with other extreme objects at similar epochs (HyLIRG Quasars), and cosmological simulations, suggests such an anti-bias of bright SMGs could be relatively common, with the brightest SMGs rarely occupying the most overdense regions at z = 2-4.
An FPGA-based bolometer for the MAST-U Super-X divertor.
Lovell, Jack; Naylor, Graham; Field, Anthony; Drewelow, Peter; Sharples, Ray
2016-11-01
A new resistive bolometer system has been developed for MAST-Upgrade. It will measure radiated power in the new Super-X divertor, with millisecond time resolution, along 16 vertical and 16 horizontal lines of sight. The system uses a Xilinx Zynq-7000 series Field-Programmable Gate Array (FPGA) in the D-TACQ ACQ2106 carrier to perform real time data acquisition and signal processing. The FPGA enables AC-synchronous detection using high performance digital filtering to achieve a high signal-to-noise ratio and will be able to output processed data in real time with millisecond latency. The system has been installed on 8 previously unused channels of the JET vertical bolometer system. Initial results suggest good agreement with data from existing vertical channels but with higher bandwidth and signal-to-noise ratio.
Measurements of the Optical Performance of Prototype TES Bolometers for SAFARI
NASA Astrophysics Data System (ADS)
Audley, M. D.; de Lange, G.; Ranjan, M.; Gao, J.-R.; Khosropanah, P.; Ridder, M. L.; Mauskopf, P. D.; Morozov, D.; Doherty, S.; Trappe, N.; Withington, S.
2014-09-01
We have measured the optical response of prototype detectors for SAFARI, the far-infrared imaging spectrometer for the SPICA satellite. SAFARI's three bolometer arrays, coupled with a Fourier transform spectrometer, will provide images of a 2'×2' field of view with spectral information over the wavelength range 34-210 μm. Each horn-coupled bolometer consists of a transition edge sensor (TES), with a transition temperature close to 100 mK, and a thin-film Ta absorber on a thermally-isolated silicon nitride membrane. SAFARI requires extremely sensitive detectors ( NEP˜2×10-19 W/), with correspondingly low saturation powers (˜5 fW), to take advantage of SPICA's cooled optics. To meet the challenge of testing such sensitive detectors we have constructed an ultra-low background test facility based on a cryogen-free high-capacity dilution refrigerator, paying careful attention to stray-light exclusion, shielding, and vibration isolation. For optical measurements the system contains internal cold (3-30 K) and hot (˜300 K) black-body calibration sources, as well as a light pipe for external illumination. We discuss our measurements of high optical efficiency in prototype SAFARI detectors and describe recent improvements to the test facility that will enable us to test the full SAFARI focal-plane arrays.
NASA Technical Reports Server (NTRS)
Lakew, B.; Aslam, S.; Brasunas, J.
2012-01-01
The mid-superconducting critical temperature (T(sub c) approximately 39 K) of the simple binary, intermetallic MgB, [1] makes it a very good candidate for the development of the next generation of electrooptical devices (e.g. [2]). In particular, recent advances in thin film deposition teclmiques to attain higb quality polycrystalline thin film MgB, deposited on SiN-Si substrates, with T(sub c) approximately 38K [3] coupled with the low voltage noise performance of the film [4] makes it higbly desirable for the development of moderately cooled bolometer arrays for integration into future space-bourne far infra-red (FIR) spectrometers and thermal mappers for studying the outer planets, their icy moons and other moons of interest in the 17-250 micrometer spectral wavelength range. Presently, commercially available pyroelectric detectors operating at 300 K have specific detectivity, D(*), around 7 x 10(exp 8) to 2 x 10(exp 9) centimeters square root of Hz/W. However, a MgB2 thin film based bolometer using a low-stress (less than 140 MPa) SiN membrane isolated from the substrate by a small thermal conductive link, operating at 38 K, promises to have two orders of magnitude higher specific detectivity [5][6].
Bolometeric detector arrays for CMB polarimetry
NASA Technical Reports Server (NTRS)
Kuo, C. L.; Bock, J. J.; Day, P.; Goldin, A.; Golwala, S.; Holmes, W.; Irwin, K.; Kenyon, M.; Lange, A. E.; LeDuc, H. G.;
2005-01-01
We describe the development of antenna coupled bolometers for CMB polarization experiments. The necessary components of a bolometric CMB polarimeter - a beam forming element, a band defining filter, and detectors - are all fabricated on a silicon chip with photolithography.
NASA Astrophysics Data System (ADS)
Artusa, D. R.; Balzoni, A.; Beeman, J. W.; Bellini, F.; Biassoni, M.; Brofferio, C.; Camacho, A.; Capelli, S.; Cardani, L.; Carniti, P.; Casali, N.; Cassina, L.; Clemenza, M.; Cremonesi, O.; Cruciani, A.; D'Addabbo, A.; Dafinei, I.; Di Domizio, S.; di Vacri, M. L.; Ferroni, F.; Gironi, L.; Giuliani, A.; Gotti, C.; Keppel, G.; Maino, M.; Mancuso, M.; Martinez, M.; Morganti, S.; Nagorny, S. S.; Nastasi, M.; Nisi, S.; Nones, C.; Orlandi, D.; Pagnanini, L.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pessina, G.; Pettinacci, V.; Pirro, S.; Pozzi, S.; Previtali, E.; Puiu, A.; Rusconi, C.; Schäffner, K.; Tomei, C.; Vignati, M.; Zolotarova, A.
2017-09-01
Future experiments on neutrinoless double beta-decay with the aim of exploring the inverted hierarchy region have to employ detectors with excellent energy resolution and zero background in the energy region of interest. Cryogenic scintillating bolometers turn out to be a suitable candidate since they offer particle discrimination: the dual channel detection of the heat and the scintillation light signal allows for particle identification. In particular such detectors permit for a suppression of α-induced backgrounds, a key-issue for next-generation tonne-scale bolometric experiments. We report on the progress and current status of the LUCIFER/CUPID-0 demonstrator, the first array of scintillating bolometers based on enriched Zn82Se crystals which is expected to start data taking in 2016 and the potential of this detection technique for a future tonne-scale bolometric experiment after CUORE.
Optical Characterization of the SPT-3G Camera
NASA Astrophysics Data System (ADS)
Pan, Z.; Ade, P. A. R.; Ahmed, Z.; Anderson, A. J.; Austermann, J. E.; Avva, J. S.; Thakur, R. Basu; Bender, A. N.; Benson, B. A.; Carlstrom, J. E.; Carter, F. W.; Cecil, T.; Chang, C. L.; Cliche, J. F.; Cukierman, A.; Denison, E. V.; de Haan, T.; Ding, J.; Dobbs, M. A.; Dutcher, D.; Everett, W.; Foster, A.; Gannon, R. N.; Gilbert, A.; Groh, J. C.; Halverson, N. W.; Harke-Hosemann, A. H.; Harrington, N. L.; Henning, J. W.; Hilton, G. C.; Holzapfel, W. L.; Huang, N.; Irwin, K. D.; Jeong, O. B.; Jonas, M.; Khaire, T.; Kofman, A. M.; Korman, M.; Kubik, D.; Kuhlmann, S.; Kuo, C. L.; Lee, A. T.; Lowitz, A. E.; Meyer, S. S.; Michalik, D.; Montgomery, J.; Nadolski, A.; Natoli, T.; Nguyen, H.; Noble, G. I.; Novosad, V.; Padin, S.; Pearson, J.; Posada, C. M.; Rahlin, A.; Ruhl, J. E.; Saunders, L. J.; Sayre, J. T.; Shirley, I.; Shirokoff, E.; Smecher, G.; Sobrin, J. A.; Stark, A. A.; Story, K. T.; Suzuki, A.; Tang, Q. Y.; Thompson, K. L.; Tucker, C.; Vale, L. R.; Vanderlinde, K.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Yefremenko, V.; Yoon, K. W.; Young, M. R.
2018-05-01
The third-generation South Pole Telescope camera is designed to measure the cosmic microwave background across three frequency bands (centered at 95, 150 and 220 GHz) with ˜ 16,000 transition-edge sensor (TES) bolometers. Each multichroic array element on a detector wafer has a broadband sinuous antenna that couples power to six TESs, one for each of the three observing bands and both polarizations, via lumped element filters. Ten detector wafers populate the detector array, which is coupled to the sky via a large-aperture optical system. Here we present the frequency band characterization with Fourier transform spectroscopy, measurements of optical time constants, beam properties, and optical and polarization efficiencies of the detector array. The detectors have frequency bands consistent with our simulations and have high average optical efficiency which is 86, 77 and 66% for the 95, 150 and 220 GHz detectors. The time constants of the detectors are mostly between 0.5 and 5 ms. The beam is round with the correct size, and the polarization efficiency is more than 90% for most of the bolometers.
Thermal response of large area high temperature superconducting YBaCuO infrared bolometers
NASA Technical Reports Server (NTRS)
Khalil, Ali E.
1991-01-01
Thermal analysis of large area high temperature superconducting infrared detector operating in the equilibrium mode (bolometer) was performed. An expression for the temperature coefficient beta = 1/R(dR/dT) in terms of the thermal conductance and the thermal time constant of the detector were derived. A superconducting transition edge bolometer is a thermistor consisting of a thin film superconducting YBaCuO evaporated into a suitable thermally isolated substrate. The operating temperature of the bolometer is maintained close to the midpoint of the superconducting transition region where the resistance R has a maximum dynamic range. A detector with a strip configuration was analyzed and an expression for the temperature rise (delta T) above the ambient due to a uniform illumination with a source of power density was calculated. An expression for the thermal responsibility depends upon the spatial modulation frequency and the angular frequency of the incoming radiation. The problem of the thermal cross talk between different detector elements was addressed. In the case of monolithic HTS detector array with a row of square elements of dimensions 2a and CCD or CID readout electronics the thermal spread function was derived for different spacing between elements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ade, P. A. R.; Aikin, R. W.; Bock, J. J.
2015-06-20
bicep2 and the Keck Array are polarization-sensitive microwave telescopes that observe the cosmic microwave background (CMB) from the South Pole at degree angular scales in search of a signature of inflation imprinted as B-mode polarization in the CMB. bicep2 was deployed in late 2009, observed for three years until the end of 2012 at 150 GHz with 512 antenna-coupled transition edge sensor bolometers, and has reported a detection of B-mode polarization on degree angular scales. The Keck Array was first deployed in late 2010 and will observe through 2016 with five receivers at several frequencies (95, 150, and 220 GHz). bicep2 and the Keck Array sharemore » a common optical design and employ the field-proven bicep1 strategy of using small-aperture, cold, on-axis refractive optics, providing excellent control of systematics while maintaining a large field of view. This design allows for full characterization of far-field optical performance using microwave sources on the ground. Here we describe the optical design of both instruments and report a full characterization of the optical performance and beams of bicep2 and the Keck Array at 150 GHz.« less
The subsurface of Pluto from submillimetre observations
NASA Astrophysics Data System (ADS)
Greaves, J. S.; Whitelaw, A. C. M.; Bendo, G. J.
2015-04-01
Surface areas on Pluto change in brightness and colour, at optical to infrared wavelengths, over time-scales as short as years. The subsurface contains a reservoir of frozen volatiles, but little is known about it because Pluto is out of reach for cm-radar. Here we present a 0.85 mm wavelength light curve of the Pluto system, from archival data taken in 1997 August with the SCUBA (Submillimetre Common-User Bolometer Array) camera on the James Clerk Maxwell Telescope (JCMT). This wavelength probes for the first time to just below the skin depth of thermal changes over Pluto's day. The light curve differs significantly from counterparts in the mid- to far-infrared, in a longitude range that is optically dark on Pluto's surface. An estimate from Herschel of the 0.5 mm flux in 2012 is comparable to the mean 0.45 mm flux from SCUBA in 1997, suggesting that layers centimetres below the surface have not undergone any gross temperature change. The longitudes that are relatively submillimetre-faint could have a different emissivity, perhaps with a subsurface layer richer in nitrogen or methane ices than at the surface. The Radio Science Experiment (REX) instrument on New Horizons may be able to constrain physical properties deeper down, as it looks back on Pluto's nightside after the 2015 July flyby.
Mechanical Design of a 4-Stage ADR for the PIPER mission
NASA Technical Reports Server (NTRS)
James, Bryan L.; Kimball, Mark O.; Shirron, Peter J.; Sampson, Michael A.; Letmate, Richard V.; Jackson, Michael L.
2017-01-01
The four 1,280 bolometer detector arrays that will fly on the balloon borne PIPER mission will be cooled by a 4-stage adiabatic demagnetization refrigerator (ADR). Two of the three mechanically independent ADR assemblies provide thermal isolation to their salt pills through Kevlar suspensions while the other provides thermal isolation to its salt pill through the use of bellows and Vespel material. The ADR integrates with the detector arrays and it sits in a large bucket Dewar containing superfluid liquid helium. This paper will describe the complex mechanical design of the PIPER ADR, and summarize the mechanical analysis done to validate the design.The four 1,280 bolometer detector arrays that will fly on the balloon borne PIPER mission will be cooled by a 4-stage adiabatic demagnetization refrigerator (ADR). Two of the three mechanically independent ADR assemblies provide thermal isolation to their salt pills through Kevlar suspensions while the other provides thermal isolation to its salt pill through the use of bellows and Vespel material. The ADR integrates with the detector arrays and it sits in a large bucket Dewar containing superfluid liquid helium. This paper will describe the complex mechanical design of the PIPER ADR, and summarize the mechanical analysis done to validate the design.
NASA Astrophysics Data System (ADS)
Chapin, Edward L.; Pope, Alexandra; Scott, Douglas; Aretxaga, Itziar; Austermann, Jason E.; Chary, Ranga-Ram; Coppin, Kristen; Halpern, Mark; Hughes, David H.; Lowenthal, James D.; Morrison, Glenn E.; Perera, Thushara A.; Scott, Kimberly S.; Wilson, Grant W.; Yun, Min S.
2009-10-01
We present results from a multiwavelength study of 29 sources (false detection probabilities <5 per cent) from a survey of the Great Observatories Origins Deep Survey-North (GOODS-N) field at 1.1mm using the Astronomical Thermal Emission Camera (AzTEC). Comparing with existing 850μm Submillimetre Common-User Bolometer Array (SCUBA) studies in the field, we examine differences in the source populations selected at the two wavelengths. The AzTEC observations uniformly cover the entire survey field to a 1σ depth of ~1mJy. Searching deep 1.4GHz Very Large Array (VLA) and Spitzer 3-24μm catalogues, we identify robust counterparts for 21 1.1mm sources, and tentative associations for the remaining objects. The redshift distribution of AzTEC sources is inferred from available spectroscopic and photometric redshifts. We find a median redshift of z = 2.7, somewhat higher than z = 2.0 for 850μm selected sources in the same field, and our lowest redshift identification lies at a spectroscopic redshift z = 1.1460. We measure the 850μm to 1.1mm colour of our sources and do not find evidence for `850μm dropouts', which can be explained by the low signal-to-noise ratio of the observations. We also combine these observed colours with spectroscopic redshifts to derive the range of dust temperatures T, and dust emissivity indices β for the sample, concluding that existing estimates T ~ 30K and β ~ 1.75 are consistent with these new data.
Embedded binaries and their dense cores
NASA Astrophysics Data System (ADS)
Sadavoy, Sarah I.; Stahler, Steven W.
2017-08-01
We explore the relationship between young, embedded binaries and their parent cores, using observations within the Perseus Molecular Cloud. We combine recently published Very Large Array observations of young stars with core properties obtained from Submillimetre Common-User Bolometer Array 2 observations at 850 μm. Most embedded binary systems are found towards the centres of their parent cores, although several systems have components closer to the core edge. Wide binaries, defined as those systems with physical separations greater than 500 au, show a tendency to be aligned with the long axes of their parent cores, whereas tight binaries show no preferred orientation. We test a number of simple, evolutionary models to account for the observed populations of Class 0 and I sources, both single and binary. In the model that best explains the observations, all stars form initially as wide binaries. These binaries either break up into separate stars or else shrink into tighter orbits. Under the assumption that both stars remain embedded following binary break-up, we find a total star formation rate of 168 Myr-1. Alternatively, one star may be ejected from the dense core due to binary break-up. This latter assumption results in a star formation rate of 247 Myr-1. Both production rates are in satisfactory agreement with current estimates from other studies of Perseus. Future observations should be able to distinguish between these two possibilities. If our model continues to provide a good fit to other star-forming regions, then the mass fraction of dense cores that becomes stars is double what is currently believed.
Optical performance of prototype horn-coupled TES bolometer arrays for SAFARI
NASA Astrophysics Data System (ADS)
Audley, Michael D.; de Lange, Gert; Gao, Jian-Rong; Khosropanah, Pourya; Hijmering, Richard; Ridder, Marcel L.
2016-07-01
The SAFARI Detector Test Facility is an ultra-low background optical testbed for characterizing ultra-sensitive prototype horn-coupled TES bolmeters for SAFARI, the grating spectrometer on board the proposed SPICA satellite. The testbed contains internal cold and hot black-body illuminators and a light-pipe for illumination with an external source. We have added reimaging optics to facilitate array optical measurements. The system is now being used for optical testing of prototype detector arrays read out with frequency-domain multiplexing. We present our latest optical measurements of prototype arrays and discuss these in terms of the instrument performance.
The Polarization-Sensitive Bolometers for SPICA and their Potential Use for Ground-Based Application
NASA Astrophysics Data System (ADS)
Reveret, Vincent
2018-01-01
CEA is leading the development of Safari-POL, an imaging-polarimeter aboard the SPICA space observatory (ESA M5). SPICA will be able to reach unprecedented sensitivities thanks to its cooled telescope and its ultra-sensitive detectors. The detector assembly of Safari-POL holds three arrays that are cooled down to 50 mK and correspond to three spectral bands : 100, 200 and 350 microns. The detectors (silicon bolometers), benefit from the Herschel/PACS legacy and are also a big step forward in term of sensitivity (improved by two orders of magnitude compared to PACS bolometers) and for polarimetry capabilities. Indeed, each pixel is intrinsically sensitive to two polarization components (Horizontal and Vertical). We will present the Safari-POL concept, the first results of measurements made on the detectors, and future plans for possible ground-based instruments using this technology. We will also present the example of the ArTéMiS camera, installed at APEX, that was developped as a ground-based conterpart of the PACS photometer.
Study of Rare Nuclear Processes with CUORE
Alduino, C; Alfonso, K; III, FTA; ...
2018-03-30
TeO 2 bolometers have been used for many years to search for neutrinoless double beta decay in 130-Te. CUORE, a tonne-scale TeO 2 detector array, recently published the most sensitive limit on the half-life,more » $$T_{1/2}^{0\
Study of Rare Nuclear Processes with CUORE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alduino, C; Alfonso, K; III, FTA
TeO 2 bolometers have been used for many years to search for neutrinoless double beta decay in 130-Te. CUORE, a tonne-scale TeO 2 detector array, recently published the most sensitive limit on the half-life,more » $$T_{1/2}^{0\
NASA Astrophysics Data System (ADS)
Suzuki, Aritoki; Bebek, Chris; Garcia-Sciveres, Maurice; Holland, Stephen; Kusaka, Akito; Lee, Adrian T.; Palaio, Nicholas; Roe, Natalie; Steinmetz, Leo
2018-04-01
We report on the development of commercially fabricated multichroic antenna-coupled transition edge sensor (TES) bolometer arrays for cosmic microwave background (CMB) polarimetry experiments. CMB polarimetry experiments have deployed instruments in stages. Stage II experiments deployed with O(1000) detectors and reported successful detection of B-mode (divergence-free) polarization pattern in the CMB. Stage III experiments have recently started observing with O(10,000) detectors with wider frequency coverage. A concept for a stage IV experiment, CMB-S4, is emerging to make a definitive measurement of CMB polarization from the ground with O(400,000) detectors. The orders of magnitude increase in detector count for CMB-S4 require a new approach in detector fabrication to increase fabrication throughput and reduce the cost. We report on collaborative efforts with two commercial micro-fabrication foundries to fabricate antenna-coupled TES bolometer detectors. The detector design is based on the sinuous antenna-coupled dichroic detector from the POLARBEAR-2 experiment. The TES bolometers showed the expected I-V response, and the RF performance agrees with the simulation. We will discuss the motivation, design consideration, fabrication processes, test results, and how industrial detector fabrication could be a path to fabricate hundreds of detector wafers for future CMB polarimetry experiments.
Highly Uniform 150 mm Diameter Multichroic Polarimeter Array Deployed for CMB Detection
NASA Technical Reports Server (NTRS)
Ho, Shuay-Pwu Patty; Austermann, Jason; Beall, James A.; Choi, Steve K.; Cothard, Nicholas F.; Crowley, Kevin; Datta, Rahul; Devlin, Mark J.; Duff, Shannon M.; Wollack, Edward J.
2016-01-01
The Advanced Atacama Cosmology Telescope Polarimeter is an upgraded receiver for the Atacama Cosmology Telescope, which has begun making measurements of the small angular scale polarization anisotropies in the Cosmic Microwave Background using the first of four new multichroic superconducting detector arrays. Here, we review all details of the optimization and characterization of this first array, which features 2012 AlMn transition edge sensor bolometers operating at 150 and 230 GHz. We present critical temperatures, thermal conductivities,saturation powers, time constants, and sensitivities for the array. The results show high uniformity across the 150 mm wafer and good performance in the field.
CCAM: A novel millimeter-wave instrument using a close-packed TES bolometer array
NASA Astrophysics Data System (ADS)
Lau, Judy M.
This thesis describes CCAM, an instrument designed to map the Cosmic Microwave Background (CMB), and also presents some of the initial measurements made with CCAM on the Atacama Cosmology Telescope (ACT). CCAM uses a CCD-like camera of millimeter-wave TES bolometers. It employs new detector technology, read-out electronics, cold re-imaging optics, and cryogenics to obtain high sensitivity CMB anisotropy measurements. The free-standing 8×32 close-packed array of pop- up TES detectors is the first of its kind to observe the sky at 145 GHz. We present the design of the receiver including the antireflection coated silicon lens re-imaging system, construction and optimization of the pulse tube/ sorption refrigerator cryogenic system, as well as the technology developed to integrate eight 1×32 TES columns and accompanying read-out electronics in to an array of 256 millimeter-wave detectors into a focal plane area of 3.5 cm 2. The performance of the detectors and optics prior to deployment at the ACT site in Chile are reported as well as preliminary performance results of the instrument when optically paired with the ACT telescope in the summer of 2007. Here, we also report on the feasibility of the TES detector array to measure polarization when coupled to a rotating birefringent sapphire half wave plate and wire-grid polarizer.
Thermopile Detector Arrays for Space Science Applications
NASA Technical Reports Server (NTRS)
Foote, M. C.; Kenyon, M.; Krueger, T. R.; McCann, T. A.; Chacon, R.; Jones, E. W.; Dickie, M. R.; Schofield, J. T.; McCleese, D. J.; Gaalema, S.
2004-01-01
Thermopile detectors are widely used in uncooled applications where small numbers of detectors are required, particularly in low-cost commercial applications or applications requiring accurate radiometry. Arrays of thermopile detectors, however, have not been developed to the extent of uncooled bolometer and pyroelectric/ferroelectric arrays. Efforts at JPL seek to remedy this deficiency by developing high performance thin-film thermopile detectors in both linear and two-dimensional formats. The linear thermopile arrays are produced by bulk micromachining and wire bonded to separate CMOS readout electronic chips. Such arrays are currently being fabricated for the Mars Climate Sounder instrument, scheduled for launch in 2005. Progress is also described towards realizing a two-dimensional thermopile array built over CMOS readout circuitry in the substrate.
Large mass bolometers for neutrinoless double beta decay detection: model and last results
NASA Astrophysics Data System (ADS)
Pedretti, Marisa; Barucci, Marco; Giuliani, Andrea; Pasca, Edoardo; Risegari, Lara; Olivieri, Emiliano; Ventura, Guglielmo
2004-01-01
Milano collaboration has been developing for many years large mass bolometers for particle detection, and in particular for the study of neutrinoless double beta decay of 130Te. The active components of the detectors are large mass (340 g and 790 g) TeO2 crystals, while Neutron Transmutation Doped Ge thermistors are used as phonon sensors. These devices work at low temperatures, about 5-10 mK. The mechanical and thermal connections of the detector to the thermal bath are made with PTFE pieces that hold the crystal on copper frames. Gold wires are used as electric connections. We have developed a complete thermal model for the bolometers and "ad hoc" measurements of the thermal parameters involved were performed in the Florence cryogenic laboratory. These studies have permitted to simulate the static and dynamic behaviours of the detectors. A satisfactory agreement between simulated and the experimental response has been obtained as far as the static behaviour is concerned, while the dynamic behaviour is not yet fully understood. These preliminary results however will enable us to design new detector structures in order to improve the signal-to-noise ratio and the reproducibility. Given the good performances of these devices (excellent energy resolutions were obtained, of the order of 2 keV at 911 keV and of 5 keV at 2615 keV), this technique is particularly suitable to detectors for gamma ray spectroscopy. Encouraged by this results, the Milano-Como group has joined a large international collaboration for the realization of CUORE (Cryogenic Underground Observatory for Rare Events), seraching for Dark Matter and neutrinoless Double Beta Decay, a crucial phenomenon for neutrino physics. The Cuoricino detector, a small scale test of CUORE detector, is an array of 62 large mass bolometers like those already described, and it is now in operation in the Gran Sasso undergrand laboratory, Italy). It is the largest array of bolometric detectors ever constructed.
The JCMT Gould Belt Survey: the effect of molecular contamination in SCUBA-2 observations of Orion A
NASA Astrophysics Data System (ADS)
Coudé, S.; Bastien, P.; Kirk, H.; Johnstone, D.; Drabek-Maunder, E.; Graves, S.; Hatchell, J.; Chapin, E. L.; Gibb, A. G.; Matthews, B.; JCMT Gould Belt Survey Team
2016-04-01
Thermal emission from cold dust grains in giant molecular clouds can be used to probe the physical properties, such as density, temperature and emissivity in star-forming regions. We present the Submillimetre Common-User Bolometer Array (SCUBA-2) shared-risk observations at 450 and 850 μm of the Orion A molecular cloud complex taken at the James Clerk Maxwell Telescope (JCMT). Previous studies showed that molecular emission lines can contribute significantly to the measured fluxes in those continuum bands. We use the Heterodyne Array Receiver Programme 12CO J = 3-2 integrated intensity map for Orion A in order to evaluate the molecular line contamination and its effects on the SCUBA-2 maps. With the corrected fluxes, we have obtained a new spectral index α map for the thermal emission of dust in the well-known integral-shaped filament. Furthermore, we compare a sample of 33 sources, selected over the Orion A molecular cloud complex for their high 12CO J = 3-2 line contamination, to 27 previously identified clumps in OMC 4. This allows us to quantify the effect of line contamination on the ratio of 850-450 μm flux densities and how it modifies the deduced spectral index of emissivity β for the dust grains. We also show that at least one Spitzer-identified protostellar core in OMC 5 has a 12CO J = 3-2 contamination level of 16 per cent. Furthermore, we find the strongest contamination level (44 per cent) towards a young star with disc near OMC 2. This work is part of the JCMT Gould Belt Legacy Survey.
VizieR Online Data Catalog: Photometry of the transient event iPTF16fnl (Blagorodnova+, 2017)
NASA Astrophysics Data System (ADS)
Blagorodnova, N.; Gezari, S.; Hung, T.; Kulkarni, S. R.; Cenko, S. B.; Pasham, D. R.; Yan, L.; Arcavi, I.; Ben-Ami, S.; Bue, B. D.; Cantwell, T.; Cao, Y.; Castro-Tirado, A. J.; Fender, R.; Fremling, C.; Gal-Yam, A.; Ho, A. Y. Q.; Horesh, A.; Hosseinzadeh, G.; Kasliwal, M. M.; Kong, A. K. H.; Laher, R. R.; Leloudas, G.; Lunnan, R.; Masci, F. J.; Mooley, K.; Neill, J. D.; Nugent, P.; Powell, M.; Valeev, A. F.; Vreeswijk, P. M.; Walters, R.; Wozniak, P.
2018-03-01
On the night after discovery (2016 August 29th), we observed the source with the FLOYDS spectrograph on the Las Cumbres Observatory (LCO) 2m telescope and the Spectral Energy Distribution Machine (SEDM) on the Palomar 60 inch (P60) telescope. The SEDM is a ultra-low resolution (R~100) integral-field-unit (IFU) spectrograph. Following spectroscopic identification of iPTF16fnl as a tidal disruption event (TDE) candidate, the source was monitored at Palomar and by the Ultraviolet and Optical Telescope (UVOT) on board the Swift observatory. The UVOT observations were taken in UVW2, UVM2, UVW1, U, B, and V. At Palomar, photometry in the g and Mould-R bands were obtained with the iPTF mosaic wide-field camera on the Palomar 48-inch telescope (P48). Table 3 reports the measured Swift aperture photometry magnitudes and the difference-imaging photometry for the Palomar data spanning 2016 Aug to 2016 Dec. Radio follow-up observations of iPTF16fnl were taken with the Jansky Very Large Array (VLA; PI A. Horesh), the Arcminute Microkelvin Imager (AMI; PI K. Mooley) and the James Clerk Maxwell Telescope and the Submillimetre Common-User Bolometer Array 2 (JCMT/SCUBA-2; PI A. K. H. Kong). We also observed the location of iPTF16fnl with the X-Ray Telescope (XRT) on board the Swift satellite beginning at 19:32 UT on 30 August 2016. Regular monitoring of the field in photon counting mode continued over the course of the next four months (PIs T. Holoien and B. Cenko). (1 data file).
Discovery of an Extremely Luminous Dust-obscured Galaxy Observed with SDSS, WISE, JCMT, and SMA
NASA Astrophysics Data System (ADS)
Toba, Yoshiki; Ueda, Junko; Lim, Chen-Fatt; Wang, Wei-Hao; Nagao, Tohru; Chang, Yu-Yen; Saito, Toshiki; Kawabe, Ryohei
2018-04-01
We present the discovery of an extremely luminous dust-obscured galaxy (DOG) at z spec = 3.703, WISE J101326.25+611220.1. This DOG is selected as a candidate of extremely luminous infrared (IR) galaxies based on the photometry from the Sloan Digital Sky Survey and Wide-field Infrared Survey Explorer. In order to derive its accurate IR luminosity, we perform follow-up observations at 450 and 850 μm using the Submillimetre Common User Bolometer Array 2 on the James Clerk Maxwell Telescope, and at 870 and 1300 μm using the Submillimeter Array, which enable us to pin down its IR Spectral Energy Distribution (SED). We perform SED fitting using 14 photometric data (0.4–1300 μm) and estimate its IR luminosity, L IR (8–1000 μm), to be {2.2}-1.0+1.5 ×1014 L ⊙, making it one of the most luminous IR galaxies in the universe. The energy contribution from an active galactic nucleus (AGN) to the IR luminosity is {94}-20+6%, which indicates that it is an AGN-dominated DOG. On the other hand, its stellar mass (M *) and star formation rate (SFR) are {log}({M}* /{M}ȯ ) = {11.2}-0.2+0.6 and {log}({SFR}/{M}ȯ {yr}}-1) = {3.1}-0.1+0.2, respectively, which means that this DOG can be considered a starburst galaxy in the M *–SFR plane. This extremely luminous DOG shows significant AGN and star-forming activity that provides us with an important laboratory to probe the maximum phase of the coevolution of galaxies and supermassive black holes.
2013-04-01
liquid nitrogen cooled mercury cadmium telluride ( MCT ) detector and compare their performance to a commercial FT-IR imaging instrument. We examine the...telluride ( MCT ) detector (InfraRed Associates, Stuart, FL), and in a second widefield imaging configuration, we employed a cooled focal plane array (FPA...experiment, a cooled focal plane array (FPA) was substituted for the bolometer. (b) A cooled single-element MCT detector is utilized with an adjustable
NASA Astrophysics Data System (ADS)
Rostem, Karwan; Ali, Aamir; Appel, John W.; Bennett, Charles L.; Brown, Ari; Chang, Meng-Ping; Chuss, David T.; Colazo, Felipe A.; Costen, Nick; Denis, Kevin L.; Essinger-Hileman, Tom; Hu, Ron; Marriage, Tobias A.; Moseley, Samuel H.; Stevenson, Thomas R.; U-Yen, Kongpop; Wollack, Edward J.; Xu, Zhilei
2016-07-01
We describe feedhorn-coupled polarization-sensitive detector arrays that utilize monocrystalline silicon as the dielectric substrate material. Monocrystalline silicon has a low-loss tangent and repeatable dielectric constant, characteristics that are critical for realizing efficient and uniform superconducting microwave circuits. An additional advantage of this material is its low specific heat. In a detector pixel, two Transition-Edge Sensor (TES) bolometers are antenna-coupled to in-band radiation via a symmetric planar orthomode transducer (OMT). Each orthogonal linear polarization is coupled to a separate superconducting microstrip transmission line circuit. On-chip filtering is employed to both reject out-of-band radiation from the upper band edge to the gap frequency of the niobium superconductor, and to flexibly define the bandwidth for each TES to meet the requirements of the application. The microwave circuit is compatible with multi-chroic operation. Metalized silicon platelets are used to define the backshort for the waveguide probes. This micro-machined structure is also used to mitigate the coupling of out-of-band radiation to the microwave circuit. At 40 GHz, the detectors have a measured efficiency of ˜90%. In this paper, we describe the development of the 90 GHz detector arrays that will be demonstrated using the Cosmology Large Angular Scale Surveyor (CLASS) ground-based telescope.
A Multiwavelength Characterization of Proto-brown-dwarf Candidates in Serpens
NASA Astrophysics Data System (ADS)
Riaz, B.; Vorobyov, E.; Harsono, D.; Caselli, P.; Tikare, K.; Gonzalez-Martin, O.
2016-11-01
We present results from a deep submillimeter survey in the Serpens Main and Serpens/G3-G6 clusters, conducted with the Submillimetre Common-User Bolometer Array (SCUBA-2) at the James Clerk Maxwell Telescope. We have combined near- and mid-infrared spectroscopy, Herschel PACS far-infrared photometry, submillimeter continuum, and molecular gas line observations, with the aim of conducting a detailed multiwavelength characterization of “proto-brown-dwarf” (proto-BD) candidates in Serpens. We have performed continuum and line radiative transfer modeling and have considered various classification schemes to understand the structure and the evolutionary stage of the system. We have identified four proto-BD candidates, of which the lowest-luminosity source has an L bol ˜ 0.05 L ⊙. Two of these candidates show characteristics consistent with Stage 0/I systems, while the other two are Stage I-T/Class Flat systems with tenuous envelopes. Our work has also revealed a ˜20% fraction of misidentified Class 0/I/Flat sources that show characteristics consistent with Class II edge-on disk systems. We have set constraints on the mass of the central object using the measured bolometric luminosities and numerical simulations of stellar evolution. Considering the available gas+dust mass reservoir and the current mass of the central source, three of these candidates are likely to evolve into BDs.
A MULTIWAVELENGTH CHARACTERIZATION OF PROTO-BROWN-DWARF CANDIDATES IN SERPENS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riaz, B.; Caselli, P.; Vorobyov, E.
2016-11-10
We present results from a deep submillimeter survey in the Serpens Main and Serpens/G3–G6 clusters, conducted with the Submillimetre Common-User Bolometer Array (SCUBA-2) at the James Clerk Maxwell Telescope. We have combined near- and mid-infrared spectroscopy, Herschel PACS far-infrared photometry, submillimeter continuum, and molecular gas line observations, with the aim of conducting a detailed multiwavelength characterization of “proto-brown-dwarf” (proto-BD) candidates in Serpens. We have performed continuum and line radiative transfer modeling and have considered various classification schemes to understand the structure and the evolutionary stage of the system. We have identified four proto-BD candidates, of which the lowest-luminosity source hasmore » an L {sub bol} ∼ 0.05 L {sub ☉}. Two of these candidates show characteristics consistent with Stage 0/I systems, while the other two are Stage I-T/Class Flat systems with tenuous envelopes. Our work has also revealed a ∼20% fraction of misidentified Class 0/I/Flat sources that show characteristics consistent with Class II edge-on disk systems. We have set constraints on the mass of the central object using the measured bolometric luminosities and numerical simulations of stellar evolution. Considering the available gas+dust mass reservoir and the current mass of the central source, three of these candidates are likely to evolve into BDs.« less
The star-forming content of the W3 giant molecular cloud
NASA Astrophysics Data System (ADS)
Moore, T. J. T.; Bretherton, D. E.; Fujiyoshi, T.; Ridge, N. A.; Allsopp, J.; Hoare, M. G.; Lumsden, S. L.; Richer, J. S.
2007-08-01
We have surveyed a ˜0.9 square degree area of the W3 giant molecular cloud (GMC) and star-forming region in the 850-μm continuum, using the Submillimetre Common-User Bolometer Array on the James Clerk Maxwell Telescope. A complete sample of 316 dense clumps were detected with a mass range from around 13 to 2500 M⊙. Part of the W3 GMC is subject to an interaction with the H ii region and fast stellar winds generated by the nearby W4 OB association. We find that the fraction of total gas mass in dense, 850-μm traced structures is significantly altered by this interaction, being around 5-13 per cent in the undisturbed cloud but ˜25-37 per cent in the feedback-affected region. The mass distribution in the detected clump sample depends somewhat on assumptions of dust temperature and is not a simple, single power law but contains significant structure at intermediate masses. This structure is likely to be due to crowding of sources near or below the spatial resolution of the observations. There is little evidence of any difference between the index of the high-mass end of the clump mass function in the compressed region and in the unaffected cloud. The consequences of these results are discussed in terms of current models of triggered star formation.
Overdensities of SMGs around WISE-selected, ultraluminous, high-redshift AGNs
NASA Astrophysics Data System (ADS)
Jones, Suzy F.; Blain, Andrew W.; Assef, Roberto J.; Eisenhardt, Peter; Lonsdale, Carol; Condon, James; Farrah, Duncan; Tsai, Chao-Wei; Bridge, Carrie; Wu, Jingwen; Wright, Edward L.; Jarrett, Tom
2017-08-01
We investigate extremely luminous dusty galaxies in the environments around Wide-field Infrared Survey Explorer (WISE)-selected hot dust-obscured galaxies (Hot DOGs) and WISE/radio-selected active galactic nuclei (AGNs) at average redshifts of z = 2.7 and 1.7, respectively. Previous observations have detected overdensities of companion submillimetre-selected sources around 10 Hot DOGs and 30 WISE/radio AGNs, with overdensities of ˜2-3 and ˜5-6, respectively. We find that the space densities in both samples to be overdense compared to normal star-forming galaxies and submillimetre galaxies (SMGs) in the Submillimetre Common-User Bolometer Array 2 (SCUBA-2) Cosmology Legacy Survey (S2CLS). Both samples of companion sources have consistent mid-infrared (mid-IR) colours and mid-IR to submm ratios as SMGs. The brighter population around WISE/radio AGNs could be responsible for the higher overdensity reported. We also find that the star formation rate densities are higher than the field, but consistent with clusters of dusty galaxies. WISE-selected AGNs appear to be good signposts for protoclusters at high redshift on arcmin scales. The results reported here provide an upper limit to the strength of angular clustering using the two-point correlation function. Monte Carlo simulations show no angular correlation, which could indicate protoclusters on scales larger than the SCUBA-2 1.5-arcmin scale maps.
Hafnium Films and Magnetic Shielding for TIME, A mm-Wavelength Spectrometer Array
NASA Astrophysics Data System (ADS)
Hunacek, J.; Bock, J.; Bradford, C. M.; Butler, V.; Chang, T.-C.; Cheng, Y.-T.; Cooray, A.; Crites, A.; Frez, C.; Hailey-Dunsheath, S.; Hoscheit, B.; Kim, D. W.; Li, C.-T.; Marrone, D.; Moncelsi, L.; Shirokoff, E.; Steinbach, B.; Sun, G.; Trumper, I.; Turner, A.; Uzgil, B.; Weber, A.; Zemcov, M.
2018-04-01
TIME is a mm-wavelength grating spectrometer array that will map fluctuations of the 157.7-μm emission line of singly ionized carbon ([CII]) during the epoch of reionization (redshift z ˜ 5-9). Sixty transition-edge sensor (TES) bolometers populate the output arc of each of the 32 spectrometers, for a total of 1920 detectors. Each bolometer consists of gold absorber on a ˜ 3 × 3 mm silicon nitride micro-mesh suspended near the corners by 1 × 1 × 500 μm silicon nitride legs targeting a photon-noise-dominated NEP ˜ 1 × 10^{-17} W/√{Hz} . Hafnium films are explored as a lower-T_c alternative to Ti (500 mK) for TIME TESs, allowing thicker support legs for improved yield. Hf T_c is shown to vary between 250 and 450 mK when varying the resident Ar pressure during deposition. Magnetic shielding designs and simulations are presented for the TIME first-stage SQUIDs. Total axial field suppression is predicted to be 5 × 10^7.
NASA Astrophysics Data System (ADS)
Bergé, L.; Chapellier, M.; de Combarieu, M.; Dumoulin, L.; Giuliani, A.; Gros, M.; de Marcillac, P.; Marnieros, S.; Nones, C.; Novati, V.; Olivieri, E.; Paul, B.; Poda, D. V.; Redon, T.; Siebenborn, B.; Zolotarova, A. S.; Armengaud, E.; Augier, C.; Benoît, A.; Billard, J.; Broniatowski, A.; Camus, P.; Cazes, A.; Charlieux, F.; De Jesus, M.; Eitel, K.; Foerster, N.; Gascon, J.; Jin, Y.; Juillard, A.; Kleifges, M.; Kozlov, V.; Kraus, H.; Kudryavtsev, V. A.; Le Sueur, H.; Maisonobe, R.; Navick, X.-F.; Pari, P.; Queguiner, E.; Rozov, S.; Sanglard, V.; Vagneron, L.; Weber, M.; Yakushev, E.
2018-03-01
In the present work, we describe the results obtained with a large (≈133 cm3 ) TeO2 bolometer, with a view to a search for neutrinoless double-β decay (0 ν β β ) of 130Te. We demonstrate an efficient α -particle discrimination (99.9%) with a high acceptance of the 0 ν β β signal (about 96%), expected at ≈2.5 MeV. This unprecedented result was possible thanks to the superior performance (10-eV rms baseline noise) of a Neganov-Luke-assisted germanium bolometer used to detect a tiny (70-eV) light signal from the TeO2 detector, dominated by γ (β )-induced Cherenkov radiation but exhibiting also a clear scintillation component. The obtained results represent a major breakthrough toward the TeO2-based version of the CUORE Upgrade with Particle IDentification (CUPID), a ton-scale cryogenic 0 ν β β experiment proposed as a followup to the Cryogenic Underground Observatory for Rare Events (CUORE) project with particle identification. The CUORE experiment recently began a search for neutrinoless double-β decay of 130Te with an array of 988 125-cm3TeO2 bolometers. The lack of α discrimination in CUORE makes α decays at the detector surface the dominant background component, at the level of ≈0.01 counts/(keV kg y) in the region of interest. We show here, for the first time with a CUORE-size bolometer and using the same technology as CUORE for the readout of both heat and light signals, that surface α background can be fully rejected.
NASA Astrophysics Data System (ADS)
Kangas, Miikka Matias
The big bang, early galaxy formation, the interstellar medium, and high z galaxy cluster evolution are all science objectives that are studied in the far infrared (FIR). The cosmological parameters that describe the universe are encoded in anisotropies in the Cosmic Microwave Background (CMB), and can be extracted from precision subdegree angular resolution FIR maps. Cryogenic bolometers are well suited for these science objectives, and are evolving rapidly today. A cryogenic bolometric system is made up of a few building blocks, which can be modularized or integrated depending on the maturity of the scientific field they are used for. Integration of systems increases with the maturity of the technology. The basic building blocks are the bolometer, the cryogenics, the dewar, the optics, the filters, and electronics. The electronics can be further subdivided into room temperature back-end and cryogenic front-end electronics. The electronics are often partly integrated into the dewar. The dewar is part of the support structure, and only the subkelvin portion the dewar is referred to as cryogenics here. Each of these can be a sophisticated engineering feat on their own, and this dissertation revolves around the development of several of these elements. The microfabrication sequence for a free standing micromesh detector was developed. Polarization preserving photometer optics and filters were constructed and tested. A test dewar mechanical and optical structure was created to test single pixel photometers prior to mounting in the flight dewar. A modular flight dewar capable of holding an array of photometers and adaptable to a number of different cryogenics schemes and detector arrays was engineered and constructed. A zero gravity dilution refrigerator coil was constructed and tested. A corrugated platelet array concept was designed and tested. Metal mesh filter design and fabrication techniques were developed. Kevlar isolator structures were improved to work in subkelvin dewars, and detector modules that mounted the bolometer chips to the photometer tubes were created. These subsystems underwent testing to compare the predicted behavior and actual performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Kun-lun; Ren, Xiao-dong; Huang, Xian-bin, E-mail: caephxb2003@aliyun.com
2015-11-15
Fast z-pinch is a very efficient way of converting electromagnetic energy to radiation. With an 8-10 MA current on primary test stand facility, about 1 MJ electromagnetic energy is delivered to vacuum chamber, which heats z-pinch plasma to radiate soft x-ray. To develop a pulsed high power x-ray source, we studied the applicability of diagnosing x-ray power from tungsten wire array z-pinch with a flat spectral response x-ray diode (FSR-XRD). The detector was originally developed to diagnose radiation of a hohlraum in SG-III prototype laser facility. It utilized a gold cathode XRD and a specially configured compound gold filter tomore » yield a nearly flat spectral response in photon energy range of 0.1-4 keV. In practice, it was critical to avoid surface contamination of gold cathode. It is illustrated that an exposure of an XRD to multiple shots caused a significant change of response. Thus, in diagnosing x-ray power and energy, we used each XRD in only one shot after calibration. In a shot serial, output of FSR-XRD was compared with output of a nickel bolometer. In these shots, the outputs agreed with each other within their uncertainties which were about 12% for FSR-XRD and about 15% for bolometer. Moreover, the ratios between the FSR-XRD and the bolometer among different shots were explored. In 8 shots, the standard deviation of the ratio was 6%. It is comparable to XRD response change of 7%.« less
Nanostructured vanadium oxide thin film with high TCR at room temperature for microbolometer
NASA Astrophysics Data System (ADS)
Wang, Bin; Lai, Jianjun; Li, Hui; Hu, Haoming; Chen, Sihai
2013-03-01
In order to obtain high quality of thermal sensitive material, VOx thin film of high temperature coefficient of resistance (TCR) of 6.5%/K at room temperature has been deposited by reactive ion beam sputtering and post annealing method. AFM and XRD measurements indicate that the VOx thin film with nanostructured crystalline is composed of VO2 and V2O3. The nanostructured VOx microbolometer has been designed and fabricated. The measurement of the film system with TiN absorbing layer indicates that it has about 92% infrared absorption in the range of 8-14 μm. The performance of this bolometer, comparing with that of bolometer with common VOx, has a better result. At 20 Hz frequency and 10 μA bias current, the bolometer with high TCR has reached detectivity of 1.0 × 109 cm Hz1/2/W. It also indicates that this nanostructured VOx thin film has not only a higher TCR but also a lower noise than common VOx thin film without annealing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lovell, Jack, E-mail: jack.lovell@durham.ac.uk; Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxon OX14 3DB; Naylor, Graham
A new resistive bolometer system has been developed for MAST-Upgrade. It will measure radiated power in the new Super-X divertor, with millisecond time resolution, along 16 vertical and 16 horizontal lines of sight. The system uses a Xilinx Zynq-7000 series Field-Programmable Gate Array (FPGA) in the D-TACQ ACQ2106 carrier to perform real time data acquisition and signal processing. The FPGA enables AC-synchronous detection using high performance digital filtering to achieve a high signal-to-noise ratio and will be able to output processed data in real time with millisecond latency. The system has been installed on 8 previously unused channels of themore » JET vertical bolometer system. Initial results suggest good agreement with data from existing vertical channels but with higher bandwidth and signal-to-noise ratio.« less
Fabrication of Low-Noise TES Arrays for the SAFARI Instrument on SPICA
NASA Astrophysics Data System (ADS)
Ridder, M. L.; Khosropanah, P.; Hijmering, R. A.; Suzuki, T.; Bruijn, M. P.; Hoevers, H. F. C.; Gao, J. R.; Zuiddam, M. R.
2016-07-01
Ultra-low-noise transition edge sensors (TES) with noise equivalent power lower than 2 × 10^{-19} W/Hz^{1/2 } have been fabricated by SRON, which meet the sensitivity requirements for the far-infrared SAFARI instrument on space infrared telescope for cosmology and astrophysics. Our TES detector is based on a titanium/gold (Ti/Au) thermistor on a silicon nitride (SiN) island. The island is thermally linked with SiN legs to a silicon support structure at the bath temperature. The SiN legs are very thin (250 nm), narrow (500 nm), and long (above 300 {\\upmu } m); these dimensions are needed in leg-isolated bolometers to achieve the required level of sensitivity. In this paper, we describe the latest fabrication process for our TES bolometers with improved sensitivity.
Carbon Nanotube Bolometer for Absolute FTIR Spectroscopy
NASA Astrophysics Data System (ADS)
Woods, Solomon; Neira, Jorge; Tomlin, Nathan; Lehman, John
We have developed and calibrated planar electrical-substitution bolometers which employ absorbers made from vertically-aligned carbon nanotube arrays. The nearly complete absorption of light by the carbon nanotubes from the visible range to the far-infrared can be exploited to enable a device with read-out in native units equivalent to optical power. Operated at cryogenic temperatures near 4 K, these infrared detectors are designed to have time constant near 10 ms and a noise floor of about 10 pW. Built upon a micro-machined silicon platform, each device has an integrated heater and thermometer, either a carbon nanotube thermistor or superconducting transition edge sensor, for temperature control. We are optimizing temperature-controlled measurement techniques to enable high resolution spectral calibrations using these devices with a Fourier-transform spectrometer.
NASA Astrophysics Data System (ADS)
Sauvé, Alexandre; Montier, Ludovic
2016-12-01
Context: Bolometers are high sensitivity detector commonly used in Infrared astronomy. The HFI instrument of the Planck satellite makes extensive use of them, but after the satellite launch two electronic related problems revealed critical. First an unexpected excess response of detectors at low optical excitation frequency for ν < 1 Hz, and secondly the Analog To digital Converter (ADC) component had been insufficiently characterized on-ground. These two problems require an exquisite knowledge of detector response. However bolometers have highly nonlinear characteristics, coming from their electrical and thermal coupling making them very difficult to model. Goal: We present a method to build the analytical transfer function in frequency domain which describe the voltage response of an Alternative Current (AC) biased bolometer to optical excitation, based on the standard bolometer model. This model is built using the setup of the Planck/HFI instrument and offers the major improvement of being based on a physical model rather than the currently in use had-hoc model based on Direct Current (DC) bolometer theory. Method: The analytical transfer function expression will be presented in matrix form. For this purpose, we build linearized versions of the bolometer electro thermal equilibrium. A custom description of signals in frequency is used to solve the problem with linear algebra. The model performances is validated using time domain simulations. Results: The provided expression is suitable for calibration and data processing. It can also be used to provide constraints for fitting optical transfer function using real data from steady state electronic response and optical response. The accurate description of electronic response can also be used to improve the ADC nonlinearity correction for quickly varying optical signals.
The LiteBIRD Satellite Mission: Sub-Kelvin Instrument
NASA Astrophysics Data System (ADS)
Suzuki, A.; Ade, P. A. R.; Akiba, Y.; Alonso, D.; Arnold, K.; Aumont, J.; Baccigalupi, C.; Barron, D.; Basak, S.; Beckman, S.; Borrill, J.; Boulanger, F.; Bucher, M.; Calabrese, E.; Chinone, Y.; Cho, S.; Crill, B.; Cukierman, A.; Curtis, D. W.; de Haan, T.; Dobbs, M.; Dominjon, A.; Dotani, T.; Duband, L.; Ducout, A.; Dunkley, J.; Duval, J. M.; Elleflot, T.; Eriksen, H. K.; Errard, J.; Fischer, J.; Fujino, T.; Funaki, T.; Fuskeland, U.; Ganga, K.; Goeckner-Wald, N.; Grain, J.; Halverson, N. W.; Hamada, T.; Hasebe, T.; Hasegawa, M.; Hattori, K.; Hattori, M.; Hayes, L.; Hazumi, M.; Hidehira, N.; Hill, C. A.; Hilton, G.; Hubmayr, J.; Ichiki, K.; Iida, T.; Imada, H.; Inoue, M.; Inoue, Y.; Irwin, K. D.; Ishino, H.; Jeong, O.; Kanai, H.; Kaneko, D.; Kashima, S.; Katayama, N.; Kawasaki, T.; Kernasovskiy, S. A.; Keskitalo, R.; Kibayashi, A.; Kida, Y.; Kimura, K.; Kisner, T.; Kohri, K.; Komatsu, E.; Komatsu, K.; Kuo, C. L.; Kurinsky, N. A.; Kusaka, A.; Lazarian, A.; Lee, A. T.; Li, D.; Linder, E.; Maffei, B.; Mangilli, A.; Maki, M.; Matsumura, T.; Matsuura, S.; Meilhan, D.; Mima, S.; Minami, Y.; Mitsuda, K.; Montier, L.; Nagai, M.; Nagasaki, T.; Nagata, R.; Nakajima, M.; Nakamura, S.; Namikawa, T.; Naruse, M.; Nishino, H.; Nitta, T.; Noguchi, T.; Ogawa, H.; Oguri, S.; Okada, N.; Okamoto, A.; Okamura, T.; Otani, C.; Patanchon, G.; Pisano, G.; Rebeiz, G.; Remazeilles, M.; Richards, P. L.; Sakai, S.; Sakurai, Y.; Sato, Y.; Sato, N.; Sawada, M.; Segawa, Y.; Sekimoto, Y.; Seljak, U.; Sherwin, B. D.; Shimizu, T.; Shinozaki, K.; Stompor, R.; Sugai, H.; Sugita, H.; Suzuki, J.; Tajima, O.; Takada, S.; Takaku, R.; Takakura, S.; Takatori, S.; Tanabe, D.; Taylor, E.; Thompson, K. L.; Thorne, B.; Tomaru, T.; Tomida, T.; Tomita, N.; Tristram, M.; Tucker, C.; Turin, P.; Tsujimoto, M.; Uozumi, S.; Utsunomiya, S.; Uzawa, Y.; Vansyngel, F.; Wehus, I. K.; Westbrook, B.; Willer, M.; Whitehorn, N.; Yamada, Y.; Yamamoto, R.; Yamasaki, N.; Yamashita, T.; Yoshida, M.
2018-05-01
Inflation is the leading theory of the first instant of the universe. Inflation, which postulates that the universe underwent a period of rapid expansion an instant after its birth, provides convincing explanation for cosmological observations. Recent advancements in detector technology have opened opportunities to explore primordial gravitational waves generated by the inflation through "B-mode" (divergent-free) polarization pattern embedded in the cosmic microwave background anisotropies. If detected, these signals would provide strong evidence for inflation, point to the correct model for inflation, and open a window to physics at ultra-high energies. LiteBIRD is a satellite mission with a goal of detecting degree-and-larger-angular-scale B-mode polarization. LiteBIRD will observe at the second Lagrange point with a 400 mm diameter telescope and 2622 detectors. It will survey the entire sky with 15 frequency bands from 40 to 400 GHz to measure and subtract foregrounds. The US LiteBIRD team is proposing to deliver sub-Kelvin instruments that include detectors and readout electronics. A lenslet-coupled sinuous antenna array will cover low-frequency bands (40-235 GHz) with four frequency arrangements of trichroic pixels. An orthomode-transducer-coupled corrugated horn array will cover high-frequency bands (280-402 GHz) with three types of single frequency detectors. The detectors will be made with transition edge sensor (TES) bolometers cooled to a 100 milli-Kelvin base temperature by an adiabatic demagnetization refrigerator. The TES bolometers will be read out using digital frequency multiplexing with Superconducting QUantum Interference Device (SQUID) amplifiers. Up to 78 bolometers will be multiplexed with a single SQUID amplifier. We report on the sub-Kelvin instrument design and ongoing developments for the LiteBIRD mission.
NASA Technical Reports Server (NTRS)
Allen, Christine A.; Chervenak, James A.; Hsieh, Wen-Ting; McClanahan, Richard A.; Miller, Timothy M.; Mitchell, Robert; Moseley, S. Harvey; Staguhn, Johannes; Stevenson, Thomas R.
2003-01-01
The next generation of ultra-low power bolometer arrays, with applications in far infrared imaging, spectroscopy and polarimetry, utilizes a superconducting bilayer as the sensing element to enable SQUID multiplexed readout. Superconducting transition edge sensors (TES s) are being produced with dual metal systems of superconductinghormal bilayers. The transition temperature (Tc) is tuned by altering the relative thickness of the superconductor with respect to the normal layer. We are currently investigating MoAu and MoCu bilayers. We have developed a dry-etching process for MoAu TES s with integrated molybdenum leads, and are working on adapting the process to MoCu. Dry etching has the advantage over wet etching in the MoAu system in that one can achieve a high degree of selectivity, greater than 10, using argon ME, or argon ion milling, for patterning gold on molybdenum. Molybdenum leads are subsequently patterned using fluorine plasma.. The dry-etch technique results in a smooth, featureless TES with sharp sidewalls, no undercutting of the Mo beneath the normal metal, and Mo leads with high critical current. The effects of individual processing parameters on the characteristics of the transition will be reported.
Studies of Impurities in the Pegasus Spherical Tokamak
NASA Astrophysics Data System (ADS)
Rodriguez Sanchez, C.; Bodner, G. M.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Perry, J. M.; Reusch, J. A.; Weberski, J. D.
2017-10-01
Local Helicity Injection (LHI) is used to initiate ST plasmas without a solenoid. Testing predictive models for the evolution of Ip(t) during LHI requires measurement of the plasma resistivity to quantify the dissipation of helicity. To that end, three diagnostic systems are coupled with an impurity transport model to quantify plasma contaminants. These are: visible bremsstrahlung (VB) spectroscopy; bolometry; and VUV spectroscopy. A spectral survey has been performed to identify line-free regions for VB measurements in the visible. Initial VB measurements are obtained with a single sightline through the plasma, and will be expanded to an imaging array to provide spatial resolution. A SPRED multichannel VUV spectrometer is being upgraded to provide high-speed ( 0.2 ms) spectral surveys for ion species identification, with a high-resolution grating installed for metallic line identification. A 16-channel thinistor bolometer array is planned. Absolutely calibrated VB, bolometer measurements, and qualitative ion species identification from SPRED are used as constraints in an impurity transport code to estimate absolute impurity content. Earlier work using this general approach indicated Zeff < 3 , before the edge current sources were shielded to reduce plasma-injector interactions. Work supported by US DOE Grant DE-FG02-96ER54375.
Uncooled Terahertz real-time imaging 2D arrays developed at LETI: present status and perspectives
NASA Astrophysics Data System (ADS)
Simoens, François; Meilhan, Jérôme; Dussopt, Laurent; Nicolas, Jean-Alain; Monnier, Nicolas; Sicard, Gilles; Siligaris, Alexandre; Hiberty, Bruno
2017-05-01
As for other imaging sensor markets, whatever is the technology, the commercial spread of terahertz (THz) cameras has to fulfil simultaneously the criteria of high sensitivity and low cost and SWAP (size, weight and power). Monolithic silicon-based 2D sensors integrated in uncooled THz real-time cameras are good candidates to meet these requirements. Over the past decade, LETI has been studying and developing such arrays with two complimentary technological approaches, i.e. antenna-coupled silicon bolometers and CMOS Field Effect Transistors (FET), both being compatible to standard silicon microelectronics processes. LETI has leveraged its know-how in thermal infrared bolometer sensors in developing a proprietary architecture for THz sensing. High technological maturity has been achieved as illustrated by the demonstration of fast scanning of large field of view and the recent birth of a commercial camera. In the FET-based THz field, recent works have been focused on innovative CMOS read-out-integrated circuit designs. The studied architectures take advantage of the large pixel pitch to enhance the flexibility and the sensitivity: an embedded in-pixel configurable signal processing chain dramatically reduces the noise. Video sequences at 100 frames per second using our 31x31 pixels 2D Focal Plane Arrays (FPA) have been achieved. The authors describe the present status of these developments and perspectives of performance evolutions are discussed. Several experimental imaging tests are also presented in order to illustrate the capabilities of these arrays to address industrial applications such as non-destructive testing (NDT), security or quality control of food.
Status of the CUORE and results from the CUORE-0 neutrinoless double beta decay experiments
Sisti, M.; Artusa, D. R.; Avignone, F. T.; ...
2016-05-31
CUORE is a 741 kg array of TeO 2 bolometers for the search of neutrinoless double beta decay of 130Te. The detector is being constructed at the Laboratori Nazionali del Gran Sasso, Italy, where it will start taking data in 2015. If the target background of 0.01 counts/(keV·kg·y) will be reached, in five years of data taking CUORE will have a 1σ half life sensitivity of 10 26y. CUORE-0 is a smaller experiment constructed to test and demonstrate the performances expected for CUORE. The detector is a single tower of 52 CUORE-like bolometers that started taking data in spring 2013.more » The status and perspectives of CUORE will be discussed, and the first CUORE-0 data will be presented.« less
Status of the CUORE and results from the CUORE-0 neutrinoless double beta decay experiments
NASA Astrophysics Data System (ADS)
Sisti, M.; Artusa, D. R.; Avignone, F. T.; Azzolini, O.; Balata, M.; Banks, T. I.; Bari, G.; Beeman, J.; Bellini, F.; Bersani, A.; Biassoni, M.; Brofferio, C.; Bucci, C.; Cai, X. Z.; Camacho, A.; Caminata, A.; Canonica, L.; Cao, X. G.; Capelli, S.; Cappelli, L.; Carbone, L.; Cardani, L.; Casali, N.; Cassina, L.; Chiesa, D.; Chott, N.; Clemenza, M.; Copello, S.; Cosmelli, C.; Cremonesi, O.; Creswick, R. J.; Cushman, J. S.; Dafinei, I.; Dally, A.; Datskov, V.; Dell'Oro, S.; Deninno, M. M.; Di Domizio, S.; di Vacri, M. L.; Drobizhev, A.; Ejzak, L.; Fang, D. Q.; Farach, H. A.; Faverzani, M.; Fernandes, G.; Ferri, E.; Ferroni, F.; Fiorini, E.; Franceschi, M. A.; Freedman, S. J.; Fujikawa, B. K.; Giachero, A.; Gironi, L.; Giuliani, A.; Gorla, P.; Gotti, C.; Gutierrez, T. D.; Haller, E. E.; Han, K.; Heeger, K. M.; Hennings-Yeomans, R.; Hickerson, K. P.; Huang, H. Z.; Kadel, R.; Keppel, G.; Kolomensky, Yu. G.; Li, Y. L.; Ligi, C.; Lim, K. E.; Liu, X.; Ma, Y. G.; Maiano, C.; Maino, M.; Martinez, M.; Maruyama, R. H.; Mei, Y.; Moggi, N.; Morganti, S.; Napolitano, T.; Nastasi, M.; Nisi, S.; Nones, C.; Norman, E. B.; Nucciotti, A.; O'Donnell, T.; Orio, F.; Orlandi, D.; Ouellet, J. L.; Pagliarone, C. E.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pedretti, M.; Pessina, G.; Pettinacci, V.; Piperno, G.; Pira, C.; Pirro, S.; Pozzi, S.; Previtali, E.; Rosenfeld, C.; Rusconi, C.; Sala, E.; Sangiorgio, S.; Scielzo, N. D.; Smith, A. R.; Taffarello, L.; Tenconi, M.; Terranova, F.; Tian, W. D.; Tomei, C.; Trentalange, S.; Ventura, G.; Vignati, M.; Wang, B. S.; Wang, H. W.; Wielgus, L.; Wilson, J.; Winslow, L. A.; Wise, T.; Woodcraft, A.; Zanotti, L.; Zarra, C.; Zhang, G. Q.; Zhu, B. X.; Zucchelli, S.
2016-04-01
CUORE is a 741 kg array of TeO2 bolometers for the search of neutrinoless double beta decay of 130Te. The detector is being constructed at the Laboratori Nazionali del Gran Sasso, Italy, where it will start taking data in 2015. If the target background of 0.01 counts / (keV ṡkg ṡy) will be reached, in five years of data taking CUORE will have a 1σ half life sensitivity of 1026 y. CUORE-0 is a smaller experiment constructed to test and demonstrate the performances expected for CUORE. The detector is a single tower of 52 CUORE-like bolometers that started taking data in spring 2013. The status and perspectives of CUORE will be discussed, and the first CUORE-0 data will be presented.
NASA Technical Reports Server (NTRS)
Li, Yaqiong; Choi, Steve; Ho, Shuay-Pwu; Crowley, Kevin T.; Salatino, Maria; Simon, Sara M.; Staggs, Suzanne T.; Nati, Federico; Wollack, Edward J.
2016-01-01
The Advanced ACTPol (AdvACT) upgrade on the Atacama Cosmology Telescope (ACT) consists of multichroicTransition Edge Sensor (TES) detector arrays to measure the Cosmic Microwave Background (CMB) polarization anisotropies in multiple frequency bands. The first AdvACT detector array, sensitive to both 150 and 230 GHz, is fabricated on a 150 mm diameter wafer and read out with a completely different scheme compared to ACTPol. Approximately 2000 TES bolometers are packed into the wafer leading to both a much denser detector density and readout circuitry. The demonstration of the assembly and integration of the AdvACT arrays is important for the next generation CMB experiments, which will continue to increase the pixel number and density. We present the detailed assembly process of the first AdvACT detector array.
First Results from BISTRO: A SCUBA-2 Polarimeter Survey of the Gould Belt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward-Thompson, Derek; Pattle, Kate; Kirk, Jason M.
We present the first results from the B-fields In STar-forming Region Observations (BISTRO) survey, using the Sub-millimetre Common-User Bolometer Array 2 camera, with its associated polarimeter (POL-2), on the James Clerk Maxwell Telescope in Hawaii. We discuss the survey’s aims and objectives. We describe the rationale behind the survey, and the questions that the survey will aim to answer. The most important of these is the role of magnetic fields in the star formation process on the scale of individual filaments and cores in dense regions. We describe the data acquisition and reduction processes for POL-2, demonstrating both repeatability andmore » consistency with previous data. We present a first-look analysis of the first results from the BISTRO survey in the OMC 1 region. We see that the magnetic field lies approximately perpendicular to the famous “integral filament” in the densest regions of that filament. Furthermore, we see an “hourglass” magnetic field morphology extending beyond the densest region of the integral filament into the less-dense surrounding material, and discuss possible causes for this. We also discuss the more complex morphology seen along the Orion Bar region. We examine the morphology of the field along the lower-density northeastern filament. We find consistency with previous theoretical models that predict magnetic fields lying parallel to low-density, non-self-gravitating filaments, and perpendicular to higher-density, self-gravitating filaments.« less
First Results from BISTRO: A SCUBA-2 Polarimeter Survey of the Gould Belt
NASA Astrophysics Data System (ADS)
Ward-Thompson, Derek; Pattle, Kate; Bastien, Pierre; Furuya, Ray S.; Kwon, Woojin; Lai, Shih-Ping; Qiu, Keping; Berry, David; Choi, Minho; Coudé, Simon; Di Francesco, James; Hoang, Thiem; Franzmann, Erica; Friberg, Per; Graves, Sarah F.; Greaves, Jane S.; Houde, Martin; Johnstone, Doug; Kirk, Jason M.; Koch, Patrick M.; Kwon, Jungmi; Lee, Chang Won; Li, Di; Matthews, Brenda C.; Mottram, Joseph C.; Parsons, Harriet; Pon, Andy; Rao, Ramprasad; Rawlings, Mark; Shinnaga, Hiroko; Sadavoy, Sarah; van Loo, Sven; Aso, Yusuke; Byun, Do-Young; Eswaraiah, Chakali; Chen, Huei-Ru; Chen, Mike C.-Y.; Chen, Wen Ping; Ching, Tao-Chung; Cho, Jungyeon; Chrysostomou, Antonio; Chung, Eun Jung; Doi, Yasuo; Drabek-Maunder, Emily; Eyres, Stewart P. S.; Fiege, Jason; Friesen, Rachel K.; Fuller, Gary; Gledhill, Tim; Griffin, Matt J.; Gu, Qilao; Hasegawa, Tetsuo; Hatchell, Jennifer; Hayashi, Saeko S.; Holland, Wayne; Inoue, Tsuyoshi; Inutsuka, Shu-ichiro; Iwasaki, Kazunari; Jeong, Il-Gyo; Kang, Ji-hyun; Kang, Miju; Kang, Sung-ju; Kawabata, Koji S.; Kemper, Francisca; Kim, Gwanjeong; Kim, Jongsoo; Kim, Kee-Tae; Kim, Kyoung Hee; Kim, Mi-Ryang; Kim, Shinyoung; Lacaille, Kevin M.; Lee, Jeong-Eun; Lee, Sang-Sung; Li, Dalei; Li, Hua-bai; Liu, Hong-Li; Liu, Junhao; Liu, Sheng-Yuan; Liu, Tie; Lyo, A.-Ran; Mairs, Steve; Matsumura, Masafumi; Moriarty-Schieven, Gerald H.; Nakamura, Fumitaka; Nakanishi, Hiroyuki; Ohashi, Nagayoshi; Onaka, Takashi; Peretto, Nicolas; Pyo, Tae-Soo; Qian, Lei; Retter, Brendan; Richer, John; Rigby, Andrew; Robitaille, Jean-François; Savini, Giorgio; Scaife, Anna M. M.; Soam, Archana; Tamura, Motohide; Tang, Ya-Wen; Tomisaka, Kohji; Wang, Hongchi; Wang, Jia-Wei; Whitworth, Anthony P.; Yen, Hsi-Wei; Yoo, Hyunju; Yuan, Jinghua; Zhang, Chuan-Peng; Zhang, Guoyin; Zhou, Jianjun; Zhu, Lei; André, Philippe; Dowell, C. Darren; Falle, Sam; Tsukamoto, Yusuke
2017-06-01
We present the first results from the B-fields In STar-forming Region Observations (BISTRO) survey, using the Sub-millimetre Common-User Bolometer Array 2 camera, with its associated polarimeter (POL-2), on the James Clerk Maxwell Telescope in Hawaii. We discuss the survey’s aims and objectives. We describe the rationale behind the survey, and the questions that the survey will aim to answer. The most important of these is the role of magnetic fields in the star formation process on the scale of individual filaments and cores in dense regions. We describe the data acquisition and reduction processes for POL-2, demonstrating both repeatability and consistency with previous data. We present a first-look analysis of the first results from the BISTRO survey in the OMC 1 region. We see that the magnetic field lies approximately perpendicular to the famous “integral filament” in the densest regions of that filament. Furthermore, we see an “hourglass” magnetic field morphology extending beyond the densest region of the integral filament into the less-dense surrounding material, and discuss possible causes for this. We also discuss the more complex morphology seen along the Orion Bar region. We examine the morphology of the field along the lower-density northeastern filament. We find consistency with previous theoretical models that predict magnetic fields lying parallel to low-density, non-self-gravitating filaments, and perpendicular to higher-density, self-gravitating filaments.
A First Look at BISTRO Observations of the ρ Oph-A core
NASA Astrophysics Data System (ADS)
Kwon, Jungmi; Doi, Yasuo; Tamura, Motohide; Matsumura, Masafumi; Pattle, Kate; Berry, David; Sadavoy, Sarah; Matthews, Brenda C.; Ward-Thompson, Derek; Hasegawa, Tetsuo; Furuya, Ray S.; Pon, Andy; Di Francesco, James; Arzoumanian, Doris; Hayashi, Saeko S.; Kawabata, Koji S.; Onaka, Takashi; Choi, Minho; Kang, Miju; Hoang, Thiem; Lee, Chang Won; Lee, Sang-Sung; Liu, Hong-Li; Liu, Tie; Inutsuka, Shu-ichiro; Eswaraiah, Chakali; Bastien, Pierre; Kwon, Woojin; Lai, Shih-Ping; Qiu, Keping; Coudé, Simon; Franzmann, Erica; Friberg, Per; Graves, Sarah F.; Greaves, Jane S.; Houde, Martin; Johnstone, Doug; Kirk, Jason M.; Koch, Patrick M.; Li, Di; Parsons, Harriet; Rao, Ramprasad; Rawlings, Mark G.; Shinnaga, Hiroko; van Loo, Sven; Aso, Yusuke; Byun, Do-Young; Chen, Huei-Ru; Chen, Mike C.-Y.; Chen, Wen Ping; Ching, Tao-Chung; Cho, Jungyeon; Chrysostomou, Antonio; Chung, Eun Jung; Drabek-Maunder, Emily; Eyres, Stewart P. S.; Fiege, Jason; Friesen, Rachel K.; Fuller, Gary; Gledhill, Tim; Griffin, Matt J.; Gu, Qilao; Hatchell, Jennifer; Holland, Wayne; Inoue, Tsuyoshi; Iwasaki, Kazunari; Jeong, Il-Gyo; Kang, Ji-hyun; Kang, Sung-ju; Kemper, Francisca; Kim, Gwanjeong; Kim, Jongsoo; Kim, Kee-Tae; Kim, Kyoung Hee; Kim, Mi-Ryang; Kim, Shinyoung; Lacaille, Kevin M.; Lee, Jeong-Eun; Li, Dalei; Li, Hua-bai; Liu, Junhao; Liu, Sheng-Yuan; Lyo, A.-Ran; Mairs, Steve; Moriarty-Schieven, Gerald H.; Nakamura, Fumitaka; Nakanishi, Hiroyuki; Ohashi, Nagayoshi; Peretto, Nicolas; Pyo, Tae-Soo; Qian, Lei; Retter, Brendan; Richer, John; Rigby, Andrew; Robitaille, Jean-Franois; Savini, Giorgio; Scaife, Anna M. M.; Soam, Archana; Tang, Ya-Wen; Tomisaka, Kohji; Wang, Hongchi; Wang, Jia-Wei; Whitworth, Anthony P.; Yen, Hsi-Wei; Yoo, Hyunju; Yuan, Jinghua; Zhang, Chuan-Peng; Zhang, Guoyin; Zhou, Jianjun; Zhu, Lei; André, Philippe; Dowell, C. Darren; Falle, Sam; Tsukamoto, Yusuke; Nakagawa, Takao; Kanamori, Yoshihiro; Kataoka, Akimasa; Kobayashi, Masato I. N.; Nagata, Tetsuya; Saito, Hiro; Seta, Masumichi; Zenko, Tetsuya
2018-05-01
We present 850 μm imaging polarimetry data of the ρ Oph-A core taken with the Submillimeter Common-User Bolometer Array-2 (SCUBA-2) and its polarimeter (POL-2) as part of our ongoing survey project, {\\boldsymbol{B}}-fields In STar forming RegiOns (BISTRO). The polarization vectors are used to identify the orientation of the magnetic field projected on the plane of the sky at a resolution of 0.01 pc. We identify 10 subregions with distinct polarization fractions and angles in the 0.2 pc ρ Oph-A core; some of them can be part of a coherent magnetic field structure in the ρ Oph region. The results are consistent with previous observations of the brightest regions of ρ Oph-A, where the degrees of polarization are at a level of a few percent, but our data reveal for the first time the magnetic field structures in the fainter regions surrounding the core where the degree of polarization is much higher (>5%). A comparison with previous near-infrared polarimetric data shows that there are several magnetic field components that are consistent at near-infrared and submillimeter wavelengths. Using the Davis–Chandrasekhar–Fermi method, we also derive magnetic field strengths in several subcore regions, which range from approximately 0.2 to 5 mG. We also find a correlation between the magnetic field orientations projected on the sky and the core centroid velocity components.
NASA Astrophysics Data System (ADS)
Schuster, Norbert; Franks, John
2011-06-01
In the 8-12 micron waveband Focal Plane Arrays (FPA) are available with a 17 micron pixel pitch in different arrays sizes (e.g. 512 x 480 pixels and 320 x 240 pixels) and with excellent electrical properties. Many applications become possible using this new type of IR-detector which will become the future standard in uncooled technology. Lenses with an f-number faster than f/1.5 minimize the diffraction impact on the spatial resolution and guarantee a high thermal resolution for uncooled cameras. Both effects will be quantified. The distinction between Traditional f-number (TF) and Radiometric f-number (RF) is discussed. Lenses with different focal lengths are required for applications in a variety of markets. They are classified by their Horizontal field of view (HFOV). Respecting the requirements for high volume markets, several two lens solutions will be discussed. A commonly accepted parameter of spatial resolution is the Modulation Transfer Function (MTF)-value at the Nyquist frequency of the detector (here 30cy/mm). This parameter of resolution will be presented versus field of view. Wide Angle and Super Wide Angle lenses are susceptible to low relative illumination in the corner of the detector. Measures to reduce this drop to an acceptable value are presented.
Optical characterization of ultra-sensitive TES bolometers for SAFARI
NASA Astrophysics Data System (ADS)
Audley, Michael D.; de Lange, Gerhard; Gao, Jian-Rong; Khosropanah, Pourya; Mauskopf, Philip D.; Morozov, Dmitry; Trappe, Neil A.; Doherty, Stephen; Withington, Stafford
2014-07-01
We have characterized the optical response of prototype detectors for SAFARI, the far-infrared imaging spectrometer for the SPICA satellite. SAFARI's three bolometer arrays will image a 2'×2' field of view with spectral information over the wavelength range 34—210 μm. SAFARI requires extremely sensitive detectors (goal NEP ~ 0.2 aW/√Hz), with correspondingly low saturation powers (~5 fW), to take advantage of SPICA's cooled optics. We have constructed an ultra-low background optical test facility containing an internal cold black-body illuminator and have recently added an internal hot black-body source and a light-pipe for external illumination. We illustrate the performance of the test facility with results including spectral-response measurements. Based on an improved understanding of the optical throughput of the test facility we find an optical efficiency of 60% for prototype SAFARI detectors.
Scalable Background-Limited Polarization-Sensitive Detectors for mm-wave Applications
NASA Technical Reports Server (NTRS)
Rostem, Karwan; Ali, Aamir; Appel, John W.; Bennett, Charles L.; Chuss, David T.; Colazo, Felipe A.; Crowe, Erik; Denis, Kevin L.; Essinger-Hileman, Tom; Marriage, Tobias A.;
2014-01-01
We report on the status and development of polarization-sensitive detectors for millimeter-wave applications. The detectors are fabricated on single-crystal silicon, which functions as a low-loss dielectric substrate for the microwave circuitry as well as the supporting membrane for the Transition-Edge Sensor (TES) bolometers. The orthomode transducer (OMT) is realized as a symmetric structure and on-chip filters are employed to define the detection bandwidth. A hybridized integrated enclosure reduces the high-frequency THz mode set that can couple to the TES bolometers. An implementation of the detector architecture at Q-band achieves 90% efficiency in each polarization. The design is scalable in both frequency coverage, 30-300 GHz, and in number of detectors with uniform characteristics. Hence, the detectors are desirable for ground-based or space-borne instruments that require large arrays of efficient background-limited cryogenic detectors.
High T(sub c) Superconducting Bolometer on Chemically Etched 7 Micrometer Thick Sapphire
NASA Technical Reports Server (NTRS)
Lakew, B.; Brasunas, J. C.; Pique, A.; Fettig, R.; Mott, B.; Babu, S.; Cushman, G. M.
1997-01-01
A transition-edge IR detector, using a YBa2Cu3O(7-x) (YBCO) thin film deposited on a chemically etched, 7 micrometer thick sapphire substrate has been built. To our knowledge it is the first such high T(sub c) superconducting (HTS) bolometer on chemically thinned sapphire. The peak optical detectivity obtained is l.2 x 10(exp 10) cmHz(sup 1/2)/W near 4Hz. Result shows that it is possible to obtain high detectivity with thin films on etched sapphire with no processing after the deposition of the YBCO film. We discuss the etching process and its potential for micro-machining sapphire and fabricating 2-dimensional detector arrays with suspended sapphire membranes. A 30 micrometer thick layer of gold black provided IR absorption. Comparison is made with the current state of the art on silicon substrates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sano, Ryuichi; Iwama, Naofumi; Peterson, Byron J.
A three-dimensional (3D) tomography system using four InfraRed imaging Video Bolometers (IRVBs) has been designed with a helical periodicity assumption for the purpose of plasma radiation measurement in the large helical device. For the spatial inversion of large sized arrays, the system has been numerically and experimentally examined using the Tikhonov regularization with the criterion of minimum generalized cross validation, which is the standard solver of inverse problems. The 3D transport code EMC3-EIRENE for impurity behavior and related radiation has been used to produce phantoms for numerical tests, and the relative calibration of the IRVB images has been carried outmore » with a simple function model of the decaying plasma in a radiation collapse. The tomography system can respond to temporal changes in the plasma profile and identify the 3D dynamic behavior of radiation, such as the radiation enhancement that starts from the inboard side of the torus, during the radiation collapse. The reconstruction results are also consistent with the output signals of a resistive bolometer. These results indicate that the designed 3D tomography system is available for the 3D imaging of radiation. The first 3D direct tomographic measurement of a magnetically confined plasma has been achieved.« less
Sub-millimeter science with the Heinrich-Hertz-Telescope
NASA Astrophysics Data System (ADS)
Dumke, Michael
The Heinrich-Hertz-Telescope on Mt. Graham, Arizona, is a state-of-the-art single-dish radio telescope for observations in the sub-millimeter wavelength range. It is operated by the Sub-Millimeter Telescope Observatory (SMTO), which is a collaboration between the University of Arizona, Tucson, and the Max-Planck-Institut für Radioastronomie, Bonn. In this talk I give an overview over the telescope and its instrumentation, and show some examples of forefront research performed by astronomers from both the U.S. and Europe using this instrument. The telescope is located on Mt. Graham, Arizona, at an altitude of 3178 m, which ensures sub-mm weather conditions during a significant amount of available observing time. It has a primary reflector of 10 m diameter, mounted on a carbon fiber backup structure, and is equipped with a corotating enclosure. The surface accuracy of the primary reflector is 12 microns rms, what makes the HHT the most accurate radio telescope ever built. For spectral line observations, SIS receivers covering the frequency range from 200 to 500 GHz are available. Furthermore, a Hot-Electron-Bolometer, developed at the CfA, can be used for spectral line observations above 800 GHz. The continuum receivers are a 4-color bolometer, observing at 1300, 870, 450, and 350 microns, and a 19-channel bolometer array, developed at the MPIfR, which is sensitive around 850 microns. In the last few years, the HHT has been used by several groups to perform astronomical research. The most notable result was the measurement of the CO(9--8) line in Orion at 1.037 THz with the Hot-Electron Bolometer -- the first radioastronomical observation above 1 THz from a ground-based telescope. Several galactic molecular line sources have been mapped in the CO(7--6) line at 806 GHz, and in two fine-structure lines of atomic carbon. A continuum map of the galactic center at 850 microns could be produced using the new 19-channel bolometer array. Even external galaxies, where molecular line emission can be observed at much smaller brightness temperatures, could be mapped in the higher CO transitions. While CO(7--6) studies have been restricted to starburst galaxies like M 82 in the past, the CO(4--3) and especially the CO(3--2) line could be mapped also in fairly normal galaxies, showing that the warmer and denser gas is distributed throughout the galactic disks. Recently several nearby galaxies of different types could be mapped also in the continuum emission at 850 microns, allowing the determination of dust properties in various environments. Some interesting results following from observations with the Heinrich-Hertz-Telescope will be shown in this talk, with some emphasis on extragalactic astronomy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Momose, Munetake; Hiramatsu, Masaaki; Tsukagoshi, Takashi
2009-08-05
We carried out an imaging survey of dust continuum emissions toward the Chamaeleon and Lupus regions. Observations were made with the 144-element bolometer array camera AzTEC mounted on the 10-meter sub-millimeter telescope ASTE during 2007-2008. The preliminary results of disk search and the cloud structure of Lupus III are presented.
Ultrasensitive Superconducting Transition Edge Sensors Based On Electron-Phonon Decoupling
NASA Technical Reports Server (NTRS)
Jethava, Nikhil; Chervenak, James; Brown, Ari-David; Benford, Dominic; Kletetschka, Gunther; Mikula, Vilem; U-yen, Kongpop
2011-01-01
We have successfully fabricated the superconducting transition edge sensor (TES), bolometer technology that centers on the use of electron-phonon decoupling (EPD) to thermally isolate the bolometer. Along with material characterization for large format antenna coupled bolometer arrays, we present the initial test results of bolometer based on EPD designed for THz detection. We have selected a design approach that separates the two functions of photon absorption and temperature measurement, allowing separate optimization of the performance of each element. We have integrated Molybdenum/Gold (Mo/Au) bilayer TES and ion assisted thermally evaporated (IAE) Bismuth (Bi) films as radiation absorber coupled to a low-loss microstripline from Niobium (Nb) ground plane to a twin-slot antenna structure. The thermal conductance and the time constant of these devices have been measured, and are consistent with our calculations. The device exhibits a single time constant at 0.1 K of approx.160 IlS, which is compatible with readout by a high-bandwidth single SQUID or a time domain SQUID multiplexer. The effects of thermal conductance and electrothermal feedback are major determinants of the time constant, but the electronic heat capacity also plays a major role. The NEP achieved in the device described above is 2.5x10(exp -17)W(gamma)Hz. Our plan is to demonstrate a reduction of the volume in the superconducting element to 5 microns x 5 microns in films of half the thickness at Tc = 60mK. By calculation, this new geometry corresponds to an NEP reduction of two orders of magnitude to 2.5x10(exp -19)W/(gamma)Hz, with a time constant of 130/ls.
NASA Astrophysics Data System (ADS)
Wilson, Robert S.; Priestley, Kory J.; Thomas, Susan; Hess, Phillip
2009-08-01
The Clouds and the Earth's Radiant Energy System (CERES) spacecraft scanning thermistor bolometers were used to measure earth-reflected solar and earth-emitted longwave radiances, at satellite altitude. The bolometers measured the earth radiances in the broadband shortwave solar (0.3 - 5.0 micrometers) and total (0.3->100 micrometers) spectral bands as well as in the (8 - 12 micrometers) water vapor window spectral band over geographical footprints as small as 10 kilometers at nadir. In May 2002, the fourth and fifth sets of CERES bolometers were launched aboard the Aqua spacecraft. Ground vacuum calibrations defined the initial count conversion coefficients that were used to convert the bolometer output voltages into filtered earth radiances. The mirror attenuator mosaic (MAM), a solar diffuser plate, was built into the CERES instrument package calibration system in order to define in-orbit shifts or drifts in the sensor responses. The shortwave and total sensors are calibrated using the solar radiances reflected from the MAM's. Each MAM consists of baffle-solar diffuser plate systems, which guide incoming solar radiances into the instrument fields-of-view of the shortwave and total wave sensor units. The MAM diffuser reflecting type surface consists of an array of spherical aluminum mirror segments, which are separated by a Merck Black A absorbing surface, overcoated with silicon dioxide. Temperature sensors are located in each MAM plate and baffle. The CERES MAM wass designed to yield calibration precisions approaching .5 percent for the total and shortwave detectors. In this paper, the MAM solar calibration procedures are presented along with on-orbit results. Comparisons are also made between the Aqua,Terra and the Tropical Rainfall Measurement Mission (TRMM) CERES MAM solar calibrations.
Active terahertz imaging with Ne indicator lamp detector arrays
NASA Astrophysics Data System (ADS)
Kopeika, N. S.; Abramovich, A.; Yadid-Pecht, O.; Yitzhaky, Y.
2009-08-01
The advantages of terahertz (THz) imaging are well known. They penetrate well most non-conducting media and there are no known biological hazards, This makes such imaging systems important for homeland security, as they can be used to image concealed objects and often into rooms or buildings from the outside. There are also biomedical applications that are arising. Unfortunately, THz imaging is quite expensive, especially for real time systems, largely because of the price of the detector. Bolometers and pyroelectric detectors can each easily cost at least hundreds of dollars if not more, thus making focal plane arrays of them quite expensive. We have found that common miniature commercial neon indicator lamps costing typically about 30 cents each exhibit high sensitivity to THz radiation [1-3], with microsecond order rise times, thus making them excellent candidates for such focal plane arrays. NEP is on the order of 10-10 W/Hz1/2. Significant improvement of detection performance is expected when heterodyne detection is used Efforts are being made to develop focal plane array imagers using such devices at 300 GHz. Indeed, preliminary images using 4x4 arrays have already been obtained. An 8x8 VLSI board has been developed and is presently being tested. Since no similar imaging systems have been developed previously, there are many new problems to be solved with such a novel and unconventional imaging system. These devices act as square law detectors, with detected signal proportional to THz power. This allows them to act as mixers in heterodyne detection, thus allowing NEP to be reduced further by almost two orders of magnitude. Plans are to expand the arrays to larger sizes, and to employ super resolution techniques to improve image quality beyond that ordinarily obtainable at THz frequencies.
Large Format Arrays for Far Infrared and Millimeter Astronomy
NASA Technical Reports Server (NTRS)
Moseley, Harvey
2004-01-01
Some of the most compelling questions in modem astronomy are best addressed with submillimeter and millimeter observations. The question of the role of inflation in the early evolution of the universe is best addressed with large sensitive arrays of millimeter polarimeters. The study of the first generations of galaxies requires sensitive submillimeter imaging, which can help us to understand the history of energy release and nucleosynthesis in the universe. Our ability to address these questions is dramatically increasing, driven by dramatic steps in the sensitivity and size of available detector arrays. While the MIPS instrument on the SIRTF mission will revolutionize far infrared astronomy with its 1024 element array of photoconductors, thermal detectors remain the dominant technology for submillimeter and millimeter imaging and polarimetry. The last decade has seen the deployment of increasingly large arrays of bolometers, ranging from the 48 element arrays deployed on the KAO in the late 198Os, to the SHARC and SCUBA arrays in the 1990s. The past years have seen the deployment of a new generation of larger detector arrays in SHARC II (384 channels) and Bolocam (144 channels). These detectors are in operation and are beginning to make significant impacts on the field. Arrays of sensitive submillimeter bolometers on the SPIRE instrument on Herschel will allow the first large areas surveys of the sky, providing important insight into the evolution of galaxies. The next generation of detectors, led by SCUBA II, will increase the focal scale of these instruments by an order of magnitude. Two major missions are being planned by NASA for which further development of long wavelength detectors is essential, The SAFlR mission, a 10-m class telescope with large arrays of background limited detectors, will extend our reach into the epoch of initial galaxy formation. A major goal of modem cosmology is to test the inflationary paradigm in the early evolution of the universe. To this end, a mission is planned to detect the imprint of inflation on the CMB by precision measurement of its polarization. This work requires very large arrays of sensitive detectors which can provide unprecedented control of a wide range of systematic errors, given the small amplitude of the signal of interest. We will describe the current state of large format detector arrays, the performance requirements set by the new missions, and the different approaches being developed in the community to meet these requirements. We are confident that within a decade, these developments will lead to dramatic advances in our understanding of the evolution of the universe.
Uncooled infrared focal plane array imaging in China
NASA Astrophysics Data System (ADS)
Lei, Shuyu
2015-06-01
This article reviews the development of uncooled infrared focal plane array (UIFPA) imaging in China in the past decade. Sensors based on optical or electrical read-out mechanism were developed but the latter dominates the market. In resistive bolometers, VOx and amorphous silicon are still the two major thermal-sensing materials. The specifications of the IRFPA made by different manufactures were collected and compared. Currently more than five Chinese companies and institutions design and fabricate uncooled infrared focal plane array. Some devices have sensitivity as high as 30 mK; the largest array for commercial products is 640×512 and the smallest pixel size is 17 μm. Emphasis is given on the pixel MEMS design, ROIC design, fabrication, and packaging of the IRFPA manufactured by GWIC, especially on design for high sensitivities, low noise, better uniformity and linearity, better stabilization for whole working temperature range, full-digital design, etc.
The JCMT Gould Belt Survey: a quantitative comparison between SCUBA-2 data reduction methods
NASA Astrophysics Data System (ADS)
Mairs, S.; Johnstone, D.; Kirk, H.; Graves, S.; Buckle, J.; Beaulieu, S. F.; Berry, D. S.; Broekhoven-Fiene, H.; Currie, M. J.; Fich, M.; Hatchell, J.; Jenness, T.; Mottram, J. C.; Nutter, D.; Pattle, K.; Pineda, J. E.; Salji, C.; di Francesco, J.; Hogerheijde, M. R.; Ward-Thompson, D.; JCMT Gould Belt survey Team
2015-12-01
Performing ground-based submillimetre observations is a difficult task as the measurements are subject to absorption and emission from water vapour in the Earth's atmosphere and time variation in weather and instrument stability. Removing these features and other artefacts from the data is a vital process which affects the characteristics of the recovered astronomical structure we seek to study. In this paper, we explore two data reduction methods for data taken with the Submillimetre Common-User Bolometer Array-2 (SCUBA-2) at the James Clerk Maxwell Telescope (JCMT). The JCMT Legacy Reduction 1 (JCMT LR1) and The Gould Belt Legacy Survey Legacy Release 1 (GBS LR1) reduction both use the same software (STARLINK) but differ in their choice of data reduction parameters. We find that the JCMT LR1 reduction is suitable for determining whether or not compact emission is present in a given region and the GBS LR1 reduction is tuned in a robust way to uncover more extended emission, which better serves more in-depth physical analyses of star-forming regions. Using the GBS LR1 method, we find that compact sources are recovered well, even at a peak brightness of only three times the noise, whereas the reconstruction of larger objects requires much care when drawing boundaries around the expected astronomical signal in the data reduction process. Incorrect boundaries can lead to false structure identification or it can cause structure to be missed. In the JCMT LR1 reduction, the extent of the true structure of objects larger than a point source is never fully recovered.
The JCMT Plane Survey: early results from the ℓ = 30° field
NASA Astrophysics Data System (ADS)
Moore, T. J. T.; Plume, R.; Thompson, M. A.; Parsons, H.; Urquhart, J. S.; Eden, D. J.; Dempsey, J. T.; Morgan, L. K.; Thomas, H. S.; Buckle, J.; Brunt, C. M.; Butner, H.; Carretero, D.; Chrysostomou, A.; deVilliers, H. M.; Fich, M.; Hoare, M. G.; Manser, G.; Mottram, J. C.; Natario, C.; Olguin, F.; Peretto, N.; Polychroni, D.; Redman, R. O.; Rigby, A. J.; Salji, C.; Summers, L. J.; Berry, D.; Currie, M. J.; Jenness, T.; Pestalozzi, M.; Traficante, A.; Bastien, P.; diFrancesco, J.; Davis, C. J.; Evans, A.; Friberg, P.; Fuller, G. A.; Gibb, A. G.; Gibson, S.; Hill, T.; Johnstone, D.; Joncas, G.; Longmore, S. N.; Lumsden, S. L.; Martin, P. G.; Nguyen Lu'o'ng, Q.; Pineda, J. E.; Purcell, C.; Richer, J. S.; Schieven, G. H.; Shipman, R.; Spaans, M.; Taylor, A. R.; Viti, S.; Weferling, B.; White, G. J.; Zhu, M.
2015-11-01
We present early results from the JCMT (James Clerk Maxwell Telescope) Plane Survey (JPS), which has surveyed the northern inner Galactic plane between longitudes ℓ = 7° and ℓ = 63° in the 850-μm continuum with SCUBA-2 (Submm Common-User Bolometer Array 2), as part of the JCMT Legacy Survey programme. Data from the ℓ = 30° survey region, which contains the massive-star-forming regions W43 and G29.96, are analysed after approximately 40 per cent of the observations had been completed. The pixel-to-pixel noise is found to be 19 mJy beam-1 after a smooth over the beam area, and the projected equivalent noise levels in the final survey are expected to be around 10 mJy beam-1. An initial extraction of compact sources was performed using the FELLWALKER method, resulting in the detection of 1029 sources above a 5σ surface-brightness threshold. The completeness limits in these data are estimated to be around 0.2 Jy beam-1 (peak flux density) and 0.8 Jy (integrated flux density) and are therefore probably already dominated by source confusion in this relatively crowded section of the survey. The flux densities of extracted compact sources are consistent with those of matching detections in the shallower APEX (Atacama Pathfinder Experiment) Telescope Large Area Survey of the Galaxy (ATLASGAL) survey. We analyse the virial and evolutionary state of the detected clumps in the W43 star-forming complex and find that they appear younger than the Galactic-plane average.
A novel carbon coating technique for foil bolometers
NASA Astrophysics Data System (ADS)
Sheikh, U. A.; Duval, B. P.; Labit, B.; Nespoli, F.
2016-11-01
Naked foil bolometers can reflect a significant fraction of incident energy and therefore cannot be used for absolute measurements. This paper outlines a novel coating approach to address this problem by blackening the surface of gold foil bolometers using physical vapour deposition. An experimental bolometer was built containing four standard gold foil bolometers, of which two were coated with 100+ nm of carbon. All bolometers were collimated and observed the same relatively high temperature, ohmically heated plasma. Preliminary results showed 13%-15% more incident power was measured by the coated bolometers and this is expected to be much higher in future TCV detached divertor experiments.
The SOFIA/SAFIRE Far-Infrared Spectrometer: Highlighting Submillimeter Astrophysics and Technology
NASA Technical Reports Server (NTRS)
Benford, Dominic J.
2009-01-01
The Submillimeter and Far-InfraRed Experiment (SAFIRE) on the SOFIA airborne observatory is an imaging spectrometer for wavelengths between 28 microns and 440 microns. Our design is a dual-band long-slit grating spectrometer, which provides broadband (approx. 4000 km/s) observations in two lines simultaneously over a field of view roughly 10" wide by 320" long. The low backgrounds in spectroscopy require very sensitive detectors with noise equivalent powers of order 10(exp -18) W/square root of Hz. We are developing a kilopixel, filled detector array for SAFIRE in a 32 x 40 format. The detector consists of a transition edge sensor (TES) bolometer array, a per-pixel broadband absorbing backshort array, and a NIST SQUID multiplexer readout array. This general type of array has been used successfully in the GISMO instrument, so we extrapolate to the sensitivity needed for airborne spectroscopy. Much of the cryogenic, electronics, and software infrastructure for SAFIRE have been developed. I provide here an overview of the progress on SAFIRE.
Nonimaging applications for microbolometer arrays
NASA Astrophysics Data System (ADS)
Picard, Francis; Jerominek, Hubert; Pope, Timothy D.; Zhang, Rose; Ngo, Linh P.; Tremblay, Bruno; Tasker, Nick; Grenier, Carol; Bilodeau, Ghislain; Cayer, Felix; Lehoux, Mario; Alain, Christine; Larouche, Carl; Savard, Simon
2001-10-01
In an effort to leverage uncooled microbolometer technology, testing of bolometer performance in various nonimaging applications has been performed. One of these applications makes use of an uncooled microbolometer array as the sensing element for a laser beam analyzer. Results of the characterization of cw CO2 laser beams with this analyzer are given. A comparison with the results obtained with a commercial laser beam analyzer is made. Various advantages specific to microbolometer arrays for this application are identified. A second application makes use of microbolometers for absolute temperature measurements. The experimental method and results are described. The technique's limitations and possible implementations are discussed. Finally, the third application evaluated is related to the rapidly expanding field of biometry. It consists of using a modified microbolometer array for fingerprint sensing. The basic approach allowing the use of microbolometers for such an application is discussed. The results of a proof-of-principle experiment are described. Globally, the described work illustrates the fact that microbolometer array fabrication technology can be exploited for many important applications other than IR imaging.
Transition-edge superconducting antenna-coupled bolometer
NASA Astrophysics Data System (ADS)
Hunt, Cynthia L.
2004-10-01
The temperature anisotropy of the cosmic microwave background (CMB) is now being probed with unprecedented accuracy and sky coverage by the Wilkinson Microwave Anisotropy Probe (WMAP), and will be definitively mapped by the Planck Surveyor after its launch in 2007. However, the polarization of the CMB will not be mapped with sufficient accuracy. In particular, the measurement of the curl-polarization, which may be used to probe the energy scale of the inflationary epoch, requires a large advance in the format of millimeter-wave bolometer arrays. SAMBA (Superconducting Antenna-coupled Multi-frequency Bolometric Array) is being developed to address these needs for the next generation of submillimeter astronomical detectors. SAMBA consists of a focal plane populated with microstrip-coupled slot antennas, whose signals are coherently added and sent to transition-edge superconducting (TES) bolometers via microstrip lines. SAMBA eliminates the need for the feedhorns and optical filters currently used on CMB observational instruments, such as Planck and Boomerang. The SAMBA architecture allows for a high density of pixels in the focal plane with minimal sub-Kelvin mass. As a precursor to a full monolithic high-density antenna array, we are developing a single-band antenna-coupled Bolometric detector. In this thesis, I report test results for a single-pixel antenna-coupled Bolometric detector. Our device consists of a dual slot microstrip-coupled slot antenna coupled to an Al/Ti/Au voltage-biased TES. The coupling architecture involves propagating the signal along super conducting microstrip lines and terminating the lines at a normal metal resistor collocated with a TES on a thermally isolated island. The device, which is inherently polarization sensitive, is optimized for 140 GHz measurements. In the thermal bandwidth of the TES, we measure a noise equivalent power (NEP) of 2.0 x 10 -17 W/[Special characters omitted.] in dark tests which agrees with the calculated NEP including only contributions from phonon; Johnson and amplifier noise. We do not measure any excess noise above this expectation at frequencies between 1 and 200 Hz. We measure a thermal conductance G = 55 pW/K. We measure a thermal time constant as low as 437 ms at 3 mV bias when stimulating the TES directly using a light emitting diode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ade, P. A. R.; Aikin, R. W.; Barkats, D.
2015-06-18
bicep2/KECK ARRAY. IV. OPTICAL CHARACTERIZATION AND PERFORMANCE OF THE bicep2 AND KECK ARRAY EXPERIMENTS P. A. R. Ade1, R. W. Aikin2, D. Barkats3, S. J. Benton4, C. A. Bischoff5, J. J. Bock2,6, K. J. Bradford5, J. A. Brevik2, I. Buder5, E. Bullock7Show full author list Published 2015 June 18 • © 2015. The American Astronomical Society. All rights reserved. The Astrophysical Journal, Volume 806, Number 2 Article PDF Figures Tables References Citations 273 Total downloads Cited by 6 articles Turn on MathJax Share this article Get permission to re-use this article Article information Abstract bicep2 and the Keck Array aremore » polarization-sensitive microwave telescopes that observe the cosmic microwave background (CMB) from the South Pole at degree angular scales in search of a signature of inflation imprinted as B-mode polarization in the CMB. bicep2 was deployed in late 2009, observed for three years until the end of 2012 at 150 GHz with 512 antenna-coupled transition edge sensor bolometers, and has reported a detection of B-mode polarization on degree angular scales. The Keck Array was first deployed in late 2010 and will observe through 2016 with five receivers at several frequencies (95, 150, and 220 GHz). bicep2 and the Keck Array share a common optical design and employ the field-proven bicep1 strategy of using small-aperture, cold, on-axis refractive optics, providing excellent control of systematics while maintaining a large field of view. This design allows for full characterization of far-field optical performance using microwave sources on the ground. Here we describe the optical design of both instruments and report a full characterization of the optical performance and beams of bicep2 and the Keck Array at 150 GHz.« less
Artusa, D. R.; Azzolini, O.; Balata, M.; ...
2014-10-15
Neutrinoless double beta decay (0νββ) is one of the most sensitive probes for physics beyond the Standard Model, providing unique information on the nature of neutrinos. In this paper we review the status and outlook for bolometric 0νββ decay searches. We summarize recent advances in background suppression demonstrated using bolometers with simultaneous readout of heat and light signals. We simulate several configurations of a future CUORE-like bolometer array which would utilize these improvements and present the sensitivity reach of a hypothetical next-generation bolometric0νββ experiment. We demonstrate that a bolometric experiment with the isotope mass of about 1 ton is capablemore » of reaching the sensitivity to the effective Majorana neutrino mass (|m ee|) of order 10-20 meV, thus completely exploring the so-called inverted neutrino mass hierarchy region. In conclusion, we highlight the main challenges and identify priorities for an R&D program addressing them.« less
NASA Astrophysics Data System (ADS)
Moriarty-Schieven, Gerald H.; Greaves, Jane S.
1999-10-01
Polarization of dust or synchrotron emission in the sub-millimetre-wave regime directly traces magnetic field directions. The magnetic field energy is similar to that of gravity and turbulence in interstellar gas, and so plays a major role in the dynamics and evolution of the interstellar medium. We present some early results from the aperture polarimeter on the SCUBA sub-mm bolometer array on the JCMT from a wide variety of sources, and briefly discuss the importance of a polarimetric capability for ALMA.
Double-beta decay investigation with highly pure enriched $$^{82}$$Se for the LUCIFER experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beeman, J. W.; Bellini, F.; Benetti, P.
2015-12-13
The LUCIFER project aims at deploying the first array of enriched scintillating bolometers for the investigation of neutrinoless double-beta decay of 82Se. The matrix which embeds the source is an array of ZnSe crystals, where enriched 82Se is used as decay isotope. The radiopurity of the initial components employed for manufacturing crystals, that can be operated as bolometers, is crucial for achieving a null background level in the region of interest for double-beta decay investigations. In this work, we evaluated the radioactive content in 2.5 kg of 96.3 % enriched 82Se metal, measured with a high-purity germanium detector at themore » Gran Sasso deep underground laboratory. The limits on internal contaminations of primordial decay chain elements of 232Th, 238U and 235U are respectively: <61, <110 and <74 μBq/kg at 90 % C.L. The extremely low-background conditions in which the measurement was carried out and the high radiopurity of the 82Se allowed us to establish the most stringent lower limits on the half-lives of the double-beta decay of 82Se to 0+1, 2+2 and 2+1 excited states of 82Kr of 3.4•10 22, 1.3•10 22 and 1.0•10 22 y, respectively, with a 90 % C.L.« less
Lateral terahertz hot-electron bolometer based on an array of Sn nanothreads in GaAs
NASA Astrophysics Data System (ADS)
Ponomarev, D. S.; Lavrukhin, D. V.; Yachmenev, A. E.; Khabibullin, R. A.; Semenikhin, I. E.; Vyurkov, V. V.; Ryzhii, M.; Otsuji, T.; Ryzhii, V.
2018-04-01
We report on the proposal and the theoretical and experimental studies of the terahertz hot-electron bolometer (THz HEB) based on a gated GaAs structure like the field-effect transistor with the array of parallel Sn nanothreads (Sn-NTs). The operation of the HEB is associated with an increase in the density of the delocalized electrons due to their heating by the incoming THz radiation. The quantum and the classical device models were developed, the quantum one was based on the self-consistent solution of the Poisson and Schrödinger equations, the classical model involved the Poisson equation and density of states omitting quantization. We calculated the electron energy distributions in the channels formed around the Sn-NTs for different gate voltages and found the fraction of the delocalized electrons propagating across the energy barriers between the NTs. Since the fraction of the delocalized electrons strongly depends on the average electron energy (effective temperature), the proposed THz HEB can exhibit an elevated responsivity compared with the HEBs based on more standard heterostructures. Due to a substantial anisotropy of the device structure, the THz HEB may demonstrate a noticeable polarization selectivity of the response to the in-plane polarized THz radiation. The features of the THz HEB might be useful in their practical applications in biology, medicine and material science.
A progress report on using bolometers cooled by adiabatic demagnetization refrigeration
NASA Technical Reports Server (NTRS)
Lesyna, L.; Roellig, T.; Savage, M.; Werner, Michael W.
1989-01-01
For sensitive detection of astronomical continuum radiation in the 200 micron to 3 mm wavelength range, bolometers are presently the detectors of choice. In order to approach the limits imposed by photon noise in a cryogenically cooled telescope in space, bolometers must be operated at temperatures near 0.1 K. Researchers report progress in building and using bolometers that operate at these temperatures. The most sensitive bolometer had an estimated noise equivalent power (NEP) of 7 x 10(exp 017) W Hz(exp -1/2). Researchers also briefly discuss the durability of paramagnetic salts used to cool the bolometers.
Hierarchical sinuous-antenna phased array for millimeter wavelengths
NASA Astrophysics Data System (ADS)
Cukierman, Ari; Lee, Adrian T.; Raum, Christopher; Suzuki, Aritoki; Westbrook, Benjamin
2018-03-01
We present the design, fabrication, and measured performance of a hierarchical sinuous-antenna phased array coupled to superconducting transition-edge-sensor (TES) bolometers for millimeter wavelengths. The architecture allows for dual-polarization wideband sensitivity with a beam width that is approximately frequency-independent. We report on measurements of a prototype device, which uses three levels of triangular phased arrays to synthesize beams that are approximately constant in width across three frequency bands covering a 3:1 bandwidth. The array element is a lens-coupled sinuous antenna. The device consists of an array of hemispherical lenses coupled to a lithographed wafer, which integrates TESs, planar sinuous antennas, and microwave circuitry including band-defining filters. The approximately frequency-independent beam widths improve coupling to telescope optics and keep the sensitivity of an experiment close to optimal across a broad frequency range. The design can be straightforwardly modified for use with non-TES lithographed cryogenic detectors such as kinetic inductance detectors. Additionally, we report on the design and measurements of a broadband 180° hybrid that can simplify the design of future multichroic focal planes including but not limited to hierarchical phased arrays.
Thermistor bolometer radiometer signal contamination due to parasitic heat diffusion
NASA Astrophysics Data System (ADS)
Priestley, Kory J.; Mahan, J. R.; Haeffelin, Martial P.; Savransky, Maxim; Nguyen, Tai K.
1995-12-01
Current efforts are directed at creating a high-level end-to-end numerical model of scanning thermistor bolometer radiometers of the type used in the Earth Radiation Budget Experiment (ERBE) and planned for the clouds and the earth's radiative energy system (CERES) platforms. The first-principle model accurately represents the physical processes relating the electrical signal output to the radiative flux incident to the instrument aperture as well as to the instrument thermal environment. Such models are useful for the optimal design of calibration procedures, data reduction strategies, and the instruments themselves. The modeled thermistor bolometer detectors are approximately 40 micrometers thick and consist of an absorber layer, the thermistor layer, and a thermal impedance layer bonded to a thick aluminum substrate which acts as a heat sink. Thermal and electrical diffusion in the thermistor bolometer detectors is represented by a several-hundred-node- finite-difference formulation, and the temperature field within the aluminum substrate is computed using the finite-element method. The detectors are electrically connected in adjacent arms of a two-active-arm bridge circuit so that the effects of common mode thermal noise are minimized. However, because of a combination of thermistor self heating, loading of the bridge by the bridge amplifier, and the nonlinear thermistor resistance-temperature relationship, bridge deflections can still be provoked by substrate temperature changes, even when the change is uniform across the substrate. Of course, transient temperature gradients which may occur in the substrate between the two detectors will be falsely interpreted as a radiation input. The paper represents the results of an investigation to define the degree of vulnerability of thermistor bolometer radiometers to false signals provoked by uncontrolled temperature fluctuations in the substrate.
HFI Bolometer Detectors Programmatic CDR
NASA Technical Reports Server (NTRS)
Lange, Andrew E.
2002-01-01
Programmatic Critical Design Review (CDR) of the High Frequency Instrument (HFI) Bolometer Detector on the Planck Surveyor is presented. The topics include: 1) Scientific Requirements and Goals; 2) Silicon Nitride Micromesh 'Spider-Web' Bolometers; 3) Sub-Orbital Heritage: BOOMERANG; 4) Noise stability demonstrated in BOOMERANG; 5) Instrument Partners; 6) Bolometer Environment on Planck/HFI; 7) Bolometer Modules; and 8) Mechanical Interface. Also included are the status of the receivables and delivery plans with Europe. This paper is presented in viewgraph form.
Mass loss from hot, luminous stars
NASA Astrophysics Data System (ADS)
Burnley, Adam Warwick
A general enquiry into the physics of mass loss from hot, luminous stars is presented. Ha spectroscopy of 64 Galactic early-type stars has been obtained using the telescopes of the Isaac Newton Group (ING) and the Anglo-Australian Observatory (AAO). The sample was selected to include objects with published radio and/or mm fluxes. The Halpha observations are quantitatively modelled using a modified version of the FORSOL code developed by Puls et al. (1996). FORSOL has been coupled with the PIKAIA subroutine (Charbonneau and Knapp, 1996) to create PHALTEE (Program for Halpha Line Transfer with Eugenic Estimation), in order to search a specified parameter space for the 'best' (quasi- least-squares) model fit to the data, using a genetic algorithm. This renders Ha modelling both more objective and automated. Where possible, both mass-loss rates and velocity field beta-exponents are determined for the sample. New mm-wave observations of nineteen Galactic early-type stars, including a subset of the Halpha sample, have been obtained using the Sub-millimetre Common User Bolometer Array (SCUBA). Where possible, mean fluxes are calculated, and these data used with the results of a literature survey of mm and cm fluxes to determine mass-loss rates for a larger sample, of 53 Galactic early-type stars. The incidence of nonthermal emission is examined, with 23% of the sample exhibiting strong evidence for nonthermal flux. The occurrence of binarity and excess X-ray emission amongst the nonthermal emitters is also investigated. For the subset of 36 stars common to both the Halpha and mm/radio samples, the results permit a comparison of mass-loss rates derived using diagnostics that probe the wind conditions at different radial depths. A mean value of log (Mradio/MHalpha) = 0.02 +/- 0.05 is obtained for the thermal radio emitters. The wind-momentum-luminosity relationship (WLR) for the sample is also investigated.
The Primordial Inflation Polarization Explorer (PIPER)
NASA Technical Reports Server (NTRS)
Chuss, David
2010-01-01
The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne polarimeter that will measure the polarization of the cosmic microwave background to search for evidence for inflation. PIPER will observe more than half of the sky in four frequency bands from 200 to 600 GHz with a beam size of 21 arcminutes at the lowest frequency. PIPER simultaneously measures all four Stokes parameters using four co-aligned 32 by 40 element planar bolometer arrays. We give an instrument overview and report on the current status of the instrument.
Woven ribbon cable for cryogenic instruments
NASA Astrophysics Data System (ADS)
Cunningham, C. R.; Hastings, P. R.; Strachan, J. M. D.
Robust woven ribbon cables are described for connecting sensors at low temperatures to higher temperature systems. Woven cables have several advantages over conventional wiring or flat ribbon cables in cryostats: heat sinking is easier; twisted pairs may be used; and miniature multi-way connectors are easily incorporated. Their use is demonstrated in making connections from 131 bolometers in two arrays mounted in a dilution refrigerator at 100 mK. Thermal and electrical properties are discussed, as are other possible applications in cryogenic instruments.
Efficient Broadband Terahertz Radiation Detectors Based on Bolometers with a Thin Metal Absorber
NASA Astrophysics Data System (ADS)
Dem'yanenko, M. A.
2018-01-01
The matrix method has been used to calculate the coefficients of absorption of terahertz radiation in conventional (with radiation incident from vacuum adjacent to the bolometer) and inverted (with radiation incident from the substrate on which the bolometer was fabricated) bolometric structures. Near-unity absorption coefficients were obtained when an additional cavity in the form of a gap between the bolometer and the input or output window was introduced. Conventional bolometers then became narrowband, while inverted-type devices remained broadband.
Multicolor Detectors for Ultrasensitive Long-Wave Imaging Cameras
NASA Technical Reports Server (NTRS)
Brown, Ari; Benford, Dominic; Chervenak, James; Wollack, Edward
2012-01-01
A document describes a zeptobolometer for ultrasensitive, long-wavelength sensors. GSFC is developing pixels based on the zeptobolometer design that sense three THz wavelengths simultaneously. Two innovations are described in the document: (1) a quasiparticle (QO) filter arrangement that enables a compact multicolor spectrum at the focal plane, and (2) a THz antenna readout by up to three bolometers. The innovations enable high efficiency by greatly reducing high, frequency-dependent microstrip losses, and pixel compactness by eliminating the need for bulky filters in the focal plane. The zeptobolometer is a small TES bolometer, on the scale of a few microns, which can be readily coupled through an impedance-matching resistor to a metal or dielectric antenna. The bolometer is voltage-biased in its superconducting transition, allowing the use of superconducting RF multiplexers to read out large arrays. The antenna is geometrically tapped at three locations so as to efficiently couple radiation of three distinct wavelengths to the individual TESs. The transition edge hot electrons in metals offer a simple, compact arrangement for antenna readout, which can be crucial in the THz where line losses at high frequencies can be substantial. A metallic grill filter acts as a high-pass filter and directs the low-frequency components to a location where they will be absorbed. The absorption spectrum shows that three well-separated THz bands are feasible. The filters can be made from high-purity dielectrics such as float zone silicon or sapphire.
Infrared Luminosities and Dust Properties of z ≈ 2 Dust-obscured Galaxies
NASA Astrophysics Data System (ADS)
Bussmann, R. S.; Dey, Arjun; Borys, C.; Desai, V.; Jannuzi, B. T.; Le Floc'h, E.; Melbourne, J.; Sheth, K.; Soifer, B. T.
2009-11-01
We present SHARC-II 350 μm imaging of twelve 24 μm bright (F 24 μm > 0.8 mJy) Dust-Obscured Galaxies (DOGs) and Combined Array for Research in Millimeter-wave Astronomy (CARMA) 1 mm imaging of a subset of two DOGs. These objects are selected from the Boötes field of the NOAO Deep Wide-Field Survey. Detections of four DOGs at 350 μm imply infrared (IR) luminosities which are consistent to within a factor of 2 of expectations based on a warm-dust spectral energy distribution (SED) scaled to the observed 24 μm flux density. The 350 μm upper limits for the 8 non-detected DOGs are consistent with both Mrk 231 and M82 (warm-dust SEDs), but exclude cold dust (Arp 220) SEDs. The two DOGs targeted at 1 mm were not detected in our CARMA observations, placing strong constraints on the dust temperature: T dust > 35-60 K. Assuming these dust properties apply to the entire sample, we find dust masses of ≈3 × 108 M sun. In comparison to other dusty z ~ 2 galaxy populations such as submillimeter galaxies (SMGs) and other Spitzer-selected high-redshift sources, this sample of DOGs has higher IR luminosities (2 × 1013 L sun versus 6 × 1012 L sun for the other galaxy populations) that are driven by warmer dust temperatures (>35-60 K versus ~30 K) and lower inferred dust masses (3 × 108 M sun versus 3 × 109 M sun). Wide-field Herschel and Submillimeter Common-User Bolometer Array-2 surveys should be able to detect hundreds of these power-law-dominated DOGs. We use the existing Hubble Space Telescope and Spitzer/InfraRed Array Camera data to estimate stellar masses of these sources and find that the stellar to gas mass ratio may be higher in our 24 μm bright sample of DOGs than in SMGs and other Spitzer-selected sources. Although much larger sample sizes are needed to provide a definitive conclusion, the data are consistent with an evolutionary trend in which the formation of massive galaxies at z ~ 2 involves a submillimeter bright, cold-dust, and star-formation-dominated phase followed by a 24 μm bright, warm-dust and AGN-dominated phase.
Concept Doped-Silicon Thermopile Detectors for Future Planetary Thermal Imaging Instruments
NASA Astrophysics Data System (ADS)
Lakew, Brook; Barrentine, Emily M.; Aslam, Shahid; Brown, Ari D.
2016-10-01
Presently, uncooled thermopiles are the detectors of choice for thermal mapping in the 4.6-100 μm spectral range. Although cooled detectors like Ge or Si thermistor bolometers, and MgB2 or YBCO superconducting bolometers, have much higher sensitivity, the required active or passive cooling mechanisms add prohibitive cost and mass for long duration missions. Other uncooled detectors, likepyroelectrics, require a motor mechanism to chop against a known reference temperature, which adds unnecessary mission risk. Uncooled vanadium oxide or amorphous Si microbolometer arrays with integrated CMOS readout circuits, not only have lower sensitivity, but also have not been proven to be radiation hard >100 krad (Si) total ionizing dose, and barring additional materials and readout development, their performance has reached a plateau.Uncooled and radiation hard thermopiles with D* ~1x109 cm√Hz/W and time constant τ ~100 ms have been integrated into thermal imaging instruments on several past missions and have extensive flight heritage (Mariner, Voyager, Cassini, LRO, MRO). Thermopile arrays are also on the MERTIS instrument payload on-board the soon to be launched BepiColombo Mission.To date, thermopiles used for spaceflight instrumentation have consisted of either hand assembled "one-off" single thermopile pixels or COTS thermopile pixel arrays both using Bi-Sb or Bi-Te thermoelectric materials. For future high performance imagers, thermal detector arrays with higher D*, lower τ, and high efficiency delineated absorbers are desirable. Existing COTS and other flight thermopile designs require highly specialized and nonstandard processing techniques to fabricate both the Bi-Sb or Bi-Te thermocouples and the gold or silver black absorbers, which put limitations on further development.Our detector arrays will have a D* ≥ 3x109 cm√Hz/W and a thermal time constant ≤ 30 ms at 170 K. They will be produced using proven, standard semiconductor and MEMS fabrication techniques, which will enable the future integration of other ancillary structures like high efficiency broadband absorbers, which will result in D* ≥ 5x109 cm√Hz/W.
Facility Instrumentation for SOFIA: Technical Specifications and Scientific Goals
NASA Astrophysics Data System (ADS)
Stacey, G. J.
2000-05-01
The Stratospheric Observatory for Infrared Astronomy (SOFIA) is NASA's next generation airborne observatory consisting of a 2.5 m telescope in a modified Boeing 747 SP. First light is expected in late 2002. Three "Facility Class" instruments were among the first generation of instruments selected to fly on SOFIA. These instruments, currently under development are (1) a 5 to 38 um imaging photometer based on twin As:Si and Sb:Sb BIB arrays (FORCAST), (2) a 40 to 300 um photometer based on three arrays of bolometers, and (3) a 17 to 210 um eschelle grating spectrometer based on an Sb:Sb BIB array and a Ge:Sb and stressed Ge:Ga array of photoconductors. I will discuss both the technical aspects of these facility instruments, and some of the exciting new science that is possible with these ground breaking instruments on an airborne 2.5 meter telescope. Science topics include circumstellar debris disks, star formation, the Galactic Center, and distant galaxies.
SCD's uncooled detectors and video engines for a wide-range of applications
NASA Astrophysics Data System (ADS)
Fraenkel, A.; Mizrahi, U.; Bikov, L.; Giladi, A.; Shiloah, N.; Elkind, S.; Kogan, I.; Maayani, S.; Amsterdam, A.; Vaserman, I.; Duman, O.; Hirsh, Y.; Schapiro, F.; Tuito, A.; Ben-Ezra, M.
2011-06-01
Over the last decade SCD has established a state of the art VOx μ-Bolometer product line. Due to its overall advantages this technology is penetrating a large range of systems. In addition to a large variety of detectors, SCD has also recently introduced modular video engines with an open architecture. In this paper we will describe the versatile applications supported by the products based on 17μm pitch: Low SWaP short range systems, mid range systems based on VGA arrays and high-end systems that will utilize the XGA format. These latter systems have the potential to compete with cooled 2nd Gen scanning LWIR arrays, as will be demonstrated by TRM3 system level calculations.
Antenna-coupled TES bolometer arrays for CMB polarimetry
NASA Astrophysics Data System (ADS)
Kuo, C. L.; Bock, J. J.; Bonetti, J. A.; Brevik, J.; Chattopadhyay, G.; Day, P. K.; Golwala, S.; Kenyon, M.; Lange, A. E.; LeDuc, H. G.; Nguyen, H.; Ogburn, R. W.; Orlando, A.; Transgrud, A.; Turner, A.; Wang, G.; Zmuidzinas, J.
2008-07-01
We describe the design and performance of polarization selective antenna-coupled TES arrays that will be used in several upcoming Cosmic Microwave Background (CMB) experiments: SPIDER, BICEP-2/SPUD. The fully lithographic polarimeter arrays utilize planar phased-antennas for collimation (F/4 beam) and microstrip filters for band definition (25% bandwidth). These devices demonstrate high optical efficiency, excellent beam shapes, and well-defined spectral bands. The dual-polarization antennas provide well-matched beams and low cross polarization response, both important for high-fidelity polarization measurements. These devices have so far been developed for the 100 GHz and 150 GHz bands, two premier millimeter-wave atmospheric windows for CMB observations. In the near future, the flexible microstrip-coupled architecture can provide photon noise-limited detection for the entire frequency range of the CMBPOL mission. This paper is a summary of the progress we have made since the 2006 SPIE meeting in Orlando, FL.
Similar Tensor Arrays - A Framework for Storage of Tensor Array Data
NASA Astrophysics Data System (ADS)
Brun, Anders; Martin-Fernandez, Marcos; Acar, Burak; Munoz-Moreno, Emma; Cammoun, Leila; Sigfridsson, Andreas; Sosa-Cabrera, Dario; Svensson, Björn; Herberthson, Magnus; Knutsson, Hans
This chapter describes a framework for storage of tensor array data, useful to describe regularly sampled tensor fields. The main component of the framework, called Similar Tensor Array Core (STAC), is the result of a collaboration between research groups within the SIMILAR network of excellence. It aims to capture the essence of regularly sampled tensor fields using a minimal set of attributes and can therefore be used as a “greatest common divisor” and interface between tensor array processing algorithms. This is potentially useful in applied fields like medical image analysis, in particular in Diffusion Tensor MRI, where misinterpretation of tensor array data is a common source of errors. By promoting a strictly geometric perspective on tensor arrays, with a close resemblance to the terminology used in differential geometry, (STAC) removes ambiguities and guides the user to define all necessary information. In contrast to existing tensor array file formats, it is minimalistic and based on an intrinsic and geometric interpretation of the array itself, without references to other coordinate systems.
Testing of 100 mK bolometers for space applications
NASA Technical Reports Server (NTRS)
Murray, A. G.; Ade, P. A. R.; Bhatia, R. S.; Griffin, M. J.; Maffei, B.; Nartallo, R.; Beeman, J. W.; Bock, J.; Lange, A.; DelCastillo, H.
1996-01-01
Electrical and optical performance data are presented for a prototype 100 mK spider-web bolometer operating under very low photon backgrounds. These data are compared with the bolometer theory and are used to estimate the expected sensitivity of such a detector used for low background space astronomy. The results demonstrate that the sensitivity and speed of response requirements of the bolometer instruments proposed for these missions can be met by 100 mK spider-web bolometers using neutron transmutation doped germanium as the temperature sensitive element.
A Graphene-Based Terahertz Hot Electron Bolometer with Johnson Noise Readout
NASA Astrophysics Data System (ADS)
Miao, W.; Gao, H.; Wang, Z.; Zhang, W.; Ren, Y.; Zhou, K. M.; Shi, S. C.; Yu, C.; He, Z. Z.; Liu, Q. B.; Feng, Z. H.
2018-05-01
In this paper, we present the development of a graphene-based hot electron bolometer with Johnson noise readout. The bolometer is a graphene microbridge connected to a log spiral antenna by Au contact pads. The Fourier transform spectrometer measurement shows the bolometer has high coupling efficiency in the frequency range from 0.3 to 1.6 THz. Using 300/77 K blackbody loads, we measure an optical noise equivalent power of 5.6 × 10-12 W/Hz0.5 at 3.0 K. To understand the thermal transport inside the graphene microbridge, we measure the bolometers with different microbridge lengths at different bath temperatures. We find that the thermal conductance due to electron diffusion is significant in the bolometers.
NASA Technical Reports Server (NTRS)
Ho, S. P.; Pappas, C. G.; Austermann, J.; Beall, J. A.; Becker, D.; Choi, S. K.; Datta, R.; Duff, S. M.; Gallardo, P. A.; Grace, E.;
2016-01-01
The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization sensitive receiver for the 6-meter Atacama Cosmology Telescope (ACT) and measures the small angular scale polarization anisotropies in the cosmic microwave background (CMB). The full focal plane is composed of three detector arrays, containing over 3000 transition edge sensors (TES detectors) in total. The first two detector arrays, observing at 146 gigahertz, were deployed in 2013 and 2014, respectively. The third and final array is composed of multichroic pixels sensitive to both 90 and 146 gigahertz and saw first light in February 2015. Fabricated at NIST, this dichroic array consists of 255 pixels, with a total of 1020 polarization sensitive bolometers and is coupled to the telescope with a monolithic array of broad-band silicon feedhorns. The detectors are read out using time-division SQUID multiplexing and cooled by a dilution refrigerator at 110 meter Kelvins. We present an overview of the assembly and characterization of this multichroic array in the lab, and the initial detector performance in Chile. The detector array has a TES detector electrical yield of 85 percent, a total array sensitivity of less than 10 microns Kelvin root mean square speed, and detector time constants and saturation powers suitable for ACT CMB observations.
NASA Astrophysics Data System (ADS)
Ho, S. P.; Pappas, C. G.; Austermann, J.; Beall, J. A.; Becker, D.; Choi, S. K.; Datta, R.; Duff, S. M.; Gallardo, P. A.; Grace, E.; Hasselfield, M.; Henderson, S. W.; Hilton, G. C.; Hubmayr, J.; Koopman, B. J.; Lanen, J. V.; Li, D.; McMahon, J.; Nati, F.; Niemack, M. D.; Niraula, P.; Salatino, M.; Schillaci, A.; Schmitt, B. L.; Simon, S. M.; Staggs, S. T.; Stevens, J. R.; Ward, J. T.; Wollack, E. J.; Vavagiakis, E. M.
2016-08-01
The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization sensitive receiver for the 6-m Atacama Cosmology Telescope (ACT) and measures the small angular scale polarization anisotropies in the cosmic microwave background (CMB). The full focal plane is composed of three detector arrays, containing over 3000 transition edge sensors (TES detectors) in total. The first two detector arrays, observing at 146 GHz, were deployed in 2013 and 2014, respectively. The third and final array is composed of multichroic pixels sensitive to both 90 and 146 GHz and saw first light in February 2015. Fabricated at NIST, this dichroic array consists of 255 pixels, with a total of 1020 polarization sensitive bolometers and is coupled to the telescope with a monolithic array of broad-band silicon feedhorns. The detectors are read out using time-division SQUID multiplexing and cooled by a dilution refrigerator at 110 mK. We present an overview of the assembly and characterization of this multichroic array in the lab, and the initial detector performance in Chile. The detector array has a TES detector electrical yield of 85 %, a total array sensitivity of less than 10 \\upmu K√{ {s}}, and detector time constants and saturation powers suitable for ACT CMB observations.
NASA Astrophysics Data System (ADS)
Koprowski, M. P.; Dunlop, J. S.; Michałowski, M. J.; Roseboom, I.; Geach, J. E.; Cirasuolo, M.; Aretxaga, I.; Bowler, R. A. A.; Banerji, M.; Bourne, N.; Coppin, K. E. K.; Chapman, S.; Hughes, D. H.; Jenness, T.; McLure, R. J.; Symeonidis, M.; Werf, P. van der
2016-06-01
We investigate the properties of the galaxies selected from the deepest 850-μm survey undertaken to date with (Submillimetre Common-User Bolometer Array 2) SCUBA-2 on the James Clerk Maxwell Telescope as part of the SCUBA-2 Cosmology Legacy Survey. A total of 106 sources (>5σ) were uncovered at 850 μm from an area of ≃150 arcmin2 in the centre of the COSMOS/UltraVISTA/Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) field, imaged to a typical depth of σ850 ≃ 0.25 mJy. We utilize the available multifrequency data to identify galaxy counterparts for 80 of these sources (75 per cent), and to establish the complete redshift distribution for this sample, yielding bar{z} = 2.38± 0.09. We have also been able to determine the stellar masses of the majority of the galaxy identifications, enabling us to explore their location on the star formation rate:stellar mass (SFR:M*) plane. Crucially, our new deep 850-μm-selected sample reaches flux densities equivalent to SFR ≃ 100 M⊙ yr-1, enabling us to confirm that sub-mm galaxies form the high-mass end of the `main sequence' (MS) of star-forming galaxies at z > 1.5 (with a mean specific SFR of sSFR = 2.25 ± 0.19 Gyr-1 at z ≃ 2.5). Our results are consistent with no significant flattening of the MS towards high masses at these redshifts. However, our results add to the growing evidence that average sSFR rises only slowly at high redshift, resulting in log10sSFR being an apparently simple linear function of the age of the Universe.
SCUBA and HIRES Results for Protostellar Cores in the MON OB1 Dark Cloud
NASA Astrophysics Data System (ADS)
Wolf-Chase, G.; Moriarty-Schieven, G.; Fich, M.; Barsony, M.
1999-05-01
We have used HIRES-processing of IRAS data and point-source modelling techniques (Hurt & Barsony 1996; O'Linger 1997; Barsony et al. 1998), together with submillimeter continuum imaging using the Submillimeter Common-User Bolometer Array (SCUBA) on the 15-meter James Clerk Maxwell Telescope (JCMT), to search CS cores in the Mon OB1 dark cloud (Wolf-Chase, Walker, & Lada 1995; Wolf-Chase & Walker 1995) for deeply embedded sources. These observations, as well as follow-up millimeter photometry at the National Radio Astronomy Observatory (NRAO) 12-meter telescope on Kitt Peak, have lead to the identification of two Class 0 protostellar candidates, which were previously unresolved from two brighter IRAS point sources (IRAS 06382+0939 & IRAS 06381+1039) in this cloud. Until now, only one Class 0 object had been confirmed in Mon OB1; the driving source of the highly-collimated outflow NGC 2264 G (Ward-Thompson, Eiroa, & Casali 1995; Margulis et al. 1990; Lada & Fich 1996), which lies well outside the extended CS cores. One of the new Class 0 candidates may be an intermediate-mass source associated with an H_2O maser, and the other object is a low-mass source which may be associated with a near-infrared jet, and possibly with a molecular outflow. We report accurate positions for the new Class 0 candidates, based on the SCUBA images, and present new SEDs for these sources, as well as for the brighter IRAS point sources. A portion of this work was performed while GWC held a President's Fellowship from the University of California. MB and GWC gratefully acknowledge financial support from MB's NSF CAREER Grant, AST97-9753229.
NASA Astrophysics Data System (ADS)
Nettke, Will; Scott, Douglas; Gibb, Andy G.; Thompson, Mark; Chrysostomou, Antonio; Evans, A.; Hill, Tracey; Jenness, Tim; Joncas, Gilles; Moore, Toby; Serjeant, Stephen; Urquhart, James; Vaccari, Mattia; Weferling, Bernd; White, Glenn; Zhu, Ming
2017-06-01
The SCUBA-2 Ambitious Sky Survey (SASSy) is composed of shallow 850-μm imaging using the Submillimetre Common-User Bolometer Array 2 (SCUBA-2) on the James Clerk Maxwell Telescope. Here we describe the extraction of a catalogue of beam-sized sources from a roughly 120 deg2 region of the Galactic plane mapped uniformly (to an rms level of about 40 mJy), covering longitude 120° < l < 140° and latitude |b| < 2.9°. We used a matched-filtering approach to increase the signal-to-noise ratio (S/N) in these noisy maps and tested the efficiency of our extraction procedure through estimates of the false discovery rate, as well as by adding artificial sources to the real images. The primary catalogue contains a total of 189 sources at 850 μm, down to an S/N threshold of approximately 4.6. Additionally, we list 136 sources detected down to S/N = 4.3, but recognize that as we go lower in S/N, the reliability of the catalogue rapidly diminishes. We perform follow-up observations of some of our lower significance sources through small targeted SCUBA-2 images and list 265 sources detected in these maps down to S/N = 5. This illustrates the real power of SASSy: inspecting the shallow maps for regions of 850-μm emission and then using deeper targeted images to efficiently find fainter sources. We also perform a comparison of the SASSy sources with the Planck Catalogue of Compact Sources and the IRAS Point Source Catalogue, to determine which sources discovered in this field might be new, and hence potentially cold regions at an early stage of star formation.
The JCMT Plane Survey: first complete data release - emission maps and compact source catalogue
NASA Astrophysics Data System (ADS)
Eden, D. J.; Moore, T. J. T.; Plume, R.; Urquhart, J. S.; Thompson, M. A.; Parsons, H.; Dempsey, J. T.; Rigby, A. J.; Morgan, L. K.; Thomas, H. S.; Berry, D.; Buckle, J.; Brunt, C. M.; Butner, H. M.; Carretero, D.; Chrysostomou, A.; Currie, M. J.; deVilliers, H. M.; Fich, M.; Gibb, A. G.; Hoare, M. G.; Jenness, T.; Manser, G.; Mottram, J. C.; Natario, C.; Olguin, F.; Peretto, N.; Pestalozzi, M.; Polychroni, D.; Redman, R. O.; Salji, C.; Summers, L. J.; Tahani, K.; Traficante, A.; diFrancesco, J.; Evans, A.; Fuller, G. A.; Johnstone, D.; Joncas, G.; Longmore, S. N.; Martin, P. G.; Richer, J. S.; Weferling, B.; White, G. J.; Zhu, M.
2017-08-01
We present the first data release of the James Clerk Maxwell Telescope Plane Survey (JPS), the JPS Public Release 1. JPS is an 850-μm continuum survey of six fields in the northern inner Galactic plane in a longitude range of ℓ = 7°-63°, made with the Submillimetre Common-User Bolometer Array 2. This first data release consists of emission maps of the six JPS regions with an average pixel-to-pixel noise of 7.19 mJy beam-1, when smoothed over the beam, and a compact source catalogue containing 7813 sources. The 95 per cent completeness limits of the catalogue are estimated at 0.04 Jy beam-1 and 0.3 Jy for the peak and integrated flux densities, respectively. The emission contained in the compact source catalogue is 42 ± 5 per cent of the total and, apart from the large-scale (greater than 8 arcmin) emission, there is excellent correspondence with features in the 500-μm Herschel maps. We find that, with two-dimensional matching, 98 ± 2 per cent of sources within the fields centred at ℓ = 20°, 30°, 40° and 50° are associated with molecular clouds, with 91 ± 3 per cent of the ℓ = 30° and 40° sources associated with dense molecular clumps. Matching the JPS catalogue to Herschel 70-μm sources, we find that 38 ± 1 per cent of sources show evidence of ongoing star formation. The JPS Public Release 1 images and catalogue will be a valuable resource for studies of star formation in the Galaxy and the role of environment and spiral arms in the star formation process.
Submillimetre observations of WISE-selected high-redshift, luminous, dusty galaxies
NASA Astrophysics Data System (ADS)
Jones, Suzy F.; Blain, Andrew W.; Stern, Daniel; Assef, Roberto J.; Bridge, Carrie R.; Eisenhardt, Peter; Petty, Sara; Wu, Jingwen; Tsai, Chao-Wei; Cutri, Roc; Wright, Edward L.; Yan, Lin
2014-09-01
We present SCUBA-2 (Submillimetre Common-User Bolometer Array) 850 μm submillimetre (submm) observations of the fields of 10 dusty, luminous galaxies at z ˜ 1.7-4.6, detected at 12 and/or 22 μm by the Wide-field Infrared Survey Explorer (WISE) all-sky survey, but faint or undetected at 3.4 and 4.6 μm; dubbed hot, dust-obscured galaxies (Hot DOGs). The six detected targets all have total infrared luminosities greater than 1013 L⊙, with one greater than 1014 L⊙. Their spectral energy distributions (SEDs) are very blue from mid-infrared to submm wavelengths and not well fitted by standard active galactic nuclei (AGN) SED templates, without adding extra dust extinction to fit the WISE 3.4 and 4.6 μm data. The SCUBA-2 850 μm observations confirm that the Hot DOGs have less cold and/or more warm dust emission than standard AGN templates, and limit an underlying extended spiral or ULIRG-type galaxy to contribute less than about 2 or 55 per cent of the typical total Hot DOG IR luminosity, respectively. The two most distant and luminous targets have similar observed submm to mid-infrared ratios to the rest, and thus appear to have even hotter SEDs. The number of serendipitous submm galaxies detected in the 1.5-arcmin-radius SCUBA-2 850 μm maps indicates there is a significant overdensity of serendipitous sources around Hot DOGs. These submm observations confirm that the WISE-selected ultraluminous galaxies have very blue mid-infrared to submm SEDs, suggesting that they contain very powerful AGN, and are apparently located in unusual arcmin-scale overdensities of very luminous dusty galaxies.
The Herschel Bright Sources (HerBS): sample definition and SCUBA-2 observations
NASA Astrophysics Data System (ADS)
Bakx, Tom J. L. C.; Eales, S. A.; Negrello, M.; Smith, M. W. L.; Valiante, E.; Holland, W. S.; Baes, M.; Bourne, N.; Clements, D. L.; Dannerbauer, H.; De Zotti, G.; Dunne, L.; Dye, S.; Furlanetto, C.; Ivison, R. J.; Maddox, S.; Marchetti, L.; Michałowski, M. J.; Omont, A.; Oteo, I.; Wardlow, J. L.; van der Werf, P.; Yang, C.
2018-01-01
We present the Herschel Bright Sources (HerBS) sample, a sample of bright, high-redshift Herschel sources detected in the 616.4 deg2 Herschel Astrophysical Terahertz Large Area Survey. The HerBS sample contains 209 galaxies, selected with a 500 μm flux density greater than 80 mJy and an estimated redshift greater than 2. The sample consists of a combination of hyperluminous infrared galaxies and lensed ultraluminous infrared galaxies during the epoch of peak cosmic star formation. In this paper, we present Submillimetre Common-User Bolometer Array 2 (SCUBA-2) observations at 850 μm of 189 galaxies of the HerBS sample, 152 of these sources were detected. We fit a spectral template to the Herschel-Spectral and Photometric Imaging Receiver (SPIRE) and 850 μm SCUBA-2 flux densities of 22 sources with spectroscopically determined redshifts, using a two-component modified blackbody spectrum as a template. We find a cold- and hot-dust temperature of 21.29_{-1.66}^{+1.35} and 45.80_{-3.48}^{+2.88} K, a cold-to-hot dust mass ratio of 26.62_{-6.74}^{+5.61} and a β of 1.83_{-0.28}^{+0.14}. The poor quality of the fit suggests that the sample of galaxies is too diverse to be explained by our simple model. Comparison of our sample to a galaxy evolution model indicates that the fraction of lenses are high. Out of the 152 SCUBA-2 detected galaxies, the model predicts 128.4 ± 2.1 of those galaxies to be lensed (84.5 per cent). The SPIRE 500 μm flux suggests that out of all 209 HerBS sources, we expect 158.1 ± 1.7 lensed sources, giving a total lensing fraction of 76 per cent.
Detecting a rotation in the ɛ Eridani debris disc
NASA Astrophysics Data System (ADS)
Poulton, C. J.; Greaves, J. S.; Collier Cameron, A.
2006-10-01
The evidence for a rotation of the ɛ Eridani debris disc is examined. Data at 850-μm wavelength were previously obtained using the Submillimetre Common User Bolometer Array (SCUBA) over periods of 1997-1998 and 2000-2002. By χ2 fitting after shift and rotation operations, images from these two epochs were compared to recover proper motion and orbital motion of the disc. The same procedures were then performed on simulated images to estimate the accuracy of the results. Minima in the χ2 plots indicate a motion of the disc of approximately 0.6 arcsec per year in the direction of the star's proper motion. This underestimates the true value of 1 arcsec per year, implying that some of the structure in the disc region is not associated with ɛ Eridani, originating instead from background galaxies. From the χ2 fitting for orbital motion, a counterclockwise rotation rate of per year is deduced. Comparisons with simulated data in which the disc is not rotating show that noise and background galaxies result in approximately Gaussian fluctuations with a standard deviation of per year. Thus, counterclockwise rotation of disc features is supported at approximately a 2σ level, after a 4-yr time difference. This rate is faster than the Keplerian rate of per year for features at ~65 au from the star, suggesting their motion is tracking a planet inside the dust ring. Future observations with SCUBA-2 can rule out no rotation of the ɛ Eridani dust clumps with ~4σ confidence. Assuming a rate of about per year, the rotation of the features after a 10-yr period could be shown to be >=1° per year at the 3σ level.
The JCMT Gould Belt Survey: A First Look at SCUBA-2 Observations of the Lupus I Molecular Cloud
NASA Astrophysics Data System (ADS)
Mowat, C.; Hatchell, J.; Rumble, D.; Kirk, H.; Buckle, J.; Berry, D. S.; Broekhoven-Fiene, H.; Currie, M. J.; Jenness, T.; Johnstone, D.; Mottram, J. C.; Pattle, K.; Tisi, S.; Di Francesco, J.; Hogerheijde, M. R.; Ward-Thompson, D.; Bastien, P.; Bresnahan, D.; Butner, H.; Chen, M.; Chrysostomou, A.; Coudé, S.; Davis, C. J.; Drabek-Maunder, E.; Duarte-Cabral, A.; Fich, M.; Fiege, J.; Friberg, P.; Friesen, R.; Fuller, G. A.; Graves, S.; Greaves, J.; Holland, W.; Joncas, G.; Kirk, J. M.; Knee, L. B. G.; Mairs, S.; Marsh, K.; Matthews, B. C.; Moriarty-Schieven, G.; Rawlings, J.; Retter, B.; Richer, J.; Robertson, D.; Rosolowsky, E.; Sadavoy, S.; Thomas, H.; Tothill, N.; Viti, S.; White, G. J.; Wouterloot, J.; Yates, J.; Zhu, M.
2017-05-01
This paper presents observations of the Lupus I molecular cloud at 450 and 850 μm with Submillimetre Common User Bolometer Array (SCUBA-2) as part of the James Clerk Maxwell Telescope Gould Belt Survey (JCMT GBS). Nine compact sources, assumed to be the discs of young stellar objects (YSOs), 12 extended protostellar, pre-stellar and starless cores, and one isolated, low-luminosity protostar, are detected in the region. Spectral energy distributions, including submillimetre fluxes, are produced for 15 YSOs, and each is fitted with the models of Robitaille et al. The proportion of Class 0/I protostars is higher than that seen in other Gould Belt regions such as Ophiuchus and Serpens. Circumstellar disc masses are calculated for more evolved sources, while protostellar envelope masses are calculated for protostars. Up to four very low luminosity objects are found; a large fraction when compared to other Spitzer c2d regions. One YSO has a disc mass greater than the minimum mass solar nebula. 12 starless/protostellar cores are detected by SCUBA-2 and their masses are calculated. The stability of these cores is examined using both the thermal Jeans mass and a turbulent virial mass when possible. Two cores in Lupus I are super-Jeans and contain no known YSOs. One of these cores has a virial parameter of 1.1 ± 0.4, and could therefore be pre-stellar. The high ratio of Class 0/I to Class III YSOs (1:1), and the presence of a pre-stellar core candidate, provides support for the hypothesis that a shock recently triggered star formation in Lupus I.
Readout of a 176 pixel FDM system for SAFARI TES arrays
NASA Astrophysics Data System (ADS)
Hijmering, R. A.; den Hartog, R.; Ridder, M.; van der Linden, A. J.; van der Kuur, J.; Gao, J. R.; Jackson, B.
2016-07-01
In this paper we present the results of our 176-pixel prototype of the FDM readout system for SAFARI, a TES-based focal-plane instrument for the far-IR SPICA mission. We have implemented the knowledge obtained from the detailed study on electrical crosstalk reported previously. The effect of carrier leakage is reduced by a factor two, mutual impedance is reduced to below 1 nH and mutual inductance is removed. The pixels are connected in stages, one quarter of the array half of the array and the full array, to resolve intermediate technical issues. A semi-automated procedure was incorporated to find all optimal settings for all pixels. And as a final step the complete array has been connected and 132 pixels have been read out simultaneously within the frequency range of 1-3.8MHz with an average frequency separation of 16kHz. The noise was found to be detector limited and was not affected by reading out all pixels in a FDM mode. With this result the concept of using FDM for multiplexed bolometer read out for the SAFARI instrument has been demonstrated.
Arrays of Nano Tunnel Junctions as Infrared Image Sensors
NASA Technical Reports Server (NTRS)
Son, Kyung-Ah; Moon, Jeong S.; Prokopuk, Nicholas
2006-01-01
Infrared image sensors based on high density rectangular planar arrays of nano tunnel junctions have been proposed. These sensors would differ fundamentally from prior infrared sensors based, variously, on bolometry or conventional semiconductor photodetection. Infrared image sensors based on conventional semiconductor photodetection must typically be cooled to cryogenic temperatures to reduce noise to acceptably low levels. Some bolometer-type infrared sensors can be operated at room temperature, but they exhibit low detectivities and long response times, which limit their utility. The proposed infrared image sensors could be operated at room temperature without incurring excessive noise, and would exhibit high detectivities and short response times. Other advantages would include low power demand, high resolution, and tailorability of spectral response. Neither bolometers nor conventional semiconductor photodetectors, the basic detector units as proposed would partly resemble rectennas. Nanometer-scale tunnel junctions would be created by crossing of nanowires with quantum-mechanical-barrier layers in the form of thin layers of electrically insulating material between them (see figure). A microscopic dipole antenna sized and shaped to respond maximally in the infrared wavelength range that one seeks to detect would be formed integrally with the nanowires at each junction. An incident signal in that wavelength range would become coupled into the antenna and, through the antenna, to the junction. At the junction, the flow of electrons between the crossing wires would be dominated by quantum-mechanical tunneling rather than thermionic emission. Relative to thermionic emission, quantum mechanical tunneling is a fast process.
Multiplexing of Hot-Electron Nanobolometers Using Microwave SQUIDs
NASA Technical Reports Server (NTRS)
Karasik, Boris S.; Day, Peter K.; Kawamura, Jonathan H.; Bumble, Bruce; LeDuc, Henry G.
2009-01-01
We have obtained the first data on the multiplexed operation of titanium hot-electron bolometers (HEB). Because of their low thermal conductance and small electron heat capacity nanobolometers are particularly interesting as sensors for far-infrared spectroscopy and mid- and near-IR calorimetry. However, the short time constant of these devices (approximately microseconds at 300-400 mK) makes time domain or audio-frequency domain multiplexing impractical. The Microwave SQUID (MSQUID) approach pursued in this work uses dc SQUIDs coupled to X-band microresonators which are, in turn, coupled to a transmission line. We used a 4-element array of Ti HEBs operated at 415 mK in a He3 dewar with an optical fiber access. The microwave signal exhibited 10-MHz wide resonances at individual MSQUD frequencies between 9 GHz and 10 GHz. The resonance depth is modulated by the current through the bolometer via a change of the SQUID flux state. The transmitted signal was amplified by a cryogenic amplifier and downconverted to baseband using an IQ mixer. A 1-dB per ??/2 responsivity was sufficient for keeping the system noise at the level of 2 pA/Hz1/2. This is more than an order of magnitude smaller than phonon noise in the HEB. The devices were able to detect single near- IR photons (1550 nm) with a time constant of 3.5 ?s. Follow-on work will scale the array to larger size and will address the microwave frequency signal generation and processing using a digital transceiver.
Improved fabrication techniques for infrared bolometers
NASA Technical Reports Server (NTRS)
Lange, A. E.; Mcbride, S. E.; Richards, P. L.; Haller, E. E.; Kreysa, E.
1983-01-01
Ion implantation and sputter metallization are used to produce ohmic electrical contacts to Ge:Ga chips. The method is shown to give a high yield of small monolithic bolometers with very little low-frequency noise. It is noted that when one of the chips is used as the thermometric element of a composite bolometer it must be bonded to a dielectric substrate. The thermal resistance of the conventional epoxy bond is measured and found to be undesirably large. A procedure for soldering the chip to a metallized portion of the substrate in such a way as to reduce this resistance is outlined. An evaluation is made of the contribution of the metal film absorber to the heat capacity of a composite bolometer. It is found that the heat capacity of a NiCr absorber at 1.3 K can dominate the bolometer performance. A Bi absorber possesses significantly lower heat capacity. A low-temperature blackbody calibrator is built to measure the optical responsivity of bolometers. A composite bolometer system with a throughput of approximately 0.1 sr sq cm is constructed using the new techniques. The noise in this bolometer is white above 2.5 Hz and is slightly below the value predicted by thermodynamic equilibrium theory.
NASA Technical Reports Server (NTRS)
Weckmann, Stephanie
1997-01-01
The Clouds and the Earth's Radiant Energy System (CERES) is a program sponsored by the National Aeronautics and Space Administration (NASA) aimed at evaluating the global energy balance. Current scanning radiometers used for CERES consist of thin-film thermistor bolometers viewing the Earth through a Cassegrain telescope. The Thermal Radiation Group, a laboratory in the Department of Mechanical Engineering at Virginia Polytechnic Institute and State University, is currently studying a new sensor concept to replace the current bolometer: a thermopile thermal radiation detector. This next-generation detector would consist of a thermal sensor array made of thermocouple junction pairs, or thermopiles. The objective of the current research is to perform a thermal analysis of the thermopile. Numerical thermal models are particularly suited to solve problems for which temperature is the dominant mechanism of the operation of the device (through the thermoelectric effect), as well as for complex geometries composed of numerous different materials. Feasibility and design specifications are studied by developing a dynamic electrothermal model of the thermopile using the finite element method. A commercial finite element-modeling package, ALGOR, is used.
NASA Astrophysics Data System (ADS)
Danevich, F. A.; Bergé, L.; Boiko, R. S.; Chapellier, M.; Chernyak, D. M.; Coron, N.; Devoyon, L.; Drillien, A.-A.; Dumoulin, L.; Enss, C.; Fleischmann, A.; Gastaldo, L.; Giuliani, A.; Gray, D.; Gros, M.; Hervé, S.; Humbert, V.; Ivanov, I. M.; Juillard, A.; Kobychev, V. V.; Koskas, F.; Loidl, M.; Magnier, P.; Makarov, E. P.; Mancuso, M.; de Marcillac, P.; Marnieros, S.; Marrache-Kikuchi, C.; Navick, X.-F.; Nones, C.; Olivieri, E.; Paul, B.; Penichot, Y.; Pessina, G.; Plantevin, O.; Poda, D. V.; Redon, T.; Rodrigues, M.; Shlegel, V. N.; Strazzer, O.; Tenconi, M.; Torres, L.; Tretyak, V. I.; Vasiliev, Ya. V.; Velazquez, M.; Viraphong, O.
2015-10-01
The LUMTNEU program aims at performing a pilot experiment on 0ν2β decay of 100Mo using radiopure ZnMoO4 crystals enriched in 100Mo operated as cryogenic scintillating bolometers. Large volume ZnMoO4 crystal scintillators (˜ 0.3 kg) were developed and tested showing high performance in terms of radiopurity, energy resolution and α/β particle discrimination capability. Zinc molybdate crystal scintillators enriched in 100Mo were grown for the first time by the low-thermal-gradient Czochralski technique with a high crystal yield and an acceptable level of enriched molybdenum irrecoverable losses. A background level of ˜ 0.5 counts/(yr keV ton) in the region of interest can be reached in a large detector array thanks to the excellent detectors radiopurity and particle discrimination capability, suppression of randomly coinciding events by pulse-shape analysis, and anticoincidence cut. These results pave the way to future sensitive searches based on the LUMTNEU technology, capable of approachingand exploring the inverted hierarchy region of the neutrino mass pattern.
Casali, N.; Vignati, Marco; Beeman, J. W.; ...
2015-01-14
CUORE, an array of 988 TeOmore » $$_2$$ bolometers, is about to be one of the most sensitive experiments searching for neutrinoless double-beta decay. Its sensitivity could be further improved by removing the background from α radioactivity. A few years ago it was pointed out that the signal from βs can be tagged by detecting the emitted Cherenkov light, which is not produced by αs. In this paper we confirm this possibility. For the first time we measured the Cherenkov light emitted by a CUORE crystal, and found it to be 100 eV at the Q-value of the decay. To completely reject the α background, we compute that one needs light detectors with baseline noise below 20 eV RMS, a value which is 3–4 times smaller than the average noise of the bolometric light detectors we are using. We point out that an improved light detector technology must be developed to obtain TeO$$_2$$ bolometric experiments able to probe the inverted hierarchy of neutrino masses.« less
High-resolution SMA imaging of bright submillimetre sources from the SCUBA-2 Cosmology Legacy Survey
NASA Astrophysics Data System (ADS)
Hill, Ryley; Chapman, Scott C.; Scott, Douglas; Petitpas, Glen; Smail, Ian; Chapin, Edward L.; Gurwell, Mark A.; Perry, Ryan; Blain, Andrew W.; Bremer, Malcolm N.; Chen, Chian-Chou; Dunlop, James S.; Farrah, Duncan; Fazio, Giovanni G.; Geach, James E.; Howson, Paul; Ivison, R. J.; Lacaille, Kevin; Michałowski, Michał J.; Simpson, James M.; Swinbank, A. M.; van der Werf, Paul P.; Wilner, David J.
2018-06-01
We have used the Submillimeter Array (SMA) at 860 μm to observe the brightest sources in the Submillimeter Common User Bolometer Array-2 (SCUBA-2) Cosmology Legacy Survey (S2CLS). The goal of this survey is to exploit the large field of the S2CLS along with the resolution and sensitivity of the SMA to construct a large sample of these rare sources and to study their statistical properties. We have targeted 70 of the brightest single-dish SCUBA-2 850 μm sources down to S850 ≈ 8 mJy, achieving an average synthesized beam of 2.4 arcsec and an average rms of σ860 = 1.5 mJy beam-1 in our primary beam-corrected maps. We searched our SMA maps for 4σ peaks, corresponding to S860 ≳ 6 mJy sources, and detected 62, galaxies, including three pairs. We include in our study 35 archival observations, bringing our sample size to 105 bright single-dish submillimetre sources with interferometric follow-up. We compute the cumulative and differential number counts, finding them to overlap with previous single-dish survey number counts within the uncertainties, although our cumulative number count is systematically lower than the parent S2CLS cumulative number count by 14 ± 6 per cent between 11 and 15 mJy. We estimate the probability that a ≳10 mJy single-dish submillimetre source resolves into two or more galaxies with similar flux densities to be less than 15 per cent. Assuming the remaining 85 per cent of the targets are ultraluminous starburst galaxies between z = 2 and 3, we find a likely volume density of ≳400 M⊙ yr-1 sources to be {˜ } 3^{+0.7}_{-0.6} {× } 10^{-7} Mpc-3. We show that the descendants of these galaxies could be ≳4 × 1011 M⊙ local quiescent galaxies, and that about 10 per cent of their total stellar mass would have formed during these short bursts of star formation.
SNPConvert: SNP Array Standardization and Integration in Livestock Species.
Nicolazzi, Ezequiel Luis; Marras, Gabriele; Stella, Alessandra
2016-06-09
One of the main advantages of single nucleotide polymorphism (SNP) array technology is providing genotype calls for a specific number of SNP markers at a relatively low cost. Since its first application in animal genetics, the number of available SNP arrays for each species has been constantly increasing. However, conversely to that observed in whole genome sequence data analysis, SNP array data does not have a common set of file formats or coding conventions for allele calling. Therefore, the standardization and integration of SNP array data from multiple sources have become an obstacle, especially for users with basic or no programming skills. Here, we describe the difficulties related to handling SNP array data, focusing on file formats, SNP allele coding, and mapping. We also present SNPConvert suite, a multi-platform, open-source, and user-friendly set of tools to overcome these issues. This tool, which can be integrated with open-source and open-access tools already available, is a first step towards an integrated system to standardize and integrate any type of raw SNP array data. The tool is available at: https://github. com/nicolazzie/SNPConvert.git.
ICE: A Scalable, Low-Cost FPGA-Based Telescope Signal Processing and Networking System
NASA Astrophysics Data System (ADS)
Bandura, K.; Bender, A. N.; Cliche, J. F.; de Haan, T.; Dobbs, M. A.; Gilbert, A. J.; Griffin, S.; Hsyu, G.; Ittah, D.; Parra, J. Mena; Montgomery, J.; Pinsonneault-Marotte, T.; Siegel, S.; Smecher, G.; Tang, Q. Y.; Vanderlinde, K.; Whitehorn, N.
2016-03-01
We present an overview of the ‘ICE’ hardware and software framework that implements large arrays of interconnected field-programmable gate array (FPGA)-based data acquisition, signal processing and networking nodes economically. The system was conceived for application to radio, millimeter and sub-millimeter telescope readout systems that have requirements beyond typical off-the-shelf processing systems, such as careful control of interference signals produced by the digital electronics, and clocking of all elements in the system from a single precise observatory-derived oscillator. A new generation of telescopes operating at these frequency bands and designed with a vastly increased emphasis on digital signal processing to support their detector multiplexing technology or high-bandwidth correlators — data rates exceeding a terabyte per second — are becoming common. The ICE system is built around a custom FPGA motherboard that makes use of an Xilinx Kintex-7 FPGA and ARM-based co-processor. The system is specialized for specific applications through software, firmware and custom mezzanine daughter boards that interface to the FPGA through the industry-standard FPGA mezzanine card (FMC) specifications. For high density applications, the motherboards are packaged in 16-slot crates with ICE backplanes that implement a low-cost passive full-mesh network between the motherboards in a crate, allow high bandwidth interconnection between crates and enable data offload to a computer cluster. A Python-based control software library automatically detects and operates the hardware in the array. Examples of specific telescope applications of the ICE framework are presented, namely the frequency-multiplexed bolometer readout systems used for the South Pole Telescope (SPT) and Simons Array and the digitizer, F-engine, and networking engine for the Canadian Hydrogen Intensity Mapping Experiment (CHIME) and Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX) radio interferometers.
Advanced Antenna-Coupled Superconducting Detector Arrays for CMB Polarimetry
NASA Astrophysics Data System (ADS)
Bock, James
2014-01-01
We are developing high-sensitivity millimeter-wave detector arrays for measuring the polarization of the cosmic microwave background (CMB). This development is directed to advance the technology readiness of the Inflation Probe mission in NASA's Physics of the Cosmos program. The Inflation Probe is a fourth-generation CMB satellite that will measure the polarization of the CMB to astrophysical limits, characterizing the inflationary polarization signal, mapping large-scale structure based on polarization induced by gravitational lensing, and mapping Galactic magnetic fields through measurements of polarized dust emission. The inflationary polarization signal is produced by a background of gravitational waves from the epoch of inflation, an exponential expansion of space-time in the early universe, with an amplitude that depends on the physical mechanism producing inflation. The inflationary polarization signal may be distinguished by its unique 'B-mode' vector properties from polarization from the density variations that predominantly source CMB temperature anisotropy. Mission concepts for the Inflation Probe are being developed in the US, Europe and Japan. The arrays are based on planar antennas that provide integral beam collimation, polarization analysis, and spectral band definition in a compact lithographed format that eliminates discrete fore-optics such as lenses and feedhorns. The antennas are coupled to transition-edge superconducting bolometers, read out with multiplexed SQUID current amplifiers. The superconducting sensors and readouts developed in this program share common technologies with NASA X-ray and FIR detector applications. Our program targets developments required for space observations, and we discuss our technical progress over the past two years and plans for future development. We are incorporating arrays into active sub-orbital and ground-based experiments, which advance technology readiness while producing state of the art CMB polarization measurements.
Characterization and Performance of a Kilo-TES Sub-Array for ACTPol
NASA Technical Reports Server (NTRS)
Grace, E. A.; Beall, J.; Cho, H. M.; Devlin, M. J.; Fox, A.; Hilton, G.; Hubmayr, J.; Irwin, K.; Klein, J.; Li, D.;
2014-01-01
ACTPol is a polarization-sensitive receiver upgrade to the Atacama CosmologyTelescope (ACT) which will make millimeterwavelength measurements of the small-scale polarization anisotropies of the cosmic microwave background to investigate the properties of inflation, dark energy, dark matter, and neutrinos in the early Universe. ACTPol will employ three arrays of transition edge sensor (TES) bolometer detectors. The detectors, with a target transition temperature of 150 mK, will be operated at a bath temperature of 100 mK provided by a dilution refrigerator. One array operating at a central frequency of 150 GHz and consisting of 1024 TESes achieved first light at the ACT site in July 2013. We anticipate fielding the remainder of the focal plane, consisting of a second 150 GHz array and a multi-chroic array sensitive to 90 and 150 GHz, at the end of the 2013 observing season. In these proceedings, we present characterization of key detector parameters from measurements performed on the first array both in the lab and during initial field testing. We comment on the design goals, measurements, and uniformity of the detector transition temperatures, saturation powers, and thermal conductivities while detailing measurement methods and results for the detector optical efficiencies and time constants.
NASA Astrophysics Data System (ADS)
Chapellier, M.
2009-08-01
The scintillation properties of luminescent crystals are well known at room temperature. It is only recently, for the sake of dark matter and rare events searches that the studies have been extended to very low temperatures in the millikelvin range. Some little-known facts on the behaviour of bolometers , and more specifically on scintillating ones, are recalled in a simple manner. A few experiments to better understand them are proposed. The term bolometer is used here for calorimeter. Normally a bolometer will measure a flux of energy whereas a calorimeter measures a deposited energy. The tendency is to use bolometer for both types of measurement. A germanium bolometer does not measure the total energy received, part of it is transformed in ionization energy. The same is true for scintillating bolometer.
Improved fabrication techniques for infrared bolometers
NASA Technical Reports Server (NTRS)
Lange, A. E.; Kreysa, E.; Mcbride, S. E.; Richards, P. L.; Haller, E. E.
1983-01-01
Techniques are described for producing improved infrared bolometers from doped germanium. Ion implantation and sputter metalization have been used to make ohmic electrical contacts to Ge:Ga chips. This method results in a high yield of small monolithic bolometers with very little low-frequency noise. When one of these chips is used as the thermometric element of a composite bolometer, it must be bonded to a dielectric substrate. The thermal resistance of the conventional epoxy bond has been measured and found to be undesirably large. A procedure for soldering the chip to a metalized portion of the substrate is described which reduced this resistance. The contribution of the metal film absorber to the heat capacity of a composite bolometer has been measured. The heat capacity of a NiCr absorber at 1.3 K can dominate the bolometer performance. A Bi absorber has significantly lower heat capacity. A low temperature blackbody calibrator has been built to measure the optical responsivity of bolometers. A composite bolometer system with a throughput of approx. 0.1 sr sq cm was constructed using the new techniques. In negligible background it has an optical NEP of 3.6 10((exp -15) W/sq root of Hz at 1.0 K with a time constant of 20 ms. The noise in this bolometer is white above 2.5 Hz and is somewhat below the value predicted by thermodynamic equilibrium theory. It is in agreement with calculations based on a recent nonequilibrium theory.
NASA Technical Reports Server (NTRS)
Lee, Robert B., III; Smith, G. Lou; Barkstrom, Bruce R.; Priestley, Kory J.; Thomas, Susan; Paden, Jack; Pandey, Direndra K.; Thornhill, K. Lee; Bolden, William C.; Wilson, Robert S.
1997-01-01
The Clouds and the Earth's Radiant Energy System (CERES) spacecraft scanning thermistor bolometers will measure earth-reflected solar and earth-emmitted,longwave radiances, at the top-of-the-atmosphere. The measurements are performed in the broadband shortwave (0.3-5.0 micron) and longwave (5.0 - >100 micron) spectral regions as well as in the 8 -12 micron water vapor window over geographical footprints as small as 10 kilometers at the nadir. The CERES measurements are designed to improve our knowledge of the earth's natural climate processes, in particular those related to clouds, and man's impact upon climate as indicated by atmospheric temperature. November 1997, the first set of CERES bolometers is scheduled for launch on the Tropical Rainfall Measuring Mission (TRMM) Spacecraft. The CERES bolometers were calibrated radiometrically in a vacuum ground facility using absolute reference sources, tied to the International Temperature Scale of 1990. Accurate bolometer calibrations are dependent upon the derivations of the radiances from the spectral properties [reflectance, transmittance, emittance, etc.] of both the sources and bolometers. In this paper, the overall calibration approaches are discussed for the longwave and shortwave calibrations. The spectral responses for the TRMM bolometer units are presented and applied to the bolometer ground calibrations in order to determine pre-launch calibration gains.
Superconducting bolometers for millimeter and sub-millimeter wavelengths
NASA Astrophysics Data System (ADS)
Jethava, N.; Kreysa, E.; Siringo, G.; Esch, W.; Gemünd, H.-P.; Menten, K. M.; May, T.; Anders, S.; Fritzsch, L.; Boucher, R.; Zakosarenko, V.; Meyer, H.-G.
2008-07-01
We present the experimental results and a bolometer model of the voltage-biased superconducting bolometer on the low stress silicon nitride (Si3N4) membrane, developed in collaboration between the Max-Planck-Institut fur Radioastronomie (MPIfR), Bonn and the Institute for Photonic Technology (IPHT), Jena, Germany. The superconducting thermistor, deposited on the low stress silicon nitride membrane, is a bilayer of gold-palladium and molybdenum and is designed for a transition temperature of 450 mK. Bolometers for the 1.2 mm atmospheric window were designed, built and tested. The thermal conductance of the bolometer is tuned by structuring the silicon nitride membrane into spider-like geometries. The incident radiation is absorbed by crossed dipoles made from gold-palladium alloy with a surface resistance of 10 Ω/. Using the COSMOS finite element analysis package, the thermal conductance is obtained for the bolometers of different geometries. FEA simulations showed that the deposition of a gold ring around the absorbing area could increase the sensitivity of the bolometer. Therefore, a gold ring is deposited around the center absorbing patch of the silicon nitride membrane. For the bolometer with a gold ring, the measured NEP is 1.7 × 10-16W/√ Hz and the time constant is in the range between 1.4 and 2 ms.
GISMO, a 2 mm Bolometer Camera Optimized for the Study of High Redshift Galaxies
NASA Technical Reports Server (NTRS)
Staguhn, J.
2007-01-01
The 2mm spectral range provides a unique terrestrial window enabling ground based observations of the earliest active dusty galaxies in the universe and thereby allowing a better constraint on the star formation rate in these objects. We present a progress report for our bolometer camera GISMO (the Goddard-IRAM Superconducting 2-Millimeter Observer), which will obtain large and sensitive sky maps at this wavelength. The instrument will be used at the IRAM 30 m telescope and we expect to install it at the telescope in 2007. The camera uses an 8 x 16 planar array of multiplexed TES bolometers, which incorporates our recently designed Backshort Under Grid (BUG) architecture. GISMO will be very efficient at detecting sources serendipitously in large sky surveys. With the background limited performance of the detectors, the camera provides significantly greater imaging sensitivity and mapping speed at this wavelength than has previously been possible. The major scientific driver for the instrument is to provide the IRAM 30 m telescope with the capability to rapidly observe galactic and extragalactic dust emission, in particular from high-zeta ULI RGs and quasar s, even in the summer season. The instrument will fill in the SEDs of high redshift galaxies at the Rayleigh-Jeans part of the dust emission spectrum, even at the highest redshifts. Our source count models predict that GISMO will serendipitously detect one galaxy every four hours on the blank sky, and that one quarter of these galaxies will be at a redshift of zeta 6.5.
Results from the CUORE-0 experiment
Canonica, L.; Alduino, C.; Alfonso, K.; ...
2016-06-09
The CUORE-0 experiment searched for neutrinoless double beta decay in 130 Te using an array of 52 tellurium dioxide crystals, operated as bolometers at a temperature of 10 mK. It took data in the Gran Sasso National Laboratory (Italy) since March 2013 to March 2015. We present the results of a search for neutrinoless double beta decay in 9.8 kg-years 130 Te exposure that allowed us to set the most stringent limit to date on this half-life. The performance of the detector in terms of background and energy resolution is also reported.
Patch antenna terahertz photodetectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palaferri, D.; Todorov, Y., E-mail: yanko.todorov@univ-paris-diderot.fr; Chen, Y. N.
2015-04-20
We report on the implementation of 5 THz quantum well photodetector exploiting a patch antenna cavity array. The benefit of our plasmonic architecture on the detector performance is assessed by comparing it with detectors made using the same quantum well absorbing region, but processed into a standard 45° polished facet mesa. Our results demonstrate a clear improvement in responsivity, polarization insensitivity, and background limited performance. Peak detectivities in excess of 5 × 10{sup 12} cmHz{sup 1/2}/W have been obtained, a value comparable with that of the best cryogenic cooled bolometers.
Commissioning of the FTS-2 Data Reduction Pipeline
NASA Astrophysics Data System (ADS)
Sherwood, M.; Naylor, D.; Gom, B.; Bell, G.; Friberg, P.; Bintley, D.
2015-09-01
FTS-2 is the intermediate resolution Fourier Transform Spectrometer coupled to the SCUBA-2 facility bolometer camera at the James Clerk Maxwell Telescope in Hawaii. Although in principle FTS instruments have the advantage of relatively simple optics compared to other spectrometers, they require more sophisticated data processing to compute spectra from the recorded interferogram signal. In the case of FTS-2, the complicated optical design required to interface with the existing telescope optics introduces performance compromises that complicate spectral and spatial calibration, and the response of the SCUBA-2 arrays introduce interferogram distortions that are a challenge for data reduction algorithms. We present an overview of the pipeline and discuss new algorithms that have been written to correct the noise introduced by unexpected behavior of the SCUBA-2 arrays.
Advanced ACTPol Multichroic Polarimeter Array Fabrication Process for 150 mm Wafers
NASA Astrophysics Data System (ADS)
Duff, S. M.; Austermann, J.; Beall, J. A.; Becker, D.; Datta, R.; Gallardo, P. A.; Henderson, S. W.; Hilton, G. C.; Ho, S. P.; Hubmayr, J.; Koopman, B. J.; Li, D.; McMahon, J.; Nati, F.; Niemack, M. D.; Pappas, C. G.; Salatino, M.; Schmitt, B. L.; Simon, S. M.; Staggs, S. T.; Stevens, J. R.; Van Lanen, J.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.
2016-08-01
Advanced ACTPol (AdvACT) is a third-generation cosmic microwave background receiver to be deployed in 2016 on the Atacama Cosmology Telescope (ACT). Spanning five frequency bands from 25 to 280 GHz and having just over 5600 transition-edge sensor (TES) bolometers, this receiver will exhibit increased sensitivity and mapping speed compared to previously fielded ACT instruments. This paper presents the fabrication processes developed by NIST to scale to large arrays of feedhorn-coupled multichroic AlMn-based TES polarimeters on 150-mm diameter wafers. In addition to describing the streamlined fabrication process which enables high yields of densely packed detectors across larger wafers, we report the details of process improvements for sensor (AlMn) and insulator (SiN_x) materials and microwave structures, and the resulting performance improvements.
Fabrication of Antenna-Coupled KID Array for Cosmic Microwave Background Detection
NASA Astrophysics Data System (ADS)
Tang, Q. Y.; Barry, P. S.; Basu Thakur, R.; Kofman, A.; Nadolski, A.; Vieira, J.; Shirokoff, E.
2018-05-01
Kinetic inductance detectors (KIDs) have become an attractive alternative to traditional bolometers in the sub-mm and mm observing community due to their innate frequency multiplexing capabilities and simple lithographic processes. These advantages make KIDs a viable option for the O(500,000) detectors needed for the upcoming Cosmic Microwave Background-Stage 4 experiment. We have fabricated an antenna-coupled MKID array in the 150 GHz band optimized for CMB detection. Our design uses a twin-slot antenna coupled to an inverted microstrip made from a superconducting Nb/Al bilayer as the strip, a Nb ground plane and a SiN_x dielectric layer in between, which is then coupled to an Al KID grown on high-resistivity Si. We present the fabrication process and measurements of SiN_x microstrip resonators.
Advanced ACTPol Multichroic Polarimeter Array Fabrication Process for 150 mm Wafers
NASA Technical Reports Server (NTRS)
Duff, S. M.; Austermann, J.; Beall, J. A.; Becker, D.; Datta, R.; Gallardo, P. A.; Henderson, S. W.; Hilton, G. C.; Ho, S. P.; Hubmayr, J.;
2016-01-01
Advanced ACTPol (AdvACT) is a third-generation cosmic microwave background receiver to be deployed in 2016 on the Atacama Cosmology Telescope (ACT). Spanning five frequency bands from 25 to 280 GHz and having just over 5600 transition-edge sensor (TES) bolometers, this receiver will exhibit increased sensitivity and mapping speed compared to previously fielded ACT instruments. This paper presents the fabrication processes developed by NIST to scale to large arrays of feedhorn-coupled multichroic AlMn-based TES polarimeters on 150-mm diameter wafers. In addition to describing the streamlined fabrication process which enables high yields of densely packed detectors across larger wafers, we report the details of process improvements for sensor (AlMn) and insulator (SiN(sub x)) materials and microwave structures, and the resulting performance improvements.
NASA Technical Reports Server (NTRS)
Crowley, Kevin T.; Choi, Steve K.; Kuan, Jeffrey; Austermann, Jason E.; Beall, James A.; Datta, Rahul; Duff, Shannon M.; Gallardo, Patricia A.; Hasselfield, Matthew; Henderson, Shawn W.;
2016-01-01
The Advanced ACTPol (AdvACT) upgrade to the Atacama Cosmology Telescope features large arrays of multichroic pixels consisting of two orthogonal-polarization pairs of superconducting bolometers at two observing frequency bands. We present measurements of the detector properties and noise data in a subset of a fielded multichroic array of AlMn transition-edge sensor (TES) detectors. In this array, the distribution of critical temperature T(sub c) across detectors appears uniform at the percent level. The measured noise-equivalent power (NEP) distributions over approximately 1200 detectors are consistent with expectations. We find median NEPs of 4.0×10(exp -17) W/ v Hz for low-band detectors and 6.2×10(exp -17) W/ v Hz for high-band detectors under covered-window telescope test conditions with optical loading comparable to observing with precipitable water vapor approximately 0.5 mm. Lastly, we show the estimated detector optical efficiency, and demonstrate the ability to perform optical characterization over hundreds of detectors at once using a cryogenic blackbody source.
A front-end electronic system for large arrays of bolometers
NASA Astrophysics Data System (ADS)
Arnaboldi, C.; Carniti, P.; Cassina, L.; Gotti, C.; Liu, X.; Maino, M.; Pessina, G.; Rosenfeld, C.; Zhu, B. X.
2018-02-01
CUORE is an array of thermal calorimeters composed of 988 crystals held at about 10 mK, whose absorbed energy is read out with semiconductor thermistors. The composition of the crystal is TeO2, and the aim is the study of the double beta decay of 130Te on very long and stable runs. CUPID-0 is an array of 26 Zn82Se crystals with double thermistor readout to study the double beta decay of 82Se. In the present paper, we present an overview of the entire front-end electronic readout chain, from the preamplifier to the anti-aliasing filter. This overview includes motivations, design strategies, circuit implementation and performance results of the electronic system, including other auxiliary yet important elements like power supplies and the slow control communication system. The stringent requirements of stability on the very long experimental runs that are foreseen during CUORE and CUPID-0 operation, are achieved thanks to novel solutions of the front-end preamplifier and of the detector bias circuit setup.
Characterization of Kilopixel TES detector arrays for PIPER
NASA Astrophysics Data System (ADS)
Datta, Rahul; Ade, Peter; Benford, Dominic; Bennett, Charles; Chuss, David; Costen, Nicholas; Coughlin, Kevin; Dotson, Jessie; Eimer, Joseph; Fixsen, Dale; Gandilo, Natalie; Halpern, Mark; Essinger-Hileman, Thomas; Hilton, Gene; Hinshaw, Gary; Irwin, Kent; Jhabvala, Christine; Kimball, Mark; Kogut, Al; Lazear, Justin; Lowe, Luke; Manos, George; McMahon, Jeff; Miller, Timothy; Mirel, Paul; Moseley, Samuel Harvey; Pawlyk, Samuel; Rodriguez, Samelys; Sharp, Elmer; Shirron, Peter; Staguhn, Johannes G.; Sullivan, Dan; Switzer, Eric; Taraschi, Peter; Tucker, Carole; Walts, Alexander; Wollack, Edward
2018-01-01
The Primordial Inflation Polarization ExploreR (PIPER) is a balloon-borne instrument optimized to measure the polarization of the Cosmic Microwave Background (CMB) at large angular scales. It will map 85% of the sky in four frequency bands centered at 200, 270, 350, and 600 GHz to characterize dust foregrounds and constrain the tensor-to-scalar ratio, r. The sky is imaged on to 32x40 pixel arrays of time-domain multiplexed Transition-Edge Sensor (TES) bolometers operating at a bath temperature of 100 mK to achieve background-limited sensitivity. Each kilopixel array is indium-bump-bonded to a 2D superconducting quantum interference device (SQUID) time-domain multiplexer (MUX) chip and read out by warm electronics. Each pixel measures total incident power over a frequency band defined by bandpass filters in front of the array, while polarization sensitivity is provided by the upstream Variable-delay Polarization Modulators (VPMs) and analyzer grids. We present measurements of the detector parameters from the laboratory characterization of the first kilopixel science array for PIPER including transition temperature, saturation power, thermal conductivity, time constant, and noise performance. We also describe the testing of the 2D MUX chips, optimization of the integrated readout parameters, and the overall pixel yield of the array. The first PIPER science flight is planned for June 2018 from Palestine, Texas.
Fabrication of Detector Arrays for the SPT-3G Receiver
NASA Astrophysics Data System (ADS)
Posada, C. M.; Ade, P. A. R.; Ahmed, Z.; Anderson, A. J.; Austermann, J. E.; Avva, J. S.; Thakur, R. Basu; Bender, A. N.; Benson, B. A.; Carlstrom, J. E.; Carter, F. W.; Cecil, T.; Chang, C. L.; Cliche, J. F.; Cukierman, A.; Denison, E. V.; de Haan, T.; Ding, J.; Divan, R.; Dobbs, M. A.; Dutcher, D.; Everett, W.; Foster, A.; Gannon, R. N.; Gilbert, A.; Groh, J. C.; Halverson, N. W.; Harke-Hosemann, A. H.; Harrington, N. L.; Henning, J. W.; Hilton, G. C.; Holzapfel, W. L.; Huang, N.; Irwin, K. D.; Jeong, O. B.; Jonas, M.; Khaire, T.; Kofman, A. M.; Korman, M.; Kubik, D.; Kuhlmann, S.; Kuo, C. L.; Lee, A. T.; Lowitz, A. E.; Meyer, S. S.; Michalik, D.; Miller, C. S.; Montgomery, J.; Nadolski, A.; Natoli, T.; Nguyen, H.; Noble, G. I.; Novosad, V.; Padin, S.; Pan, Z.; Pearson, J.; Rahlin, A.; Ruhl, J. E.; Saunders, L. J.; Sayre, J. T.; Shirley, I.; Shirokoff, E.; Smecher, G.; Sobrin, J. A.; Stan, L.; Stark, A. A.; Story, K. T.; Suzuki, A.; Tang, Q. Y.; Thompson, K. L.; Tucker, C.; Vale, L. R.; Vanderlinde, K.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Yefremenko, V.; Yoon, K. W.; Young, M. R.
2018-05-01
The South Pole Telescope third-generation (SPT-3G) receiver was installed during the austral summer of 2016-2017. It is designed to measure the cosmic microwave background across three frequency bands centered at 95, 150, and 220 GHz. The SPT-3G receiver has ten focal plane modules, each with 269 pixels. Each pixel features a broadband sinuous antenna coupled to a niobium microstrip transmission line. In-line filters define the desired band-passes before the signal is coupled to six bolometers with Ti/Au/Ti/Au transition edge sensors (three bands × two polarizations). In total, the SPT-3G receiver is composed of 16,000 detectors, which are read out using a 68× frequency-domain multiplexing scheme. In this paper, we present the process employed in fabricating the detector arrays.
THz holography in reflection using a high resolution microbolometer array.
Zolliker, Peter; Hack, Erwin
2015-05-04
We demonstrate a digital holographic setup for Terahertz imaging of surfaces in reflection. The set-up is based on a high-power continuous wave (CW) THz laser and a high-resolution (640 × 480 pixel) bolometer detector array. Wave propagation to non-parallel planes is used to reconstruct the object surface that is rotated relative to the detector plane. In addition we implement synthetic aperture methods for resolution enhancement and compare Fourier transform phase retrieval to phase stepping methods. A lateral resolution of 200 μm and a relative phase sensitivity of about 0.4 rad corresponding to a depth resolution of 6 μm are estimated from reconstructed images of two specially prepared test targets, respectively. We highlight the use of digital THz holography for surface profilometry as well as its potential for video-rate imaging.
Selenium immersed thermistor bolometer study
NASA Technical Reports Server (NTRS)
Rolls, W. H.
1979-01-01
The noise characteristics of thermistor bolometers immersed in layers of arsenic/selenium glass uniform in composition were examined. Using a controlled deposition technique, layers of glass were deposited, thermistor bolometers immersed, and their electrical characteristics measured after various thermal treatments. Markedly improved stability of the detector noise was observed using this new technique.
A progress report on bolometers operating at 0.1 K using adiabatic demagnetization refrigeration
NASA Technical Reports Server (NTRS)
Roellig, T.; Lesyna, L.; Werner, M.; Kittel, P.
1986-01-01
Bolometers are still the detectors of choice for low background infrared observations at wavelengths longer than 200 microns. In the low background limit, bolometers become more sensitive as their operating temperature decreases, due to fundamental thermodynamic laws. The adiabatic demagnetization technique was evaluated by building a bolometer detection system operating at a wavelength of 1 millimeter for use at a ground based telescope. The system was fit checked at the telescope and is expected to take its first data in November, 1985.
A dual-polarized broadband planar antenna and channelizing filter bank for millimeter wavelengths
NASA Astrophysics Data System (ADS)
O'Brient, Roger; Ade, Peter; Arnold, Kam; Edwards, Jennifer; Engargiola, Greg; Holzapfel, William L.; Lee, Adrian T.; Myers, Michael J.; Quealy, Erin; Rebeiz, Gabriel; Richards, Paul; Suzuki, Aritoki
2013-02-01
We describe the design, fabrication, and testing of a broadband log-periodic antenna coupled to multiple cryogenic bolometers. This detector architecture, optimized here for astrophysical observations, simultaneously receives two linear polarizations with two octaves of bandwidth at millimeter wavelengths. The broad bandwidth signal received by the antenna is divided into sub-bands with integrated in-line frequency-selective filters. We demonstrate two such filter banks: a diplexer with two sub-bands and a log-periodic channelizer with seven contiguous sub-bands. These detectors have receiver efficiencies of 20%-40% and percent level polarization isolation. Superconducting transition-edge sensor bolometers detect the power in each sub-band and polarization. We demonstrate circularly symmetric beam patterns, high polarization isolation, accurately positioned bands, and high optical efficiency. The pixel design is applicable to astronomical observations of intensity and polarization at millimeter through sub-millimeter wavelengths. As compared with an imaging array of pixels measuring only one band, simultaneous measurements of multiple bands in each pixel has the potential to result in a higher signal-to-noise measurement while also providing spectral information. This development facilitates compact systems with high mapping speeds for observations that require information in multiple frequency bands.
VizieR Online Data Catalog: ALMA survey of protoplanetary disks in sigma Ori (Ansdell+, 2017)
NASA Astrophysics Data System (ADS)
Ansdell, M.; Williams, J. P.; Manara, C. F.; Miotello, A.; Facchini, S.; van der Marel, N.; Testi, L.; van Dishoeck, E. F.
2017-08-01
Our sample consists of the 92 Young Stellar Objects (YSOs) in σ Orionis with infrared excesses consistent with the presence of a protoplanetary disk. hese sources are identified by cross-matching the Class II and transition disk (TD) candidates from the Spitzer survey of Hernandez et al. 2007 (Cat. J/ApJ/662/1067) with the Mayrit catalog (Caballero 2008, Cat. J/A+A/478/667). Both catalogs are expected to be complete down to the brown dwarf limit. Disk classifications are based on the Spitzer/Infrared Array Camera (IRAC) Spectral Energy Distribution (SED) slope, as described in Hernandez et al. 2007 (Cat. J/ApJ/662/1067). We also include in our sample a Class I disk (source 1153), as it is located near the Spitzer/IRAC color cutoff for Class II disks. Our Band 6 Atacama Large Millimeter/sub-millimeter Array (ALMA) observations were obtained on 2016 July 30 and 31 during Cycle 3 (Project ID: 2015.1.00089.S; PI: Williams). The array configuration used 36 and 37 12m antennas on July 30 and 31, respectively, with baselines of 15-1124m on both runs. The correlator setup included two broadband continuum windows centered on 234.293 and 216.484GHz with bandwidths of 2.000 and 1.875GHz and channel widths of 15.625 and 0.976MHz, respectively. The bandwidth-weighted mean continuum frequency was 225.676GHz (1.33mm). The spectral windows covered the 12CO (230.538GHz), 13CO (220.399GHz), and C18O (219.560GHz) J=2-1 transitions at velocity resolutions of 0.16-0.17km/s. These spectral windows were centered on 230.531, 220.392, and 219.554GHz with bandwidths of 11.719MHz and channel widths of 0.122MHz. On-source integration times were 1.2 minutes per object for an average continuum rms of 0.15mJy/beam (Table1). This sensitivity was based on the James Clerk Maxwell Telescope (JCMT)/Submillimeter Common User Bolometer Array (SCUBA)-2 survey of σ Orionis disks by Williams et al. 2013 (Cat. J/MNRAS/435/1671), who found that stacking their individual non-detections revealed a mean 850μm continuum signal of 1.3mJy at 4σ significance. The sensitivity of our ALMA survey was therefore chosen to provide ~3-4σ detections of such disks at 1.3mm, based on an extrapolation of the 850μm mean signal using a spectral slope of α=2-3. Table1 presents the 1.33mm continuum flux densities and associated uncertainties (F1.33mm). Table2 gives our integrated line fluxes or upper limits. (2 data files).
An Optical and Sunyaev-Zeldovich Blind Cluster Survey
NASA Astrophysics Data System (ADS)
Gomez, Percy; Romer, A. Kathy; Holzapfel, William; Peterson, Jeffrey; Ruhl, John; Goldstein, Jon; Daub, Mike
2005-08-01
We propose to perform multicolor observations of two deep fields that were observed with the ACBAR bolometer array located at the South Pole. These fields were observed down to a sensitivity of 8 microK/5 arcmin beam at 150 GHz. These observations will be used as control fields for our blind cluster survey which has identified some 30 cluster candidates to date. The goal of the observations is to quantify the number of clusters missed by our SZE survey. This information is important in order to derive constraints on sigma-8 from our SZE blind cluster survey.
Detection of Shock-Heated Gas Using the Sz Effect in Rxj 1347-1145
NASA Technical Reports Server (NTRS)
Mason, Brian S.; Dicker, S.; Korngut, P.; Devlin, M.; Cotton, W.; Koch, P.; Molnar, S.; Aguirre, J.; Benford, D.; Staguhn, J.;
2010-01-01
Using the MUSTANG 3.3 mm bolometer array on the GBT we have measured the Sunyaev-Zel'dovich Effect (SZE) in the most x-ray luminous cluster known, RXJ 1 347-1145 (z=0.45) at a resolution of 10" (fwhm). This is the highest resolution image of the SZE to date and confirms previous indications of a localized departure from pressure equilibrium in the form of a small, very hot (>0 keV) parcel of gas, presumably resulting from a merger shock. We discuss the measurements, their interpretation, and future work.
Terahertz holography for imaging amplitude and phase objects.
Hack, Erwin; Zolliker, Peter
2014-06-30
A non-monochromatic THz Quantum Cascade Laser and an uncooled micro-bolometer array detector with VGA resolution are used in a beam-splitter free holographic set-up to measure amplitude and phase objects in transmission. Phase maps of the diffraction pattern are retrieved using the Fourier transform carrier fringe method; while a Fresnel-Kirchhoff back propagation algorithm is used to reconstruct the complex object image. A lateral resolution of 280 µm and a relative phase sensitivity of about 0.5 rad are estimated from reconstructed images of a metallic Siemens star and a polypropylene test structure, respectively. Simulations corroborate the experimental results.
CUORE-0 detector: design, construction and operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alduino, C.; Alfonso, K.; Artusa, D. R.
The CUORE experiment will search for neutrinoless double-beta decay of 130Te with an array of 988 TeO 2 bolometers arranged in 19 towers. CUORE-0, the first tower assembled according to the CUORE procedures, was built and commissioned at Laboratori Nazionali del Gran Sasso, and took data from March 2013 to March 2015. In this study we describe the design, construction and operation of the CUORE-0 experiment, with an emphasis on the improvements made over a predecessor experiment, Cuoricino. Finally, in particular, we demonstrate with CUORE-0 data that the design goals of CUORE are within reach.
CUORE-0 detector: design, construction and operation
Alduino, C.; Alfonso, K.; Artusa, D. R.; ...
2016-07-12
The CUORE experiment will search for neutrinoless double-beta decay of 130Te with an array of 988 TeO 2 bolometers arranged in 19 towers. CUORE-0, the first tower assembled according to the CUORE procedures, was built and commissioned at Laboratori Nazionali del Gran Sasso, and took data from March 2013 to March 2015. In this study we describe the design, construction and operation of the CUORE-0 experiment, with an emphasis on the improvements made over a predecessor experiment, Cuoricino. Finally, in particular, we demonstrate with CUORE-0 data that the design goals of CUORE are within reach.
INFRARED LUMINOSITIES AND DUST PROPERTIES OF z approx 2 DUST-OBSCURED GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bussmann, R. S.; Dey, Arjun; Jannuzi, B. T.
We present SHARC-II 350 mum imaging of twelve 24 mum bright (F{sub 24m}u{sub m} > 0.8 mJy) Dust-Obscured Galaxies (DOGs) and Combined Array for Research in Millimeter-wave Astronomy (CARMA) 1 mm imaging of a subset of two DOGs. These objects are selected from the Booetes field of the NOAO Deep Wide-Field Survey. Detections of four DOGs at 350 mum imply infrared (IR) luminosities which are consistent to within a factor of 2 of expectations based on a warm-dust spectral energy distribution (SED) scaled to the observed 24 mum flux density. The 350 mum upper limits for the 8 non-detected DOGsmore » are consistent with both Mrk 231 and M82 (warm-dust SEDs), but exclude cold dust (Arp 220) SEDs. The two DOGs targeted at 1 mm were not detected in our CARMA observations, placing strong constraints on the dust temperature: T{sub dust} > 35-60 K. Assuming these dust properties apply to the entire sample, we find dust masses of approx3 x 10{sup 8} M{sub sun}. In comparison to other dusty z approx 2 galaxy populations such as submillimeter galaxies (SMGs) and other Spitzer-selected high-redshift sources, this sample of DOGs has higher IR luminosities (2 x 10{sup 13} L{sub sun} versus 6 x 10{sup 12} L{sub sun} for the other galaxy populations) that are driven by warmer dust temperatures (>35-60 K versus approx30 K) and lower inferred dust masses (3 x 10{sup 8} M{sub sun} versus 3 x 10{sup 9} M{sub sun}). Wide-field Herschel and Submillimeter Common-User Bolometer Array-2 surveys should be able to detect hundreds of these power-law-dominated DOGs. We use the existing Hubble Space Telescope and Spitzer/InfraRed Array Camera data to estimate stellar masses of these sources and find that the stellar to gas mass ratio may be higher in our 24 mum bright sample of DOGs than in SMGs and other Spitzer-selected sources. Although much larger sample sizes are needed to provide a definitive conclusion, the data are consistent with an evolutionary trend in which the formation of massive galaxies at z approx 2 involves a submillimeter bright, cold-dust, and star-formation-dominated phase followed by a 24 mum bright, warm-dust and AGN-dominated phase.« less
Implanted Silicon Resistor Layers for Efficient Terahertz Absorption
NASA Technical Reports Server (NTRS)
Chervenak, J. A.; Abrahams, J.; Allen, C. A.; Benford, D. J.; Henry, R.; Stevenson, T.; Wollack, E.; Moseley, S. H.
2005-01-01
Broadband absorption structures are an essential component of large format bolometer arrays for imaging GHz and THz radiation. We have measured electrical and optical properties of implanted silicon resistor layers designed to be suitable for these absorbers. Implanted resistors offer a low-film-stress, buried absorber that is robust to longterm aging, temperature, and subsequent metals processing. Such an absorber layer is readily integrated with superconducting integrated circuits and standard micromachining as demonstrated by the SCUBA II array built by ROE/NIST (1). We present a complete characterization of these layers, demonstrating frequency regimes in which different recipes will be suitable for absorbers. Single layer thin film coatings have been demonstrated as effective absorbers at certain wavelengths including semimetal (2,3), thin metal (4), and patterned metal films (5,6). Astronomical instrument examples include the SHARC II instrument is imaging the submillimeter band using passivated Bi semimetal films and the HAWC instrument for SOFIA, which employs ultrathin metal films to span 1-3 THz. Patterned metal films on spiderweb bolometers have also been proposed for broadband detection. In each case, the absorber structure matches the impedance of free space for optimal absorption in the detector configuration (typically 157 Ohms per square for high absorption with a single or 377 Ohms per square in a resonant cavity or quarter wave backshort). Resonant structures with -20% bandwidth coupled to bolometers are also under development; stacks of such structures may take advantage of instruments imaging over a wide band. Each technique may enable effective absorbers in imagers. However, thin films tend to age, degrade or change during further processing, can be difficult to reproduce, and often exhibit an intrinsic granularity that creates complicated frequency dependence at THz frequencies. Thick metal films are more robust but the requirement for patterning can limit their absorption at THz frequencies and their heat capacity can be high. patterned absorber structures that offer low heat capacity, absence of aging, and uniform, predictable behavior at THz frequencies. We have correlated DC electrical and THz optical measurements of a series of implanted layers and studied their frequency dependence of optical absorption from .3 to 10 THz at cryogenic temperatures. We have modeled the optical response to determine the suitability of the implanted silicon resistor as a function of resistance in the range 10 Ohms/sq to 300 Ohms/sq.
Predicting the response of a submillimeter bolometer to cosmic rays.
Woodcraft, Adam L; Sudiwala, Rashmi V; Ade, Peter A R; Griffin, Matthew J; Wakui, Elley; Bhatia, Ravinder S; Lange, Andrew E; Bock, James J; Turner, Anthony D; Yun, Minhee H; Beeman, Jeffrey W
2003-09-01
Bolometers designed to detect submillimeter radiation also respond to cosmic, gamma, and x rays. Because detectors cannot be fully shielded from such energy sources, it is necessary to understand the effect of a photon or cosmic-ray particle being absorbed. The resulting signal (known as a glitch) can then be removed from raw data. We present measurements using an Americium-241 gamma radiation source to irradiate a prototype bolometer for the High Frequency Instrument in the Planck Surveyor satellite. Our measurements showed no variation in response depending on where the radiation was absorbed, demonstrating that the bolometer absorber and thermistor thermalize quickly. The bolometer has previously been fully characterized both electrically and optically. We find that using optically measured time constants underestimates the time taken for the detector to recover from a radiation absorption event. However, a full thermal model for the bolometer, with parameters taken from electrical and optical measurements, provides accurate time constants. Slight deviations from the model were seen at high energies; these can be accounted for by use of an extended model.
Predicting the response of a submillimeter bolometer to cosmic rays
NASA Astrophysics Data System (ADS)
Woodcraft, Adam L.; Sudiwala, Rashmi V.; Ade, Peter A. R.; Griffin, Matthew J.; Wakui, Elley; Bhatia, Ravinder S.; Lange, Andrew E.; Bock, James J.; Turner, Anthony D.; Yun, Minhee H.; Beeman, Jeffrey W.
2003-09-01
Bolometers designed to detect submillimeter radiation also respond to cosmic, gamma, and x rays. Because detectors cannot be fully shielded from such energy sources, it is necessary to understand the effect of a photon or cosmic-ray particle being absorbed. The resulting signal (known as a glitch) can then be removed from raw data. We present measurements using an Americium-241 gamma radiation source to irradiate a prototype bolometer for the High Frequency Instrument in the Planck Surveyor satellite. Our measurements showed no variation in response depending on where the radiation was absorbed, demonstrating that the bolometer absorber and thermistor thermalize quickly. The bolometer has previously been fully characterized both electrically and optically. We find that using optically measured time constants underestimates the time taken for the detector to recover from a radiation absorption event. However, a full thermal model for the bolometer, with parameters taken from electrical and optical measurements, provides accurate time constants. Slight deviations from the model were seen at high energies; these can be accounted for by use of an extended model.
Development of plasma bolometers using fiber-optic temperature sensors
NASA Astrophysics Data System (ADS)
Reinke, M. L.; Han, M.; Liu, G.; van Eden, G. G.; Evenblij, R.; Haverdings, M.; Stratton, B. C.
2016-11-01
Measurements of radiated power in magnetically confined plasmas are important for exhaust studies in present experiments and expected to be a critical diagnostic for future fusion reactors. Resistive bolometer sensors have long been utilized in tokamaks and helical devices but suffer from electromagnetic interference (EMI). Results are shown from initial testing of a new bolometer concept based on fiber-optic temperature sensor technology. A small, 80 μm diameter, 200 μm long silicon pillar attached to the end of a single mode fiber-optic cable acts as a Fabry-Pérot cavity when broadband light, λo ˜ 1550 nm, is transmitted along the fiber. Changes in temperature alter the optical path length of the cavity primarily through the thermo-optic effect, resulting in a shift of fringes reflected from the pillar detected using an I-MON 512 OEM spectrometer. While initially designed for use in liquids, this sensor has ideal properties for use as a plasma bolometer: a time constant, in air, of ˜150 ms, strong absorption in the spectral range of plasma emission, immunity to local EMI, and the ability to measure changes in temperature remotely. Its compact design offers unique opportunities for integration into the vacuum environment in places unsuitable for a resistive bolometer. Using a variable focus 5 mW, 405 nm, modulating laser, the signal to noise ratio versus power density of various bolometer technologies are directly compared, estimating the noise equivalent power density (NEPD). Present tests show the fiber-optic bolometer to have NEPD of 5-10 W/m2 when compared to those of the resistive bolometer which can achieve <0.5 W/m2 in the laboratory, but this can degrade to 1-2 W/m2 or worse when installed on a tokamak. Concepts are discussed to improve the signal to noise ratio of this new fiber-optic bolometer by reducing the pillar height and adding thin metallic coatings, along with improving the spectral resolution of the interrogator.
Thin film materials and devices for resistive temperature sensing applications
NASA Astrophysics Data System (ADS)
Basantani, Hitesh A.
Thin films of vanadium oxide (VOx) and hydrogenated amorphous silicon (a-Si:H) are the two dominant material systems used in resistive infrared radiation detectors (microbolometers) for sensing long wave infrared (LWIR) wavelengths in the 8--14 microm range. Typical thin films of VO x (x < 2) currently used in the bolometer industry have a magnitude of temperature coefficient of resistance (TCR) between 2%/K -- 3%/K. In contrast, thin films of hydrogenated germanium (SiGe:H) have |TCR| between 3%/K to 4%/K. Devices made from either of these materials have resulted in similar device performance with NETD ≈ 25 mK. The performance of the microbolometers is limited by the electronic noise, especially 1/f noise. Therefore, regardless of the choice of bolometer sensing material and read out circuitry, manufacturers are constantly striving to reduce 1/f noise while simultaneously increasing TCR to give better signal to noise ratios in their bolometers and ultimately, better image quality with more thermal information to the end user. In this work, thin films of VOx and hydrogenated germanium (Ge:H), having TCR values > 4 %/K are investigated as potential candidates for higher sensitivity next generation of microbolometers. Thin films of VO x were deposited by Biased Target Ion Beam Deposition (BTIBD) (˜85 nm thick). Electrical characterization of lateral resistor structures showed resistivity ranging from 104 O--cm to 2.1 x 104 O--cm, TCR varying from --4%/K to --5%/K, normalized Hooge parameter (alphaH/n) of 5 x 10 -21 to 5 x 10-18 cm3. Thin films of Ge:H were deposited by plasma enhanced chemical vapor deposition (PECVD) by incorporating an increasing amount of crystal fraction in the growing thin films. Thin films of Ge:H having a mixed phase, amorphous + nanocrystalline, having a |TCR| > 6 %/K were deposited with resistivity < 2,300 O--cm and a normalized Hooge's parameter 'alphaH/n' < 2 x 10-20 cm3. Higher TCR materials are desired, however, such materials have higher resistivity and therefore unacceptable large electrical resistance in a lateral resistor configuration. This work looks at an alternate bolometer device design which incorporates higher TCR materials in a vertically integrated configuration. Thin films of high TCR hydrogenated germanium (Ge:H, |TCR| > 6%/K) and vanadium oxide (VOx, TCR > 5%/K) were integrated in lateral and through film configuration. The electrical performance of the vertically integrated devices is compared with lateral resistance structures. It was confirmed experimentally that the device impedance was significantly lowered while maintaining the signal to noise ratio of the lateral resistor configuration. The vertically integrated devices allow higher device currents without any increase in self heating. These structures may help reduce integration time and may result in higher frame rate. Finally, one dimensional arrays were fabricated using both lateral and vertically integrated configurations and their performance was evaluated. It was found that the performance of the lateral devices was limited by noise floor of the measurement setup used. However, due to the lower impedance of the vertically integrated resistors, a higher signal and therefore higher signal to noise ratio could be obtained. These vertically integrated devices exhibited low RMS noise values of 12 mK.
Investigation of electrical noise in selenium-immersed thermistor bolometers
NASA Technical Reports Server (NTRS)
Tarpley, J. L.; Sarmiento, P. D.
1980-01-01
The selenium immersed, thermistor bolometer, IR detector failed due to spurious and escalating electrical noise outburst as a function of time at elevated temperatures during routine ground based testing in a space simulated environment. Spectrographic analysis of failed bolometers revealed selenium pure zones in the insulating selenium arsenic (Se-As) glass film which surrounds the active sintered Mn, Ni, Co oxide flake. The selenium pure film was identified as a potentially serious failure mechanism. Significant changes were instituted in the manufacturing techniques along with more stringent process controls which eliminated the selenium pure film and successfully produced 22study bolometers.
Graphical user interface for a dual-module EMCCD x-ray detector array
NASA Astrophysics Data System (ADS)
Wang, Weiyuan; Ionita, Ciprian; Kuhls-Gilcrist, Andrew; Huang, Ying; Qu, Bin; Gupta, Sandesh K.; Bednarek, Daniel R.; Rudin, Stephen
2011-03-01
A new Graphical User Interface (GUI) was developed using Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) for a high-resolution, high-sensitivity Solid State X-ray Image Intensifier (SSXII), which is a new x-ray detector for radiographic and fluoroscopic imaging, consisting of an array of Electron-Multiplying CCDs (EMCCDs) each having a variable on-chip electron-multiplication gain of up to 2000x to reduce the effect of readout noise. To enlarge the field-of-view (FOV), each EMCCD sensor is coupled to an x-ray phosphor through a fiberoptic taper. Two EMCCD camera modules are used in our prototype to form a computer-controlled array; however, larger arrays are under development. The new GUI provides patient registration, EMCCD module control, image acquisition, and patient image review. Images from the array are stitched into a 2kx1k pixel image that can be acquired and saved at a rate of 17 Hz (faster with pixel binning). When reviewing the patient's data, the operator can select images from the patient's directory tree listed by the GUI and cycle through the images using a slider bar. Commonly used camera parameters including exposure time, trigger mode, and individual EMCCD gain can be easily adjusted using the GUI. The GUI is designed to accommodate expansion of the EMCCD array to even larger FOVs with more modules. The high-resolution, high-sensitivity EMCCD modular-array SSXII imager with the new user-friendly GUI should enable angiographers and interventionalists to visualize smaller vessels and endovascular devices, helping them to make more accurate diagnoses and to perform more precise image-guided interventions.
Bolometer Simulation Using SPICE
NASA Technical Reports Server (NTRS)
Jones, Hollis H.; Aslam, Shahid; Lakew, Brook
2004-01-01
A general model is presented that assimilates the thermal and electrical properties of the bolometer - this block model demonstrates the Electro-Thermal Feedback (ETF) effect on the bolometers performance. This methodology is used to construct a SPICE model that by way of analogy combines the thermal and electrical phenomena into one simulation session. The resulting circuit diagram is presented and discussed.
NASA Astrophysics Data System (ADS)
Salatino, Maria
2017-06-01
In the current submm and mm cosmology experiments the focal planes are populated by kilopixel transition edge sensors (TESes). Varying incoming power load requires frequent rebiasing of the TESes through standard current-voltage (IV) acquisition. The time required to perform IVs on such large arrays and the resulting transient heating of the bath reduces the sky observation time. We explore a bias step method that significantly reduces the time required for the rebiasing process. This exploits the detectors' responses to the injection of a small square wave signal on top of the dc bias current and knowledge of the shape of the detector transition R(T,I). This method has been tested on two detector arrays of the Atacama Cosmology Telescope (ACT). In this paper, we focus on the first step of the method, the estimate of the TES %Rn.
A Hot-electron Direct Detector for Radioastronomy
NASA Technical Reports Server (NTRS)
Karasik, Boris S.; McGrath, William R.; LeDuc, Henry G.; Gershenson, Michael E.
1999-01-01
A hot-electron transition-edge superconducting bolometer with adjustable thermal relaxation speed is proposed. The bolometer contacts are made from a superconductor with high critical temperature which blocks the thermal diffusion of hot carriers into the contacts. Thus electron-phonon interaction is the only mechanism for heat removal. The speed of thermal relaxation for hot electrons in a nanometer-size superconducting bolometer with T(sub c) = 100-300 mK is controlled by the elastic electron mean free path l. The relaxation rate behaves as T(sup 4)l at subkelvin temperatures and can be reduced by a factor of 10-100 by decreasing 1. Then an antenna- or wave guide-coupled bolometer with a time constant approx. = 10(exp -3) to 10(exp -4) s will exhibit photon-noise limited performance at millimeter and submillimeter wavelengths. The bolometer will have a figure-of-merit NEPtau = 10(exp -22) - 10(exp -21) W/Hz at 100 mK which is 10(exp 3) to 10(exp 4) times better (ie: smaller) than that of a state-of-the-art bolometer. A tremendous increase in speed and sensitivity will have a significant impact for observational mapping applications.
Lightweight uncooled TWS equipped with catadioptric optics and microscan mechanism
NASA Astrophysics Data System (ADS)
Bergeron, A.; Jerominek, H.; Doucet, M.; Lagacé, F.; Desnoyers, N.; Bernier, S.; Mercier, L.; Boucher, M.-A.; Jacob, M.; Alain, C.; Pope, T. D.; Laou, P.
2006-05-01
A rugged lightweight thermal weapon sight (TWS) prototype was developed at INO in collaboration with DRDC-Valcartier. This TWS model is based on uncooled bolometer technology, ultralight catadioptric optics, ruggedized mechanics and electronics, and extensive onboard processing capabilities. The TWS prototype operates in a single 8-12 μm infrared (IR) band. It is equipped with a unique lightweight athermalized catadioptric objective and a bolometric IR imager with an INO focal plane array (FPA). Microscan technology allows the use of a 160 x 120 pixel FPA with a pitch of 50 μm to achieve a 320 × 240 pixel resolution image thereby avoiding the size (larger optics) and cost (expensive IR optical components) penalties associated with the use of larger format arrays. The TWS is equipped with a miniature shutter for automatic offset calibration. Based on the operation of the FPA at 100 frames per second (fps), real-time imaging with 320 x 240 pixel resolution at 25 fps is available. This TWS is also equipped with a high resolution (857 x 600 pixels) OLED color microdisplay and an integrated wireless digital RF link. The sight has an adjustable and selectable electronic reticule or crosshair (five possible reticules) and a manual focus from 5 m to infinity standoff distance. Processing capabilities are added to introduce specific functionalities such as image inversion (black hot and white hot), image enhancement, and pixel smoothing. This TWS prototype is very lightweight (~ 1100 grams) and compact (volume of 93 cubic inches). It offers human size target detection at 800 m and recognition at 200 m (Johnson criteria). With 6 Li AA batteries, it operates continuously for 5 hours and 20 minutes at room temperature. It can operate over the temperature range of -30 °C to +40 °C and its housing is completely sealed. The TWS is adapted to weaver or Picatinny rail mounting. The overall design of the TWS prototype is based on feedbacks of users to achieve improved user-friendly (e.g. no pull-down menus and no electronic focusing) and ergonomic (e.g. locations of buttons) features.
Space station commonality analysis
NASA Technical Reports Server (NTRS)
1988-01-01
This study was conducted on the basis of a modification to Contract NAS8-36413, Space Station Commonality Analysis, which was initiated in December, 1987 and completed in July, 1988. The objective was to investigate the commonality aspects of subsystems and mission support hardware while technology experiments are accommodated on board the Space Station in the mid-to-late 1990s. Two types of mission are considered: (1) Advanced solar arrays and their storage; and (2) Satellite servicing. The point of departure for definition of the technology development missions was a set of missions described in the Space Station Mission Requirements Data Base. (MRDB): TDMX 2151 Solar Array/Energy Storage Technology; TDMX 2561 Satellite Servicing and Refurbishment; TDMX 2562 Satellite Maintenance and Repair; TDMX 2563 Materials Resupply (to a free-flyer materials processing platform); TDMX 2564 Coatings Maintenance Technology; and TDMX 2565 Thermal Interface Technology. Issues to be addressed according to the Statement of Work included modularity of programs, data base analysis interactions, user interfaces, and commonality. The study was to consider State-of-the-art advances through the 1990s and to select an appropriate scale for the technology experiments, considering hardware commonality, user interfaces, and mission support requirements. The study was to develop evolutionary plans for the technology advancement missions.
A Hot-electron Direct Detector for Radioastronomy
NASA Technical Reports Server (NTRS)
Karasik, B. S.; McGrath, W. R.; LeDuc, H. G.
2000-01-01
A new approach is proposed to improve the sensitivity of direct-detection bolometers. The idea is to adjust a speed of the thermal relaxation of hot-electrons in a nanometer size normal metal or superconductive transition edge bolometer by controlling the elastic electron mean free path. If the bolometer contacts are made of a superconductor with high critical temperature then the thermal diffusion into the contacts is absent because of the Andreev's reflection and the electron-phonon relaxation is the only mechanism for heat removal. The relaxation rate should behave as 7(exp 4)l at subkelvin temperatures (l is the electron elastic mean free path) and can be reduced by factor of 10 - 100 by decreasing l. Then an antenna- or waveguide-coupled bolometer with a time constant approx. 10(exp -3) to 10(exp -5) S at T approx. = 0.1 - 0.3 K will exhibit photon-noise limited performance in millimeter and subn-millimeter range. The bolometer will have a figure-of-merit NEk square root of tau approx. = 10(exp -22) 10(exp -21) W/Hz at 100 mK which is 10(exp 3) times smaller than that of a state-of-the-art bolometer. This will allow for a tremendous increase in speed which will have a significant impact for observational mapping applications. Alternatively, the bolometer could operate at higher temperature with still superior sensitivity This research was performed by the Center for Space Microelectronics Technology, JPL, California Institute of Technology, under the contract for NASA.
NASA Astrophysics Data System (ADS)
van der Kuur, J.; Gottardi, L. G.; Akamatsu, H.; van Leeuwen, B. J.; den Hartog, R.; Haas, D.; Kiviranta, M.; Jackson, B. J.
2016-07-01
Athena is a space-based X-ray observatory intended for exploration of the hot and energetic universe. One of the science instruments on Athena will be the X-ray Integrated Field Unit (X-IFU), which is a cryogenic X-ray spectrometer, based on a large cryogenic imaging array of Transition Edge Sensors (TES) based microcalorimeters operating at a temperature of 100mK. The imaging array consists of 3800 pixels providing 2.5 eV spectral resolution, and covers a field of view with a diameter of of 5 arc minutes. Multiplexed readout of the cryogenic microcalorimeter array is essential to comply with the cooling power and complexity constraints on a space craft. Frequency domain multiplexing has been under development for the readout of TES-based detectors for this purpose, not only for the X-IFU detector arrays but also for TES-based bolometer arrays for the Safari instrument of the Japanese SPICA observatory. This paper discusses the design considerations which are applicable to optimise the multiplex factor within the boundary conditions as set by the space craft. More specifically, the interplay between the science requirements such as pixel dynamic range, pixel speed, and cross talk, and the space craft requirements such as the power dissipation budget, available bandwidth, and electromagnetic compatibility will be discussed.
Silicon Hot-Electron Bolometers
NASA Technical Reports Server (NTRS)
Stevenson, Thomas R.; Hsieh, Wen-Ting; Mitchell, Robert R.; Isenberg, Hal D.; Stahle, Carl M.; Cao, Nga T.; Schneider, Gideon; Travers, Douglas E.; Moseley, S. Harvey; Wollack, Edward J.
2004-01-01
We discuss a new type of direct detector, a silicon hot-electron bolometer, for measurements in the far-infrared and submillimeter spectral ranges. High performance bolometers can be made using the electron-phonon conductance in heavily doped silicon to provide thermal isolation from the cryogenic bath. Noise performance is expected to be near thermodynamic limits, allowing background limited performance for many far infrared and submillimeter photometric and spectroscopic applications.
Development of plasma bolometers using fiber-optic temperature sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinke, M. L., E-mail: reinkeml@ornl.gov; Han, M.; Liu, G.
Measurements of radiated power in magnetically confined plasmas are important for exhaust studies in present experiments and expected to be a critical diagnostic for future fusion reactors. Resistive bolometer sensors have long been utilized in tokamaks and helical devices but suffer from electromagnetic interference (EMI). Results are shown from initial testing of a new bolometer concept based on fiber-optic temperature sensor technology. A small, 80 μm diameter, 200 μm long silicon pillar attached to the end of a single mode fiber-optic cable acts as a Fabry–Pérot cavity when broadband light, λ{sub o} ∼ 1550 nm, is transmitted along the fiber.more » Changes in temperature alter the optical path length of the cavity primarily through the thermo-optic effect, resulting in a shift of fringes reflected from the pillar detected using an I-MON 512 OEM spectrometer. While initially designed for use in liquids, this sensor has ideal properties for use as a plasma bolometer: a time constant, in air, of ∼150 ms, strong absorption in the spectral range of plasma emission, immunity to local EMI, and the ability to measure changes in temperature remotely. Its compact design offers unique opportunities for integration into the vacuum environment in places unsuitable for a resistive bolometer. Using a variable focus 5 mW, 405 nm, modulating laser, the signal to noise ratio versus power density of various bolometer technologies are directly compared, estimating the noise equivalent power density (NEPD). Present tests show the fiber-optic bolometer to have NEPD of 5-10 W/m{sup 2} when compared to those of the resistive bolometer which can achieve <0.5 W/m{sup 2} in the laboratory, but this can degrade to 1-2 W/m{sup 2} or worse when installed on a tokamak. Concepts are discussed to improve the signal to noise ratio of this new fiber-optic bolometer by reducing the pillar height and adding thin metallic coatings, along with improving the spectral resolution of the interrogator.« less
Micromechanical Waveguide Mounts for Hot Electron Bolometer Terahertz Mixers
NASA Astrophysics Data System (ADS)
Brandt, Michael; Jacobs, Karl; Honingh, C. E.; Stodolka, Jörg
The superior beam matching of waveguide horn antennas to a telescope suggests using waveguide mounts even at THz-frequencies. In contrast to the more common quasi-optical (substrate lens) designs, the exceedingly small dimensions of the waveguide require novel micro-mechanical fabrication technologies. We will present a novel fabrication scheme for 1.9 THz waveguide mixers for SOFIA. Hot Electron Bolometer devices (HEB) are fabricated on 2 μm thick Si3N4 membrane strips. The strips are robust enough to be mounted on a separately fabricated Si support frame using an adapted flip-chip technology. Mounted onto the frame, the devices can be easily positioned and glued into a copper waveguide mount. Further developments regarding micro-mechanical processes to fabricate this copper waveguide mount and the receiving horn antenna will be presented, as well as the KOSMA Micro Assembly Station and its capabilities to handle mixer substrates.
Wurden, G.A.
1999-01-19
Radiation-hard, steady-state imaging bolometer is disclosed. A bolometer employing infrared (IR) imaging of a segmented-matrix absorber of plasma radiation in a cooled-pinhole camera geometry is described. The bolometer design parameters are determined by modeling the temperature of the foils from which the absorbing matrix is fabricated by using a two-dimensional time-dependent solution of the heat conduction equation. The resulting design will give a steady-state bolometry capability, with approximately 100 Hz time resolution, while simultaneously providing hundreds of channels of spatial information. No wiring harnesses will be required, as the temperature-rise data will be measured via an IR camera. The resulting spatial data may be used to tomographically investigate the profile of plasmas. 2 figs.
Wurden, Glen A.
1999-01-01
Radiation-hard, steady-state imaging bolometer. A bolometer employing infrared (IR) imaging of a segmented-matrix absorber of plasma radiation in a cooled-pinhole camera geometry is described. The bolometer design parameters are determined by modeling the temperature of the foils from which the absorbing matrix is fabricated by using a two-dimensional time-dependent solution of the heat conduction equation. The resulting design will give a steady-state bolometry capability, with approximately 100 Hz time resolution, while simultaneously providing hundreds of channels of spatial information. No wiring harnesses will be required, as the temperature-rise data will be measured via an IR camera. The resulting spatial data may be used to tomographically investigate the profile of plasmas.
Graphical User Interface for a Dual-Module EMCCD X-ray Detector Array.
Wang, Weiyuan; Ionita, Ciprian; Kuhls-Gilcrist, Andrew; Huang, Ying; Qu, Bin; Gupta, Sandesh K; Bednarek, Daniel R; Rudin, Stephen
2011-03-16
A new Graphical User Interface (GUI) was developed using Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) for a high-resolution, high-sensitivity Solid State X-ray Image Intensifier (SSXII), which is a new x-ray detector for radiographic and fluoroscopic imaging, consisting of an array of Electron-Multiplying CCDs (EMCCDs) each having a variable on-chip electron-multiplication gain of up to 2000× to reduce the effect of readout noise. To enlarge the field-of-view (FOV), each EMCCD sensor is coupled to an x-ray phosphor through a fiberoptic taper. Two EMCCD camera modules are used in our prototype to form a computer-controlled array; however, larger arrays are under development. The new GUI provides patient registration, EMCCD module control, image acquisition, and patient image review. Images from the array are stitched into a 2k×1k pixel image that can be acquired and saved at a rate of 17 Hz (faster with pixel binning). When reviewing the patient's data, the operator can select images from the patient's directory tree listed by the GUI and cycle through the images using a slider bar. Commonly used camera parameters including exposure time, trigger mode, and individual EMCCD gain can be easily adjusted using the GUI. The GUI is designed to accommodate expansion of the EMCCD array to even larger FOVs with more modules. The high-resolution, high-sensitivity EMCCD modular-array SSXII imager with the new user-friendly GUI should enable angiographers and interventionalists to visualize smaller vessels and endovascular devices, helping them to make more accurate diagnoses and to perform more precise image-guided interventions.
Frequency division multiplexed readout of TES detectors with baseband feedback
NASA Astrophysics Data System (ADS)
den Hartog, R.; Audley, M. D.; Beyer, J.; Bruijn, M. P.; de Korte, P.; Gottardi, L.; Hijmering, R.; Jackson, B.; Nieuwenhuizen, A.; van der Kuur, J.; van Leeuwen, B.-J.; Van Loon, D.
2012-09-01
SRON is developing an electronic system for the multiplexed read-out of an array of transition edge sensors (TES) by combining the techniques of frequency domain multiplexing (FDM) with base-band feedback (BBFB). The astronomical applications are the read-out of soft X-ray microcalorimeters and the far-infrared bolometers for the SAFARI instrument on the Japanese mission SPICA. In this paper we derive the requirements for the read-out system regarding noise and dynamic range in the context of the SAFARI instrument, and demonstrate that the current experimental prototype is capable of simultaneously locking 57 channels and complies with these requirements.
Millimeter and submillimeter observations from the Atacama plateau and high altitude balloons
NASA Astrophysics Data System (ADS)
Devlin, Mark
2002-05-01
A new generation of ground-based and sub-orbital platforms will be operational in the next few years. These telescopes will operate from high sites in Chile and Antarctica, and airborne platforms where the atmosphere is transparent enough to allow sensitive measurements in the millimeter and submillimeter bands. The telescopes will employ state-of-the-art instrumentation including large format bolometer arrays and spectrometers. I will discuss the results of our observations in the Atacama region of Chile (MAT/TOCO), our future observations on the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) now under construction, and our proposed Atacama Cosmology Telescope (ACT). .
Neutrinoless double-beta decay search with CUORE and CUORE-0 experiments
Moggi, N.; Artusa, D. R.; F. T. Avignone; ...
2015-03-24
The Cryogenic Underground Observatory for Rare Events (CUORE) is an upcoming experiment designed to search for the neutrinoless double-beta decays. Observation of the process would unambiguously establish that neutrinos are Majorana particles and provide information on their absolute mass scale hierarchy. CUORE is now under construction and will consist of an array of 988 TeO 2 crystal bolometers operated at 10 mK, but the first tower (CUORE-0) is already taking data. The experimental techniques used will be presented as well as the preliminary CUORE-0 results. The current status of the full-mass experiment and its expected sensitivity will then be discussed.
NASA Astrophysics Data System (ADS)
Aretxaga, I.; Wilson, G. W.; Aguilar, E.; Alberts, S.; Scott, K. S.; Scoville, N.; Yun, M. S.; Austermann, J.; Downes, T. P.; Ezawa, H.; Hatsukade, B.; Hughes, D. H.; Kawabe, R.; Kohno, K.; Oshima, T.; Perera, T. A.; Tamura, Y.; Zeballos, M.
2011-08-01
We present a 0.72 deg2 contiguous 1.1-mm survey in the central area of the Cosmological Evolution Survey field carried out to a 1σ≈ 1.26 mJy beam-1 depth with the AzTEC camera mounted on the 10-m Atacama Submillimeter Telescope Experiment. We have uncovered 189 candidate sources at a signal-to-noise ratio (S/N) ≥ 3.5, out of which 129, with S/N ≥ 4, can be considered to have little chance of being spurious (≲2 per cent). We present the number counts derived with this survey, which show a significant excess of sources when compared to the number counts derived from the ˜0.5 deg2 area sampled at similar depths in the Submillimetre Common-User Bolometer Array (SCUBA) HAlf Degree Extragalactic Survey (SHADES). They are, however, consistent with those derived from fields that were considered too small to characterize the overall blank-field population. We identify differences to be more significant in the S1.1mm≳ 5 mJy regime, and demonstrate that these excesses in number counts are related to the areas where galaxies at redshifts z≲ 1.1 are more densely clustered. The positions of optical-infrared galaxies in the redshift interval 0.6 ≲z≲ 0.75 are the ones that show the strongest correlation with the positions of the 1.1-mm bright population (S1.1mm≳ 5 mJy), a result which does not depend exclusively on the presence of rich clusters within the survey sampled area. The most likely explanation for the observed excess in number counts at 1.1-mm is galaxy-galaxy and galaxy-group lensing at moderate amplification levels, which increases in amplitude as one samples larger and larger flux densities. This effect should also be detectable in other high-redshift populations.
NASA Astrophysics Data System (ADS)
Zavala, J. A.; Yun, M. S.; Aretxaga, I.; Hughes, D. H.; Wilson, G. W.; Geach, J. E.; Egami, E.; Gurwell, M. A.; Wilner, D. J.; Smail, Ian; Blain, A. W.; Chapman, S. C.; Coppin, K. E. K.; Dessauges-Zavadsky, M.; Edge, A. C.; Montaña, A.; Nakajima, K.; Rawle, T. D.; Sánchez-Argüelles, D.; Swinbank, A. M.; Webb, T. M. A.; Zeballos, M.
2015-09-01
We present Early Science observations with the Large Millimeter Telescope, AzTEC 1.1 mm continuum images and wide bandwidth spectra (73-111 GHz) acquired with the Redshift Search Receiver, towards four bright lensed submillimetre galaxies identified through the Herschel Lensing Survey-snapshot and the Submillimetre Common-User Bolometer Array-2 Cluster Snapshot Survey. This pilot project studies the star formation history and the physical properties of the molecular gas and dust content of the highest redshift galaxies identified through the benefits of gravitational magnification. We robustly detect dust continuum emission for the full sample and CO emission lines for three of the targets. We find that one source shows spectroscopic multiplicity and is a blend of three galaxies at different redshifts (z = 2.040, 3.252, and 4.680), reminiscent of previous high-resolution imaging follow-up of unlensed submillimetre galaxies, but with a completely different search method, that confirm recent theoretical predictions of physically unassociated blended galaxies. Identifying the detected lines as 12CO (Jup = 2-5) we derive spectroscopic redshifts, molecular gas masses, and dust masses from the continuum emission. The mean H2 gas mass of the full sample is (2.0 ± 0.2) × 1011 M⊙/μ, and the mean dust mass is (2.0 ± 0.2) × 109 M⊙/μ, where μ ≈ 2-5 is the expected lens amplification. Using these independent estimations we infer a gas-to-dust ratio of δGDR ≈ 55-75, in agreement with other measurements of submillimetre galaxies. Our magnified high-luminosity galaxies fall on the same locus as other high-redshift submillimetre galaxies, extending the L^' }_CO-LFIR correlation observed for local luminous and ultraluminous infrared galaxies to higher far-infrared and CO luminosities.
The structure and kinematics of dense gas in NGC 2068
NASA Astrophysics Data System (ADS)
Walker-Smith, S. L.; Richer, J. S.; Buckle, J. V.; Smith, R. J.; Greaves, J. S.; Bonnell, I. A.
2013-03-01
We have carried out a survey of the NGC 2068 region in the Orion B molecular cloud using HARP on the James Clerk Maxwell Telescope, in the 13CO and C18O (J = 3-2) and H13CO+ (J = 4-3) lines. We used 13CO to map the outflows in the region, and matched them with previously defined Submillimetre Common-User Bolometer Array cores. We decomposed the C18O and H13CO+ into Gaussian clumps, finding 26 and eight clumps, respectively. The average deconvolved radii of these clumps are 6200 ± 2000 and 3600 ± 900 au for C18O and H13CO+, respectively. We have also calculated virial and gas masses for these clumps, and hence determined how bound they are. We find that the C18O clumps are more bound than the H13CO+ clumps (average gas mass to virial mass ratio of 4.9 compared to 1.4). We measure clump internal velocity dispersions of 0.28 ± 0.02 and 0.27 ± 0.04 km s-1 for C18O and H13CO+, respectively, although the H13CO+ values are heavily weighted by a majority of the clumps being protostellar, and hence having intrinsically greater linewidths. We suggest that the starless clumps correspond to local turbulence minima, and we find that our clumps are consistent with formation by gravoturbulent fragmentation. We also calculate interclump velocity dispersions of 0.39 ± 0.05 and 0.28 ± 0.08 km s-1 for C18O and H13CO+, respectively. The velocity dispersions (both internal and external) for our clumps match results from numerical simulations of decaying turbulence in a molecular cloud. However, there is still insufficient evidence to conclusively determine the type of turbulence and time-scale of star formation, due to the small size of our sample.
Multimode bolometer development for the PIXIE instrument
NASA Astrophysics Data System (ADS)
Nagler, Peter C.; Crowley, Kevin T.; Denis, Kevin L.; Devasia, Archana M.; Fixsen, Dale J.; Kogut, Alan J.; Manos, George; Porter, Scott; Stevenson, Thomas R.
2016-07-01
The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission concept designed to measure the polar- ization and absolute intensity of the cosmic microwave background. In the following, we report on the design, fabrication, and performance of the multimode polarization-sensitive bolometers for PIXIE, which are based on silicon thermistors. In particular we focus on several recent advances in the detector design, including the implementation of a scheme to greatly raise the frequencies of the internal vibrational modes of the large-area, low-mass optical absorber structure consisting of a grid of micromachined, ion-implanted silicon wires. With ˜ 30 times the absorbing area of the spider-web bolometers used by Planck, the tensioning scheme enables the PIXIE bolometers to be robust in the vibrational and acoustic environment at launch of the space mission. More generally, it could be used to reduce microphonic sensitivity in other types of low temperature detectors. We also report on the performance of the PIXIE bolometers in a dark cryogenic environment.
Multimode Bolometer Development for the PIXIE Instrument
NASA Technical Reports Server (NTRS)
Nagler, Peter C.; Crowley, Kevin T.; Denis, Kevin L.; Devasia, Archana M.; Fixsen, Dale J.; Kogut, Alan J.; Manos, George; Porter, Scott; Stevenson, Thomas R.
2016-01-01
The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission concept designed to measure the polarization and absolute intensity of the cosmic microwave background. In the following, we report on the design, fabrication, and performance of the multimode polarization-sensitive bolometers for PIXIE, which are based on silicon thermistors. In particular we focus on several recent advances in the detector design, including the implementation of a scheme to greatly raise the frequencies of the internal vibrational modes of the large-area, low-mass optical absorber structure consisting of a grid of micromachined, ion-implanted silicon wires. With approximately 30 times the absorbing area of the spider-web bolometers used by Planck, the tensioning scheme enables the PIXIE bolometers to be robust in the vibrational and acoustic environment at launch of the space mission. More generally, it could be used to reduce microphonic sensitivity in other types of low temperature detectors. We also report on the performance of the PIXIE bolometers in a dark cryogenic environment.
Multimode Bolometer Development for the Primordial Inflation Explorer (PIXIE) Instrument
NASA Technical Reports Server (NTRS)
Nagler, Peter C.; Crowley, Kevin T.; Denis, Kevin L.; Devasia, Archana M.; Fixsen, Dale J.; Kogut, Alan J.; Manos, George; Porter, Scott; Stevenson, Thomas R.
2016-01-01
The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission concept designed to measure the polarization and absolute intensity of the cosmic microwave background [1]. In this work, we report on the design, fabrication, and performance of the multimode polarization-sensitive bolometers for PIXIE, which are based on silicon thermistors. In particular we focus on several recent advances in the detector design, including the implementation of a tensioning scheme to greatly raise the frequencies of the internal vibrational modes of the large-area, low-mass optical absorber structure consisting of a grid of micromachined, ion-implanted silicon wires. With 30 times the absorbing area of the spider-web bolometers used by Planck, the tensioning scheme enables the PIXIE bolometers to be robust in the vibrational and acoustic environment at launch of the space mission. More generally, it could be used to reduce microphonic sensitivity in other types of low temperature detectors. We also report on the performance of the PIXIE bolometers in a dark cryogenic environment.
Film Vetoes for Alpha Background Rejection in Bolometer Detectors
NASA Astrophysics Data System (ADS)
Deporzio, Nicholas; Bucci, Carlo; Canonica, Lucia; Divacri, Marialaura; Cuore Collaboration; Absurd Team
2015-04-01
This study characterizes the effectiveness of encasing bolometer detectors in scintillator, metal ionization, and more exotic films to veto alpha radiation background. Bolometers are highly susceptible to alpha background and a successful veto should boost the statistical strength, speed, and signal-background ratio of bolometer particle searches. Plastic scintillator films are cooled to bolometer temperatures and bombarded with 1.4 MeV to 6.0 MeV alpha particles representative of detector conditions. Photomultipliers detect the keV range scintillation light and produce a veto signal. Also, layered films of a primary metal, dielectric, and secondary metal, such as gold-polyethylene-gold films, are cooled to milli-kelvin temperatures and biased with 0.1V to 100V to produce a current signal when incident 1.4 MeV to 6.0 MeV alpha particles ionize conduction paths through the film. Veto signals are characterized by their affect on bolometer detection of 865 keV target signals. Similar methods are applied to more exotic films. Early results show scintillator films raise target signal count rate and suppress counts above target energy by at least a factor of 10. This indicates scintillation vetoes are effective and that metal ionization and other films under study will also be effective.
A Hot-Electron Far-Infrared Direct Detector
NASA Technical Reports Server (NTRS)
Karasik, B. S.; McGrath, W. R.; LeDuc, H. G.
2000-01-01
A new approach is proposed to improve the sensitivity of direct-detection bolometers at millimeter, submillimeter and far-infrared wavelengths. The idea is to adjust a speed of the thermal relaxation of hot-electrons in a nanometer size normal metal or super-conductive transition edge bolometer by controlling the elastic electron mean free path. If the bolometer contacts are made of a superconductor with high critical temperature (Nb, Pb etc.) then the thermal diffusion into the contacts is absent because of the Andreev's reflection and the electron-phonon relaxation is the only mechanism for heat removal. The relaxation rate should behave as T(sup 4)l at subkelvin temperatures (l is the electron elastic mean free path) and can be reduced by factor of 10-100 by decreasing l. Then an antenna- or waveguide-coupled bolometer with a time constant about 10(exp -3) to 10(exp -5) s at T approximately equals 0.1-0.3 K will exhibit photon-noise limited performance in millimeter and submillimeter range. The choice of the bolometer material is a tradeoff between a low electron heat capacity and fabrication. A state-of-the-art bolometer currently offers NEP = 10(exp -17) W(Square root of (Hz)) at 100 mK along with a approximately equals 2 msec time constant. The bolometer we propose will have a figure-of-merit, NEP(square root (r)), which is 10(exp 3) times smaller. This will allow for a tremendous increase in speed which will have a significant impact for observational mapping applications. Alternatively, the bolometer could operate at higher temperature with still superior sensitivity. This device can significantly increase a science return and reduce the cost for future observational missions. This research was performed by the Center for Space Microelectronics Technology, Jet Propulsion Laboratory, California Institute of Technology, and was sponsored by NASA, Office of Space Science.
NASA Astrophysics Data System (ADS)
Källhammer, Jan-Erik; Pettersson, Håkan; Eriksson, Dick; Junique, Stéphane; Savage, Susan; Vieider, Christian; Andersson, Jan Y.; Franks, John; Van Nylen, Jan; Vercammen, Hans; Kvisterøy, Terje; Niklaus, Frank; Stemme, Göran
2006-04-01
Pedestrian fatalities are around 15% of the traffic fatalities in Europe. A proposed EU regulation requires the automotive industry to develop technologies that will substantially decrease the risk for Vulnerable Road Users when hit by a vehicle. Automatic Brake Assist systems, activated by a suitable sensor, will reduce the speed of the vehicle before the impact, independent of any driver interaction. Long Wavelength Infrared technology is an ideal candidate for such sensors, but requires a significant cost reduction. The target necessary for automotive serial applications are well below the cost of systems available today. Uncooled bolometer arrays are the most mature technology for Long Wave Infrared with low-cost potential. Analyses show that sensor size and production yield along with vacuum packaging and the optical components are the main cost drivers. A project has been started to design a new Long Wave Infrared system with a ten times cost reduction potential, optimized for the pedestrian protection requirement. It will take advantage of the progress in Micro Electro-Mechanical Systems and Long Wave Infrared optics to keep the cost down. Deployable and pre-impact braking systems can become effective alternatives to passive impact protection systems solutions fulfilling the EU pedestrian protection regulation. Low-cost Long Wave Infrared sensors will be an important enabler to make such systems cost competitive, allowing high market penetration.
Fabrication of an Aluminum Based Hot Electron Mixer for Terahertz Applications
NASA Technical Reports Server (NTRS)
Echternach, P. M.; LeDuc, H. G.; Skalare, A.; McGrath, W. R.
2000-01-01
Aluminum based diffusion cooled hot electron bolometers (HEB) mixers, predicted to have better noise, bandwidth and to require less LO power than Nb based diffusion cooled HEBs, have been fabricated. Preliminary DC tests were performed. The bolometer elements consisted of short (0.1 to 0.3 micron), narrow (0.08 to 0. 15 micron) and thin (11 nm) aluminum wires connected to large contact pads consisting of a novel trilayer Al/Ti/Au. The patterns were defined by electron beam lithography and the metal deposition involved a double angle process, the Aluminum wires being deposited straight on and the pads being deposited at a 45 degree angle without breaking vacuum. The Al/Ti/Au trilayer was developed to provide a way of making contact between the aluminum wire and the gold antenna. The Titanium layer acts as a diffusion barrier to avoid damage of the Aluminum contact and bolometer wire and to lower the transition temperature of the pads to below that of the bolometer wire. The Au layer avoids the formation of an oxide on the Ti layer and provides good electrical contact to the IF/antenna structure. The resistance of the bolometers as a function of temperature was measured. It is clear that below the transition temperature of the wire (1.8K) but above the transition temperature of the contact pads (0.6K), the proximity effect drives most of the bolometer wire normal, causing a very broad transition. This effect should not affect the performance of the bolometers since they will be operated at a temperature below the TC of the pads. This is evident from the IV characteristics measured at 0.3K. RF characterization tests will begin shortly.
NASA Astrophysics Data System (ADS)
Murari, A.; Cecconello, M.; Marrelli, L.; Mast, K. F.
2004-08-01
Bolometers are radiation sensors designed to have a spectral response as constant as possible in the region of interest. In high-temperature plasmas, the main radiation output is in the ultraviolet and SXR part of the spectrum and the metal foil bolometers are special detectors developed for this interval. For such sensors, as in general for all bolometers, the absolute calibration is a crucial issue. This problem becomes particularly severe when, like in nuclear fusion, the sensors are not easily accessible. In this article, a detailed description of the in situ calibration methods for the bolometer sensitivity S and the cooling time τc, the two essential parameters characterizing the behavior of the sensor, is provided and an estimate of the uncertainties for both constants is presented. The sensitivity S is determined via an electrical calibration, in which the effect of the cables connecting the bolometers to the powering circuitry is taken into account leading to an effective estimate for S. Experimental measurements confirming the quality of the adopted coaxial cable modelling are reported. The cooling time constant τc is calculated via an optical calibration, in which the bolometer is stimulated by a light-emitting diode. The behavior of τc in a broad pressure range is investigated, showing that it does not depend upon this quantity up until 10-2 mbar, well above the standard operating conditions of many applications. The described methods were tested on 36 bolometric channels of RFX tomography, providing a significant statistical basis for present applications and future developments of both the calibration procedures and the detectors.
Approaches on calibration of bolometer and establishment of bolometer calibration device
NASA Astrophysics Data System (ADS)
Xia, Ming; Gao, Jianqiang; Ye, Jun'an; Xia, Junwen; Yin, Dejin; Li, Tiecheng; Zhang, Dong
2015-10-01
Bolometer is mainly used for measuring thermal radiation in the field of public places, labor hygiene, heating and ventilation and building energy conservation. The working principle of bolometer is under the exposure of thermal radiation, temperature of black absorbing layer of detector rise after absorption of thermal radiation, which makes the electromotive force produced by thermoelectric. The white light reflective layer of detector does not absorb thermal radiation, so the electromotive force produced by thermoelectric is almost zero. A comparison of electromotive force produced by thermoelectric of black absorbing layer and white reflective layer can eliminate the influence of electric potential produced by the basal background temperature change. After the electromotive force which produced by thermal radiation is processed by the signal processing unit, the indication displays through the indication display unit. The measurement unit of thermal radiation intensity is usually W/m2 or kW/m2. Its accurate and reliable value has important significance for high temperature operation, labor safety and hygiene grading management. Bolometer calibration device is mainly composed of absolute radiometer, the reference light source, electric measuring instrument. Absolute radiometer is a self-calibration type radiometer. Its working principle is using the electric power which can be accurately measured replaces radiation power to absolutely measure the radiation power. Absolute radiometer is the standard apparatus of laser low power standard device, the measurement traceability is guaranteed. Using the calibration method of comparison, the absolute radiometer and bolometer measure the reference light source in the same position alternately which can get correction factor of irradiance indication. This paper is mainly about the design and calibration method of the bolometer calibration device. The uncertainty of the calibration result is also evaluated.
IR detector system based on high-Tc superconducting bolometer on SI membrane
NASA Astrophysics Data System (ADS)
Burnus, M.; Hefle, G.; Heidenblut, T.; Khrebtov, Igor A.; Laukemper, J.; Michalke, W.; Neff, H.; Schwierzi, B.; Semtchinova, O. K.; Steinbeiss, E.; Tkachenko, A. D.
1996-06-01
An infrared detector system based on high-T(subscript c) superconducting (HTS) membrane bolometer is reported. Superconducting transition-edge bolometer has been manufactured by silicon micromachining using an epitaxial GdBa(subscript 2)Cu(subscript 3)O(subscript 7-x) film on an epitaxial yttria- stabilized zirconia buffer layer on silicon. The active area of the element is 0.85 X 0.85 mm(superscript 2). The membrane thickness is 1 micrometers , those of the buffer layer and HTS films are 50 nm. The detectivity of bolometer, D(superscript *), is 3.8 X 10(superscript 9) cm Hz(superscript 1/2) W(superscript -1) at 84.5 K and within the frequency regime 100 < f < 300 Hz. The optical response is 580 V/W at time constant 0.4 ms. This is one of the fastest composite type HTS-bolometer ever reported. The bolometer is mounted on a metal N(subscript 2)-liquid cryostat, which fits the preamplifier. With the volume of N(subscript 2)-reservoir being 0.1 liter, the cryostat holds nitrogen for about 8 hours. Using only wire heater with constant current, the temperature stability of about 0.03 K/h is achieved. The detector system can be used in IR- Fourier spectroscopy at wavelengths longer than the typical operating range of semiconductor detectors (wavelength greater than about 20 micrometers ).
NASA Astrophysics Data System (ADS)
Kaila, M. M.; Russell, G. J.
2000-12-01
We present a theory of noise equivalent power (NEP) and related parameters for a high-temperature superconductor (HTSC) bolometer in which temperature and resistance are the noise sources for open circuit operation and phonon and resistance are the noise sources for voltage-biased operation of the bolometer. The bolometer is designed to use a photo-thermoelectrical mode of operation. A mathematical formulation for the open circuit operation is first presented followed by an analysis of the heterodyne case with a bias applied in constant voltage mode. For the first time electrothermal (ET) and thermoelectrical (TE) feedback are treated in the heat balance equation simultaneously. A parallel resistance geometry consisting of thermoelectric and HTSC material legs has been chosen for the device. Computations for the ET-TE feedback show that the response time improves by three orders of magnitude and the responsivity becomes double for the same TE feedback. In the heat balance equation we have included among the heat transfer processes the temperature dependence of the thermal conductance at the bolometer-substrate interface for the dynamic state.
Design of an adiabatic demagnetization refrigerator for studies in astrophysics
NASA Technical Reports Server (NTRS)
Castles, S.
1983-01-01
An adiabatic demagnetization refrigerator was designed for cooling infrared bolometers for studies in astrophysics and aeronomy. The design was tailored to the requirements of a Shuttle sortie experiment. The refrigerator should be capable of maintaining three bolometers at 0.1 K with a 90% cycle. The advantage are of operations the bolometer at 0.1K. greater sensitivity, faster response time, and the ability to use larger bolometer elements without compromising the response time. The design presented is the first complete design of an ADR intended for use in space. The most important of these specifications are to survive a Shuttle launch, to operate with 1.5 K - 2.0 K space-pumped liquid helium as a heat sink, to have a 90% duty cycle, and to be highly efficient.
High Tc bolometer developments for planetary missions
NASA Technical Reports Server (NTRS)
Brasunas, J.; Lakew, B.
1991-01-01
A simple polishing technique was developed for thinning the LaAlO3 substrates for high-quality Tc bolometer films, and thus reducing their heat capacity. A 150-ms bolometer was made on a LaAlO3 substrate with a 5-Hz D* value of 1.5 x 10 exp 8. It is shown that passive temperature stabilization is adequate for operation at the transition. There remained excess noise at the transition, but this noise appears to be of nonbolometric origin.
Fabrication of Monolithic Sapphire Membranes for High Tc Bolometer Array Development
NASA Technical Reports Server (NTRS)
Pugel, D. E.; Lakew, B.; Aslam, S.; Wang, L.
2003-01-01
This paper examines the effectiveness of Pt/Cr thin film masks for the architecture of monolithic membrane structures in r-plane sapphire. The development of a pinhole-free Pt/Cr composite mask that is resistant to hot H2SO4:H3PO4 etchant, will lead to the fabrication of smooth sapphire membranes whose surfaces are well-suited for the growth of low-noise high Tc films. In particular, the relationship of thermal annealing conditions on the Pt/Cr composite mask system to: (1) changes in the surface morphology and elemental concentration of the Pt/Cr thin film layers and (2) etch pit formation on the sapphire surface will be presented.
ORAC-DR: One Pipeline for Multiple Telescopes
NASA Astrophysics Data System (ADS)
Cavanagh, B.; Hirst, P.; Jenness, T.; Economou, F.; Currie, M. J.; Todd, S.; Ryder, S. D.
ORAC-DR, a flexible and extensible data reduction pipeline, has been successfully used for real-time data reduction from UFTI and IRCAM (infrared cameras), CGS4 (near-infrared spectrometer), Michelle (mid-infrared imager and echelle spectrometer), at UKIRT; and SCUBA (sub-millimeter bolometer array) at JCMT. We have now added the infrared imaging spectrometers IRIS2 at the Anglo-Australian Telescope and UIST at UKIRT to the list of officially supported instruments. We also present initial integral field unit support for UIST, along with unofficial support for the imager and multi-object spectrograph GMOS at Gemini. This paper briefly describes features of the pipeline along with details of adopting ORAC-DR for other instruments on telescopes around the world.
NASA Astrophysics Data System (ADS)
Grygar, J.
2018-04-01
Although infrared radiation was described by W. Herschel already in 1800, technical problems delayed its use in astronomy for 160 years. After the invention of a sensitive bolometer and semiconducting CCD arrays for very wide infrared window the progress in the field accelerated. Many high-altitude observatories started their work in the last three decades of XXth century and since 1983 space observatories became most important due to the fact that infrared radiation penetrates through opaque cold shells. Moreover, cosmological expansion of the Universe shifts the maximum of spectral energy of distant hot objects from ultraviolet to near infrared region. Infrared astronomy is also essential for improving our knowledge of the cold universe, particularly for studies about the birth of stars, planetary systems and galaxies.
A superconducting bolometer camera for APEX
NASA Astrophysics Data System (ADS)
Jethava, N.; Kreysa, E.; Siringo, G.; Esch, W.; Gemünd, H.-P.; May, T.; Anders, S.; Fritzsch, L.; Boucher, R.; Zakosarenko, V.; Meyer, H.-G.
2006-06-01
We present the experimental results of voltage-biased superconducting bolometers (VSB) on silicon nitride (Si 3N 4) membranes with niobium wiring developed in collaboration between the Institut fur Physikalische Hochtechnologie (IPHT), Jena, Germany and the Max-Planck-Institut fur Radioastronomie (MPIfR), Bonn, Germany. The bolometer current is measured with the superconducting quantum interference device (SQUID), and as expected, the current responsivity is proportional to the inverse of the bias voltage. The experiments were performed with bilayer gold-palladium molybdenum thermistor at 300 mK 3He cooled cryostat and the desired transition temperature of T c = 450 mK is achieved. The strong negative electro-thermal feedback of the VSB maintains the constant bolometer temperature and reduces the response time from 4 ms to 100 μs. We have tested thermistors of various size and shape on a continuous membrane and achieved a noise equivalent power (NEP) of 3.5 × 10 -16 W/√Hz. The measured NEP is relatively high due to the comparatively high background and high thermal conductance of the unstructured silicon nitride (Si 3N 4) membrane. We have fabricated 8-leg spider structured membranes in three different geometries and the relation between the geometry and the thermal conductance (G) is studied. Using the COSMOS finite element analysis tool, we have modeled the TES bolometers to determine the thermal conductance for different geometries and calculated the various parameters. Due to the demands of large number pixel bolometer camera we plan to implement multiplex readout with integrated SQUIDs in our design.
The initial design of LAPAN's IR micro bolometer using mission analysis process
NASA Astrophysics Data System (ADS)
Bustanul, A.; Irwan, P.; M. T., Andi; Firman, B.
2016-11-01
As new player in Infra Red (IR) sector, uncooled, small, and lightweight IR Micro Bolometer has been chosen as one of payloads for LAPAN's next micro satellite project. Driven the desire to create our own IR Micro Bolometer, mission analysis design procedure has been applied. After tracing all possible missions, the Planck's and Wien's Law for black body, Temperature Responsivity (TR), and sub-pixel response had been utilized in order to determine the appropriate spectral radiance. The 3.8 - 4 μm wavelength were available to detect wild fire (forest fire) and active volcanoes, two major problems faced by Indonesia. In order to strengthen and broaden the result, iteration process had been used throughout the process. The analysis, then, were continued by calculating Ground pixel size, IFOV pixel, swath width, and focus length. Meanwhile, regarding of resolution, at least it is 400 m. The further procedure covered the integrated of optical design, wherein we combined among optical design software, Zemax, with mechanical analysis software (structure and thermal analysis), such as Nastran and Thermal Desktop / Sinda Fluint. The integration process was intended to produce high performance optical system of our IR Micro Bolometer that can be used under extreme environment. The results of all those analysis, either in graphs or in measurement, show that the initial design of LAPAN'S IR Micro Bolometer meets the determined requirement. However, it needs the further evaluation (iteration). This paper describes the initial design of LAPAN's IR Micro Bolometer using mission analysis process
WebArray: an online platform for microarray data analysis
Xia, Xiaoqin; McClelland, Michael; Wang, Yipeng
2005-01-01
Background Many cutting-edge microarray analysis tools and algorithms, including commonly used limma and affy packages in Bioconductor, need sophisticated knowledge of mathematics, statistics and computer skills for implementation. Commercially available software can provide a user-friendly interface at considerable cost. To facilitate the use of these tools for microarray data analysis on an open platform we developed an online microarray data analysis platform, WebArray, for bench biologists to utilize these tools to explore data from single/dual color microarray experiments. Results The currently implemented functions were based on limma and affy package from Bioconductor, the spacings LOESS histogram (SPLOSH) method, PCA-assisted normalization method and genome mapping method. WebArray incorporates these packages and provides a user-friendly interface for accessing a wide range of key functions of limma and others, such as spot quality weight, background correction, graphical plotting, normalization, linear modeling, empirical bayes statistical analysis, false discovery rate (FDR) estimation, chromosomal mapping for genome comparison. Conclusion WebArray offers a convenient platform for bench biologists to access several cutting-edge microarray data analysis tools. The website is freely available at . It runs on a Linux server with Apache and MySQL. PMID:16371165
ZEUS-2: a second generation submillimeter grating spectrometer for exploring distant galaxies
NASA Astrophysics Data System (ADS)
Ferkinhoff, Carl; Nikola, Thomas; Parshley, Stephen C.; Stacey, Gordon J.; Irwin, Kent D.; Cho, Hsiao-Mei; Halpern, Mark
2010-07-01
ZEUS-2, the second generation (z)Redshift and Early Universe Spectrometer, like its predecessor is a moderate resolution (R~1000) long-slit, echelle grating spectrometer optimized for the detection of faint, broad lines from distant galaxies. It is designed for studying star-formation across cosmic time. ZEUS-2 employs three TES bolometer arrays (555 pixels total) to deliver simultaneous, multi-beam spectra in up to 4 submillimeter windows. The NIST Boulder-built arrays operate at ~100mK and are readout via SQUID multiplexers and the Multi-Channel Electronics from the University of British Columbia. The instrument is cooled via a pulse-tube cooler and two-stage ADR. Various filter configurations give ZEUS-2 access to 7 different telluric windows from 200 to 850 micron enabling the simultaneous mapping of lines from extended sources or the simultaneous detection of the 158 micron [CII] line and the [NII] 122 or 205 micron lines from z = 1-2 galaxies. ZEUS-2 is designed for use on the CSO, APEX and possibly JCMT.
Sn nanothreads in GaAs: experiment and simulation
NASA Astrophysics Data System (ADS)
Semenikhin, I.; Vyurkov, V.; Bugaev, A.; Khabibullin, R.; Ponomarev, D.; Yachmenev, A.; Maltsev, P.; Ryzhii, M.; Otsuji, T.; Ryzhii, V.
2016-12-01
The gated GaAs structures like the field-effect transistor with the array of the Sn nanothreads was fabricated via delta-doping of vicinal GaAs surface by Sn atoms with a subsequent regrowth. That results in the formation of the chains of Sn atoms at the terrace edges. Two device models were developed. The quantum model accounts for the quantization of the electron energy spectrum in the self-consistent two-dimensional electric potential, herewith the electron density distribution in nanothread arrays for different gate voltages is calculated. The classical model ignores the quantization and electrons are distributed in space according to 3D density of states and Fermi-Dirac statistics. It turned out that qualitatively both models demonstrate similar behavior, nevertheless, the classical one is in better quantitative agreement with experimental data. Plausibly, the quantization could be ignored because Sn atoms are randomly placed along the thread axis. The terahertz hot-electron bolometers (HEBs) could be based on the structure under consideration.
Optical and IR applications in astronomy and astrophysics
NASA Astrophysics Data System (ADS)
McLean, Ian S.
2009-06-01
The set comprising silicon charge-coupled devices, low band-gap infrared arrays and bolometer arrays provide astronomers with position-sensitive photon detectors from the X-ray to the sub-mm. In recent years the most significant advances have occurred in the near-infrared part of the spectrum because not only have the detector formats caught up with those of charge-coupled device (CCDs) but also because the advent of adaptive optics (AO) has meant that the very largest telescopes can achieve their diffraction limit in the near-infrared. Thus infrared cameras, spectrometers and hybrid instruments that measure spatial and spectral information simultaneously are now commanding the greatest attention on telescopes from 6.5 to 10 m in effective aperture. Scientific applications of these new infrared instruments span everything from the search for nearby solar systems to the orbital motions of stars about the massive black hole at the center of the Milky Way, and studies of the first galaxies to form in the high redshift Universe. Background, principles and applications of infrared array detectors to astronomy and astrophysics will be discussed with particular emphasis on work at the W.M. Keck 10-m telescope on Mauna Kea, Hawaii.
Spectroscopic Capabilities and Possibilities of the Far Infrared and Submillimeter Telescope Mission
NASA Technical Reports Server (NTRS)
Pearson, J. C.
2000-01-01
The Far Infrared and Submillimeter Telescope (FIRST) mission is the fourth European Space Agency corner stone mission. FIRST will be an observatory with a passively cooled (80 Kelvin) 3.5 meter class telescope and three cryogenic instruments covering the 670 to 80 mm spectral region. The mission is slated for a 4.5 year operational lifetime in an L2 orbit. It will share an Arian 5 launch with PLANCK in early 2007. The three payload instruments include the Spectral and Photometric Imaging Receiver (SPIRE), which is a bolometer array with Martin-Puplett FTS for 200-670 microns, the Photoconductor Array Camera and Spectrometer (PACS), which is a photoconductor array with a grating spectrometer for 80-210 microns and the Heterodyne Instrument for FIRST (HIFI), which is a series of seven heterodyne receivers covering 480-1250 GHz and portions of 1410-1910 GHz and 2400-2700 GHz. FIRST will make many detailed spectral surveys of a wide variety of objects previously obscured by the atmosphere and in regions of the spectrum seldom used for astronomical observations, With all of the spectroscopic capability on FIRST a great deal of laboratory spectroscopic support will be needed for accurate interpretation of the spectral data.
Preliminary performance measurements of bolometers for the planck high frequency instrument
NASA Technical Reports Server (NTRS)
Holmes, W.; Bock, J.; Ganga, K.; Hristov, V. V.; Hustead, L.; Koch, T.; Lange, A. E.; Paine, C.; Yun, M.
2002-01-01
We report on the characterization of bolometers fabricated at the Jet Propulsion Laboratory for the High Frequency Instrument (HFI) of the joint ESA/NASA Herschel/Planck mission to be launched in 2007.
"Science SQL" as a Building Block for Flexible, Standards-based Data Infrastructures
NASA Astrophysics Data System (ADS)
Baumann, Peter
2016-04-01
We have learnt to live with the pain of separating data and metadata into non-interoperable silos. For metadata, we enjoy the flexibility of databases, be they relational, graph, or some other NoSQL. Contrasting this, users still "drown in files" as an unstructured, low-level archiving paradigm. It is time to bridge this chasm which once was technologically induced, but today can be overcome. One building block towards a common re-integrated information space is to support massive multi-dimensional spatio-temporal arrays. These "datacubes" appear as sensor, image, simulation, and statistics data in all science and engineering domains, and beyond. For example, 2-D satellilte imagery, 2-D x/y/t image timeseries and x/y/z geophysical voxel data, and 4-D x/y/z/t climate data contribute to today's data deluge in the Earth sciences. Virtual observatories in the Space sciences routinely generate Petabytes of such data. Life sciences deal with microarray data, confocal microscopy, human brain data, which all fall into the same category. The ISO SQL/MDA (Multi-Dimensional Arrays) candidate standard is extending SQL with modelling and query support for n-D arrays ("datacubes") in a flexible, domain-neutral way. This heralds a new generation of services with new quality parameters, such as flexibility, ease of access, embedding into well-known user tools, and scalability mechanisms that remain completely transparent to users. Technology like the EU rasdaman ("raster data manager") Array Database system can support all of the above examples simultaneously, with one technology. This is practically proven: As of today, rasdaman is in operational use on hundreds of Terabytes of satellite image timeseries datacubes, with transparent query distribution across more than 1,000 nodes. Therefore, Array Databases offering SQL/MDA constitute a natural common building block for next-generation data infrastructures. Being initiator and editor of the standard we present principles, implementation facets, and application examples as a basis for further discussion. Further, we highlight recent implementation progress in parallelization, data distribution, and query optimization showing their effects on real-life use cases.
The Front-End System For MARE In Milano
NASA Astrophysics Data System (ADS)
Arnaboldi, Claudio; Pessina, Gianluigi
2009-12-01
The first phase of MARE consists of 72 μ-bolometers composed each of a crystal of AgReO4 readout by Si thermistors. The spread in the thermistor characteristics and bolometer thermal coupling leads to different energy conversion gains and optimum operating points of the detectors. Detector biasing levels and voltage gains are completely remote-adjustable by the front end system developed, the subject of this paper, achieving the same signal range at the input of the DAQ system. The front end consists of a cold buffer stage, a second pseudo differential stage followed by a gain stage, an antialiasing filter, and a battery powered detector biasing set up. The DAQ system can be used to set all necessary parameters of the electronics remotely, by writing to a μ-controller located on each board. Fiber optics are used for the serial communication between the DAQ and the front end. To suppress interference noise during normal operation, the clocked devices of the front end are maintained in sleep-mode, except during the set-up phase of the experiment. An automatic DC detector characterization procedure is used to establish the optimum operating point of every detector of the array. A very low noise level has been achieved: about 3nV/□Hz at 1 Hz and 1 nV/□Hz for the white component, high frequencies.
Mapping TES Aerobreaking Data of The Martian Polar Caps
NASA Astrophysics Data System (ADS)
Altunaiji, E. S.; Edwards, C. S.; Smith, M. D.; AlShamsi, M. R.; AlJanaahi, A. A.
2016-12-01
The purpose of this paper is to create maps of the north and south Mars polar caps using Thermal Emission Spectrometer (TES) aerobreaking surface temperature data in south and north as well as Lambert albedo data in the south. TES is an instrument on board the Mars Global Surveyor (MGS) spacecraft. It has six detectors arranged in a 2x3 array with a nominal spot size of 3 × 6 km; however, given the elliptical nature of the orbit during aerobreaking the footprint can be significantly larger (10s of km), especially over the southern hemisphere. TES is a Fourier transform infrared spectrometer designed to study the Martian surface and atmosphere using thermal infrared emission spectroscopy. It is composed of 2 separate channels, a broadband visible/near-infrared bolometer and hyperspectral thermal infrared spectrometer with a broadband thermal infrared bolometer. TES aerobraking spectra were taken between Mars Year 23, Ls=180° and Mars Year 24, Ls=30°. To determine the footprint location on the surface, geometry is calculated using the Spacecraft Planet Instrument Camera Matrix and Event (SPICE) Toolkit. These data were then binned and mapped to surface in polar stereographic projection. While some early studies focused on these data, we have expanded upon the ranges, generated time-/seasonally-binned data, and re-examined this largely underutilized set of data from TES ultimately extending the record of polar science on Mars.
The LUCIFER Project: Achievements and Near Future Prospects
NASA Astrophysics Data System (ADS)
Beeman, J. W.; Bellini, F.; Benetti, P.; Cardani, L.; Casali, N.; Chiesa, D.; Clemenza, M.; Dafinei, I.; Di Domizio, S.; Ferroni, F.; Gironi, L.; Giuliani, A.; Gotti, C.; Maino, M.; Nagorny, S. S.; Nisi, S.; Nones, C.; Pagnanini, L.; Pattavina, L.; Pessina, G.; Piperno, G.; Pirro, S.; Previtali, E.; Rusconi, C.; Schäffner, K.; Tomei, C.; Vignati, M.
2016-08-01
In the view of exploring the inverted hierarchy region future experiments investigating the neutrinoless double beta decay have to demand for detectors with excellent energy resolution and zero background in the energy region of interest. Cryogenic scintillating bolometers are very suitable detectors for this task since they provide particle discrimination: the simultaneous detection of the phonon and light signal allows us to identify the interacting type of particle and thus guarantees a suppression of α -induced backgrounds, the key-issue for next-generation tonne-scale bolometric experiments. The LUCIFER project aims at running the first array of enriched scintillating Zn^{ {82}}Se bolometers (total mass of about 8kg of ^{ {82}}Se) with a background level as low as 10^{ {-3}} counts/(keV kg y) in the energy region of interest. The main effort is currently focused on the finalization of the crystal growth procedure in order to achieve high quality Zn^{ {82}}Se crystals both in terms of radiopurity and bolometric properties. We present results from tests of such crystals operated at mK temperatures which demonstrate the excellent background rejection capabilities of this detection approach towards a background-free demonstrator experiment. Besides, the high purity of the enriched ^{ {82}}Se material allows us to establish the most stringent limits on the half-life of the double beta decay of ^{ {82}}Se on excited levels.
NASA Astrophysics Data System (ADS)
Ward, Jonathan; Advanced ACT Collaboration, NASA Space Technology Research Fellowship
2017-06-01
The Atacama Cosmology Telescope is a six-meter diameter telescope located at 17,000 feet (5,200 meters) on Cerro Toco in the Andes Mountains of northern Chile. The next generation Advanced ACT (AdvACT) experiment is currently underway and will consist of three multichroic TES bolometer arrays operating together, totaling 5800 detectors on the sky. Each array will be sensitive to two frequency bands: a high frequency (HF) array at 150 and 230 GHz, two middle frequency (MF) arrays at 90 and 150 GHz, and a low frequency (LF) array at 28 and 41 GHz. The AdACT detector arrays will feature a revamped design when compared to ACTPol, including a transition to 150mm wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors consists of a feedhorn array of stacked silicon wafers which form a corrugated profile leading to each pixel. This is then followed by a four-piece detector stack assembly of silicon wafers which includes a waveguide interface plate, detector wafer, backshort cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured out of gold-plated, high purity copper. In addition to the detector array assembly, the array package also encloses the majority of our readout electronics. We present the full mechanical design of the AdvACT HF and MF detector array packages along with a detailed look at the detector array assemblies. We also highlight the use of continuously rotating warm half-wave plates (HWPs) at the front of the AdvACT receiver. We review the design of the rotation system and also early pipeline data analysis results. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modified to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT instruments with pre-existing ACTPol infrastructure.
Phonon Recycling for Ultrasensitive Kinetic Inductance Detectors
NASA Astrophysics Data System (ADS)
Zmuidzinas, Jonas
Initially proposed (Day et al. 2003; Zmuidzinas 2012) in 1999 by our Caltech/JPL group, and thanks to strong support from NASA, the superconducting (microwave) kinetic inductance detector (MKID or KID) technology continues to develop rapidly as it transitions into applications. The development effort worldwide is intensifying and NASA's continued support of KID development is essential in order to keep pace. Here we propose to investigate and demonstrate a new, low-TRL concept, which we call phonon recycling, that promises to open broad new avenues in KID design and performance. Briefly, phonon recycling allows the detector designer to tailor the responsivity and sensitivity of a KID to match the needs of the application by using geometry to restrict the rate at which recombination phonons are allowed to escape from the detector. In particular, phonon recycling should allow very low noise-equivalent power (NEP) to be achieved without requiring very low operating tem- peratures. Phonon recycling is analogous to the use of micromachined suspension legs to control the flow of heat in a bolometer, as measured by the thermal conductivity G. However, phonon recycling exploits the non-thermal distribution of recombination phonons as well as their very slow decay in crystals at low temperatures. These properties translate to geometrical and mechanical requirements for a phonon-recycled KID that are considerably more relaxed than for a bolometer operating at the same temperature and NEP. Our ultimate goal is to develop detector arrays suitable for a far-infrared (FIR) space mission, which will impose strict requirements on the array sensitivity, yield, uniformity, multiplexing density, etc. Through previous NASA support under the Strategic Astrophysics Technology (SAT) program, we have successfully demonstrated the MAKO submillimeter camera at the Caltech Submillimeter Observatory and have become familiar with these practical issues. If our demonstration of phonon recycling is successful, we will have a path for continuously adapting the high-background, high-NEP detectors we have demonstrated on the ground to the ultralow-NEP detectors needed for space.
The Green Bank Telescope: Transformational Science for the Next Decade.
NASA Astrophysics Data System (ADS)
Wootten, Al; GBO Staff
2018-01-01
The Robert C Byrd Green Bank Telescope has met its design goal of providing high-quality observations at 115 GHz. The accurate small beam of the telescope at high frequencies is leveraged by deployment of multi beam receivers. An overview is presented. Observers now have access to the new, 16-pixel, 3-mm Argus receiver, which is providing high-dynamic range images over wide fields for the multitude of spectral lines between 85 and 115 GHz. The successful performance of Argus, and its modular design, demonstrates that receivers with many more pixels could be built for the GBT. A 12 x 12 array of the Argus design would have mapping speeds about nine times faster than Argus without suffering any degradation in performance for the outer pixels in the array. The Observatory plans to build the next-generation Argus instrument (Argus+) with 144-pixels, a footprint 5'x5', and 7" resolution at 110 GHz. The project will be a collaboration between the Green Bank Observatory and university groups, who will supply key components. The key science drivers for Argus+ are studies of molecular filaments in the Milky Way, studies of molecular clouds in nearby galaxies, and the observations of rapidly evolving solar system objects. Observers also have access to MUSTANG-2, a 223-feedhorn bolometer camera which was commissioned on the GBT in spring 2016, and was offered for observations on a shared risk basis, in collaboration with the instrument team, in the 2018A GBO proposal call. Several features distinguish it from its predecessor, MUSTANG: A new, microstrip-coupled detector design yields higher sensitivity and less susceptibility to environmental microphonics. Detectors are feedhorn coupled, with the sum of two linear polarizations measured by a single TES per feed. The instantaneous field of view is 4 arcminutes (vs 42 arcseconds for MUSTANG) The receiver design incorporates a tilted refrigerator and receiver rotator, resulting in much lower dependence of cooling performance on telescope elevation. The detector readout is the first astronomical use of microwave resonators to multiplex TES bolometers. MUSTANG-2 has been developed by a collaboration including the University of Pennsylvania, NIST, NRAO, the University of Michigan, and Cardiff University. A 7-pixel K-band Feed Array covering 18-28 GHz with Dual polarization feeds and a noise temperature < 40-50 K has been available for several years. The array offers an instantaneous bandwidth/beam of 1.8 GHz. Future upgrade concepts under study envision increasing the number of beams by an order of magnitude.
AzTEC half square degree survey of the SHADES fields - I. Maps, catalogues and source counts
NASA Astrophysics Data System (ADS)
Austermann, J. E.; Dunlop, J. S.; Perera, T. A.; Scott, K. S.; Wilson, G. W.; Aretxaga, I.; Hughes, D. H.; Almaini, O.; Chapin, E. L.; Chapman, S. C.; Cirasuolo, M.; Clements, D. L.; Coppin, K. E. K.; Dunne, L.; Dye, S.; Eales, S. A.; Egami, E.; Farrah, D.; Ferrusca, D.; Flynn, S.; Haig, D.; Halpern, M.; Ibar, E.; Ivison, R. J.; van Kampen, E.; Kang, Y.; Kim, S.; Lacey, C.; Lowenthal, J. D.; Mauskopf, P. D.; McLure, R. J.; Mortier, A. M. J.; Negrello, M.; Oliver, S.; Peacock, J. A.; Pope, A.; Rawlings, S.; Rieke, G.; Roseboom, I.; Rowan-Robinson, M.; Scott, D.; Serjeant, S.; Smail, I.; Swinbank, A. M.; Stevens, J. A.; Velazquez, M.; Wagg, J.; Yun, M. S.
2010-01-01
We present the first results from the largest deep extragalactic mm-wavelength survey undertaken to date. These results are derived from maps covering over 0.7deg2, made at λ = 1.1mm, using the AzTEC continuum camera mounted on the James Clerk Maxwell Telescope. The maps were made in the two fields originally targeted at λ = 850μm with the Submillimetre Common-User Bolometer Array (SCUBA) in the SCUBA Half-Degree Extragalactic Survey (SHADES) project, namely the Lockman Hole East (mapped to a depth of 0.9-1.3 mJy rms) and the Subaru/XMM-Newton Deep Field (mapped to a depth of 1.0-1.7 mJy rms). The wealth of existing and forthcoming deep multifrequency data in these two fields will allow the bright mm source population revealed by these new wide-area 1.1mm images to be explored in detail in subsequent papers. Here, we present the maps themselves, a catalogue of 114 high-significance submillimetre galaxy detections, and a thorough statistical analysis leading to the most robust determination to date of the 1.1mm source number counts. These new maps, covering an area nearly three times greater than the SCUBA SHADES maps, currently provide the largest sample of cosmological volumes of the high-redshift Universe in the mm or sub-mm. Through careful comparison, we find that both the Cosmic Evolution Survey (COSMOS) and the Great Observatories Origins Deep Survey (GOODS) North fields, also imaged with AzTEC, contain an excess of mm sources over the new 1.1mm source-count baseline established here. In particular, our new AzTEC/SHADES results indicate that very luminous high-redshift dust enshrouded starbursts (S1.1mm > 3mJy) are 25-50 per cent less common than would have been inferred from these smaller surveys, thus highlighting the potential roles of cosmic variance and clustering in such measurements. We compare number count predictions from recent models of the evolving mm/sub-mm source population to these sub-mm bright galaxy surveys, which provide important constraints for the ongoing refinement of semi-analytic and hydrodynamical models of galaxy formation, and find that all available models overpredict the number of bright submillimetre galaxies found in this survey.
Nanostructure based EO/IR sensor development for homeland security applications
NASA Astrophysics Data System (ADS)
Sood, Ashok K.; Welser, Roger E.; Sood, Adam W.; Puri, Yash R.; Manzur, Tariq; Dhar, Nibir K.; Polla, Dennis L.; Wang, Zhong L.; Wijewarnasuriya, Priyalal S.; Anwar, A. F. M.
2011-06-01
Next Generation EO/IR focal plane arrays using nanostructure materials are being developed for a variety of Defense and Homeland Security Sensor Applications. Several different nanomaterials are being evaluated for these applications. These include ZnO nanowires, GaN Nanowires and II-VI nanowires, which have demonstrated large signal to noise ratio as a wide band gap nanostructure material in the UV band. Similarly, the work is under way using Carbon Nanotubes (CNT) for a high speed detector and focal plane array as two-dimensional array as bolometer for IR bands of interest, which can be implemented for the sensors for homeland security applications. In this paper, we will discuss the sensor design and model predicting performance of an EO/IR focal plane array and Sensor that can cover the UV to IR bands of interest. The model can provide a robust means for comparing performance of the EO/IR FPA's and Sensors that can operate in the UV, Visible-NIR (0.4- 1.8μ), SWIR (2.0-2.5μ), MWIR (3-5μ), and LWIR bands (8-14μ). This model can be used as a tool for predicting performance of nanostructure arrays under development. We will also discuss our results on growth and characterization of ZnO nanowires and CNT's for the next generation sensor applications. We also present several approaches for integrated energy harvesting using nanostructure based solar cells and Nanogenerators that can be used to supplement the energy required for nanostructure based sensors.
Instrument development of the CMB polarization POLARBEAR-2 experiment
NASA Astrophysics Data System (ADS)
Siritanasak, Praween; POLARBEAR Collaboration
2017-06-01
We present the status of the development of the Polarbear-2 (PB-2) and Simons Array experiments. PB-2 is a ground-based Cosmic Microwave Back- ground (CMB) polarization experiment located at the James Ax observatory in the Atacama desert of Northern Chile. The Simons Array will consist of three PB-2 receivers on three Huan Tran-style telescopes, each containing a multi-chroic detector array. The first new Simons Array receiver, Polarbear- 2A(PB-2A), will be deployed in 2017. The PB-2A focal plane consists of 1,897 lenslet-coupled, dual-polarization, sinuous-antenna-coupled pixels operating at 95 and 150 GHz, making a total of 7,588 polarization-sensitive transition edge sensor (TES) bolometers. In the order to cover both frequencies, we developed broadband two layer anti-reflection (AR) coating for 5.345 mm diameter lenslets using two types of epoxy: Stycast2850FT and Stycast1090. We developed a mass production AR coating methodology that can control the uniformity and shape to within 25 μm error from the designed value. The second (PB-2B) and third (PB-2C) receivers will employ similar technologies and will cover 95, 150, 220 and 280 GHz. The Simons Array will survey 80% of the sky with broad frequency coverage and high resolution, making it a powerful tool to constrain the tensor-to-scalar ratio through measurements of primordial B-modes and the sum of the neutrino masses through measurements of B-modes produced by gravitational lensing.
The Polarbear-2 and the Simons Array experiments
Suzuki, A.; Ade, P.; Akiba, Y.; ...
2016-01-06
Here, we present an overview of the design and status of the POLARBEAR-2 and the Simons Array experiments. POLARBEAR- 2 is a Cosmic Microwave Background polarimetry experiment which aims to characterize the arc-minute angular scale B-mode signal from weak gravitational lensing and search for the degree angular scale B-mode signal from inflationary gravitational waves. The receiver has a 365 mm diameter focal plane cooled to 270 milli-Kelvin. The focal plane is filled with 7,588 dichroic lenslet-antenna coupled polarization sensitive Transition Edge Sensor (TES) bolometric pixels that are sensitive to 95 GHz and 150 GHz bands simultaneously. The TES bolometers aremore » read-out by SQUIDs with 40 channel frequency domain multiplexing. Refractive optical elements are made with high purity alumina to achieve high optical throughput. The receiver is designed to achieve noise equivalent temperature of 5.8 µK CMB√s in each frequency band. POLARBEAR-2 will deploy in 2016 in the Atacama desert in Chile. The Simons Array is a project to further increase sensitivity by deploying three POLARBEAR-2 type receivers. The Simons Array will cover 95 GHz, 150 GHz and 220 GHz frequency bands for foreground control. The Simons Array will be able to constrain tensor-to-scalar ratio and sum of neutrino masses to σ(r) = 6×10 $-$3 at r = 0.1 and Σm ν(σ = 1) to 40 meV.« less
TES arrays for the short wavelength band of the SAFARI instrument on SPICA
NASA Astrophysics Data System (ADS)
Khosropanah, P.; Hijmering, R.; Ridder, M.; Gao, J. R.; Morozov, D.; Mauskopf, P. D.; Trappe, N.; O'Sullivan, C.; Murphy, A.; Griffin, D.; Goldie, D.; Glowacka, D.; Withington, S.; Jackson, B. D.; Audley, M. D.; de Lange, G.
2012-09-01
SPICA is an infra-red (IR) telescope with a cryogenically cooled mirror (~5K) with three instruments on board, one of which is SAFARI that is an imaging Fourier Transform Spectrometer (FTS) with three bands covering the wavelength of 34-210 μm. We develop transition edge sensors (TES) array for short wavelength band (34-60 μm) of SAFARI. These are based on superconducting Ti/Au bilayer as TES bolometers with a Tc of about 105 mK and thin Ta film as IR absorbers on suspended silicon nitride (SiN) membranes. These membranes are supported by long and narrow SiN legs that act as weak thermal links between the TES and the bath. Previously an electrical noise equivalent power (NEP) of 4×10-19 W/√Hz was achieved for a single pixel of such detectors. As an intermediate step toward a full-size SAFARI array (43×43), we fabricated several 8×9 detector arrays. Here we describe the design and the outcome of the dark and optical tests of several of these devices. We achieved high yield (<93%) and high uniformity in terms of critical temperature (<5%) and normal resistance (7%) across the arrays. The measured dark NEPs are as low as 5×10-19 W/√Hz with a response time of about 1.4 ms at preferred operating bias point. The optical coupling is implemented using pyramidal horns array on the top and hemispherical cavity behind the chip that gives a measured total optical coupling efficiency of 30±7%.
The ITER bolometer diagnostic: Status and plansa)
NASA Astrophysics Data System (ADS)
Meister, H.; Giannone, L.; Horton, L. D.; Raupp, G.; Zeidner, W.; Grunda, G.; Kalvin, S.; Fischer, U.; Serikov, A.; Stickel, S.; Reichle, R.
2008-10-01
A consortium consisting of four EURATOM Associations has been set up to develop the project plan for the full development of the ITER bolometer diagnostic and to continue urgent R&D activities. An overview of the current status is given, including detector development, line-of-sight optimization, performance analysis as well as the design of the diagnostic components and their integration in ITER. This is complemented by the presentation of plans for future activities required to successfully implement the bolometer diagnostic, ranging from the detector development over diagnostic design and prototype testing to RH tools for calibration.
SINIS bolometer with a suspended absorber
NASA Astrophysics Data System (ADS)
Tarasov, M.; Edelman, V.; Mahashabde, S.; Fominsky, M.; Lemzyakov, S.; Chekushkin, A.; Yusupov, R.; Winkler, D.; Yurgens, A.
2018-03-01
We have developed a Superconductor-Insulator-Normal Metal-Insulator-Superconductor (SINIS) bolometer with a suspended normal metal bridge. The suspended bridge acts as a bolometric absorber with reduced heat losses to the substrate. Such bolometers were characterized at 100-350 mK bath temperatures and electrical responsivity of over 109 V/W was measured by dc heating the absorber through additional contacts. Suspended bolometers were also integrated in planar twin-slot and log-periodic antennas for operation in the submillimetre-band of radiation. The measured voltage response to radiation at 300 GHz and at 100 mK bath temperature is 3*108 V/W and a current response is 1.1*104 A/W which corresponds to a quantum efficiency of ~15 electrons per photon. An important feature of such suspended bolometers is the thermalization of electrons in the absorber heated by optical radiation, which in turn provides better quantum efficiency. This has been confirmed by comparison of bolometric response to dc and rf heating. We investigate the performance of direct SN traps and NIS traps with a tunnel barrier between the superconductor and normal metal trap. Increasing the volume of superconducting electrode helps to reduce overheating of superconductor. Influence of Andreev reflection and Kapitza resistance, as well as electron-phonon heat conductivity and thermal conductivity of N-wiring are estimated for such SINIS devices.
Technological development of multispectral filter assemblies for micro bolometer
NASA Astrophysics Data System (ADS)
Le Goff, Roland; Tanguy, François; Fuss, Philippe; Etcheto, Pierre
2017-11-01
Since 2007 Sodern has successfully developed visible and near infrared multispectral filter assemblies for Earth remote sensing imagers. Filter assembly is manufactured by assembling several sliced filter elements (so-called strips), each corresponding to one spectral band. These strips are cut from wafers using a two dimensional accuracy precision process. In the frame of a 2011 R&T preparatory initiative undertaken by the French agency CNES, the filter assembly concept was adapted by Sodern to the long wave infrared spectral band taken into account the germanium substrate, the multilayer bandpass filters and the F-number of the optics. Indeed the current trend in space instrumentation toward more compact uncooled infrared radiometer leads to replace the filter wheel with a multispectral filter assembly mounted directly above the micro bolometer window. The filter assembly was customized to fit the bolometer size. For this development activity we consider a ULIS VGA LWIR micro bolometer with 640 by 480 pixels and 25 microns pixel pitch. The feasibility of the concept and the ability to withstand space environment were investigated and demonstrated by bread boarding activities. The presentation will contain a detailed description of the bolometer and filter assembly design, the stray light modeling analysis assessing the crosstalk between adjacent spectral bands and the results of the manufacturing and environmental tests (damp heat and thermal vacuum cycling).
Ontology-based, Tissue MicroArray oriented, image centered tissue bank
Viti, Federica; Merelli, Ivan; Caprera, Andrea; Lazzari, Barbara; Stella, Alessandra; Milanesi, Luciano
2008-01-01
Background Tissue MicroArray technique is becoming increasingly important in pathology for the validation of experimental data from transcriptomic analysis. This approach produces many images which need to be properly managed, if possible with an infrastructure able to support tissue sharing between institutes. Moreover, the available frameworks oriented to Tissue MicroArray provide good storage for clinical patient, sample treatment and block construction information, but their utility is limited by the lack of data integration with biomolecular information. Results In this work we propose a Tissue MicroArray web oriented system to support researchers in managing bio-samples and, through the use of ontologies, enables tissue sharing aimed at the design of Tissue MicroArray experiments and results evaluation. Indeed, our system provides ontological description both for pre-analysis tissue images and for post-process analysis image results, which is crucial for information exchange. Moreover, working on well-defined terms it is then possible to query web resources for literature articles to integrate both pathology and bioinformatics data. Conclusions Using this system, users associate an ontology-based description to each image uploaded into the database and also integrate results with the ontological description of biosequences identified in every tissue. Moreover, it is possible to integrate the ontological description provided by the user with a full compliant gene ontology definition, enabling statistical studies about correlation between the analyzed pathology and the most commonly related biological processes. PMID:18460177
High throughput reconfigurable data analysis system
NASA Technical Reports Server (NTRS)
Bearman, Greg (Inventor); Pelletier, Michael J. (Inventor); Seshadri, Suresh (Inventor); Pain, Bedabrata (Inventor)
2008-01-01
The present invention relates to a system and method for performing rapid and programmable analysis of data. The present invention relates to a reconfigurable detector comprising at least one array of a plurality of pixels, where each of the plurality of pixels can be selected to receive and read-out an input. The pixel array is divided into at least one pixel group for conducting a common predefined analysis. Each of the pixels has a programmable circuitry programmed with a dynamically configurable user-defined function to modify the input. The present detector also comprises a summing circuit designed to sum the modified input.
Users' Manual and Installation Guide for the EverVIEW Slice and Dice Tool (Version 1.0 Beta)
Roszell, Dustin; Conzelmann, Craig; Chimmula, Sumani; Chandrasekaran, Anuradha; Hunnicut, Christina
2009-01-01
Network Common Data Form (NetCDF) is a self-describing, machine-independent file format for storing array-oriented scientific data. Over the past few years, there has been a growing movement within the community of natural resource managers in The Everglades, Fla., to use NetCDF as the standard data container for datasets based on multidimensional arrays. As a consequence, a need arose for additional tools to view and manipulate NetCDF datasets, specifically to create subsets of large NetCDF files. To address this need, we created the EverVIEW Slice and Dice Tool to allow users to create subsets of grid-based NetCDF files. The major functions of this tool are (1) to subset NetCDF files both spatially and temporally; (2) to view the NetCDF data in table form; and (3) to export filtered data to a comma-separated value file format.
Heat trap - An optimized far infrared field optics system. [for astronomical sources
NASA Technical Reports Server (NTRS)
Harper, D. A.; Hildebrand, R. H.; Winston, R.; Stiening, R.
1976-01-01
The article deals with the design and performance of a heat trap IR system designed to maximize the concentration and efficient reception of far IR and submillimeter wavelength radiation. The test object is assumed to be extended and/or viewed at wavelengths much longer than the detector, and the entrance aperture is limited to the size of the telescope Airy diffraction disk. The design of lenses, cavity, bolometers, light collectors, and mirrors for the system is discussed. Advantages and feasibility of arrays of heat traps are considered. Beam patterns, flux concentration, and performance variation with wavelength are dealt with. The heat trap is recommended for sensing all types of far IR sources and particularly for extended far IR sources.-
Fabrication of Monolithic Sapphire Membranes for High T(sub c) Bolometer Array Development
NASA Technical Reports Server (NTRS)
Pugel, D. E.; Lakew, B.; Aslam, S.; Wang, L.
2004-01-01
This paper examines the effectiveness of Pt/Cr thin film masks for the architecture of monolithic membrane structures in r-plane single crystal sapphire. The development of a pinhole-free Pt/Cr composite mask that is resistant to boiling H2SO4:H3PO4 etchant will lead to the fabrication of smooth sapphire membranes whose surfaces are well-suited for the growth of low-noise high Tc films. In particular, the relationship of thermal annealing conditions on the Pt/Cr composite mask system to: (1) changes in the surface morphology (2) elemental concentration of the Pt/Cr thin film layers and (3) etch pit formation on the sapphire surface will be presented.
NASA Astrophysics Data System (ADS)
Fountaine, Katherine T.; Cheng, Wen-Hui; Bukowsky, Colton R.; Atwater, Harry A.
2016-09-01
Design of perfect absorbers and emitters has been a primary focus of the metamaterials community owing to their potential to enhance device efficiency and sensitivity in energy harvesting and sensing applications, specifically photovoltaics, thermal emission control, bolometers and photodetectors, to name a few. While reports of perfect absorbers/emitters for a specific frequency, wavevector, and polarization are ubiquitous, a broadband and polarization- and angle-insensitive perfect absorber remains a particular challenge. In this work, we report on directed optical design and fabrication of sparse III-V nanowire arrays as broadband, polarization- and angle-insensitive perfect absorbers and emitters. Specifically, we target response in the UV-Vis-NIR and NIR-SWIR-MWIR via two material systems, InP (Eg=1.34 eV) and InSb (Eg=0.17 eV), respectively. Herein, we present results on InP and InSb nanowire array broadband absorbers, supported by experiment, simulation and analytic theory. Electromagnetic simulations indicate that, with directed optical design, tapered nanowire arrays and multi-radii nanowire arrays with 5% fill fraction can achieve greater than 95% broadband absorption (λInP=400-900nm, λInSb=1.5-5.5µm), due to efficient excitation and interband transition-mediated attenuation of the HE11 waveguide mode. Experimentally-fabricated InP nanowire arrays embedded in PDMS achieved broadband, polarization- and angle-insensitive 90-95% absorption, limited primarily by reflection off the PDMS interface. Addition of a thin, planar VO2 layer above a sparse InSb nanowire array enables active thermal tunability in the infrared, effecting a 50% modulation, from 87% (insulating VO2) to 43% (metallic VO2) average absorption. These concepts and results along with photovoltaic and other optical and optoelectronic device applications will be discussed.
NASA Technical Reports Server (NTRS)
Thornhill, K. Lee; Bitting, Herbert; Lee, Robert B., III; Paden, Jack; Pandey, Dhirendra K.; Priestley, Kory J.; Thomas, Susan; Wilson, Robert S.
1998-01-01
Fourier Transform Spectrometer (FTS) techniques are being used to characterize the relative spectral response, or sensitivity, of scanning thermistor bolometers in the infrared (IR) region (2 - >= 100-micrometers). The bolometers are being used in the Clouds and the Earth's Radiant Energy System (CERES) program. The CERES measurements are designed to provide precise, long term monitoring of the Earth's atmospheric radiation energy budget. The CERES instrument houses three bolometric radiometers, a total wavelength (0.3- >= 150-micrometers) sensor, a shortwave (0.3-5-micrometers) sensor, and an atmospheric window (8-12-micrometers) sensor. Accurate spectral characterization is necessary for determining filtered radiances for longwave radiometric calibrations. The CERES bolometers spectral response's are measured in the TRW FTS Vacuum Chamber Facility (FTS - VCF), which uses a FTS as the source and a cavity pyroelectric trap detector as the reference. The CERES bolometers and the cavity detector are contained in a vacuum chamber, while the FTS source is housed in a GN2 purged chamber. Due to the thermal time constant of the CERES bolometers, the FTS must be operated in a step mode. Data are acquired in 6 IR spectral bands covering the entire longwave IR region. In this paper, the TRW spectral calibration facility design and data measurement techniques are described. Two approaches are presented which convert the total channel FTS data into the final CERES spectral characterizations, producing the same calibration coefficients (within 0.1 percent). The resulting spectral response curves are shown, along with error sources in the two procedures. Finally, the impact of each spectral response curve on CERES data validation will be examined through analysis of filtered radiance values from various typical scene types.
The UARS and open data concept and analysis study. [upper atmosphere
NASA Technical Reports Server (NTRS)
Mittal, M.; Nebb, J.; Woodward, H.
1983-01-01
Alternative concepts for a common design for the UARS and OPEN Central Data Handling Facility (CDHF) are offered. Costs for alternative implementations of the UARS designs are presented, showing that the system design does not restrict the implementation to a single manufacturer. Processing demands on the alternative UARS CDHF implementations are then discussed. With this information at hand together with estimates for OPEN processing demands, it is shown that any shortfall in system capability for OPEN support can be remedied by either component upgrades or array processing attachments rather than a system redesign. In addition to a common system design, it is shown that there is significant potential for common software design, especially in the areas of data management software and non-user-unique production software. Archiving the CDHF data are discussed. Following that, cost examples for several modes of communications between the CDHF and Remote User Facilities are presented. Technology application is discussed.
High Rate User Ka-Band Phased Array Antenna Test Results
NASA Technical Reports Server (NTRS)
Caroglanian, Armen; Perko, Kenneth; Seufert, Steve; Dod, Tom; Warshowsky, Jay; Day, John H. (Technical Monitor)
2001-01-01
The High Rate User Phased Array Antenna (HRUPAA) is a Ka-Band planar phased array designed by the Harris Corporation for the NASA Goddard Space Flight Center. The HRUPAA permits a satellite to downlink data either to a ground station or through the Tracking and Data Relay Satellite System (TDRSS). The HRUPAA is scanned electronically by ground station / user satellite command over a 120 degree cone angle. The phased array has the advantage of not imparting attitude disturbances to the user spacecraft. The 288-element transmit-only array has distributed RF amplifiers integrated behind each of the printed patch antenna elements. The array has 33 dBW EIRP and is left-hand circularly polarized. An engineering model of a partially populated array has been developed and delivered to NASA Goddard Space Flight Center. This report deals with the testing of the engineering model at the Goddard Antenna Range near-field and compact range facilities. The antenna specifications are described first, followed by the test plan and test results.
Thermoelectric bolometers based on silicon membranes
NASA Astrophysics Data System (ADS)
Varpula, Aapo; Timofeev, Andrey V.; Shchepetov, Andrey; Grigoras, Kestutis; Ahopelto, Jouni; Prunnila, Mika
2017-05-01
State-of-the-art high performance IR sensing and imaging systems utilize highly expensive photodetector technology, which requires exotic and toxic materials and cooling. Cost-effective alternatives, uncooled bolometer detectors, are widely used in commercial long-wave IR (LWIR) systems. Compared to the cooled detectors they are much slower and have approximately an order of magnitude lower detectivity in the LWIR. We present uncooled bolometer technology which is foreseen to be capable of narrowing the gap between the cooled and uncooled technologies. The proposed technology is based on ultra-thin silicon membranes, the thermal conductivity and electrical properties of which can be controlled by membrane thickness and doping, respectively. The thermal signal is transduced into electric voltage using thermocouple consisting of highly-doped n and p type Si beams. Reducing the thickness of the Si membrane improves the performance (i.e. sensitivity and speed) as thermal conductivity and thermal mass of Si membrane decreases with decreasing thickness. Based on experimental data we estimate the performance of these uncooled thermoelectric bolometers.
Fabrication and Test of Large Area Spider-Web Bolometers for CMB Measurements
NASA Astrophysics Data System (ADS)
Biasotti, M.; Ceriale, V.; Corsini, D.; De Gerone, M.; Gatti, F.; Orlando, A.; Pizzigoni, G.
2016-08-01
Detecting the primordial 'B-mode' polarization of the cosmic microwave background is one of the major challenges of modern observational cosmology. Microwave telescopes need sensitive cryogenic bolometers with an overall equivalent noise temperature in the nK range. In this paper, we present the development status of large area (about 1 cm2) spider-web bolometer, which imply additional fabrication challenges. The spider-web is a suspended Si3N4 1 \\upmu m-thick and 8-mm diameter with mesh size of 250 \\upmu m. The thermal sensitive element is a superconducting transition edge sensor (TES) at the center of the bolometer. The first prototype is a Ti-Au TES with transition temperature tuned around 350 mK, new devices will be a Mo-Au bilayer tuned to have a transition temperature of 500 mK. We present the fabrication process with micro-machining techniques from silicon wafer covered with SiO2 - Si3N4 CVD films, 0.3 and 1 \\upmu m- thick, respectively, and preliminary tests.
Developments of Highly Multiplexed, Multi-chroic Pixels for Balloon-Borne Platforms
NASA Astrophysics Data System (ADS)
Aubin, F.; Hanany, S.; Johnson, B. R.; Lee, A.; Suzuki, A.; Westbrook, B.; Young, K.
2018-02-01
We present our work to develop and characterize low thermal conductance bolometers that are part of sinuous antenna multi-chroic pixels (SAMP). We use longer, thinner and meandered bolometer legs to achieve 9 pW/K thermal conductance bolometers. We also discuss the development of inductor-capacitor chips operated at 4 K to extend the multiplexing factor of the frequency domain multiplexing to 105, an increase of 60% compared to the factor currently demonstrated for this readout system. This technology development is motivated by EBEX-IDS, a balloon-borne polarimeter designed to characterize the polarization of foregrounds and to detect the primordial gravity waves through their B-mode signature on the polarization of the cosmic microwave background. EBEX-IDS will operate 20,562 transition edge sensor bolometers spread over 7 frequency bands between 150 and 360 GHz. Balloon and satellite platforms enable observations at frequencies inaccessible from the ground and with higher instantaneous sensitivity. This development improves the readiness of the SAMP and frequency domain readout technologies for future satellite applications.
Development of a Bolometer Detector System for the NIST High Accuracy Infrared Spectrophotometer
Zong, Y.; Datla, R. U.
1998-01-01
A bolometer detector system was developed for the high accuracy infrared spectrophotometer at the National Institute of Standards and Technology to provide maximum sensitivity, spatial uniformity, and linearity of response covering the entire infrared spectral range. The spatial response variation was measured to be within 0.1 %. The linearity of the detector output was measured over three decades of input power. After applying a simple correction procedure, the detector output was found to deviate less than 0.2 % from linear behavior over this range. The noise equivalent power (NEP) of the bolometer system was 6 × 10−12 W/Hz at the frequency of 80 Hz. The detector output 3 dB roll-off frequency was 200 Hz. The detector output was stable to within ± 0.05 % over a 15 min period. These results demonstrate that the bolometer detector system will serve as an excellent detector for the high accuracy infrared spectrophotometer. PMID:28009364
NASA Astrophysics Data System (ADS)
Kaila, M. M.
2002-11-01
Dynamical theory of responsivity and response time for an high temperature superconductor (HTSC) photo-thermoelectrical bolometer is analysed in this paper. There is a thermoelectric feedback (TEF) due to the heat transfer from the sensitive area (HTSC-BiSb thermojunction) towards the cold junction of the thermocouple. This is in addition to the normal electrothermal feedback (ETF) between the detector and the substrate, in a photoelectrical bolometer. The two legs of the thermocouple are connected in a parallel geometry configuration. It is seen that TEF can be used in combination with the ETF to enhance responsivity and response time of the detector.
An experimental study of antireflective coatings in Ge light detectors for scintillating bolometers
NASA Astrophysics Data System (ADS)
Mancuso, M.; Beeman, J. W.; Giuliani, A.; Dumoulin, L.; Olivieri, E.; Pessina, G.; Plantevin, O.; Rusconi, C.; Tenconi, M.
2014-01-01
Luminescent bolometers are double-readout devices able to measure simultaneously the phonon and the light yields after a particle interaction in the detector. This operation allows in some cases to tag the type of the interacting quantum, crucial issue for background control in rare event experiments such as the search for neutrinoless double beta decay and for interactions of particle dark matter candidates. The light detectors used in the LUCIFER and LUMINEU searches (projects aiming at the study of the double beta interesting candidates 82Se and 100Mo using ZnSe and ZnMoO4 scintillating bolometers) consist of hyper-pure Ge thin slabs equipped with NTD thermistors. A substantial sensitivity improvement of the Ge light detectors can be obtained applying a proper anti-reflective coatings on the Ge side exposed to the luminescent bolometer. The present paper deals with the investigation of this aspect, proving and quantifying the positive effect of a SiO2 and a SiO coating and setting the experimental bases for future tests of other coating materials. The results confirm that an appropriate coating procedure helps in improving the sensitivity of bolometric light detectors by an important factor (in the range 20% - 35%) and needs to be included in the recipe for the development of an optimized radio-pure scintillating bolometer.
Transition-Edge Hot-Electron Microbolometers for Millimeter and Submillimeter Astrophysics
NASA Technical Reports Server (NTRS)
Hsieh, Wen-Ting; Stevenson, Thomas; U-yen, Kongpop; Wollack, Edward; Barrentine, Emily
2014-01-01
The millimeter and the submillimeter wavelengths of the electromagnetic spectrum hold a wealth of information about the evolution of the universe. In particular, cosmic microwave background (CMB) radiation and its polarization carry the oldest information in the universe, and provide the best test of the inflationary paradigm available to astronomy today. Detecting gravity waves through their imprint on the CMB polarization would have extraordinary repercussions for cosmology and physics. A transition-edge hot-electron micro - bolometer (THM) consists of a superconducting bilayer transition-edge sensor (TES) with a thin-film absorber. Unlike traditional monolithic bolometers that make use of micromachined structures, the THM em ploys the decoupling between electrons and phonons at millikelvin temperatures to provide thermal isolation. The devices are fabricated photolithographically and are easily integrated with antennas via microstrip transmission lines, and with SQUID (superconducting quantum interference device) readouts. The small volume of the absorber and TES produces a short thermal time constant that facilitates rapid sky scanning. The THM consists of a thin-film metal absorber overlapping a superconducting TES. The absorber forms the termination of a superconducting microstripline that carries RF power from an antenna. The purpose of forming a separate absorber and TES is to allow flexibility in the optimization of the two components. In particular, the absorbing film's impedance can be chosen to match the antenna, while the TES impedance can be chosen to match to the readout SQUID amplifier. This scheme combines the advantages of the TES with the advantages of planar millimeter-wave transmission line circuits. Antenna-coupling to the detectors via planar transmission lines allows the detector dimensions to be much smaller than a wavelength, so the technique can be extended across the entire microwave, millimeter, and submillimeter wavelength ranges. The circuits are fabricated using standard microlithographic techniques and are compatible with uniform, large array formats. Unlike traditional monolithic bolometers that make use of micromachined structures, the THM employs the decoupling between electrons and phonons at millikelvin temperatures to provide thermal isolation. There is no fragile membrane in the structure for thermal isolation, which improves the fabrication yield.
Measurements of the optical performance of bolometers for SPICA/SAFARI
NASA Astrophysics Data System (ADS)
Audley, Michael D.; de Lange, Gert; Gao, Jian-Rong; Khosropanah, Pourya; Ridder, Marcel; Ferrari, Lorenza; Laauwen, Wouter M.; Ranjan, Manisha; Mauskopf, Philip D.; Morozov, Dmitry; Trappe, Neil A.
2012-09-01
We have measured the optical response of detectors designed for SAFARI, the far-infrared imaging spectrometer for the SPICA satellite. To take advantage of SPICA's cooled optics, SAFARI’s three bolometer arrays are populated with extremely sensitive (NEP~2×10-19 W/√Hz) transition edge sensors with a transition temperature close to 100 mK. The extreme sensitivity and low saturation power (~4 fW) of SAFARI’s detectors present challenges to characterizing them. We have therefore built up an ultra-low background test facility with a cryogen-free high-capacity dilution refrigerator, paying careful attention to stray-light exclusion. Our use of a pulse-tube cooler to pre-cool the dilution refrigerator required that the SAFARI Detector System Test Facility provide a high degree electrical, magnetic, and mechanical isolation for the detectors. We have carefully characterized the performance of the test facility in terms of background power loading. The test facility has been designed to be flexible and easily reconfigurable with internal illuminators that allow us to characterize the optical response of the detectors. We describe the test facility and some of the steps we took to create an ultra-low background test environment. We have measured the optical response of two detectors designed for SAFARI’s short-wave wavelength band in combination with a spherical backshort and conical feedhorn. We find an overall optical efficiency of 40% for both, compared with an ideal-case predicted optical efficiency of 66%.
Detectors for the Atacama B-mode Search experiment
NASA Astrophysics Data System (ADS)
Appel, John William
Inflation is the leading theory for explaining the initial conditions that brought about our homogeneous and isotropic Universe. It predicts the presence of gravitational waves in the early Universe, which implant a characteristic B-mode polarization pattern on the Cosmic Microwave Background (CMB). The Atacama B-mode Search (ABS) experiment is a polarimeter observing from Cerro Toco (located in the Atacama desert of Chile at an altitude of 5190 m), searching for the yet undetected B-mode signal. ABS carries 480 superconducting Transition Edge Sensor (TES) Bolometers that couple 150 GHz radiation via planar Ortho-Mode Transducers (OMTs) mounted at the output of corrugated feedhorns. The feedhorn beam is projected onto the sky through crossed Dragonian reflectors, a set of reflective and absorptive filters, and a rotating Half Wave Plate (HWP) that modulates any polarized sky signal at 10.2 Hz. The bolometers are cooled to 300 mK by a He3-He4 adsorption fridge system backed by pulse tubes. The reflectors are located within the 4 K cavity of the cryostat, while the HWP is mounted on frictionless air bearings above the cryostat window. This thesis discusses the development and construction of the ABS detector focal plane, and presents results of its performance in the field through August 2012. The ABS detector array sensitivity of 31 μKs 1/2, together with the experiment's unique set of systematic controls, and expected multi-year integration time, could detect a B-mode signal with tensor to scalar ratio r ˜ 0.1.
Magnetic Sensitivity of AlMn TESes and Shielding Considerations for Next-Generation CMB Surveys
NASA Astrophysics Data System (ADS)
Vavagiakis, E. M.; Henderson, S. W.; Zheng, K.; Cho, H.-M.; Cothard, N. F.; Dober, B.; Duff, S. M.; Gallardo, P. A.; Hilton, G.; Hubmayr, J.; Irwin, K. D.; Koopman, B. J.; Li, D.; Nati, F.; Niemack, M. D.; Reintsema, C. D.; Simon, S.; Stevens, J. R.; Suzuki, A.; Westbrook, B.
2018-05-01
In the next decade, new ground-based cosmic microwave background (CMB) experiments such as Simons Observatory, CCAT-prime, and CMB-S4 will increase the number of detectors observing the CMB by an order of magnitude or more, dramatically improving our understanding of cosmology and astrophysics. These projects will deploy receivers with as many as hundreds of thousands of transition edge sensor (TES) bolometers coupled to superconducting quantum interference device (SQUID)-based readout systems. It is well known that superconducting devices such as TESes and SQUIDs are sensitive to magnetic fields. However, the effects of magnetic fields on TESes are not easily predicted due to the complex behavior of the superconducting transition, which motivates direct measurements of the magnetic sensitivity of these devices. We present comparative four-lead measurements of the critical temperature versus applied magnetic field of AlMn TESes varying in geometry, doping, and leg length, including Advanced ACT and POLARBEAR-2/Simons Array bolometers. MoCu ACTPol TESes are also tested and are found to be more sensitive to magnetic fields than the AlMn devices. We present an observation of weak-link-like behavior in AlMn TESes at low critical currents. We also compare measurements of magnetic sensitivity for time division multiplexing SQUIDs and frequency division multiplexing microwave (μ MUX) rf-SQUIDs. We discuss the implications of our measurements on the magnetic shielding required for future experiments that aim to map the CMB to near-fundamental limits.
NASA Technical Reports Server (NTRS)
Denis, K. L.; Ali, A.; Appel, J.; Bennett, C. L.; Chang, M. P.; Chuss, D. T.; Colazo, F. A.; Costen, N.; Essinger-Hileman, T.; Hu, R.;
2015-01-01
Characterization of the minute cosmic microwave background (CMB) polarization signature requires multi-frequency high-throughput precision instrument systems. We have previously described the detector fabrication of a 40 gigahertz focal plane and now describe the fabrication of a 37-element dual-polarization detector module for measurement of the CMB at 90 gigahertz. The 72-TES (Transition Edge Sensor)-based bolometers in each module are coupled to a niobium-based planar orthomode transducer with integrated band defining filters implemented in microstrip transmission line. A single crystal silicon dielectric substrate serves as microstrip dielectric and as a thermal link between the membrane isolated MoAu TES operating at 150 millikelvins and the heat bath. A short silicon leg between the heat bath and the TES bolometer is designed for ballistic phonon transport and provides improved process control and uniformity of thermal conductance in the presence of phonon scattering on roughened surfaces. Micro-machined structures are used to realize the orthomode transducer backshort, provide out of band signal rejection, and a silicon photonic choke for feedhorn coupling are described. The backshort, choke wafer, and detector wafer are indium bump-bonded to create a single 37-element dual-polarization detector module. Fourteen such hexagonally shaped modules each 80 millimeters in size comprise two focal planes. These, along with the recently delivered 40 gigahertz focal plane, will survey a large fraction of the sky as part of the Johns Hopkins University-led ground-based CLASS (Cosmology Large Angular Scale Surveyor) telescope.
NASA Technical Reports Server (NTRS)
Denis, Kevin L.; Aamir, A.; Bennett, C. L.; Chang, M. P.; Chuss, D. T.; Colazo, F. A.; Costen, N.; Essinger-Hileman, T.; Hu, R.; Marriage, T.;
2015-01-01
Characterization of the minute cosmic microwave background polarization signature requires multi-frequency high-throughput precision instrument systems. We have previously described the detector fabrication of a 40 GHz focal plane and now describe the fabrication of the detector modules for measurement of the CMB at 90GHz. The 74-TES based bolometers in each module are coupled to a niobium based planar orthomode transducer with integrated band defining filters implemented in microstrip transmission line. A single crystal silicon dielectric substrate serves as microstrip dielectric and as a thermal link between the membrane isolated MoAu TES operating at 150mK and the heat bath. A short silicon leg between the heat bath and the TES bolometer is designed for ballistic phonon transport and provides improved process control and uniformity of thermal conductance in the presence of phonon scattering on roughened surfaces. Micro-machined structures are used to realize the orthomode transducer backshort, provide out of band signal rejection, and a silicon photonic choke for feedhorn coupling are described. The backshort, choke wafer, and detector wafer are indium bump bonded to create a single 37-element dual-polarization detector module. Fourteen such hexagonally shaped modules each 90 mm in size comprise two focal planes. These, along with the recently delivered 40GHz focal plane, will survey a large fraction of the sky as part of the Johns Hopkins University led ground based CLASS (Cosmology Large Angular Scale Surveyor) telescope.
A 1.5 THz hot-electron bolometer mixer operated by a planar diode based local oscillator
NASA Technical Reports Server (NTRS)
Tong, C. Y. E.; Meledin, D.; Blundell, R.; Erickson, N.; Mehdi, I.; Goltsman, G.
2003-01-01
We have developed a 1.5 THz superconducting NbN Hot-Electron Bolometer mixer. It is oprated by an all-solid-state Local Oscillator comprising of a cascade of 4 planar doublers following an MMIC based W-band power amplifier.
Fabrication of Pop-up Detector Arrays on Si Wafers
NASA Technical Reports Server (NTRS)
Li, Mary J.; Allen, Christine A.; Gordon, Scott A.; Kuhn, Jonathan L.; Mott, David B.; Stahle, Caroline K.; Wang, Liqin L.
1999-01-01
High sensitivity is a basic requirement for a new generation of thermal detectors. To meet the requirement, close-packed, two-dimensional silicon detector arrays have been developed in NASA Goddard Space Flight Center. The goal of the task is to fabricate detector arrays configured with thermal detectors such as infrared bolometers and x-ray calorimeters to use in space fliGht missions. This paper focuses on the fabrication and the mechanical testing of detector arrays in a 0.2 mm pixel size, the smallest pop-up detectors being developed so far. These array structures, nicknamed "PUDS" for "Pop-Up Detectors", are fabricated on I pm thick, single-crystal, silicon membranes. Their designs have been refined so we can utilize the flexibility of thin silicon films by actually folding the silicon membranes to 90 degrees in order to obtain close-packed two-dimensional arrays. The PUD elements consist of a detector platform and two legs for mechanical support while also serving as electrical and thermal paths. Torsion bars and cantilevers connecting the detector platform to the legs provide additional flexures for strain relief. Using micro-electromechanical structure (MEMS) fabrication techniques, including photolithography, anisotropic chemical etching, reactive-ion etching, and laser dicing, we have fabricated PLTD detector arrays of fourteen designs with a variation of four parameters including cantilever length, torsion bar length and width, and leg length. Folding tests were conducted to test mechanical stress distribution for the array structures. We obtained folding yields and selected optimum design parameters to reach minimal stress levels. Computer simulation was also employed to verify mechanical behaviors of PUDs in the folding process. In addition, scanning electron microscopy was utilized to examine the flatness of detectors and the alignment of detector pixels in arrays. The fabrication of thermistors and heaters on the pop-up detectors is under way, preparing us for the next step of the experiment, the thermal test.
NASA Astrophysics Data System (ADS)
Yon, J. J.; Dumont, G.; Goudon, V.; Becker, S.; Arnaud, A.; Cortial, S.; Tisse, C. L.
2014-06-01
Silicon-based vacuum packaging is a key enabling technology for achieving affordable uncooled Infrared Focal Plane Arrays (IRFPA) required by a promising mass market that shows momentum for some extensive consumer applications, such as automotive driving assistance, smart presence localization and building management. Among the various approaches studied worldwide, CEA, LETI in partnership with ULIS is committed to the development of a unique technology referred to as PLP (Pixel Level Packaging). In this PLP technology, each bolometer pixel is sealed under vacuum using a transparent thin film deposition on wafer. PLP operates as an array of hermetic micro caps above the focal plane, each enclosing a single microbolometer. In continuation of our on-going studies on PLP for regular QVGA IRFPAs, this paper emphasizes on the innate scalability of the technology which was successfully demonstrated through the development of an 80 × 80 pixel IRFPA. The relevance of the technology with regard to the two formats is discussed, considering both performance and cost issues. We show that the suboptimal fill factor inherent to the PLP arrangement is not so critical when considering smaller arrays preferably fitted for consumer applications. The discussion is supported with the electro-optical performance measurements of the PLP-based 80×80 demonstrator.
Diagnostics for Z-pinch implosion experiments on PTS
NASA Astrophysics Data System (ADS)
Ren, X. D.; Huang, X. B.; Zhou, S. T.; Zhang, S. Q.; Dan, J. K.; Li, J.; Cai, H. C.; Wang, K. L.; Ouyang, K.; Xu, Q.; Duan, S. C.; Chen, G. H.; Wang, M.; Feng, S. P.; Yang, L. B.; Xie, W. P.; Deng, J. J.
2014-12-01
The preliminary experiments of wire array implosion were performed on PTS, a 10 MA z-pinch driver with a 70 ns rise time. A set of diagnostics have been developed and fielded on PTS to study pinch physics and implosion dynamics of wire array. Radiated power measurement for soft x-rays was performed by multichannel filtered x-ray diode array, and flat spectral responses x-ray diode detector. Total x-ray yield was measured by a calibrated, unfiltered nickel bolometer which was also used to obtain pinch power. Multiple time-gated pinhole cameras were used to produce spatial-resolved images of x-ray self-emission from plasmas. Two time-integrated pinhole cameras were used respectively with 20-μm Be filter and with multilayer mirrors to record images produced by >1-keV and 277±5 eV self-emission. An optical streak camera was used to produce radial implosion trajectories, and an x-ray streak camera paired with a horizontal slit was used to record a continuous time-history of emission with one-dimensional spatial resolution. A frequency-doubled Nd:YAG laser (532 nm) was used to produce four frame laser shadowgraph images with 6 ns time interval. We will briefly describe each of these diagnostics and present some typical results from them.
Design issues of a low cost lock-in amplifier readout circuit for an infrared detector
NASA Astrophysics Data System (ADS)
Scheepers, L.; Schoeman, J.
2014-06-01
In the past, high resolution thermal sensors required expensive cooling techniques making the early thermal imagers expensive to operate and cumbersome to transport, limiting them mainly to military applications. However, the introduction of uncooled microbolometers has overcome many of earlier problems and now shows great potential for commercial optoelectric applications. The structure of uncooled microbolometer sensors, especially their smaller size, makes them attractive in low cost commercial applications requiring high production numbers with relatively low performance requirements. However, the biasing requirements of these microbolometers cause these sensors to generate a substantial amount of noise on the output measurements due to self-heating. Different techniques to reduce this noise component have been attempted, such as pulsed biasing currents and the use of blind bolometers as common mode reference. These techniques proved to either limit the performance of the microbolometer or increase the cost of their implementation. The development of a low cost lock-in amplifier provides a readout technique to potentially overcome these challenges. High performance commercial lock-in amplifiers are very expensive. Using this as a readout circuit for a microbolometer will take away from the low manufacturing cost of the detector array. Thus, the purpose of this work was to develop a low cost readout circuit using the technique of phase sensitive detection and customizing this as a readout circuit for microbolometers. The hardware and software of the readout circuit was designed and tested for improvement of the signal-to-noise ratio (SNR) of the microbolometer signal. An optical modulation system was also developed in order to effectively identify the desired signal from the noise with the use of the readout circuit. A data acquisition and graphical user interface sub system was added in order to display the signal recovered by the readout circuit. The readout circuit was able to enhance the SNR of the microbolometer signal significantly. It was shown that the quality of the phase sensitive detector plays a significant role in the effectiveness of the readout circuit to improve the SNR.
NASA Astrophysics Data System (ADS)
Clenet, A.; Ravera, L.; Bertrand, B.; den Hartog, R.; Jackson, B.; van Leeuwen, B.-J.; van Loon, D.; Parot, Y.; Pointecouteau, E.; Sournac, A.
2014-11-01
IRAP is developing the readout electronics of the SPICA-SAFARI's TES bolometer arrays. Based on the frequency domain multiplexing technique the readout electronics provides the AC-signals to voltage-bias the detectors; it demodulates the data; and it computes a feedback to linearize the detection chain. The feedback is computed with a specific technique, so called baseband feedback (BBFB) which ensures that the loop is stable even with long propagation and processing delays (i.e. several μ s) and with fast signals (i.e. frequency carriers of the order of 5 MHz). To optimize the power consumption we took advantage of the reduced science signal bandwidth to decouple the signal sampling frequency and the data processing rate. This technique allowed a reduction of the power consumption of the circuit by a factor of 10. Beyond the firmware architecture the optimization of the instrument concerns the characterization routines and the definition of the optimal parameters. Indeed, to operate an array TES one has to properly define about 21000 parameters. We defined a set of procedures to automatically characterize these parameters and find out the optimal settings.
A compact lightweight Earth horizon sensor using an uncooled infrared bolometer
NASA Astrophysics Data System (ADS)
Marchese, Linda E.; Thomas, Paul; Pope, Timothy D.; Asselin, Daniel; Jerominek, Hubert
2007-06-01
A compact, lightweight Earth horizon sensor has been designed based on uncooled infrared microbolometer array technology developed at INO. The design has been optimized for use on small satellites in Low Earth Orbits. The sensor may be used either as an attitude sensor or as an atmospheric limb detector. Various configurations may be implemented for both spinning and 3-axis stabilized satellites. The core of the sensor is the microbolometer focal plane array equipped with 256 x 1 VO x thermistor pixels with a pitch of 52 μm. The optics consists of a single Zinc Selenide lens with a focal length of 39.7 mm. The system's F-number is 3.8 and the detector limited Noise Equivalent Temperature Difference is estimated to be 0.75 K at 300 K for the 14 - 16 μm wavelength range. A single-sensor configuration will have a mass of less than 300g, a volume of 125 cm 3 and a power consumption of 600 mW, making it well-suited for small satellite missions.
Design and Fabrication of TES Detector Modules for the TIME-Pilot [CII] Intensity Mapping Experiment
NASA Astrophysics Data System (ADS)
Hunacek, J.; Bock, J.; Bradford, C. M.; Bumble, B.; Chang, T.-C.; Cheng, Y.-T.; Cooray, A.; Crites, A.; Hailey-Dunsheath, S.; Gong, Y.; Kenyon, M.; Koch, P.; Li, C.-T.; O'Brient, R.; Shirokoff, E.; Shiu, C.; Staniszewski, Z.; Uzgil, B.; Zemcov, M.
2016-08-01
We are developing a series of close-packed modular detector arrays for TIME-Pilot, a new mm-wavelength grating spectrometer array that will map the intensity fluctuations of the redshifted 157.7 \\upmu m emission line of singly ionized carbon ([CII]) from redshift z ˜ 5 to 9. TIME-Pilot's two banks of 16 parallel-plate waveguide spectrometers (one bank per polarization) will have a spectral range of 183-326 GHz and a resolving power of R ˜ 100. The spectrometers use a curved diffraction grating to disperse and focus the light on a series of output arcs, each sampled by 60 transition edge sensor (TES) bolometers with gold micro-mesh absorbers. These low-noise detectors will be operated from a 250 mK base temperature and are designed to have a background-limited NEP of {˜ }10^{-17} mathrm {W}/mathrm {Hz}^{1/2}. This proceeding presents an overview of the detector design in the context of the TIME-Pilot instrument. Additionally, a prototype detector module produced at the Microdevices Laboratory at JPL is shown.
Eijssen, Lars M T; Goelela, Varshna S; Kelder, Thomas; Adriaens, Michiel E; Evelo, Chris T; Radonjic, Marijana
2015-06-30
Illumina whole-genome expression bead arrays are a widely used platform for transcriptomics. Most of the tools available for the analysis of the resulting data are not easily applicable by less experienced users. ArrayAnalysis.org provides researchers with an easy-to-use and comprehensive interface to the functionality of R and Bioconductor packages for microarray data analysis. As a modular open source project, it allows developers to contribute modules that provide support for additional types of data or extend workflows. To enable data analysis of Illumina bead arrays for a broad user community, we have developed a module for ArrayAnalysis.org that provides a free and user-friendly web interface for quality control and pre-processing for these arrays. This module can be used together with existing modules for statistical and pathway analysis to provide a full workflow for Illumina gene expression data analysis. The module accepts data exported from Illumina's GenomeStudio, and provides the user with quality control plots and normalized data. The outputs are directly linked to the existing statistics module of ArrayAnalysis.org, but can also be downloaded for further downstream analysis in third-party tools. The Illumina bead arrays analysis module is available at http://www.arrayanalysis.org . A user guide, a tutorial demonstrating the analysis of an example dataset, and R scripts are available. The module can be used as a starting point for statistical evaluation and pathway analysis provided on the website or to generate processed input data for a broad range of applications in life sciences research.
APRON: A Cellular Processor Array Simulation and Hardware Design Tool
NASA Astrophysics Data System (ADS)
Barr, David R. W.; Dudek, Piotr
2009-12-01
We present a software environment for the efficient simulation of cellular processor arrays (CPAs). This software (APRON) is used to explore algorithms that are designed for massively parallel fine-grained processor arrays, topographic multilayer neural networks, vision chips with SIMD processor arrays, and related architectures. The software uses a highly optimised core combined with a flexible compiler to provide the user with tools for the design of new processor array hardware architectures and the emulation of existing devices. We present performance benchmarks for the software processor array implemented on standard commodity microprocessors. APRON can be configured to use additional processing hardware if necessary and can be used as a complete graphical user interface and development environment for new or existing CPA systems, allowing more users to develop algorithms for CPA systems.
High-temperature-superconducting magnetic susceptibility bolometer
NASA Technical Reports Server (NTRS)
Brasunas, J.; Lakew, B.; Lee, C.
1992-01-01
An infrared detector called the magnetic susceptibility bolometer is introduced which is based on the tmperature dependence of the diamagnetic screening of a high-Tc superconductor film near Tc. Results are reported for the response of a prototype model to modulated blackbody radiation. Possible improvements are discussed as is the potential sensitivity of an improved device.
High-Tc superconducting microbolometer for terahertz applications
NASA Astrophysics Data System (ADS)
Ulysse, C.; Gaugue, A.; Adam, A.; Kreisler, A. J.; Villégier, J.-C.; Thomassin, J.-L.
2002-05-01
Superconducting hot electron bolometer mixers are now a competitive alternative to Schottky diode mixers in the terahertz frequency range because of their ultra wideband (from millimeter waves to visible light), high conversion gain, and low intrinsic noise level. High Tc superconductor materials can be used to make hot electron bolometers and present some advantage in term of operating temperature and cooling. In this paper, we present first a model for the study of superconducting hot electron bolometers responsivity in direct detection mode, in order to establish a firm basis for the design of future THz mixers. Secondly, an original process to realize YBaCuO hot electron bolometer mixers will be described. Submicron YBaCuO superconducting structures are expitaxially sputter deposited on MgO substrates and patterned by using electron beam lithography in combination with optical lithography. Metal masks achieved by electron beam lithography are insuring a good bridge definition and protection during ion etching. Finally, detection experiments are being performed with a laser at 850 nm wavelength, in homodyne mode in order to prove the feasibility and potential performances of these devices.
NASA Technical Reports Server (NTRS)
Kenyon, M.; Day, P. K.; Bradford, C. M.; Bock, J. J.; Leduc, H. G.
2006-01-01
To determine the lowest attainable phonon noise equivalent power (NEP) for membrane-isolation bolometers, we fabricated and measured the thermal conductance of suspended Si3N4 beams with different geometries via a noise thermometry technique. We measured beam cross-sectional areas ranging from 0.35 x 0.5 (micro)m(sup 2) to 135 x 1.0 (micro)m(sup 2) and beam lengths ranging from (micro)m to 8300 (micro)m. The measurements directly imply that membrane-isolation bolometers are capable of reaching a phonon noise equivalent power (NEP) of 4 x 10(sup -20)W/Hz(sup 1)/O . This NEP adequate for the Background-Limited Infrared-Submillimeter Spectrograph (BLISS) proposed for the Japanese SPICA observatory, and adequate for NASA's SAFIR observatory, a 10-meter, 4 K telescope to be deployed at L2. Further, we measured the heat capacity of a suspended Si
Antenna-coupled transition-edge hot-electron microbolometers
NASA Astrophysics Data System (ADS)
Ali, Shafinaz; Timbie, Peter T.; Malu, Siddharth; McCammon, Dan; Nelms, Kari L.; Pathak, Rashmi; van der Weide, Daniel W.; Allen, Christine A.; Abrahams, J.; Chervenak, James A.; Hsieh, Wen-Ting; Miller, Timothy M.; Moseley, S. H., Jr.; Stevenson, Thomas R.; Wollack, Edward J.
2004-10-01
We are developing a new type of detector for observational cosmology and astrophysical research. Incoming radiation from the sky is coupled to a superconducting microstrip transmission line that terminates in a thin film absorber. At sub-Kelvin temperature, the thermal isolation between the electrons and the lattice makes it possible for the electrons in the small absorber (100's of cubic micro-meter) and superconducting bilayer (Transition Edge Sensor) to heat up by the radiation absorbed by the electrons of the normal absorbing layer. We call this detector a Transition-edge Hot-electron Micro-bolometer (THM). THMs can be fabricated by photo lithography, so it is relatively easy to make matched detectors for a large focal plane array telescope. We report on the thermal properties of Mo/Au THMs with Bi/Au absorbers.
NIKA2, a dual-band millimetre camera on the IRAM 30 m telescope to map the cold universe
NASA Astrophysics Data System (ADS)
Désert, F.-X.; Adam, R.; Ade, P.; André, P.; Aussel, H.; Beelen, A.; Benoît, A.; Bideaud, A.; Billot, N.; Bourrion, O.; Calvo, M.; Catalano, A.; Coiffard, G.; Comis, B.; Doyle, S.; Goupy, J.; Kramer, C.; Lagache, G.; Leclercq, S.; Lestrade, J.-F.; Macías-Pérez, J. F.; Maury, A.; Mauskopf, P.; Mayet, F.; Monfardini, A.; Pajot, F.; Pascale, E.; Perotto, L.; Pisano, G.; Ponthieu, N.; Revéret, V.; Ritacco, A.; Rodriguez, L.; Romero, C.; Roussel, H.; Ruppin, F.; Soler, J.; Schuster, K.; Sievers, A.; Triqueneaux, S.; Tucker, C.; Zylka, R.
2016-12-01
A consortium led by Institut Néel (Grenoble) has just finished installing a new powerful millimetre camera NIKA2 on the IRAM 30 m telescope. It has an instantaneous field-of-view of 6.5 arcminutes at both 1.2 and 2.0 mm with polarimetric capabilities at 1.2 mm. NIKA2 provides a near diffraction-limited angular resolution (resp. 12 and 18 arcseconds). The 3 detector arrays are made of more than 1000 KIDs each. KIDs are new superconducting devices emerging as an alternative to bolometers. The commissionning is ongoing in 2016 with a likely opening to the IRAM community in early 2017. NIKA2 is a very promising multi-purpose instrument which will enable many scientific discoveries in the coming decade.
Bolometric detector systems for IR and mm-wave space astronomy
NASA Technical Reports Server (NTRS)
Church, S. E.; Lange, A. E.; Mauskopf, P. D.; Hristov, V.; Bock, J. J.; DelCastillo, H. M.; Beeman, J.; Ade, P. A. R.; Griffin, M. J.
1996-01-01
Recent developments in bolometric detector systems for millimeter and submillimeter wave space astronomy are described. Current technologies meet all the requirements for the high frequency instrument onboard the cosmic background radiation anisotropy satellite/satellite for the measurement of background anisotropies (COBRAS/SAMBA) platform. It is considered that the technologies that are currently being developed will significantly reduce the effective time constant and/or the cooling requirements of bolometric detectors. These technologies lend themselves to the fabrication of the large format arrays required for the Far Infrared and Submillimeter Space Telescope (FIRST). The scientific goals and detector requirements of the COBRAS/SAMBA platform that will use infrared bolometers are reviewed and the baseline detector system is described, including the feed optics, the infrared filters, the cold amplifiers and the warm readout electronics.
THERMAP : a mid-infrared spectro-imager for the Marco Polo R mission
NASA Astrophysics Data System (ADS)
Groussin, O.; Brageot, E.; Reynaud, J.-L.; Lamy, P.; Jorda, L.; Licandro, J.; Helbert, J.; Knollenberg, J.; Kührt, E.; Delbó, M.
2012-09-01
We present THERMAP, a mid-infrared (8-16 μm) spectro-imager based on uncooled micro-bolometer detector arrays. Due to the recent technological development of these detectors, which have undergone significant improvements in the last decade, we wanted to test their performances for a space mission to small bodies in the inner Solar System. THERMAP was selected by ESA in January 2012 for a one year assessment study, in the framework of a call for declaration of interest in science instrumentation for the Marco Polo R Cosmic Vision mission. In this paper, we present some results of this study and in particular demonstrate that the new generation of uncooled micro-bolometer detectors has all the imaging and spectroscopic capabilities to fulfill the scientific objectives of the Marco Polo R mission. THERMAP scientific objectives - The midinfrared instrument of the Marco Polo R mission must be able i) to determine the surface temperature by mapping the entire surface with an absolute accuracy of at least 5 K (goal 1 K) above 200 K, ii) to determine the thermal inertia with an accuracy of 10% and iii) to determine the surface composition by mapping the entire surface with a spectral resolution of 70 between 8 and 16 μm. The above mappings should be performed with a spatial resolution of 10 m for the entire surface (global characterization) and 10 cm for the sampling sites (local characterization). THERMAP imaging capabilities - In order to test the imaging capabilities of the THERMAP uncooled microbolometer detector, we set up an experiment based on a 640x480 ULIS micro-bolometer array, a germanium objective and a black body. Using the results of this experiment, we show that calibrated radiometric images can be obtained down to at least 258 K (lower limit of our experiment), and that two calibration points are sufficient to determine the absolute scene temperature with an accuracy better than 1.5 K. An extrapolation to lower temperatures provides an accuracy of about 5 K at 180 K, the lowest temperature the detector can measure. THERMAP spectroscopic capabilites - In order to test the spectroscopic performances of the detector, we added flux attenuating neutral density mid-infrared filters (transmittance: 50%, 10%, 1%) to our experiment. Our results show that we can perform spectroscopic measurements with a spectral resolution R=40-80 in the wavelength range 8-16 μm for a scene temperature larger than 300 K, the typical surface temperature of a Near Earth Asteroid at 1 AU from the Sun. THERMAP preliminary design - From the above results, we defined a preliminary design for the instrument. THERMAP is a mid-infrared (8-16 μm) spectro-imager based on two uncooled microbolometer arrays. It is composed of two channels, one for imaging and one for spectroscopy. A flip mirror allows switching between the two channels. Calibration is performed using deep space and two black bodies at known temperature. The design of the THERMAP instrument has a strong heritage from the MERTIS instrument on board Bepi-Colombo [1], which guarantees its feasibility and reliability. Our design is very flexible in term of operations, which is fundamental for a mission to a binary asteroid system (1996 FG3). The THERMAP instrument will be proposed for Marco Polo R and any future space missions to small bodies in the inner solar system.
Upcoming planetary missions and the applicability of high temperature superconductor bolometers
NASA Technical Reports Server (NTRS)
Brasunas, J.; Kunde, V.; Moseley, H.; Lakew, B.
1991-01-01
Planetary missions to Mars and beyond can last 11 years and longer, making impractical the use of stored cryogens. Passive radiative coolers and single-stage mechanical coolers remain possibilities. Cassini and Comet Rendezvous/Asteroid Fly-by (CRAF), both using the newly developed Mariner Mark 2 spacecraft, will be the next outer planet missions after Galileo; they are intended to provide information on the origin and evolution of the solar system. CRAF is slated for a 1994 launch. Cassini was chosen by ESA and will be launched by a Titan 4/Centaur in 1996. It will fly by Jupiter in 2000, inject an ESA-supplied probe into Titan in 2002, and take data in Saturn's orbit from 2002 to 2006. NASA/Goddard is currently developing a prototype Fourier transform spectrometer, the Composite Infrared Spectrometer (CIRS), for the Cassini mission. The baseline infrared detectors for CIRS are HgCdTe to 16 microns and Schwarz-type thermopiles from 16 to 1000 microns. The far infrared focal plane could be switched from thermopiles to high temperature superconductor (HTS) bolometers between now and 1996. An HTS bolometer could be built using the kinetic inductance effect, or the sharp resistance change at the transition. The transition-edge bolometer is more straightforward to implement, and initial efforts at NASA/Goddard are directed to that device. A working device was made and tested in early 1989. It also has somewhat elevated noise levels below 100 Hz. Upcoming efforts will center on reducing the time constant of the HTS bolometer by attempting to deposit an HTS film on a diamond substrate, and by thinning SrTiO3 substrates. Attempts will be made to improve the film quality to reduce the 1/4 noise level, and to improve the thermal isolation to increase the bolometer sensitivity. An attempt is being made to deposit good-quality HTS films on diamond films using a metal-organic chemical vapor deposition (MOCVD) technique.
Upcoming planetary missions and the applicability of high temperature superconductor bolometers
NASA Technical Reports Server (NTRS)
Brasunas, J.; Kunde, V.; Moseley, H.; Lakew, B.
1990-01-01
Planetary missions to Mars and beyond can last 11 years and longer, making impractical the use of stored cryogens. Passive radiative coolers and single-stage mechanical coolers remain possibilities. CRAF and CASSINI, both using the newly developed Mariner Mark 2 spacecraft, will be the next outer planet missions after Galileo; they are intended to provide information on the origin and evolution of the solar system. CRAF is a cometary rendezvous mission slated for a 1994 launch. CASSINI has been chosen by ESA and will be launched by a Titan 4/Centaur in 1996. It will fly by Jupiter in 2000, inject an ESA-supplied probe into Titan in 2002, and take data in Saturn orbit from 2002 to 2006. NASA/Goddard is currently developing a prototype Fourier transform spectrometer (CIRS) that will be proposed for the CASSINI mission. The baseline infrared detectors for CIRS are HgCdTe to 16 microns and Schwarz-type thermopiles from 16 to 1000 microns. The far infrared focal plane could be switched from thermopiles to high temperature superconductor (HTS) bolometers between now and 1996. An HTS bolometer could be built using the kinetic inductance effect, or the sharp resistance change at the transition. The transition-edge bolometer is more straightforward to implement and initial efforts at NASA/Goddard are directed to that device. A working device was made and tested in early 1989. It also has somewhat elevated noise levels below 100 Hz. Upcoming efforts will center on reducing the time constant of the HTS bolometer by attempting to deposit an HTS film on a diamond substrate, and by thinning SrTiO3 substrates. Attempts will be made to improve the film quality to reduce th 1/f noise level, and to improve the thermal isolation to increase the bolometer sensitivity. An attempt is being made to deposit good-quality HTS films on diamond films using an MOCVD technique.
NASA Astrophysics Data System (ADS)
Zhou, Jun-Wei
1991-02-01
A dilution refrigerator has been put into work from 30 mK to 300 K to study bolometer characteristics relevant to its potential use as a high resolution X-ray and alpha, beta, gamma particle spectrometer. Tests of the energy deposited in the detector by measuring the temperature rise following absorption of individual nuclear particles or X- or gamma-rays have been done. Essential studies were made of electromagnetic and acoustic noise. A composite-composite bolometer fabricated by the group of N. Coron (Institute of Space Astrophysics, France), with whom we collaborate, was used. This design allows the separate optimization of the absorber and thermistor, and avoids problems with absorption inhomogeneties. A FWHM resolution of 10.5 KeV for 5 to 6 MeV alpha spectra was obtained. This resolution exceeds the best obtainable with surface barrier semiconductor detectors. A broad spectrum recording simultaneously gamma-rays, beta and alpha particles from 15 KeV to 6 MeV was obtained with the same bolometer cooled below 0.1 K. Other bolometers were also tested. 6 KeV X-rays have been observed with a resolution of 472 eV. The bolometers were also used for determination of specific heat of the sapphire at low temperatures. Assuming a specific heat C = AT^3, we find in a 2.3 g sample A ~eq 1.4 times 10^{-8} J/Kcdotg from T = 0.1 K to T = 0.4 K. A discussion of the systematic errors in determining A is given. From our measurements, it was determined that a bolometer designed for a future possible neutrino mass measurement would have a resolution of 7.5 eV at 80 mK under optimal operation. Since tritium was implanted in this detector, systematic errors associated with electron spectrometer beta spectrum measurements can be, in principle, avoided.
NASA Tech Briefs, February 2007
NASA Technical Reports Server (NTRS)
2007-01-01
Topics covered include: Calibration Test Set for a Phase-Comparison Digital Tracker; Wireless Acoustic Measurement System; Spiral Orbit Tribometer; Arrays of Miniature Microphones for Aeroacoustic Testing; Predicting Rocket or Jet Noise in Real Time; Computational Workbench for Multibody Dynamics; High-Power, High-Efficiency Ka-Band Space Traveling-Wave Tube; Gratings and Random Reflectors for Near-Infrared PIN Diodes; Optically Transparent Split-Ring Antennas for 1 to 10 GHz; Ice-Penetrating Robot for Scientific Exploration; Power-Amplifier Module for 145 to 165 GHz; Aerial Videography From Locally Launched Rockets; SiC Multi-Chip Power Modules as Power-System Building Blocks; Automated Design of Restraint Layer of an Inflatable Vessel; TMS for Instantiating a Knowledge Base With Incomplete Data; Simulating Flights of Future Launch Vehicles and Spacecraft; Control Code for Bearingless Switched- Reluctance Motor; Machine Aided Indexing and the NASA Thesaurus; Arbitrating Control of Control and Display Units; Web-Based Software for Managing Research; Driver Code for Adaptive Optics; Ceramic Paste for Patching High-Temperature Insulation; Fabrication of Polyimide-Matrix/Carbon and Boron-Fiber Tape; Protective Skins for Aerogel Monoliths; Code Assesses Risks Posed by Meteoroids and Orbital Debris; Asymmetric Bulkheads for Cylindrical Pressure Vessels; Self-Regulating Water-Separator System for Fuel Cells; Self-Advancing Step-Tap Drills; Array of Bolometers for Submillimeter- Wavelength Operation; Delta-Doped CCDs as Detector Arrays in Mass Spectrometers; Arrays of Bundles of Carbon Nanotubes as Field Emitters; Staggering Inflation To Stabilize Attitude of a Solar Sail; and Bare Conductive Tether for Decelerating a Spacecraft.
An Accurate Direction Finding Scheme Using Virtual Antenna Array via Smartphones.
Wang, Xiaopu; Xiong, Yan; Huang, Wenchao
2016-10-29
With the development of localization technologies, researchers solve the indoor localization problems using diverse methods and equipment. Most localization techniques require either specialized devices or fingerprints, which are inconvenient for daily use. Therefore, we propose and implement an accurate, efficient and lightweight system for indoor direction finding using common smartphones and loudspeakers. Our method is derived from a key insight: By moving a smartphone in regular patterns, we can effectively emulate the sensitivity and functionality of a Uniform Antenna Array to estimate the angle of arrival of the target signal. Specifically, a user only needs to hold his smartphone still in front of him, and then rotate his body around 360 ∘ duration with the smartphone at an approximate constant velocity. Then, our system can provide accurate directional guidance and lead the user to their destinations (normal loudspeakers we preset in the indoor environment transmitting high frequency acoustic signals) after a few measurements. Major challenges in implementing our system are not only imitating a virtual antenna array by ordinary smartphones but also overcoming the detection difficulties caused by the complex indoor environment. In addition, we leverage the gyroscope of the smartphone to reduce the impact of a user's motion pattern change to the accuracy of our system. In order to get rid of the multipath effect, we leverage multiple signal classification to calculate the direction of the target signal, and then design and deploy our system in various indoor scenes. Extensive comparative experiments show that our system is reliable under various circumstances.
Hot-Electron Bolometer Mixers on Silicon-on-Insulator Substrates for Terahertz Frequencies
NASA Technical Reports Server (NTRS)
Skalare, Anders; Stern, Jeffrey; Bumble, Bruce; Maiwald, Frank
2005-01-01
A terahertz Hot-Electron Bolometer (HEB) mixer design using device substrates based on Silicon-On-Insulator (SOI) technology is described. This substrate technology allows very thin chips (6 pm) with almost arbitrary shape to be manufactured, so that they can be tightly fitted into a waveguide structure and operated at very high frequencies with only low risk for power leakages and resonance modes. The NbTiN-based bolometers are contacted by gold beam-leads, while other beamleads are used to hold the chip in place in the waveguide test fixture. The initial tests yielded an equivalent receiver noise temperature of 3460 K double-sideband at a local oscillator frequency of 1.462 THz and an intermediate frequency of 1.4 GHz.
NASA Tech Briefs, October 2006
NASA Technical Reports Server (NTRS)
2006-01-01
Topics covered include: Protein Sensors Based on Optical Ring Resonators; Phase Sensor for Aligning a Segmented Telescope Mirror; Control Software for Advanced Video Guidance Sensor; Generating Control Commands From Gestures Sensed by EMG; Multiple-Flat-Panel System Displays Multidimensional Data; 3D X-Ray Luggage-Screening System; Probe Station and Near-Field Scanner for Testing Antennas; Photodetector Arrays for Multicolor Visible/Infrared Imaging; Semiconductor Bolometers Give Background-Limited Performance; Multichannel X-Band Dielectric-Resonator Oscillator; Automatic Alignment of Displacement-Measuring Interferometer; Earth Observing System Data Gateway; Power User Interface; Mercury Shopping Cart Interface; Cassini Archive Tracking System; Architecture Adaptive Computing Environment; Computing Fault Displacements from Surface Deformations; Oxygen-Permeable, Hydrophobic Membranes of Silanized alpha-Al2O3; SiC Composite Turbine Vanes; Retaining Device for the Interior Structure of a Spacecraft Payload; Tool for Torquing Circular Electrical-Connector Collars; System for Continuous Deaeration of Hydraulic Oil; Solar-Powered Cooler and Heater for an Automobile Interior; Improved Oxygen-Beam Texturing of Glucose-Monitoring Optics; Tool for Two Types of Friction Stir Welding; Stationary Apparatus Would Apply Forces of Walking to Feet; Instrument Would Detect and Collect Biological Aerosols; Boundary Condition for Modeling Semiconductor Nanostructures; Miniature Distillation Column for Producing LOX From Air; Even Illumination from Fiber-Optic-Coupled Laser Diodes; Optically Driven Deformable Mirrors; Algorithm for Automated Detection of Edges of Clouds; Exploiting Quantum Resonance to Solve Combinatorial Problems; Hybrid Terrain Database; On Release of Microbe-Laden Particles from Mars Landers; A Concept for Run-Time Support of the Chapel Language; Thermoelectric Inhomogeneities in (Ag(sub 1-y)SbTe2)(sub x)(PbTe)(sub 1-x); and Spacecraft Escape Capsule.
The E and B EXperiment: Implementation and Analysis of the 2009 Engineering Flight
NASA Astrophysics Data System (ADS)
Milligan, Michael Bryce
The E and B EXperiment (EBEX) is a balloon-borne telescope designed to map the polarization of the cosmic microwave background (CMB) and emission from galactic dust at millimeter wavelengths from 150 to 410 GHz. The primary science objectives of EBEX are to: detect or constrain the primordial B-mode polarization of the CMB predicted by inflationary cosmology; measure the CMB B-mode signal induced by gravitational lensing; and characterize the polarized thermal emission from interstellar dust. EBEX will observe a 420 square degree patch of the sky at high galactic latitude with a telescope and camera that provide an 8 arcminute beam at three observing bands (150, 250, and 410 GHz) and a 6.2 degree diffraction limited field of view to two large-format bolometer array focal planes. Polarimetry is achieved via a continuously rotating half-wave plate (HWP), and the optical system is designed from the ground up for control of sidelobe response and polarization systematic errors. EBEX is intended to execute fly or more Antarctic long duration balloon campaigns. In June 2009 EBEX completed a North American engineering flight launched from NASA's Columbia Scientific Ballooning Facility (CSBF) in Ft. Sumner, NM and operated in the stratosphere above 30 km altitude for ˜10 hours. During flight EBEX must be largely autonomous as it conducts pointed, scheduled observations; tunes and operates 1432 TES bolometers via 28 embedded Digital frequency-domain multiplexing (DfMux) computers; logs over 3 GiB/hour of science and housekeeping data to onboard redundant disk storage arrays; manages and dispatches jobs over a fault-tolerant onboard Ethernet network; and feeds a complex real-time data processing infrastructure on the ground via satellite and line-of-sight (LOS) downlinks. In this thesis we review the EBEX instrument, present the optical design and the computational architecture for in-flight control and data handling, and the quick-look software stack. Finally we describe the 2009 North American test flight and present analysis of data collected at the end of that flight that characterizes scan-synchronous signals and the expected response to emission from thermal dust in our galaxy.
Upcoming planetary missions and the applicability of high temperature superconductor bolometers
NASA Technical Reports Server (NTRS)
Brasunas, J.; Kunde, V.; Moseley, H.; Lakew, B.
1990-01-01
Past and present planetary exploration is briefly reviewed, and the planned 1996 Cassini mission to Saturn and Titan is examined. The CIRS experiment aboard Cassini, which will retrieve information on the atmospheres of Titan and Saturn, is discussed. Ongoing efforts to build a high-sensitivity, high-Tc bolometer that would greatly improve detection in Titan's atmosphere are addressed.
Liquid helium-cooled MOSFET preamplifier for use with astronomical bolometer
NASA Technical Reports Server (NTRS)
Goebel, J. H.
1977-01-01
A liquid helium-cooled p-channel enhancement mode MOSFET, the 3N167, is found to have sufficiently low noise for use as a preamplifier with helium-cooled bolometers that are used in infrared astronomy. Its characteristics at 300, 77, and 4.2 K are presented. It is also shown to have useful application with certain photoconductive and photovoltaic infrared detectors.
Field programmable gate arrays: Evaluation report for space-flight application
NASA Technical Reports Server (NTRS)
Sandoe, Mike; Davarpanah, Mike; Soliman, Kamal; Suszko, Steven; Mackey, Susan
1992-01-01
Field Programmable Gate Arrays commonly called FPGA's are the newer generation of field programmable devices and offer more flexibility in the logic modules they incorporate and in how they are interconnected. The flexibility, the number of logic building blocks available, and the high gate densities achievable are why users find FPGA's attractive. These attributes are important in reducing product development costs and shortening the development cycle. The aerospace community is interested in incorporating this new generation of field programmable technology in space applications. To this end, a consortium was formed to evaluate the quality, reliability, and radiation performance of FPGA's. This report presents the test results on FPGA parts provided by ACTEL Corporation.
Measurements of Plasma Power Losses in the C-2 Field-Reversed Configuration Experiment
NASA Astrophysics Data System (ADS)
Korepanov, Sergey; Smirnov, Artem; Garate, Eusebio; Donin, Alexandr; Kondakov, Alexey; Singatulin, Shavkat
2013-10-01
A high-confinement operating regime with plasma lifetimes significantly exceeding past empirical scaling laws was recently obtained by combining plasma gun edge biasing and tangential Neutral Beam Injection in the C-2 field-reversed configuration (FRC) experiment. To analyze the power balance in C-2, two new diagnostic instruments - the pyroelectric (PE) and infrared (IR) bolometers - were developed. The PE bolometer, designed to operate in the incident power density range from 0.1-100 W/cm2, is used to measure the radial power loss, which is dominated by charge-exchange neutrals and radiation. The IR bolometer, which measures power irradiated onto a thin metal foil inserted in the plasma, is designed for the power density range from 0.5-5 kW/cm2. The IR bolometer is used to measure the axial power loss from the plasma near the end divertors. The maximum measurable pulse duration of ~ 10 ms is limited by the heat capacitance of the IR detector. Both detectors have time resolution of about 10-100 μs and were calibrated in absolute units using a high power neutral beam. We present the results of first direct measurements of axial and radial plasma power losses in C-2.
NASA Astrophysics Data System (ADS)
Lee, Adrian
We propose to develop planar-antenna-coupled superconducting bolometer arrays for observations at sub-millimeter to millimeter wavelengths. Our pixel architecture features a dual-polarization, log-periodic antenna with a 5:1 bandwidth ratio, followed by a filter bank that divides the total bandwidth into several broad photometric bands. We propose to develop an hierarchical phased array of our basic pixel type that gives optimal mapping speed (sensitivity) over a much broader range of frequencies. The advantage of this combination of an intrinsically broadband pixel with hierarchical phase arraying include a combination of greatly reduced focal-plane mass, higher array sensitivity, and a larger number of spectral bands compared to focal-plane designs using conventional single-color pixels. These advantages have the potential to greatly reduce cost and/or increase performance of NASA missions in the sub-millimeter to millimeter bands. For CMB polarization, a wide frequency range of about 30 to 400 GHz is required to subtract galactic foregrounds. As an example, the multichroic architecture we propose could reduce the focal plane mass of the EPIC-IM CMB polarization mission study concept by a factor of 4, with great savings in required cryocooler performance and therefore cost. We have demonstrated the lens-coupled antenna concept in the POLARBEAR groundbased CMB polarization experiment which is now operating in Chile. That experiment uses a single-band planar antenna that gives excellent beam properties and optical efficiency. POLARBEAR recently succeeded in detecting gravitational lensing B-modes in the CMB polarization. In the laboratory, we have measured two octaves of total bandwidth in the log-periodic sinuous antenna. We have built filter banks of 2, 3, and 7 bands with 4, 6, and 14 bolometers per pixel for two linear polarizations. Pixels of this type are slated to be deployed on the ground in POLARBEAR and SPT-3G and proposed to be used on a balloon by EBEX-IDS and in space on the LiteBIRD CMB polarization mission. The deliverables for the proposed work include: *Fabrication and test of a sinuous-antenna-based pixel with a 5:1 total bandwidth. Separate pixels will be built that are sensitive down to 30 GHz and others that are sensitive up to 400 GHz to cover the full range required for CMB measurements and to push into the sub-mm wavelength range. The efficiency of these pixels will be maximized by introducing a low loss silicon nitride insulator layer in all of the transmission lines. *Hierarchical phased arrays that use up to five levels of arraying will be fabricated and tested. The hierarchical phased array approaches the optimal mapping speed (sensitivity) at all frequencies by adjusting the beam size of the array with frequency. *We will develop 3 and 5 layer anti-reflection coatings using a new ``thermal spray" technique that we have developed which heats ceramics and plastics to melting temperature an then sprays them on optical surfaces with excellent uniformity and thickness control. The dielectric constant of each layer can be adjusted by choosing mixing ratios of high and low dielectric constant materials. Prioritization committees including the Astro2010 decadal, Quarks to Cosmos, and Weiss Committee have strongly advocated for prioritizing Cosmic Microwave Background polarization measurements and other science goals in the mm and sub-mm wavelength regime. The technology we propose to develop has the potential to greatly increase the cost effectiveness of potential missions in this frequency range. We have assembled an experienced team that includes expertise in antenna design, RF superconducting circuits, microfabrication, and CMB observations. Our team includes detector and/or CMB observation experts Bill Holzapfel, Adrian Lee, Akito Kusaka, and Aritoki Suzuki.
The data array, a tool to interface the user to a large data base
NASA Technical Reports Server (NTRS)
Foster, G. H.
1974-01-01
Aspects of the processing of spacecraft data is considered. Use of the data array in a large address space as an intermediate form in data processing for a large scientific data base is advocated. Techniques for efficient indexing in data arrays are reviewed and the data array method for mapping an arbitrary structure onto linear address space is shown. A compromise between the two forms is given. The impact of the data array on the user interface are considered along with implementation.
NASA Astrophysics Data System (ADS)
Terroux, Marc; Marchese, Linda; Bolduc, Martin; Mercier, Luc; Chevalier, Claude; Gagnon, Lucie; Tremblay, Bruno; Généreux, Francis; Paultre, Jacques-Edmond; Provençal, Francis; Beaupré, Patrick; Desroches, Yan; Châteauneuf, François; Bergeron, Alain
2017-11-01
In the past, bolometer-based imagers have been used for earth observation. Uncooled-bolometer based imagers are especially well suited for this due to their low power consumption. NIRST (New Infra-Red Sensor Technology), an example of an imager based on uncooled bolometers, monitors high temperature events on the ground related to fires and volcanic events, and will measure their physical parameters and takes measurements of sea surface temperatures mainly off the coast of South America as well as other targeted opportunities. NIRST has one band in the mid-wave infrared centered at 3.8 um with a bandwidth of 0.8 um, and two bands in the thermal infrared, centered respectively at 10.85 and 11.85 um with a bandwidth of 0.9 um.
Construction and performance of a high-temperature-superconductor composite bolometer
NASA Technical Reports Server (NTRS)
Brasunas, J. C.; Moseley, S. H.; Lakew, B.; Ono, R. H.; Mcdonald, D. G.
1989-01-01
A high-Tc superconducting bolometer has been constructed using a YBa2Cu3O(x) thin-film meander line 20 microns wide and 76,000 microns long, deposited on a SrTiO3 substrate. Radiation is absorbed by a thin film of Bi with well-characterized absorption properties deposited on a Si substrate in contact with the SrTiO3. At 1.8 Hz the measured bolometer response to a 500-K blackbody is 5.2 V/W (820 V/W extrapolated to dc). The impact of apparent nonohmic behavior at the transition is discussed, as are ways of reducing the observed 1/f noise. The response time is 32 s and is dominated by the heat capacity of the SrTiO3 substrate.
Gold absorbing film for a composite bolometer
NASA Technical Reports Server (NTRS)
Dragovan, M.; Moseley, S. H.
1984-01-01
The principles governing the design of metal films are reviewed, with attention also given to the choice of metals. A description is then given of the characteristics of a bolometer with a gold absorbing film. It is demonstrated that gold is effective as an absorbing film for a millimeter bolometer operated at 1.5 K. At 1.5 K, gold is significantly better than bismuth since gold has a lower heat capacity for the absorbing film. At 0.3 K, gold and bismuth are both suitable. It is pointed out that at temperatures below 0.3 K, a superconducting absorbing film can have a heat capacity low enough not to dominate the heat capacity of the detector; for this reason, it may give better performance than a nonsuperconducting absorbing film.
NASA Astrophysics Data System (ADS)
Kaila, M. M.; Russell, G. J.
2000-12-01
We have designed a liquid nitrogen cooled detector where a thermoelectric feedback is combined with electrothermal feedback to produce an improvement of three orders of magnitude in the response time of the detector. We have achieved this by considering a parallel resistance combination of thermoelectric and High Temperature Superconductor (HTSC) material legs of an approximate geometry 1mm /spl times/ 2 mm /spl times/ 1micron operated at 80K. One end of this thermocouple acts as the sensitive area where the radiation is absorbed. The other end remains unexposed and stays basically at substrate temperature. It is found that micron thick films in our bolometer produce characteristics very close to those found for nanometer thick films required in semiconductor detectors and Low Temperature Superconductor (LTSC) bolometers.
Detector characterization, optimization, and operation for ACTPol
NASA Astrophysics Data System (ADS)
Grace, Emily Ann
2016-01-01
Measurements of the temperature anisotropies of the Cosmic Microwave Background (CMB) have provided the foundation for much of our current knowledge of cosmology. Observations of the polarization of the CMB have already begun to build on this foundation and promise to illuminate open cosmological questions regarding the first moments of the universe and the properties of dark energy. The primary CMB polarization signal contains the signature of early universe physics including the possible imprint of inflationary gravitational waves, while a secondary signal arises due to late-time interactions of CMB photons which encode information about the formation and evolution of structure in the universe. The Atacama Cosmology Telescope Polarimeter (ACTPol), located at an elevation of 5200 meters in Chile and currently in its third season of observing, is designed to probe these signals with measurements of the CMB in both temperature and polarization from arcminute to degree scales. To measure the faint CMB polarization signal, ACTPol employs large, kilo-pixel detector arrays of transition edge sensor (TES) bolometers, which are cooled to a 100 mK operating temperature with a dilution refrigerator. Three such arrays are currently deployed, two with sensitivity to 150 GHz radiation and one dichroic array with 90 GHz and 150 GHz sensitivity. The operation of these large, monolithic detector arrays presents a number of challenges for both assembly and characterization. This thesis describes the design and assembly of the ACTPol polarimeter arrays and outlines techniques for their rapid characterization. These methods are employed to optimize the design and operating conditions of the detectors, select wafers for deployment, and evaluate the baseline array performance. The results of the application of these techniques to wafers from all three ACTPol arrays is described, including discussion of the measured thermal properties and time constants. Finally, aspects of the characterization and calibration of the deployed detectors during field operations are discussed.
Frequency selective infrared optical filters for micro-bolometers
NASA Astrophysics Data System (ADS)
Creazzo, Timothy A.; Zablocki, Mathew J.; Zaman, Lenin; Sharkawy, Ahmed; Mirotznik, Mark S.; Prather, Dennis W.
2017-05-01
Current micro-bolometers are broadband detectors and tend to absorb a broad window of the IR spectrum for thermal imaging. Such systems are limited due to their lack of sensitivity to blackbody radiation, as well as the inability to spectrally discern multiple wavelengths in the field of view for hyperspectral imaging (HSI). As a result, many important applications such as low concentration chemical detection cannot be performed. One solution to this problem is to employ a system with thermoelectrically cooled or liquid nitrogen cooled sensors, which can lead to higher sensitivity in detection. However, one major drawback of these systems is the size, weight and power (SWaP) issue as they tend to be rather bulky and cumbersome, which largely challenges their use in unmanned aerial vehicles. Further, spectral filtering is commonly performed with large hardware and moving gratings, greatly increasing the SWaP of the system. To this point, Lumilant's effort is to develop wavelength selective uncooled IR filters that can be integrated onto a microbolometer, to exceed the sensitivity imposed by the blackbody radiation limit. We have demonstrated narrowband absorbers and electrically tunable filters addressing the need for low-SWaP platforms.
SimArray: a user-friendly and user-configurable microarray design tool
Auburn, Richard P; Russell, Roslin R; Fischer, Bettina; Meadows, Lisa A; Sevillano Matilla, Santiago; Russell, Steven
2006-01-01
Background Microarrays were first developed to assess gene expression but are now also used to map protein-binding sites and to assess allelic variation between individuals. Regardless of the intended application, efficient production and appropriate array design are key determinants of experimental success. Inefficient production can make larger-scale studies prohibitively expensive, whereas poor array design makes normalisation and data analysis problematic. Results We have developed a user-friendly tool, SimArray, which generates a randomised spot layout, computes a maximum meta-grid area, and estimates the print time, in response to user-specified design decisions. Selected parameters include: the number of probes to be printed; the microtitre plate format; the printing pin configuration, and the achievable spot density. SimArray is compatible with all current robotic spotters that employ 96-, 384- or 1536-well microtitre plates, and can be configured to reflect most production environments. Print time and maximum meta-grid area estimates facilitate evaluation of each array design for its suitability. Randomisation of the spot layout facilitates correction of systematic biases by normalisation. Conclusion SimArray is intended to help both established researchers and those new to the microarray field to develop microarray designs with randomised spot layouts that are compatible with their specific production environment. SimArray is an open-source program and is available from . PMID:16509966
ArrayWiki: an enabling technology for sharing public microarray data repositories and meta-analyses
Stokes, Todd H; Torrance, JT; Li, Henry; Wang, May D
2008-01-01
Background A survey of microarray databases reveals that most of the repository contents and data models are heterogeneous (i.e., data obtained from different chip manufacturers), and that the repositories provide only basic biological keywords linking to PubMed. As a result, it is difficult to find datasets using research context or analysis parameters information beyond a few keywords. For example, to reduce the "curse-of-dimension" problem in microarray analysis, the number of samples is often increased by merging array data from different datasets. Knowing chip data parameters such as pre-processing steps (e.g., normalization, artefact removal, etc), and knowing any previous biological validation of the dataset is essential due to the heterogeneity of the data. However, most of the microarray repositories do not have meta-data information in the first place, and do not have a a mechanism to add or insert this information. Thus, there is a critical need to create "intelligent" microarray repositories that (1) enable update of meta-data with the raw array data, and (2) provide standardized archiving protocols to minimize bias from the raw data sources. Results To address the problems discussed, we have developed a community maintained system called ArrayWiki that unites disparate meta-data of microarray meta-experiments from multiple primary sources with four key features. First, ArrayWiki provides a user-friendly knowledge management interface in addition to a programmable interface using standards developed by Wikipedia. Second, ArrayWiki includes automated quality control processes (caCORRECT) and novel visualization methods (BioPNG, Gel Plots), which provide extra information about data quality unavailable in other microarray repositories. Third, it provides a user-curation capability through the familiar Wiki interface. Fourth, ArrayWiki provides users with simple text-based searches across all experiment meta-data, and exposes data to search engine crawlers (Semantic Agents) such as Google to further enhance data discovery. Conclusions Microarray data and meta information in ArrayWiki are distributed and visualized using a novel and compact data storage format, BioPNG. Also, they are open to the research community for curation, modification, and contribution. By making a small investment of time to learn the syntax and structure common to all sites running MediaWiki software, domain scientists and practioners can all contribute to make better use of microarray technologies in research and medical practices. ArrayWiki is available at . PMID:18541053
MethLAB: a graphical user interface package for the analysis of array-based DNA methylation data.
Kilaru, Varun; Barfield, Richard T; Schroeder, James W; Smith, Alicia K; Conneely, Karen N
2012-03-01
Recent evidence suggests that DNA methylation changes may underlie numerous complex traits and diseases. The advent of commercial, array-based methods to interrogate DNA methylation has led to a profusion of epigenetic studies in the literature. Array-based methods, such as the popular Illumina GoldenGate and Infinium platforms, estimate the proportion of DNA methylated at single-base resolution for thousands of CpG sites across the genome. These arrays generate enormous amounts of data, but few software resources exist for efficient and flexible analysis of these data. We developed a software package called MethLAB (http://genetics.emory.edu/conneely/MethLAB) using R, an open source statistical language that can be edited to suit the needs of the user. MethLAB features a graphical user interface (GUI) with a menu-driven format designed to efficiently read in and manipulate array-based methylation data in a user-friendly manner. MethLAB tests for association between methylation and relevant phenotypes by fitting a separate linear model for each CpG site. These models can incorporate both continuous and categorical phenotypes and covariates, as well as fixed or random batch or chip effects. MethLAB accounts for multiple testing by controlling the false discovery rate (FDR) at a user-specified level. Standard output includes a spreadsheet-ready text file and an array of publication-quality figures. Considering the growing interest in and availability of DNA methylation data, there is a great need for user-friendly open source analytical tools. With MethLAB, we present a timely resource that will allow users with no programming experience to implement flexible and powerful analyses of DNA methylation data.
Standoff passive video imaging at 350 GHz with 251 superconducting detectors
NASA Astrophysics Data System (ADS)
Becker, Daniel; Gentry, Cale; Smirnov, Ilya; Ade, Peter; Beall, James; Cho, Hsiao-Mei; Dicker, Simon; Duncan, William; Halpern, Mark; Hilton, Gene; Irwin, Kent; Li, Dale; Paulter, Nicholas; Reintsema, Carl; Schwall, Robert; Tucker, Carole
2014-06-01
Millimeter wavelength radiation holds promise for detection of security threats at a distance, including suicide bomb belts and maritime threats in poor weather. The high sensitivity of superconducting Transition Edge Sensor (TES) detectors makes them ideal for passive imaging of thermal signals at these wavelengths. We have built a 350 GHz video-rate imaging system using a large-format array of feedhorn-coupled TES bolometers. The system operates at a standoff distance of 16m to 28m with a spatial resolution of 1:4 cm (at 17m). It currently contains one 251-detector subarray, and will be expanded to contain four subarrays for a total of 1004 detectors. The system has been used to take video images which reveal the presence of weapons concealed beneath a shirt in an indoor setting. We present a summary of this work.
ACTPol: Status and preliminary CMB polarization results from the Atacama Cosmology Telescope
NASA Astrophysics Data System (ADS)
Koopman, Brian
2014-03-01
The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization sensitive upgrade for the Atacama Cosmology Telescope, located at an elevation of 5190 m on Cerro Toco in Chile. In summer 2013, ACTPol achieved first light with one third of the final detector configuration. The remaining two thirds of the detector array will be installed during spring 2014, enabling full sensitivity, high resolution, observations at both 90 GHz and 150 GHz. Using approximately 3,000 transition-edge sensor bolometers, ACTPol will enable measurements of small angular scale polarization anisotropies in the Cosmic Microwave Background (CMB). I will present a status update for the ACTPol receiver and some preliminary results. ACTPol measurements will allow us to probe the spectral index of inflation as well as to constrain early dark energy and the sum of neutrino masses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, M. C., E-mail: mthompson@trialphaenergy.com; Gota, H.; Putvinski, S.
The C-2U experiment at Tri Alpha Energy studies the evolution of field-reversed configuration (FRC) plasmas sustained by neutral beam injection. Data on the FRC plasma performance are provided by a comprehensive suite of diagnostics that includes magnetic sensors, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, neutral particle analyzers, and fusion product detectors. While many of these diagnostic systems were inherited from the preceding experiment C-2, C-2U has a variety of new and upgraded diagnostic systems: multi-chord far-infrared polarimetry, multiple fast imaging cameras with selectable atomic line filters, proton detector arrays, and 100 channel bolometer units capable of observing multiple regions ofmore » the spectrum simultaneously. In addition, extensive ongoing work focuses on advanced methods of measuring separatrix shape and plasma current profile that will facilitate equilibrium reconstruction and active control of the FRC plasma.« less
Neutrinoless Double Beta Decay with CUORE-0: Physics Results and Detector Performance
NASA Astrophysics Data System (ADS)
Canonica, L.
2016-08-01
The CUORE-0 experiment searches for neutrinoless double beta decay in ^{130}Te. It consists of an array of 52 tellurium dioxide crystals, operated as bolometers at a temperature of 10 mK, with a total mass of about 39 kg of TeO_2. CUORE-0 has been built to test the performance of the upcoming CUORE experiment and represents the largest ^{130}Te bolometric setup currently in operation. This experiment has been running in the Gran Sasso National Laboratory, Italy, since March 2013. We report the results of a search for neutrinoless double beta decay in 9.8 kg years ^{130}Te exposure, which allowed us to set the most stringent limit to date on this half-life. The performance of the detector in terms of background rate and energy resolution are also reported.
Mechanical design of a low concentration ratio solar array for a space station application
NASA Technical Reports Server (NTRS)
Biss, M. S.; Hsu, L.
1983-01-01
This paper describes a preliminary study and conceptual design of a low concentration ratio solar array for a space station application with approximately a 100 kW power requirement. The baseline design calls for a multiple series of inverted, truncated, pyramidal optical elements with a geometric concentration ratio (GCR) of 6. It also calls for low life cycle cost, simple on-orbit maintainability, 1984 technology readiness date, and gallium arsenide (GaAs) of silicon (Si) solar cell interchangeability. Due to the large area needed to produce the amount of power required for the baseline space station, a symmetrical wing design, making maximum use of the commonality of parts approach, was taken. This paper will describe the mechanical and structural design of a mass-producible solar array that is very easy to tailor to the needs of the individual user requirement.
Fabrication of sensitive high Tc bolometers
NASA Technical Reports Server (NTRS)
Nahum, Michael; Verghese, S.; Hu, Qing; Richards, Paul L.; Char, K.; Newman, N.; Sachtjen, Scott A.
1990-01-01
The rapid change of resistance with temperature of high quality films of high T sub c superconductors can be used to make resistance thermometers with very low temperature noise. Measurements on c-axis yttrium barium copper oxide (YBCO) films have given a spectral intensity of temperature noise less than 4 times 10(exp -8) K/Hz(exp 1/2) at 10 Hz. Consequently, the opportunity exists to make useful bolometric infrared detectors that operate near 90 K which can be cooled with liquid nitrogen. The fabrication and measurement of two bolometer architectures are discussed. The first is a conventional bolometer which consists of a 3000 A thick YBCO film deposited in situ by laser ablation on top of a 500 A thick SrTiO3 thickness and diced into 1x1 mm(exp 2) bolometer chips. Gold black smoke was used as the radiation absorber. The voltage noise was less than the amplifier noise when the film was current biased. Optical measurements gave an NEP of 5 times 10(exp -11) W/Hz(exp 1/2) at 10 Hz. The second architecture is that of an antenna-coupled microbolometer which consists of a small (5x10 cubic microns) YBCO film deposited directly on a bulk substrate with a low thermal conductance (YSZ) and an impedance matched planar lithographed spiral or log-periodic antenna. This structure is produced by standard photolithographic techniques. Measurements gave an electrical NEP of 4.7 times 10(exp -12) W/Hz(exp 1/2) at 10 kHz. Measurements of the optical efficiency are in progress. The measured performance of both bolometers will be compared to other detectors operating at or above liquid nitrogen temperatures so as to identify potential applications.
Stand-off detection of trace explosives by infrared photothermal imaging
NASA Astrophysics Data System (ADS)
Papantonakis, Michael R.; Kendziora, Chris; Furstenberg, Robert; Stepnowski, Stanley V.; Rake, Matthew; Stepnowski, Jennifer; McGill, R. Andrew
2009-05-01
We have developed a technique for the stand-off detection of trace explosives using infrared photothermal imaging. In this approach, infrared quantum cascade lasers tuned to strong vibrational absorption bands of the explosive particles illuminate a surface of interest, preferentially heating the explosives material. An infrared focal plane array is used to image the surface and detect a small increase in the thermal intensity upon laser illumination. We have demonstrated the technique using TNT and RDX residues at several meters of stand-off distance under laboratory conditions, while operating the lasers below the eye-safe intensity limit. Sensitivity to explosives traces as small as a single grain (~100 ng) of TNT has been demonstrated using an uncooled bolometer array. We show the viability of this approach on a variety of surfaces which transmit, reflect or absorb the infrared laser light and have a range of thermal conductivities. By varying the incident wavelength slightly, we demonstrate selectivity between TNT and RDX. Using a sequence of lasers at different wavelengths, we increase both sensitivity and selectivity while reducing the false alarm rate. At higher energy levels we also show it is possible to generate vapor from solid materials with inherently low vapor pressures.
Wire array K-shell sources on the SPHINX generator
NASA Astrophysics Data System (ADS)
D'Almeida, Thierry; Lassalle, Francis; Grunenwald, Julien; Maury, Patrick; Zucchini, Frédéric; Niasse, Nicolas; Chittenden, Jeremy
2014-10-01
The SPHINX machine is a LTD based Z-pinch driver operated by the CEA Gramat (France) and primarily used for studying K-shell radiation effects. We present the results of experiments carried out with single and nested large diameter aluminium wire array loads driven by a current of ~5 MA in ~800 ns. The dynamic of the implosion is studied with filtered X-UV time-integrated pin-hole cameras. The plasma electron temperature and the characteristics of the sources are estimated with time and spatially dependent spectrographs and PCDs. It is shown that Al K-shell yields (>1 keV) up to 27 kJ are obtained for a total radiation of ~ 230 kJ. These results are compared with simulations performed using the latest implementation of the non-LTE DCA code Spk in the 3D Eulerian MHD framework Gorgon developed at Imperial College. Filtered synthetic bolometers and PCD signals, time-dependent spatially integrated spectra and X-UV images are produced and show a good agreement with the experimental data. The capabilities of a prospective SPHINX II machine (20 MA ~ 800 ns) are also assessed for a wider variety of sources (Ti, Cu and W).
320 x 240 uncooled IRFPA with pixel wise thin film vacuum packaging
NASA Astrophysics Data System (ADS)
Yon, J.-J.; Dumont, G.; Rabaud, W.; Becker, S.; Carle, L.; Goudon, V.; Vialle, C.; Hamelin, A.; Arnaud, A.
2012-10-01
Silicon based vacuum packaging is a key enabling technology for achieving affordable uncooled Infrared Focal Plane Arrays (IRFPA) as required by the promising mass market for very low cost IR applications, such as automotive driving assistance, energy loss monitoring in buildings, motion sensors… Among the various approaches studied worldwide, the CEA, LETI is developing a unique technology where each bolometer pixel is sealed under vacuum at the wafer level, using an IR transparent thin film deposition. This technology referred to as PLP (Pixel Level Packaging), leads to an array of hermetic micro-caps each containing a single microbolometer. Since the successful demonstration that the PLP technology, when applied on a single microbolometer pixel, can provide the required vacuum < 10-3 mbar, the authors have pushed forward the development of the technology on fully operational QVGA readout circuits CMOS base wafers (320 x 240 pixels). In this outlook, the article reports on the electro optical performance obtained from this preliminary PLP based QVGA demonstrator. Apart from the response, noise and NETD distributions, the paper also puts emphasis on additional key features such as thermal time constant, image quality, and ageing properties.
8-beam local oscillator array at 4.7 THz generated by a phase grating and a quantum cascade laser.
Mirzaei, B; Silva, J R G; Hayton, D; Groppi, C; Kao, T Y; Hu, Q; Reno, J L; Gao, J R
2017-11-27
We present an 8-beam local oscillator (LO) for the astronomically significant [OI] line at 4.7 THz. The beams are generated using a quantum cascade laser (QCL) in combination with a Fourier phase grating. The grating is fully characterized using a third order distributed feedback (DFB) QCL with a single mode emission at 4.7 THz as the input. The measured diffraction efficiency of 74.3% is in an excellent agreement with the calculated result of 75.4% using a 3D simulation. We show that the power distribution among the diffracted beams is uniform enough for pumping an array receiver. To validate the grating bandwidth, we apply a far-infrared (FIR) gas laser emission at 5.3 THz as the input and find a very similar performance in terms of efficiency, power distribution, and spatial configuration of the diffracted beams. Both results represent the highest operating frequencies of THz phase gratings reported in the literature. By injecting one of the eight diffracted 4.7 THz beams into a superconducting hot electron bolometer (HEB) mixer, we find that the coupled power, taking the optical loss into account, is in consistency with the QCL power value.
Planar Lithographed Superconducting LC Resonators for Frequency-Domain Multiplexed Readout Systems
NASA Astrophysics Data System (ADS)
Rotermund, K.; Barch, B.; Chapman, S.; Hattori, K.; Lee, A.; Palaio, N.; Shirley, I.; Suzuki, A.; Tran, C.
2016-07-01
Cosmic microwave background (CMB) polarization experiments are increasing the number of transition edge sensor (TES) bolometers to increase sensitivity. In order to maintain low thermal loading of the sub-Kelvin stage, the frequency-domain multiplexing (FDM) factor has to increase accordingly. FDM is achieved by placing TES bolometers in series with inductor-capacitor (LC) resonators, which select the readout frequency. The multiplexing factor can be raised with a large total readout bandwidth and small frequency spacing between channels. The inductance is kept constant to maintain a uniform readout bandwidth across detectors, while the maximum acceptable value is determined by bolometer stability. Current technology relies on commercially available ceramic chip capacitors. These have high scatter in their capacitance thereby requiring large frequency spacing. Furthermore, they have high equivalent series resistance (ESR) at higher frequencies and are time consuming and tedious to hand assemble via soldering. A solution lies in lithographed, planar spiral inductors (currently in use by some experiments) combined with interdigitated capacitors on a silicon (Si) substrate. To maintain reasonable device dimensions, we have reduced trace and gap widths of the LCs to 4 \\upmu m. We increased the inductance from 16 to 60 \\upmu H to achieve a higher packing density, a requirement for FDM systems with large multiplexing factors. Additionally, the Si substrate yields low ESR values across the entire frequency range and lithography makes mass production of LC pairs possible. We reduced mutual inductance between inductors by placing them in a checkerboard pattern with the capacitors, thereby increasing physical distances between adjacent inductors. We also reduce magnetic coupling of inductors with external sources by evaporating a superconducting ground plane onto the backside of the substrate. We report on the development of lithographed LCs in the 1-5 MHz range for use with FDM systems. These resonators will be used by CMB polarization experiments such as Polarbear-2, Simons Array, and SPT-3G. Existing FDM systems have multiplexing factors up to 16× . We report the extension to 40× , i.e., Polarbear-2, and 68× , i.e., SPT-3G. We present the design criteria of Polarbear-2's LC circuits, the fabrication techniques, and the testing. Concerns such as yield, accuracy in frequency, loss, and mutual inductance between spatially neighboring channels will be discussed.
Safe Local Navigation for Visually Impaired Users With a Time-of-Flight and Haptic Feedback Device.
Katzschmann, Robert K; Araki, Brandon; Rus, Daniela
2018-03-01
This paper presents ALVU (Array of Lidars and Vibrotactile Units), a contactless, intuitive, hands-free, and discreet wearable device that allows visually impaired users to detect low- and high-hanging obstacles, as well as physical boundaries in their immediate environment. The solution allows for safe local navigation in both confined and open spaces by enabling the user to distinguish free space from obstacles. The device presented is composed of two parts: a sensor belt and a haptic strap. The sensor belt is an array of time-of-flight distance sensors worn around the front of a user's waist, and the pulses of infrared light provide reliable and accurate measurements of the distances between the user and surrounding obstacles or surfaces. The haptic strap communicates the measured distances through an array of vibratory motors worn around the user's upper abdomen, providing haptic feedback. The linear vibration motors are combined with a point-loaded pretensioned applicator to transmit isolated vibrations to the user. We validated the device's capability in an extensive user study entailing 162 trials with 12 blind users. Users wearing the device successfully walked through hallways, avoided obstacles, and detected staircases.
Antenna-coupled high T.sub.c superconducting microbolometer
Hu, Qing
1992-01-01
A device is provided for measuring radiant energy, the device comprising a substrate; a bolometer formed from a high T.sub.c superconducting material disposed on the substrate in an area that is about 1.times.5 .mu.m.sup.2 and about 0.02 .mu.m in depth; and a planar antenna disposed on the substrate and coupled to receive radiation and to impart the received radiation to the bolometer.
Development of a prototype infrared imaging bolometer for NSTX-U
NASA Astrophysics Data System (ADS)
van Eden, G. G.; Delgado-Aparicio, L. F.; Gray, T. K.; Jaworski, M. A.; Morgan, T. W.; Peterson, B. J.; Reinke, M. L.; Sano, R.; Mukai, K.; Differ/Pppl Collaboration; Nifs/Pppl Collaboration
2015-11-01
Measurements of the radiated power in fusion reactors are of high importance for studying detachment and the overall power balance. A prototype Infrared Video Bolometer (IRVB) is being developed for NSTX-U complementing resistive bolometer and AXUV diode diagnostics. The IRVB has proven to be a powerful tool on LHD and JT-60U for its 2D imaging quality and reactor environment compatibility. For NSTX-U, a poloidal view of the lower center stack and lower divertor are envisaged for the 2016 run campaign. The IRVB concept images radiation from the plasma onto a 2.5 μm thick 9 x 7 cm2 calibrated Pt foil and monitors its temperature evolution using an IR camera (SB focal plane, 2-12 μm, 128x128 pixels, 1.6 kHz). The power incident on the foil is calculated by solving the 2D +time heat diffusion equation. Benchtop characterization is presented, demonstrating a sensitivity of approximately 20 mK and a noise equivalent power density of 71.5 μW cm-2 for 4x20 bolometer super-pixels and a 50 Hz time response. The hardware design, optimization of camera and detector settings as well as first results of both synthetic and experimental origin are discussed.
Illumination analysis of LAPAN's IR micro bolometer
NASA Astrophysics Data System (ADS)
Bustanul, A.; Irwan, P.; Andi M., T.
2016-10-01
We have since 2 years ago been doing a research in term of an IR Micrometer Bolometer which aims to fulfill our office, LAPAN, desire to put it as one of payloads into LAPAN's next micro satellite project, either at LAPAN A4 or at LAPAN A5. Due to the lack of experience on the subject, everything had been initiated by spectral radiance analysis adjusted by catastrophes sources in Indonesia, mainly wild fire (forest fire) and active volcano. Based on the result of the appropriate spectral radiance wavelength, 3.8 - 4 μm, and field of view (FOV), we, then, went through the further analysis, optical analysis. Focusing in illumination matter, the process was done by using Zemax software. Optical pass Interference and Stray light were two things that become our concern throughout the work. They could also be an evaluation of the performance optimization of illumination analysis of our optical design. The results, graphs, show that our design performance is close diffraction limited and the image blur of the geometrical produced by Lapan's IR Micro Bolometer lenses is in the pixel area range. Therefore, our optical design performance is relatively good and will produce image with high quality. In this paper, the Illumination analysis and process of LAPAN's Infra Red (IR) Micro Bolometer is presented.
Rejection of randomly coinciding events in ZnMoO scintillating bolometers
NASA Astrophysics Data System (ADS)
Chernyak, D. M.; Danevich, F. A.; Giuliani, A.; Mancuso, M.; Nones, C.; Olivieri, E.; Tenconi, M.; Tretyak, V. I.
2014-06-01
Random coincidence of events (particularly from two neutrino double beta decay) could be one of the main sources of background in the search for neutrinoless double beta decay with cryogenic bolometers due to their poor time resolution. Pulse-shape discrimination by using front edge analysis, mean-time and methods were applied to discriminate randomly coinciding events in ZnMoO cryogenic scintillating bolometers. These events can be effectively rejected at the level of 99 % by the analysis of the heat signals with rise-time of about 14 ms and signal-to-noise ratio of 900, and at the level of 92 % by the analysis of the light signals with rise-time of about 3 ms and signal-to-noise ratio of 30, under the requirement to detect 95 % of single events. These rejection efficiencies are compatible with extremely low background levels in the region of interest of neutrinoless double beta decay of Mo for enriched ZnMoO detectors, of the order of counts/(y keV kg). Pulse-shape parameters have been chosen on the basis of the performance of a real massive ZnMoO scintillating bolometer. Importance of the signal-to-noise ratio, correct finding of the signal start and choice of an appropriate sampling frequency are discussed.
Antenna-coupled high T[sub c] superconducting microbolometer
Hu, Q.
1992-12-15
A device is provided for measuring radiant energy, the device comprising a substrate; a bolometer formed from a high T[sub c] superconducting material disposed on the substrate in an area that is about 1[times]5 [mu]m[sup 2] and about 0.02 [mu]m in depth; and a planar antenna disposed on the substrate and coupled to receive radiation and to impart the received radiation to the bolometer. 5 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, Dongcheol; Peterson, B. J.; Lee, Seung Hun
The resistive bolometers have been successfully installed in the midplane of L-port in Korea Superconducting Tokamak Advanced Research (KSTAR) device. The spatial and temporal resolutions, 4.5 cm and {approx}1 kHz, respectively, enable us to measure the radial profile of the total radiated power from magnetically confined plasma at a high temperature through radiation and neutral particles. The radiated power was measured at all shots. Even at low plasma current, the bolometer signal was detectable. The electron cyclotron resonance heating (ECH) has been used in tokamak for ECH assisted start-up and plasma control by local heating and current drive. The detectorsmore » of resistive bolometer, near the antenna of ECH, are affected by electron cyclotron wave. The tomographic reconstruction, using the Phillips-Tikhonov regularization method, will be carried out for a major radial profile of the radiation emissivity of the circular cross-section plasma.« less
Optimization of a bolometer detector for ITER based on Pt absorber on SiN membrane.
Meister, H; Eich, T; Endstrasser, N; Giannone, L; Kannamüller, M; Kling, A; Koll, J; Trautmann, T; Detemple, P; Schmitt, S
2010-10-01
Any plasma diagnostic in ITER must be able to operate at temperatures in excess of 200 °C and neutron loads corresponding to 0.1 dpa over its lifetime. To achieve this aim for the bolometer diagnostic, a miniaturized metal resistor bolometer detector based on Pt absorbers galvanically deposited on SiN membranes is being developed. The first two generations of detectors featured up to 4.5 μm thick absorbers. Results from laboratory tests are presented characterizing the dependence of their calibration constants under thermal loads up to 450 °C. Several detectors have been tested in ASDEX Upgrade providing reliable data but also pointing out the need for further optimization. A laser trimming procedure has been implemented to reduce the mismatch in meander resistances below 1% for one detector and the thermal drifts from this mismatch.
Development of Solid Xenon Bolometers
NASA Astrophysics Data System (ADS)
Dolinski, Michelle; Hansen, Erin
2016-09-01
Cryogenic liquid xenon detectors have become a popular technology in the search for rare events, such as dark matter interactions and neutrinoless double beta decay. The power of liquid xenon detector technology is in the combination of ionization and scintillation signals, resulting in particle discrimination and improved energy resolution over the ionization-only signal. The improved energy resolution results from a microscopic anti-correlation phenomenon that has not been described from first principles. Solid xenon bolometers operated at 10 mK are expected to have excellent counting statistics in the phonon channel, with energy resolution of 0.1% or better. This additional energy channel may offer the final piece of the puzzle in understanding liquid xenon detector energy response. We present work toward the development and characterization of solid xenon bolometers at Drexel University. Funding for this project was provided by the Charles E. Kaufman Foundation of The Pittsburgh Foundation.
Far Infrared Spectrometry of the Cosmic Background Radiation
DOE R&D Accomplishments Database
Mather, J. C.
1974-01-01
I describe two experiments to measure the cosmic background radiation near 1 mm wavelength. The first was a ground-based search for spectral lines, made with a Fabry-Perot interferometer and an InSb detector. The second is a measurement of the spectrum from 3 to 18 cm{sup -1}, made with a balloon-borne Fourier transform spectrometer. It is a polarizing Michelson interferometer, cooled in liquid helium, and operated with a germanium bolometer. I give the theory of operation, construction details, and experimental results. The first experiment was successfully completed but the second suffered equipment malfunction on its first flight. I describe the theory of Fourier transformations and give a new understanding of convolutional phase correction computations. I discuss for infrared bolometer calibration procedures, and tabulate test results on nine detectors. I describe methods of improving bolometer sensitivity with immersion optics and with conductive film blackening.
Optimization of a bolometer detector for ITER based on Pt absorber on SiN membranea)
NASA Astrophysics Data System (ADS)
Meister, H.; Eich, T.; Endstrasser, N.; Giannone, L.; Kannamüller, M.; Kling, A.; Koll, J.; Trautmann, T.; ASDEX Upgrade Team; Detemple, P.; Schmitt, S.
2010-10-01
Any plasma diagnostic in ITER must be able to operate at temperatures in excess of 200 °C and neutron loads corresponding to 0.1 dpa over its lifetime. To achieve this aim for the bolometer diagnostic, a miniaturized metal resistor bolometer detector based on Pt absorbers galvanically deposited on SiN membranes is being developed. The first two generations of detectors featured up to 4.5 μm thick absorbers. Results from laboratory tests are presented characterizing the dependence of their calibration constants under thermal loads up to 450 °C. Several detectors have been tested in ASDEX Upgrade providing reliable data but also pointing out the need for further optimization. A laser trimming procedure has been implemented to reduce the mismatch in meander resistances below 1% for one detector and the thermal drifts from this mismatch.
[CII] At 1 < z < 2: Observing Star Formation in the Early Universe with Zeus (1 and 2)
NASA Technical Reports Server (NTRS)
Ferkinhoff, Carl; Hailey-Dunsheath, S.; Nikola, T.; Oberst, T.; Parshley, S.; Stacey, G.; Benford, D.; staguhn, J.
2010-01-01
We report the detection of the [CII] 158 micron fine structure line from six submillimeter galaxies with redshifts between 1.12 and 1.73. This more than doubles the total number of [CII] 158 micron detections reported from high redshift sources. These observations were made with the Redshift(z) and Early Universe Spectrometer(ZEUS) at the Caltech Submillimeter Observatory on Mauna Kea, Hawaii between December 2006 and March 2009. ZEUS is a background limited submm echelle grating spectrometer (Hailey-Dunsheath 2009). Currently we are constructing ZEUS-2. This new instrument will utilize the same grating but will feature a two dimensional transition-edge sensed bolometer array with SQUID multiplexing readout system enabling simultaneous background limited observations in the 200, 340,450 and 650 micron telluric windows. ZEUS-2 will allow for long slit imaging spectroscopy in nearby galaxies and a [CII] survey from z 0.25 to 2.5.
Ultra-low noise TES bolometer arrays for SAFARI instrument on SPICA
NASA Astrophysics Data System (ADS)
Khosropanah, P.; Suzuki, T.; Ridder, M. L.; Hijmering, R. A.; Akamatsu, H.; Gottardi, L.; van der Kuur, J.; Gao, J. R.; Jackson, B. D.
2016-07-01
SRON is developing ultra-low noise Transition Edge Sensors (TESs) based on a superconducting Ti/Au bilayer on a suspended SiN island with SiN legs for the SAFARI instrument aboard the SPICA mission. We successfully fabricated TESs with very narrow (0.5-0.7 μm) and thin (0.25 μm) SiN legs on different sizes of SiN islands using deep reactiveion etching process. The pixel size is 840x840 μm2 and there are variety of designs with and without optical absorbers. For TESs without absorbers, we measured electrical NEPs as low as <1x10-19 W/√Hz with response time of 0.3 ms and reached the phonon noise limit. Using TESs with absorbers, we quantified the darkness of our setup and confirmed a photon noise level of 2x10-19 W/√Hz.
Innovative monolithic detector for tri-spectral (THz, IR, Vis) imaging
NASA Astrophysics Data System (ADS)
Pocas, S.; Perenzoni, M.; Massari, N.; Simoens, F.; Meilhan, J.; Rabaud, W.; Martin, S.; Delplanque, B.; Imperinetti, P.; Goudon, V.; Vialle, C.; Arnaud, A.
2012-10-01
Fusion of multispectral images has been explored for many years for security and used in a number of commercial products. CEA-Leti and FBK have developed an innovative sensor technology that gathers monolithically on a unique focal plane arrays, pixels sensitive to radiation in three spectral ranges that are terahertz (THz), infrared (IR) and visible. This technology benefits of many assets for volume market: compactness, full CMOS compatibility on 200mm wafers, advanced functions of the CMOS read-out integrated circuit (ROIC), and operation at room temperature. The ROIC houses visible APS diodes while IR and THz detections are carried out by microbolometers collectively processed above the CMOS substrate. Standard IR bolometric microbridges (160x160 pixels) are surrounding antenna-coupled bolometers (32X32 pixels) built on a resonant cavity customized to THz sensing. This paper presents the different technological challenges achieved in this development and first electrical and sensitivity experimental tests.
NASA Astrophysics Data System (ADS)
Simon, S. M.; Appel, J. W.; Cho, H. M.; Essinger-Hileman, T.; Irwin, K. D.; Kusaka, A.; Niemack, M. D.; Nolta, M. R.; Page, L. A.; Parker, L. P.; Raghunathan, S.; Sievers, J. L.; Staggs, S. T.; Visnjic, K.
2014-09-01
The Atacama B-mode Search (ABS) instrument, which began observation in February of 2012, is a crossed-Dragone telescope located at an elevation of 5,100 m in the Atacama Desert in Chile. The primary scientific goal of ABS is to measure the B-mode polarization spectrum of the Cosmic Microwave Background from multipole moments of about 50 to 500 (angular scales from to ), a range that includes the primordial B-mode peak from inflationary gravitational waves. The ABS focal plane array consists of 240 pixels designed for observation at 145 GHz by the TRUCE collaboration. Each pixel has its own individual, single-moded feedhorn and contains two transition-edge sensor bolometers coupled to orthogonal polarizations that are read out using time domain multiplexing. We will report on the current status of ABS and discuss the time constants and optical efficiencies of the TRUCE detectors in the field.
Hot-Electron Photon Counters for Detecting Terahertz Photons
NASA Technical Reports Server (NTRS)
Karasik, Boris; Sergeyev, Andrei
2005-01-01
A document proposes the development of hot-electron photon counters (HEPCs) for detecting terahertz photons in spaceborne far-infrared astronomical instruments. These would be superconducting- transition-edge devices: they would contain superconducting bridges that would have such low heat capacities that single terahertz photons would cause transient increases in their electron temperatures through the superconducting- transition range, thereby yielding measurable increases in electrical resistance. Single devices or imaging arrays of the devices would be fabricated as submicron-sized bridges made from films of disordered Ti (which has a superconducting- transition temperature of .0.35 K) between Nb contacts on bulk silicon or sapphire substrates. In operation, these devices would be cooled to a temperature of .0.3 K. The proposed devices would cost less to fabricate and operate, relative to integrating bolometers of equal sensitivity, which must be operated at a temperature of approx. = 0.1 K.
Stray light suppression in the Goddard IRAM 2-Millimeter Observer (GISMO)
NASA Astrophysics Data System (ADS)
Sharp, E. H.; Benford, D. J.; Fixsen, D. J.; Moseley, S. H.; Staguhn, J. G.; Wollack, E. J.
2012-09-01
The Goddard-IRAM Superconducting 2 Millimeter Observer (GISMO) is an 8x16 Transition Edge Sensor (TES) array of bolometers built as a pathfinder for TES detector development efforts at NASA Goddard Space Flight Center. GISMO has been used annually at the Institut de Radioastronomie Millimétrique (IRAM) 30 meter telescope since 2007 under engineering time and was opened in the spring of 2012 to the general astronomical community. The spring deployment provided an opportunity to modify elements of the room temperature optics before moving the instrument to its new permanent position in the telescope receiver cabin. This allowed for the possibility to extend the cryostat, introduce improved cold baffling and thus further optimize the stray light performance for final astronomical use of the instrument, which has been completed and validated. We will demonstrate and discuss several of the methods used to quantify and limit the influence of stray light in the GISMO camera.
Stray Light Suppression in the Goddard IRAM 2-Millimeter Observer (GISMO)
NASA Technical Reports Server (NTRS)
Sharp, E. H.; Benford, D. J.; Fixsen, D. J.; Moseley, S. H.; Staguhn, J. G.; Wollack, E. J.
2012-01-01
The Goddard-IRAM Superconducting 2 Millimeter Observer (GISMO) is an 8xl6 Transition Edge Sensor (TES) array of bolometers built as a pathfinder for TES detector development efforts at NASA Goddard Space Flight Center. GISMO has been used annually at the Institut de Radioastronomie Millimetrique (IRAM) 30 meter telescope since 2007 under engineering time and was opened in the spring of 2012 to the general astronomical community. The spring deployment provided an opportunity to modify elements of the room temperature optics before moving the instrument to its new permanent position in the telescope receiver cabin. This allowed for the possibility to extend the cryostat, introduce improved cold baffling and thus further optimize the stray light performance for final astronomical use of the instrument, which has been completed and validated. We will demonstrate and discuss several of the methods used to quantify and limit the influence of stray light in the GISMO camera.
Application of Terahertz Field Enhancement Effect in Metal Microstructures
NASA Astrophysics Data System (ADS)
Nakajima, M.; Kurihara, T.; Tadokoro, Y.; Kang, B.; Takano, K.; Yamaguchi, K.; Watanabe, H.; Oto, K.; Suemoto, T.; Hangyo, M.
2016-12-01
Applications of high-field terahertz pulses are attractive in physics and terahertz technology. In this study, two applications related to high-intensity terahertz pulses are demonstrated. The field enhancement effect by subwavelength metallic microstructures is utilized for terahertz excitation measurement. The spin precession dynamics in magnetic materials was induced by a terahertz magnetic field. Spin precession was amplified by one order of magnitude in amplitude by the enhanced magnetic terahertz field in orthoferrite ErFeO3 with metal microstructures. The induced spin dynamics was analyzed and explained by LLG-LCR model. Moreover, a detection method for terahertz pulses was developed using a cholesteric liquid crystal at room temperature without any electronic devices. The beam profile of terahertz pulses was visualized and compared to other methods such as the knife edge method using pyroelectric detector and micro-bolometer array. The liquid crystal terahertz imager is very simple and has good applicability as a portable terahertz-sensing card.
NASA Astrophysics Data System (ADS)
Fukuhara, T.; Kouyama, T.; Kato, S.; Nakamura, R.
2016-12-01
University International Formation Mission (UNIFORM) in Japan started in 2011 is an ambitious project that specialized to surveillance of small wildfire to contribute to provide fire information for initial suppression. Final aim of the mission is to construct a constellation with several 50 kg class satellites for frequent and exclusive observation. The uncooled micro-bolometer camera with 640 x 480 pixels based on commercial products has been newly developed for the first satellite. It has been successfully launched on 24 May 2014 and injected to the Sun-Synchronous orbit at local time of 12:00 with altitude of 628 km. The camera has been detected considerable hotspots not only wildfire but also volcanoes. Brightness temperature observed on orbit has been verified and scale of observed wildfire has been roughly presumed; the smallest wildfire ever detected has flame zone less than 2 x 103 m2. It is one tenth of initial requirement estimated in design process; our camera has enough ability to discover small wildfire and to provide beneficial information for fire control with low cost and quick fabrication; it would contribute to practical utility especially in developing nations. A next camera is available for new wildfire mission with satellite constellation; it has already developed for flight. Pixel arrays increasing to 1024 x 768, spatial resolution becomes fine to detect smaller wildfire whereas the swath of image is kept. This camera would be applied to the future planetary mission for Mars and Asteroid explore, too. When it observes planetary surface, thermal inertia can be estimated from continuous observation. When it observes atmosphere, cloud-top altitude can be estimated from horizontal temperature distribution.
NASA Astrophysics Data System (ADS)
Barrentine, Emily Margaret
In this thesis the development of a Transition-Edge Hot-Electron Microbolometer (THM) is presented. This detector will have the capacity to make sensitive and broadband astrophysical observations when deployed in large detector arrays in future ground- or space-based instruments, over frequencies ranging from 30-300 GHz (10-1 mm). This thesis focuses on the development of the THM for observations of the Cosmic Microwave Background (CMB), and specifically for observations of the CMB polarization signal. The THM is a micron-sized bolometer that is fabricated photolithographically. It consists of a superconducting Molybdenum/Gold Transition-Edge Sensor (TES) and a thin-film semi-metal Bismuth microwave absorber, both of which are deposited directly on the substrate. The THM employs the decoupling between electrons and phonons at low temperatures (˜100-300 mK) to provide thermal isolation for the bolometer. The devices are read out with Superconducting Quantum Interference Devices (SQUIDs). In this thesis a summary of the thermal and electrical models for the THM detector is presented. The physical processes within the detector, with particular attention to electron-phonon decoupling, and the lateral proximity effect between the superconducting leads and the TES, are also discussed. This understanding of the detector and these models are used to interpret measurements of thermal conductance, noise, responsivity and the transition behaviour of a variety of THM test devices. The optimization of the THM design, based on these models and measurements, is also discussed, and the thesis concludes with a presentation of the recommended THM design for CMB applications. In addition, a planar-microwave circuit design and a quasi-optical scheme for coupling microwave radiation to the THM detector are presented.
Development of NTD Ge Sensors for Superconducting Bolometer
NASA Astrophysics Data System (ADS)
Garai, A.; Mathimalar, S.; Singh, V.; Dokania, N.; Nanal, V.; Pillay, R. G.; Ramakrishnan, S.; Shrivastava, A.; Jagadeesan, K. C.; Thakare, S. V.
2016-08-01
Neutron transmutation-doped (NTD) Ge sensors have been prepared by irradiating device-grade Ge with thermal neutrons at Dhruva reactor, BARC, Mumbai. These sensors are intended to be used for the study of neutrinoless double beta decay in ^{124}Sn with a superconducting Tin bolometer. Resistance measurements are performed on NTD Ge sensors in the temperature range 100-350 mK. The observed temperature dependence is found to be consistent with the variable-range hopping mechanism.
NASA Astrophysics Data System (ADS)
Trappe, N.; Bucher, M.; De Bernardis, P.; Delabrouille, J.; Deo, P.; DePetris, M.; Doherty, S.; Ghribi, A.; Gradziel, M.; Kuzmin, L.; Maffei, B.; Mahashabde, S.; Masi, S.; Murphy, J. A.; Noviello, F.; O'Sullivan, C.; Pagano, L.; Piacentini, F.; Piat, M.; Pisano, G.; Robinson, M.; Stompor, R.; Tartari, A.; van der Vorst, M.; Verhoeve, P.
2016-07-01
The main objective of this activity is to develop new focal plane coupling array concepts and technologies that optimise the coupling from reflector optics to the large number of detectors for next generation sub millimetre wave telescopes particularly targeting measurement of the polarization of the cosmic microwave background (CMB). In this 18 month TRP programme the consortium are tasked with developing, manufacturing and experimentally verifying a prototype multichroic pixel which would be suitable for the large focal plane arrays which will be demanded to reach the required sensitivity of future CMB polarization missions. One major development was to have multichroic operation to potentially reduce the required focal plane size of a CMB mission. After research in the optimum telescope design and definition of requirements based on a stringent science case review, a number of compact focal plane architecture concepts were investigated before a pixel demonstrator consisting of a planar mesh lens feeding a backend Resonant Cold Electron Bolometer RCEB for filtering and detection of the dual frequency signal was planned for manufacture and test. In this demonstrator the frequencies of the channels was chosen to be 75 and 105 GHz in the w band close to the peak CMB signal. In the next year the prototype breadboards will be developed to test the beams produced by the manufactured flat lenses fed by a variety of antenna configurations and the spectral response of the RCEBs will also be verified.
The revised solar array synthesis computer program
NASA Technical Reports Server (NTRS)
1970-01-01
The Revised Solar Array Synthesis Computer Program is described. It is a general-purpose program which computes solar array output characteristics while accounting for the effects of temperature, incidence angle, charged-particle irradiation, and other degradation effects on various solar array configurations in either circular or elliptical orbits. Array configurations may consist of up to 75 solar cell panels arranged in any series-parallel combination not exceeding three series-connected panels in a parallel string and no more than 25 parallel strings in an array. Up to 100 separate solar array current-voltage characteristics, corresponding to 100 equal-time increments during the sunlight illuminated portion of an orbit or any 100 user-specified combinations of incidence angle and temperature, can be computed and printed out during one complete computer execution. Individual panel incidence angles may be computed and printed out at the user's option.
Zhu, Yuerong; Zhu, Yuelin; Xu, Wei
2008-01-01
Background Though microarray experiments are very popular in life science research, managing and analyzing microarray data are still challenging tasks for many biologists. Most microarray programs require users to have sophisticated knowledge of mathematics, statistics and computer skills for usage. With accumulating microarray data deposited in public databases, easy-to-use programs to re-analyze previously published microarray data are in high demand. Results EzArray is a web-based Affymetrix expression array data management and analysis system for researchers who need to organize microarray data efficiently and get data analyzed instantly. EzArray organizes microarray data into projects that can be analyzed online with predefined or custom procedures. EzArray performs data preprocessing and detection of differentially expressed genes with statistical methods. All analysis procedures are optimized and highly automated so that even novice users with limited pre-knowledge of microarray data analysis can complete initial analysis quickly. Since all input files, analysis parameters, and executed scripts can be downloaded, EzArray provides maximum reproducibility for each analysis. In addition, EzArray integrates with Gene Expression Omnibus (GEO) and allows instantaneous re-analysis of published array data. Conclusion EzArray is a novel Affymetrix expression array data analysis and sharing system. EzArray provides easy-to-use tools for re-analyzing published microarray data and will help both novice and experienced users perform initial analysis of their microarray data from the location of data storage. We believe EzArray will be a useful system for facilities with microarray services and laboratories with multiple members involved in microarray data analysis. EzArray is freely available from . PMID:18218103
Kilaru, Varun; Barfield, Richard T; Schroeder, James W; Smith, Alicia K
2012-01-01
Recent evidence suggests that DNA methylation changes may underlie numerous complex traits and diseases. The advent of commercial, array-based methods to interrogate DNA methylation has led to a profusion of epigenetic studies in the literature. Array-based methods, such as the popular Illumina GoldenGate and Infinium platforms, estimate the proportion of DNA methylated at single-base resolution for thousands of CpG sites across the genome. These arrays generate enormous amounts of data, but few software resources exist for efficient and flexible analysis of these data. We developed a software package called MethLAB (http://genetics.emory.edu/conneely/MethLAB) using R, an open source statistical language that can be edited to suit the needs of the user. MethLAB features a graphical user interface (GUI) with a menu-driven format designed to efficiently read in and manipulate array-based methylation data in a user-friendly manner. MethLAB tests for association between methylation and relevant phenotypes by fitting a separate linear model for each CpG site. These models can incorporate both continuous and categorical phenotypes and covariates, as well as fixed or random batch or chip effects. MethLAB accounts for multiple testing by controlling the false discovery rate (FDR) at a user-specified level. Standard output includes a spreadsheet-ready text file and an array of publication-quality figures. Considering the growing interest in and availability of DNA methylation data, there is a great need for user-friendly open source analytical tools. With MethLAB, we present a timely resource that will allow users with no programming experience to implement flexible and powerful analyses of DNA methylation data. PMID:22430798
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandya, Shwetang N., E-mail: pandya.shwetang@LHD.nifs.ac.jp; Sano, Ryuichi; Peterson, Byron J.
An Infrared imaging Video Bolometer (IRVB) diagnostic is currently being used in the Large Helical Device (LHD) for studying the localization of radiation structures near the magnetic island and helical divertor X-points during plasma detachment and for 3D tomography. This research demands high signal to noise ratio (SNR) and sensitivity to improve the temporal resolution for studying the evolution of radiation structures during plasma detachment and a wide IRVB field of view (FoV) for tomography. Introduction of an infrared periscope allows achievement of a higher SNR and higher sensitivity, which in turn, permits a twofold improvement in the temporal resolutionmore » of the diagnostic. Higher SNR along with wide FoV is achieved simultaneously by reducing the separation of the IRVB detector (metal foil) from the bolometer's aperture and the LHD plasma. Altering the distances to meet the aforesaid requirements results in an increased separation between the foil and the IR camera. This leads to a degradation of the diagnostic performance in terms of its sensitivity by 1.5-fold. Using an infrared periscope to image the IRVB foil results in a 7.5-fold increase in the number of IR camera pixels imaging the foil. This improves the IRVB sensitivity which depends on the square root of the number of IR camera pixels being averaged per bolometer channel. Despite the slower f-number (f/# = 1.35) and reduced transmission (τ{sub 0} = 89%, due to an increased number of lens elements) for the periscope, the diagnostic with an infrared periscope operational on LHD has improved in terms of sensitivity and SNR by a factor of 1.4 and 4.5, respectively, as compared to the original diagnostic without a periscope (i.e., IRVB foil being directly imaged by the IR camera through conventional optics). The bolometer's field of view has also increased by two times. The paper discusses these improvements in apt details.« less
Diffusion-Cooled Tantalum Hot-Electron Bolometer Mixers
NASA Technical Reports Server (NTRS)
Skalare, Anders; McGrath, William; Bumble, Bruce; LeDuc, Henry
2004-01-01
A batch of experimental diffusion-cooled hot-electron bolometers (HEBs), suitable for use as mixers having input frequencies in the terahertz range and output frequencies up to about a gigahertz, exploit the superconducting/normal-conducting transition in a thin strip of tantalum. The design and operation of these HEB mixers are based on mostly the same principles as those of a prior HEB mixer that exploited the superconducting/normal- conducting transition in a thin strip of niobium and that was described elsewhere.
NASA Astrophysics Data System (ADS)
Bhardwaj, Jyotirmoy; Gupta, Karunesh K.; Khatri, Punit
2018-03-01
New concepts and techniques are replacing traditional methods of water quality parameters measurement systems. This paper proposed a new way of potable water quality assessment in distribution network using Multi Sensor Array (MSA). Extensive research suggests that following parameters i.e. pH, Dissolved Oxygen (D.O.), Conductivity, Oxygen Reduction Potential (ORP), Temperature and Salinity are most suitable to detect overall quality of potable water. Commonly MSA is not an integrated sensor array on some substrate, but rather comprises a set of individual sensors measuring simultaneously different water parameters all together. Based on research, a MSA has been developed followed by signal conditioning unit and finally, an algorithm for easy user interfacing. A dedicated part of this paper also discusses the platform design and significant results. The Objective of this proposed research is to provide simple, efficient, cost effective and socially acceptable means to detect and analyse water bodies regularly and automatically.
Next decade in infrared detectors
NASA Astrophysics Data System (ADS)
Rogalski, A.
2017-10-01
Fundamental and technological issues associated with the development and exploitation of the most advanced infrared technologies is discussed. In these classes of detectors both photon and thermal detectors are considered. Special attention is directed to HgCdTe ternary alloys, type II superlattices (T2SLs), barrier detectors, quantum wells, extrinsic detectors, and uncooled thermal bolometers. The sophisticated physics associated with the antimonide-based bandgap engineering will give a new impact and interest in development of infrared detector structures. Important advantage of T2SLs is the high quality, high uniformity and stable nature of the material. In general, III-V semiconductors are more robust than their II-VI counterparts due to stronger, less ionic chemical bonding. As a result, III-V-based FPAs excel in operability, spatial uniformity, temporal stability, scalability, producibility, and affordability - the so-called "ibility" advantages. In well established uncooled imaging, microbolometer arrays are clearly the most used technology. The microbolometer detectors are now produced in larger volumes than all other IR array technologies together. Present state-of-the-art microbolometers are based on polycrystalline or amorphous materials, typically vanadium oxide (VOx) or amorphous silicon (a-Si), with only modest temperature sensitivity and noise properties. Basic efforts today are mainly focused on pixel reduction and performance enhancement.
8-beam local oscillator array at 47 THz generated by a phase grating and a quantum cascade laser
Mirzaei, B.; Silva, J. R. G.; Hayton, D.; ...
2017-11-13
We present an 8-beam local oscillator (LO) for the astronomically significant [OI] line at 4.7 THz. The beams are generated using a quantum cascade laser (QCL) in combination with a Fourier phase grating. The grating is fully characterized using a third order distributed feedback (DFB) QCL with a single mode emission at 4.7 THz as the input. The measured diffraction efficiency of 74.3% is in an excellent agreement with the calculated result of 75.4% using a 3D simulation. We show that the power distribution among the diffracted beams is uniform enough for pumping an array receiver. To validate the gratingmore » bandwidth, we apply a far-infrared (FIR) gas laser emission at 5.3 THz as the input and find a very similar performance in terms of efficiency, power distribution, and spatial configuration of the diffracted beams. Both results represent the highest operating frequencies of THz phase gratings reported in the literature. By injecting one of the eight diffracted 4.7 THz beams into a superconducting hot electron bolometer (HEB) mixer, we find that the coupled power, taking the optical loss into account, is in consistency with the QCL power value.« less
Developments in Time-Division Multiplexing of X-ray Transition-Edge Sensors
NASA Astrophysics Data System (ADS)
Doriese, W. B.; Morgan, K. M.; Bennett, D. A.; Denison, E. V.; Fitzgerald, C. P.; Fowler, J. W.; Gard, J. D.; Hays-Wehle, J. P.; Hilton, G. C.; Irwin, K. D.; Joe, Y. I.; Mates, J. A. B.; O'Neil, G. C.; Reintsema, C. D.; Robbins, N. O.; Schmidt, D. R.; Swetz, D. S.; Tatsuno, H.; Vale, L. R.; Ullom, J. N.
2016-07-01
Time-division multiplexing (TDM) is a mature scheme for the readout of arrays of transition-edge sensors (TESs). TDM is based on superconducting-quantum-interference-device (SQUID) current amplifiers. Multiple spectrometers based on gamma-ray and X-ray microcalorimeters have been operated with TDM readout, each at the scale of 200 sensors per spectrometer, as have several astronomical cameras with thousands of sub-mm or microwave bolometers. Here we present the details of two different versions of our TDM system designed to read out X-ray TESs. The first has been field-deployed in two 160-sensor (8 columns × 20 rows) spectrometers and four 240-sensor (8 columns × 30 rows) spectrometers. It has a three-SQUID-stage architecture, switches rows every 320 ns, and has total readout noise of 0.41 μ Φ 0 / surd Hz. The second, which is presently under development, has a two-SQUID-stage architecture, switches rows every 160 ns, and has total readout noise of 0.19 μ Φ 0 / surd Hz. Both quoted noise values are non-multiplexed and referred to the first-stage SQUID. In a demonstration of this new architecture, a multiplexed 1-column × 32-row array of NIST TESs achieved average energy resolution of 2.55± 0.01 eV at 6 keV.
Preparing ZEUS-2 for Observing Run at the APEX Telescope
NASA Astrophysics Data System (ADS)
Dahlin, Patrick; Vishwas, Amit; Nikola, Thomas; Stacey, Gordon J.
2017-01-01
ZEUS-2 is a direct detection grating spectrometer that was designed to maximize sensitivity for the detection of the far-infrared fine-structure lines from distant star forming galaxies as they are redshifted into the short submillimeter windows. ZEUS-2 employs two NIST TES bolometer arrays as its detector: one tuned to 400 μm and the other that consists of two sub-arrays, one tuned to 215 μm and the other tuned to 645 μm. Therefore, by placing bandpass filters directly above the detector ZEUS-2 can address four telluric windows (200 μm, 350 μm, 450 μm, and 650 μm) simultaneously on extended objects, and two windows (200 and 650 μm, or 350 and 450 μm) simultaneously on point sources. ZEUS-2 has now been deployed four times on the APEX telescope in Chile and demonstrated background limited performance both at 350 and 450 μm. As part of my NSF REU experience at Cornell in the summer of 2016, I helped with testing of ZEUS-2 in the lab and improving components for its use on the telescope. This poster will cover the principles of the ZEUS-2 instrument and some of the recent scientific results.
NASA Technical Reports Server (NTRS)
Beyer, A. D.; Kenyon, M. E.; Echternach, P. M.; Chui, T.; Eom, B.-H.; Day, P. K.; Bock, J. J.; Holmes, W.A.; Bradford, C. M.
2011-01-01
We report progress in fabricating ultra-sensitive superconducting transition-edge sensors (TESs) for BLISS. BLISS is a suite of grating spectrometers covering 35-433 micron with R approx. 700 cooled to 50 mK that is proposed to fly on the Japanese space telescope SPICA. The detector arrays for BLISS are TES bolometers readout with a time domain SQUID multiplexer. The required noise equivalent power (NEP) for BLISS is NEP = 10(exp -19) W/Hz(exp 1/2) with an ultimate goal of NEP= 5 x 10(exp -20) W/Hz(exp 1/2) to achieve background limited noise performance. The required and goal response times are tau = 150 ms and tau = 50ms respectively to achieve the NEP at the required and goal optical chop frequency 1-5 Hz. We measured prototype BLISS arrays and have achieved NEP = 6 x 10(exp -18) W/Hz(exp 1/2) and tau = 1.4 ms with a Ti TES (T(sub C) = 565 mK) and NEP approx. 2.5 x 10(exp -19) W/Hz(exp 1/2) and tau approximates 4.5 ms with an Ir TES (T(sub C) = 130 mK). Dark power for these tests is estimated at 1-5 fW.
MgB2 Thin-Film Bolometer for Applications in Far-Infrared Instruments on Future Planetary Missions
NASA Technical Reports Server (NTRS)
Lakew, B.; Aslam, S.; Brasunas, J.; Cao, N.; Costen, N.; La, A.; Stevenson, T.; Waczynski, A.
2012-01-01
A SiN membrane based MgB2 thin-film bolometer, with a non-optimized absorber, has been fabricated that shows an electrical noise equivalent power of 256 fW/square root Hz operating at 30 Hz in the 8.5 - 12.35 micron spectral bandpass. This value corresponds to an electrical specific detectivity of 7.6 x 10(exp 10) cm square root Hz/W. The bolometer shows a measured blackbody (optical) specific detectivity of 8.8 x 10(exp 9) cm square root Hz/W, with a responsivity of 701.5 kV/W and a first-order time constant of 5.2 ms. It is predicted that with the inclusion of a gold black absorber that a blackbody specific detectivity of 6.4 x 10(exp 10) cm/square root Hz/W at an operational frequency of 10 Hz, can be realized for integration into future planetary exploration instrumentation where high sensitivity is required in the 17 - 250 micron spectral wavelength range.
Focal plane optics in far-infrared and submillimeter astronomy
NASA Astrophysics Data System (ADS)
Hildebrand, R. H.
1985-10-01
The construction of airborne observatories, high mountain-top observatories, and space observatories designed especially for infrared and submillimeter astronomy has opened fields of research requiring new optical techniques. A typical far-IR photometric study involves measurement of a continuum spectrum in several passbands between approx 30 microns and 1000 microns and diffraction-limited mapping of the source. At these wavelengths, diffraction effects strongly influence the design of the field optics systems which couple the incoming flux to the radiation sensors (cold bolometers). The Airy diffraction disk for a typical telescope at submillimeter wavelengths approx 100 microns-1000 microns is many millimeters in diameter; the size of the field stop must be comparable. The dilute radiation at the stop is fed through a Winston nonimaging concentrator to a small cavity containing the bolometer. The purpose of this paper is to review the principles and techniques of infrared field optics systems, including spectral filters, concentrators, cavities, and bolometers (as optical elements), with emphasis on photometric systems for wavelengths longer than 60 microns.
Focal plane optics in far-infrared and submillimeter astronomy
NASA Technical Reports Server (NTRS)
Hildebrand, R. H.
1986-01-01
The construction of airborne observatories, high mountain-top observatories, and space observatories designed especially for infrared and submillimeter astronomy has opened fields of research requiring new optical techniques. A typical far-IR photometric study involves measurement of a continuum spectrum in several passbands between approx 30 microns and 1000 microns and diffraction-limited mapping of the source. At these wavelengths, diffraction effects strongly influence the design of the field optics systems which couple the incoming flux to the radiation sensors (cold bolometers). The Airy diffraction disk for a typical telescope at submillimeter wavelengths approx 100 microns-1000 microns is many millimeters in diameter; the size of the field stop must be comparable. The dilute radiation at the stop is fed through a Winston nonimaging concentrator to a small cavity containing the bolometer. The purpose of this paper is to review the principles and techniques of infrared field optics systems, including spectral filters, concentrators, cavities, and bolometers (as optical elements), with emphasis on photometric systems for wavelengths longer than 60 microns.
Focal plane optics in far-infrared and submillimeter astronomy
NASA Astrophysics Data System (ADS)
Hildebrand, R. H.
1986-02-01
The construction of airborne observatories, high mountain-top observatories, and space observatories designed especially for infrared and submillimeter astronomy has opened fields of research requiring new optical techniques. A typical far-IR photometric study involves measurement of a continuum spectrum in several passbands between approx 30 microns and 1000 microns and diffraction-limited mapping of the source. At these wavelengths, diffraction effects strongly influence the design of the field optics systems which couple the incoming flux to the radiation sensors (cold bolometers). The Airy diffraction disk for a typical telescope at submillimeter wavelengths approx 100 microns-1000 microns is many millimeters in diameter; the size of the field stop must be comparable. The dilute radiation at the stop is fed through a Winston nonimaging concentrator to a small cavity containing the bolometer. The purpose of this paper is to review the principles and techniques of infrared field optics systems, including spectral filters, concentrators, cavities, and bolometers (as optical elements), with emphasis on photometric systems for wavelengths longer than 60 microns.
Focal plane optics in far-infrared and submillimeter astronomy
NASA Technical Reports Server (NTRS)
Hildebrand, R. H.
1985-01-01
The construction of airborne observatories, high mountain-top observatories, and space observatories designed especially for infrared and submillimeter astronomy has opened fields of research requiring new optical techniques. A typical far-IR photometric study involves measurement of a continuum spectrum in several passbands between approx 30 microns and 1000 microns and diffraction-limited mapping of the source. At these wavelengths, diffraction effects strongly influence the design of the field optics systems which couple the incoming flux to the radiation sensors (cold bolometers). The Airy diffraction disk for a typical telescope at submillimeter wavelengths approx 100 microns-1000 microns is many millimeters in diameter; the size of the field stop must be comparable. The dilute radiation at the stop is fed through a Winston nonimaging concentrator to a small cavity containing the bolometer. The purpose of this paper is to review the principles and techniques of infrared field optics systems, including spectral filters, concentrators, cavities, and bolometers (as optical elements), with emphasis on photometric systems for wavelengths longer than 60 microns.
A Low-Noise NbTiN Hot Electron Bolometer Mixer
NASA Technical Reports Server (NTRS)
Tong, C. Edward; Stern, Jeffrey; Megerian, Krikor; LeDuc, Henry; Sridharan, T. K.; Gibson, Hugh; Blundell, Raymond
2001-01-01
Hot electron bolometer (HEB) mixer elements, based on niobium titanium nitride (NbTiN) thin film technology, have been fabricated on crystalline quartz substrates over a 20 nm thick AlN buffer layer. The film was patterned by optical lithography, yielding bolometer elements that measure about 1 micrometer long and between 2 and 12 micrometers wide. These mixer chips were mounted in a fixed-tuned waveguide mixer block, and tested in the 600 and 800 GHz frequency range. The 3-dB output bandwidth of these mixers was determined to be about 2.5 GHz and we measured a receiver noise temperature of 270 K at 630 GHz using an intermediate frequency of 1.5 GHz. The receiver has excellent amplitude stability and the noise temperature measurements are highly repeatable. An 800 GHz receiver incorporating one of these mixer chips has recently been installed at the Sub-Millimeter Telescope in Arizona for field test and for astronomical observations.
Rejection of randomly coinciding 2ν2β events in ZnMoO4 scintillating bolometers
NASA Astrophysics Data System (ADS)
Chernyak, D. M.; Danevich, F. A.; Giuliani, A.; Mancuso, M.; Nones, C.; Olivieri, E.; Tenconi, M.; Tretyak, V. I.
2014-01-01
Random coincidence of 2ν2β decay events could be one of the main sources of background for 0ν2β decay in cryogenic bolometers due to their poor time resolution. Pulse-shape discrimination by using front edge analysis, the mean-time and χ2 methods was applied to discriminate randomly coinciding 2ν2β events in ZnMoO4 cryogenic scintillating bolometers. The background can be effectively rejected on the level of 99% by the mean-time analysis of heat signals with the rise time about 14 ms and the signal-to-noise ratio 900, and on the level of 98% for the light signals with 3 ms rise time and signal-to-noise ratio of 30 (under a requirement to detect 95% of single events). Importance of the signal-to-noise ratio, correct finding of the signal start and choice of an appropriate sampling frequency are discussed.
NASA Astrophysics Data System (ADS)
Graham, Jeffrey
2005-10-01
A bolometer with microsecond scale response time is under construction for the Caltech spheromak experiment to measure radiation from a ˜20 μs duration plasma discharge emitting ˜10^2---10^3 kW/m^2. A gold film several micrometers thick absorbs the radiation, heats up, and the consequent change in resistance can be measured. The film itself is vacuum deposited upon a glass slide. Several geometries for the film are under consideration to optimize the amount of radiation absorbed, the response time and the signal-to-noise ratio. We measure the change in voltage across the film for a known current driven through it; a square pulse (3---30A, ˜20 μs) is used to avoid Joule heating. Results from prototypes tested with a UV flashlamp will be presented. After optimizing the bolometer design, the final vacuum-compatible diagnostic would consist of a plasma-facing bolometer and a reference in a camera obscura. This device could provide a design for fast resistive bolometry.
Absorbed Power Minimization in Cellular Users with Circular Antenna Arrays
NASA Astrophysics Data System (ADS)
Christofilakis, Vasilis; Votis, Constantinos; Tatsis, Giorgos; Raptis, Vasilis; Kostarakis, Panos
2010-01-01
Nowadays electromagnetic pollution of non ionizing radiation generated by cellular phones concerns millions of people. In this paper the use of circular antenna array as a means of minimizing the absorbed power by cellular phone users is introduced. In particular, the different characteristics of radiation patterns produced by a helical conventional antenna used in mobile phones operating at 900 MHz and those produced by a circular antenna array, hypothetically used in the same mobile phones, are in detail examined. Furthermore, the percentage of decrement of the power absorbed in the head as a function of direction of arrival is estimated for the circular antenna array.
ArrayInitiative - a tool that simplifies creating custom Affymetrix CDFs
2011-01-01
Background Probes on a microarray represent a frozen view of a genome and are quickly outdated when new sequencing studies extend our knowledge, resulting in significant measurement error when analyzing any microarray experiment. There are several bioinformatics approaches to improve probe assignments, but without in-house programming expertise, standardizing these custom array specifications as a usable file (e.g. as Affymetrix CDFs) is difficult, owing mostly to the complexity of the specification file format. However, without correctly standardized files there is a significant barrier for testing competing analysis approaches since this file is one of the required inputs for many commonly used algorithms. The need to test combinations of probe assignments and analysis algorithms led us to develop ArrayInitiative, a tool for creating and managing custom array specifications. Results ArrayInitiative is a standalone, cross-platform, rich client desktop application for creating correctly formatted, custom versions of manufacturer-provided (default) array specifications, requiring only minimal knowledge of the array specification rules and file formats. Users can import default array specifications, import probe sequences for a default array specification, design and import a custom array specification, export any array specification to multiple output formats, export the probe sequences for any array specification and browse high-level information about the microarray, such as version and number of probes. The initial release of ArrayInitiative supports the Affymetrix 3' IVT expression arrays we currently analyze, but as an open source application, we hope that others will contribute modules for other platforms. Conclusions ArrayInitiative allows researchers to create new array specifications, in a standard format, based upon their own requirements. This makes it easier to test competing design and analysis strategies that depend on probe definitions. Since the custom array specifications are easily exported to the manufacturer's standard format, researchers can analyze these customized microarray experiments using established software tools, such as those available in Bioconductor. PMID:21548938
Prenton, Sarah; Kenney, Laurence P; Stapleton, Claire; Cooper, Glen; Reeves, Mark L; Heller, Ben W; Sobuh, Mohammad; Barker, Anthony T; Healey, Jamie; Good, Timothy R; Thies, Sibylle B; Howard, David; Williamson, Tracey
2014-10-01
To investigate the feasibility of unsupervised community use of an array-based automated setup functional electrical stimulator for current foot-drop functional electrical stimulation (FES) users. Feasibility study. Gait laboratory and community use. Participants (N=7) with diagnosis of unilateral foot-drop of central neurologic origin (>6mo) who were regular users of a foot-drop FES system (>3mo). Array-based automated setup FES system for foot-drop (ShefStim). Logged usage, logged automated setup times for the array-based automated setup FES system and diary recording of problems experienced, all collected in the community environment. Walking speed, ankle angles at initial contact, foot clearance during swing, and the Quebec User Evaluation of Satisfaction with Assistive Technology version 2.0 (QUEST version 2.0) questionnaire, all collected in the gait laboratory. All participants were able to use the array-based automated setup FES system. Total setup time took longer than participants' own FES systems, and automated setup time was longer than in a previous study of a similar system. Some problems were experienced, but overall, participants were as satisfied with this system as their own FES system. The increase in walking speed (N=7) relative to no stimulation was comparable between both systems, and appropriate ankle angles at initial contact (N=7) and foot clearance during swing (n=5) were greater with the array-based automated setup FES system. This study demonstrates that an array-based automated setup FES system for foot-drop can be successfully used unsupervised. Despite setup's taking longer and some problems, users are satisfied with the system and it would appear as effective, if not better, at addressing the foot-drop impairment. Further product development of this unique system, followed by a larger-scale and longer-term study, is required before firm conclusions about its efficacy can be reached. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Armengaud, E.; Augier, C.; Barabash, A. S.; Beeman, J. W.; Bekker, T. B.; Bellini, F.; Benoît, A.; Bergé, L.; Bergmann, T.; Billard, J.; Boiko, R. S.; Broniatowski, A.; Brudanin, V.; Camus, P.; Capelli, S.; Cardani, L.; Casali, N.; Cazes, A.; Chapellier, M.; Charlieux, F.; Chernyak, D. M.; de Combarieu, M.; Coron, N.; Danevich, F. A.; Dafinei, I.; Jesus, M. De; Devoyon, L.; Domizio, S. Di; Dumoulin, L.; Eitel, K.; Enss, C.; Ferroni, F.; Fleischmann, A.; Foerster, N.; Gascon, J.; Gastaldo, L.; Gironi, L.; Giuliani, A.; Grigorieva, V. D.; Gros, M.; Hehn, L.; Hervé, S.; Humbert, V.; Ivannikova, N. V.; Ivanov, I. M.; Jin, Y.; Juillard, A.; Kleifges, M.; Kobychev, V. V.; Konovalov, S. I.; Koskas, F.; Kozlov, V.; Kraus, H.; Kudryavtsev, V. A.; Laubenstein, M.; Sueur, H. Le; Loidl, M.; Magnier, P.; Makarov, E. P.; Mancuso, M.; de Marcillac, P.; Marnieros, S.; Marrache-Kikuchi, C.; Nagorny, S.; Navick, X.-F.; Nikolaichuk, M. O.; Nones, C.; Novati, V.; Olivieri, E.; Pagnanini, L.; Pari, P.; Pattavina, L.; Pavan, M.; Paul, B.; Penichot, Y.; Pessina, G.; Piperno, G.; Pirro, S.; Plantevin, O.; Poda, D. V.; Queguiner, E.; Redon, T.; Rodrigues, M.; Rozov, S.; Rusconi, C.; Sanglard, V.; Schäffner, K.; Scorza, S.; Shlegel, V. N.; Siebenborn, B.; Strazzer, O.; Tcherniakhovski, D.; Tomei, C.; Tretyak, V. I.; Umatov, V. I.; Vagneron, L.; Vasiliev, Ya. V.; Velázquez, M.; Vignati, M.; Weber, M.; Yakushev, E.; Zolotarova, A. S.
2017-11-01
This paper reports on the development of a technology involving ^{100}Mo-enriched scintillating bolometers, compatible with the goals of CUPID, a proposed next-generation bolometric experiment to search for neutrinoless double-beta decay. Large mass (˜ 1 kg), high optical quality, radiopure ^{100}Mo-containing zinc and lithium molybdate crystals have been produced and used to develop high performance single detector modules based on 0.2-0.4 kg scintillating bolometers. In particular, the energy resolution of the lithium molybdate detectors near the Q-value of the double-beta transition of ^{100}Mo (3034 keV) is 4-6 keV FWHM. The rejection of the α -induced dominant background above 2.6 MeV is better than 8σ . Less than 10 μ Bq/kg activity of ^{232}Th (^{228}Th) and ^{226}Ra in the crystals is ensured by boule recrystallization. The potential of ^{100}Mo-enriched scintillating bolometers to perform high sensitivity double-beta decay searches has been demonstrated with only 10 kg× d exposure: the two neutrino double-beta decay half-life of ^{100}Mo has been measured with the up-to-date highest accuracy as T_{1/2} = [6.90 ± 0.15(stat.) ± 0.37(syst.)] × 10^{18} years. Both crystallization and detector technologies favor lithium molybdate, which has been selected for the ongoing construction of the CUPID-0/Mo demonstrator, containing several kg of ^{100}Mo.
Development of imaging bolometers for magnetic fusion reactors (invited)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Byron J.; Parchamy, Homaira; Ashikawa, Naoko
2008-10-15
Imaging bolometers utilize an infrared (IR) video camera to measure the change in temperature of a thin foil exposed to the plasma radiation, thereby avoiding the risks of conventional resistive bolometers related to electric cabling and vacuum feedthroughs in a reactor environment. A prototype of the IR imaging video bolometer (IRVB) has been installed and operated on the JT-60U tokamak demonstrating its applicability to a reactor environment and its ability to provide two-dimensional measurements of the radiation emissivity in a poloidal cross section. In this paper we review this development and present the first results of an upgraded version ofmore » this IRVB on JT-60U. This upgrade utilizes a state-of-the-art IR camera (FLIR/Indigo Phoenix-InSb) (3-5 {mu}m, 256x360 pixels, 345 Hz, 11 mK) mounted in a neutron/gamma/magnetic shield behind a 3.6 m IR periscope consisting of CaF{sub 2} optics and an aluminum mirror. The IRVB foil is 7 cmx9 cmx5 {mu}m tantalum. A noise equivalent power density of 300 {mu}W/cm{sup 2} is achieved with 40x24 channels and a time response of 10 ms or 23 {mu}W/cm{sup 2} for 16x12 channels and a time response of 33 ms, which is 30 times better than the previous version of the IRVB on JT-60U.« less
Radiation patterns of multimode feed-horn-coupled bolometers for FAR-IR space applications
NASA Astrophysics Data System (ADS)
Kalinauskaite, Eimante; Murphy, J. Anthony; McAuley, Ian; Trappe, Neal A.; McCarthy, Darragh N.; Bracken, Colm P.; Doherty, Stephen; Gradziel, Marcin L.; O'Sullivan, Créidhe; Wilson, Daniel; Peacocke, Tully; Maffei, Bruno; Lamarre, Jean-Michel; Ade, Peter A. R.; Savini, Giorgio
2017-02-01
A multimode horn differs from a single mode horn in that it has a larger sized waveguide feeding it. Multimode horns can therefore be utilized as high efficiency feeds for bolometric detectors, providing increased throughput and sensitivity over single mode feeds, while also ensuring good control of the beam pattern characteristics. Although a cavity mounted bolometer can be modelled as a perfect black body radiator (using reciprocity in order to calculate beam patterns), nevertheless, this is an approximation. In this paper we present how this approach can be improved to actually include the cavity coupled bolometer, now modelled as a thin absorbing film. Generally, this is a big challenge for finite element software, in that the structures are typically electrically large. However, the radiation pattern of multimode horns can be more efficiently simulated using mode matching, typically with smooth-walled waveguide modes as the basis and computing an overall scattering matrix for the horn-waveguide-cavity system. Another issue on the optical efficiency of the detectors is the presence of any free space gaps, through which power can escape. This is best dealt with treating the system as an absorber. Appropriate reflection and transmission matrices can be determined for the cavity using the natural eigenfields of the bolometer cavity system. We discuss how the approach can be applied to proposed terahertz systems, and also present results on how the approach was applied to improve beam pattern predictions on the sky for the multi-mode HFI 857GHz channel on Planck.
NASA Astrophysics Data System (ADS)
Buşe, G.; Giuliani, A.; de Marcillac, P.; Marnieros, S.; Nones, C.; Novati, V.; Olivieri, E.; Poda, D. V.; Redon, T.; Sand, J.-B.; Veber, P.; Velázquez, M.; Zolotarova, A. S.
2018-05-01
A new R&D on lithium molybdate scintillators has begun within a project CLYMENE (Czochralski growth of Li2MoO4 crYstals for the scintillating boloMeters used in the rare EveNts sEarches). One of the main goals of the CLYMENE is a realization of a Li2MoO4 crystal growth line to be complementary to the one recently developed by LUMINEU in view of a mass production capacity for CUPID, a next-generation tonne-scale bolometric experiment to search for neutrinoless double-beta decay. In the present paper we report the investigation of performance and radiopurity of 158-g and 13.5-g scintillating bolometers based on a first large-mass (230 g) Li2MoO4 crystal scintillator developed within the CLYMENE project. In particular, a good energy resolution (2-7 keV FWHM in the energy range of 0.2-5 MeV), one of the highest light yield (0.97 keV/MeV) amongst Li2MoO4 scintillating bolometers, an efficient alpha particles discrimination (10 σ) and potentially low internal radioactive contamination (below 0.2-0.3 mBq/kg of U/Th, but 1.4 mBq/kg of 210Po) demonstrate prospects of the CLYMENE in the development of high quality and radiopure Li2MoO4 scintillators for CUPID.
A search for neutrinoless double beta decay of tellurium-130
NASA Astrophysics Data System (ADS)
Bryant, Adam Douglas
This dissertation describes an experimental search for neutrinoless double beta (0nubetabeta) decay of 130Te. An observation of 0nubetabeta decay would establish that neutrinos are Majorana fermions and would constrain the neutrino mass scale. The data analyzed were collected by two bolometric experiments: CUORICINO and an R&D experiment for CUORE known as the Three Towers Test. Both experiments utilized arrays of TeO 2 crystals operated as bolometers at ˜10 mK in a dilution refrigerator. The bolometers measured the energy deposited by particle interactions in the crystals by recording the induced change in crystal temperature. Between the two experiments, there were 81 TeO2 bolometers used in the analysis, each of which was an independent detector of nuclear decays as well as a source of 130Te. The experiments were conducted underground at a depth of about 3300 meters water equivalent in Hall A of the Laboratori Nazionali del Gran Sasso in Assergi, Italy, in order to shield the detectors from cosmic rays. The data analyzed represent an exposure of 19.9 kg · y of 130Te (18.6 kg · y from CUORICINO and 1.3 kg · y from the Three Towers Test). In addition to the combined analysis of the two experiments, an analysis of CUORICINO data alone is presented in order to compare with an independent analysis being carried out by collaborators at the University of Milano-Bicocca. No signal due to 0nubetabeta decay is observed, and therefore a limit on the partial half-life for the decay is set. From a simultaneous fit to the 81 independent detectors, the rate of 0nubetabeta decay of 130Te is measured to be Gamma0nubetabeta( 130Te) = (-0.6+/-1.4 (stat.) +/- 0.4 (syst.)) x 10-25 y-1, which corresponds to a lower limit on the partial half-life for 0nubetabeta decay of 130Te of T0nbb1/2 (130Te) > 3.0x1024 y (90% C.L.). Converting the half-life limit to an upper limit on the effective Majorana neutrino mass, mbetabeta, using a set of recent nuclear matrix element calculations results in mbetabeta < 0.25--0.68 eV (90% C.L.), where the range reflects the spread of calculated nuclear matrix element values. These results disagree by at least 1.2sigma, depending on the nuclear matrix element calculation, with a claim of observation of 0nubetabeta decay of 76Ge, assuming that the dominant mechanism driving 0nubetabeta decay is the exchange of light Majorana neutrinos.
Space station WP-04 power system. Volume 2: Study results
NASA Technical Reports Server (NTRS)
Hallinan, G. J.
1987-01-01
Results of the phase B study contract for the definition of the space station Electric Power System (EPS) are presented in detail along with backup information and supporting data. Systems analysis and trades, preliminary design, advanced development, customer accommodations, operations planning, product assurance, and design and development phase planning are addressed. The station design is a hybrid approach which provides user power of 25 kWe from the photovoltaic subsystem and 50 kWe from the solar dynamic subsystem. The electric power is distributed to users as a utility service; single phase at a frequency of 20 kHz and voltage of 440VAC. The solar array NiH2 batteries of the photovoltaic subsystem are based on commonality to those used on the co-orbiting and solar platforms.
Exploring New Methods of Displaying Bit-Level Quality and Other Flags for MODIS Data
NASA Technical Reports Server (NTRS)
Khalsa, Siri Jodha Singh; Weaver, Ron
2003-01-01
The NASA Distributed Active Archive Center (DAAC) at the National Snow and Ice Data Center (NSIDC) archives and distributes snow and sea ice products derived from the MODerate resolution Imaging Spectroradiometer (MODIS) on board NASA's Terra and Aqua satellites. All MODIS standard products are in the Earth Observing System version of the Hierarchal Data Format (HDF-EOS). The MODIS science team has packed a wealth of information into each HDF-EOS file. In addition to the science data arrays containing the geophysical product, there are often pixel-level Quality Assurance arrays which are important for understanding and interpreting the science data. Currently, researchers are limited in their ability to access and decode information stored as individual bits in many of the MODIS science products. Commercial and public domain utilities give users access, in varying degrees, to the elements inside MODIS HDF-EOS files. However, when attempting to visualize the data, users are confronted with the fact that many of the elements actually represent eight different 1-bit arrays packed into a single byte array. This project addressed the need for researchers to access bit-level information inside MODIS data files. In an previous NASA-funded project (ESDIS Prototype ID 50.0) we developed a visualization tool tailored to polar gridded HDF-EOS data set. This tool,called the Polar researchers to access, geolocate, visualize, and subset data that originate from different sources and have different spatial resolutions but which are placed on a common polar grid. The bit-level visualization function developed under this project was added to PHDIS, resulting in a versatile tool that serves a variety of needs. We call this the EOS Imaging Tool.
Launch of the I13-2 data beamline at the Diamond Light Source synchrotron
NASA Astrophysics Data System (ADS)
Bodey, A. J.; Rau, C.
2017-06-01
Users of the Diamond-Manchester Imaging Branchline I13-2 commonly spend many months analysing the large volumes of tomographic data generated in a single beamtime. This is due to the difficulties inherent in performing complicated, computationally-expensive analyses on large datasets with workstations of limited computing power. To improve productivity, a ‘data beamline’ was launched in January 2016. Users are scheduled for visits to the data beamline in the same way as for regular beamlines, with bookings made via the User Administration System and provision of financial support for travel and subsistence. Two high-performance graphics workstations were acquired, with sufficient RAM to enable simultaneous analysis of several tomographic volumes. Users are given high priority on Diamond’s central computing cluster for the duration of their visit, and if necessary, archived data are restored to a high-performance disk array. Within the first six months of operation, thirteen user visits were made, lasting an average of 4.5 days each. The I13-2 data beamline was the first to be launched at Diamond Light Source and, to the authors’ knowledge, the first to be formalised in this way at any synchrotron.
Head Mounted Display with a Roof Mirror Array Fold
NASA Technical Reports Server (NTRS)
Olczak, Eugene (Inventor)
2014-01-01
The present invention includes a head mounted display (HMD) worn by a user. The HMD includes a display projecting an image through an optical lens. The HMD also includes a one-dimensional retro reflective array receiving the image through the optical lens at a first angle with respect to the display and deflecting the image at a second angle different than the first angle with respect to the display. The one-dimensional retro reflective array reflects the image in order to project the image onto an eye of the user.
NASA Astrophysics Data System (ADS)
Chardin, G.
2000-03-01
Some of the most significant developments in cryogenic photodetectors are presented. In particular, the main characteristics of microbolometers involving Transition Edge- and NTD-sensors and offering resolutions of a few eV in the keV range, superconducting tunnel junction detectors with resolutions of the order of 10 eV or offering position sensitivity, and infrared bolometers with recent developments towards matrix detectors are discussed. Some of the recent achievements using large mass bolometers for gamma and neutron discriminating detectors, and future prospects of single photon detection in the far infrared using Single Electron Transistor devices are also presented.
A Study of Al-Mn Transition Edge Sensor Engineering for Stability
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, E. M.; et al.
2013-11-10
The stability of Al-Mn transition edge sensor (TES) bolometers is studied as we vary the engineered TES transition, heat capacity, and/or coupling between the heat capacity and TES. We present thermal structure measurements of each of the 39 designs tested. The data is accurately fit by a two-body bolometer model, which allows us to extract the basic TES parameters that affect device stability. We conclude that parameters affecting device stability can be engineered for optimal device operation, and present the model parameters extracted for the different TES designs.
A users evaluation of SAMIS. [Solar Array Manufacturing Industry Simulation
NASA Technical Reports Server (NTRS)
Grenon, L. A.; Coleman, M. G.
1981-01-01
SAMIS, the Solar Array Manufacturing Industry Simulation computer program was developed by Jet Propulsion Laboratories (JPL) to provide a method whereby manufacturers or potential manufacturers of photovoltaics could simulate a solar industry using their own particular approach. This paper analyzes the usefulness of SAMIS to a growing photovoltaic industry and clearly illustrates its limitations as viewed by an industrial user.
Design and Performance of the Multiplexed SQUID/TES Array at Ninety Gigahertz
NASA Astrophysics Data System (ADS)
Stanchfield, Sara; Ade, Peter; Aguirre, James; Brevik, Justus A.; Cho, Hsiao-Mei; Datta, Rahul; Devlin, Mark; Dicker, Simon R.; Dober, Bradley; Duff, Shannon M.; Egan, Dennis; Ford, Pam; Hilton, Gene; Hubmayr, Johannes; Irwin, Kent; Knowles, Kenda; Marganian, Paul; Mason, Brian Scott; Mates, John A. B.; McMahon, Jeff; Mello, Melinda; Mroczkowski, Tony; Romero, Charles; Sievers, Jonathon; Tucker, Carole; Vale, Leila R.; Vissers, Michael; White, Steven; Whitehead, Mark; Ullom, Joel; Young, Alexander
2018-01-01
We present the array performance and astronomical images from early science results from MUSTANG-2, a 90 GHz feedhorn-coupled, microwave SQUID-multiplexed TES bolometer array operating on the Robert C. Byrd Green Bank Telescope (GBT). MUSTANG-2 was installed on the GBT on December 2, 2016 and immediately began commissioning efforts, followed by science observations, which are expected to conclude June 2017. The feedhorn and waveguide-probe-coupled detector technology is a mature technology, which has been used on instrument including the South Pole Telescope, the Atacama Cosmology Telescope, and the Atacama B-mode Search telescope. The microwave SQUID readout system developed for MUSTANG-2 currently reads out 66 detectors with a single coaxial cable and will eventually allow thousands of detectors to be multiplexed. This microwave SQUID multiplexer combines the proven abilities of millimeterwave TES detectors with the multiplexing capabilities of KIDs with no degradation in noise performance of the detectors. Each multiplexing device is read out using warm electronics consisting of a commercially available ROACH board, a DAC/ADC card, and an Intermediate Frequency mixer circuit. The hardware was originally developed by the UC Berkeley Collaboration for Astronomy Signal Processing and Electronic Research (CASPER) group, whose primary goal is to develop scalable FPGA-based hardware with the flexibility to be used in a wide range of radio signal processing applications. MUSTANG-2 is the first on-sky instrument to use microwave SQUID multiplexing and is available as a shared-risk/PI instrument on the GBT. In MUSTANG-2's first season 7 separate proposals were awarded a total of 230 hours of telescope time.
The low radioactivity link of the CUORE experiment
NASA Astrophysics Data System (ADS)
Andreotti, E.; Arnaboldi, C.; Barucci, M.; Brofferio, C.; Cosmelli, C.; Calligaris, L.; Capelli, S.; Clemenza, M.; Maiano, C.; Pellicciari, M.; Pessina, G.; Pirro, S.
2009-09-01
CUORE will be an array of 988 TeO2 bolometers (5 × 5 × 5 cm3) held at about 10 mK. It will study the very rare double β decay process from 130Te. The electrical connections of the array to the room temperature electronics will consist in about 2000 wires. We will describe the design and characterization of the 3 interconnection sectors going from the detectors to the mixing chamber, the coldest stage at which the array is thermally and mechanically anchored, and from the mixing chamber to room temperature. The lower part consists of a set of 2.3 m long, 50 μm thick, Cu-insulator tapes having PEN (Polyethylene 2.6 Naphthalate) substrate, on which a pattern of copper tracks are etched. The differential layout pattern chosen allows obtaining a signal cross talk between adjacent channels of about 0.024%, together with a capacitance of about 26 pF/m and a resistance larger than 200 GΩ/m. On the top of the mixing chamber, Cu-Kapton boards are used to join the tapes to the second upward-going 2 m long links, implemented with twisted NbTi wires, interwoven in a NOMEX® texture. NbTi-NOMEX link features about 100 pF/m and negligible level of cross-talk. The radioactivity content of Cu-PEN tapes, Cu-Kapton boards, NbTi-NOMEX ribbons and connectors has been investigated and found to be compliant with the experimental requirements. A mechanical study has been done to quote the vibration transmission properties of the highly packaged tapes.
Technology Advances at the NRAO Green Bank Telescope
NASA Astrophysics Data System (ADS)
Lockman, Felix James
2015-08-01
The 100 meter diameter Green Bank Telescope, with its large frequency coverage, great sensitivity, all-sky tracking, and location at a protected, radio-quiet site, offers a unique platform for technological advances in astronomical instrumentation that can yield an immediate scientific payoff.MUSTANG-1.5 is a feedhorn-coupled bolometer array for 3mm that has recently been installed on the telescope. It has 64 pixels (expandable to 223) and offers sensitivity to angular scales from 9" to more than 3' over a band from 75 GHz to 105 GHz. Its capabilities for science at 3mm are complimentary to, and in some cases superior to, those offered by ALMA. MUSTANG-1.5 is a collaboration between UPenn., NIST, NRAO, and other institutions.ARGUS is a 16-pixel focal plane array for millimeter spectroscopy that will be in use on the GBT in 2015. The array architecture is designed as a scalable technology pathfinder for larger arrays, but by itself it will provide major capabilities for spectroscopy from 75-107 GHz with 8" angular resolution over a wide field-of-view. It is a collaboration between Stanford Univ., Caltech, JPL, Univ. Maryland, Univ. Miami, and NRAO.FLAG is a prototype phased array receiver operating at 21cm wavelength that is under development for the GBT. It will produce multiple beams over a wide field of view with a sensitivity competitive with that of single-pixel receivers, allowing rapid astronomical surveys. FLAG is a collaboration between BYU, WVU, and NRAO.Also under development is a mm-wave phased array receiver for the GBT, designed to operate near 90 GHz as a prototype for very large format phased array receivers in the 3mm band. It is a collaboration between UMass and BYU.VEGAS is the new spectrometer for the GBT, offering multiple configurations well matched to GBT receivers from 1 to 100 GHz and suitable for use with focal plane arrays. It is a collaboration between UCal (Berkeley) and NRAO.The new receivers and spectrometers create extremely big data sets during both observation and later processing. Studies are under way at the GBT of data-streaming methodologies and pipeline processing techniques to meet the challenges posed by this new generation of instrumentation.
Multichroic Antenna-Coupled Bolometers for CMB Polarization and Sub-mm Observations
NASA Astrophysics Data System (ADS)
Lee, Adrian
We propose to develop planar antenna-coupled superconducting bolometer arrays for observations at sub-millimeter to millimeter wavelengths. Our pixel architecture features a dual-polarization log-periodic antenna with a 4:1-bandwidth ratio, followed by a filter bank that divides the total bandwidth into several broad photometric bands. The advantages of this approach, compared with those using conventional single-color pixels, include a combination of greatly reduced focal-plane mass, higher array sensitivity, and a larger number of spectral bands. These advantages have the potential to greatly reduce the cost and/or increase the performance of NASA missions in the sub-millimeter to millimeter bands. For CMB polarization measurements, a wide frequency range of roughly 30 to 300 GHz is required to subtract galactic foregrounds. The multichroic architecture we propose enables a relatively low-cost 30-cm aperture space mission to have sufficient sensitivity to probe below the tensor-to-scalar ratio r = 0.01. For a larger aperture mission, such as the EPIC-IM concept, the proposed technology could reduce the focal-plane mass by a factor of 2-3, with great savings in required cryocooler performance and therefore cost. We have demonstrated the lens-coupled antenna concept in the POLARBEAR ground-based CMB polarization experiment now operating in Chile. That experiment uses a single-band planar antenna and produces excellent beam properties and optical efficiency. In the laboratory, we have measured two octaves of total bandwidth in the log-periodic sinuous antenna. We have built filter banks of 2, 3, and 7 bands with 4, 6, and 14 bolometers per pixel for two linear polarizations. Building on these accomplishments, the deliverables for the proposed work include: *Two pixel types that together cover the range from 30 to 300 GHz. The low-frequency pixel will have bands centered at 35, 50, and 80 GHz and the high frequency pixel will have bands centered at 120, 180, and 270 GHz. Both pixels will be built with filter banks that separate the incident radiation to three photometric (~ 30% fractional bandwidth) bands. *Improved efficiency at the high frequency range. Current pixels have high optical efficiency up to 150 GHz, but the efficiency drops with frequency. We will increase efficiency at the higher frequencies by improving our understanding of transmission-line, filter, and antenna losses. The antenna bandwidth will be extended at the high-frequency end by continuing the log-periodic antenna structure towards the center of the antenna. *A wide bandwidth anti-reflection coating for the dielectric lenses that can be mass produced at low or moderate cost. The multilayer coatings will be based on either molding the loaded epoxies that we have developed or by micromachining the surface of the silicon to obtain the required changes in index. This technology will be tested in the ground-based POLARBEAR experiment and is an excellent candidate for a balloon-borne experiment. We have assembled an experienced team that includes expertise in antenna design, RF superconducting circuits, microfabrication, and CMB observations. We will continue our collaboration with Gabriel Rebeiz at UCSD, an electromagnetics expert who did much of the foundational work on lens-coupled planar antennas. The rest of the team includes detector and CMB observation experts Bill Holzapfel, Adrian Lee, and Paul Richards.
A broadband THz receiver for low background space applications
NASA Technical Reports Server (NTRS)
Hagmann, C.; Benford, D. J.; Clapp, A. C.; Richards, P. L.; Timbie, P.
1992-01-01
We have developed a sensitive bolometric receiver for low background space applications. In a 10 percent bandwidth at 1 THz, this receiver is approximately 100 times more sensitive than a quantum limited heterodyne receiver with a 1 GHz IF bandwidth. This receiver is designed to be used for the long wavelength band (200-700 microns) in the MIPS instrument on NASA's SIRTF satellite. The bolometers are cooled to 100 mK by an adiabatic demagnetization refrigerator. Roughly 60 g of cesium chrome alum salt is partially demagnetized to 100 mK, followed by a slow regulated downramp to compensate for the heat leak. The hold time of the ADR system is about 18 hours with a temperature stability of delta T(sub rms) approx. equals 10 micro-K. The composite bolometers have electrical responsivities of 10(exp 9)V/W and electrical NEP's of about 3x10(exp -17) W/square root of Hz. The bolometer signals are read out by JFET preamplifiers located on the helium plate and operated at 120 K. We have addressed a number of space qualification issues, such as the development of an analog magnet controller, construction of a cryogenic shake-table for bolometers and selection of the paramagnetic salt CCA which can survive a bakeout at 50 C. The receiver is scheduled to be flown in the spring of 1992 on a balloon telescope. This flight has a dual purpose. One is to provide realistic test of the capabilities of the new receiver. The other is to search for anisotropies in the cosmic microwave background on scales of a few degrees.
Integrated performance of a frequency domain multiplexing readout in the SPT-3G receiver
NASA Astrophysics Data System (ADS)
Bender, A. N.; Ade, P. A. R.; Anderson, A. J.; Avva, J.; Ahmed, Z.; Arnold, K.; Austermann, J. E.; Basu Thakur, R.; Benson, B. A.; Bleem, L. E.; Byrum, K.; Carlstrom, J. E.; Carter, F. W.; Chang, C. L.; Cho, H. M.; Cliche, J. F.; Crawford, T. M.; Cukierman, A.; Czaplewski, D. A.; Ding, J.; Divan, R.; de Haan, T.; Dobbs, M. A.; Dutcher, D.; Everett, W.; Gilbert, A.; Groh, J. C.; Guyser, R.; Halverson, N. W.; Harke-Hosemann, A.; Harrington, N. L.; Hattori, K.; Henning, J. W.; Hilton, G. C.; Holzapfel, W. L.; Huang, N.; Irwin, K. D.; Jeong, O.; Khaire, T.; Korman, M.; Kubik, D.; Kuo, C. L.; Lee, A. T.; Leitch, E. M.; Lendinez, S.; Meyer, S. S.; Miller, C. S.; Montgomery, J.; Nadolski, A.; Natoli, T.; Nguyen, H.; Novosad, V.; Padin, S.; Pan, Z.; Pearson, J.; Posada, C. M.; Rahlin, A.; Reichardt, C. L.; Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Shariff, J. A.; Shirley, Ian; Shirokoff, E.; Smecher, G.; Sobrin, J.; Stan, L.; Stark, A. A.; Story, K.; Suzuki, A.; Tang, Q. Y.; Thompson, K. L.; Tucker, C.; Vanderlinde, K.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Yefremenko, V.; Yoon, K. W.
2016-07-01
The third generation receiver for the South Pole Telescope, SPT-3G, will make extremely deep, arcminuteresolution maps of the temperature and polarization of the cosmic microwave background. The SPT-3G maps will enable studies of the B-mode polarization signature, constraining primordial gravitational waves as well as the effect of massive neutrinos on structure formation in the late universe. The SPT-3G receiver will achieve exceptional sensitivity through a focal plane of 16,000 transition-edge sensor bolometers, an order of magnitude more than the current SPTpol receiver. SPT-3G uses a frequency domain multiplexing (fMux) scheme to read out the focal plane, combining the signals from 64 bolometers onto a single pair of wires. The fMux readout facilitates the large number of detectors in the SPT-3G focal plane by limiting the thermal load due to readout wiring on the 250 millikelvin cryogenic stage. A second advantage of the fMux system is that the operation of each bolometer can be optimized. In addition to these benefits, the fMux readout introduces new challenges into the design and operation of the receiver. The bolometers are operated at a range of frequencies up to 5 MHz, requiring control of stray reactances over a large bandwidth. Additionally, crosstalk between multiplexed detectors will inject large false signals into the data if not adequately mitigated. SPT-3G is scheduled to deploy to the South Pole Telescope in late 2016. Here, we present the pre-deployment performance of the fMux readout system with the SPT-3G focal plane.
Sassi, U; Parret, R; Nanot, S; Bruna, M; Borini, S; De Fazio, D; Zhao, Z; Lidorikis, E; Koppens, F H L; Ferrari, A C; Colli, A
2017-01-31
There is a growing number of applications demanding highly sensitive photodetectors in the mid-infrared. Thermal photodetectors, such as bolometers, have emerged as the technology of choice, because they do not need cooling. The performance of a bolometer is linked to its temperature coefficient of resistance (TCR, ∼2-4% K -1 for state-of-the-art materials). Graphene is ideally suited for optoelectronic applications, with a variety of reported photodetectors ranging from visible to THz frequencies. For the mid-infrared, graphene-based detectors with TCRs ∼4-11% K -1 have been demonstrated. Here we present an uncooled, mid-infrared photodetector, where the pyroelectric response of a LiNbO 3 crystal is transduced with high gain (up to 200) into resistivity modulation for graphene. This is achieved by fabricating a floating metallic structure that concentrates the pyroelectric charge on the top-gate capacitor of the graphene channel, leading to TCRs up to 900% K -1 , and the ability to resolve temperature variations down to 15 μK.
Status of NTD Ge bolometer material and devices
NASA Technical Reports Server (NTRS)
Haller, E. E.; Haegel, N. M.; Park, I. S.
1986-01-01
The first IR Detector Technology Workshop took place at NASA Ames Research Center on July 12 and 13, 1983. The conclusions presented at that meeting are still valid. More was learned about the physics of hopping conduction at very low temperatures which will be important for bolometer design and operation at ever decreasing temperatures. Resistivity measurements were extended down to 50 mK. At such low temperatures, precise knowledge of the neutron capture cross sections sigma (sub n) of the various Ge isotopes is critical if one is to make an accurate prediction of the dopant concentrations and compensation, and therefore resistivity, that will result from a given irradiation. An empirical approach for obtaining the desired resistivity material is described and the process of conducting a set of experiments which will improve the knowledge of the effective sigma (sub n) values for a given location in a particular reactor is discussed. A wider range of NTD Ge samples is now available. Noise measurements on bolometers with ion implanted contacts show the no 1/f noise component appears down to 1 Hz and probably lower.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Y., E-mail: zhangya@iis.u-tokyo.ac.jp; Watanabe, Y.; Hosono, S.
We propose a room temperature, all electrical driving and detecting, very sensitive thermometer structure using a microelectromechanical (MEMS) resonator for bolometer applications. We have fabricated a GaAs doubly clamped MEMS beam resonator whose oscillation can be excited and detected by the piezoelectric effect. When a heating power is applied to a NiCr film deposited on the MEMS beam surface, internal thermal stress is generated in the beam, leading to a reduction in the resonance frequency. The present device detects the shift in the resonance frequency caused by heating and works as a very sensitive thermometer. When the resonator was drivenmore » by a voltage slightly below the threshold for the nonlinear, hysteretic oscillation, the thermometer showed a voltage responsivity of about 3300 V/W, while keeping a low noise spectral density of about 60 nV/Hz{sup 1/2}, demonstrating a noise equivalent power of <20 pW/Hz{sup 1/2} even at room temperature. The observed effect can be used for realizing high-sensitivity terahertz bolometers for room-temperature operation.« less
Imaging live humans through smoke and flames using far-infrared digital holography.
Locatelli, M; Pugliese, E; Paturzo, M; Bianco, V; Finizio, A; Pelagotti, A; Poggi, P; Miccio, L; Meucci, R; Ferraro, P
2013-03-11
The ability to see behind flames is a key challenge for the industrial field and particularly for the safety field. Development of new technologies to detect live people through smoke and flames in fire scenes is an extremely desirable goal since it can save human lives. The latest technologies, including equipment adopted by fire departments, use infrared bolometers for infrared digital cameras that allow users to see through smoke. However, such detectors are blinded by flame-emitted radiation. Here we show a completely different approach that makes use of lensless digital holography technology in the infrared range for successful imaging through smoke and flames. Notably, we demonstrate that digital holography with a cw laser allows the recording of dynamic human-size targets. In this work, easy detection of live, moving people is achieved through both smoke and flames, thus demonstrating the capability of digital holography at 10.6 μm.
Binary-Phase Fourier Gratings for Nonuniform Array Generation
NASA Technical Reports Server (NTRS)
Keys, Andrew S.; Crow, Robert W.; Ashley, Paul R.
2003-01-01
We describe a design method for a binary-phase Fourier grating that generates an array of spots with nonuniform, user-defined intensities symmetric about the zeroth order. Like the Dammann fanout grating approach, the binary-phase Fourier grating uses only two phase levels in its grating surface profile to generate the final spot array. Unlike the Dammann fanout grating approach, this method allows for the generation of nonuniform, user-defined intensities within the final fanout pattern. Restrictions governing the specification and realization of the array's individual spot intensities are discussed. Design methods used to realize the grating employ both simulated annealing and nonlinear optimization approaches to locate optimal solutions to the grating design problem. The end-use application driving this development operates in the near- to mid-infrared spectrum - allowing for higher resolution in grating specification and fabrication with respect to wavelength than may be available in visible spectrum applications. Fabrication of a grating generating a user-defined nine spot pattern is accomplished in GaAs for the near-infrared. Characterization of the grating is provided through the measurement of individual spot intensities, array uniformity, and overall efficiency. Final measurements are compared to calculated values with a discussion of the results.
NASA Astrophysics Data System (ADS)
Helson, Kyle
2014-03-01
We report on the status of the E and B Experiment (EBEX) a balloon-borne polarimeter designed to measure the polarization of the cosmic microwave background radiation. The instrument employs a 1.5 meter Gregorian Mizuguchi-Dragone telescope providing 8 arc-minute resolution at three bands centered on 150, 250, and 410 GHz. A continuously rotating achromatic half wave plate, mounted on a superconducting magnetic bearing, and a polarizing grid give EBEX polarimetric capabilities. Radiation is detected with a kilo-pixel array of transition edge sensor (TES) bolometers that are cooled to 0.25 K. The detectors are readout using SQUID current amplifiers and a digital frequency-domain multiplexing system in which 16 detectors are readout simultaneously with two wires. EBEX is the first instrument to implement TESs and such readout system on board a balloon-borne platform. EBEX was launched from the Antarctic in December 2012 on an 11-day long-duration balloon flight. This presentation will provide an overview of the instrument and discuss the flight and status of the data analysis.
AlMn Transition Edge Sensors for Advanced ACTPol
NASA Technical Reports Server (NTRS)
Li, Dale; Austermann, Jason E.; Beall, James A.; Tucker, Daniel T.; Duff, Shannon M.; Gallardo, Patricio A.; Henderson, Shawn W.; Hilton, Gene C.; Ho, Shuay-Pwu; Hubmayr, Johannes;
2016-01-01
Advanced ACTPol (Adv ACT) will use an array of multichroic polarization sensitive AIMn transition edge sensor (TES) bolometers read out through time-division multiplexing. Aluminum doped with a low concentration of manganese can be deposited to a bulk film thickness for a more reliable superconducting critical temperature uniformity compared to thin bilayers. To build the TES, the AlMn alloy is deposited, over Nb wiring, to a specific thickness to set the TES normal resistance. The doping concentration of manganese coarsely defines the TES critical temperature, while a fine tuning is achieved by heating the deposited film to a specific temperature. The TES island is connected to the thermal bath via four silicon-nitride membranes, where their geometry defines the thermal conductance to the temperature of the bath. Lastly, the TES heat capacity is increased by addition of PdAu electrically connected to the AlMn film. Designs and performance characteristics of these AlMn TESs are presented for use in AdvACT.
AlMn Transition Edge Sensors for Advanced ACTPol
NASA Astrophysics Data System (ADS)
Li, Dale; Austermann, Jason E.; Beall, James A.; Becker, Daniel T.; Duff, Shannon M.; Gallardo, Patricio A.; Henderson, Shawn W.; Hilton, Gene C.; Ho, Shuay-Pwu; Hubmayr, Johannes; Koopman, Brian J.; McMahon, Jeffrey J.; Nati, Federico; Niemack, Michael D.; Pappas, Christine G.; Salatino, Maria; Schmitt, Benjamin L.; Simon, Sara M.; Staggs, Suzanne T.; Van Lanen, Jeff; Ward, Jonathan T.; Wollack, Edward J.
2016-07-01
Advanced ACTPol (AdvACT) will use an array of multichroic polarization-sensitive AlMn transition edge sensor (TES) bolometers read out through time-division multiplexing. Aluminum doped with a low concentration of manganese can be deposited to a bulk film thickness for a more reliable superconducting critical temperature uniformity compared to thin bilayers. To build the TES, the AlMn alloy is deposited, over Nb wiring, to a specific thickness to set the TES normal resistance. The doping concentration of manganese coarsely defines the TES critical temperature, while a fine tuning is achieved by heating the deposited film to a specific temperature. The TES island is connected to the thermal bath via four silicon-nitride membranes, where their geometry defines the thermal conductance to the temperature of the bath. Lastly, the TES heat capacity is increased by addition of PdAu electrically connected to the AlMn film. Designs and performance characteristics of these AlMn TESs are presented for use in AdvACT.
Observations of M87 and Hydra A at 90 GHz
NASA Technical Reports Server (NTRS)
Cotton, W. D.; Mason, B. S.; Dicker, S.; Korngut, P.; Devlin, M. J.; Aquirre, J.; Benford, D.; Moseley, H.; Staguhn, J.; Irwin, K.;
2009-01-01
This paper presents new observations of the AGNs M87 and Hydra A at 90 GHz made with the MUSTANG bolometer array on the Green Bank Telescope at 8.5" resolution. A spectral analysis is performed combining this new data and archival VLA data or1 these objects at longer wavelengths. This analysis can detect variations in spectral index and curvature expected from energy losses in the radiating particles. L187 shows only weak evidence for steepening of the spectrum along the jet suggesting either re-acceleration of the relativistic particles in the jet or insufficient losesto affect the spectrum at 90 GHz The jets in Hydra A show strong steepening as they move from the nucleus suggesting unbalanced losses of the higher energy relativistic particles The difference between these two sources may be accounted for by the different lengths over which the jets are observable, 2 kpc for 5187 and 45 kpc for Hydra A. Subject headings: galaxies: jets, galaxies: active, radio continuum, galaxies: individual (M87. Hydra A),
Cosmic evolution of star formation properties of galaxies
NASA Astrophysics Data System (ADS)
Kim, Sungeun
2014-01-01
Development of bolometer array and camera at submillimeter wavelength has played an important role in detecting submillimeter bright galaxies, so called submillimeter galaxies. These galaxies seem to be progenitors of present-day massive galaxies and account for their considerable contributions to the light from the early universe and their expected high star formation rates if there is a close link between the submillimeter galaxies and the star formation activities, and the interstellar dust in galaxies is mainly heated by the star light. We review assembly of submillimeter galaxies chosen from the AzTEC and the Herschel SPIRE/PACS data archives, and investigate their spectral energy distribution fits including the data at other wavelengths to deduce details about stellar parameters including star formation rates and parameters yielding the metallicity, composition and abundance in dust, and disc structure of these galaxies. This work has been supported in part by Mid-career Researcher Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology 2011-0028001.
Implications of a High Angular Resolution Image of the Sunyaev-Zel'Dovich Effect in RXJ1347-1145
NASA Technical Reports Server (NTRS)
Mason, B. S.; Dicker, S. R.; Korngut, P. M.; Devlin, M.; Cotton, W. D.; Koch, P. M.; Molnar, S. M.; Sievers, J.; Aguirre, J. E.; Benford, D.;
2010-01-01
The most X-ray luminous cluster known, RXJ1347-1145 (z = 0.45), has been the object of extensive study across the electromagnetic spectrum. We have imaged the Sunyaev-Zel'dovich effect (SZE) at 90 GHz (lambda = 33 mm) in RXJ1347-1145 at 10" resolution with the 64 pixel MUSTANG bolometer array on the Green Bank Telescope, confirming a previously reported strong, localized enhancement of the SZE 20" to the southeast of the center of X-ray emission. This enhancement of the SZE has been interpreted as shock-heated (>20keV) gas caused by an ongoing major (low mass ratio) merger event. Our data support this interpretation. We also detect a pronounced asymmetry in the projected cluster pressure profile, with the pressure just east of the cluster core approx. 1.6x higher than just to the west. This is the highest resolution image of the SZE made to date.
Long-wave infrared profile feature extractor (PFx) sensor
NASA Astrophysics Data System (ADS)
Sartain, Ronald B.; Aliberti, Keith; Alexander, Troy; Chiu, David
2009-05-01
The Long Wave Infrared (LWIR) Profile Feature Extractor (PFx) sensor has evolved from the initial profiling sensor that was developed by the University of Memphis (Near IR) and the Army Research Laboratory (visible). This paper presents the initial signatures of the LWIR PFx for human with and without backpacks, human with animal (dog), and a number of other animals. The current version of the LWIR PFx sensor is a diverging optical tripwire sensor. The LWIR PFx signatures are compared to the signatures of the Profile Sensor in the visible and Near IR spectral regions. The LWIR PFx signatures were collected with two different un-cooled micro bolometer focal plane array cameras, where the individual pixels were used as stand alone detectors (a non imaging sensor). This approach results in a completely passive, much lower bandwidth, much longer battery life, low weight, small volume sensor that provides sufficient information to classify objects into human Vs non human categories with a 98.5% accuracy.
A low-power CMOS readout IC design for bolometer applications
NASA Astrophysics Data System (ADS)
Galioglu, Arman; Abbasi, Shahbaz; Shafique, Atia; Ceylan, Ömer; Yazici, Melik; Kaynak, Mehmet; Durmaz, Emre C.; Arsoy, Elif Gul; Gurbuz, Yasar
2017-02-01
A prototype of a readout IC (ROIC) designed for use in high temperature coefficient of resistance (TCR) SiGe microbolometers is presented. The prototype ROIC architecture implemented is based on a bridge with active and blind bolometer pixels with a capacitive transimpedance amplifier (CTIA) input stage and column parallel integration with serial readout. The ROIC is designed for use in high (>= 4 %/K) TCR and high detector resistance Si/SiGe microbolometers with 17x17 μm2 pixel sizes in development. The prototype has been designed and fabricated in 0.25- μm SiGe:C BiCMOS process.
Neutron-transmutation-doped germanium bolometers
NASA Technical Reports Server (NTRS)
Palaio, N. P.; Rodder, M.; Haller, E. E.; Kreysa, E.
1983-01-01
Six slices of ultra-pure germanium were irradiated with thermal neutron fluences between 7.5 x 10 to the 16th and 1.88 x 10 to the 18th per sq cm. After thermal annealing the resistivity was measured down to low temperatures (less than 4.2 K) and found to follow the relationship rho = rho sub 0 exp(Delta/T) in the hopping conduction regime. Also, several junction FETs were tested for noise performance at room temperature and in an insulating housing in a 4.2 K cryostat. These FETs will be used as first stage amplifiers for neutron-transmutation-doped germanium bolometers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukai, K., E-mail: mukai.kiyofumi@LHD.nifs.ac.jp; Peterson, B. J.; SOKENDAI
The InfraRed imaging Video Bolometer (IRVB) is a useful diagnostic for the multi-dimensional measurement of plasma radiation profiles. For the application of IRVB measurement to the neutron environment in fusion plasma devices such as the Large Helical Device (LHD), in situ calibration of the thermal characteristics of the foil detector is required. Laser irradiation tests of sample foils show that the reproducibility and uniformity of the carbon coating for the foil were improved using a vacuum evaporation method. Also, the principle of the in situ calibration system was justified.
C%2B%2B tensor toolbox user manual.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plantenga, Todd D.; Kolda, Tamara Gibson
2012-04-01
The C++ Tensor Toolbox is a software package for computing tensor decompositions. It is based on the Matlab Tensor Toolbox, and is particularly optimized for sparse data sets. This user manual briefly overviews tensor decomposition mathematics, software capabilities, and installation of the package. Tensors (also known as multidimensional arrays or N-way arrays) are used in a variety of applications ranging from chemometrics to network analysis. The Tensor Toolbox provides classes for manipulating dense, sparse, and structured tensors in C++. The Toolbox compiles into libraries and is intended for use with custom applications written by users.
PV Reliability Development Lessons from JPL's Flat Plate Solar Array Project
NASA Technical Reports Server (NTRS)
Ross, Ronald G., Jr.
2013-01-01
Key reliability and engineering lessons learned from the 20-year history of the Jet Propulsion Laboratory's Flat-Plate Solar Array Project and thin film module reliability research activities are presented and analyzed. Particular emphasis is placed on lessons applicable to evolving new module technologies and the organizations involved with these technologies. The user-specific demand for reliability is a strong function of the application, its location, and its expected duration. Lessons relative to effective means of specifying reliability are described, and commonly used test requirements are assessed from the standpoint of which are the most troublesome to pass, and which correlate best with field experience. Module design lessons are also summarized, including the significance of the most frequently encountered failure mechanisms and the role of encapsulate and cell reliability in determining module reliability. Lessons pertaining to research, design, and test approaches include the historical role and usefulness of qualification tests and field tests.
A practical tool for modeling biospecimen user fees.
Matzke, Lise; Dee, Simon; Bartlett, John; Damaraju, Sambasivarao; Graham, Kathryn; Johnston, Randal; Mes-Masson, Anne-Marie; Murphy, Leigh; Shepherd, Lois; Schacter, Brent; Watson, Peter H
2014-08-01
The question of how best to attribute the unit costs of the annotated biospecimen product that is provided to a research user is a common issue for many biobanks. Some of the factors influencing user fees are capital and operating costs, internal and external demand and market competition, and moral standards that dictate that fees must have an ethical basis. It is therefore important to establish a transparent and accurate costing tool that can be utilized by biobanks and aid them in establishing biospecimen user fees. To address this issue, we built a biospecimen user fee calculator tool, accessible online at www.biobanking.org . The tool was built to allow input of: i) annual operating and capital costs; ii) costs categorized by the major core biobanking operations; iii) specimen products requested by a biobank user; and iv) services provided by the biobank beyond core operations (e.g., histology, tissue micro-array); as well as v) several user defined variables to allow the calculator to be adapted to different biobank operational designs. To establish default values for variables within the calculator, we first surveyed the members of the Canadian Tumour Repository Network (CTRNet) management committee. We then enrolled four different participants from CTRNet biobanks to test the hypothesis that the calculator tool could change approaches to user fees. Participants were first asked to estimate user fee pricing for three hypothetical user scenarios based on their biobanking experience (estimated pricing) and then to calculate fees for the same scenarios using the calculator tool (calculated pricing). Results demonstrated significant variation in estimated pricing that was reduced by calculated pricing, and that higher user fees are consistently derived when using the calculator. We conclude that adoption of this online calculator for user fee determination is an important first step towards harmonization and realistic user fees.
NASA Technical Reports Server (NTRS)
Kilbourne, Caroline A.; Adams, Joseph S.; Arsenovic, Petar; Ayers, Travis; Chiao, Meng P.; DiPirro, Michael J.; Eckart, Megan E.; Fujimoto, Ryuichi; Kazeva, John D.; Kelley, Richard L.;
2016-01-01
The calorimeter array of the JAXA Astro-H (renamed Hitomi) Soft X-ray Spectrometer (SXS) was designed to provide unprecedented spectral resolution of spatially extended cosmic x-ray sources and of all cosmic x-ray sources in the Fe-K band around 6 keV, enabling essential plasma diagnostics. The properties that make the SXS array a powerful x-ray spectrometer also make it sensitive to photons from the entire electromagnetic band, and particles as well. If characterized as a bolometer, it would have a noise equivalent power (NEP) of less than 4x10(exp -18) W/(Hz)0.5(exp 0.5). Thus it was imperative to shield the detector from thermal radiation from the instrument and optical and UV photons from the sky. Additionally, it was necessary to shield the coldest stages of the instrument from the thermal radiation emanating from the warmer stages. Both of these needs are addressed by a series of five thin-film radiation-blocking filters, anchored to the nested temperature stages, that block long-wavelength radiation while minimizing x-ray attenuation. The aperture assembly is a system of barriers, baffles, filter carriers, and filter mounts that supports the filters and inhibits their potential contamination. The three outer filters also have been equipped with thermometers and heaters for decontamination. We present the requirements, design, implementation, and performance of the SXS aperture assembly and blocking filters.
NASA Astrophysics Data System (ADS)
Siritanasak, P.; Aleman, C.; Arnold, K.; Cukierman, A.; Hazumi, M.; Kazemzadeh, K.; Keating, B.; Matsumura, T.; Lee, A. T.; Lee, C.; Quealy, E.; Rosen, D.; Stebor, N.; Suzuki, A.
2016-08-01
Polarbear-2 (PB-2) is a next-generation receiver that is part of the Simons Array cosmic microwave background (CMB) polarization experiment which is located in the Atacama desert in Northern Chile. The primary scientific goals of the Simons Array are a deep search for the CMB B-mode signature of gravitational waves from inflation and the characterization of large-scale structure using its effect on CMB polarization. The PB-2 receiver will deploy with 1897 dual-polarization sinuous antenna-coupled pixels, each with a directly contacting extended hemispherical silicon lens. Every pixel has dual polarization sensitivity in two spectral bands centered at 95 and 150 GHz, for a total of 7588 transition edge sensor bolometers operating at 270 mK. To achieve the PB-2 detector requirements, we developed a broadband anti-reflection (AR) coating for the extended hemispherical lenses that uses two molds to apply two layers of epoxy, Stycast 1090 and Stycast 2850FT. Our measurements of the absorption loss from the AR coating on a flat surface at cryogenic temperatures show less than 1 % absorption, and the coating has survived multiple thermal cycles. We can control the diameter of the coating within 25 {\\upmu }m and translation errors are within 25 {\\upmu }m in all directions, which results in less than 1 % decrease in transmittance. We also find the performance of the AR-coated lens matches very well with simulations.
NASA Astrophysics Data System (ADS)
Kilbourne, Caroline A.; Adams, Joseph S.; Arsenovic, Petar; Ayers, Travis; Chiao, Meng P.; DiPirro, Michael J.; Eckart, Megan E.; Fujimoto, Ryuichi; Kazeva, John D.; Kripps, Kari L.; Lairson, Bruce M.; Leutenegger, Maurice A.; Lopez, Heidi C.; McCammon, Dan; McGuinness, Daniel S.; Mitsuda, Kazuhisa; Moseley, Samuel J.; Porter, F. Scott; Schweiss, Andrea N.; Takei, Yoh; Thorpe, Rosemary Schmidt; Watanabe, Tomomi; Yamasaki, Noriko Y.; Yoshida, Seiji
2018-01-01
The calorimeter array of the JAXA Astro-H (renamed Hitomi) soft x-ray spectrometer (SXS) was designed to provide unprecedented spectral resolution of spatially extended cosmic x-ray sources and of all cosmic x-ray sources in the Fe-K band around 6 keV. The properties that made the SXS array a powerful x-ray spectrometer also made it sensitive to photons from the entire electromagnetic band as well as particles. If characterized as a bolometer, it would have had a noise equivalent power of <4 × 10 ? 18 W / (Hz)0.5. Thus, it was imperative to shield the detector from thermal radiation from the instrument and optical and UV photons from the sky. In addition, it was necessary to shield the coldest stages of the instrument from the thermal radiation emanating from the warmer stages. These needs were addressed by a series of five thin-film radiation-blocking filters, anchored to the nested temperature stages, that blocked long-wavelength radiation while minimizing x-ray attenuation. The aperture assembly was a system of barriers, baffles, filter carriers, and filter mounts that supported the filters and inhibited their potential contamination. The three outer filters also had been equipped with thermometers and heaters for decontamination. We present the requirements, design, implementation, and performance of the SXS aperture assembly and blocking filters.
arrayCGHbase: an analysis platform for comparative genomic hybridization microarrays
Menten, Björn; Pattyn, Filip; De Preter, Katleen; Robbrecht, Piet; Michels, Evi; Buysse, Karen; Mortier, Geert; De Paepe, Anne; van Vooren, Steven; Vermeesch, Joris; Moreau, Yves; De Moor, Bart; Vermeulen, Stefan; Speleman, Frank; Vandesompele, Jo
2005-01-01
Background The availability of the human genome sequence as well as the large number of physically accessible oligonucleotides, cDNA, and BAC clones across the entire genome has triggered and accelerated the use of several platforms for analysis of DNA copy number changes, amongst others microarray comparative genomic hybridization (arrayCGH). One of the challenges inherent to this new technology is the management and analysis of large numbers of data points generated in each individual experiment. Results We have developed arrayCGHbase, a comprehensive analysis platform for arrayCGH experiments consisting of a MIAME (Minimal Information About a Microarray Experiment) supportive database using MySQL underlying a data mining web tool, to store, analyze, interpret, compare, and visualize arrayCGH results in a uniform and user-friendly format. Following its flexible design, arrayCGHbase is compatible with all existing and forthcoming arrayCGH platforms. Data can be exported in a multitude of formats, including BED files to map copy number information on the genome using the Ensembl or UCSC genome browser. Conclusion ArrayCGHbase is a web based and platform independent arrayCGH data analysis tool, that allows users to access the analysis suite through the internet or a local intranet after installation on a private server. ArrayCGHbase is available at . PMID:15910681
A 2 THz Heterodyne Array Receiver for SOFIA: Summary of Research
NASA Technical Reports Server (NTRS)
Walker, Christopher K.
1998-01-01
We proposed to perform a comprehensive design study of a 16-element heterodyne array receiver for SOFIA. The array was designed to utilize hot-electron bolometers in an efficient, low-cost waveguide mount to achieve low noise performance between approximately 1500 and 2400 GHz. Due to the prevailing physical conditions in the interstellar medium, this frequency range is one of the richest in the Far-Infra Red (FIR) portion of the spectrum. An array designed for this wavelength range will make excellent use of the telescope and the available atmospheric transmission, and will provide a new perspective on stellar, chemical, and galactic evolution in the present as well as past epochs. A few of the most important molecular and atomic species which the instrument will sample are CII, OI, CO, OH, NII, and CH. The system used the most sensitive detectors available in an efficient optical system. The local oscillator was a compact CO2 pumped far-infrared laser currently under development for SOFIA. The backend spectrometer was an array acousto-optic spectrometer (aAOS). The spectrometer utilizes proven hardware and technologies to provide broadband performance (> 1 GHz per AOS channel) and high spectral resolution (1 MHz) with the maximum sensitivity and minimum complexity and cost. The proposed instrument would be the fastest and most sensitive heterodyne receiver ever to operate in the 1.5 - 2.4 THz band. One of the key technologies developed for the proposed instrument is the laser micromachining of waveguide structures. These structures provide both the optical link between the instrument and the telescope (via an array of efficient feedhorns) and the impedance transformation between the detectors and free space. With the assistance of funds provided from this grant, we were able to fabricate and test the world's first laser micromachined feedhorns. The quality of the waveguide structure is far better than that obtainable using any other fabrication technique. The beam parameters are an excellent match to what is expected from theory. The success of this experiment demonstrates the viability of using laser micromachined components in the development of high performance, large format array receivers. We have continued our development efforts and will propose to build a 2nd generation instrument based on the same design concepts.
A 2 THz Heterodyne Array Receiver for SOFIA
NASA Technical Reports Server (NTRS)
Walker, Christopher K.
1996-01-01
We proposed to perform a comprehensive design study of a 16-element heterodyne array receiver for SOFIA. The array was designed to utilize hot-electron bolometers in an efficient, low-cost waveguide mount to achieve low noise performance between approx. 1500 and 2400 GHz. Due to the prevailing physical conditions in the interstellar medium, this frequency range is one of the richest in the FIR portion of the spectrum. An array designed for this wavelength range will make excellent use of the telescope and the available atmospheric transmission, and will provide a new perspective on stellar, chemical, and galaxy evolution in the present as well as past epochs. A few of the most important molecular and atomic species which the instrument will sample are CII, OI, CO, OH, NII, and CH. The system used the most sensitive detectors available in an efficient optical system. The local oscillator was a compact CO2 pumped far-infrared laser currently under development for SOFIA. The backend spectrometer was an array acousto-optic spectrometer (aAOS). The spectrometer utilizes proven hardware and technologies to provide broadband performance (greater than or equal to 1 GHz per AOS channel) and high spectral resolution (1 MHz) with the maximum sensitivity and minimum complexity and cost. The proposed instrument would be the fastest and most sensitive heterodyne receiver ever to operate in the 1.5 - 2.4 THz band. One of the key technologies developed for the proposed instrument is the laser micromachining of waveguide structures. These structures provide both the optical link between the instrument and the telescope (via an array of efficient feedhorns) and the impedance transformation between the detectors and free space. With the assistance of funds provided from this grant, we were able to fabricate and test the world's first laser micromachined feedhorns. The quality of the waveguide structure is far better than that obtainable using any other fabrication technique. The beam parameters are an excellent match to what is expected from theory. The success of this experiment demonstrates the viability of using laser micromachined components in the development of high performance, large format array receivers. Unfortunately, our instrument proposal was not selected as a first generation SOFIA instrument. However, we have continued our development efforts and will propose to build a 2nd generation instrument based on the same design concepts.
NASA Astrophysics Data System (ADS)
Kalinauskaite, Eimante; Murphy, Anthony; McAuley, Ian; Trappe, Neil A.; Bracken, Colm P.; McCarthy, Darragh N.; Doherty, Stephen; Gradziel, Marcin L.; O'Sullivan, Creidhe; Maffei, Bruno; Lamarre, Jean-Michel A.; Ade, Peter A. R.; Savini, Giorgio
2016-07-01
Multimode horn antennas can be utilized as high efficiency feeds for bolometric detectors, providing increased throughput and sensitivity over single mode feeds, while also ensuring good control of beam pattern characteristics. Multimode horns were employed in the highest frequency channels of the European Space Agency Planck Telescope, and have been proposed for future terahertz instrumentation, such as SAFARI for SPICA. The radiation pattern of a multimode horn is affected by the details of the coupling of the higher order waveguide modes to the bolometer making the modeling more complicated than in the case of a single mode system. A typical cavity coupled bolometer system can be most efficiently simulated using mode matching, typically with smooth walled waveguide modes as the basis and computing an overall scattering matrix for the horn-waveguide-cavity system that includes the power absorption by the absorber. In this paper we present how to include a cavity coupled bolometer, modelled as a thin absorbing film with particular interest in investigating the cavity configuration for optimizing power absorption. As an example, the possible improvements from offsetting the axis of a cylindrically symmetric absorbing cavity from that of a circular waveguide feeding it (thus trapping more power in the cavity) are discussed. Another issue is the effect on the optical efficiency of the detectors of the presence of any gaps, through which power can escape. To model these effects required that existing in-house mode matching software, which calculates the scattering matrices for axially symmetric waveguide structures, be extended to be able to handle offset junctions and free space gaps. As part of this process the complete software code 'PySCATTER' was developed in Python. The approach can be applied to proposed terahertz systems, such as SPICASAFARI.
NASA Astrophysics Data System (ADS)
Morikawa, Junko; Zamengo, Massimiliano; Kato, Yukitaka
2016-05-01
The global interest in energy applications activates the advanced study about the molten salts in the usage of fluids in the power cycle, such as for transport and heat storage in solar power facilities. However, the basic properties of molten salts show a general scattering in characterization especially in thermal properties. It is suggested that new studies are required on the measurement of thermal properties of solar salts using recent technologies. In this study, micro-scale heat transfer and phase change in molten salts are presented using our originally developed device: the micro-bolometer Infrared focal plane arrays (IR FPA) measuring system is a portable type instrument, which is re-designed to measure the thermal phenomena in high temperature up to 700 °C or higher. The superimpose system is newly setup adjusted to the signal processing in high temperature to realize the quantitative thermal imaging, simultaneously. The portable type apparatus for a quantitative micro-scale thermography using a micro-bolometer has been proposed based on an achromatic lens design to capture a micro-scale image in the long-wave infrared, a video signal superimposing for the real time emissivity correction, and a pseudo acceleration of a timeframe. Combined with the superimpose technique, the micro-scale thermal imaging in high temperature is achieved and the molten flows of the solar salts, sodium nitrate, and potassium nitrate are successfully observed. The solar salt, the mixture of sodium nitrate and potassium nitrate, shows a different shape of exothermic heat front morphology in the lower phase transition (solidification) temperature than the nitrates on cooling. The proposed measuring technique will be utilized to accelerate the screening step to determine the phase diagram and the eutectics of the multiple mixtures of candidate molten salts, which may be used as heat transport medium from the concentrated solar power to a processing plant for thermal energy storage.
Mirror Illumination and Spillover Measurements of the Atacama Cosmology Telescope
NASA Technical Reports Server (NTRS)
Gallardo, Patricio; Dunner, Rolando; Wollack, Ed; Jerez-Hanckes, Carlos
2012-01-01
The Atacama Cosmology Telescope (ACT) is a 6 m telescope designed to map the Cosmic Microwave Background (CMB) simultaneously at 145 GHz, 220GHz and 280GHz, The receiver in ACT, the Millimeter Bolometer Array Camera, features 1000 TES bolometers in each band, The detector performance depends critically on the total optical loading, requiring the spmover contributions from the optics to be minimal. This inspired the use of a cold Lyot stop to limit the illumination of the primary and the use of guard rings surrounding the primary and secondary reflectors. Here, we present a direct measurement of the illumination aperture for both reflectors and of the attenuation level outside the main optical path. We used a 145 GHz, 1 m W source and a chopper wheel to produce a time-varying signal with a broad heam proflle, We sampled the response of the camera for different locations of the source, placed in front and beside the primary and secondary mirrors. The aperture of the primary was measured to be 5,72 plus or minus 0,17m in diameter (95 plus or minus 3% of its geometrical size), while the aperture of the secondary yielded 2 plus or minus 0.12m in diameter. Both apertures are consistent with the optical design. Comparing to previous measurements of the beam solid angle from planet observations, we estimate an optical efficiency of 72.3 plus or minus 4,8%. We found that the attenuation outside the primary aperture was -16 plus or minus 2dB, which is below the theoretical expectations, and -22 plus or minus 1 dB outside the secondary aperture, which is consistent with simulations. These results motivated the extension of the baffles surrounding the secondary mirror, with the following reduction in detector optical loading from 2,24 pW to 188pW.
NASA Astrophysics Data System (ADS)
Didier, Joy
The E and B EXperiment (EBEX) is a pointed balloon-borne telescope designed to measure the polarization of the cosmic microwave background (CMB) as well as that from Galactic dust. The instrument is equipped with a 1.5 meter aperture Gregorian-Dragone telescope, providing an 8' beam at three frequency bands centered on 150, 250 and 410 GHz. The telescope is designed to measure or place an upper limit on inflationary B-mode signals and to probe B-modes originating from gravitationnal lensing of the CMB. The higher EBEX frequencies are designed to enable the measurement and removal of polarized Galactic dust foregrounds which currently limit the measurement of inflationary B-modes. Polarimetry is achieved by rotating an achromatic half-wave plate (HWP) on a superconducting magnetic bearing. In January 2013, EBEX completed 11 days of observations in a flight over Antarctica covering 6,000 square degrees of the southern sky. This marks the first time that kilo-pixel TES bolometer arrays have made science observations on a balloon-borne platform. In this thesis we report on the construction, deployment and data analysis of EBEX. We review the development of the pointing sensors and software used for real-time attitude determination and control, including pre-flight testing and calibration. We then report on the 2013 long duration flight (LD2013) and review all the major stages of the analysis pipeline used to transform the ˜1 TB of raw data into polarized sky maps. We review "LEAP", the software framework developed to support the analysis pipeline. We discuss in detail the novel program developed to reconstruct the attitude post-flight and estimate the effect of attitude errors on measured B-mode signals. We describe the bolometer time-stream cleaning procedure including removing the HWP-synchronous signal, and we detail the map making procedure. Finally we present a novel method to measure and subtract instrumental polarization, after which we show Galaxy and CMB maps.
Dual-Polarization, Multi-Frequency Antenna Array for use with Hurricane Imaging Radiometer
NASA Technical Reports Server (NTRS)
Little, John
2013-01-01
Advancements in common aperture antenna technology were employed to utilize its proprietary genetic algorithmbased modeling tools in an effort to develop, build, and test a dual-polarization array for Hurricane Imaging Radiometer (HIRAD) applications. Final program results demonstrate the ability to achieve a lightweight, thin, higher-gain aperture that covers the desired spectral band. NASA employs various passive microwave and millimeter-wave instruments, such as spectral radiometers, for a range of remote sensing applications, from measurements of the Earth's surface and atmosphere, to cosmic background emission. These instruments such as the HIRAD, SFMR (Stepped Frequency Microwave Radiometer), and LRR (Lightweight Rainfall Radiometer), provide unique data accumulation capabilities for observing sea surface wind, temperature, and rainfall, and significantly enhance the understanding and predictability of hurricane intensity. These microwave instruments require extremely efficient wideband or multiband antennas in order to conserve space on the airborne platform. In addition, the thickness and weight of the antenna arrays is of paramount importance in reducing platform drag, permitting greater time on station. Current sensors are often heavy, single- polarization, or limited in frequency coverage. The ideal wideband antenna will have reduced size, weight, and profile (a conformal construct) without sacrificing optimum performance. The technology applied to this new HIRAD array will allow NASA, NOAA, and other users to gather information related to hurricanes and other tropical storms more cost effectively without sacrificing sensor performance or the aircraft time on station. The results of the initial analysis and numerical design indicated strong potential for an antenna array that would satisfy all of the design requirements for a replacement HIRAD array. Multiple common aperture antenna methodologies were employed to achieve exceptional gain over the entire spectral frequency band while exhibiting superb VSWR (voltage standing wave ratio) values. Element size and spacing requirements were addressed for a direct replacement of the thicker, lower-performance, stack ed patch antenna array currently employed for the HIRAD application. Several variants to the multiband arrays were developed that exhibited four, equally spaced, high efficiency, "sweet spot" frequency bands, as well as the option for a high-performance wideband array. The 0.25-in. (˜6.4- mm) thickness of the antenna stack-up itself was achieved through the application of specialized antenna techniques and meta-materials to accomplish all design objectives.
Detector modules and spectrometers for the TIME-Pilot [CII] intensity mapping experiment
NASA Astrophysics Data System (ADS)
Hunacek, Jonathon; Bock, James; Bradford, C. Matt; Bumble, Bruce; Chang, Tzu-Ching; Cheng, Yun-Ting; Cooray, Asantha; Crites, Abigail; Hailey-Dunsheath, Steven; Gong, Yan; Li, Chao-Te; O'Brient, Roger; Shirokoff, Erik; Shiu, Corwin; Sun, Jason; Staniszewski, Zachary; Uzgil, Bade; Zemcov, Michael
2016-07-01
This proceeding presents the current TIME-Pilot instrument design and status with a focus on the close-packed modular detector arrays and spectrometers. Results of laboratory tests with prototype detectors and spectrometers are discussed. TIME-Pilot is a new mm-wavelength grating spectrometer array under development that will study the Epoch of Reionization (the period of time when the first stars and galaxies ionized the intergalactic medium) by mapping the fluctuations of the redshifted 157:7 μm emission line of singly ionized carbon ([CII]) from redshift z 5:2 to 8:5. As a tracer of star formation, the [CII] power spectrum can provide information on the sources driving reionization and complements 21 cm data (which traces neutral hydrogen in the intergalactic medium). Intensity mapping provides a measure of the mean [CII] intensity without the need to resolve and detect faint sources individually. We plan to target a 1 degree by 0.35 arcminute field on the sky and a spectral range of 199-305 GHz, producing a spatial-spectral slab which is 140 Mpc by 0.9 Mpc on-end and 1230 Mpc in the redshift direction. With careful removal of intermediate-redshift CO sources, we anticipate a detection of the halo-halo clustering term in the [CII] power spectrum consistent with current models for star formation history in 240 hours on the JCMT. TIME-Pilot will use two stacks of 16 parallel-plate waveguide spectrometers (one stack per polarization) with a resolving power R 100 and a spectral range of 183 to 326 GHz. The range is divided into 60 spectral channels, of which 16 at the band edges on each spectrometer serve as atmospheric monitors. The diffraction gratings are curved to produce a compact instrument, each focusing the diffracted light onto an output arc sampled by the 60 bolometers. The bolometers are built in buttable dies of 8 (low freqeuency) or 12 (high frequency) spectral channels by 8 spatial channels and are mated to the spectrometer stacks. Each detector consists of a gold micro-mesh absorber and a titanium transition edge sensor (TES). The detectors (1920 total) are designed to operate from a 250 mK base temperature in an existing cryostat with a photon-noise-dominated NEP of 2 * 10-17 WHz-1-2. A set of flexible superconducting cables connect the detectors to a time-domain multiplexing SQUID readout system.
Array data extractor (ADE): a LabVIEW program to extract and merge gene array data.
Kurtenbach, Stefan; Kurtenbach, Sarah; Zoidl, Georg
2013-12-01
Large data sets from gene expression array studies are publicly available offering information highly valuable for research across many disciplines ranging from fundamental to clinical research. Highly advanced bioinformatics tools have been made available to researchers, but a demand for user-friendly software allowing researchers to quickly extract expression information for multiple genes from multiple studies persists. Here, we present a user-friendly LabVIEW program to automatically extract gene expression data for a list of genes from multiple normalized microarray datasets. Functionality was tested for 288 class A G protein-coupled receptors (GPCRs) and expression data from 12 studies comparing normal and diseased human hearts. Results confirmed known regulation of a beta 1 adrenergic receptor and further indicate novel research targets. Although existing software allows for complex data analyses, the LabVIEW based program presented here, "Array Data Extractor (ADE)", provides users with a tool to retrieve meaningful information from multiple normalized gene expression datasets in a fast and easy way. Further, the graphical programming language used in LabVIEW allows applying changes to the program without the need of advanced programming knowledge.
Fabrication and Testing of Binary-Phase Fourier Gratings for Nonuniform Array Generation
NASA Technical Reports Server (NTRS)
Keys, Andrew S.; Crow, Robert W.; Ashley, Paul R.; Nelson, Tom R., Jr.; Parker, Jack H.; Beecher, Elizabeth A.
2004-01-01
This effort describes the fabrication and testing of binary-phase Fourier gratings designed to generate an incoherent array of output source points with nonuniform user-defined intensities, symmetric about the zeroth order. Like Dammann fanout gratings, these binary-phase Fourier gratings employ only two phase levels to generate a defined output array. Unlike Dammann fanout gratings, these gratings generate an array of nonuniform, user-defined intensities when projected into the far-field regime. The paper describes the process of design, fabrication, and testing for two different version of the binary-phase grating; one designed for a 12 micron wavelength, referred to as the Long-Wavelength Infrared (LWIR) grating, and one designed for a 5 micron wavelength, referred to as the Mid-Wavelength Infrared Grating (MWIR).
Portable nuclear material detector and process
Hofstetter, Kenneth J [Aiken, SC; Fulghum, Charles K [Aiken, SC; Harpring, Lawrence J [North Augusta, SC; Huffman, Russell K [Augusta, GA; Varble, Donald L [Evans, GA
2008-04-01
A portable, hand held, multi-sensor radiation detector is disclosed. The detection apparatus has a plurality of spaced sensor locations which are contained within a flexible housing. The detection apparatus, when suspended from an elevation, will readily assume a substantially straight, vertical orientation and may be used to monitor radiation levels from shipping containers. The flexible detection array can also assume a variety of other orientations to facilitate any unique container shapes or to conform to various physical requirements with respect to deployment of the detection array. The output of each sensor within the array is processed by at least one CPU which provides information in a usable form to a user interface. The user interface is used to provide the power requirements and operating instructions to the operational components within the detection array.
An Accurate Direction Finding Scheme Using Virtual Antenna Array via Smartphones
Wang, Xiaopu; Xiong, Yan; Huang, Wenchao
2016-01-01
With the development of localization technologies, researchers solve the indoor localization problems using diverse methods and equipment. Most localization techniques require either specialized devices or fingerprints, which are inconvenient for daily use. Therefore, we propose and implement an accurate, efficient and lightweight system for indoor direction finding using common smartphones and loudspeakers. Our method is derived from a key insight: By moving a smartphone in regular patterns, we can effectively emulate the sensitivity and functionality of a Uniform Antenna Array to estimate the angle of arrival of the target signal. Specifically, a user only needs to hold his smartphone still in front of him, and then rotate his body around 360∘ duration with the smartphone at an approximate constant velocity. Then, our system can provide accurate directional guidance and lead the user to their destinations (normal loudspeakers we preset in the indoor environment transmitting high frequency acoustic signals) after a few measurements. Major challenges in implementing our system are not only imitating a virtual antenna array by ordinary smartphones but also overcoming the detection difficulties caused by the complex indoor environment. In addition, we leverage the gyroscope of the smartphone to reduce the impact of a user’s motion pattern change to the accuracy of our system. In order to get rid of the multipath effect, we leverage multiple signal classification to calculate the direction of the target signal, and then design and deploy our system in various indoor scenes. Extensive comparative experiments show that our system is reliable under various circumstances. PMID:27801866
1980-07-01
WORKI, WORK2, ALOC, and FLAMB . The WORK1 array comprises a number of small arrays which have been read from input and will be utilized throughout the...of the WORK2 array at least as large as the maximum of the two. The size is the same for both the ALOC and FLAMB arrays. The ALOC array stores the...allocation matrix and the FLAMB array is used for the Lagrangian multiplier matrix. Their dimension should be set to 3 x NWPNS x NTGTS, where NTGTS is
The ALMA software architecture
NASA Astrophysics Data System (ADS)
Schwarz, Joseph; Farris, Allen; Sommer, Heiko
2004-09-01
The software for the Atacama Large Millimeter Array (ALMA) is being developed by many institutes on two continents. The software itself will function in a distributed environment, from the 0.5-14 kmbaselines that separate antennas to the larger distances that separate the array site at the Llano de Chajnantor in Chile from the operations and user support facilities in Chile, North America and Europe. Distributed development demands 1) interfaces that allow separated groups to work with minimal dependence on their counterparts at other locations; and 2) a common architecture to minimize duplication and ensure that developers can always perform similar tasks in a similar way. The Container/Component model provides a blueprint for the separation of functional from technical concerns: application developers concentrate on implementing functionality in Components, which depend on Containers to provide them with services such as access to remote resources, transparent serialization of entity objects to XML, logging, error handling and security. Early system integrations have verified that this architecture is sound and that developers can successfully exploit its features. The Containers and their services are provided by a system-orienteddevelopment team as part of the ALMA Common Software (ACS), middleware that is based on CORBA.
NASA Astrophysics Data System (ADS)
Ferkinhoff, Carl; Brisbin, Drew; Parshley, Stephen; Nikola, Thomas; Stacey, Gordon J.; Schoenwald, Justin; Higdon, James L.; Higdon, Sarah J. U.; Verma, Aprajita; Riechers, Dominik; Hailey-Dunsheath, Steven; Menten, Karl M.; Güsten, Rolf; Weiß, Axel; Irwin, Kent; Cho, Hsiao M.; Niemack, Michael; Halpern, Mark; Amiri, Mandana; Hasselfield, Matthew; Wiebe, D. V.; Ade, Peter A. R.; Tucker, Carol E.
2014-01-01
We recently commissioned our new spectrometer, the second-generation z(Redshift) and Early Universe Spectrometer (ZEUS-2) on the Atacama Pathfinder Experiment telescope. ZEUS-2 is a submillimeter grating spectrometer optimized for detecting the faint and broad lines from distant galaxies that are redshifted into the telluric windows from 200 to 850 μm. It uses a focal plane array of transition-edge sensed bolometers, the first use of these arrays for astrophysical spectroscopy. ZEUS-2 promises to be an important tool for studying galaxies in the years to come because of its synergy with Atacama Large Millimeter Array and its capabilities in the short submillimeter windows that are unique in the post-Herschel era. Here, we report on our first detection of the [C II] 158 μm line with ZEUS-2. We detect the line at z ~ 1.8 from H-ATLAS J091043.1-000322 with a line flux of (6.44 ± 0.42) × 10-18 W m-2. Combined with its far-IR luminosity and a new Herschel-PACS detection of the [O I] 63 μm line, we model the line emission as coming from a photo-dissociation region with far-ultraviolet radiation field, G ~ 2 × 104 G 0, gas density, n ~ 1 × 103 cm-3 and size between ~0.4 and 1 kpc. On the basis of this model, we conclude that H-ATLAS J091043.1-000322 is a high-redshift analog of a local ultra-luminous IR galaxy; i.e., it is likely the site of a compact starburst caused by a major merger. Further identification of these merging systems is important for constraining galaxy formation and evolution models.
SiGe Integrated Circuit Developments for SQUID/TES Readout
NASA Astrophysics Data System (ADS)
Prêle, D.; Voisin, F.; Beillimaz, C.; Chen, S.; Piat, M.; Goldwurm, A.; Laurent, P.
2018-03-01
SiGe integrated circuits dedicated to the readout of superconducting bolometer arrays for astrophysics have been developed since more than 10 years at APC. Whether for Cosmic Microwave Background (CMB) observations with the QUBIC ground-based experiment (Aumont et al. in astro-ph.IM, 2016. arXiv:1609.04372) or for the Hot and Energetic Universe science theme with the X-IFU instrument on-board of the ATHENA space mission (Barret et al. in SPIE 9905, space telescopes & instrumentation 2016: UV to γ Ray, 2016. https://doi.org/10.1117/12.2232432), several kinds of Transition Edge Sensor (TES) (Irwin and Hilton, in ENSS (ed) Cryogenic particle detection, Springer, Berlin, 2005) arrays have been investigated. To readout such superconducting detector arrays, we use time or frequency domain multiplexers (TDM, FDM) (Prêle in JINST 10:C08015, 2016. https://doi.org/10.1088/1748-0221/10/08/C08015) with Superconducting QUantum Interference Devices (SQUID). In addition to the SQUID devices, low-noise biasing and amplification are needed. These last functions can be obtained by using BiCMOS SiGe technology in an Application Specific Integrated Circuit (ASIC). ASIC technology allows integration of highly optimised circuits specifically designed for a unique application. Moreover, we could reach very low-noise and wide band amplification using SiGe bipolar transistor either at room or cryogenic temperatures (Cressler in J Phys IV 04(C6):C6-101, 1994. https://doi.org/10.1051/jp4:1994616). This paper discusses the use of SiGe integrated circuits for SQUID/TES readout and gives an update of the last developments dedicated to the QUBIC telescope and to the X-IFU instrument. Both ASIC called SQmux128 and AwaXe are described showing the interest of such SiGe technology for SQUID multiplexer controls.
Design and simulation of multi-color infrared CMOS metamaterial absorbers
NASA Astrophysics Data System (ADS)
Cheng, Zhengxi; Chen, Yongping; Ma, Bin
2016-05-01
Metamaterial electromagnetic wave absorbers, which usually can be fabricated in a low weight thin film structure, have a near unity absorptivity in a special waveband, and therefore have been widely applied from microwave to optical waveband. To increase absorptance of CMOS MEMS devices in 2-5 μmm waveband, multi-color infrared metamaterial absorbers are designed with CSMC 0.5 μmm 2P3M and 0.18 μmm 1P6M CMOS technology in this work. Metal-insulator-metal (MIM) three-layer MMAs and Insulator-metal-insulator-metal (MIMI) four-layer MMAs are formed by CMOS metal interconnect layers and inter metal dielectrics layer. To broaden absorption waveband in 2-5μmm range, MMAs with a combination of different sizes cross bars are designed. The top metal layer is a periodic aluminum square array or cross bar array with width ranging from submicron to several microns. The absorption peak position and intensity of MMAs can be tuned by adjusting the top aluminum micro structure array. Post-CMOS process is adopted to fabricate MMAs. The infrared absorption spectra of MMAs are verified with finite element method simulation, and the effects of top metal structure sizes, patterns, and films thickness are also simulated and intensively discussed. The simulation results show that CMOS MEMS MMAs enhance infrared absorption in 2-20 μmm. The MIM broad MMA has an average absorptance of 0.22 in 2-5 μmm waveband, and 0.76 in 8-14 μm waveband. The CMOS metamaterial absorbers can be inherently integrated in many kinds of MEMS devices fabricated with CMOS technology, such as uncooled bolometers, infrared thermal emitters.
Weak-Link Phenomena in AC-Biased Transition Edge Sensors
NASA Astrophysics Data System (ADS)
Gottardi, L.; Akamatsu, H.; Bruijn, M.; Gao, J.-R.; den Hartog, R.; Hijmering, R.; Hoevers, H.; Khosropanah, P.; Kozorezov, A.; van der Kuur, J.; van der Linden, A.; Ridder, M.
2014-08-01
It has been recently demonstrated that superconducting transition edge-sensors behave as weak-links due to longitudinally induced superconductivity from the leads with higher . In this work we study the implication of this behaviour for transition-edge sensors (TES)-based bolometers and microcalorimeter under ac bias. The TESs are read-out at frequencies between 1 and by a frequency domain multiplexer based on a linearised two-stage SQUID amplifier and high- lithographically made superconducting resonators. In particular, we focus on SRON TiAu TES bolometers with a measured dark noise equivalent power of developed for the short wavelength band for the instrument SAFARI on the SPICA telescope.
Growth and characterization of a Li2Mg2(MoO4)3 scintillating bolometer
NASA Astrophysics Data System (ADS)
Danevich, F. A.; Degoda, V. Ya.; Dulger, L. L.; Dumoulin, L.; Giuliani, A.; de Marcillac, P.; Marnieros, S.; Nones, C.; Novati, V.; Olivieri, E.; Pavlyuk, A. A.; Poda, D. V.; Trifonov, V. A.; Yushina, I. V.; Zolotarova, A. S.
2018-05-01
Lithium magnesium molybdate (Li2Mg2(MoO4)3) crystals were grown by the low-thermal-gradient Czochralski method. Luminescence properties of the material (emission spectra, thermally stimulated luminescence, dependence of intensity on temperature, phosphorescence) have been studied under X-ray excitation in the temperature interval from 8 to 400 K, while at the same being operated as a scintillating bolometer at 20 mK for the first time. We demonstrated that Li2Mg2(MoO4)3 crystals are a potentially promising detector material to search for neutrinoless double beta decay of 100Mo.
Lithographed spectrometers for tomographic line mapping of the Epoch of Reionization
NASA Astrophysics Data System (ADS)
O'Brient, R.; Bock, J. J.; Bradford, C. M.; Crites, A.; Duan, R.; Hailey-Dunsheath, S.; Hunacek, J.; LeDuc, R.; Shirokoff, E.; Staniszewski, Z.; Turner, A.; Zemcov, M.
2014-08-01
The Tomographic Ionized carbon Mapping Experiment (TIME) is a multi-phased experiment that will topographically map [CII] emission from the Epoch of Reionization. We are developing lithographed spectrometers that couple to TES bolometers in anticipation of the second generation instrument. Our design intentionally mirrors many features of the parallel SuperSpec project, inductively coupling power from a trunk-line microstrip onto half-wave resonators. The resonators couple to a rat-race hybrids that feeds TES bolometers. Our 25 channel prototype shows spectrally positioned lines roughly matching design with a receiver optical efficiency of 15-20%, a level that is dominated by loss in components outside the spectrometer.
In situ calibration of an infrared imaging video bolometer in the Large Helical Device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukai, K., E-mail: mukai.kiyofumi@LHD.nifs.ac.jp; Peterson, B. J.; Pandya, S. N.
The InfraRed imaging Video Bolometer (IRVB) is a powerful diagnostic to measure multi-dimensional radiation profiles in plasma fusion devices. In the Large Helical Device (LHD), four IRVBs have been installed with different fields of view to reconstruct three-dimensional profiles using a tomography technique. For the application of the measurement to plasma experiments using deuterium gas in LHD in the near future, the long-term effect of the neutron irradiation on the heat characteristics of an IRVB foil should be taken into account by regular in situ calibration measurements. Therefore, in this study, an in situ calibration system was designed.
AC Read-Out Circuits for Single Pixel Characterization of TES Microcalorimeters and Bolometers
NASA Technical Reports Server (NTRS)
Gottardi, L.; van de Kuur, J.; Bandler, S.; Bruijn, M.; de Korte, P.; Gao, J. R.; den Hartog, R.; Hijmering, R. A.; Hoevers, H.; Koshropanah, P.;
2011-01-01
SRON is developing Frequency Domain Multiplexing (FDM) for the read-out of transition edge sensor (TES) soft x-ray microcalorimeters for the XMS instrument of the International X-ray Observatory and far-infrared bolometers for the SAFARI instrument on the Japanese mission SPICA. In FDM the TESs are AC voltage biased at frequencies from 0.5 to 6 MHz in a superconducting LC resonant circuit and the signal is read-out by low noise and high dynamic range SQUIDs amplifiers. The TES works as an amplitude modulator. We report on several AC bias experiments performed on different detectors. In particular, we discuss the results on the characterization of Goddard Space Flight Center x-ray pixels and SRON bolometers. The paper focuses on the analysis of different read-out configurations developed to optimize the noise and the impedance matching between the detectors and the SQUID amplifier. A novel feedback network electronics has been developed to keep the SQUID in flux locked loop, when coupled to superconducting high Q circuits, and to optimally tune the resonant bias circuit. The achieved detector performances are discussed in view of the instrument requirement for the two space missions.
Low-Noise Wide Bandwith, Hot Electron Bolometer Mixers for Submillimeter Wavelengths
NASA Technical Reports Server (NTRS)
McGrath, W. R.
1995-01-01
Recently a novel superconductive hot-electron micro-bolometer has been proposed which is both fast and sensitive (D. E. Prober, Appl. Phys. Lett. 62, 2119, 1993). This device has several important properties which make it useful as a heterodyne sensor for radioastronomy applications at frequencies above 1 THz. The thermal response time of the device is fast enough, several 10's of picoseconds, to allow for IF's of several GHz. This bolometer mixer should operate well up to at least 10 THz. There is no energy gap limitation as in an SIS mixer, since the mixing process relies on heating of the electron gas. In fact, rf power is absorbed more uniformly above the gap frequency. The mixer noise should be near quantum-limited, and the local oscillator (LO) power requirement is very low: / 10 nW for a Nb device. One of the unique features of this device is that it employs rapid electron diffusion into a normal metal, rather than phonon emission, as the thermal conductance that cools the heated electrons. In order for diffusion to dominate over phonon emission, the device must be short, less than 0.5.
Bolometer detection of magnetic resonances in nanoscaled objects
NASA Astrophysics Data System (ADS)
Rod, Irina; Meckenstock, Ralf; Zähres, Horst; Derricks, Christian; Mushenok, Fedor; Reckers, Nathalie; Kijamnajsuk, Puchong; Wiedwald, Ulf; Farle, Michael
2014-10-01
We report on a nanoscaled thermocouple (ThC) as a temperature sensor of a highly sensitive bolometer for probing the dissipative damping of spin dynamics in nanosized Permalloy (Py) stripes. The Au-Pd ThC based device is fabricated by standard electron beam lithography on a 200 nm silicon nitride membrane to minimize heat dissipation through the substrate. We show that this thermal sensor allows not only measurements of the temperature change on the order of a few mK due to the uniform resonant microwave (MW) absorption by the Py stripe but also detection of standing spin waves of different mode numbers. Using a 3D finite element method, we estimate the absorbed MW power by the stripe in resonance and prove the necessity of using substrates with an extremely low heat dissipation like a silicon nitride membrane for successful thermal detection. The voltage responsivity and the noise equivalent power for the ThC-based bolometer are equal to 15 V W-1 and 3 nW Hz-1/2, respectively. The ThC device offers a magnetic resonance response of 1 nV/(μB W) corresponding to a sensitivity of 109 spins and a temperature resolution of 300 μK under vacuum conditions.
PACS photometer calibration block analysis
NASA Astrophysics Data System (ADS)
Moór, A.; Müller, T. G.; Kiss, C.; Balog, Z.; Billot, N.; Marton, G.
2014-07-01
The absolute stability of the PACS bolometer response over the entire mission lifetime without applying any corrections is about 0.5 % (standard deviation) or about 8 % peak-to-peak. This fantastic stability allows us to calibrate all scientific measurements by a fixed and time-independent response file, without using any information from the PACS internal calibration sources. However, the analysis of calibration block observations revealed clear correlations of the internal source signals with the evaporator temperature and a signal drift during the first half hour after the cooler recycling. These effects are small, but can be seen in repeated measurements of standard stars. From our analysis we established corrections for both effects which push the stability of the PACS bolometer response to about 0.2 % (stdev) or 2 % in the blue, 3 % in the green and 5 % in the red channel (peak-to-peak). After both corrections we still see a correlation of the signals with PACS FPU temperatures, possibly caused by parasitic heat influences via the Kevlar wires which connect the bolometers with the PACS Focal Plane Unit. No aging effect or degradation of the photometric system during the mission lifetime has been found.
Microwave SQUID Multiplexer Demonstration for Cosmic Microwave Background Imagers.
Dober, B; Becker, D T; Bennett, D A; Bryan, S A; Duff, S M; Gard, J D; Hays-Wehle, J P; Hilton, G C; Hubmayr, J; Mates, J A B; Reintsema, C D; Vale, L R; Ullom, J N
2017-12-01
Key performance characteristics are demonstrated for the microwave SQUID multiplexer (µmux) coupled to transition edge sensor (TES) bolometers that have been optimized for cosmic microwave background (CMB) observations. In a 64-channel demonstration, we show that the µmux produces a white, input referred current noise level of [Formula: see text] at -77 dB microwave probe tone power, which is well below expected fundamental detector and photon noise sources for a ground-based CMB-optimized bolometer. Operated with negligible photon loading, we measure [Formula: see text] in the TES-coupled channels biased at 65% of the sensor normal resistance. This noise level is consistent with that predicted from bolometer thermal fluctuation (i.e. phonon) noise. Furthermore, the power spectral density is white over a range of frequencies down to ~ 100 mHz, which enables CMB mapping on large angular scales that constrain the physics of inflation. Additionally, we report cross-talk measurements that indicate a level below 0.3%, which is less than the level of cross-talk from multiplexed readout systems in deployed CMB imagers. These measurements demonstrate the µmux as a viable readout technique for future CMB imaging instruments.
NASA Astrophysics Data System (ADS)
Ramaswamy, Rahul
Two-dimensional electron gas (2DEG) in semiconductor heterostructures was identified as a promising medium for hot-electron bolometers (HEB) in the early 90s. Up until now all research based on 2DEG HEBs is done using high mobility AlGaAs/GaAs heterostructures. These systems have demonstrated very good performance, but only in the sub terahertz (THz) range. However, above ˜0.5 THz the performance of AlGaAs/GaAs detectors drastically deteriorates. It is currently understood, that detectors fabricated from standard AlGaAs/GaAs heterostructures do not allow for reasonable coupling to THz radiation while maintaining high conversion efficiency. In this work we have developed 2DEG HEBs based on disordered Gallium Nitride (GaN) semiconductor, that operate at frequencies beyond 1THz at room temperature. We observe strong free carrier absorption at THz frequencies in our disordered 2DEG film due to Drude absorption. We show the design and fabrication procedures of novel micro-bolometers having ultra-low heat capacities. In this work the mechanism of 2DEG response to THz radiation is clearly identified as bolometric effect through our direct detection measurements. With optimal doping and detector geometry, impedances of 10--100 O have been achieved, which allow integration of these devices with standard THz antennas. We also demonstrate performance of the antennas used in this work in effectively coupling THz radiation to the micro-bolometers through polarization dependence and far field measurements. Finally heterodyne mixing due to hot electrons in the 2DEG micro-bolometer has been performed at sub terahertz frequencies and a mixing bandwidth greater than 3GHz has been achieved. This indicates that the characteristic cooling time in our detectors is fast, less than 50ps. Due to the ultra-low heat capacity; these detectors can be used in a heterodyne system with a quantum cascade laser (QCL) as a local oscillator (LO) which typically provides output powers in the micro watt range. Our studies suggest that such room temperature detectors from GaN semiconductor, with reasonable bandwidth, low LO power requirements and high sensitivity have numerous applications, ranging from precise identification of complex molecules, environmental monitoring of critical substances, remote detection of various pollutants in the atmosphere, and noninvasive medical imaging as well as a variety of applications for defense and homeland security.
Interactive Marine Spatial Planning: Siting Tidal Energy Arrays around the Mull of Kintyre
Alexander, Karen A.; Janssen, Ron; Arciniegas, Gustavo; O'Higgins, Timothy G.; Eikelboom, Tessa; Wilding, Thomas A.
2012-01-01
The rapid development of the offshore renewable energy sector has led to an increased requirement for Marine Spatial Planning (MSP) and, increasingly, this is carried out in the context of the ‘ecosystem approach’ (EA) to management. We demonstrate a novel method to facilitate implementation of the EA. Using a real-time interactive mapping device (touch-table) and stakeholder workshops we gathered data and facilitated negotiation of spatial trade-offs at a potential site for tidal renewable energy off the Mull of Kintyre (Scotland). Conflicts between the interests of tidal energy developers and commercial and recreational users of the area were identified, and use preferences and concerns of stakeholders were highlighted. Social, cultural and spatial issues associated with conversion of common pool to private resource were also revealed. The method identified important gaps in existing spatial data and helped to fill these through interactive user inputs. The workshops developed a degree of consensus between conflicting users on the best areas for potential development suggesting that this approach should be adopted during MSP. PMID:22253865
User Data on the Social Web: Authorship, Agency, and Appropriation
ERIC Educational Resources Information Center
Reyman, Jessica
2013-01-01
Social web services catalog users' activities across the Internet, aggregating, analyzing, and selling a vast array of user data to be used largely for consumer profiling and target marketing. This article interrogates the tacit agreements and terms-of-use policies that govern who owns user data, how it circulates, and how it can be used. Relying…
An Approach for Smart Antenna Testbed
NASA Astrophysics Data System (ADS)
Kawitkar, R. S.; Wakde, D. G.
2003-07-01
The use of wireless, mobile, personal communications services are expanding rapidly. Adaptive or "Smart" antenna arrays can increase channel capacity through spatial division. Adaptive antennas can also track mobile users, improving both signal range and quality. For these reasons, smart antenna systems have attracted widespread interest in the telecommunications industry for applications to third generation wireless systems.This paper aims to design and develop an advanced antennas testbed to serve as a common reference for testing adaptive antenna arrays and signal combining algorithms, as well as complete systems. A flexible suite of off line processing software should be written using matlab to perform system calibration, test bed initialization, data acquisition control, data storage/transfer, off line signal processing and analysis and graph plotting. The goal of this paper is to develop low complexity smart antenna structures for 3G systems. The emphasis will be laid on ease of implementation in a multichannel / multi-user environment. A smart antenna test bed will be developed, and various state-of-the-art DSP structures and algorithms will be investigated.Facing the soaring demand for mobile communications, the use of smart antenna arrays in mobile communications systems to exploit spatial diversity to further improve spectral efficiency has recently received considerable attention. Basically, a smart antenna array comprises a number of antenna elements combined via a beamforming network (amplitude and phase control network). Some of the benefits that can be achieved by using SAS (Smart Antenna System) include lower mobile terminal power consumption, range extension, ISI reduction, higher data rate support, and ease of integration into the existing base station system. In terms of economic benefits, adaptive antenna systems employed at base station, though increases the per base station cost, can increase coverage area of each cell site, thereby reducing the total system cost dramatically - often by more than 50% without compromising the system performance. The testbed can be employed to illustrate enhancement of system capacity and service quality in wireless communications.
1990-09-01
array. LTHPER Length of the MPPERS array. LTHQPA Length of the QPA array. LTHXRT Length of the XROOT array. MAXACN Maximum number of aircraft that can...3 Time remaining until the ready-to-fly time at time of report Number of XROOT Array Entries (GENERATED) NROOT (MAXT) The total number of entries in...the XROOT array for each aircraft type. AIS Station Status NSTAT (NOSTAT, I, MAXB) I = 1 Total number of stations of each type on base = 2 Number in
NASA Astrophysics Data System (ADS)
Paulsen, Lee; Hoffmann, Ted; Fulton, Caleb; Yeary, Mark; Saunders, Austin; Thompson, Dan; Chen, Bill; Guo, Alex; Murmann, Boris
2015-05-01
Phased array systems offer numerous advantages to the modern warfighter in multiple application spaces, including Radar, Electronic Warfare, Signals Intelligence, and Communications. However, a lack of commonality in the underlying technology base for DoD Phased Arrays has led to static systems with long development cycles, slow technology refreshes in response to emerging threats, and expensive, application-specific sub-components. The IMPACT module (Integrated Multi-use Phased Array Common Tile) is a multi-channel, reconfigurable, cost-effective beamformer that provides a common building block for multiple, disparate array applications.
A 3-year study of high-cost users of health care.
Wodchis, Walter P; Austin, Peter C; Henry, David A
2016-02-16
Characterizing high-cost users of health care resources is essential for the development of appropriate interventions to improve the management of these patients. We sought to determine the concentration of health care spending, characterize demographic characteristics and clinical diagnoses of high-cost users and examine the consistency of their health care consumption over time. We conducted a retrospective analysis of all residents of Ontario, Canada, who were eligible for publicly funded health care between 2009 and 2011. We estimated the total attributable government health care spending for every individual in all health care sectors. More than $30 billion in annual health expenditures, representing 75% of total government health care spending, was attributed to individual costs. One-third of high-cost users (individuals with the highest 5% of costs) in 2009 remained in this category in the subsequent 2 years. Most spending among high-cost users was for institutional care, in contrast to lower-cost users, among whom spending was predominantly for ambulatory care services. Costs were far more concentrated among children than among older adults. The most common reasons for hospital admissions among high-cost users were chronic diseases, infections, acute events and palliative care. Although high health care costs were concentrated in a small minority of the population, these related to a diverse set of patient health care needs and were incurred in a wide array of health care settings. Improving the sustainability of the health care system through better management of high-cost users will require different tactics for different high-cost populations. © 2016 Canadian Medical Association or its licensors.
Double biprism arrays design using for stereo-photography of mobile phone camera
NASA Astrophysics Data System (ADS)
Sun, Wen-Shing; Chu, Pu-Yi; Chao, Yu-Hao; Pan, Jui-Wen; Tien, Chuen-Lin
2016-11-01
Generally, mobile phone use one camera to catch the image, and it is hard to get stereo image pair. Adding a biprism array can help that get the image pair easily. So users can use their mobile phone to catch the stereo image anywhere by adding a biprism array, and if they want to get a normal image just remove it. Using biprism arrays will induce chromatic aberration. Therefore, we design a double biprism arrays to reduce chromatic aberration.