Sample records for communication activity temporal

  1. Renormalization group theory for percolation in time-varying networks.

    PubMed

    Karschau, Jens; Zimmerling, Marco; Friedrich, Benjamin M

    2018-05-22

    Motivated by multi-hop communication in unreliable wireless networks, we present a percolation theory for time-varying networks. We develop a renormalization group theory for a prototypical network on a regular grid, where individual links switch stochastically between active and inactive states. The question whether a given source node can communicate with a destination node along paths of active links is equivalent to a percolation problem. Our theory maps the temporal existence of multi-hop paths on an effective two-state Markov process. We show analytically how this Markov process converges towards a memoryless Bernoulli process as the hop distance between source and destination node increases. Our work extends classical percolation theory to the dynamic case and elucidates temporal correlations of message losses. Quantification of temporal correlations has implications for the design of wireless communication and control protocols, e.g. in cyber-physical systems such as self-organized swarms of drones or smart traffic networks.

  2. Cerebral coherence between communicators marks the emergence of meaning

    PubMed Central

    Stolk, Arjen; Noordzij, Matthijs L.; Verhagen, Lennart; Volman, Inge; Schoffelen, Jan-Mathijs; Oostenveld, Robert; Hagoort, Peter; Toni, Ivan

    2014-01-01

    How can we understand each other during communicative interactions? An influential suggestion holds that communicators are primed by each other’s behaviors, with associative mechanisms automatically coordinating the production of communicative signals and the comprehension of their meanings. An alternative suggestion posits that mutual understanding requires shared conceptualizations of a signal’s use, i.e., “conceptual pacts” that are abstracted away from specific experiences. Both accounts predict coherent neural dynamics across communicators, aligned either to the occurrence of a signal or to the dynamics of conceptual pacts. Using coherence spectral-density analysis of cerebral activity simultaneously measured in pairs of communicators, this study shows that establishing mutual understanding of novel signals synchronizes cerebral dynamics across communicators’ right temporal lobes. This interpersonal cerebral coherence occurred only within pairs with a shared communicative history, and at temporal scales independent from signals’ occurrences. These findings favor the notion that meaning emerges from shared conceptualizations of a signal’s use. PMID:25489093

  3. Temporal-pattern recognition by single neurons in a sensory pathway devoted to social communication behavior

    PubMed Central

    Carlson, Bruce A.

    2010-01-01

    Sensory systems often encode stimulus information into the temporal pattern of action potential activity. However, little is known about how the information contained within these patterns is extracted by postsynaptic neurons. Similar to temporal coding by sensory neurons, social information in mormyrid fish is encoded into the temporal patterning of an electric organ discharge (EOD). In the current study, sensitivity to temporal patterns of electrosensory stimuli was found to arise within the midbrain posterior exterolateral nucleus (ELp). Whole-cell patch recordings from ELp neurons in vivo revealed three patterns of interpulse interval (IPI) tuning: low-pass neurons tuned to long intervals, high-pass neurons tuned to short intervals and band-pass neurons tuned to intermediate intervals. Many neurons within each class also responded preferentially to either increasing or decreasing IPIs. Playback of electric signaling patterns recorded from freely behaving fish revealed that the IPI and direction tuning of ELp neurons resulted in selective responses to particular social communication displays characterized by distinct IPI patterns. The postsynaptic potential responses of many neurons indicated a combination of excitatory and inhibitory synaptic input, and the IPI tuning of ELp neurons was directly related to rate-dependent changes in the direction and amplitude of postsynaptic potentials. These results suggest that differences in the dynamics of short-term synaptic plasticity in excitatory and inhibitory pathways may tune central sensory neurons to particular temporal patterns of presynaptic activity. This may represent a general mechanism for the processing of behaviorally-relevant stimulus information encoded into temporal patterns of activity by sensory neurons. PMID:19641105

  4. Temporal-pattern recognition by single neurons in a sensory pathway devoted to social communication behavior.

    PubMed

    Carlson, Bruce A

    2009-07-29

    Sensory systems often encode stimulus information into the temporal pattern of action potential activity. However, little is known about how the information contained within these patterns is extracted by postsynaptic neurons. Similar to temporal coding by sensory neurons, social information in mormyrid fish is encoded into the temporal patterning of an electric organ discharge. In the current study, sensitivity to temporal patterns of electrosensory stimuli was found to arise within the midbrain posterior exterolateral nucleus (ELp). Whole-cell patch recordings from ELp neurons in vivo revealed three patterns of interpulse interval (IPI) tuning: low-pass neurons tuned to long intervals, high-pass neurons tuned to short intervals, and bandpass neurons tuned to intermediate intervals. Many neurons within each class also responded preferentially to either increasing or decreasing IPIs. Playback of electric signaling patterns recorded from freely behaving fish revealed that the IPI and direction tuning of ELp neurons resulted in selective responses to particular social communication displays characterized by distinct IPI patterns. The postsynaptic potential responses of many neurons indicated a combination of excitatory and inhibitory synaptic input, and the IPI tuning of ELp neurons was directly related to rate-dependent changes in the direction and amplitude of postsynaptic potentials. These results suggest that differences in the dynamics of short-term synaptic plasticity in excitatory and inhibitory pathways may tune central sensory neurons to particular temporal patterns of presynaptic activity. This may represent a general mechanism for the processing of behaviorally relevant stimulus information encoded into temporal patterns of activity by sensory neurons.

  5. Atmospheric propagation issues relevant to optical communications

    NASA Technical Reports Server (NTRS)

    Churnside, James H.; Shaik, Kamran

    1989-01-01

    Atmospheric propagation issues relevant to space-to-ground optical communications for near-earth applications are studied. Propagation effects, current optical communication activities, potential applications, and communication techniques are surveyed. It is concluded that a direct-detection space-to-ground link using redundant receiver sites and temporal encoding is likely to be employed to transmit earth-sensing satellite data to the ground some time in the future. Low-level, long-term studies of link availability, fading statistics, and turbulence climatology are recommended to support this type of application.

  6. Physiological and psychological responses to expressions of emotion and empathy in post-stress communication.

    PubMed

    Ono, Makiko; Fujita, Mizuho; Yamada, Shigeyuki

    2009-01-01

    The effects of communicating during and after expressing emotions and receiving empathy after exposure to stress were investigated for 18 female students (9 pairs). After mental and physical tasks, a subject spoke to a listener about the stress task. In Experiment 1, responses to speaking about negative emotions aroused by the task (the "with emotion" condition) were compared to speaking about only objective facts about the task (the control). In Experiment 2, responses to empathetic reactions from the listener (the "with empathy" condition) were compared to no reaction (the control). Electroencephalograms were recorded, and heart rate variability (HRV) was calculated from electrocardiogram data. Subjective stress was estimated by a visual analog scale. Experiment 1 demonstrated that expressing emotions activated the left temporal region (T3) in the "with emotion" condition. In Experiment 2, physiological responses depended on cognition of different elements of empathy. During communication, feeling that the listener had the same emotion decreased the subject's T3 activity and sympathetic activity balance indicated by HRV. After communication, feeling that the listener understood her emotions decreased bilateral frontal and temporal activity. On the other hand, subjective stress did not differ between conditions in both experiments. These findings indicate that the comfort of having shared a message reduced physiological activity, especially in the "with empathy" condition. Conversely, even in the "with empathy" condition, not sharing a message can result in more discomfort or stress than the control. Sharing might be associated with cognition of the degree of success of communication, which reflected in the physiological responses. In communication, therefore, expressing emotions and receiving empathy did not in themselves reduce stress, and the level of cognition of having shared a message is a key factor in reducing stress.

  7. Subliminal semantic priming changes the dynamic causal influence between the left frontal and temporal cortex.

    PubMed

    Matsumoto, Atsushi; Kakigi, Ryusuke

    2014-01-01

    Recent neuroimaging experiments have revealed that subliminal priming of a target stimulus leads to the reduction of neural activity in specific regions concerned with processing the target. Such findings lead to questions about the degree to which the subliminal priming effect is based only on decreased activity in specific local brain regions, as opposed to the influence of neural mechanisms that regulate communication between brain regions. To address this question, this study recorded EEG during performance of a subliminal semantic priming task. We adopted an information-based approach that used independent component analysis and multivariate autoregressive modeling. Results indicated that subliminal semantic priming caused significant modulation of alpha band activity in the left inferior frontal cortex and modulation of gamma band activity in the left inferior temporal regions. The multivariate autoregressive approach confirmed significant increases in information flow from the inferior frontal cortex to inferior temporal regions in the early time window that was induced by subliminal priming. In the later time window, significant enhancement of bidirectional causal flow between these two regions underlying subliminal priming was observed. Results suggest that unconscious processing of words influences not only local activity of individual brain regions but also the dynamics of neural communication between those regions.

  8. Movies as Political Communication: A Theory of Popular Representation.

    ERIC Educational Resources Information Center

    Combs, James

    To understand film as a form of political communication, movies must be regarded as an art form made both with commercial and aesthetic considerations and with cultural, industrial, and artistic traditions in mind. Filmmaking must also be viewed as a process or as a temporal activity of a culture. Through political mediation, or the process of…

  9. A fast BK-type KCa current acts as a postsynaptic modulator of temporal selectivity for communication signals.

    PubMed

    Kohashi, Tsunehiko; Carlson, Bruce A

    2014-01-01

    Temporal patterns of spiking often convey behaviorally relevant information. Various synaptic mechanisms and intrinsic membrane properties can influence neuronal selectivity to temporal patterns of input. However, little is known about how synaptic mechanisms and intrinsic properties together determine the temporal selectivity of neuronal output. We tackled this question by recording from midbrain electrosensory neurons in mormyrid fish, in which the processing of temporal intervals between communication signals can be studied in a reduced in vitro preparation. Mormyrids communicate by varying interpulse intervals (IPIs) between electric pulses. Within the midbrain posterior exterolateral nucleus (ELp), the temporal patterns of afferent spike trains are filtered to establish single-neuron IPI tuning. We performed whole-cell recording from ELp neurons in a whole-brain preparation and examined the relationship between intrinsic excitability and IPI tuning. We found that spike frequency adaptation of ELp neurons was highly variable. Postsynaptic potentials (PSPs) of strongly adapting (phasic) neurons were more sharply tuned to IPIs than weakly adapting (tonic) neurons. Further, the synaptic filtering of IPIs by tonic neurons was more faithfully converted into variation in spiking output, particularly at short IPIs. Pharmacological manipulation under current- and voltage-clamp revealed that tonic firing is mediated by a fast, large-conductance Ca(2+)-activated K(+) (KCa) current (BK) that speeds up action potential repolarization. These results suggest that BK currents can shape the temporal filtering of sensory inputs by modifying both synaptic responses and PSP-to-spike conversion. Slow SK-type KCa currents have previously been implicated in temporal processing. Thus, both fast and slow KCa currents can fine-tune temporal selectivity.

  10. Spatio-temporal filtering techniques for the detection of disaster-related communication.

    PubMed

    Fitzhugh, Sean M; Ben Gibson, C; Spiro, Emma S; Butts, Carter T

    2016-09-01

    Individuals predominantly exchange information with one another through informal, interpersonal channels. During disasters and other disrupted settings, information spread through informal channels regularly outpaces official information provided by public officials and the press. Social scientists have long examined this kind of informal communication in the rumoring literature, but studying rumoring in disrupted settings has posed numerous methodological challenges. Measuring features of informal communication-timing, content, location-with any degree of precision has historically been extremely challenging in small studies and infeasible at large scales. We address this challenge by using online, informal communication from a popular microblogging website and for which we have precise spatial and temporal metadata. While the online environment provides a new means for observing rumoring, the abundance of data poses challenges for parsing hazard-related rumoring from countless other topics in numerous streams of communication. Rumoring about disaster events is typically temporally and spatially constrained to places where that event is salient. Accordingly, we use spatio and temporal subsampling to increase the resolution of our detection techniques. By filtering out data from known sources of error (per rumor theories), we greatly enhance the signal of disaster-related rumoring activity. We use these spatio-temporal filtering techniques to detect rumoring during a variety of disaster events, from high-casualty events in major population centers to minimally destructive events in remote areas. We consistently find three phases of response: anticipatory excitation where warnings and alerts are issued ahead of an event, primary excitation in and around the impacted area, and secondary excitation which frequently brings a convergence of attention from distant locales onto locations impacted by the event. Our results demonstrate the promise of spatio-temporal filtering techniques for "tuning" measurement of hazard-related rumoring to enable observation of rumoring at scales that have long been infeasible. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Temporal motifs reveal homophily, gender-specific patterns, and group talk in call sequences.

    PubMed

    Kovanen, Lauri; Kaski, Kimmo; Kertész, János; Saramäki, Jari

    2013-11-05

    Recent studies on electronic communication records have shown that human communication has complex temporal structure. We study how communication patterns that involve multiple individuals are affected by attributes such as sex and age. To this end, we represent the communication records as a colored temporal network where node color is used to represent individuals' attributes, and identify patterns known as temporal motifs. We then construct a null model for the occurrence of temporal motifs that takes into account the interaction frequencies and connectivity between nodes of different colors. This null model allows us to detect significant patterns in call sequences that cannot be observed in a static network that uses interaction frequencies as link weights. We find sex-related differences in communication patterns in a large dataset of mobile phone records and show the existence of temporal homophily, the tendency of similar individuals to participate in communication patterns beyond what would be expected on the basis of their average interaction frequencies. We also show that temporal patterns differ between dense and sparse neighborhoods in the network. Because also this result is independent of interaction frequencies, it can be seen as an extension of Granovetter's hypothesis to temporal networks.

  12. Temporal motifs reveal homophily, gender-specific patterns, and group talk in call sequences

    PubMed Central

    Kovanen, Lauri; Kaski, Kimmo; Kertész, János; Saramäki, Jari

    2013-01-01

    Recent studies on electronic communication records have shown that human communication has complex temporal structure. We study how communication patterns that involve multiple individuals are affected by attributes such as sex and age. To this end, we represent the communication records as a colored temporal network where node color is used to represent individuals’ attributes, and identify patterns known as temporal motifs. We then construct a null model for the occurrence of temporal motifs that takes into account the interaction frequencies and connectivity between nodes of different colors. This null model allows us to detect significant patterns in call sequences that cannot be observed in a static network that uses interaction frequencies as link weights. We find sex-related differences in communication patterns in a large dataset of mobile phone records and show the existence of temporal homophily, the tendency of similar individuals to participate in communication patterns beyond what would be expected on the basis of their average interaction frequencies. We also show that temporal patterns differ between dense and sparse neighborhoods in the network. Because also this result is independent of interaction frequencies, it can be seen as an extension of Granovetter’s hypothesis to temporal networks. PMID:24145424

  13. Empirical study of the role of the topology in spreading on communication networks

    NASA Astrophysics Data System (ADS)

    Medvedev, Alexey; Kertesz, Janos

    2017-03-01

    Topological aspects, like community structure, and temporal activity patterns, like burstiness, have been shown to severely influence the speed of spreading in temporal networks. We study the influence of the topology on the susceptible-infected (SI) spreading on time stamped communication networks, as obtained from a dataset of mobile phone records. We consider city level networks with intra- and inter-city connections. The networks using only intra-city links are usually sparse, where the spreading depends mainly on the average degree. The inter-city links serve as bridges in spreading, speeding up considerably the process. We demonstrate the effect also on model simulations.

  14. Motor skill failure or flow-experience? Functional brain asymmetry and brain connectivity in elite and amateur table tennis players.

    PubMed

    Wolf, Sebastian; Brölz, Ellen; Keune, Philipp M; Wesa, Benjamin; Hautzinger, Martin; Birbaumer, Niels; Strehl, Ute

    2015-02-01

    Functional hemispheric asymmetry is assumed to constitute one underlying neurophysiological mechanism of flow-experience and skilled psycho-motor performance in table tennis athletes. We hypothesized that when initiating motor execution during motor imagery, elite table tennis players show higher right- than left-hemispheric temporal activity and stronger right temporal-premotor than left temporal-premotor theta coherence compared to amateurs. We additionally investigated, whether less pronounced left temporal cortical activity is associated with more world rank points and more flow-experience. To this aim, electroencephalographic data were recorded in 14 experts and 15 amateur table tennis players. Subjects watched videos of an opponent serving a ball and were instructed to imagine themselves responding with a specific table tennis stroke. Alpha asymmetry scores were calculated by subtracting left from right hemispheric 8-13 Hz alpha power. 4-7 Hz theta coherence was calculated between temporal (T3/T4) and premotor (Fz) cortex. Experts showed a significantly stronger shift towards lower relative left-temporal brain activity compared to amateurs and a significantly stronger right temporal-premotor coherence than amateurs. The shift towards lower relative left-temporal brain activity in experts was associated with more flow-experience and lower relative left temporal activity was correlated with more world rank points. The present findings suggest that skilled psycho-motor performance in elite table tennis players reflect less desynchronized brain activity at the left hemisphere and more coherent brain activity between fronto-temporal and premotor oscillations at the right hemisphere. This pattern probably reflect less interference of irrelevant communication of verbal-analytical with motor-control mechanisms which implies flow-experience and predict world rank in experts. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Functional connectivity evidence of cortico-cortico inhibition in temporal lobe epilepsy.

    PubMed

    Tracy, Joseph I; Osipowicz, Karol; Spechler, Philip; Sharan, Ashwini; Skidmore, Christopher; Doucet, Gaelle; Sperling, Michael R

    2014-01-01

    Epileptic seizures can initiate a neural circuit and lead to aberrant neural communication with brain areas outside the epileptogenic region. We focus on interictal activity in focal temporal lobe epilepsy and evaluate functional connectivity (FC) differences that emerge as function of bilateral versus strictly unilateral epileptiform activity. We assess the strength of FC at rest between the ictal and non-ictal temporal lobes, in addition to whole brain connectivity with the ictal temporal lobe. Results revealed strong connectivity between the temporal lobes for both patient groups, but this did not vary as a function of unilateral versus bilateral interictal status. Both the left and right unilateral temporal lobe groups showed significant anti-correlated activity in regions outside the epileptogenic temporal lobe, primarily involving the contralateral (non-ictal/non-pathologic) hemisphere, with precuneus involvement prominent. The bilateral groups did not show this contralateral anti-correlated activity. This anti-correlated connectivity may represent a form of protective and adaptive inhibition, helping to constrain epileptiform activity to the pathologic temporal lobe. The absence of this activity in the bilateral groups may be indicative of flawed inhibitory mechanisms, helping to explain their more widespread epileptiform activity. Our data suggest that the location and build up of epilepsy networks in the brain are not truly random, and are not limited to the formation of strictly epileptogenic networks. Functional networks may develop to take advantage of the regulatory function of structures such as the precuneus to instantiate an anti-correlated network, generating protective cortico-cortico inhibition for the purpose of limiting seizure spread or epileptogenesis. Copyright © 2012 Wiley Periodicals, Inc.

  16. Functional Connectivity Evidence of Cortico-Cortico Inhibition in Temporal Lobe Epilepsy

    PubMed Central

    Tracy, Joseph I.; Osipowicz, Karol; Spechler, Philip; Sharan, Ashwini; Skidmore, Christopher; Doucet, Gaelle; Sperling, Michael R.

    2012-01-01

    Epileptic seizures can initiate a neural circuit and lead to aberrant neural communication with brain areas outside the epileptogenic region. We focus on interictal activity in focal temporal lobe epilepsy and evaluate functional connectivity differences that emerge as function of bilateral versus strictly unilateral epileptiform activity. We assess the strength of functional connectivity at rest between the ictal and non-ictal temporal lobes, in addition to whole brain connectivity with the ictal temporal lobe. Results revealed strong connectivity between the temporal lobes for both patient groups, but this did not vary as a function of unilateral versus bilateral interictal status. Both the left and right unilateral temporal lobe groups showed significant anti-correlated activity in regions outside the epileptogenic temporal lobe, primarily involving the contralateral (non-ictal/non-pathologic) hemisphere, with precuneus involvement prominent. The bilateral groups did not show this contralateral anti-correlated activity. This anti-correlated connectivity may represent a form of protective and adaptive inhibition, helping to constrain epileptiform activity to the pathologic temporal lobe. The absence of this activity in the bilateral groups may be indicative of flawed inhibitory mechanisms, helping to explain their more widespread epileptiform activity. Our data suggest that the location and build up of epilepsy networks in the brain are not truly random, and are not limited to the formation of strictly epileptogenic networks. Functional networks may develop to take advantage of the regulatory function of structures such as the precuneus to instantiate an anti-correlated network, generating protective cortico-cortico inhibition for the purpose of limiting seizure spread or epileptogenesis. PMID:22987774

  17. Online discussion groups for bulimia nervosa: an inductive approach to Internet-based communication between patients.

    PubMed

    Wesemann, Dorette; Grunwald, Martin

    2008-09-01

    Online discussion forums are often used by people with eating disorders. This study analyses 2,072 threads containing a total of 14,903 postings from an unmoderated German "prorecovery" forum for persons suffering from bulimia nervosa (www.ab-server.de) during the period from October 2004 to May 2006. The threads were inductively analyzed for underlying structural types, and the various types found were then analyzed for differences in temporal and quantitative parameters. Communication in the online discussion forum occurred in three types of thread: (1) problem-oriented threads (78.8% of threads), (2) communication-oriented threads (15.3% of threads), and (3) metacommunication threads (2.6% of threads). Metacommunication threads contained significantly more postings than problem-oriented and communication-oriented threads, and they were viewed significantly more often. Moreover, there are temporal differences between the structural types. Topics relating to active management of the disorder receive great attention in prorecovery forums. (c) 2008 by Wiley Periodicals, Inc.

  18. Neural correlates underlying the comprehension of deceitful and ironic communicative intentions.

    PubMed

    Bosco, Francesca M; Parola, Alberto; Valentini, Maria C; Morese, Rosalba

    2017-09-01

    Neuroimaging studies have shown that a left fronto-temporo-parietal cerebral network is recruited in the comprehension of both deceitful and ironic speech acts. However, no studies to date have directly compared neural activation during the comprehension of these pragmatic phenomena. We used fMRI to investigate the existence of common and specific neural circuits underlying the comprehension of the same speech act, uttered with different communicative intentions, i.e., of being sincere, deceitful or ironic. In particular, the novelty of the present study is that it explores the existence of a specific cerebral area involved in the recognition of irony versus deceit. We presented 23 healthy participants with 48 context stories each followed by a target sentence. For each story we designed different versions eliciting, respectively, different pragmatic interpretations of the same target sentence - literal, deceitful or ironic-. We kept the semantic and syntactic complexity of the target sentence constant across the conditions. Our results showed that the recognition of ironic communicative intention activated the left temporo-parietal junction (lTPJ), the left inferior frontal gyrus (lIFG), the left middle frontal gyrus (lMFG), the left middle temporal gyrus (lMTG), and the left dorsolateral prefrontal cortex (lDLPFC). Comprehension of deceitful communicative intention activated the lIFG, the lMFG, and the lDLPFC. fMRI analysis revealed that a left fronto-temporal network-including the inferior frontal gyrus (IFG), the dorsolateral prefrontal cortex (DLPFC) and the middle frontal gyrus (MFG)-is activated in both irony and deceit recognition. The original result of the present investigation is that the lMTG was found to be more active in the comprehension of ironic versus deceitful communicative intention, thus suggesting its specific role in irony recognition. To conclude, our results showed that common cerebral areas are recruited in the comprehension of both pragmatic phenomena, while the lMTG has a key role in the recognition of ironic versus deceitful communicative intention. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Hidden scaling patterns and universality in written communication

    NASA Astrophysics Data System (ADS)

    Formentin, M.; Lovison, A.; Maritan, A.; Zanzotto, G.

    2014-07-01

    The temporal statistics exhibited by written correspondence appear to be media dependent, with features which have so far proven difficult to characterize. We explain the origin of these difficulties by disentangling the role of spontaneous activity from decision-based prioritizing processes in human dynamics, clocking all waiting times through each agent's "proper time" measured by activity. This unveils the same fundamental patterns in written communication across all media (letters, email, sms), with response times displaying truncated power-law behavior and average exponents near -3/2. When standard time is used, the response time probabilities are theoretically predicted to exhibit a bimodal character, which is empirically borne out by our newly collected years-long data on email. These perspectives on the temporal dynamics of human correspondence should aid in the analysis of interaction phenomena in general, including resource management, optimal pricing and routing, information sharing, and emergency handling.

  20. Of Time and the Media: Issues of Temporality in Communication Research.

    ERIC Educational Resources Information Center

    Ritchie, L. David

    The role of temporality as a cognitive and cultural factor in communication processes has been largely neglected in communication research. However, it is possible to examine the representation of time on three levels: allocation of events or actions to categories (as in sacred time versus profane time), temporal orientation, and the content of…

  1. The Bursts and Lulls of Multimodal Interaction: Temporal Distributions of Behavior Reveal Differences Between Verbal and Non-Verbal Communication.

    PubMed

    Abney, Drew H; Dale, Rick; Louwerse, Max M; Kello, Christopher T

    2018-04-06

    Recent studies of naturalistic face-to-face communication have demonstrated coordination patterns such as the temporal matching of verbal and non-verbal behavior, which provides evidence for the proposal that verbal and non-verbal communicative control derives from one system. In this study, we argue that the observed relationship between verbal and non-verbal behaviors depends on the level of analysis. In a reanalysis of a corpus of naturalistic multimodal communication (Louwerse, Dale, Bard, & Jeuniaux, ), we focus on measuring the temporal patterns of specific communicative behaviors in terms of their burstiness. We examined burstiness estimates across different roles of the speaker and different communicative modalities. We observed more burstiness for verbal versus non-verbal channels, and for more versus less informative language subchannels. Using this new method for analyzing temporal patterns in communicative behaviors, we show that there is a complex relationship between verbal and non-verbal channels. We propose a "temporal heterogeneity" hypothesis to explain how the language system adapts to the demands of dialog. Copyright © 2018 Cognitive Science Society, Inc.

  2. Eye’m talking to you: speakers’ gaze direction modulates co-speech gesture processing in the right MTG

    PubMed Central

    Toni, Ivan; Hagoort, Peter; Kelly, Spencer D.; Özyürek, Aslı

    2015-01-01

    Recipients process information from speech and co-speech gestures, but it is currently unknown how this processing is influenced by the presence of other important social cues, especially gaze direction, a marker of communicative intent. Such cues may modulate neural activity in regions associated either with the processing of ostensive cues, such as eye gaze, or with the processing of semantic information, provided by speech and gesture. Participants were scanned (fMRI) while taking part in triadic communication involving two recipients and a speaker. The speaker uttered sentences that were and were not accompanied by complementary iconic gestures. Crucially, the speaker alternated her gaze direction, thus creating two recipient roles: addressed (direct gaze) vs unaddressed (averted gaze) recipient. The comprehension of Speech&Gesture relative to SpeechOnly utterances recruited middle occipital, middle temporal and inferior frontal gyri, bilaterally. The calcarine sulcus and posterior cingulate cortex were sensitive to differences between direct and averted gaze. Most importantly, Speech&Gesture utterances, but not SpeechOnly utterances, produced additional activity in the right middle temporal gyrus when participants were addressed. Marking communicative intent with gaze direction modulates the processing of speech–gesture utterances in cerebral areas typically associated with the semantic processing of multi-modal communicative acts. PMID:24652857

  3. Temporal coordination of olfactory cortex sharp-wave activity with up- and downstates in the orbitofrontal cortex during slow-wave sleep.

    PubMed

    Onisawa, Naomi; Manabe, Hiroyuki; Mori, Kensaku

    2017-01-01

    During slow-wave sleep, interareal communications via coordinated, slow oscillatory activities occur in the large-scale networks of the mammalian neocortex. Because olfactory cortex (OC) areas, which belong to paleocortex, show characteristic sharp-wave (SPW) activity during slow-wave sleep, we examined whether OC SPWs in freely behaving rats occur in temporal coordination with up- and downstates of the orbitofrontal cortex (OFC) slow oscillation. Simultaneous recordings of local field potentials and spike activities in the OC and OFC showed that during the downstate in the OFC, the OC also exhibited downstate with greatly reduced neuronal activity and suppression of SPW generation. OC SPWs occurred during two distinct phases of the upstate of the OFC: early-phase SPWs occurred at the start of upstate shortly after the down-to-up transition in the OFC, whereas late-phase SPWs were generated at the end of upstate shortly before the up-to-down transition. Such temporal coordination between neocortical up- and downstates and olfactory system SPWs was observed between the prefrontal cortex areas (OFC and medial prefrontal cortex) and the OC areas (anterior piriform cortex and posterior piriform cortex). These results suggest that during slow-wave sleep, OC and OFC areas communicate preferentially in specific time windows shortly after the down-to-up transition and shortly before the up-to-down transition. Simultaneous recordings of local field potentials and spike activities in the anterior piriform cortex (APC) and orbitofrontal cortex (OFC) during slow-wave sleep showed that APC sharp waves tended to occur during two distinct phases of OFC upstate: early phase, shortly after the down-to-up transition, and late phase, shortly before the up-to-down transition, suggesting that during slow-wave sleep, olfactory cortex and OFC areas communicate preferentially in the specific time windows. Copyright © 2017 the American Physiological Society.

  4. Temporal coordination of olfactory cortex sharp-wave activity with up- and downstates in the orbitofrontal cortex during slow-wave sleep

    PubMed Central

    Onisawa, Naomi; Mori, Kensaku

    2016-01-01

    During slow-wave sleep, interareal communications via coordinated, slow oscillatory activities occur in the large-scale networks of the mammalian neocortex. Because olfactory cortex (OC) areas, which belong to paleocortex, show characteristic sharp-wave (SPW) activity during slow-wave sleep, we examined whether OC SPWs in freely behaving rats occur in temporal coordination with up- and downstates of the orbitofrontal cortex (OFC) slow oscillation. Simultaneous recordings of local field potentials and spike activities in the OC and OFC showed that during the downstate in the OFC, the OC also exhibited downstate with greatly reduced neuronal activity and suppression of SPW generation. OC SPWs occurred during two distinct phases of the upstate of the OFC: early-phase SPWs occurred at the start of upstate shortly after the down-to-up transition in the OFC, whereas late-phase SPWs were generated at the end of upstate shortly before the up-to-down transition. Such temporal coordination between neocortical up- and downstates and olfactory system SPWs was observed between the prefrontal cortex areas (OFC and medial prefrontal cortex) and the OC areas (anterior piriform cortex and posterior piriform cortex). These results suggest that during slow-wave sleep, OC and OFC areas communicate preferentially in specific time windows shortly after the down-to-up transition and shortly before the up-to-down transition. NEW & NOTEWORTHY Simultaneous recordings of local field potentials and spike activities in the anterior piriform cortex (APC) and orbitofrontal cortex (OFC) during slow-wave sleep showed that APC sharp waves tended to occur during two distinct phases of OFC upstate: early phase, shortly after the down-to-up transition, and late phase, shortly before the up-to-down transition, suggesting that during slow-wave sleep, olfactory cortex and OFC areas communicate preferentially in the specific time windows. PMID:27733591

  5. On the same wavelength: predictable language enhances speaker-listener brain-to-brain synchrony in posterior superior temporal gyrus.

    PubMed

    Dikker, Suzanne; Silbert, Lauren J; Hasson, Uri; Zevin, Jason D

    2014-04-30

    Recent research has shown that the degree to which speakers and listeners exhibit similar brain activity patterns during human linguistic interaction is correlated with communicative success. Here, we used an intersubject correlation approach in fMRI to test the hypothesis that a listener's ability to predict a speaker's utterance increases such neural coupling between speakers and listeners. Nine subjects listened to recordings of a speaker describing visual scenes that varied in the degree to which they permitted specific linguistic predictions. In line with our hypothesis, the temporal profile of listeners' brain activity was significantly more synchronous with the speaker's brain activity for highly predictive contexts in left posterior superior temporal gyrus (pSTG), an area previously associated with predictive auditory language processing. In this region, predictability differentially affected the temporal profiles of brain responses in the speaker and listeners respectively, in turn affecting correlated activity between the two: whereas pSTG activation increased with predictability in the speaker, listeners' pSTG activity instead decreased for more predictable sentences. Listeners additionally showed stronger BOLD responses for predictive images before sentence onset, suggesting that highly predictable contexts lead comprehenders to preactivate predicted words.

  6. Punctuated equilibrium dynamics in human communications

    NASA Astrophysics Data System (ADS)

    Peng, Dan; Han, Xiao-Pu; Wei, Zong-Wen; Wang, Bing-Hong

    2015-10-01

    A minimal model based on network incorporating individual interactions is proposed to study the non-Poisson statistical properties of human behavior: individuals in system interact with their neighbors, the probability of an individual acting correlates to its activity, and all the individuals involved in action will change their activities randomly. The model reproduces varieties of spatial-temporal patterns observed in empirical studies of human daily communications, providing insight into various human activities and embracing a range of realistic social interacting systems, particularly, intriguing bimodal phenomenon. This model bridges priority queueing theory and punctuated equilibrium dynamics, and our modeling and analysis is likely to shed light on non-Poisson phenomena in many complex systems.

  7. CNS activation and regional connectivity during pantomime observation: no engagement of the mirror neuron system for deaf signers.

    PubMed

    Emmorey, Karen; Xu, Jiang; Gannon, Patrick; Goldin-Meadow, Susan; Braun, Allen

    2010-01-01

    Deaf signers have extensive experience using their hands to communicate. Using fMRI, we examined the neural systems engaged during the perception of manual communication in 14 deaf signers and 14 hearing non-signers. Participants passively viewed blocked video clips of pantomimes (e.g., peeling an imaginary banana) and action verbs in American Sign Language (ASL) that were rated as meaningless by non-signers (e.g., TO-DANCE). In contrast to visual fixation, pantomimes strongly activated fronto-parietal regions (the mirror neuron system, MNS) in hearing non-signers, but only bilateral middle temporal regions in deaf signers. When contrasted with ASL verbs, pantomimes selectively engaged inferior and superior parietal regions in hearing non-signers, but right superior temporal cortex in deaf signers. The perception of ASL verbs recruited similar regions as pantomimes for deaf signers, with some evidence of greater involvement of left inferior frontal gyrus for ASL verbs. Functional connectivity analyses with left hemisphere seed voxels (ventral premotor, inferior parietal lobule, fusiform gyrus) revealed robust connectivity with the MNS for the hearing non-signers. Deaf signers exhibited functional connectivity with the right hemisphere that was not observed for the hearing group for the fusiform gyrus seed voxel. We suggest that life-long experience with manual communication, and/or auditory deprivation, may alter regional connectivity and brain activation when viewing pantomimes. We conclude that the lack of activation within the MNS for deaf signers does not support an account of human communication that depends upon automatic sensorimotor resonance between perception and action.

  8. Natural asynchronies in audiovisual communication signals regulate neuronal multisensory interactions in voice-sensitive cortex.

    PubMed

    Perrodin, Catherine; Kayser, Christoph; Logothetis, Nikos K; Petkov, Christopher I

    2015-01-06

    When social animals communicate, the onset of informative content in one modality varies considerably relative to the other, such as when visual orofacial movements precede a vocalization. These naturally occurring asynchronies do not disrupt intelligibility or perceptual coherence. However, they occur on time scales where they likely affect integrative neuronal activity in ways that have remained unclear, especially for hierarchically downstream regions in which neurons exhibit temporally imprecise but highly selective responses to communication signals. To address this, we exploited naturally occurring face- and voice-onset asynchronies in primate vocalizations. Using these as stimuli we recorded cortical oscillations and neuronal spiking responses from functional MRI (fMRI)-localized voice-sensitive cortex in the anterior temporal lobe of macaques. We show that the onset of the visual face stimulus resets the phase of low-frequency oscillations, and that the face-voice asynchrony affects the prominence of two key types of neuronal multisensory responses: enhancement or suppression. Our findings show a three-way association between temporal delays in audiovisual communication signals, phase-resetting of ongoing oscillations, and the sign of multisensory responses. The results reveal how natural onset asynchronies in cross-sensory inputs regulate network oscillations and neuronal excitability in the voice-sensitive cortex of macaques, a suggested animal model for human voice areas. These findings also advance predictions on the impact of multisensory input on neuronal processes in face areas and other brain regions.

  9. Cholinergic Neuromodulation Controls Directed Temporal Communication in Neocortex in Vitro

    PubMed Central

    Roopun, Anita K.; LeBeau, Fiona E.N.; Rammell, James; Cunningham, Mark O.; Traub, Roger D.; Whittington, Miles A.

    2010-01-01

    Acetylcholine is the primary neuromodulator involved in cortical arousal in mammals. Cholinergic modulation is involved in conscious awareness, memory formation and attention – processes that involve intercommunication between different cortical regions. Such communication is achieved in part through temporal structuring of neuronal activity by population rhythms, particularly in the beta and gamma frequency ranges (12–80 Hz). Here we demonstrate, using in vitro and in silico models, that spectrally identical patterns of beta2 and gamma rhythms are generated in primary sensory areas and polymodal association areas by fundamentally different local circuit mechanisms: Glutamatergic excitation induced beta2 frequency population rhythms only in layer 5 association cortex whereas cholinergic neuromodulation induced this rhythm only in layer 5 primary sensory cortex. This region-specific sensitivity of local circuits to cholinergic modulation allowed for control of the extent of cortical temporal interactions. Furthermore, the contrasting mechanisms underlying these beta2 rhythms produced a high degree of directionality, favouring an influence of association cortex over primary auditory cortex. PMID:20407636

  10. Temporal motifs reveal collaboration patterns in online task-oriented networks

    NASA Astrophysics Data System (ADS)

    Xuan, Qi; Fang, Huiting; Fu, Chenbo; Filkov, Vladimir

    2015-05-01

    Real networks feature layers of interactions and complexity. In them, different types of nodes can interact with each other via a variety of events. Examples of this complexity are task-oriented social networks (TOSNs), where teams of people share tasks towards creating a quality artifact, such as academic research papers or software development in commercial or open source environments. Accomplishing those tasks involves both work, e.g., writing the papers or code, and communication, to discuss and coordinate. Taking into account the different types of activities and how they alternate over time can result in much more precise understanding of the TOSNs behaviors and outcomes. That calls for modeling techniques that can accommodate both node and link heterogeneity as well as temporal change. In this paper, we report on methodology for finding temporal motifs in TOSNs, limited to a system of two people and an artifact. We apply the methods to publicly available data of TOSNs from 31 Open Source Software projects. We find that these temporal motifs are enriched in the observed data. When applied to software development outcome, temporal motifs reveal a distinct dependency between collaboration and communication in the code writing process. Moreover, we show that models based on temporal motifs can be used to more precisely relate both individual developer centrality and team cohesion to programmer productivity than models based on aggregated TOSNs.

  11. Temporal motifs reveal collaboration patterns in online task-oriented networks.

    PubMed

    Xuan, Qi; Fang, Huiting; Fu, Chenbo; Filkov, Vladimir

    2015-05-01

    Real networks feature layers of interactions and complexity. In them, different types of nodes can interact with each other via a variety of events. Examples of this complexity are task-oriented social networks (TOSNs), where teams of people share tasks towards creating a quality artifact, such as academic research papers or software development in commercial or open source environments. Accomplishing those tasks involves both work, e.g., writing the papers or code, and communication, to discuss and coordinate. Taking into account the different types of activities and how they alternate over time can result in much more precise understanding of the TOSNs behaviors and outcomes. That calls for modeling techniques that can accommodate both node and link heterogeneity as well as temporal change. In this paper, we report on methodology for finding temporal motifs in TOSNs, limited to a system of two people and an artifact. We apply the methods to publicly available data of TOSNs from 31 Open Source Software projects. We find that these temporal motifs are enriched in the observed data. When applied to software development outcome, temporal motifs reveal a distinct dependency between collaboration and communication in the code writing process. Moreover, we show that models based on temporal motifs can be used to more precisely relate both individual developer centrality and team cohesion to programmer productivity than models based on aggregated TOSNs.

  12. Temporal Effects of Alignment in Text-Based, Task-Oriented Discourse

    ERIC Educational Resources Information Center

    Foltz, Anouschka; Gaspers, Judith; Meyer, Carolin; Thiele, Kristina; Cimiano, Philipp; Stenneken, Prisca

    2015-01-01

    Communicative alignment refers to adaptation to one's communication partner. Temporal aspects of such alignment have been little explored. This article examines temporal aspects of lexical and syntactic alignment (i.e., tendencies to use the interlocutor's lexical items and syntactic structures) in task-oriented discourse. In particular, we…

  13. Neural dynamics of speech act comprehension: an MEG study of naming and requesting.

    PubMed

    Egorova, Natalia; Pulvermüller, Friedemann; Shtyrov, Yury

    2014-05-01

    The neurobiological basis and temporal dynamics of communicative language processing pose important yet unresolved questions. It has previously been suggested that comprehension of the communicative function of an utterance, i.e. the so-called speech act, is supported by an ensemble of neural networks, comprising lexico-semantic, action and mirror neuron as well as theory of mind circuits, all activated in concert. It has also been demonstrated that recognition of the speech act type occurs extremely rapidly. These findings however, were obtained in experiments with insufficient spatio-temporal resolution, thus possibly concealing important facets of the neural dynamics of the speech act comprehension process. Here, we used magnetoencephalography to investigate the comprehension of Naming and Request actions performed with utterances controlled for physical features, psycholinguistic properties and the probability of occurrence in variable contexts. The results show that different communicative actions are underpinned by a dynamic neural network, which differentiates between speech act types very early after the speech act onset. Within 50-90 ms, Requests engaged mirror-neuron action-comprehension systems in sensorimotor cortex, possibly for processing action knowledge and intentions. Still, within the first 200 ms of stimulus onset (100-150 ms), Naming activated brain areas involved in referential semantic retrieval. Subsequently (200-300 ms), theory of mind and mentalising circuits were activated in medial prefrontal and temporo-parietal areas, possibly indexing processing of intentions and assumptions of both communication partners. This cascade of stages of processing information about actions and intentions, referential semantics, and theory of mind may underlie dynamic and interactive speech act comprehension.

  14. Specificity of spontaneous EEG associated with different levels of cognitive and communicative dysfunctions in children.

    PubMed

    Kozhushko, Nadezhda Ju; Nagornova, Zhanna V; Evdokimov, Sergey A; Shemyakina, Natalia V; Ponomarev, Valery A; Tereshchenko, Ekaterina P; Kropotov, Jury D

    2018-06-01

    This study aimed to reveal electrophysiological markers of communicative and cognitive dysfunctions of different severity in children with autism spectrum disorder (ASD). Eyes-opened electroencephalograms (EEGs) of 42 children with ASD, divided into two groups according to the severity of their communicative and cognitive dysfunctions (24 with severe and 18 children with less severe ASD), and 70 age-matched controls aged 4-9 years were examined by means of spectral and group independent component (gIC) analyses. A predominance of theta and beta EEG activity in both groups of children with ASD compared to the activity in the control group was found in the global gIC together with a predominance of beta EEG activity in the right occipital region. The quantity of local gICs with enhanced slow and high-frequency EEG activity (within the frontal, temporal, and parietal cortex areas) in children 4-9 years of age might be considered a marker of cognitive and communicative dysfunction severity. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Behavioral and Single-Neuron Sensitivity to Millisecond Variations in Temporally Patterned Communication Signals

    PubMed Central

    Baker, Christa A.; Ma, Lisa; Casareale, Chelsea R.

    2016-01-01

    In many sensory pathways, central neurons serve as temporal filters for timing patterns in communication signals. However, how a population of neurons with diverse temporal filtering properties codes for natural variation in communication signals is unknown. Here we addressed this question in the weakly electric fish Brienomyrus brachyistius, which varies the time intervals between successive electric organ discharges to communicate. These fish produce an individually stereotyped signal called a scallop, which consists of a distinctive temporal pattern of ∼8–12 electric pulses. We manipulated the temporal structure of natural scallops during behavioral playback and in vivo electrophysiology experiments to probe the temporal sensitivity of scallop encoding and recognition. We found that presenting time-reversed, randomized, or jittered scallops increased behavioral response thresholds, demonstrating that fish's electric signaling behavior was sensitive to the precise temporal structure of scallops. Next, using in vivo intracellular recordings and discriminant function analysis, we found that the responses of interval-selective midbrain neurons were also sensitive to the precise temporal structure of scallops. Subthreshold changes in membrane potential recorded from single neurons discriminated natural scallops from time-reversed, randomized, and jittered sequences. Pooling the responses of multiple neurons improved the discriminability of natural sequences from temporally manipulated sequences. Finally, we found that single-neuron responses were sensitive to interindividual variation in scallop sequences, raising the question of whether fish may analyze scallop structure to gain information about the sender. Collectively, these results demonstrate that a population of interval-selective neurons can encode behaviorally relevant temporal patterns with millisecond precision. SIGNIFICANCE STATEMENT The timing patterns of action potentials, or spikes, play important roles in representing information in the nervous system. However, how these temporal patterns are recognized by downstream neurons is not well understood. Here we use the electrosensory system of mormyrid weakly electric fish to investigate how a population of neurons with diverse temporal filtering properties encodes behaviorally relevant input timing patterns, and how this relates to behavioral sensitivity. We show that fish are behaviorally sensitive to millisecond variations in natural, temporally patterned communication signals, and that the responses of individual midbrain neurons are also sensitive to variation in these patterns. In fact, the output of single neurons contains enough information to discriminate stereotyped communication signals produced by different individuals. PMID:27559179

  16. Behavioral and Single-Neuron Sensitivity to Millisecond Variations in Temporally Patterned Communication Signals.

    PubMed

    Baker, Christa A; Ma, Lisa; Casareale, Chelsea R; Carlson, Bruce A

    2016-08-24

    In many sensory pathways, central neurons serve as temporal filters for timing patterns in communication signals. However, how a population of neurons with diverse temporal filtering properties codes for natural variation in communication signals is unknown. Here we addressed this question in the weakly electric fish Brienomyrus brachyistius, which varies the time intervals between successive electric organ discharges to communicate. These fish produce an individually stereotyped signal called a scallop, which consists of a distinctive temporal pattern of ∼8-12 electric pulses. We manipulated the temporal structure of natural scallops during behavioral playback and in vivo electrophysiology experiments to probe the temporal sensitivity of scallop encoding and recognition. We found that presenting time-reversed, randomized, or jittered scallops increased behavioral response thresholds, demonstrating that fish's electric signaling behavior was sensitive to the precise temporal structure of scallops. Next, using in vivo intracellular recordings and discriminant function analysis, we found that the responses of interval-selective midbrain neurons were also sensitive to the precise temporal structure of scallops. Subthreshold changes in membrane potential recorded from single neurons discriminated natural scallops from time-reversed, randomized, and jittered sequences. Pooling the responses of multiple neurons improved the discriminability of natural sequences from temporally manipulated sequences. Finally, we found that single-neuron responses were sensitive to interindividual variation in scallop sequences, raising the question of whether fish may analyze scallop structure to gain information about the sender. Collectively, these results demonstrate that a population of interval-selective neurons can encode behaviorally relevant temporal patterns with millisecond precision. The timing patterns of action potentials, or spikes, play important roles in representing information in the nervous system. However, how these temporal patterns are recognized by downstream neurons is not well understood. Here we use the electrosensory system of mormyrid weakly electric fish to investigate how a population of neurons with diverse temporal filtering properties encodes behaviorally relevant input timing patterns, and how this relates to behavioral sensitivity. We show that fish are behaviorally sensitive to millisecond variations in natural, temporally patterned communication signals, and that the responses of individual midbrain neurons are also sensitive to variation in these patterns. In fact, the output of single neurons contains enough information to discriminate stereotyped communication signals produced by different individuals. Copyright © 2016 the authors 0270-6474/16/368985-16$15.00/0.

  17. Natural asynchronies in audiovisual communication signals regulate neuronal multisensory interactions in voice-sensitive cortex

    PubMed Central

    Perrodin, Catherine; Kayser, Christoph; Logothetis, Nikos K.; Petkov, Christopher I.

    2015-01-01

    When social animals communicate, the onset of informative content in one modality varies considerably relative to the other, such as when visual orofacial movements precede a vocalization. These naturally occurring asynchronies do not disrupt intelligibility or perceptual coherence. However, they occur on time scales where they likely affect integrative neuronal activity in ways that have remained unclear, especially for hierarchically downstream regions in which neurons exhibit temporally imprecise but highly selective responses to communication signals. To address this, we exploited naturally occurring face- and voice-onset asynchronies in primate vocalizations. Using these as stimuli we recorded cortical oscillations and neuronal spiking responses from functional MRI (fMRI)-localized voice-sensitive cortex in the anterior temporal lobe of macaques. We show that the onset of the visual face stimulus resets the phase of low-frequency oscillations, and that the face–voice asynchrony affects the prominence of two key types of neuronal multisensory responses: enhancement or suppression. Our findings show a three-way association between temporal delays in audiovisual communication signals, phase-resetting of ongoing oscillations, and the sign of multisensory responses. The results reveal how natural onset asynchronies in cross-sensory inputs regulate network oscillations and neuronal excitability in the voice-sensitive cortex of macaques, a suggested animal model for human voice areas. These findings also advance predictions on the impact of multisensory input on neuronal processes in face areas and other brain regions. PMID:25535356

  18. Communicative versus strategic rationality: Habermas theory of communicative action and the social brain.

    PubMed

    Schaefer, Michael; Heinze, Hans-Jochen; Rotte, Michael; Denke, Claudia

    2013-01-01

    In the philosophical theory of communicative action, rationality refers to interpersonal communication rather than to a knowing subject. Thus, a social view of rationality is suggested. The theory differentiates between two kinds of rationality, the emancipative communicative and the strategic or instrumental reasoning. Using experimental designs in an fMRI setting, recent studies explored similar questions of reasoning in the social world and linked them with a neural network including prefrontal and parietal brain regions. Here, we employed an fMRI approach to highlight brain areas associated with strategic and communicative reasoning according to the theory of communicative action. Participants were asked to assess different social scenarios with respect to communicative or strategic rationality. We found a network of brain areas including temporal pole, precuneus, and STS more activated when participants performed communicative reasoning compared with strategic thinking and a control condition. These brain regions have been previously linked to moral sensitivity. In contrast, strategic rationality compared with communicative reasoning and control was associated with less activation in areas known to be related to moral sensitivity, emotional processing, and language control. The results suggest that strategic reasoning is associated with reduced social and emotional cognitions and may use different language related networks. Thus, the results demonstrate experimental support for the assumptions of the theory of communicative action.

  19. Speaker gaze increases information coupling between infant and adult brains.

    PubMed

    Leong, Victoria; Byrne, Elizabeth; Clackson, Kaili; Georgieva, Stanimira; Lam, Sarah; Wass, Sam

    2017-12-12

    When infants and adults communicate, they exchange social signals of availability and communicative intention such as eye gaze. Previous research indicates that when communication is successful, close temporal dependencies arise between adult speakers' and listeners' neural activity. However, it is not known whether similar neural contingencies exist within adult-infant dyads. Here, we used dual-electroencephalography to assess whether direct gaze increases neural coupling between adults and infants during screen-based and live interactions. In experiment 1 ( n = 17), infants viewed videos of an adult who was singing nursery rhymes with ( i ) direct gaze (looking forward), ( ii ) indirect gaze (head and eyes averted by 20°), or ( iii ) direct-oblique gaze (head averted but eyes orientated forward). In experiment 2 ( n = 19), infants viewed the same adult in a live context, singing with direct or indirect gaze. Gaze-related changes in adult-infant neural network connectivity were measured using partial directed coherence. Across both experiments, the adult had a significant (Granger) causal influence on infants' neural activity, which was stronger during direct and direct-oblique gaze relative to indirect gaze. During live interactions, infants also influenced the adult more during direct than indirect gaze. Further, infants vocalized more frequently during live direct gaze, and individual infants who vocalized longer also elicited stronger synchronization from the adult. These results demonstrate that direct gaze strengthens bidirectional adult-infant neural connectivity during communication. Thus, ostensive social signals could act to bring brains into mutual temporal alignment, creating a joint-networked state that is structured to facilitate information transfer during early communication and learning. Copyright © 2017 the Author(s). Published by PNAS.

  20. Speaker gaze increases information coupling between infant and adult brains

    PubMed Central

    Leong, Victoria; Byrne, Elizabeth; Clackson, Kaili; Georgieva, Stanimira; Lam, Sarah

    2017-01-01

    When infants and adults communicate, they exchange social signals of availability and communicative intention such as eye gaze. Previous research indicates that when communication is successful, close temporal dependencies arise between adult speakers’ and listeners’ neural activity. However, it is not known whether similar neural contingencies exist within adult–infant dyads. Here, we used dual-electroencephalography to assess whether direct gaze increases neural coupling between adults and infants during screen-based and live interactions. In experiment 1 (n = 17), infants viewed videos of an adult who was singing nursery rhymes with (i) direct gaze (looking forward), (ii) indirect gaze (head and eyes averted by 20°), or (iii) direct-oblique gaze (head averted but eyes orientated forward). In experiment 2 (n = 19), infants viewed the same adult in a live context, singing with direct or indirect gaze. Gaze-related changes in adult–infant neural network connectivity were measured using partial directed coherence. Across both experiments, the adult had a significant (Granger) causal influence on infants’ neural activity, which was stronger during direct and direct-oblique gaze relative to indirect gaze. During live interactions, infants also influenced the adult more during direct than indirect gaze. Further, infants vocalized more frequently during live direct gaze, and individual infants who vocalized longer also elicited stronger synchronization from the adult. These results demonstrate that direct gaze strengthens bidirectional adult–infant neural connectivity during communication. Thus, ostensive social signals could act to bring brains into mutual temporal alignment, creating a joint-networked state that is structured to facilitate information transfer during early communication and learning. PMID:29183980

  1. Distributed Similarity based Clustering and Compressed Forwarding for wireless sensor networks.

    PubMed

    Arunraja, Muruganantham; Malathi, Veluchamy; Sakthivel, Erulappan

    2015-11-01

    Wireless sensor networks are engaged in various data gathering applications. The major bottleneck in wireless data gathering systems is the finite energy of sensor nodes. By conserving the on board energy, the life span of wireless sensor network can be well extended. Data communication being the dominant energy consuming activity of wireless sensor network, data reduction can serve better in conserving the nodal energy. Spatial and temporal correlation among the sensor data is exploited to reduce the data communications. Data similar cluster formation is an effective way to exploit spatial correlation among the neighboring sensors. By sending only a subset of data and estimate the rest using this subset is the contemporary way of exploiting temporal correlation. In Distributed Similarity based Clustering and Compressed Forwarding for wireless sensor networks, we construct data similar iso-clusters with minimal communication overhead. The intra-cluster communication is reduced using adaptive-normalized least mean squares based dual prediction framework. The cluster head reduces the inter-cluster data payload using a lossless compressive forwarding technique. The proposed work achieves significant data reduction in both the intra-cluster and the inter-cluster communications, with the optimal data accuracy of collected data. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Disturbed temporal dynamics of brain synchronization in vision loss.

    PubMed

    Bola, Michał; Gall, Carolin; Sabel, Bernhard A

    2015-06-01

    Damage along the visual pathway prevents bottom-up visual input from reaching further processing stages and consequently leads to loss of vision. But perception is not a simple bottom-up process - rather it emerges from activity of widespread cortical networks which coordinate visual processing in space and time. Here we set out to study how vision loss affects activity of brain visual networks and how networks' activity is related to perception. Specifically, we focused on studying temporal patterns of brain activity. To this end, resting-state eyes-closed EEG was recorded from partially blind patients suffering from chronic retina and/or optic-nerve damage (n = 19) and healthy controls (n = 13). Amplitude (power) of oscillatory activity and phase locking value (PLV) were used as measures of local and distant synchronization, respectively. Synchronization time series were created for the low- (7-9 Hz) and high-alpha band (11-13 Hz) and analyzed with three measures of temporal patterns: (i) length of synchronized-/desynchronized-periods, (ii) Higuchi Fractal Dimension (HFD), and (iii) Detrended Fluctuation Analysis (DFA). We revealed that patients exhibit less complex, more random and noise-like temporal dynamics of high-alpha band activity. More random temporal patterns were associated with worse performance in static (r = -.54, p = .017) and kinetic perimetry (r = .47, p = .041). We conclude that disturbed temporal patterns of neural synchronization in vision loss patients indicate disrupted communication within brain visual networks caused by prolonged deafferentation. We propose that because the state of brain networks is essential for normal perception, impaired brain synchronization in patients with vision loss might aggravate the functional consequences of reduced visual input. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Non-verbal emotion communication training induces specific changes in brain function and structure

    PubMed Central

    Kreifelts, Benjamin; Jacob, Heike; Brück, Carolin; Erb, Michael; Ethofer, Thomas; Wildgruber, Dirk

    2013-01-01

    The perception of emotional cues from voice and face is essential for social interaction. However, this process is altered in various psychiatric conditions along with impaired social functioning. Emotion communication trainings have been demonstrated to improve social interaction in healthy individuals and to reduce emotional communication deficits in psychiatric patients. Here, we investigated the impact of a non-verbal emotion communication training (NECT) on cerebral activation and brain structure in a controlled and combined functional magnetic resonance imaging (fMRI) and voxel-based morphometry study. NECT-specific reductions in brain activity occurred in a distributed set of brain regions including face and voice processing regions as well as emotion processing- and motor-related regions presumably reflecting training-induced familiarization with the evaluation of face/voice stimuli. Training-induced changes in non-verbal emotion sensitivity at the behavioral level and the respective cerebral activation patterns were correlated in the face-selective cortical areas in the posterior superior temporal sulcus and fusiform gyrus for valence ratings and in the temporal pole, lateral prefrontal cortex and midbrain/thalamus for the response times. A NECT-induced increase in gray matter (GM) volume was observed in the fusiform face area. Thus, NECT induces both functional and structural plasticity in the face processing system as well as functional plasticity in the emotion perception and evaluation system. We propose that functional alterations are presumably related to changes in sensory tuning in the decoding of emotional expressions. Taken together, these findings highlight that the present experimental design may serve as a valuable tool to investigate the altered behavioral and neuronal processing of emotional cues in psychiatric disorders as well as the impact of therapeutic interventions on brain function and structure. PMID:24146641

  4. Non-verbal emotion communication training induces specific changes in brain function and structure.

    PubMed

    Kreifelts, Benjamin; Jacob, Heike; Brück, Carolin; Erb, Michael; Ethofer, Thomas; Wildgruber, Dirk

    2013-01-01

    The perception of emotional cues from voice and face is essential for social interaction. However, this process is altered in various psychiatric conditions along with impaired social functioning. Emotion communication trainings have been demonstrated to improve social interaction in healthy individuals and to reduce emotional communication deficits in psychiatric patients. Here, we investigated the impact of a non-verbal emotion communication training (NECT) on cerebral activation and brain structure in a controlled and combined functional magnetic resonance imaging (fMRI) and voxel-based morphometry study. NECT-specific reductions in brain activity occurred in a distributed set of brain regions including face and voice processing regions as well as emotion processing- and motor-related regions presumably reflecting training-induced familiarization with the evaluation of face/voice stimuli. Training-induced changes in non-verbal emotion sensitivity at the behavioral level and the respective cerebral activation patterns were correlated in the face-selective cortical areas in the posterior superior temporal sulcus and fusiform gyrus for valence ratings and in the temporal pole, lateral prefrontal cortex and midbrain/thalamus for the response times. A NECT-induced increase in gray matter (GM) volume was observed in the fusiform face area. Thus, NECT induces both functional and structural plasticity in the face processing system as well as functional plasticity in the emotion perception and evaluation system. We propose that functional alterations are presumably related to changes in sensory tuning in the decoding of emotional expressions. Taken together, these findings highlight that the present experimental design may serve as a valuable tool to investigate the altered behavioral and neuronal processing of emotional cues in psychiatric disorders as well as the impact of therapeutic interventions on brain function and structure.

  5. State-space estimation of the input stimulus function using the Kalman filter: a communication system model for fMRI experiments.

    PubMed

    Ward, B Douglas; Mazaheri, Yousef

    2006-12-15

    The blood oxygenation level-dependent (BOLD) signal measured in functional magnetic resonance imaging (fMRI) experiments in response to input stimuli is temporally delayed and distorted due to the blurring effect of the voxel hemodynamic impulse response function (IRF). Knowledge of the IRF, obtained during the same experiment, or as the result of a separate experiment, can be used to dynamically obtain an estimate of the input stimulus function. Reconstruction of the input stimulus function allows the fMRI experiment to be evaluated as a communication system. The input stimulus function may be considered as a "message" which is being transmitted over a noisy "channel", where the "channel" is characterized by the voxel IRF. Following reconstruction of the input stimulus function, the received message is compared with the transmitted message on a voxel-by-voxel basis to determine the transmission error rate. Reconstruction of the input stimulus function provides insight into actual brain activity during task activation with less temporal blurring, and may be considered as a first step toward estimation of the true neuronal input function.

  6. Practical low-cost visual communication using binary images for deaf sign language.

    PubMed

    Manoranjan, M D; Robinson, J A

    2000-03-01

    Deaf sign language transmitted by video requires a temporal resolution of 8 to 10 frames/s for effective communication. Conventional videoconferencing applications, when operated over low bandwidth telephone lines, provide very low temporal resolution of pictures, of the order of less than a frame per second, resulting in jerky movement of objects. This paper presents a practical solution for sign language communication, offering adequate temporal resolution of images using moving binary sketches or cartoons, implemented on standard personal computer hardware with low-cost cameras and communicating over telephone lines. To extract cartoon points an efficient feature extraction algorithm adaptive to the global statistics of the image is proposed. To improve the subjective quality of the binary images, irreversible preprocessing techniques, such as isolated point removal and predictive filtering, are used. A simple, efficient and fast recursive temporal prefiltering scheme, using histograms of successive frames, reduces the additive and multiplicative noise from low-cost cameras. An efficient three-dimensional (3-D) compression scheme codes the binary sketches. Subjective tests performed on the system confirm that it can be used for sign language communication over telephone lines.

  7. Communicative versus Strategic Rationality: Habermas Theory of Communicative Action and the Social Brain

    PubMed Central

    Schaefer, Michael; Heinze, Hans-Jochen; Rotte, Michael; Denke, Claudia

    2013-01-01

    In the philosophical theory of communicative action, rationality refers to interpersonal communication rather than to a knowing subject. Thus, a social view of rationality is suggested. The theory differentiates between two kinds of rationality, the emancipative communicative and the strategic or instrumental reasoning. Using experimental designs in an fMRI setting, recent studies explored similar questions of reasoning in the social world and linked them with a neural network including prefrontal and parietal brain regions. Here, we employed an fMRI approach to highlight brain areas associated with strategic and communicative reasoning according to the theory of communicative action. Participants were asked to assess different social scenarios with respect to communicative or strategic rationality. We found a network of brain areas including temporal pole, precuneus, and STS more activated when participants performed communicative reasoning compared with strategic thinking and a control condition. These brain regions have been previously linked to moral sensitivity. In contrast, strategic rationality compared with communicative reasoning and control was associated with less activation in areas known to be related to moral sensitivity, emotional processing, and language control. The results suggest that strategic reasoning is associated with reduced social and emotional cognitions and may use different language related networks. Thus, the results demonstrate experimental support for the assumptions of the theory of communicative action. PMID:23734238

  8. Reduced prefrontal and temporal processing and recall of high "sensation value" ads.

    PubMed

    Langleben, Daniel D; Loughead, James W; Ruparel, Kosha; Hakun, Jonathan G; Busch-Winokur, Samantha; Holloway, Matthew B; Strasser, Andrew A; Cappella, Joseph N; Lerman, Caryn

    2009-05-15

    Public service announcements (PSAs) are non-commercial broadcast ads that are an important part of televised public health campaigns. "Message sensation value" (MSV), a measure of sensory intensity of audio, visual, and content features of an ad, is an important factor in PSA impact. Some communication theories propose that higher message sensation value brings increased attention and cognitive processing, leading to higher ad impact. Others argue that the attention-intensive format could compete with ad's message for cognitive resources and result in reduced processing of PSA content and reduced overall effectiveness. Brain imaging during PSA viewing provides a quantitative surrogate measure of PSA impact and addresses questions of PSA evaluation and design not accessible with traditional subjective and epidemiological methods. We used Blood Oxygenation Level Dependent (BOLD) functional Magnetic Resonance Imaging (fMRI) and recognition memory measures to compare high and low MSV anti-tobacco PSAs and neutral videos. In a short-delay, forced-choice memory test, frames extracted from PSAs were recognized more accurately than frames extracted from the NV. Frames from the low MSV PSAs were better recognized than frames from the high MSV PSAs. The accuracy of recognition of PSA frames was positively correlated with the prefrontal and temporal, and negatively correlated with the occipital cortex activation. The low MSV PSAs were associated with greater prefrontal and temporal activation, than the high MSV PSAs. The high MSV PSAs produced greater activation primarily in the occipital cortex. These findings support the "dual processing" and "limited capacity" theories of communication that postulate a competition between ad's content and format for the viewers' cognitive resources and suggest that the "attention-grabbing" high MSV format could impede the learning and retention of an ad. These findings demonstrate the potential of using neuroimaging in the design and evaluation of mass media public health communications.

  9. Three-dimensional grammar in the brain: Dissociating the neural correlates of natural sign language and manually coded spoken language.

    PubMed

    Jednoróg, Katarzyna; Bola, Łukasz; Mostowski, Piotr; Szwed, Marcin; Boguszewski, Paweł M; Marchewka, Artur; Rutkowski, Paweł

    2015-05-01

    In several countries natural sign languages were considered inadequate for education. Instead, new sign-supported systems were created, based on the belief that spoken/written language is grammatically superior. One such system called SJM (system językowo-migowy) preserves the grammatical and lexical structure of spoken Polish and since 1960s has been extensively employed in schools and on TV. Nevertheless, the Deaf community avoids using SJM for everyday communication, its preferred language being PJM (polski język migowy), a natural sign language, structurally and grammatically independent of spoken Polish and featuring classifier constructions (CCs). Here, for the first time, we compare, with fMRI method, the neural bases of natural vs. devised communication systems. Deaf signers were presented with three types of signed sentences (SJM and PJM with/without CCs). Consistent with previous findings, PJM with CCs compared to either SJM or PJM without CCs recruited the parietal lobes. The reverse comparison revealed activation in the anterior temporal lobes, suggesting increased semantic combinatory processes in lexical sign comprehension. Finally, PJM compared with SJM engaged left posterior superior temporal gyrus and anterior temporal lobe, areas crucial for sentence-level speech comprehension. We suggest that activity in these two areas reflects greater processing efficiency for naturally evolved sign language. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Temporal characteristic analysis of laser-modulated pulsed X-ray source for space X-ray communication

    NASA Astrophysics Data System (ADS)

    Hang, Shuang; Liu, Yunpeng; Li, Huan; Tang, Xiaobin; Chen, Da

    2018-04-01

    X-ray communication (XCOM) is a new communication type and is expected to realize high-speed data transmission in some special communication scenarios, such as deep space communication and blackout communication. This study proposes a high-speed modulated X-ray source scheme based on the laser-to-X-ray conversion. The temporal characteristics of the essential components of the proposed laser-modulated pulsed X-ray source (LMPXS) were analyzed to evaluate its pulse emission performance. Results show that the LMPXS can provide a maximum modulation rate up to 100 Mbps which is expected to significantly improve the data rate of XCOM.

  11. Verbal working memory-related neural network communication in schizophrenia.

    PubMed

    Kustermann, Thomas; Popov, Tzvetan; Miller, Gregory A; Rockstroh, Brigitte

    2018-04-19

    Impaired working memory (WM) in schizophrenia is associated with reduced hemodynamic and electromagnetic activity and altered network connectivity within and between memory-associated neural networks. The present study sought to determine whether schizophrenia involves disruption of a frontal-parietal network normally supporting WM and/or involvement of another brain network. Nineteen schizophrenia patients (SZ) and 19 healthy comparison subjects (HC) participated in a cued visual-verbal Sternberg task while dense-array EEG was recorded. A pair of item arrays each consisting of 2-4 consonants was presented bilaterally for 200 ms with a prior cue signaling the hemifield of the task-relevant WM set. A central probe letter 2,000 ms later prompted a choice reaction time decision about match/mismatch with the target WM set. Group and WM load effects on time domain and time-frequency domain 11-15 Hz alpha power were assessed for the cue-to-probe time window, and posterior 11-15 Hz alpha power and frontal 4-8 Hz theta power were assessed during the retention period. Directional connectivity was estimated via Granger causality, evaluating group differences in communication. SZ showed slower responding, lower accuracy, smaller overall time-domain alpha power increase, and less load-dependent alpha power increase. Midline frontal theta power increases did not vary by group or load. Network communication in SZ was characterized by temporal-to-posterior information flow, in contrast to bidirectional temporal-posterior communication in HC. Results indicate aberrant WM network activity supporting WM in SZ that might facilitate normal load-dependent and only marginally less accurate task performance, despite generally slower responding. © 2018 Society for Psychophysiological Research.

  12. Decoding semantic information from human electrocorticographic (ECoG) signals.

    PubMed

    Wang, Wei; Degenhart, Alan D; Sudre, Gustavo P; Pomerleau, Dean A; Tyler-Kabara, Elizabeth C

    2011-01-01

    This study examined the feasibility of decoding semantic information from human cortical activity. Four human subjects undergoing presurgical brain mapping and seizure foci localization participated in this study. Electrocorticographic (ECoG) signals were recorded while the subjects performed simple language tasks involving semantic information processing, such as a picture naming task where subjects named pictures of objects belonging to different semantic categories. Robust high-gamma band (60-120 Hz) activation was observed at the left inferior frontal gyrus (LIFG) and the posterior portion of the superior temporal gyrus (pSTG) with a temporal sequence corresponding to speech production and perception. Furthermore, Gaussian Naïve Bayes and Support Vector Machine classifiers, two commonly used machine learning algorithms for pattern recognition, were able to predict the semantic category of an object using cortical activity captured by ECoG electrodes covering the frontal, temporal and parietal cortices. These findings have implications for both basic neuroscience research and development of semantic-based brain-computer interface systems (BCI) that can help individuals with severe motor or communication disorders to express their intention and thoughts.

  13. Precise auditory-vocal mirroring in neurons for learned vocal communication.

    PubMed

    Prather, J F; Peters, S; Nowicki, S; Mooney, R

    2008-01-17

    Brain mechanisms for communication must establish a correspondence between sensory and motor codes used to represent the signal. One idea is that this correspondence is established at the level of single neurons that are active when the individual performs a particular gesture or observes a similar gesture performed by another individual. Although neurons that display a precise auditory-vocal correspondence could facilitate vocal communication, they have yet to be identified. Here we report that a certain class of neurons in the swamp sparrow forebrain displays a precise auditory-vocal correspondence. We show that these neurons respond in a temporally precise fashion to auditory presentation of certain note sequences in this songbird's repertoire and to similar note sequences in other birds' songs. These neurons display nearly identical patterns of activity when the bird sings the same sequence, and disrupting auditory feedback does not alter this singing-related activity, indicating it is motor in nature. Furthermore, these neurons innervate striatal structures important for song learning, raising the possibility that singing-related activity in these cells is compared to auditory feedback to guide vocal learning.

  14. The unintended consequences of sex education: an ethnography of a development intervention in Latin America.

    PubMed

    Nelson, Erica; Edmonds, Alexander; Ballesteros, Marco; Encalada Soto, Diana; Rodriguez, Octavio

    2014-01-01

    This paper is an ethnography of a four-year, multi-disciplinary adolescent sexual and reproductive health intervention in Bolivia, Nicaragua and Ecuador. An important goal of the intervention--and of the larger global field of adolescent sexual and reproductive health--is to create more open parent-to-teen communication. This paper analyzes the project's efforts to foster such communication and how social actors variously interpreted, responded to, and repurposed the intervention's language and practices. While the intervention emphasized the goal of 'open communication,' its participants more often used the term 'confianza' (trust). This norm was defined in ways that might--or might not--include revealing information about sexual activity. Questioning public health assumptions about parent-teen communication on sex, in and of itself, is key to healthy sexual behavior, the paper explores a pragmatics of communication on sex that includes silence, implied expectations, gendered conflicts, and temporally delayed knowledge.

  15. Temporal Patterns of Communication in the Workplace

    ERIC Educational Resources Information Center

    Su, Norman Makoto

    2009-01-01

    In this dissertation, we report on results of an in-depth observational study to understand the temporal dimension of communication in the workplace. By employing the "shadowing" method for in situ to-the-second data gathering of information workers' behaviors, we gained a detailed snapshot of informants' workdays, "warts and all." Our…

  16. Neural basis of understanding communicative actions: Changes associated with knowing the actor's intention and the meanings of the actions.

    PubMed

    Möttönen, Riikka; Farmer, Harry; Watkins, Kate E

    2016-01-29

    People can communicate by using hand actions, e.g., signs. Understanding communicative actions requires that the observer knows that the actor has an intention to communicate and the meanings of the actions. Here, we investigated how this prior knowledge affects processing of observed actions. We used functional MRI to determine changes in action processing when non-signers were told that the observed actions are communicative (i.e., signs) and learned the meanings of half of the actions. Processing of hand actions activated the left and right inferior frontal gyrus (IFG, BA 44 and 45) when the communicative intention of the actor was known, even when the meanings of the actions remained unknown. These regions were not active when the observers did not know about the communicative nature of the hand actions. These findings suggest that the left and right IFG play a role in understanding the intention of the actor, but do not process visuospatial features of the communicative actions. Knowing the meanings of the hand actions further enhanced activity in the anterior part of the IFG (BA 45), the inferior parietal lobule and posterior inferior and middle temporal gyri in the left hemisphere. These left-hemisphere language regions could provide a link between meanings and observed actions. In sum, the findings provide evidence for the segregation of the networks involved in the neural processing of visuospatial features of communicative hand actions and those involved in understanding the actor's intention and the meanings of the actions. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Communication between Brain Areas Based on Nested Oscillations

    PubMed Central

    Kastner, Sabine

    2017-01-01

    Abstract Unraveling how brain regions communicate is crucial for understanding how the brain processes external and internal information. Neuronal oscillations within and across brain regions have been proposed to play a crucial role in this process. Two main hypotheses have been suggested for routing of information based on oscillations, namely communication through coherence and gating by inhibition. Here, we propose a framework unifying these two hypotheses that is based on recent empirical findings. We discuss a theory in which communication between two regions is established by phase synchronization of oscillations at lower frequencies (<25 Hz), which serve as temporal reference frame for information carried by high-frequency activity (>40 Hz). Our framework, consistent with numerous recent empirical findings, posits that cross-frequency interactions are essential for understanding how large-scale cognitive and perceptual networks operate. PMID:28374013

  18. Quantifying Information Flow During Emergencies

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Song, Chaoming; Gao, Ziyou; Barabási, Albert-László; Bagrow, James P.; Wang, Dashun

    2014-02-01

    Recent advances on human dynamics have focused on the normal patterns of human activities, with the quantitative understanding of human behavior under extreme events remaining a crucial missing chapter. This has a wide array of potential applications, ranging from emergency response and detection to traffic control and management. Previous studies have shown that human communications are both temporally and spatially localized following the onset of emergencies, indicating that social propagation is a primary means to propagate situational awareness. We study real anomalous events using country-wide mobile phone data, finding that information flow during emergencies is dominated by repeated communications. We further demonstrate that the observed communication patterns cannot be explained by inherent reciprocity in social networks, and are universal across different demographics.

  19. Distinct and overlapping fMRI activation networks for processing of novel identities and locations of objects.

    PubMed

    Pihlajamäki, Maija; Tanila, Heikki; Könönen, Mervi; Hänninen, Tuomo; Aronen, Hannu J; Soininen, Hilkka

    2005-10-01

    The ventral visual stream processes information about the identity of objects ('what'), whereas the dorsal stream processes the spatial locations of objects ('where'). There is a corresponding, although disputed, distinction for the ventrolateral and dorsolateral prefrontal areas. Furthermore, there seems to be a distinction between the anterior and posterior medial temporal lobe (MTL) structures in the processing of novel items and new spatial arrangements, respectively. Functional differentiation of the intermediary mid-line cortical and temporal neocortical structures that communicate with the occipitotemporal, occipitoparietal, prefrontal, and MTL structures, however, is unclear. Therefore, in the present functional magnetic resonance imaging (fMRI) study, we examined whether the distinction among the MTL structures extends to these closely connected cortical areas. The most striking difference in the fMRI responses during visual presentation of changes in either items or their locations was the bilateral activation of the temporal lobe and ventrolateral prefrontal cortical areas for novel object identification in contrast to wide parietal and dorsolateral prefrontal activation for the novel locations of objects. An anterior-posterior distinction of fMRI responses similar to the MTL was observed in the cingulate/retrosplenial, and superior and middle temporal cortices. In addition to the distinct areas of activation, certain frontal, parietal, and temporo-occipital areas responded to both object and spatial novelty, suggesting a common attentional network for both types of changes in the visual environment. These findings offer new insights to the functional roles and intrinsic specialization of the cingulate/retrosplenial, and lateral temporal cortical areas in visuospatial cognition.

  20. Cooperative communication within and between single nanocatalysts

    NASA Astrophysics Data System (ADS)

    Zou, Ningmu; Zhou, Xiaochun; Chen, Guanqun; Andoy, Nesha May; Jung, Won; Liu, Guokun; Chen, Peng

    2018-06-01

    Enzymes often show catalytic allostery in which reactions occurring at different sites communicate cooperatively over distances of up to a few nanometres. Whether such effects can occur with non-biological nanocatalysts remains unclear, even though these nanocatalysts can undergo restructuring and molecules can diffuse over catalyst surfaces. Here we report that phenomenologically similar, but mechanistically distinct, cooperative effects indeed exist for nanocatalysts. Using spatiotemporally resolved single-molecule catalysis imaging, we find that catalytic reactions on a single Pd or Au nanocatalyst can communicate with each other, probably via hopping of positively charged holes on the catalyst surface, over 102 nanometres and with a temporal memory of 101 to 102 seconds, giving rise to positive cooperativity among its surface active sites. Similar communication is also observed between individual nanocatalysts, however it operates via a molecular diffusion mechanism involving negatively charged product molecules, and its communication distance is many micrometres. Generalization of these long-range intra- and interparticle catalytic communication mechanisms may introduce a novel conceptual framework for understanding nanoscale catalysis.

  1. Tracing Activity Across the Whole Brain Neural Network with Optogenetic Functional Magnetic Resonance Imaging

    PubMed Central

    Lee, Jin Hyung

    2011-01-01

    Despite the overwhelming need, there has been a relatively large gap in our ability to trace network level activity across the brain. The complex dense wiring of the brain makes it extremely challenging to understand cell-type specific activity and their communication beyond a few synapses. Recent development of the optogenetic functional magnetic resonance imaging (ofMRI) provides a new impetus for the study of brain circuits by enabling causal tracing of activities arising from defined cell types and firing patterns across the whole brain. Brain circuit elements can be selectively triggered based on their genetic identity, cell body location, and/or their axonal projection target with temporal precision while the resulting network response is monitored non-invasively with unprecedented spatial and temporal accuracy. With further studies including technological innovations to bring ofMRI to its full potential, ofMRI is expected to play an important role in our system-level understanding of the brain circuit mechanism. PMID:22046160

  2. Simultaneous perception of a spoken and a signed language: The brain basis of ASL-English code-blends

    PubMed Central

    Weisberg, Jill; McCullough, Stephen; Emmorey, Karen

    2018-01-01

    Code-blends (simultaneous words and signs) are a unique characteristic of bimodal bilingual communication. Using fMRI, we investigated code-blend comprehension in hearing native ASL-English bilinguals who made a semantic decision (edible?) about signs, audiovisual words, and semantically equivalent code-blends. English and ASL recruited a similar fronto-temporal network with expected modality differences: stronger activation for English in auditory regions of bilateral superior temporal cortex, and stronger activation for ASL in bilateral occipitotemporal visual regions and left parietal cortex. Code-blend comprehension elicited activity in a combination of these regions, and no cognitive control regions were additionally recruited. Furthermore, code-blends elicited reduced activation relative to ASL presented alone in bilateral prefrontal and visual extrastriate cortices, and relative to English alone in auditory association cortex. Consistent with behavioral facilitation observed during semantic decisions, the findings suggest that redundant semantic content induces more efficient neural processing in language and sensory regions during bimodal language integration. PMID:26177161

  3. Models, Entropy and Information of Temporal Social Networks

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Karsai, Márton; Bianconi, Ginestra

    Temporal social networks are characterized by heterogeneous duration of contacts, which can either follow a power-law distribution, such as in face-to-face interactions, or a Weibull distribution, such as in mobile-phone communication. Here we model the dynamics of face-to-face interaction and mobile phone communication by a reinforcement dynamics, which explains the data observed in these different types of social interactions. We quantify the information encoded in the dynamics of these networks by the entropy of temporal networks. Finally, we show evidence that human dynamics is able to modulate the information present in social network dynamics when it follows circadian rhythms and when it is interfacing with a new technology such as the mobile-phone communication technology.

  4. Brain correlates of recognition of communicative interactions from biological motion in schizophrenia.

    PubMed

    Okruszek, Ł; Wordecha, M; Jarkiewicz, M; Kossowski, B; Lee, J; Marchewka, A

    2017-11-27

    Recognition of communicative interactions is a complex social cognitive ability which is associated with a specific neural activity in healthy individuals. However, neural correlates of communicative interaction processing from whole-body motion have not been known in patients with schizophrenia (SCZ). Therefore, the current study aims to examine the neural activity associated with recognition of communicative interactions in SCZ by using displays of the dyadic interactions downgraded to minimalistic point-light presentations. Twenty-six healthy controls (HC) and 25 SCZ were asked to judge whether two agents presented only by point-light displays were communicating or acting independently. Task-related activity and functional connectivity of brain structures were examined with General Linear Model and Generalized Psychophysiological Interaction approach, respectively. HC were significantly more efficient in recognizing each type of action than SCZ. At the neural level, the activity of the right posterior superior temporal sulcus (pSTS) was observed to be higher in HC compared with SCZ for communicative v. individual action processing. Importantly, increased connectivity of the right pSTS with structures associated with mentalizing (left pSTS) and mirroring networks (left frontal areas) was observed in HC, but not in SCZ, during the presentation of social interactions. Under-recruitment of the right pSTS, a structure known to have a pivotal role in social processing, may also be of importance for higher-order social cognitive deficits in SCZ. Furthermore, decreased task-related connectivity of the right pSTS may result in reduced use of additional sources of information (for instance motor resonance signals) during social cognitive processing in schizophrenia.

  5. Hemodynamic signals of mixed messages during a social exchange.

    PubMed

    Zucker, Nancy L; Green, Steven; Morris, James P; Kragel, Philip; Pelphrey, Kevin A; Bulik, Cynthia M; LaBar, Kevin S

    2011-06-22

    This study used functional magnetic resonance imaging to characterize hemodynamic activation patterns recruited when the participants viewed mixed social communicative messages during a common interpersonal exchange. Mixed messages were defined as conflicting sequences of biological motion and facial affect signals that are unexpected within a particular social context (e.g. observing the reception of a gift). Across four social vignettes, valenced facial expressions were crossed with rejecting and accepting gestures in a virtual avatar responding to presentation of a gift from the participant. The results indicate that conflicting facial affect and gesture activated superior temporal sulcus, a region implicated in expectancy violations, as well as inferior frontal gyrus and putamen. Scenarios conveying rejection differentially activated the insula and putamen, regions implicated in embodied cognition, and motivated learning, as well as frontoparietal cortex. Characterizing how meaning is inferred from integration of conflicting nonverbal communicative cues is essential to understand nuances and complexities of human exchange.

  6. Temporal Resolution Needed for Auditory Communication: Measurement With Mosaic Speech

    PubMed Central

    Nakajima, Yoshitaka; Matsuda, Mizuki; Ueda, Kazuo; Remijn, Gerard B.

    2018-01-01

    Temporal resolution needed for Japanese speech communication was measured. A new experimental paradigm that can reflect the spectro-temporal resolution necessary for healthy listeners to perceive speech is introduced. As a first step, we report listeners' intelligibility scores of Japanese speech with a systematically degraded temporal resolution, so-called “mosaic speech”: speech mosaicized in the coordinates of time and frequency. The results of two experiments show that mosaic speech cut into short static segments was almost perfectly intelligible with a temporal resolution of 40 ms or finer. Intelligibility dropped for a temporal resolution of 80 ms, but was still around 50%-correct level. The data are in line with previous results showing that speech signals separated into short temporal segments of <100 ms can be remarkably robust in terms of linguistic-content perception against drastic manipulations in each segment, such as partial signal omission or temporal reversal. The human perceptual system thus can extract meaning from unexpectedly rough temporal information in speech. The process resembles that of the visual system stringing together static movie frames of ~40 ms into vivid motion. PMID:29740295

  7. Feed-Forward Propagation of Temporal and Rate Information between Cortical Populations during Coherent Activation in Engineered In Vitro Networks.

    PubMed

    DeMarse, Thomas B; Pan, Liangbin; Alagapan, Sankaraleengam; Brewer, Gregory J; Wheeler, Bruce C

    2016-01-01

    Transient propagation of information across neuronal assembles is thought to underlie many cognitive processes. However, the nature of the neural code that is embedded within these transmissions remains uncertain. Much of our understanding of how information is transmitted among these assemblies has been derived from computational models. While these models have been instrumental in understanding these processes they often make simplifying assumptions about the biophysical properties of neurons that may influence the nature and properties expressed. To address this issue we created an in vitro analog of a feed-forward network composed of two small populations (also referred to as assemblies or layers) of living dissociated rat cortical neurons. The populations were separated by, and communicated through, a microelectromechanical systems (MEMS) device containing a strip of microscale tunnels. Delayed culturing of one population in the first layer followed by the second a few days later induced the unidirectional growth of axons through the microtunnels resulting in a primarily feed-forward communication between these two small neural populations. In this study we systematically manipulated the number of tunnels that connected each layer and hence, the number of axons providing communication between those populations. We then assess the effect of reducing the number of tunnels has upon the properties of between-layer communication capacity and fidelity of neural transmission among spike trains transmitted across and within layers. We show evidence based on Victor-Purpura's and van Rossum's spike train similarity metrics supporting the presence of both rate and temporal information embedded within these transmissions whose fidelity increased during communication both between and within layers when the number of tunnels are increased. We also provide evidence reinforcing the role of synchronized activity upon transmission fidelity during the spontaneous synchronized network burst events that propagated between layers and highlight the potential applications of these MEMs devices as a tool for further investigation of structure and functional dynamics among neural populations.

  8. Feed-Forward Propagation of Temporal and Rate Information between Cortical Populations during Coherent Activation in Engineered In Vitro Networks

    PubMed Central

    DeMarse, Thomas B.; Pan, Liangbin; Alagapan, Sankaraleengam; Brewer, Gregory J.; Wheeler, Bruce C.

    2016-01-01

    Transient propagation of information across neuronal assembles is thought to underlie many cognitive processes. However, the nature of the neural code that is embedded within these transmissions remains uncertain. Much of our understanding of how information is transmitted among these assemblies has been derived from computational models. While these models have been instrumental in understanding these processes they often make simplifying assumptions about the biophysical properties of neurons that may influence the nature and properties expressed. To address this issue we created an in vitro analog of a feed-forward network composed of two small populations (also referred to as assemblies or layers) of living dissociated rat cortical neurons. The populations were separated by, and communicated through, a microelectromechanical systems (MEMS) device containing a strip of microscale tunnels. Delayed culturing of one population in the first layer followed by the second a few days later induced the unidirectional growth of axons through the microtunnels resulting in a primarily feed-forward communication between these two small neural populations. In this study we systematically manipulated the number of tunnels that connected each layer and hence, the number of axons providing communication between those populations. We then assess the effect of reducing the number of tunnels has upon the properties of between-layer communication capacity and fidelity of neural transmission among spike trains transmitted across and within layers. We show evidence based on Victor-Purpura’s and van Rossum’s spike train similarity metrics supporting the presence of both rate and temporal information embedded within these transmissions whose fidelity increased during communication both between and within layers when the number of tunnels are increased. We also provide evidence reinforcing the role of synchronized activity upon transmission fidelity during the spontaneous synchronized network burst events that propagated between layers and highlight the potential applications of these MEMs devices as a tool for further investigation of structure and functional dynamics among neural populations. PMID:27147977

  9. Temporal networks

    NASA Astrophysics Data System (ADS)

    Holme, Petter; Saramäki, Jari

    2012-10-01

    A great variety of systems in nature, society and technology-from the web of sexual contacts to the Internet, from the nervous system to power grids-can be modeled as graphs of vertices coupled by edges. The network structure, describing how the graph is wired, helps us understand, predict and optimize the behavior of dynamical systems. In many cases, however, the edges are not continuously active. As an example, in networks of communication via e-mail, text messages, or phone calls, edges represent sequences of instantaneous or practically instantaneous contacts. In some cases, edges are active for non-negligible periods of time: e.g., the proximity patterns of inpatients at hospitals can be represented by a graph where an edge between two individuals is on throughout the time they are at the same ward. Like network topology, the temporal structure of edge activations can affect dynamics of systems interacting through the network, from disease contagion on the network of patients to information diffusion over an e-mail network. In this review, we present the emergent field of temporal networks, and discuss methods for analyzing topological and temporal structure and models for elucidating their relation to the behavior of dynamical systems. In the light of traditional network theory, one can see this framework as moving the information of when things happen from the dynamical system on the network, to the network itself. Since fundamental properties, such as the transitivity of edges, do not necessarily hold in temporal networks, many of these methods need to be quite different from those for static networks. The study of temporal networks is very interdisciplinary in nature. Reflecting this, even the object of study has many names-temporal graphs, evolving graphs, time-varying graphs, time-aggregated graphs, time-stamped graphs, dynamic networks, dynamic graphs, dynamical graphs, and so on. This review covers different fields where temporal graphs are considered, but does not attempt to unify related terminology-rather, we want to make papers readable across disciplines.

  10. How do auditory cortex neurons represent communication sounds?

    PubMed

    Gaucher, Quentin; Huetz, Chloé; Gourévitch, Boris; Laudanski, Jonathan; Occelli, Florian; Edeline, Jean-Marc

    2013-11-01

    A major goal in auditory neuroscience is to characterize how communication sounds are represented at the cortical level. The present review aims at investigating the role of auditory cortex in the processing of speech, bird songs and other vocalizations, which all are spectrally and temporally highly structured sounds. Whereas earlier studies have simply looked for neurons exhibiting higher firing rates to particular conspecific vocalizations over their modified, artificially synthesized versions, more recent studies determined the coding capacity of temporal spike patterns, which are prominent in primary and non-primary areas (and also in non-auditory cortical areas). In several cases, this information seems to be correlated with the behavioral performance of human or animal subjects, suggesting that spike-timing based coding strategies might set the foundations of our perceptive abilities. Also, it is now clear that the responses of auditory cortex neurons are highly nonlinear and that their responses to natural stimuli cannot be predicted from their responses to artificial stimuli such as moving ripples and broadband noises. Since auditory cortex neurons cannot follow rapid fluctuations of the vocalizations envelope, they only respond at specific time points during communication sounds, which can serve as temporal markers for integrating the temporal and spectral processing taking place at subcortical relays. Thus, the temporal sparse code of auditory cortex neurons can be considered as a first step for generating high level representations of communication sounds independent of the acoustic characteristic of these sounds. This article is part of a Special Issue entitled "Communication Sounds and the Brain: New Directions and Perspectives". Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Understanding spatial and temporal patterning of astrocyte calcium transients via interactions between network transport and extracellular diffusion

    NASA Astrophysics Data System (ADS)

    Shtrahman, E.; Maruyama, D.; Olariu, E.; Fink, C. G.; Zochowski, M.

    2017-02-01

    Astrocytes form interconnected networks in the brain and communicate via calcium signaling. We investigate how modes of coupling between astrocytes influence the spatio-temporal patterns of calcium signaling within astrocyte networks and specifically how these network interactions promote coordination within this group of cells. To investigate these complex phenomena, we study reduced cultured networks of astrocytes and neurons. We image the spatial temporal patterns of astrocyte calcium activity and quantify how perturbing the coupling between astrocytes influences astrocyte activity patterns. To gain insight into the pattern formation observed in these cultured networks, we compare the experimentally observed calcium activity patterns to the patterns produced by a reduced computational model, where we represent astrocytes as simple units that integrate input through two mechanisms: gap junction coupling (network transport) and chemical release (extracellular diffusion). We examine the activity patterns in the simulated astrocyte network and their dependence upon these two coupling mechanisms. We find that gap junctions and extracellular chemical release interact in astrocyte networks to modulate the spatiotemporal patterns of their calcium dynamics. We show agreement between the computational and experimental findings, which suggests that the complex global patterns can be understood as a result of simple local coupling mechanisms.

  12. Long-Term Monitoring of Dolphin Biosonar Activity in Deep Pelagic Waters of the Mediterranean Sea.

    PubMed

    Caruso, Francesco; Alonge, Giuseppe; Bellia, Giorgio; De Domenico, Emilio; Grammauta, Rosario; Larosa, Giuseppina; Mazzola, Salvatore; Riccobene, Giorgio; Pavan, Gianni; Papale, Elena; Pellegrino, Carmelo; Pulvirenti, Sara; Sciacca, Virginia; Simeone, Francesco; Speziale, Fabrizio; Viola, Salvatore; Buscaino, Giuseppa

    2017-06-28

    Dolphins emit short ultrasonic pulses (clicks) to acquire information about the surrounding environment, prey and habitat features. We investigated Delphinidae activity over multiple temporal scales through the detection of their echolocation clicks, using long-term Passive Acoustic Monitoring (PAM). The Istituto Nazionale di Fisica Nucleare operates multidisciplinary seafloor observatories in a deep area of the Central Mediterranean Sea. The Ocean noise Detection Experiment collected data offshore the Gulf of Catania from January 2005 to November 2006, allowing the study of temporal patterns of dolphin activity in this deep pelagic zone for the first time. Nearly 5,500 five-minute recordings acquired over two years were examined using spectrogram analysis and through development and testing of an automatic detection algorithm. Echolocation activity of dolphins was mostly confined to nighttime and crepuscular hours, in contrast with communicative signals (whistles). Seasonal variation, with a peak number of clicks in August, was also evident, but no effect of lunar cycle was observed. Temporal trends in echolocation corresponded to environmental and trophic variability known in the deep pelagic waters of the Ionian Sea. Long-term PAM and the continued development of automatic analysis techniques are essential to advancing the study of pelagic marine mammal distribution and behaviour patterns.

  13. Communication Dynamics in Finite Capacity Social Networks

    NASA Astrophysics Data System (ADS)

    Haerter, Jan O.; Jamtveit, Bjørn; Mathiesen, Joachim

    2012-10-01

    In communication networks, structure and dynamics are tightly coupled. The structure controls the flow of information and is itself shaped by the dynamical process of information exchanged between nodes. In order to reconcile structure and dynamics, a generic model, based on the local interaction between nodes, is considered for the communication in large social networks. In agreement with data from a large human organization, we show that the flow is non-Markovian and controlled by the temporal limitations of individuals. We confirm the versatility of our model by predicting simultaneously the degree-dependent node activity, the balance between information input and output of nodes, and the degree distribution. Finally, we quantify the limitations to network analysis when it is based on data sampled over a finite period of time.

  14. The unintended consequences of sex education: an ethnography of a development intervention in Latin America

    PubMed Central

    Nelson, Erica; Edmonds, Alexander; Ballesteros, Marco; Encalada Soto, Diana; Rodriguez, Octavio

    2014-01-01

    This paper is an ethnography of a four-year, multi-disciplinary adolescent sexual and reproductive health intervention in Bolivia, Nicaragua and Ecuador. An important goal of the intervention – and of the larger global field of adolescent sexual and reproductive health – is to create more open parent-to-teen communication. This paper analyzes the project's efforts to foster such communication and how social actors variously interpreted, responded to, and repurposed the intervention's language and practices. While the intervention emphasized the goal of ‘open communication,’ its participants more often used the term ‘confianza’ (trust). This norm was defined in ways that might – or might not – include revealing information about sexual activity. Questioning public health assumptions about parent–teen communication on sex, in and of itself, is key to healthy sexual behavior, the paper explores a pragmatics of communication on sex that includes silence, implied expectations, gendered conflicts, and temporally delayed knowledge. PMID:25175294

  15. Characterization of Temporal Semantic Shifts of Peer-to-Peer Communication in a Health-Related Online Community: Implications for Data-driven Health Promotion.

    PubMed

    Sridharan, Vishnupriya; Cohen, Trevor; Cobb, Nathan; Myneni, Sahiti

    2016-01-01

    With online social platforms gaining popularity as venues of behavior change, it is important to understand the ways in which these platforms facilitate peer interactions. In this paper, we characterize temporal trends in user communication through mapping of theoretically-linked semantic content. We used qualitative coding and automated text analysis to assign theoretical techniques to peer interactions in an online community for smoking cessation, subsequently facilitating temporal visualization of the observed techniques. Results indicate manifestation of several behavior change techniques such as feedback and monitoring' and 'rewards'. Automated methods yielded reasonable results (F-measure=0.77). Temporal trends among relapsers revealed reduction in communication after a relapse event. This social withdrawal may be attributed to failure guilt after the relapse. Results indicate significant change in thematic categories such as 'social support', 'natural consequences', and 'comparison of outcomes' pre and post relapse. Implications for development of behavioral support technologies that promote long-term abstinence are discussed.

  16. Perceptual consequences of disrupted auditory nerve activity.

    PubMed

    Zeng, Fan-Gang; Kong, Ying-Yee; Michalewski, Henry J; Starr, Arnold

    2005-06-01

    Perceptual consequences of disrupted auditory nerve activity were systematically studied in 21 subjects who had been clinically diagnosed with auditory neuropathy (AN), a recently defined disorder characterized by normal outer hair cell function but disrupted auditory nerve function. Neurological and electrophysical evidence suggests that disrupted auditory nerve activity is due to desynchronized or reduced neural activity or both. Psychophysical measures showed that the disrupted neural activity has minimal effects on intensity-related perception, such as loudness discrimination, pitch discrimination at high frequencies, and sound localization using interaural level differences. In contrast, the disrupted neural activity significantly impairs timing related perception, such as pitch discrimination at low frequencies, temporal integration, gap detection, temporal modulation detection, backward and forward masking, signal detection in noise, binaural beats, and sound localization using interaural time differences. These perceptual consequences are the opposite of what is typically observed in cochlear-impaired subjects who have impaired intensity perception but relatively normal temporal processing after taking their impaired intensity perception into account. These differences in perceptual consequences between auditory neuropathy and cochlear damage suggest the use of different neural codes in auditory perception: a suboptimal spike count code for intensity processing, a synchronized spike code for temporal processing, and a duplex code for frequency processing. We also proposed two underlying physiological models based on desynchronized and reduced discharge in the auditory nerve to successfully account for the observed neurological and behavioral data. These methods and measures cannot differentiate between these two AN models, but future studies using electric stimulation of the auditory nerve via a cochlear implant might. These results not only show the unique contribution of neural synchrony to sensory perception but also provide guidance for translational research in terms of better diagnosis and management of human communication disorders.

  17. [The comparative analysis of changes of short pieces of EEG at perception of music on the basis of the event-related synchronization/desynchronization and wavelet-synchrony].

    PubMed

    Oknina, L B; Kuptsova, S V; Romanov, A S; Masherov, E L; Kuznetsova, O A; Sharova, E V

    2012-01-01

    The going of present pilot study is an analysis of features changes of EEG short pieces registered from 32 sites, at perception of musical melodies healthy examinees depending on logic (cognizance) and emotional (it was pleasant it was not pleasant) melody estimations. For this purpose changes of event-related synchronization/desynchronization, and also wavelet-synchrony of EEG-responses at 31 healthy examinees at the age from 18 till 60 years were compared. It is shown that at a logic estimation of music the melody cognizance is accompanied the event-related desynchronization in the left fronto-parietal-temporal area. At an emotional estimation of a melody the event-related synchronization in left fronto - temporal area for the pleasant melodies, desynchronization in temporal area for not pleasant and desynchronization in occipital area for the melodies which are not causing the emotional response is typical. At the analysis of wavelet-synchrony of EEG characterizing jet changes of interaction of cortical zones, it is revealed that the most distinct topographical distinctions concern type of processing of the heard music: logic (has learned-hasn't learned) or emotional (it was pleasant-it was not pleasant). If at an emotional estimation changes interhemispheric communications between associative cortical zones (central, frontal, temporal), are more expressed at logic - between inter - and intrahemispheric communications of projective zones of the acoustic analyzer (temporal area). It is supposed that the revealed event-related synchronization/desynhronization reflects, most likely, an activation component of an estimation of musical fragments whereas the wavelet-analysis provides guidance on character of processing of musical stimulus.

  18. Cortical Inhibition Reduces Information Redundancy at Presentation of Communication Sounds in the Primary Auditory Cortex

    PubMed Central

    Gaucher, Quentin; Huetz, Chloé; Gourévitch, Boris

    2013-01-01

    In all sensory modalities, intracortical inhibition shapes the functional properties of cortical neurons but also influences the responses to natural stimuli. Studies performed in various species have revealed that auditory cortex neurons respond to conspecific vocalizations by temporal spike patterns displaying a high trial-to-trial reliability, which might result from precise timing between excitation and inhibition. Studying the guinea pig auditory cortex, we show that partial blockage of GABAA receptors by gabazine (GBZ) application (10 μm, a concentration that promotes expansion of cortical receptive fields) increased the evoked firing rate and the spike-timing reliability during presentation of communication sounds (conspecific and heterospecific vocalizations), whereas GABAB receptor antagonists [10 μm saclofen; 10–50 μm CGP55845 (p-3-aminopropyl-p-diethoxymethyl phosphoric acid)] had nonsignificant effects. Computing mutual information (MI) from the responses to vocalizations using either the evoked firing rate or the temporal spike patterns revealed that GBZ application increased the MI derived from the activity of single cortical site but did not change the MI derived from population activity. In addition, quantification of information redundancy showed that GBZ significantly increased redundancy at the population level. This result suggests that a potential role of intracortical inhibition is to reduce information redundancy during the processing of natural stimuli. PMID:23804094

  19. Cortical Specializations Underlying Fast Computations

    PubMed Central

    Volgushev, Maxim

    2016-01-01

    The time course of behaviorally relevant environmental events sets temporal constraints on neuronal processing. How does the mammalian brain make use of the increasingly complex networks of the neocortex, while making decisions and executing behavioral reactions within a reasonable time? The key parameter determining the speed of computations in neuronal networks is a time interval that neuronal ensembles need to process changes at their input and communicate results of this processing to downstream neurons. Theoretical analysis identified basic requirements for fast processing: use of neuronal populations for encoding, background activity, and fast onset dynamics of action potentials in neurons. Experimental evidence shows that populations of neocortical neurons fulfil these requirements. Indeed, they can change firing rate in response to input perturbations very quickly, within 1 to 3 ms, and encode high-frequency components of the input by phase-locking their spiking to frequencies up to 300 to 1000 Hz. This implies that time unit of computations by cortical ensembles is only few, 1 to 3 ms, which is considerably faster than the membrane time constant of individual neurons. The ability of cortical neuronal ensembles to communicate on a millisecond time scale allows for complex, multiple-step processing and precise coordination of neuronal activity in parallel processing streams, while keeping the speed of behavioral reactions within environmentally set temporal constraints. PMID:25689988

  20. Discrimination of acoustic communication signals by grasshoppers (Chorthippus biguttulus): temporal resolution, temporal integration, and the impact of intrinsic noise.

    PubMed

    Ronacher, Bernhard; Wohlgemuth, Sandra; Vogel, Astrid; Krahe, Rüdiger

    2008-08-01

    A characteristic feature of hearing systems is their ability to resolve both fast and subtle amplitude modulations of acoustic signals. This applies also to grasshoppers, which for mate identification rely mainly on the characteristic temporal patterns of their communication signals. Usually the signals arriving at a receiver are contaminated by various kinds of noise. In addition to extrinsic noise, intrinsic noise caused by stochastic processes within the nervous system contributes to making signal recognition a difficult task. The authors asked to what degree intrinsic noise affects temporal resolution and, particularly, the discrimination of similar acoustic signals. This study aims at exploring the neuronal basis for sexual selection, which depends on exploiting subtle differences between basically similar signals. Applying a metric, by which the similarities of spike trains can be assessed, the authors investigated how well the communication signals of different individuals of the same species could be discriminated and correctly classified based on the responses of auditory neurons. This spike train metric yields clues to the optimal temporal resolution with which spike trains should be evaluated. (c) 2008 APA, all rights reserved

  1. Double dynamic scaling in human communication dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Shengfeng; Feng, Xin; Wu, Ye; Xiao, Jinhua

    2017-05-01

    In the last decades, human behavior has been deeply understanding owing to the huge quantities data of human behavior available for study. The main finding in human dynamics shows that temporal processes consist of high-activity bursty intervals alternating with long low-activity periods. A model, assuming the initiator of bursty follow a Poisson process, is widely used in the modeling of human behavior. Here, we provide further evidence for the hypothesis that different bursty intervals are independent. Furthermore, we introduce a special threshold to quantitatively distinguish the time scales of complex dynamics based on the hypothesis. Our results suggest that human communication behavior is a composite process of double dynamics with midrange memory length. The method for calculating memory length would enhance the performance of many sequence-dependent systems, such as server operation and topic identification.

  2. Noiseless intensity amplification of repetitive signals by coherent addition using the temporal Talbot effect

    PubMed Central

    Maram, Reza; Van Howe, James; Li, Ming; Azaña, José

    2014-01-01

    Amplification of signal intensity is essential for initiating physical processes, diagnostics, sensing, communications and measurement. During traditional amplification, the signal is amplified by multiplying the signal carriers through an active gain process, requiring the use of an external power source. In addition, the signal is degraded by noise and distortions that typically accompany active gain processes. We show noiseless intensity amplification of repetitive optical pulse waveforms with gain from 2 to ~20 without using active gain. The proposed method uses a dispersion-induced temporal self-imaging (Talbot) effect to redistribute and coherently accumulate energy of the original repetitive waveforms into fewer replica waveforms. In addition, we show how our passive amplifier performs a real-time average of the wave-train to reduce its original noise fluctuation, as well as enhances the extinction ratio of pulses to stand above the noise floor. Our technique is applicable to repetitive waveforms in any spectral region or wave system. PMID:25319207

  3. Neural integration of speech and gesture in schizophrenia: evidence for differential processing of metaphoric gestures.

    PubMed

    Straube, Benjamin; Green, Antonia; Sass, Katharina; Kirner-Veselinovic, André; Kircher, Tilo

    2013-07-01

    Gestures are an important component of interpersonal communication. Especially, complex multimodal communication is assumed to be disrupted in patients with schizophrenia. In healthy subjects, differential neural integration processes for gestures in the context of concrete [iconic (IC) gestures] and abstract sentence contents [metaphoric (MP) gestures] had been demonstrated. With this study we wanted to investigate neural integration processes for both gesture types in patients with schizophrenia. During functional magnetic resonance imaging-data acquisition, 16 patients with schizophrenia (P) and a healthy control group (C) were shown videos of an actor performing IC and MP gestures and associated sentences. An isolated gesture (G) and isolated sentence condition (S) were included to separate unimodal from bimodal effects at the neural level. During IC conditions (IC > G ∩ IC > S) we found increased activity in the left posterior middle temporal gyrus (pMTG) in both groups. Whereas in the control group the left pMTG and the inferior frontal gyrus (IFG) were activated for the MP conditions (MP > G ∩ MP > S), no significant activation was found for the identical contrast in patients. The interaction of group (P/C) and gesture condition (MP/IC) revealed activation in the bilateral hippocampus, the left middle/superior temporal and IFG. Activation of the pMTG for the IC condition in both groups indicates intact neural integration of IC gestures in schizophrenia. However, failure to activate the left pMTG and IFG for MP co-verbal gestures suggests a disturbed integration of gestures embedded in an abstract sentence context. This study provides new insight into the neural integration of co-verbal gestures in patients with schizophrenia. Copyright © 2012 Wiley Periodicals, Inc.

  4. Astrocyte uncoupling as a cause of human temporal lobe epilepsy

    PubMed Central

    Bedner, Peter; Dupper, Alexander; Hüttmann, Kerstin; Müller, Julia; Herde, Michel K.; Dublin, Pavel; Deshpande, Tushar; Schramm, Johannes; Häussler, Ute; Haas, Carola A.; Henneberger, Christian; Theis, Martin

    2015-01-01

    Glial cells are now recognized as active communication partners in the central nervous system, and this new perspective has rekindled the question of their role in pathology. In the present study we analysed functional properties of astrocytes in hippocampal specimens from patients with mesial temporal lobe epilepsy without (n = 44) and with sclerosis (n = 75) combining patch clamp recording, K+ concentration analysis, electroencephalography/video-monitoring, and fate mapping analysis. We found that the hippocampus of patients with mesial temporal lobe epilepsy with sclerosis is completely devoid of bona fide astrocytes and gap junction coupling, whereas coupled astrocytes were abundantly present in non-sclerotic specimens. To decide whether these glial changes represent cause or effect of mesial temporal lobe epilepsy with sclerosis, we developed a mouse model that reproduced key features of human mesial temporal lobe epilepsy with sclerosis. In this model, uncoupling impaired K+ buffering and temporally preceded apoptotic neuronal death and the generation of spontaneous seizures. Uncoupling was induced through intraperitoneal injection of lipopolysaccharide, prevented in Toll-like receptor4 knockout mice and reproduced in situ through acute cytokine or lipopolysaccharide incubation. Fate mapping confirmed that in the course of mesial temporal lobe epilepsy with sclerosis, astrocytes acquire an atypical functional phenotype and lose coupling. These data suggest that astrocyte dysfunction might be a prime cause of mesial temporal lobe epilepsy with sclerosis and identify novel targets for anti-epileptogenic therapeutic intervention. PMID:25765328

  5. Chemical signal activation of an organocatalyst enables control over soft material formation.

    PubMed

    Trausel, Fanny; Maity, Chandan; Poolman, Jos M; Kouwenberg, D S J; Versluis, Frank; van Esch, Jan H; Eelkema, Rienk

    2017-10-12

    Cells can react to their environment by changing the activity of enzymes in response to specific chemical signals. Artificial catalysts capable of being activated by chemical signals are rare, but of interest for creating autonomously responsive materials. We present an organocatalyst that is activated by a chemical signal, enabling temporal control over reaction rates and the formation of materials. Using self-immolative chemistry, we design a deactivated aniline organocatalyst that is activated by the chemical signal hydrogen peroxide and catalyses hydrazone formation. Upon activation of the catalyst, the rate of hydrazone formation increases 10-fold almost instantly. The responsive organocatalyst enables temporal control over the formation of gels featuring hydrazone bonds. The generic design should enable the use of a large range of triggers and organocatalysts, and appears a promising method for the introduction of signal response in materials, constituting a first step towards achieving communication between artificial chemical systems.Enzymes regulated by chemical signals are common in biology, but few such artificial catalysts exist. Here, the authors design an aniline catalyst that, when activated by a chemical trigger, catalyses formation of hydrazone-based gels, demonstrating signal response in a soft material.

  6. Aberrant Network Activity in Schizophrenia.

    PubMed

    Hunt, Mark J; Kopell, Nancy J; Traub, Roger D; Whittington, Miles A

    2017-06-01

    Brain dynamic changes associated with schizophrenia are largely equivocal, with interpretation complicated by many factors, such as the presence of therapeutic agents and the complex nature of the syndrome itself. Evidence for a brain-wide change in individual network oscillations, shared by all patients, is largely equivocal, but stronger for lower (delta) than for higher (gamma) bands. However, region-specific changes in rhythms across multiple, interdependent, nested frequencies may correlate better with pathology. Changes in synaptic excitation and inhibition in schizophrenia disrupt delta rhythm-mediated cortico-cortical communication, while enhancing thalamocortical communication in this frequency band. The contrasting relationships between delta and higher frequencies in thalamus and cortex generate frequency mismatches in inter-regional connectivity, leading to a disruption in temporal communication between higher-order brain regions associated with mental time travel. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Spatio-temporal coordination among functional residues in protein

    NASA Astrophysics Data System (ADS)

    Dutta, Sutapa; Ghosh, Mahua; Chakrabarti, J.

    2017-01-01

    The microscopic basis of communication among the functional sites in bio-macromolecules is a fundamental challenge in uncovering their functions. We study the communication through temporal cross-correlation among the binding sites. We illustrate via Molecular Dynamics simulations the properties of the temporal cross-correlation between the dihedrals of a small protein, ubiquitin which participates in protein degradation in eukaryotes. We show that the dihedral angles of the residues possess non-trivial temporal cross-correlations with asymmetry with respect to exchange of the dihedrals, having peaks at low frequencies with time scales in nano-seconds and an algebraic tail with a universal exponent for large frequencies. We show the existence of path for temporally correlated degrees of freedom among the functional residues. We explain the qualitative features of the cross-correlations through a general mathematical model. The generality of our analysis suggests that temporal cross-correlation functions may provide convenient theoretical framework to understand bio-molecular functions on microscopic basis.

  8. Mind the gap: Neural coding of species identity in birdsong prosody.

    PubMed

    Araki, Makoto; Bandi, M M; Yazaki-Sugiyama, Yoko

    2016-12-09

    Juvenile songbirds learn vocal communication from adult tutors of the same species but not from adults of other species. How species-specific learning emerges from the basic features of song prosody remains unknown. In the zebra finch auditory cortex, we discovered a class of neurons that register the silent temporal gaps between song syllables and are distinct from neurons encoding syllable morphology. Behavioral learning and neuronal coding of temporal gap structure resisted song tutoring from other species: Zebra finches fostered by Bengalese finch parents learned Bengalese finch song morphology transposed onto zebra finch temporal gaps. During the vocal learning period, temporal gap neurons fired selectively to zebra finch song. The innate temporal coding of intersyllable silent gaps suggests a neuronal barcode for conspecific vocal learning and social communication in acoustically diverse environments. Copyright © 2016, American Association for the Advancement of Science.

  9. Separating temporal and topological effects in walk-based network centrality.

    PubMed

    Colman, Ewan R; Charlton, Nathaniel

    2016-07-01

    The recently introduced concept of dynamic communicability is a valuable tool for ranking the importance of nodes in a temporal network. Two metrics, broadcast score and receive score, were introduced to measure the centrality of a node with respect to a model of contagion based on time-respecting walks. This article examines the temporal and structural factors influencing these metrics by considering a versatile stochastic temporal network model. We analytically derive formulas to accurately predict the expectation of the broadcast and receive scores when one or more columns in a temporal edge-list are shuffled. These methods are then applied to two publicly available data sets and we quantify how much the centrality of each individual depends on structural or temporal influences. From our analysis, we highlight two practical contributions: a way to control for temporal variation when computing dynamic communicability and the conclusion that the broadcast and receive scores can, under a range of circumstances, be replaced by the row and column sums of the matrix exponential of a weighted adjacency matrix given by the data.

  10. Separating temporal and topological effects in walk-based network centrality

    NASA Astrophysics Data System (ADS)

    Colman, Ewan R.; Charlton, Nathaniel

    2016-07-01

    The recently introduced concept of dynamic communicability is a valuable tool for ranking the importance of nodes in a temporal network. Two metrics, broadcast score and receive score, were introduced to measure the centrality of a node with respect to a model of contagion based on time-respecting walks. This article examines the temporal and structural factors influencing these metrics by considering a versatile stochastic temporal network model. We analytically derive formulas to accurately predict the expectation of the broadcast and receive scores when one or more columns in a temporal edge-list are shuffled. These methods are then applied to two publicly available data sets and we quantify how much the centrality of each individual depends on structural or temporal influences. From our analysis, we highlight two practical contributions: a way to control for temporal variation when computing dynamic communicability and the conclusion that the broadcast and receive scores can, under a range of circumstances, be replaced by the row and column sums of the matrix exponential of a weighted adjacency matrix given by the data.

  11. The digital evolution of occupy wall street.

    PubMed

    Conover, Michael D; Ferrara, Emilio; Menczer, Filippo; Flammini, Alessandro

    2013-01-01

    We examine the temporal evolution of digital communication activity relating to the American anti-capitalist movement Occupy Wall Street. Using a high-volume sample from the microblogging site Twitter, we investigate changes in Occupy participant engagement, interests, and social connectivity over a fifteen month period starting three months prior to the movement's first protest action. The results of this analysis indicate that, on Twitter, the Occupy movement tended to elicit participation from a set of highly interconnected users with pre-existing interests in domestic politics and foreign social movements. These users, while highly vocal in the months immediately following the birth of the movement, appear to have lost interest in Occupy related communication over the remainder of the study period.

  12. Knowledge engineering for temporal dependency networks as operations procedures. [in space communication

    NASA Technical Reports Server (NTRS)

    Fayyad, Kristina E.; Hill, Randall W., Jr.; Wyatt, E. J.

    1993-01-01

    This paper presents a case study of the knowledge engineering process employed to support the Link Monitor and Control Operator Assistant (LMCOA). The LMCOA is a prototype system which automates the configuration, calibration, test, and operation (referred to as precalibration) of the communications, data processing, metric data, antenna, and other equipment used to support space-ground communications with deep space spacecraft in NASA's Deep Space Network (DSN). The primary knowledge base in the LMCOA is the Temporal Dependency Network (TDN), a directed graph which provides a procedural representation of the precalibration operation. The TDN incorporates precedence, temporal, and state constraints and uses several supporting knowledge bases and data bases. The paper provides a brief background on the DSN, and describes the evolution of the TDN and supporting knowledge bases, the process used for knowledge engineering, and an analysis of the successes and problems of the knowledge engineering effort.

  13. Getting the word out: neural correlates of enthusiastic message propagation.

    PubMed

    Falk, Emily B; O'Donnell, Matthew Brook; Lieberman, Matthew D

    2012-01-01

    What happens in the mind of a person who first hears a potentially exciting idea?We examined the neural precursors of spreading ideas with enthusiasm, and dissected enthusiasm into component processes that can be identified through automated linguistic analysis, gestalt human ratings of combined linguistic and non-verbal cues, and points of convergence/divergence between the two. We combined tools from natural language processing (NLP) with data gathered using fMRI to link the neurocognitive mechanisms that are set in motion during initial exposure to ideas and subsequent behaviors of these message communicators outside of the scanner. Participants' neural activity was recorded as they reviewed ideas for potential television show pilots. Participants' language from video-taped interviews collected post-scan was transcribed and given to an automated linguistic sentiment analysis (SA) classifier, which returned ratings for evaluative language (evaluative vs. descriptive) and valence (positive vs. negative). Separately, human coders rated the enthusiasm with which participants transmitted each idea. More positive sentiment ratings by the automated classifier were associated with activation in neural regions including medial prefrontal cortex; MPFC, precuneus/posterior cingulate cortex; PC/PCC, and medial temporal lobe; MTL. More evaluative, positive, descriptions were associated exclusively with neural activity in temporal-parietal junction (TPJ). Finally, human ratings indicative of more enthusiastic sentiment were associated with activation across these regions (MPFC, PC/PCC, DMPFC, TPJ, and MTL) as well as in ventral striatum (VS), inferior parietal lobule and premotor cortex. Taken together, these data demonstrate novel links between neural activity during initial idea encoding and the enthusiasm with which the ideas are subsequently delivered. This research lays the groundwork to use machine learning and neuroimaging data to study word of mouth communication and the spread of ideas in both traditional and new media environments.

  14. Getting the word out: neural correlates of enthusiastic message propagation

    PubMed Central

    Falk, Emily B.; O'Donnell, Matthew Brook; Lieberman, Matthew D.

    2012-01-01

    What happens in the mind of a person who first hears a potentially exciting idea?We examined the neural precursors of spreading ideas with enthusiasm, and dissected enthusiasm into component processes that can be identified through automated linguistic analysis, gestalt human ratings of combined linguistic and non-verbal cues, and points of convergence/divergence between the two. We combined tools from natural language processing (NLP) with data gathered using fMRI to link the neurocognitive mechanisms that are set in motion during initial exposure to ideas and subsequent behaviors of these message communicators outside of the scanner. Participants' neural activity was recorded as they reviewed ideas for potential television show pilots. Participants' language from video-taped interviews collected post-scan was transcribed and given to an automated linguistic sentiment analysis (SA) classifier, which returned ratings for evaluative language (evaluative vs. descriptive) and valence (positive vs. negative). Separately, human coders rated the enthusiasm with which participants transmitted each idea. More positive sentiment ratings by the automated classifier were associated with activation in neural regions including medial prefrontal cortex; MPFC, precuneus/posterior cingulate cortex; PC/PCC, and medial temporal lobe; MTL. More evaluative, positive, descriptions were associated exclusively with neural activity in temporal-parietal junction (TPJ). Finally, human ratings indicative of more enthusiastic sentiment were associated with activation across these regions (MPFC, PC/PCC, DMPFC, TPJ, and MTL) as well as in ventral striatum (VS), inferior parietal lobule and premotor cortex. Taken together, these data demonstrate novel links between neural activity during initial idea encoding and the enthusiasm with which the ideas are subsequently delivered. This research lays the groundwork to use machine learning and neuroimaging data to study word of mouth communication and the spread of ideas in both traditional and new media environments. PMID:23189049

  15. Electromechanical coupling of the solar atmosphere; Proceedings of the OSL Workshop, Capri, Italy, May 27-31, 1991

    NASA Technical Reports Server (NTRS)

    Spicer, Daniel S. (Editor); Macneice, Peter (Editor)

    1992-01-01

    The present conference discusses the role of magnetic flux tubes as communication channels, flux tube sizes and their temporal evolution, magnetic field line topology in the solar active regions, weak solar magnetic fields, explosive events and magnetic reconnection in the solar atmosphere, and 3D kinematic reconnection of plasmoids with nulls. Also discussed are coronal heating mechanisms, coronal heating through a lack of MHD equilibrium, Alfven waves in current-carrying inhomogeneous plasmas, hydrostatic models of X-ray coronal loops, MHD turbulence in an expanding atmosphere, and hot mass transport in the solar active prominence.

  16. Public understanding of One Health messages: The role of temporal framing.

    PubMed

    Roh, Sungjong; Rickard, Laura N; McComas, Katherine A; Decker, Daniel J

    2018-02-01

    Building on research in motivated reasoning and framing in science communication, we examine how messages that vary attribution of responsibility (human vs animal) and temporal orientation (now vs in the next 10 years) for wildlife disease risk influence individuals' conservation intentions. We conducted a randomized experiment with a nationally representative sample of US adults ( N = 355), which revealed that for people low in biospheric concern, messages that highlighted both human responsibility for and the imminent nature of the risk failed to enhance conservation intentions compared with messages highlighting animal responsibility. However, when messages highlighting human responsibility placed the risk in a temporally distal frame, conservation intentions increased among people low in biospheric concern. We assess the underlying mechanism of this effect and discuss the value of temporal framing in overcoming motivated skepticism to improve science communication.

  17. Hierarchical organization in the temporal structure of infant-direct speech and song.

    PubMed

    Falk, Simone; Kello, Christopher T

    2017-06-01

    Caregivers alter the temporal structure of their utterances when talking and singing to infants compared with adult communication. The present study tested whether temporal variability in infant-directed registers serves to emphasize the hierarchical temporal structure of speech. Fifteen German-speaking mothers sang a play song and told a story to their 6-months-old infants, or to an adult. Recordings were analyzed using a recently developed method that determines the degree of nested clustering of temporal events in speech. Events were defined as peaks in the amplitude envelope, and clusters of various sizes related to periods of acoustic speech energy at varying timescales. Infant-directed speech and song clearly showed greater event clustering compared with adult-directed registers, at multiple timescales of hundreds of milliseconds to tens of seconds. We discuss the relation of this newly discovered acoustic property to temporal variability in linguistic units and its potential implications for parent-infant communication and infants learning the hierarchical structures of speech and language. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Playing charades in the fMRI: are mirror and/or mentalizing areas involved in gestural communication?

    PubMed

    Schippers, Marleen B; Gazzola, Valeria; Goebel, Rainer; Keysers, Christian

    2009-08-27

    Communication is an important aspect of human life, allowing us to powerfully coordinate our behaviour with that of others. Boiled down to its mere essentials, communication entails transferring a mental content from one brain to another. Spoken language obviously plays an important role in communication between human individuals. Manual gestures however often aid the semantic interpretation of the spoken message, and gestures may have played a central role in the earlier evolution of communication. Here we used the social game of charades to investigate the neural basis of gestural communication by having participants produce and interpret meaningful gestures while their brain activity was measured using functional magnetic resonance imaging. While participants decoded observed gestures, the putative mirror neuron system (pMNS: premotor, parietal and posterior mid-temporal cortex), associated with motor simulation, and the temporo-parietal junction (TPJ), associated with mentalizing and agency attribution, were significantly recruited. Of these areas only the pMNS was recruited during the production of gestures. This suggests that gestural communication relies on a combination of simulation and, during decoding, mentalizing/agency attribution brain areas. Comparing the decoding of gestures with a condition in which participants viewed the same gestures with an instruction not to interpret the gestures showed that although parts of the pMNS responded more strongly during active decoding, most of the pMNS and the TPJ did not show such significant task effects. This suggests that the mere observation of gestures recruits most of the system involved in voluntary interpretation.

  19. The Digital Evolution of Occupy Wall Street

    PubMed Central

    Conover, Michael D.; Ferrara, Emilio; Menczer, Filippo; Flammini, Alessandro

    2013-01-01

    We examine the temporal evolution of digital communication activity relating to the American anti-capitalist movement Occupy Wall Street. Using a high-volume sample from the microblogging site Twitter, we investigate changes in Occupy participant engagement, interests, and social connectivity over a fifteen month period starting three months prior to the movement's first protest action. The results of this analysis indicate that, on Twitter, the Occupy movement tended to elicit participation from a set of highly interconnected users with pre-existing interests in domestic politics and foreign social movements. These users, while highly vocal in the months immediately following the birth of the movement, appear to have lost interest in Occupy related communication over the remainder of the study period. PMID:23734215

  20. Mapping a multidimensional emotion in response to television commercials.

    PubMed

    Morris, Jon D; Klahr, Nelson J; Shen, Feng; Villegas, Jorge; Wright, Paul; He, Guojun; Liu, Yijun

    2009-03-01

    Unlike previous emotional studies using functional neuroimaging that have focused on either locating discrete emotions in the brain or linking emotional response to an external behavior, this study investigated brain regions in order to validate a three-dimensional construct--namely pleasure, arousal, and dominance (PAD) of emotion induced by marketing communication. Emotional responses to five television commercials were measured with Advertisement Self-Assessment Manikins (AdSAM) for PAD and with functional magnetic resonance imaging (fMRI) to identify corresponding patterns of brain activation. We found significant differences in the AdSAM scores on the pleasure and arousal rating scales among the stimuli. Using the AdSAM response as a model for the fMRI image analysis, we showed bilateral activations in the inferior frontal gyri and middle temporal gyri associated with the difference on the pleasure dimension, and activations in the right superior temporal gyrus and right middle frontal gyrus associated with the difference on the arousal dimension. These findings suggest a dimensional approach of constructing emotional changes in the brain and provide a better understanding of human behavior in response to advertising stimuli.

  1. Autistic spectrum disorders as functional disconnection syndrome.

    PubMed

    Melillo, Robert; Leisman, Gerry

    2009-01-01

    We outline the basis of how functional disconnection with reduced activity and coherence in the right hemisphere would explain all of the symptoms of autistic spectrum disorder as well as the observed increases in sympathetic activation. If the problem of autistic spectrum disorder is primarily one of desynchronization and ineffective interhemispheric communication, then the best way to address the symptoms is to improve coordination between areas of the brain. To do that the best approach would include multimodal therapeusis that would include a combination of somatosensory, cognitive, behavioral, and biochemical interventions all directed at improving overall health, reducing inflammation and increasing right hemisphere activity to the level that it becomes temporally coherent with the left hemisphere. We hypothesize that the unilateral increased hemispheric stimulation has the effect of increasing the temporal oscillations within the thalamocortical pathways bringing it closer to the oscillation rate of the adequately functioning hemisphere. We propose that increasing the baseline oscillation speed of one entire hemisphere will enhance the coordination and coherence between the two hemispheres allowing for enhanced motor and cognitive binding.

  2. Alpha band event-related desynchronization underlying social situational context processing during irony comprehension: A magnetoencephalography source localization study.

    PubMed

    Akimoto, Yoritaka; Takahashi, Hidetoshi; Gunji, Atsuko; Kaneko, Yuu; Asano, Michiko; Matsuo, Junko; Ota, Miho; Kunugi, Hiroshi; Hanakawa, Takashi; Mazuka, Reiko; Kamio, Yoko

    2017-12-01

    Irony comprehension requires integration of social contextual information. Previous studies have investigated temporal aspects of irony processing and its neural substrates using psychological/electroencephalogram or functional magnetic resonance imaging methods, but have not clarified the temporospatial neural mechanisms of irony comprehension. Therefore, we used magnetoencephalography to investigate the neural generators of alpha-band (8-13Hz) event-related desynchronization (ERD) occurring from 600 to 900ms following the onset of a critical sentence at which social situational contexts activated ironic representation. We found that the right anterior temporal lobe, which is involved in processing social knowledge and evaluating others' intentions, exhibited stronger alpha ERD following an ironic statement than following a literal statement. We also found that alpha power in the left anterior temporal lobe correlated with the participants' communication abilities. These results elucidate the temporospatial neural mechanisms of language comprehension in social contexts, including non-literal processing. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Effects of spectral and temporal disruption on cortical encoding of gerbil vocalizations

    PubMed Central

    Ter-Mikaelian, Maria; Semple, Malcolm N.

    2013-01-01

    Animal communication sounds contain spectrotemporal fluctuations that provide powerful cues for detection and discrimination. Human perception of speech is influenced both by spectral and temporal acoustic features but is most critically dependent on envelope information. To investigate the neural coding principles underlying the perception of communication sounds, we explored the effect of disrupting the spectral or temporal content of five different gerbil call types on neural responses in the awake gerbil's primary auditory cortex (AI). The vocalizations were impoverished spectrally by reduction to 4 or 16 channels of band-passed noise. For this acoustic manipulation, an average firing rate of the neuron did not carry sufficient information to distinguish between call types. In contrast, the discharge patterns of individual AI neurons reliably categorized vocalizations composed of only four spectral bands with the appropriate natural token. The pooled responses of small populations of AI cells classified spectrally disrupted and natural calls with an accuracy that paralleled human performance on an analogous speech task. To assess whether discharge pattern was robust to temporal perturbations of an individual call, vocalizations were disrupted by time-reversing segments of variable duration. For this acoustic manipulation, cortical neurons were relatively insensitive to short reversal lengths. Consistent with human perception of speech, these results indicate that the stable representation of communication sounds in AI is more dependent on sensitivity to slow temporal envelopes than on spectral detail. PMID:23761696

  4. Coevolution of a multilayer node-aligned network whose layers represent different social relations.

    PubMed

    Bahulkar, Ashwin; Szymanski, Boleslaw K; Chan, Kevin; Lizardo, Omar

    2017-01-01

    We examine the coevolution of three-layer node-aligned network of university students. The first layer is defined by nominations based on perceived prominence collected from repeated surveys during the first four semesters; the second is a behavioral layer representing actual students' interactions based on records of mobile calls and text messages; while the third is a behavioral layer representing potential face-to-face interactions suggested by bluetooth collocations. We address four interrelated questions. First, we ask whether the formation or dissolution of a link in one of the layers precedes or succeeds the formation or dissolution of the corresponding link in another layer (temporal dependencies). Second, we explore the causes of observed temporal dependencies between the layers. For those temporal dependencies that are confirmed, we measure the predictive capability of such dependencies. Third, we observe the progress towards nominations and the stages that lead to them. Finally, we examine whether the differences in dissolution rates of symmetric (undirected) versus asymmetric (directed) links co-exist in all layers. We find strong patterns of reciprocal temporal dependencies between the layers. In particular, the creation of an edge in either behavioral layer generally precedes the formation of a corresponding edge in the nomination layer. Conversely, the decay of a link in the nomination layer generally precedes a decline in the intensity of communication and collocation. Finally, nodes connected by asymmetric nomination edges have lower overall communication and collocation volumes and more asymmetric communication flows than the nodes linked by symmetric edges. We find that creation and dissolution of cognitively salient contacts have temporal dependencies with communication and collocation behavior.

  5. Spectral-Spatial Differentiation of Brain Activity During Mental Imagery of Improvisational Music Performance Using MEG.

    PubMed

    Boasen, Jared; Takeshita, Yuya; Kuriki, Shinya; Yokosawa, Koichi

    2018-01-01

    Group musical improvisation is thought to be akin to conversation, and therapeutically has been shown to be effective at improving communicativeness, sociability, creative expression, and overall psychological health. To understand these therapeutic effects, clarifying the nature of brain activity during improvisational cognition is important. Some insight regarding brain activity during improvisational music cognition has been gained via functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). However, we have found no reports based on magnetoencephalography (MEG). With the present study, we aimed to demonstrate the feasibility of improvisational music performance experimentation in MEG. We designed a novel MEG-compatible keyboard, and used it with experienced musicians ( N = 13) in a music performance paradigm to spectral-spatially differentiate spontaneous brain activity during mental imagery of improvisational music performance. Analyses of source activity revealed that mental imagery of improvisational music performance induced greater theta (5-7 Hz) activity in left temporal areas associated with rhythm production and communication, greater alpha (8-12 Hz) activity in left premotor and parietal areas associated with sensorimotor integration, and less beta (15-29 Hz) activity in right frontal areas associated with inhibition control. These findings support the notion that musical improvisation is conversational, and suggest that creation of novel auditory content is facilitated by a more internally-directed, disinhibited cognitive state.

  6. Past-focused temporal communication overcomes conservatives' resistance to liberal political ideas.

    PubMed

    Lammers, Joris; Baldwin, Matt

    2018-04-01

    Nine studies and a meta-analysis test the role of past-focused temporal communication in reducing conservatives' disagreement with liberal political ideas. We propose that conservatives are more prone to warm, affectionate, and nostalgic feelings for past society. Therefore, they are more likely to support political ideas-including those expressing liberal values-that can be linked to a desirable past state (past focus), rather than a desirable future state (future focus) of society. Study 1 supports our prediction that political conservatives are more nostalgic for the past than liberals. Building on this association, we demonstrate that communicating liberal ideas with a past focus increases conservatives' support for leniency in criminal justice (Studies 2a and 2b), gun control (Study 3), immigration (Study 4), social diversity (Study 5), and social justice (Study 6). Communicating messages with a past focus reduced political disagreement (compared with a future focus) between liberals and conservatives by between 30 and 100% across studies. Studies 5 and 6 identify the mediating role of state and trait nostalgia, respectively. Study 7 shows that the temporal communication effect only occurs under peripheral (and not central) information processing. Study 8 shows that the effect is asymmetric; a future focus did not increase liberals' support for conservative ideas. A mixed-effects meta-analysis across all studies confirms that appealing to conservatives' nostalgia with a past-focused temporal focus increases support for liberal political messages (Study 9). A large portion of the political disagreement between conservatives and liberals appears to be disagreement over style, and not content of political issues. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  7. Multidimensional human dynamics in mobile phone communications.

    PubMed

    Quadri, Christian; Zignani, Matteo; Capra, Lorenzo; Gaito, Sabrina; Rossi, Gian Paolo

    2014-01-01

    In today's technology-assisted society, social interactions may be expressed through a variety of techno-communication channels, including online social networks, email and mobile phones (calls, text messages). Consequently, a clear grasp of human behavior through the diverse communication media is considered a key factor in understanding the formation of the today's information society. So far, all previous research on user communication behavior has focused on a sole communication activity. In this paper we move forward another step on this research path by performing a multidimensional study of human sociality as an expression of the use of mobile phones. The paper focuses on user temporal communication behavior in the interplay between the two complementary communication media, text messages and phone calls, that represent the bi-dimensional scenario of analysis. Our study provides a theoretical framework for analyzing multidimensional bursts as the most general burst category, that includes one-dimensional bursts as the simplest case, and offers empirical evidence of their nature by following the combined phone call/text message communication patterns of approximately one million people over three-month period. This quantitative approach enables the design of a generative model rooted in the three most significant features of the multidimensional burst - the number of dimensions, prevalence and interleaving degree - able to reproduce the main media usage attitude. The other findings of the paper include a novel multidimensional burst detection algorithm and an insight analysis of the human media selection process.

  8. Astrocyte uncoupling as a cause of human temporal lobe epilepsy.

    PubMed

    Bedner, Peter; Dupper, Alexander; Hüttmann, Kerstin; Müller, Julia; Herde, Michel K; Dublin, Pavel; Deshpande, Tushar; Schramm, Johannes; Häussler, Ute; Haas, Carola A; Henneberger, Christian; Theis, Martin; Steinhäuser, Christian

    2015-05-01

    Glial cells are now recognized as active communication partners in the central nervous system, and this new perspective has rekindled the question of their role in pathology. In the present study we analysed functional properties of astrocytes in hippocampal specimens from patients with mesial temporal lobe epilepsy without (n = 44) and with sclerosis (n = 75) combining patch clamp recording, K(+) concentration analysis, electroencephalography/video-monitoring, and fate mapping analysis. We found that the hippocampus of patients with mesial temporal lobe epilepsy with sclerosis is completely devoid of bona fide astrocytes and gap junction coupling, whereas coupled astrocytes were abundantly present in non-sclerotic specimens. To decide whether these glial changes represent cause or effect of mesial temporal lobe epilepsy with sclerosis, we developed a mouse model that reproduced key features of human mesial temporal lobe epilepsy with sclerosis. In this model, uncoupling impaired K(+) buffering and temporally preceded apoptotic neuronal death and the generation of spontaneous seizures. Uncoupling was induced through intraperitoneal injection of lipopolysaccharide, prevented in Toll-like receptor4 knockout mice and reproduced in situ through acute cytokine or lipopolysaccharide incubation. Fate mapping confirmed that in the course of mesial temporal lobe epilepsy with sclerosis, astrocytes acquire an atypical functional phenotype and lose coupling. These data suggest that astrocyte dysfunction might be a prime cause of mesial temporal lobe epilepsy with sclerosis and identify novel targets for anti-epileptogenic therapeutic intervention. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. [Verbal communication].

    PubMed

    Fiorini, Fulvio; Panini, Roberta; Ameri, Cinzia

    2014-01-01

    The communication is an action that occupies a lot of part of the life of every individual and understands a whole activity that the purpose has to reach a preset goal: the communication obligatorily foresees the presence of a recipient/receiving.During communication we used both the word, but also the gesture and the way of do/say. The oral communication represents the most complete system however, evolved, end and thin to communicate, able to also express concepts and thoughts and not only behaviors: with it he can also lie and to supply misinformation. The oral communication also possesses an important temporal value, in how much you/he/she can define him now, the before and the then, but also the ability to determine the human relationships, because it participates in to define the different roles in which broadcasting station and receiver are found at that time. The truest power of the words is that to create, to maintain, to modify other people's behaviors; a natural correlation exists that is between communication and behavior. The final objective of the communication results therefore that to create or to modify the relationships and the human behaviors; in other terms we can be affirmed that the words can determine the reality. The true ragion to be to communicate is the purpose however, that who speaks he/she wants to reach: it is a voluntary, both mental and physical effort, that originates from a need both explicit and implicit of whom sends forth the message.

  10. A brain-computer interface for potential non-verbal facial communication based on EEG signals related to specific emotions

    PubMed Central

    Kashihara, Koji

    2014-01-01

    Unlike assistive technology for verbal communication, the brain-machine or brain-computer interface (BMI/BCI) has not been established as a non-verbal communication tool for amyotrophic lateral sclerosis (ALS) patients. Face-to-face communication enables access to rich emotional information, but individuals suffering from neurological disorders, such as ALS and autism, may not express their emotions or communicate their negative feelings. Although emotions may be inferred by looking at facial expressions, emotional prediction for neutral faces necessitates advanced judgment. The process that underlies brain neuronal responses to neutral faces and causes emotional changes remains unknown. To address this problem, therefore, this study attempted to decode conditioned emotional reactions to neutral face stimuli. This direction was motivated by the assumption that if electroencephalogram (EEG) signals can be used to detect patients' emotional responses to specific inexpressive faces, the results could be incorporated into the design and development of BMI/BCI-based non-verbal communication tools. To these ends, this study investigated how a neutral face associated with a negative emotion modulates rapid central responses in face processing and then identified cortical activities. The conditioned neutral face-triggered event-related potentials that originated from the posterior temporal lobe statistically significantly changed during late face processing (600–700 ms) after stimulus, rather than in early face processing activities, such as P1 and N170 responses. Source localization revealed that the conditioned neutral faces increased activity in the right fusiform gyrus (FG). This study also developed an efficient method for detecting implicit negative emotional responses to specific faces by using EEG signals. A classification method based on a support vector machine enables the easy classification of neutral faces that trigger specific individual emotions. In accordance with this classification, a face on a computer morphs into a sad or displeased countenance. The proposed method could be incorporated as a part of non-verbal communication tools to enable emotional expression. PMID:25206321

  11. A brain-computer interface for potential non-verbal facial communication based on EEG signals related to specific emotions.

    PubMed

    Kashihara, Koji

    2014-01-01

    Unlike assistive technology for verbal communication, the brain-machine or brain-computer interface (BMI/BCI) has not been established as a non-verbal communication tool for amyotrophic lateral sclerosis (ALS) patients. Face-to-face communication enables access to rich emotional information, but individuals suffering from neurological disorders, such as ALS and autism, may not express their emotions or communicate their negative feelings. Although emotions may be inferred by looking at facial expressions, emotional prediction for neutral faces necessitates advanced judgment. The process that underlies brain neuronal responses to neutral faces and causes emotional changes remains unknown. To address this problem, therefore, this study attempted to decode conditioned emotional reactions to neutral face stimuli. This direction was motivated by the assumption that if electroencephalogram (EEG) signals can be used to detect patients' emotional responses to specific inexpressive faces, the results could be incorporated into the design and development of BMI/BCI-based non-verbal communication tools. To these ends, this study investigated how a neutral face associated with a negative emotion modulates rapid central responses in face processing and then identified cortical activities. The conditioned neutral face-triggered event-related potentials that originated from the posterior temporal lobe statistically significantly changed during late face processing (600-700 ms) after stimulus, rather than in early face processing activities, such as P1 and N170 responses. Source localization revealed that the conditioned neutral faces increased activity in the right fusiform gyrus (FG). This study also developed an efficient method for detecting implicit negative emotional responses to specific faces by using EEG signals. A classification method based on a support vector machine enables the easy classification of neutral faces that trigger specific individual emotions. In accordance with this classification, a face on a computer morphs into a sad or displeased countenance. The proposed method could be incorporated as a part of non-verbal communication tools to enable emotional expression.

  12. Communicating with Accelerated Observers in Minkowski Spacetime

    ERIC Educational Resources Information Center

    FLores, F. J.

    2008-01-01

    Our goal here is to determine the spatial and temporal constraints on communication between two observers at least one of which moves with constant proper acceleration in two-dimensional Minkowski spacetime. We take as a simplified model of communication one observer bouncing a light signal off another observer. Our derivations use only elementary…

  13. The emergence of temporal language in Nicaraguan Sign Language

    PubMed Central

    Kocab, Annemarie; Senghas, Ann; Snedeker, Jesse

    2016-01-01

    Understanding what uniquely human properties account for the creation and transmission of language has been a central goal of cognitive science. Recently, the study of emerging sign languages, such as Nicaraguan Sign Language (NSL), has offered the opportunity to better understand how languages are created and the roles of the individual learner and the community of users. Here, we examined the emergence of two types of temporal language in NSL, comparing the linguistic devices for conveying temporal information among three sequential age cohorts of signers. Experiment 1 showed that while all three cohorts of signers could communicate about linearly ordered discrete events, only the second and third generations of signers successfully communicated information about events with more complex temporal structure. Experiment 2 showed that signers could discriminate between the types of temporal events in a nonverbal task. Finally, Experiment 3 investigated the ordinal use of numbers (e.g., first, second) in NSL signers, indicating that one strategy younger signers might have for accurately describing events in time might be to use ordinal numbers to mark each event. While the capacity for representing temporal concepts appears to be present in the human mind from the onset of language creation, the linguistic devices to convey temporality do not appear immediately. Evidently, temporal language emerges over generations of language transmission, as a product of individual minds interacting within a community of users. PMID:27591549

  14. The emergence of temporal language in Nicaraguan Sign Language.

    PubMed

    Kocab, Annemarie; Senghas, Ann; Snedeker, Jesse

    2016-11-01

    Understanding what uniquely human properties account for the creation and transmission of language has been a central goal of cognitive science. Recently, the study of emerging sign languages, such as Nicaraguan Sign Language (NSL), has offered the opportunity to better understand how languages are created and the roles of the individual learner and the community of users. Here, we examined the emergence of two types of temporal language in NSL, comparing the linguistic devices for conveying temporal information among three sequential age cohorts of signers. Experiment 1 showed that while all three cohorts of signers could communicate about linearly ordered discrete events, only the second and third generations of signers successfully communicated information about events with more complex temporal structure. Experiment 2 showed that signers could discriminate between the types of temporal events in a nonverbal task. Finally, Experiment 3 investigated the ordinal use of numbers (e.g., first, second) in NSL signers, indicating that one strategy younger signers might have for accurately describing events in time might be to use ordinal numbers to mark each event. While the capacity for representing temporal concepts appears to be present in the human mind from the onset of language creation, the linguistic devices to convey temporality do not appear immediately. Evidently, temporal language emerges over generations of language transmission, as a product of individual minds interacting within a community of users. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Parasitoid flies exploiting acoustic communication of insects-comparative aspects of independent functional adaptations.

    PubMed

    Lakes-Harlan, Reinhard; Lehmann, Gerlind U C

    2015-01-01

    Two taxa of parasitoid Diptera have independently evolved tympanal hearing organs to locate sound producing host insects. Here we review and compare functional adaptations in both groups of parasitoids, Ormiini and Emblemasomatini. Tympanal organs in both groups originate from a common precursor organ and are somewhat similar in morphology and physiology. In terms of functional adaptations, the hearing thresholds are largely adapted to the frequency spectra of the calling song of the hosts. The large host ranges of some parasitoids indicate that their neuronal filter for the temporal patterns of the calling songs are broader than those found in intraspecific communication. For host localization the night active Ormia ochracea and the day active E. auditrix are able to locate a sound source precisely in space. For phonotaxis flight and walking phases are used, whereby O. ochracea approaches hosts during flight while E. auditrix employs intermediate landings and re-orientation, apparently separating azimuthal and vertical angles. The consequences of the parasitoid pressure are discussed for signal evolution and intraspecific communication of the host species. This natural selection pressure might have led to different avoidance strategies in the hosts: silent males in crickets, shorter signals in tettigoniids and fluctuating population abundances in cicadas.

  16. Dementia paralytica: deterioration from communicating hydrocephalus.

    PubMed Central

    Giménez-Roldán, S; Benito, C; Martin, M

    1979-01-01

    Five patients suffering from dementia paralytica who failed to improve or deteriorated after one or several high dosage courses of penicillin, had pneumoencephalographic patterns suggesting communicating hydrocephalus. Measurements of the ventricular index, ratio of cella media to width of the temporal horn, and the callosal angle differed from that in seven cases of dementia paralytica with associated cerebral atrophy. An isotope cisternogram in three cases with communicating hydrocephalus further confirmed a blockage of the cerebrospinal fluid (CSF) at the parasagittal subarachnoid space. Three patients exhibited the full syndrome of gait apraxia, incontinence, and pyramidal tract signs associated with a severe degree of dementia. Shunting of the CSF in three cases was followed by immediate improvement in two, one in a longlasting way. No active parenchymal inflammation was observed in any of three brain biopsy samples taken during surgery, except for leptomeningeal fibrosis in one. Chronic leptomeningitis in dementia paralytica may impair subarachnoid CSF absorption with subsequent communicating hydrocephalus. Progression or inadequate responses after therapeutic dose of penicillin in dementia paralytica should prompt investigation for this complication as an alternative, effective treatment could be offered. Images PMID:469557

  17. Statistical Mechanics of Temporal and Interacting Networks

    NASA Astrophysics Data System (ADS)

    Zhao, Kun

    In the last ten years important breakthroughs in the understanding of the topology of complexity have been made in the framework of network science. Indeed it has been found that many networks belong to the universality classes called small-world networks or scale-free networks. Moreover it was found that the complex architecture of real world networks strongly affects the critical phenomena defined on these structures. Nevertheless the main focus of the research has been the characterization of single and static networks. Recently, temporal networks and interacting networks have attracted large interest. Indeed many networks are interacting or formed by a multilayer structure. Example of these networks are found in social networks where an individual might be at the same time part of different social networks, in economic and financial networks, in physiology or in infrastructure systems. Moreover, many networks are temporal, i.e. the links appear and disappear on the fast time scale. Examples of these networks are social networks of contacts such as face-to-face interactions or mobile-phone communication, the time-dependent correlations in the brain activity and etc. Understanding the evolution of temporal and multilayer networks and characterizing critical phenomena in these systems is crucial if we want to describe, predict and control the dynamics of complex system. In this thesis, we investigate several statistical mechanics models of temporal and interacting networks, to shed light on the dynamics of this new generation of complex networks. First, we investigate a model of temporal social networks aimed at characterizing human social interactions such as face-to-face interactions and phone-call communication. Indeed thanks to the availability of data on these interactions, we are now in the position to compare the proposed model to the real data finding good agreement. Second, we investigate the entropy of temporal networks and growing networks , to provide a new framework to quantify the information encoded in these networks and to answer a fundamental problem in network science: how complex are temporal and growing networks. Finally, we consider two examples of critical phenomena in interacting networks. In particular, on one side we investigate the percolation of interacting networks by introducing antagonistic interactions. On the other side, we investigate a model of political election based on the percolation of antagonistic networks. The aim of this research is to show how antagonistic interactions change the physics of critical phenomena on interacting networks. We believe that the work presented in these thesis offers the possibility to appreciate the large variability of problems that can be addressed in the new framework of temporal and interacting networks.

  18. Brain Activation During Singing: "Clef de Sol Activation" Is the "Concert" of the Human Brain.

    PubMed

    Mavridis, Ioannis N; Pyrgelis, Efstratios-Stylianos

    2016-03-01

    Humans are the most complex singers in nature, and the human voice is thought by many to be the most beautiful musical instrument. Aside from spoken language, singing represents a second mode of acoustic communication in humans. The purpose of this review article is to explore the functional anatomy of the "singing" brain. Methodologically, the existing literature regarding activation of the human brain during singing was carefully reviewed, with emphasis on the anatomic localization of such activation. Relevant human studies are mainly neuroimaging studies, namely functional magnetic resonance imaging and positron emission tomography studies. Singing necessitates activation of several cortical, subcortical, cerebellar, and brainstem areas, served and coordinated by multiple neural networks. Functionally vital cortical areas of the frontal, parietal, and temporal lobes bilaterally participate in the brain's activation process during singing, confirming the latter's role in human communication. Perisylvian cortical activity of the right hemisphere seems to be the most crucial component of this activation. This also explains why aphasic patients due to left hemispheric lesions are able to sing but not speak the same words. The term clef de sol activation is proposed for this crucial perisylvian cortical activation due to the clef de sol shape of the topographical distribution of these cortical areas around the sylvian fissure. Further research is needed to explore the connectivity and sequence of how the human brain activates to sing.

  19. Imaging auditory representations of song and syllables in populations of sensorimotor neurons essential to vocal communication.

    PubMed

    Peh, Wendy Y X; Roberts, Todd F; Mooney, Richard

    2015-04-08

    Vocal communication depends on the coordinated activity of sensorimotor neurons important to vocal perception and production. How vocalizations are represented by spatiotemporal activity patterns in these neuronal populations remains poorly understood. Here we combined intracellular recordings and two-photon calcium imaging in anesthetized adult zebra finches (Taeniopygia guttata) to examine how learned birdsong and its component syllables are represented in identified projection neurons (PNs) within HVC, a sensorimotor region important for song perception and production. These experiments show that neighboring HVC PNs can respond at markedly different times to song playback and that different syllables activate spatially intermingled PNs within a local (~100 μm) region of HVC. Moreover, noise correlations were stronger between PNs that responded most strongly to the same syllable and were spatially graded within and between classes of PNs. These findings support a model in which syllabic and temporal features of song are represented by spatially intermingled PNs functionally organized into cell- and syllable-type networks within local spatial scales in HVC. Copyright © 2015 the authors 0270-6474/15/355589-17$15.00/0.

  20. Optimal pulse design for communication-oriented slow-light pulse detection.

    PubMed

    Stenner, Michael D; Neifeld, Mark A

    2008-01-21

    We present techniques for designing pulses for linear slow-light delay systems which are optimal in the sense that they maximize the signal-to-noise ratio (SNR) and signal-to-noise-plus-interference ratio (SNIR) of the detected pulse energy. Given a communication model in which input pulses are created in a finite temporal window and output pulse energy in measured in a temporally-offset output window, the SNIR-optimal pulses achieve typical improvements of 10 dB compared to traditional pulse shapes for a given output window offset. Alternatively, for fixed SNR or SNIR, window offset (detection delay) can be increased by 0.3 times the window width. This approach also invites a communication-based model for delay and signal fidelity.

  1. Frontal and Temporal Structural Connectivity Is Associated with Social Communication Impairment Following Traumatic Brain Injury

    PubMed Central

    Rigon, Arianna; Voss, Michelle W.; Turkstra, Lyn S.; Mutlu, Bilge; Duff, Melissa C.

    2018-01-01

    Objectives Although it has been well documented that traumatic brain injury (TBI) can result in communication impairment, little work to date has examined the relationship between social communication skills and structural brain integrity in patients with TBI. The aim of the current study was to investigate the association between self- and other-perceived communication problems and white matter integrity in patients with mild to severe TBI. Methods Forty-four individuals (TBI = 24) and people with whom they frequently communicate, as well as demographically matched normal healthy comparisons (NC) and their frequent communication partners, were administered, respectively, the La-Trobe Communication Questionnaire Self form (LCQ-SELF) and Other form (LCQ-OTHER). In addition, diffusion tensor imaging data were collected, and fractional anisotropy (FA) measures were extracted for each lobe in both hemispheres. Results Within the TBI group, but not within the NC group, participants who were perceived by their close others as having more communication problems had lower FA in the left frontal and temporal lobes (p < .01), but not in other brain regions. Conclusions Frontotemporal white matter microstructural integrity is associated with social communication abilities in adults with TBI. This finding contributes to our understanding of the mechanisms leading to communication impairment following TBI and can inform the development of new neuromodulation therapies as well as diagnostic tools. PMID:27405965

  2. Collective synchronization of self/non-self discrimination in T cell activation, across multiple spatio-temporal scales

    NASA Astrophysics Data System (ADS)

    Altan-Bonnet, Gregoire

    The immune system is a collection of cells whose function is to eradicate pathogenic infections and malignant tumors while protecting healthy tissues. Recent work has delineated key molecular and cellular mechanisms associated with the ability to discriminate self from non-self agents. For example, structural studies have quantified the biophysical characteristics of antigenic molecules (those prone to trigger lymphocyte activation and a subsequent immune response). However, such molecular mechanisms were found to be highly unreliable at the individual cellular level. We will present recent efforts to build experimentally validated computational models of the immune responses at the collective cell level. Such models have become critical to delineate how higher-level integration through nonlinear amplification in signal transduction, dynamic feedback in lymphocyte differentiation and cell-to-cell communication allows the immune system to enforce reliable self/non-self discrimination at the organism level. In particular, we will present recent results demonstrating how T cells tune their antigen discrimination according to cytokine cues, and how competition for cytokine within polyclonal populations of cells shape the repertoire of responding clones. Additionally, we will present recent theoretical and experimental results demonstrating how competition between diffusion and consumption of cytokines determine the range of cell-cell communications within lymphoid organs. Finally, we will discuss how biochemically explicit models, combined with quantitative experimental validation, unravel the relevance of new feedbacks for immune regulations across multiple spatial and temporal scales.

  3. Visual Functions of the Thalamus

    PubMed Central

    Usrey, W. Martin; Alitto, Henry J.

    2017-01-01

    The thalamus is the heavily interconnected partner of the neocortex. All areas of the neocortex receive afferent input from and send efferent projections to specific thalamic nuclei. Through these connections, the thalamus serves to provide the cortex with sensory input, and to facilitate interareal cortical communication and motor and cognitive functions. In the visual system, the lateral geniculate nucleus (LGN) of the dorsal thalamus is the gateway through which visual information reaches the cerebral cortex. Visual processing in the LGN includes spatial and temporal influences on visual signals that serve to adjust response gain, transform the temporal structure of retinal activity patterns, and increase the signal-to-noise ratio of the retinal signal while preserving its basic content. This review examines recent advances in our understanding of LGN function and circuit organization and places these findings in a historical context. PMID:28217740

  4. Experimental temporal quantum steering

    PubMed Central

    Bartkiewicz, Karol; Černoch, Antonín; Lemr, Karel; Miranowicz, Adam; Nori, Franco

    2016-01-01

    Temporal steering is a form of temporal correlation between the initial and final state of a quantum system. It is a temporal analogue of the famous Einstein-Podolsky-Rosen (spatial) steering. We demonstrate, by measuring the photon polarization, that temporal steering allows two parties to verify if they have been interacting with the same particle, even if they have no information about what happened with the particle in between the measurements. This is the first experimental study of temporal steering. We also performed experimental tests, based on the violation of temporal steering inequalities, of the security of two quantum key distribution protocols against individual attacks. Thus, these results can lead to applications for secure quantum communications and quantum engineering. PMID:27901121

  5. Bursty communication patterns facilitate spreading in a threshold-based epidemic dynamics.

    PubMed

    Takaguchi, Taro; Masuda, Naoki; Holme, Petter

    2013-01-01

    Records of social interactions provide us with new sources of data for understanding how interaction patterns affect collective dynamics. Such human activity patterns are often bursty, i.e., they consist of short periods of intense activity followed by long periods of silence. This burstiness has been shown to affect spreading phenomena; it accelerates epidemic spreading in some cases and slows it down in other cases. We investigate a model of history-dependent contagion. In our model, repeated interactions between susceptible and infected individuals in a short period of time is needed for a susceptible individual to contract infection. We carry out numerical simulations on real temporal network data to find that bursty activity patterns facilitate epidemic spreading in our model.

  6. Temporal patterns of mental model convergence: implications for distributed teams interacting in electronic collaboration spaces.

    PubMed

    McComb, Sara; Kennedy, Deanna; Perryman, Rebecca; Warner, Norman; Letsky, Michael

    2010-04-01

    Our objective is to capture temporal patterns in mental model convergence processes and differences in these patterns between distributed teams using an electronic collaboration space and face-to-face teams with no interface. Distributed teams, as sociotechnical systems, collaborate via technology to work on their task. The way in which they process information to inform their mental models may be examined via team communication and may unfold differently than it does in face-to-face teams. We conducted our analysis on 32 three-member teams working on a planning task. Half of the teams worked as distributed teams in an electronic collaboration space, and the other half worked face-to-face without an interface. Using event history analysis, we found temporal interdependencies among the initial convergence points of the multiple mental models we examined. Furthermore, the timing of mental model convergence and the onset of task work discussions were related to team performance. Differences existed in the temporal patterns of convergence and task work discussions across conditions. Distributed teams interacting via an electronic interface and face-to-face teams with no interface converged on multiple mental models, but their communication patterns differed. In particular, distributed teams with an electronic interface required less overall communication, converged on all mental models later in their life cycles, and exhibited more linear cognitive processes than did face-to-face teams interacting verbally. Managers need unique strategies for facilitating communication and mental model convergence depending on teams' degrees of collocation and access to an interface, which in turn will enhance team performance.

  7. Temporal Contingency as an Independent Component of Parenting Behavior.

    ERIC Educational Resources Information Center

    Keller, Heidi; Lohaus, Arnold; Volker, Susanne; Cappenberg, Martina; Chasiotis, Athanasios

    1999-01-01

    Examined relationship between temporal contingency of maternal behavior and interactional quality. Found that although prompt responding was typical, the existence of individual differences indicated that this tendency was expressed in different communicative channels. The relationship between contingency and ratings of interactional quality was…

  8. TEMPORAL CHANGE IN GAP JUNCTION FUNCTION IN PRIMARY HEPATOCYTES

    EPA Science Inventory

    TEMPORAL CHANGES IN GAP JUNCTION FUNCTION IN PRIMARY *

    The objective of this study was to examine the reduction in gap junction communication (GJC) in primary hepatocytes due to coincident melatonin and magnetic field treatments to determine if these conditions could prov...

  9. Initial results from SKiYMET meteor radar at Thumba (8.5°N, 77°E): 2. Gravity wave observations in the MLT region

    NASA Astrophysics Data System (ADS)

    Kumar, Karanam Kishore; Antonita, T. Maria; Shelbi, S. T.

    2007-12-01

    In the present communication, allSKy interferometric METeor (SKiYMET) radar observations of gravity wave activity in the mesosphere lower thermosphere (MLT) region over Thumba (8.5°N, 77°E) are presented. The present meteor radar system provides hourly zonal and meridional winds in the MLT region, which can be readily used for studying the tides, planetary waves, gravity waves of periods 2-6 hours, and other long period oscillations in this region. However, these hourly winds are not sufficient for studying short period gravity waves having periods less than an hour, which demand high temporal resolution measurements. Even though the winds are estimated on an hourly basis, information such as zenith angle, azimuth angle, and radial velocity of each detected meteor are archived. Using these details of the meteor, an algorithm is developed to obtain the 15-min temporal resolution wind data. The output of the algorithm is compared with hourly wind data, and it showed a good agreement during the high meteor shower periods. Most of the times high meteor counts are observed during late night and early morning hours (local) over this latitude. Continuous wind measurements during the high meteor shower periods are used for studying the gravity wave activity in the MLT region. As the wave activity is intermittent and nonstationary, wavelet analysis has been used for delineating the wave features. The results showed the upward propagating intermittent gravity waves with periods 1-2 and 4-5 hours. The new aspect of the present communication is the usage of meteor radar for gravity wave studies for the first time over this latitude and studying their seasonal variability.

  10. “Doctor” or “darling”? Decoding the communication partner from ECoG of the anterior temporal lobe during non-experimental, real-life social interaction

    PubMed Central

    Derix, Johanna; Iljina, Olga; Schulze-Bonhage, Andreas; Aertsen, Ad; Ball, Tonio

    2012-01-01

    Human brain processes underlying real-life social interaction in everyday situations have been difficult to study and have, until now, remained largely unknown. Here, we investigated whether electrocorticography (ECoG) recorded for pre-neurosurgical diagnostics during the daily hospital life of epilepsy patients could provide a way to elucidate the neural correlates of non-experimental social interaction. We identified time periods in which patients were involved in conversations with either their respective life partners (Condition 1; C1) or attending physicians (Condition 2; C2). These two conditions can be expected to differentially involve subfunctions of social interaction which have been associated with activity in the anterior temporal lobe (ATL), including the temporal pole (TP). Therefore, we specifically focused on ECoG recordings from this brain region and investigated spectral power modulations in the alpha (8–12 Hz) and theta (3–5 Hz) frequency ranges, which have been previously assumed to play an important role in the processing of social interaction. We hypothesized that brain activity in this region might be sensitive to differences in the two interaction situations and tested whether these differences can be detected by single-trial decoding. Condition-specific effects in both theta and alpha bands were observed: the left and right TP exclusively showed increased power in C1 compared to C2, whereas more posterior parts of the ATL exhibited similar (C1 > C2) and also contrary (C2 > C1) effects. Single-trial decoding accuracies for classification of these effects were highly above chance. Our findings demonstrate that it is possible to study the neural correlates of human social interaction in non-experimental conditions. Decoding the identity of the communication partner and adjusting the speech output accordingly may be useful in the emerging field of brain-machine interfacing for restoration of expressive speech. PMID:22973215

  11. The Impact of the Temporal Distribution of Communicating Civilizations on Their Detectability

    NASA Astrophysics Data System (ADS)

    Balbi, Amedeo

    2018-01-01

    We used a statistical model to investigate the detectability (defined by the requirement that causal contact has been initiated with us) of communicating civilizations within a volume of the Universe surrounding our location. If the civilizations are located in our galaxy, the detectability requirement imposes a strict constraint on their epoch of appearance and their communicating life span. This, in turn, implies that our ability to gather empirical evidence of the fraction of civilizations within range of detection strongly depends on the specific features of their temporal distribution. Our approach illuminates aspects of the problem that can escape the standard treatment based on the Drake equation. Therefore, it might provide the appropriate framework for future studies dealing with the evolutionary aspects of the search for extraterrestrial intelligence (SETI).

  12. Neural correlates of observing pretend play in which one object is represented as another

    PubMed Central

    Whitehead, Charles; Marchant, Jennifer L.; Craik, David

    2009-01-01

    Observers were scanned while they watched a video of an actor using an object. Three conditions were contrasted in which the same object was used: (i) normally (e.g. using a tennis racket to hit a ball), (ii) in an unusual way (e.g. using a tennis racket to strain spaghetti), (iii) in a pretend play (e.g. playing a tennis racket like a banjo). Observing real and unusual uses of objects activated areas previously seen in studies of tool use including areas associated with a mirror system for action. Observing pretend play activated additional areas previously associated with theory of mind tasks and listening to narrative, including medial prefrontal cortex, posterior superior temporal sulcus and temporal poles. After presentation of each video, observers were asked to name the object as used in the preceding action video (e.g. racket, sieve or banjo). Naming the pretend object elicited activity in medial prefrontal cortex. These results are consistent with proposals that pretend play is a form of communicative narrative, associated with the ability to mentalize. However, this leaves open the question as to whether pretence or mentalizing is the more basic process. PMID:19535615

  13. Brain mechanisms of persuasion: how 'expert power' modulates memory and attitudes.

    PubMed

    Klucharev, Vasily; Smidts, Ale; Fernández, Guillén

    2008-12-01

    Human behaviour is affected by various forms of persuasion. The general persuasive effect of high expertise of the communicator, often referred to as 'expert power', is well documented. We found that a single exposure to a combination of an expert and an object leads to a long-lasting positive effect on memory for and attitude towards the object. Using functional magnetic resonance imaging, we probed the neural processes predicting these behavioural effects. Expert context was associated with distributed left-lateralized brain activity in prefrontal and temporal cortices related to active semantic elaboration. Furthermore, experts enhanced subsequent memory effects in the medial temporal lobe (i.e. in hippocampus and parahippocampal gyrus) involved in memory formation. Experts also affected subsequent attitude effects in the caudate nucleus involved in trustful behaviour, reward processing and learning. These results may suggest that the persuasive effect of experts is mediated by modulation of caudate activity resulting in a re-evaluation of the object in terms of its perceived value. Results extend our view of the functional role of the dorsal striatum in social interaction and enable us to make the first steps toward a neuroscientific model of persuasion.

  14. Reduced embodied simulation in psychopathy.

    PubMed

    Mier, Daniela; Haddad, Leila; Diers, Kersten; Dressing, Harald; Meyer-Lindenberg, Andreas; Kirsch, Peter

    2014-08-01

    Psychopathy is characterized by severe deficits in emotion processing and empathy. These emotional deficits might not only affect the feeling of own emotions, but also the understanding of others' emotional and mental states. The present study aims on identifying the neurobiological correlates of social-cognitive related alterations in psychopathy. We applied a social-cognitive paradigm for the investigation of face processing, emotion recognition, and affective Theory of Mind (ToM) to 11 imprisoned psychopaths and 18 healthy controls. Functional magnetic resonance imaging was used to measure task-related brain activation. While showing no overall behavioural deficit, psychopathy was associated with altered brain activation. Psychopaths had reduced fusiform activation related to face processing. Related to affective ToM, psychopaths had hypoactivation in amygdala, inferior prefrontal gyrus and superior temporal sulcus, areas associated with embodied simulation of emotions and intentions. Furthermore, psychopaths lacked connectivity between superior temporal sulcus and amygdala during affective ToM. These results replicate findings of alterations in basal face processing in psychopathy. In addition, they provide evidence for reduced embodied simulation in psychopathy in concert with a lack of communication between motor areas and amygdala which might provide the neural substrate of reduced feeling with others during social cognition.

  15. Brain mechanisms of persuasion: how ‘expert power’ modulates memory and attitudes

    PubMed Central

    Smidts, Ale; Fernández, Guillén

    2008-01-01

    Human behaviour is affected by various forms of persuasion. The general persuasive effect of high expertise of the communicator, often referred to as ’expert power’, is well documented. We found that a single exposure to a combination of an expert and an object leads to a long-lasting positive effect on memory for and attitude towards the object. Using functional magnetic resonance imaging, we probed the neural processes predicting these behavioural effects. Expert context was associated with distributed left-lateralized brain activity in prefrontal and temporal cortices related to active semantic elaboration. Furthermore, experts enhanced subsequent memory effects in the medial temporal lobe (i.e. in hippocampus and parahippocampal gyrus) involved in memory formation. Experts also affected subsequent attitude effects in the caudate nucleus involved in trustful behaviour, reward processing and learning. These results may suggest that the persuasive effect of experts is mediated by modulation of caudate activity resulting in a re-evaluation of the object in terms of its perceived value. Results extend our view of the functional role of the dorsal striatum in social interaction and enable us to make the first steps toward a neuroscientific model of persuasion. PMID:19015077

  16. Causal Role of Motor Simulation in Turn-Taking Behavior.

    PubMed

    Hadley, Lauren V; Novembre, Giacomo; Keller, Peter E; Pickering, Martin J

    2015-12-16

    Overlap between sensory and motor representations has been documented for a range of human actions, from grasping (Rizzolatti et al., 1996b) to playing a musical instrument (Novembre and Keller, 2014). Such overlap suggests that individuals use motor simulation to predict the outcome of observed actions (Wolpert, 1997). Here we investigate motor simulation as a basis of human communication. Using a musical turn-taking task, we show that pianists call on motor representations of their partner's part to predict when to come in for their own turn. Pianists played alternating solos with a videoed partner, and double-pulse transcranial magnetic stimulation was applied around the turn-switch to temporarily disrupt processing in two cortical regions implicated previously in different forms of motor simulation: (1) the dorsal premotor cortex (dPMC), associated with automatic motor resonance during passive observation of hand actions, especially when the actions are familiar (Lahav et al., 2007); and (2) the supplementary motor area (SMA), involved in active motor imagery, especially when the actions are familiar (Baumann et al., 2007). Stimulation of the right dPMC decreased the temporal accuracy of pianists' (right-hand) entries relative to sham when the partner's (left-hand) part had been rehearsed previously. This effect did not occur for dPMC stimulation without rehearsal or for SMA stimulation. These findings support the role of the dPMC in predicting the time course of observed actions via resonance-based motor simulation during turn-taking. Because turn-taking spans multiple modes of human interaction, we suggest that simulation is a foundational mechanism underlying the temporal dynamics of joint action. Even during passive observation, seeing or hearing somebody execute an action from within our repertoire activates motor cortices of our brain. But what is the functional relevance of such "motor simulation"? By combining a musical duet task with a real-time repetitive transcranial magnetic stimulation protocol, we provide evidence indicating that the dorsal premotor cortex plays a causal role in accurate turn-taking coordination between a pianist and their observed interaction partner. Given that turn-taking behavior is a fundamental feature of human communication, we suggest that simulation is a foundational mechanism underlying the temporal dynamics of communicative joint action. Copyright © 2015 the authors 0270-6474/15/3516516-05$15.00/0.

  17. Stable functional networks exhibit consistent timing in the human brain.

    PubMed

    Chapeton, Julio I; Inati, Sara K; Zaghloul, Kareem A

    2017-03-01

    Despite many advances in the study of large-scale human functional networks, the question of timing, stability, and direction of communication between cortical regions has not been fully addressed. At the cellular level, neuronal communication occurs through axons and dendrites, and the time required for such communication is well defined and preserved. At larger spatial scales, however, the relationship between timing, direction, and communication between brain regions is less clear. Here, we use a measure of effective connectivity to identify connections between brain regions that exhibit communication with consistent timing. We hypothesized that if two brain regions are communicating, then knowledge of the activity in one region should allow an external observer to better predict activity in the other region, and that such communication involves a consistent time delay. We examine this question using intracranial electroencephalography captured from nine human participants with medically refractory epilepsy. We use a coupling measure based on time-lagged mutual information to identify effective connections between brain regions that exhibit a statistically significant increase in average mutual information at a consistent time delay. These identified connections result in sparse, directed functional networks that are stable over minutes, hours, and days. Notably, the time delays associated with these connections are also highly preserved over multiple time scales. We characterize the anatomic locations of these connections, and find that the propagation of activity exhibits a preferred posterior to anterior temporal lobe direction, consistent across participants. Moreover, networks constructed from connections that reliably exhibit consistent timing between anatomic regions demonstrate features of a small-world architecture, with many reliable connections between anatomically neighbouring regions and few long range connections. Together, our results demonstrate that cortical regions exhibit functional relationships with well-defined and consistent timing, and the stability of these relationships over multiple time scales suggests that these stable pathways may be reliably and repeatedly used for large-scale cortical communication. Published by Oxford University Press on behalf of the Guarantors of Brain 2017. This work is written by US Government employees and is in the public domain in the United States.

  18. Nonlinear Wave Propagation

    DTIC Science & Technology

    2015-05-07

    honeycomb lattices, M.J. Ablowitz and Y. Zhu, SIAM J. Appl. Math. 87 (2013) 19591979 11. Nonlinear Temporal-Spatial Surface Plasmon Polaritons , M. J. Ablowitz...temporal-spatial surface plasmon polaritons . Op- tics Communications, 330:49–55, 2014. 37 [39] M.C. Rechtsman, Y. Plotnik, J.M. Zeuner, , D. Song, Z...honeycomb lattices, M.J. Ablowitz and Y. Zhu, SIAM J. Appl. Math., Vol. 87 (2013) 1959-1979 11. Nonlinear Temporal-Spatial Surface Plasmon Polaritons

  19. Spectral-Spatial Differentiation of Brain Activity During Mental Imagery of Improvisational Music Performance Using MEG

    PubMed Central

    Boasen, Jared; Takeshita, Yuya; Kuriki, Shinya; Yokosawa, Koichi

    2018-01-01

    Group musical improvisation is thought to be akin to conversation, and therapeutically has been shown to be effective at improving communicativeness, sociability, creative expression, and overall psychological health. To understand these therapeutic effects, clarifying the nature of brain activity during improvisational cognition is important. Some insight regarding brain activity during improvisational music cognition has been gained via functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). However, we have found no reports based on magnetoencephalography (MEG). With the present study, we aimed to demonstrate the feasibility of improvisational music performance experimentation in MEG. We designed a novel MEG-compatible keyboard, and used it with experienced musicians (N = 13) in a music performance paradigm to spectral-spatially differentiate spontaneous brain activity during mental imagery of improvisational music performance. Analyses of source activity revealed that mental imagery of improvisational music performance induced greater theta (5–7 Hz) activity in left temporal areas associated with rhythm production and communication, greater alpha (8–12 Hz) activity in left premotor and parietal areas associated with sensorimotor integration, and less beta (15–29 Hz) activity in right frontal areas associated with inhibition control. These findings support the notion that musical improvisation is conversational, and suggest that creation of novel auditory content is facilitated by a more internally-directed, disinhibited cognitive state. PMID:29740300

  20. Possible Quantum Absorber Effects in Cortical Synchronization

    NASA Astrophysics Data System (ADS)

    Kämpf, Uwe

    The Wheeler-Feynman transactional "absorber" approach was proposed originally to account for anomalous resonance coupling between spatio-temporally distant measurement partners in entangled quantum states of so-called Einstein-Podolsky-Rosen paradoxes, e.g. of spatio-temporal non-locality, quantum teleportation, etc. Applied to quantum brain dynamics, however, this view provides an anticipative resonance coupling model for aspects of cortical synchronization and recurrent visual action control. It is proposed to consider the registered activation patterns of neuronal loops in so-called synfire chains not as a result of retarded brain communication processes, but rather as surface effects of a system of standing waves generated in the depth of visual processing. According to this view, they arise from a counterbalance between the actual input's delayed bottom-up data streams and top-down recurrent information-processing of advanced anticipative signals in a Wheeler-Feynman-type absorber mode. In the framework of a "time-loop" model, findings about mirror neurons in the brain cortex are suggested to be at least partially associated with temporal rather than spatial mirror functions of visual processing, similar to phase conjugate adaptive resonance-coupling in nonlinear optics.

  1. In-Vivo Animation of Auditory-Language-Induced Gamma-Oscillations in Children with Intractable Focal Epilepsy

    PubMed Central

    Brown, Erik C.; Rothermel, Robert; Nishida, Masaaki; Juhász, Csaba; Muzik, Otto; Hoechstetter, Karsten; Sood, Sandeep; Chugani, Harry T.; Asano, Eishi

    2008-01-01

    We determined if high-frequency gamma-oscillations (50- to 150-Hz) were induced by simple auditory communication over the language network areas in children with focal epilepsy. Four children (ages: 7, 9, 10 and 16 years) with intractable left-hemispheric focal epilepsy underwent extraoperative electrocorticography (ECoG) as well as language mapping using neurostimulation and auditory-language-induced gamma-oscillations on ECoG. The audible communication was recorded concurrently and integrated with ECoG recording to allow for accurate time-lock upon ECoG analysis. In three children, who successfully completed the auditory-language task, high-frequency gamma-augmentation sequentially involved: i) the posterior superior temporal gyrus when listening to the question, ii) the posterior lateral temporal region and the posterior frontal region in the time interval between question completion and the patient’s vocalization, and iii) the pre- and post-central gyri immediately preceding and during the patient’s vocalization. The youngest child, with attention deficits, failed to cooperate during the auditory-language task, and high-frequency gamma-augmentation was noted only in the posterior superior temporal gyrus when audible questions were given. The size of language areas suggested by statistically-significant high-frequency gamma-augmentation was larger than that defined by neurostimulation. The present method can provide in-vivo imaging of electrophysiological activities over the language network areas during language processes. Further studies are warranted to determine whether recording of language-induced gamma-oscillations can supplement language mapping using neurostimulation in presurgical evaluation of children with focal epilepsy. PMID:18455440

  2. Tactile interactions activate mirror system regions in the human brain.

    PubMed

    McKyton, Ayelet

    2011-12-07

    Communicating with others is essential for the development of a society. Although types of communications, such as language and visual gestures, were thoroughly investigated in the past, little research has been done to investigate interactions through touch. To study this we used functional magnetic resonance imaging. Twelve participants were scanned with their eyes covered while stroking four kinds of items, representing different somatosensory stimuli: a human hand, a realistic rubber hand, an object, and a simple texture. Although the human and the rubber hands had the same overall shape, in three regions there was significantly more blood oxygen level dependent activation when touching the real hand: the anterior medial prefrontal cortex, the ventral premotor cortex, and the posterior superior temporal cortex. The last two regions are part of the mirror network and are known to be activated through visual interactions such as gestures. Interestingly, in this study, these areas were activated through a somatosensory interaction. A control experiment was performed to eliminate confounds of temperature, texture, and imagery, suggesting that the activation in these areas was correlated with the touch of a human hand. These results reveal the neuronal network working behind human tactile interactions, and highlight the participation of the mirror system in such functions.

  3. Limits to the precision of gradient sensing with spatial communication and temporal integration.

    PubMed

    Mugler, Andrew; Levchenko, Andre; Nemenman, Ilya

    2016-02-09

    Gradient sensing requires at least two measurements at different points in space. These measurements must then be communicated to a common location to be compared, which is unavoidably noisy. Although much is known about the limits of measurement precision by cells, the limits placed by the communication are not understood. Motivated by recent experiments, we derive the fundamental limits to the precision of gradient sensing in a multicellular system, accounting for communication and temporal integration. The gradient is estimated by comparing a "local" and a "global" molecular reporter of the external concentration, where the global reporter is exchanged between neighboring cells. Using the fluctuation-dissipation framework, we find, in contrast to the case when communication is ignored, that precision saturates with the number of cells independently of the measurement time duration, because communication establishes a maximum length scale over which sensory information can be reliably conveyed. Surprisingly, we also find that precision is improved if the local reporter is exchanged between cells as well, albeit more slowly than the global reporter. The reason is that whereas exchange of the local reporter weakens the comparison, it decreases the measurement noise. We term such a model "regional excitation-global inhibition." Our results demonstrate that fundamental sensing limits are necessarily sharpened when the need to communicate information is taken into account.

  4. Active tactile exploration using a brain-machine-brain interface.

    PubMed

    O'Doherty, Joseph E; Lebedev, Mikhail A; Ifft, Peter J; Zhuang, Katie Z; Shokur, Solaiman; Bleuler, Hannes; Nicolelis, Miguel A L

    2011-10-05

    Brain-machine interfaces use neuronal activity recorded from the brain to establish direct communication with external actuators, such as prosthetic arms. It is hoped that brain-machine interfaces can be used to restore the normal sensorimotor functions of the limbs, but so far they have lacked tactile sensation. Here we report the operation of a brain-machine-brain interface (BMBI) that both controls the exploratory reaching movements of an actuator and allows signalling of artificial tactile feedback through intracortical microstimulation (ICMS) of the primary somatosensory cortex. Monkeys performed an active exploration task in which an actuator (a computer cursor or a virtual-reality arm) was moved using a BMBI that derived motor commands from neuronal ensemble activity recorded in the primary motor cortex. ICMS feedback occurred whenever the actuator touched virtual objects. Temporal patterns of ICMS encoded the artificial tactile properties of each object. Neuronal recordings and ICMS epochs were temporally multiplexed to avoid interference. Two monkeys operated this BMBI to search for and distinguish one of three visually identical objects, using the virtual-reality arm to identify the unique artificial texture associated with each. These results suggest that clinical motor neuroprostheses might benefit from the addition of ICMS feedback to generate artificial somatic perceptions associated with mechanical, robotic or even virtual prostheses.

  5. Surgical treatment for a ruptured true posterior communicating artery aneurysm arising on the fetal-type posterior communicating artery--two case reports and review of the literature.

    PubMed

    Nakano, Yoshiteru; Saito, Takeshi; Yamamoto, Junkoh; Takahashi, Mayu; Akiba, Daisuke; Kitagawa, Takehiro; Miyaoka, Ryo; Ueta, Kunihiro; Kurokawa, Toru; Nishizawa, Shigeru

    2011-12-01

    Only a small number of aneurysms arising on the posterior communicating artery itself (true Pcom aneurysm) have been reported. We report two cases of ruptured true Pcom aneurysms with some characteristic features of true Pcom aneurysm. A 43 year old man suffering from subarachnoid hemorrhage (SAH) had an aneurysm arising on the fetal-type Pcom artery itself, and underwent surgery for clipping. Most of the aneurysm was buried in the temporal lobe, so retraction of the temporal lobe was mandatory. During the retraction, premature rupture was encountered. After tentative dome clipping and the control of bleeding, complete clipping was achieved. Another patient, a 71 year old woman presenting with consciousness disturbance due to SAH, had an aneurysm on the fetal-type Pcom artery itself, and underwent surgery for clipping. It has been generally considered that hemodynamic factor plays an important role in the formation, the growth, and the rupture of the cerebral aneurysm. This factor is especially significant in true Pcom aneurysm formation and rupture. According to the literature, a combination of fetal type Pcom and formation of the true Pcom aneurysm has been reported in most cases (81.8%). Most of the aneurysm can be buried in the temporal lobe, and the retraction of the temporal lobe during the dissection of the neck would be necessary, which causes premature rupture of the true Pcom aneurysm. In the surgery for a true Pcom aneurysm, we should be aware of possible premature rupture when temporal lobe retraction is necessary.

  6. High-precision shape representation using a neuromorphic vision sensor with synchronous address-event communication interface

    NASA Astrophysics Data System (ADS)

    Belbachir, A. N.; Hofstätter, M.; Litzenberger, M.; Schön, P.

    2009-10-01

    A synchronous communication interface for neuromorphic temporal contrast vision sensors is described and evaluated in this paper. This interface has been designed for ultra high-speed synchronous arbitration of a temporal contrast image sensors pixels' data. Enabling high-precision timestamping, this system demonstrates its uniqueness for handling peak data rates and preserving the main advantage of the neuromorphic electronic systems, that is high and accurate temporal resolution. Based on a synchronous arbitration concept, the timestamping has a resolution of 100 ns. Both synchronous and (state-of-the-art) asynchronous arbiters have been implemented in a neuromorphic dual-line vision sensor chip in a standard 0.35 µm CMOS process. The performance analysis of both arbiters and the advantages of the synchronous arbitration over asynchronous arbitration in capturing high-speed objects are discussed in detail.

  7. General Temporal Knowledge for Planning and Data Mining

    NASA Technical Reports Server (NTRS)

    Morris, Robert; Khatib, Lina

    2001-01-01

    We consider the architecture of systems that combine temporal planning and plan execution and introduce a layer of temporal reasoning that potential1y improves both the communication between humans and such systems, and the performance of the temporal planner itself. In particular, this additional layer simultaneously supports more flexibility in specifying and maintaining temporal constraints on plans within an uncertain and changing execution environment, and the ability to understand and trace the progress of plan execution. It is shown how a representation based on single set of abstractions of temporal information can be used to characterize the reasoning underlying plan generation and execution interpretation. The complexity of such reasoning is discussed.

  8. Detailed temporal structure of communication networks in groups of songbirds.

    PubMed

    Stowell, Dan; Gill, Lisa; Clayton, David

    2016-06-01

    Animals in groups often exchange calls, in patterns whose temporal structure may be influenced by contextual factors such as physical location and the social network structure of the group. We introduce a model-based analysis for temporal patterns of animal call timing, originally developed for networks of firing neurons. This has advantages over cross-correlation analysis in that it can correctly handle common-cause confounds and provides a generative model of call patterns with explicit parameters for the influences between individuals. It also has advantages over standard Markovian analysis in that it incorporates detailed temporal interactions which affect timing as well as sequencing of calls. Further, a fitted model can be used to generate novel synthetic call sequences. We apply the method to calls recorded from groups of domesticated zebra finch (Taeniopygia guttata) individuals. We find that the communication network in these groups has stable structure that persists from one day to the next, and that 'kernels' reflecting the temporal range of influence have a characteristic structure for a calling individual's effect on itself, its partner and on others in the group. We further find characteristic patterns of influences by call type as well as by individual. © 2016 The Authors.

  9. Neural substrates of interactive musical improvisation: an FMRI study of 'trading fours' in jazz.

    PubMed

    Donnay, Gabriel F; Rankin, Summer K; Lopez-Gonzalez, Monica; Jiradejvong, Patpong; Limb, Charles J

    2014-01-01

    Interactive generative musical performance provides a suitable model for communication because, like natural linguistic discourse, it involves an exchange of ideas that is unpredictable, collaborative, and emergent. Here we show that interactive improvisation between two musicians is characterized by activation of perisylvian language areas linked to processing of syntactic elements in music, including inferior frontal gyrus and posterior superior temporal gyrus, and deactivation of angular gyrus and supramarginal gyrus, brain structures directly implicated in semantic processing of language. These findings support the hypothesis that musical discourse engages language areas of the brain specialized for processing of syntax but in a manner that is not contingent upon semantic processing. Therefore, we argue that neural regions for syntactic processing are not domain-specific for language but instead may be domain-general for communication.

  10. Neural Substrates of Interactive Musical Improvisation: An fMRI Study of ‘Trading Fours’ in Jazz

    PubMed Central

    Donnay, Gabriel F.; Rankin, Summer K.; Lopez-Gonzalez, Monica; Jiradejvong, Patpong; Limb, Charles J.

    2014-01-01

    Interactive generative musical performance provides a suitable model for communication because, like natural linguistic discourse, it involves an exchange of ideas that is unpredictable, collaborative, and emergent. Here we show that interactive improvisation between two musicians is characterized by activation of perisylvian language areas linked to processing of syntactic elements in music, including inferior frontal gyrus and posterior superior temporal gyrus, and deactivation of angular gyrus and supramarginal gyrus, brain structures directly implicated in semantic processing of language. These findings support the hypothesis that musical discourse engages language areas of the brain specialized for processing of syntax but in a manner that is not contingent upon semantic processing. Therefore, we argue that neural regions for syntactic processing are not domain-specific for language but instead may be domain-general for communication. PMID:24586366

  11. GABA and Gap Junctions in the Development of Synchronized Activity in Human Pluripotent Stem Cell-Derived Neural Networks

    PubMed Central

    Mäkinen, Meeri Eeva-Liisa; Ylä-Outinen, Laura; Narkilahti, Susanna

    2018-01-01

    The electrical activity of the brain arises from single neurons communicating with each other. However, how single neurons interact during early development to give rise to neural network activity remains poorly understood. We studied the emergence of synchronous neural activity in human pluripotent stem cell (hPSC)-derived neural networks simultaneously on a single-neuron level and network level. The contribution of gamma-aminobutyric acid (GABA) and gap junctions to the development of synchronous activity in hPSC-derived neural networks was studied with GABA agonist and antagonist and by blocking gap junctional communication, respectively. We characterized the dynamics of the network-wide synchrony in hPSC-derived neural networks with high spatial resolution (calcium imaging) and temporal resolution microelectrode array (MEA). We found that the emergence of synchrony correlates with a decrease in very strong GABA excitation. However, the synchronous network was found to consist of a heterogeneous mixture of synchronously active cells with variable responses to GABA, GABA agonists and gap junction blockers. Furthermore, we show how single-cell distributions give rise to the network effect of GABA, GABA agonists and gap junction blockers. Finally, based on our observations, we suggest that the earliest form of synchronous neuronal activity depends on gap junctions and a decrease in GABA induced depolarization but not on GABAA mediated signaling. PMID:29559893

  12. Post-traumatic stress disorder: a right temporal lobe syndrome?

    NASA Astrophysics Data System (ADS)

    Engdahl, B.; Leuthold, A. C.; Tan, H.-R. M.; Lewis, S. M.; Winskowski, A. M.; Dikel, T. N.; Georgopoulos, A. P.

    2010-12-01

    In a recent paper (Georgopoulos et al 2010 J. Neural Eng. 7 016011) we reported on the power of the magnetoencephalography (MEG)-based synchronous neural interactions (SNI) test to differentiate post-traumatic stress disorder (PTSD) subjects from healthy control subjects and to classify them with a high degree of accuracy. Here we show that the main differences in cortical communication circuitry between these two groups lie in the miscommunication of temporal and parietal and/or parieto-occipital right hemispheric areas with other brain areas. This lateralized temporal-posterior pattern of miscommunication was very similar but was attenuated in patients with PTSD in remission. These findings are consistent with observations (Penfield 1958 Proc. Natl Acad. Sci. USA 44 51-66, Penfield and Perot 1963 Brain 86 595-696, Gloor 1990 Brain 113 1673-94, Banceaud et al 1994 Brain 117 71-90, Fried 1997 J. Neuropsychiatry Clin. Neurosci. 9 420-8) that electrical stimulation of the temporal cortex in awake human subjects, mostly in the right hemisphere, can elicit the re-enactment and re-living of past experiences. Based on these facts, we attribute our findings to the re-experiencing component of PTSD and hypothesize that it reflects an involuntarily persistent activation of interacting neural networks involved in experiential consolidation.

  13. Autism, the superior temporal sulcus and social perception.

    PubMed

    Zilbovicius, Monica; Meresse, Isabelle; Chabane, Nadia; Brunelle, Francis; Samson, Yves; Boddaert, Nathalie

    2006-07-01

    The most common clinical sign of autism spectrum disorders (ASD) is social interaction impairment, which is associated with communication deficits and stereotyped behaviors. Based on recent brain-imaging results, our hypothesis is that abnormalities in the superior temporal sulcus (STS) are highly implicated in ASD. STS abnormalities are characterized by decreased gray matter concentration, rest hypoperfusion and abnormal activation during social tasks. STS anatomical and functional anomalies occurring during early brain development could constitute the first step in the cascade of neural dysfunction underlying ASD. We will focus this review on the STS, which has been highly implicated in social cognition. We will review recent data on the contribution of the STS to normal social cognition and review brain-imaging data implicating this area in ASD. This review is part of the INMED/TINS special issue "Nature and nurture in brain development and neurological disorders", based on presentations at the annual INMED/TINS symposium (http://inmednet.com/).

  14. Remote Sensing from Geostationary Orbit: GEO TROPSAT, A New Concept for Atmospheric Remote Sensing

    NASA Technical Reports Server (NTRS)

    Little, Alan D.; Neil, Doreen O.; Sachse, Glen W.; Fishman, Jack; Krueger, Arlin J.

    1997-01-01

    The Geostationary Tropospheric Pollution Satellite (GEO TROPSAT) mission is a new approach to measuring the critical constituents of tropospheric ozone chemistry: ozone, carbon monoxide, nitrogen dioxide, and aerosols. The GEO TROPSAT mission comprises a constellation of three instruments flying as secondary payloads on geostationary communications satellites around the world. This proposed approach can significantly reduce the cost of getting a science payload to geostationary orbit and also generates revenue for the satellite owners. The geostationary vantage point enables simultaneous high temporal and spatial resolution measurement of tropospheric trace gases, leading to greatly improved atmospheric ozone chemistry knowledge. The science data processing, conducted as a research (not operational) activity, will provide atmospheric trace gas data many times per day over the same region at better than 25 km ground footprint. The high temporal resolution identifies short time scale processes, diurnal variations, seasonal trends, and interannual variation.

  15. Vitamin A is a necessary factor for sympathetic-independent rhythmic activation of mitogen-activated protein kinase in the rat pineal gland.

    PubMed

    Guillaumond, F; Giraudet, F; Becquet, D; Sage, D; Laforge-Anglade, G; Bosler, O; François-Bellan, A M

    2005-02-01

    The circadian clock in the suprachiasmatic nucleus (SCN) controls day-to-day physiology and behavior by sending timing messages to multiple peripheral oscillators. In the pineal gland, a major SCN target, circadian events are believed to be driven exclusively by the rhythmic release of norepinephrine from superior cervical ganglia (SCG) neurons relaying clock messages through a polysynaptic pathway. Here we show in rat an SCN-driven daily rhythm of pineal MAPK activation that is not dependent on the SCG and whose maintenance requires vitamin A as a blood-borne factor. This finding challenges the dogma that SCG-released norepinephrine is an exclusive mediator of SCN-pineal communication and allows the assumption that humoral mechanisms are involved in pineal integration of temporal messages.

  16. The medial temporal lobe-conduit of parallel connectivity: a model for attention, memory, and perception.

    PubMed

    Mozaffari, Brian

    2014-01-01

    Based on the notion that the brain is equipped with a hierarchical organization, which embodies environmental contingencies across many time scales, this paper suggests that the medial temporal lobe (MTL)-located deep in the hierarchy-serves as a bridge connecting supra- to infra-MTL levels. Bridging the upper and lower regions of the hierarchy provides a parallel architecture that optimizes information flow between upper and lower regions to aid attention, encoding, and processing of quick complex visual phenomenon. Bypassing intermediate hierarchy levels, information conveyed through the MTL "bridge" allows upper levels to make educated predictions about the prevailing context and accordingly select lower representations to increase the efficiency of predictive coding throughout the hierarchy. This selection or activation/deactivation is associated with endogenous attention. In the event that these "bridge" predictions are inaccurate, this architecture enables the rapid encoding of novel contingencies. A review of hierarchical models in relation to memory is provided along with a new theory, Medial-temporal-lobe Conduit for Parallel Connectivity (MCPC). In this scheme, consolidation is considered as a secondary process, occurring after a MTL-bridged connection, which eventually allows upper and lower levels to access each other directly. With repeated reactivations, as contingencies become consolidated, less MTL activity is predicted. Finally, MTL bridging may aid processing transient but structured perceptual events, by allowing communication between upper and lower levels without calling on intermediate levels of representation.

  17. Social interactions between live and artificial weakly electric fish: Electrocommunication and locomotor behavior of Mormyrus rume proboscirostris towards a mobile dummy fish

    PubMed Central

    Kirschbaum, Frank; von der Emde, Gerhard

    2017-01-01

    Mormyrid weakly electric fish produce short, pulse-type electric organ discharges for actively probing their environment and to communicate with conspecifics. Animals emit sequences of pulse-trains that vary in overall frequency and temporal patterning and can lead to time-locked interactions with the discharge activity of other individuals. Both active electrolocation and electrocommunication are additionally accompanied by stereotypical locomotor patterns. However, the concrete roles of electrical and locomotor patterns during social interactions in mormyrids are not well understood. Here we used a mobile fish dummy that was emitting different types of electrical playback sequences to study following behavior and interaction patterns (electrical and locomotor) between individuals of weakly electric fish. We confronted single individuals of Mormyrus rume proboscirostris with a mobile dummy fish designed to attract fish from a shelter and recruit them into an open area by emitting electrical playbacks of natural discharge sequences. We found that fish were reliably recruited by the mobile dummy if it emitted electrical signals and followed it largely independently of the presented playback patterns. While following the dummy, fish interacted with it spatially by displaying stereotypical motor patterns, as well as electrically, e.g. through discharge regularizations and by synchronizing their own discharge activity to the playback. However, the overall emission frequencies of the dummy were not adopted by the following fish. Instead, social signals based on different temporal patterns were emitted depending on the type of playback. In particular, double pulses were displayed in response to electrical signaling of the dummy and their expression was positively correlated with an animals' rank in the dominance hierarchy. Based on additional analysis of swimming trajectories and stereotypical locomotor behavior patterns, we conclude that the reception and emission of electrical communication signals play a crucial role in mediating social interactions in mormyrid weakly electric fish. PMID:28902915

  18. Rich-Club Organization in Effective Connectivity among Cortical Neurons.

    PubMed

    Nigam, Sunny; Shimono, Masanori; Ito, Shinya; Yeh, Fang-Chin; Timme, Nicholas; Myroshnychenko, Maxym; Lapish, Christopher C; Tosi, Zachary; Hottowy, Pawel; Smith, Wesley C; Masmanidis, Sotiris C; Litke, Alan M; Sporns, Olaf; Beggs, John M

    2016-01-20

    The performance of complex networks, like the brain, depends on how effectively their elements communicate. Despite the importance of communication, it is virtually unknown how information is transferred in local cortical networks, consisting of hundreds of closely spaced neurons. To address this, it is important to record simultaneously from hundreds of neurons at a spacing that matches typical axonal connection distances, and at a temporal resolution that matches synaptic delays. We used a 512-electrode array (60 μm spacing) to record spontaneous activity at 20 kHz from up to 500 neurons simultaneously in slice cultures of mouse somatosensory cortex for 1 h at a time. We applied a previously validated version of transfer entropy to quantify information transfer. Similar to in vivo reports, we found an approximately lognormal distribution of firing rates. Pairwise information transfer strengths also were nearly lognormally distributed, similar to reports of synaptic strengths. Some neurons transferred and received much more information than others, which is consistent with previous predictions. Neurons with the highest outgoing and incoming information transfer were more strongly connected to each other than chance, thus forming a "rich club." We found similar results in networks recorded in vivo from rodent cortex, suggesting the generality of these findings. A rich-club structure has been found previously in large-scale human brain networks and is thought to facilitate communication between cortical regions. The discovery of a small, but information-rich, subset of neurons within cortical regions suggests that this population will play a vital role in communication, learning, and memory. Significance statement: Many studies have focused on communication networks between cortical brain regions. In contrast, very few studies have examined communication networks within a cortical region. This is the first study to combine such a large number of neurons (several hundred at a time) with such high temporal resolution (so we can know the direction of communication between neurons) for mapping networks within cortex. We found that information was not transferred equally through all neurons. Instead, ∼70% of the information passed through only 20% of the neurons. Network models suggest that this highly concentrated pattern of information transfer would be both efficient and robust to damage. Therefore, this work may help in understanding how the cortex processes information and responds to neurodegenerative diseases. Copyright © 2016 Nigam et al.

  19. Rich-Club Organization in Effective Connectivity among Cortical Neurons

    PubMed Central

    Shimono, Masanori; Ito, Shinya; Yeh, Fang-Chin; Timme, Nicholas; Myroshnychenko, Maxym; Lapish, Christopher C.; Tosi, Zachary; Hottowy, Pawel; Smith, Wesley C.; Masmanidis, Sotiris C.; Litke, Alan M.; Sporns, Olaf; Beggs, John M.

    2016-01-01

    The performance of complex networks, like the brain, depends on how effectively their elements communicate. Despite the importance of communication, it is virtually unknown how information is transferred in local cortical networks, consisting of hundreds of closely spaced neurons. To address this, it is important to record simultaneously from hundreds of neurons at a spacing that matches typical axonal connection distances, and at a temporal resolution that matches synaptic delays. We used a 512-electrode array (60 μm spacing) to record spontaneous activity at 20 kHz from up to 500 neurons simultaneously in slice cultures of mouse somatosensory cortex for 1 h at a time. We applied a previously validated version of transfer entropy to quantify information transfer. Similar to in vivo reports, we found an approximately lognormal distribution of firing rates. Pairwise information transfer strengths also were nearly lognormally distributed, similar to reports of synaptic strengths. Some neurons transferred and received much more information than others, which is consistent with previous predictions. Neurons with the highest outgoing and incoming information transfer were more strongly connected to each other than chance, thus forming a “rich club.” We found similar results in networks recorded in vivo from rodent cortex, suggesting the generality of these findings. A rich-club structure has been found previously in large-scale human brain networks and is thought to facilitate communication between cortical regions. The discovery of a small, but information-rich, subset of neurons within cortical regions suggests that this population will play a vital role in communication, learning, and memory. SIGNIFICANCE STATEMENT Many studies have focused on communication networks between cortical brain regions. In contrast, very few studies have examined communication networks within a cortical region. This is the first study to combine such a large number of neurons (several hundred at a time) with such high temporal resolution (so we can know the direction of communication between neurons) for mapping networks within cortex. We found that information was not transferred equally through all neurons. Instead, ∼70% of the information passed through only 20% of the neurons. Network models suggest that this highly concentrated pattern of information transfer would be both efficient and robust to damage. Therefore, this work may help in understanding how the cortex processes information and responds to neurodegenerative diseases. PMID:26791200

  20. Maturation of Visual and Auditory Temporal Processing in School-Aged Children

    ERIC Educational Resources Information Center

    Dawes, Piers; Bishop, Dorothy V. M.

    2008-01-01

    Purpose: To examine development of sensitivity to auditory and visual temporal processes in children and the association with standardized measures of auditory processing and communication. Methods: Normative data on tests of visual and auditory processing were collected on 18 adults and 98 children aged 6-10 years of age. Auditory processes…

  1. Latino/a Bilinguals and Their Teachers Developing a Shared Communicative Space

    ERIC Educational Resources Information Center

    Turner, Erin Elizabeth; Dominguez, Higinio; Empson, Susan; Maldonado, Luz Angelica

    2013-01-01

    In this study, a temporal analysis and the analytical category of intersubjectivity are used to investigate how teachers and Latino/a bilingual students constructed shared communicative spaces in group mathematical discussions in an after school mathematics program in a culturally, linguistically, and economically diverse primary school.…

  2. Limits to the precision of gradient sensing with spatial communication and temporal integration

    PubMed Central

    Mugler, Andrew; Levchenko, Andre; Nemenman, Ilya

    2016-01-01

    Gradient sensing requires at least two measurements at different points in space. These measurements must then be communicated to a common location to be compared, which is unavoidably noisy. Although much is known about the limits of measurement precision by cells, the limits placed by the communication are not understood. Motivated by recent experiments, we derive the fundamental limits to the precision of gradient sensing in a multicellular system, accounting for communication and temporal integration. The gradient is estimated by comparing a “local” and a “global” molecular reporter of the external concentration, where the global reporter is exchanged between neighboring cells. Using the fluctuation–dissipation framework, we find, in contrast to the case when communication is ignored, that precision saturates with the number of cells independently of the measurement time duration, because communication establishes a maximum length scale over which sensory information can be reliably conveyed. Surprisingly, we also find that precision is improved if the local reporter is exchanged between cells as well, albeit more slowly than the global reporter. The reason is that whereas exchange of the local reporter weakens the comparison, it decreases the measurement noise. We term such a model “regional excitation–global inhibition.” Our results demonstrate that fundamental sensing limits are necessarily sharpened when the need to communicate information is taken into account. PMID:26792517

  3. An interval logic for higher-level temporal reasoning

    NASA Technical Reports Server (NTRS)

    Schwartz, R. L.; Melliar-Smith, P. M.; Vogt, F. H.; Plaisted, D. A.

    1983-01-01

    Prior work explored temporal logics, based on classical modal logics, as a framework for specifying and reasoning about concurrent programs, distributed systems, and communications protocols, and reported on efforts using temporal reasoning primitives to express very high level abstract requirements that a program or system is to satisfy. Based on experience with those primitives, this report describes an Interval Logic that is more suitable for expressing such higher level temporal properties. The report provides a formal semantics for the Interval Logic, and several examples of its use. A description of decision procedures for the logic is also included.

  4. Neural circuits underlying mother’s voice perception predict social communication abilities in children

    PubMed Central

    Abrams, Daniel A.; Chen, Tianwen; Odriozola, Paola; Cheng, Katherine M.; Baker, Amanda E.; Padmanabhan, Aarthi; Ryali, Srikanth; Kochalka, John; Feinstein, Carl; Menon, Vinod

    2016-01-01

    The human voice is a critical social cue, and listeners are extremely sensitive to the voices in their environment. One of the most salient voices in a child’s life is mother's voice: Infants discriminate their mother’s voice from the first days of life, and this stimulus is associated with guiding emotional and social function during development. Little is known regarding the functional circuits that are selectively engaged in children by biologically salient voices such as mother’s voice or whether this brain activity is related to children’s social communication abilities. We used functional MRI to measure brain activity in 24 healthy children (mean age, 10.2 y) while they attended to brief (<1 s) nonsense words produced by their biological mother and two female control voices and explored relationships between speech-evoked neural activity and social function. Compared to female control voices, mother’s voice elicited greater activity in primary auditory regions in the midbrain and cortex; voice-selective superior temporal sulcus (STS); the amygdala, which is crucial for processing of affect; nucleus accumbens and orbitofrontal cortex of the reward circuit; anterior insula and cingulate of the salience network; and a subregion of fusiform gyrus associated with face perception. The strength of brain connectivity between voice-selective STS and reward, affective, salience, memory, and face-processing regions during mother’s voice perception predicted social communication skills. Our findings provide a novel neurobiological template for investigation of typical social development as well as clinical disorders, such as autism, in which perception of biologically and socially salient voices may be impaired. PMID:27185915

  5. Neural circuits underlying mother's voice perception predict social communication abilities in children.

    PubMed

    Abrams, Daniel A; Chen, Tianwen; Odriozola, Paola; Cheng, Katherine M; Baker, Amanda E; Padmanabhan, Aarthi; Ryali, Srikanth; Kochalka, John; Feinstein, Carl; Menon, Vinod

    2016-05-31

    The human voice is a critical social cue, and listeners are extremely sensitive to the voices in their environment. One of the most salient voices in a child's life is mother's voice: Infants discriminate their mother's voice from the first days of life, and this stimulus is associated with guiding emotional and social function during development. Little is known regarding the functional circuits that are selectively engaged in children by biologically salient voices such as mother's voice or whether this brain activity is related to children's social communication abilities. We used functional MRI to measure brain activity in 24 healthy children (mean age, 10.2 y) while they attended to brief (<1 s) nonsense words produced by their biological mother and two female control voices and explored relationships between speech-evoked neural activity and social function. Compared to female control voices, mother's voice elicited greater activity in primary auditory regions in the midbrain and cortex; voice-selective superior temporal sulcus (STS); the amygdala, which is crucial for processing of affect; nucleus accumbens and orbitofrontal cortex of the reward circuit; anterior insula and cingulate of the salience network; and a subregion of fusiform gyrus associated with face perception. The strength of brain connectivity between voice-selective STS and reward, affective, salience, memory, and face-processing regions during mother's voice perception predicted social communication skills. Our findings provide a novel neurobiological template for investigation of typical social development as well as clinical disorders, such as autism, in which perception of biologically and socially salient voices may be impaired.

  6. Brain organization underlying superior mathematical abilities in children with autism.

    PubMed

    Iuculano, Teresa; Rosenberg-Lee, Miriam; Supekar, Kaustubh; Lynch, Charles J; Khouzam, Amirah; Phillips, Jennifer; Uddin, Lucina Q; Menon, Vinod

    2014-02-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and communication deficits. While such deficits have been the focus of most research, recent evidence suggests that individuals with ASD may exhibit cognitive strengths in domains such as mathematics. Cognitive assessments and functional brain imaging were used to investigate mathematical abilities in 18 children with ASD and 18 age-, gender-, and IQ-matched typically developing (TD) children. Multivariate classification and regression analyses were used to investigate whether brain activity patterns during numerical problem solving were significantly different between the groups and predictive of individual mathematical abilities. Children with ASD showed better numerical problem solving abilities and relied on sophisticated decomposition strategies for single-digit addition problems more frequently than TD peers. Although children with ASD engaged similar brain areas as TD children, they showed different multivariate activation patterns related to arithmetic problem complexity in ventral temporal-occipital cortex, posterior parietal cortex, and medial temporal lobe. Furthermore, multivariate activation patterns in ventral temporal-occipital cortical areas typically associated with face processing predicted individual numerical problem solving abilities in children with ASD but not in TD children. Our study suggests that superior mathematical information processing in children with ASD is characterized by a unique pattern of brain organization and that cortical regions typically involved in perceptual expertise may be utilized in novel ways in ASD. Our findings of enhanced cognitive and neural resources for mathematics have critical implications for educational, professional, and social outcomes for individuals with this lifelong disorder. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  7. Hearing and seeing meaning in speech and gesture: insights from brain and behaviour

    PubMed Central

    Özyürek, Aslı

    2014-01-01

    As we speak, we use not only the arbitrary form–meaning mappings of the speech channel but also motivated form–meaning correspondences, i.e. iconic gestures that accompany speech (e.g. inverted V-shaped hand wiggling across gesture space to demonstrate walking). This article reviews what we know about processing of semantic information from speech and iconic gestures in spoken languages during comprehension of such composite utterances. Several studies have shown that comprehension of iconic gestures involves brain activations known to be involved in semantic processing of speech: i.e. modulation of the electrophysiological recording component N400, which is sensitive to the ease of semantic integration of a word to previous context, and recruitment of the left-lateralized frontal–posterior temporal network (left inferior frontal gyrus (IFG), medial temporal gyrus (MTG) and superior temporal gyrus/sulcus (STG/S)). Furthermore, we integrate the information coming from both channels recruiting brain areas such as left IFG, posterior superior temporal sulcus (STS)/MTG and even motor cortex. Finally, this integration is flexible: the temporal synchrony between the iconic gesture and the speech segment, as well as the perceived communicative intent of the speaker, modulate the integration process. Whether these findings are special to gestures or are shared with actions or other visual accompaniments to speech (e.g. lips) or other visual symbols such as pictures are discussed, as well as the implications for a multimodal view of language. PMID:25092664

  8. Hearing and seeing meaning in speech and gesture: insights from brain and behaviour.

    PubMed

    Özyürek, Aslı

    2014-09-19

    As we speak, we use not only the arbitrary form-meaning mappings of the speech channel but also motivated form-meaning correspondences, i.e. iconic gestures that accompany speech (e.g. inverted V-shaped hand wiggling across gesture space to demonstrate walking). This article reviews what we know about processing of semantic information from speech and iconic gestures in spoken languages during comprehension of such composite utterances. Several studies have shown that comprehension of iconic gestures involves brain activations known to be involved in semantic processing of speech: i.e. modulation of the electrophysiological recording component N400, which is sensitive to the ease of semantic integration of a word to previous context, and recruitment of the left-lateralized frontal-posterior temporal network (left inferior frontal gyrus (IFG), medial temporal gyrus (MTG) and superior temporal gyrus/sulcus (STG/S)). Furthermore, we integrate the information coming from both channels recruiting brain areas such as left IFG, posterior superior temporal sulcus (STS)/MTG and even motor cortex. Finally, this integration is flexible: the temporal synchrony between the iconic gesture and the speech segment, as well as the perceived communicative intent of the speaker, modulate the integration process. Whether these findings are special to gestures or are shared with actions or other visual accompaniments to speech (e.g. lips) or other visual symbols such as pictures are discussed, as well as the implications for a multimodal view of language. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  9. Classification of communication signals of the little brown bat

    NASA Astrophysics Data System (ADS)

    Melendez, Karla V.; Jones, Douglas L.; Feng, Albert S.

    2005-09-01

    Little brown bats, Myotis lucifugus, are known for their ability to echolocate and utilize their echolocation system to navigate, locate, and identify prey. Their echolocation signals have been characterized in detail, but their communication signals are poorly understood despite their widespread use during the social interactions. The goal of this study was to characterize the communication signals of little brown bats. Sound recordings were made overnight on five individual bats (housed separately from a large group of captive bats) for 7 nights, using a Pettersson ultrasound detector D240x bat detector and Nagra ARES-BB digital recorder. The spectral and temporal characteristics of recorded sounds were first analyzed using BATSOUND software from Pettersson. Sounds were first classified by visual observation of calls' temporal pattern and spectral composition, and later using an automatic classification scheme based on multivariate statistical parameters in MATLAB. Human- and machine-based analysis revealed five discrete classes of bat's communication signals: downward frequency-modulated calls, constant frequency calls, broadband noise bursts, broadband chirps, and broadband click trains. Future studies will focus on analysis of calls' spectrotemporal modulations to discriminate any subclasses that may exist. [Research supported by Grant R01-DC-04998 from the National Institute for Deafness and Communication Disorders.

  10. The Impact of the Temporal Distribution of Communicating Civilizations on Their Detectability.

    PubMed

    Balbi, Amedeo

    2018-01-01

    We used a statistical model to investigate the detectability (defined by the requirement that causal contact has been initiated with us) of communicating civilizations within a volume of the Universe surrounding our location. If the civilizations are located in our galaxy, the detectability requirement imposes a strict constraint on their epoch of appearance and their communicating life span. This, in turn, implies that our ability to gather empirical evidence of the fraction of civilizations within range of detection strongly depends on the specific features of their temporal distribution. Our approach illuminates aspects of the problem that can escape the standard treatment based on the Drake equation. Therefore, it might provide the appropriate framework for future studies dealing with the evolutionary aspects of the search for extraterrestrial intelligence (SETI). Key Words: Astrobiology-Extraterrestrial life-SETI-Complex life-Life detection-Intelligence. Astrobiology 18, 54-58.

  11. Drawing on student knowledge in human anatomy and physiology

    NASA Astrophysics Data System (ADS)

    Slominski, Tara Nicole

    Prior to instruction, students may have developed alternative conceptions about the mechanics behind human physiology. To help students re-shape these ideas into correct reasoning, the faulty characteristics reinforcing the alternative conceptions need to made explicit. This study used student-generated drawings to expose alternative conceptions Human Anatomy and Physiology students had prior to instruction on neuron physiology. Specifically, we investigated how students thought about neuron communication across a synapse (n=355) and how neuron activity can be modified (n=311). When asked to depict basic communication between two neurons, at least 80% of students demonstrated incorrect ideas about synaptic transmission. When targeting spatial and temporal summation, only eleven students (3.5%) were able to accurately depict at least one form of summation. In response to both drawing questions, student drawings revealed multiple alternative conceptions that resulted in a deeper analysis and characterization of the wide variation of student ideas.

  12. Autism as a neurodevelopmental disorder affecting communication and learning in early childhood: prenatal origins, post-natal course and effective educational support.

    PubMed

    Trevarthen, C

    2000-01-01

    Colwyn Trevarthen, working on autism, discussed the importance of time, rhythm and temporal processing in brain function. The brains of new born infants show highly coherent and coordinated patterns of activity over time, and their rhythms are remarkably similar to those of adults. Since the cortex has not yet developed, this coordination must be subcortical in origin. The likely source is the emotional motor system. He noted that the cerebellum might regulate the intricate timing of the development and expression of emotional communication. He also pointed out that emotional and motivational factors have often been seriously neglected in psychology (largely owing to a misplaced focus on 'cognition' as some isolated entity) and emphasized the potential importance of empathetic support and music therapy in helping autistic children. Copyright 2000 Harcourt Publishers Ltd.

  13. Reading affect in the face and voice: neural correlates of interpreting communicative intent in children and adolescents with autism spectrum disorders.

    PubMed

    Wang, A Ting; Lee, Susan S; Sigman, Marian; Dapretto, Mirella

    2007-06-01

    Understanding a speaker's communicative intent in everyday interactions is likely to draw on cues such as facial expression and tone of voice. Prior research has shown that individuals with autism spectrum disorders (ASD) show reduced activity in brain regions that respond selectively to the face and voice. However, there is also evidence that activity in key regions can be increased if task demands allow for explicit processing of emotion. To examine the neural circuitry underlying impairments in interpreting communicative intentions in ASD using irony comprehension as a test case, and to determine whether explicit instructions to attend to facial expression and tone of voice will elicit more normative patterns of brain activity. Eighteen boys with ASD (aged 7-17 years, full-scale IQ >70) and 18 typically developing (TD) boys underwent functional magnetic resonance imaging at the Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles. Blood oxygenation level-dependent brain activity during the presentation of short scenarios involving irony. Behavioral performance (accuracy and response time) was also recorded. Reduced activity in the medial prefrontal cortex and right superior temporal gyrus was observed in children with ASD relative to TD children during the perception of potentially ironic vs control scenarios. Importantly, a significant group x condition interaction in the medial prefrontal cortex showed that activity was modulated by explicit instructions to attend to facial expression and tone of voice only in the ASD group. Finally, medial prefrontal cortex activity was inversely related to symptom severity in children with ASD such that children with greater social impairment showed less activity in this region. Explicit instructions to attend to facial expression and tone of voice can elicit increased activity in the medial prefrontal cortex, part of a network important for understanding the intentions of others, in children with ASD. These findings suggest a strategy for future intervention research.

  14. Irony comprehension: social conceptual knowledge and emotional response.

    PubMed

    Akimoto, Yoritaka; Sugiura, Motoaki; Yomogida, Yukihito; Miyauchi, Carlos Makoto; Miyazawa, Shiho; Kawashima, Ryuta

    2014-04-01

    Verbal irony conveys various emotional messages, from criticism to humor, that differ from the meaning of the actual words. To understand irony, we need conceptual knowledge of irony in addition to an understanding of context. We investigated the neural mechanism of irony comprehension, focusing on two overlooked issues: conceptual knowledge and emotional response. We studied 35 healthy subjects who underwent functional MRI. During the scan, the subject examined first-person-view stories describing verbal interactions, some of which included irony directed toward the subject. After MRI, the subject viewed the stories again and rated the degree of irony, humor, and negative emotion evoked by the statements. We identified several key findings about irony comprehension: (1) the right anterior superior temporal gyrus may be responsible for representing social conceptual knowledge of irony, (2) activation in the medial prefrontal cortex and the right anterior inferior temporal gyrus might underlie the understanding of context, (3) modulation of activity in the right amygdala, hippocampus, and parahippocampal gyrus is associated with the degree of irony perceived, and (4) modulation of activity in the right dorsolateral prefrontal cortex varies with the degree of humor perceived. Our results clarified the differential contributions of the neural loci of irony comprehension, enriching our understanding of pragmatic language communication from a social behavior point of view. Copyright © 2013 Wiley Periodicals, Inc.

  15. Variability in individual activity bursts improves ant foraging success.

    PubMed

    Campos, Daniel; Bartumeus, Frederic; Méndez, Vicenç; Andrade, José S; Espadaler, Xavier

    2016-12-01

    Using experimental and computational methods, we study the role of behavioural variability in activity bursts (or temporal activity patterns) for individual and collective regulation of foraging in A. senilis ants. First, foraging experiments were carried out under special conditions (low densities of ants and food and absence of external cues or stimuli) where individual-based strategies are most prevalent. By using marked individuals and recording all foraging trajectories, we were then able to precisely quantify behavioural variability among individuals. Our main conclusions are that (i) variability of ant trajectories (turning angles, speed, etc.) is low compared with variability of temporal activity profiles, and (ii) this variability seems to be driven by plasticity of individual behaviour through time, rather than the presence of fixed behavioural stereotypes or specialists within the group. The statistical measures obtained from these experimental foraging patterns are then used to build a general agent-based model (ABM) which includes the most relevant properties of ant foraging under natural conditions, including recruitment through pheromone communication. Using the ABM, we are able to provide computational evidence that the characteristics of individual variability observed in our experiments can provide a functional advantage (in terms of foraging success) to the group; thus, we propose the biological basis underpinning our observations. Altogether, our study reveals the potential utility of experiments under simplified (laboratory) conditions for understanding information-gathering in biological systems. © 2016 The Author(s).

  16. Methods for Attributing Land-Use Emissions to Products

    NASA Astrophysics Data System (ADS)

    Davis, S. J.; Burney, J. A.; Pongratz, J.; Caldeira, K.

    2014-12-01

    Roughly one-third of anthropogenic GHG emissions are caused by agricultural and forestry activities and land-use change (collectively, 'land-use emissions'). Understanding the ultimate drivers of these emissions requires attributing emissions to specific land-use activities and products. Although quantities of land-use emissions are matters of fact, the methodological choices and assumptions required to attribute those emissions to activities and products depend on research goals and data availability. We will demonstrate several possible accounting methods, highlighting the sensitivity of accounting to temporal distributions of emissions and the consequences of replacing spatially-explicit data with aggregate proxies such as production or harvested area data. Different accounting options emphasize different causes of land-use emissions (e.g., proximate or indirect drivers of deforestation). To support public policies that effectively balance competing objectives, analysts should carefully consider and communicate implications of accounting choices.

  17. Physician activity during outpatient visits and subjective workload.

    PubMed

    Calvitti, Alan; Hochheiser, Harry; Ashfaq, Shazia; Bell, Kristin; Chen, Yunan; El Kareh, Robert; Gabuzda, Mark T; Liu, Lin; Mortensen, Sara; Pandey, Braj; Rick, Steven; Street, Richard L; Weibel, Nadir; Weir, Charlene; Agha, Zia

    2017-05-01

    We describe methods for capturing and analyzing EHR use and clinical workflow of physicians during outpatient encounters and relating activity to physicians' self-reported workload. We collected temporally-resolved activity data including audio, video, EHR activity, and eye-gaze along with post-visit assessments of workload. These data are then analyzed through a combination of manual content analysis and computational techniques to temporally align streams, providing a range of process measures of EHR usage, clinical workflow, and physician-patient communication. Data was collected from primary care and specialty clinics at the Veterans Administration San Diego Healthcare System and UCSD Health, who use Electronic Health Record (EHR) platforms, CPRS and Epic, respectively. Grouping visit activity by physician, site, specialty, and patient status enables rank-ordering activity factors by their correlation to physicians' subjective work-load as captured by NASA Task Load Index survey. We developed a coding scheme that enabled us to compare timing studies between CPRS and Epic and extract patient and visit complexity profiles. We identified similar patterns of EHR use and navigation at the 2 sites despite differences in functions, user interfaces and consequent coded representations. Both sites displayed similar proportions of EHR function use and navigation, and distribution of visit length, proportion of time physicians attended to EHRs (gaze), and subjective work-load as measured by the task load survey. We found that visit activity was highly variable across individual physicians, and the observed activity metrics ranged widely as correlates to subjective workload. We discuss implications of our study for methodology, clinical workflow and EHR redesign. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Neural correlates of conflict between gestures and words: A domain-specific role for a temporal-parietal complex.

    PubMed

    Noah, J Adam; Dravida, Swethasri; Zhang, Xian; Yahil, Shaul; Hirsch, Joy

    2017-01-01

    The interpretation of social cues is a fundamental function of human social behavior, and resolution of inconsistencies between spoken and gestural cues plays an important role in successful interactions. To gain insight into these underlying neural processes, we compared neural responses in a traditional color/word conflict task and to a gesture/word conflict task to test hypotheses of domain-general and domain-specific conflict resolution. In the gesture task, recorded spoken words ("yes" and "no") were presented simultaneously with video recordings of actors performing one of the following affirmative or negative gestures: thumbs up, thumbs down, head nodding (up and down), or head shaking (side-to-side), thereby generating congruent and incongruent communication stimuli between gesture and words. Participants identified the communicative intent of the gestures as either positive or negative. In the color task, participants were presented the words "red" and "green" in either red or green font and were asked to identify the color of the letters. We observed a classic "Stroop" behavioral interference effect, with participants showing increased response time for incongruent trials relative to congruent ones for both the gesture and color tasks. Hemodynamic signals acquired using functional near-infrared spectroscopy (fNIRS) were increased in the right dorsolateral prefrontal cortex (DLPFC) for incongruent trials relative to congruent trials for both tasks consistent with a common, domain-general mechanism for detecting conflict. However, activity in the left DLPFC and frontal eye fields and the right temporal-parietal junction (TPJ), superior temporal gyrus (STG), supramarginal gyrus (SMG), and primary and auditory association cortices was greater for the gesture task than the color task. Thus, in addition to domain-general conflict processing mechanisms, as suggested by common engagement of right DLPFC, socially specialized neural modules localized to the left DLPFC and right TPJ including adjacent homologous receptive language areas were engaged when processing conflicting communications. These findings contribute to an emerging view of specialization within the TPJ and adjacent areas for interpretation of social cues and indicate a role for the region in processing social conflict.

  19. Statistically validated mobile communication networks: the evolution of motifs in European and Chinese data

    NASA Astrophysics Data System (ADS)

    Li, Ming-Xia; Palchykov, Vasyl; Jiang, Zhi-Qiang; Kaski, Kimmo; Kertész, János; Miccichè, Salvatore; Tumminello, Michele; Zhou, Wei-Xing; Mantegna, Rosario N.

    2014-08-01

    Big data open up unprecedented opportunities for investigating complex systems, including society. In particular, communication data serve as major sources for computational social sciences, but they have to be cleaned and filtered as they may contain spurious information due to recording errors as well as interactions, like commercial and marketing activities, not directly related to the social network. The network constructed from communication data can only be considered as a proxy for the network of social relationships. Here we apply a systematic method, based on multiple-hypothesis testing, to statistically validate the links and then construct the corresponding Bonferroni network, generalized to the directed case. We study two large datasets of mobile phone records, one from Europe and the other from China. For both datasets we compare the raw data networks with the corresponding Bonferroni networks and point out significant differences in the structures and in the basic network measures. We show evidence that the Bonferroni network provides a better proxy for the network of social interactions than the original one. Using the filtered networks, we investigated the statistics and temporal evolution of small directed 3-motifs and concluded that closed communication triads have a formation time scale, which is quite fast and typically intraday. We also find that open communication triads preferentially evolve into other open triads with a higher fraction of reciprocated calls. These stylized facts were observed for both datasets.

  20. Extensive excitatory network interactions shape temporal processing of communication signals in a model sensory system.

    PubMed

    Ma, Xiaofeng; Kohashi, Tsunehiko; Carlson, Bruce A

    2013-07-01

    Many sensory brain regions are characterized by extensive local network interactions. However, we know relatively little about the contribution of this microcircuitry to sensory coding. Detailed analyses of neuronal microcircuitry are usually performed in vitro, whereas sensory processing is typically studied by recording from individual neurons in vivo. The electrosensory pathway of mormyrid fish provides a unique opportunity to link in vitro studies of synaptic physiology with in vivo studies of sensory processing. These fish communicate by actively varying the intervals between pulses of electricity. Within the midbrain posterior exterolateral nucleus (ELp), the temporal filtering of afferent spike trains establishes interval tuning by single neurons. We characterized pairwise neuronal connectivity among ELp neurons with dual whole cell recording in an in vitro whole brain preparation. We found a densely connected network in which single neurons influenced the responses of other neurons throughout the network. Similarly tuned neurons were more likely to share an excitatory synaptic connection than differently tuned neurons, and synaptic connections between similarly tuned neurons were stronger than connections between differently tuned neurons. We propose a general model for excitatory network interactions in which strong excitatory connections both reinforce and adjust tuning and weak excitatory connections make smaller modifications to tuning. The diversity of interval tuning observed among this population of neurons can be explained, in part, by each individual neuron receiving a different complement of local excitatory inputs.

  1. Assessing attention and cognitive function in completely locked-in state with event-related brain potentials and epidural electrocorticography

    NASA Astrophysics Data System (ADS)

    Bensch, Michael; Martens, Suzanne; Halder, Sebastian; Hill, Jeremy; Nijboer, Femke; Ramos, Ander; Birbaumer, Niels; Bogdan, Martin; Kotchoubey, Boris; Rosenstiel, Wolfgang; Schölkopf, Bernhard; Gharabaghi, Alireza

    2014-04-01

    Objective. Patients in the completely locked-in state (CLIS), due to, for example, amyotrophic lateral sclerosis (ALS), no longer possess voluntary muscle control. Assessing attention and cognitive function in these patients during the course of the disease is a challenging but essential task for both nursing staff and physicians. Approach. An electrophysiological cognition test battery, including auditory and semantic stimuli, was applied in a late-stage ALS patient at four different time points during a six-month epidural electrocorticography (ECoG) recording period. Event-related cortical potentials (ERP), together with changes in the ECoG signal spectrum, were recorded via 128 channels that partially covered the left frontal, temporal and parietal cortex. Main results. Auditory but not semantic stimuli induced significant and reproducible ERP projecting to specific temporal and parietal cortical areas. N1/P2 responses could be detected throughout the whole study period. The highest P3 ERP was measured immediately after the patient's last communication through voluntary muscle control, which was paralleled by low theta and high gamma spectral power. Three months after the patient's last communication, i.e., in the CLIS, P3 responses could no longer be detected. At the same time, increased activity in low-frequency bands and a sharp drop of gamma spectral power were recorded. Significance. Cortical electrophysiological measures indicate at least partially intact attention and cognitive function during sparse volitional motor control for communication. Although the P3 ERP and frequency-specific changes in the ECoG spectrum may serve as indicators for CLIS, a close-meshed monitoring will be required to define the exact time point of the transition.

  2. Dorsal and ventral stream contributions to form-from-motion perception in a patient with form-from motion deficit: a case report.

    PubMed

    Mercier, Manuel R; Schwartz, Sophie; Spinelli, Laurent; Michel, Christoph M; Blanke, Olaf

    2017-03-01

    The main model of visual processing in primates proposes an anatomo-functional distinction between the dorsal stream, specialized in spatio-temporal information, and the ventral stream, processing essentially form information. However, these two pathways also communicate to share much visual information. These dorso-ventral interactions have been studied using form-from-motion (FfM) stimuli, revealing that FfM perception first activates dorsal regions (e.g., MT+/V5), followed by successive activations of ventral regions (e.g., LOC). However, relatively little is known about the implications of focal brain damage of visual areas on these dorso-ventral interactions. In the present case report, we investigated the dynamics of dorsal and ventral activations related to FfM perception (using topographical ERP analysis and electrical source imaging) in a patient suffering from a deficit in FfM perception due to right extrastriate brain damage in the ventral stream. Despite the patient's FfM impairment, both successful (observed for the highest level of FfM signal) and absent/failed FfM perception evoked the same temporal sequence of three processing states observed previously in healthy subjects. During the first period, brain source localization revealed cortical activations along the dorsal stream, currently associated with preserved elementary motion processing. During the latter two periods, the patterns of activity differed from normal subjects: activations were observed in the ventral stream (as reported for normal subjects), but also in the dorsal pathway, with the strongest and most sustained activity localized in the parieto-occipital regions. On the other hand, absent/failed FfM perception was characterized by weaker brain activity, restricted to the more lateral regions. This study shows that in the present case report, successful FfM perception, while following the same temporal sequence of processing steps as in normal subjects, evoked different patterns of brain activity. By revealing a brain circuit involving the most rostral part of the dorsal pathway, this study provides further support for neuro-imaging studies and brain lesion investigations that have suggested the existence of different brain circuits associated with different profiles of interaction between the dorsal and the ventral streams.

  3. Temporal interactions facilitate endemicity in the susceptible-infected-susceptible epidemic model

    NASA Astrophysics Data System (ADS)

    Speidel, Leo; Klemm, Konstantin; Eguíluz, Víctor M.; Masuda, Naoki

    2016-07-01

    Data of physical contacts and face-to-face communications suggest temporally varying networks as the media on which infections take place among humans and animals. Epidemic processes on temporal networks are complicated by complexity of both network structure and temporal dimensions. Theoretical approaches are much needed for identifying key factors that affect dynamics of epidemics. In particular, what factors make some temporal networks stronger media of infection than other temporal networks is under debate. We develop a theory to understand the susceptible-infected-susceptible epidemic model on arbitrary temporal networks, where each contact is used for a finite duration. We show that temporality of networks lessens the epidemic threshold such that infections persist more easily in temporal networks than in their static counterparts. We further show that the Lie commutator bracket of the adjacency matrices at different times is a key determinant of the epidemic threshold in temporal networks. The effect of temporality on the epidemic threshold, which depends on a data set, is approximately predicted by the magnitude of a commutator norm.

  4. The role of emotional inhibitory control in specific internet addiction - an fMRI study.

    PubMed

    Dieter, Julia; Hoffmann, Sabine; Mier, Daniela; Reinhard, Iris; Beutel, Martin; Vollstädt-Klein, Sabine; Kiefer, Falk; Mann, Karl; Leménager, Tagrid

    2017-05-01

    Addicts to specific internet applications involving communication features showed increased social anxiety, emotional competence deficits and impaired prefrontal-related inhibitory control. The dorsal Anterior Cingulate Cortex (dACC) likely plays an important role in cognitive control and negative affect (such as social exclusion, pain or anxiety). To assess (social) anxiety-related inhibitory control in specific internet addiction (addicted use of games and social networks) and its relation to altered dACC activation. N=44 controls and n=51 specific internet addicts completed an anxious words-based Affective Go/No-Go task (AGN). A subsample of n=23 healthy controls and n=25 specific internet addicts underwent functional Magnetic Resonance Imaging (fMRI) while completing an Emotional Stroop Task (EST) with socially anxious, positive, negative and neutral words. Subgroups of internet gaming and social network addicts were exploratively assessed. Psychometric measures of social anxiety, emotional competence and impulsivity were additionally explored. Specific internet addicts showed higher impulsivity, social anxiety and reduced emotional competence. Between-group differences in AGN and EST behavioral measures were not detected. No group differences were found in the dACC, but explorative analyses revealed decreased left middle and superior temporal gyrus activation during interference of socially anxious words in internet gaming and relative to social network addicts. Given the function of the left middle temporal gyrus in the retrieval of words or expressions during communication, our findings give a first hint that social words might be less retrievable in the semantic storage of internet gaming addicts, possibly indicating deficiencies in handling speech in social situations. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The neural correlates of affect reading: an fMRI study on faces and gestures.

    PubMed

    Prochnow, D; Höing, B; Kleiser, R; Lindenberg, R; Wittsack, H-J; Schäfer, R; Franz, M; Seitz, R J

    2013-01-15

    As complex social beings, people communicate, in addition to spoken language, also via nonverbal behavior. In social face-to-face situations, people readily read the affect and intentions of others in their face expressions and gestures recognizing their meaning. Importantly, the addressee further has to discriminate the meanings of the seen communicative motor acts in order to be able to react upon them appropriately. In this functional magnetic resonance imaging study 15 healthy non-alexithymic right-handers observed video-clips that showed the dynamic evolution of emotional face expressions and gestures evolving from a neutral to a fully developed expression. We aimed at disentangling the cerebral circuits related to the observation of the incomplete and the subsequent discrimination of the evolved bodily expressions of emotion which are typical for everyday social situations. We show that the inferior temporal gyrus and the inferior and dorsal medial frontal cortex in both cerebral hemispheres were activated early in recognizing faces and gestures, while their subsequent discrimination involved the right dorsolateral frontal cortex. Interregional correlations showed that the involved regions constituted a widespread circuit allowing for a formal analysis of the seen expressions, their empathic processing and the subjective interpretation of their contextual meanings. Right-left comparisons revealed a greater activation of the right dorsal medial frontal cortex and the inferior temporal gyrus which supports the notion of a right hemispheric dominance for processing affective body expressions. These novel data provide a neurobiological basis for the intuitive understanding of other people which is relevant for socially appropriate decisions and intact social functioning. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Early visual experience and the recognition of basic facial expressions: involvement of the middle temporal and inferior frontal gyri during haptic identification by the early blind

    PubMed Central

    Kitada, Ryo; Okamoto, Yuko; Sasaki, Akihiro T.; Kochiyama, Takanori; Miyahara, Motohide; Lederman, Susan J.; Sadato, Norihiro

    2012-01-01

    Face perception is critical for social communication. Given its fundamental importance in the course of evolution, the innate neural mechanisms can anticipate the computations necessary for representing faces. However, the effect of visual deprivation on the formation of neural mechanisms that underlie face perception is largely unknown. We previously showed that sighted individuals can recognize basic facial expressions by haptics surprisingly well. Moreover, the inferior frontal gyrus (IFG) and posterior superior temporal sulcus (pSTS) in the sighted subjects are involved in haptic and visual recognition of facial expressions. Here, we conducted both psychophysical and functional magnetic-resonance imaging (fMRI) experiments to determine the nature of the neural representation that subserves the recognition of basic facial expressions in early blind individuals. In a psychophysical experiment, both early blind and sighted subjects haptically identified basic facial expressions at levels well above chance. In the subsequent fMRI experiment, both groups haptically identified facial expressions and shoe types (control). The sighted subjects then completed the same task visually. Within brain regions activated by the visual and haptic identification of facial expressions (relative to that of shoes) in the sighted group, corresponding haptic identification in the early blind activated regions in the inferior frontal and middle temporal gyri. These results suggest that the neural system that underlies the recognition of basic facial expressions develops supramodally even in the absence of early visual experience. PMID:23372547

  7. Deciphering human motion to discriminate social interactions: a developmental neuroimaging study

    PubMed Central

    Sapey-Triomphe, Laurie-Anne; Centelles, Laurie; Roth, Muriel; Fonlupt, Pierre; Hénaff, Marie-Anne; Assaiante, Christine

    2017-01-01

    Abstract Non-verbal communication plays a major role in social interaction understanding. Using functional magnetic resonance imaging, we explored the development of the neural networks involved in social interaction recognition based on human motion in children (8–11), adolescents (13–17), and adults (20–41). Participants watched point-light videos depicting two actors interacting or moving independently and were asked whether these agents were interacting or not. All groups successfully performed the discrimination task, but children had a lower performance and longer response times than the older groups. In all three groups, the posterior parts of the superior temporal sulci and middle temporal gyri, the inferior frontal gyri and the anterior temporal lobes showed greater activation when observing social interactions. In addition, adolescents and adults recruited the caudate nucleus and some frontal regions that are part of the mirror system. Adults showed greater activations in parietal and frontal regions (part of them belonging to the social brain) than adolescents. An increased number of regions that are part of the mirror system network or the social brain, as well as the caudate nucleus, were recruited with age. In conclusion, a shared set of brain regions enabling the discrimination of social interactions from neutral movements through human motion is already present in 8-year-old children. Developmental processes such as refinements in the social brain and mirror system would help grasping subtle cues in non-verbal aspects of social interactions. PMID:28008075

  8. The medial temporal lobe—conduit of parallel connectivity: a model for attention, memory, and perception

    PubMed Central

    Mozaffari, Brian

    2014-01-01

    Based on the notion that the brain is equipped with a hierarchical organization, which embodies environmental contingencies across many time scales, this paper suggests that the medial temporal lobe (MTL)—located deep in the hierarchy—serves as a bridge connecting supra- to infra—MTL levels. Bridging the upper and lower regions of the hierarchy provides a parallel architecture that optimizes information flow between upper and lower regions to aid attention, encoding, and processing of quick complex visual phenomenon. Bypassing intermediate hierarchy levels, information conveyed through the MTL “bridge” allows upper levels to make educated predictions about the prevailing context and accordingly select lower representations to increase the efficiency of predictive coding throughout the hierarchy. This selection or activation/deactivation is associated with endogenous attention. In the event that these “bridge” predictions are inaccurate, this architecture enables the rapid encoding of novel contingencies. A review of hierarchical models in relation to memory is provided along with a new theory, Medial-temporal-lobe Conduit for Parallel Connectivity (MCPC). In this scheme, consolidation is considered as a secondary process, occurring after a MTL-bridged connection, which eventually allows upper and lower levels to access each other directly. With repeated reactivations, as contingencies become consolidated, less MTL activity is predicted. Finally, MTL bridging may aid processing transient but structured perceptual events, by allowing communication between upper and lower levels without calling on intermediate levels of representation. PMID:25426036

  9. Early visual experience and the recognition of basic facial expressions: involvement of the middle temporal and inferior frontal gyri during haptic identification by the early blind.

    PubMed

    Kitada, Ryo; Okamoto, Yuko; Sasaki, Akihiro T; Kochiyama, Takanori; Miyahara, Motohide; Lederman, Susan J; Sadato, Norihiro

    2013-01-01

    Face perception is critical for social communication. Given its fundamental importance in the course of evolution, the innate neural mechanisms can anticipate the computations necessary for representing faces. However, the effect of visual deprivation on the formation of neural mechanisms that underlie face perception is largely unknown. We previously showed that sighted individuals can recognize basic facial expressions by haptics surprisingly well. Moreover, the inferior frontal gyrus (IFG) and posterior superior temporal sulcus (pSTS) in the sighted subjects are involved in haptic and visual recognition of facial expressions. Here, we conducted both psychophysical and functional magnetic-resonance imaging (fMRI) experiments to determine the nature of the neural representation that subserves the recognition of basic facial expressions in early blind individuals. In a psychophysical experiment, both early blind and sighted subjects haptically identified basic facial expressions at levels well above chance. In the subsequent fMRI experiment, both groups haptically identified facial expressions and shoe types (control). The sighted subjects then completed the same task visually. Within brain regions activated by the visual and haptic identification of facial expressions (relative to that of shoes) in the sighted group, corresponding haptic identification in the early blind activated regions in the inferior frontal and middle temporal gyri. These results suggest that the neural system that underlies the recognition of basic facial expressions develops supramodally even in the absence of early visual experience.

  10. Evidence Suggesting that the Buccal and Zygomatic Branches of the Facial Nerve May Contain Parasympathetic Secretomotor Fibers to the Parotid Gland by Means of Communications from the Auriculotemporal Nerve.

    PubMed

    Tansatit, Tanvaa; Apinuntrum, Prawit; Phetudom, Thavorn

    2015-12-01

    The auriculotemporal nerve is one of the peripheral nerves that communicates with the facial nerve. However, the function of these communications is poorly understood. Details of how these communications form and connect with each other are still unclear. In addition, a reliable anatomical landmark for locating these communications during surgery has not been sufficiently described. Microdissection was performed on 20 lateral hemifaces of 10 soft-embalmed cadavers to investigate facial-auriculotemporal nerve communications with emphasis on determining their function. The auriculotemporal nerve was identified in the retromandibular space and traced towards its terminations. The communicating branches were followed and the anatomical relationships to surrounding structures observed. The auriculotemporal nerve is suspended above the maxillary artery in the dense retromandibular fascia behind the mandibular ramus. It forms a knot and fans out, providing multiple branches in all directions in the sagittal plane. Inferiorly, it connects the maxillary periarterial plexus, while minute branches supply the temporomandibular joint anteriorly. The larger branches mainly communicate with the branches of the temporofacial division of the facial nerve, and the auricular branches enter the fascia of the auricular cartilage posteriorly. The temporal branches and occasionally the zygomatic branches arise superiorly to distribute within the temporoparietal fascia. The auriculotemporal nerve forms the parotid retromandibular plexus through two types of communication. It sends one to three branches to join the zygomatic and buccal branches of the facial nerve at the branching area of the temporofacial division. It also communicates with the periarterial plexus of the superficial temporal and maxillary arteries. This plexus continues anteriorly along the branches of the facial nerve and the periarterial plexus of the transverse facial artery as the parotid periductal autonomic plexus, supplying the branches of the parotid duct within the loop of the two main divisions of the parotid gland. A single cutaneous zygomatic branch arising from the auriculotemporal nerve in some specimens, the intraparotid communications with the zygomatic and the buccal trunks of the facial nerve, the retromandibular communications with the superficial temporal-maxillary periarterial plexuses, and the periductal autonomic plexus between the loop of the two main facial divisions lead to the suggestion that these communications of the auriculotemporal nerve convey the secretomotor to the zygomatic and buccal branches of the facial nerve. This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

  11. Frameworks for risk communication and disease management: the case of Lyme disease and countryside users

    PubMed Central

    Quine, Christopher P.; Barnett, Julie; Dobson, Andrew D. M.; Marcu, Afrodita; Marzano, Mariella; Moseley, Darren; O'Brien, Liz; Randolph, Sarah E.; Taylor, Jennifer L.; Uzzell, David

    2011-01-01

    Management of zoonotic disease is necessary if countryside users are to gain benefit rather than suffer harm from their activities, and to avoid disproportionate reaction to novel threats. We introduce a conceptual framework based on the pressure–state–response model with five broad responses to disease incidence. Influencing public behaviour is one response and requires risk communication based on an integration of knowledge about the disease with an understanding of how publics respond to precautionary advice. A second framework emphasizes how risk communication involves more than information provision and should address dimensions including points-of-intervention over time, place and audience. The frameworks are developed by reference to tick-borne Lyme borreliosis (also known as Lyme disease), for which informed precautionary behaviour is particularly relevant. Interventions to influence behaviour can be directed by knowledge of spatial and temporal variation of tick abundance, what constitutes risky behaviour, how people respond to information of varying content, and an understanding of the social practices related to countryside use. The frameworks clarify the response options and help identify who is responsible for risk communication. These aspects are not consistently understood, and may result in an underestimation of the role of land-based organizations in facilitating appropriate precautionary behaviour. PMID:21624921

  12. Frameworks for risk communication and disease management: the case of Lyme disease and countryside users.

    PubMed

    Quine, Christopher P; Barnett, Julie; Dobson, Andrew D M; Marcu, Afrodita; Marzano, Mariella; Moseley, Darren; O'Brien, Liz; Randolph, Sarah E; Taylor, Jennifer L; Uzzell, David

    2011-07-12

    Management of zoonotic disease is necessary if countryside users are to gain benefit rather than suffer harm from their activities, and to avoid disproportionate reaction to novel threats. We introduce a conceptual framework based on the pressure-state-response model with five broad responses to disease incidence. Influencing public behaviour is one response and requires risk communication based on an integration of knowledge about the disease with an understanding of how publics respond to precautionary advice. A second framework emphasizes how risk communication involves more than information provision and should address dimensions including points-of-intervention over time, place and audience. The frameworks are developed by reference to tick-borne Lyme borreliosis (also known as Lyme disease), for which informed precautionary behaviour is particularly relevant. Interventions to influence behaviour can be directed by knowledge of spatial and temporal variation of tick abundance, what constitutes risky behaviour, how people respond to information of varying content, and an understanding of the social practices related to countryside use. The frameworks clarify the response options and help identify who is responsible for risk communication. These aspects are not consistently understood, and may result in an underestimation of the role of land-based organizations in facilitating appropriate precautionary behaviour.

  13. Coupling efficiency of laser beam to multimode fiber for free space optical communication

    NASA Astrophysics Data System (ADS)

    Arisa, Suguru; Takayama, Yoshihisa; Endo, Hiroyuki; Shimizu, Ryosuke; Fujiwara, Mikio; Sasaki, Masahide

    2017-11-01

    Recently, the free space optical (FSO) communications have been widely studied as an alternative for large capacity communications and its possible implementation in satellite and terrestrial laser links. In satellite communications, clouds can strongly attenuate the laser signal that would lead to high bit-error rates or temporal unavailability of the link. To overcome the cloud coverage effects, often site diversity technique is implemented. When using multiple ground stations though, simplified optical system is required to allow the usage of more flexible approaches. In terrestrial laser communications, several methods for optical system simplification by using a multimode fiber (MMF) have been proposed.

  14. The sensory substrate of multimodal communication in brown-headed cowbirds: are females sensory 'specialists' or 'generalists'?

    PubMed

    Ronald, Kelly L; Sesterhenn, Timothy M; Fernandez-Juricic, Esteban; Lucas, Jeffrey R

    2017-11-01

    Many animals communicate with multimodal signals. While we have an understanding of multimodal signal production, we know relatively less about receiver filtering of multimodal signals and whether filtering capacity in one modality influences filtering in a second modality. Most multimodal signals contain a temporal element, such as change in frequency over time or a dynamic visual display. We examined the relationship in temporal resolution across two modalities to test whether females are (1) sensory 'specialists', where a trade-off exists between the sensory modalities, (2) sensory 'generalists', where a positive relationship exists between the modalities, or (3) whether no relationship exists between modalities. We used female brown-headed cowbirds (Molothrus ater) to investigate this question as males court females with an audiovisual display. We found a significant positive relationship between female visual and auditory temporal resolution, suggesting that females are sensory 'generalists'. Females appear to resolve information well across multiple modalities, which may select for males that signal their quality similarly across modalities.

  15. A little more conversation – the influence of communicative context on syntactic priming in brain and behavior

    PubMed Central

    Schoot, Lotte; Menenti, Laura; Hagoort, Peter; Segaert, Katrien

    2014-01-01

    We report on an functional magnetic resonance imaging (fMRI) syntactic priming experiment in which we measure brain activity for participants who communicate with another participant outside the scanner. We investigated whether syntactic processing during overt language production and comprehension is influenced by having a (shared) goal to communicate. Although theory suggests this is true, the nature of this influence remains unclear. Two hypotheses are tested: (i) syntactic priming effects (fMRI and behavioral) are stronger for participants in the communicative context than for participants doing the same experiment in a non-communicative context, and (ii) syntactic priming magnitude (behavioral) is correlated with the syntactic priming magnitude of the speaker’s communicative partner. Results showed that across conditions, participants were faster to produce sentences with repeated syntax, relative to novel syntax. This behavioral result converged with the fMRI data: we found repetition suppression effects in the left insula extending into left inferior frontal gyrus (BA 47/45), left middle temporal gyrus (BA 21), left inferior parietal cortex (BA 40), left precentral gyrus (BA 6), bilateral precuneus (BA 7), bilateral supplementary motor cortex (BA 32/8), and right insula (BA 47). We did not find support for the first hypothesis: having a communicative intention does not increase the magnitude of syntactic priming effects (either in the brain or in behavior) per se. We did find support for the second hypothesis: if speaker A is strongly/weakly primed by speaker B, then speaker B is primed by speaker A to a similar extent. We conclude that syntactic processing is influenced by being in a communicative context, and that the nature of this influence is bi-directional: speakers are influenced by each other. PMID:24672499

  16. A prosocial online game for social cognition training in adolescents with high-functioning autism: an fMRI study.

    PubMed

    Chung, Un-Sun; Han, Doug Hyun; Shin, Yee Jin; Renshaw, Perry F

    2016-01-01

    To help patients with autism spectrum disorder (ASD) improve their social skills, effective interventions and new treatment modalities are necessary. We hypothesized that a prosocial online game would improve social cognition in ASD adolescents, as assessed using metrics of social communication, facial recognition, and emotional words. Ten ASD adolescents underwent cognitive behavior therapy (CBT) using a prosocial online game (game-CBT), and ten ASD adolescents participated in an offline-CBT. At baseline and 6 weeks later, social communication quality, correct identification of emotional words and facial emoticons, and brain activity were assessed in both groups. Social communication quality and correct response rate of emotional words and facial emoticons improved in both groups over the course of the intervention, and there were no significant differences between groups. In response to the emotional words, the brain activity within the temporal and parietal cortices increased in the game-CBT group, while the brain activity within cingulate and parietal cortices increased in the offline-CBT group. In addition, ASD adolescents in the game-CBT group showed increased brain activity within the right cingulate gyrus, left medial frontal gyrus, left cerebellum, left fusiform gyrus, left insular cortex, and sublobar area in response to facial emoticons. A prosocial online game designed for CBT was as effective as offline-CBT in ASD adolescents. Participation in the game especially increased social arousal and aided ASD adolescents in recognizing emotion. The therapy also helped participants more accurately consider associated environments in response to facial emotional stimulation. However, the online CBT was less effective than the offline-CBT at evoking emotions in response to emotional words.

  17. A prosocial online game for social cognition training in adolescents with high-functioning autism: an fMRI study

    PubMed Central

    Chung, Un-sun; Han, Doug Hyun; Shin, Yee Jin; Renshaw, Perry F

    2016-01-01

    To help patients with autism spectrum disorder (ASD) improve their social skills, effective interventions and new treatment modalities are necessary. We hypothesized that a prosocial online game would improve social cognition in ASD adolescents, as assessed using metrics of social communication, facial recognition, and emotional words. Ten ASD adolescents underwent cognitive behavior therapy (CBT) using a prosocial online game (game-CBT), and ten ASD adolescents participated in an offline-CBT. At baseline and 6 weeks later, social communication quality, correct identification of emotional words and facial emoticons, and brain activity were assessed in both groups. Social communication quality and correct response rate of emotional words and facial emoticons improved in both groups over the course of the intervention, and there were no significant differences between groups. In response to the emotional words, the brain activity within the temporal and parietal cortices increased in the game-CBT group, while the brain activity within cingulate and parietal cortices increased in the offline-CBT group. In addition, ASD adolescents in the game-CBT group showed increased brain activity within the right cingulate gyrus, left medial frontal gyrus, left cerebellum, left fusiform gyrus, left insular cortex, and sublobar area in response to facial emoticons. A prosocial online game designed for CBT was as effective as offline-CBT in ASD adolescents. Participation in the game especially increased social arousal and aided ASD adolescents in recognizing emotion. The therapy also helped participants more accurately consider associated environments in response to facial emotional stimulation. However, the online CBT was less effective than the offline-CBT at evoking emotions in response to emotional words. PMID:27051288

  18. Functional Peptidomics: Stimulus- and Time-of-Day-Specific Peptide Release in the Mammalian Circadian Clock.

    PubMed

    Atkins, Norman; Ren, Shifang; Hatcher, Nathan; Burgoon, Penny W; Mitchell, Jennifer W; Sweedler, Jonathan V; Gillette, Martha U

    2018-06-20

    Daily oscillations of brain and body states are under complex temporal modulation by environmental light and the hypothalamic suprachiasmatic nucleus (SCN), the master circadian clock. To better understand mediators of differential temporal modulation, we characterize neuropeptide releasate profiles by nonselective capture of secreted neuropeptides in an optic nerve horizontal SCN brain slice model. Releasates are collected following electrophysiological stimulation of the optic nerve/retinohypothalamic tract under conditions that alter the phase of the SCN activity state. Secreted neuropeptides are identified by intact mass via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). We found time-of-day-specific suites of peptides released downstream of optic nerve stimulation. Peptide release was modified differentially with respect to time-of-day by stimulus parameters and by inhibitors of glutamatergic or PACAPergic neurotransmission. The results suggest that SCN physiology is modulated by differential peptide release of both known and unexpected peptides that communicate time-of-day-specific photic signals via previously unreported neuropeptide signatures.

  19. Incorporation of feedback during beat synchronization is an index of neural maturation and reading skills.

    PubMed

    Woodruff Carr, Kali; Fitzroy, Ahren B; Tierney, Adam; White-Schwoch, Travis; Kraus, Nina

    2017-01-01

    Speech communication involves integration and coordination of sensory perception and motor production, requiring precise temporal coupling. Beat synchronization, the coordination of movement with a pacing sound, can be used as an index of this sensorimotor timing. We assessed adolescents' synchronization and capacity to correct asynchronies when given online visual feedback. Variability of synchronization while receiving feedback predicted phonological memory and reading sub-skills, as well as maturation of cortical auditory processing; less variable synchronization during the presence of feedback tracked with maturation of cortical processing of sound onsets and resting gamma activity. We suggest the ability to incorporate feedback during synchronization is an index of intentional, multimodal timing-based integration in the maturing adolescent brain. Precision of temporal coding across modalities is important for speech processing and literacy skills that rely on dynamic interactions with sound. Synchronization employing feedback may prove useful as a remedial strategy for individuals who struggle with timing-based language learning impairments. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. One-channel Cell-attached Patch-clamp Recording

    PubMed Central

    Maki, Bruce A.; Cummings, Kirstie A.; Paganelli, Meaghan A.; Murthy, Swetha E.; Popescu, Gabriela K.

    2014-01-01

    Ion channel proteins are universal devices for fast communication across biological membranes. The temporal signature of the ionic flux they generate depends on properties intrinsic to each channel protein as well as the mechanism by which it is generated and controlled and represents an important area of current research. Information about the operational dynamics of ion channel proteins can be obtained by observing long stretches of current produced by a single molecule. Described here is a protocol for obtaining one-channel cell-attached patch-clamp current recordings for a ligand gated ion channel, the NMDA receptor, expressed heterologously in HEK293 cells or natively in cortical neurons. Also provided are instructions on how to adapt the method to other ion channels of interest by presenting the example of the mechano-sensitive channel PIEZO1. This method can provide data regarding the channel’s conductance properties and the temporal sequence of open-closed conformations that make up the channel’s activation mechanism, thus helping to understand their functions in health and disease. PMID:24961614

  1. Talk and community: The place of reporting in a life sciences laboratory

    NASA Astrophysics Data System (ADS)

    Swieringa, Robert Cecil

    This study investigates the routine situated communicative practice within the weekly meetings of a life sciences laboratory. The key, constitutive discourse of "reporting" is examined as an activity in which participants jointly sustain the work community of the laboratory and manage their own work within this community. This study seeks to contribute to studies of small groups by focusing upon the multifunctionality and situated nature of the meeting interactions within this enduring "bona fide" group as participants undertake multiple goals associated with their own progress and with the overlapping contexts of the setting. It also seeks to contribute to investigations of institutional talk and activity by examining "reporting" as interaction with institutional and community consequences for members of the community. This study takes a practice-oriented perspective to investigate the laboratory as a community of practice, focusing upon the "activity" of interaction as the overall unit of analysis. Ethnographic materials (involving observation, interviews, conversations, and activity logs) and discourse analysis techniques (involving audiotaping and transcriptions of meetings) were used to locate and record data within a university entomology laboratory over a two year period. Through triangulation of data, "reporting" is identified as a key discourse activity within the laboratory. As situated communicative practice within the weekly meetings, reporting is found to be compelled discourse through which interactants interactively manage one's ongoing goals and activity while temporally situating that activity within the broader stream of laboratory work. This study provides an example of how engagement in situated discursive activity provides for the coordination of individual lines of progress within the ongoing work of a community.

  2. DARPA Ensemble-Based Modeling Large Graphs & Applications to Social Networks

    DTIC Science & Technology

    2015-07-29

    Fortunato, and D. Krioukov. How random are complex networks. Nature Communications , submitted (2015). http://arxiv.org/abs/1505.07503 [p2] I. Miklos...enterprise communication networks, PLOS One, 10(3), e0119446 (2015). http://arxiv.org/abs/1404.3708v3 [p21] A. Nyberg, T. Gross, and K.E. Bassler...using a radiation model based on temporal ranges. Nature Communications , 5, 5347 (2014) | http://arxiv.org/abs/1410.4849 [p28] L.A. Székely, H. Wang

  3. Mapping the information flow from one brain to another during gestural communication.

    PubMed

    Schippers, Marleen B; Roebroeck, Alard; Renken, Remco; Nanetti, Luca; Keysers, Christian

    2010-05-18

    Both the putative mirror neuron system (pMNS) and the ventral medial prefrontal cortex (vmPFC) are deemed important for social interaction: the pMNS because it supposedly "resonates" with the actions of others, the vmPFC because it is involved in mentalizing. Strictly speaking, the resonance property of the pMNS has never been investigated. Classical functional MRI experiments have only investigated whether pMNS regions augment their activity when an action is seen or executed. Resonance, however, entails more than only "going on and off together". Activity in the pMNS of an observer should continuously follow the more subtle changes over time in activity of the pMNS of the actor. Here we directly explore whether such resonance indeed occurs during continuous streams of actions. We let participants play the game of charades while we measured brain activity of both gesturer and guesser. We then applied a method to localize directed influences between the brains of the participants: between-brain Granger-causality mapping. Results show that a guesser's brain activity in regions involved in mentalizing and mirroring echoes the temporal structure of a gesturer's brain activity. This provides evidence for resonance theories and indicates a fine-grained temporal interplay between regions involved in motor planning and regions involved in thinking about the mental states of others. Furthermore, this method enables experiments to be more ecologically valid by providing the opportunity to leave social interaction unconstrained. This, in turn, would allow us to tap into the neural substrates of social deficits such as autism spectrum disorder.

  4. Spillover-mediated feedforward-inhibition functionally segregates interneuron activity

    PubMed Central

    Coddington, Luke T.; Rudolph, Stephanie; Lune, Patrick Vande; Overstreet-Wadiche, Linda; Wadiche, Jacques I.

    2013-01-01

    Summary Neurotransmitter spillover represents a form of neural transmission not restricted to morphologically defined synaptic connections. Communication between climbing fibers (CFs) and molecular layer interneurons (MLIs) in the cerebellum is mediated exclusively by glutamate spillover. Here, we show how CF stimulation functionally segregates MLIs based on their location relative to glutamate release. Excitation of MLIs that reside within the domain of spillover diffusion coordinates inhibition of MLIs outside the diffusion limit. CF excitation of MLIs is dependent on extrasynaptic NMDA receptors that enhance the spatial and temporal spread of CF signaling. Activity mediated by functionally segregated MLIs converges onto neighboring Purkinje cells (PCs) to generate a long-lasting biphasic change in inhibition. These data demonstrate how glutamate release from single CFs modulates excitability of neighboring PCs, thus expanding the influence of CFs on cerebellar cortical activity in a manner not predicted by anatomical connectivity. PMID:23707614

  5. Brain 'talks over' boring quotes: top-down activation of voice-selective areas while listening to monotonous direct speech quotations.

    PubMed

    Yao, Bo; Belin, Pascal; Scheepers, Christoph

    2012-04-15

    In human communication, direct speech (e.g., Mary said, "I'm hungry") is perceived as more vivid than indirect speech (e.g., Mary said that she was hungry). This vividness distinction has previously been found to underlie silent reading of quotations: Using functional magnetic resonance imaging (fMRI), we found that direct speech elicited higher brain activity in the temporal voice areas (TVA) of the auditory cortex than indirect speech, consistent with an "inner voice" experience in reading direct speech. Here we show that listening to monotonously spoken direct versus indirect speech quotations also engenders differential TVA activity. This suggests that individuals engage in top-down simulations or imagery of enriched supra-segmental acoustic representations while listening to monotonous direct speech. The findings shed new light on the acoustic nature of the "inner voice" in understanding direct speech. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Interest-Driven Model for Human Dynamics

    NASA Astrophysics Data System (ADS)

    Shang, Ming-Sheng; Chen, Guan-Xiong; Dai, Shuang-Xing; Wang, Bing-Hong; Zhou, Tao

    2010-04-01

    Empirical observations indicate that the interevent time distribution of human actions exhibits heavy-tailed features. The queuing model based on task priorities is to some extent successful in explaining the origin of such heavy tails, however, it cannot explain all the temporal statistics of human behavior especially for the daily entertainments. We propose an interest-driven model, which can reproduce the power-law distribution of interevent time. The exponent can be analytically obtained and is in good accordance with the simulations. This model well explains the observed relationship between activities and power-law exponents, as reported recently for web-based behavior and the instant message communications.

  7. Examination of time-reversal acoustics in shallow water and applications to noncoherent underwater communications.

    PubMed

    Smith, Kevin B; Abrantes, Antonio A M; Larraza, Andres

    2003-06-01

    The shallow water acoustic communication channel is characterized by strong signal degradation caused by multipath propagation and high spatial and temporal variability of the channel conditions. At the receiver, multipath propagation causes intersymbol interference and is considered the most important of the channel distortions. This paper examines the application of time-reversal acoustic (TRA) arrays, i.e., phase-conjugated arrays (PCAs), that generate a spatio-temporal focus of acoustic energy at the receiver location, eliminating distortions introduced by channel propagation. This technique is self-adaptive and automatically compensates for environmental effects and array imperfections without the need to explicitly characterize the environment. An attempt is made to characterize the influences of a PCA design on its focusing properties with particular attention given to applications in noncoherent underwater acoustic communication systems. Due to the PCA spatial diversity focusing properties, PC arrays may have an important role in an acoustic local area network. Each array is able to simultaneously transmit different messages that will focus only at the destination receiver node.

  8. A Study of Multimodal Motherese: The Role of Temporal Synchrony between Verbal Labels and Gestures.

    ERIC Educational Resources Information Center

    Gogate, Lakshmi J.; Bahrick, Lorraine E.; Watson, Jilayne D.

    2000-01-01

    Examined European- and Hispanic-American mothers' multimodal communication to their 5- to 30-month-olds while they taught the children target words by using distinct objects during play. Found that mothers used target words more often than nontarget words in synchrony with object motion and sometimes touch, and tailored communication to infants'…

  9. Contradictory Reasoning Network: An EEG and fMRI Study

    PubMed Central

    Thai, Ngoc Jade; Seri, Stefano; Rotshtein, Pia; Tecchio, Franca

    2014-01-01

    Contradiction is a cornerstone of human rationality, essential for everyday life and communication. We investigated electroencephalographic (EEG) and functional magnetic resonance imaging (fMRI) in separate recording sessions during contradictory judgments, using a logical structure based on categorical propositions of the Aristotelian Square of Opposition (ASoO). The use of ASoO propositions, while controlling for potential linguistic or semantic confounds, enabled us to observe the spatial temporal unfolding of this contradictory reasoning. The processing started with the inversion of the logical operators corresponding to right middle frontal gyrus (rMFG-BA11) activation, followed by identification of contradictory statement associated with in the right inferior frontal gyrus (rIFG-BA47) activation. Right medial frontal gyrus (rMeFG, BA10) and anterior cingulate cortex (ACC, BA32) contributed to the later stages of process. We observed a correlation between the delayed latency of rBA11 response and the reaction time delay during inductive vs. deductive reasoning. This supports the notion that rBA11 is crucial for manipulating the logical operators. Slower processing time and stronger brain responses for inductive logic suggested that examples are easier to process than general principles and are more likely to simplify communication. PMID:24667491

  10. Contradictory reasoning network: an EEG and FMRI study.

    PubMed

    Porcaro, Camillo; Medaglia, Maria Teresa; Thai, Ngoc Jade; Seri, Stefano; Rotshtein, Pia; Tecchio, Franca

    2014-01-01

    Contradiction is a cornerstone of human rationality, essential for everyday life and communication. We investigated electroencephalographic (EEG) and functional magnetic resonance imaging (fMRI) in separate recording sessions during contradictory judgments, using a logical structure based on categorical propositions of the Aristotelian Square of Opposition (ASoO). The use of ASoO propositions, while controlling for potential linguistic or semantic confounds, enabled us to observe the spatial temporal unfolding of this contradictory reasoning. The processing started with the inversion of the logical operators corresponding to right middle frontal gyrus (rMFG-BA11) activation, followed by identification of contradictory statement associated with in the right inferior frontal gyrus (rIFG-BA47) activation. Right medial frontal gyrus (rMeFG, BA10) and anterior cingulate cortex (ACC, BA32) contributed to the later stages of process. We observed a correlation between the delayed latency of rBA11 response and the reaction time delay during inductive vs. deductive reasoning. This supports the notion that rBA11 is crucial for manipulating the logical operators. Slower processing time and stronger brain responses for inductive logic suggested that examples are easier to process than general principles and are more likely to simplify communication.

  11. CRTC1 Nuclear Translocation Following Learning Modulates Memory Strength via Exchange of Chromatin Remodeling Complexes on the Fgf1 Gene.

    PubMed

    Uchida, Shusaku; Teubner, Brett J W; Hevi, Charles; Hara, Kumiko; Kobayashi, Ayumi; Dave, Rutu M; Shintaku, Tatsushi; Jaikhan, Pattaporn; Yamagata, Hirotaka; Suzuki, Takayoshi; Watanabe, Yoshifumi; Zakharenko, Stanislav S; Shumyatsky, Gleb P

    2017-01-10

    Memory is formed by synapse-to-nucleus communication that leads to regulation of gene transcription, but the identity and organizational logic of signaling pathways involved in this communication remain unclear. Here we find that the transcription cofactor CRTC1 is a critical determinant of sustained gene transcription and memory strength in the hippocampus. Following associative learning, synaptically localized CRTC1 is translocated to the nucleus and regulates Fgf1b transcription in an activity-dependent manner. After both weak and strong training, the HDAC3-N-CoR corepressor complex leaves the Fgf1b promoter and a complex involving the translocated CRTC1, phosphorylated CREB, and histone acetyltransferase CBP induces transient transcription. Strong training later substitutes KAT5 for CBP, a process that is dependent on CRTC1, but not on CREB phosphorylation. This in turn leads to long-lasting Fgf1b transcription and memory enhancement. Thus, memory strength relies on activity-dependent changes in chromatin and temporal regulation of gene transcription on specific CREB/CRTC1 gene targets. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Emergence of long-range correlations and bursty activity patterns in online communication

    NASA Astrophysics Data System (ADS)

    Panzarasa, Pietro; Bonaventura, Moreno

    2015-12-01

    Research has suggested that the activity occurring in a variety of social, economic, and technological systems exhibits long-range fluctuations in time. Pronounced levels of rapidly occurring events are typically observed over short periods of time, followed by long periods of inactivity. Relatively few studies, however, have shed light on the degree to which inhomogeneous temporal processes can be detected at, and emerge from, different levels of analysis. Here we investigate patterns of human activity within an online forum in which communication can be assessed at three intertwined levels: the micro level of the individual users; the meso level of discussion groups and continuous sessions; and the macro level of the whole system. To uncover the relation between different levels, we conduct a number of numerical simulations of a zero-crossing model in which users' behavior is constrained by progressively richer and more realistic rules of social interaction. Results indicate that, when users are solipsistic, their bursty behavior is not sufficient for generating heavy-tailed interevent time distributions at a higher level. However, when users are socially interdependent, the power spectra and interevent time distributions of the simulated and real forums are remarkably similar at all levels of analysis. Social interaction is responsible for the aggregation of multiple bursty activities at the micro level into an emergent bursty activity pattern at a higher level. We discuss the implications of the findings for an emergentist account of burstiness in complex systems.

  13. The neural correlates of persuasion: a common network across cultures and media.

    PubMed

    Falk, Emily B; Rameson, Lian; Berkman, Elliot T; Liao, Betty; Kang, Yoona; Inagaki, Tristen K; Lieberman, Matthew D

    2010-11-01

    Persuasion is at the root of countless social exchanges in which one person or group is motivated to have another share its beliefs, desires, or behavioral intentions. Here, we report the first three functional magnetic resonance imaging studies to investigate the neurocognitive networks associated with feeling persuaded by an argument. In the first two studies, American and Korean participants, respectively, were exposed to a number of text-based persuasive messages. In both Study 1 and Study 2, feeling persuaded was associated with increased activity in posterior superior temporal sulcus bilaterally, temporal pole bilaterally, and dorsomedial prefrontal cortex. The findings suggest a discrete set of underlying mechanisms in the moment that the persuasion process occurs, and are strengthened by the fact that the results replicated across two diverse linguistic and cultural groups. Additionally, a third study using region-of-interest analyses demonstrated that neural activity in this network was also associated with persuasion when a sample of American participants viewed video-based messages. In sum, across three studies, including two different cultural groups and two types of media, persuasion was associated with a consistent network of regions in the brain. Activity in this network has been associated with social cognition and mentalizing and is consistent with models of persuasion that emphasize the importance of social cognitive processing in determining the efficacy of persuasive communication.

  14. Identification of emotional intonation evaluated by fMRI.

    PubMed

    Wildgruber, D; Riecker, A; Hertrich, I; Erb, M; Grodd, W; Ethofer, T; Ackermann, H

    2005-02-15

    During acoustic communication among human beings, emotional information can be expressed both by the propositional content of verbal utterances and by the modulation of speech melody (affective prosody). It is well established that linguistic processing is bound predominantly to the left hemisphere of the brain. By contrast, the encoding of emotional intonation has been assumed to depend specifically upon right-sided cerebral structures. However, prior clinical and functional imaging studies yielded discrepant data with respect to interhemispheric lateralization and intrahemispheric localization of brain regions contributing to processing of affective prosody. In order to delineate the cerebral network engaged in the perception of emotional tone, functional magnetic resonance imaging (fMRI) was performed during recognition of prosodic expressions of five different basic emotions (happy, sad, angry, fearful, and disgusted) and during phonetic monitoring of the same stimuli. As compared to baseline at rest, both tasks yielded widespread bilateral hemodynamic responses within frontal, temporal, and parietal areas, the thalamus, and the cerebellum. A comparison of the respective activation maps, however, revealed comprehension of affective prosody to be bound to a distinct right-hemisphere pattern of activation, encompassing posterior superior temporal sulcus (Brodmann Area [BA] 22), dorsolateral (BA 44/45), and orbitobasal (BA 47) frontal areas. Activation within left-sided speech areas, in contrast, was observed during the phonetic task. These findings indicate that partially distinct cerebral networks subserve processing of phonetic and intonational information during speech perception.

  15. The Neural Correlates of Persuasion: A Common Network across Cultures and Media

    PubMed Central

    Falk, Emily B.; Rameson, Lian; Berkman, Elliot T.; Liao, Betty; Kang, Yoona; Inagaki, Tristen K.; Lieberman, Matthew D.

    2011-01-01

    Persuasion is at the root of countless social exchanges in which one person or group is motivated to have another share its beliefs, desires, or behavioral intentions. Here, we report the first three functional magnetic resonance imaging studies to investigate the neurocognitive networks associated with feeling persuaded by an argument. In the first two studies, American and Korean participants, respectively, were exposed to a number of text-based persuasive messages. In both Study 1 and Study 2, feeling persuaded was associated with increased activity in posterior superior temporal sulcus bilaterally, temporal pole bilaterally, and dorsomedial prefrontal cortex. The findings suggest a discrete set of underlying mechanisms in the moment that the persuasion process occurs, and are strengthened by the fact that the results replicated across two diverse linguistic and cultural groups. Additionally, a third study using region-of-interest analyses demonstrated that neural activity in this network was also associated with persuasion when a sample of American participants viewed video-based messages. In sum, across three studies, including two different cultural groups and two types of media, persuasion was associated with a consistent network of regions in the brain. Activity in this network has been associated with social cognition and mentalizing and is consistent with models of persuasion that emphasize the importance of social cognitive processing in determining the efficacy of persuasive communication. PMID:19925175

  16. Inhibitory Network Interactions Shape the Auditory Processing of Natural Communication Signals in the Songbird Auditory Forebrain

    PubMed Central

    Pinaud, Raphael; Terleph, Thomas A.; Tremere, Liisa A.; Phan, Mimi L.; Dagostin, André A.; Leão, Ricardo M.; Mello, Claudio V.; Vicario, David S.

    2008-01-01

    The role of GABA in the central processing of complex auditory signals is not fully understood. We have studied the involvement of GABAA-mediated inhibition in the processing of birdsong, a learned vocal communication signal requiring intact hearing for its development and maintenance. We focused on caudomedial nidopallium (NCM), an area analogous to parts of the mammalian auditory cortex with selective responses to birdsong. We present evidence that GABAA-mediated inhibition plays a pronounced role in NCM's auditory processing of birdsong. Using immunocytochemistry, we show that approximately half of NCM's neurons are GABAergic. Whole cell patch-clamp recordings in a slice preparation demonstrate that, at rest, spontaneously active GABAergic synapses inhibit excitatory inputs onto NCM neurons via GABAA receptors. Multi-electrode electrophysiological recordings in awake birds show that local blockade of GABAA-mediated inhibition in NCM markedly affects the temporal pattern of song-evoked responses in NCM without modifications in frequency tuning. Surprisingly, this blockade increases the phasic and largely suppresses the tonic response component, reflecting dynamic relationships of inhibitory networks that could include disinhibition. Thus processing of learned natural communication sounds in songbirds, and possibly other vocal learners, may depend on complex interactions of inhibitory networks. PMID:18480371

  17. You can't stop the music: reduced auditory alpha power and coupling between auditory and memory regions facilitate the illusory perception of music during noise.

    PubMed

    Müller, Nadia; Keil, Julian; Obleser, Jonas; Schulz, Hannah; Grunwald, Thomas; Bernays, René-Ludwig; Huppertz, Hans-Jürgen; Weisz, Nathan

    2013-10-01

    Our brain has the capacity of providing an experience of hearing even in the absence of auditory stimulation. This can be seen as illusory conscious perception. While increasing evidence postulates that conscious perception requires specific brain states that systematically relate to specific patterns of oscillatory activity, the relationship between auditory illusions and oscillatory activity remains mostly unexplained. To investigate this we recorded brain activity with magnetoencephalography and collected intracranial data from epilepsy patients while participants listened to familiar as well as unknown music that was partly replaced by sections of pink noise. We hypothesized that participants have a stronger experience of hearing music throughout noise when the noise sections are embedded in familiar compared to unfamiliar music. This was supported by the behavioral results showing that participants rated the perception of music during noise as stronger when noise was presented in a familiar context. Time-frequency data show that the illusory perception of music is associated with a decrease in auditory alpha power pointing to increased auditory cortex excitability. Furthermore, the right auditory cortex is concurrently synchronized with the medial temporal lobe, putatively mediating memory aspects associated with the music illusion. We thus assume that neuronal activity in the highly excitable auditory cortex is shaped through extensive communication between the auditory cortex and the medial temporal lobe, thereby generating the illusion of hearing music during noise. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Why middle-aged listeners have trouble hearing in everyday settings.

    PubMed

    Ruggles, Dorea; Bharadwaj, Hari; Shinn-Cunningham, Barbara G

    2012-08-07

    Anecdotally, middle-aged listeners report difficulty conversing in social settings, even when they have normal audiometric thresholds [1-3]. Moreover, young adult listeners with "normal" hearing vary in their ability to selectively attend to speech amid similar streams of speech. Ignoring age, these individual differences correlate with physiological differences in temporal coding precision present in the auditory brainstem, suggesting that the fidelity of encoding of suprathreshold sound helps explain individual differences [4]. Here, we revisit the conundrum of whether early aging influences an individual's ability to communicate in everyday settings. Although absolute selective attention ability is not predicted by age, reverberant energy interferes more with selective attention as age increases. Breaking the brainstem response down into components corresponding to coding of stimulus fine structure and envelope, we find that age alters which brainstem component predicts performance. Specifically, middle-aged listeners appear to rely heavily on temporal fine structure, which is more disrupted by reverberant energy than temporal envelope structure is. In contrast, the fidelity of envelope cues predicts performance in younger adults. These results hint that temporal envelope cues influence spatial hearing in reverberant settings more than is commonly appreciated and help explain why middle-aged listeners have particular difficulty communicating in daily life. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. A physiologically based model for temporal envelope encoding in human primary auditory cortex.

    PubMed

    Dugué, Pierre; Le Bouquin-Jeannès, Régine; Edeline, Jean-Marc; Faucon, Gérard

    2010-09-01

    Communication sounds exhibit temporal envelope fluctuations in the low frequency range (<70 Hz) and human speech has prominent 2-16 Hz modulations with a maximum at 3-4 Hz. Here, we propose a new phenomenological model of the human auditory pathway (from cochlea to primary auditory cortex) to simulate responses to amplitude-modulated white noise. To validate the model, performance was estimated by quantifying temporal modulation transfer functions (TMTFs). Previous models considered either the lower stages of the auditory system (up to the inferior colliculus) or only the thalamocortical loop. The present model, divided in two stages, is based on anatomical and physiological findings and includes the entire auditory pathway. The first stage, from the outer ear to the colliculus, incorporates inhibitory interneurons in the cochlear nucleus to increase performance at high stimuli levels. The second stage takes into account the anatomical connections of the thalamocortical system and includes the fast and slow excitatory and inhibitory currents. After optimizing the parameters of the model to reproduce the diversity of TMTFs obtained from human subjects, a patient-specific model was derived and the parameters were optimized to effectively reproduce both spontaneous activity and the oscillatory part of the evoked response. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  20. A functional magnetic resonance imaging study mapping the episodic memory encoding network in temporal lobe epilepsy

    PubMed Central

    Sidhu, Meneka K.; Stretton, Jason; Winston, Gavin P.; Bonelli, Silvia; Centeno, Maria; Vollmar, Christian; Symms, Mark; Thompson, Pamela J.; Koepp, Matthias J.

    2013-01-01

    Functional magnetic resonance imaging has demonstrated reorganization of memory encoding networks within the temporal lobe in temporal lobe epilepsy, but little is known of the extra-temporal networks in these patients. We investigated the temporal and extra-temporal reorganization of memory encoding networks in refractory temporal lobe epilepsy and the neural correlates of successful subsequent memory formation. We studied 44 patients with unilateral temporal lobe epilepsy and hippocampal sclerosis (24 left) and 26 healthy control subjects. All participants performed a functional magnetic resonance imaging memory encoding paradigm of faces and words with subsequent out-of-scanner recognition assessments. A blocked analysis was used to investigate activations during encoding and neural correlates of subsequent memory were investigated using an event-related analysis. Event-related activations were then correlated with out-of-scanner verbal and visual memory scores. During word encoding, control subjects activated the left prefrontal cortex and left hippocampus whereas patients with left hippocampal sclerosis showed significant additional right temporal and extra-temporal activations. Control subjects displayed subsequent verbal memory effects within left parahippocampal gyrus, left orbitofrontal cortex and fusiform gyrus whereas patients with left hippocampal sclerosis activated only right posterior hippocampus, parahippocampus and fusiform gyrus. Correlational analysis showed that patients with left hippocampal sclerosis with better verbal memory additionally activated left orbitofrontal cortex, anterior cingulate cortex and left posterior hippocampus. During face encoding, control subjects showed right lateralized prefrontal cortex and bilateral hippocampal activations. Patients with right hippocampal sclerosis showed increased temporal activations within the superior temporal gyri bilaterally and no increased extra-temporal areas of activation compared with control subjects. Control subjects showed subsequent visual memory effects within right amygdala, hippocampus, fusiform gyrus and orbitofrontal cortex. Patients with right hippocampal sclerosis showed subsequent visual memory effects within right posterior hippocampus, parahippocampal and fusiform gyri, and predominantly left hemisphere extra-temporal activations within the insula and orbitofrontal cortex. Correlational analysis showed that patients with right hippocampal sclerosis with better visual memory activated the amygdala bilaterally, right anterior parahippocampal gyrus and left insula. Right sided extra-temporal areas of reorganization observed in patients with left hippocampal sclerosis during word encoding and bilateral lateral temporal reorganization in patients with right hippocampal sclerosis during face encoding were not associated with subsequent memory formation. Reorganization within the medial temporal lobe, however, is an efficient process. The orbitofrontal cortex is critical to subsequent memory formation in control subjects and patients. Activations within anterior cingulum and insula correlated with better verbal and visual subsequent memory in patients with left and right hippocampal sclerosis, respectively, representing effective extra-temporal recruitment. PMID:23674488

  1. Spatial-Temporal Analysis of Social Media Data Related to Nepal Earthquake 2015

    NASA Astrophysics Data System (ADS)

    Thapa, L.

    2016-06-01

    Social Medias these days have become the instant communication platform to share anything; from personal feelings to the matter of public concern, these are the easiest and aphoristic way to deliver information among the mass. With the development of Web 2.0 technologies, more and more emphasis has been given to user input in the web; the concept of Geoweb is being visualized and in the recent years, social media like Twitter, Flicker are among the popular Location Based Social Medias with locational functionality enabled in them. Nepal faced devastating earthquake on 25 April, 2015 resulting in the loss of thousands of lives, destruction in the historical-archaeological sites and properties. Instant help was offered by many countries around the globe and even lots of NGOs, INGOs and people started the rescue operations immediately; concerned authorities and people used different communication medium like Frequency Modulation Stations, Television, and Social Medias over the World Wide Web to gather information associated with the Quake and to ease the rescue activities. They also initiated campaign in the Social Media to raise the funds and support the victims. Even the social medias like Facebook, Twitter, themselves announced the helping campaign to rebuild Nepal. In such scenario, this paper features the analysis of Twitter data containing hashtag related to Nepal Earthquake 2015 together with their temporal characteristics, when were the message generated, where were these from and how these spread spatially over the internet?

  2. The use of visual and verbal means of communication across psychological distance.

    PubMed

    Amit, Elinor; Wakslak, Cheryl; Trope, Yaacov

    2013-01-01

    The current study investigated the effect of distance on medium preferences in interpersonal communication. Five experiments showed that people's preference for using pictures (vs. words) is increasingly higher when communicating with temporally, socially, or geographically proximal (vs. distal) others. In contrast, preference for words is increasingly higher when communicating with those who were distal. A sixth experiment showed that communication's medium influences distance preferences, such that people's preference for communicating a message to a distant (vs. proximal) target is greater for verbal compared with pictorial communications. A seventh experiment showed that recipients are more likely to heed a sender's suggestions when the medium and distance are congruent. These findings reflect the suitability of pictures for communication with proximal others and words with distal others. Implications of these findings for construal-level theory, perspective taking, embodied cognition, the development of language, and social skills with children are discussed.

  3. Graph Analytics for Signature Discovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogan, Emilie A.; Johnson, John R.; Halappanavar, Mahantesh

    2013-06-01

    Within large amounts of seemingly unstructured data it can be diffcult to find signatures of events. In our work we transform unstructured data into a graph representation. By doing this we expose underlying structure in the data and can take advantage of existing graph analytics capabilities, as well as develop new capabilities. Currently we focus on applications in cybersecurity and communication domains. Within cybersecurity we aim to find signatures for perpetrators using the pass-the-hash attack, and in communications we look for emails or phone calls going up or down a chain of command. In both of these areas, and inmore » many others, the signature we look for is a path with certain temporal properties. In this paper we discuss our methodology for finding these temporal paths within large graphs.« less

  4. Role of activity in human dynamics

    NASA Astrophysics Data System (ADS)

    Zhou, T.; Kiet, H. A. T.; Kim, B. J.; Wang, B.-H.; Holme, P.

    2008-04-01

    The human society is a very complex system; still, there are several non-trivial, general features. One type of them is the presence of power-law-distributed quantities in temporal statistics. In this letter, we focus on the origin of power laws in rating of movies. We present a systematic empirical exploration of the time between two consecutive ratings of movies (the interevent time). At an aggregate level, we find a monotonous relation between the activity of individuals and the power law exponent of the interevent time distribution. At an individual level, we observe a heavy-tailed distribution for each user, as well as a negative correlation between the activity and the width of the distribution. We support these findings by a similar data set from mobile phone text-message communication. Our results demonstrate a significant role of the activity of individuals on the society-level patterns of human behavior. We believe this is a common character in the interest-driven human dynamics, corresponding to (but different from) the universality classes of task-driven dynamics.

  5. "You're Doing Great. Keep Doing What You're Doing": Socially Supportive Communication during First-Generation College Students' Socialization

    ERIC Educational Resources Information Center

    Gist-Mackey, Angela N.; Wiley, Marissa L.; Erba, Joseph

    2018-01-01

    The experiences of first-generation college students (FGCS) are marked by high levels of stress and uncertainty as they navigate the transition to college. This study uses the organizational assimilation model to explore FGCS' transition to college by temporally analyzing multiple sources and types of socially supportive communication found in…

  6. The role of cortical beta oscillations in time estimation.

    PubMed

    Kulashekhar, Shrikanth; Pekkola, Johanna; Palva, Jaakko Matias; Palva, Satu

    2016-09-01

    Estimation of time is central to perception, action, and cognition. Human functional magnetic resonance imaging (fMRI) and positron emission topography (PET) have revealed a positive correlation between the estimation of multi-second temporal durations and neuronal activity in a circuit of sensory and motor areas, prefrontal and temporal cortices, basal ganglia, and cerebellum. The systems-level mechanisms coordinating the collective neuronal activity in these areas have remained poorly understood. Synchronized oscillations regulate communication in neuronal networks and could hence serve such coordination, but their role in the estimation and maintenance of multi-second time intervals has remained largely unknown. We used source-reconstructed magnetoencephalography (MEG) to address the functional significance of local neuronal synchronization, as indexed by the amplitudes of cortical oscillations, in time-estimation. MEG was acquired during a working memory (WM) task where the subjects first estimated and then memorized the durations, or in the contrast condition, the colors of dynamic visual stimuli. Time estimation was associated with stronger beta (β, 14 - 30 Hz) band oscillations than color estimation in sensory regions and attentional cortical structures that earlier have been associated with time processing. In addition, the encoding of duration information was associated with strengthened gamma- (γ, 30 - 120 Hz), and the retrieval and maintenance with alpha- (α, 8 - 14 Hz) band oscillations. These data suggest that β oscillations may provide a mechanism for estimating short temporal durations, while γ and α oscillations support their encoding, retrieval, and maintenance in memory. Hum Brain Mapp 37:3262-3281, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Managing temporal relations

    NASA Technical Reports Server (NTRS)

    Britt, Daniel L.; Geoffroy, Amy L.; Gohring, John R.

    1990-01-01

    Various temporal constraints on the execution of activities are described, and their representation in the scheduling system MAESTRO is discussed. Initial examples are presented using a sample activity described. Those examples are expanded to include a second activity, and the types of temporal constraints that can obtain between two activities are explored. Soft constraints, or preferences, in activity placement are discussed. Multiple performances of activities are considered, with respect to both hard and soft constraints. The primary methods used in MAESTRO to handle temporal constraints are described as are certain aspects of contingency handling with respect to temporal constraints. A discussion of the overall approach, with indications of future directions for this research, concludes the study.

  8. Discovering Communicable Scientific Knowledge from Spatio-Temporal Data

    NASA Technical Reports Server (NTRS)

    Schwabacher, Mark; Langley, Pat; Norvig, Peter (Technical Monitor)

    2001-01-01

    This paper describes how we used regression rules to improve upon a result previously published in the Earth science literature. In such a scientific application of machine learning, it is crucially important for the learned models to be understandable and communicable. We recount how we selected a learning algorithm to maximize communicability, and then describe two visualization techniques that we developed to aid in understanding the model by exploiting the spatial nature of the data. We also report how evaluating the learned models across time let us discover an error in the data.

  9. Visualizing and communicating uncertainty in the earth and environmental sciences: a review

    NASA Astrophysics Data System (ADS)

    Pebesma, Edzer

    2014-05-01

    I will review past attempts to visualising uncertainty in spatial or spatio-temporal predictions of groundwater quality, quality predictions, sea bed sediment, bird densities, air quality measurements, and exposure to air quality of individuals and populations. The attempts involved software development (aguila [1], greenland [2]), the development of standards for communicating uncertain spatial and spatio-temporal information (UncertML, [3]), and have been illustrated by applications in a number of EU projects (Apmosphere [4], INTAMAP [5], UncertWeb [6] and GeoViQua [7]). I will also report on usability studies that were carried out (e.g. [8]). [1] http://pcraster.geo.uu.nl/projects/developments/aguila/ [2] https://wiki.52north.org/bin/view/Geostatistics/Greenland [3] http://www.uncertml.org/ [4] http://www.apmosphere.org/ [5] http://www.intamap.org/ [6] http://www.uncertweb.org/ [7] http://www.geoviqua.org/ [8] Senaratne, H. L. Gerharz, E. Pebesma, A. Schwering, 2012. Usability of Spatio-Temporal Uncertainty Visualisation Methods. In: Bridging the Geographic Information Sciences, Lecture Notes in Geoinformation and Cartography, J. Gensel, D. Josselin and D. Vandenbroucke. Springer Berlin Heidelberg.

  10. Avoiding and tolerating latency in large-scale next-generation shared-memory multiprocessors

    NASA Technical Reports Server (NTRS)

    Probst, David K.

    1993-01-01

    A scalable solution to the memory-latency problem is necessary to prevent the large latencies of synchronization and memory operations inherent in large-scale shared-memory multiprocessors from reducing high performance. We distinguish latency avoidance and latency tolerance. Latency is avoided when data is brought to nearby locales for future reference. Latency is tolerated when references are overlapped with other computation. Latency-avoiding locales include: processor registers, data caches used temporally, and nearby memory modules. Tolerating communication latency requires parallelism, allowing the overlap of communication and computation. Latency-tolerating techniques include: vector pipelining, data caches used spatially, prefetching in various forms, and multithreading in various forms. Relaxing the consistency model permits increased use of avoidance and tolerance techniques. Each model is a mapping from the program text to sets of partial orders on program operations; it is a convention about which temporal precedences among program operations are necessary. Information about temporal locality and parallelism constrains the use of avoidance and tolerance techniques. Suitable architectural primitives and compiler technology are required to exploit the increased freedom to reorder and overlap operations in relaxed models.

  11. Infrared cloud imaging in support of Earth-space optical communication.

    PubMed

    Nugent, Paul W; Shaw, Joseph A; Piazzolla, Sabino

    2009-05-11

    The increasing need for high data return from near-Earth and deep-space missions is driving a demand for the establishment of Earth-space optical communication links. These links will require a nearly obstruction-free path to the communication platform, so there is a need to measure spatial and temporal statistics of clouds at potential ground-station sites. A technique is described that uses a ground-based thermal infrared imager to provide continuous day-night cloud detection and classification according to the cloud optical depth and potential communication channel attenuation. The benefit of retrieving cloud optical depth and corresponding attenuation is illustrated through measurements that identify cloudy times when optical communication may still be possible through thin clouds.

  12. Brain activity related to working memory for temporal order and object information.

    PubMed

    Roberts, Brooke M; Libby, Laura A; Inhoff, Marika C; Ranganath, Charan

    2017-06-08

    Maintaining items in an appropriate sequence is important for many daily activities; however, remarkably little is known about the neural basis of human temporal working memory. Prior work suggests that the prefrontal cortex (PFC) and medial temporal lobe (MTL), including the hippocampus, play a role in representing information about temporal order. The involvement of these areas in successful temporal working memory, however, is less clear. Additionally, it is unknown whether regions in the PFC and MTL support temporal working memory across different timescales, or at coarse or fine levels of temporal detail. To address these questions, participants were scanned while completing 3 working memory task conditions (Group, Position and Item) that were matched in terms of difficulty and the number of items to be actively maintained. Group and Position trials probed temporal working memory processes, requiring the maintenance of hierarchically organized coarse and fine temporal information, respectively. To isolate activation related to temporal working memory, Group and Position trials were contrasted against Item trials, which required detailed working memory maintenance of visual objects. Results revealed that working memory encoding and maintenance of temporal information relative to visual information was associated with increased activation in dorsolateral PFC (DLPFC), and perirhinal cortex (PRC). In contrast, maintenance of visual details relative to temporal information was characterized by greater activation of parahippocampal cortex (PHC), medial and anterior PFC, and retrosplenial cortex. In the hippocampus, a dissociation along the longitudinal axis was observed such that the anterior hippocampus was more active for working memory encoding and maintenance of visual detail information relative to temporal information, whereas the posterior hippocampus displayed the opposite effect. Posterior parietal cortex was the only region to show sensitivity to temporal working memory across timescales, and was particularly involved in the encoding and maintenance of fine temporal information relative to maintenance of temporal information at more coarse timescales. Collectively, these results highlight the involvement of PFC and MTL in temporal working memory processes, and suggest a dissociation in the type of working memory information represented along the longitudinal axis of the hippocampus. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Disrupted dynamic network reconfiguration of the language system in temporal lobe epilepsy.

    PubMed

    He, Xiaosong; Bassett, Danielle S; Chaitanya, Ganne; Sperling, Michael R; Kozlowski, Lauren; Tracy, Joseph I

    2018-05-01

    Temporal lobe epilepsy tends to reshape the language system causing maladaptive reorganization that can be characterized by task-based functional MRI, and eventually can contribute to surgical decision making processes. However, the dynamic interacting nature of the brain as a complex system is often neglected, with many studies treating the language system as a static monolithic structure. Here, we demonstrate that as a specialized and integrated system, the language network is inherently dynamic, characterized by rich patterns of regional interactions, whose transient dynamics are disrupted in patients with temporal lobe epilepsy. Specifically, we applied tools from dynamic network neuroscience to functional MRI data collected from 50 temporal lobe epilepsy patients and 30 matched healthy controls during performance of a verbal fluency task, as well as during rest. By assigning 16 language-related regions into four subsystems (i.e. bilateral frontal and temporal), we observed regional specialization in both the probability of transient interactions and the frequency of such changes, in both healthy controls and patients during task performance but not rest. Furthermore, we found that both left and right temporal lobe epilepsy patients displayed reduced interactions within the left frontal 'core' subsystem compared to the healthy controls, while left temporal lobe epilepsy patients were unique in showing enhanced interactions between the left frontal 'core' and the right temporal subsystems. Also, both patient groups displayed reduced flexibility in the transient interactions of the left temporal and right frontal subsystems, which formed the 'periphery' of the language network. Importantly, such group differences were again evident only during task condition. Lastly, through random forest regression, we showed that dynamic reconfiguration of the language system tracks individual differences in verbal fluency with superior prediction accuracy compared to traditional activation-based static measures. Our results suggest dynamic network measures may be an effective biomarker for detecting the language dysfunction associated with neurological diseases such as temporal lobe epilepsy, specifying both the type of neuronal communications that are missing in these patients and those that are potentially added but maladaptive. Further advancements along these lines, transforming how we characterize and map language networks in the brain, have a high probability of altering clinical decision making in neurosurgical centres.10.1093/brain/awy042_video1awy042media15754656112001.

  14. Methodology for the specification of communication activities within the framework of a multi-layered architecture: Toward the definition of a knowledge base

    NASA Astrophysics Data System (ADS)

    Amyay, Omar

    A method defined in terms of synthesis and verification steps is presented. The specification of the services and protocols of communication within a multilayered architecture of the Open Systems Interconnection (OSI) type is an essential issue for the design of computer networks. The aim is to obtain an operational specification of the protocol service couple of a given layer. Planning synthesis and verification steps constitute a specification trajectory. The latter is based on the progressive integration of the 'initial data' constraints and verification of the specification originating from each synthesis step, through validity constraints that characterize an admissible solution. Two types of trajectories are proposed according to the style of the initial specification of the service protocol couple: operational type and service supplier viewpoint; knowledge property oriented type and service viewpoint. Synthesis and verification activities were developed and formalized in terms of labeled transition systems, temporal logic and epistemic logic. The originality of the second specification trajectory and the use of the epistemic logic are shown. An 'artificial intelligence' approach enables a conceptual model to be defined for a knowledge base system for implementing the method proposed. It is structured in three levels of representation of the knowledge relating to the domain, the reasoning characterizing synthesis and verification activities and the planning of the steps of a specification trajectory.

  15. Mitigation of Laser Beam Scintillation in Free-Space Optical Communication Systems Through Coherence-Reducing Optical Materials

    NASA Technical Reports Server (NTRS)

    Renner, Christoffer J.

    2005-01-01

    Free-space optical communication systems (also known as lasercom systems) offer several performance advantages over traditional radio frequency communication systems. These advantages include increased data rates and reduced operating power and system weight. One serious limiting factor in a lasercom system is Optical turbulence in Earth's atmosphere. This turbulence breaks up the laser beam used to transmit the information into multiple segments that interfere with each other when the beam is focused onto the receiver. This interference pattern at the receiver changes with time causing fluctuations in the received optical intensity (scintillation). Scintillation leads to intermittent losses of the signal and an overall reduction in the lasercom system's performance. Since scintillation is a coherent effect, reducing the spatial and temporal coherence of the laser beam will reduce the scintillation. Transmitting a laser beam through certain materials is thought to reduce its coherence. Materials that were tested included: sapphire, BK7 glass, fused silica and others. The spatial and temporal coherence of the laser beam was determined by examining the interference patterns (fringes) it formed when interacting with various interferometers and etalons.

  16. Neural measures of the role of affective prosody in empathy for pain.

    PubMed

    Meconi, Federica; Doro, Mattia; Lomoriello, Arianna Schiano; Mastrella, Giulia; Sessa, Paola

    2018-01-10

    Emotional communication often needs the integration of affective prosodic and semantic components from speech and the speaker's facial expression. Affective prosody may have a special role by virtue of its dual-nature; pre-verbal on one side and accompanying semantic content on the other. This consideration led us to hypothesize that it could act transversely, encompassing a wide temporal window involving the processing of facial expressions and semantic content expressed by the speaker. This would allow powerful communication in contexts of potential urgency such as witnessing the speaker's physical pain. Seventeen participants were shown with faces preceded by verbal reports of pain. Facial expressions, intelligibility of the semantic content of the report (i.e., participants' mother tongue vs. fictional language) and the affective prosody of the report (neutral vs. painful) were manipulated. We monitored event-related potentials (ERPs) time-locked to the onset of the faces as a function of semantic content intelligibility and affective prosody of the verbal reports. We found that affective prosody may interact with facial expressions and semantic content in two successive temporal windows, supporting its role as a transverse communication cue.

  17. The role of temporal structure in the investigation of sensory memory, auditory scene analysis, and speech perception: a healthy-aging perspective.

    PubMed

    Rimmele, Johanna Maria; Sussman, Elyse; Poeppel, David

    2015-02-01

    Listening situations with multiple talkers or background noise are common in everyday communication and are particularly demanding for older adults. Here we review current research on auditory perception in aging individuals in order to gain insights into the challenges of listening under noisy conditions. Informationally rich temporal structure in auditory signals--over a range of time scales from milliseconds to seconds--renders temporal processing central to perception in the auditory domain. We discuss the role of temporal structure in auditory processing, in particular from a perspective relevant for hearing in background noise, and focusing on sensory memory, auditory scene analysis, and speech perception. Interestingly, these auditory processes, usually studied in an independent manner, show considerable overlap of processing time scales, even though each has its own 'privileged' temporal regimes. By integrating perspectives on temporal structure processing in these three areas of investigation, we aim to highlight similarities typically not recognized. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. The role of temporal structure in the investigation of sensory memory, auditory scene analysis, and speech perception: A healthy-aging perspective

    PubMed Central

    Rimmele, Johanna Maria; Sussman, Elyse; Poeppel, David

    2014-01-01

    Listening situations with multiple talkers or background noise are common in everyday communication and are particularly demanding for older adults. Here we review current research on auditory perception in aging individuals in order to gain insights into the challenges of listening under noisy conditions. Informationally rich temporal structure in auditory signals - over a range of time scales from milliseconds to seconds - renders temporal processing central to perception in the auditory domain. We discuss the role of temporal structure in auditory processing, in particular from a perspective relevant for hearing in background noise, and focusing on sensory memory, auditory scene analysis, and speech perception. Interestingly, these auditory processes, usually studied in an independent manner, show considerable overlap of processing time scales, even though each has its own ‚privileged‘ temporal regimes. By integrating perspectives on temporal structure processing in these three areas of investigation, we aim to highlight similarities typically not recognized. PMID:24956028

  19. Fractal structure enables temporal prediction in music.

    PubMed

    Rankin, Summer K; Fink, Philip W; Large, Edward W

    2014-10-01

    1/f serial correlations and statistical self-similarity (fractal structure) have been measured in various dimensions of musical compositions. Musical performances also display 1/f properties in expressive tempo fluctuations, and listeners predict tempo changes when synchronizing. Here the authors show that the 1/f structure is sufficient for listeners to predict the onset times of upcoming musical events. These results reveal what information listeners use to anticipate events in complex, non-isochronous acoustic rhythms, and this will entail innovative models of temporal synchronization. This finding could improve therapies for Parkinson's and related disorders and inform deeper understanding of how endogenous neural rhythms anticipate events in complex, temporally structured communication signals.

  20. Birefringence in a chiral medium, via temporal cloaking

    NASA Astrophysics Data System (ADS)

    Khan, Humayun; Haneef, Muhammad

    2017-05-01

    This paper reports theoretical investigation of birefringence in a chiral medium for the creation of temporal cloaking. The chiral medium splits the input probe beam into left/right circular polarized beams. These left/right circular polarized beams are then controlled and modified within the chiral medium. The left circular polarized beam delays by 24 ns whereas the right circular polarized beam advances by  -23 ns at a control field of rabbi frequency 6γ . This opens a 47 ns time gap for temporal cloaking to hide information without noise corruption and energy loss. The results have potential applications in communication devices for secure propagation of light pulse.

  1. Cross-modal integration of multimodal courtship signals in a wolf spider.

    PubMed

    Kozak, Elizabeth C; Uetz, George W

    2016-11-01

    Cross-modal integration, i.e., cognitive binding of information transmitted in more than one signal mode, is important in animal communication, especially in complex, noisy environments in which signals of many individuals may overlap. Males of the brush-legged wolf spider Schizocosa ocreata (Hentz) use multimodal communication (visual and vibratory signals) in courtship. Because females may be courted by multiple males at the same time, they must evaluate co-occurring male signals originating from separate locations. Moreover, due to environmental complexity, individual components of male signals may be occluded, altering detection of sensory modes by females. We used digital multimodal playback to investigate the effect of spatial and temporal disparity of visual and vibratory components of male courtship signals on female mate choice. Females were presented with male courtship signals with components that varied in spatial location or temporal synchrony. Females responded to spatially disparate signal components separated by ≥90° as though they were separate sources, but responded to disparate signals separated by ≤45° as though they originated from a single source. Responses were seen as evidence for cross-modal integration. Temporal disparity (asynchrony) in signal modes also affected female receptivity. Females responded more to male signals when visual and vibratory modes were in synchrony than either out-of-synch or interleaved/alternated. These findings are consistent with those seen in both humans and other vertebrates and provide insight into how animals overcome communication challenges inherent in a complex environment.

  2. Differentiability of simulated MEG hippocampal, medial temporal and neocortical temporal epileptic spike activity.

    PubMed

    Stephen, Julia M; Ranken, Doug M; Aine, Cheryl J; Weisend, Michael P; Shih, Jerry J

    2005-12-01

    Previous studies have shown that magnetoencephalography (MEG) can measure hippocampal activity, despite the cylindrical shape and deep location in the brain. The current study extended this work by examining the ability to differentiate the hippocampal subfields, parahippocampal cortex, and neocortical temporal sources using simulated interictal epileptic activity. A model of the hippocampus was generated on the MRIs of five subjects. CA1, CA3, and dentate gyrus of the hippocampus were activated as well as entorhinal cortex, presubiculum, and neocortical temporal cortex. In addition, pairs of sources were activated sequentially to emulate various hypotheses of mesial temporal lobe seizure generation. The simulated MEG activity was added to real background brain activity from the five subjects and modeled using a multidipole spatiotemporal modeling technique. The waveforms and source locations/orientations for hippocampal and parahippocampal sources were differentiable from neocortical temporal sources. In addition, hippocampal and parahippocampal sources were differentiated to varying degrees depending on source. The sequential activation of hippocampal and parahippocampal sources was adequately modeled by a single source; however, these sources were not resolvable when they overlapped in time. These results suggest that MEG has the sensitivity to distinguish parahippocampal and hippocampal spike generators in mesial temporal lobe epilepsy.

  3. Temporal Proof Methodologies for Real-Time Systems,

    DTIC Science & Technology

    1990-09-01

    real time systems that communicate either through shared variables or by message passing and real time issues such as time-outs, process priorities (interrupts) and process scheduling. The authors exhibit two styles for the specification of real - time systems . While the first approach uses bounded versions of temporal operators the second approach allows explicit references to time through a special clock variable. Corresponding to two styles of specification the authors present and compare two fundamentally different proof

  4. Remote Control of Tissue Interactions via Engineered Photo-switchable Cell Surfaces

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Pulsipher, Abigail; Dutta, Debjit; Lamb, Brian M.; Yousaf, Muhammad N.

    2014-09-01

    We report a general cell surface molecular engineering strategy via liposome fusion delivery to create a dual photo-active and bio-orthogonal cell surface for remote controlled spatial and temporal manipulation of microtissue assembly and disassembly. Cell surface tailoring of chemoselective functional groups was achieved by a liposome fusion delivery method and quantified by flow cytometry and characterized by a new cell surface lipid pull down mass spectrometry strategy. Dynamic co-culture spheroid tissue assembly in solution and co-culture tissue multilayer assembly on materials was demonstrated by an intercellular photo-oxime ligation that could be remotely cleaved and disassembled on demand. Spatial and temporal control of microtissue structures containing multiple cell types was demonstrated by the generation of patterned multilayers for controlling stem cell differentiation. Remote control of cell interactions via cell surface engineering that allows for real-time manipulation of tissue dynamics may provide tools with the scope to answer fundamental questions of cell communication and initiate new biotechnologies ranging from imaging probes to drug delivery vehicles to regenerative medicine, inexpensive bioreactor technology and tissue engineering therapies.

  5. Cyberpark 2000: Protected Areas Management Pilot Project. Satellite time series vegetation monitoring

    NASA Astrophysics Data System (ADS)

    Monteleone, M.; Lanorte, A.; Lasaponara, R.

    2009-04-01

    Cyberpark 2000 is a project funded by the UE Regional Operating Program of the Apulia Region (2000-2006). The main objective of the Cyberpark 2000 project is to develop a new assessment model for the management and monitoring of protected areas in Foggia Province (Apulia Region) based on Information and Communication Technologies. The results herein described are placed inside the research activities finalized to develop an environmental monitoring system knowledge based on the use of satellite time series. This study include: - A- satellite time series of high spatial resolution data for supporting the analysis of fire static risk factors through land use mapping and spectral/quantitative characterization of vegetation fuels; - B- satellite time series of MODIS for supporting fire dynamic risk evaluation of study area - Integrated fire detection by using thermal imaging cameras placed on panoramic view-points; - C - integrated high spatial and high temporal satellite time series for supporting studies in change detection factors or anomalies in vegetation covers; - D - satellite time-series for monitoring: (i) post fire vegetation recovery and (ii) spatio/temporal vegetation dynamics in unburned and burned vegetation covers.

  6. Spatial/Temporal Variations of Crime: A Routine Activity Theory Perspective.

    PubMed

    de Melo, Silas Nogueira; Pereira, Débora V S; Andresen, Martin A; Matias, Lindon Fonseca

    2018-05-01

    Temporal and spatial patterns of crime in Campinas, Brazil, are analyzed considering the relevance of routine activity theory in a Latin American context. We use geo-referenced criminal event data, 2010-2013, analyzing spatial patterns using census tracts and temporal patterns considering seasons, months, days, and hours. Our analyses include difference in means tests, count-based regression models, and Kulldorff's scan test. We find that crime in Campinas, Brazil, exhibits both temporal and spatial-temporal patterns. However, the presence of these patterns at the different temporal scales varies by crime type. Specifically, not all crime types have statistically significant temporal patterns at all scales of analysis. As such, routine activity theory works well to explain temporal and spatial-temporal patterns of crime in Campinas, Brazil. However, local knowledge of Brazilian culture is necessary for understanding a portion of these crime patterns.

  7. Calling patterns in human communication dynamics

    PubMed Central

    Jiang, Zhi-Qiang; Xie, Wen-Jie; Li, Ming-Xia; Podobnik, Boris; Zhou, Wei-Xing; Stanley, H. Eugene

    2013-01-01

    Modern technologies not only provide a variety of communication modes (e.g., texting, cell phone conversation, and online instant messaging), but also detailed electronic traces of these communications between individuals. These electronic traces indicate that the interactions occur in temporal bursts. Here, we study intercall duration of communications of the 100,000 most active cell phone users of a Chinese mobile phone operator. We confirm that the intercall durations follow a power-law distribution with an exponential cutoff at the population level but find differences when focusing on individual users. We apply statistical tests at the individual level and find that the intercall durations follow a power-law distribution for only 3,460 individuals (3.46%). The intercall durations for the majority (73.34%) follow a Weibull distribution. We quantify individual users using three measures: out-degree, percentage of outgoing calls, and communication diversity. We find that the cell phone users with a power-law duration distribution fall into three anomalous clusters: robot-based callers, telecom fraud, and telephone sales. This information is of interest to both academics and practitioners, mobile telecom operators in particular. In contrast, the individual users with a Weibull duration distribution form the fourth cluster of ordinary cell phone users. We also discover more information about the calling patterns of these four clusters (e.g., the probability that a user will call the cr-th most contact and the probability distribution of burst sizes). Our findings may enable a more detailed analysis of the huge body of data contained in the logs of massive users. PMID:23319645

  8. Calling patterns in human communication dynamics.

    PubMed

    Jiang, Zhi-Qiang; Xie, Wen-Jie; Li, Ming-Xia; Podobnik, Boris; Zhou, Wei-Xing; Stanley, H Eugene

    2013-01-29

    Modern technologies not only provide a variety of communication modes (e.g., texting, cell phone conversation, and online instant messaging), but also detailed electronic traces of these communications between individuals. These electronic traces indicate that the interactions occur in temporal bursts. Here, we study intercall duration of communications of the 100,000 most active cell phone users of a Chinese mobile phone operator. We confirm that the intercall durations follow a power-law distribution with an exponential cutoff at the population level but find differences when focusing on individual users. We apply statistical tests at the individual level and find that the intercall durations follow a power-law distribution for only 3,460 individuals (3.46%). The intercall durations for the majority (73.34%) follow a Weibull distribution. We quantify individual users using three measures: out-degree, percentage of outgoing calls, and communication diversity. We find that the cell phone users with a power-law duration distribution fall into three anomalous clusters: robot-based callers, telecom fraud, and telephone sales. This information is of interest to both academics and practitioners, mobile telecom operators in particular. In contrast, the individual users with a Weibull duration distribution form the fourth cluster of ordinary cell phone users. We also discover more information about the calling patterns of these four clusters (e.g., the probability that a user will call the c(r)-th most contact and the probability distribution of burst sizes). Our findings may enable a more detailed analysis of the huge body of data contained in the logs of massive users.

  9. Functional Connectivity in Frequency-Tagged Cortical Networks During Active Harm Avoidance

    PubMed Central

    Miskovic, Vladimir; Príncipe, José C.; Keil, Andreas

    2015-01-01

    Abstract Many behavioral and cognitive processes are grounded in widespread and dynamic communication between brain regions. Thus, the quantification of functional connectivity with high temporal resolution is highly desirable for capturing in vivo brain function. However, many of the commonly used measures of functional connectivity capture only linear signal dependence and are based entirely on relatively simple quantitative measures such as mean and variance. In this study, the authors used a recently developed algorithm, the generalized measure of association (GMA), to quantify dynamic changes in cortical connectivity using steady-state visual evoked potentials (ssVEPs) measured in the context of a conditioned behavioral avoidance task. GMA uses a nonparametric estimator of statistical dependence based on ranks that are efficient and capable of providing temporal precision roughly corresponding to the timing of cognitive acts (∼100–200 msec). Participants viewed simple gratings predicting the presence/absence of an aversive loud noise, co-occurring with peripheral cues indicating whether the loud noise could be avoided by means of a key press (active) or not (passive). For active compared with passive trials, heightened connectivity between visual and central areas was observed in time segments preceding and surrounding the avoidance cue. Viewing of the threat stimuli also led to greater initial connectivity between occipital and central regions, followed by heightened local coupling among visual regions surrounding the motor response. Local neural coupling within extended visual regions was sustained throughout major parts of the viewing epoch. These findings are discussed in a framework of flexible synchronization between cortical networks as a function of experience and active sensorimotor coupling. PMID:25557925

  10. Neural correlates of semantic associations in patients with schizophrenia.

    PubMed

    Sass, Katharina; Heim, Stefan; Sachs, Olga; Straube, Benjamin; Schneider, Frank; Habel, Ute; Kircher, Tilo

    2014-03-01

    Patients with schizophrenia have semantic processing disturbances leading to expressive language deficits (formal thought disorder). The underlying pathology has been related to alterations in the semantic network and its neural correlates. Moreover, crossmodal processing, an important aspect of communication, is impaired in schizophrenia. Here we investigated specific processing abnormalities in patients with schizophrenia with regard to modality and semantic distance in a semantic priming paradigm. Fourteen patients with schizophrenia and fourteen demographically matched controls made visual lexical decisions on successively presented word-pairs (SOA = 350 ms) with direct or indirect relations, unrelated word-pairs, and pseudoword-target stimuli during fMRI measurement. Stimuli were presented in a unimodal (visual) or crossmodal (auditory-visual) fashion. On the neural level, the effect of semantic relation indicated differences (patients > controls) within the right angular gyrus and precuneus. The effect of modality revealed differences (controls > patients) within the left superior frontal, middle temporal, inferior occipital, right angular gyri, and anterior cingulate cortex. Semantic distance (direct vs. indirect) induced distinct activations within the left middle temporal, fusiform gyrus, right precuneus, and thalamus with patients showing fewer differences between direct and indirect word-pairs. The results highlight aberrant priming-related brain responses in patients with schizophrenia. Enhanced activation for patients possibly reflects deficits in semantic processes that might be caused by a delayed and enhanced spread of activation within the semantic network. Modality-specific decreases of activation in patients might be related to impaired perceptual integration. Those deficits could induce and increase the prominent symptoms of schizophrenia like impaired speech processing.

  11. Stability and transitions in mother-infant face-to-face communication during the first 6 months: a microhistorical approach.

    PubMed

    Hsu, Hui-Chin; Fogel, Alan

    2003-11-01

    In this study the authors attempted to unravel the relational, dynamical, and historical nature of mother-infant communication during the first 6 months. Thirteen mothers and their infants were videotaped weekly from 4 to 24 weeks during face-to-face interactions. Three distinct patterns of mother-infant communication were identified: symmetrical, asymmetrical, and unilateral. Guided by a dynamic systems perspective, the authors explored the stability of and transitions between these communication patterns. Findings from event history analysis showed that (a) there are regularly recurring dyadic communication patterns in early infancy, (b) these recurring patterns show differential stabilities and likelihoods of transitions, (c) dynamic stability in dyadic communication is shaped not only by individual characteristics (e.g., infant sex and maternal parity) but also by the dyad's communication history, and (d) depending on their recency, communication histories varying in temporal proximity exert differential effects on the self-organization processes of a dyadic system. ((c) 2003 APA, all rights reserved)

  12. Planning in Dynamic and Uncertain Environments

    DTIC Science & Technology

    1994-05-01

    particular, General Electric’s (GE) Tachyon system [2]), and uses the communication software provided in the CPE (in particular, the Cronus and Knet...and gets back information about the world and replanning requests. "* We extended SIPE-2 to interact with GE’s Tachyon system in a loosely coupled...manner. Tachyon is able to process extended temporal constraints for SIPE-2 during planning. They communicate by using the Cronus system in the CPE

  13. Detecting social-cognitive deficits after traumatic brain injury: An ALE meta-analysis of fMRI studies.

    PubMed

    Xiao, Hui; Jacobsen, Andre; Chen, Ziqian; Wang, Yang

    2017-01-01

    Traumatic brain injury (TBI) can result in significant social dysfunction, which is represented by impairment to social-cognitive abilities (i.e. social cognition, social attention/executive function and communication). This study is aimed to explore brain networks mediating the social dysfunction after TBI and its underlying mechanisms. We performed a quantitative meta-analysis using the activation likelihood estimation (ALE) approach on functional magnetic resonance imaging (fMRI) studies of social-cognitive abilities following TBI. Sixteen studies fulfilled the inclusion criteria resulting in a total of 190 patients with TBI and 206 controls enrolled in the ALE meta-analysis. The temporoparietal junction (TPJ) and the medial prefrontal cortex (mPFC) were the specific regions that social cognition predominantly engaged. The cingulate gyrus, frontal gyrus and inferior parietal lobule were the main regions related to social attention/executive functions. Communication dysfunction, especially related to language deficits, was found to show greater activation of the temporal gyrus and fusiform gyrus in TBI. The current ALE meta-analytic findings provide evidence that patients have significant social-cognitive disabilities following TBI. The relatively limited pool of literature and the varied fMRI results from published studies indicate that social-cognitive abilities following TBI is an area that would greatly benefit from further investigation.

  14. Plasticity of brain wave network interactions and evolution across physiologic states

    PubMed Central

    Liu, Kang K. L.; Bartsch, Ronny P.; Lin, Aijing; Mantegna, Rosario N.; Ivanov, Plamen Ch.

    2015-01-01

    Neural plasticity transcends a range of spatio-temporal scales and serves as the basis of various brain activities and physiologic functions. At the microscopic level, it enables the emergence of brain waves with complex temporal dynamics. At the macroscopic level, presence and dominance of specific brain waves is associated with important brain functions. The role of neural plasticity at different levels in generating distinct brain rhythms and how brain rhythms communicate with each other across brain areas to generate physiologic states and functions remains not understood. Here we perform an empirical exploration of neural plasticity at the level of brain wave network interactions representing dynamical communications within and between different brain areas in the frequency domain. We introduce the concept of time delay stability (TDS) to quantify coordinated bursts in the activity of brain waves, and we employ a system-wide Network Physiology integrative approach to probe the network of coordinated brain wave activations and its evolution across physiologic states. We find an association between network structure and physiologic states. We uncover a hierarchical reorganization in the brain wave networks in response to changes in physiologic state, indicating new aspects of neural plasticity at the integrated level. Globally, we find that the entire brain network undergoes a pronounced transition from low connectivity in Deep Sleep and REM to high connectivity in Light Sleep and Wake. In contrast, we find that locally, different brain areas exhibit different network dynamics of brain wave interactions to achieve differentiation in function during different sleep stages. Moreover, our analyses indicate that plasticity also emerges in frequency-specific networks, which represent interactions across brain locations mediated through a specific frequency band. Comparing frequency-specific networks within the same physiologic state we find very different degree of network connectivity and link strength, while at the same time each frequency-specific network is characterized by a different signature pattern of sleep-stage stratification, reflecting a remarkable flexibility in response to change in physiologic state. These new aspects of neural plasticity demonstrate that in addition to dominant brain waves, the network of brain wave interactions is a previously unrecognized hallmark of physiologic state and function. PMID:26578891

  15. Development of network-based multichannel neuromuscular electrical stimulation system for stroke rehabilitation.

    PubMed

    Qu, Hongen; Xie, Yongji; Liu, Xiaoxuan; He, Xin; Hao, Manzhao; Bao, Yong; Xie, Qing; Lan, Ning

    2016-01-01

    Neuromuscular electrical stimulation (NMES) is a promising assistive technology for stroke rehabilitation. Here we present the design and development of a multimuscle stimulation system as an emerging therapy for people with paretic stroke. A network-based multichannel NMES system was integrated based on dual bus architecture of communication and an H-bridge current regulator with a power booster. The structure of the system was a body area network embedded with multiple stimulators and a communication protocol of controlled area network to transmit muscle stimulation parameter information to individual stimulators. A graphical user interface was designed to allow clinicians to specify temporal patterns and muscle stimulation parameters. We completed and tested a prototype of the hardware and communication software modules of the multichannel NMES system. The prototype system was first verified in nondisabled subjects for safety, and then tested in subjects with stroke for feasibility with assisting multijoint movements. Results showed that synergistic stimulation of multiple muscles in subjects with stroke improved performance of multijoint movements with more natural velocity profiles at elbow and shoulder and reduced acromion excursion due to compensatory trunk rotation. The network-based NMES system may provide an innovative solution that allows more physiological activation of multiple muscles in multijoint task training for patients with stroke.

  16. Optimizing targeted vaccination across cyber-physical networks: an empirically based mathematical simulation study.

    PubMed

    Mones, Enys; Stopczynski, Arkadiusz; Pentland, Alex 'Sandy'; Hupert, Nathaniel; Lehmann, Sune

    2018-01-01

    Targeted vaccination, whether to minimize the forward transmission of infectious diseases or their clinical impact, is one of the 'holy grails' of modern infectious disease outbreak response, yet it is difficult to achieve in practice due to the challenge of identifying optimal targets in real time. If interruption of disease transmission is the goal, targeting requires knowledge of underlying person-to-person contact networks. Digital communication networks may reflect not only virtual but also physical interactions that could result in disease transmission, but the precise overlap between these cyber and physical networks has never been empirically explored in real-life settings. Here, we study the digital communication activity of more than 500 individuals along with their person-to-person contacts at a 5-min temporal resolution. We then simulate different disease transmission scenarios on the person-to-person physical contact network to determine whether cyber communication networks can be harnessed to advance the goal of targeted vaccination for a disease spreading on the network of physical proximity. We show that individuals selected on the basis of their closeness centrality within cyber networks (what we call 'cyber-directed vaccination') can enhance vaccination campaigns against diseases with short-range (but not full-range) modes of transmission. © 2018 The Author(s).

  17. Calcium-dependent molecular fMRI using a magnetic nanosensor.

    PubMed

    Okada, Satoshi; Bartelle, Benjamin B; Li, Nan; Breton-Provencher, Vincent; Lee, Jiyoung J; Rodriguez, Elisenda; Melican, James; Sur, Mriganka; Jasanoff, Alan

    2018-06-01

    Calcium ions are ubiquitous signalling molecules in all multicellular organisms, where they mediate diverse aspects of intracellular and extracellular communication over widely varying temporal and spatial scales 1 . Though techniques to map calcium-related activity at a high resolution by optical means are well established, there is currently no reliable method to measure calcium dynamics over large volumes in intact tissue 2 . Here, we address this need by introducing a family of magnetic calcium-responsive nanoparticles (MaCaReNas) that can be detected by magnetic resonance imaging (MRI). MaCaReNas respond within seconds to [Ca 2+ ] changes in the 0.1-1.0 mM range, suitable for monitoring extracellular calcium signalling processes in the brain. We show that the probes permit the repeated detection of brain activation in response to diverse stimuli in vivo. MaCaReNas thus provide a tool for calcium-activity mapping in deep tissue and offer a precedent for the development of further nanoparticle-based sensors for dynamic molecular imaging with MRI.

  18. Timing Actions to Avoid Refractoriness: A Simple Solution for Streaming Sensory Signals

    PubMed Central

    Nogueira, Javier; Caputi, Ángel Ariel

    2011-01-01

    Segmenting self- from allo-generated signals is crucial for active sensory processing. We report a dynamic filter used by South American pulse electric fish to distinguish active electro-sensory signals carried by their own electric discharges from other concomitant electrical stimuli (i.e. communication signals). The filter has a sensory component, consisting of an onset type central electro-sensory neuron, and a motor component, consisting of a change in the fish's discharge rate when allo-generated electrical events occur in temporal proximity to the fish's own discharge. We investigated the sensory component of the filter by in vitro mimicking synaptic inputs occurring during behavioral responses to allo-generated interfering signals. We found that active control of the discharge enhances self-generated over allo-generated responses by forcing allo-generated signals into a central refractory period. This hypothesis was confirmed by field potential recordings in freely discharging fish. Similar sensory-motor mechanisms may also contribute to signal segmentation in other sensory systems. PMID:21789228

  19. Calcium-dependent molecular fMRI using a magnetic nanosensor

    NASA Astrophysics Data System (ADS)

    Okada, Satoshi; Bartelle, Benjamin B.; Li, Nan; Breton-Provencher, Vincent; Lee, Jiyoung J.; Rodriguez, Elisenda; Melican, James; Sur, Mriganka; Jasanoff, Alan

    2018-06-01

    Calcium ions are ubiquitous signalling molecules in all multicellular organisms, where they mediate diverse aspects of intracellular and extracellular communication over widely varying temporal and spatial scales1. Though techniques to map calcium-related activity at a high resolution by optical means are well established, there is currently no reliable method to measure calcium dynamics over large volumes in intact tissue2. Here, we address this need by introducing a family of magnetic calcium-responsive nanoparticles (MaCaReNas) that can be detected by magnetic resonance imaging (MRI). MaCaReNas respond within seconds to [Ca2+] changes in the 0.1-1.0 mM range, suitable for monitoring extracellular calcium signalling processes in the brain. We show that the probes permit the repeated detection of brain activation in response to diverse stimuli in vivo. MaCaReNas thus provide a tool for calcium-activity mapping in deep tissue and offer a precedent for the development of further nanoparticle-based sensors for dynamic molecular imaging with MRI.

  20. NASA's First Laser Communication System

    NASA Image and Video Library

    2017-12-08

    A new NASA-developed, laser-based space communication system will enable higher rates of satellite communications similar in capability to high-speed fiber optic networks on Earth. The space terminal for the Lunar Laser Communication Demonstration (LLCD), NASA's first high-data-rate laser communication system, was recently integrated onto the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft. LLCD will demonstrate laser communications from lunar orbit to Earth at six times the rate of the best modern-day advanced radio communication systems. Credit: NASA ----- What is LADEE? The Lunar Atmosphere and Dust Environment Explorer (LADEE) is designed to study the Moon's thin exosphere and the lunar dust environment. An "exosphere" is an atmosphere that is so thin and tenuous that molecules don't collide with each other. Studying the Moon's exosphere will help scientists understand other planetary bodies with exospheres too, like Mercury and some of Jupiter's bigger moons. The orbiter will determine the density, composition and temporal and spatial variability of the Moon's exosphere to help us understand where the species in the exosphere come from and the role of the solar wind, lunar surface and interior, and meteoric infall as sources. The mission will also examine the density and temporal and spatial variability of dust particles that may get lofted into the atmosphere. The mission also will test several new technologies, including a modular spacecraft bus that may reduce the cost of future deep space missions and demonstrate two-way high rate laser communication for the first time from the Moon. LADEE now is ready to launch when the window opens on Sept. 6, 2013. Read more: www.nasa.gov/ladee NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. Coordinated neuronal activity enhances corticocortical communication

    PubMed Central

    Zandvakili, Amin; Kohn, Adam

    2015-01-01

    Summary Relaying neural signals between cortical areas is central to cognition and sensory processing. The temporal coordination of activity in a source population has been suggested to determine corticocortical signaling efficacy, but others have argued that coordination is functionally irrelevant. We reasoned that if coordination significantly influenced signaling, spiking in downstream networks should be preceded by transiently elevated coordination in a source population. We developed a metric to quantify network coordination in brief epochs, and applied it to simultaneous recordings of neuronal populations in cortical areas V1 and V2 of the macaque monkey. Spiking in the input layers of V2 was preceded by brief epochs of elevated V1 coordination, but this was not the case in other layers of V2. Our results indicate that V1 coordination influences its signaling to direct downstream targets, but that coordinated V1 epochs do not propagate through multiple downstream networks as in some corticocortical signaling schemes. PMID:26291164

  2. Materials learning from life: concepts for active, adaptive and autonomous molecular systems.

    PubMed

    Merindol, Rémi; Walther, Andreas

    2017-09-18

    Bioinspired out-of-equilibrium systems will set the scene for the next generation of molecular materials with active, adaptive, autonomous, emergent and intelligent behavior. Indeed life provides the best demonstrations of complex and functional out-of-equilibrium systems: cells keep track of time, communicate, move, adapt, evolve and replicate continuously. Stirred by the understanding of biological principles, artificial out-of-equilibrium systems are emerging in many fields of soft matter science. Here we put in perspective the molecular mechanisms driving biological functions with the ones driving synthetic molecular systems. Focusing on principles that enable new levels of functionalities (temporal control, autonomous structures, motion and work generation, information processing) rather than on specific material classes, we outline key cross-disciplinary concepts that emerge in this challenging field. Ultimately, the goal is to inspire and support new generations of autonomous and adaptive molecular devices fueled by self-regulating chemistry.

  3. Ensuring Patient Safety in Care Transitions: An Empirical Evaluation of a Handoff Intervention Tool

    PubMed Central

    Abraham, Joanna; Kannampallil, Thomas; Patel, Bela; Almoosa, Khalid; Patel, Vimla L.

    2012-01-01

    Successful handoffs ensure smooth, efficient and safe patient care transitions. Tools and systems designed for standardization of clinician handoffs often focuses on ensuring the communication activity during transitions, with limited support for preparatory activities such as information seeking and organization. We designed and evaluated a Handoff Intervention Tool (HAND-IT) based on a checklist-inspired, body system format allowing structured information organization, and a problem-case narrative format allowing temporal description of patient care events. Based on a pre-post prospective study using a multi-method analysis we evaluated the effectiveness of HAND-IT as a documentation tool. We found that the use of HAND-IT led to fewer transition breakdowns, greater tool resilience, and likely led to better learning outcomes for less-experienced clinicians when compared to the current tool. We discuss the implications of our results for improving patient safety with a continuity of care-based approach. PMID:23304268

  4. Regional Slow Waves and Spindles in Human Sleep

    PubMed Central

    Nir, Yuval; Staba, Richard J.; Andrillon, Thomas; Vyazovskiy, Vladyslav V.; Cirelli, Chiara; Fried, Itzhak; Tononi, Giulio

    2011-01-01

    SUMMARY The most prominent EEG events in sleep are slow waves, reflecting a slow (<1 Hz) oscillation between up and down states in cortical neurons. It is unknown whether slow oscillations are synchronous across the majority or the minority of brain regions—are they a global or local phenomenon? To examine this, we recorded simultaneously scalp EEG, intracerebral EEG, and unit firing in multiple brain regions of neurosurgical patients. We find that most sleep slow waves and the underlying active and inactive neuronal states occur locally. Thus, especially in late sleep, some regions can be active while others are silent. We also find that slow waves can propagate, usually from medial prefrontal cortex to the medial temporal lobe and hippocampus. Sleep spindles, the other hallmark of NREM sleep EEG, are likewise predominantly local. Thus, intracerebral communication during sleep is constrained because slow and spindle oscillations often occur out-of-phase in different brain regions. PMID:21482364

  5. Visual activity predicts auditory recovery from deafness after adult cochlear implantation.

    PubMed

    Strelnikov, Kuzma; Rouger, Julien; Demonet, Jean-François; Lagleyre, Sebastien; Fraysse, Bernard; Deguine, Olivier; Barone, Pascal

    2013-12-01

    Modern cochlear implantation technologies allow deaf patients to understand auditory speech; however, the implants deliver only a coarse auditory input and patients must use long-term adaptive processes to achieve coherent percepts. In adults with post-lingual deafness, the high progress of speech recovery is observed during the first year after cochlear implantation, but there is a large range of variability in the level of cochlear implant outcomes and the temporal evolution of recovery. It has been proposed that when profoundly deaf subjects receive a cochlear implant, the visual cross-modal reorganization of the brain is deleterious for auditory speech recovery. We tested this hypothesis in post-lingually deaf adults by analysing whether brain activity shortly after implantation correlated with the level of auditory recovery 6 months later. Based on brain activity induced by a speech-processing task, we found strong positive correlations in areas outside the auditory cortex. The highest positive correlations were found in the occipital cortex involved in visual processing, as well as in the posterior-temporal cortex known for audio-visual integration. The other area, which positively correlated with auditory speech recovery, was localized in the left inferior frontal area known for speech processing. Our results demonstrate that the visual modality's functional level is related to the proficiency level of auditory recovery. Based on the positive correlation of visual activity with auditory speech recovery, we suggest that visual modality may facilitate the perception of the word's auditory counterpart in communicative situations. The link demonstrated between visual activity and auditory speech perception indicates that visuoauditory synergy is crucial for cross-modal plasticity and fostering speech-comprehension recovery in adult cochlear-implanted deaf patients.

  6. Activations in temporal areas using visual and auditory naming stimuli: A language fMRI study in temporal lobe epilepsy.

    PubMed

    Gonzálvez, Gloria G; Trimmel, Karin; Haag, Anja; van Graan, Louis A; Koepp, Matthias J; Thompson, Pamela J; Duncan, John S

    2016-12-01

    Verbal fluency functional MRI (fMRI) is used for predicting language deficits after anterior temporal lobe resection (ATLR) for temporal lobe epilepsy (TLE), but primarily engages frontal lobe areas. In this observational study we investigated fMRI paradigms using visual and auditory stimuli, which predominately involve language areas resected during ATLR. Twenty-three controls and 33 patients (20 left (LTLE), 13 right (RTLE)) were assessed using three fMRI paradigms: verbal fluency, auditory naming with a contrast of auditory reversed speech; picture naming with a contrast of scrambled pictures and blurred faces. Group analysis showed bilateral temporal activations for auditory naming and picture naming. Correcting for auditory and visual input (by subtracting activations resulting from auditory reversed speech and blurred pictures/scrambled faces respectively) resulted in left-lateralised activations for patients and controls, which was more pronounced for LTLE compared to RTLE patients. Individual subject activations at a threshold of T>2.5, extent >10 voxels, showed that verbal fluency activated predominantly the left inferior frontal gyrus (IFG) in 90% of LTLE, 92% of RTLE, and 65% of controls, compared to right IFG activations in only 15% of LTLE and RTLE and 26% of controls. Middle temporal (MTG) or superior temporal gyrus (STG) activations were seen on the left in 30% of LTLE, 23% of RTLE, and 52% of controls, and on the right in 15% of LTLE, 15% of RTLE, and 35% of controls. Auditory naming activated temporal areas more frequently than did verbal fluency (LTLE: 93%/73%; RTLE: 92%/58%; controls: 82%/70% (left/right)). Controlling for auditory input resulted in predominantly left-sided temporal activations. Picture naming resulted in temporal lobe activations less frequently than did auditory naming (LTLE 65%/55%; RTLE 53%/46%; controls 52%/35% (left/right)). Controlling for visual input had left-lateralising effects. Auditory and picture naming activated temporal lobe structures, which are resected during ATLR, more frequently than did verbal fluency. Controlling for auditory and visual input resulted in more left-lateralised activations. We hypothesise that these paradigms may be more predictive of postoperative language decline than verbal fluency fMRI. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Antimasking aspects of harp seal (Pagophilus groenlandicus) underwater vocalizations.

    PubMed

    Serrano, Arturo; Terhune, John M

    2002-12-01

    Underwater sounds are very important in social communication of harp seals (Pagophilus groenlandicus) because they are the main means of long- and short-distance communication. Individual harp seals must try to avoid being masked and emit only those calls that will benefit them. Underwater vocalizations of harp seals were recorded during the breeding season. The physical characteristics associated with antimasking attributes of 16 call types were examined. Rising frequency or increasing amplitude within calls were not common. Most of the calls ended abruptly (range 145-966 dB/s), but call onset was more gradual. At high calling rates (95.1-135 calls/min) there were significantly more calls overlapping temporally than at medium (75.1-95 calls/min) or low (35-75 calls/min) calling rates, but even at the highest calling rates, 79.1% of the calls were not overlapped. When 2, 3, or 4 calls overlapped, there were significantly fewer frequency separations of less than 1/3 octave than would be expected by chance. This is important because sounds that are separated by less than 1/3 octave likely mask each other. When 2-4 calls are occurring simultaneously, only 4.5% to 14.2% are masked by virtue of being within 1/3 octave from their nearest neighbor. None of the overlappping calls was of the same type. This suggests that the seals are actively listening to each other's calls and are not randomly using the different call types. Harp seals use frequency and temporal separation in conjunction with a wide vocal repertoire to avoid masking each other.

  8. Antimasking aspects of harp seal (Pagophilus groenlandicus) underwater vocalizations

    NASA Astrophysics Data System (ADS)

    Serrano, Arturo; Terhune, John M.

    2002-12-01

    Underwater sounds are very important in social communication of harp seals (Pagophilus groenlandicus) because they are the main means of long- and short-distance communication. Individual harp seals must try to avoid being masked and emit only those calls that will benefit them. Underwater vocalizations of harp seals were recorded during the breeding season. The physical characteristics associated with antimasking attributes of 16 call types were examined. Rising frequency or increasing amplitude within calls were not common. Most of the calls ended abruptly (range 145-966 dB/s), but call onset was more gradual. At high calling rates (95.1-135 calls/min) there were significantly more calls overlapping temporally than at medium (75.1-95 calls/min) or low (35-75 calls/min) calling rates, but even at the highest calling rates, 79.1% of the calls were not overlapped. When 2, 3, or 4 calls overlapped, there were significantly fewer frequency separations of less than 1/3 octave than would be expected by chance. This is important because sounds that are separated by less than 1/3 octave likely mask each other. When 2-4 calls are occurring simultaneously, only 4.5% to 14.2% are masked by virtue of being within 1/3 octave from their nearest neighbor. None of the overlappping calls was of the same type. This suggests that the seals are actively listening to each other's calls and are not randomly using the different call types. Harp seals use frequency and temporal separation in conjunction with a wide vocal repertoire to avoid masking each other.

  9. Spatial and Temporal Eye–Hand Coordination Relies on the Parietal Reach Region

    PubMed Central

    Hauschild, Markus; Wilke, Melanie; Andersen, Richard A.

    2014-01-01

    Coordinated eye movements are crucial for precision control of our hands. A commonly believed neural mechanism underlying eye–hand coordination is interaction between the neural networks controlling each effector, exchanging, and matching information, such as movement target location and onset time. Alternatively, eye–hand coordination may result simply from common inputs to independent eye and hand control pathways. Thus far, it remains unknown whether and where either of these two possible mechanisms exists. A candidate location for the former mechanism, interpathway communication, includes the posterior parietal cortex (PPC) where distinct effector-specific areas reside. If the PPC were within the network for eye–hand coordination, perturbing it would affect both eye and hand movements that are concurrently planned. In contrast, if eye–hand coordination arises solely from common inputs, perturbing one effector pathway, e.g., the parietal reach region (PRR), would not affect the other effector. To test these hypotheses, we inactivated part of PRR in the macaque, located in the medial bank of the intraparietal sulcus encompassing the medial intraparietal area and area 5V. When each effector moved alone, PRR inactivation shortened reach but not saccade amplitudes, compatible with the known reach-selective activity of PRR. However, when both effectors moved concurrently, PRR inactivation shortened both reach and saccade amplitudes, and decoupled their reaction times. Therefore, consistent with the interpathway communication hypothesis, we propose that the planning of concurrent eye and hand movements causes the spatial information in PRR to influence the otherwise independent eye control pathways, and that their temporal coupling requires an intact PRR. PMID:25232123

  10. Common modulation of limbic network activation underlies musical emotions as they unfold.

    PubMed

    Singer, Neomi; Jacoby, Nori; Lin, Tamar; Raz, Gal; Shpigelman, Lavi; Gilam, Gadi; Granot, Roni Y; Hendler, Talma

    2016-11-01

    Music is a powerful means for communicating emotions among individuals. Here we reveal that this continuous stream of affective information is commonly represented in the brains of different listeners and that particular musical attributes mediate this link. We examined participants' brain responses to two naturalistic musical pieces using functional Magnetic Resonance imaging (fMRI). Following scanning, as participants listened to the musical pieces for a second time, they continuously indicated their emotional experience on scales of valence and arousal. These continuous reports were used along with a detailed annotation of the musical features, to predict a novel index of Dynamic Common Activation (DCA) derived from ten large-scale data-driven functional networks. We found an association between the unfolding music-induced emotionality and the DCA modulation within a vast network of limbic regions. The limbic-DCA modulation further corresponded with continuous changes in two temporal musical features: beat-strength and tempo. Remarkably, this "collective limbic sensitivity" to temporal features was found to mediate the link between limbic-DCA and the reported emotionality. An additional association with the emotional experience was found in a left fronto-parietal network, but only among a sub-group of participants with a high level of musical experience (>5years). These findings may indicate two processing-levels underlying the unfolding of common music emotionality; (1) a widely shared core-affective process that is confined to a limbic network and mediated by temporal regularities in music and (2) an experience based process that is rooted in a left fronto-parietal network that may involve functioning of the 'mirror-neuron system'. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Adaptive Management Approach to Oil and Gas Activities in Areas Occupied by Pacific Walrus

    NASA Astrophysics Data System (ADS)

    Ireland, D.; Broker, K.; San Filippo, V.; Brzuzy, L.; Morse, L.

    2016-12-01

    During Shell's 2015 exploration drilling program in the Chukchi Sea, activities were conducted in accordance with a Letter of Authorization issued by the United States Fish and Wildlife Service that allowed the incidental harassment of Pacific Walrus and Polar Bears under the Marine Mammal Protection Act. As a part of the request for authorization, Shell proposed a process to monitor and assess the potential for activities to interact with walruses on ice, especially if ice posed a potential threat to the drill site. The process assimilated near real-time information from multiple data sources including vessel-based observations, aerial surveys, satellite-linked GPS tags on walrus, and satellite imagery of ice conditions and movements. These data were reviewed daily and assessed in the context of planned activities to assign a risk level (low, medium, or high). The risk level was communicated to all assets in the field and decision makers during morning briefings. A low risk level meant that planned activities could occur without further review. A medium risk level meant that some operations had a greater potential of interacting with walrus on ice and that additional discussions of those activities were required to determine the relative risk of potential impacts compare to the importance of the planned activity. A high risk level meant that the planned activities were necessary and walrus on ice were likely to be encountered. Assignment of a high risk level triggered contact with agency personnel and directly incorporated them into the assessment and decision making process. This process made effective use of relevant available information to provide meaningful assessments at temporal and spatial scales that allowed approved activities to proceed while minimizing potential impacts. More so, this process provides a valuable alternative to large-scale restriction areas with coarse temporal resolution without reducing protection to target species.

  12. Adaptive Management Approach to Oil and Gas Activities in Areas Occupied by Pacific Walrus

    NASA Astrophysics Data System (ADS)

    Ireland, D.; Broker, K.; San Filippo, V.; Brzuzy, L.; Morse, L.

    2016-02-01

    During Shell's 2015 exploration drilling program in the Chukchi Sea, activities were conducted in accordance with a Letter of Authorization issued by the United States Fish and Wildlife Service that allowed the incidental harassment of Pacific Walrus and Polar Bears under the Marine Mammal Protection Act. As a part of the request for authorization, Shell proposed a process to monitor and assess the potential for activities to interact with walruses on ice, especially if ice posed a potential threat to the drill site. The process assimilated near real-time information from multiple data sources including vessel-based observations, aerial surveys, satellite-linked GPS tags on walrus, and satellite imagery of ice conditions and movements. These data were reviewed daily and assessed in the context of planned activities to assign a risk level (low, medium, or high). The risk level was communicated to all assets in the field and decision makers during morning briefings. A low risk level meant that planned activities could occur without further review. A medium risk level meant that some operations had a greater potential of interacting with walrus on ice and that additional discussions of those activities were required to determine the relative risk of potential impacts compare to the importance of the planned activity. A high risk level meant that the planned activities were necessary and walrus on ice were likely to be encountered. Assignment of a high risk level triggered contact with agency personnel and directly incorporated them into the assessment and decision making process. This process made effective use of relevant available information to provide meaningful assessments at temporal and spatial scales that allowed approved activities to proceed while minimizing potential impacts. More so, this process provides a valuable alternative to large-scale restriction areas with coarse temporal resolution without reducing protection to target species.

  13. Connecting multimodality in human communication

    PubMed Central

    Regenbogen, Christina; Habel, Ute; Kellermann, Thilo

    2013-01-01

    A successful reciprocal evaluation of social signals serves as a prerequisite for social coherence and empathy. In a previous fMRI study we studied naturalistic communication situations by presenting video clips to our participants and recording their behavioral responses regarding empathy and its components. In two conditions, all three channels transported congruent emotional or neutral information, respectively. Three conditions selectively presented two emotional channels and one neutral channel and were thus bimodally emotional. We reported channel-specific emotional contributions in modality-related areas, elicited by dynamic video clips with varying combinations of emotionality in facial expressions, prosody, and speech content. However, to better understand the underlying mechanisms accompanying a naturalistically displayed human social interaction in some key regions that presumably serve as specific processing hubs for facial expressions, prosody, and speech content, we pursued a reanalysis of the data. Here, we focused on two different descriptions of temporal characteristics within these three modality-related regions [right fusiform gyrus (FFG), left auditory cortex (AC), left angular gyrus (AG) and left dorsomedial prefrontal cortex (dmPFC)]. By means of a finite impulse response (FIR) analysis within each of the three regions we examined the post-stimulus time-courses as a description of the temporal characteristics of the BOLD response during the video clips. Second, effective connectivity between these areas and the left dmPFC was analyzed using dynamic causal modeling (DCM) in order to describe condition-related modulatory influences on the coupling between these regions. The FIR analysis showed initially diminished activation in bimodally emotional conditions but stronger activation than that observed in neutral videos toward the end of the stimuli, possibly by bottom-up processes in order to compensate for a lack of emotional information. The DCM analysis instead showed a pronounced top-down control. Remarkably, all connections from the dmPFC to the three other regions were modulated by the experimental conditions. This observation is in line with the presumed role of the dmPFC in the allocation of attention. In contrary, all incoming connections to the AG were modulated, indicating its key role in integrating multimodal information and supporting comprehension. Notably, the input from the FFG to the AG was enhanced when facial expressions conveyed emotional information. These findings serve as preliminary results in understanding network dynamics in human emotional communication and empathy. PMID:24265613

  14. Connecting multimodality in human communication.

    PubMed

    Regenbogen, Christina; Habel, Ute; Kellermann, Thilo

    2013-01-01

    A successful reciprocal evaluation of social signals serves as a prerequisite for social coherence and empathy. In a previous fMRI study we studied naturalistic communication situations by presenting video clips to our participants and recording their behavioral responses regarding empathy and its components. In two conditions, all three channels transported congruent emotional or neutral information, respectively. Three conditions selectively presented two emotional channels and one neutral channel and were thus bimodally emotional. We reported channel-specific emotional contributions in modality-related areas, elicited by dynamic video clips with varying combinations of emotionality in facial expressions, prosody, and speech content. However, to better understand the underlying mechanisms accompanying a naturalistically displayed human social interaction in some key regions that presumably serve as specific processing hubs for facial expressions, prosody, and speech content, we pursued a reanalysis of the data. Here, we focused on two different descriptions of temporal characteristics within these three modality-related regions [right fusiform gyrus (FFG), left auditory cortex (AC), left angular gyrus (AG) and left dorsomedial prefrontal cortex (dmPFC)]. By means of a finite impulse response (FIR) analysis within each of the three regions we examined the post-stimulus time-courses as a description of the temporal characteristics of the BOLD response during the video clips. Second, effective connectivity between these areas and the left dmPFC was analyzed using dynamic causal modeling (DCM) in order to describe condition-related modulatory influences on the coupling between these regions. The FIR analysis showed initially diminished activation in bimodally emotional conditions but stronger activation than that observed in neutral videos toward the end of the stimuli, possibly by bottom-up processes in order to compensate for a lack of emotional information. The DCM analysis instead showed a pronounced top-down control. Remarkably, all connections from the dmPFC to the three other regions were modulated by the experimental conditions. This observation is in line with the presumed role of the dmPFC in the allocation of attention. In contrary, all incoming connections to the AG were modulated, indicating its key role in integrating multimodal information and supporting comprehension. Notably, the input from the FFG to the AG was enhanced when facial expressions conveyed emotional information. These findings serve as preliminary results in understanding network dynamics in human emotional communication and empathy.

  15. Signal interactions and interference in insect choruses: singing and listening in the social environment.

    PubMed

    Greenfield, Michael D

    2015-01-01

    Acoustic insects usually sing amidst conspecifics, thereby creating a social environment-the chorus-in which individuals communicate, find mates, and avoid predation. A temporal structure may arise in a chorus because of competitive and cooperative factors that favor certain signal interactions between neighbors. This temporal structure can generate significant acoustic interference among singers that pose problems for communication, mate finding, and predator detection. Acoustic insects can reduce interference by means of selective attention to only their nearest neighbors and by alternating calls with neighbors. Alternatively, they may synchronize, allowing them to preserve call rhythm and also to listen for predators during the silent intervals between calls. Moreover, males singing in choruses may benefit from reduced per capita predation risk as well as enhanced vigilance. They may also enjoy greater per capita attractiveness to females, particularly in the case of synchronous choruses. In many cases, however, the overall temporal structure of the chorus is only an emergent property of simple, pairwise interactions between neighbors. Nonetheless, the chorus that emerges can impose significant selection pressure on the singing of those individual males. Thus, feedback loops may occur and potentially influence traits at both individual and group levels in a chorus.

  16. Constructive biology and approaches to temporal grounding in postreactive robotics

    NASA Astrophysics Data System (ADS)

    Nehaniv, Chrystopher L.; Dautenhahn, Kerstin; Loomes, Martin J.

    1999-08-01

    Constructive Biology means understanding biological mechanisms through building systems that exhibit life-like properties. Applications include learning engineering tricks from biological system, as well as the validation in biological modeling. In particular, biological system in the course of development and experience become temporally grounded. Researchers attempting to transcend mere reactivity have been inspired by the drives, motivations, homeostasis, hormonal control, and emotions of animals. In order to contextualize and modulate behavior, these ideas have been introduced into robotics and synthetic agents, while further flexibility is achieved by introducing learning. Broadening scope of the temporal horizon further requires post-reactive techniques that address not only the action in the now, although such action may perhaps be modulated by drives and affect. Support is needed for expressing and benefitting from pats experiences, predictions of the future, and form interaction histories of the self with the world and with other agents. Mathematical methods provide a new way to support such grounding in the construction of post-reactive systems. Moreover, the communication of such mathematical encoded histories of experience between situated agents opens a route to narrative intelligence, analogous to communication or story telling in societies.

  17. Nonlinear compression of temporal solitons in an optical waveguide via inverse engineering

    NASA Astrophysics Data System (ADS)

    Paul, Koushik; Sarma, Amarendra K.

    2018-03-01

    We propose a novel method based on the so-called shortcut-to-adiabatic passage techniques to achieve fast compression of temporal solitons in a nonlinear waveguide. We demonstrate that soliton compression could be achieved, in principle, at an arbitrarily small distance by inverse-engineering the pulse width and the nonlinearity of the medium. The proposed scheme could possibly be exploited for various short-distance communication protocols and may be even in nonlinear guided wave-optics devices and generation of ultrashort soliton pulses.

  18. Using virtual robot-mediated play activities to assess cognitive skills.

    PubMed

    Encarnação, Pedro; Alvarez, Liliana; Rios, Adriana; Maya, Catarina; Adams, Kim; Cook, Al

    2014-05-01

    To evaluate the feasibility of using virtual robot-mediated play activities to assess cognitive skills. Children with and without disabilities utilized both a physical robot and a matching virtual robot to perform the same play activities. The activities were designed such that successfully performing them is an indication of understanding of the underlying cognitive skills. Participants' performance with both robots was similar when evaluated by the success rates in each of the activities. Session video analysis encompassing participants' behavioral, interaction and communication aspects revealed differences in sustained attention, visuospatial and temporal perception, and self-regulation, favoring the virtual robot. The study shows that virtual robots are a viable alternative to the use of physical robots for assessing children's cognitive skills, with the potential of overcoming limitations of physical robots such as cost, reliability and the need for on-site technical support. Virtual robots can provide a vehicle for children to demonstrate cognitive understanding. Virtual and physical robots can be used as augmentative manipulation tools allowing children with disabilities to actively participate in play, educational and therapeutic activities. Virtual robots have the potential of overcoming limitations of physical robots such as cost, reliability and the need for on-site technical support.

  19. Task-dependent modulation of regions in the left temporal cortex during auditory sentence comprehension.

    PubMed

    Zhang, Linjun; Yue, Qiuhai; Zhang, Yang; Shu, Hua; Li, Ping

    2015-01-01

    Numerous studies have revealed the essential role of the left lateral temporal cortex in auditory sentence comprehension along with evidence of the functional specialization of the anterior and posterior temporal sub-areas. However, it is unclear whether task demands (e.g., active vs. passive listening) modulate the functional specificity of these sub-areas. In the present functional magnetic resonance imaging (fMRI) study, we addressed this issue by applying both independent component analysis (ICA) and general linear model (GLM) methods. Consistent with previous studies, intelligible sentences elicited greater activity in the left lateral temporal cortex relative to unintelligible sentences. Moreover, responses to intelligibility in the sub-regions were differentially modulated by task demands. While the overall activation patterns of the anterior and posterior superior temporal sulcus and middle temporal gyrus (STS/MTG) were equivalent during both passive and active tasks, a middle portion of the STS/MTG was found to be selectively activated only during the active task under a refined analysis of sub-regional contributions. Our results not only confirm the critical role of the left lateral temporal cortex in auditory sentence comprehension but further demonstrate that task demands modulate functional specialization of the anterior-middle-posterior temporal sub-areas. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Altered medial temporal activation related to local glutamate levels in subjects with prodromal signs of psychosis.

    PubMed

    Valli, Isabel; Stone, James; Mechelli, Andrea; Bhattacharyya, Sagnik; Raffin, Marie; Allen, Paul; Fusar-Poli, Paolo; Lythgoe, David; O'Gorman, Ruth; Seal, Marc; McGuire, Philip

    2011-01-01

    Both medial temporal cortical dysfunction and perturbed glutamatergic neurotransmission are regarded as fundamental pathophysiological features of psychosis. However, although animal models of psychosis suggest that these two abnormalities are interrelated, their relationship in humans has yet to be investigated. We used a combination of functional magnetic resonance imaging and magnetic resonance spectroscopy to investigate the relationship between medial temporal activation during an episodic memory task and local glutamate levels in 22 individuals with an at-risk mental state for psychosis and 14 healthy volunteers. We observed a significant between-group difference in the coupling of medial temporal activation with local glutamate levels. In control subjects, medial temporal activation during episodic encoding was positively associated with medial temporal glutamate. However, in the clinical population, medial temporal activation was reduced, and the relationship with glutamate was absent. In individuals at high risk of psychosis, medial temporal dysfunction seemed related to a loss of the normal relationship with local glutamate levels. This study provides the first evidence that links medial temporal dysfunction with the central glutamate system in humans and is consistent with evidence that drugs that modulate glutamatergic transmission might be useful in the treatment of psychosis. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  1. Time Allocation in Social Networks: Correlation Between Social Structure and Human Communication Dynamics

    NASA Astrophysics Data System (ADS)

    Miritello, Giovanna; Lara, Rubén; Moro, Esteban

    Recent research has shown the deep impact of the dynamics of human interactions (or temporal social networks) on the spreading of information, opinion formation, etc. In general, the bursty nature of human interactions lowers the interaction between people to the extent that both the speed and reach of information diffusion are diminished. Using a large database of 20 million users of mobile phone calls we show evidence this effect is not homogeneous in the social network but in fact, there is a large correlation between this effect and the social topological structure around a given individual. In particular, we show that social relations of hubs in a network are relatively weaker from the dynamical point than those that are poorer connected in the information diffusion process. Our results show the importance of the temporal patterns of communication when analyzing and modeling dynamical process on social networks.

  2. Perception of social interaction compresses subjective duration in an oxytocin-dependent manner

    PubMed Central

    2018-01-01

    Communication through body gestures permeates our daily life. Efficient perception of the message therein reflects one’s social cognitive competency. Here we report that such competency is manifested temporally as shortened subjective duration of social interactions: motion sequences showing agents acting communicatively are perceived to be significantly shorter in duration as compared with those acting noncommunicatively. The strength of this effect is negatively correlated with one’s autistic-like tendency. Critically, intranasal oxytocin administration restores the temporal compression effect in socially less proficient individuals, whereas the administration of atosiban, a competitive antagonist of oxytocin, diminishes the effect in socially proficient individuals. These findings indicate that perceived time, rather than being a faithful representation of physical time, is highly idiosyncratic and ingrained with one’s personality trait. Moreover, they suggest that oxytocin is involved in mediating time perception of social interaction, further supporting the role of oxytocin in human social cognition. PMID:29784084

  3. Perception of social interaction compresses subjective duration in an oxytocin-dependent manner.

    PubMed

    Liu, Rui; Yuan, Xiangyong; Chen, Kepu; Jiang, Yi; Zhou, Wen

    2018-05-22

    Communication through body gestures permeates our daily life. Efficient perception of the message therein reflects one's social cognitive competency. Here we report that such competency is manifested temporally as shortened subjective duration of social interactions: motion sequences showing agents acting communicatively are perceived to be significantly shorter in duration as compared with those acting noncommunicatively. The strength of this effect is negatively correlated with one's autistic-like tendency. Critically, intranasal oxytocin administration restores the temporal compression effect in socially less proficient individuals, whereas the administration of atosiban, a competitive antagonist of oxytocin, diminishes the effect in socially proficient individuals. These findings indicate that perceived time, rather than being a faithful representation of physical time, is highly idiosyncratic and ingrained with one's personality trait. Moreover, they suggest that oxytocin is involved in mediating time perception of social interaction, further supporting the role of oxytocin in human social cognition. © 2018, Liu et al.

  4. RSS Fingerprint Based Indoor Localization Using Sparse Representation with Spatio-Temporal Constraint

    PubMed Central

    Piao, Xinglin; Zhang, Yong; Li, Tingshu; Hu, Yongli; Liu, Hao; Zhang, Ke; Ge, Yun

    2016-01-01

    The Received Signal Strength (RSS) fingerprint-based indoor localization is an important research topic in wireless network communications. Most current RSS fingerprint-based indoor localization methods do not explore and utilize the spatial or temporal correlation existing in fingerprint data and measurement data, which is helpful for improving localization accuracy. In this paper, we propose an RSS fingerprint-based indoor localization method by integrating the spatio-temporal constraints into the sparse representation model. The proposed model utilizes the inherent spatial correlation of fingerprint data in the fingerprint matching and uses the temporal continuity of the RSS measurement data in the localization phase. Experiments on the simulated data and the localization tests in the real scenes show that the proposed method improves the localization accuracy and stability effectively compared with state-of-the-art indoor localization methods. PMID:27827882

  5. IpexT: Integrated Planning and Execution for Military Satellite Tele-Communications

    NASA Technical Reports Server (NTRS)

    Plaunt, Christian; Rajan, Kanna

    2004-01-01

    The next generation of military communications satellites may be designed as a fast packet-switched constellation of spacecraft able to withstand substantial bandwidth capacity fluctuation in the face of dynamic resource utilization and rapid environmental changes including jamming of communication frequencies and unstable weather phenomena. We are in the process of designing an integrated scheduling and execution tool which will aid in the analysis of the design parameters needed for building such a distributed system for nominal and battlefield communications. This paper discusses the design of such a system based on a temporal constraint posting planner/scheduler and a smart executive which can cope with a dynamic environment to make a more optimal utilization of bandwidth than the current circuit switched based approach.

  6. Estimating interevent time distributions from finite observation periods in communication networks

    NASA Astrophysics Data System (ADS)

    Kivelä, Mikko; Porter, Mason A.

    2015-11-01

    A diverse variety of processes—including recurrent disease episodes, neuron firing, and communication patterns among humans—can be described using interevent time (IET) distributions. Many such processes are ongoing, although event sequences are only available during a finite observation window. Because the observation time window is more likely to begin or end during long IETs than during short ones, the analysis of such data is susceptible to a bias induced by the finite observation period. In this paper, we illustrate how this length bias is born and how it can be corrected without assuming any particular shape for the IET distribution. To do this, we model event sequences using stationary renewal processes, and we formulate simple heuristics for determining the severity of the bias. To illustrate our results, we focus on the example of empirical communication networks, which are temporal networks that are constructed from communication events. The IET distributions of such systems guide efforts to build models of human behavior, and the variance of IETs is very important for estimating the spreading rate of information in networks of temporal interactions. We analyze several well-known data sets from the literature, and we find that the resulting bias can lead to systematic underestimates of the variance in the IET distributions and that correcting for the bias can lead to qualitatively different results for the tails of the IET distributions.

  7. Effect of temporal and spectral noise features on gap detection behavior by calling green treefrogs.

    PubMed

    Höbel, Gerlinde

    2014-10-01

    Communication plays a central role in the behavioral ecology of many animals, yet the background noise generated by large breeding aggregations may impair effective communication. A common behavioral strategy to ameliorate noise interference is gap detection, where signalers display primarily during lulls in the background noise. When attempting gap detection, signalers have to deal with the fact that the spacing and duration of silent gaps is often unpredictable, and that noise varies in its spectral composition and may thus vary in the degree in which it impacts communication. I conducted playback experiments to examine how male treefrogs deal with the problem that refraining from calling while waiting for a gap to appear limits a male's ability to attract females, yet producing calls during noise also interferes with effective sexual communication. I found that the temporal structure of noise (i.e., duration of noise and silent gap segments) had a stronger effect on male calling behavior than the spectral composition. Males placed calls predominantly during silent gaps and avoided call production during short, but not long, noise segments. This suggests that male treefrogs use a calling strategy that maximizes the production of calls without interference, yet allows for calling to persist if lulls in the background noise are infrequent. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Language Ability Predicts Cortical Structure and Covariance in Boys with Autism Spectrum Disorder.

    PubMed

    Sharda, Megha; Foster, Nicholas E V; Tryfon, Ana; Doyle-Thomas, Krissy A R; Ouimet, Tia; Anagnostou, Evdokia; Evans, Alan C; Zwaigenbaum, Lonnie; Lerch, Jason P; Lewis, John D; Hyde, Krista L

    2017-03-01

    There is significant clinical heterogeneity in language and communication abilities of individuals with Autism Spectrum Disorders (ASD). However, no consistent pathology regarding the relationship of these abilities to brain structure has emerged. Recent developments in anatomical correlation-based approaches to map structural covariance networks (SCNs), combined with detailed behavioral characterization, offer an alternative for studying these relationships. In this study, such an approach was used to study the integrity of SCNs of cortical thickness and surface area associated with language and communication, in 46 high-functioning, school-age children with ASD compared with 50 matched, typically developing controls (all males) with IQ > 75. Findings showed that there was alteration of cortical structure and disruption of fronto-temporal cortical covariance in ASD compared with controls. Furthermore, in an analysis of a subset of ASD participants, alterations in both cortical structure and covariance were modulated by structural language ability of the participants, but not communicative function. These findings indicate that structural language abilities are related to altered fronto-temporal cortical covariance in ASD, much more than symptom severity or cognitive ability. They also support the importance of better characterizing ASD samples while studying brain structure and for better understanding individual differences in language and communication abilities in ASD. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Motion and Actions in Language: Semantic Representations in Occipito-Temporal Cortex

    ERIC Educational Resources Information Center

    Humphreys, Gina F.; Newling, Katherine; Jennings, Caroline; Gennari, Silvia P.

    2013-01-01

    Understanding verbs typically activates posterior temporal regions and, in some circumstances, motion perception area V5. However, the nature and role of this activation remains unclear: does language alone indeed activate V5? And are posterior temporal representations modality-specific motion representations, or supra-modal motion-independent…

  10. The neuromechanics of hearing

    NASA Astrophysics Data System (ADS)

    Araya, Mussie K.; Brownell, William E.

    2015-12-01

    Hearing requires precise detection and coding of acoustic signals by the inner ear and equally precise communication of the information through the auditory brainstem. A membrane based motor in the outer hair cell lateral wall contributes to the transformation of sound into a precise neural code. Structural, molecular and energetic similarities between the outer hair cell and auditory brainstem neurons suggest that a similar membrane based motor may contribute to signal processing in the auditory CNS. Cooperative activation of voltage gated ion channels enhances neuronal temporal processing and increases the upper frequency limit for phase locking. We explore the possibility that membrane mechanics contribute to ion channel cooperativity as a consequence of the nearly instantaneous speed of electromechanical signaling and the fact that membrane composition and mechanics modulate ion channel function.

  11. Automatic Speech Acquisition and Recognition for Spacesuit Audio Systems

    NASA Technical Reports Server (NTRS)

    Ye, Sherry

    2015-01-01

    NASA has a widely recognized but unmet need for novel human-machine interface technologies that can facilitate communication during astronaut extravehicular activities (EVAs), when loud noises and strong reverberations inside spacesuits make communication challenging. WeVoice, Inc., has developed a multichannel signal-processing method for speech acquisition in noisy and reverberant environments that enables automatic speech recognition (ASR) technology inside spacesuits. The technology reduces noise by exploiting differences between the statistical nature of signals (i.e., speech) and noise that exists in the spatial and temporal domains. As a result, ASR accuracy can be improved to the level at which crewmembers will find the speech interface useful. System components and features include beam forming/multichannel noise reduction, single-channel noise reduction, speech feature extraction, feature transformation and normalization, feature compression, and ASR decoding. Arithmetic complexity models were developed and will help designers of real-time ASR systems select proper tasks when confronted with constraints in computational resources. In Phase I of the project, WeVoice validated the technology. The company further refined the technology in Phase II and developed a prototype for testing and use by suited astronauts.

  12. Input-output relationship in social communications characterized by spike train analysis

    NASA Astrophysics Data System (ADS)

    Aoki, Takaaki; Takaguchi, Taro; Kobayashi, Ryota; Lambiotte, Renaud

    2016-10-01

    We study the dynamical properties of human communication through different channels, i.e., short messages, phone calls, and emails, adopting techniques from neuronal spike train analysis in order to characterize the temporal fluctuations of successive interevent times. We first measure the so-called local variation (LV) of incoming and outgoing event sequences of users and find that these in- and out-LV values are positively correlated for short messages and uncorrelated for phone calls and emails. Second, we analyze the response-time distribution after receiving a message to focus on the input-output relationship in each of these channels. We find that the time scales and amplitudes of response differ between the three channels. To understand the effects of the response-time distribution on the correlations between the LV values, we develop a point process model whose activity rate is modulated by incoming and outgoing events. Numerical simulations of the model indicate that a quick response to incoming events and a refractory effect after outgoing events are key factors to reproduce the positive LV correlations.

  13. Computational memory architectures for autobiographic agents interacting in a complex virtual environment: a working model

    NASA Astrophysics Data System (ADS)

    Ho, Wan Ching; Dautenhahn, Kerstin; Nehaniv, Chrystopher

    2008-03-01

    In this paper, we discuss the concept of autobiographic agent and how memory may extend an agent's temporal horizon and increase its adaptability. These concepts are applied to an implementation of a scenario where agents are interacting in a complex virtual artificial life environment. We present computational memory architectures for autobiographic virtual agents that enable agents to retrieve meaningful information from their dynamic memories which increases their adaptation and survival in the environment. The design of the memory architectures, the agents, and the virtual environment are described in detail. Next, a series of experimental studies and their results are presented which show the adaptive advantage of autobiographic memory, i.e. from remembering significant experiences. Also, in a multi-agent scenario where agents can communicate via stories based on their autobiographic memory, it is found that new adaptive behaviours can emerge from an individual's reinterpretation of experiences received from other agents whereby higher communication frequency yields better group performance. An interface is described that visualises the memory contents of an agent. From an observer perspective, the agents' behaviours can be understood as individually structured, and temporally grounded, and, with the communication of experience, can be seen to rely on emergent mixed narrative reconstructions combining the experiences of several agents. This research leads to insights into how bottom-up story-telling and autobiographic reconstruction in autonomous, adaptive agents allow temporally grounded behaviour to emerge. The article concludes with a discussion of possible implications of this research direction for future autobiographic, narrative agents.

  14. Temporal guidance of musicians' performance movement is an acquired skill.

    PubMed

    Rodger, M W M; O'Modhrain, S; Craig, C M

    2013-04-01

    The ancillary (non-sounding) body movements made by expert musicians during performance have been shown to indicate expressive, emotional, and structural features of the music to observers, even if the sound of the performance is absent. If such ancillary body movements are a component of skilled musical performance, then it should follow that acquiring the temporal control of such movements is a feature of musical skill acquisition. This proposition is tested using measures derived from a theory of temporal guidance of movement, "General Tau Theory" (Lee in Ecol Psychol 10:221-250, 1998; Lee et al. in Exp Brain Res 139:151-159, 2001), to compare movements made during performances of intermediate-level clarinetists before and after learning a new piece of music. Results indicate that the temporal control of ancillary body movements made by participants was stronger in performances after the music had been learned and was closer to the measures of temporal control found for an expert musician's movements. These findings provide evidence that the temporal control of musicians' ancillary body movements develops with musical learning. These results have implications for other skillful behaviors and nonverbal communication.

  15. Flow motifs reveal limitations of the static framework to represent human interactions

    NASA Astrophysics Data System (ADS)

    Rocha, Luis E. C.; Blondel, Vincent D.

    2013-04-01

    Networks are commonly used to define underlying interaction structures where infections, information, or other quantities may spread. Although the standard approach has been to aggregate all links into a static structure, some studies have shown that the time order in which the links are established may alter the dynamics of spreading. In this paper, we study the impact of the time ordering in the limits of flow on various empirical temporal networks. By using a random walk dynamics, we estimate the flow on links and convert the original undirected network (temporal and static) into a directed flow network. We then introduce the concept of flow motifs and quantify the divergence in the representativity of motifs when using the temporal and static frameworks. We find that the regularity of contacts and persistence of vertices (common in email communication and face-to-face interactions) result on little differences in the limits of flow for both frameworks. On the other hand, in the case of communication within a dating site and of a sexual network, the flow between vertices changes significantly in the temporal framework such that the static approximation poorly represents the structure of contacts. We have also observed that cliques with 3 and 4 vertices containing only low-flow links are more represented than the same cliques with all high-flow links. The representativity of these low-flow cliques is higher in the temporal framework. Our results suggest that the flow between vertices connected in cliques depend on the topological context in which they are placed and in the time sequence in which the links are established. The structure of the clique alone does not completely characterize the potential of flow between the vertices.

  16. The First Call Note Plays a Crucial Role in Frog Vocal Communication.

    PubMed

    Yue, Xizi; Fan, Yanzhu; Xue, Fei; Brauth, Steven E; Tang, Yezhong; Fang, Guangzhan

    2017-08-31

    Vocal Communication plays a crucial role in survival and reproductive success in most amphibian species. Although amphibian communication sounds are often complex consisting of many temporal features, we know little about the biological significance of each temporal component. The present study examined the biological significance of notes of the male advertisement calls of the Emei music frog (Babina daunchina) using the optimized electroencephalogram (EEG) paradigm of mismatch negativity (MMN). Music frog calls generally contain four to six notes separated approximately by 150 millisecond intervals. A standard stimulus (white noise) and five deviant stimuli (five notes from one advertisement call) were played back to each subject while simultaneously recording multi-channel EEG signals. The results showed that the MMN amplitude for the first call note was significantly larger than for that of the others. Moreover, the MMN amplitudes evoked from the left forebrain and midbrain were typically larger than those from the right counterpart. These results are consistent with the ideas that the first call note conveys more information than the others for auditory recognition and that there is left-hemisphere dominance for processing information derived from conspecific calls in frogs.

  17. Uncertainty in Citizen Science observations: from measurement to user perception

    NASA Astrophysics Data System (ADS)

    Lahoz, William; Schneider, Philipp; Castell, Nuria

    2016-04-01

    Citizen Science activities concern general public engagement in scientific research activities when citizens actively contribute to science either with their intellectual effort or surrounding knowledge or with their tools and resources. The advent of technologies such as the Internet and smartphones, and the growth in their usage, has significantly increased the potential benefits from Citizen Science activities. Citizen Science observations from low-cost sensors, smartphones and Citizen Observatories, provide a novel and recent development in platforms for observing the Earth System, with the opportunity to extend the range of observational platforms available to society to spatio-temporal scales (10-100s m; 1 hr or less) highly relevant to citizen needs. The potential value of Citizen Science is high, with applications in science, education, social aspects, and policy aspects, but this potential, particularly for citizens and policymakers, remains largely untapped. Key areas where Citizen Science data start to have demonstrable benefits include GEOSS Societal Benefit Areas such as Health and Weather. Citizen Science observations have many challenges, including simulation of smaller spatial scales, noisy data, combination with traditional observational methods (satellite and in situ data), and assessment, representation and visualization of uncertainty. Within these challenges, that of the assessment and representation of uncertainty and its communication to users is fundamental, as it provides qualitative and/or quantitative information that influences the belief users will have in environmental information. This presentation will discuss the challenges in assessment and representation of uncertainty in Citizen Science observations, its communication to users, including the use of visualization, and the perception of this uncertainty information by users of Citizen Science observations.

  18. Giving speech a hand: gesture modulates activity in auditory cortex during speech perception.

    PubMed

    Hubbard, Amy L; Wilson, Stephen M; Callan, Daniel E; Dapretto, Mirella

    2009-03-01

    Viewing hand gestures during face-to-face communication affects speech perception and comprehension. Despite the visible role played by gesture in social interactions, relatively little is known about how the brain integrates hand gestures with co-occurring speech. Here we used functional magnetic resonance imaging (fMRI) and an ecologically valid paradigm to investigate how beat gesture-a fundamental type of hand gesture that marks speech prosody-might impact speech perception at the neural level. Subjects underwent fMRI while listening to spontaneously-produced speech accompanied by beat gesture, nonsense hand movement, or a still body; as additional control conditions, subjects also viewed beat gesture, nonsense hand movement, or a still body all presented without speech. Validating behavioral evidence that gesture affects speech perception, bilateral nonprimary auditory cortex showed greater activity when speech was accompanied by beat gesture than when speech was presented alone. Further, the left superior temporal gyrus/sulcus showed stronger activity when speech was accompanied by beat gesture than when speech was accompanied by nonsense hand movement. Finally, the right planum temporale was identified as a putative multisensory integration site for beat gesture and speech (i.e., here activity in response to speech accompanied by beat gesture was greater than the summed responses to speech alone and beat gesture alone), indicating that this area may be pivotally involved in synthesizing the rhythmic aspects of both speech and gesture. Taken together, these findings suggest a common neural substrate for processing speech and gesture, likely reflecting their joint communicative role in social interactions.

  19. Giving Speech a Hand: Gesture Modulates Activity in Auditory Cortex During Speech Perception

    PubMed Central

    Hubbard, Amy L.; Wilson, Stephen M.; Callan, Daniel E.; Dapretto, Mirella

    2008-01-01

    Viewing hand gestures during face-to-face communication affects speech perception and comprehension. Despite the visible role played by gesture in social interactions, relatively little is known about how the brain integrates hand gestures with co-occurring speech. Here we used functional magnetic resonance imaging (fMRI) and an ecologically valid paradigm to investigate how beat gesture – a fundamental type of hand gesture that marks speech prosody – might impact speech perception at the neural level. Subjects underwent fMRI while listening to spontaneously-produced speech accompanied by beat gesture, nonsense hand movement, or a still body; as additional control conditions, subjects also viewed beat gesture, nonsense hand movement, or a still body all presented without speech. Validating behavioral evidence that gesture affects speech perception, bilateral nonprimary auditory cortex showed greater activity when speech was accompanied by beat gesture than when speech was presented alone. Further, the left superior temporal gyrus/sulcus showed stronger activity when speech was accompanied by beat gesture than when speech was accompanied by nonsense hand movement. Finally, the right planum temporale was identified as a putative multisensory integration site for beat gesture and speech (i.e., here activity in response to speech accompanied by beat gesture was greater than the summed responses to speech alone and beat gesture alone), indicating that this area may be pivotally involved in synthesizing the rhythmic aspects of both speech and gesture. Taken together, these findings suggest a common neural substrate for processing speech and gesture, likely reflecting their joint communicative role in social interactions. PMID:18412134

  20. User requirements for geo-collaborative work with spatio-temporal data in a web-based virtual globe environment.

    PubMed

    Yovcheva, Zornitza; van Elzakker, Corné P J M; Köbben, Barend

    2013-11-01

    Web-based tools developed in the last couple of years offer unique opportunities to effectively support scientists in their effort to collaborate. Communication among environmental researchers often involves not only work with geographical (spatial), but also with temporal data and information. Literature still provides limited documentation when it comes to user requirements for effective geo-collaborative work with spatio-temporal data. To start filling this gap, our study adopted a User-Centered Design approach and first explored the user requirements of environmental researchers working on distributed research projects for collaborative dissemination, exchange and work with spatio-temporal data. Our results show that system design will be mainly influenced by the nature and type of data users work with. From the end-users' perspective, optimal conversion of huge files of spatio-temporal data for further dissemination, accuracy of conversion, organization of content and security have a key role for effective geo-collaboration. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  1. Forum: Communication Activism Pedagogy. Turning Communication Activism Pedagogy Teaching into Communication Activism Pedagogy Research

    ERIC Educational Resources Information Center

    Frey, Lawrence R.; Palmer, David L.

    2017-01-01

    In this rejoinder to this forum's respondents to the stimulus essay, "Communication Activism Pedagogy and Research: Communication Education Scholarship to Promote Social Justice," Lawrence Frey and David Palmer state that the forum editors asked them and the invited respondents to focus on communication activism pedagogy (CAP) research…

  2. Propagation and switching of light in rectangular waveguiding structures

    NASA Astrophysics Data System (ADS)

    Sala, Anca L.

    1998-10-01

    In this dissertation, we investigate the conditions for the propagation and processing of temporal optical solitons in the rectangular geometry waveguides which are expected to play an important role as processing elements in optical communication systems. It is anticipated that the optical signals carrying information through optical fibers will be in the form of temporal soliton pulses, which can propagate undistorted for long distances under the condition that the dispersion is balanced by a nonlinearity in the optical fiber. An important parameter in the equation that governs temporal soliton propagation in a waveguide is the second derivative of the propagation vector with respect to the angular frequency, /omega, denoted by β/prime'. We evaluate β/prime' for rectangular waveguides using a channel model of the waveguide, which takes into account the two transverse dimensions of the rectangular channel. Significant differences are found in the values of β/prime' obtained from our model and those obtained from the more traditional, one dimensional slab model. A major additional effort in the present thesis relates to the development of a theory of temporal soliton switching in a planar geometry nonlinear directional coupler. The theory is formulated in terms of the supermodes of the total structure, and again accounts for the two transverse dimensions of the channels. To accurately determine the coupling length and switching power of the nonlinear coupler, we apply corrections to the propagation constants of the supermodes that account for the non-zero electromagnetic fields in the outer corner regions of the waveguide channels. It is shown for the case of a SiO2 based nonlinear directional coupler operating at the central wavelength of 1.55 μm, that these corrections have a significant effect on both the coupling length and the switching power. Finally, we develop the conditions under which single mode rectangular waveguides can have zero dispersion at the optical communications wavelengths 1.31 μm or 1.55 μm, and discuss the end-to-end coupling of rectangular waveguides to the standard optical fibers used in optical communications. Our results are expected to serve as a guide for the design of planar geometry based processing elements in a variety of optical communications devices.

  3. The temporal organization of behavior on periodic food schedules.

    PubMed Central

    Reid, A K; Bacha, G; Morán, C

    1993-01-01

    Various theories of temporal control and schedule induction imply that periodic schedules temporally modulate an organism's motivational states within interreinforcement intervals. This speculation has been fueled by frequently observed multimodal activity distributions created by averaging across interreinforcement intervals. We tested this hypothesis by manipulating the cost associated with schedule-induced activities and the availability of other activities to determine the degree to which (a) the temporal distributions of activities within the interreinforcement interval are fixed or can be temporally displaced, (b) rats can reallocate activities across different interreinforcement intervals, and (c) noninduced activities can substitute for schedule-induced activities. Obtained multimodal activity distributions created by averaging across interreinforcement intervals were not representative of the transitions occurring within individual intervals, so the averaged multimodal distributions should not be assumed to represent changes in the subject's motivational states within the interval. Rather, the multimodal distributions often result from averaging across interreinforcement intervals in which only a single activity occurs. A direct influence of the periodic schedule on the motivational states implies that drinking and running should occur at different periods within the interval, but in three experiments the starting times of drinking and running within interreinforcement intervals were equal. Thus, the sequential pattern of drinking and running on periodic schedules does not result from temporal modulation of motivational states within interreinforcement intervals. PMID:8433061

  4. The neurologist facing pain in dementia.

    PubMed

    Álvaro González, Luis Carlos

    2015-01-01

    Ageing, a common background in dementia, is usually associated with painful disorders. Nevertheless, the use of analgesics is limited due to poor communication. On the other hand, dementia lesions are placed in the nociceptive pathways. For this reason, the painful experience becomes different and distinctive for every lesional type. The lateral nociceptive pathway (lateral thalamic nuclei and primary parietal cortex), which is in charge of the primary pain perception, is preserved in dementia. Thereafter, the shear painful perception, including pain intensity and threshold, remains unmodified. Distinctly, the medial pain pathways are affected by dementia lesions. In this pathway are included: the intralaminar thalamic nuclei, the pons (locus ceruleus:LC), the mesencephalon (periaacueductal grey substance: PGS), the hypothalamus (paraventricular nuclei, mamilary tuberculum) and different areas of the parietal (primary, secondary, operculum), temporal (amigdala, hypoccampus) and frontal (anterior cingular: ACC). As a consequence, the features of pain executed by these areas will be compromised: the cognitive assessment, the mood and emotion inherent to pain, the pain memory or the autonomic responses are modified in dementia. Specifically, in Alzheimer's disease (AD) there is a reduction in the anticipatory and avoidance responses and also a flattening of the autonomic responses. These are essentially secondary to the degenerative changes in the medial temporal (pain memory) and ACC (cognitive and mood aspects) areas. In vascular dementias, there is a cortico-subcortical deafferentation secondary to the white matter lesions. The consequence is the presence of hyperpathy and hyperalgesia. In the frontotemporal dementias, there is a reduction in pain expressivity. It is linked to the lesions in the orbitofrontal and anterior temporal areas, which are responsible of the emotional aspects of pain. In Parkinson's disease, painful conditions are a common characteristic. They are attributed to an early lesion in the LC, which reduces its prominent antinociceptive activity. Finally, in the demented patients there is a lack of expectations to analgesic treatments. This means an absence of the placebo effect, which is, alongside the pharmacokinetic action, an inherent part of the analgesic response. The placebo response is related to activity in the ACC and PGS. Giving its lack, higher doses of analgesics are necessary in dementias. The assessment of pain in dementia is rather complex, which is the main reason for the scarcity of the analgesic treatment in dementias. It must be specific and systematic. For this purpose, the pain scales are a useful tool. For communicative patients, simple visual scales are helpful, meanwhile in the non-communicative patients the multidimensional scales are the most suitable. By this means, the expressive, motor, emotional, functional and social interactions are evaluated. Pain may be responsible of progression and cognitive deterioration in dementia. This evolution could be reversible, and consequently it has to be foreseen in order to implement analgesic treatment. Trying to minimize adverse events, it has to be potent but closely monitored. Copyright © 2010 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  5. Spatial and temporal episodic memory retrieval recruit dissociable functional networks in the human brain.

    PubMed

    Ekstrom, Arne D; Bookheimer, Susan Y

    2007-10-01

    Imaging, electrophysiological studies, and lesion work have shown that the medial temporal lobe (MTL) is important for episodic memory; however, it is unclear whether different MTL regions support the spatial, temporal, and item elements of episodic memory. In this study we used fMRI to examine retrieval performance emphasizing different aspects of episodic memory in the context of a spatial navigation paradigm. Subjects played a taxi-driver game ("yellowcab"), in which they freely searched for passengers and delivered them to specific landmark stores. Subjects then underwent fMRI scanning as they retrieved landmarks, spatial, and temporal associations from their navigational experience in three separate runs. Consistent with previous findings on item memory, perirhinal cortex activated most strongly during landmark retrieval compared with spatial or temporal source information retrieval. Both hippocampus and parahippocampal cortex activated significantly during retrieval of landmarks, spatial associations, and temporal order. We found, however, a significant dissociation between hippocampal and parahippocampal cortex activations, with spatial retrieval leading to greater parahippocampal activation compared with hippocampus and temporal order retrieval leading to greater hippocampal activation compared with parahippocampal cortex. Our results, coupled with previous findings, demonstrate that the hippocampus and parahippocampal cortex are preferentially recruited during temporal order and spatial association retrieval--key components of episodic "source" memory.

  6. Monitoring of sporadic plasma layers in the lower ionosphere in the communication link satellite-to-satellite

    NASA Astrophysics Data System (ADS)

    Pavelyev, Alexander; Matyugov, Stanislav; Wickert, Jens; Liou, Yuei An; Yakovlev, Oleg

    Method of global monitoring of sporadic plasma layers in the lower ionosphere is developed. In-vestigations were carried out by use of analysis of the amplitude and phase components of radio holograms obtained during the radio occultation missions CHAMP, FORMOSAT-3. Sporadic amplitude scintillation observed in RO experiments contain important information concerning the seasonal, geographical, and temporal distributions of the ionospheric disturbances and de-pend on solar activity. The geographical and seasonal distributions of sporadic layers in the lower ionosphere as function of solar activity in the period 2002-2008 years is obtained. The general number of RO events with strong amplitude variations can be used as an indicator of the ionospheric activity. We found that during 2001-2008 the daily averaged S4 index measured during CHAllenging Minisatellite Payload (CHAMP) mission depends essentially on solar ac-tivity. The maximum occurred in January 2002, minimum has been observed in summer 2008. Different temporal behavior of S4 index has been detected for polar (with latitude greater than 55 degrees) and low latitude (moderate and equatorial) regions. For polar regions S4 index is slowly decreasing with solar activity. In the low latitude areas S4 index is sharply oscillat-ing, depending on the solar ultraviolet emission variations. The geographical distribution of S4 index variations indicates different origin of ionospheric plasma disturbances in polar and low latitude areas. Origin of the plasma disturbances in the polar areas may be connected with influence of solar wind, the ultraviolet emission of the Sun may be the main cause of the ionospheric irregularities in the low latitude zone. Analysis reveals global oscillations of S4 index with the periods of 5-7 months. Analysis of these oscillations may provide additional connection with solar activity. Therefore, the S4 index of RO signal is important radio physical indicator of solar activity.

  7. A Lyapunov-based Approach for Time-Coordinated 3D Path-Following of Multiple Quadrotors in SO(3)

    DTIC Science & Technology

    2012-12-10

    January 2006. [22] T. Lee, “ Robust adaptive geometric tracking controls on so(3) with an application to the attitude dynamicsof a quadrotor uav,” 2011...in the presence of time-varying communication networks and spatial and temporal constraints. The objective is to enable n Quadrotors to track prede?ned...developing control laws to solve the Time-Coordinated 3D Path-Following task for multiple Quadrotor UAVs in the presence of time-varying communication

  8. Centrality measures in temporal networks with time series analysis

    NASA Astrophysics Data System (ADS)

    Huang, Qiangjuan; Zhao, Chengli; Zhang, Xue; Wang, Xiaojie; Yi, Dongyun

    2017-05-01

    The study of identifying important nodes in networks has a wide application in different fields. However, the current researches are mostly based on static or aggregated networks. Recently, the increasing attention to networks with time-varying structure promotes the study of node centrality in temporal networks. In this paper, we define a supra-evolution matrix to depict the temporal network structure. With using of the time series analysis, the relationships between different time layers can be learned automatically. Based on the special form of the supra-evolution matrix, the eigenvector centrality calculating problem is turned into the calculation of eigenvectors of several low-dimensional matrices through iteration, which effectively reduces the computational complexity. Experiments are carried out on two real-world temporal networks, Enron email communication network and DBLP co-authorship network, the results of which show that our method is more efficient at discovering the important nodes than the common aggregating method.

  9. Airy pulse shaping using time-dependent power-law potentials

    NASA Astrophysics Data System (ADS)

    Han, Tianwen; Chen, Hao; Qin, Chengzhi; Li, Wenwan; Wang, Bing; Lu, Peixiang

    2018-06-01

    We investigate the temporal and spectral evolutions of finite-energy Airy pulses in the presence of power-law optical potentials. The potentials are generated by the time-dependent pumped light, which propagates together with the Airy pulses in a highly nonlinear optical fiber. We show that the intrinsic acceleration of Airy pulses can be modified by an external force that stems from a linear potential, and hence unidirectional frequency shift can be realized. When a triangle potential is employed, the pulse will exhibit self-splitting both in temporal and spectral domains. Additionally, as a parabolic potential is utilized, both the temporal waveform and frequency spectrum of the Airy pulse will exchange alternately between the Airy and Gaussian profiles. By using higher-order power-law potentials, we also realize both revival and antirevival effects for the Airy pulses. The study may find wide applications in pulse reshaping and spectral-temporal imaging for both optical communication and signal processing.

  10. Riemann sum method for non-line-of-sight ultraviolet communication in noncoplanar geometry

    NASA Astrophysics Data System (ADS)

    Song, Peng; Zhou, Xianli; Song, Fei; Zhao, Taifei; Li, Yunhong

    2017-12-01

    The non-line-of-sight ultraviolet (UV) communication relies on the scattering common volume, however, it is difficult to carry out the triple integral operation of the scattering common volume. Based on UV single-scattering propagation theory and the spherical coordinate, we propose to use the Riemann sum method (RSM) to analyze the link path loss (PL) of UV communication system in noncoplanar geometries, and carried out related simulations. In addition, an outdoor testbed using UV light-emitting diode was set up to provide support for the validity of the RSM. When the elevation angles of the transmitter or the receiver are small, using RSM, the channel PL and temporal response of UV communication systems can be effectively and efficiently calculated. It is useful in UV embedded system design.

  11. Compact optical duplicate system for satellite-ground laser communications: application of averaging effects

    NASA Astrophysics Data System (ADS)

    Nakayama, Tomoko; Takayama, Yoshihisa; Fujikawa, Chiemi; Watanabe, Eriko; Kodate, Kashiko

    2014-09-01

    In recent years, there has been considerable interest in satellite-ground laser communication due to an increase in the quantity of data exchanged between satellites and the ground. However, improving the quality of this data communication is necessary as laser communication is vulnerable to air fluctuation. We first verify the spatial and temporal averaging effects using light beam intensity images acquired from middle-range transmission experiments between two ground positions and the superposition of these images using simulations. Based on these results, we propose a compact and lightweight optical duplicate system as a multi-beam generation device with which it is easy to apply the spatial averaging effect. Although an optical duplicate system is already used for optical correlation operations, we present optimum design solutions, design a compact optical duplicate system for satellite-ground laser communications, and demonstrate the efficacy of this system using simulations.

  12. Superior Temporal Activation as a Function of Linguistic Knowledge: Insights from Deaf Native Signers Who Speechread

    ERIC Educational Resources Information Center

    Capek, Cheryl M.; Woll, Bencie; MacSweeney, Mairead; Waters, Dafydd; McGuire, Philip K.; David, Anthony S.; Brammer, Michael J.; Campbell, Ruth

    2010-01-01

    Studies of spoken and signed language processing reliably show involvement of the posterior superior temporal cortex. This region is also reliably activated by observation of meaningless oral and manual actions. In this study we directly compared the extent to which activation in posterior superior temporal cortex is modulated by linguistic…

  13. A pipeline of spatio-temporal filtering for predicting the laterality of self-initiated fine movements from single trial readiness potentials.

    PubMed

    Zeid, Elias Abou; Sereshkeh, Alborz Rezazadeh; Chau, Tom

    2016-12-01

    In recent years, the readiness potential (RP), a type of pre-movement neural activity, has been investigated for asynchronous electroencephalogram (EEG)-based brain-computer interfaces (BCIs). Since the RP is attenuated for involuntary movements, a BCI driven by RP alone could facilitate intentional control amid a plethora of unintentional movements. Previous studies have attempted single trial classification of RP via spatial and temporal filtering methods, or by combining the RP with event-related desynchronization. However, RP feature extraction remains challenging due to the slow non-oscillatory nature of the potential, its variability among participants and the inherent noise in EEG signals. Here, we propose a participant-specific, individually optimized pipeline of spatio-temporal filtering (PSTF) to improve RP feature extraction for laterality prediction. PSTF applies band-pass filtering on RP signals, followed by Fisher criterion spatial filtering to maximize class separation, and finally temporal window averaging for feature dimension reduction. Optimal parameters are simultaneously found by cross-validation for each participant. Using EEG data from 14 participants performing self-initiated left or right key presses as well as two benchmark BCI datasets, we compared the performance of PSTF to two popular methods: common spatial subspace decomposition, and adaptive spatio-temporal filtering. On the BCI benchmark data sets, PSTF performed comparably to both existing methods. With the key press EEG data, PSTF extracted more discriminative features, thereby leading to more accurate (74.99% average accuracy) predictions of RP laterality than that achievable with existing methods. Naturalistic and volitional interaction with the world is an important capacity that is lost with traditional system-paced BCIs. We demonstrated a significant improvement in fine movement laterality prediction from RP features alone. Our work supports further study of RP-based BCI for intuitive asynchronous control of the environment, such as augmentative communication or wheelchair navigation.

  14. A pipeline of spatio-temporal filtering for predicting the laterality of self-initiated fine movements from single trial readiness potentials

    NASA Astrophysics Data System (ADS)

    Abou Zeid, Elias; Rezazadeh Sereshkeh, Alborz; Chau, Tom

    2016-12-01

    Objective. In recent years, the readiness potential (RP), a type of pre-movement neural activity, has been investigated for asynchronous electroencephalogram (EEG)-based brain-computer interfaces (BCIs). Since the RP is attenuated for involuntary movements, a BCI driven by RP alone could facilitate intentional control amid a plethora of unintentional movements. Previous studies have attempted single trial classification of RP via spatial and temporal filtering methods, or by combining the RP with event-related desynchronization. However, RP feature extraction remains challenging due to the slow non-oscillatory nature of the potential, its variability among participants and the inherent noise in EEG signals. Here, we propose a participant-specific, individually optimized pipeline of spatio-temporal filtering (PSTF) to improve RP feature extraction for laterality prediction. Approach. PSTF applies band-pass filtering on RP signals, followed by Fisher criterion spatial filtering to maximize class separation, and finally temporal window averaging for feature dimension reduction. Optimal parameters are simultaneously found by cross-validation for each participant. Using EEG data from 14 participants performing self-initiated left or right key presses as well as two benchmark BCI datasets, we compared the performance of PSTF to two popular methods: common spatial subspace decomposition, and adaptive spatio-temporal filtering. Main results. On the BCI benchmark data sets, PSTF performed comparably to both existing methods. With the key press EEG data, PSTF extracted more discriminative features, thereby leading to more accurate (74.99% average accuracy) predictions of RP laterality than that achievable with existing methods. Significance. Naturalistic and volitional interaction with the world is an important capacity that is lost with traditional system-paced BCIs. We demonstrated a significant improvement in fine movement laterality prediction from RP features alone. Our work supports further study of RP-based BCI for intuitive asynchronous control of the environment, such as augmentative communication or wheelchair navigation.

  15. Dynamic Interaction of Spindles and Gamma Activity during Cortical Slow Oscillations and Its Modulation by Subcortical Afferents

    PubMed Central

    Valencia, Miguel; Artieda, Julio; Bolam, J. Paul; Mena-Segovia, Juan

    2013-01-01

    Slow oscillations are a hallmark of slow wave sleep. They provide a temporal framework for a variety of phasic events to occur and interact during sleep, including the expression of high-frequency oscillations and the discharge of neurons across the entire brain. Evidence shows that the emergence of distinct high-frequency oscillations during slow oscillations facilitates the communication among brain regions whose activity was correlated during the preceding waking period. While the frequencies of oscillations involved in such interactions have been identified, their dynamics and the correlations between them require further investigation. Here we analyzed the structure and dynamics of these signals in anesthetized rats. We show that spindles and gamma oscillations coexist but have distinct temporal dynamics across the slow oscillation cycle. Furthermore, we observed that spindles and gamma are functionally coupled to the slow oscillations and between each other. Following the activation of ascending pathways from the brainstem by means of a carbachol injection in the pedunculopontine nucleus, we were able to modify the gain in the gamma oscillations that are independent of the spindles while the spindle amplitude was reduced. Furthermore, carbachol produced a decoupling of the gamma oscillations that are dependent on the spindles but with no effect on their amplitude. None of the changes in the high-frequency oscillations affected the onset or shape of the slow oscillations, suggesting that slow oscillations occur independently of the phasic events that coexist with them. Our results provide novel insights into the regulation, dynamics and homeostasis of cortical slow oscillations. PMID:23844020

  16. A prelinguistic gestural universal of human communication.

    PubMed

    Liszkowski, Ulf; Brown, Penny; Callaghan, Tara; Takada, Akira; de Vos, Conny

    2012-01-01

    Several cognitive accounts of human communication argue for a language-independent, prelinguistic basis of human communication and language. The current study provides evidence for the universality of a prelinguistic gestural basis for human communication. We used a standardized, semi-natural elicitation procedure in seven very different cultures around the world to test for the existence of preverbal pointing in infants and their caregivers. Results were that by 10-14 months of age, infants and their caregivers pointed in all cultures in the same basic situation with similar frequencies and the same proto-typical morphology of the extended index finger. Infants' pointing was best predicted by age and caregiver pointing, but not by cultural group. Further analyses revealed a strong relation between the temporal unfolding of caregivers' and infants' pointing events, uncovering a structure of early prelinguistic gestural conversation. Findings support the existence of a gestural, language-independent universal of human communication that forms a culturally shared, prelinguistic basis for diversified linguistic communication. Copyright © 2012 Cognitive Science Society, Inc.

  17. The Temporal Structure of Spoken Language Understanding.

    ERIC Educational Resources Information Center

    Marslen-Wilson, William; Tyler, Lorraine Komisarjevsky

    1980-01-01

    An investigation of word-by-word time-course of spoken language understanding focused on word recognition and structural and interpretative processes. Results supported an online interactive language processing theory, in which lexical, structural, and interpretative knowledge sources communicate and interact during processing efficiently and…

  18. The Neural Basis of Speech Perception through Lipreading and Manual Cues: Evidence from Deaf Native Users of Cued Speech

    PubMed Central

    Aparicio, Mario; Peigneux, Philippe; Charlier, Brigitte; Balériaux, Danielle; Kavec, Martin; Leybaert, Jacqueline

    2017-01-01

    We present here the first neuroimaging data for perception of Cued Speech (CS) by deaf adults who are native users of CS. CS is a visual mode of communicating a spoken language through a set of manual cues which accompany lipreading and disambiguate it. With CS, sublexical units of the oral language are conveyed clearly and completely through the visual modality without requiring hearing. The comparison of neural processing of CS in deaf individuals with processing of audiovisual (AV) speech in normally hearing individuals represents a unique opportunity to explore the similarities and differences in neural processing of an oral language delivered in a visuo-manual vs. an AV modality. The study included deaf adult participants who were early CS users and native hearing users of French who process speech audiovisually. Words were presented in an event-related fMRI design. Three conditions were presented to each group of participants. The deaf participants saw CS words (manual + lipread), words presented as manual cues alone, and words presented to be lipread without manual cues. The hearing group saw AV spoken words, audio-alone and lipread-alone. Three findings are highlighted. First, the middle and superior temporal gyrus (excluding Heschl’s gyrus) and left inferior frontal gyrus pars triangularis constituted a common, amodal neural basis for AV and CS perception. Second, integration was inferred in posterior parts of superior temporal sulcus for audio and lipread information in AV speech, but in the occipito-temporal junction, including MT/V5, for the manual cues and lipreading in CS. Third, the perception of manual cues showed a much greater overlap with the regions activated by CS (manual + lipreading) than lipreading alone did. This supports the notion that manual cues play a larger role than lipreading for CS processing. The present study contributes to a better understanding of the role of manual cues as support of visual speech perception in the framework of the multimodal nature of human communication. PMID:28424636

  19. Dynamical network of residue–residue contacts reveals coupled allosteric effects in recognition, catalysis, and mutation

    PubMed Central

    Doshi, Urmi; Holliday, Michael J.; Eisenmesser, Elan Z.; Hamelberg, Donald

    2016-01-01

    Detailed understanding of how conformational dynamics orchestrates function in allosteric regulation of recognition and catalysis remains ambiguous. Here, we simulate CypA using multiple-microsecond-long atomistic molecular dynamics in explicit solvent and carry out NMR experiments. We analyze a large amount of time-dependent multidimensional data with a coarse-grained approach and map key dynamical features within individual macrostates by defining dynamics in terms of residue–residue contacts. The effects of substrate binding are observed to be largely sensed at a location over 15 Å from the active site, implying its importance in allostery. Using NMR experiments, we confirm that a dynamic cluster of residues in this distal region is directly coupled to the active site. Furthermore, the dynamical network of interresidue contacts is found to be coupled and temporally dispersed, ranging over 4 to 5 orders of magnitude. Finally, using network centrality measures we demonstrate the changes in the communication network, connectivity, and influence of CypA residues upon substrate binding, mutation, and during catalysis. We identify key residues that potentially act as a bottleneck in the communication flow through the distinct regions in CypA and, therefore, as targets for future mutational studies. Mapping these dynamical features and the coupling of dynamics to function has crucial ramifications in understanding allosteric regulation in enzymes and proteins, in general. PMID:27071107

  20. Audiovisual integration of emotional signals in voice and face: an event-related fMRI study.

    PubMed

    Kreifelts, Benjamin; Ethofer, Thomas; Grodd, Wolfgang; Erb, Michael; Wildgruber, Dirk

    2007-10-01

    In a natural environment, non-verbal emotional communication is multimodal (i.e. speech melody, facial expression) and multifaceted concerning the variety of expressed emotions. Understanding these communicative signals and integrating them into a common percept is paramount to successful social behaviour. While many previous studies have focused on the neurobiology of emotional communication in the auditory or visual modality alone, far less is known about multimodal integration of auditory and visual non-verbal emotional information. The present study investigated this process using event-related fMRI. Behavioural data revealed that audiovisual presentation of non-verbal emotional information resulted in a significant increase in correctly classified stimuli when compared with visual and auditory stimulation. This behavioural gain was paralleled by enhanced activation in bilateral posterior superior temporal gyrus (pSTG) and right thalamus, when contrasting audiovisual to auditory and visual conditions. Further, a characteristic of these brain regions, substantiating their role in the emotional integration process, is a linear relationship between the gain in classification accuracy and the strength of the BOLD response during the bimodal condition. Additionally, enhanced effective connectivity between audiovisual integration areas and associative auditory and visual cortices was observed during audiovisual stimulation, offering further insight into the neural process accomplishing multimodal integration. Finally, we were able to document an enhanced sensitivity of the putative integration sites to stimuli with emotional non-verbal content as compared to neutral stimuli.

  1. The Functional Role of Neural Oscillations in Non-Verbal Emotional Communication

    PubMed Central

    Symons, Ashley E.; El-Deredy, Wael; Schwartze, Michael; Kotz, Sonja A.

    2016-01-01

    Effective interpersonal communication depends on the ability to perceive and interpret nonverbal emotional expressions from multiple sensory modalities. Current theoretical models propose that visual and auditory emotion perception involves a network of brain regions including the primary sensory cortices, the superior temporal sulcus (STS), and orbitofrontal cortex (OFC). However, relatively little is known about how the dynamic interplay between these regions gives rise to the perception of emotions. In recent years, there has been increasing recognition of the importance of neural oscillations in mediating neural communication within and between functional neural networks. Here we review studies investigating changes in oscillatory activity during the perception of visual, auditory, and audiovisual emotional expressions, and aim to characterize the functional role of neural oscillations in nonverbal emotion perception. Findings from the reviewed literature suggest that theta band oscillations most consistently differentiate between emotional and neutral expressions. While early theta synchronization appears to reflect the initial encoding of emotionally salient sensory information, later fronto-central theta synchronization may reflect the further integration of sensory information with internal representations. Additionally, gamma synchronization reflects facilitated sensory binding of emotional expressions within regions such as the OFC, STS, and, potentially, the amygdala. However, the evidence is more ambiguous when it comes to the role of oscillations within the alpha and beta frequencies, which vary as a function of modality (or modalities), presence or absence of predictive information, and attentional or task demands. Thus, the synchronization of neural oscillations within specific frequency bands mediates the rapid detection, integration, and evaluation of emotional expressions. Moreover, the functional coupling of oscillatory activity across multiples frequency bands supports a predictive coding model of multisensory emotion perception in which emotional facial and body expressions facilitate the processing of emotional vocalizations. PMID:27252638

  2. The Functional Role of Neural Oscillations in Non-Verbal Emotional Communication.

    PubMed

    Symons, Ashley E; El-Deredy, Wael; Schwartze, Michael; Kotz, Sonja A

    2016-01-01

    Effective interpersonal communication depends on the ability to perceive and interpret nonverbal emotional expressions from multiple sensory modalities. Current theoretical models propose that visual and auditory emotion perception involves a network of brain regions including the primary sensory cortices, the superior temporal sulcus (STS), and orbitofrontal cortex (OFC). However, relatively little is known about how the dynamic interplay between these regions gives rise to the perception of emotions. In recent years, there has been increasing recognition of the importance of neural oscillations in mediating neural communication within and between functional neural networks. Here we review studies investigating changes in oscillatory activity during the perception of visual, auditory, and audiovisual emotional expressions, and aim to characterize the functional role of neural oscillations in nonverbal emotion perception. Findings from the reviewed literature suggest that theta band oscillations most consistently differentiate between emotional and neutral expressions. While early theta synchronization appears to reflect the initial encoding of emotionally salient sensory information, later fronto-central theta synchronization may reflect the further integration of sensory information with internal representations. Additionally, gamma synchronization reflects facilitated sensory binding of emotional expressions within regions such as the OFC, STS, and, potentially, the amygdala. However, the evidence is more ambiguous when it comes to the role of oscillations within the alpha and beta frequencies, which vary as a function of modality (or modalities), presence or absence of predictive information, and attentional or task demands. Thus, the synchronization of neural oscillations within specific frequency bands mediates the rapid detection, integration, and evaluation of emotional expressions. Moreover, the functional coupling of oscillatory activity across multiples frequency bands supports a predictive coding model of multisensory emotion perception in which emotional facial and body expressions facilitate the processing of emotional vocalizations.

  3. Abnormal UP/DOWN Membrane Potential Dynamics Coupled with the Neocortical Slow Oscillation in Dentate Granule Cells during the Latent Phase of Temporal Lobe Epilepsy.

    PubMed

    Ouedraogo, David W; Lenck-Santini, Pierre-Pascal; Marti, Geoffrey; Robbe, David; Crépel, Valérie; Epsztein, Jérôme

    2016-01-01

    The dentate gyrus, a major entry point to the hippocampus, gates (or filters) incoming information from the cortex. During sleep or anesthesia, the slow-wave oscillation (SWO) orchestrates hippocampus-neocortex communication, which is important for memory formation. The dentate gate is altered in temporal lobe epilepsy (TLE) early during epileptogenesis, which favors the propagation of pathological activities. Yet, whether the gating of physiological SWO by dentate granule cells (DGCs) is altered in TLE has remained unexplored. We combined intracellular recordings of membrane potential (V m) of DGCs and local field potential recordings of the SWO in parietal cortex in anesthetized rats early during epileptogenesis [post-status epilepticus (SE) rats]. As expected, in control rats, the V m of DGCs weakly and rarely oscillated in the SWO frequency range. In contrast, in post-SE rats, the V m of DGCs displayed strong and long-lasting SWO. In these cells, clear UP and DOWN states, in phase with the neocortical SWO, led to a bimodal V m distribution. In post-SE rats, the firing of DGCs was increased and more temporally modulated by the neocortical SWO. We conclude that UP/DOWN state dynamics dominate the V m of DGCs and firing early during epileptogenesis. This abnormally strong neocortical influence on the dynamics of DGCs may profoundly modify the hippocampus-neocortex dialogue during sleep and associated cognitive functions.

  4. Disruptions in Functional Network Connectivity during Alcohol Intoxicated Driving

    PubMed Central

    Rzepecki-Smith, Catherine I.; Meda, Shashwath A.; Calhoun, Vince D.; Stevens, Michael C.; Jafri, Madiha J.; Astur, Robert S.; Pearlson, Godfrey D.

    2009-01-01

    Background: Driving while under the influence of alcohol is a major public health problem whose neural basis is not well understood. In a recently published fMRI study (Meda et al, 2009), our group identified five, independent critical driving-associated brain circuits whose inter-regional connectivity was disrupted by alcohol intoxication. However, the functional connectivity between these circuits has not yet been explored in order to determine how these networks communicate with each other during sober and alcohol-intoxicated states. Methods: In the current study, we explored such differences in connections between the above brain circuits and driving behavior, under the influence of alcohol versus placebo. Forty social drinkers who drove regularly underwent fMRI scans during virtual reality driving simulations following two alcohol doses, placebo and an individualized dose producing blood alcohol concentrations (BACs) of 0.10%. Results: At the active dose, we found specific disruptions of functional network connectivity between the frontal-temporal-basal ganglia and the cerebellar circuits. The temporal connectivity between these two circuits was found to be less correlated (p <0.05) when driving under the influence of alcohol. This disconnection was also associated with an abnormal driving behavior (unstable motor vehicle steering). Conclusions: Connections between frontal-temporal-basal ganglia and cerebellum have recently been explored; these may be responsible in part for maintaining normal motor behavior by integrating their overlapping motor control functions. These connections appear to be disrupted by alcohol intoxication, in turn associated with an explicit type of impaired driving behavior. PMID:20028354

  5. Whole-brain analytic measures of network communication reveal increased structure-function correlation in right temporal lobe epilepsy.

    PubMed

    Wirsich, Jonathan; Perry, Alistair; Ridley, Ben; Proix, Timothée; Golos, Mathieu; Bénar, Christian; Ranjeva, Jean-Philippe; Bartolomei, Fabrice; Breakspear, Michael; Jirsa, Viktor; Guye, Maxime

    2016-01-01

    The in vivo structure-function relationship is key to understanding brain network reorganization due to pathologies. This relationship is likely to be particularly complex in brain network diseases such as temporal lobe epilepsy, in which disturbed large-scale systems are involved in both transient electrical events and long-lasting functional and structural impairments. Herein, we estimated this relationship by analyzing the correlation between structural connectivity and functional connectivity in terms of analytical network communication parameters. As such, we targeted the gradual topological structure-function reorganization caused by the pathology not only at the whole brain scale but also both in core and peripheral regions of the brain. We acquired diffusion (dMRI) and resting-state fMRI (rsfMRI) data in seven right-lateralized TLE (rTLE) patients and fourteen healthy controls and analyzed the structure-function relationship by using analytical network communication metrics derived from the structural connectome. In rTLE patients, we found a widespread hypercorrelated functional network. Network communication analysis revealed greater unspecific branching of the shortest path (search information) in the structural connectome and a higher global correlation between the structural and functional connectivity for the patient group. We also found evidence for a preserved structural rich-club in the patient group. In sum, global augmentation of structure-function correlation might be linked to a smaller functional repertoire in rTLE patients, while sparing the central core of the brain which may represent a pathway that facilitates the spread of seizures.

  6. Temporal dynamics of frequency-tunable graphene-based plasmonic grating structures for ultra-broadband terahertz communication

    NASA Astrophysics Data System (ADS)

    Jornet, Josep Miquel; Thawdar, Ngwe; Woo, Ethan; Andrello, Michael A.

    2017-05-01

    Terahertz (THz) communication is envisioned as a key wireless technology to satisfy the need for 1000x faster wireless data rates. To date, major progress on both electronic and photonic technologies are finally closing the so-called THz gap. Among others, graphene-based plasmonic nano-devices have been proposed as a way to enable ultra-broadband communications above 1THz. The unique dynamic complex conductivity of graphene enables the propagation of Surface Plasmon Polariton (SPP) waves at THz frequencies. In addition, the conductivity of graphene and, thus, the SPP propagation properties, can be dynamically tuned by means of electrostatic biasing or material doping. This result opens the door to frequency-tunable devices for THz communications. In this paper, the temporal dynamics of graphene-enhanced metallic grating structures used for excitation and detection of SPP waves at THz frequencies are analytically and numerically modeled. More specifically, the response of a metallic grating structure built on top of a graphene-based heterostructure is analyzed by taking into account the grating period and duty cycle and the Fermi energy of the graphene layer. Then, the interfacial charge transfer between a metallic back-gate and the graphene layer in a metal/dielectric/graphene stack is analytically modeled, and the range of achievable Fermi energies is determined. Finally, the rate at which the Fermi energy in graphene can be tuned is estimated starting from the transmission line model of graphene. Extensive numerical and simulation results with COMSOL Multi-physics are provided. The results show that the proposed structure enables dynamic frequency systems with THz bandwidths, thus, enabling resilient communication techniques such as time-hopping THz modulations.

  7. Topographical gradients of semantics and phonology revealed by temporal lobe stimulation.

    PubMed

    Miozzo, Michele; Williams, Alicia C; McKhann, Guy M; Hamberger, Marla J

    2017-02-01

    Word retrieval is a fundamental component of oral communication, and it is well established that this function is supported by left temporal cortex. Nevertheless, the specific temporal areas mediating word retrieval and the particular linguistic processes these regions support have not been well delineated. Toward this end, we analyzed over 1000 naming errors induced by left temporal cortical stimulation in epilepsy surgery patients. Errors were primarily semantic (lemon → "pear"), phonological (horn → "corn"), non-responses, and delayed responses (correct responses after a delay), and each error type appeared predominantly in a specific region: semantic errors in mid-middle temporal gyrus (TG), phonological errors and delayed responses in middle and posterior superior TG, and non-responses in anterior inferior TG. To the extent that semantic errors, phonological errors and delayed responses reflect disruptions in different processes, our results imply topographical specialization of semantic and phonological processing. Specifically, results revealed an inferior-to-superior gradient, with more superior regions associated with phonological processing. Further, errors were increasingly semantically related to targets toward posterior temporal cortex. We speculate that detailed semantic input is needed to support phonological retrieval, and thus, the specificity of semantic input increases progressively toward posterior temporal regions implicated in phonological processing. Hum Brain Mapp 38:688-703, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Right anterior superior temporal activation predicts auditory sentence comprehension following aphasic stroke.

    PubMed

    Crinion, Jenny; Price, Cathy J

    2005-12-01

    Previous studies have suggested that recovery of speech comprehension after left hemisphere infarction may depend on a mechanism in the right hemisphere. However, the role that distinct right hemisphere regions play in speech comprehension following left hemisphere stroke has not been established. Here, we used functional magnetic resonance imaging (fMRI) to investigate narrative speech activation in 18 neurologically normal subjects and 17 patients with left hemisphere stroke and a history of aphasia. Activation for listening to meaningful stories relative to meaningless reversed speech was identified in the normal subjects and in each patient. Second level analyses were then used to investigate how story activation changed with the patients' auditory sentence comprehension skills and surprise story recognition memory tests post-scanning. Irrespective of lesion site, performance on tests of auditory sentence comprehension was positively correlated with activation in the right lateral superior temporal region, anterior to primary auditory cortex. In addition, when the stroke spared the left temporal cortex, good performance on tests of auditory sentence comprehension was also correlated with the left posterior superior temporal cortex (Wernicke's area). In distinct contrast to this, good story recognition memory predicted left inferior frontal and right cerebellar activation. The implication of this double dissociation in the effects of auditory sentence comprehension and story recognition memory is that left frontal and left temporal activations are dissociable. Our findings strongly support the role of the right temporal lobe in processing narrative speech and, in particular, auditory sentence comprehension following left hemisphere aphasic stroke. In addition, they highlight the importance of the right anterior superior temporal cortex where the response was dissociated from that in the left posterior temporal lobe.

  9. Sensitivity of temporal heart rate variability in Poincaré plot to changes in parasympathetic nervous system activity.

    PubMed

    Karmakar, Chandan K; Khandoker, Ahsan H; Voss, Andreas; Palaniswami, Marimuthu

    2011-03-03

    A novel descriptor (Complex Correlation Measure (CCM)) for measuring the variability in the temporal structure of Poincaré plot has been developed to characterize or distinguish between Poincaré plots with similar shapes. This study was designed to assess the changes in temporal structure of the Poincaré plot using CCM during atropine infusion, 70° head-up tilt and scopolamine administration in healthy human subjects. CCM quantifies the point-to-point variation of the signal rather than gross description of the Poincaré plot. The physiological relevance of CCM was demonstrated by comparing the changes in CCM values with autonomic perturbation during all phases of the experiment. The sensitivities of short term variability (SD1), long term variability (SD2) and variability in temporal structure (CCM) were analyzed by changing the temporal structure by shuffling the sequences of points of the Poincaré plot. Surrogate analysis was used to show CCM as a measure of changes in temporal structure rather than random noise and sensitivity of CCM with changes in parasympathetic activity. CCM was found to be most sensitive to changes in temporal structure of the Poincaré plot as compared to SD1 and SD2. The values of all descriptors decreased with decrease in parasympathetic activity during atropine infusion and 70° head-up tilt phase. In contrast, values of all descriptors increased with increase in parasympathetic activity during scopolamine administration. The concordant reduction and enhancement in CCM values with parasympathetic activity indicates that the temporal variability of Poincaré plot is modulated by the parasympathetic activity which correlates with changes in CCM values. CCM is more sensitive than SD1 and SD2 to changes of parasympathetic activity.

  10. Public Awareness of Uterine Power Morcellation Through US Food and Drug Administration Communications: Analysis of Google Trends Search Term Patterns

    PubMed Central

    Jamnagerwalla, Juzar; Markowitz, Melissa A; Thum, D Joseph; McCarty, Philip; Medendorp, Andrew R; Raz, Shlomo; Kim, Ja-Hong

    2018-01-01

    Background Uterine power morcellation, where the uterus is shred into smaller pieces, is a widely used technique for removal of uterine specimens in patients undergoing minimally invasive abdominal hysterectomy or myomectomy. Complications related to power morcellation of uterine specimens led to US Food and Drug Administration (FDA) communications in 2014 ultimately recommending against the use of power morcellation for women undergoing minimally invasive hysterectomy. Subsequently, practitioners drastically decreased the use of morcellation. Objective We aimed to determine the effect of increased patient awareness on the decrease in use of the morcellator. Google Trends is a public tool that provides data on temporal patterns of search terms, and we correlated this data with the timing of the FDA communication. Methods Weekly relative search volume (RSV) was obtained from Google Trends using the term “morcellation.” Higher RSV corresponds to increases in weekly search volume. Search volumes were divided into 3 groups: the 2 years prior to the FDA communication, a 1-year period following, and thereafter, with the distribution of the weekly RSV over the 3 periods tested using 1-way analysis of variance. Additionally, we analyzed the total number of websites containing the term “morcellation” over this time. Results The mean RSV prior to the FDA communication was 12.0 (SD 15.8), with the RSV being 60.3 (SD 24.7) in the 1-year after and 19.3 (SD 5.2) thereafter (P<.001). The mean number of webpages containing the term “morcellation” in 2011 was 10,800, rising to 18,800 during 2014 and 36,200 in 2017. Conclusions Google search activity about morcellation of uterine specimens increased significantly after the FDA communications. This trend indicates an increased public awareness regarding morcellation and its complications. More extensive preoperative counseling and alteration of surgical technique and clinician practice may be necessary. PMID:29699965

  11. Low-cost assistive device for hand gesture recognition using sEMG

    NASA Astrophysics Data System (ADS)

    Kainz, Ondrej; Cymbalák, Dávid; Kardoš, Slavomír.; Fecil'ak, Peter; Jakab, František

    2016-07-01

    In this paper a low-cost solution for surface EMG (sEMG) signal retrieval is presented. The principal goal is to enable reading the temporal parameters of muscles activity by a computer device, with its further processing. Paper integrates design and deployment of surface electrodes and amplifier following the prior researches. Bearing in mind the goal of creating low-cost solution, the Arduino micro-controller was utilized for analog-to-digital conversion and communication. The software part of the system employs support vector machine (SVM) to classify the EMG signal, as acquired from sensors. Accuracy of the proposed solution achieves over 90 percent for six hand movements. Proposed solution is to be tested as an assistive device for several cases, involving people with motor disabilities and amputees.

  12. Nanowire-based single-cell endoscopy

    NASA Astrophysics Data System (ADS)

    Yan, Ruoxue; Park, Ji-Ho; Choi, Yeonho; Heo, Chul-Joon; Yang, Seung-Man; Lee, Luke P.; Yang, Peidong

    2012-03-01

    One-dimensional smart probes based on nanowires and nanotubes that can safely penetrate the plasma membrane and enter biological cells are potentially useful in high-resolution and high-throughput gene and drug delivery, biosensing and single-cell electrophysiology. However, using such probes for optical communication across the cellular membrane at the subwavelength level remains limited. Here, we show that a nanowire waveguide attached to the tapered tip of an optical fibre can guide visible light into intracellular compartments of a living mammalian cell, and can also detect optical signals from subcellular regions with high spatial resolution. Furthermore, we show that through light-activated mechanisms the endoscope can deliver payloads into cells with spatial and temporal specificity. Moreover, insertion of the endoscope into cells and illumination of the guided laser did not induce any significant toxicity in the cells.

  13. Short communication on Kinetics of grain growth and particle pinning in U-10 wt.% Mo

    NASA Astrophysics Data System (ADS)

    Frazier, William E.; Hu, Shenyang; Overman, Nicole; Lavender, Curt; Joshi, Vineet V.

    2018-01-01

    The alloy U-10 wt% Mo was annealed at temperatures ranging from 700 °C to 900 °C for periods lasting up to 24 h. Annealed microstructures were examined using Electron Backscattered Diffraction (EBSD) to obtain average grain sizes and grain size distributions. From the temporal evolution of the average grain size, the activation energy of grain growth was determined to be 172.4 ± 0.961 kJ/mol. Grain growth over the annealing period stagnated after a period of 1-4 h. This stagnation is apparently caused by the pinning effect of second-phase particles in the materials. Back-scattered electron imaging (BSE) was used to confirm that these particles do not appreciably coarsen or dissolve during annealing at the aforementioned temperatures.

  14. Spontaneous and evoked release are independently regulated at individual active zones.

    PubMed

    Melom, Jan E; Akbergenova, Yulia; Gavornik, Jeffrey P; Littleton, J Troy

    2013-10-30

    Neurotransmitter release from synaptic vesicle fusion is the fundamental mechanism for neuronal communication at synapses. Evoked release following an action potential has been well characterized for its function in activating the postsynaptic cell, but the significance of spontaneous release is less clear. Using transgenic tools to image single synaptic vesicle fusion events at individual release sites (active zones) in Drosophila, we characterized the spatial and temporal dynamics of exocytotic events that occur spontaneously or in response to an action potential. We also analyzed the relationship between these two modes of fusion at single release sites. A majority of active zones participate in both modes of fusion, although release probability is not correlated between the two modes of release and is highly variable across the population. A subset of active zones is specifically dedicated to spontaneous release, indicating a population of postsynaptic receptors is uniquely activated by this mode of vesicle fusion. Imaging synaptic transmission at individual release sites also revealed general rules for spontaneous and evoked release, and indicate that active zones with similar release probability can cluster spatially within individual synaptic boutons. These findings suggest neuronal connections contain two information channels that can be spatially segregated and independently regulated to transmit evoked or spontaneous fusion signals.

  15. Rhythmic, reciprocal ghrelin and leptin signaling: new insight in the development of obesity.

    PubMed

    Kalra, Satya P; Bagnasco, Michela; Otukonyong, Effiong E; Dube, Michael G; Kalra, Pushpa S

    2003-03-28

    The hypothalamus integrates metabolic, neural and hormonal signals to evoke an intermittent appetitive drive in the daily management of energy homeostasis. Three major players identified recently in the feedback communication between the periphery and hypothalamus are leptin, ghrelin and neuropeptide Y (NPY). We propose that reciprocal circadian and ultradian rhythmicities in the afferent humoral signals, anorexigenic leptin from adipocytes and orexigenic ghrelin from stomach, encode a corresponding discharge pattern in the appetite-stimulating neuropeptide Y network in the hypothalamus. An exquisitely intricate temporal relationship among these signaling modalities with varied sites of origin is paramount in sustenance of weight control on a daily basis. Our model envisages that subtle and progressive derangements in temporal communication, imposed by environmental shifts in energy intake, impel a positive energy balance culminating in excessive weight gain and obesity. This conceptual advance provides a new target for designing pharmacologic or gene transfer therapies that would normalize the rhythmic patterns of afferent hormonal and efferent neurochemical messages. Copyright 2003 Elsevier Science B.V.

  16. Long-Distance Single Photon Transmission from a Trapped Ion via Quantum Frequency Conversion

    NASA Astrophysics Data System (ADS)

    Walker, Thomas; Miyanishi, Koichiro; Ikuta, Rikizo; Takahashi, Hiroki; Vartabi Kashanian, Samir; Tsujimoto, Yoshiaki; Hayasaka, Kazuhiro; Yamamoto, Takashi; Imoto, Nobuyuki; Keller, Matthias

    2018-05-01

    Trapped atomic ions are ideal single photon emitters with long-lived internal states which can be entangled with emitted photons. Coupling the ion to an optical cavity enables the efficient emission of single photons into a single spatial mode and grants control over their temporal shape. These features are key for quantum information processing and quantum communication. However, the photons emitted by these systems are unsuitable for long-distance transmission due to their wavelengths. Here we report the transmission of single photons from a single 40Ca+ ion coupled to an optical cavity over a 10 km optical fiber via frequency conversion from 866 nm to the telecom C band at 1530 nm. We observe nonclassical photon statistics of the direct cavity emission, the converted photons, and the 10 km transmitted photons, as well as the preservation of the photons' temporal shape throughout. This telecommunication-ready system can be a key component for long-distance quantum communication as well as future cloud quantum computation.

  17. Quantification of abnormal intracranial pressure waves and isotope cisternography for diagnosis of occult communicating hydrocephalus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardoso, E.R.; Piatek, D.; Del Bigio, M.R.

    1989-01-01

    Nineteen consecutive patients with suspected occult communicating hydrocephalus were investigated by means of clinical evaluation, neuropsychological testing, isotope cisternography, computed tomography scanning, and continuous intracranial pressure monitoring. Semi-quantitative grading systems were used in the evaluation of the clinical, neuropsychological, and cisternographic assessments. Clinical examination, neuropsychological testing, and computed tomography scanning were repeated 3 months after ventriculoperitoneal shunting. All patients showed abnormal intracranial pressure waves and all improved after shunting. There was close correlation between number, peak, and pulse pressures of B waves and the mean intracranial pressure. However, quantification of B waves by means of number, frequency, and amplitude didmore » not help in predicting the degree of clinical improvement postshunting. The most sensitive predictor of favorable response to shunting was enlargement of the temporal horns on computed tomography scan. Furthermore, the size of temporal horns correlated with mean intracranial pressure. There was no correlation between abnormalities on isotope cisternography and clinical improvement.« less

  18. Venous drainage of the face.

    PubMed

    Onishi, S; Imanishi, N; Yoshimura, Y; Inoue, Y; Sakamoto, Y; Chang, H; Okumoto, T

    2017-04-01

    The venous anatomy of the face was examined in 12 fresh cadavers. Venograms and arteriovenograms were obtained after the injection of contrast medium. In 8 of the 12 cadavers, a large loop was formed by the facial vein, the supratrochlear vein, and the superficial temporal vein, which became the main trunk vein of the face. In 4 of the 12 cadavers, the superior lateral limb of the loop vein was less well developed. The loop vein generally did not accompany the arteries of the face. Cutaneous branches of the loop vein formed a polygonal venous network in the skin, while communicating branches ran toward deep veins. These findings suggest that blood from the dermis of the face is collected by the polygonal venous network and enters the loop vein through the cutaneous branches, after which blood flows away from the face through the superficial temporal vein, the facial vein, and the communicating branches and enters the deep veins. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  19. The Impact of Participation in Music on Learning Mathematics

    ERIC Educational Resources Information Center

    Holmes, Sylwia; Hallam, Susan

    2017-01-01

    Music psychologists have established that some forms of musical activity improve intellectual performance, spatial-temporal reasoning and other skills advantageous for learning. In this research, the potential of active music-making for improving pupils' achievement in spatial- temporal reasoning was investigated. As spatial-temporal skills are…

  20. Distinct frontal regions subserve evaluation of linguistic and emotional aspects of speech intonation.

    PubMed

    Wildgruber, D; Hertrich, I; Riecker, A; Erb, M; Anders, S; Grodd, W; Ackermann, H

    2004-12-01

    In addition to the propositional content of verbal utterances, significant linguistic and emotional information is conveyed by the tone of speech. To differentiate brain regions subserving processing of linguistic and affective aspects of intonation, discrimination of sentences differing in linguistic accentuation and emotional expressiveness was evaluated by functional magnetic resonance imaging. Both tasks yielded rightward lateralization of hemodynamic responses at the level of the dorsolateral frontal cortex as well as bilateral thalamic and temporal activation. Processing of linguistic and affective intonation, thus, seems to be supported by overlapping neural networks comprising partially right-sided brain regions. Comparison of hemodynamic activation during the two different tasks, however, revealed bilateral orbito-frontal responses restricted to the affective condition as opposed to activation of the left lateral inferior frontal gyrus confined to evaluation of linguistic intonation. These findings indicate that distinct frontal regions contribute to higher level processing of intonational information depending on its communicational function. In line with other components of language processing, discrimination of linguistic accentuation seems to be lateralized to the left inferior-lateral frontal region whereas bilateral orbito-frontal areas subserve evaluation of emotional expressiveness.

  1. Invited Article: Visualisation of extreme value events in optical communications

    NASA Astrophysics Data System (ADS)

    Derevyanko, Stanislav; Redyuk, Alexey; Vergeles, Sergey; Turitsyn, Sergei

    2018-06-01

    Fluctuations of a temporal signal propagating along long-haul transoceanic scale fiber links can be visualised in the spatio-temporal domain drawing visual analogy with ocean waves. Substantial overlapping of information symbols or use of multi-frequency signals leads to strong statistical deviations of local peak power from an average signal power level. We consider long-haul optical communication systems from this unusual angle, treating them as physical systems with a huge number of random statistical events, including extreme value fluctuations that potentially might affect the quality of data transmission. We apply the well-established concepts of adaptive wavefront shaping used in imaging through turbid medium to detect the detrimental phase modulated sequences in optical communications that can cause extreme power outages (rare optical waves of ultra-high amplitude) during propagation down the ultra-long fiber line. We illustrate the concept by a theoretical analysis of rare events of high-intensity fluctuations—optical freak waves, taking as an example an increasingly popular optical frequency division multiplexing data format where the problem of high peak to average power ratio is the most acute. We also show how such short living extreme value spikes in the optical data streams are affected by nonlinearity and demonstrate the negative impact of such events on the system performance.

  2. Optimal architectures for long distance quantum communication.

    PubMed

    Muralidharan, Sreraman; Li, Linshu; Kim, Jungsang; Lütkenhaus, Norbert; Lukin, Mikhail D; Jiang, Liang

    2016-02-15

    Despite the tremendous progress of quantum cryptography, efficient quantum communication over long distances (≥ 1000 km) remains an outstanding challenge due to fiber attenuation and operation errors accumulated over the entire communication distance. Quantum repeaters (QRs), as a promising approach, can overcome both photon loss and operation errors, and hence significantly speedup the communication rate. Depending on the methods used to correct loss and operation errors, all the proposed QR schemes can be classified into three categories (generations). Here we present the first systematic comparison of three generations of quantum repeaters by evaluating the cost of both temporal and physical resources, and identify the optimized quantum repeater architecture for a given set of experimental parameters for use in quantum key distribution. Our work provides a roadmap for the experimental realizations of highly efficient quantum networks over transcontinental distances.

  3. Optimal architectures for long distance quantum communication

    PubMed Central

    Muralidharan, Sreraman; Li, Linshu; Kim, Jungsang; Lütkenhaus, Norbert; Lukin, Mikhail D.; Jiang, Liang

    2016-01-01

    Despite the tremendous progress of quantum cryptography, efficient quantum communication over long distances (≥1000 km) remains an outstanding challenge due to fiber attenuation and operation errors accumulated over the entire communication distance. Quantum repeaters (QRs), as a promising approach, can overcome both photon loss and operation errors, and hence significantly speedup the communication rate. Depending on the methods used to correct loss and operation errors, all the proposed QR schemes can be classified into three categories (generations). Here we present the first systematic comparison of three generations of quantum repeaters by evaluating the cost of both temporal and physical resources, and identify the optimized quantum repeater architecture for a given set of experimental parameters for use in quantum key distribution. Our work provides a roadmap for the experimental realizations of highly efficient quantum networks over transcontinental distances. PMID:26876670

  4. Optimal architectures for long distance quantum communication

    NASA Astrophysics Data System (ADS)

    Muralidharan, Sreraman; Li, Linshu; Kim, Jungsang; Lütkenhaus, Norbert; Lukin, Mikhail D.; Jiang, Liang

    2016-02-01

    Despite the tremendous progress of quantum cryptography, efficient quantum communication over long distances (≥1000 km) remains an outstanding challenge due to fiber attenuation and operation errors accumulated over the entire communication distance. Quantum repeaters (QRs), as a promising approach, can overcome both photon loss and operation errors, and hence significantly speedup the communication rate. Depending on the methods used to correct loss and operation errors, all the proposed QR schemes can be classified into three categories (generations). Here we present the first systematic comparison of three generations of quantum repeaters by evaluating the cost of both temporal and physical resources, and identify the optimized quantum repeater architecture for a given set of experimental parameters for use in quantum key distribution. Our work provides a roadmap for the experimental realizations of highly efficient quantum networks over transcontinental distances.

  5. Verbal fluency and positron emission tomographic mapping of regional cerebral glucose metabolism.

    PubMed

    Boivin, M J; Giordani, B; Berent, S; Amato, D A; Lehtinen, S; Koeppe, R A; Buchtel, H A; Foster, N L; Kuhl, D E

    1992-06-01

    Impairment in verbal fluency (VF) has been a consistently reported clinical feature of focal cerebral deficits in frontal and temporal regions. More recent behavioral activation studies with healthy control subjects using positron emission tomography (PET), however, have noted a negative correlation between performance on verbal fluency tasks and regional cortical activity. To see if this negative relationship extends to steady-state non-activation PET measures, thirty-three healthy adults were given a VF task within a day of their 18F-2-fluoro-2-deoxy-D-glucose PET scan. VF was found to correlate positively with left temporal cortical region metabolic activity but to correlate negatively with right and left frontal activity. VF was not correlated significantly with right temporal cortical metabolic activity. Some previous studies with normals using behavioral activation paradigms and PET have reported negative correlations between metabolic activity and cognitive performance similar to that reported here. An explanation for the disparate relationships that were observed between frontal and temporal brain areas and VF might be found in the mediation of different task demands by these separate locations, i.e., task planning and/or initiation by frontal regions and verbal memory by the left temporal area.

  6. Sensing Solutions for Collecting Spatio-Temporal Data for Wildlife Monitoring Applications: A Review

    PubMed Central

    Baratchi, Mitra; Meratnia, Nirvana; Havinga, Paul J. M.; Skidmore, Andrew K.; Toxopeus, Bert A. G.

    2013-01-01

    Movement ecology is a field which places movement as a basis for understanding animal behavior. To realize this concept, ecologists rely on data collection technologies providing spatio-temporal data in order to analyze movement. Recently, wireless sensor networks have offered new opportunities for data collection from remote places through multi-hop communication and collaborative capability of the nodes. Several technologies can be used in such networks for sensing purposes and for collecting spatio-temporal data from animals. In this paper, we investigate and review technological solutions which can be used for collecting data for wildlife monitoring. Our aim is to provide an overview of different sensing technologies used for wildlife monitoring and to review their capabilities in terms of data they provide for modeling movement behavior of animals. PMID:23666132

  7. Dynamic diaschisis: anatomically remote and context-sensitive human brain lesions.

    PubMed

    Price, C J; Warburton, E A; Moore, C J; Frackowiak, R S; Friston, K J

    2001-05-15

    Functional neuroimaging was used to investigate how lesions to the Broca's area impair neuronal responses in remote undamaged cortical regions. Four patients with speech output problems, but relatively preserved comprehension, were scanned while viewing words relative to consonant letter strings. In normal subjects, this results in left lateralized activation in the posterior inferior frontal, middle temporal, and posterior inferior temporal cortices. Each patient activated normally in the middle temporal region but abnormally in the damaged posterior inferior frontal cortex and the undamaged posterior inferior temporal cortex. In the damaged frontal region, activity was insensitive to the presence of words but in the undamaged posterior inferior temporal region, activity decreased in the presence of words rather than increasing as it did in the normal individuals. The reversal of responses in the left posterior inferior temporal region illustrate the context-sensitive nature of the abnormality and that failure to activate the left posterior temporal region could not simply be accounted for by insufficient demands on the underlying function. We propose that, in normal individuals, visual word presentation changes the effective connectivity among reading areas and, in patients, posterior temporal responses are abnormal when they depend upon inputs from the damaged inferior frontal cortex. Our results serve to introduce the concept of dynamic diaschisis; the anatomically remote and context-sensitive effects of focal brain lesions. Dynamic diaschisis reveals abnormalities of functional integration that may have profound implications for neuropsychological inference, functional anatomy and, vicariously, cognitive rehabilitation.

  8. Spatial and temporal coherence in perceptual binding

    PubMed Central

    Blake, Randolph; Yang, Yuede

    1997-01-01

    Component visual features of objects are registered by distributed patterns of activity among neurons comprising multiple pathways and visual areas. How these distributed patterns of activity give rise to unified representations of objects remains unresolved, although one recent, controversial view posits temporal coherence of neural activity as a binding agent. Motivated by the possible role of temporal coherence in feature binding, we devised a novel psychophysical task that requires the detection of temporal coherence among features comprising complex visual images. Results show that human observers can more easily detect synchronized patterns of temporal contrast modulation within hybrid visual images composed of two components when those components are drawn from the same original picture. Evidently, time-varying changes within spatially coherent features produce more salient neural signals. PMID:9192701

  9. Ambient noise and temporal patterns of boat activity in the US Virgin Islands National Park.

    PubMed

    Kaplan, Maxwell B; Mooney, T Aran

    2015-09-15

    Human activity is contributing increasing noise to marine ecosystems. Recent studies have examined the effects of boat noise on marine fishes, but there is limited understanding of the prevalence of this type of sound source. This investigation tracks vessel noise on three reefs in the US Virgin Islands National Park over four months in 2013. Ambient noise levels ranged from 106 to 129dBrms re 1μPa (100Hz-20kHz). Boat noise occurred in 6-12% of samples. In the presence of boat noise, ambient noise in a low-frequency band (100-1000Hz) increased by >7dB above baseline levels and sound levels were significantly higher. The frequency with the most acoustic energy shifted to a significantly lower frequency when boat noise was present during the day. These results indicate the abundance of boat noise and its overlap with reef organism sound production, raising concern for the communication abilities of these animals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Beyond Fluorescent Proteins: Hybrid and Bioluminescent Indicators for Imaging Neural Activities.

    PubMed

    Wang, Anqi; Feng, Jiesi; Li, Yulong; Zou, Peng

    2018-04-18

    Optical biosensors have been invaluable tools in neuroscience research, as they provide the ability to directly visualize neural activity in real time, with high specificity, and with exceptional spatial and temporal resolution. Notably, a majority of these sensors are based on fluorescent protein scaffolds, which offer the ability to target specific cell types or even subcellular compartments. However, fluorescent proteins are intrinsically bulky tags, often insensitive to the environment, and always require excitation light illumination. To address these limitations, there has been a proliferation of alternative sensor scaffolds developed in recent years, including hybrid sensors that combine the advantages of synthetic fluorophores and genetically encoded protein tags, as well as bioluminescent probes. While still in their early stage of development as compared with fluorescent protein-based sensors, these novel probes have offered complementary solutions to interrogate various aspects of neuronal communication, including transmitter release, changes in membrane potential, and the production of second messengers. In this Review, we discuss these important new developments with a particular focus on design strategies.

  11. Development of Meta Level Communication Analysis using Temporal Data Crystallization and Its Application to Multi Modal Human Communication

    DTIC Science & Technology

    2013-07-22

    shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1...don’t you allow your staffs to telecommute ? Mr.X: I will take your idea. Then we do not need a big building. Mr.U (working for Mr.X’s firm... Telecommuting …? Doesn’t it weaken our teamwork? Mr.X: I will then certainly introduce telecommuting partially. Mr.U: Partially… to what part? Mr.X: Maybe

  12. A Framework for Speech Activity Detection Using Adaptive Auditory Receptive Fields.

    PubMed

    Carlin, Michael A; Elhilali, Mounya

    2015-12-01

    One of the hallmarks of sound processing in the brain is the ability of the nervous system to adapt to changing behavioral demands and surrounding soundscapes. It can dynamically shift sensory and cognitive resources to focus on relevant sounds. Neurophysiological studies indicate that this ability is supported by adaptively retuning the shapes of cortical spectro-temporal receptive fields (STRFs) to enhance features of target sounds while suppressing those of task-irrelevant distractors. Because an important component of human communication is the ability of a listener to dynamically track speech in noisy environments, the solution obtained by auditory neurophysiology implies a useful adaptation strategy for speech activity detection (SAD). SAD is an important first step in a number of automated speech processing systems, and performance is often reduced in highly noisy environments. In this paper, we describe how task-driven adaptation is induced in an ensemble of neurophysiological STRFs, and show how speech-adapted STRFs reorient themselves to enhance spectro-temporal modulations of speech while suppressing those associated with a variety of nonspeech sounds. We then show how an adapted ensemble of STRFs can better detect speech in unseen noisy environments compared to an unadapted ensemble and a noise-robust baseline. Finally, we use a stimulus reconstruction task to demonstrate how the adapted STRF ensemble better captures the spectrotemporal modulations of attended speech in clean and noisy conditions. Our results suggest that a biologically plausible adaptation framework can be applied to speech processing systems to dynamically adapt feature representations for improving noise robustness.

  13. Motor contributions to the temporal precision of auditory attention.

    PubMed

    Morillon, Benjamin; Schroeder, Charles E; Wyart, Valentin

    2014-10-15

    In temporal-or dynamic-attending theory, it is proposed that motor activity helps to synchronize temporal fluctuations of attention with the timing of events in a task-relevant stream, thus facilitating sensory selection. Here we develop a mechanistic behavioural account for this theory by asking human participants to track a slow reference beat, by noiseless finger pressing, while extracting auditory target tones delivered on-beat and interleaved with distractors. We find that overt rhythmic motor activity improves the segmentation of auditory information by enhancing sensitivity to target tones while actively suppressing distractor tones. This effect is triggered by cyclic fluctuations in sensory gain locked to individual motor acts, scales parametrically with the temporal predictability of sensory events and depends on the temporal alignment between motor and attention fluctuations. Together, these findings reveal how top-down influences associated with a rhythmic motor routine sharpen sensory representations, enacting auditory 'active sensing'.

  14. Spatiotemporal neurodynamics of automatic temporal expectancy in 9-month old infants.

    PubMed

    Mento, Giovanni; Valenza, Eloisa

    2016-11-04

    Anticipating events occurrence (Temporal Expectancy) is a crucial capacity for survival. Yet, there is little evidence about the presence of cortical anticipatory activity from infancy. In this study we recorded the High-density electrophysiological activity in 9 month-old infants and adults undergoing an audio-visual S1-S2 paradigm simulating a lifelike "Peekaboo" game inducing automatic temporal expectancy of smiling faces. The results indicate in the S2-preceding Contingent Negative Variation (CNV) an early electrophysiological signature of expectancy-based anticipatory cortical activity. Moreover, the progressive CNV amplitude increasing across the task suggested that implicit temporal rule learning is at the basis of expectancy building-up over time. Cortical source reconstruction suggested a common CNV generator between adults and infants in the right prefrontal cortex. The decrease in the activity of this area across the task (time-on-task effect) further implied an early, core role of this region in implicit temporal rule learning. By contrast, a time-on-task activity boost was found in the supplementary motor area (SMA) in adults and in the temporoparietal regions in infants. Altogether, our findings suggest that the capacity of the human brain to translate temporal predictions into anticipatory neural activity emerges ontogenetically early, although the underlying spatiotemporal cortical dynamics change across development.

  15. Altered spontaneous brain activity in MRI-negative refractory temporal lobe epilepsy patients with major depressive disorder: A resting-state fMRI study.

    PubMed

    Zhu, Xi; He, Zhongqiong; Luo, Cheng; Qiu, Xiangmiao; He, Shixu; Peng, Anjiao; Zhang, Lin; Chen, Lei

    2018-03-15

    To investigate alterations in spontaneous brain activity in MRI-negative refractory temporal lobe epilepsy patients with major depressive disorder using resting-state functional magnetic resonance imaging (RS-fMRI). Eighteen MRI-negative refractory temporal lobe epilepsy patients with major depressive disorder (PDD), 17 MRI-negative refractory temporal lobe epilepsy patients without major depressive disorder (nPDD), and 21 matched healthy controls (HC) were recruited from West China Hospital of SiChuan University from April 2016 to June 2017. The Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) and 17-item Hamilton Depression Rating Scale were employed to confirm the diagnosis of major depressive disorder and assess the severity of depression. All participants underwent RS-fMRI scans using a 3.0T MRI system. MRI data were compared and analyzed using the amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) to measure spontaneous brain activity. These two methods were both used to evaluate spontaneous cerebral activity. The PDD group showed significantly altered spontaneous brain activity in the bilateral mesial prefrontal cortex, precuneus, angular gyrus, right parahippocampal gyrus, and right temporal pole. Meanwhile, compared with HC, the nPDD group demonstrated altered spontaneous brain activity in the temporal neocortex but no changes in mesial temporal structures. The PDD group showed regional brain activity alterations in the prefrontal-limbic system and dysfunction of the default mode network. The underlying pathophysiology of PDD may be provided for further studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Prefrontal contributions to domain-general executive control processes during temporal context retrieval.

    PubMed

    Rajah, M Natasha; Ames, Blaine; D'Esposito, Mark

    2008-03-07

    Neuroimaging studies have reported increased prefrontal cortex (PFC) activity during temporal context retrieval versus recognition memory. However, it remains unclear if these activations reflect PFC contributions to domain-general executive control processes or domain-specific retrieval processes. To gain a better understanding of the functional roles of these various PFC regions during temporal context retrieval we propose it is necessary to examine PFC activity across tasks from different domains, in which parallel manipulations are included targeting specific cognitive processes. In the current fMRI study, we examined domain-general and domain-specific PFC contributions to temporal context retrieval by increasing stimulus (but maintaining response number) and increasing response number (but maintaining stimulus number) across temporal context memory and ordering control tasks, for faces. The control task required subjects to order faces from youngest to oldest. Our behavioral results indicate that the combination of increased stimulus and response numbers significantly increased task difficulty for temporal context retrieval and ordering tasks. Across domains, increasing stimulus number, while maintaining response numbers, caused greater right lateral premotor cortex (BA 6/8) activity; whereas increasing response number, while maintaining stimulus number, caused greater domain-general left DLPFC (BA 9) and VLPFC (BA 44/45) activity. In addition, we found domain-specific right DLPFC (BA 9) activity only during retrieval events. These results highlight the functional heterogeneity of frontal cortex, and suggest its involvement in temporal context retrieval is related to its role in various cognitive control processes.

  17. Temporal variation of traffic on highways and the development of accurate temporal allocation factors for air pollution analyses

    NASA Astrophysics Data System (ADS)

    Batterman, Stuart; Cook, Richard; Justin, Thomas

    2015-04-01

    Traffic activity encompasses the number, mix, speed and acceleration of vehicles on roadways. The temporal pattern and variation of traffic activity reflects vehicle use, congestion and safety issues, and it represents a major influence on emissions and concentrations of traffic-related air pollutants. Accurate characterization of vehicle flows is critical in analyzing and modeling urban and local-scale pollutants, especially in near-road environments and traffic corridors. This study describes methods to improve the characterization of temporal variation of traffic activity. Annual, monthly, daily and hourly temporal allocation factors (TAFs), which describe the expected temporal variation in traffic activity, were developed using four years of hourly traffic activity data recorded at 14 continuous counting stations across the Detroit, Michigan, U.S. region. Five sites also provided vehicle classification. TAF-based models provide a simple means to apportion annual average estimates of traffic volume to hourly estimates. The analysis shows the need to separate TAFs for total and commercial vehicles, and weekdays, Saturdays, Sundays and observed holidays. Using either site-specific or urban-wide TAFs, nearly all of the variation in historical traffic activity at the street scale could be explained; unexplained variation was attributed to adverse weather, traffic accidents and construction. The methods and results presented in this paper can improve air quality dispersion modeling of mobile sources, and can be used to evaluate and model temporal variation in ambient air quality monitoring data and exposure estimates.

  18. Temporal variation of traffic on highways and the development of accurate temporal allocation factors for air pollution analyses

    PubMed Central

    Batterman, Stuart; Cook, Richard; Justin, Thomas

    2015-01-01

    Traffic activity encompasses the number, mix, speed and acceleration of vehicles on roadways. The temporal pattern and variation of traffic activity reflects vehicle use, congestion and safety issues, and it represents a major influence on emissions and concentrations of traffic-related air pollutants. Accurate characterization of vehicle flows is critical in analyzing and modeling urban and local-scale pollutants, especially in near-road environments and traffic corridors. This study describes methods to improve the characterization of temporal variation of traffic activity. Annual, monthly, daily and hourly temporal allocation factors (TAFs), which describe the expected temporal variation in traffic activity, were developed using four years of hourly traffic activity data recorded at 14 continuous counting stations across the Detroit, Michigan, U.S. region. Five sites also provided vehicle classification. TAF-based models provide a simple means to apportion annual average estimates of traffic volume to hourly estimates. The analysis shows the need to separate TAFs for total and commercial vehicles, and weekdays, Saturdays, Sundays and observed holidays. Using either site-specific or urban-wide TAFs, nearly all of the variation in historical traffic activity at the street scale could be explained; unexplained variation was attributed to adverse weather, traffic accidents and construction. The methods and results presented in this paper can improve air quality dispersion modeling of mobile sources, and can be used to evaluate and model temporal variation in ambient air quality monitoring data and exposure estimates. PMID:25844042

  19. Psychology of male and female communicative activity.

    PubMed

    Vasyura, Svetlana A

    2008-05-01

    The article features a brief overview of theoretical and empirical studies in communication psychology and sociability of men and women, boys and girls. Russian and foreign studies are summarized to point out that girls and women place greater emphasis on communication and interpersonal relations than do boys and men. Moreover, female communication is more emotional. The article presents the results of the author's own empirical study of male and female communicative activity. Communicative activity is viewed as a complex psychological phenomenon, a degree of the subject's willingness to interact. Communicative activity was studied with the test proposed by the Russian psychologist, Krupnov, and designed to detect the following components of communicative activity: dynamic (natural), emotional, motivational, cognitive, regulatory, productive, and two sorts of communication difficulties (operational and personal). Gender differences in communicative activity are shown on a sample of 480 participants aged 18-40 (240 men and 240 women). The article then describes communicative styles of adolescents (130 boys and 130 girls, aged 19-24). Various communicative styles are featured, including "energetic, businesslike," "conformal, emotional," "diplomatic, externally oriented" for boys and "energetic, sociable," "emotional, difficult," and "complaisant, expressive" for girls. Every person's individuality and gender identity are shown to impact their communicative style.

  20. Temporal pattern processing in songbirds.

    PubMed

    Comins, Jordan A; Gentner, Timothy Q

    2014-10-01

    Understanding how the brain perceives, organizes and uses patterned information is directly related to the neurobiology of language. Given the present limitations, such knowledge at the scale of neurons, neural circuits and neural populations can only come from non-human models, focusing on shared capacities that are relevant to language processing. Here we review recent advances in the behavioral and neural basis of temporal pattern processing of natural auditory communication signals in songbirds, focusing on European starlings. We suggest a general inhibitory circuit for contextual modulation that can act to control sensory representations based on patterning rules. Copyright © 2014. Published by Elsevier Ltd.

  1. The effects measurement of hand massage by the autonomic activity and psychological indicators.

    PubMed

    Kunikata, Hiroko; Watanabe, Kumi; Miyoshi, Makoto; Tanioka, Tetsuya

    2012-01-01

    This study examined the effects of hand massage on autonomic activity, anxiety, relaxation and sense of affinity by performing it to healthy people before applying the technic in actual clinical practice. Findings were showed below: 1) the significant increase in the pNN50 and the significant decrease in the heart rate meant the intervention of massage increased the autonomic nervous activity, improved the parasympathetic nerve activity and reduced the sympathetic nerve activity. This means the subjects were considered to be in a state of relaxation. 2) Salivary α amylase has been reported as a possible indicator for sympathetic nerve activity. In this study, there was no significant difference in the salivary α amylase despite a decrease after massage. 3) State anxiety score is temporal situational reactions while being in the state of anxiety and this score decreased significantly after massage. 4) The level of willingness to communicate with other person and the sense of affinity toward the massage-performer had a positive change of 70 percent. From this, it can be considered that a comfortable physical contact between a patient and a nursing profession, who are in a supported-supportive relationship, leads to an effect of shortening the gap in their psychological distance.

  2. Impaired cortical activation in autistic children: is the mirror neuron system involved?

    PubMed

    Martineau, Joëlle; Cochin, Stéphanie; Magne, Rémy; Barthelemy, Catherine

    2008-04-01

    The inability to imitate becomes obvious early in autistic children and seems to contribute to learning delay and to disorders of communication and contact. Posture, motility and imitation disorders in autistic syndrome might be the consequence of an abnormality of sensori-motor integration, related to the visual perception of movement, and could reflect impairment of the mirror neuron system (MNS). We compared EEG activity during the observation of videos showing actions or still scenes in 14 right-handed autistic children and 14 right-handed, age- and gender-matched control children (3 girls and 11 boys, aged 5 years 3 months-7 years 11 months). We showed desynchronisation of the EEG in the motor cerebral cortex and the frontal and temporal areas during observation of human actions in the group of healthy children. No such desynchronisation was found in autistic children. Moreover, inversion of the pattern of hemispheric activation was found in autistic children, with increased cortical activity in the right hemisphere in the posterior region, including the centro-parietal and temporo-occipital sites. These results are in agreement with the hypothesis of impairment of the mirror neuron system in autistic disorder.

  3. EEG-fMRI evaluation of patients with mesial temporal lobe sclerosis.

    PubMed

    Avesani, Mirko; Giacopuzzi, Silvia; Bongiovanni, Luigi Giuseppe; Borelli, Paolo; Cerini, Roberto; Pozzi Mucelli, Roberto; Fiaschi, Antonio

    2014-02-01

    This preliminary study sought more information on blood oxygen level dependent (BOLD) activation, especially contralateral temporal/extratemporal spread, during continuous EEG-fMRI recordings in four patients with mesial temporal sclerosis (MTS). In two patients, EEG showed unilateral focal activity during the EEG-fMRI session concordant with the interictal focus previously identified with standard and video-poly EEG. In the other two patients EEG demonstrated a contralateral diffusion of the irritative focus. In the third patient (with the most drug-resistant form and also extratemporal clinical signs), there was an extratemporal diffusion over frontal regions, ipsilateral to the irritative focus. fMRI analysis confirmed a single activation in the mesial temporal region in two patients whose EEG showed unilateral focal activity, while it demonstrated a bilateral activation in the mesial temporal regions in the other two patients. In the third patient, fMRI demonstrated an activation in the supplementary motxor area. This study confirms the most significant activation with a high firing rate of the irritative focus, but also suggests the importance of using new techniques (such as EEG-fMRI to examine cerebral blood flow) to identify the controlateral limbic activation, and any other extratemporal activations, possible causes of drug resistance in MTS that may require a more precise pre-surgical evaluation with invasive techniques.

  4. EEG-fMRI Evaluation of Patients with Mesial Temporal Lobe Sclerosis

    PubMed Central

    Avesani, Mirko; Giacopuzzi, Silvia; Bongiovanni, Luigi Giuseppe; Borelli, Paolo; Cerini, Roberto; Pozzi Mucelli, Roberto; Fiaschi, Antonio

    2014-01-01

    Summary This preliminary study sought more information on blood oxygen level dependent (BOLD) activation, especially contralateral temporal/extratemporal spread, during continuous EEG-fMRI recordings in four patients with mesial temporal sclerosis (MTS). In two patients, EEG showed unilateral focal activity during the EEG-fMRI session concordant with the interictal focus previously identified with standard and video-poly EEG. In the other two patients EEG demonstrated a contralateral diffusion of the irritative focus. In the third patient (with the most drug-resistant form and also extratemporal clinical signs), there was an extratemporal diffusion over frontal regions, ipsilateral to the irritative focus. fMRI analysis confirmed a single activation in the mesial temporal region in two patients whose EEG showed unilateral focal activity, while it demonstrated a bilateral activation in the mesial temporal regions in the other two patients. In the third patient, fMRI demonstrated an activation in the supplementary motxor area. This study confirms the most significant activation with a high firing rate of the irritative focus, but also suggests the importance of using new techniques (such as EEG-fMRI to examine cerebral blood flow) to identify the controlateral limbic activation, and any other extratemporal activations, possible causes of drug resistance in MTS that may require a more precise pre-surgical evaluation with invasive techniques. PMID:24571833

  5. Forum: Communication Activism Pedagogy. Communication Activism Pedagogy and Research: Communication Education Scholarship to Promote Social Justice

    ERIC Educational Resources Information Center

    Frey, Lawrence R.; Palmer, David L.

    2017-01-01

    The recent formation of the National Communication Association's Activism and Social Justice Division puts a spotlight on the extent to which instructional communication and instructional communication research have advanced--or even should advance--the goals of social justice. To examine this issue, two of the leading scholars on this topic,…

  6. Cortical activation during Braille reading is influenced by early visual experience in subjects with severe visual disability: a correlational fMRI study.

    PubMed

    Melzer, P; Morgan, V L; Pickens, D R; Price, R R; Wall, R S; Ebner, F F

    2001-11-01

    Functional magnetic resonance imaging was performed on blind adults resting and reading Braille. The strongest activation was found in primary somatic sensory/motor cortex on both cortical hemispheres. Additional foci of activation were situated in the parietal, temporal, and occipital lobes where visual information is processed in sighted persons. The regions were differentiated most in the correlation of their time courses of activation with resting and reading. Differences in magnitude and expanse of activation were substantially less significant. Among the traditionally visual areas, the strength of correlation was greatest in posterior parietal cortex and moderate in occipitotemporal, lateral occipital, and primary visual cortex. It was low in secondary visual cortex as well as in dorsal and ventral inferior temporal cortex and posterior middle temporal cortex. Visual experience increased the strength of correlation in all regions except dorsal inferior temporal and posterior parietal cortex. The greatest statistically significant increase, i.e., approximately 30%, was in ventral inferior temporal and posterior middle temporal cortex. In these regions, words are analyzed semantically, which may be facilitated by visual experience. In contrast, visual experience resulted in a slight, insignificant diminution of the strength of correlation in dorsal inferior temporal cortex where language is analyzed phonetically. These findings affirm that posterior temporal regions are engaged in the processing of written language. Moreover, they suggest that this function is modified by early visual experience. Furthermore, visual experience significantly strengthened the correlation of activation and Braille reading in occipital regions traditionally involved in the processing of visual features and object recognition suggesting a role for visual imagery. Copyright 2001 Wiley-Liss, Inc.

  7. An fMRI Study of the Neural Systems Involved in Visually Cued Auditory Top-Down Spatial and Temporal Attention

    PubMed Central

    Li, Chunlin; Chen, Kewei; Han, Hongbin; Chui, Dehua; Wu, Jinglong

    2012-01-01

    Top-down attention to spatial and temporal cues has been thoroughly studied in the visual domain. However, because the neural systems that are important for auditory top-down temporal attention (i.e., attention based on time interval cues) remain undefined, the differences in brain activity between directed attention to auditory spatial location (compared with time intervals) are unclear. Using fMRI (magnetic resonance imaging), we measured the activations caused by cue-target paradigms by inducing the visual cueing of attention to an auditory target within a spatial or temporal domain. Imaging results showed that the dorsal frontoparietal network (dFPN), which consists of the bilateral intraparietal sulcus and the frontal eye field, responded to spatial orienting of attention, but activity was absent in the bilateral frontal eye field (FEF) during temporal orienting of attention. Furthermore, the fMRI results indicated that activity in the right ventrolateral prefrontal cortex (VLPFC) was significantly stronger during spatial orienting of attention than during temporal orienting of attention, while the DLPFC showed no significant differences between the two processes. We conclude that the bilateral dFPN and the right VLPFC contribute to auditory spatial orienting of attention. Furthermore, specific activations related to temporal cognition were confirmed within the superior occipital gyrus, tegmentum, motor area, thalamus and putamen. PMID:23166800

  8. Multiscale Interactive Communication: Inside and Outside Thun Castle

    NASA Astrophysics Data System (ADS)

    Massari, G. A.; Luce, F.; Pellegatta, C.

    2011-09-01

    The applications of informatics to architecture have become, for professionals, a great tool for managing analytical phases and project activities but also, for the general public, new ways of communication that may relate directly present, past and future facts. Museums in historic buildings, their installations and the recent experiences of eco-museums located throughout the territory provide a privileged experimentation field for technical and digital representation. On the one hand, the safeguarding and the functional adaptation of buildings use 3D computer graphics models that are real spatially related databases: in them are ordered, viewed and interpreted the results of archival, artistic-historical, diagnostic, technological-structural studies and the assumption and feasibility of interventions. On the other hand, the disclosure of things and knowledge linked to collective memory relies on interactive maps and hypertext systems that provide access to authentic virtual museums; a sort of multimedia extension of the exhibition hall is produced to an architectural scale, but at landscape scale the result is an instrument of cultural development so far unpublished: works that are separated in direct perception find in a zenith view of the map a synthetic relation, related both to spatial parameters and temporal interpretations.

  9. Graph analysis of functional brain networks: practical issues in translational neuroscience

    PubMed Central

    De Vico Fallani, Fabrizio; Richiardi, Jonas; Chavez, Mario; Achard, Sophie

    2014-01-01

    The brain can be regarded as a network: a connected system where nodes, or units, represent different specialized regions and links, or connections, represent communication pathways. From a functional perspective, communication is coded by temporal dependence between the activities of different brain areas. In the last decade, the abstract representation of the brain as a graph has allowed to visualize functional brain networks and describe their non-trivial topological properties in a compact and objective way. Nowadays, the use of graph analysis in translational neuroscience has become essential to quantify brain dysfunctions in terms of aberrant reconfiguration of functional brain networks. Despite its evident impact, graph analysis of functional brain networks is not a simple toolbox that can be blindly applied to brain signals. On the one hand, it requires the know-how of all the methodological steps of the pipeline that manipulate the input brain signals and extract the functional network properties. On the other hand, knowledge of the neural phenomenon under study is required to perform physiologically relevant analysis. The aim of this review is to provide practical indications to make sense of brain network analysis and contrast counterproductive attitudes. PMID:25180301

  10. Temporally structured replay of neural activity in a model of entorhinal cortex, hippocampus and postsubiculum

    PubMed Central

    Hasselmo, Michael E.

    2008-01-01

    The spiking activity of hippocampal neurons during REM sleep exhibits temporally structured replay of spiking occurring during previously experienced trajectories (Louie and Wilson, 2001). Here, temporally structured replay of place cell activity during REM sleep is modeled in a large-scale network simulation of grid cells, place cells and head direction cells. During simulated waking behavior, the movement of the simulated rat drives activity of a population of head direction cells that updates the activity of a population of entorhinal grid cells. The population of grid cells drives the activity of place cells coding individual locations. Associations between location and movement direction are encoded by modification of excitatory synaptic connections from place cells to speed modulated head direction cells. During simulated REM sleep, the population of place cells coding an experienced location activates the head direction cells coding the associated movement direction. Spiking of head direction cells then causes frequency shifts within the population of entorhinal grid cells to update a phase representation of location. Spiking grid cells then activate new place cells that drive new head direction activity. In contrast to models that perform temporally compressed sequence retrieval similar to sharp wave activity, this model can simulate data on temporally structured replay of hippocampal place cell activity during REM sleep at time scales similar to those observed during waking. These mechanisms could be important for episodic memory of trajectories. PMID:18973557

  11. Using geovisual analytics in Google Earth to understand disease distribution: a case study of campylobacteriosis in the Czech Republic (2008-2012).

    PubMed

    Marek, Lukáš; Tuček, Pavel; Pászto, Vít

    2015-01-28

    Visual analytics aims to connect the processing power of information technologies and the user's ability of logical thinking and reasoning through the complex visual interaction. Moreover, the most of the data contain the spatial component. Therefore, the need for geovisual tools and methods arises. Either one can develop own system but the dissemination of findings and its usability might be problematic or the widespread and well-known platform can be utilized. The aim of this paper is to prove the applicability of Google Earth™ software as a tool for geovisual analytics that helps to understand the spatio-temporal patterns of the disease distribution. We combined the complex joint spatio-temporal analysis with comprehensive visualisation. We analysed the spatio-temporal distribution of the campylobacteriosis in the Czech Republic between 2008 and 2012. We applied three main approaches in the study: (1) the geovisual analytics of the surveillance data that were visualised in the form of bubble chart; (2) the geovisual analytics of the disease's weekly incidence surfaces computed by spatio-temporal kriging and (3) the spatio-temporal scan statistics that was employed in order to identify high or low rates clusters of affected municipalities. The final data are stored in Keyhole Markup Language files and visualised in Google Earth™ in order to apply geovisual analytics. Using geovisual analytics we were able to display and retrieve information from complex dataset efficiently. Instead of searching for patterns in a series of static maps or using numerical statistics, we created the set of interactive visualisations in order to explore and communicate results of analyses to the wider audience. The results of the geovisual analytics identified periodical patterns in the behaviour of the disease as well as fourteen spatio-temporal clusters of increased relative risk. We prove that Google Earth™ software is a usable tool for the geovisual analysis of the disease distribution. Google Earth™ has many indisputable advantages (widespread, freely available, intuitive interface, space-time visualisation capabilities and animations, communication of results), nevertheless it is still needed to combine it with pre-processing tools that prepare the data into a form suitable for the geovisual analytics itself.

  12. SCF-KIT signaling induces endothelin-3 synthesis and secretion: Thereby activates and regulates endothelin-B-receptor for generating temporally- and spatially-precise nitric oxide to modulate SCF- and or KIT-expressing cell functions.

    PubMed

    Chen, Lei L; Zhu, Jing; Schumacher, Jonathan; Wei, Chongjuan; Ramdas, Latha; Prieto, Victor G; Jimenez, Arnie; Velasco, Marco A; Tripp, Sheryl R; Andtbacka, Robert H I; Gouw, Launce; Rodgers, George M; Zhang, Liansheng; Chan, Benjamin K; Cassidy, Pamela B; Benjamin, Robert S; Leachman, Sancy A; Frazier, Marsha L

    2017-01-01

    We demonstrate that SCF-KIT signaling induces synthesis and secretion of endothelin-3 (ET3) in human umbilical vein endothelial cells and melanoma cells in vitro, gastrointestinal stromal tumors, human sun-exposed skin, and myenteric plexus of human colon post-fasting in vivo. This is the first report of a physiological mechanism of ET3 induction. Integrating our finding with supporting data from literature leads us to discover a previously unreported pathway of nitric oxide (NO) generation derived from physiological endothelial NO synthase (eNOS) or neuronal NOS (nNOS) activation (referred to as the KIT-ET3-NO pathway). It involves: (1) SCF-expressing cells communicate with neighboring KIT-expressing cells directly or indirectly (cleaved soluble SCF). (2) SCF-KIT signaling induces timely local ET3 synthesis and secretion. (3) ET3 binds to ETBR on both sides of intercellular space. (4) ET3-binding-initiated-ETBR activation increases cytosolic Ca2+, activates cell-specific eNOS or nNOS. (5) Temporally- and spatially-precise NO generation. NO diffuses into neighboring cells, thus acts in both SCF- and KIT-expressing cells. (6) NO modulates diverse cell-specific functions by NO/cGMP pathway, controlling transcriptional factors, or other mechanisms. We demonstrate the critical physiological role of the KIT-ET3-NO pathway in fulfilling high demand (exceeding basal level) of endothelium-dependent NO generation for coping with atherosclerosis, pregnancy, and aging. The KIT-ET3-NO pathway most likely also play critical roles in other cell functions that involve dual requirement of SCF-KIT signaling and NO. New strategies (e.g. enhancing the KIT-ET3-NO pathway) to harness the benefit of endogenous eNOS and nNOS activation and precise NO generation for correcting pathophysiology and restoring functions warrant investigation.

  13. SCF-KIT signaling induces endothelin-3 synthesis and secretion: Thereby activates and regulates endothelin-B-receptor for generating temporally- and spatially-precise nitric oxide to modulate SCF- and or KIT-expressing cell functions

    PubMed Central

    Zhu, Jing; Schumacher, Jonathan; Wei, Chongjuan; Ramdas, Latha; Prieto, Victor G.; Jimenez, Arnie; Velasco, Marco A.; Tripp, Sheryl R.; Andtbacka, Robert H. I.; Gouw, Launce; Rodgers, George M.; Zhang, Liansheng; Chan, Benjamin K.; Cassidy, Pamela B.; Benjamin, Robert S.; Leachman, Sancy A.; Frazier, Marsha L.

    2017-01-01

    We demonstrate that SCF-KIT signaling induces synthesis and secretion of endothelin-3 (ET3) in human umbilical vein endothelial cells and melanoma cells in vitro, gastrointestinal stromal tumors, human sun-exposed skin, and myenteric plexus of human colon post-fasting in vivo. This is the first report of a physiological mechanism of ET3 induction. Integrating our finding with supporting data from literature leads us to discover a previously unreported pathway of nitric oxide (NO) generation derived from physiological endothelial NO synthase (eNOS) or neuronal NOS (nNOS) activation (referred to as the KIT-ET3-NO pathway). It involves: (1) SCF-expressing cells communicate with neighboring KIT-expressing cells directly or indirectly (cleaved soluble SCF). (2) SCF-KIT signaling induces timely local ET3 synthesis and secretion. (3) ET3 binds to ETBR on both sides of intercellular space. (4) ET3-binding-initiated-ETBR activation increases cytosolic Ca2+, activates cell-specific eNOS or nNOS. (5) Temporally- and spatially-precise NO generation. NO diffuses into neighboring cells, thus acts in both SCF- and KIT-expressing cells. (6) NO modulates diverse cell-specific functions by NO/cGMP pathway, controlling transcriptional factors, or other mechanisms. We demonstrate the critical physiological role of the KIT-ET3-NO pathway in fulfilling high demand (exceeding basal level) of endothelium-dependent NO generation for coping with atherosclerosis, pregnancy, and aging. The KIT-ET3-NO pathway most likely also play critical roles in other cell functions that involve dual requirement of SCF-KIT signaling and NO. New strategies (e.g. enhancing the KIT-ET3-NO pathway) to harness the benefit of endogenous eNOS and nNOS activation and precise NO generation for correcting pathophysiology and restoring functions warrant investigation. PMID:28880927

  14. Consciousness and epilepsy: why are complex-partial seizures complex?

    PubMed Central

    Englot, Dario J.; Blumenfeld, Hal

    2010-01-01

    Why do complex-partial seizures in temporal lobe epilepsy (TLE) cause a loss of consciousness? Abnormal function of the medial temporal lobe is expected to cause memory loss, but it is unclear why profoundly impaired consciousness is so common in temporal lobe seizures. Recent exciting advances in behavioral, electrophysiological, and neuroimaging techniques spanning both human patients and animal models may allow new insights into this old question. While behavioral automatisms are often associated with diminished consciousness during temporal lobe seizures, impaired consciousness without ictal motor activity has also been described. Some have argued that electrographic lateralization of seizure activity to the left temporal lobe is most likely to cause impaired consciousness, but the evidence remains equivocal. Other data correlates ictal consciousness in TLE with bilateral temporal lobe involvement of seizure spiking. Nevertheless, it remains unclear why bilateral temporal seizures should impair responsiveness. Recent evidence has shown that impaired consciousness during temporal lobe seizures is correlated with large-amplitude slow EEG activity and neuroimaging signal decreases in the frontal and parietal association cortices. This abnormal decreased function in the neocortex contrasts with fast polyspike activity and elevated cerebral blood flow in limbic and other subcortical structures ictally. Our laboratory has thus proposed the “network inhibition hypothesis,” in which seizure activity propagates to subcortical regions necessary for cortical activation, allowing the cortex to descend into an inhibited state of unconsciousness during complex-partial temporal lobe seizures. Supporting this hypothesis, recent rat studies during partial limbic seizures have shown that behavioral arrest is associated with frontal cortical slow waves, decreased neuronal firing, and hypometabolism. Animal studies further demonstrate that cortical deactivation and behavioral changes depend on seizure spread to subcortical structures including the lateral septum. Understanding the contributions of network inhibition to impaired consciousness in TLE is an important goal, as recurrent limbic seizures often result in cortical dysfunction during and between epileptic events that adversely affects patients’ quality of life. PMID:19818900

  15. Transforming e-Learning into ee-Learning: The Centrality of Sociocultural Participation

    ERIC Educational Resources Information Center

    Schneider, Sandra B.; Evans, Michael A.

    2008-01-01

    Traditional e-learning efforts use information communication technologies to create and support educational opportunities that are not constrained by temporal and spatial considerations. The focus of ee-learning is to couple e-learning's approach with experiential education models that employ service-learning methodologies and with…

  16. White Matter Fractional Anisotrophy Differences and Correlates of Diagnostic Symptoms in Autism

    ERIC Educational Resources Information Center

    Cheung, C.; Chua, S. E.; Cheung, V.; Khong, P. L.; Tai, K. S.; Wong, T. K. W.; Ho, T. P.; McAlonan, G. M.

    2009-01-01

    Background: Individuals with autism have impairments in 3 domains: communication, social interaction and repetitive behaviours. Our previous work suggested early structural and connectivity abnormalities in prefrontal-striato-temporal-cerebellar networks but it is not clear how these are linked to diagnostic indices. Method: Children with autism…

  17. Brain mechanisms underlying human communication.

    PubMed

    Noordzij, Matthijs L; Newman-Norlund, Sarah E; de Ruiter, Jan Peter; Hagoort, Peter; Levinson, Stephen C; Toni, Ivan

    2009-01-01

    Human communication has been described as involving the coding-decoding of a conventional symbol system, which could be supported by parts of the human motor system (i.e. the "mirror neurons system"). However, this view does not explain how these conventions could develop in the first place. Here we target the neglected but crucial issue of how people organize their non-verbal behavior to communicate a given intention without pre-established conventions. We have measured behavioral and brain responses in pairs of subjects during communicative exchanges occurring in a real, interactive, on-line social context. In two fMRI studies, we found robust evidence that planning new communicative actions (by a sender) and recognizing the communicative intention of the same actions (by a receiver) relied on spatially overlapping portions of their brains (the right posterior superior temporal sulcus). The response of this region was lateralized to the right hemisphere, modulated by the ambiguity in meaning of the communicative acts, but not by their sensorimotor complexity. These results indicate that the sender of a communicative signal uses his own intention recognition system to make a prediction of the intention recognition performed by the receiver. This finding supports the notion that our communicative abilities are distinct from both sensorimotor processes and language abilities.

  18. Brain Mechanisms Underlying Human Communication

    PubMed Central

    Noordzij, Matthijs L.; Newman-Norlund, Sarah E.; de Ruiter, Jan Peter; Hagoort, Peter; Levinson, Stephen C.; Toni, Ivan

    2009-01-01

    Human communication has been described as involving the coding-decoding of a conventional symbol system, which could be supported by parts of the human motor system (i.e. the “mirror neurons system”). However, this view does not explain how these conventions could develop in the first place. Here we target the neglected but crucial issue of how people organize their non-verbal behavior to communicate a given intention without pre-established conventions. We have measured behavioral and brain responses in pairs of subjects during communicative exchanges occurring in a real, interactive, on-line social context. In two fMRI studies, we found robust evidence that planning new communicative actions (by a sender) and recognizing the communicative intention of the same actions (by a receiver) relied on spatially overlapping portions of their brains (the right posterior superior temporal sulcus). The response of this region was lateralized to the right hemisphere, modulated by the ambiguity in meaning of the communicative acts, but not by their sensorimotor complexity. These results indicate that the sender of a communicative signal uses his own intention recognition system to make a prediction of the intention recognition performed by the receiver. This finding supports the notion that our communicative abilities are distinct from both sensorimotor processes and language abilities. PMID:19668699

  19. Spatio-Temporal Dynamics of Field Cricket Calling Behaviour: Implications for Female Mate Search and Mate Choice.

    PubMed

    Nandi, Diptarup; Balakrishnan, Rohini

    2016-01-01

    Amount of calling activity (calling effort) is a strong determinant of male mating success in species such as orthopterans and anurans that use acoustic communication in the context of mating behaviour. While many studies in crickets have investigated the determinants of calling effort, patterns of variability in male calling effort in natural choruses remain largely unexplored. Within-individual variability in calling activity across multiple nights of calling can influence female mate search and mate choice strategies. Moreover, calling site fidelity across multiple nights of calling can also affect the female mate sampling strategy. We therefore investigated the spatio-temporal dynamics of acoustic signaling behaviour in a wild population of the field cricket species Plebeiogryllus guttiventris. We first studied the consistency of calling activity by quantifying variation in male calling effort across multiple nights of calling using repeatability analysis. Callers were inconsistent in their calling effort across nights and did not optimize nightly calling effort to increase their total number of nights spent calling. We also estimated calling site fidelity of males across multiple nights by quantifying movement of callers. Callers frequently changed their calling sites across calling nights with substantial displacement but without any significant directionality. Finally, we investigated trade-offs between within-night calling effort and energetically expensive calling song features such as call intensity and chirp rate. Calling effort was not correlated with any of the calling song features, suggesting that energetically expensive song features do not constrain male calling effort. The two key features of signaling behaviour, calling effort and call intensity, which determine the duration and spatial coverage of the sexual signal, are therefore uncorrelated and function independently.

  20. Statistical Analysis of the Ionosphere based on Singular Value Decomposition

    NASA Astrophysics Data System (ADS)

    Demir, Uygar; Arikan, Feza; Necat Deviren, M.; Toker, Cenk

    2016-07-01

    Ionosphere is made up of a spatio-temporally varying trend structure and secondary variations due to solar, geomagnetic, gravitational and seismic activities. Hence, it is important to monitor the ionosphere and acquire up-to-date information about its state in order both to better understand the physical phenomena that cause the variability and also to predict the effect of the ionosphere on HF and satellite communications, and satellite-based positioning systems. To charaterise the behaviour of the ionosphere, we propose to apply Singular Value Decomposition (SVD) to Total Electron Content (TEC) maps obtained from the TNPGN-Active (Turkish National Permanent GPS Network) CORS network. TNPGN-Active network consists of 146 GNSS receivers spread over Turkey. IONOLAB-TEC values estimated from each station are spatio-temporally interpolated using a Universal Kriging based algorithm with linear trend, namely IONOLAB-MAP, with very high spatial resolution. It is observed that the dominant singular value of TEC maps is an indicator of the trend structure of the ionosphere. The diurnal, seasonal and annual variability of the most dominant value is the representation of solar effect on ionosphere in midlatitude range. Secondary and smaller singular values are indicators of secondary variation which can have significance especially during geomagnetic storms or seismic disturbances. The dominant singular values are related to the physical basis vectors where ionosphere can be fully reconstructed using these vectors. Therefore, the proposed method can be used both for the monitoring of the current state of a region and also for the prediction and tracking of future states of ionosphere using singular values and singular basis vectors. This study is supported by by TUBITAK 115E915 and Joint TUBITAK 114E092 and AS CR14/001 projects.

  1. On the definition and interpretation of voice selective activation in the temporal cortex

    PubMed Central

    Bethmann, Anja; Brechmann, André

    2014-01-01

    Regions along the superior temporal sulci and in the anterior temporal lobes have been found to be involved in voice processing. It has even been argued that parts of the temporal cortices serve as voice-selective areas. Yet, evidence for voice-selective activation in the strict sense is still missing. The current fMRI study aimed at assessing the degree of voice-specific processing in different parts of the superior and middle temporal cortices. To this end, voices of famous persons were contrasted with widely different categories, which were sounds of animals and musical instruments. The argumentation was that only brain regions with statistically proven absence of activation by the control stimuli may be considered as candidates for voice-selective areas. Neural activity was found to be stronger in response to human voices in all analyzed parts of the temporal lobes except for the middle and posterior STG. More importantly, the activation differences between voices and the other environmental sounds increased continuously from the mid-posterior STG to the anterior MTG. Here, only voices but not the control stimuli excited an increase of the BOLD response above a resting baseline level. The findings are discussed with reference to the function of the anterior temporal lobes in person recognition and the general question on how to define selectivity of brain regions for a specific class of stimuli or tasks. In addition, our results corroborate recent assumptions about the hierarchical organization of auditory processing building on a processing stream from the primary auditory cortices to anterior portions of the temporal lobes. PMID:25071527

  2. Memory for performed and observed activities following traumatic brain injury

    PubMed Central

    Wright, Matthew J.; Wong, Andrew L.; Obermeit, Lisa C.; Woo, Ellen; Schmitter-Edgecombe, Maureen; Fuster, Joaquín M.

    2014-01-01

    Traumatic brain injury (TBI) is associated with deficits in memory for the content of completed activities. However, TBI groups have shown variable memory for the temporal order of activities. We sought to clarify the conditions under which temporal order memory for activities is intact following TBI. Additionally, we evaluated activity source memory and the relationship between activity memory and functional outcome in TBI participants. Thus, we completed a study of activity memory with 18 severe TBI survivors and 18 healthy age- and education-matched comparison participants. Both groups performed eight activities and observed eight activities that were fashioned after routine daily tasks. Incidental encoding conditions for activities were utilized. The activities were drawn from two counterbalanced lists, and both performance and observation were randomly determined and interspersed. After all of the activities were completed, content memory (recall and recognition), source memory (conditional source identification), and temporal order memory (correlation between order reconstruction and actual order) for the activities were assessed. Functional ability was assessed via the Community Integration Questionnaire (CIQ). In terms of content memory, TBI participants recalled and recognized fewer activities than comparison participants. Recognition of performed and observed activities was strongly associated with social integration on the CIQ. There were no between- or within-group differences in temporal order or source memory, although source memory performances were near ceiling. The findings were interpreted as suggesting that temporal order memory following TBI is intact under conditions of both purposeful activity completion and incidental encoding, and that activity memory is related to functional outcomes following TBI. PMID:24524393

  3. Longitudinal associations of social cognition and substance use in childhood and early adolescence: findings from the Avon Longitudinal Study of Parents and Children.

    PubMed

    Fluharty, Meg E; Heron, Jon; Munafò, Marcus R

    2018-06-01

    Substance use is associated with impaired social cognition. Experimental studies have shown that acute intoxication of alcohol, tobacco, and cannabis decreases the performance in non-verbal, social communication and theory of mind tasks. However, in epidemiological studies the temporal direction of this association has gone relatively unstudied. We investigated both directions of association within an adolescent birth cohort: the association of social cognition with subsequent substance use, and the association of early substance use with subsequent social cognition. We used data from the Avon Longitudinal Study of Parents and Children, a UK birth cohort. Logistic regression indicated that poor childhood non-verbal communication was associated with decreased odds of adolescent alcohol (OR 0.70, 95% 0.54-0.91), tobacco (OR 0.62, 95% CI 0.47-0.83), and cannabis use (OR 0.62, 95% CI 0.46-0.83). Early adolescent substance use was associated with increased odds of poor social communication (alcohol: OR 1.46, 95% CI 0.99-2.14; tobacco: OR 1.95, 95% CI 1.33-2.86) and poor social reciprocity (alcohol: OR 1.57, 95% CI 1.18-2.09; tobacco: OR 1.92, 95% CI 1.43-2.58; cannabis: OR 1.54, 95% CI 1.16-2.05). Overall, the relationship between social cognition and substance use was different in each temporal direction. Poor non-verbal communication in childhood appeared protective against later substance use, while adolescent substance use was associated with decreased social cognitive performance.

  4. Memory reorganization following anterior temporal lobe resection: a longitudinal functional MRI study

    PubMed Central

    Bonelli, Silvia B.; Thompson, Pamela J.; Yogarajah, Mahinda; Powell, Robert H. W.; Samson, Rebecca S.; McEvoy, Andrew W.; Symms, Mark R.; Koepp, Matthias J.

    2013-01-01

    Anterior temporal lobe resection controls seizures in 50–60% of patients with intractable temporal lobe epilepsy but may impair memory function, typically verbal memory following left, and visual memory following right anterior temporal lobe resection. Functional reorganization can occur within the ipsilateral and contralateral hemispheres. We investigated the reorganization of memory function in patients with temporal lobe epilepsy before and after left or right anterior temporal lobe resection and the efficiency of postoperative memory networks. We studied 46 patients with unilateral medial temporal lobe epilepsy (25/26 left hippocampal sclerosis, 16/20 right hippocampal sclerosis) before and after anterior temporal lobe resection on a 3 T General Electric magnetic resonance imaging scanner. All subjects had neuropsychological testing and performed a functional magnetic resonance imaging memory encoding paradigm for words, pictures and faces, testing verbal and visual memory in a single scanning session, preoperatively and again 4 months after surgery. Event-related analysis revealed that patients with left temporal lobe epilepsy had greater activation in the left posterior medial temporal lobe when successfully encoding words postoperatively than preoperatively. Greater pre- than postoperative activation in the ipsilateral posterior medial temporal lobe for encoding words correlated with better verbal memory outcome after left anterior temporal lobe resection. In contrast, greater postoperative than preoperative activation in the ipsilateral posterior medial temporal lobe correlated with worse postoperative verbal memory performance. These postoperative effects were not observed for visual memory function after right anterior temporal lobe resection. Our findings provide evidence for effective preoperative reorganization of verbal memory function to the ipsilateral posterior medial temporal lobe due to the underlying disease, suggesting that it is the capacity of the posterior remnant of the ipsilateral hippocampus rather than the functional reserve of the contralateral hippocampus that is important for maintaining verbal memory function after anterior temporal lobe resection. Early postoperative reorganization to ipsilateral posterior or contralateral medial temporal lobe structures does not underpin better performance. Additionally our results suggest that visual memory function in right temporal lobe epilepsy is affected differently by right anterior temporal lobe resection than verbal memory in left temporal lobe epilepsy. PMID:23715092

  5. Cued Memory Retrieval Exhibits Reinstatement of High Gamma Power on a Faster Timescale in the Left Temporal Lobe and Prefrontal Cortex

    PubMed Central

    Shaikhouni, Ammar

    2017-01-01

    Converging evidence suggests that reinstatement of neural activity underlies our ability to successfully retrieve memories. However, the temporal dynamics of reinstatement in the human cortex remain poorly understood. One possibility is that neural activity during memory retrieval, like replay of spiking neurons in the hippocampus, occurs at a faster timescale than during encoding. We tested this hypothesis in 34 participants who performed a verbal episodic memory task while we recorded high gamma (62–100 Hz) activity from subdural electrodes implanted for seizure monitoring. We show that reinstatement of distributed patterns of high gamma activity occurs faster than during encoding. Using a time-warping algorithm, we quantify the timescale of the reinstatement and identify brain regions that show significant timescale differences between encoding and retrieval. Our data suggest that temporally compressed reinstatement of cortical activity is a feature of cued memory retrieval. SIGNIFICANCE STATEMENT We show that cued memory retrieval reinstates neural activity on a faster timescale than was present during encoding. Our data therefore provide a link between reinstatement of neural activity in the cortex and spontaneous replay of cortical and hippocampal spiking activity, which also exhibits temporal compression, and suggest that temporal compression may be a universal feature of memory retrieval. PMID:28336569

  6. [Characteristics of the signal lag effect on crew--control center communications in the 520-day simulation experiment].

    PubMed

    Shved, D M; Gushchin, V I; Ehmann, B; Balazs, L

    2013-01-01

    The 520-day experimental simulation of an exploration mission provided an opportunity to apply content analysis for studying the patterns of crew--Control center (CC) communication impeded by lag times. The period of high autonomy was featured by drastic reduction of the number of crew questions and requests which was judged as a marker of adaptation to the simulated space mission environment. The "key" events in the experiment changed the content of crew messages radically attesting to misperception of time, emotional involvement, want of CC feedback and draining out negative emotions. After the period of high autonomy with full loss of communication with controllers the traffic of crew messages onto the outside was noted to become very light which could also point to temporal changes in the communication style developed in the conditions of isolation and autonomous existence.

  7. An Arrival and Departure Time Predictor for Scheduling Communication in Opportunistic IoT

    PubMed Central

    Pozza, Riccardo; Georgoulas, Stylianos; Moessner, Klaus; Nati, Michele; Gluhak, Alexander; Krco, Srdjan

    2016-01-01

    In this article, an Arrival and Departure Time Predictor (ADTP) for scheduling communication in opportunistic Internet of Things (IoT) is presented. The proposed algorithm learns about temporal patterns of encounters between IoT devices and predicts future arrival and departure times, therefore future contact durations. By relying on such predictions, a neighbour discovery scheduler is proposed, capable of jointly optimizing discovery latency and power consumption in order to maximize communication time when contacts are expected with high probability and, at the same time, saving power when contacts are expected with low probability. A comprehensive performance evaluation with different sets of synthetic and real world traces shows that ADTP performs favourably with respect to previous state of the art. This prediction framework opens opportunities for transmission planners and schedulers optimizing not only neighbour discovery, but the entire communication process. PMID:27827909

  8. An Arrival and Departure Time Predictor for Scheduling Communication in Opportunistic IoT.

    PubMed

    Pozza, Riccardo; Georgoulas, Stylianos; Moessner, Klaus; Nati, Michele; Gluhak, Alexander; Krco, Srdjan

    2016-11-04

    In this article, an Arrival and Departure Time Predictor (ADTP) for scheduling communication in opportunistic Internet of Things (IoT) is presented. The proposed algorithm learns about temporal patterns of encounters between IoT devices and predicts future arrival and departure times, therefore future contact durations. By relying on such predictions, a neighbour discovery scheduler is proposed, capable of jointly optimizing discovery latency and power consumption in order to maximize communication time when contacts are expected with high probability and, at the same time, saving power when contacts are expected with low probability. A comprehensive performance evaluation with different sets of synthetic and real world traces shows that ADTP performs favourably with respect to previous state of the art. This prediction framework opens opportunities for transmission planners and schedulers optimizing not only neighbour discovery, but the entire communication process.

  9. Association of baseline level of physical activity and its temporal changes with incident hypertension and diabetes mellitus.

    PubMed

    Lee, Jong-Young; Ryu, Seungho; Sung, Ki-Chul

    2018-01-01

    Background The association between baseline and temporal changes in physical activity and incident hypertension or diabetes mellitus in initially non-hypertensive or non-diabetic subjects is rarely known. Methods Among individuals who underwent consecutive comprehensive health screenings, their physical activity level was measured using a self-reported international physical activity questionnaire. First, subjects were classified into four categories: no regular physical activity with a sedentary lifestyle; minimal physical activity (<75 min/week); insufficient physical activity (≥75 min but <150 min/week); and sufficient physical activity (≥150 min/week). Second, subjects were sub-grouped, based on temporal changes in physical activity level between baseline and consecutive follow-up: increase, no change, and decrease. Results Finally, among 174,314 subjects (mean age 36.7 ± 6.9 years), 5544 (3.18%) and 21,276 (12.2%) developed incident diabetes mellitus and arterial hypertension, respectively. After a multivariate adjustment, sufficient baseline physical activity was associated with significantly lower risk for incident hypertension (hazard ratio 0.89; 95% confidence interval (CI) 0.81 to 0.97), but the difference was not significant, and showed a lower trend in diabetes mellitus incidence (hazard ratio 0.87; 95% CI 0.69 to 1.04) in reference to no regular physical activity group. Regardless of the baseline physical activity level, subjects with a temporal increase in physical activity showed significantly decreased risk for incident hypertension (hazard ratio 0.93; 95% CI 0.87 to 0.99) and diabetes mellitus (hazard ratio 0.83; 95% CI 0.74 to 0.92) compared with those with a temporal decrease in their physical activity level. Conclusion Both sufficient baseline physical activity level and its temporal increase were associated with a lower risk of incident hypertension and diabetes mellitus in a large, relatively healthy, cohort.

  10. Enlarged right superior temporal gyrus in children and adolescents with autism.

    PubMed

    Jou, Roger J; Minshew, Nancy J; Keshavan, Matcheri S; Vitale, Matthew P; Hardan, Antonio Y

    2010-11-11

    The superior temporal gyrus has been implicated in language processing and social perception. Therefore, anatomical abnormalities of this structure may underlie some of the deficits observed in autism, a severe neurodevelopmental disorder characterized by impairments in social interaction and communication. In this study, volumes of the left and right superior temporal gyri were measured using magnetic resonance imaging obtained from 18 boys with high-functioning autism (mean age=13.5±3.4years; full-scale IQ=103.6±13.4) and 19 healthy controls (mean age=13.7±3.0years; full-scale IQ=103.9±10.5), group-matched on age, gender, and handedness. When compared to the control group, right superior temporal gyral volumes was significantly increased in the autism group after controlling for age and total brain volume. There was no significant difference in the volume of the left superior temporal gyrus. Post-hoc analysis revealed a significant increase of the right posterior superior temporal gyral volume in the autism group, before and after controlling for age and total brain volume. Examination of the symmetry index for the superior temporal gyral volumes did not yield statistically significant between-group differences. Findings from this preliminary investigation suggest the existence of volumetric alterations in the right superior temporal gyrus in children and adolescents with autism, providing support for a neuroanatomical basis of the social perceptual deficits characterizing this severe neurodevelopmental disorder. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Enlarged Right Superior Temporal Gyrus in Children and Adolescents with Autism

    PubMed Central

    Jou, Roger J.; Minshew, Nancy J.; Keshavan, Matcheri S.; Vitale, Matthew P.; Hardan, Antonio Y.

    2010-01-01

    The superior temporal gyrus has been implicated in language processing and social perception. Therefore, anatomical abnormalities of this structure may underlie some of the deficits observed in autism, a severe neurodevelopmental disorder characterized by impairments in social interaction and communication. In this study, volumes of the left and right superior temporal gyri were measured using magnetic resonance imaging obtained from 18 boys with high-functioning autism (mean age = 13.5 ±3.4 years; full-scale IQ = 103.6 ±13.4) and 19 healthy controls (mean age = 13.7 ±3.0 years; full-scale IQ = 103.9 ±10.5), group-matched on age, gender, and handedness. When compared to the control group, right superior temporal gyral volumes were significantly increased in the autism group after controlling for age and total brain volume. There was no significant difference in the volume of the left superior temporal gyrus. Post-hoc analysis revealed a significant increase of the right posterior superior temporal gyral volume in the autism group, before and after controlling for age and total brain volume. Examination of the symmetry index for the superior temporal gyral volumes did not yield statistically significant between-group differences. Findings from this preliminary investigation suggest the existence of volumetric alterations in the right superior temporal gyrus in children and adolescents with autism, providing support for a neuroanatomical basis of the social perceptual deficits characterizing this severe neurodevelopmental disorder. PMID:20833154

  12. How Does the Sparse Memory “Engram” Neurons Encode the Memory of a Spatial–Temporal Event?

    PubMed Central

    Guan, Ji-Song; Jiang, Jun; Xie, Hong; Liu, Kai-Yuan

    2016-01-01

    Episodic memory in human brain is not a fixed 2-D picture but a highly dynamic movie serial, integrating information at both the temporal and the spatial domains. Recent studies in neuroscience reveal that memory storage and recall are closely related to the activities in discrete memory engram (trace) neurons within the dentate gyrus region of hippocampus and the layer 2/3 of neocortex. More strikingly, optogenetic reactivation of those memory trace neurons is able to trigger the recall of naturally encoded memory. It is still unknown how the discrete memory traces encode and reactivate the memory. Considering a particular memory normally represents a natural event, which consists of information at both the temporal and spatial domains, it is unknown how the discrete trace neurons could reconstitute such enriched information in the brain. Furthermore, as the optogenetic-stimuli induced recall of memory did not depend on firing pattern of the memory traces, it is most likely that the spatial activation pattern, but not the temporal activation pattern of the discrete memory trace neurons encodes the memory in the brain. How does the neural circuit convert the activities in the spatial domain into the temporal domain to reconstitute memory of a natural event? By reviewing the literature, here we present how the memory engram (trace) neurons are selected and consolidated in the brain. Then, we will discuss the main challenges in the memory trace theory. In the end, we will provide a plausible model of memory trace cell network, underlying the conversion of neural activities between the spatial domain and the temporal domain. We will also discuss on how the activation of sparse memory trace neurons might trigger the replay of neural activities in specific temporal patterns. PMID:27601979

  13. How Does the Sparse Memory "Engram" Neurons Encode the Memory of a Spatial-Temporal Event?

    PubMed

    Guan, Ji-Song; Jiang, Jun; Xie, Hong; Liu, Kai-Yuan

    2016-01-01

    Episodic memory in human brain is not a fixed 2-D picture but a highly dynamic movie serial, integrating information at both the temporal and the spatial domains. Recent studies in neuroscience reveal that memory storage and recall are closely related to the activities in discrete memory engram (trace) neurons within the dentate gyrus region of hippocampus and the layer 2/3 of neocortex. More strikingly, optogenetic reactivation of those memory trace neurons is able to trigger the recall of naturally encoded memory. It is still unknown how the discrete memory traces encode and reactivate the memory. Considering a particular memory normally represents a natural event, which consists of information at both the temporal and spatial domains, it is unknown how the discrete trace neurons could reconstitute such enriched information in the brain. Furthermore, as the optogenetic-stimuli induced recall of memory did not depend on firing pattern of the memory traces, it is most likely that the spatial activation pattern, but not the temporal activation pattern of the discrete memory trace neurons encodes the memory in the brain. How does the neural circuit convert the activities in the spatial domain into the temporal domain to reconstitute memory of a natural event? By reviewing the literature, here we present how the memory engram (trace) neurons are selected and consolidated in the brain. Then, we will discuss the main challenges in the memory trace theory. In the end, we will provide a plausible model of memory trace cell network, underlying the conversion of neural activities between the spatial domain and the temporal domain. We will also discuss on how the activation of sparse memory trace neurons might trigger the replay of neural activities in specific temporal patterns.

  14. Spatio-temporal Dynamics of Audiovisual Speech Processing

    PubMed Central

    Bernstein, Lynne E.; Auer, Edward T.; Wagner, Michael; Ponton, Curtis W.

    2007-01-01

    The cortical processing of auditory-alone, visual-alone, and audiovisual speech information is temporally and spatially distributed, and functional magnetic resonance imaging (fMRI) cannot adequately resolve its temporal dynamics. In order to investigate a hypothesized spatio-temporal organization for audiovisual speech processing circuits, event-related potentials (ERPs) were recorded using electroencephalography (EEG). Stimuli were congruent audiovisual /bα/, incongruent auditory /bα/ synchronized with visual /gα/, auditory-only /bα/, and visual-only /bα/ and /gα/. Current density reconstructions (CDRs) of the ERP data were computed across the latency interval of 50-250 milliseconds. The CDRs demonstrated complex spatio-temporal activation patterns that differed across stimulus conditions. The hypothesized circuit that was investigated here comprised initial integration of audiovisual speech by the middle superior temporal sulcus (STS), followed by recruitment of the intraparietal sulcus (IPS), followed by activation of Broca's area (Miller and d'Esposito, 2005). The importance of spatio-temporally sensitive measures in evaluating processing pathways was demonstrated. Results showed, strikingly, early (< 100 msec) and simultaneous activations in areas of the supramarginal and angular gyrus (SMG/AG), the IPS, the inferior frontal gyrus, and the dorsolateral prefrontal cortex. Also, emergent left hemisphere SMG/AG activation, not predicted based on the unisensory stimulus conditions was observed at approximately 160 to 220 msec. The STS was neither the earliest nor most prominent activation site, although it is frequently considered the sine qua non of audiovisual speech integration. As discussed here, the relatively late activity of the SMG/AG solely under audiovisual conditions is a possible candidate audiovisual speech integration response. PMID:17920933

  15. Cortical Activation Patterns Evoked by Temporally Asymmetric Sounds and Their Modulation by Learning

    PubMed Central

    Horikawa, Junsei

    2017-01-01

    When complex sounds are reversed in time, the original and reversed versions are perceived differently in spectral and temporal dimensions despite their identical duration and long-term spectrum-power profiles. Spatiotemporal activation patterns evoked by temporally asymmetric sound pairs demonstrate how the temporal envelope determines the readout of the spectrum. We examined the patterns of activation evoked by a temporally asymmetric sound pair in the primary auditory field (AI) of anesthetized guinea pigs and determined how discrimination training modified these patterns. Optical imaging using a voltage-sensitive dye revealed that a forward ramped-down natural sound (F) consistently evoked much stronger responses than its time-reversed, ramped-up counterpart (revF). The spatiotemporal maximum peak (maxP) of F-evoked activation was always greater than that of revF-evoked activation, and these maxPs were significantly separated within the AI. Although discrimination training did not affect the absolute magnitude of these maxPs, the revF-to-F ratio of the activation peaks calculated at the location where hemispheres were maximally activated (i.e., F-evoked maxP) was significantly smaller in the trained group. The F-evoked activation propagated across the AI along the temporal axis to the ventroanterior belt field (VA), with the local activation peak within the VA being significantly larger in the trained than in the naïve group. These results suggest that the innate network is more responsive to natural sounds of ramped-down envelopes than their time-reversed, unnatural sounds. The VA belt field activation might play an important role in emotional learning of sounds through its connections with amygdala. PMID:28451640

  16. Video quality pooling adaptive to perceptual distortion severity.

    PubMed

    Park, Jincheol; Seshadrinathan, Kalpana; Lee, Sanghoon; Bovik, Alan Conrad

    2013-02-01

    It is generally recognized that severe video distortions that are transient in space and/or time have a large effect on overall perceived video quality. In order to understand this phenomena, we study the distribution of spatio-temporally local quality scores obtained from several video quality assessment (VQA) algorithms on videos suffering from compression and lossy transmission over communication channels. We propose a content adaptive spatial and temporal pooling strategy based on the observed distribution. Our method adaptively emphasizes "worst" scores along both the spatial and temporal dimensions of a video sequence and also considers the perceptual effect of large-area cohesive motion flow such as egomotion. We demonstrate the efficacy of the method by testing it using three different VQA algorithms on the LIVE Video Quality database and the EPFL-PoliMI video quality database.

  17. The right hemisphere's contribution to discourse processing: A study in temporal lobe epilepsy.

    PubMed

    Lomlomdjian, Carolina; Múnera, Claudia P; Low, Daniel M; Terpiluk, Verónica; Solís, Patricia; Abusamra, Valeria; Kochen, Silvia

    2017-08-01

    Discourse skills - in which the right hemisphere has an important role - enables verbal communication by selecting contextually relevant information and integrating it coherently to infer the correct meaning. However, language research in epilepsy has focused on single word analysis related mainly to left hemisphere processing. The purpose of this study was to investigate discourse abilities in patients with right lateralized medial temporal lobe epilepsy (RTLE) by comparing their performance to that of patients with left temporal lobe epilepsy (LTLE). 74 pharmacoresistant temporal lobe epilepsy (TLE) patients were evaluated: 34 with RTLE and 40 with LTLE. Subjects underwent a battery of tests that measure comprehension and production of conversational and narrative discourse. Disease related variables and general neuropsychological data were evaluated. The RTLE group presented deficits in interictal conversational and narrative discourse, with a disintegrated speech, lack of categorization and misinterpretation of social meaning. LTLE group, on the other hand, showed a tendency to lower performance in logical-temporal sequencing. RTLE patients showed discourse deficits which have been described in right hemisphere damaged patients due to other etiologies. Medial and anterior temporal lobe structures appear to link semantic, world knowledge, and social cognition associated areas to construct a contextually related coherent meaning. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Forum: Communication Activism Pedagogy. A Call for an Ethic of Transformation in Communication Activism Education

    ERIC Educational Resources Information Center

    Artz, Lee

    2017-01-01

    Lawrence Frey and David Palmer present a provocative call for communication education and research that is urgent and opportune in this forum's stimulus essay, "Communication Activism Pedagogy and Research: Communication Education Scholarship to Promote Social Justice." The call is urgent because the global human condition--including…

  19. Neural signatures of lexical tone reading.

    PubMed

    Kwok, Veronica P Y; Wang, Tianfu; Chen, Siping; Yakpo, Kofi; Zhu, Linlin; Fox, Peter T; Tan, Li Hai

    2015-01-01

    Research on how lexical tone is neuroanatomically represented in the human brain is central to our understanding of cortical regions subserving language. Past studies have exclusively focused on tone perception of the spoken language, and little is known as to the lexical tone processing in reading visual words and its associated brain mechanisms. In this study, we performed two experiments to identify neural substrates in Chinese tone reading. First, we used a tone judgment paradigm to investigate tone processing of visually presented Chinese characters. We found that, relative to baseline, tone perception of printed Chinese characters were mediated by strong brain activation in bilateral frontal regions, left inferior parietal lobule, left posterior middle/medial temporal gyrus, left inferior temporal region, bilateral visual systems, and cerebellum. Surprisingly, no activation was found in superior temporal regions, brain sites well known for speech tone processing. In activation likelihood estimation (ALE) meta-analysis to combine results of relevant published studies, we attempted to elucidate whether the left temporal cortex activities identified in Experiment one is consistent with those found in previous studies of auditory lexical tone perception. ALE results showed that only the left superior temporal gyrus and putamen were critical in auditory lexical tone processing. These findings suggest that activation in the superior temporal cortex associated with lexical tone perception is modality-dependent. © 2014 Wiley Periodicals, Inc.

  20. Interhemispheric coupling between the posterior sylvian regions impacts successful auditory temporal order judgment.

    PubMed

    Bernasconi, Fosco; Grivel, Jeremy; Murray, Micah M; Spierer, Lucas

    2010-07-01

    Accurate perception of the temporal order of sensory events is a prerequisite in numerous functions ranging from language comprehension to motor coordination. We investigated the spatio-temporal brain dynamics of auditory temporal order judgment (aTOJ) using electrical neuroimaging analyses of auditory evoked potentials (AEPs) recorded while participants completed a near-threshold task requiring spatial discrimination of left-right and right-left sound sequences. AEPs to sound pairs modulated topographically as a function of aTOJ accuracy over the 39-77ms post-stimulus period, indicating the engagement of distinct configurations of brain networks during early auditory processing stages. Source estimations revealed that accurate and inaccurate performance were linked to bilateral posterior sylvian regions activity (PSR). However, activity within left, but not right, PSR predicted behavioral performance suggesting that left PSR activity during early encoding phases of pairs of auditory spatial stimuli appears critical for the perception of their order of occurrence. Correlation analyses of source estimations further revealed that activity between left and right PSR was significantly correlated in the inaccurate but not accurate condition, indicating that aTOJ accuracy depends on the functional decoupling between homotopic PSR areas. These results support a model of temporal order processing wherein behaviorally relevant temporal information--i.e. a temporal 'stamp'--is extracted within the early stages of cortical processes within left PSR but critically modulated by inputs from right PSR. We discuss our results with regard to current models of temporal of temporal order processing, namely gating and latency mechanisms. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  1. Low-resolution electromagnetic tomography (LORETA) in children with cochlear implants: a preliminary report.

    PubMed

    Henkin, Yael; Kishon-Rabin, Liat; Tatin-Schneider, Simona; Urbach, Doron; Hildesheimer, Minka; Kileny, Paul R

    2004-12-01

    The current preliminary report describes the utilization of low-resolution electromagnetic tomography (LORETA) in a small group of highly performing children using the Nucleus 22 cochlear implant (CI) and in normal-hearing (NH) adults. LORETA current density estimations were performed on an averaged target P3 component that was elicited by non-speech and speech oddball discrimination tasks. The results indicated that, when stimulated with tones, patients with right implants and NH adults (regardless of stimulated ear) showed enhanced activation in the right temporal lobe, whereas patients with left implants showed enhanced activation in the left temporal lobe. When stimulated with speech, patients with right implants showed bilateral activation of the temporal and frontal lobes, whereas patients with left implants showed only left temporal lobe activation. NH adults (regardless of stimulated ear) showed enhanced bilateral activation of the temporal and parietal lobes. The differences in activation patterns between patients with CI and NH subjects may be attributed to the long-term exposure to degraded input conditions which may have resulted in reorganization in terms of functional specialization. The difference between patients with right versus left implants, however, is intriguing and requires further investigation.

  2. Caregiver Activation and Home Hospice Nurse Communication in Advanced Cancer Care.

    PubMed

    Dingley, Catherine E; Clayton, Margaret; Lai, Djin; Doyon, Katherine; Reblin, Maija; Ellington, Lee

    Activated patients have the skills, knowledge, and confidence to manage their care, resulting in positive outcomes such as lower hospital readmission and fewer adverse consequences due to poor communication with providers. Despite extensive evidence on patient activation, little is known about activation in the home hospice setting, when family caregivers assume more responsibility in care management. We examined caregiver and nurse communication behaviors associated with caregiver activation during home hospice visits of patients with advanced cancer using a prospective observational design. We adapted Street's Activation Verbal Coding tool to caregiver communication and used qualitative thematic analysis to develop codes for nurse communications that preceded and followed each activation statement in 60 audio-recorded home hospice visits. Caregiver communication that reflected activation included demonstrating knowledge regarding the patient/care, describing care strategies, expressing opinions regarding care, requesting explanations of care, expressing concern about the patient, and redirecting the conversation toward the patient. Nurses responded by providing education, reassessing the patient/care environment, validating communications, clarifying care issues, updating/revising care, and making recommendations for future care. Nurses prompted caregiver activation through focused care-specific questions, open-ended questions/statements, and personal questions. Few studies have investigated nurse/caregiver communication in home hospice, and, to our knowledge, no other studies focused on caregiver activation. The current study provides a foundation to develop a framework of caregiver activation through enhanced communication with nurses. Activated caregivers may facilitate patient-centered care through communication with nurses in home hospice, thus resulting in enhanced outcomes for patients with advanced cancer.

  3. Dissimilar processing of emotional facial expressions in human and monkey temporal cortex

    PubMed Central

    Zhu, Qi; Nelissen, Koen; Van den Stock, Jan; De Winter, François-Laurent; Pauwels, Karl; de Gelder, Beatrice; Vanduffel, Wim; Vandenbulcke, Mathieu

    2013-01-01

    Emotional facial expressions play an important role in social communication across primates. Despite major progress made in our understanding of categorical information processing such as for objects and faces, little is known, however, about how the primate brain evolved to process emotional cues. In this study, we used functional magnetic resonance imaging (fMRI) to compare the processing of emotional facial expressions between monkeys and humans. We used a 2 × 2 × 2 factorial design with species (human and monkey), expression (fear and chewing) and configuration (intact versus scrambled) as factors. At the whole brain level, selective neural responses to conspecific emotional expressions were anatomically confined to the superior temporal sulcus (STS) in humans. Within the human STS, we found functional subdivisions with a face-selective right posterior STS area that also responded selectively to emotional expressions of other species and a more anterior area in the right middle STS that responded specifically to human emotions. Hence, we argue that the latter region does not show a mere emotion-dependent modulation of activity but is primarily driven by human emotional facial expressions. Conversely, in monkeys, emotional responses appeared in earlier visual cortex and outside face-selective regions in inferior temporal cortex that responded also to multiple visual categories. Within monkey IT, we also found areas that were more responsive to conspecific than to non-conspecific emotional expressions but these responses were not as specific as in human middle STS. Overall, our results indicate that human STS may have developed unique properties to deal with social cues such as emotional expressions. PMID:23142071

  4. Auditory and visual modulation of temporal lobe neurons in voice-sensitive and association cortices.

    PubMed

    Perrodin, Catherine; Kayser, Christoph; Logothetis, Nikos K; Petkov, Christopher I

    2014-02-12

    Effective interactions between conspecific individuals can depend upon the receiver forming a coherent multisensory representation of communication signals, such as merging voice and face content. Neuroimaging studies have identified face- or voice-sensitive areas (Belin et al., 2000; Petkov et al., 2008; Tsao et al., 2008), some of which have been proposed as candidate regions for face and voice integration (von Kriegstein et al., 2005). However, it was unclear how multisensory influences occur at the neuronal level within voice- or face-sensitive regions, especially compared with classically defined multisensory regions in temporal association cortex (Stein and Stanford, 2008). Here, we characterize auditory (voice) and visual (face) influences on neuronal responses in a right-hemisphere voice-sensitive region in the anterior supratemporal plane (STP) of Rhesus macaques. These results were compared with those in the neighboring superior temporal sulcus (STS). Within the STP, our results show auditory sensitivity to several vocal features, which was not evident in STS units. We also newly identify a functionally distinct neuronal subpopulation in the STP that appears to carry the area's sensitivity to voice identity related features. Audiovisual interactions were prominent in both the STP and STS. However, visual influences modulated the responses of STS neurons with greater specificity and were more often associated with congruent voice-face stimulus pairings than STP neurons. Together, the results reveal the neuronal processes subserving voice-sensitive fMRI activity patterns in primates, generate hypotheses for testing in the visual modality, and clarify the position of voice-sensitive areas within the unisensory and multisensory processing hierarchies.

  5. Auditory and Visual Modulation of Temporal Lobe Neurons in Voice-Sensitive and Association Cortices

    PubMed Central

    Perrodin, Catherine; Kayser, Christoph; Logothetis, Nikos K.

    2014-01-01

    Effective interactions between conspecific individuals can depend upon the receiver forming a coherent multisensory representation of communication signals, such as merging voice and face content. Neuroimaging studies have identified face- or voice-sensitive areas (Belin et al., 2000; Petkov et al., 2008; Tsao et al., 2008), some of which have been proposed as candidate regions for face and voice integration (von Kriegstein et al., 2005). However, it was unclear how multisensory influences occur at the neuronal level within voice- or face-sensitive regions, especially compared with classically defined multisensory regions in temporal association cortex (Stein and Stanford, 2008). Here, we characterize auditory (voice) and visual (face) influences on neuronal responses in a right-hemisphere voice-sensitive region in the anterior supratemporal plane (STP) of Rhesus macaques. These results were compared with those in the neighboring superior temporal sulcus (STS). Within the STP, our results show auditory sensitivity to several vocal features, which was not evident in STS units. We also newly identify a functionally distinct neuronal subpopulation in the STP that appears to carry the area's sensitivity to voice identity related features. Audiovisual interactions were prominent in both the STP and STS. However, visual influences modulated the responses of STS neurons with greater specificity and were more often associated with congruent voice-face stimulus pairings than STP neurons. Together, the results reveal the neuronal processes subserving voice-sensitive fMRI activity patterns in primates, generate hypotheses for testing in the visual modality, and clarify the position of voice-sensitive areas within the unisensory and multisensory processing hierarchies. PMID:24523543

  6. Role of fusiform and anterior temporal cortical areas in facial recognition.

    PubMed

    Nasr, Shahin; Tootell, Roger B H

    2012-11-15

    Recent fMRI studies suggest that cortical face processing extends well beyond the fusiform face area (FFA), including unspecified portions of the anterior temporal lobe. However, the exact location of such anterior temporal region(s), and their role during active face recognition, remain unclear. Here we demonstrate that (in addition to FFA) a small bilateral site in the anterior tip of the collateral sulcus ('AT'; the anterior temporal face patch) is selectively activated during recognition of faces but not houses (a non-face object). In contrast to the psychophysical prediction that inverted and contrast reversed faces are processed like other non-face objects, both FFA and AT (but not other visual areas) were also activated during recognition of inverted and contrast reversed faces. However, response accuracy was better correlated to recognition-driven activity in AT, compared to FFA. These data support a segregated, hierarchical model of face recognition processing, extending to the anterior temporal cortex. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Propofol and memory: a study using a process dissociation procedure and functional magnetic resonance imaging.

    PubMed

    Quan, X; Yi, J; Ye, T H; Tian, S Y; Zou, L; Yu, X R; Huang, Y G

    2013-04-01

    Thirty volunteers randomly received either mild or deep propofol sedation, to assess its effect on explicit and implicit memory. Blood oxygen level-dependent functional magnetic resonance during sedation examined brain activation by auditory word stimulus and a process dissociation procedure was performed 4 h after scanning. Explicit memory formation did not occur in either group. Implicit memories were formed during mild but not deep sedation (p = 0.04). Mild propofol sedation inhibited superior temporal gyrus activation (Z value 4.37, voxel 167). Deep propofol sedation inhibited superior temporal gyrus (Z value 4.25, voxel 351), middle temporal gyrus (Z value 4.39, voxel 351) and inferior parietal lobule (Z value 5.06, voxel 239) activation. Propofol only abolishes implicit memory during deep sedation. The superior temporal gyrus is associated with explicit memory processing, while the formation of both implicit and explicit memories is associated with superior and middle temporal gyri and inferior parietal lobule activation. Anaesthesia © 2013 The Association of Anaesthetists of Great Britain and Ireland.

  8. Role of Fusiform and Anterior Temporal Cortical Areas in Facial Recognition

    PubMed Central

    Nasr, Shahin; Tootell, Roger BH

    2012-01-01

    Recent FMRI studies suggest that cortical face processing extends well beyond the fusiform face area (FFA), including unspecified portions of the anterior temporal lobe. However, the exact location of such anterior temporal region(s), and their role during active face recognition, remain unclear. Here we demonstrate that (in addition to FFA) a small bilateral site in the anterior tip of the collateral sulcus (‘AT’; the anterior temporal face patch) is selectively activated during recognition of faces but not houses (a non-face object). In contrast to the psychophysical prediction that inverted and contrast reversed faces are processed like other non-face objects, both FFA and AT (but not other visual areas) were also activated during recognition of inverted and contrast reversed faces. However, response accuracy was better correlated to recognition-driven activity in AT, compared to FFA. These data support a segregated, hierarchical model of face recognition processing, extending to the anterior temporal cortex. PMID:23034518

  9. A Plastic Temporal Brain Code for Conscious State Generation

    PubMed Central

    Dresp-Langley, Birgitta; Durup, Jean

    2009-01-01

    Consciousness is known to be limited in processing capacity and often described in terms of a unique processing stream across a single dimension: time. In this paper, we discuss a purely temporal pattern code, functionally decoupled from spatial signals, for conscious state generation in the brain. Arguments in favour of such a code include Dehaene et al.'s long-distance reverberation postulate, Ramachandran's remapping hypothesis, evidence for a temporal coherence index and coincidence detectors, and Grossberg's Adaptive Resonance Theory. A time-bin resonance model is developed, where temporal signatures of conscious states are generated on the basis of signal reverberation across large distances in highly plastic neural circuits. The temporal signatures are delivered by neural activity patterns which, beyond a certain statistical threshold, activate, maintain, and terminate a conscious brain state like a bar code would activate, maintain, or inactivate the electronic locks of a safe. Such temporal resonance would reflect a higher level of neural processing, independent from sensorial or perceptual brain mechanisms. PMID:19644552

  10. Communication during Physical Activity for Youth Who Are Deafblind: Research to Practice

    ERIC Educational Resources Information Center

    Arndt, Katrina; Lieberman, Lauren J.; Pucci, Gina

    2004-01-01

    Communication is a barrier to accessing physical activity and recreation for many people who are deafblind (Lieberman & MacVicar, 2003; Lieberman & Stuart, 2002). The purpose of this study was to observe effective communication strategies used during four physical activities for youth who are deafblind. Communication during physical activity was…

  11. Memory loss and memory reorganization patterns in temporal lobe epilepsy patients undergoing anterior temporal lobe resection, as demonstrated by pre-versus post-operative functional MRI.

    PubMed

    Limotai, Chusak; McLachlan, Richard S; Hayman-Abello, Susan; Hayman-Abello, Brent; Brown, Suzan; Bihari, Frank; Mirsattari, Seyed M

    2018-06-19

    This study was aimed to longitudinally assess memory function and whole-brain memory circuit reorganization in patients with temporal lobe epilepsy (TLE) by comparing activation potentials before versus after anterior temporal lobe (ATL) resection. Nineteen patients with medically-intractable TLE (10 left TLE, 9 right TLE) and 15 healthy controls were enrolled. Group analyses were conducted pre- and post-ATL of a novelty complex scene-encoding paradigm comparing areas of blood oxygen-level-dependent (BOLD) signal activations on functional magnetic resonance imaging (fMRI). None of the pre-operative patient characteristics we studied predicted the extent of pre- to post-operative memory loss. On fMRI, extra-temporal activations were detected pre-operatively in both LTLE and RTLE, particularly in the frontal lobe. Greater activations also were noted in the contralateral hippocampus and parahippocampus in both groups. Performing within-subject comparisons, post-op relative to pre-op, pronounced ipsilateral activations were identified in the left parahippocampal gyrus in LTLE, versus the right middle temporal gyrus in RTLE patients. Memory function was impaired pre-operatively but declined after ATL resection in both RTLE and LTLE patients. Post-operative fMRI results indicate possible functional adaptations to ATL loss, primarily occurring within the left parahippocampal gyrus versus right middle temporal gyrus in LTLE versus RTLE patients, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. The neural basis of human social values: evidence from functional MRI.

    PubMed

    Zahn, Roland; Moll, Jorge; Paiva, Mirella; Garrido, Griselda; Krueger, Frank; Huey, Edward D; Grafman, Jordan

    2009-02-01

    Social values are composed of social concepts (e.g., "generosity") and context-dependent moral sentiments (e.g., "pride"). The neural basis of this intricate cognitive architecture has not been investigated thus far. Here, we used functional magnetic resonance imaging while subjects imagined their own actions toward another person (self-agency) which either conformed or were counter to a social value and were associated with pride or guilt, respectively. Imagined actions of another person toward the subjects (other-agency) in accordance with or counter to a value were associated with gratitude or indignation/anger. As hypothesized, superior anterior temporal lobe (aTL) activity increased with conceptual detail in all conditions. During self-agency, activity in the anterior ventromedial prefrontal cortex correlated with pride and guilt, whereas activity in the subgenual cingulate solely correlated with guilt. In contrast, indignation/anger activated lateral orbitofrontal-insular cortices. Pride and gratitude additionally evoked mesolimbic and basal forebrain activations. Our results demonstrate that social values emerge from coactivation of stable abstract social conceptual representations in the superior aTL and context-dependent moral sentiments encoded in fronto-mesolimbic regions. This neural architecture may provide the basis of our ability to communicate about the meaning of social values across cultural contexts without limiting our flexibility to adapt their emotional interpretation.

  13. Hemispheric contributions to language reorganisation: An MEG study of neuroplasticity in chronic post stroke aphasia.

    PubMed

    Mohr, Bettina; MacGregor, Lucy J; Difrancesco, Stephanie; Harrington, Karen; Pulvermüller, Friedemann; Shtyrov, Yury

    2016-12-01

    Previous studies have demonstrated that efficient neurorehabilitation in post stroke aphasia leads to clinical language improvements and promotes neuroplasticity. Brain areas frequently implicated in functional restitution of language after stroke comprise perilesional sites in the left hemisphere and homotopic regions in the right hemisphere. However, the neuronal mechanisms underlying therapy-induced language restitution are still largely unclear. In this study, magnetoencephalography was used to investigate neurophysiological changes in a group of chronic aphasia patients who underwent intensive language action therapy (ILAT), also known as constraint-induced aphasia therapy (CIAT). Before and immediately after ILAT, patients' language and communication skills were assessed and their brain responses were recorded during a lexical magnetic mismatch negativity (MMNm) paradigm, presenting familiar spoken words and meaningless pseudowords. After the two-week therapy interval, patients showed significant clinical improvements of language and communication skills. Spatio-temporal dynamics of neuronal changes revealed a significant increase in word-specific neuro-magnetic MMNm activation around 200ms after stimulus identification points. This enhanced brain response occurred specifically for words and was most pronounced over perilesional areas in the left hemisphere. Therapy-related changes in neuromagnetic activation for words in both hemispheres significantly correlated with performance on a clinical language test. The findings indicate that functional recovery of language in chronic post stroke aphasia is associated with neuroplastic changes in both cerebral hemispheres, with stronger left-hemispheric contribution during automatic stages of language processing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Neurobiological underpinnings of shame and guilt: a pilot fMRI study

    PubMed Central

    Michl, Petra; Meindl, Thomas; Meister, Franziska; Born, Christine; Engel, Rolf R.; Reiser, Maximilian

    2014-01-01

    In this study, a functional magnetic resonance imaging paradigm originally employed by Takahashi et al. was adapted to look for emotion-specific differences in functional brain activity within a healthy German sample (N = 14), using shame- and guilt-related stimuli and neutral stimuli. Activations were found for both of these emotions in the temporal lobe (shame condition: anterior cingulate cortex, parahippocampal gyrus; guilt condition: fusiform gyrus, middle temporal gyrus). Specific activations were found for shame in the frontal lobe (medial and inferior frontal gyrus), and for guilt in the amygdala and insula. This is consistent with Takahashi et al.’s results obtained for a Japanese sample (using Japanese stimuli), which showed activations in the fusiform gyrus, hippocampus, middle occipital gyrus and parahippocampal gyrus. During the imagination of shame, frontal and temporal areas (e.g. middle frontal gyrus and parahippocampal gyrus) were responsive regardless of gender. In the guilt condition, women only activate temporal regions, whereas men showed additional frontal and occipital activation as well as a responsive amygdala. The results suggest that shame and guilt share some neural networks, as well as having individual areas of activation. It can be concluded that frontal, temporal and limbic areas play a prominent role in the generation of moral feelings. PMID:23051901

  15. Progression of Dementia Assessed by Temporal Correlations of Physical Activity: Results From a 3.5-Year, Longitudinal Randomized Controlled Trial

    PubMed Central

    Hu, Kun; Riemersma - van der Lek, Rixt F.; Patxot, Melissa; Li, Peng; Shea, Steven A.; Scheer, Frank A. J. L.; Van Someren, Eus J. W.

    2016-01-01

    Cross-sectional studies show that activity fluctuations in healthy young adults possess robust temporal correlations that become altered with aging, and in dementia and depression. This study was designed to test whether or not within-subject changes of activity correlations (i) track the clinical progression of dementia, (ii) reflect the alterations of depression symptoms in patients with dementia, and (iii) can be manipulated by clinical interventions aimed at stabilizing circadian rhythmicity and improving sleep in dementia, namely timed bright light therapy and melatonin supplementation. We examined 144 patients with dementia (70–96 years old) who were assigned to daily treatment with bright light, bedtime melatonin, both or placebos only in a 3.5-year double-blinded randomized clinical trial. We found that activity correlations at temporal scales <~2 hours significantly decreased over time and that light treatment attenuated the decrease by ~73%. Moreover, the decrease of temporal activity correlations positively correlated with the degrees of cognitive decline and worsening of mood though the associations were relatively weak. These results suggest a mechanistic link between multiscale activity regulation and circadian/sleep function in dementia patients. Whether temporal activity patterns allow unobtrusive, long-term monitoring of dementia progression and mood changes is worth further investigation. PMID:27292543

  16. Neurobiological underpinnings of shame and guilt: a pilot fMRI study.

    PubMed

    Michl, Petra; Meindl, Thomas; Meister, Franziska; Born, Christine; Engel, Rolf R; Reiser, Maximilian; Hennig-Fast, Kristina

    2014-02-01

    In this study, a functional magnetic resonance imaging paradigm originally employed by Takahashi et al. was adapted to look for emotion-specific differences in functional brain activity within a healthy German sample (N = 14), using shame- and guilt-related stimuli and neutral stimuli. Activations were found for both of these emotions in the temporal lobe (shame condition: anterior cingulate cortex, parahippocampal gyrus; guilt condition: fusiform gyrus, middle temporal gyrus). Specific activations were found for shame in the frontal lobe (medial and inferior frontal gyrus), and for guilt in the amygdala and insula. This is consistent with Takahashi et al.'s results obtained for a Japanese sample (using Japanese stimuli), which showed activations in the fusiform gyrus, hippocampus, middle occipital gyrus and parahippocampal gyrus. During the imagination of shame, frontal and temporal areas (e.g. middle frontal gyrus and parahippocampal gyrus) were responsive regardless of gender. In the guilt condition, women only activate temporal regions, whereas men showed additional frontal and occipital activation as well as a responsive amygdala. The results suggest that shame and guilt share some neural networks, as well as having individual areas of activation. It can be concluded that frontal, temporal and limbic areas play a prominent role in the generation of moral feelings.

  17. Memory network plasticity after temporal lobe resection: a longitudinal functional imaging study

    PubMed Central

    Sidhu, Meneka K.; Stretton, Jason; Winston, Gavin P.; McEvoy, Andrew W.; Symms, Mark; Thompson, Pamela J.; Koepp, Matthias J.

    2016-01-01

    Abstract Anterior temporal lobe resection can control seizures in up to 80% of patients with temporal lobe epilepsy. Memory decrements are the main neurocognitive complication. Preoperative functional reorganization has been described in memory networks, but less is known of postoperative reorganization. We investigated reorganization of memory-encoding networks preoperatively and 3 and 12 months after surgery. We studied 36 patients with unilateral medial temporal lobe epilepsy (19 right) before and 3 and 12 months after anterior temporal lobe resection. Fifteen healthy control subjects were studied at three equivalent time points. All subjects had neuropsychological testing at each of the three time points. A functional magnetic resonance imaging memory-encoding paradigm of words and faces was performed with subsequent out-of-scanner recognition assessments. Changes in activations across the time points in each patient group were compared to changes in the control group in a single flexible factorial analysis. Postoperative change in memory across the time points was correlated with postoperative activations to investigate the efficiency of reorganized networks. Left temporal lobe epilepsy patients showed increased right anterior hippocampal and frontal activation at both 3 and 12 months after surgery relative to preoperatively, for word and face encoding, with a concomitant reduction in left frontal activation 12 months postoperatively. Right anterior hippocampal activation 12 months postoperatively correlated significantly with improved verbal learning in patients with left temporal lobe epilepsy from preoperatively to 12 months postoperatively. Preoperatively, there was significant left posterior hippocampal activation that was sustained 3 months postoperatively at word encoding, and increased at face encoding. For both word and face encoding this was significantly reduced from 3 to 12 months postoperatively. Patients with right temporal lobe epilepsy showed increased left anterior hippocampal activation on word encoding from 3 to 12 months postoperatively compared to preoperatively. On face encoding, left anterior hippocampal activations were present preoperatively and 12 months postoperatively. Left anterior hippocampal and orbitofrontal cortex activations correlated with improvements in both design and verbal learning 12 months postoperatively. On face encoding, there were significantly increased left posterior hippocampal activations that reduced significantly from 3 to 12 months postoperatively. Postoperative changes occur in the memory-encoding network in both left and right temporal lobe epilepsy patients across both verbal and visual domains. Three months after surgery, compensatory posterior hippocampal reorganization that occurs is transient and inefficient. Engagement of the contralateral hippocampus 12 months after surgery represented efficient reorganization in both patient groups, suggesting that the contralateral hippocampus contributes to memory outcome 12 months after surgery. PMID:26754787

  18. Reference frames for spatial frequency in face representation differ in the temporal visual cortex and amygdala.

    PubMed

    Inagaki, Mikio; Fujita, Ichiro

    2011-07-13

    Social communication in nonhuman primates and humans is strongly affected by facial information from other individuals. Many cortical and subcortical brain areas are known to be involved in processing facial information. However, how the neural representation of faces differs across different brain areas remains unclear. Here, we demonstrate that the reference frame for spatial frequency (SF) tuning of face-responsive neurons differs in the temporal visual cortex and amygdala in monkeys. Consistent with psychophysical properties for face recognition, temporal cortex neurons were tuned to image-based SFs (cycles/image) and showed viewing distance-invariant representation of face patterns. On the other hand, many amygdala neurons were influenced by retina-based SFs (cycles/degree), a characteristic that is useful for social distance computation. The two brain areas also differed in the luminance contrast sensitivity of face-responsive neurons; amygdala neurons sharply reduced their responses to low luminance contrast images, while temporal cortex neurons maintained the level of their responses. From these results, we conclude that different types of visual processing in the temporal visual cortex and the amygdala contribute to the construction of the neural representations of faces.

  19. ‘Inner voices’: the cerebral representation of emotional voice cues described in literary texts

    PubMed Central

    Kreifelts, Benjamin; Gößling-Arnold, Christina; Wertheimer, Jürgen; Wildgruber, Dirk

    2014-01-01

    While non-verbal affective voice cues are generally recognized as a crucial behavioral guide in any day-to-day conversation their role as a powerful source of information may extend well beyond close-up personal interactions and include other modes of communication such as written discourse or literature as well. Building on the assumption that similarities between the different ‘modes’ of voice cues may not only be limited to their functional role but may also include cerebral mechanisms engaged in the decoding process, the present functional magnetic resonance imaging study aimed at exploring brain responses associated with processing emotional voice signals described in literary texts. Emphasis was placed on evaluating ‘voice’ sensitive as well as task- and emotion-related modulations of brain activation frequently associated with the decoding of acoustic vocal cues. Obtained findings suggest that several similarities emerge with respect to the perception of acoustic voice signals: results identify the superior temporal, lateral and medial frontal cortex as well as the posterior cingulate cortex and cerebellum to contribute to the decoding process, with similarities to acoustic voice perception reflected in a ‘voice’-cue preference of temporal voice areas as well as an emotion-related modulation of the medial frontal cortex and a task-modulated response of the lateral frontal cortex. PMID:24396008

  20. Coexistence of gamma and high-frequency oscillations in rat medial entorhinal cortex in vitro

    PubMed Central

    Cunningham, M O; Halliday, David M; Davies, Ceri H; Traub, Roger D; Buhl, Eberhard H; Whittington, Miles A

    2004-01-01

    High frequency oscillations (> 80–90 Hz) occur in neocortex and hippocampus in vivo where they are associated with specific behavioural states and more classical EEG frequency bands. In the hippocampus in vitro these oscillations can occur in the absence of pyramidal neuronal somatodendritic compartments and are temporally correlated with on-going, persistent gamma frequency oscillations. Their occurrence in the hippocampus is dependent on gap-junctional communication and it has been suggested that these high frequency oscillations originate as collective behaviour in populations of electrically coupled principal cell axonal compartments. Here we demonstrate that the superficial layers of medial entorhinal cortex can also generate high frequency oscillations associated with gamma rhythms. During persistent gamma frequency oscillations high frequency oscillations occur with a high bispectral coherence with the field gamma activity. Bursts of high frequency oscillations are temporally correlated with both the onset of compound excitatory postsynaptic potentials in fast-spiking interneurones and spikelet potentials in both pyramidal and stellate principal neurones. Both the gamma frequency and high frequency oscillations were attenuated by the gap junction blocker carbenoxolone. These data suggest that high frequency oscillations may represent the substrate for phasic drive to interneurones during persistent gamma oscillations in the medial entorhinal cortex. PMID:15254156

  1. Facial Expression Enhances Emotion Perception Compared to Vocal Prosody: Behavioral and fMRI Studies.

    PubMed

    Zhang, Heming; Chen, Xuhai; Chen, Shengdong; Li, Yansong; Chen, Changming; Long, Quanshan; Yuan, Jiajin

    2018-05-09

    Facial and vocal expressions are essential modalities mediating the perception of emotion and social communication. Nonetheless, currently little is known about how emotion perception and its neural substrates differ across facial expression and vocal prosody. To clarify this issue, functional MRI scans were acquired in Study 1, in which participants were asked to discriminate the valence of emotional expression (angry, happy or neutral) from facial, vocal, or bimodal stimuli. In Study 2, we used an affective priming task (unimodal materials as primers and bimodal materials as target) and participants were asked to rate the intensity, valence, and arousal of the targets. Study 1 showed higher accuracy and shorter response latencies in the facial than in the vocal modality for a happy expression. Whole-brain analysis showed enhanced activation during facial compared to vocal emotions in the inferior temporal-occipital regions. Region of interest analysis showed a higher percentage signal change for facial than for vocal anger in the superior temporal sulcus. Study 2 showed that facial relative to vocal priming of anger had a greater influence on perceived emotion for bimodal targets, irrespective of the target valence. These findings suggest that facial expression is associated with enhanced emotion perception compared to equivalent vocal prosodies.

  2. Temporal and Spatial Patterns of Neural Activity Associated with Information Selection in Open-ended Creativity.

    PubMed

    Zhou, Siyuan; Chen, Shi; Wang, Shuang; Zhao, Qingbai; Zhou, Zhijin; Lu, Chunming

    2018-02-10

    Novel information selection is a crucial process in creativity and was found to be associated with frontal-temporal functional connectivity in the right brain in closed-ended creativity. Since it has distinct cognitive processing from closed-ended creativity, the information selection in open-ended creativity might be underlain by different neural activity. To address this issue, a creative generation task of Chinese two-part allegorical sayings was adopted, and the trials were classified into novel and normal solutions according to participants' self-ratings. The results showed that (1) novel solutions induced a higher lower alpha power in the temporal area, which might be associated with the automatic, unconscious mental process of retrieving extensive semantic information, and (2) upper alpha power in both frontal and temporal areas and frontal-temporal alpha coherence were higher in novel solutions than in normal solutions, which might reflect the selective inhibition of semantic information. Furthermore, lower alpha power in the temporal area showed a reduction with time, while the frontal-temporal and temporal-temporal coherence in the upper alpha band appeared to increase from the early to the middle phase. These dynamic changes in neural activity might reflect the transformation from divergent thinking to convergent thinking in the creative progress. The advantage of the right brain in frontal-temporal connectivity was not found in the present work, which might result from the diversity of solutions in open-ended creativity. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. The neural substrates associated with attentional resources and difficulty of concurrent processing of the two verbal tasks.

    PubMed

    Mizuno, Kei; Tanaka, Masaaki; Tanabe, Hiroki C; Sadato, Norihiro; Watanabe, Yasuyoshi

    2012-07-01

    The kana pick-out test has been widely used in Japan to evaluate the ability to divide attention in both adult and pediatric patients. However, the neural substrates underlying the ability to divide attention using the kana pick-out test, which requires participants to pick out individual letters (vowels) in a story while also reading for comprehension, thus requiring simultaneous allocation of attention to both activities, are still unclear. Moreover, outside of the clinical area, neuroimaging studies focused on the mechanisms of divided attention during complex story comprehension are rare. Thus, the purpose of the present study, to clarify the neural substrates of kana pick-out test, improves our current understanding of the basic neural mechanisms of dual task performance in verbal memory function. We compared patterns of activation in the brain obtained during performance of the individual tasks of vowel identification and story comprehension, to levels of activation when participants performed the two tasks simultaneously during the kana pick-out test. We found that activations of the left dorsal inferior frontal gyrus and superior parietal lobule increase in functional connectivity to a greater extent during the dual task condition compared to the two single task conditions. In contrast, activations of the left fusiform gyrus and middle temporal gyrus, which are significantly involved in picking out letters and complex sentences during story comprehension, respectively, were reduced in the dual task condition compared to during the two single task conditions. These results suggest that increased activations of the dorsal inferior frontal gyrus and superior parietal lobule during dual task performance may be associated with the capacity for attentional resources, and reduced activations of the left fusiform gyrus and middle temporal gyrus may reflect the difficulty of concurrent processing of the two tasks. In addition, the increase in synchronization between the left dorsal inferior frontal gyrus and superior parietal lobule in the dual task condition may induce effective communication between these brain regions and contribute to more attentional processing than in the single task condition, due to greater and more complex demands on voluntary attentional resources. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Infant intersubjectivity: research, theory, and clinical applications.

    PubMed

    Trevarthen, C; Aitken, K J

    2001-01-01

    We review research evidence on the emergence and development of active "self-and-other" awareness in infancy, and examine the importance of its motives and emotions to mental health practice with children. This relates to how communication begins and develops in infancy, how it influences the individual subject's movement, perception, and learning, and how the infant's biologically grounded self-regulation of internal state and self-conscious purposefulness is sustained through active engagement with sympathetic others. Mutual self-other-consciousness is found to play the lead role in developing a child's cooperative intelligence for cultural learning and language. A variety of preconceptions have animated rival research traditions investigating infant communication and cognition. We distinguish the concept of "intersubjectivity", and outline the history of its use in developmental research. The transforming body and brain of a human individual grows in active engagement with an environment of human factors--organic at first, then psychological or inter-mental. Adaptive, human-responsive processes are generated first by interneuronal activity within the developing brain as formation of the human embryo is regulated in a support-system of maternal tissues. Neural structures are further elaborated with the benefit of intra-uterine stimuli in the foetus, then supported in the rapidly growing forebrain and cerebellum of the young child by experience of the intuitive responses of parents and other human companions. We focus particularly on intrinsic patterns and processes in pre-natal and post-natal brain maturation that anticipate psychosocial support in infancy. The operation of an intrinsic motive formation (IMF) that developed in the core of the brain before birth is evident in the tightly integrated intermodal sensory-motor coordination of a newborn infant's orienting to stimuli and preferential learning of human signals, by the temporal coherence and intrinsic rhythms of infant behaviour, especially in communication, and neonates' extraordinary capacities for reactive and evocative imitation. The correct functioning of this integrated neural motivating system is found to be essential to the development of both the infant's purposeful consciousness and his or her ability to cooperate with other persons' actions and interests, and to learn from them. The relevance of infants' inherent intersubjectivity to major child mental health issues is highlighted by examining selected areas of clinical concern. We review recent findings on postnatal depression, prematurity, autism, ADHD, specific language impairments, and central auditory processing deficits, and comment on the efficacy of interventions that aim to support intrinsic motives for intersubjective communication when these are not developing normally.

  5. Nurse/physician communication through a sensemaking lens: shifting the paradigm to improve patient safety.

    PubMed

    Manojlovich, Milisa

    2010-11-01

    Physician-nurse communication has been identified as one of the main obstacles to progress in patient safety. Breakdowns in communication between physicians and nurses often result in errors, many of which are preventable. Recent research into nurse/physician communication has borrowed heavily from team literature, tending to study communication as one behavior in a larger cluster of behaviors. The multicluster approach to team research has not provided enough analysis of and attention to communication alone. Research into communication specifically is needed to understand its crucial role in teamwork and safety. A critique of the research literature on nurse/physician communication published since 1992 revealed 3 dominant themes: settings and context, consensus building, and conflict resolution. A fourth implicit theme, the temporal nature of communication, emerged as well. These themes were used to frame a discussion on sensemaking: an iterative process arising from dialogue when 2 or more people share their unique perspectives. As a theoretical model, sensemaking may offer an alternative lens through which to view the phenomenon of nurse/physician communication and advance our understanding of how nurse/physician communication can promote patient safety. Sensemaking may represent a paradigm shift with the potential to affect 2 spheres of influence: clinical practice and health care outcomes. Sensemaking may also hold promise as an intervention because through sensemaking consensus may be built and errors possibly prevented. Engaging in sensemaking may overcome communication barriers without realigning power bases, incorporate contextual influences without drawing attention away from communicators, and inform actions arising from communication.

  6. Rapid, high-frequency, and theta-coupled gamma oscillations in the inferior occipital gyrus during face processing.

    PubMed

    Sato, Wataru; Kochiyama, Takanori; Uono, Shota; Matsuda, Kazumi; Usui, Keiko; Inoue, Yushi; Toichi, Motomi

    2014-11-01

    Neuroimaging studies have found greater activation in the inferior occipital gyrus (IOG), or occipital face area, in response to faces relative to non-facial stimuli. However, the temporal, frequency, and functional profiles of IOG activity during face processing remain unclear. Here, this issue was investigated by recording intracranial field potentials in the IOG during the presentation of faces, mosaics, and houses in upright and inverted orientations. Time-frequency statistical parametric mapping analyses revealed greater gamma-band activation in the IOG beginning at 110 msec and covering 40-300 Hz in response to upright faces relative to upright houses and mosaics. Phase-amplitude cross-frequency coupling analyses revealed more evident theta-gamma couplings at 115-256 msec during the processing of upright faces as compared with that of upright houses and mosaics. Comparable gamma-band activity was observed during the processing of inverted and upright faces at about 100-200 msec, but weaker activity and different coupling with theta-band activity after 200 msec. These patterns of activity were more evident in the right than in the left IOG. These results, together with other evidence on neural communication, suggest that broadband gamma oscillations in the right IOG conduct rapid and multistage (i.e., both featural and configural) face processing in collaboration with theta oscillations transmitted from other brain regions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Distributed communication: Implications of cultural-historical activity theory (CHAT) for communication disorders.

    PubMed

    Hengst, Julie A

    2015-01-01

    This article proposes distributed communication as a promising theoretical framework for building supportive environments for child language development. Distributed communication is grounded in an emerging intersection of cultural-historical activity theory (CHAT) and theories of communicative practices that argue for integrating accounts of language, cognition and culture. The article first defines and illustrates through selected research articles, three key principles of distributed communication: (a) language and all communicative resources are inextricably embedded in activity; (b) successful communication depends on common ground built up through short- and long-term histories of participation in activities; and (c) language cannot act alone, but is always orchestrated with other communicative resources. It then illustrates how these principles are fully integrated in everyday interactions by drawing from my research on Cindy Magic, a verbal make-believe game played by a father and his two daughters. Overall, the research presented here points to the remarkably complex communicative environments and sophisticated forms of distributed communication children routinely engage in as they interact with peer and adult communication partners in everyday settings. The article concludes by considering implications of these theories for, and examples of, distributed communication relevant to clinical intervention. Readers will learn about (1) distributed communication as a conceptual tool grounded in an emerging intersection of cultural-historical activity theory and theories of communicative practices and (2) how to apply distributed communication to the study of child language development and to interventions for children with communication disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Charcoal disrupts cell-cell communication through multiple mechanisms

    NASA Astrophysics Data System (ADS)

    Gao, X.; Cheng, H. Y.; Liu, S.; Masiello, C. A.; Silberg, J. J.; Del Valle, I.

    2016-12-01

    Microbial cell-cell communication through the release and detection of small signaling molecules is employed by soil microbes to manage many biogeochemically relevant processes including production of biofilms, priming effects on native SOM, and management of methanogenesis and denitrification. Charcoal is a ubiquitous component of soil, entering soil either from natural fire or intentionally amended as biochar. Charcoal's presence in soil introduces spatial and temporal heterogeneity in nutrients and habitats for soil microbes and may trigger a range of biological effects not yet predictable, in part because it interferes with microbial cell-cell communication. We hypothesized that charcoal's alkalinity and large active surface area could affect the lifetime of some chemical compounds that microbes use for cell-cell signaling on times scales relevant to growth and communication. To test this idea, we examined the extent and rate of charcoal quenching of cell-cell communication caused by ten charcoals with a wide range of physicochemical properties. Our measurements focused on signaling mediated by an acyl-homoserine lactone (AHL), N-3-oxo-dodecanoyl-L-homoserine lactone, which is used by many gram-negative bacteria for quorum sensing. Our results from a bioassay and chemical sorption experiments revealed that charcoal can decrease the bioavailable level of AHL through a combination of sorption and pH-dependent hydrolysis of the lactone ring. We found that the kinetics of hydrolysis can exceed those of sorption. These findings implicate charcoal surface area and alkalinity as properties that could be tuned to regulate the degradation rates of cell-cell signaling molecules in soils. We then built a quantitative model that predicts the half-lives of different microbial signaling compounds in the presence of charcoals varying in pH and surface area. Our model results suggest that the effects of charcoal on pH-sensitive bacterial AHL signals will be fundamentally distinct from effects on pH-insensitive fungal signals, potentially leading to shifts in microbial community structures.

  9. From speech to thought: the neuronal basis of cognitive units in non-experimental, real-life communication investigated using ECoG

    PubMed Central

    Derix, Johanna; Iljina, Olga; Weiske, Johanna; Schulze-Bonhage, Andreas; Aertsen, Ad; Ball, Tonio

    2014-01-01

    Exchange of thoughts by means of expressive speech is fundamental to human communication. However, the neuronal basis of real-life communication in general, and of verbal exchange of ideas in particular, has rarely been studied until now. Here, our aim was to establish an approach for exploring the neuronal processes related to cognitive “idea” units (IUs) in conditions of non-experimental speech production. We investigated whether such units corresponding to single, coherent chunks of speech with syntactically-defined borders, are useful to unravel the neuronal mechanisms underlying real-world human cognition. To this aim, we employed simultaneous electrocorticography (ECoG) and video recordings obtained in pre-neurosurgical diagnostics of epilepsy patients. We transcribed non-experimental, daily hospital conversations, identified IUs in transcriptions of the patients' speech, classified the obtained IUs according to a previously-proposed taxonomy focusing on memory content, and investigated the underlying neuronal activity. In each of our three subjects, we were able to collect a large number of IUs which could be assigned to different functional IU subclasses with a high inter-rater agreement. Robust IU-onset-related changes in spectral magnitude could be observed in high gamma frequencies (70–150 Hz) on the inferior lateral convexity and in the superior temporal cortex regardless of the IU content. A comparison of the topography of these responses with mouth motor and speech areas identified by electrocortical stimulation showed that IUs might be of use for extraoperative mapping of eloquent cortex (average sensitivity: 44.4%, average specificity: 91.1%). High gamma responses specific to memory-related IU subclasses were observed in the inferior parietal and prefrontal regions. IU-based analysis of ECoG recordings during non-experimental communication thus elicits topographically- and functionally-specific effects. We conclude that segmentation of spontaneous real-world speech in linguistically-motivated units is a promising strategy for elucidating the neuronal basis of mental processing during non-experimental communication. PMID:24982625

  10. Cued Memory Retrieval Exhibits Reinstatement of High Gamma Power on a Faster Timescale in the Left Temporal Lobe and Prefrontal Cortex.

    PubMed

    Yaffe, Robert B; Shaikhouni, Ammar; Arai, Jennifer; Inati, Sara K; Zaghloul, Kareem A

    2017-04-26

    Converging evidence suggests that reinstatement of neural activity underlies our ability to successfully retrieve memories. However, the temporal dynamics of reinstatement in the human cortex remain poorly understood. One possibility is that neural activity during memory retrieval, like replay of spiking neurons in the hippocampus, occurs at a faster timescale than during encoding. We tested this hypothesis in 34 participants who performed a verbal episodic memory task while we recorded high gamma (62-100 Hz) activity from subdural electrodes implanted for seizure monitoring. We show that reinstatement of distributed patterns of high gamma activity occurs faster than during encoding. Using a time-warping algorithm, we quantify the timescale of the reinstatement and identify brain regions that show significant timescale differences between encoding and retrieval. Our data suggest that temporally compressed reinstatement of cortical activity is a feature of cued memory retrieval. SIGNIFICANCE STATEMENT We show that cued memory retrieval reinstates neural activity on a faster timescale than was present during encoding. Our data therefore provide a link between reinstatement of neural activity in the cortex and spontaneous replay of cortical and hippocampal spiking activity, which also exhibits temporal compression, and suggest that temporal compression may be a universal feature of memory retrieval. Copyright © 2017 the authors 0270-6474/17/374472-09$15.00/0.

  11. Give blood today or save lives tomorrow: Matching decision and message construal level to maximize blood donation intentions.

    PubMed

    Czeizler, Amalia; Garbarino, Ellen

    2017-01-01

    The research extends construal theory by testing if a match between the temporal construal framing of a blood donation decision and a blood donation request leads to higher donation intentions than a mismatch. Results show participants considering future donation who read an abstract donation request have significantly higher donation intentions than those who read a concrete request. Conversely, participants considering donating today who read a concrete donation request have significantly higher donation intentions than those who read an abstract request. This study confirms the importance of matching the construal framing of the communication to the temporal framing of the decision.

  12. The temporal association between energy drink and alcohol use among adolescents: A short communication.

    PubMed

    Choi, Hye Jeong; Wolford-Clevenger, Caitlin; Brem, Meagan J; Elmquist, JoAnna; Stuart, Gregory L; Pasch, Keryn E; Temple, Jeff R

    2016-01-01

    To investigate the temporal relation between energy drink and alcohol use among adolescents. Data were collected from adolescents attending public high schools in two waves (n=894). Path analysis indicated that energy drink use at baseline was positively associated with the number of drinking days but not binge drinking or average drinks per drinking day over the past 30 days at follow-up. This relation remained while controlling for race, age, gender, previous alcohol use, and impulsivity. Alcohol use prevention efforts should consider energy drink use as risk factors for adolescent alcohol use. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Health impact assessment of industrial development projects: a spatio-temporal visualization.

    PubMed

    Winkler, Mirko S; Krieger, Gary R; Divall, Mark J; Singer, Burton H; Utzinger, Jürg

    2012-05-01

    Development and implementation of large-scale industrial projects in complex eco-epidemiological settings typically require combined environmental, social and health impact assessments. We present a generic, spatio-temporal health impact assessment (HIA) visualization, which can be readily adapted to specific projects and key stakeholders, including poorly literate communities that might be affected by consequences of a project. We illustrate how the occurrence of a variety of complex events can be utilized for stakeholder communication, awareness creation, interactive learning as well as formulating HIA research and implementation questions. Methodological features are highlighted in the context of an iron ore development in a rural part of Africa.

  14. Demonstrating vegetation dynamics using SIMPPLLE

    Treesearch

    Glenda Scott; Jimmie D. Chew

    1997-01-01

    Understanding vegetation dynamics, both spatially and temporally, is essential to the management of natural resources. SIMPPLLE has been designed to help us quantify and communicate these concepts: What levels of process, i.e., fire or insect and disease, to expect; how they spread; what the vegetative distribution and composition is over time; and how silvicultural...

  15. Sudden Sensorineural Hearing Loss: The Question of Perilymph Fistula.

    ERIC Educational Resources Information Center

    Backous, Douglas D.; Niparko, John K.

    1997-01-01

    Perilymph fistula (PLF) is an abnormal communication between the fluid-containing spaces of the inner ear and the air-containing spaces of the temporal bone that can cause hearing loss, tinnitus, aural fullness, vertigo, and postural instability. Diagnosis of PLF and management of those with presumed PLF are discussed. (Contains extensive…

  16. Development of Displaced Speech in Early Mother--Child Conversations

    ERIC Educational Resources Information Center

    Adamson, Lauren B.; Bakeman, Roger

    2006-01-01

    This study documents the development of symbolic, spatial, and temporal displacement of toddler's speech. Fifty-six children and their mothers were observed longitudinally 5 times from 18 to 30 months of age during a staged communication play while they engaged in scenes that encouraged interacting, requesting, and commenting and scenes that…

  17. Time Is Precious: Variable- and Event-Centred Approaches to Process Analysis in CSCL Research

    ERIC Educational Resources Information Center

    Reimann, Peter

    2009-01-01

    Although temporality is a key characteristic of the core concepts of CSCL--interaction, communication, learning, knowledge building, technology use--and although CSCL researchers have privileged access to process data, the theoretical constructs and methods employed in research practice frequently neglect to make full use of information relating…

  18. Effects of Prosody and Position on the Timing of Deictic Gestures

    ERIC Educational Resources Information Center

    Rusiewicz, Heather Leavy; Shaiman, Susan; Iverson, Jana M.; Szuminsky, Neil

    2013-01-01

    Purpose: In this study, the authors investigated the hypothesis that the perceived tight temporal synchrony of speech and gesture is evidence of an integrated spoken language and manual gesture communication system. It was hypothesized that experimental manipulations of the spoken response would affect the timing of deictic gestures. Method: The…

  19. Psychophysical Assessment of Timing in Individuals with Autism

    ERIC Educational Resources Information Center

    Allman, Melissa J.; DeLeon, Iser G.

    2011-01-01

    Perception of time, in the seconds to minutes range, is not well characterized in autism. The required interval timing system (ITS) develops at the same stages during infancy as communication, social reciprocity, and other cognitive and behavioral functions. The authors used two versions of a temporal bisection procedure to study the perception of…

  20. Spatial and temporal accuracy of asynchrony-tolerant finite difference schemes for partial differential equations at extreme scales

    NASA Astrophysics Data System (ADS)

    Kumari, Komal; Donzis, Diego

    2017-11-01

    Highly resolved computational simulations on massively parallel machines are critical in understanding the physics of a vast number of complex phenomena in nature governed by partial differential equations. Simulations at extreme levels of parallelism present many challenges with communication between processing elements (PEs) being a major bottleneck. In order to fully exploit the computational power of exascale machines one needs to devise numerical schemes that relax global synchronizations across PEs. This asynchronous computations, however, have a degrading effect on the accuracy of standard numerical schemes.We have developed asynchrony-tolerant (AT) schemes that maintain order of accuracy despite relaxed communications. We show, analytically and numerically, that these schemes retain their numerical properties with multi-step higher order temporal Runge-Kutta schemes. We also show that for a range of optimized parameters,the computation time and error for AT schemes is less than their synchronous counterpart. Stability of the AT schemes which depends upon history and random nature of delays, are also discussed. Support from NSF is gratefully acknowledged.

  1. Habitat-associated and temporal patterns of bat activity in a diverse forest landscape of southern New England, USA

    Treesearch

    Robert T. Brooks

    2009-01-01

    The development and use of acoustic recording technology, surveys have revealed the composition, relative levels of activity, and preliminary habitat use of bat communities of various forest locations. However, detailed examinations of acoustic surveys results to investigate temporal patterns of bat activity are rare. Initial active acoustic surveys of bat activity on...

  2. Demonstration of analyzers for multimode photonic time-bin qubits

    NASA Astrophysics Data System (ADS)

    Jin, Jeongwan; Agne, Sascha; Bourgoin, Jean-Philippe; Zhang, Yanbao; Lütkenhaus, Norbert; Jennewein, Thomas

    2018-04-01

    We demonstrate two approaches for unbalanced interferometers as time-bin qubit analyzers for quantum communication, robust against mode distortions and polarization effects as expected from free-space quantum communication systems including wavefront deformations, path fluctuations, pointing errors, and optical elements. Despite strong spatial and temporal distortions of the optical mode of a time-bin qubit, entangled with a separate polarization qubit, we verify entanglement using the Negative Partial Transpose, with the measured visibility of up to 0.85 ±0.01 . The robustness of the analyzers is further demonstrated for various angles of incidence up to 0 .2∘ . The output of the interferometers is coupled into multimode fiber yielding a high system throughput of 0.74. Therefore, these analyzers are suitable and efficient for quantum communication over multimode optical channels.

  3. Task-Dependent Changes in Cross-Level Coupling between Single Neurons and Oscillatory Activity in Multiscale Networks

    PubMed Central

    Canolty, Ryan T.; Ganguly, Karunesh; Carmena, Jose M.

    2012-01-01

    Understanding the principles governing the dynamic coordination of functional brain networks remains an important unmet goal within neuroscience. How do distributed ensembles of neurons transiently coordinate their activity across a variety of spatial and temporal scales? While a complete mechanistic account of this process remains elusive, evidence suggests that neuronal oscillations may play a key role in this process, with different rhythms influencing both local computation and long-range communication. To investigate this question, we recorded multiple single unit and local field potential (LFP) activity from microelectrode arrays implanted bilaterally in macaque motor areas. Monkeys performed a delayed center-out reach task either manually using their natural arm (Manual Control, MC) or under direct neural control through a brain-machine interface (Brain Control, BC). In accord with prior work, we found that the spiking activity of individual neurons is coupled to multiple aspects of the ongoing motor beta rhythm (10–45 Hz) during both MC and BC, with neurons exhibiting a diversity of coupling preferences. However, here we show that for identified single neurons, this beta-to-rate mapping can change in a reversible and task-dependent way. For example, as beta power increases, a given neuron may increase spiking during MC but decrease spiking during BC, or exhibit a reversible shift in the preferred phase of firing. The within-task stability of coupling, combined with the reversible cross-task changes in coupling, suggest that task-dependent changes in the beta-to-rate mapping play a role in the transient functional reorganization of neural ensembles. We characterize the range of task-dependent changes in the mapping from beta amplitude, phase, and inter-hemispheric phase differences to the spike rates of an ensemble of simultaneously-recorded neurons, and discuss the potential implications that dynamic remapping from oscillatory activity to spike rate and timing may hold for models of computation and communication in distributed functional brain networks. PMID:23284276

  4. Distinct Effects of Memory Retrieval and Articulatory Preparation when Learning and Accessing New Word Forms

    PubMed Central

    Nora, Anni; Renvall, Hanna; Kim, Jeong-Young; Service, Elisabet; Salmelin, Riitta

    2015-01-01

    Temporal and frontal activations have been implicated in learning of novel word forms, but their specific roles remain poorly understood. The present magnetoencephalography (MEG) study examines the roles of these areas in processing newly-established word form representations. The cortical effects related to acquiring new phonological word forms during incidental learning were localized. Participants listened to and repeated back new word form stimuli that adhered to native phonology (Finnish pseudowords) or were foreign (Korean words), with a subset of the stimuli recurring four times. Subsequently, a modified 1-back task and a recognition task addressed whether the activations modulated by learning were related to planning for overt articulation, while parametrically added noise probed reliance on developing memory representations during effortful perception. Learning resulted in decreased left superior temporal and increased bilateral frontal premotor activation for familiar compared to new items. The left temporal learning effect persisted in all tasks and was strongest when stimuli were embedded in intermediate noise. In the noisy conditions, native phonotactics evoked overall enhanced left temporal activation. In contrast, the frontal learning effects were present only in conditions requiring overt repetition and were more pronounced for the foreign language. The results indicate a functional dissociation between temporal and frontal activations in learning new phonological word forms: the left superior temporal responses reflect activation of newly-established word-form representations, also during degraded sensory input, whereas the frontal premotor effects are related to planning for articulation and are not preserved in noise. PMID:25961571

  5. Distinct effects of memory retrieval and articulatory preparation when learning and accessing new word forms.

    PubMed

    Nora, Anni; Renvall, Hanna; Kim, Jeong-Young; Service, Elisabet; Salmelin, Riitta

    2015-01-01

    Temporal and frontal activations have been implicated in learning of novel word forms, but their specific roles remain poorly understood. The present magnetoencephalography (MEG) study examines the roles of these areas in processing newly-established word form representations. The cortical effects related to acquiring new phonological word forms during incidental learning were localized. Participants listened to and repeated back new word form stimuli that adhered to native phonology (Finnish pseudowords) or were foreign (Korean words), with a subset of the stimuli recurring four times. Subsequently, a modified 1-back task and a recognition task addressed whether the activations modulated by learning were related to planning for overt articulation, while parametrically added noise probed reliance on developing memory representations during effortful perception. Learning resulted in decreased left superior temporal and increased bilateral frontal premotor activation for familiar compared to new items. The left temporal learning effect persisted in all tasks and was strongest when stimuli were embedded in intermediate noise. In the noisy conditions, native phonotactics evoked overall enhanced left temporal activation. In contrast, the frontal learning effects were present only in conditions requiring overt repetition and were more pronounced for the foreign language. The results indicate a functional dissociation between temporal and frontal activations in learning new phonological word forms: the left superior temporal responses reflect activation of newly-established word-form representations, also during degraded sensory input, whereas the frontal premotor effects are related to planning for articulation and are not preserved in noise.

  6. Temporal Dissociation of Neocortical and Hippocampal Contributions to Mental Time Travel Using Intracranial Recordings in Humans.

    PubMed

    Schurr, Roey; Nitzan, Mor; Eliahou, Ruth; Spinelli, Laurent; Seeck, Margitta; Blanke, Olaf; Arzy, Shahar

    2018-01-01

    In mental time travel (MTT) one is "traveling" back-and-forth in time, remembering, and imagining events. Despite intensive research regarding memory processes in the hippocampus, it was only recently shown that the hippocampus plays an essential role in encoding the temporal order of events remembered, and therefore plays an important role in MTT. Does it also encode the temporal relations of these events to the remembering self? We asked patients undergoing pre-surgical evaluation with depth electrodes penetrating the temporal lobes bilaterally toward the hippocampus to project themselves in time to a past, future, or present time-point, and then make judgments regarding various events. Classification analysis of intracranial evoked potentials revealed clear temporal dissociation in the left hemisphere between lateral-temporal electrodes, activated at ~100-300 ms, and hippocampal electrodes, activated at ~400-600 ms. This dissociation may suggest a division of labor in the temporal lobe during self-projection in time, hinting toward the different roles of the lateral-temporal cortex and the hippocampus in MTT and the temporal organization of the related events with respect to the experiencing self.

  7. Mapping Anterior Temporal Lobe Language Areas with FMRI: A Multi-Center Normative Study

    PubMed Central

    Binder, Jeffrey R.; Gross, William L.; Allendorfer, Jane B.; Bonilha, Leonardo; Chapin, Jessica; Edwards, Jonathan C.; Grabowski, Thomas J.; Langfitt, John T.; Loring, David W.; Lowe, Mark J.; Koenig, Katherine; Morgan, Paul S.; Ojemann, Jeffrey G.; Rorden, Christopher; Szaflarski, Jerzy P.; Tivarus, Madalina E.; Weaver, Kurt E.

    2010-01-01

    Removal of the anterior temporal lobe (ATL) is an effective surgical treatment for intractable temporal lobe epilepsy but carries a risk of language and verbal memory deficits. Preoperative localization of functional zones in the ATL might help reduce these risks, yet fMRI protocols in current widespread use produce very little activation in this region. Based on recent evidence suggesting a role for the ATL in semantic integration, we designed an fMRI protocol comparing comprehension of brief narratives (Story task) with a semantically shallow control task involving serial arithmetic (Math task). The Story > Math contrast elicited strong activation throughout the ATL, lateral temporal lobe, and medial temporal lobe bilaterally in an initial cohort of 18 healthy participants. The task protocol was then implemented at 6 other imaging centers using identical methods. Data from a second cohort of participants scanned at these centers closely replicated the results from the initial cohort. The Story-Math protocol provides a reliable method for activation of surgical regions of interest in the ATL. The bilateral activation supports previous claims that conceptual processing involves both temporal lobes. Used in combination with language lateralization measures, reliable ATL activation maps may be useful for predicting cognitive outcome in ATL surgery, though the validity of this approach needs to be established in a prospective surgical series. PMID:20884358

  8. Inter-satellites x-ray communication system

    NASA Astrophysics Data System (ADS)

    Mou, Huan; Li, Bao-quan

    2017-02-01

    An inter-satellite X-ray communication system is presented in this paper. X-ray has a strong penetrating power without almost attenuation for transmission in outer space when the energy of X-ray photons is more than 10KeV and the atmospheric pressure is lower than 10-1 Pa, so it is convincing of x-ray communication in inter-satellite communication and deep space exploration. Additionally, using X-ray photons as information carriers can be used in some communication applications that laser communication and radio frequency (RF) communication are not available, such as ionization blackout area communication. The inter-satellites X-ray communication system, including the grid modulated X-ray source, the high-sensitivity X-ray detector and the transmitting and receiving antenna, is described explicitly. As the X-ray transmitter, a vacuum-sealed miniature modulated X-ray source has been fabricated via the single-step brazing process in a vacuum furnace. Pulse modulation of X-rays, by means of controlling the voltage value of the grid electrode, is realized. Three focusing electrodes, meanwhile, are used to make the electron beam converge and finally 150μm focusing spot diameter is obtained. The X-ray detector based on silicon avalanche photodiodes (APDs) is chosen as the communication receiver on account of its high temporal resolution and non-vacuum operating environment. Furthermore, considering x-ray emission characteristic and communication distance of X-rays, the multilayer nested rotary parabolic optics is picked out as transmitting and receiving antenna. And as a new concept of the space communication, there will be more important scientific significance and application prospects, called "Next-Generation Communications".

  9. Forum: Communication Activism Pedagogy. Four Typologies of Communication Activism Pedagogy

    ERIC Educational Resources Information Center

    Hartnett, Stephen J.

    2017-01-01

    This concluding response to the articles in this forum maps out the main arguments in the responses to the stimulus essay, "Communication Activism Pedagogy and Research: Communication Education Scholarship to Promote Social Justice," which fall into four broad categories: (1) post-Marxist imaginings of social change; (2) existentialist…

  10. Sex differences in neural activation to facial expressions denoting contempt and disgust.

    PubMed

    Aleman, André; Swart, Marte

    2008-01-01

    The facial expression of contempt has been regarded to communicate feelings of moral superiority. Contempt is an emotion that is closely related to disgust, but in contrast to disgust, contempt is inherently interpersonal and hierarchical. The aim of this study was twofold. First, to investigate the hypothesis of preferential amygdala responses to contempt expressions versus disgust. Second, to investigate whether, at a neural level, men would respond stronger to biological signals of interpersonal superiority (e.g., contempt) than women. We performed an experiment using functional magnetic resonance imaging (fMRI), in which participants watched facial expressions of contempt and disgust in addition to neutral expressions. The faces were presented as distractors in an oddball task in which participants had to react to one target face. Facial expressions of contempt and disgust activated a network of brain regions, including prefrontal areas (superior, middle and medial prefrontal gyrus), anterior cingulate, insula, amygdala, parietal cortex, fusiform gyrus, occipital cortex, putamen and thalamus. Contemptuous faces did not elicit stronger amygdala activation than did disgusted expressions. To limit the number of statistical comparisons, we confined our analyses of sex differences to the frontal and temporal lobes. Men displayed stronger brain activation than women to facial expressions of contempt in the medial frontal gyrus, inferior frontal gyrus, and superior temporal gyrus. Conversely, women showed stronger neural responses than men to facial expressions of disgust. In addition, the effect of stimulus sex differed for men versus women. Specifically, women showed stronger responses to male contemptuous faces (as compared to female expressions), in the insula and middle frontal gyrus. Contempt has been conceptualized as signaling perceived moral violations of social hierarchy, whereas disgust would signal violations of physical purity. Thus, our results suggest a neural basis for sex differences in moral sensitivity regarding hierarchy on the one hand and physical purity on the other.

  11. Sex Differences in Neural Activation to Facial Expressions Denoting Contempt and Disgust

    PubMed Central

    Aleman, André; Swart, Marte

    2008-01-01

    The facial expression of contempt has been regarded to communicate feelings of moral superiority. Contempt is an emotion that is closely related to disgust, but in contrast to disgust, contempt is inherently interpersonal and hierarchical. The aim of this study was twofold. First, to investigate the hypothesis of preferential amygdala responses to contempt expressions versus disgust. Second, to investigate whether, at a neural level, men would respond stronger to biological signals of interpersonal superiority (e.g., contempt) than women. We performed an experiment using functional magnetic resonance imaging (fMRI), in which participants watched facial expressions of contempt and disgust in addition to neutral expressions. The faces were presented as distractors in an oddball task in which participants had to react to one target face. Facial expressions of contempt and disgust activated a network of brain regions, including prefrontal areas (superior, middle and medial prefrontal gyrus), anterior cingulate, insula, amygdala, parietal cortex, fusiform gyrus, occipital cortex, putamen and thalamus. Contemptuous faces did not elicit stronger amygdala activation than did disgusted expressions. To limit the number of statistical comparisons, we confined our analyses of sex differences to the frontal and temporal lobes. Men displayed stronger brain activation than women to facial expressions of contempt in the medial frontal gyrus, inferior frontal gyrus, and superior temporal gyrus. Conversely, women showed stronger neural responses than men to facial expressions of disgust. In addition, the effect of stimulus sex differed for men versus women. Specifically, women showed stronger responses to male contemptuous faces (as compared to female expressions), in the insula and middle frontal gyrus. Contempt has been conceptualized as signaling perceived moral violations of social hierarchy, whereas disgust would signal violations of physical purity. Thus, our results suggest a neural basis for sex differences in moral sensitivity regarding hierarchy on the one hand and physical purity on the other. PMID:18985147

  12. Sensory Coding by Cerebellar Mossy Fibres through Inhibition-Driven Phase Resetting and Synchronisation

    PubMed Central

    Holtzman, Tahl; Jörntell, Henrik

    2011-01-01

    Temporal coding of spike-times using oscillatory mechanisms allied to spike-time dependent plasticity could represent a powerful mechanism for neuronal communication. However, it is unclear how temporal coding is constructed at the single neuronal level. Here we investigate a novel class of highly regular, metronome-like neurones in the rat brainstem which form a major source of cerebellar afferents. Stimulation of sensory inputs evoked brief periods of inhibition that interrupted the regular firing of these cells leading to phase-shifted spike-time advancements and delays. Alongside phase-shifting, metronome cells also behaved as band-pass filters during rhythmic sensory stimulation, with maximal spike-stimulus synchronisation at frequencies close to the idiosyncratic firing frequency of each neurone. Phase-shifting and band-pass filtering serve to temporally align ensembles of metronome cells, leading to sustained volleys of near-coincident spike-times, thereby transmitting synchronised sensory information to downstream targets in the cerebellar cortex. PMID:22046297

  13. The NIST Real-Time Control System (RCS): A Reference Model Architecture for Computational Intelligence

    NASA Technical Reports Server (NTRS)

    Albus, James S.

    1996-01-01

    The Real-time Control System (RCS) developed at NIST and elsewhere over the past two decades defines a reference model architecture for design and analysis of complex intelligent control systems. The RCS architecture consists of a hierarchically layered set of functional processing modules connected by a network of communication pathways. The primary distinguishing feature of the layers is the bandwidth of the control loops. The characteristic bandwidth of each level is determined by the spatial and temporal integration window of filters, the temporal frequency of signals and events, the spatial frequency of patterns, and the planning horizon and granularity of the planners that operate at each level. At each level, tasks are decomposed into sequential subtasks, to be performed by cooperating sets of subordinate agents. At each level, signals from sensors are filtered and correlated with spatial and temporal features that are relevant to the control function being implemented at that level.

  14. Functional imaging reveals rapid reorganization of cortical activity after parietal inactivation in monkeys

    PubMed Central

    Wilke, Melanie; Kagan, Igor; Andersen, Richard A.

    2012-01-01

    Impairments of spatial awareness and decision making occur frequently as a consequence of parietal lesions. Here we used event-related functional MRI (fMRI) in monkeys to investigate rapid reorganization of spatial networks during reversible pharmacological inactivation of the lateral intraparietal area (LIP), which plays a role in the selection of eye movement targets. We measured fMRI activity in control and inactivation sessions while monkeys performed memory saccades to either instructed or autonomously chosen spatial locations. Inactivation caused a reduction of contralesional choices. Inactivation effects on fMRI activity were anatomically and functionally specific and mainly consisted of: (i) activity reduction in the upper bank of the superior temporal sulcus (temporal parietal occipital area) for single contralesional targets, especially in the inactivated hemisphere; and (ii) activity increase accompanying contralesional choices between bilateral targets in several frontal and parieto-temporal areas in both hemispheres. There was no overactivation for ipsilesional targets or choices in the intact hemisphere. Task-specific effects of LIP inactivation on blood oxygen level-dependent activity in the temporal parietal occipital area underline the importance of the superior temporal sulcus for spatial processing. Furthermore, our results agree only partially with the influential interhemispheric competition model of spatial neglect and suggest an additional component of interhemispheric cooperation in the compensation of neglect deficits. PMID:22562793

  15. Short-Term Depression, Temporal Summation, and Onset Inhibition Shape Interval Tuning in Midbrain Neurons

    PubMed Central

    Baker, Christa A.

    2014-01-01

    A variety of synaptic mechanisms can contribute to single-neuron selectivity for temporal intervals in sensory stimuli. However, it remains unknown how these mechanisms interact to establish single-neuron sensitivity to temporal patterns of sensory stimulation in vivo. Here we address this question in a circuit that allows us to control the precise temporal patterns of synaptic input to interval-tuned neurons in behaviorally relevant ways. We obtained in vivo intracellular recordings under multiple levels of current clamp from midbrain neurons in the mormyrid weakly electric fish Brienomyrus brachyistius during stimulation with electrosensory pulse trains. To reveal the excitatory and inhibitory inputs onto interval-tuned neurons, we then estimated the synaptic conductances underlying responses. We found short-term depression in excitatory and inhibitory pathways onto all interval-tuned neurons. Short-interval selectivity was associated with excitation that depressed less than inhibition at short intervals, as well as temporally summating excitation. Long-interval selectivity was associated with long-lasting onset inhibition. We investigated tuning after separately nullifying the contributions of temporal summation and depression, and found the greatest diversity of interval selectivity among neurons when both mechanisms were at play. Furthermore, eliminating the effects of depression decreased sensitivity to directional changes in interval. These findings demonstrate that variation in depression and summation of excitation and inhibition helps to establish tuning to behaviorally relevant intervals in communication signals, and that depression contributes to neural coding of interval sequences. This work reveals for the first time how the interplay between short-term plasticity and temporal summation mediates the decoding of temporal sequences in awake, behaving animals. PMID:25339741

  16. Superficial Temporal Artery-Superior Cerebellar Artery Bypass with Anterior Petrosectomy.

    PubMed

    Hokari, Masaaki; Asaoka, Katsuyuki; Shimbo, Daisuke; Uchida, Kazuki; Itamoto, Koji

    2018-06-01

    Superficial temporal artery (STA) to superior cerebellar artery (SCA) bypass is associated with a relatively high risk of surgical complications, such as hematoma and/or edema caused by temporal lobe retraction. Therefore, the right side is typically used to avoid retraction of the left temporal lobe. In this report, we present a case of left STA-SCA bypass with anterior petrosectomy to avoid retraction of dominant-side temporal lobe and describe the surgical technique in detail. A 69-year-old man presented with gradual worsening of dysarthria and gait disturbance. Magnetic resonance imaging showed no signs of acute infarction, but digital subtraction angiography showed severe stenosis of basilar artery and faint flow in the distal basilar artery. On 3-dimensional computed tomography angiography, posterior communicating arteries were not visualized; we could identify the left SCA, but not the right SCA. Despite dual antiplatelet therapy, a small fresh brainstem infarct was detected 10 days after admission. To avert fatal brainstem infarction and further enlargement of the infarct, we performed left STA-SCA bypass with anterior petrosectomy to avoid retraction of the dominant-side temporal lobe. Postoperative imaging revealed no new lesions, such as infarction or temporal lobe contusional hematoma, and confirmed the patency of the bypass. Postoperative single-photon emission computed tomography demonstrated improved cerebral blood flow in the posterior circulation. The patient was transferred to another hospital for rehabilitation. This method helps minimize the risk of injury to the temporal lobe, especially that of the dominant side. Copyright © 2018. Published by Elsevier Inc.

  17. Anatomical study of the superficial temporal branches of the auriculotemporal nerve: Application to surgery and other invasive treatments to the temporal region.

    PubMed

    Iwanaga, Joe; Watanabe, Koichi; Saga, Tsuyoshi; Fisahn, Christian; Oskouian, Rod J; Tubbs, R Shane

    2017-03-01

    The auriculotemporal nerve (ATN) is one of the branches of the mandibular division of the trigeminal nerve, which gives rise to many branches to the retromandibular and temporal regions. Of these, the superficial temporal branch can occasionally be the cause of migraine headaches and auriculotemporal neuralgia. The purpose of this study was to elucidate the anatomy of the superficial temporal branch, which has never been described in detail. A total of 14 sides of cadaveric heads were used for this study. The number of superficial temporal branch was counted, and the horizontal and vertical distances from the middle of the tragus to the branching point were measured. Three of 14 sides had two main trunks, and 11 sides had one main trunk. Each of the duplicated ATN had already branches into two main trunks as they left the retromandibular space. The number of superficial temporal branches ranged from two to seven. The vertical and horizontal distances from the middle of the tragus to the branching point of the superficial temporal branch ranged from 6.19 to 25.65 mm and from 3.45 to 11.88 mm, respectively. The communicating branches occasionally formed a loop or so-called "ansa," and a double ansa was identified in one case. These data can provide surgeons a better view of the course of these distant branches, so that skin incisions can be better planned. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  18. Increased Expression of Brain-Derived Neurotrophic Factor Transcripts I and VI, cAMP Response Element Binding, and Glucocorticoid Receptor in the Cortex of Patients with Temporal Lobe Epilepsy.

    PubMed

    Martínez-Levy, G A; Rocha, L; Rodríguez-Pineda, F; Alonso-Vanegas, M A; Nani, A; Buentello-García, R M; Briones-Velasco, M; San-Juan, D; Cienfuegos, J; Cruz-Fuentes, C S

    2018-05-01

    A body of evidence supports a relevant role of brain-derived neurotrophic factor (BDNF) in temporal lobe epilepsy (TLE). Magnetic resonance data reveal that the cerebral atrophy extends to regions that are functionally and anatomically connected with the hippocampus, especially the temporal cortex. We previously reported an increased expression of BDNF messenger for the exon VI in the hippocampus of temporal lobe epilepsy patients compared to an autopsy control group. Altered levels of this particular transcript were also associated with pre-surgical use of certain psychotropic. We extended here our analysis of transcripts I, II, IV, and VI to the temporal cortex since this cerebral region holds intrinsic communication with the hippocampus and is structurally affected in patients with TLE. We also assayed the cyclic adenosine monophosphate response element-binding (CREB) and glucocorticoid receptor (GR) genes as there is experimental evidence of changes in their expression associated with BDNF and epilepsy. TLE and pre-surgical pharmacological treatment were considered as the primary clinical independent variables. Transcripts BDNF I and BDNF VI increased in the temporal cortex of patients with pharmacoresistant TLE. The expression of CREB and GR expression follow the same direction. Pre-surgical use of selective serotonin reuptake inhibitors, carbamazepine (CBZ) and valproate (VPA), was associated with the differential expression of specific BDNF transcripts and CREB and GR genes. These changes could have functional implication in the plasticity mechanisms related to temporal lobe epilepsy.

  19. Neural integration of iconic and unrelated coverbal gestures: a functional MRI study.

    PubMed

    Green, Antonia; Straube, Benjamin; Weis, Susanne; Jansen, Andreas; Willmes, Klaus; Konrad, Kerstin; Kircher, Tilo

    2009-10-01

    Gestures are an important part of interpersonal communication, for example by illustrating physical properties of speech contents (e.g., "the ball is round"). The meaning of these so-called iconic gestures is strongly intertwined with speech. We investigated the neural correlates of the semantic integration for verbal and gestural information. Participants watched short videos of five speech and gesture conditions performed by an actor, including variation of language (familiar German vs. unfamiliar Russian), variation of gesture (iconic vs. unrelated), as well as isolated familiar language, while brain activation was measured using functional magnetic resonance imaging. For familiar speech with either of both gesture types contrasted to Russian speech-gesture pairs, activation increases were observed at the left temporo-occipital junction. Apart from this shared location, speech with iconic gestures exclusively engaged left occipital areas, whereas speech with unrelated gestures activated bilateral parietal and posterior temporal regions. Our results demonstrate that the processing of speech with speech-related versus speech-unrelated gestures occurs in two distinct but partly overlapping networks. The distinct processing streams (visual versus linguistic/spatial) are interpreted in terms of "auxiliary systems" allowing the integration of speech and gesture in the left temporo-occipital region.

  20. Daily Rhythms in Mobile Telephone Communication

    PubMed Central

    Aledavood, Talayeh; López, Eduardo; Roberts, Sam G. B.; Reed-Tsochas, Felix; Moro, Esteban; Dunbar, Robin I. M.; Saramäki, Jari

    2015-01-01

    Circadian rhythms are known to be important drivers of human activity and the recent availability of electronic records of human behaviour has provided fine-grained data of temporal patterns of activity on a large scale. Further, questionnaire studies have identified important individual differences in circadian rhythms, with people broadly categorised into morning-like or evening-like individuals. However, little is known about the social aspects of these circadian rhythms, or how they vary across individuals. In this study we use a unique 18-month dataset that combines mobile phone calls and questionnaire data to examine individual differences in the daily rhythms of mobile phone activity. We demonstrate clear individual differences in daily patterns of phone calls, and show that these individual differences are persistent despite a high degree of turnover in the individuals’ social networks. Further, women’s calls were longer than men’s calls, especially during the evening and at night, and these calls were typically focused on a small number of emotionally intense relationships. These results demonstrate that individual differences in circadian rhythms are not just related to broad patterns of morningness and eveningness, but have a strong social component, in directing phone calls to specific individuals at specific times of day. PMID:26390215

  1. Daily Rhythms in Mobile Telephone Communication.

    PubMed

    Aledavood, Talayeh; López, Eduardo; Roberts, Sam G B; Reed-Tsochas, Felix; Moro, Esteban; Dunbar, Robin I M; Saramäki, Jari

    2015-01-01

    Circadian rhythms are known to be important drivers of human activity and the recent availability of electronic records of human behaviour has provided fine-grained data of temporal patterns of activity on a large scale. Further, questionnaire studies have identified important individual differences in circadian rhythms, with people broadly categorised into morning-like or evening-like individuals. However, little is known about the social aspects of these circadian rhythms, or how they vary across individuals. In this study we use a unique 18-month dataset that combines mobile phone calls and questionnaire data to examine individual differences in the daily rhythms of mobile phone activity. We demonstrate clear individual differences in daily patterns of phone calls, and show that these individual differences are persistent despite a high degree of turnover in the individuals' social networks. Further, women's calls were longer than men's calls, especially during the evening and at night, and these calls were typically focused on a small number of emotionally intense relationships. These results demonstrate that individual differences in circadian rhythms are not just related to broad patterns of morningness and eveningness, but have a strong social component, in directing phone calls to specific individuals at specific times of day.

  2. Online communication predicts Belgian adolescents' initiation of romantic and sexual activity.

    PubMed

    Vandenbosch, Laura; Beyens, Ine; Vangeel, Laurens; Eggermont, Steven

    2016-04-01

    Online communication is associated with offline romantic and sexual activity among college students. Yet, it is unknown whether online communication is associated with the initiation of romantic and sexual activity among adolescents. This two-wave panel study investigated whether chatting, visiting dating websites, and visiting erotic contact websites predicted adolescents' initiation of romantic and sexual activity. We analyzed two-wave panel data from 1163 Belgian adolescents who participated in the MORES Study. We investigated the longitudinal impact of online communication on the initiation of romantic relationships and sexual intercourse using logistic regression analyses. The odds ratios of initiating a romantic relationship among romantically inexperienced adolescents who frequently used chat rooms, dating websites, or erotic contact websites were two to three times larger than those of non-users. Among sexually inexperienced adolescents who frequently used chat rooms, dating websites, or erotic contact websites, the odds ratios of initiating sexual intercourse were two to five times larger than that among non-users, even after a number of other relevant factors were introduced. This is the first study to demonstrate that online communication predicts the initiation of offline sexual and romantic activity as early as adolescence. Practitioners and parents need to consider the role of online communication in adolescents' developing sexuality. • Adolescents increasingly communicate online with peers. • Online communication predicts romantic and sexual activity among college students. What is New: • Online communication predicts adolescents' offline romantic activity over time. • Online communication predicts adolescents' offline sexual activity over time.

  3. Representation of activity in images using geospatial temporal graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brost, Randolph; McLendon, III, William C.; Parekh, Ojas D.

    Various technologies pertaining to modeling patterns of activity observed in remote sensing images using geospatial-temporal graphs are described herein. Graphs are constructed by representing objects in remote sensing images as nodes, and connecting nodes with undirected edges representing either distance or adjacency relationships between objects and directed edges representing changes in time. Activity patterns may be discerned from the graphs by coding nodes representing persistent objects like buildings differently from nodes representing ephemeral objects like vehicles, and examining the geospatial-temporal relationships of ephemeral nodes within the graph.

  4. Temporal prediction errors modulate task-switching performance

    PubMed Central

    Limongi, Roberto; Silva, Angélica M.; Góngora-Costa, Begoña

    2015-01-01

    We have previously shown that temporal prediction errors (PEs, the differences between the expected and the actual stimulus’ onset times) modulate the effective connectivity between the anterior cingulate cortex and the right anterior insular cortex (rAI), causing the activity of the rAI to decrease. The activity of the rAI is associated with efficient performance under uncertainty (e.g., changing a prepared behavior when a change demand is not expected), which leads to hypothesize that temporal PEs might disrupt behavior-change performance under uncertainty. This hypothesis has not been tested at a behavioral level. In this work, we evaluated this hypothesis within the context of task switching and concurrent temporal predictions. Our participants performed temporal predictions while observing one moving ball striking a stationary ball which bounced off with a variable temporal gap. Simultaneously, they performed a simple color comparison task. In some trials, a change signal made the participants change their behaviors. Performance accuracy decreased as a function of both the temporal PE and the delay. Explaining these results without appealing to ad hoc concepts such as “executive control” is a challenge for cognitive neuroscience. We provide a predictive coding explanation. We hypothesize that exteroceptive and proprioceptive minimization of PEs would converge in a fronto-basal ganglia network which would include the rAI. Both temporal gaps (or uncertainty) and temporal PEs would drive and modulate this network respectively. Whereas the temporal gaps would drive the activity of the rAI, the temporal PEs would modulate the endogenous excitatory connections of the fronto-striatal network. We conclude that in the context of perceptual uncertainty, the system is not able to minimize perceptual PE, causing the ongoing behavior to finalize and, in consequence, disrupting task switching. PMID:26379568

  5. Temporal prediction errors modulate task-switching performance.

    PubMed

    Limongi, Roberto; Silva, Angélica M; Góngora-Costa, Begoña

    2015-01-01

    We have previously shown that temporal prediction errors (PEs, the differences between the expected and the actual stimulus' onset times) modulate the effective connectivity between the anterior cingulate cortex and the right anterior insular cortex (rAI), causing the activity of the rAI to decrease. The activity of the rAI is associated with efficient performance under uncertainty (e.g., changing a prepared behavior when a change demand is not expected), which leads to hypothesize that temporal PEs might disrupt behavior-change performance under uncertainty. This hypothesis has not been tested at a behavioral level. In this work, we evaluated this hypothesis within the context of task switching and concurrent temporal predictions. Our participants performed temporal predictions while observing one moving ball striking a stationary ball which bounced off with a variable temporal gap. Simultaneously, they performed a simple color comparison task. In some trials, a change signal made the participants change their behaviors. Performance accuracy decreased as a function of both the temporal PE and the delay. Explaining these results without appealing to ad hoc concepts such as "executive control" is a challenge for cognitive neuroscience. We provide a predictive coding explanation. We hypothesize that exteroceptive and proprioceptive minimization of PEs would converge in a fronto-basal ganglia network which would include the rAI. Both temporal gaps (or uncertainty) and temporal PEs would drive and modulate this network respectively. Whereas the temporal gaps would drive the activity of the rAI, the temporal PEs would modulate the endogenous excitatory connections of the fronto-striatal network. We conclude that in the context of perceptual uncertainty, the system is not able to minimize perceptual PE, causing the ongoing behavior to finalize and, in consequence, disrupting task switching.

  6. New human-specific brain landmark: the depth asymmetry of superior temporal sulcus.

    PubMed

    Leroy, François; Cai, Qing; Bogart, Stephanie L; Dubois, Jessica; Coulon, Olivier; Monzalvo, Karla; Fischer, Clara; Glasel, Hervé; Van der Haegen, Lise; Bénézit, Audrey; Lin, Ching-Po; Kennedy, David N; Ihara, Aya S; Hertz-Pannier, Lucie; Moutard, Marie-Laure; Poupon, Cyril; Brysbaert, Marc; Roberts, Neil; Hopkins, William D; Mangin, Jean-François; Dehaene-Lambertz, Ghislaine

    2015-01-27

    Identifying potentially unique features of the human cerebral cortex is a first step to understanding how evolution has shaped the brain in our species. By analyzing MR images obtained from 177 humans and 73 chimpanzees, we observed a human-specific asymmetry in the superior temporal sulcus at the heart of the communication regions and which we have named the "superior temporal asymmetrical pit" (STAP). This 45-mm-long segment ventral to Heschl's gyrus is deeper in the right hemisphere than in the left in 95% of typical human subjects, from infanthood till adulthood, and is present, irrespective of handedness, language lateralization, and sex although it is greater in males than in females. The STAP also is seen in several groups of atypical subjects including persons with situs inversus, autistic spectrum disorder, Turner syndrome, and corpus callosum agenesis. It is explained in part by the larger number of sulcal interruptions in the left than in the right hemisphere. Its early presence in the infants of this study as well as in fetuses and premature infants suggests a strong genetic influence. Because this asymmetry is barely visible in chimpanzees, we recommend the STAP region during midgestation as an important phenotype to investigate asymmetrical variations of gene expression among the primate lineage. This genetic target may provide important insights regarding the evolution of the crucial cognitive abilities sustained by this sulcus in our species, namely communication and social cognition.

  7. Temporal analysis of laser beam propagation in the atmosphere using computer-generated long phase screens.

    PubMed

    Dios, Federico; Recolons, Jaume; Rodríguez, Alejandro; Batet, Oscar

    2008-02-04

    Temporal analysis of the irradiance at the detector plane is intended as the first step in the study of the mean fade time in a free optical communication system. In the present work this analysis has been performed for a Gaussian laser beam propagating in the atmospheric turbulence by means of computer simulation. To this end, we have adapted a previously known numerical method to the generation of long phase screens. The screens are displaced in a transverse direction as the wave is propagated, in order to simulate the wind effect. The amplitude of the temporal covariance and its power spectrum have been obtained at the optical axis, at the beam centroid and at a certain distance from these two points. Results have been worked out for weak, moderate and strong turbulence regimes and when possible they have been compared with theoretical models. These results show a significant contribution of beam wander to the temporal behaviour of the irradiance, even in the case of weak turbulence. We have also found that the spectral bandwidth of the covariance is hardly dependent on the Rytov variance.

  8. Supervised Learning Based on Temporal Coding in Spiking Neural Networks.

    PubMed

    Mostafa, Hesham

    2017-08-01

    Gradient descent training techniques are remarkably successful in training analog-valued artificial neural networks (ANNs). Such training techniques, however, do not transfer easily to spiking networks due to the spike generation hard nonlinearity and the discrete nature of spike communication. We show that in a feedforward spiking network that uses a temporal coding scheme where information is encoded in spike times instead of spike rates, the network input-output relation is differentiable almost everywhere. Moreover, this relation is piecewise linear after a transformation of variables. Methods for training ANNs thus carry directly to the training of such spiking networks as we show when training on the permutation invariant MNIST task. In contrast to rate-based spiking networks that are often used to approximate the behavior of ANNs, the networks we present spike much more sparsely and their behavior cannot be directly approximated by conventional ANNs. Our results highlight a new approach for controlling the behavior of spiking networks with realistic temporal dynamics, opening up the potential for using these networks to process spike patterns with complex temporal information.

  9. Presence of nonlinearity in intracranial EEG recordings: detected by Lyapunov exponents

    NASA Astrophysics Data System (ADS)

    Liu, Chang-Chia; Shiau, Deng-Shan; Chaovalitwongse, W. Art; Pardalos, Panos M.; Sackellares, J. C.

    2007-11-01

    In this communication, we performed nonlinearity analysis in the EEG signals recorded from patients with temporal lobe epilepsy (TLE). The largest Lyapunov exponent (Lmax) and phase randomization surrogate data technique were employed to form the statistical test. EEG recordings were acquired invasively from three patients in six brain regions (left and right temporal depth, sub-temporal and orbitofrontal) with 28-32 depth electrodes placed in depth and subdural of the brain. All three patients in this study have unilateral epileptic focus region on the right hippocampus(RH). Nonlinearity was detected by comparing the Lmax profiles of the EEG recordings to its surrogates. The nonlinearity was seen in all different states of the patient with the highest found in post-ictal state. Further our results for all patients exhibited higher degree of differences, quantified by paired t-test, in Lmax values between original and its surrogate from EEG signals recorded from epileptic focus regions. The results of this study demonstrated the Lmax is capable to capture spatio-temporal dynamics that may not be able to detect by linear measurements in the intracranial EEG recordings.

  10. Aberrant temporal behavior of mismatch negativity generators in schizophrenia patients and subjects at clinical high risk for psychosis.

    PubMed

    Kim, Minah; Cho, Kang Ik Kevin; Yoon, Youngwoo Bryan; Lee, Tae Young; Kwon, Jun Soo

    2017-02-01

    Although disconnection syndrome has been considered a core pathophysiologic mechanism of schizophrenia, little is known about the temporal behavior of mismatch negativity (MMN) generators in individuals with schizophrenia or clinical high risk (CHR) for psychosis. MMN was assessed in 29 schizophrenia patients, 40 CHR subjects, and 47 healthy controls (HCs). Individual realistic head models and the minimum L2 norm algorithm were used to generate a current source density (CSD) model of MMN. The strength and time course of MMN CSD activity were calculated separately for the frontal and temporal cortices and were compared across brain regions and groups. Schizophrenia patients and CHR subjects displayed lower MMN CSD strength than HCs in both the temporal and frontal cortices. We found a significant time delay in MMN generator activity in the frontal cortex relative to that in the temporal cortex in HCs. However, the sequential temporo-frontal activities of MMN generators were disrupted in both the schizophrenia and CHR groups. Impairments and altered temporal behavior of MMN multiple generators were observed even in individuals at risk for psychosis. These findings suggest that aberrant MMN generator activity might be helpful in revealing the pathophysiology of schizophrenia. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  11. Public Awareness of Uterine Power Morcellation Through US Food and Drug Administration Communications: Analysis of Google Trends Search Term Patterns.

    PubMed

    Wood, Lauren N; Jamnagerwalla, Juzar; Markowitz, Melissa A; Thum, D Joseph; McCarty, Philip; Medendorp, Andrew R; Raz, Shlomo; Kim, Ja-Hong

    2018-04-26

    Uterine power morcellation, where the uterus is shred into smaller pieces, is a widely used technique for removal of uterine specimens in patients undergoing minimally invasive abdominal hysterectomy or myomectomy. Complications related to power morcellation of uterine specimens led to US Food and Drug Administration (FDA) communications in 2014 ultimately recommending against the use of power morcellation for women undergoing minimally invasive hysterectomy. Subsequently, practitioners drastically decreased the use of morcellation. We aimed to determine the effect of increased patient awareness on the decrease in use of the morcellator. Google Trends is a public tool that provides data on temporal patterns of search terms, and we correlated this data with the timing of the FDA communication. Weekly relative search volume (RSV) was obtained from Google Trends using the term “morcellation.” Higher RSV corresponds to increases in weekly search volume. Search volumes were divided into 3 groups: the 2 years prior to the FDA communication, a 1-year period following, and thereafter, with the distribution of the weekly RSV over the 3 periods tested using 1-way analysis of variance. Additionally, we analyzed the total number of websites containing the term “morcellation” over this time. The mean RSV prior to the FDA communication was 12.0 (SD 15.8), with the RSV being 60.3 (SD 24.7) in the 1-year after and 19.3 (SD 5.2) thereafter (P<.001). The mean number of webpages containing the term “morcellation” in 2011 was 10,800, rising to 18,800 during 2014 and 36,200 in 2017. Google search activity about morcellation of uterine specimens increased significantly after the FDA communications. This trend indicates an increased public awareness regarding morcellation and its complications. More extensive preoperative counseling and alteration of surgical technique and clinician practice may be necessary. ©Lauren N Wood, Juzar Jamnagerwalla, Melissa A Markowitz, D Joseph Thum, Philip McCarty, Andrew R Medendorp, Shlomo Raz, Ja-Hong Kim. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 26.04.2018.

  12. Spatial-Temporal Data Collection with Compressive Sensing in Mobile Sensor Networks

    PubMed Central

    Li, Jiayin; Guo, Wenzhong; Chen, Zhonghui; Xiong, Neal

    2017-01-01

    Compressive sensing (CS) provides an energy-efficient paradigm for data gathering in wireless sensor networks (WSNs). However, the existing work on spatial-temporal data gathering using compressive sensing only considers either multi-hop relaying based or multiple random walks based approaches. In this paper, we exploit the mobility pattern for spatial-temporal data collection and propose a novel mobile data gathering scheme by employing the Metropolis-Hastings algorithm with delayed acceptance, an improved random walk algorithm for a mobile collector to collect data from a sensing field. The proposed scheme exploits Kronecker compressive sensing (KCS) for spatial-temporal correlation of sensory data by allowing the mobile collector to gather temporal compressive measurements from a small subset of randomly selected nodes along a random routing path. More importantly, from the theoretical perspective we prove that the equivalent sensing matrix constructed from the proposed scheme for spatial-temporal compressible signal can satisfy the property of KCS models. The simulation results demonstrate that the proposed scheme can not only significantly reduce communication cost but also improve recovery accuracy for mobile data gathering compared to the other existing schemes. In particular, we also show that the proposed scheme is robust in unreliable wireless environment under various packet losses. All this indicates that the proposed scheme can be an efficient alternative for data gathering application in WSNs. PMID:29117152

  13. Spatial-Temporal Data Collection with Compressive Sensing in Mobile Sensor Networks.

    PubMed

    Zheng, Haifeng; Li, Jiayin; Feng, Xinxin; Guo, Wenzhong; Chen, Zhonghui; Xiong, Neal

    2017-11-08

    Compressive sensing (CS) provides an energy-efficient paradigm for data gathering in wireless sensor networks (WSNs). However, the existing work on spatial-temporal data gathering using compressive sensing only considers either multi-hop relaying based or multiple random walks based approaches. In this paper, we exploit the mobility pattern for spatial-temporal data collection and propose a novel mobile data gathering scheme by employing the Metropolis-Hastings algorithm with delayed acceptance, an improved random walk algorithm for a mobile collector to collect data from a sensing field. The proposed scheme exploits Kronecker compressive sensing (KCS) for spatial-temporal correlation of sensory data by allowing the mobile collector to gather temporal compressive measurements from a small subset of randomly selected nodes along a random routing path. More importantly, from the theoretical perspective we prove that the equivalent sensing matrix constructed from the proposed scheme for spatial-temporal compressible signal can satisfy the property of KCS models. The simulation results demonstrate that the proposed scheme can not only significantly reduce communication cost but also improve recovery accuracy for mobile data gathering compared to the other existing schemes. In particular, we also show that the proposed scheme is robust in unreliable wireless environment under various packet losses. All this indicates that the proposed scheme can be an efficient alternative for data gathering application in WSNs .

  14. Motor contributions to the temporal precision of auditory attention

    PubMed Central

    Morillon, Benjamin; Schroeder, Charles E.; Wyart, Valentin

    2014-01-01

    In temporal—or dynamic—attending theory, it is proposed that motor activity helps to synchronize temporal fluctuations of attention with the timing of events in a task-relevant stream, thus facilitating sensory selection. Here we develop a mechanistic behavioural account for this theory by asking human participants to track a slow reference beat, by noiseless finger pressing, while extracting auditory target tones delivered on-beat and interleaved with distractors. We find that overt rhythmic motor activity improves the segmentation of auditory information by enhancing sensitivity to target tones while actively suppressing distractor tones. This effect is triggered by cyclic fluctuations in sensory gain locked to individual motor acts, scales parametrically with the temporal predictability of sensory events and depends on the temporal alignment between motor and attention fluctuations. Together, these findings reveal how top-down influences associated with a rhythmic motor routine sharpen sensory representations, enacting auditory ‘active sensing’. PMID:25314898

  15. Modelling temporal networks of human face-to-face contacts with public activity and individual reachability

    NASA Astrophysics Data System (ADS)

    Zhang, Yi-Qing; Cui, Jing; Zhang, Shu-Min; Zhang, Qi; Li, Xiang

    2016-02-01

    Modelling temporal networks of human face-to-face contacts is vital both for understanding the spread of airborne pathogens and word-of-mouth spreading of information. Although many efforts have been devoted to model these temporal networks, there are still two important social features, public activity and individual reachability, have been ignored in these models. Here we present a simple model that captures these two features and other typical properties of empirical face-to-face contact networks. The model describes agents which are characterized by an attractiveness to slow down the motion of nearby people, have event-triggered active probability and perform an activity-dependent biased random walk in a square box with periodic boundary. The model quantitatively reproduces two empirical temporal networks of human face-to-face contacts which are testified by their network properties and the epidemic spread dynamics on them.

  16. Temporal lobe interictal epileptic discharges affect cerebral activity in “default mode” brain regions

    PubMed Central

    Laufs, Helmut; Hamandi, Khalid; Salek-Haddadi, Afraim; Kleinschmidt, Andreas K; Duncan, John S; Lemieux, Louis

    2007-01-01

    A cerebral network comprising precuneus, medial frontal, and temporoparietal cortices is less active both during goal-directed behavior and states of reduced consciousness than during conscious rest. We tested the hypothesis that the interictal epileptic discharges affect activity in these brain regions in patients with temporal lobe epilepsy who have complex partial seizures. At the group level, using electroencephalography-correlated functional magnetic resonance imaging in 19 consecutive patients with focal epilepsy, we found common decreases of resting state activity in 9 patients with temporal lobe epilepsy (TLE) but not in 10 patients with extra-TLE. We infer that the functional consequences of TLE interictal epileptic discharges are different from those in extra-TLE and affect ongoing brain function. Activity increases were detected in the ipsilateral hippocampus in patients with TLE, and in subthalamic, bilateral superior temporal and medial frontal brain regions in patients with extra-TLE, possibly indicating effects of different interictal epileptic discharge propagation. PMID:17133385

  17. Dissociating movement from movement timing in the rat primary motor cortex.

    PubMed

    Knudsen, Eric B; Powers, Marissa E; Moxon, Karen A

    2014-11-19

    Neural encoding of the passage of time to produce temporally precise movements remains an open question. Neurons in several brain regions across different experimental contexts encode estimates of temporal intervals by scaling their activity in proportion to the interval duration. In motor cortex the degree to which this scaled activity relies upon afferent feedback and is guided by motor output remains unclear. Using a neural reward paradigm to dissociate neural activity from motor output before and after complete spinal transection, we show that temporally scaled activity occurs in the rat hindlimb motor cortex in the absence of motor output and after transection. Context-dependent changes in the encoding are plastic, reversible, and re-established following injury. Therefore, in the absence of motor output and despite a loss of afferent feedback, thought necessary for timed movements, the rat motor cortex displays scaled activity during a broad range of temporally demanding tasks similar to that identified in other brain regions. Copyright © 2014 the authors 0270-6474/14/3415576-11$15.00/0.

  18. Understanding communicative actions: a repetitive TMS study.

    PubMed

    Stolk, Arjen; Noordzij, Matthijs L; Volman, Inge; Verhagen, Lennart; Overeem, Sebastiaan; van Elswijk, Gijs; Bloem, Bas; Hagoort, Peter; Toni, Ivan

    2014-02-01

    Despite the ambiguity inherent in human communication, people are remarkably efficient in establishing mutual understanding. Studying how people communicate in novel settings provides a window into the mechanisms supporting the human competence to rapidly generate and understand novel shared symbols, a fundamental property of human communication. Previous work indicates that the right posterior superior temporal sulcus (pSTS) is involved when people understand the intended meaning of novel communicative actions. Here, we set out to test whether normal functioning of this cerebral structure is required for understanding novel communicative actions using inhibitory low-frequency repetitive transcranial magnetic stimulation (rTMS). A factorial experimental design contrasted two tightly matched stimulation sites (right pSTS vs left MT+, i.e., a contiguous homotopic task-relevant region) and tasks (a communicative task vs a visual tracking task that used the same sequences of stimuli). Overall task performance was not affected by rTMS, whereas changes in task performance over time were disrupted according to TMS site and task combinations. Namely, rTMS over pSTS led to a diminished ability to improve action understanding on the basis of recent communicative history, while rTMS over MT+ perturbed improvement in visual tracking over trials. These findings qualify the contributions of the right pSTS to human communicative abilities, showing that this region might be necessary for incorporating previous knowledge, accumulated during interactions with a communicative partner, to constrain the inferential process that leads to action understanding. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. The Institute for Communication Research Annual Report 1975-1976.

    ERIC Educational Resources Information Center

    Stanford Univ., CA. Inst. for Communication Research.

    This document summarizes projects and and research activities for the year 1975-1976 in five areas: (1) international communication, (2) health communication; (3) communication technology and public policy; (4) communication and media; and (5) information needs and uses. Specific activities discussed pertain to educational development and…

  20. HybridPLAY: A New Technology to Foster Outdoors Physical Activity, Verbal Communication and Teamwork.

    PubMed

    Díaz, Diego José; Boj, Clara; Portalés, Cristina

    2016-04-23

    This paper presents HybridPLAY, a novel technology composed of a sensor and mobile-based video games that transforms urban playgrounds into game scenarios. With this technology we aim to stimulate physical activity and playful learning by creating an entertaining environment in which users can actively participate and collaborate. HybridPLAY is different from other existing technologies that enhance playgrounds, as it is not integrated in them but can be attached to the different elements of the playgrounds, making its use more ubiquitous (i.e., not restricted to the playgrounds). HybridPLAY was born in 2007 as an artistic concept, and evolved after different phases of research and testing by almost 2000 users around the world (in workshops, artistic events, conferences, etc.). Here, we present the temporal evolution of HybridPLAY with the different versions of the sensors and the video games, and a detailed technical description of the sensors and the way interactions are produced. We also present the outcomes after the evaluation by users at different events and workshops. We believe that HybridPLAY has great potential to contribute to increased physical activity in kids, and also to improve the learning process and monitoring at school centres by letting users create the content of the apps, leading to new narratives and fostering creativity.

  1. SVM-based multimodal classification of activities of daily living in Health Smart Homes: sensors, algorithms, and first experimental results.

    PubMed

    Fleury, Anthony; Vacher, Michel; Noury, Norbert

    2010-03-01

    By 2050, about one third of the French population will be over 65. Our laboratory's current research focuses on the monitoring of elderly people at home, to detect a loss of autonomy as early as possible. Our aim is to quantify criteria such as the international activities of daily living (ADL) or the French Autonomie Gerontologie Groupes Iso-Ressources (AGGIR) scales, by automatically classifying the different ADL performed by the subject during the day. A Health Smart Home is used for this. Our Health Smart Home includes, in a real flat, infrared presence sensors (location), door contacts (to control the use of some facilities), temperature and hygrometry sensor in the bathroom, and microphones (sound classification and speech recognition). A wearable kinematic sensor also informs postural transitions (using pattern recognition) and walk periods (frequency analysis). This data collected from the various sensors are then used to classify each temporal frame into one of the ADL that was previously acquired (seven activities: hygiene, toilet use, eating, resting, sleeping, communication, and dressing/undressing). This is done using support vector machines. We performed a 1-h experimentation with 13 young and healthy subjects to determine the models of the different activities, and then we tested the classification algorithm (cross validation) with real data.

  2. HybridPLAY: A New Technology to Foster Outdoors Physical Activity, Verbal Communication and Teamwork

    PubMed Central

    Díaz, Diego José; Boj, Clara; Portalés, Cristina

    2016-01-01

    This paper presents HybridPLAY, a novel technology composed of a sensor and mobile-based video games that transforms urban playgrounds into game scenarios. With this technology we aim to stimulate physical activity and playful learning by creating an entertaining environment in which users can actively participate and collaborate. HybridPLAY is different from other existing technologies that enhance playgrounds, as it is not integrated in them but can be attached to the different elements of the playgrounds, making its use more ubiquitous (i.e., not restricted to the playgrounds). HybridPLAY was born in 2007 as an artistic concept, and evolved after different phases of research and testing by almost 2000 users around the world (in workshops, artistic events, conferences, etc.). Here, we present the temporal evolution of HybridPLAY with the different versions of the sensors and the video games, and a detailed technical description of the sensors and the way interactions are produced. We also present the outcomes after the evaluation by users at different events and workshops. We believe that HybridPLAY has great potential to contribute to increased physical activity in kids, and also to improve the learning process and monitoring at school centres by letting users create the content of the apps, leading to new narratives and fostering creativity. PMID:27120601

  3. Adaptor proteins in protein kinase C-mediated signal transduction.

    PubMed

    Schechtman, D; Mochly-Rosen, D

    2001-10-01

    Spatial and temporal organization of signal transduction is essential in determining the speed and precision by which signaling events occur. Adaptor proteins are key to organizing signaling enzymes near their select substrates and away from others in order to optimize precision and speed of response. Here, we describe the role of adaptor proteins in determining the specific function of individual protein kinase C (PKC) isozymes. These isozyme-selective proteins were called collectively RACKs (receptors for activated C-kinase). The role of RACKs in PKC-mediated signaling was determined using isozyme-specific inhibitors and activators of the binding of each isozyme to its respective RACK. In addition to anchoring activated PKC isozymes, RACKs anchor other signaling enzymes. RACK1, the anchoring protein for activated betaIIPKC, binds for example, Src tyrosine kinase, integrin, and phosphodiesterase. RACK2, the epsilonPKC-specific RACK, is a coated-vesicle protein and thus is involved in vesicular release and cell-cell communication. Therefore, RACKs are not only adaptors for PKC, but also serve as adaptor proteins for several other signaling enzymes. Because at least some of the proteins that bind to RACKs, including PKC itself, regulate cell growth, modulating their interactions with RACKs may help elucidate signaling pathways leading to carcinogenesis and could result in the identification of novel therapeutic targets.

  4. The Role of Communication During Trauma Activations: Investigating the Need for Team and Leader Communication Training.

    PubMed

    Raley, Jessica; Meenakshi, Rani; Dent, Daniel; Willis, Ross; Lawson, Karla; Duzinski, Sarah

    Fatal errors due to miscommunication among members of trauma teams are 2 to 4 times more likely to occur than in other medical teams, yet most trauma team members do not receive communication effectiveness training. A needs assessment was conducted to examine trauma team members' miscommunication experiences and research scientists' evaluations of live trauma activations. The purpose of this study is to demonstrate that communication training is necessary and highlight specific team communication competencies that trauma teams should learn to improve communication during activations. Data were collected in 2 phases. Phase 1 required participants to complete a series of surveys. Phase 2 included live observations and assessments of pediatric trauma activations using the assessment of pediatric resuscitation team assessments (APRC-TA) and assessment of pediatric resuscitation leader assessments (APRC-LA). Data were collected at a southwestern pediatric hospital. Trauma team members and leaders completed surveys at a meeting and were observed while conducting activations in the trauma bay. Trained research scientists and clinical staff used the APRC-TA and APRC-LA to measure trauma teams' medical performance and communication effectiveness. The sample included 29 healthcare providers who regularly participate in trauma activations. Additionally, 12 live trauma activations were assessed monday to friday from 8am to 5pm. Team members indicated that communication training should focus on offering assistance, delegating duties, accepting feedback, and controlling emotional expressions. Communication scores were not significantly different from medical performance scores. None of the teams were coded as effective medical performance and ineffective team communication and only 1 team was labeled as ineffective leader communication and effective medical performance. Communication training may be necessary for trauma teams and offer a deeper understanding of the communication competencies that should be addressed. The APRC-TA and APRC-LA both include team communication competencies that could be used as a guide to design training for trauma team members and leaders. Researchers should also continue to examine recommendations for improved team and leader communication during activations using in-depth interviews and focus groups. Copyright © 2016 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  5. Temporal and spatial neural dynamics in the perception of basic emotions from complex scenes

    PubMed Central

    Costa, Tommaso; Cauda, Franco; Crini, Manuella; Tatu, Mona-Karina; Celeghin, Alessia; de Gelder, Beatrice

    2014-01-01

    The different temporal dynamics of emotions are critical to understand their evolutionary role in the regulation of interactions with the surrounding environment. Here, we investigated the temporal dynamics underlying the perception of four basic emotions from complex scenes varying in valence and arousal (fear, disgust, happiness and sadness) with the millisecond time resolution of Electroencephalography (EEG). Event-related potentials were computed and each emotion showed a specific temporal profile, as revealed by distinct time segments of significant differences from the neutral scenes. Fear perception elicited significant activity at the earliest time segments, followed by disgust, happiness and sadness. Moreover, fear, disgust and happiness were characterized by two time segments of significant activity, whereas sadness showed only one long-latency time segment of activity. Multidimensional scaling was used to assess the correspondence between neural temporal dynamics and the subjective experience elicited by the four emotions in a subsequent behavioral task. We found a high coherence between these two classes of data, indicating that psychological categories defining emotions have a close correspondence at the brain level in terms of neural temporal dynamics. Finally, we localized the brain regions of time-dependent activity for each emotion and time segment with the low-resolution brain electromagnetic tomography. Fear and disgust showed widely distributed activations, predominantly in the right hemisphere. Happiness activated a number of areas mostly in the left hemisphere, whereas sadness showed a limited number of active areas at late latency. The present findings indicate that the neural signature of basic emotions can emerge as the byproduct of dynamic spatiotemporal brain networks as investigated with millisecond-range resolution, rather than in time-independent areas involved uniquely in the processing one specific emotion. PMID:24214921

  6. Temporal information entropy of the Blood-Oxygenation Level-Dependent signals increases in the activated human primary visual cortex

    NASA Astrophysics Data System (ADS)

    DiNuzzo, Mauro; Mascali, Daniele; Moraschi, Marta; Bussu, Giorgia; Maraviglia, Bruno; Mangia, Silvia; Giove, Federico

    2017-02-01

    Time-domain analysis of blood-oxygenation level-dependent (BOLD) signals allows the identification of clusters of voxels responding to photic stimulation in primary visual cortex (V1). However, the characterization of information encoding into temporal properties of the BOLD signals of an activated cluster is poorly investigated. Here, we used Shannon entropy to determine spatial and temporal information encoding in the BOLD signal within the most strongly activated area of the human visual cortex during a hemifield photic stimulation. We determined the distribution profile of BOLD signals during epochs at rest and under stimulation within small (19-121 voxels) clusters designed to include only voxels driven by the stimulus as highly and uniformly as possible. We found consistent and significant increases (2-4% on average) in temporal information entropy during activation in contralateral but not ipsilateral V1, which was mirrored by an expected loss of spatial information entropy. These opposite changes coexisted with increases in both spatial and temporal mutual information (i.e. dependence) in contralateral V1. Thus, we showed that the first cortical stage of visual processing is characterized by a specific spatiotemporal rearrangement of intracluster BOLD responses. Our results indicate that while in the space domain BOLD maps may be incapable of capturing the functional specialization of small neuronal populations due to relatively low spatial resolution, some information encoding may still be revealed in the temporal domain by an increase of temporal information entropy.

  7. Iconic memory and parietofrontal network: fMRI study using temporal integration.

    PubMed

    Saneyoshi, Ayako; Niimi, Ryosuke; Suetsugu, Tomoko; Kaminaga, Tatsuro; Yokosawa, Kazuhiko

    2011-08-03

    We investigated the neural basis of iconic memory using functional magnetic resonance imaging. The parietofrontal network of selective attention is reportedly relevant to readout from iconic memory. We adopted a temporal integration task that requires iconic memory but not selective attention. The results showed that the task activated the parietofrontal network, confirming that the network is involved in readout from iconic memory. We further tested a condition in which temporal integration was performed by visual short-term memory but not by iconic memory. However, no brain region revealed higher activation for temporal integration by iconic memory than for temporal integration by visual short-term memory. This result suggested that there is no localized brain region specialized for iconic memory per se.

  8. Human Factors Engineering Bibliographic Series. Volume 2: 1960-1964 Literature

    DTIC Science & Technology

    1966-10-01

    flutter discrimination, melodic and temporal) binaural vs. monaural equipment and methods (e.g., anechoic chambers, audiometric devices, communication...brightness, duration, timbre, vocality) stimulus mixtures (e.g., harmonics, beats , combination tones, modulations) thresholds training, nonverbal--see Training...scales and aids) Beats --see Audition (stimulus mixtures) Bells--see Auditory (displays, nonverbal) Belts, Harnesses, and other Restraining Devices--see

  9. Unit Planning Grids for Visual Arts--Grade 9-12 Advanced.

    ERIC Educational Resources Information Center

    Delaware State Dept. of Education, Dover.

    This planning grid for teaching visual arts (advanced) in grades 9-12 in Delaware outlines the following six standards for students to complete: (1) students will select and use form, media, techniques, and processes to create works of art and communicate meaning; (2) students will create ways to use visual, spatial, and temporal concepts in…

  10. Value Production in a Collaborative Environment. Sociophysical Studies of Wikipedia

    NASA Astrophysics Data System (ADS)

    Yasseri, Taha; Kertész, János

    2013-05-01

    We review some recent endeavors and add some new results to characterize and understand underlying mechanisms in Wikipedia (WP), the paradigmatic example of collaborative value production. We analyzed the statistics of editorial activity in different languages and observed typical circadian and weekly patterns, which enabled us to estimate the geographical origins of contributions to WPs in languages spoken in several time zones. Using a recently introduced measure we showed that the editorial activities have intrinsic dependencies in the burstiness of events. A comparison of the English and Simple English WPs revealed important aspects of language complexity and showed how peer cooperation solved the task of enhancing readability. One of our focus issues was characterizing the conflicts or edit wars in WPs, which helped us to automatically filter out controversial pages. When studying the temporal evolution of the controversiality of such pages we identified typical patterns and classified conflicts accordingly. Our quantitative analysis provides the basis of modeling conflicts and their resolution in collaborative environments and contribute to the understanding of this issue, which becomes increasingly important with the development of information communication technology.

  11. Minerva: An Integrated Geospatial/Temporal Toolset for Real-time Science Decision Making and Data Collection

    NASA Astrophysics Data System (ADS)

    Lees, D. S.; Cohen, T.; Deans, M. C.; Lim, D. S. S.; Marquez, J.; Heldmann, J. L.; Hoffman, J.; Norheim, J.; Vadhavk, N.

    2016-12-01

    Minerva integrates three capabilities that are critical to the success of NASA analogs. It combines NASA's Exploration Ground Data Systems (xGDS) and Playbook software, and MIT's Surface Exploration Traverse Analysis and Navigation Tool (SEXTANT). Together, they help to plan, optimize, and monitor traverses; schedule and track activity; assist with science decision-making and document sample and data collection. Pre-mission, Minerva supports planning with a priori map data (e.g., UAV and satellite imagery) and activity scheduling. During missions, xGDS records and broadcasts live data to a distributed team who take geolocated notes and catalogue samples. Playbook provides live schedule updates and multi-media chat. Post-mission, xGDS supports data search and visualization for replanning and analysis. NASA's BASALT (Biologic Analog Science Associated with Lava Terrains) and FINESSE (Field Investigations to Enable Solar System Science and Exploration) projects use Minerva to conduct field science under simulated Mars mission conditions including 5 and 15 minute one-way communication delays. During the recent BASALT-FINESSE mission, two field scientists (EVA team) executed traverses across volcanic terrain to characterize and sample basalts. They wore backpacks with communications and imaging capabilities, and carried field portable spectrometers. The Science Team was 40 km away in a simulated mission control center. The Science Team monitored imaging (video and still), spectral, voice, location and physiological data from the EVA team via the network from the field, under communication delays. Minerva provided the Science Team with a unified context of operations at the field site, so they could make meaningful remote contributions to the collection of 10's of geotagged samples. Minerva's mission architecture will be presented with technical details and capabilities. Through the development, testing and application of Minerva, we are defining requirements for the design of future capabilities to support human and human-robotic missions to deep space and Mars.

  12. Vocalization frequency and duration are coded in separate hindbrain nuclei.

    PubMed

    Chagnaud, Boris P; Baker, Robert; Bass, Andrew H

    2011-06-14

    Temporal patterning is an essential feature of neural networks producing precisely timed behaviours such as vocalizations that are widely used in vertebrate social communication. Here we show that intrinsic and network properties of separate hindbrain neuronal populations encode the natural call attributes of frequency and duration in vocal fish. Intracellular structure/function analyses indicate that call duration is encoded by a sustained membrane depolarization in vocal prepacemaker neurons that innervate downstream pacemaker neurons. Pacemaker neurons, in turn, encode call frequency by rhythmic, ultrafast oscillations in their membrane potential. Pharmacological manipulations show prepacemaker activity to be independent of pacemaker function, thus accounting for natural variation in duration which is the predominant feature distinguishing call types. Prepacemaker neurons also innervate key hindbrain auditory nuclei thereby effectively serving as a call-duration corollary discharge. We propose that premotor compartmentalization of neurons coding distinct acoustic attributes is a fundamental trait of hindbrain vocal pattern generators among vertebrates.

  13. Vocalization frequency and duration are coded in separate hindbrain nuclei

    PubMed Central

    Chagnaud, Boris P.; Baker, Robert; Bass, Andrew H.

    2011-01-01

    Temporal patterning is an essential feature of neural networks producing precisely timed behaviours such as vocalizations that are widely used in vertebrate social communication. Here we show that intrinsic and network properties of separate hindbrain neuronal populations encode the natural call attributes of frequency and duration in vocal fish. Intracellular structure/function analyses indicate that call duration is encoded by a sustained membrane depolarization in vocal prepacemaker neurons that innervate downstream pacemaker neurons. Pacemaker neurons, in turn, encode call frequency by rhythmic, ultrafast oscillations in their membrane potential. Pharmacological manipulations show prepacemaker activity to be independent of pacemaker function, thus accounting for natural variation in duration which is the predominant feature distinguishing call types. Prepacemaker neurons also innervate key hindbrain auditory nuclei thereby effectively serving as a call-duration corollary discharge. We propose that premotor compartmentalization of neurons coding distinct acoustic attributes is a fundamental trait of hindbrain vocal pattern generators among vertebrates. PMID:21673667

  14. Envisioning, quantifying, and managing thermal regimes on river networks

    USGS Publications Warehouse

    Steel, E. Ashley; Beechie, Timothy J.; Torgersen, Christian E.; Fullerton, Aimee H.

    2017-01-01

    Water temperatures fluctuate in time and space, creating diverse thermal regimes on river networks. Temporal variability in these thermal landscapes has important biological and ecological consequences because of nonlinearities in physiological reactions; spatial diversity in thermal landscapes provides aquatic organisms with options to maximize growth and survival. However, human activities and climate change threaten to alter the dynamics of riverine thermal regimes. New data and tools can identify particular facets of the thermal landscape that describe ecological and management concerns and that are linked to human actions. The emerging complexity of thermal landscapes demands innovations in communication, opens the door to exciting research opportunities on the human impacts to and biological consequences of thermal variability, suggests improvements in monitoring programs to better capture empirical patterns, provides a framework for suites of actions to restore and protect the natural processes that drive thermal complexity, and indicates opportunities for better managing thermal landscapes.

  15. A Targeted Attack For Enhancing Resiliency of Intelligent Intrusion Detection Modules in Energy Cyber Physical Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youssef, Tarek; El Hariri, Mohammad; Habib, Hani

    Abstract— Secure high-speed communication is required to ensure proper operation of complex power grid systems and prevent malicious tampering activities. In this paper, artificial neural networks with temporal dependency are introduced for false data identification and mitigation for broadcasted IEC 61850 SMV messages. The fast responses of such intelligent modules in intrusion detection make them suitable for time- critical applications, such as protection. However, care must be taken in selecting the appropriate intelligence model and decision criteria. As such, this paper presents a customizable malware script to sniff and manipulate SMV messages and demonstrates the ability of the malware tomore » trigger false positives in the neural network’s response. The malware developed is intended to be as a vaccine to harden the intrusion detection system against data manipulation attacks by enhancing the neural network’s ability to learn and adapt to these attacks.« less

  16. Sex differences in the representation of call stimuli in a songbird secondary auditory area

    PubMed Central

    Giret, Nicolas; Menardy, Fabien; Del Negro, Catherine

    2015-01-01

    Understanding how communication sounds are encoded in the central auditory system is critical to deciphering the neural bases of acoustic communication. Songbirds use learned or unlearned vocalizations in a variety of social interactions. They have telencephalic auditory areas specialized for processing natural sounds and considered as playing a critical role in the discrimination of behaviorally relevant vocal sounds. The zebra finch, a highly social songbird species, forms lifelong pair bonds. Only male zebra finches sing. However, both sexes produce the distance call when placed in visual isolation. This call is sexually dimorphic, is learned only in males and provides support for individual recognition in both sexes. Here, we assessed whether auditory processing of distance calls differs between paired males and females by recording spiking activity in a secondary auditory area, the caudolateral mesopallium (CLM), while presenting the distance calls of a variety of individuals, including the bird itself, the mate, familiar and unfamiliar males and females. In males, the CLM is potentially involved in auditory feedback processing important for vocal learning. Based on both the analyses of spike rates and temporal aspects of discharges, our results clearly indicate that call-evoked responses of CLM neurons are sexually dimorphic, being stronger, lasting longer, and conveying more information about calls in males than in females. In addition, how auditory responses vary among call types differ between sexes. In females, response strength differs between familiar male and female calls. In males, temporal features of responses reveal a sensitivity to the bird's own call. These findings provide evidence that sexual dimorphism occurs in higher-order processing areas within the auditory system. They suggest a sexual dimorphism in the function of the CLM, contributing to transmit information about the self-generated calls in males and to storage of information about the bird's auditory experience in females. PMID:26578918

  17. Sex differences in the representation of call stimuli in a songbird secondary auditory area.

    PubMed

    Giret, Nicolas; Menardy, Fabien; Del Negro, Catherine

    2015-01-01

    Understanding how communication sounds are encoded in the central auditory system is critical to deciphering the neural bases of acoustic communication. Songbirds use learned or unlearned vocalizations in a variety of social interactions. They have telencephalic auditory areas specialized for processing natural sounds and considered as playing a critical role in the discrimination of behaviorally relevant vocal sounds. The zebra finch, a highly social songbird species, forms lifelong pair bonds. Only male zebra finches sing. However, both sexes produce the distance call when placed in visual isolation. This call is sexually dimorphic, is learned only in males and provides support for individual recognition in both sexes. Here, we assessed whether auditory processing of distance calls differs between paired males and females by recording spiking activity in a secondary auditory area, the caudolateral mesopallium (CLM), while presenting the distance calls of a variety of individuals, including the bird itself, the mate, familiar and unfamiliar males and females. In males, the CLM is potentially involved in auditory feedback processing important for vocal learning. Based on both the analyses of spike rates and temporal aspects of discharges, our results clearly indicate that call-evoked responses of CLM neurons are sexually dimorphic, being stronger, lasting longer, and conveying more information about calls in males than in females. In addition, how auditory responses vary among call types differ between sexes. In females, response strength differs between familiar male and female calls. In males, temporal features of responses reveal a sensitivity to the bird's own call. These findings provide evidence that sexual dimorphism occurs in higher-order processing areas within the auditory system. They suggest a sexual dimorphism in the function of the CLM, contributing to transmit information about the self-generated calls in males and to storage of information about the bird's auditory experience in females.

  18. EmailTime: visual analytics and statistics for temporal email

    NASA Astrophysics Data System (ADS)

    Erfani Joorabchi, Minoo; Yim, Ji-Dong; Shaw, Christopher D.

    2011-01-01

    Although the discovery and analysis of communication patterns in large and complex email datasets are difficult tasks, they can be a valuable source of information. We present EmailTime, a visual analysis tool of email correspondence patterns over the course of time that interactively portrays personal and interpersonal networks using the correspondence in the email dataset. Our approach is to put time as a primary variable of interest, and plot emails along a time line. EmailTime helps email dataset explorers interpret archived messages by providing zooming, panning, filtering and highlighting etc. To support analysis, it also measures and visualizes histograms, graph centrality and frequency on the communication graph that can be induced from the email collection. This paper describes EmailTime's capabilities, along with a large case study with Enron email dataset to explore the behaviors of email users within different organizational positions from January 2000 to December 2001. We defined email behavior as the email activity level of people regarding a series of measured metrics e.g. sent and received emails, numbers of email addresses, etc. These metrics were calculated through EmailTime. Results showed specific patterns in the use email within different organizational positions. We suggest that integrating both statistics and visualizations in order to display information about the email datasets may simplify its evaluation.

  19. Social amplification of risk in the Internet environment.

    PubMed

    Chung, Ik Jae

    2011-12-01

    This article analyzes the dynamic process of risk amplification in the Internet environment with special emphasis on public concern for environmental risks from a high-speed railway tunnel construction project in South Korea. Environmental organizations and activists serving as social stations collected information about the project and its ecological impact, and communicated this with the general public, social groups, and institutions. The Internet provides social stations and the public with an efficient means for interactive communication and an open space for active information sharing and public participation. For example, while the website of an organization such as an environmental activist group can initially trigger local interest, the Internet allows this information to be disseminated to a much wider audience in a manner unavailable to the traditional media. Interaction among social stations demonstrates an amplifying process of public attention to the risk. Analyses of the volume of readers' comments to online newspaper articles and public opinions posted on message board of public and nonprofit organizations show the ripple effects of the amplification process as measured along temporal, geographical, and sectoral dimensions. Public attention is also influenced by the symbolic connotations of risk information. Interpretations of risk in religious, political, or legal terms intensify public concern for the environmental risk. © 2011 Society for Risk Analysis.

  20. Single cell RNA Seq reveals dynamic paracrine control of cellular variation

    PubMed Central

    Shalek, Alex K.; Satija, Rahul; Shuga, Joe; Trombetta, John J.; Gennert, Dave; Lu, Diana; Chen, Peilin; Gertner, Rona S.; Gaublomme, Jellert T.; Yosef, Nir; Schwartz, Schraga; Fowler, Brian; Weaver, Suzanne; Wang, Jing; Wang, Xiaohui; Ding, Ruihua; Raychowdhury, Raktima; Friedman, Nir; Hacohen, Nir; Park, Hongkun; May, Andrew P.; Regev, Aviv

    2014-01-01

    High-throughput single-cell transcriptomics offers an unbiased approach for understanding the extent, basis, and function of gene expression variation between seemingly identical cells. Here, we sequence single-cell RNA-Seq libraries prepared from over 1,700 primary mouse bone marrow derived dendritic cells (DCs) spanning several experimental conditions. We find substantial variation between identically stimulated DCs, in both the fraction of cells detectably expressing a given mRNA and the transcript’s level within expressing cells. Distinct gene modules are characterized by different temporal heterogeneity profiles. In particular, a “core” module of antiviral genes is expressed very early by a few “precocious” cells, but is later activated in all cells. By stimulating cells individually in sealed microfluidic chambers, analyzing DCs from knockout mice, and modulating secretion and extracellular signaling, we show that this response is coordinated via interferon-mediated paracrine signaling. Surprisingly, preventing cell-to-cell communication also substantially reduces variability in the expression of an early-induced “peaked” inflammatory module, suggesting that paracrine signaling additionally represses part of the inflammatory program. Our study highlights the importance of cell-to-cell communication in controlling cellular heterogeneity and reveals general strategies that multicellular populations use to establish complex dynamic responses. PMID:24919153

Top