Sample records for communication platform payload

  1. Communication Platform Payload Definition (CPPD) study. Volume 2: Technical report

    NASA Technical Reports Server (NTRS)

    Hunter, E. M.; Driggers, T.; Jorasch, R.

    1986-01-01

    This is Volume 2 (Technical Report) of the Ford Aerospace & Communications Corporation Final Report for the Communication Platform Payload Definition (CPPD) Study program conducted for NASA Lewis Research Center under contract No. NAS3-24235. This report presents the results of the study effort leading to five potential platform payloads to service CONUS and WARC Region 2 traffic demand as projected to the year 2008. The report addresses establishing the data bases, developing service aggregation scenarios, selecting and developing 5 payload concepts, performing detailed definition of the 5 payloads, costing them, identifying critical technology, and finally comparing the payloads with each other and also with non-aggregated equivalent services.

  2. Communication Platform Payload Definition (CPPD) study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Hunter, E. M.

    1986-01-01

    This is Volume 1 (Executive Summary) of the Ford Aerospace & Communications Corporation Final Report for the Communication Platform Payload Definition (CPPD) Study program conducted for NASA Lewis Research Center under contract No. NAS3-24235. This report presents the results of the study effort leading to five potential platform payloads to service CONUS and WARC Region 2 traffic demand as projected to the year 2008. The report addresses establishing the data bases, developing service aggregation scenarios, selecting and developing 5 payload concepts, performing detailed definition of the 5 payloads, costing them, identifying critical technology, and finally comparing the payloads with each other and also with non-aggregated equivalent services.

  3. Communication Platform Payload Definition (CPPD) study. Volume 3: Addendum

    NASA Technical Reports Server (NTRS)

    Hunter, E. M.; Driggers, T.; Jorasch, R.

    1986-01-01

    This is Volume 3 (Addendum) of the Ford Aerospace & Communications Corporation Final Report for the Communication Platform Payload Definition (CPPD) Study Program conducted for NASA Lewis Research Center under contract No. NAS3-24235. This report presents the results of the study effort leading to five potential platform payloads to service CONUS and WARC Region 2 traffic demand as projected to the year 2008. The report addresses establishing the data bases, developing service aggregation scenarios, selecting and developing 5 payload concepts, performing detailed definition of the 5 payloads, costing them, identifying critical technology, and finally comparing the payloads with each other and also with non-aggregated equivalent services.

  4. Communications platform payload definition study, executive summary

    NASA Technical Reports Server (NTRS)

    Clopp, H. W.; Hawkes, T. A.; Bertles, C. R.; Pontano, B. A.; Kao, T.

    1986-01-01

    Large geostationary communications platforms have been investigated in a number of studies since 1974 as a possible means to more effectively utilize the geostationary orbital arc and electromagnetic spectrum and to reduce overall satellite communications system costs. This NASA Lewis sponsored study addresses the commercial feasibility of various communications platform payload concepts circa 1998. It defines promising payload concepts, estimates recurring costs and identifies critical technologies needed to permit eventual commercialization. Ten communications service aggregation scenarios describing potential groupings of services were developed for a range of conditions. Payload concepts were defined for four of these scenarios: (1) Land Mobile Satellite Service (LMSS), meet 100% of CONUS plus Canada demand with a single platform; (2) Fixed Satellite Service (FSS) (Trunking + Customer Premises Service (CPS), meet 20% of CONUS demands; (3) FSS (Trunking + video distribution), 10 to 13% of CONUS demand; and (4) FSS (20% of demand) + Inter Satellite Links (ISL) + TDRSS/TDAS Data Distribution.

  5. Geostationary Platforms Mission and Payload Requirements study. Volume 2: Technical

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The possibility of using geostationary platforms to provide communications and other services was examined. Detailed data on the payload and housekeeping requirements of selected communications missions and one typical noncommunications mission are presented.

  6. Communications platform payload definition study

    NASA Technical Reports Server (NTRS)

    Clopp, H. W.; Hawkes, T. A.; Bertles, C. R.; Pontano, B. A.; Kao, T.

    1986-01-01

    Large geostationary communications platforms were investigated in a number of studies since 1974 as a possible means to more effectively utilize the geostationary arc and electromagnetic spectrum and to reduce overall satellite communications system costs. The commercial feasibility of various communications platform payload concepts circa 1998 was addressed. Promising payload concepts were defined, recurring costs were estimated, and critical technologies needed to enable eventual commercialization were identified. Ten communications service aggregation scenarios describing potential groupings of service were developed for a range of conditions. Payload concepts were defined for four of these scenarios: (1) Land Mobile Satellite Service (LMSS) meets 100% of Contiguous United States (CONUS) plus Canada demand with a single platform; (2) Fixed Satellite Service (FSS) (trunking + Customer Premises Service (CPS)), meet 20% of CONUS demand;(3) FSS (trunking + CPS + video distribution), 10 to 13% of CONUS demand; and (4) FSS (20% of demand) + Inter Satellite Links (ISL) + Tracking and Data Relay Satellite System (TDRSS)/Tracking and Data Acquisition System (TDAS) Data Distribution.

  7. Geostationary platform systems concepts definition study. Volume 2A: Appendixes, book 1

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Appendixes addressing various aspects of a geostationary platform concepts definition study are given. Communication platform traffic requirements, video conferencing forecast, intersatellite link capacity requirements, link budgets, payload data, payload assignments, and platform synthesis are addressed.

  8. A Study of Covert Communications in Space Platforms Hosting Government Payloads

    DTIC Science & Technology

    2015-02-01

    possible adversarial actions (e.g., malicious software co- resident on the commercial host). Threats to the commercial supply chain are just one... supply chain to either create or exploit channel vulnerabilities. For government hosted payload missions, the critical payload data are encrypted...access to space by hosting government- supplied payloads on commercial space platforms. These commercially hosted payloads require stringent

  9. Geostationary platform systems concepts definition study. Volume 2: Technical, book 1

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The initial selection and definition of operational geostationary platform concepts is discussed. Candidate geostationary platform missions and payloads were identified from COMSAT, Aerospace, and NASA studies. These missions and payloads were cataloged; classified with to communications, military, or scientific uses; screened for application and compatibility with geostationary platforms; and analyzed to identify platform requirements. Two platform locations were then selected (Western Hemisphere - 110 deg W, and Atlantic - 15 deg W), and payloads allocated based on nominal and high traffic models. Trade studies were performed leading to recommendation of selected concepts. Of 30 Orbit Transfer Vehicle (0TV) configuration and operating mode options identified, 18 viable candidates compatible with the operational geostationary platform missions were selected for analysis. Each was considered using four platform operational modes - 8 or 16 year life, and serviced or nonserviced, providing a total of 72 OTV/platform-mode options. For final trade study concept selection, a cost program was developed considering payload and platform costs and weight; transportation unit and total costs for the shuttle and OTV; and operational costs such as assembly or construction time, mating time, and loiter time. Servicing costs were added for final analysis and recommended selection.

  10. The large satellite program of ESA and its relevance for broadcast missions

    NASA Astrophysics Data System (ADS)

    Fromm, H.-H.; Herdan, B. L.

    1981-03-01

    In an investigation of the market prospects and payload requirements of future communications satellites, it was concluded that during the next 15 years many space missions will demand larger satellite platforms than those currently available. These platforms will be needed in connection with direct-broadcasting satellites, satellites required to enhance capacities in the case of traditional services, and satellites employed to introduce new types of satellite-based communications operating with small terminals. Most of the larger satellites would require the Ariane III capability, corresponding to about 1400 kg satellite mass in geostationary orbit. Attention is given to L-SAT platform capabilities and broadcast payload requirements, taking into account a European direct-broadcast satellite and Canadian direct-broadcast missions.

  11. Cost-Effectiveness Analysis of Aerial Platforms and Suitable Communication Payloads

    DTIC Science & Technology

    2014-03-01

    High altitude long endurance (HALE) platforms for tactical wireless communications and sensor use in military operations. (Master’s thesis, Naval...the ground, which can offer near limitless endurance. Additionally, running data over wired networks reduces wireless congestion. The most...system that utilizes different wind speeds and wind directions at different altitudes in an attempt to position the balloons for optimal communications

  12. Office of Aeronautics and Space Technology preliminary requirements for space science and applications platform studies

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Needs and requirements for a free flying space science and applications platform to host groupings of compatible, extended mission experiments in earth orbit are discussed. A payload model which serves to define a typical set of mission requirements in the form of a descriptive data base is presented along with experiment leval and group level data summarizations and flight schedules. The payload descriptions are grouped by technology into the following categories: communications, materials (long term effect upon), materials technology development, power, sensors, and thermal control.

  13. SCOC3: A Brand New Heart for Space Mission

    NASA Astrophysics Data System (ADS)

    Poupat, Jean-Luc; Lefevre, Aurelien

    2012-08-01

    Satellites are controlled via a platform On Board Computer (OBC) that manages different parameters (attitude, orbit, modes, temperatures ...) with respect to its payload mission (telecommunication, earth observation, scientific mission). The platform OBC is connected to the satellite and the ground control via digital links, and executes on board software.The main functions of a platform OBC are to provide the satellite flight segment with the following features: o Processing resources for the flight mission softwareo TM/TC services and interfaces with the RF communication chaino General communication services with the Avionics and payload equipments through on- board communication buso Time synchronization and distributiono Failure tolerant architecture based on the use of redounded reconfiguration units and redundancy implementationIn order to reach an ultimate level of integration, Astrium has designed an ASIC gathering on a single chip all these required digital functions: the SCOC3 ASIC.This paper presents in a first part the major innovations introduced by Astrium for SCOC3, in a second part the development tools associated to SCOC3, and in a third part the status concerning its commercialization.

  14. Design summary of a geostationary facility utilized as a communications platform

    NASA Technical Reports Server (NTRS)

    Barberis, N. J.; Brown, J. V.

    1986-01-01

    This paper describes the technical aspects of a geostationary platform facility that makes maximum use of the planned NASA space station and its elements, mainly the orbital maneuvering vehicle (OMV) and the orbital transfer vehicles (OTV). The platform design concept is described, with emphasis on the key technologies utilized to configure the platform. Key systems aspects include a design summary with discussion of the controls, telemetry, command and ranging, power, propulsion, control electronics, thermal control subsystems, and space station interfaces. The use of the facility as a communications platform is developed to demonstrate the attractiveness of the concept. The economic benefits are discussed, as well as the concept of servicing for payload upgrade.

  15. Development of Test Article Building Block (TABB) for deployable platform systems

    NASA Technical Reports Server (NTRS)

    Greenberg, H. S.; Barbour, R. T.

    1984-01-01

    The concept of a Test Article Building Block (TABB) is described. The TABB is a ground test article that is representative of a future building block that can be used to construct LEO and GEO deployable space platforms for communications and scientific payloads. This building block contains a main housing within which the entire structure, utilities, and deployment/retraction mechanism are stowed during launch. The end adapter secures the foregoing components to the housing during launch. The main housing and adapter provide the necessary building-block-to-building-block attachments for automatically deployable platforms. Removal from the shuttle cargo bay can be accomplished with the remote manipulator system (RMS) and/or the handling and positioning aid (HAPA). In this concept, all the electrical connections are in place prior to launch with automatic latches for payload attachment provided on either the end adapters or housings. The housings also can contain orbiter docking ports for payload installation and maintenance.

  16. Communication architecture for large geostationary platforms

    NASA Technical Reports Server (NTRS)

    Bond, F. E.

    1979-01-01

    Large platforms have been proposed for supporting multipurpose communication payloads to exploit economy of scale, reduce congestion in the geostationary orbit, provide interconnectivity between diverse earth stations, and obtain significant frequency reuse with large multibeam antennas. This paper addresses a specific system design, starting with traffic projections in the next two decades and discussing tradeoffs and design approaches for major components including: antennas, transponders, and switches. Other issues explored are selection of frequency bands, modulation, multiple access, switching methods, and techniques for servicing areas with nonuniform traffic demands. Three-major services are considered: a high-volume trunking system, a direct-to-user system, and a broadcast system for video distribution and similar functions. Estimates of payload weight and d.c. power requirements are presented. Other subjects treated are: considerations of equipment layout for servicing by an orbit transfer vehicle, mechanical stability requirements for the large antennas, and reliability aspects of the large number of transponders employed.

  17. Small Satellites for Secondary Students

    NASA Astrophysics Data System (ADS)

    Zack, Kevin; Cominsky, Lynn

    2012-11-01

    Small Satellites for Secondary Students is a program funded by a three-year grant from NASA to bridge the gap in STEM education for secondary-school students. This is accomplished by creating the educational resources that are needed to support the development of a small scientific payload in alignment with scientific and technological education standards. The prototype payloads are flexible multi-experiment platforms designed to accommodate a wide range of student abilities with minimal resource requirements. The heart of each payload is an Arduino microcontroller which communicates with components that provide sensor data, Global Positioning System information, and which offer on-board data storage. The payload is built with off-the-shelf components and a pre-etched, custom-designed connector board. The platform also supports real-time telemetry updates through the use of Wi-Fi. To date, the prototype payloads have been tested on both high-powered rockets reaching over 3km and weather balloons tethered at 300m. Multiple successful rocket test runs reaching 1km have been conducted in partnership with amateur rocket clubs including the Association of Experimental Rocketry of the Pacific. From these flights, we are continuing to improve the payload design in order to increase the likelihood of student success.

  18. An optical approach to proximity-operations communications for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Marshalek, Robert G.

    1991-01-01

    An optical communications system is described that supports bi-directional interconnections between Space Station Freedom (SSF) and a host of attached and co-orbiting platforms. These proximity-operations (Prox-Ops) platforms are categorized by their maximum distance from SSF, with several remaining inside 1-km range and several extending out to 37-km and 2000-km ranges in the initial and growth phases, respectively. Two distinct Prox-Ops optical terminals are described. A 1-cm-aperture system is used on the short-range platforms to reduce payload mass, and a 10-cm-aperture system is used on the long-range platforms and on SSF to support the optical link budgets. The system supports up to four simultaneous user links, by assigning wavelengths to the various platforms and by using separate SSF terminals for each link.

  19. Modular Countermine Payload for Small Robots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herman Herman; Doug Few; Roelof Versteeg

    2010-04-01

    Payloads for small robotic platforms have historically been designed and implemented as platform and task specific solutions. A consequence of this approach is that payloads cannot be deployed on different robotic platforms without substantial re-engineering efforts. To address this issue, we developed a modular countermine payload that is designed from the ground-up to be platform agnostic. The payload consists of the multi-mission payload controller unit (PCU) coupled with the configurable mission specific threat detection, navigation and marking payloads. The multi-mission PCU has all the common electronics to control and interface to all the payloads. It also contains the embedded processormore » that can be used to run the navigational and control software. The PCU has a very flexible robot interface which can be configured to interface to various robot platforms. The threat detection payload consists of a two axis sweeping arm and the detector. The navigation payload consists of several perception sensors that are used for terrain mapping, obstacle detection and navigation. Finally, the marking payload consists of a dual-color paint marking system. Through the multi-mission PCU, all these payloads are packaged in a platform agnostic way to allow deployment on multiple robotic platforms, including Talon and Packbot.« less

  20. Modular countermine payload for small robots

    NASA Astrophysics Data System (ADS)

    Herman, Herman; Few, Doug; Versteeg, Roelof; Valois, Jean-Sebastien; McMahill, Jeff; Licitra, Michael; Henciak, Edward

    2010-04-01

    Payloads for small robotic platforms have historically been designed and implemented as platform and task specific solutions. A consequence of this approach is that payloads cannot be deployed on different robotic platforms without substantial re-engineering efforts. To address this issue, we developed a modular countermine payload that is designed from the ground-up to be platform agnostic. The payload consists of the multi-mission payload controller unit (PCU) coupled with the configurable mission specific threat detection, navigation and marking payloads. The multi-mission PCU has all the common electronics to control and interface to all the payloads. It also contains the embedded processor that can be used to run the navigational and control software. The PCU has a very flexible robot interface which can be configured to interface to various robot platforms. The threat detection payload consists of a two axis sweeping arm and the detector. The navigation payload consists of several perception sensors that are used for terrain mapping, obstacle detection and navigation. Finally, the marking payload consists of a dual-color paint marking system. Through the multimission PCU, all these payloads are packaged in a platform agnostic way to allow deployment on multiple robotic platforms, including Talon and Packbot.

  1. Geostationary platform systems concepts definition study. Volume 2: Technical, book 2

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A selected concept for a geostationary platform is defined in sufficient detail to identify requirements for supporting research and technology, space demonstrations, GFE interfaces, costs, and schedules. This system consists of six platforms in geostationary orbit (GEO) over the Western Hemisphere and six over the Atlantic, to satisfy the total payload set associated with the nominal traffic model. Each platform is delivered to low Earth orbit (LEO) in a single shuttle flight, already mated to its LEO to GEO transfer vehicle and ready for deployment and transfer to GEO. An alternative concept is looked at briefly for comparison of configuration and technology requirements. This alternative consists of two large platforms, one over the Western Hemisphere consisting of three docked modules, and one over the Atlantic (two docked modules), to satisfy a high traffic model. The modules are full length orbiter cargo bay payloads, mated at LEO to orbital transfer vehicles (OTVs) delivered in other shuttle flights, for transfer to GEO, rendezvous, and docking. A preliminary feasibility study of an experimental platform is also performed to demonstrate communications and platform technologies required for the operational platforms of the 1990s.

  2. Stratospheric Balloon Platforms for Near Space Access

    NASA Astrophysics Data System (ADS)

    Dewey, R. G.

    2012-12-01

    For over five decades, high altitude aerospace balloon platforms have provided a unique vantage point for space and geophysical research by exposing scientific instrument packages and experiments to space-like conditions above 99% of Earth's atmosphere. Reaching altitudes in excess of 30 km for durations ranging from hours to weeks, high altitude balloons offer longer flight durations than both traditional sounding rockets and emerging suborbital reusable launch vehicles. For instruments and experiments requiring access to high altitudes, engineered balloon systems provide a timely, responsive, flexible, and cost-effective vehicle for reaching near space conditions. Moreover, high altitude balloon platforms serve as an early means of testing and validating hardware bound for suborbital or orbital space without imposing space vehicle qualifications and certification requirements on hardware in development. From float altitudes above 30 km visible obscuration of the sky is greatly reduced and telescopes and other sensors function in an orbit-like environment, but in 1g. Down-facing sensors can take long-exposure atmospheric measurements and images of Earth's surface from oblique and nadir perspectives. Payload support subsystems such as telemetry equipment and command, control, and communication (C3) interfaces can also be tested and operationally verified in this space-analog environment. For scientific payloads requiring over-flight of specific areas of interests, such as an active volcano or forest region, advanced mission planning software allows flight trajectories to be accurately modeled. Using both line-of-sight and satellite-based communication systems, payloads can be tracked and controlled throughout the entire mission duration. Under NASA's Flight Opportunities Program, NSC can provide a range of high altitude flight options to support space and geophysical research: High Altitude Shuttle System (HASS) - A balloon-borne semi-autonomous glider carries payloads to high altitude and returns them safely to pre-selected landing sites, supporting quick recovery, refurbishment, and re-flight. Small Balloon System (SBS) - Controls payload interfaces via a standardized avionics system. Using a parachute for recovery, the SBS is well suited for small satellite and spacecraft subsystem developers wanting to raise their Technology Readiness Level (TRL) in an operationally relevant environment. Provides flexibility for scientific payloads requiring externally mounted equipment, such as telescopes and antennas. Nano Balloon System (NBS) - For smaller payloads (~CubeSats) with minimal C3 requirements, the Nano Balloon System (NBS) operates under less restrictive flight regulations with increased operational flexibility. The NBS is well suited for payload providers seeking a quick, simple, and cost effective solution for operating small ~passive payloads in near space. High altitude balloon systems offer the payload provider and experimenter a unique and flexible platform for geophysical and space research. Though new launch vehicles continue to expand access to suborbital and orbital space, recent improvements in high altitude balloon technology and operations provide a cost effective alternative to access space-like conditions.

  3. The 20-20-20 Airships NASA Centennial Challenge

    NASA Astrophysics Data System (ADS)

    Kiessling, Alina; Diaz, Ernesto; Rhodes, Jason; Ortega, Sam; Eberly, Eric

    2015-08-01

    A 2013 Keck Institute for Space Studies (KISS) study examined airships as a possible platform for Earth and space science. Airships, lighter than air, powered, maneuverable vehicles, could offer significant gains in observing time, sky and ground coverage, data downlink capability, and continuity of observations over existing suborbital options at competitive prices. The KISS study recommended three courses of action to spur the development and use of airships as a science platform. One of those recommendations was that a prize competition be developed to demonstrate a stratospheric airship. Consequently, we have been developing a NASA Centennial Challenge; (www.nasa.gov/challenges) to spur innovation in stratospheric airships as a science platform. We anticipate a multi-million dollar class prize for the first organization to fly a powered airship that remains stationary at 20km (65,000 ft) altitude for over 20 hours with a 20kg payload. The design must be scalable to longer flights with more massive payloads. A second prize tier, for a 20km flight lasting 200 hours with a 200kg payload would incentivize a further step toward a scientifically compelling and viable new platform. This technology would also have broad commercial applications including communications, asset tracking, and surveillance. Via the 20-20-20 Centennial Challenge, we are seeking to spur private industry (or non-profit institutions, including Universities) to demonstrate the capability for sustained airship flights as astronomy and Earth science platforms.

  4. Optical and Electrical Sensor Busses for the Heinrich Hertz Satellite

    NASA Astrophysics Data System (ADS)

    Heyer, Heinz-Voker; Zeh, Thomas; Reutlinger, Arnd; Kammer, Susanne; Voigt, Siegfried

    2010-08-01

    Germany is planning the geostationary communication satellite Heinrich Hertz. The used platform will be the Small Geo platform of OHB. Phase A for this satellite has been performed successfully and two sensor busses in addition to the conventional harness have been selected for housekeeping measurement. *Sensor bus (wire related) *Optical bus (fiber related). The satellite will be launched in 2014. The payload will be a newly developed telecommunication equipment for in-orbit demonstration.

  5. Geostationary Platforms Mission and Payload Requirements Study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Time-phased missions and payloads for potential accommodation on geostationary platforms and the engineering requirements placed upon the platform housekeeping elements by selected payloads are identified. Optimum locations for geostationary platforms, potential missions and their characteristics, and potential user requirements were determined as well as the interface requirements between the missions and h the geostationary platform. A payload data book was prepared and antenna tradeoff studies were conducted. Payload missions are defined in terms of frequencies, power, beam patterns, interconnections, support requirements, and other characteristics.

  6. Space construction system analysis. Part 2: Platform definition

    NASA Technical Reports Server (NTRS)

    Hart, R. J.; Myers, H. L.; Abramson, R. D.; Dejong, P. N.; Donavan, R. D.; Greenberg, H. S.; Indrikis, J.; Jandrasi, J. S.; Manoff, M.; Mcbaine, C. K.

    1980-01-01

    The top level system requirements are summarized and the accompanying conceptual design for an engineering and technology verification platform (ETVP) system is presented. An encompassing statement of the system objectives which drive the system requirements is presented and the major mission and subsystem requirements are described with emphasis on the advanced communications technology mission payload. The platform design is defined and used as a reference configuration for an end to space construction analyses. The preferred construction methods and processes, the important interactions between the platform design and the construction system design and operation, and the technology development efforts required to support the design and space construction of the ETVP are outlined.

  7. Expedite the Processing of Unpressurized Payloads to the International Space Station Using the ExPRESS Pallet

    NASA Technical Reports Server (NTRS)

    Bacskay, Allen S.; Gilbert, Paul A. (Technical Monitor)

    2002-01-01

    The Expedite the PRocessing of Experiments to Space Station (ExPRESS) Pallet will be used as an experiment platform for external/unpressurized payloads to be flown aboard the International Space Station (ISS). The purpose of the ExPRESS Pallet is to provide an easy access to the ISS for Scientific Investigators that require an external platform for their experiment hardware. As the name of the ExPRESS Pallet implies, the objective of the ExPRESS program is to provide a simplified integration process in a short time period (24 months) for payloads to be flown on the ISS. The ExPRESS Pallet provides unique opportunities for research across many science disciplines, including earth observation, communications, solar and deep space viewing, and long-term exposure. The ExPRESS Pallet provides access to Ram, Wake, Nadir, Zenith and Earth Limb for viewing and exposure to the space environment. The ExPRESS Pallet will provide standard physical payload interfaces, and a standard integration template. The ExPS consists of the Pallet structure, payload Adapters, a subsystem assembly that includes data controller, power distribution and conversion, and Extra Vehicular Robotics compatibility. The ExPRESS Pallet provides the capability to changeout payloads on-orbit via the ExPRESS Pallet Adapter (ExPA). The following paragraphs will describe the Services and Accommodations available to the Payload developers by the ExPRESS Pallet and a brief description of the Integration process. More detailed information on the ExPRESS Pallet can be found in the ExPRESS Pallet Payload Accommodations Handbook, SSP 52000-PAH-EPP.

  8. Experience of Data Handling with IPPM Payload

    NASA Astrophysics Data System (ADS)

    Errico, Walter; Tosi, Pietro; Ilstad, Jorgen; Jameux, David; Viviani, Riccardo; Collantoni, Daniele

    2010-08-01

    A simplified On-Board Data Handling system has been developed by CAEN AURELIA SPACE and ABSTRAQT as PUS-over-SpaceWire demonstration platform for the Onboard Payload Data Processing laboratory at ESTEC. The system is composed of three Leon2-based IPPM (Integrated Payload Processing Module) computers that play the roles of Instrument, Payload Data Handling Unit and Satellite Management Unit. Two PCs complete the test set-up simulating an external Memory Management Unit and the Ground Control Unit. Communication among units take place primarily through SpaceWire links; RMAP[2] protocol is used for configuration and housekeeping. A limited implementation of ECSS-E-70-41B Packet Utilisation Standard (PUS)[1] over CANbus and MIL-STD-1553B has been also realized. The Open Source RTEMS is running on the IPPM AT697E CPU as real-time operating system.

  9. Vibration isolation versus vibration compensation on multiple payload platforms

    NASA Technical Reports Server (NTRS)

    Sirlin, S. W.

    1989-01-01

    There are many future science instruments with high performance pointing (sub microradian) requirements. To build a separate spacecraft for each payload is prohibitively expensive, especially as not all instruments need to be in space for a long duration. Putting multiple payloads on a single basebody that supplies power, communications, and orbit maintenance is cheaper, easier to service, and allows for the spacecraft bus to be reused as new instruments become available to replace old instruments. Once several payloads are mounted together, the articulation of one may disturb another. The situation is even more extreme when the basebody serves multiple purposes, such as space station which has construction, satellite servicing, and man motion adding to the disturbance environment. The challenge then is to maintain high performance at low cost in a multiple payload environment. The goal is to supply many future science instruments with high performance pointing (sub microradian). The options are independent spacecraft for each payload (expensive); or multiple payloads on a single basebody (cheaper, easier to service, basebody reusable for several short duration payloads). The problems are one payload can disturb another, and other activities create large disturbances (construction, satellite servicing, and man motion).

  10. Applications of a high-altitude powered platform /HAPP/

    NASA Technical Reports Server (NTRS)

    Kuhner, M. B.

    1979-01-01

    The high-altitude powered platform (HAPP) is a conceptual unmanned vehicle which could be either an airship or airplane. It would keep station at an altitude of 70,000 ft above a fixed point on the ground. A microwave power transmission system would beam energy from the ground up to the HAPP to power an electric motor-driven propeller and the payload. A study of the HAPP has shown that it could potentially be a cost-competitive platform for such remote sensing applications as forest fire detection, Great Lakes ice monitoring and Coast Guard law enforcement. It also has significant potential as a communications relay platform for (among other things) direct broadcast to home TVs over a large region.

  11. LOLA: The lunar operations landing assembly

    NASA Technical Reports Server (NTRS)

    Abreu, Mike; Argeles, Fernando; Stewart, Chris; Turner, Charles; Rivas, Gavino

    1992-01-01

    Because the President of the United States has begun the Space Exploration Initiative (SEI), which entails a manned mission to Mars by the year 2016, it is necessary to use the Moon as a stepping stone to this objective. In support of this mission, unmanned scientific exploration of the Moon will help re-establish man's presence there and will serve as a basis for possible lunar colonization, setting the stage for a manned Mars mission. The lunar landing platform must provide support to its payload in the form of power, communications, and thermal control. The design must be such that cost is held to a minimum, and so that a wide variety of payloads may be used with the lander. The objectives of this mission are (1) to further the SEI by returning to the moon with unmanned scientific experiments, (2) to demonstrate to the public that experimental payload missions are feasible, (3) to provide a common lunar lander platform so select scientific packages could be targeted to specific lunar locales, (4) to enable the lander to be built from off-the-shelf hardware, and (5) to provide first mission launch by 1996.

  12. Small Unmanned Aircraft Electromagnetic Interference (EMI) Initial Assessment

    NASA Technical Reports Server (NTRS)

    Jung, Jaewoo; Ippolito, Corey; Rogers, Christopher; Kerczewski, Robert; Downey, Alan; Matheou, Konstantin

    2018-01-01

    With many applications envisioned for small Unmanned Aircraft Systems (sUAS), and potentially millions of sUAS expected to be in operation in the future, the electromagnetic interference environment associated with the sUAS is of interest to understanding the potential performance impacts on the sUAS command and control communications link as well as the sUAS payload and payload links. As part of NASA's UAS Traffic Management (UTM) Project, flight experiments are planned to characterize the RF environment at altitudes up to 400 ft to better understand how UTM command and control links can be expected to perform. The flight experiments will use an RF channel sensing payload attached to an sUAS. In terms of the payload being capable of measuring relatively low level signals at altitude, electromagnetic interference (EMI) emanating from the sUAS vehicle itself could potentially complicate the measurement process. For this reason, NASA was interested in measuring the EMI performance of the sUAS planned for these flight experiments, a DJI model S1000. The S1000 was thus measured in a controlled EMI test chamber at the NASA Ames Research Center. The S1000 is a carbon fiber based platform with eight rotors. As such, the EMI test results represent potential performance of a number of similar sUAS types. sUAS platforms significantly different from the S1000 may also require EMI testing, and the method employed for NASA's S1000 EMI tests can be applied to other platforms. In this paper we describe the UTM project, the RF channel sensing payload, the EMI testing method and EMI test results for the S1000, and discuss the implications of these results.

  13. Small Unmanned Aircraft Electromagnetic Interference (EMI) Initial Assessment

    NASA Technical Reports Server (NTRS)

    Jung, Jaewoo; Ippolito, Corey; Rogers, Christopher; Kerczewski, Robert; Downey, Alan; Matheou, Konstantin

    2018-01-01

    With many applications envisioned for small Unmanned Aircraft Systems (sUAS), and potentially millions of sUAS expected to be in operation in the future, the electromagnetic interference environment associated with the sUAS is of interest to understanding the potential performance impacts on the sUAS command and control communications link as well as the sUAS payload and payload links. As part of NASAâ€"TM"s UAS Traffic Management (UTM) Project, flight experiments are planned to characterize the RF environment at altitudes up to 400 ft to better understand how UTM command and control links can be expected to perform. The flight experiments will use an RF channel sensing payload attached to an sUAS. In terms of the payload being capable of measuring relatively low level signals at altitude, electromagnetic interference (EMI) emanating from the sUAS vehicle itself could potentially complicate the measurement process. For this reason, NASA was interested in measuring the EMI performance of the sUAS planned for these flight experiments, a DJI model S1000. The S1000 was thus measured in a controlled EMI test chamber at the NASA Ames Research Center. The S1000 is a carbon fiber based platform with eight rotors. As such, the EMI test results represent potential performance of a number of similar sUAS types. sUAS platforms significantly different from the S1000 may also require EMI testing, and the method employed for NASAâ€"TM"s S1000 EMI tests can be applied to other platforms. In this paper we describe the UTM project, the RF channel sensing payload, the EMI testing method and EMI test results for the S1000, and discuss the implications of these results.

  14. Blue guardian: an open architecture for rapid ISR demonstration

    NASA Astrophysics Data System (ADS)

    Barrett, Donald A.; Borntrager, Luke A.; Green, David M.

    2016-05-01

    Throughout the Department of Defense (DoD), acquisition, platform integration, and life cycle costs for weapons systems have continued to rise. Although Open Architecture (OA) interface standards are one of the primary methods being used to reduce these costs, the Air Force Rapid Capabilities Office (AFRCO) has extended the OA concept and chartered the Open Mission System (OMS) initiative with industry to develop and demonstrate a consensus-based, non-proprietary, OA standard for integrating subsystems and services into airborne platforms. The new OMS standard provides the capability to decouple vendor-specific sensors, payloads, and service implementations from platform-specific architectures and is still in the early stages of maturation and demonstration. The Air Force Research Laboratory (AFRL) - Sensors Directorate has developed the Blue Guardian program to demonstrate advanced sensing technology utilizing open architectures in operationally relevant environments. Over the past year, Blue Guardian has developed a platform architecture using the Air Force's OMS reference architecture and conducted a ground and flight test program of multiple payload combinations. Systems tested included a vendor-unique variety of Full Motion Video (FMV) systems, a Wide Area Motion Imagery (WAMI) system, a multi-mode radar system, processing and database functions, multiple decompression algorithms, multiple communications systems, and a suite of software tools. Initial results of the Blue Guardian program show the promise of OA to DoD acquisitions, especially for Intelligence, Surveillance and Reconnaissance (ISR) payload applications. Specifically, the OMS reference architecture was extremely useful in reducing the cost and time required for integrating new systems.

  15. OSCAR: A Compact, Powerful and Versatile On Board Computer Based on LEON3 Core

    NASA Astrophysics Data System (ADS)

    Poupat, Jean-Luc; Lefevre, Aurelien; Koebel, Franck

    2011-08-01

    Satellites are controlled via a platform On Board Computer (OBC) that manages different parameters (attitude, orbit, modes, temperatures ...) with respect to its payload mission (telecommunication, earth observation, scientific mission). The platform OBC is connected to the satellite and the ground control via digital links, and executes on board software.The main functions of a platform OBC are to provide the satellite flight segment with the following features: o Processing resources for the flight mission software o TM/TC services and interfaces with the RF communication chaino General communication services with the Avionicsand payload equipments through an on-board communication bus based on the MIL-1553B standard or CANo Time synchronization and distributiono Failure tolerant architecture based on the use of redounded reconfiguration units and redundancyimplementationFrom a hardware point of view, it groups a lot of digital functions usually dispatched on numerous chips (processor, co-processor, digital links IP ...) together. In order to reach an ultimate level of integration, Astrium has designed an ASIC gathering on a single chip all the required digital functions: the SCOC3 ASIC.Astrium has developed an OBC based on this SCOC3 ASIC: the OSCAR (Optimized Spacecraft Computer Architecture with Reconfiguration). It is now available off-the-shelf as the new OBC product family of Astrium.This paper presents the major innovations introduced by Astrium for SCOC3 and OSCAR with the objective to save cost and mass through a solution compatible with any class quality project, using a unique software development environment for user.

  16. Satellite situation report, volume 33, number 4

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Satellite Situation Report is a listing of those satellites (objects) currently in orbit and those which have previously orbited the Earth. Some objects are too small or too far from the Earth's surface to be detected; therefore, the Satellite Situation Report does not include all manmade objects orbiting the Earth. Generally, satellites are classified as follows: (1) Payloads may contain one or more functioning or nonfunctioning experiments. Usually only the owners of the satellites know if the experiments are functioning, and there is no one source which indicates the operational status of all payloads and/or experiments. Payloads are normally the first listed in the Satellite Situation Report, i.e., 1982 087A, unless there are multiple payloads for the launch. In which case, the first objects cataloged are usually all payloads, unless a subsequent payload is later identified after objects other than payloads have been cataloged. (2) Platforms are used to support a payload while it is being placed into orbit. A platform may remain in orbit long after its purpose is served, usually longer than rocket bodies. It is usually the first object identified in the Satellite Situation Report listing after the payload(s), i.e., 1982 087B (when a platform is not used, the first object after the payload(s) is usually the rocket body). (3) Rocket bodies are used to place the payload and platform (if one is used) into orbit. Some launches may have more than one rocket body because of the payload weight or the type of orbit or experiment. Most rocket bodies decay within a short time after the payload (and platform) have achieved orbit. Rocket bodies are usually the third object listed in the Satellite Situation Report after the payload(s), i.e., 1982 087C. (4) Debris in orbit occurs when parts (nose cone shrouds, lens or hatch covers) are separated from the payload, when rocket bodies or payloads disintegrate or explode, or when objects are placed into free space from manned orbiting spacecraft during operations. Debris is detected by its size and distance from the Earth. Debris objects are the last objects after payload(s), platform, and rocket body(s) listed in the Satellite Situation Report, i.e., 1982 087D, 1982 087E, 1982 087F.

  17. Optimal design and experimental analyses of a new micro-vibration control payload-platform

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoqing; Yang, Bintang; Zhao, Long; Sun, Xiaofen

    2016-07-01

    This paper presents a new payload-platform, for precision devices, which possesses the capability of isolating the complex space micro-vibration in low frequency range below 5 Hz. The novel payload-platform equipped with smart material actuators is investigated and designed through optimization strategy based on the minimum energy loss rate, for the aim of achieving high drive efficiency and reducing the effect of the magnetic circuit nonlinearity. Then, the dynamic model of the driving element is established by using the Lagrange method and the performance of the designed payload-platform is further discussed through the combination of the controlled auto regressive moving average (CARMA) model with modified generalized prediction control (MGPC) algorithm. Finally, an experimental prototype is developed and tested. The experimental results demonstrate that the payload-platform has an impressive potential of micro-vibration isolation.

  18. UGV Interoperability Profile (IOP) Communications Profile, Version 0

    DTIC Science & Technology

    2011-12-21

    some UGV systems employ Orthogonal Frequency Division Multiplexing ( OFDM ) or Coded Orthogonal Frequency Division Multiplexing (COFDM) waveforms which...other portions of the IOP. Attribute Paragraph Title Values Waveform 3.3 Air Interface/ Waveform OFDM , COFDM, DDL, CDL, None OCU to Platform...Sight MANET Mobile Ad-hoc Network Mbps Megabits per second MC/PM Master Controller/ Payload Manager MHz Megahertz MIMO Multiple Input Multiple

  19. CoNNeCT Antenna Positioning System Dynamic Simulator Modal Model Correlation

    NASA Technical Reports Server (NTRS)

    Jones, Tevor M.; McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Suarez, Vicente

    2012-01-01

    The National Aeronautics and Space Administration (NASA) developed an on-orbit, adaptable, Software Defined Radios (SDR)/Space Telecommunications Radio System (STRS)-based testbed facility to conduct a suite of experiments to advance technologies, reduce risk, and enable future mission capabilities on the International Space Station (ISS). The Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT) Project will provide NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in both the laboratory and space environment based on reconfigurable, software-defined radio platforms and the STRS Architecture. The CoNNeCT Payload Operations Nomenclature is "SCAN Testbed," and this nomenclature will be used in all ISS integration, safety, verification, and operations documentation. The SCAN Testbed (payload) is a Flight Releasable Attachment Mechanism (FRAM) based payload that will launch aboard the Japanese H-II Transfer Vehicle (HTV) Multipurpose Exposed Pallet (EP-MP) to the International Space Station (ISS), and will be transferred to the Express Logistics Carrier 3 (ELC3) via Extravehicular Robotics (EVR). The SCAN Testbed will operate on-orbit for a minimum of two years.

  20. CoNNeCT Antenna Positioning System Dynamic Simulator Modal Model Correlation

    NASA Technical Reports Server (NTRS)

    Jones, Trevor M.; McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Suarez, Vicente J.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) developed an on-orbit, adaptable, Software Defined Radios (SDR)/Space Telecommunications Radio System (STRS)-based testbed facility to conduct a suite of experiments to advance technologies, reduce risk, and enable future mission capabilities on the International Space Station (ISS). The Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT) Project will provide NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in both the laboratory and space environment based on reconfigurable, software-defined radio platforms and the STRS Architecture. The CoNNeCT Payload Operations Nomenclature is SCAN Testbed, and this nomenclature will be used in all ISS integration, safety, verification, and operations documentation. The SCAN Testbed (payload) is a Flight Releasable Attachment Mechanism (FRAM) based payload that will launch aboard the Japanese H-II Transfer Vehicle (HTV) Multipurpose Exposed Pallet (EP-MP) to the International Space Station (ISS), and will be transferred to the Express Logistics Carrier 3 (ELC3) via Extravehicular Robotics (EVR). The SCAN Testbed will operate on-orbit for a minimum of two years.

  1. Strawman payload data for science and applications space platforms

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The need for a free flying science and applications space platform to host compatible long duration experiment groupings in Earth orbit is discussed. Experiment level information on strawman payload models is presented which serves to identify and quantify the requirements for the space platform system. A description data base on the strawman payload model is presented along with experiment level and group level summaries. Payloads identified in the strawman model include the disciplines of resources observations and environmental observations.

  2. Geostationary platform systems concepts definition study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The results of a geostationary platform concept analysis are summarized. Mission and payloads definition, concept selection, the requirements of an experimental platform, supporting research and technology, and the Space Transportation System interface requirements are addressed. It is concluded that platforms represent a logical extension of current trends toward larger, more complex, multifrequency satellites. Geostationary platforms offer significant cost savings compared to individual satellites, with the majority of these economies being realized with single Shuttle launched platforms. Further cost savings can be realized, however, by having larger platforms. Platforms accommodating communications equipment that operates at multiple frequencies and which provide larger scale frequency reuse through the use of large aperture multibeam antennas and onboard switching maximize the useful capacity of the orbital arc and frequency spectrum. Projections of market demand indicate that such conservation measures are clearly essential if orderly growth is to be provided for. In addition, it is pointed out that a NASA experimental platform is required to demonstrate the technologies necessary for operational geostationary platforms of the 1990's.

  3. Inter-agency Working Group for Airborne Data and Telemetry Systems (IWGADTS)

    NASA Technical Reports Server (NTRS)

    Webster, Chris; Freudinger, Lawrence; Sorenson, Carl; Myers, Jeff; Sullivan, Don; Oolman, Larry

    2009-01-01

    The Interagency Coordinating Committee for Airborne Geosciences Research and Applications (ICCAGRA) was established to improve cooperation and communication among agencies sponsoring airborne platforms and instruments for research and applications, and to serve as a resource for senior level management on airborne geosciences issues. The Interagency Working Group for Airborne Data and Telecommunications Systems (IWGADTS) is a subgroup to ICCAGRA for the purpose of developing recommendations leading to increased interoperability among airborne platforms and instrument payloads, producing increased synergy among research programs with similar goals, and enabling the suborbital layer of the Global Earth Observing System of Systems.

  4. Reflector control technology in space laser communication

    NASA Astrophysics Data System (ADS)

    Xie, Meilin; Ma, Caiwen; Yao, Cheng; Huang, Wei; Lian, Xuezheng; Feng, Xubin; Jing, Feng

    2017-11-01

    The optical frequencies band is used as information carrier to realize laser communication between two low-orbit micro-satellites in space which equipped with inter-satellite laser communication terminals, optical switches, space routers and other payload. The laser communication terminal adopts a two-dimensional turntable with a single mirror structure. In this paper, the perturbation model of satellite platform is established in this paper. The relationship between the coupling and coordinate transformation of satellite disturbance is analyzed and the laser pointing vector is deduced. Using the tracking differentiator to speed up the circular grating angle information constitute speed loop feedback, which avoids the problem of error amplification caused by the high frequency of the conventional difference algorithm. Finally, the suppression ability of the satellite platform disturbance and the tracking accuracy of the tracking system are simulated and analyzed. The results show that the tracking accuracy of the whole system is 10μrad in the case of satellite vibration, which provides the basis for the optimization of the performance of the space-borne laser communication control system.

  5. Conceptual design study. Science and Applications Space Platform (SASP). Final briefing

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The modularity, shape, and size of the recommended platform concept offers a low investment, early option to demonstrate the system; flexibility to conservative growth; adaptability to great variety of multi or dedicated payload groups; and good dispersion and viewing freedom for payloads. Platform configuration effectively supports 80 to 85% of the NASA/OSS and OSTA payloads. The subsystem approaches recommended are based on cost effective distribution of functions.

  6. IUS/payload communication system simulator configuration definition study. [payload simulator for pcm telemetry

    NASA Technical Reports Server (NTRS)

    Udalov, S.; Springett, J. C.

    1978-01-01

    The requirements and specifications for a general purpose payload communications system simulator to be used to emulate those communications system portions of NASA and DOD payloads/spacecraft that will in the future be carried into earth orbit by the shuttle are discussed. For the purpose of on-orbit checkout, the shuttle is required to communicate with the payloads while they are physically located within the shuttle bay (attached) and within a range of 20 miles from the shuttle after they have been deployed (detached). Many of the payloads are also under development (and many have yet to be defined), actual payload communication hardware will not be available within the time frame during which the avionic hardware tests will be conducted. Thus, a flexible payload communication system simulator is required.

  7. The use of tethers for payload orbital transfer. Continuation of investigation of electrodynamic stabilization and control of long orbiting tethers, volume 2

    NASA Technical Reports Server (NTRS)

    Colombo, G.; Martinez-Sanchez, M.; Arnold, D.

    1982-01-01

    The SKYHOOK program was used to do simulations of two cases of the use of the tether for payload orbital transfer. The transport of a payload along the tether from a heavy lower platform to an upper launching platform is considered. A numerical example of the Shuttle launching a payload using an orbital tether facility is described.

  8. On-Board Software Payload Platform over RTEMS and LEON3FT Processing Units

    NASA Astrophysics Data System (ADS)

    Martins, Rodolfo; Ribeiro, Pedro; Furano, Gianluca; Costa Pinto, Joao; Habinc, Sandi

    2013-08-01

    Under ESA and Inmarsat ARTES 8 Alphabus/Alphasat specific programme a technology demonstration payload (TDP) was developed. The payload called TDP8 is an Environment Effects Facility to monitor the GEO radiation environment and its effects on electronic components and sensors. This paper will discuss the on-board software payload platform approach developed since then and based on the TDP8 validation activities.

  9. LSST system analysis and integration task for an advanced science and application space platform

    NASA Technical Reports Server (NTRS)

    1980-01-01

    To support the development of an advanced science and application space platform (ASASP) requirements of a representative set of payloads requiring large separation distances selected from the Science and Applications Space Platform data base. These payloads were a 100 meter diameter atmospheric gravity wave antenna, a 100 meter by 100 meter particle beam injection experiment, a 2 meter diameter, 18 meter long astrometric telescope, and a 15 meter diameter, 35 meter long large ambient deployable IR telescope. A low earth orbit at 500 km altitude and 56 deg inclination was selected as being the best compromise for meeting payload requirements. Platform subsystems were defined which would support the payload requirements and a physical platform concept was developed. Structural system requirements which included utilities accommodation, interface requirements, and platform strength and stiffness requirements were developed. An attitude control system concept was also described. The resultant ASASP concept was analyzed and technological developments deemed necessary in the area of large space systems were recommended.

  10. Stratospheric platforms: a novel technological support for Earth observation and remote sensing applications

    NASA Astrophysics Data System (ADS)

    Dovis, Fabio; Lo Presti, Letizia; Magli, Enrico; Mulassano, Paolo; Olmo, Gabriella

    2001-12-01

    The international community agrees that the new technology based on the use of Unmanned Air Vehicles High Altitude Very long Endurance (UAV-HAVE) could play an important role for the development of remote sensing and telecommunication applications. A UAV-HAVE vehicle can be described as a low- cost flying infrastructure (compared with satellites) optimized for long endurance operations at an altitude of about 20 km. Due to such features, its role is similar to satellites, with the major advantages of being less expensive, more flexible, movable on demand, and suitable for a larger class of applications. According to this background, Politecnico di Torino is involved as coordinator in an important project named HeliNet, that represent one of the main activities in Europe in the field of stratospheric platforms, and is concerned with the development of a network of UAV-HAVE aircraft. A key point of this project is the feasibility study for the provision of several services, namely traffic monitoring, environmental surveillance, broadband communications and navigation. This paper reports preliminary results on the HeliNet imaging system and its remote sensing applications. In fact, many environmental surveillance services (e.g. regional public services for agriculture, hydrology, fire protection, and more) require very high-resolution imaging, and can be offered at a lower cost if operated by a shared platform. The philosophy behind the HeliNet project seems to be particularly suitable to manage such missions. In particular, we present a system- level study of possible imaging payloads to be mounted on- board of a stratospheric platform to collect Earth observation data. Firstly, we address optical payloads such as multispectral and/or hyperspectral ones, which are a very short-term objective of the project. Secondly, as an example of mid-term on-board payload, we examine the possibility to carry on the platform a light-SAR system. For both types of payload, we show how intelligent processing algorithms for environmental data can be run on-board in real-time, in order to make data analysis and transmission more effective, and designed to match the constrains imposed by a UAV-HAVE platform. The results of the study lead to the conclusion that the stratospheric technology seems to be a competitive infrastructure (with respect to the satellites) in the remote sensing scenarios described above.

  11. Java RMI Software Technology for the Payload Planning System of the International Space Station

    NASA Technical Reports Server (NTRS)

    Bryant, Barrett R.

    1999-01-01

    The Payload Planning System is for experiment planning on the International Space Station. The planning process has a number of different aspects which need to be stored in a database which is then used to generate reports on the planning process in a variety of formats. This process is currently structured as a 3-tier client/server software architecture comprised of a Java applet at the front end, a Java server in the middle, and an Oracle database in the third tier. This system presently uses CGI, the Common Gateway Interface, to communicate between the user-interface and server tiers and Active Data Objects (ADO) to communicate between the server and database tiers. This project investigated other methods and tools for performing the communications between the three tiers of the current system so that both the system performance and software development time could be improved. We specifically found that for the hardware and software platforms that PPS is required to run on, the best solution is to use Java Remote Method Invocation (RMI) for communication between the client and server and SQLJ (Structured Query Language for Java) for server interaction with the database. Prototype implementations showed that RMI combined with SQLJ significantly improved performance and also greatly facilitated construction of the communication software.

  12. The C3PO project: a laser communication system concept for small satellites

    NASA Astrophysics Data System (ADS)

    d'Humières, Benoît; Esmiller, Bruno; Gouy, Yann; Steck, Emilie; Quintana, Crisanto; Faulkner, Graham; O'Brien, Dominic; Sproll, Fabian; Wagner, Paul; Hampf, Daniel; Riede, Wolfgang; Salter, Michael; Wang, Qin; Platt, Duncan; Jakonis, Darius; Piao, Xiaoyu; Karlsson, Mikael; Oberg, Olof; Petermann, Ingemar; Michalkiewicz, Aneta; Krezel, Jerzy; Debowska, Anna; Thueux, Yoann

    2017-02-01

    The satellite market is shifting towards smaller (micro and nanosatellites), lowered mass and increased performance platforms. Nanosatellites and picosatellites have been used for a number of new, innovative and unique payloads and missions. This trend requires new concepts for a reduced size, a better performance/weight ratio and a reduction of onboard power consumption. In this context, disruptive technologies, such as laser-optical communication systems, are opening new possibilities. This paper presents the C3PO1 system, "advanced Concept for laser uplink/ downlink CommuniCation with sPace Objects", and the first results of the development of its key technologies. This project targets the design of a communications system that uses a ground-based laser to illuminate a satellite, and a Modulating Retro-Reflector (MRR) to return a beam of light modulated by data to the ground. This enables a downlink, without a laser source on the satellite. This architecture suits well to small satellite applications so as high data rates are potentially provided with very low board mass. C3PO project aims to achieve data rates of 1Gbit/s between LEO satellites and Earth with a communication payload mass of less than 1kilogram. In this paper, results of the initial experiments and demonstration of the key technologies will be shown.

  13. Development and Characteristics of a Mobile, Semi-Autonomous Floating Platform for in situ Lake Measurements

    NASA Astrophysics Data System (ADS)

    Barry, D.; Lemmin, U.; Le Dantec, N.; Zulliger, L.; Rusterholz, M.; Bolay, M.; Rossier, J.; Kangur, K.

    2013-12-01

    In the development of sustainable management strategies of lakes more insight into their physical, chemical and ecological dynamics is needed. Field data obtained from various types of sensors with adequate spatial and temporal sampling rate are essential to understand better the processes that govern fluxes and pathways of water masses and transported compounds, whether for model validation or for monitoring purposes. One advantage of unmanned platforms is that they limit the disturbances typically affecting the quality of data collected on small vessels, including perturbations caused by movements of onboard crew. We have developed a mobile, semi-autonomous floating platform with 8 h power autonomy using a 5 m long by 2.5 m wide catamaran. Our approach focused on modularity and high payload capacity in order to accommodate a large number of sensors both in terms of electronic (power and data) and mechanical constraints of integration. Software architecture and onboard electronics use National Instruments technology to simplify and standardize integration of sensors, actuators and communication. Piecewise-movable deck sections allow optimizing platform stability depending on the payload. The entire system is controlled by a remote computer located on an accompanying vessel and connected via a wireless link with a range of over 1 km. Real-time transmission of GPS-stamped measurements allows immediate modifications in the survey plan if needed. The displacement of the platform is semi-autonomous, with the options of either autopilot mode following a pre-planned course specified by waypoints or remote manual control from the accompanying vessel. Maintenance of permanent control over the platform displacement is required for safety reasons with respect to other users of the lake. Currently, the sensor payload comprises an array of fast temperature probes, a bottom-tracking ADCP and atmospheric sensors including a radiometer. A towed CTD with additional water quality sensors operated from a remotely controlled winch is presently being integrated. Field tests have shown that the platform is reliable, capable of collecting long transects of 2D lake and collocated atmospheric boundary layer data and adaptable to integrate new sensors.

  14. Integrated long-range UAV/UGV collaborative target tracking

    NASA Astrophysics Data System (ADS)

    Moseley, Mark B.; Grocholsky, Benjamin P.; Cheung, Carol; Singh, Sanjiv

    2009-05-01

    Coordinated operations between unmanned air and ground assets allow leveraging of multi-domain sensing and increase opportunities for improving line of sight communications. While numerous military missions would benefit from coordinated UAV-UGV operations, foundational capabilities that integrate stove-piped tactical systems and share available sensor data are required and not yet available. iRobot, AeroVironment, and Carnegie Mellon University are working together, partially SBIR-funded through ARDEC's small unit network lethality initiative, to develop collaborative capabilities for surveillance, targeting, and improved communications based on PackBot UGV and Raven UAV platforms. We integrate newly available technologies into computational, vision, and communications payloads and develop sensing algorithms to support vision-based target tracking. We first simulated and then applied onto real tactical platforms an implementation of Decentralized Data Fusion, a novel technique for fusing track estimates from PackBot and Raven platforms for a moving target in an open environment. In addition, system integration with AeroVironment's Digital Data Link onto both air and ground platforms has extended our capabilities in communications range to operate the PackBot as well as in increased video and data throughput. The system is brought together through a unified Operator Control Unit (OCU) for the PackBot and Raven that provides simultaneous waypoint navigation and traditional teleoperation. We also present several recent capability accomplishments toward PackBot-Raven coordinated operations, including single OCU display design and operation, early target track results, and Digital Data Link integration efforts, as well as our near-term capability goals.

  15. A Sub-Hertz, Low-Frequency Vibration Isolation Platform

    NASA Technical Reports Server (NTRS)

    Ortiz, Gerardo, G.; Farr, William H.; Sannibale, Virginio

    2011-01-01

    One of the major technical problems deep-space optical communication (DSOC) systems need to solve is the isolation of the optical terminal from vibrations produced by the spacecraft navigational control system and by the moving parts of onboard instruments. Even under these vibration perturbations, the DSOC transceivers (telescopes) need to be pointed l000 fs of times more accurately than an RF communication system (parabolic antennas). Mechanical resonators have been extensively used to provide vibration isolation for groundbased, airborne, and spaceborne payloads. The effectiveness of these isolation systems is determined mainly by the ability of designing a mechanical oscillator with the lowest possible resonant frequency. The Low-Frequency Vibration Isolation Platform (LFVIP), developed during this effort, aims to reduce the resonant frequency of the mechanical oscillators into the sub-Hertz region in order to maximize the passive isolation afforded by the 40 dB/decade roll-off response of the resonator. The LFVIP also provides tip/tilt functionality for acquisition and tracking of a beacon signal. An active control system is used for platform positioning and for dampening of the mechanical oscillator. The basic idea in the design of the isolation platform is to use a passive isolation strut with an approximately equal to 100-mHz resonance frequency. This will extend the isolation range to lower frequencies. The harmonic oscillator is a second-order lowpass filter for mechanical disturbances. The resonance quality depends on the dissipation mechanisms, which are mainly hysteretic because of the low resonant frequency and the absence of any viscous medium. The LFVIP system is configured using the well-established Stewart Platform, which consists of a top platform connected to a base with six extensible struts (see figure). The struts are attached to the base and to the platform via universal joints, which permit the extension and contraction of the struts. The struts ends are connected in pairs to the base and to the platform, forming an octahedron. The six struts provide the vibration isolation due to the properties of mechanical oscillators that behave as second-order lowpass filters for frequencies above the resonance. At high frequency, the ideal second-order low-pass filter response is spoiled by the distributed mass and the internal modes of membrane and of the platform with its payload.

  16. Design of Smart Multi-Functional Integrated Aviation Photoelectric Payload

    NASA Astrophysics Data System (ADS)

    Zhang, X.

    2018-04-01

    To coordinate with the small UAV at reconnaissance mission, we've developed a smart multi-functional integrated aviation photoelectric payload. The payload weighs only 1kg, and has a two-axis stabilized platform with visible task payload, infrared task payload, laser pointers and video tracker. The photoelectric payload could complete the reconnaissance tasks above the target area (including visible and infrared). Because of its light weight, small size, full-featured, high integrated, the constraints of the UAV platform carrying the payload will be reduced a lot, which helps the payload suit for more extensive using occasions. So all users of this type of smart multi-functional integrated aviation photoelectric payload will do better works on completion of the ground to better pinpoint targets, artillery calibration, assessment of observe strike damage, customs officials and other tasks.

  17. European small geostationary communications satellites

    NASA Astrophysics Data System (ADS)

    Sun, Wei, , Dr.; Ellmers, Frank; Winkler, Andreas; Schuff, Herbert; Sansegundo Chamarro, Manuel Julián

    2011-04-01

    Hispasat Advanced Generation 1 (HAG1) is the first satellite using the SGEO platform, which is under the development in the ESA Artes-11 program. Since the last presentation in the IAC 2007, a European industrial consortium led by OHB has completed the mission and spacecraft design. The platform Preliminary Design Review has been carried out in May 2008. The customer for the first mission is a commercial operator—Hispasat. The contract was signed in December 2008 and the satellite will be launched in 2012. To give confidence to the customer, SGEO platform will use up to date flight proven technologies. HAG1 carries 20/24 Ku-band and 3/5 Ka-band transponders to provide commercial services. Some innovative payload technologies will also be flown on board of HAG1 to gain in-orbit heritage. SGEO has also been selected as the baseline platform for the ESA Data Relay Satellite (EDRS). Phase-A study has just kicked off in January 2009. The targeted launch date is 2013. Heinrich Hertz will also use the SGEO platform. Heinrich Hertz is funded by the German Space Agency (DLR) and provides flight opportunities for technologies and components developed by the German Space Industry. With the HAG1 contract in hand, and EDRS and Heinrich Hertz in the line, OHB with its partners has the confidence that it will be able to speed up the product development of the SGEO platform for potential customers in the commercial market. This paper will first present the updated platform design and the status of the product development will be followed with the introduction of innovative payload technologies on board the first mission—HAG1 and ended with the mission concepts of EDRS and Heinrich Hertz missions.

  18. Payloads development for European land mobile satellites: A technical and economical assessment

    NASA Technical Reports Server (NTRS)

    Perrotta, G.; Rispoli, F.; Sassorossi, T.; Spazio, Selenia

    1990-01-01

    The European Space Agency (ESA) has defined two payloads for Mobile Communication; one payload is for pre-operational use, the European Land Mobile System (EMS), and one payload is for promoting the development of technologies for future mobile communication systems, the L-band Land Mobile Payload (LLM). A summary of the two payloads and a description of their capabilities is provided. Additionally, an economic assessment of the potential mobile communication market in Europe is provided.

  19. Payloads development for European land mobile satellites: A technical and economical assessment

    NASA Astrophysics Data System (ADS)

    Perrotta, G.; Rispoli, F.; Sassorossi, T.; Spazio, Selenia

    The European Space Agency (ESA) has defined two payloads for Mobile Communication; one payload is for pre-operational use, the European Land Mobile System (EMS), and one payload is for promoting the development of technologies for future mobile communication systems, the L-band Land Mobile Payload (LLM). A summary of the two payloads and a description of their capabilities is provided. Additionally, an economic assessment of the potential mobile communication market in Europe is provided.

  20. Context Aware TCP for Intelligence, Surveillance and Reconnaissance Missions on Autonomous Platforms

    DTIC Science & Technology

    2014-10-08

    under the Unmanned Vehicle Experimental Communications Testbed (UVECT) flight test plan and were done over the Stockbridge Research Facility in the...sure the payload did not interfere with the command and control systems of the aircraft several flight paths were selected to exert the link and the...throughput from data source to destination. Figure 1 shows the flight path of a small RPA in a PoL flight path scenario. The change of SNR

  1. Control and Non-Payload Communications (CNPC) Prototype Radio - Generation 2 Security Flight Test Report

    NASA Technical Reports Server (NTRS)

    Iannicca, Dennis C.; Ishac, Joseph A.; Shalkhauser, Kurt A.

    2015-01-01

    NASA Glenn Research Center (GRC), in cooperation with Rockwell Collins, is working to develop a prototype Control and Non-Payload Communications (CNPC) radio platform as part of NASA Integrated Systems Research Program's (ISRP) Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) project. A primary focus of the project is to work with the Federal Aviation Administration (FAA) and industry standards bodies to build and demonstrate a safe, secure, and efficient CNPC architecture that can be used by industry to evaluate the feasibility of deploying a system using these technologies in an operational capacity. GRC has been working in conjunction with these groups to assess threats, identify security requirements, and to develop a system of standards-based security controls that can be applied to the GRC prototype CNPC architecture as a demonstration platform. The proposed security controls were integrated into the GRC flight test system aboard our S-3B Viking surrogate aircraft and several network tests were conducted during a flight on November 15th, 2014 to determine whether the controls were working properly within the flight environment. The flight test was also the first to integrate Robust Header Compression (ROHC) as a means of reducing the additional overhead introduced by the security controls and Mobile IPv6. The effort demonstrated the complete end-to-end secure CNPC link in a relevant flight environment.

  2. Study of orbiter/payload interface communications configuration control board directive from an operational perspective

    NASA Technical Reports Server (NTRS)

    Addis, A. W.; Tatosian, C. G.; Lidsey, J. F.

    1974-01-01

    Orbiter/payload data and communications interface was examined. It was found that the Configuration Control Board Directive (CCBD) greatly increases the capability of the orbiter to communicate with a wide variety of projected shuttle payloads. Rather than being derived from individual payload communication requirements, the CCBD appears to be based on an operational philosophy that requires the orbiter to duplicate or augment the ground network/payload communication links. It is suggested that the implementation of the CCBD be reviewed and compared with the Level 1 Program Requirements Document, differences reconciled, and interface characteristics defined.

  3. Sensor deployment on unmanned ground vehicles

    NASA Astrophysics Data System (ADS)

    Gerhart, Grant R.; Witus, Gary

    2007-10-01

    TARDEC has been developing payloads for small robots as part of its unmanned ground vehicle (UGV) development programs. These platforms typically weigh less than 100 lbs and are used for various physical security and force protection applications. This paper will address a number of technical issues including platform mobility, payload positioning, sensor configuration and operational tradeoffs. TARDEC has developed a number of robots with different mobility mechanisms including track, wheel and hybrid track/wheel running gear configurations. An extensive discussion will focus upon omni-directional vehicle (ODV) platforms with enhanced intrinsic mobility for positioning sensor payloads. This paper also discusses tradeoffs between intrinsic platform mobility and articulated arm complexity for end point positioning of modular sensor packages.

  4. The ISES: A non-intrusive medium for in-space experiments in on-board information extraction

    NASA Technical Reports Server (NTRS)

    Murray, Nicholas D.; Katzberg, Stephen J.; Nealy, Mike

    1990-01-01

    The Information Science Experiment System (ISES) represents a new approach in applying advanced systems technology and techniques to on-board information extraction in the space environment. Basically, what is proposed is a 'black box' attached to the spacecraft data bus or local area network. To the spacecraft the 'black box' appears to be just another payload requiring power, heat rejection, interfaces, adding weight, and requiring time on the data management and communication system. In reality, the 'black box' is a programmable computational resource which eavesdrops on the data network, taking and producing selectable, real-time science data back on the network. This paper will present a brief overview of the ISES Concept and will discuss issues related to applying the ISES to the polar platform and Space Station Freedom. Critical to the operation of ISES is the viability of a payload-like interface to the spacecraft data bus or local area network. Study results that address this question will be reviewed vis-a-vis the solar platform and the core space station. Also, initial results of processing science and other requirements for onboard, real-time information extraction will be presented with particular emphasis on the polar platform. Opportunities for a broader range of applications on the core space station will also be discussed.

  5. The 20-20-20 Airships NASA Centennial Challenge

    NASA Astrophysics Data System (ADS)

    Kiessling, Alina; Diaz, Ernesto; Miller, Sarah; Rhodes, Jason; Ortega, Sam; Hall, Jeffrey L.; Friedl, Randy; Booth, Jeff

    2015-01-01

    A NASA Centennial Challenge; (www.nasa.gov/challenges) is in development to spur innovation in stratospheric airships as a science platform. We anticipate a multi-million dollar class prize for the first organization to fly a powered airship that remains stationary at 20km (65,000 ft) altitude for over 20 hours with a 20kg payload. The design must be scalable to longer flights with more massive payloads.In NASA's constrained budget environment, there are few opportunities for space missions in astronomy and Earth science, and these have very long lead times. We believe that airships (powered, maneuverable, lighter-than-air vehicles) could offer significant gains in observing time, sky and ground coverage, data downlink capability, and continuity of observations over existing suborbital options at competitive prices. This technology would also have broad commercial applications including communications and asset tracking. We seek to spur private industry (or non-profit institutions, including Universities) to demonstrate the capability for sustained airship flights as astronomy and Earth science platforms. This poster will introduce the challenge in development and provide details of who to contact for more information.

  6. Communications payload concepts for geostationary facilities

    NASA Technical Reports Server (NTRS)

    Poley, William A.; Lekan, Jack

    1987-01-01

    Summarized and compared are the major results of two NASA sponsored studies that defined potential communication payload concepts to meet the satellite traffic forecast for the turn of the century for the continental US and Region 2 of the International Telecommunications Union. The studies were performed by the Ford Aerospace and Communications Corporation and RCA Astro-Electronics (now GE-RCA Astro-Space Division). Future scenarios of aggregations of communications services are presented. Payload concepts are developed and defined in detail for nine of the scenarios. Payload costs and critical technologies per payload are also presented. Finally the payload concepts are compared and the findings of the reports are discussed.

  7. Shuttle/payload communications and data systems interface analysis

    NASA Technical Reports Server (NTRS)

    Huth, G. K.

    1980-01-01

    The payload/orbiter functional command signal flow and telemetry signal flow are discussed. Functional descriptions of the various orbiter communication/avionic equipment involved in processing a command to a payload either from the ground through the orbiter by the payload specialist on the orbiter are included. Functional descriptions of the various orbiter communication/avionic equipment involved in processing telemetry data by the orbiter and transmitting the processed data to the ground are presented. The results of the attached payload/orbiter single processing and data handling system evaluation are described. The causes of the majority of attached payload/orbiter interface problems are delineated. A refined set of required flux density values for a detached payload to communicate with the orbiter is presented.

  8. A Stream lined Approach for the Payload Customer in Identifying Payload Design Requirements

    NASA Technical Reports Server (NTRS)

    Miller, Ladonna J.; Schneider, Walter F.; Johnson, Dexer E.; Roe, Lesa B.

    2001-01-01

    NASA payload developers from across various disciplines were asked to identify areas where process changes would simplify their task of developing and flying flight hardware. Responses to this query included a central location for consistent hardware design requirements for middeck payloads. The multidisciplinary team assigned to review the numerous payload interface design documents is assessing the Space Shuttle middeck, the SPACEHAB Inc. locker, as well as the MultiPurpose Logistics Module (MPLM) and EXpedite the PRocessing of Experiments to Space Station (EXPRESS) rack design requirements for the payloads. They are comparing the multiple carriers and platform requirements and developing a matrix which illustrates the individual requirements, and where possible, the envelope that encompasses all of the possibilities. The matrix will be expanded to form an overall envelope that the payload developers will have the option to utilize when designing their payload's hardware. This will optimize the flexibility for payload hardware and ancillary items to be manifested on multiple carriers and platforms with minimal impact to the payload developer.

  9. A system architecture for an advanced Canadian wideband mobile satellite system

    NASA Technical Reports Server (NTRS)

    Takats, P.; Keelty, M.; Moody, H.

    1993-01-01

    In this paper, the system architecture for an advanced Canadian ka-band geostationary mobile satellite system is described, utilizing hopping spot beams to support a 256 kbps wideband service for both N-ISDN and packet-switched interconnectivity to small briefcase-size portable and mobile terminals. An assessment is given of the technical feasibility of the satellite payload and terminal design in the post year 2000 timeframe. The satellite payload includes regeneration and on-board switching to permit single hop interconnectivity between mobile terminals. The mobile terminal requires antenna tracking and platform stabilization to ensure acquisition of the satellite signal. The potential user applications targeted for this wideband service includes: home-office, multimedia, desk-top (PC) videoconferencing, digital audio broadcasting, single and multi-user personal communications.

  10. A new phase for NASA's communications satellite program

    NASA Technical Reports Server (NTRS)

    Dement, D. K.

    1980-01-01

    NASA's research in communications satellite technology is discussed, including orbit-efficient techniques and applications by the commercial sector. Attention is given to expanding the capacities of the C-band (6-4 GHz) and the Ku-band (14-11 GHz), opening the Ka-band (30/20 GHz), broadly applied 're-use' of the spectrum, and developing multibeam spacecraft antennas with on-board switching. Increasing wideband services in video, high-speed data, and voice trunking is considered, as are narrow-band systems that may be used for data collection or public safety, with possible expansion to a thin-route satellite system. In particular, communication for medical, disaster, or search-and-rescue emergencies may be met by the integration of a satellite service with land mobile communications via terrestrial radio links. Also considered is a large geostationary platform providing electrical power, thermal rejection, and orbital station-keeping for many communications payloads.

  11. Deployable wavelength optimizer for multi-laser sensing and communication undersea

    NASA Astrophysics Data System (ADS)

    Neuner, Burton; Hening, Alexandru; Pascoguin, B. Melvin; Dick, Brian; Miller, Martin; Tran, Nghia; Pfetsch, Michael

    2017-05-01

    This effort develops and tests algorithms and a user-portable optical system designed to autonomously optimize the laser communication wavelength in open and coastal oceans. In situ optical meteorology and oceanography (METOC) data gathered and analyzed as part of the auto-selection process can be stored and forwarded. The system performs closedloop optimization of three visible-band lasers within one minute by probing the water column via passive retroreflector and polarization optics, selecting the ideal wavelength, and enabling high-speed communication. Backscattered and stray light is selectively blocked by employing polarizers and wave plates, thus increasing the signal-to-noise ratio. As an advancement in instrumentation, we present autonomy software and portable hardware, and demonstrate this new system in two environments: ocean bay seawater and outdoor test pool freshwater. The next generation design is also presented. Once fully miniaturized, the optical payload and software will be ready for deployment on manned and unmanned platforms such as buoys and vehicles. Gathering timely and accurate ocean sensing data in situ will dramatically increase the knowledge base and capabilities for environmental sensing, defense, and industrial applications. Furthermore, communicating on the optimal channel increases transfer rates, propagation range, and mission length, all while reducing power consumption in undersea platforms.

  12. Q/V-band communications and propagation experiments using ALPHASAT

    NASA Astrophysics Data System (ADS)

    Koudelka, O.

    2011-12-01

    The lower satellite frequency bands become more and more congested; therefore it will be necessary to exploit higher frequencies for satellite communications. New broadband applications (e.g. 3D-TV, fast Internet access) will require additional spectrum in the future. The Ku-band is highly utilised nowadays and Ka-band systems, which have been extensively studied in the 1990s, are already in commercial use. The next frontier is the Q/V-band. At millimetre waves the propagation effects are significant. The traditional approach of implementing large fade margins is impractical, since this leads to high EIRP and G/ T figures for the ground stations, resulting in unacceptable costs. Fade mitigation techniques by adaptive coding and modulation (ACM) offer a cost-effective solution to this problem. ESA will launch the ALPHASAT satellite in 2012. It will carry experimental Ka- and Q/V-band propagation and communications payloads, enabling propagation measurements throughout Europe and communications experiments. Three communications spot beams will be covering Northern Italy, Southern Italy and Austria with some overlap. Joanneum Research and Graz University of Technology are preparing for communications and propagation experiments using these new payloads of ALPHASAT in close cooperation with ESA, the Italian Space Agency ASI, Politecnico di Milano and Università Tor Vergata. The main focus of the communications experiments is on ACM techniques. The paper describes the design of the planned Q/V-band ground station with the planned ACM tests and investigations as well as the architecture of the communications terminal, based on a versatile software-defined radio platform.

  13. Performance evaluation of Platform Data ManagementSystem under various degrees of protocol implementation

    NASA Technical Reports Server (NTRS)

    Arozullah, Mohammed

    1991-01-01

    The Platform Data Management System (DMS) collects Housekeeping (H/K), Payload (P/L) Engineering, and Payload Science data from various subsystems and payloads on the platform for transmission to the ground through the downlink via TDRSS. The DMS also distributes command data received from the ground to various subsystems and payloads. In addition, DMS distributes timing and safemode data. The function of collection and distribution of various types of data is performed by the Command and Data Handling (C&DH) subsystem of DMS. The C&DH subsystem uses for this purpose a number of data buses namely, Housekeeping, Payload Engineering, Payload Science, and Time and Safemode buses. Out of these buses, the H/K, P/L Engineering, and P/L Science buses are planned to be implemented by using MIL-STD 1553 bus. Most of the period covered was spent in developing a queue theoretic model of the 1553 Bus as used in the DMS. The aim is to use this model to test the performance and suitability of the 1553 Bus to the DMS under a number of alternative design scenarios.

  14. OWLS as platform technology in OPTOS satellite

    NASA Astrophysics Data System (ADS)

    Rivas Abalo, J.; Martínez Oter, J.; Arruego Rodríguez, I.; Martín-Ortega Rico, A.; de Mingo Martín, J. R.; Jiménez Martín, J. J.; Martín Vodopivec, B.; Rodríguez Bustabad, S.; Guerrero Padrón, H.

    2017-12-01

    The aim of this work is to show the Optical Wireless Link to intraSpacecraft Communications (OWLS) technology as a platform technology for space missions, and more specifically its use within the On-Board Communication system of OPTOS satellite. OWLS technology was proposed by Instituto Nacional de Técnica Aeroespacial (INTA) at the end of the 1990s and developed along 10 years through a number of ground demonstrations, technological developments and in-orbit experiments. Its main benefits are: mass reduction, flexibility, and simplification of the Assembly, Integration and Tests phases. The final step was to go from an experimental technology to a platform one. This step was carried out in the OPTOS satellite, which makes use of optical wireless links in a distributed network based on an OLWS implementation of the CAN bus. OPTOS is the first fully wireless satellite. It is based on the triple configuration (3U) of the popular Cubesat standard, and was completely built at INTA. It was conceived to procure a fast development, low cost, and yet reliable platform to the Spanish scientific community, acting as a test bed for space born science and technology. OPTOS presents a distributed OBDH architecture in which all satellite's subsystems and payloads incorporate a small Distributed On-Board Computer (OBC) Terminal (DOT). All DOTs (7 in total) communicate between them by means of the OWLS-CAN that enables full data sharing capabilities. This collaboration allows them to perform all tasks that would normally be carried out by a centralized On-Board Computer.

  15. Contamination assessment for OSSA space station IOC payloads

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1987-01-01

    An assessment is made of NASA/OSSA space station IOC payloads. The report has two main objectives, i.e., to provide realistic contamination requirements for space station attached payloads, serviced payloads and platforms, and to determine unknowns or major impacts requiring further assessment.

  16. OPEX: (Olympus Propagation EXperiment)

    NASA Technical Reports Server (NTRS)

    Brussaard, Gert

    1988-01-01

    The Olympus-1 satellite carries four distinct payloads for experimental utilization and research in the field of satellite communications: (1) the Direct Broadcasting Service (DBS) payload; (2) the Specialized Services Payload; (3) the 20/30 GHz Advanced Communications Payload; and (4) the Propagation Payload. Experimental utilization of the first three payloads involves ground transmissions to the satellite and hence sharing of available satellite time among experimenters. This is coordinated through the Olympus Utilization Program.

  17. Earth resources instrumentation for the Space Station Polar Platform

    NASA Technical Reports Server (NTRS)

    Donohoe, Martin J.; Vane, Deborah

    1986-01-01

    The spacecraft and payloads of the Space Station Polar Platform program are described in a brief overview. Present plans call for one platform in a descending morning-equator-crossing orbit at 824 km and two or three platforms in ascending afternoon-crossing orbits at 542-824 km. The components of the NASA Earth Observing System (EOS) and NOAA payloads are listed in tables and briefly characterized, and data-distribution requirements and the mission development schedule are discussed. A drawing of the platform, a graph showing the spectral coverage of the EOS instruments, and a glossary of acronyms are provided.

  18. Orbiter CIU/IUS communications hardware evaluation

    NASA Technical Reports Server (NTRS)

    Huth, G. K.

    1979-01-01

    The DOD and NASA inertial upper stage communication system design, hardware specifications and interfaces were analyzed to determine their compatibility with the Orbiter payload communications equipment (Payload Interrogator, Payload Signal Processors, Communications Interface Unit, and the Orbiter operational communications equipment (the S-Band and Ku-band systems). Topics covered include (1) IUS/shuttle Orbiter communications interface definition; (2) Orbiter avionics equipment serving the IUS; (3) IUS communication equipment; (4) IUS/shuttle Orbiter RF links; (5) STDN/TDRS S-band related activities; and (6) communication interface unit/Orbiter interface issues. A test requirement plan overview is included.

  19. COBALT: Development of a Platform to Flight Test Lander GN&C Technologies on Suborbital Rockets

    NASA Technical Reports Server (NTRS)

    Carson, John M., III; Seubert, Carl R.; Amzajerdian, Farzin; Bergh, Chuck; Kourchians, Ara; Restrepo, Carolina I.; Villapando, Carlos Y.; O'Neal, Travis V.; Robertson, Edward A.; Pierrottet, Diego; hide

    2017-01-01

    The NASA COBALT Project (CoOperative Blending of Autonomous Landing Technologies) is developing and integrating new precision-landing Guidance, Navigation and Control (GN&C) technologies, along with developing a terrestrial fight-test platform for Technology Readiness Level (TRL) maturation. The current technologies include a third- generation Navigation Doppler Lidar (NDL) sensor for ultra-precise velocity and line- of-site (LOS) range measurements, and the Lander Vision System (LVS) that provides passive-optical Terrain Relative Navigation (TRN) estimates of map-relative position. The COBALT platform is self contained and includes the NDL and LVS sensors, blending filter, a custom compute element, power unit, and communication system. The platform incorporates a structural frame that has been designed to integrate with the payload frame onboard the new Masten Xodiac vertical take-o, vertical landing (VTVL) terrestrial rocket vehicle. Ground integration and testing is underway, and terrestrial fight testing onboard Xodiac is planned for 2017 with two flight campaigns: one open-loop and one closed-loop.

  20. Nisar Spacecraft Concept Overview: Design Challenges for a Proposed Flagship Dual-Frequency SAR Mission

    NASA Technical Reports Server (NTRS)

    Xaypraseuth, Peter; Chatterjee, Alok; Satish, R.

    2015-01-01

    NISAR would be the inaugural collaboration between National Aeronautics and Space Administration (NASA) and Indian Space Research Organization (ISRO) on an Earth Science mission, which would feature an L-Band SAR instrument and an S-Band SAR instrument. As partners, NASA and ISRO would each contribute different engineering elements to help achieve the proposed scientific objectives of the mission. ISRO-Vikram Sarabhai Space Centre would provide the GSLV-Mark II launch vehicle, which would deliver the spacecraft into the desired orbit. ISRO-Satellite Centre would provide the spacecraft based on its I3K structural bus, a commonly used platform for ISRO's communication satellite missions, which would provide the resources necessary to operate the science payload. NASA would augment the spacecraft capabilities with engineering payload systems to help store, and transmit the large volume of science data.

  1. ISS External Payload Platform - a new opportunity for research in the space environment

    NASA Astrophysics Data System (ADS)

    Steimle, Christian; Pape, Uwe

    The International Space Station (ISS) is a widely accepted platform for research activities in low Earth orbit. To a wide extent these activities are conducted in the pressurised laboratories of the station and less in the outside environment. Suitable locations outside the ISS are rare, existing facilities fully booked for the coming years. To overcome this limitation, an external payload platform accessible for small size payloads on a commercial basis will be launched to the ISS and installed on the Japanese Experiment Module External Facility (JEM-EF) in the third quarter of 2014 and will be ready to be used by the scientific community on a fully commercial basis. The new External Payload Platform (EPP) and its opportunities and constraints assessed regarding future research activities on-board the ISS. The small size platform is realised in a cooperation between the companies NanoRacks, Astrium North America in the United States, and Airbus Defence and Space in Germany. The hardware allows the fully robotic installation and operation of payloads. In the nominal mission scenario payload items are installed not later than one year after the signature of the contract, stay in operation for 15 weeks, and can be returned to the scientist thereafter. Payload items are transported among the pressurised cargo usually delivered to the station with various supply vehicles. Due to the high frequency of flights and the flexibility of the vehicle manifests the risk of a delay in the payload readiness can be mitigated by delaying to the next flight opportunity which on average is available not more than two months later. The mission is extra-ordinarily fast and of low cost in comparison to traditional research conducted on-board the ISS and can fit into short-term funding cycles available on national and multi-national levels. The size of the payload items is limited by handling constraints on-board the ISS. Therefore, the standard experiment payload size is a multiple of a 4U CubeSat, which demands miniaturised hardware solutions. But every payload can extensively use all ISS resources required: mass is not limited, power only limited by the payload heat radiation capability, the datalink is a USB 2.0 standard bus enabling a real-time and private data link. The new EPP transforms the station into a true laboratory in space with the capability to support research in various fields: exposure of biologic or material samples, experiments related to the radiation environment in low Earth orbit, and more.

  2. NASA Global Hawk Overview

    NASA Technical Reports Server (NTRS)

    Naftel, Chris

    2014-01-01

    The NASA Global Hawk Project is supporting Earth Science research customers. These customers include: US Government agencies, civilian organizations, and universities. The combination of the Global Hawks range, endurance, altitude, payload power, payload volume and payload weight capabilities separates the Global Hawk platform from all other platforms available to the science community. This presentation includes an overview of the concept of operations and an overview of the completed science campaigns. In addition, the future science plans, using the NASA Global Hawk System, will be presented.

  3. Materials experiment carrier concepts definition study. Volume 1: Executive summary, part 2

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The materials experiment carrier (MEC) is an optimized carrier for near term and advanced materials processing in space (MPS) research and commercial payloads. When coupled with the space platform (SP), the MEC can provide the extended duration, high power and low acceleration environment the MPS payload typically requires. The lowest cost, technically reasonable first step MEC that meets the MPS program missions objectives with minimum programmatic risks is defined. The effectiveness of the initial MEC/space platform idea for accommodating high priority, multidiscipline, R&D and commercial MPS payloads, and conducting MPS payload oprations at affordable funding and acceptable productivity levels is demonstrated.

  4. EHF channel sounding for telecommunications applications via HAPs and balloons

    NASA Astrophysics Data System (ADS)

    Cianca, E.; Lucente, M.; Rossi, T.; Stallo, C.; Ruggieri, M.; Morelli, E.

    During the last few years, the growth of innovative multimedia services demanding for more and more bandwidth have led towards the need to explore higher and higher frequency bands for communication services, such as Q-V band (35-50 GHz and 50-75 GHz, respectively) and also W band (75-110 GHz), especially for satellite applications. The Italian scientific community has so far gained a leading position in the use of higher frequency bands for satellite communications and has also funded studies for the design of communication payload in W band. To keep this leading position one fundamental step to properly design an operative communication payload is the propagation channel characterisation. Whilst there are data for characterising the propagation channel in Q-V bands, there are no experimental data for proper characterisation in W band. A feasibility study has been recently funded by the Italian Space Agency (ASI) to use a manned aircraft flying at 20 km, for preliminary channel characterisation. In this paper we investigate the possibility to use balloons for experiments aiming to collect data for channel characterisation. Main advantages and drawbacks of using this platform for the proposed experiment with respect to alternatives such as manned aircrafts and Low Earth Orbit (LEO) satellites for such a experiment are outlined. We start presenting the main results of the Aero-WAVE mission, funded by ASI and aiming to design a payload for setting up an experiment for preliminary channel characterisation of W band. This will guide us in defining the main advantages and drawbacks of the alternatives solution represented by the balloons. We can conclude that it would be possible and convenient to use balloons for the proposed experiment. Some issues arise but solutions can be easily implemented. The data that could be collected from the proposed experiment represent a very interesting results at international level for further developments in W band communications. The possibility to set-up such experiment in a short-time and low costs would be strategically important.

  5. Low Noise Camera for Suborbital Science Applications

    NASA Technical Reports Server (NTRS)

    Hyde, David; Robertson, Bryan; Holloway, Todd

    2015-01-01

    Low-cost, commercial-off-the-shelf- (COTS-) based science cameras are intended for lab use only and are not suitable for flight deployment as they are difficult to ruggedize and repackage into instruments. Also, COTS implementation may not be suitable since mission science objectives are tied to specific measurement requirements, and often require performance beyond that required by the commercial market. Custom camera development for each application is cost prohibitive for the International Space Station (ISS) or midrange science payloads due to nonrecurring expenses ($2,000 K) for ground-up camera electronics design. While each new science mission has a different suite of requirements for camera performance (detector noise, speed of image acquisition, charge-coupled device (CCD) size, operation temperature, packaging, etc.), the analog-to-digital conversion, power supply, and communications can be standardized to accommodate many different applications. The low noise camera for suborbital applications is a rugged standard camera platform that can accommodate a range of detector types and science requirements for use in inexpensive to mid range payloads supporting Earth science, solar physics, robotic vision, or astronomy experiments. Cameras developed on this platform have demonstrated the performance found in custom flight cameras at a price per camera more than an order of magnitude lower.

  6. Payload/orbiter signal-processing and data-handling system evaluation

    NASA Technical Reports Server (NTRS)

    Teasdale, W. E.; Polydoros, A.

    1980-01-01

    Incompatibilities between orbiter subsystems and payload communication systems to assure that acceptable and to end system performamce will be achieved are identified. The potential incompatabilities are associated with either payloads in the cargo bay or detached payloads communicating with the orbiter via an RF link. The payload signal processing and data handling systems are assessed by investigating interface problems experienced between the inertial upper stage and the orbiter since similar problems are expected for other payloads.

  7. Intuitive Tools for the Design and Analysis of Communication Payloads for Satellites

    NASA Technical Reports Server (NTRS)

    Culver, Michael R.; Soong, Christine; Warner, Joseph D.

    2014-01-01

    In an effort to make future communications satellite payload design more efficient and accessible, two tools were created with intuitive graphical user interfaces (GUIs). The first tool allows payload designers to graphically design their payload by using simple drag and drop of payload components onto a design area within the program. Information about each picked component is pulled from a database of common space-qualified communication components sold by commerical companies. Once a design is completed, various reports can be generated, such as the Master Equipment List. The second tool is a link budget calculator designed specifically for ease of use. Other features of this tool include being able to access a database of NASA ground based apertures for near Earth and Deep Space communication, the Tracking and Data Relay Satellite System (TDRSS) base apertures, and information about the solar system relevant to link budget calculations. The link budget tool allows for over 50 different combinations of user inputs, eliminating the need for multiple spreadsheets and the user errors associated with using them. Both of the aforementioned tools increase the productivity of space communication systems designers, and have the colloquial latitude to allow non-communication experts to design preliminary communication payloads.

  8. SpaceHab 1 maintenance experiment

    NASA Technical Reports Server (NTRS)

    Bohannon, Jackie W.

    1994-01-01

    The SpaceHab 1 flight on STS-57 served as a test platform for evaluation of two space station payloads. The first payload evaluated a space station maintenance concept using a sweep signal generator and a 48-channel logic analyzer to perform fault detection and isolation. Crew procedures files, test setup diagram files, and software to configure the test equipment were created on the ground and uplinked on the astronauts' voice communication circuit to perform tests in flight. In order to use these files, the portable computer was operated in a multi-window configuration. The test data transmitted to the ground allowing the ground staff to identify the cause of the fault and provide the crew with the repair procedures and diagrams. The crew successfully repaired the system under test. The second payload investigated hand soldering and de-soldering of standard components on printed circuit (PC) boards in zero gravity. It also used a new type of intra-vehicular foot restraints which uses the neutral body posture in zero-g to provide retention of the crew without their conscious attention.

  9. Development of an Experimental Board in the Nanaosatellite CUBESAT3

    NASA Astrophysics Data System (ADS)

    Cresciucci, Laetitia

    realize a satellite platform designed based on the following requirement: CUBESAT is a cube, its size is 10x10x10 centimeters, its weight must be under 1kg and the power consumption of the whole satellite is limited to 1 Watt. The University of Arizona makes such satellites. Each side of the cube is covered with solar panels which supply the power by recharging NiCad batteries. This satellite platform is provided with a power board, witch managed the power of the solar panels, the level of the batteries and the power needed by the others boards of the satellite. In addition to this power board, the CUBESAT platform includes a controller board. The controller used is the Microchip PIC 16C77. It acquires the data for the different sensors of the satellite (temperature, battery current level, power supplied by the solar panel) and manages the communication between the different boards. This communication uses a serial bus based on the I2C communication protocol. The last board on the CUBESAT platform is the transmission board. CUBESAT can be remote controlled by a ground station, and it have to send its data to this station periodically. The transmission board includes an emitter/receiver part designed by Motorola. The wavelength used for this transmission is the amature radio band, so anyone can listen to the satellite, but a key is necessary to decode the data. a non-expensive satellite which is very interesting for experimental missions. Alcatel Space Industries bought a CUBESAT to launch a radiation experiment in orbit, and turned to the Center of Micro-opto-electronics of Montpellier (CEM2) to define and realize this experience. I, Laetitia Cresciucci, and my partner, Didier Campillo, have been contacted by the CEM2 during our final year at the Engineers Science Institute of Montpellier (ISIM), in order to work on this project. The mission chosen for the CUBESAT's payload is to measure the degradation of three components in space. is a multi-goal mission. The first component studied is an analog to digital converter, the AD670. It has been choose by Alcatel because it is used on a satellite and doesn't work properly. Many tests have been performed to determine why this component fails, and CUBESAT is the experience which can prove if those ground results correspond to the results we will obtain during the flight. The two other components on the board are a mosfet transistor, the IRF450, and an optocoupler, the SFH610A. These devices have been studied in the CEM2 with a new space degradation prediction method called the Isochronal Annealing. With CUBESAT, the CEM2 wants to show that the results obtained with this method are reliable. In order to prove that the results match the predictions, we had to include a dosimeter, which measure the amount of radiation received and a temperature sensor. If this is a success, this method could be recognized by the aerospace industry. conception. After this prototype was done, we were asked to make a space qualified board, which included the study of the environment for CUBESAT's orbit (650 km, 65° inclination),as well as the thermal study in order to justify the choices of the components which measure the degradation of the 3 devices under test. Most parts had to undergo testing to prove their reliability when exposed to space radiations. The final payload board includes the different measurements' electronics and a microcontroller that controls the tests, collects the data and communicate with the platform. The last part of our work was to perform the integration of the payload board in the CUBESAT structure. This included solving mechanical problems and programming the communication interface between our board and the satellite's control board. We spent two weeks in Arizona working on this integration, in collaboration with the American students involved in this project. Now the payload design is complete, CUBESAT is ready to fly.

  10. External Payload Carrier (XPC) - A Novel Platform for Suborbital Research

    NASA Technical Reports Server (NTRS)

    Schallhorn, Paul; Groves, Curtis; Tatro, Charles; Kutter, Bernard; Szatkowski, Gerald; Bulk, Tim; Pitchford, Brian

    2010-01-01

    ULA, SAS, and NASA LSP are examining a new platform for suborbital research utilizing the Atlas V Launch Vehicle. The new platform, XPC, fills a new niche within the suborbital realm Large Heavy Lift (approximately 1200 cubic feet, 5000 lb payload). It will not compete with the commercial suborbital launch sector. The XPC will utilize excess performance on Atlas V missions. The Preliminary Design phase is recently underway. The XPC team is soliciting input from potential users.

  11. Shuttle orbiter S-band payload communications equipment design evaluation

    NASA Technical Reports Server (NTRS)

    Springett, J. C.; Maronde, R. G.

    1979-01-01

    The analysis of the design, and the performance assessment of the Orbiter S-band communication equipment are reported. The equipment considered include: network transponder, network signal processor, FM transmitter, FM signal processor, payload interrogator, and payload signal processor.

  12. Service on demand for ISS users

    NASA Astrophysics Data System (ADS)

    Hüser, Detlev; Berg, Marco; Körtge, Nicole; Mildner, Wolfgang; Salmen, Frank; Strauch, Karsten

    2002-07-01

    Since the ISS started its operational phase, the need of logistics scenarios and solutions, supporting the utilisation of the station and its facilities, becomes increasingly important. Our contribution to this challenge is a SERVICE On DEMAND for ISS users, which offers a business friendly engineering and logistics support for the resupply of the station. Especially the utilisation by commercial and industrial users is supported and simplified by this service. Our industrial team, consisting of OHB-System and BEOS, provides experience and development support for space dedicated hard- and software elements, their transportation and operation. Furthermore, we operate as the interface between customer and the envisaged space authorities. Due to a variety of tailored service elements and the ongoing servicing, customers can concentrate on their payload content or mission objectives and don't have to deal with space-specific techniques and regulations. The SERVICE On DEMAND includes the following elements: ITR is our in-orbit platform service. ITR is a transport rack, used in the SPACEHAB logistics double module, for active and passive payloads on subrack- and drawer level of different standards. Due to its unique late access and early retrieval capability, ITR increases the flexibility concerning transport capabilities to and from the ISS. RIST is our multi-functional test facility for ISPR-based experiment drawer and locker payloads. The test program concentrates on physical and functional interface and performance testing at the payload developers site prior to the shipment to the integration and launch. The RIST service program comprises consulting, planning and engineering as well. The RIST test suitcase is planned to be available for lease or rent to users, too. AMTSS is an advanced multimedia terminal consulting service for communication with the space station scientific facilities, as part of the user home-base. This unique ISS multimedia kit combines communication technologies, software tools and hardware to provide a simple and cost-efficient access to data from the station, using the interconnection ground subnetwork. BEOLOG is our efficient ground logistics service for the transportation of payload hardware and support equipment from the user location to the launch/landing sites for the ISS service flights and back home. The main function of this service is the planning and organisation of all packaging, handling, storage & transportation tasks according to international rules. In conclusion, we offer novel service elements for logistics ground- and flight-infrastructure, dedicated for ISS users. These services can be easily adapted to the needs of users and are suitable for other μg- platforms as well.

  13. Applications of UAVs for Remote Sensing of Critical Infrastructure

    NASA Technical Reports Server (NTRS)

    Wegener, Steve; Brass, James; Schoenung, Susan

    2003-01-01

    The surveillance of critical facilities and national infrastructure such as waterways, roadways, pipelines and utilities requires advanced technological tools to provide timely, up to date information on structure status and integrity. Unmanned Aerial Vehicles (UAVs) are uniquely suited for these tasks, having large payload and long duration capabilities. UAVs also have the capability to fly dangerous and dull missions, orbiting for 24 hours over a particular area or facility providing around the clock surveillance with no personnel onboard. New UAV platforms and systems are becoming available for commercial use. High altitude platforms are being tested for use in communications, remote sensing, agriculture, forestry and disaster management. New payloads are being built and demonstrated onboard the UAVs in support of these applications. Smaller, lighter, lower power consumption imaging systems are currently being tested over coffee fields to determine yield and over fires to detect fire fronts and hotspots. Communication systems that relay video, meteorological and chemical data via satellite to users on the ground in real-time have also been demonstrated. Interest in this technology for infrastructure characterization and mapping has increased dramatically in the past year. Many of the UAV technological developments required for resource and disaster monitoring are being used for the infrastructure and facility mapping activity. This paper documents the unique contributions from NASA;s Environmental Research Aircraft and Sensor Technology (ERAST) program to these applications. ERAST is a UAV technology development effort by a consortium of private aeronautical companies and NASA. Details of demonstrations of UAV capabilities currently underway are also presented.

  14. Hermod: optical payload technology demonstrator flying on PROBA-V: overview of the payload development, testing and results after 1 year in orbit exploitation

    NASA Astrophysics Data System (ADS)

    Hernandez, S.; Blasco, J.; Henriksen, V.; Samuelsson, H.; Navasquillo, O.; Grimsgaard, M.; Mellab, K.

    2017-11-01

    Proba-V is the third mission of ESA's Programme for In-orbit Technology Demonstration (IOD), based on a small, high performance satellite platform and a compact payload. Besides, the main satellite instrument aiming at Vegetation imaging, Proba-V embarks five technological payloads providing early flight opportunities for novel instruments and space technologies. Successfully launched by the ESA VEGA launcher in May 2013, it has now completed its commissioning and the full calibration of platform, main instrument and additional payloads and is, since last October, fully operational. The High dEnsity space foRM cOnnector Demonstration or HERMOD is the last payload selected to fly on Proba-V. The payload objective is to validate through an actual launch and in orbit high-density optical fibre cable assembly, cumulate space heritage for fibre optics transmission and evaluate possible degradation induced by the space environment compared to on-ground tests. The future applications of this technology are for intrasatellite optical communications in view of mass reduction, the electrical grounding simplification and to increase the transmission rate. The project has been supported under an ESA GSTP contract. T&G Elektro (Norway) developed and tested the different optical cable assembly to be validated in the payload. The electrooptic modules, control, power and mechanical interfaces have been developed by DAS Photonics (Spain). The payload contains four optical channels to be studied through the experiment, two assemblies with MTP/PC connectors and two assemblies with MPO/APC connectors. Optical data is transmitted in the four independent channels using two optoelectronic conversion modules (SIOS) working at 100Mbps including 2 full duplex channels each. A FPGA is used to generate, receive and compare the different binary patterns. The number of errors (if any) and Bit Error Rate (BER) is sent to the satellite TM interface. HERMOD successfully went through all mechanical and environmental tests before the integration in a very limited time. The telemetry data is currently sent to ground on daily basis. All the channels have survived the launch and no BER has been measured with the exception of channel 2, currently recording a BER of 3.06*10-16, that exhibits from time to time a burst of errors due to synchronizing issues of the initial data frame. It is expected to observe during the operating life of the payload the first errors within the channel 4 which was designed on purpose with reduced power margin. This paper will present the full overview of the HERMOD technology demonstrator including the development, testing, validation activity, integration, commissioning and 1 year in-orbit exploitation results.

  15. Technical Report: Unmanned Helicopter Solution for Survey-Grade Lidar and Hyperspectral Mapping

    NASA Astrophysics Data System (ADS)

    Kaňuk, Ján; Gallay, Michal; Eck, Christoph; Zgraggen, Carlo; Dvorný, Eduard

    2018-05-01

    Recent development of light-weight unmanned airborne vehicles (UAV) and miniaturization of sensors provide new possibilities for remote sensing and high-resolution mapping. Mini-UAV platforms are emerging, but powerful UAV platforms of higher payload capacity are required to carry the sensors for survey-grade mapping. In this paper, we demonstrate a technological solution and application of two different payloads for highly accurate and detailed mapping. The unmanned airborne system (UAS) comprises a Scout B1-100 autonomously operating UAV helicopter powered by a gasoline two-stroke engine with maximum take-off weight of 75 kg. The UAV allows for integrating of up to 18 kg of a customized payload. Our technological solution comprises two types of payload completely independent of the platform. The first payload contains a VUX-1 laser scanner (Riegl, Austria) and a Sony A6000 E-Mount photo camera. The second payload integrates a hyperspectral push-broom scanner AISA Kestrel 10 (Specim, Finland). The two payloads need to be alternated if mapping with both is required. Both payloads include an inertial navigation system xNAV550 (Oxford Technical Solutions Ltd., United Kingdom), a separate data link, and a power supply unit. Such a constellation allowed for achieving high accuracy of the flight line post-processing in two test missions. The standard deviation was 0.02 m (XY) and 0.025 m (Z), respectively. The intended application of the UAS was for high-resolution mapping and monitoring of landscape dynamics (landslides, erosion, flooding, or crops growth). The legal regulations for such UAV applications in Switzerland and Slovakia are also discussed.

  16. Plastic Cubesat: An innovative and low-cost way to perform applied space research and hands-on education

    NASA Astrophysics Data System (ADS)

    Piattoni, Jacopo; Candini, Gian Paolo; Pezzi, Giulio; Santoni, Fabio; Piergentili, Fabrizio

    2012-12-01

    This paper describes the design and the manufacturing of a Cubesat platform based on a plastic structure. The Cubesat structure has been realized in plastic material (ABS) using a "rapid prototyping" technique. The "rapid prototyping" technique has several advantages including fast implementation, accuracy in manufacturing small parts and low cost. Moreover, concerning the construction of a small satellite, this technique is very useful thanks to the accuracy achievable in details, which are sometimes difficult and expensive to realize with the use of tools machine. The structure must be able to withstand the launch loads. For this reason, several simulations using an FEM simulation and an intensive vibration test campaign have been performed in the system development and test phase. To demonstrate that this structure is suitable for hosting a complete satellite system, offering innovative integrated solutions, other subsystems have been developed and assembled. Despite its small size, this single unit (1U) Cubesat has a system for active attitude control, a redundant telecommunication system, a payload camera and a photovoltaic system based on high efficiency solar cells. The developed communication subsystem has small dimensions, low power consumption and low cost. An example of the innovations introduced is the antenna system, which has been manufactured inside the ABS structure. The communication protocol which has been implemented, the AX.25 protocol, is mainly used by radio amateurs. The communication system has the capability to transmit both telemetry and data from the payload, in this case a microcamera. The attitude control subsystem is based on an active magnetic system with magnetorquers for detumbling and momentum dumping and three reaction wheels for fine control. It has a total dimension of about 50×50×50 mm. A microcontroller implements the detumbling control law autonomously taking data from integrated magnetometers and executes pointing maneuvers on the basis of commands received in real time from ground. The subsystems developed for this Cubesat have also been designed to be scaled up for larger satellites such as 2U or 3U Cubesats. The additional volume can be used for more complex payloads. Thus the satellite can be used as a low cost platform for companies, institutions or universities to test components in space.

  17. On-Board Software Reference Architecture for Payloads

    NASA Astrophysics Data System (ADS)

    Bos, Victor; Rugina, Ana; Trcka, Adam

    2016-08-01

    The goal of the On-board Software Reference Architecture for Payloads (OSRA-P) is to identify an architecture for payload software to harmonize the payload domain, to enable more reuse of common/generic payload software across different payloads and missions and to ease the integration of the payloads with the platform.To investigate the payload domain, recent and current payload instruments of European space missions have been analyzed. This led to a Payload Catalogue describing 12 payload instruments as well as a Capability Matrix listing specific characteristics of each payload. In addition, a functional decomposition of payload software was prepared which contains functionalities typically found in payload systems. The definition of OSRA-P was evaluated by case studies and a dedicated OSRA-P workshop to gather feedback from the payload community.

  18. Evolutionary space platform concept study. Volume 2, part A: SASP special emphasis trade studies

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Efforts are in progress to define an approach to provide a simple and cost effective solution to the problem of long duration space flight. This approach involves a Space Platform in low Earth orbit, which can be tended by the Space Shuttle and which will provide, for extended periods of time, stability, utilities and access for a variety of replaceable payloads. The feasibility of an evolutionary space system which would cost effectively support unmanned payloads in groups, using a Space Platform which provides centralized basic subsystems is addressed.

  19. Control system and method for payload control in mobile platform cranes

    DOEpatents

    Robinett, III, Rush D.; Groom, Kenneth N.; Feddema, John T.; Parker, Gordon G.

    2002-01-01

    A crane control system and method provides a way to generate crane commands responsive to a desired payload motion to achieve substantially pendulation-free actual payload motion. The control system and method apply a motion compensator to maintain a payload in a defined payload configuration relative to an inertial coordinate frame. The control system and method can further comprise a pendulation damper controller to reduce an amount of pendulation between a sensed payload configuration and the defined payload configuration. The control system and method can further comprise a command shaping filter to filter out a residual payload pendulation frequency from the desired payload motion.

  20. KSC-04PD-1133

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Technicians in the Orbiter Processing Facility attach a crane to Discoverys airlock before lifting it for installation. The airlock is located inside the orbiters payload bay and is sized to accommodate two fully suited flight crew members simultaneously. Support functions include airlock depressurization and repressurization, extravehicular activity equipment recharge, liquid-cooled garment water cooling, EVA equipment checkout, and communications. Discovery is designated as the Return to Flight vehicle for mission STS-114, no earlier than March 2005. STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  1. Petite Amateur Navy Satellite (PANSAT)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The subsystem and structural design of the Naval Post Graduate School's Petite Amateur Navy Satellite (PANSAT) is described. The objectives of PANSAT are: (1) to provide an ideal educational tool for officer students; (2) to provide digital store-and-forward communications, or packet radio, for the amateur radio community; and (3) to provide a low-cost space-based platform for small experiments. PANSAT will be launched from the Shuttle at a nominal altitude of 200 nmi. and an inclination of at least 37 deg. Since there is no attitude control, eight dipole whip antennas will be used to provide isotropic ground coverage for communications. FM digital communications will be used with up-link and down-link on a single frequency in the amateur band of 144 to 146 MHz or 437 to 438 MHz. The satellite's communications subsystem, data processor and sequencer, power subsystem, structure subsystem, and experiment payload are described. The major experiment being considered will test the on-orbit annealing of radiation damaged solar cells.

  2. Optical data transmission technology for fixed and drag-on STS payload umbilicals, volume 2

    NASA Technical Reports Server (NTRS)

    St.denis, R. W.

    1981-01-01

    Optical data handling methods are studied as applicable to payload communications checkout and monitoring. Both payload umbilicals and interconnecting communication lines carrying payload data are examined for the following: (1) ground checkout requirements; (2) optical approach (technical survey of optical approaches, selection of optimum approach); (3) survey and select components; (4) compare with conventional approach; and (5) definition of follow on activity.

  3. A Strategy to employ coordinated, autonomous Platforms for addressing long-term biochemical observing Tasks

    NASA Astrophysics Data System (ADS)

    Waldmann, H. C.; Montenegro, S.

    2016-02-01

    Autonomous platforms get a growing importance for ocean observing tasks in particular to enable long-term observing tasks. Employing the mobility of those platforms allows a targeted investigations of phenomena that up to now are mainly seen from satellite but are lacking detailed scrutiny. As part oft he national funded project ROBEX new operation concepts for mobile platforms are developed in particular a new type of underwater glider with larger payload capacity compared to legacy systems will be developed. First tests in the pool of a aparticular hull shape have led to a better understanding oft he hydrodynamic condition and an optomized hull design was derived from that. The WAVEGLIDER system of Liquid Robotics lends itsself to be used as a communication hub and a platform to track underwater vehicles. Therefore the combination of those systems are currently assessed in regard to a possible operation and its hard- and software implementation. A major issue ist o achieve a coordinated displacement of these completely decoupled systems. Issues on how to mitigate faulty mission runs, coping with low communication bandwidths, and ensuring adequate positioning information about the underwater glider have to be addressed. Robotic concepts known from terrestrial applications like for UAV systems are tested under the more stringent environmental conditions in ocean waters. With this combination of WAVEGLIDER and underwater glider it is planned to carry out long-term missions to investigate biochemical processes in the water column in particular to investigate the particle transport through the water column and the processes resulting from that. Concepts and first results of those tasks will be presented.

  4. Iridium: Global OTH data communications for high altitude scientific ballooning

    NASA Astrophysics Data System (ADS)

    Denney, A.

    While the scientific community is no stranger to embracing commercially available technologies, the growth and availability of truly affordable cutting edge technologies is opening the door to an entirely new means of global communications. For many years high altitude ballooning has provided science an alternative to costly satellite based experimental platforms. As with any project, evolution becomes an integral part of development. Specifically in the NSBF ballooning program, where flight durations have evolved from the earlier days of hours to several weeks and plans are underway to provide missions up to 100 days. Addressing increased flight durations, the harsh operational environment, along with cumbersome and outdated systems used on existing systems, such as the balloon vehicles Support Instrumentation Package (SIP) and ground-based systems, a new Over-The-Horizon (OTH) communications medium is sought. Current OTH equipment planning to be phased-out include: HF commanding systems, ARGOS PTT telemetry downlinks and INMARSAT data terminals. Other aspects up for review in addition to the SIP to utilize this communications medium include pathfinder balloon platforms - thereby, adding commanding abilities and increased data rates, plus providing a package for ultra-small experiments to ride aloft. Existing communication systems employed by the National Scientific Balloon Facility ballooning program have been limited not only by increased cost, slow data rates and "special government use only" services such as TDRSS (Tracking and Data Relay Satellite System), but have had to make special provisions to geographical flight location. Development of the Support Instrumentation Packages whether LDB (Long Duration Balloon), ULDB (Ultra Long Duration Balloon) or conventional ballooning have been plagued by non-standard systems configurations requiring additional support equipment for different regions and missions along with a myriad of backup for redundancy. Several beneficial points provided by the Iridium platform include pure global accessibility (as well as polar), cost effectiveness because it is available as a COTS (Commercially Off The Shelf) technology, reliability in that the equipment must operate in extreme conditions (near space), integration and development time into current systems must be minimized. As a bonus Motorola and NAL Research Corporation are developing SBD (Short Burst Data) into the Iridium network. This may lead the way to a global IP (Internet Protocol) node based ballooning platform. The Iridium satellite data modems employ the Iridium Low-Earth Orbit (LEO) satellite network. The scope of this paper is to introduce an OTH communications alternative, albeit not necessarily a primary one, to existing ballooning platforms using COTS based emerging technologies. Design aspects, characteristics, actual flight testing statistics, principles of the Iridium modems and communication paths are described including payload and support instrumentation interfacing. Not limited to high altitude ballooning, the Iridium communications platform opens a new era in remote commanding and data retrieval.

  5. Conceptual design study Science and Applications Space Platform SASP. Volume 2: Technical report

    NASA Technical Reports Server (NTRS)

    Runge, F. C.

    1980-01-01

    The platform payload accommodations, configuration drivers, and power system are described in detail. The platform design was analyzed and is presented. Demonstration tests are described and the results are reported.

  6. Vibration isolation and dual-stage actuation pointing system for space precision payloads

    NASA Astrophysics Data System (ADS)

    Kong, Yongfang; Huang, Hai

    2018-02-01

    Pointing and stability requirements for future space missions are becoming more and more stringent. This work follows the pointing control method which consists of a traditional spacecraft attitude control system and a payload active pointing loop, further proposing a vibration isolation and dual-stage actuation pointing system for space precision payloads based on a soft Stewart platform. Central to the concept is using the dual-stage actuator instead of the traditional voice coil motor single-stage actuator to improve the payload active pointing capability. Based on a specified payload, the corresponding platform was designed to be installed between the spacecraft bus and the payload. The performance of the proposed system is demonstrated by preliminary closed-loop control investigations in simulations. With the ordinary spacecraft bus, the line-of-sight pointing accuracy can be controlled to below a few milliarcseconds in tip and tilt. Meanwhile, utilizing the voice coil motor with the softening spring in parallel, which is a portion of the dual-stage actuator, the system effectively achieves low-frequency motion transmission and high-frequency vibration isolation along the other four degree-of-freedom directions.

  7. KENNEDY SPACE CENTER, FLA. - The orbiter Ku-band antenna looms large in this view of the Space Shuttle Atlantis' payload bay. Visible just past the antenna system - stowed on the starboard side of the payload bay wall - is the Orbiter Docking System (ODS), and connected to the ODS via a tunnel is the Spacehab Double Module in the aft area of the payload bay. This photograph was taken from the starboard wing platform on the fifth level of the Payload Changeout Room (PCR) at Launch Pad 39A. Work is under way in the PCR to close Atlantis' payload bay doors for flight. Atlantis currently is being targeted for liftoff on Mission STS-79, the fourth docking of the U.S. Shuttle to the Russian Space Station Mir, around Sept. 12.

    NASA Image and Video Library

    1996-08-22

    KENNEDY SPACE CENTER, FLA. - The orbiter Ku-band antenna looms large in this view of the Space Shuttle Atlantis' payload bay. Visible just past the antenna system - stowed on the starboard side of the payload bay wall - is the Orbiter Docking System (ODS), and connected to the ODS via a tunnel is the Spacehab Double Module in the aft area of the payload bay. This photograph was taken from the starboard wing platform on the fifth level of the Payload Changeout Room (PCR) at Launch Pad 39A. Work is under way in the PCR to close Atlantis' payload bay doors for flight. Atlantis currently is being targeted for liftoff on Mission STS-79, the fourth docking of the U.S. Shuttle to the Russian Space Station Mir, around Sept. 12.

  8. Optical data transmission technology for fixed and drag-on STS payloads umbilicals. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    St.denis, R. W.

    1981-01-01

    The feasibility of using optical data handling methods to transmit payload checkout and telemetry is discussed. Optical communications are superior to conventional communication systems for the following reasons: high data capacity optical channels; small and light weight optical cables; and optical signal immunity to electromagnetic interference. Task number one analyzed the ground checkout data requirements that may be expected from the payload community. Task number two selected the optical approach based on the interface requirements, the location of the interface, the amount of time required to reconfigure hardware, and the method of transporting the optical signal. Task number three surveyed and selected optical components for the two payload data link. Task number four makes a qualitative comparison of the conventional electrical communication system and the proposed optical communication system.

  9. KSC-98pc1136

    NASA Image and Video Library

    1998-09-23

    KENNEDY SPACE CENTER, FLA. -- The Hubble Space Telescope Orbiting Systems Test Platform (HOST) is lifted off its work stand in the Space Station Processing Facility before moving it to its payload canister. One of the payloads on the STS-95 mission, the HOST platform is carrying four experiments to validate components planned for installation during the third Hubble Space Telescope servicing mission and to evaluate new technologies in an Earth-orbiting environment. The STS-95 mission is scheduled to launch Oct. 29. It will carry other payloads such as the Spartan solar-observing deployable spacecraft, the International Extreme Ultraviolet Hitchhiker (IEH-3), and the SPACEHAB single module with experiments on space flight and the aging process

  10. Communication Satellite Payload Special Check out Equipment (SCOE) for Satellite Testing

    NASA Astrophysics Data System (ADS)

    Subhani, Noman

    2016-07-01

    This paper presents Payload Special Check out Equipment (SCOE) for the test and measurement of communication satellite Payload at subsystem and system level. The main emphasis of this paper is to demonstrate the principle test equipment, instruments and the payload test matrix for an automatic test control. Electrical Ground Support Equipment (EGSE)/ Special Check out Equipment (SCOE) requirements, functions and architecture for C-band and Ku-band payloads are presented in details along with their interface with satellite during different phases of satellite testing. It provides test setup, in a single rack cabinet that can easily be moved from payload assembly and integration environment to thermal vacuum chamber all the way to launch site (for pre-launch test and verification).

  11. Space Construction System Analysis. Special Emphasis Studies

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Generic concepts were analyzed to determine: (1) the maximum size of a deployable solar array which might be packaged into a single orbit payload bay; (2) the optimal overall shape of a large erectable structure for large satellite projects; (3) the optimization of electronic communication with emphasis on the number of antennas and their diameters; and (4) the number of beams, traffic growth, and projections and frequencies were found feasible to package a deployable solar array which could generate over 250 kilowatts of electrical power. Also, it was found that the linear-shaped erectable structure is better for ease of construction and installation of systems, and compares favorably on several other counts. The study of electronic communication technology indicated that proliferation of individual satellites will crowd the spectrum by the early 1990's, so that there will be a strong tendency toward a small number of communications platforms over the continental U.S.A. with many antennas and multiple spot beams.

  12. LEO to GEO (and Beyond) Transfers Using High Power Solar Electric Propulsion (HP-SEP)

    NASA Technical Reports Server (NTRS)

    Loghry, Christopher S.; Oleson, Steven R.; Woytach, Jeffrey M.; Martini, Michael C.; Smith, David A.; Fittje, James E.; Gyekenyesi, John Z.; Colozza, Anthony J.; Fincannon, James; Bogner, Aimee; hide

    2017-01-01

    Rideshare, or Multi-Payload launch configurations, are becoming more and more commonplace but access to space is only one part of the overall mission needs. The ability for payloads to achieve their target orbits or destinations can still be difficult and potentially not feasible with on-board propulsion limitations. The High Power Solar Electric Propulsion (HP-SEP) Orbital Maneuvering Vehicle (OMV) provides transfer capabilities for both large and small payload in excess of what is possible with chemical propulsion. Leveraging existing secondary payload adapter technology like the ESPA provides a platform to support Multi-Payload launch and missions. When coupled with HP-SEP, meaning greater than 30 kW system power, very large delta-V maneuvers can be accomplished. The HP-SEP OMV concept is designed to perform a Low Earth Orbit to Geosynchronous Orbit (LEO-GEO) transfer of up to six payloads each with 300kg mass. The OMV has enough capability to perform this 6 kms maneuver and have residual capacity to extend an additional transfer from GEO to Lunar orbit. This high deltaV capability is achieved using state of the art 12.5kW Hall Effect Thrusters (HET) coupled with high power roll up solar arrays. The HP-SEP OMV also provides a demonstration platform for other SEP technologies such as advanced Power Processing Units (PPU), Xenon Feed Systems (XFS), and other HET technologies. The HP-SEP OMV platform can be leveraged for other missions as well such as interplanetary science missions and applications for resilient space architectures.

  13. Space Communication and Navigation Testbed Communications Technology for Exploration

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard

    2013-01-01

    NASA developed and launched an experimental flight payload (referred to as the Space Communication and Navigation Test Bed) to investigate software defined radio, networking, and navigation technologies, operationally in the space environment. The payload consists of three software defined radios each compliant to NASAs Space Telecommunications Radio System Architecture, a common software interface description standard for software defined radios. The software defined radios are new technology developed by NASA and industry partners. The payload is externally mounted to the International Space Station truss and available to NASA, industry, and university partners to conduct experiments representative of future mission capability. Experiment operations include in-flight reconfiguration of the SDR waveform functions and payload networking software. The flight system communicates with NASAs orbiting satellite relay network, the Tracking, Data Relay Satellite System at both S-band and Ka-band and to any Earth-based compatible S-band ground station.

  14. NOAA's operational path forward: Developing the Coyote UASonde

    NASA Astrophysics Data System (ADS)

    Cione, J.; Twining, K.; Silah, M.; Brescia, T.; Kalina, E.; Farber, A.; Troudt, C.; Ghanooni, A.; Baker, B.; Dumas, E. J.; Hock, T. F.; Smith, J.; French, J.; Fairall, C. W.; deBoer, G.; Bland, G.

    2016-12-01

    Since 2009, NOAA has shown an interest in using the air-deployed Coyote Unmanned Aircraft System (UAS) for low-altitude hurricane reconnaissance. In September of 2014, NOAA conducted two successful missions into Hurricane Edouard using this innovative observing tool. Since then, NOAA has continued to invest time and resources into the Coyote platform. These efforts include plans to release up to 7 additional Coyote UAS into tropical cyclones using NOAA's P-3 Hurricane Hunter manned aircraft in 2016. A longer-term goal for this multi-institutional partnership will be to modify the existing UAS design such that the next generation platform will be capable of conducting routine observations in direct support of a wide array of NOAA operations that extend beyond hurricane surveillance. The vision for this potentially transformative platform, dubbed the Coyote UASonde, will be to heavily leverage NOAA's existing capabilities, incorporate significant upgrades to the existing payload and employ an expert navigation and data communication system that utilizes artificial intelligence. A brief summary of Coyote successes to date as well as a future roadmap that leads NOAA towards an operationally-viable Coyote UASonde will be presented.

  15. Penny Pettigrew in the Payload Operations Integration Center

    NASA Image and Video Library

    2017-11-09

    Penny Pettigrew is an International Space Station Payload Communications Manager, or PAYCOM, in the Payload Operations Integration Center at NASA's Marshall Space Flight Center in Huntsville, Alabama.

  16. Laser Communication Experiments with Artemis Satellite

    NASA Astrophysics Data System (ADS)

    Kuzkov, Sergii; Sodnik, Zoran; Kuzkov, Volodymyr

    2013-10-01

    In November 2001, the European Space Agency (ESA) established the world-first inter-satellite laser communication link between the geostationary ARTEMIS satellite and the low Earth orbiting (LEO) SPOT-4 Earth observation satellite, demonstrating data rates of 50 Mbps. In 2006, the Japanese Space Agency launched the KIRARI (OICETS) LEO satellite with a compatible laser communication terminal and bidirectional laser communication links (50 Mbps and 2 Mbps) were successfully realized between KIRARI and ARTEMIS. ESA is now developing the European Data Relay Satellite (EDRS) system, which will use laser communication technology to transmit data between the Sentinel 1 and 2 satellites in LEO to two geostationary satellites (EDRS-A and EDRS-C) at data rates of 1.8 Gbps. As the data handling capabilities of state-of-the-art telecommunication satellites in GEO increase so is the demand for the feeder-link bandwidth to be transmitted from ground. This is why there is an increasing interest in developing high bandwidth ground-to-space laser communication systems working through atmosphere. In 2002, the Main Astronomical Observatory (MAO) started the development of its own laser communication system for its 0.7m AZT-2 telescope, located in Kyiv, Ukraine. The work was supported by the National Space Agency of Ukraine and by ESA. MAO developed a highly accurate computerized tracking system for AZT-2 telescope and a compact laser communication package called LACES (Laser Atmosphere and Communication Experiments with Satellites). The LACES instrument includes a camera of the pointing and tracking subsystems, a receiver module, a laser transmitter module, a tip/tilt atmospheric turbulence compensation subsystem, a bit error rate tester module and other optical and electronic components. The principal subsystems are mounted on a platform, which is located at the Cassegrain focus of the AZT-2 telescope. All systems were tested with the laser communication payload on-board ARTEMIS and the data analysis was supported by the telemetry received from the ARTEMIS payload control centre in Redu (Belgium). Special attention was focused on the investigation of the impact of atmosphere turbulence on laser beam propagation, especially in cloudy conditions. A description of our telescope and ground based laser system as well as the experimental results will be presented.

  17. SCaN Testbed Software Development and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Kacpura, Thomas J.; Varga, Denise M.

    2012-01-01

    National Aeronautics and Space Administration (NASA) has developed an on-orbit, adaptable, Software Defined Radio (SDR)Space Telecommunications Radio System (STRS)-based testbed facility to conduct a suite of experiments to advance technologies, reduce risk, and enable future mission capabilities on the International Space Station (ISS). The SCAN Testbed Project will provide NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in the laboratory and space environment based on reconfigurable, SDR platforms and the STRS Architecture.The SDRs are a new technology for NASA, and the support infrastructure they require is different from legacy, fixed function radios. SDRs offer the ability to reconfigure on-orbit communications by changing software for new waveforms and operating systems to enable new capabilities or fix any anomalies, which was not a previous option. They are not stand alone devices, but required a new approach to effectively control them and flow data. This requires extensive software to be developed to utilize the full potential of these reconfigurable platforms. The paper focuses on development, integration and testing as related to the avionics processor system, and the software required to command, control, monitor, and interact with the SDRs, as well as the other communication payload elements. An extensive effort was required to develop the flight software and meet the NASA requirements for software quality and safety. The flight avionics must be radiation tolerant, and these processors have limited capability in comparison to terrestrial counterparts. A big challenge was that there are three SDRs onboard, and interfacing with multiple SDRs simultaneously complicatesd the effort. The effort also includes ground software, which is a key element for both the command of the payload, and displaying data created by the payload. The verification of the software was an extensive effort. The challenges of specifying a suitable test matrix with reconfigurable systems that offer numerous configurations is highlighted. Since the flight system testing requires methodical, controlled testing that limits risk, a nearly identical ground system to the on-orbit flight system was required to develop the software and write verification procedures before it was installed and tested on the flight system. The development of the SCAN testbed was an accelerated effort to meet launch constraints, and this paper discusses tradeoffs made to balance needed software functionality and still maintain the schedule. Future upgrades are discussed that optimize the avionics and allow experimenters to utilize the SCAN testbed potential.

  18. Stephanie Shelton, a payload communications manager at NASA's Ma

    NASA Image and Video Library

    2018-04-19

    Stephanie Shelton, a payload communications manager at NASA's Marshall Space Flight Center, joins NASA astronauts Joe Acaba and Mark Vande Hei for a call to the onboard crew of the International Space Station. Vande Hei and Acaba visited Marshall April 11 for their honorary Expedition 54 plaque hanging ceremony and to provide valuable feedback of their on-orbit science investigations with the Payload Operations and Integration Center team..

  19. Space-Based Reconfigurable Software Defined Radio Test Bed Aboard International Space Station

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Lux, James P.

    2014-01-01

    The National Aeronautical and Space Administration (NASA) recently launched a new software defined radio research test bed to the International Space Station. The test bed, sponsored by the Space Communications and Navigation (SCaN) Office within NASA is referred to as the SCaN Testbed. The SCaN Testbed is a highly capable communications system, composed of three software defined radios, integrated into a flight system, and mounted to the truss of the International Space Station. Software defined radios offer the future promise of in-flight reconfigurability, autonomy, and eventually cognitive operation. The adoption of software defined radios offers space missions a new way to develop and operate space transceivers for communications and navigation. Reconfigurable or software defined radios with communications and navigation functions implemented in software or VHDL (Very High Speed Hardware Description Language) provide the capability to change the functionality of the radio during development or after launch. The ability to change the operating characteristics of a radio through software once deployed to space offers the flexibility to adapt to new science opportunities, recover from anomalies within the science payload or communication system, and potentially reduce development cost and risk by adapting generic space platforms to meet specific mission requirements. The software defined radios on the SCaN Testbed are each compliant to NASA's Space Telecommunications Radio System (STRS) Architecture. The STRS Architecture is an open, non-proprietary architecture that defines interfaces for the connections between radio components. It provides an operating environment to abstract the communication waveform application from the underlying platform specific hardware such as digital-to-analog converters, analog-to-digital converters, oscillators, RF attenuators, automatic gain control circuits, FPGAs, general-purpose processors, etc. and the interconnections among different radio components.

  20. Space Shuttle UHF Communications Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.; Loh, Yin-Chung; Kroll, Quin D.; Sham, Catherine C.

    2004-01-01

    An extension boom is to be installed on the starboard side of the Space Shuttle Orbiter (SSO) payload bay for thermal tile inspection and repairing. As a result, the Space Shuttle payload bay Ultra High Frequency (UHF) antenna will be under the boom. This study is to evaluate the Space Shuttle UHF communication performance for antenna at a suitable new location. To insure the RF coverage performance at proposed new locations, the link margin between the UHF payload bay antenna and Extravehicular Activity (EVA) Astronauts at a range distance of 160 meters from the payload bay antenna was analyzed. The communication performance between Space Shuttle Orbiter and International Space Station (SSO-ISS) during rendezvous was also investigated. The multipath effects from payload bay structures surrounding the payload bay antenna were analyzed. The computer simulation tool based on the Geometrical Theory of Diffraction method (GTD) was used to compute the signal strengths. The total field strength was obtained by summing the direct fields from the antennas and the reflected and diffracted fields from the surrounding structures. The computed signal strengths were compared to the signal strength corresponding to the 0 dB link margin. Based on the results obtained in this study, RF coverage for SSO-EVA and SSO- ISS communication links was determined for the proposed payload bay antenna UHF locations. The RF radiation to the Orbiter Docking System (ODS) pyros, the payload bay avionics, and the Shuttle Remote Manipulator System (SRMS) from the new proposed UHF antenna location was also investigated to ensure the EMC/EMI compliances.

  1. Low-cost space flight for attached payloads

    NASA Astrophysics Data System (ADS)

    Perkins, Frederick W.

    1991-07-01

    An important addition to the emerging commercial space sector is Standard Space Platforms Corporation's comprehensive low-cost flight service delivery system for small and developmental payloads. Standard provides a privately funded, proprietary, value-added transportation service which dramatically reduces cost and program duration for compliant payloads. It also provides a business-to-business service which is compatible with business investment decision timing and technology development cycles.

  2. Broad Area Wireless Networking Via High Altitude Platforms

    DTIC Science & Technology

    2013-06-01

    35  Figure 12.  Sprint WiMAX handset. From [24...altitude of 21K meters , a payload capacity of 100 kg, and 1000 watts of onboard power for payload requirements. They also developed a series of...providing 24-hour coverage. The balloons are launched with a recoverable payload and operated at an altitude of 24K–30K meters to provide a coverage area

  3. Space Station as a Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Folley, Adrienne; Scheib, Jim

    1995-01-01

    There is need for a space platform for experiments investigating long duration exposure to space. This platform should be maintainable in the event of a malfunction, and experiments should be easily recoverable for analysis on Earth. The International Space Station provides such a platform. The current Space Station configuration has six external experiment attachment sites, providing utilities and data support distributed along the external truss. There are also other sites that could potentially support long duration exposure experiments. This paper describes the resources provided to payloads at these sites, and cites examples of integration of proposed long duration exposure experiments on these sites. The environments to which external attached payloads will be exposed are summarized.

  4. 14 CFR 415.55 - Classes of payloads.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... may review and issue findings regarding a proposed class of payload, e.g., communications, remote sensing or navigation. However, each payload is subject to compliance monitoring by the FAA before launch...

  5. 14 CFR 415.55 - Classes of payloads.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... may review and issue findings regarding a proposed class of payload, e.g., communications, remote sensing or navigation. However, each payload is subject to compliance monitoring by the FAA before launch...

  6. 14 CFR 415.55 - Classes of payloads.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... may review and issue findings regarding a proposed class of payload, e.g., communications, remote sensing or navigation. However, each payload is subject to compliance monitoring by the FAA before launch...

  7. 14 CFR 415.55 - Classes of payloads.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... may review and issue findings regarding a proposed class of payload, e.g., communications, remote sensing or navigation. However, each payload is subject to compliance monitoring by the FAA before launch...

  8. 14 CFR 415.55 - Classes of payloads.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... may review and issue findings regarding a proposed class of payload, e.g., communications, remote sensing or navigation. However, each payload is subject to compliance monitoring by the FAA before launch...

  9. Predicted Performance of a Thrust-Enhanced SR-71 Aircraft with an External Payload

    NASA Technical Reports Server (NTRS)

    Conners, Timothy R.

    1997-01-01

    NASA Dryden Flight Research Center has completed a preliminary performance analysis of the SR-71 aircraft for use as a launch platform for high-speed research vehicles and for carrying captive experimental packages to high altitude and Mach number conditions. Externally mounted research platforms can significantly increase drag, limiting test time and, in extreme cases, prohibiting penetration through the high-drag, transonic flight regime. To provide supplemental SR-71 acceleration, methods have been developed that could increase the thrust of the J58 turbojet engines. These methods include temperature and speed increases and augmentor nitrous oxide injection. The thrust-enhanced engines would allow the SR-71 aircraft to carry higher drag research platforms than it could without enhancement. This paper presents predicted SR-71 performance with and without enhanced engines. A modified climb-dive technique is shown to reduce fuel consumption when flying through the transonic flight regime with a large external payload. Estimates are included of the maximum platform drag profiles with which the aircraft could still complete a high-speed research mission. In this case, enhancement was found to increase the SR-71 payload drag capability by 25 percent. The thrust enhancement techniques and performance prediction methodology are described.

  10. An Autonomous, Low Cost Platform for Seafloor Geodetic Observations

    NASA Astrophysics Data System (ADS)

    Ericksen, T.; Foster, J. H.; Bingham, B. S.; Oshiro, J.

    2014-12-01

    The Pacific GPS Facility and the Field Robotics Laboratory at the University of Hawaii have developed an approach to significantly reduce costs below ship based methods of accurately measuring short-term vertical motions of the seafloor and maintaining a continuous long-term record of seafloor pressure. Our goal has been to reduce the primary barrier preventing us from acquiring the observations we need to understand geodetic processes, and the hazards they present, at subduction zones, submarine volcanoes, and subsea landslides. To this end, we have designed a payload package for one of the University of Hawaii Wave Gliders which incorporates an acoustic telemetry package, a dual frequency geodetic-grade Global Positioning System (GPS) receiver, meteorological sensors, processing computer, and cellular communications. The Wave Glider will interrogate high accuracy pressure sensors on the seafloor to maintain a near-continuous stream of pressure and temperature data. The seafloor geodetic monument seats a sensor capable of recording pressure, temperature, and sound velocity for a deployment duration of over 5 years with an acoustic modem for communications, and an integral acoustic release for recovery and replacement of batteries. The design of the geodetic monument allows for precise repositioning of the sensor to extend the pressure record beyond a single 5+ year deployment, and includes the capability to install a mobile pressure recorder for calibration of the linear drift of the continuous pressure sensor. We will present the design of the Wave Glider payload and seafloor geodetic monument, as well as a discussion of nearshore and offshore field tests and operational procedures. An assessment of our ability to determine cm-scale vertical seafloor motions will be made by integrating the seafloor pressure measurements recovered during field testing with independent measurements of sea surface pressure and sea surface height made by the sea surface payload.

  11. Space Station accommodation of attached payloads

    NASA Technical Reports Server (NTRS)

    Browning, Ronald K.; Gervin, Janette C.

    1987-01-01

    The Attached Payload Accommodation Equipment (APAE), which provides the structure to attach payloads to the Space Station truss assembly, to access Space Station resources, and to orient payloads relative to specified targets, is described. The main subelements of the APAE include a station interface adapter, payload interface adapter, subsystem support module, contamination monitoring system, payload pointing system, and attitude determination system. These components can be combined to provide accommodations for small single payloads, small multiple payloads, large self-supported payloads, carrier-mounted payloads, and articulated payloads. The discussion also covers the power, thermal, and data/communications subsystems and operations.

  12. Telescience Resource Kit (TReK)

    NASA Technical Reports Server (NTRS)

    Lippincott, Jeff

    2015-01-01

    Telescience Resource Kit (TReK) is one of the Huntsville Operations Support Center (HOSC) remote operations solutions. It can be used to monitor and control International Space Station (ISS) payloads from anywhere in the world. It is comprised of a suite of software applications and libraries that provide generic data system capabilities and access to HOSC services. The TReK Software has been operational since 2000. A new cross-platform version of TReK is under development. The new software is being released in phases during the 2014-2016 timeframe. The TReK Release 3.x series of software is the original TReK software that has been operational since 2000. This software runs on Windows. It contains capabilities to support traditional telemetry and commanding using CCSDS (Consultative Committee for Space Data Systems) packets. The TReK Release 4.x series of software is the new cross platform software. It runs on Windows and Linux. The new TReK software will support communication using standard IP protocols and traditional telemetry and commanding. All the software listed above is compatible and can be installed and run together on Windows. The new TReK software contains a suite of software that can be used by payload developers on the ground and onboard (TReK Toolkit). TReK Toolkit is a suite of lightweight libraries and utility applications for use onboard and on the ground. TReK Desktop is the full suite of TReK software -most useful on the ground. When TReK Desktop is released, the TReK installation program will provide the option to choose just the TReK Toolkit portion of the software or the full TReK Desktop suite. The ISS program is providing the TReK Toolkit software as a generic flight software capability offered as a standard service to payloads. TReK Software Verification was conducted during the April/May 2015 timeframe. Payload teams using the TReK software onboard can reference the TReK software verification. TReK will be demonstrated on-orbit running on an ISS provided T61p laptop. Target Timeframe: September 2015 -2016. The on-orbit demonstration will collect benchmark metrics, and will be used in the future to provide live demonstrations during ISS Payload Conferences. Benchmark metrics and demonstrations will address the protocols described in SSP 52050-0047 Ku Forward section 3.3.7. (Associated term: CCSDS File Delivery Protocol (CFDP)).

  13. 40-Gbps optical backbone network deep packet inspection based on FPGA

    NASA Astrophysics Data System (ADS)

    Zuo, Yuan; Huang, Zhiping; Su, Shaojing

    2014-11-01

    In the era of information, the big data, which contains huge information, brings about some problems, such as high speed transmission, storage and real-time analysis and process. As the important media for data transmission, the Internet is the significant part for big data processing research. With the large-scale usage of the Internet, the data streaming of network is increasing rapidly. The speed level in the main fiber optic communication of the present has reached 40Gbps, even 100Gbps, therefore data on the optical backbone network shows some features of massive data. Generally, data services are provided via IP packets on the optical backbone network, which is constituted with SDH (Synchronous Digital Hierarchy). Hence this method that IP packets are directly mapped into SDH payload is named POS (Packet over SDH) technology. Aiming at the problems of real time process of high speed massive data, this paper designs a process system platform based on ATCA for 40Gbps POS signal data stream recognition and packet content capture, which employs the FPGA as the CPU. This platform offers pre-processing of clustering algorithms, service traffic identification and data mining for the following big data storage and analysis with high efficiency. Also, the operational procedure is proposed in this paper. Four channels of 10Gbps POS signal decomposed by the analysis module, which chooses FPGA as the kernel, are inputted to the flow classification module and the pattern matching component based on TCAM. Based on the properties of the length of payload and net flows, buffer management is added to the platform to keep the key flow information. According to data stream analysis, DPI (deep packet inspection) and flow balance distribute, the signal is transmitted to the backend machine through the giga Ethernet ports on back board. Practice shows that the proposed platform is superior to the traditional applications based on ASIC and NP.

  14. The Case for GEO Hosted SSA Payloads

    NASA Astrophysics Data System (ADS)

    Welsch, C.; Armand, B.; Repp, M.; Robinson, A.

    2014-09-01

    Space situational awareness (SSA) in the geosynchronous earth orbit (GEO) belt presents unique challenges, and given the national importance and high value of GEO satellites, is increasingly critical as space becomes more congested and contested. Space situational awareness capabilities can serve as an effective deterrent against potential adversaries if they provide accurate, timely, and persistent information and are resilient to the threat environment. This paper will demonstrate how simple optical SSA payloads hosted on GEO commercial and government satellites can complement the SSA mission and data provided by Space-Based Space Surveillance (SBSS) and the Geosynchronous Space Situational Awareness Program (GSSAP). GSSAP is built by Orbital Sciences Corporation and launched on July 28, 2014. Analysis performed for this paper will show how GEO hosted SSA payloads, working in combination with SBSS and GSSAP, can increase persistence and timely coverage of high value assets in the GEO belt. The potential to further increase GEO object identification and tracking accuracy by integrating SSA data from multiple sources across different viewing angles including GEO hosted SSA sources will be addressed. Hosting SSA payloads on GEO platforms also increases SSA mission architecture resiliency as the sensors are by distributed across multiple platforms including commercial platforms. This distributed architecture presents a challenging target for an adversary to attempt to degrade or disable. We will present a viable concept of operations to show how data from hosted SSA sensors could be integrated with SBSS and GSSAP data to present a comprehensive and more accurate data set to users. Lastly, we will present an acquisition approach using commercial practices and building on lessons learned from the Commercially Hosted Infra Red Payload CHIRP to demonstrate the affordability of GEO hosted SSA payloads.

  15. High Resolution Airborne Laser Scanning and Hyperspectral Imaging with a Small Uav Platform

    NASA Astrophysics Data System (ADS)

    Gallay, Michal; Eck, Christoph; Zgraggen, Carlo; Kaňuk, Ján; Dvorný, Eduard

    2016-06-01

    The capabilities of unmanned airborne systems (UAS) have become diverse with the recent development of lightweight remote sensing instruments. In this paper, we demonstrate our custom integration of the state-of-the-art technologies within an unmanned aerial platform capable of high-resolution and high-accuracy laser scanning, hyperspectral imaging, and photographic imaging. The technological solution comprises the latest development of a completely autonomous, unmanned helicopter by Aeroscout, the Scout B1-100 UAV helicopter. The helicopter is powered by a gasoline two-stroke engine and it allows for integrating 18 kg of a customized payload unit. The whole system is modular providing flexibility of payload options, which comprises the main advantage of the UAS. The UAS integrates two kinds of payloads which can be altered. Both payloads integrate a GPS/IMU with a dual GPS antenna configuration provided by OXTS for accurate navigation and position measurements during the data acquisition. The first payload comprises a VUX-1 laser scanner by RIEGL and a Sony A6000 E-Mount photo camera. The second payload for hyperspectral scanning integrates a push-broom imager AISA KESTREL 10 by SPECIM. The UAS was designed for research of various aspects of landscape dynamics (landslides, erosion, flooding, or phenology) in high spectral and spatial resolution.

  16. A Cubesat Payload for Exoplanet Detection

    PubMed Central

    Iuzzolino, Marcella; Accardo, Domenico; Rufino, Giancarlo; Oliva, Ernesto; Tozzi, Andrea; Schipani, Pietro

    2017-01-01

    The search for undiscovered planets outside the solar system is a scientific topic that is rapidly spreading into the astrophysical and engineering communities. In this framework, the design of an innovative payload to detect exoplanets from a nano-sized space platform, like a 3U cubesat, is presented. The selected detection method is photometric transit, and the payload aims to detect flux decrements down to ~0.01% with a precision of 12 ppm. The payload design is also aimed at false positive recognition. The solution consists of a four-facets pyramid on the top of the payload, to allow for measurement redundancy and low-resolution spectral dispersion of the star images. The innovative concept is the use of a small and cheap platform for a relevant astronomical mission. The faintest observable target star has V-magnitude equal to 3.38. Despite missions aimed at ultra-precise photometry from microsatellites (e.g., MOST, BRITE), the transit of exoplanets orbiting very bright stars has not yet been surveyed photometrically from space, since any observation from a small/medium sized (30 cm optical aperture) telescope would saturate the detector. This cubesat mission can provide these missing measurements. This work is set up as a demonstrative project to verify the feasibility of the payload concept. PMID:28257111

  17. A Cubesat Payload for Exoplanet Detection.

    PubMed

    Iuzzolino, Marcella; Accardo, Domenico; Rufino, Giancarlo; Oliva, Ernesto; Tozzi, Andrea; Schipani, Pietro

    2017-03-02

    The search for undiscovered planets outside the solar system is a scientific topic that is rapidly spreading into the astrophysical and engineering communities. In this framework, the design of an innovative payload to detect exoplanets from a nano-sized space platform, like a 3U cubesat, is presented. The selected detection method is photometric transit, and the payload aims to detect flux decrements down to ~0.01% with a precision of 12 ppm. The payload design is also aimed at false positive recognition. The solution consists of a four-facets pyramid on the top of the payload, to allow for measurement redundancy and low-resolution spectral dispersion of the star images. The innovative concept is the use of a small and cheap platform for a relevant astronomical mission. The faintest observable target star has V-magnitude equal to 3.38. Despite missions aimed at ultra-precise photometry from microsatellites (e.g., MOST, BRITE), the transit of exoplanets orbiting very bright stars has not yet been surveyed photometrically from space, since any observation from a small/medium sized (30 cm optical aperture) telescope would saturate the detector. This cubesat mission can provide these missing measurements. This work is set up as a demonstrative project to verify the feasibility of the payload concept.

  18. A Cubesat Payload for Exoplanet Detection

    NASA Astrophysics Data System (ADS)

    Iuzzolino, M.; Accardo, D.; Rufino, G.; Oliva, E.; Tozzi, A.; Schipani, P.

    2017-03-01

    The search for undiscovered planets outside the solar system is a scientific topic that is rapidly spreading into the astrophysical and engineering communities. In this framework, the design of an innovative payload to detect exoplanets from a nano-sized space platform, like a 3U cubesat, is presented. The selected detection method is photometric transit, and the payload aims to detect flux decrements down to 0.01% with a precision of 12 ppm. The payload design is also aimed at false positive recognition. The solution consists of a four-facets pyramid on the top of the payload, to allow for measurement redundancy and low-resolution spectral dispersion of the star images. The innovative concept is the use of a small and cheap platform for a relevant astronomical mission. The faintest observable target star has V-magnitude equal to 3.38. Despite missions aimed at ultra-precise photometry from microsatellites (e.g., MOST, BRITE), the transit of exoplanets orbiting very bright stars has not yet been surveyed photometrically from space, since any observation from a small/medium sized (30 cm optical aperture) telescope would saturate the detector. This cubesat mission can provide these missing measurements. This work is set up as a demonstrative project to verify the feasibility of the payload concept.

  19. The use of accelerated radiation testing for avionics

    NASA Astrophysics Data System (ADS)

    Quinn, Heather

    2013-04-01

    In recent years, the use of unmanned aerial vehicles (UAVs) for military and national security applications has been increasing. One possible use of these vehicles is as remote sensing platforms, where the UAV carries several sensors to provide real-time information about biological, chemical or radiological agents that might have been released into the environment. One such UAV, the Global Hawk, has a payload space that can carry nearly one ton of sensing equipment, which makes these platforms significantly larger than many satellites. Given the size of the potential payload and the heightened radiation environment at high altitudes, these systems could be affected by the radiation-induced failure mechanisms from the naturally occurring terrestrial environment. In this paper, we will explore the use of accelerated radiation testing to prepare UAV payloads for deployment.

  20. Space Communication and Navigation SDR Testbed, Overview and Opportunity for Experiments

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.

    2013-01-01

    NASA has developed an experimental flight payload (referred to as the Space Communication and Navigation (SCAN) Test Bed) to investigate software defined radio (SDR) communications, networking, and navigation technologies, operationally in the space environment. The payload consists of three software defined radios each compliant to NASAs Space Telecommunications Radio System Architecture, a common software interface description standard for software defined radios. The software defined radios are new technology developments underway by NASA and industry partners launched in 2012. The payload is externally mounted to the International Space Station truss to conduct experiments representative of future mission capability. Experiment operations include in-flight reconfiguration of the SDR waveform functions and payload networking software. The flight system will communicate with NASAs orbiting satellite relay network, the Tracking and Data Relay Satellite System at both S-band and Ka-band and to any Earth-based compatible S-band ground station. The system is available for experiments by industry, academia, and other government agencies to participate in the SDR technology assessments and standards advancements.

  1. Shuttle Ku-band and S-band communications implementations study

    NASA Technical Reports Server (NTRS)

    Huth, G. K.; Nessibou, T.; Nilsen, P. W.; Simon, M. K.; Weber, C. L.

    1979-01-01

    The interfaces between the Ku-band system and the TDRSS, between the S-band system and the TDRSS, GSTDN and SGLS networks, and between the S-band payload communication equipment and the other Orbiter avionic equipment were investigated. The principal activities reported are: (1) performance analysis of the payload narrowband bent-pipe through the Ku-band communication system; (2) performance evaluation of the TDRSS user constraints placed on the S-band and Ku-band communication systems; (3) assessment of the shuttle-unique S-band TDRSS ground station false lock susceptibility; (4) development of procedure to make S-band antenna measurements during orbital flight; (5) development of procedure to make RFI measurements during orbital flight to assess the performance degradation to the TDRSS S-band communication link; and (6) analysis of the payload interface integration problem areas.

  2. High-Rate Communications Outage Recorder Operations for Optimal Payload and Science Telemetry Management Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Shell, Michael T.; McElyea, Richard M. (Technical Monitor)

    2002-01-01

    All International Space Station (ISS) Ku-band telemetry transmits through the High-Rate Communications Outage Recorder (HCOR). The HCOR provides the recording and playback capability for all payload, science, and International Partner data streams transmitting through NASA's Ku-band antenna system. The HCOR is a solid-state memory recorder that provides recording capability to record all eight ISS high-rate data during ISS Loss-of-Signal periods. NASA payloads in the Destiny module are prime users of the HCOR; however, NASDA and ESA will also utilize the HCOR for data capture and playback of their high data rate links from the Kibo and Columbus modules. Marshall Space Flight Center's Payload Operations Integration Center manages the HCOR for nominal functions, including system configurations and playback operations. The purpose of this paper is to present the nominal operations plan for the HCOR and the plans for handling contingency operations affecting payload operations. In addition, the paper will address HCOR operation limitations and the expected effects on payload operations. The HCOR is manifested for ISS delivery on flight 9A with the HCOR backup manifested on flight 11A. The HCOR replaces the Medium-Rate Communications Outage Recorder (MCOR), which has supported payloads since flight 5A.1.

  3. An integrated Ka/Ku-band payload for personal, mobile and private business communications

    NASA Technical Reports Server (NTRS)

    Hayes, Edward J.; Keelty, J. Malcolm

    1991-01-01

    The Canadian Department of Communications has been studying options for a government-sponsored demonstration payload to be launched before the end of the century. A summary of the proposed system concepts and network architectures for providing an advanced private business network service at Ku-band and personal and mobile communications at Ka-band is presented. The system aspects addressed include coverage patterns, traffic capacity, and grade of service, multiple access options as well as special problems, such as Doppler in mobile applications. Earth terminal types and the advanced payload concept proposed in a feasibility study for the demonstration mission are described. This concept is a combined Ka-band/Ku-band payload which incorporates a number of advanced satellite technologies including a group demodulator to convert single-channel-per-carrier frequency division multiple access uplink signals to a time division multiplex downlink, on-board signal regeneration, and baseband switching to support packet switched data operation. The on-board processing capability of the payload provides a hubless VSAT architecture which permits single-hop full mesh interconnectivity. The Ka-band and Ku-band portions of the payload are fully integrated through an on-board switch, thereby providing the capability for fully integrated services, such as using the Ku-band VSAT terminals as gateway stations for the Ka-band personal and mobile communications services.

  4. Integrating International Space Station payload operations

    NASA Technical Reports Server (NTRS)

    Noneman, Steven R.

    1996-01-01

    The payload operations support for the International Space Station (ISS) payload is reported on, describing payload activity planning, payload operations control, payload data management and overall operations integration. The operations concept employed is based on the distribution of the payload operations responsibility between the researchers and ISS partners. The long duration nature of the ISS mission dictates the geographical distribution of the payload operations activities between the different national centers. The coordination and integration of these operations will be assured by NASA's Payload Operations Integration Center (POIC). The prime objective of the POIC is the achievement of unified operations through communication and collaboration.

  5. Modeling and control of flexible space platforms with articulated payloads

    NASA Technical Reports Server (NTRS)

    Graves, Philip C.; Joshi, Suresh M.

    1989-01-01

    The first steps in developing a methodology for spacecraft control-structure interaction (CSI) optimization are identification and classification of anticipated missions, and the development of tractable mathematical models in each mission class. A mathematical model of a generic large flexible space platform (LFSP) with multiple independently pointed rigid payloads is considered. The objective is not to develop a general purpose numerical simulation, but rather to develop an analytically tractable mathematical model of such composite systems. The equations of motion for a single payload case are derived, and are linearized about zero steady-state. The resulting model is then extended to include multiple rigid payloads, yielding the desired analytical form. The mathematical models developed clearly show the internal inertial/elastic couplings, and are therefore suitable for analytical and numerical studies. A simple decentralized control law is proposed for fine pointing the payloads and LFSP attitude control, and simulation results are presented for an example problem. The decentralized controller is shown to be adequate for the example problem chosen, but does not, in general, guarantee stability. A centralized dissipative controller is then proposed, requiring a symmetric form of the composite system equations. Such a controller guarantees robust closed loop stability despite unmodeled elastic dynamics and parameter uncertainties.

  6. Development of deployable structures for large space platform systems, part 1

    NASA Technical Reports Server (NTRS)

    Cox, R. L.; Nelson, R. A.

    1982-01-01

    Eight deployable platform design objectives were established: autodeploy/retract; fully integrated utilities; configuration variability; versatile payload and subsystem interfaces; structural and packing efficiency; 1986 technology readiness; minimum EVA/RMS; and Shuttle operational compatibility.

  7. The space shuttle payload planning working groups. Volume 6: Communications and navigation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The findings of the Communications and Navigation working group of the space shuttle payload planning activity are presented. The basic goals to be accomplished are to increase the use of space systems and to develop new space capabilities for providing communication and navigation services to the user community in the 1980 time period. Specific experiments to be conducted for improving space communication and navigation capabilities are defined. The characteristics of the experimental equipment required to accomplish the mission are discussed.

  8. On the capabilities and limitations of high altitude pseudo-satellites

    NASA Astrophysics Data System (ADS)

    Gonzalo, Jesús; López, Deibi; Domínguez, Diego; García, Adrián; Escapa, Alberto

    2018-04-01

    The idea of self-sustaining air vehicles that excited engineers in the seventies has nowadays become a reality as proved by several initiatives worldwide. High altitude platforms, or Pseudo-satellites (HAPS), are unmanned vehicles that take advantage of weak stratospheric winds and solar energy to operate without interfering with current commercial aviation and with enough endurance to provide long-term services as satellites do. Target applications are communications, Earth observation, positioning and science among others. This paper reviews the major characteristics of stratospheric flight, where airplanes and airships will compete for best performance. The careful analysis of involved technologies and their trends allow budget models to shed light on the capabilities and limitations of each solution. Aerodynamics and aerostatics, structures and materials, propulsion, energy management, thermal control, flight management and ground infrastructures are the critical elements revisited to assess current status and expected short-term evolutions. Stratospheric airplanes require very light wing loading, which has been demonstrated to be feasible but currently limits their payload mass to few tenths of kilograms. On the other hand, airships need to be large and operationally complex but their potential to hover carrying hundreds of kilograms with reasonable power supply make them true pseudo-satellites with enormous commercial interest. This paper provides useful information on the relative importance of the technology evolutions, as well as on the selection of the proper platform for each application or set of payload requirements. The authors envisage prompt availability of both types of HAPS, aerodynamic and aerostatic, providing unprecedented services.

  9. Payload/GSE/data system interface: Users guide for the VPF (Vertical Processing Facility)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Payload/GSE/data system interface users guide for the Vertical Processing Facility is presented. The purpose of the document is three fold. First, the simulated Payload and Ground Support Equipment (GSE) Data System Interface, which is also known as the payload T-0 (T-Zero) System is described. This simulated system is located with the Cargo Integration Test Equipment (CITE) in the Vertical Processing Facility (VPF) that is located in the KSC Industrial Area. The actual Payload T-0 System consists of the Orbiter, Mobile Launch Platforms (MLPs), and Launch Complex (LC) 39A and B. This is referred to as the Pad Payload T-0 System (Refer to KSC-DL-116 for Pad Payload T-0 System description). Secondly, information is provided to the payload customer of differences between this simulated system and the actual system. Thirdly, a reference guide of the VPF Payload T-0 System for both KSC and payload customer personnel is provided.

  10. Passive vibration isolation of reaction wheel disturbances using a low frequency flexible space platform

    NASA Astrophysics Data System (ADS)

    Kamesh, D.; Pandiyan, R.; Ghosal, Ashitava

    2012-03-01

    Reaction wheel assemblies (RWAs) are momentum exchange devices used in fine pointing control of spacecrafts. Even though the spinning rotor of the reaction wheel is precisely balanced to minimize emitted vibration due to static and dynamic imbalances, precision instrument payloads placed in the neighborhood can always be severely impacted by residual vibration forces emitted by reaction wheel assemblies. The reduction of the vibration level at sensitive payloads can be achieved by placing the RWA on appropriate mountings. A low frequency flexible space platform consisting of folded continuous beams has been designed to serve as a mount for isolating a disturbance source in precision payloads equipped spacecrafts. Analytical and experimental investigations have been carried out to test the usefulness of the low frequency flexible platform as a vibration isolator for RWAs. Measurements and tests have been conducted at varying wheel speeds, to quantify and characterize the amount of isolation obtained from the reaction wheel generated vibration. These tests are further extended to other variants of similar design in order to bring out the best isolation for given disturbance loads. Both time and frequency domain analysis of test data show that the flexible beam platform as a mount for reaction wheels is quite effective and can be used in spacecrafts for passive vibration control.

  11. Space Station Freedom Data Assessment Study

    NASA Technical Reports Server (NTRS)

    Johnson, Anngienetta R.; Deskevich, Joseph

    1990-01-01

    The SSF Data Assessment Study was initiated to identify payload and operations data requirements to be supported in the Space Station era. To initiate the study payload requirements from the projected SSF user community were obtained utilizing an electronic questionnaire. The results of the questionnaire were incorporated in a personal computer compatible database used for mission scheduling and end-to-end communications analyses. This paper discusses data flow paths and associated latencies, communications bottlenecks, resource needs versus availability, payload scheduling 'warning flags' and payload data loading requirements for each major milestone in the Space Station buildup sequence. This paper also presents the statistical and analytical assessments produced using the data base, an experiment scheduling program, and a Space Station unique end-to-end simulation model. The modeling concepts and simulation methodologies presented in this paper provide a foundation for forecasting communication requirements and identifying modeling tools to be used in the SSF Tactical Operations Planning (TOP) process.

  12. Control and Non-Payload Communications (CNPC) Prototype Radio - Generation 2 Security Architecture Lab Test Report

    NASA Technical Reports Server (NTRS)

    Iannicca, Dennis C.; McKim, James H.; Stewart, David H.; Thadhani, Suresh K.; Young, Daniel P.

    2015-01-01

    NASA Glenn Research Center, in cooperation with Rockwell Collins, is working to develop a prototype Control and Non-Payload Communications (CNPC) radio platform as part of NASA Integrated Systems Research Program's (ISRP) Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) project. A primary focus of the project is to work with the FAA and industry standards bodies to build and demonstrate a safe, secure, and efficient CNPC architecture that can be used by industry to evaluate the feasibility of deploying a system using these technologies in an operational capacity. GRC has been working in conjunction with these groups to assess threats, identify security requirements, and to develop a system of standards-based security controls that can be applied to the current GRC prototype CNPC architecture as a demonstration platform. The security controls were integrated into a lab test bed mock-up of the Mobile IPv6 architecture currently being used for NASA flight testing, and a series of network tests were conducted to evaluate the security overhead of the controls compared to the baseline CNPC link without any security. The aim of testing was to evaluate the performance impact of the additional security control overhead when added to the Mobile IPv6 architecture in various modes of operation. The statistics collected included packet captures at points along the path to gauge packet size as the sample data traversed the CNPC network, round trip latency, jitter, and throughput. The effort involved a series of tests of the baseline link, a link with Robust Header Compression (ROHC) and without security controls, a link with security controls and without ROHC, and finally a link with both ROHC and security controls enabled. The effort demonstrated that ROHC is both desirable and necessary to offset the additional expected overhead of applying security controls to the CNPC link.

  13. An Evaluation of Protocols for UAV Science Applications

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Stewart, David E.; Sullivan, Donald V.; Finch, Patrick E.

    2012-01-01

    This paper identifies data transport needs for current and future science payloads deployed on the NASA Global Hawk Unmanned Aeronautical Vehicle (UAV). The NASA Global Hawk communication system and operational constrains are presented. The Genesis and Rapid Intensification Processes (GRIP) mission is used to provide the baseline communication requirements as a variety of payloads were utilized in this mission. User needs and desires are addressed. Protocols are matched to the payload needs and an evaluation of various techniques and tradeoffs are presented. Such techniques include utilization rate-base selective negative acknowledgement protocols and possible use of protocol enhancing proxies. Tradeoffs of communication architectures that address ease-of-use and security considerations are also presented.

  14. Methods and Systems for Advanced Spaceport Information Management

    NASA Technical Reports Server (NTRS)

    Fussell, Ronald M. (Inventor); Ely, Donald W. (Inventor); Meier, Gary M. (Inventor); Halpin, Paul C. (Inventor); Meade, Phillip T. (Inventor); Jacobson, Craig A. (Inventor); Blackwell-Thompson, Charlie (Inventor)

    2007-01-01

    Advanced spaceport information management methods and systems are disclosed. In one embodiment, a method includes coupling a test system to the payload and transmitting one or more test signals that emulate an anticipated condition from the test system to the payload. One or more responsive signals are received from the payload into the test system and are analyzed to determine whether one or more of the responsive signals comprises an anomalous signal. At least one of the steps of transmitting, receiving, analyzing and determining includes transmitting at least one of the test signals and the responsive signals via a communications link from a payload processing facility to a remotely located facility. In one particular embodiment, the communications link is an Internet link from a payload processing facility to a remotely located facility (e.g. a launch facility, university, etc.).

  15. Methods and systems for advanced spaceport information management

    NASA Technical Reports Server (NTRS)

    Ely, Donald W. (Inventor); Fussell, Ronald M. (Inventor); Halpin, Paul C. (Inventor); Blackwell-Thompson, Charlie (Inventor); Meier, Gary M. (Inventor); Meade, Phillip T. (Inventor); Jacobson, Craig A. (Inventor)

    2007-01-01

    Advanced spaceport information management methods and systems are disclosed. In one embodiment, a method includes coupling a test system to the payload and transmitting one or more test signals that emulate an anticipated condition from the test system to the payload. One or more responsive signals are received from the payload into the test system and are analyzed to determine whether one or more of the responsive signals comprises an anomalous signal. At least one of the steps of transmitting, receiving, analyzing and determining includes transmitting at least one of the test signals and the responsive signals via a communications link from a payload processing facility to a remotely located facility. In one particular embodiment, the communications link is an Internet link from a payload processing facility to a remotely located facility (e.g. a launch facility, university, etc.).

  16. Development and Characterization of a Small Spacecraft Electro-Optic Scanner for Free-Space Laser Communications

    NASA Technical Reports Server (NTRS)

    Davis, Scott; Lichter, Michael; Raible, Daniel

    2016-01-01

    Emergent data-intensive missions coupled with dramatic reductions in spacecraft size plus an increasing number of space-based missions necessitates new high performance, compact and low cost communications technology. Free space optical communications offer advantages including orders of magnitude increase for data rate performance, increased security, immunity to jamming and lack of frequency allocation requirements when compared with conventional radio frequency (RF) means. The spatial coherence and low divergence associated with the optical frequencies of laser communications lends themselves to superior performance, but this increased directionality also creates one of the primary technical challenges in establishing a laser communications link by repeatedly and reliably pointing the beam onto the receive aperture. Several solutions have emerged from wide angle (slow) mechanical articulation systems, fine (fast) steering mirrors and rotating prisms, inertial compensation gyros and vibration isolation cancellation systems, but each requires moving components and imparts a measured amount of burden on the host platform. The complexity, cost and size of current mechanically scanned solutions limits their platform applicability, and restricts the feasibility of deploying optical communications payloads on very compact spacecraft employing critical systems. A high speed, wide angle, non-mechanical solution is therefore desirable. The purpose of this work is to share the development, testing, and demonstration of a breadboard prototype electro-optic (EO) scanned laser-communication link (see Figure 1). This demonstration is a step toward realizing ultra-low Size, Weight and Power (SWaP) SmallSat/MicroSat EO non-mechanical laser beam steering modules for high bandwidth ( greater than Gbps) free-space data links operating in the 1550 nm wavelength bands. The elimination of all moving parts will dramatically reduce SWaP and cost, increase component lifetime and reliability, and simplify the system design of laser communication modules. This paper describes the target mission architectures and requirements (few cubic centimeters of volume, 10's of grams of weight with milliwatts of power) and design of the beam steering module. Laboratory metrology is used to determine the component performance including horizontal and vertical resolution (20urad) as a function of control voltage (see Figure 2), transition time (0.1-1ms), pointing repeatability and optic insertion loss. A test bed system demonstration, including a full laser communications link, is conducted. The capabilities of this new EO beam steerer provide an opportunity to dramatically improve space communications through increased utilization of laser technology on smaller platforms than were previously attainable.

  17. Using Paraffin PCM to Make Optical Communication Type of Payloads Thermally Self-Sufficient for Operation in Orion Crew Module

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2016-01-01

    An innovative concept of using paraffin phase change material with a melting point of 28 C to make Optical Communication type of payload thermally self-sufficient for operation in the Orion Crew Module is presented. It stores the waste heat of the payload and permits it to operate for about one hour by maintaining its temperature within the maximum operating limit. It overcomes the problem of relying on the availability of cold plate heat sink in the Orion Crew Module.

  18. Emerging technologies for communication satellite payloads

    NASA Astrophysics Data System (ADS)

    Yüceer, Mehmet

    2012-04-01

    Recent developments in payload designs will allow more flexible and efficient use of telecommunication satellites. Important modifications in repeater designs, antenna structures and spectrum policies open up exciting opportunities for GEO satellites to support a variety of emerging applications, ranging from telemedicine to real-time data transfer between LEO satellite and ground station. This study gives information about the emerging technologies in the design of communication satellites' transceiver subsystem and demonstrates the feasibility of using fiber optic links for the local oscillator distribution in future satellite payloads together with the optical inter-satellite link.

  19. DTN Implementation and Utilization Options on the International Space Station

    NASA Technical Reports Server (NTRS)

    Nichols, Kelvin; Holbrook, Mark; Pitts, Lee; Gifford, Kevin; Jenkins, Andrew; Kuzminsky, Sebastian

    2010-01-01

    This slide presentation reviews the implementation and future uses of Delay/Disruption Tolerant Networking (DTN) for space communication, using the International Space Station as the primary example. The presentation includes: (1) A brief introduction of the current communications architecture of the ISS (2) How current payload operations are handled in the non-DTN environment (3) Making the case to implement DTN into the current payload science operations model (4) Phase I DTN Operations: early implementation with BioServe's CGBA Payload (5) Phase II DTN Operations: Developing the HOSC DTN Gateway

  20. Flight Test Results from the Low Power Transceiver Communications and Navigation Demonstration on Shuttle (CANDOS)

    NASA Technical Reports Server (NTRS)

    Rush, John; Israel, David; Harlacher, Marc; Haas, Lin

    2003-01-01

    The Low Power Transceiver (LPT) is an advanced signal processing platform that offers a configurable and reprogrammable capability for supporting communications, navigation and sensor functions for mission applications ranging from spacecraft TT&C and autonomous orbit determination to sophisticated networks that use crosslinks to support communications and real-time relative navigation for formation flying. The LPT is the result of extensive collaborative research under NASNGSFC s Advanced Technology Program and ITT Industries internal research and development efforts. Its modular, multi-channel design currently enables transmitting and receiving communication signals on L- or S-band frequencies and processing GPS L-band signals for precision navigation. The LPT flew as a part of the GSFC Hitchhiker payload named Fast Reaction Experiments Enabling Science Technology And Research (FREESTAR) on-board Space Shuttle Columbia s final mission. The experiment demonstrated functionality in GPS-based navigation and orbit determination, NASA STDN Ground Network communications, space relay communications via the NASA TDRSS, on-orbit reconfiguration of the software radio, the use of the Internet Protocol (IP) for TT&C, and communication concepts for space based range safety. All data from the experiment was recovered and, as a result, all primary and secondary objectives of the experiment were successful. This paper presents the results of the LPTs maiden space flight as a part of STS- 107.

  1. NASA payload data book: Payload analysis for space shuttle applications, volume 2

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Data describing the individual NASA payloads for the space shuttle are presented. The document represents a complete issue of the original payload data book. The subjects discussed are: (1) astronomy, (2) space physics, (3) planetary exploration, (4) earth observations (earth and ocean physics), (5) communications and navigation, (6) life sciences, (7) international rendezvous and docking, and (8) lunar exploration.

  2. Applications of Payload Directed Flight

    NASA Technical Reports Server (NTRS)

    Ippolito, Corey; Fladeland, Matthew M.; Yeh, Yoo Hsiu

    2009-01-01

    Next generation aviation flight control concepts require autonomous and intelligent control system architectures that close control loops directly around payload sensors in manner more integrated and cohesive that in traditional autopilot designs. Research into payload directed flight control at NASA Ames Research Center is investigating new and novel architectures that can satisfy the requirements for next generation control and automation concepts for aviation. Tighter integration between sensor and machine requires definition of specific sensor-directed control modes to tie the sensor data directly into a vehicle control structures throughout the entire control architecture, from low-level stability- and control loops, to higher level mission planning and scheduling reasoning systems. Payload directed flight systems can thus provide guidance, navigation, and control for vehicle platforms hosting a suite of onboard payload sensors. This paper outlines related research into the field of payload directed flight; and outlines requirements and operating concepts for payload directed flight systems based on identified needs from the scientific literature.'

  3. Science and Applications Space Platform (SASP) End-to-End Data System Study

    NASA Technical Reports Server (NTRS)

    Crawford, P. R.; Kasulka, L. H.

    1981-01-01

    The capability of present technology and the Tracking and Data Relay Satellite System (TDRSS) to accommodate Science and Applications Space Platforms (SASP) payload user's requirements, maximum service to the user through optimization of the SASP Onboard Command and Data Management System, and the ability and availability of new technology to accommodate the evolution of SASP payloads were assessed. Key technology items identified to accommodate payloads on a SASP were onboard storage devices, multiplexers, and onboard data processors. The primary driver is the limited access to TDRSS for single access channels due to sharing with all the low Earth orbit spacecraft plus shuttle. Advantages of onboard data processing include long term storage of processed data until TRDSS is accessible, thus reducing the loss of data, eliminating large data processing tasks at the ground stations, and providing a more timely access to the data.

  4. Introduction

    NASA Astrophysics Data System (ADS)

    Gaskin, J. A.; Smith, I. S.; Jones, W. V.

    In 1783, the Montgolfier brothers ushered in a new era of transportation and exploration when they used hot air to drive an un-tethered balloon to an altitude of 2 km. Made of sackcloth and held together with cords, this balloon challenged the way we thought about human travel, and it has since evolved into a robust platform for performing novel science and testing new technologies. Today, high-altitude balloons regularly reach altitudes of 40 km, and they can support payloads that weigh more than 3000 kg. Long-duration balloons can currently support mission durations lasting 55 days, and developing balloon technologies (i.e. Super-Pressure Balloons) are expected to extend that duration to 100 days or longer; competing with satellite payloads. This relatively inexpensive platform supports a broad range of science payloads, spanning multiple disciplines (astrophysics, heliophysics, planetary and earth science). Applications extending beyond traditional science include testing new technologies for eventual space-based application and stratospheric airships for planetary applications.

  5. The Spacelab Instrument Pointing System (IPS) and its first flight

    NASA Astrophysics Data System (ADS)

    Heusmann, H.; Wolf, P.

    1985-11-01

    The development of the Instrument Pointing System (IPS) as part of Spacelab's experimental apparatus for open Pallet direct space exposure, and its test flight aboard the Shuttle Orbiter are discussed. The IPS is a three-axis-controlled platform with stellar, sun and earth pointing modes, and a better than 1 arcsec pointing ability. The development of an 'inside-out gimbal' configuration with the platform acting like a joint between the unstable Shuttle and the inertially stabilized payload facilitated close to hemispherical pointing and the adaptability for payloads of almost any size. Gimbal axes torquers counteract Orbiter acceleration due to crew movement and thruster firings, and facilitate target acquisition and precision pointing, by command from a crew-engaged computer preprogrammed for all possible control steps. Carrying an experimental solar-physics payload, the IPS correctly performed all intended functions and withstood launch and orbital loads. Several anomalies were detected and successfully corrected in-flight.

  6. NH11B-1726: FrankenRaven: A New Platform for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Dahlgren, Robert; Fladeland, Matthew M.; Pinsker, Ethan A.; Jasionowicz, John P.; Jones, Lowell L.; Pscheid, Matthew J.

    2016-01-01

    Small, modular aircraft are an emerging technology with a goal to maximize flexibility and enable multi-mission support. This reports the progress of an unmanned aerial system (UAS) project conducted at the NASA Ames Research Center (ARC) in 2016. This interdisciplinary effort builds upon the success of the 2014 FrankenEye project to apply rapid prototyping techniques to UAS, to develop a variety of platforms to host remote sensing instruments. In 2016, ARC received AeroVironment RQ-11A and RQ-11B Raven UAS from the US Department of the Interior, Office of Aviation Services. These aircraft have electric propulsion, a wingspan of roughly 1.3m, and have demonstrated reliability in challenging environments. The Raven airframe is an ideal foundation to construct more complex aircraft, and student interns using 3D printing were able to graft multiple Raven wings and fuselages into FrankenRaven aircraft. Aeronautical analysis shows that the new configuration has enhanced flight time, payload capacity, and distance compared to the original Raven. The FrankenRaven avionics architecture replaces the mil-spec avionics with COTS technology based upon the 3DR Pixhawk PX4 autopilot with a safety multiplexer for failsafe handoff to 2.4 GHz RC control and 915 MHz telemetry. This project demonstrates how design reuse, rapid prototyping, and modular subcomponents can be leveraged into flexible airborne platforms that can host a variety of remote sensing payloads and even multiple payloads. Modularity advances a new paradigm: mass-customization of aircraft around given payload(s). Multi-fuselage designs are currently under development to host a wide variety of payloads including a zenith-pointing spectrometer, a magnetometer, a multi-spectral camera, and a RGB camera. After airworthiness certification, flight readiness review, and test flights are performed at Crows Landing airfield in central California, field data will be taken at Kilauea volcano in Hawaii and other locations.

  7. FrankenRaven: A New Platform for Remote Sensing

    NASA Astrophysics Data System (ADS)

    Dahlgren, R. P.; Fladeland, M. M.; Pinsker, E. A.; Jasionowicz, J. P.; Jones, L. L.; Mosser, C. D.; Pscheid, M. J.; Weidow, N. L.; Kelly, P. J.; Kern, C.; Werner, C. A.; Johnson, M. S.

    2016-12-01

    Small, modular aircraft are an emerging technology with a goal to maximize flexibility and enable multi-mission support. This reports the progress of an unmanned aerial system (UAS) project conducted at the NASA Ames Research Center (ARC) in 2016. This interdisciplinary effort builds upon the success of the 2014 FrankenEye project to apply rapid prototyping techniques to UAS, to develop a variety of platforms to host remote sensing instruments. In 2016, ARC received AeroVironment RQ-11A and RQ-11B Raven UAS from the US Department of the Interior, Office of Aviation Services. These aircraft have electric propulsion, a wingspan of roughly 1.3m, and have demonstrated reliability in challenging environments. The Raven airframe is an ideal foundation to construct more complex aircraft, and student interns using 3D printing were able to graft multiple Raven wings and fuselages into "FrankenRaven" aircraft. Aeronautical analysis shows that the new configuration has enhanced flight time, payload capacity, and distance compared to the original Raven. The FrankenRaven avionics architecture replaces the mil-spec avionics with COTS technology based upon the 3DR Pixhawk PX4 autopilot with a safety multiplexer for failsafe handoff to 2.4 GHz RC control and 915 MHz telemetry. This project demonstrates how design reuse, rapid prototyping, and modular subcomponents can be leveraged into flexible airborne platforms that can host a variety of remote sensing payloads and even multiple payloads. Modularity advances a new paradigm: mass-customization of aircraft around given payload(s). Multi-fuselage designs are currently under development to host a wide variety of payloads including a zenith-pointing spectrometer, a magnetometer, a multi-spectral camera, and a RGB camera. After airworthiness certification, flight readiness review, and test flights are performed at Crows Landing airfield in central California, field data will be taken at Kilauea volcano in Hawaii and other locations.

  8. The payload/shuttle-data-communication-link handbook

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Communication links between the Orbiter, payloads, and ground are described: end-to-end, hardline, S-band, Ku-band, TDRSS relay, waveforms, premodulation, subcarrier modulation, carrier modulation, transmitter power, antennas, the RF channel, system noise, received signal-to-noise spectral density, carrier-tracking loop, carrier demodulation, subcarrier demodulation, digital data detection, digital data decoding, and tandem link considerations.

  9. Shuttle payload S-band communications system

    NASA Technical Reports Server (NTRS)

    Batson, B. H.; Teasdale, W. E.; Pawlowski, J. F.; Schmidt, O. L.

    1985-01-01

    The Shuttle payload S-band communications system design, operational capabilities, and performance are described in detail. System design requirements, overall system and configuration and operation, and laboratory/flight test results are presented. Payload communications requirements development is discussed in terms of evolvement of requirements as well as the resulting technical challenges encountered in meeting the initial requirements. Initial design approaches are described along with cost-saving initiatives that subsequently had to be made. The resulting system implementation that was finally adopted is presented along with a functional description of the system operation. A description of system test results, problems encountered, how the problems were solved, and the system flight experience to date is presented. Finally, a summary of the advancements made and the lessons learned is discussed.

  10. New developments for SAW channelization for mobile satellite payloads

    NASA Technical Reports Server (NTRS)

    Peach, R. C.; Mabson, P.

    1995-01-01

    The use of SAW technology in mobile communication payloads is becoming widely accepted by the industry since being pioneered by Inmarsat for its third generation of satellites. This paper presents new developments in this area, including broadband processors of the Inmarsat 3 type, and the use of SAW filters at L-band. It is demonstrated that SAW processors have considerable potential for increasing the capacity of future communications payloads, while allowing fully transparent operation without any restriction on traffic type or modulation format. In addition to the evolutionary development of Inmarsat type processors, new SAW applications have also emerged recently. Therefore, despite the rapid changes in the industry, it is predicted that SAW processing has a strong future in satellite communications.

  11. KSC-98pc1185

    NASA Image and Video Library

    1998-09-30

    KENNEDY SPACE CENTER, FLA. -- Inside the Payload Changeout Room (PCR) in the Rotating Service Structure (RSS) at Launch Pad 39-B, technicians in clean suits move the payloads for mission STS-95 to the payload bay of Space Shuttle Discovery. At the top of the RSS is the Spacehab module; below it are the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbiting Systems Test Platform (HOST), and the International Extreme Ultraviolet Hitchhiker (IEH-3). The PCR is an environmentally controlled facility with seals around the mating surface that fit against the orbiter or payload canister and permit the payload bay or canister doors to be opened and cargo removed without exposing it to outside air and contaminants. Payloads are installed vertically in the orbiter using the extendable payload ground handling mechanism. Fixed and extendable work platforms provide work access in the PCR. The SPACEHAB single module involves experiments on space flight and the aging process. Spartan is a solar physics spacecraft designed to perform remote sensing of the hot outer layers of the sun's atmosphere or corona. HOST carries four experiments to validate components planned for installation during the third Hubble Space Telescope servicing mission and to evaluate new technologies in an Earth-orbiting environment. IEH-3 comprises several experiments that will study the Jovian planetary system, hot stars, planetary and reflection nebulae, other stellar objects and their environments through remote observation of EUV/FUV emissions; study spacecraft interactions, Shuttle glow, thruster firings, and contamination; and measure the solar constant and identify variations in the value during a solar cycle. Mission STS-95 is scheduled to launch Oct. 29, 1998

  12. Multipurpose satellite bus (MPS)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Naval Postgraduate School Advanced Design Project sponsored by the Universities Space Research Association Advanced Design Program is a multipurpose satellite bus (MPS). The design was initiated from a Statement of Work (SOW) developed by the Defense Advanced Research Projects Agency (DARPA). The SOW called for a 'proposal to design a small, low-cost, lightweight, general purpose spacecraft bus capable of accommodating any of a variety of mission payloads. Typical payloads envisioned include those associated with meteorological, communication, surveillance and tracking, target location, and navigation mission areas.' The design project investigates two dissimilar missions, a meteorological payload and a communications payload, mated with a single spacecraft bus with minimal modifications. The MPS is designed for launch aboard the Pegasus Air Launched Vehicle (ALV) or the Taurus Standard Small Launch Vehicle (SSLV).

  13. Shuttle payload S-band communications study

    NASA Technical Reports Server (NTRS)

    Springett, J. C.

    1979-01-01

    The work to identify, evaluate, and make recommendations concerning the functions and interfaces of those orbiter avionic subsystems which are dedicated to, or play some part in, handling communication signals (telemetry and command) to/from payloads (spacecraft) that will be carried into orbit by the shuttle is reported. Some principal directions of the research are: (1) analysis of the ability of the various avionic equipment to interface with and appropriately process payload signals; (2) development of criteria which will foster equipment compatibility with diverse types of payloads and signals; (3) study of operational procedures, especially those affecting signal acquisition; (4) trade-off analysis for end-to-end data link performance optimization; (5) identification of possible hardware design weakness which might degrade signal processing performance.

  14. User definition and mission requirements for unmanned airborne platforms, revised

    NASA Technical Reports Server (NTRS)

    Kuhner, M. B.; Mcdowell, J. R.

    1979-01-01

    The airborne measurement requirements of the scientific and applications experiment user community were assessed with respect to the suitability of proposed strawman airborne platforms. These platforms provide a spectrum of measurement capabilities supporting associated mission tradeoffs such as payload weight, operating altitude, range, duration, flight profile control, deployment flexibility, quick response, and recoverability. The results of the survey are used to examine whether the development of platforms is warranted and to determine platform system requirements as well as research and technology needs.

  15. A Definition of STS Accommodations for Attached Payloads

    NASA Technical Reports Server (NTRS)

    Echols, F. L.; Broome, P. A.

    1983-01-01

    An input to a study conducted to define a set of carrier avionics for supporting large structures experiments attached to the Space Shuttle Orbiter is reported. The "baseline" Orbier interface used in developing the avionics concept for the Space Technology Experiments Platform, STEP, which Langley Research Center has proposed for supporting experiments of this sort is defined. Primarily, flight operations capabilities and considerations and the avionics systems capabilities that are available to a payload as a "mixed cargo" user of the Space Transportation System are addressed. Ground operations for payload integration at Kennedy Space Center, and ground operations for payload support during the mission are also discussed.

  16. Space Software Defined Radio Characterization to Enable Reuse

    NASA Technical Reports Server (NTRS)

    Mortensen, Dale J.; Bishop, Daniel W.; Chelmins, David

    2012-01-01

    NASA's Space Communication and Navigation Testbed is beginning operations on the International Space Station this year. The objective is to promote new software defined radio technologies and associated software application reuse, enabled by this first flight of NASA's Space Telecommunications Radio System architecture standard. The Space Station payload has three software defined radios onboard that allow for a wide variety of communications applications; however, each radio was only launched with one waveform application. By design the testbed allows new waveform applications to be uploaded and tested by experimenters in and outside of NASA. During the system integration phase of the testbed special waveform test modes and stand-alone test waveforms were used to characterize the SDR platforms for the future experiments. Characterization of the Testbed's JPL SDR using test waveforms and specialized ground test modes is discussed in this paper. One of the test waveforms, a record and playback application, can be utilized in a variety of ways, including new satellite on-orbit checkout as well as independent on-board testbed experiments.

  17. Simple-1: Development stage of the data transmission system for a solid propellant mid-power rocket model

    NASA Astrophysics Data System (ADS)

    Yarce, Andrés; Sebastián Rodríguez, Juan; Galvez, Julián; Gómez, Alejandro; García, Manuel J.

    2017-06-01

    This paper presents the development stage of a communication module for a solid propellant mid-power rocket model. The communication module was named. Simple-1 and this work considers its design, construction and testing. A rocket model Estes Ventris Series Pro II® was modified to introduce, on the top of the payload, several sensors in a CanSat form factor. The Printed Circuit Board (PCB) was designed and fabricated from Commercial Off The Shelf (COTS) components and assembled in a cylindrical rack structure similar to this small format satellite concept. The sensors data was processed using one Arduino Mini and transmitted using a radio module to a Software Defined Radio (SDR) HackRF based platform on the ground station. The Simple-1 was tested using a drone in successive releases, reaching altitudes from 200 to 300 meters. Different kind of data, in terms of altitude, position, atmospheric pressure and vehicle temperature were successfully measured, making possible the progress to a next stage of launching and analysis.

  18. An actuator extension transformation for a motion simulator and an inverse transformation applying Newton-Raphson's method

    NASA Technical Reports Server (NTRS)

    Dieudonne, J. E.

    1972-01-01

    A set of equations which transform position and angular orientation of the centroid of the payload platform of a six-degree-of-freedom motion simulator into extensions of the simulator's actuators has been derived and is based on a geometrical representation of the system. An iterative scheme, Newton-Raphson's method, has been successfully used in a real time environment in the calculation of the position and angular orientation of the centroid of the payload platform when the magnitude of the actuator extensions is known. Sufficient accuracy is obtained by using only one Newton-Raphson iteration per integration step of the real time environment.

  19. Advanced propulsion for LEO and GEO platforms

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Pidgeon, David J.

    1990-01-01

    Mission requirements and mass savings applicable to specific low earth orbit and geostationary earth orbit platforms using three highly developed propulsion systems are described. Advanced hypergolic bipropellant thrusters and hydrazine arcjets can provide about 11 percent additional instrument payload to 14,000 kg LEO platforms. By using electric propulsion on a 8,000 kg class GEO platform, mass savings in excess of 15 percent of the beginning-of-life platform mass are obtained. Effects of large, advanced technology solar arrays and antennas on platform propulsion requirements are also discussed.

  20. Space Station needs, attributes and architectural options, volume 2, book 2, part 4: International reports

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The capabilities of the European Space Agency's SPAS and EURECA platforms for reference payload accommodation are considered. The instrument pointing subsystem, the position and hold mount, and the antenna pointing mechanism developed by Dornier are described. Relevant payloads for the space station are summarized and space station accommodation aspects are discussed.

  1. NASA Expendable Launch Vehicle (ELV) Payload Safety Review Process

    NASA Technical Reports Server (NTRS)

    Starbus, Calvert S.; Donovan, Shawn; Dook, Mike; Palo, Tom

    2007-01-01

    Issues addressed by this program: (1) Complicated roles and responsibilities associated with multi-partner projects (2) Working relationships and communications between all organizations involved in the payload safety process (3) Consistent interpretation and implementation of safety requirements from one project to the rest (4) Consistent implementation of the Tailoring Process (5) Clearly defined NASA decision-making-authority (6) Bring Agency-wide perspective to each ElV payload project. Current process requires a Payload Safety Working Group (PSWG) for eac payload with representatives from all involved organizations.

  2. Optimizing communication satellites payload configuration with exact approaches

    NASA Astrophysics Data System (ADS)

    Stathakis, Apostolos; Danoy, Grégoire; Bouvry, Pascal; Talbi, El-Ghazali; Morelli, Gianluigi

    2015-12-01

    The satellite communications market is competitive and rapidly evolving. The payload, which is in charge of applying frequency conversion and amplification to the signals received from Earth before their retransmission, is made of various components. These include reconfigurable switches that permit the re-routing of signals based on market demand or because of some hardware failure. In order to meet modern requirements, the size and the complexity of current communication payloads are increasing significantly. Consequently, the optimal payload configuration, which was previously done manually by the engineers with the use of computerized schematics, is now becoming a difficult and time consuming task. Efficient optimization techniques are therefore required to find the optimal set(s) of switch positions to optimize some operational objective(s). In order to tackle this challenging problem for the satellite industry, this work proposes two Integer Linear Programming (ILP) models. The first one is single-objective and focuses on the minimization of the length of the longest channel path, while the second one is bi-objective and additionally aims at minimizing the number of switch changes in the payload switch matrix. Experiments are conducted on a large set of instances of realistic payload sizes using the CPLEX® solver and two well-known exact multi-objective algorithms. Numerical results demonstrate the efficiency and limitations of the ILP approach on this real-world problem.

  3. IMIS desktop & smartphone software solutions for monitoring spacecrafts' payload from anywhere

    NASA Astrophysics Data System (ADS)

    Baroukh, J.; Queyrut, O.; Airaud, J.

    In the past years, the demand for satellite remote operations has increased guided by on one hand, the will to reduce operations cost (on-call operators out of business hours), and on the other hand, the development of cooperation space missions resulting in a world wide distribution of engineers and science team members. Only a few off-the-shelf solutions exist to fulfill the need of remote payload monitoring, and they mainly use proprietary devices. The recent advent of mobile technologies (laptops, smartphones and tablets) as well as the worldwide deployment of broadband networks (3G, Wi-Fi hotspots), has opened up a technical window that brings new options. As part of the Mars Science Laboratory (MSL) mission, the Centre National D'Etudes Spatiales (CNES, the French space agency) has developed a new software solution for monitoring spacecraft payloads. The Instrument Monitoring Interactive Software (IMIS) offers state-of-the-art operational features for payload monitoring, and can be accessed remotely. It was conceived as a generic tool that can be used for heterogeneous payloads and missions. IMIS was designed as a classical client/server architecture. The server is hosted at CNES and acts as a data provider while two different kinds of clients are available depending on the level of mobility required. The first one is a rich client application, built on Eclipse framework, which can be installed on usual operating systems and communicates with the server through the Internet. The second one is a smartphone application for any Android platform, connected to the server thanks to the mobile broadband network or a Wi-Fi connection. This second client is mainly devoted to on-call operations and thus only contains a subset of the IMIS functionalities. This paper describes the operational context, including security aspects, that led IMIS development, presents the selected software architecture and details the various features of both clients: the desktop and the sm- rtphone application.

  4. Robotic Inspection System for Non-Destructive Evaluation (nde) of Pipes

    NASA Astrophysics Data System (ADS)

    Mackenzie, L. D.; Pierce, S. G.; Hayward, G.

    2009-03-01

    The demand for remote inspection of pipework in the processing cells of nuclear plant provides significant challenges of access, navigation, inspection technique and data communication. Such processing cells typically contain several kilometres of densely packed pipework whose actual physical layout may be poorly documented. Access to these pipes is typically afforded through the radiation shield via a small removable concrete plug which may be several meters from the actual inspection site, thus considerably complicating practical inspection. The current research focuses on the robotic deployment of multiple NDE payloads for weld inspection along non-ferritic steel pipework (thus precluding use of magnetic traction options). A fully wireless robotic inspection platform has been developed that is capable of travelling along the outside of a pipe at any orientation, while avoiding obstacles such as pipe hangers and delivering a variety of NDE payloads. An eddy current array system provides rapid imaging capabilities for surface breaking defects while an on-board camera, in addition to assisting with navigation tasks, also allows real time image processing to identify potential defects. All sensor data can be processed by the embedded microcontroller or transmitted wirelessly back to the point of access for post-processing analysis.

  5. STS-79 Ku-band antenna, ODS and Spacehab module at PCR

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The orbiter Ku-band antenna looms large in this view of the Space Shuttle Atlantis' payload bay. Visible just past the antenna system -- stowed on the starboard side of the payload bay wall -- is the Orbiter Docking System (ODS), and connected to the ODS via a tunnel is the Spacehab Double Module in the aft area of the payload bay. This photograph was taken from the starboard wing platform on the fifth level of the Payload Changeout Room (PCR) at Launch Pad 39A. Work is under way in the PCR to close Atlantis' payload bay doors for flight. Atlantis currently is being targeted for liftoff on Mission STS-79, the fourth docking of the U.S. Shuttle to the Russian Space Station Mir, around September 12.

  6. Integrated Modular Avionics for Spacecraft: Earth Observation Use Case Demonstrator

    NASA Astrophysics Data System (ADS)

    Deredempt, Marie-Helene; Rossignol, Alain; Hyounet, Philippe

    2013-08-01

    Integrated Modular Avionics (IMA) for Space, as European Space Agency initiative, aimed to make applicable to space domain the time and space partitioning concepts and particularly the ARINC 653 standard [1][2]. Expected benefits of such an approach are development flexibility, capability to provide differential V&V for different criticality level functionalities and to integrate late or In-Orbit delivery. This development flexibility could improve software subcontracting, industrial organization and software reuse. Time and space partitioning technique facilitates integration of software functions as black boxes and integration of decentralized function such as star tracker in On Board Computer to save mass and power by limiting electronics resources. In aeronautical domain, Integrated Modular Avionics architecture is based on a network of LRU (Line Replaceable Unit) interconnected by AFDX (Avionic Full DupleX). Time and Space partitioning concept is applicable to LRU and provides independent partitions which inter communicate using ARINC 653 communication ports. Using End System (LRU component) intercommunication between LRU is managed in the same way than intercommunication between partitions in LRU. In such architecture an application developed using only communication port can be integrated in an LRU or another one without impacting the global architecture. In space domain, a redundant On Board Computer controls (ground monitoring TM) and manages the platform (ground command TC) in terms of power, solar array deployment, attitude, orbit, thermal, maintenance, failure detection and recovery isolation. In addition, Payload units and platform units such as RIU, PCDU, AOCS units (Star tracker, Reaction wheels) are considered in this architecture. Interfaces are mainly realized through MIL-STD-1553B busses and SpaceWire and this could be considered as the main constraint for IMA implementation in space domain. During the first phase of IMA SP project, ARINC653 impact was analyzed. Requirements and architecture for space domain were defined [3][4] and System Executive platforms (based on Xtratum, Pike OS, and AIR) were developed with RTEMS as Guest OS. This paper focuses on the demonstrator developed by Astrium as part of IMA SP project. This demonstrator has the objective to confirm operational software partitioning feasibility above Xtratum System Executive Platform with acceptable CPU overhead.

  7. External Contamination Environment at ISS Included: Selected Results from Payloads Contamination Mapping Delivery 3 Package

    NASA Technical Reports Server (NTRS)

    Olsen, Randy; Huang, Alvin; Steagall, Courtney; Kohl, Nathaniel; Koontz, Steve; Worthy, Erica

    2017-01-01

    The International Space Station is the largest and most complex on-orbit platform for space science utilization in low Earth orbit. Multiple sites for external payloads, with exposure to the associated natural and induced environments, are available to support a variety of space science utilization objectives. Contamination is one of the induced environments that can impact performance, mission success and science utilization on the vehicle. The ISS has been designed, built and integrated with strict contamination requirements to provide low levels of induced contamination on external payload assets.

  8. KSC-08pd2308

    NASA Image and Video Library

    2008-08-06

    CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, an overhead crane lifts the Multi-Use Lightweight Equipment, or MULE, carrier from a mobile platform to move it to another stand in the high bay. The MULE is part of the payload for the fifth and final shuttle servicing mission to NASA's Hubble Space Telescope, STS-125. The MULE carrier will join the Flight Support System, the Super Lightweight Interchangeable Carrier and the Orbital Replacement Unit Carrier in the Payload Hazardous Servicing Facility where the Hubble payload is being prepared for launch. The Relative Navigation Sensors and the New Outer Blanket Layers will be on the MULE. The payload is scheduled to go to Launch Pad 39A in mid-September to be installed into Atlantis' payload bay. Atlantis is targeted to launch Oct. 8 at 1:34 a.m. EDT. Photo credit: NASA/Jack Pfaller

  9. KSC-08pd2309

    NASA Image and Video Library

    2008-08-06

    CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, an overhead crane lifts the Multi-Use Lightweight Equipment, or MULE, carrier from a mobile platform to move it to another stand in the high bay. The MULE is part of the payload for the fifth and final shuttle servicing mission to NASA's Hubble Space Telescope, STS-125. The MULE carrier will join the Flight Support System, the Super Lightweight Interchangeable Carrier and the Orbital Replacement Unit Carrier in the Payload Hazardous Servicing Facility where the Hubble payload is being prepared for launch. The Relative Navigation Sensors and the New Outer Blanket Layers will be on the MULE. The payload is scheduled to go to Launch Pad 39A in mid-September to be installed into Atlantis' payload bay. Atlantis is targeted to launch Oct. 8 at 1:34 a.m. EDT. Photo credit: NASA/Jack Pfaller

  10. KSC-08pd2310

    NASA Image and Video Library

    2008-08-06

    CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, an overhead crane lifts the Multi-Use Lightweight Equipment, or MULE, carrier from a mobile platform to move it to another stand in the high bay. The MULE is part of the payload for the fifth and final shuttle servicing mission to NASA's Hubble Space Telescope, STS-125. The MULE carrier will join the Flight Support System, the Super Lightweight Interchangeable Carrier and the Orbital Replacement Unit Carrier in the Payload Hazardous Servicing Facility where the Hubble payload is being prepared for launch. The Relative Navigation Sensors and the New Outer Blanket Layers will be on the MULE. The payload is scheduled to go to Launch Pad 39A in mid-September to be installed into Atlantis' payload bay. Atlantis is targeted to launch Oct. 8 at 1:34 a.m. EDT. Photo credit: NASA/Jack Pfaller

  11. Contamination assessment for OSSA space station IOC payloads

    NASA Technical Reports Server (NTRS)

    Chinn, S.; Gordon, T.; Rantanen, R.

    1987-01-01

    The results are presented from a study for the Space Station Planners Group of the Office of Space Sciences and Applications. The objectives of the study are: (1) the development of contamination protection requirements for protection of Space Station attached payloads, serviced payloads and platforms; and (2) the determination of unknowns or major impacts requiring further assessment. The nature, sources, and quantitative properties of the external contaminants to be encountered on the Station are summarized. The OSSA payload contamination protection requirements provided by the payload program managers are reviewed and the level of contamination awareness among them is discussed. Preparation of revisions to the contamination protection requirements are detailed. The comparative impact of flying the Station at constant atmospheric density rather than constant altitude is assessed. The impact of the transverse boom configuration of the Station on contamination is also assessed. The contamination protection guidelines which OSSA should enforce during their development of payloads are summarized.

  12. KSC-98pc1183

    NASA Image and Video Library

    1998-09-30

    KENNEDY SPACE CENTER, FLA. -- Inside the Payload Changeout Room (PCR) in the Rotating Service Structure (RSS) at Launch Pad 39-B, technicians in clean suits and tethers prepare to move the payloads for mission STS-95 through the open doors of the payload bay (right) of Space Shuttle Discovery. At the top of the RSS is the Spacehab module; below it are the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbiting Systems Test Platform (HOST), and International Extreme Ultraviolet Hitchhiker (IEH-3). The PCR is an environmentally controlled facility with seals around the mating surface that fit against the orbiter or payload canister and permit the payload bay or canister doors to be opened and cargo removed without exposing it to outside air and contaminants. Payloads are installed vertically in the orbiter using the extendable payload ground handling mechanism. Fixed and extendable work platforms provide work access in the PCR. The SPACEHAB single module involves experiments on space flight and the aging process. Spartan is a solar physics spacecraft designed to perform remote sensing of the hot outer layers of the sun's atmosphere or corona. HOST carries four experiments to validate components planned for installation during the third Hubble Space Telescope servicing mission and to evaluate new technologies in an Earth-orbiting environment. IEH-3 comprises several experiments that will study the Jovian planetary system, hot stars, planetary and reflection nebulae, other stellar objects and their environments through remote observation of EUV/FUV emissions; study spacecraft interactions, Shuttle glow, thruster firings, and contamination; and measure the solar constant and identify variations in the value during a solar cycle. Mission STS-95 is scheduled to launch Oct. 29, 1998

  13. KSC-98pc1184

    NASA Image and Video Library

    1998-09-30

    KENNEDY SPACE CENTER,FLA. -- Inside the Payload Changeout Room (PCR) in the Rotating Service Structure (RSS) at Launch Pad 39-B, technicians in clean suits and tethers prepare to move the payloads for mission STS-95 through the open doors of the payload bay (left) of Space Shuttle Discovery. At the top of the RSS is the Spacehab module; below it are the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbiting Systems Test Platform (HOST), and the International Extreme Ultraviolet Hitchhiker (IEH-3). The PCR is an environmentally controlled facility with seals around the mating surface that fit against the orbiter or payload canister and permit the payload bay or canister doors to be opened and cargo removed without exposing it to outside air and contaminants. Payloads are installed vertically in the orbiter using the extendable payload ground handling mechanism. Fixed and extendable work platforms provide work access in the PCR. The SPACEHAB single module involves experiments on space flight and the aging process. Spartan is a solar physics spacecraft designed to perform remote sensing of the hot outer layers of the sun's atmosphere or corona. HOST carries four experiments to validate components planned for installation during the third Hubble Space Telescope servicing mission and to evaluate new technologies in an Earth-orbiting environment. IEH-3 comprises several experiments that will study the Jovian planetary system, hot stars, planetary and reflection nebulae, other stellar objects and their environments through remote observation of EUV/FUV emissions; study spacecraft interactions, Shuttle glow, thruster firings, and contamination; and measure the solar constant and identify variations in the value during a solar cycle. Mission STS-95 is scheduled to launch Oct. 29, 1998

  14. Control and Non-Payload Communications (CNPC) Prototype Radio Verification Test Report

    NASA Technical Reports Server (NTRS)

    Bishop, William D.; Frantz, Brian D.; Thadhani, Suresh K.; Young, Daniel P.

    2017-01-01

    This report provides an overview and results from the verification of the specifications that defines the operational capabilities of the airborne and ground, L Band and C Band, Command and Non-Payload Communications radio link system. An overview of system verification is provided along with an overview of the operation of the radio. Measurement results are presented for verification of the radios operation.

  15. Telemetry Tracking & Control (TT&C) - First TDRSS, then Commercial GEO & Big LEO and Now Through LEO

    NASA Technical Reports Server (NTRS)

    Morgan, Dwayne R.; Streich, Ron G.; Bull, Barton; Grant, Chuck; Power, Edward I. (Technical Monitor)

    2001-01-01

    The advent of low earth orbit (LEO) commercial communication satellites provides an opportunity to dramatically reduce Telemetry, Tracking and Control (TT&C) costs of launch vehicles, Unpiloted Aerial Vehicles (UAVs), Research Balloons and spacecraft by reducing or eliminating ground infrastructure. Personnel from the Goddard Space Flight Center's Wallops Flight Facility (GSFC\\WFF) have successfully used commercial Geostationary Earth Orbit (GEO) and Big LEO communications satellites for Long Duration Balloon Flight TT&C. The Flight Modem is a GSFC\\WFF Advanced Range Technology initiative (ARTI) designed to streamline TT&C capability in the user community of these scientific data gathering platforms at low cost. Making use of existing LEO satellites and adapting and ruggedized commercially available components; two-way, over the horizon communications may be established with these vehicles at great savings due to reduced infrastructure. Initially planned as a means for permitting GPS data for tracking and recovery of sounding rocket and balloon payloads, expectations are that the bandwidth can soon be expanded to allow more comprehensive data transfer. The system architecture which integrates antennas, GPS receiver, commercial satellite packet data modem and a single board computer with custom software is described and technical challenges are discussed along with the plan for their resolution. A three-phase testing and development plan is outlined and the current results are reported. Results and status of ongoing flight tests on aircraft and sounding rockets are reported. Future applications on these platforms and the potential for satellite support are discussed along with an analysis of cost effectiveness of this method vs. other tracking and data transmission schemes.

  16. Conceptual design study Science and Application Space Platform SASP. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Runge, F. C.

    1980-01-01

    The system design philosphy applied in the development of this platform concept is summarized. The system is to provide for simple, low cost, initial capability of accommodating Spacelab payloads that are modified for long duration flight. The supporting research and technology are also summarized.

  17. KSC-98pc1133

    NASA Image and Video Library

    1998-09-18

    KENNEDY SPACE CENTER, FLA. -- The Spartan solar-observing deployable spacecraft is placed inside the payload canister in the Multi-Payload Processing Facility at KSC. Spartan is one of the payloads for the STS-95 mission, scheduled to launch Oct. 29. Spartan is a solar physics spacecraft designed to perform remote sensing of the hot outer layers of the sun's atmosphere or corona. The objective of the observations is to investigate the mechanisms causing the heating of the solar corona and the acceleration of the solar wind which originates in the corona. Other research payloads include the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, and the SPACEHAB single module with experiments on space flight and the aging process

  18. KSC-98pc1132

    NASA Image and Video Library

    1998-09-18

    KENNEDY SPACE CENTER, FLA. -- The Spartan solar-observing deployable spacecraft is suspended above the payload canister in the Multi-Payload Processing Facility at KSC. Spartan is one of the payloads for the STS-95 mission, scheduled to launch Oct. 29. Spartan is a solar physics spacecraft designed to perform remote sensing of the hot outer layers of the sun's atmosphere or corona. The objective of the observations is to investigate the mechanisms causing the heating of the solar corona and the acceleration of the solar wind which originates in the corona. Other research payloads include the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, and the SPACEHAB single module with experiments on space flight and the aging process

  19. Space Transportation System/Spacelab accommodations

    NASA Technical Reports Server (NTRS)

    De Sanctis, C. E.

    1978-01-01

    A description is provided of the capabilities offered by the Spacelab design for doing research in space. The Spacelab flight vehicle consists of two basic elements including the habitable pressurized compartments and the unpressurized equipment mounting platforms. Spacelab services to payloads are considered, taking into account payload mass, electrical power and energy, heat rejection for Spacelab and payload, aspects of Spacelab data handling, and the extended flight capability. Attention is also given to the Spacelab structure, crew station and habitability, the electrical power distribution subsystem, the command and data management subsystem, the experiment computer operating system, the environmental control subsystem, the experiment vent assembly, the common payload support equipment, the instrument pointing subsystem, and details concerning the utilization of Spacelab.

  20. The Z1 truss is transported to Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At Launch Pad 39A, the payload canister at left draws closer to the Rotating Service Structure where it will be lifted to the Payload Changeout Room. There its cargo, the Integrated Truss Structure Z1, will be removed and later transferred to Space Shuttle Discovery's payload bay. Discovery is at right, sitting atop the Mobile Launcher Platform. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT.

  1. Overview for Attached Payload Accommodations and Environments

    NASA Technical Reports Server (NTRS)

    Schaffer, Craig; Cook, Gene; Nabizadeh, Rodney; Phillion, James

    2007-01-01

    External payload accommodations are provided at attach sites on the U.S provided ELC, U.S. Truss, the Japanese Experiment Module Exposed Facility (JEM EF) and the Columbus EPF (External Payload Facilities). The Integrated Truss Segment (ITS) provides the backbone structure for the ISS. It attaches the solar and thermal control arrays to the rest of the complex, and houses cable distribution trays Extravehicular Activity (EVA) support equipment such as handholds and lighting; and providing for Extravehicular Robotic (EVR) accommodations using the Mobile Servicing System (MSS). It also provides logistics and maintenance, and payload attachment sites. The attachment sites accommodate logistics and maintenance and payloads carriers, zenith and nadir. The JEM-EF, a back porch-like attachment to the JEM Pressurized Module, accommodates up to eight payloads, which can be serviced by the crew via the JEM PM's airlock and dedicated robotic arm. The Columbus-EPF is another porch-like platform that can accommodate two zenith and two nadir looking payloads.

  2. Optical interconnects for satellite payloads: overview of the state-of-the-art

    NASA Astrophysics Data System (ADS)

    Vervaeke, Michael; Debaes, Christof; Van Erps, Jürgen; Karppinen, Mikko; Tanskanen, Antti; Aalto, Timo; Harjanne, Mikko; Thienpont, Hugo

    2010-05-01

    The increased demand of broadband communication services like High Definition Television, Video On Demand, Triple Play, fuels the technologies to enhance the bandwidth of individual users towards service providers and hence the increase of aggregate bandwidths on terrestial networks. Optical solutions clearly leverage the bandwidth appetite easily whereas electrical interconnection schemes require an ever-increasing effort to counteract signal distortions at higher bitrates. Dense wavelength division multiplexing and all-optical signal regeneration and switching solve the bandwidth demands of network trunks. Fiber-to-the-home, and fiber-to-the-desk are trends towards providing individual users with greatly increased bandwidth. Operators in the satellite telecommunication sector face similar challenges fuelled by the same demands as for their terrestial counterparts. Moreover, the limited number of orbital positions for new satellites set the trend for an increase in payload datacommunication capacity using an ever-increasing number of complex multi-beam active antennas and a larger aggregate bandwidth. Only satellites with very large capacity, high computational density and flexible, transparent fully digital payload solutions achieve affordable communication prices. To keep pace with the bandwidth and flexibility requirements, designers have to come up with systems requiring a total digital througput of a few Tb/s resulting in a high power consuming satellite payload. An estimated 90 % of the total power consumption per chip is used for the off-chip communication lines. We have undertaken a study to assess the viability of optical datacommunication solutions to alleviate the demands regarding power consumption and aggregate bandwidth imposed on future satellite communication payloads. The review on optical interconnects given here is especially focussed on the demands of the satellite communication business and the particular environment in which the optics have to perform their functionality: space.

  3. Space Station needs, attributes and architectural options. Volume 2, book 1, part 4: Payload element mission data sheets

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Data sheets are presented for 11 internal payloads, 30 externally mounted payloads, and 46 free flyers. The importance of the space station to each payload element is rated on a scale of 1 to 10. The type of experiment noncommercial science and applications, commercial, technological, and operational is indicated and the payload and its objectives are described. Space is provided for noting requirements for power; data/communication; thermal environment; equipment physical characteristics; crew size; and service and maintenance.

  4. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project, UAS Control and Non-Payload Communication System Phase-1 Flight Test Results

    NASA Technical Reports Server (NTRS)

    Griner, James H.

    2014-01-01

    NASA's UAS Integration in the NAS project, has partnered with Rockwell Collins to develop a concept Control and Non-Payload Communication (CNPC) system prototype radio, operating on recently allocated UAS frequency spectrum bands. This prototype radio is being used to validate initial proposed performance requirements for UAS control communications. This presentation will give an overview of the current status of the prototype radio development, and results from phase 1 flight tests conducted during 2013.

  5. Shuttle communication and tracking systems signal design and interface compatibility analysis

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Various options for the Dedicated Payload Communication Link (DPCL) were evaluated. Specific subjects addressed include: payload to DPCL power transfer in the proximity of the payload, DPCL antenna pointing considerations, and DPCL transceiver implementations which can be mounted on the deployed antenna boom. Additional analysis of the Space Telescope performance was conducted. The feasibility of using the Global Positioning System (GPS) for attitude determination and control for large spacecraft was examined. The objective of the Shuttle Orbiter Radar Test and Evaluation (SORTE) program was to quantify the Ku-band radar tracking accuracy using White Sands Missile Range (WSMR) radar and optical tracking equipment, with helicopter and balloon targets.

  6. Fabrication of a multifunctional nano-in-micro drug delivery platform by microfluidic templated encapsulation of porous silicon in polymer matrix.

    PubMed

    Zhang, Hongbo; Liu, Dongfei; Shahbazi, Mohammad-Ali; Mäkilä, Ermei; Herranz-Blanco, Bárbara; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2014-07-09

    A multifunctional nano-in-micro drug delivery platform is developed by conjugating the porous silicon nanoparticles with mucoadhesive polymers and subsequent encapsulation into a pH-responsive polymer using microfluidics. The multistage platform shows monodisperse size distribution and pH-responsive payload release, and the released nanoparticles are mucoadhesive. Moreover, this platform is capable of simultaneously loading and releasing multidrugs with distinct properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Control system design for the large space systems technology reference platform

    NASA Technical Reports Server (NTRS)

    Edmunds, R. S.

    1982-01-01

    Structural models and classical frequency domain control system designs were developed for the large space systems technology (LSST) reference platform which consists of a central bus structure, solar panels, and platform arms on which a variety of experiments may be mounted. It is shown that operation of multiple independently articulated payloads on a single platform presents major problems when subarc second pointing stability is required. Experiment compatibility will be an important operational consideration for systems of this type.

  8. The EUTELSAT II satellites: Europe's seeds in communication and TV distribution game

    NASA Astrophysics Data System (ADS)

    Burgio, C.; Soula, J. L.; Dumesnil, J. J.

    1989-08-01

    The state-of-the-art satellite EUTELSAT II, developed by Aerospatiale and its industrial partners, is designed to provide Ku-band communication and television distribution services with 16 active channels accessible simultaneously to all users over the whole of Europe. Reconfigurable antenna-feed networks permits zoom operation on all 16 channels offering enhanced EIRP over the central part of Europe for TV distribution purposes. The satellite is designed to be fully operational during eclipse and to be compatible with Ariane IV. High satellite reliability and availability are achieved by the use of 8/12 amplifier ring redundancy during and beyond the 7 year life. The payload design makes use of only two antennas for all communications transmit and receive functions. This resulted in a great simplification of the repeater configuration and provides operational flexibility. The platform is directly derived from the Aerospatiale-MBB Spacebus 100 family (Arabsat heritage). Aerospatiale Telecommunications Programme Office, located in Cannes (France) is the prime contractor of the industrial team, Aeritalia, ATES, CASA, Contraves, Crouzet, ERA, ETCA, MBB, MSS, SEP. First flight model delivery in November 1989 has been a key factor in shaping both technical and management approaches to the programme.

  9. Design guide for low cost standardized payloads, volume 2

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Sixteen engineering approaches to low cost standardized payloads in spacecraft are presented. Standard earth observatory satellite, standard U.S. domestic communication satellite, planetary spacecraft subsystems, standard spacecraft, and cluster spacecraft are reviewed.

  10. Introduction (Special Issue on Scientific Balloon Capabilities and Instrumentation)

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica A.; Smith, I. S.; Jones, W. V.

    2014-01-01

    In 1783, the Montgolfier brothers ushered in a new era of transportation and exploration when they used hot air to drive an un-tethered balloon to an altitude of 2 km. Made of sackcloth and held together with cords, this balloon challenged the way we thought about human travel, and it has since evolved into a robust platform for performing novel science and testing new technologies. Today, high-altitude balloons regularly reach altitudes of 40 km, and they can support payloads that weigh more than 3,000 kg. Long-duration balloons can currently support mission durations lasting 55 days, and developing balloon technologies (i.e. Super-Pressure Balloons) are expected to extend that duration to 100 days or longer; competing with satellite payloads. This relatively inexpensive platform supports a broad range of science payloads, spanning multiple disciplines (astrophysics, heliophysics, planetary and earth science.) Applications extending beyond traditional science include testing new technologies for eventual space-based application and stratospheric airships for planetary applications.

  11. Hosting a Fourier Transform Spectrometer (FTS) on CubeSat Spacecraft Platforms for Global Measurements of Three-Dimensional Winds

    NASA Astrophysics Data System (ADS)

    Scott, D. K.; Neilsen, T. L.; Weston, C.; Frazier, C.; Smith, T.; Shumway, A.

    2015-12-01

    Global measurements of vertically-resolved atmospheric wind profiles offer the potential for improved weather forecasts and superior predictions of atmospheric wind patterns. A small-satellite constellation that uses a Fourier Transform Spectrometer (FTS) instrument onboard 12U CubeSats can provide measurements of global tropospheric wind profiles from space at a very low cost. These small satellites are called FTS CubeSats. This presentation will describe a spacecraft concept that provides a stable, robust platform to host the FTS payload. Of importance to the payload are power, data, station keeping, thermal, and accommodations that enable high spectral measurements to be made from a LEO orbit. The spacecraft concept draws on Space Dynamics Laboratory (SDL) heritage and the recent success of the Dynamic Ionosphere Cubesat Experiment (DICE) and HyperAngular Rainbow Polarimeter (HARP) missions. Working with team members, SDL built a prototype observatory (spacecraft and payload) for testing and proof of concept.

  12. Some design considerations for planetary relay communications satellites.

    NASA Technical Reports Server (NTRS)

    Barber, T. A.; Bourke, R. D.

    1966-01-01

    Items affecting information transmitted from payload landed on remote planet to earth via communications satellite including orbit, transmission policy and orbit injection error effect on communication capability

  13. Some design considerations for planetary relay communications satellites.

    NASA Technical Reports Server (NTRS)

    Barber, T. A.; Bourke, R. D.

    1966-01-01

    Items affecting information transmitted from payload landed on remote planet to Earth via communications satellite including orbit, transmission policy and orbit injection error effect on communication capability

  14. Flexible imaging payload for real-time fluorescent biological imaging in parabolic, suborbital and space analog environments

    NASA Astrophysics Data System (ADS)

    Bamsey, Matthew T.; Paul, Anna-Lisa; Graham, Thomas; Ferl, Robert J.

    2014-10-01

    Fluorescent imaging offers the ability to monitor biological functions, in this case biological responses to space-related environments. For plants, fluorescent imaging can include general health indicators such as chlorophyll fluorescence as well as specific metabolic indicators such as engineered fluorescent reporters. This paper describes the Flex Imager a fluorescent imaging payload designed for Middeck Locker deployment and now tested on multiple flight and flight-related platforms. The Flex Imager and associated payload elements have been developed with a focus on 'flexibility' allowing for multiple imaging modalities and change-out of individual imaging or control components in the field. The imaging platform is contained within the standard Middeck Locker spaceflight form factor, with components affixed to a baseplate that permits easy rearrangement and fine adjustment of components. The Flex Imager utilizes standard software packages to simplify operation, operator training, and evaluation by flight provider flight test engineers, or by researchers processing the raw data. Images are obtained using a commercial cooled CCD image sensor, with light-emitting diodes for excitation and a suite of filters that allow biological samples to be imaged over wavelength bands of interest. Although baselined for the monitoring of green fluorescent protein and chlorophyll fluorescence from Arabidopsis samples, the Flex Imager payload permits imaging of any biological sample contained within a standard 10 cm by 10 cm square Petri plate. A sample holder was developed to secure sample plates under different flight profiles while permitting sample change-out should crewed operations be possible. In addition to crew-directed imaging, autonomous or telemetric operation of the payload is also a viable operational mode. An infrared camera has also been integrated into the Flex Imager payload to allow concurrent fluorescent and thermal imaging of samples. The Flex Imager has been utilized to assess, in real-time, the response of plants to novel environments including various spaceflight analogs, including several parabolic flight environments as well as hypobaric plant growth chambers. Basic performance results obtained under these operational environments, as well as laboratory-based tests are described. The Flex Imager has also been designed to be compatible with emerging suborbital platforms.

  15. Research Opportunities on board Virgin Galactic's SpaceShipTwo

    NASA Astrophysics Data System (ADS)

    Attenborough, S.; Pomerantz, W.; Stephens, K.

    2013-09-01

    Virgin Galactic is building the world's first commercial spaceline. Our suborbital spaceflight system, pictured in Figure 1, consists of two vehicles: WhiteKnightTwo (WK2) and SpaceShipTwo (SS2). WhiteKnightTwo is a four-engine, dual-fuselage jet aircraft capable of high-altitude heavy lift missions, including, but not limited to fulfilling its role as a mothership for SpaceShipTwo, an air-launched, suborbital spaceplane capable of routinely reaching an apogee up to 110 kilometers. In conjunction, these two vehicles allow access to space and to regions of the atmosphere ranging from the troposphere to the thermosphere; additionally, they provide extended periods of microgravity in a reliable and affordable way. SpaceShipTwo, with a payload capacity of up to 1,300 lbs. (~600 kg), features payload mounting interfaces that are compatible with standard architectures such as NASA Space Shuttle Middeck Lockers, Cargo Transfer Bags, and server racks, in addition to custom structures. With the standard interface, payloads are allowed access to the large 17 inch diameter cabin windows for external observations. Each dedicated research flight will be accompanied by a Virgin Galactic Flight Test Engineer, providing an opportunity for limited in-flight interaction. In addition, tended payloads - a flight that includes the researcher and his or her payload - are also an option. At a price point that is highly competitive with parabolic aircraft and sounding rockets and significantly cheaper than orbital flights, SpaceShipTwo is a unique platform that can provide frequent and repeatable research opportunities. Suborbital flights on SpaceShipTwo offer researchers several minutes of microgravity time and views of the external environment in the upper atmosphere and in outer space. In addition to serving as an important research platform in and of itself, SpaceShipTwo also offers researchers a means to test, iterate, and calibrate experiments designed for orbital platforms, including the International Space Station as well as LauncherOne, Virgin Galactic's dedicated launch vehicle for small (~500 lbs. / ~225 kg) satellites. Flights on SpaceShipTwo can be booked directly through Virgin Galactic. Various funding sources may be available for the research, including through NASA programs such as the Flight Opportunities Program, Game Changing Development Program, or Research Opportunities in Space and Earth Science (ROSES). More information about the SpaceShipTwo research platform, including a detailed Payload User's Guide, can be found at our website: http://www.virgingalactic.com/research.

  16. HOST payload for STS-95 being moved into SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Hubble Space Telescope Orbiting Systems Test (HOST) is checked out by technicians in the Space Shuttle Processing Facility. One of the payloads on the STS-95 mission, the HOST platform is carrying four experiments to validate components planned for installation during the third Hubble Space Telescope servicing mission and to evaluate new technologies in an earth orbiting environment. The STS-95 mission is scheduled to launch Oct. 29. It will carry three other payloads: the Spartan solar- observing deployable spacecraft, the International Extreme Ultraviolet Hitchhiker, and the SPACEHAB single module with experiments on space flight and the aging process.

  17. HOST payload for STS-95 being moved into SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers watch as the Hubble Space Telescope Orbiting Systems Test (HOST)is moved inside the Space Shuttle Processing Facility. The HOST platform, one of the payloads on the STS-95 mission, is carrying four experiments to validate components planned for installation during the third Hubble Space Telescope servicing mission and to evaluate new technologies in an earth orbiting environment. The STS-95 mission is scheduled to launch Oct. 29. It will carry three other payloads: the Spartan solar-observing deployable spacecraft, the International Extreme Ultraviolet Hitchhiker, and the SPACEHAB single module with experiments on space flight and the aging process.

  18. KSC-08pd2799

    NASA Image and Video Library

    2008-09-21

    CAPE CANAVERAL, Fla. - On Launch Pad 39A at NASA's Kennedy Space Center, the payload canister is in place at the payload changeout room on the rotating service structure. The canister contains four carriers holding various equipment for the STS-125 mission aboard space shuttle Atlantis to service NASA’s Hubble Space Telescope. At right is Atlantis, atop the mobile launcher platform. The changeout room is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into the shuttle’s payload bay. Launch of Atlantis is targeted for Oct. 10. Photo credit: NASA/Jack Pfaller

  19. KSC-98pc1131

    NASA Image and Video Library

    1998-09-18

    KENNEDY SPACE CENTER, FLA. -- The Spartan solar-observing deployable spacecraft is lifted from its work stand to move it to a payload canister in the Multi-Payload Processing Facility at KSC. Spartan is one of the payloads for the STS-95 mission, scheduled to launch Oct. 29. Spartan is a solar physics spacecraft designed to perform remote sensing of the hot outer layers of the sun's atmosphere or corona. The objective of the observations is to investigate the mechanisms causing the heating of the solar corona and the acceleration of the solar wind which originates in the corona. Other research payloads include the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, and the SPACEHAB single module with experiments on space flight and the aging process

  20. The Z1 truss is transported to Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At Launch Pad 39A, the payload canister with the Integrated Truss Structure Z1 inside arrives at the spot under the Rotating Service Structure where the canister can be lifted to the Payload Changeout Room. There the Z1 truss will be removed and later transferred to Space Shuttle Discovery's payload bay. Discovery is at right, sitting atop the Mobile Launcher Platform. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT.

  1. KENNEDY SPACE CENTER, FLA. - Seen in the photo is one end of the airlock that is installed in the payload bay of orbiter Discovery. The airlock is normally located inside the middeck of the spacecraft’s pressurized crew cabin. The airlock is sized to accommodate two fully suited flight crew members simultaneously. Support functions include airlock depressurization and repressurization, extravehicular activity equipment recharge, liquid-cooled garment water cooling, EVA equipment checkout, donning and communications. The outer hatch isolates the airlock from the unpressurized payload bay when closed and permits the EVA crew members to exit from the airlock to the payload bay when open.

    NASA Image and Video Library

    2004-01-22

    KENNEDY SPACE CENTER, FLA. - Seen in the photo is one end of the airlock that is installed in the payload bay of orbiter Discovery. The airlock is normally located inside the middeck of the spacecraft’s pressurized crew cabin. The airlock is sized to accommodate two fully suited flight crew members simultaneously. Support functions include airlock depressurization and repressurization, extravehicular activity equipment recharge, liquid-cooled garment water cooling, EVA equipment checkout, donning and communications. The outer hatch isolates the airlock from the unpressurized payload bay when closed and permits the EVA crew members to exit from the airlock to the payload bay when open.

  2. KENNEDY SPACE CENTER, FLA. - A worker in the Orbiter Processing Facility checks the open hatch of the airlock in Discovery’s payload bay. The airlock is normally located inside the middeck of the spacecraft’s pressurized crew cabin. The airlock is sized to accommodate two fully suited flight crew members simultaneously. Support functions include airlock depressurization and repressurization, extravehicular activity equipment recharge, liquid-cooled garment water cooling, EVA equipment checkout, donning and communications. The outer hatch isolates the airlock from the unpressurized payload bay when closed and permits the EVA crew members to exit from the airlock to the payload bay when open.

    NASA Image and Video Library

    2004-01-22

    KENNEDY SPACE CENTER, FLA. - A worker in the Orbiter Processing Facility checks the open hatch of the airlock in Discovery’s payload bay. The airlock is normally located inside the middeck of the spacecraft’s pressurized crew cabin. The airlock is sized to accommodate two fully suited flight crew members simultaneously. Support functions include airlock depressurization and repressurization, extravehicular activity equipment recharge, liquid-cooled garment water cooling, EVA equipment checkout, donning and communications. The outer hatch isolates the airlock from the unpressurized payload bay when closed and permits the EVA crew members to exit from the airlock to the payload bay when open.

  3. STS-55 crewmembers pose with U.S. and German flags in SL-D2 module on OV-102

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-55 crewmembers pose with United States and German flags inside the Spacelab Deutsche 2 (SL-D2) science module located in the payload bay (PLB) of Columbia, Orbiter Vehicle (OV) 102. Wearing communications kit assembly headsets (HDSTs) are (left to right) Mission Specialist 1 (MS1) and Payload Commander (PLC) Jerry L. Ross, MS3 Bernard A. Harris, Jr, German Payload Specialist 1 Ulrich Walter, and Payload Specialist 2 Hans Schlegel.

  4. Next generation sensing platforms for extended deployments in large-scale, multidisciplinary, adaptive sampling and observational networks

    NASA Astrophysics Data System (ADS)

    Cross, J. N.; Meinig, C.; Mordy, C. W.; Lawrence-Slavas, N.; Cokelet, E. D.; Jenkins, R.; Tabisola, H. M.; Stabeno, P. J.

    2016-12-01

    New autonomous sensors have dramatically increased the resolution and accuracy of oceanographic data collection, enabling rapid sampling over extremely fine scales. Innovative new autonomous platofrms like floats, gliders, drones, and crawling moorings leverage the full potential of these new sensors by extending spatiotemporal reach across varied environments. During 2015 and 2016, The Innovative Technology for Arctic Exploration Program at the Pacific Marine Environmental Laboratory tested several new types of fully autonomous platforms with increased speed, durability, and power and payload capacity designed to deliver cutting-edge ecosystem assessment sensors to remote or inaccessible environments. The Expendable Ice-Tracking (EXIT) gloat developed by the NOAA Pacific Marine Environmental Laboratory (PMEL) is moored near bottom during the ice-free season and released on an autonomous timer beneath the ice during the following winter. The float collects a rapid profile during ascent, and continues to collect critical, poorly-accessible under-ice data until melt, when data is transmitted via satellite. The autonomous Oculus sub-surface glider developed by the University of Washington and PMEL has a large power and payload capacity and an enhanced buoyancy engine. This 'coastal truck' is designed for the rapid water column ascent required by optical imaging systems. The Saildrone is a solar and wind powered ocean unmanned surface vessel (USV) developed by Saildrone, Inc. in partnership with PMEL. This large-payload (200 lbs), fast (1-7 kts), durable (46 kts winds) platform was equipped with 15 sensors designed for ecosystem assessment during 2016, including passive and active acoustic systems specially redesigned for autonomous vehicle deployments. The senors deployed on these platforms achieved rigorous accuracy and precision standards. These innovative platforms provide new sampling capabilities and cost efficiencies in high-resolution sensor deployment, including reconnaissance for annual fisheries and marine mammal surveys; better linkages between sustained observing platforms; and adaptive deployments that can easily target anomalies as they arise.

  5. Development of NASA's Space Communications and Navigation Test Bed Aboard ISS to Investigate SDR, On-Board Networking and Navigation Technologies

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Kacpura, Thomas J.; Johnson, Sandra K.; Lux, James P.

    2010-01-01

    NASA is developing an experimental flight payload (referred to as the Space Communication and Navigation (SCAN) Test Bed) to investigate software defined radio (SDR), networking, and navigation technologies, operationally in the space environment. The payload consists of three software defined radios each compliant to NASA s Space Telecommunications Radio System Architecture, a common software interface description standard for software defined radios. The software defined radios are new technology developments underway by NASA and industry partners. Planned for launch in early 2012, the payload will be externally mounted to the International Space Station truss and conduct experiments representative of future mission capability.

  6. The American Satellite Company (ASC) satellite deployed from payload bay

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The American Satellite Company (ASC) communications satellite is deployed from the payload bay of the Shuttle Discovery. A portion of the cloudy surface of the earth can be seen to the left of the frame.

  7. Integrated multi-sensor package (IMSP) for unmanned vehicle operations

    NASA Astrophysics Data System (ADS)

    Crow, Eddie C.; Reichard, Karl; Rogan, Chris; Callen, Jeff; Seifert, Elwood

    2007-10-01

    This paper describes recent efforts to develop integrated multi-sensor payloads for small robotic platforms for improved operator situational awareness and ultimately for greater robot autonomy. The focus is on enhancements to perception through integration of electro-optic, acoustic, and other sensors for navigation and inspection. The goals are to provide easier control and operation of the robot through fusion of multiple sensor outputs, to improve interoperability of the sensor payload package across multiple platforms through the use of open standards and architectures, and to reduce integration costs by embedded sensor data processing and fusion within the sensor payload package. The solutions investigated in this project to be discussed include: improved capture, processing and display of sensor data from multiple, non-commensurate sensors; an extensible architecture to support plug and play of integrated sensor packages; built-in health, power and system status monitoring using embedded diagnostics/prognostics; sensor payload integration into standard product forms for optimized size, weight and power; and the use of the open Joint Architecture for Unmanned Systems (JAUS)/ Society of Automotive Engineers (SAE) AS-4 interoperability standard. This project is in its first of three years. This paper will discuss the applicability of each of the solutions in terms of its projected impact to reducing operational time for the robot and teleoperator.

  8. The Hotel Payload, plans for the period 2003-2006

    NASA Astrophysics Data System (ADS)

    Hansen, Gudmund; Mikalsen, Per-Arne

    2003-08-01

    The cost and complexity of scientific experiments, carried by traditional sounding rocket payloads, are increasing. At the same time the scientific environment faces declining funding for this basic research. In order to meet the invitation from the science community, Andøya Rocket Range runs a programme for developing a sounding rocket payload, in order to achieve an inexpensive and cost-effective tool for atmosphere research and educational training. The Hotel Payload is a new technological payload concept in the sounding rocket family. By means of standardized mechanical structures and electronics, flexibility in data collection and transmission, roomy vehicles are affordable to most of the scientific research environments as well as for educational training. A complete vehicle - ready for installation of scientific experiments - is offered to the scientists to a fixed price. The fixed price service also includes launch services. This paper describes the Hotel Payload concept and its technology. In addition the three year plan for the development project is discussed. The opportunity of using the Hotel Payload as a platform for a collaborative triangle between research, education and industry is also discussed.

  9. Electron collection enhancement arising from neutral gas jets on a charged vehicle in the ionosphere

    NASA Technical Reports Server (NTRS)

    Gilchrist, Brian E.; Banks, Peter M.; Neubert, Torsten; Williamson, P. Roger; Myers, Neil B.

    1990-01-01

    Observations of current collection enhancements due to cold nitrogen gas control jet emissions from a highly charged, isolated rocket payload in the ionosphere have been made during the cooperative high altitude rocket gun experiment (CHARGE) 2 using an electrically tethered mother/daughter payload system. The current collection enhancement was observed on a platform (daughter payload) located 100 to 400 m away from the main payload firing an energetic electron beam (mother payload). These results are interpreted in terms of an electrical discharge forming in close proximity to the daughter vehicle during the short periods of gas emission. The results indicate that it is possible to enhance the electron current collection capability of positively charged vehicles by means of deliberate neutral gas releases into an otherwise undisturbed space plasma. The results are also compared with recent laboratory observations of hollow cathode plasma contactors operating in the 'ignited' mode.

  10. Global-scale Observations of the Limb and Disk (GOLD): Hosted Payload Accommodation on a Commercial Satellite

    NASA Astrophysics Data System (ADS)

    Lankton, M.; Eastes, R.; McClintock, W. E.; Pang, R.; Caffrey, R.; Krywonos, A.

    2013-12-01

    The Global-Scale Observations of the Limb and Disk (GOLD) mission will perform unprecedented imaging of the Earth's thermosphere and ionosphere (TI) system from geostationary (GEO) orbit. Flying as a hosted payload on a commercial communications satellite, GOLD takes advantage of the resource margins available in the early years of the commercial mission's planned 15-year life. This hosted payload approach is a pathfinder for cost-effective NASA science missions. The affordable ride to GEO makes it possible for an Explorer-class Mission of Opportunity to perform Far UltraViolet (FUV) imaging of nearly a complete hemisphere on a 30-minute cadence. This global-scale, high cadence imaging will enable GOLD to distinguish between spatial and temporal variations in the TI system caused by geomagnetic storms, variations in solar EUV, and forcing from the lower atmosphere. The most significant difference between developing instrumentation for a NASA-owned mission and accomplishing the same task for a commercial satellite is that communications satellites are procured on a faster schedule - 24 to 36 months from satellite contract to launch - than the instrument development. GOLD has partnered with SES Government Solutions (SES-GS), the comsat mission owner-operator, to define instrument interfaces and requirements that will be included in the eventual Request for Proposal to candidate spacecraft vendors. SES-GS launches 3 to 4 missions per year, which allows the GOLD-SES-GS partnership to match the instrument's launch readiness date with a suitable mission. In addition to making geostationary orbit accessible to a science instrument at relatively low cost, commercial communications satellites provides a host platform with very high reliability and long life, easy access to continuous high-speed data downlink and near-real-time data delivery, and stable pointing. SES-GS operates their satellite from established Telemetry, Tracking and Control (TT&C) centers. The GOLD Science Operations Center at the University of Colorado Laboratory for Atmospheric and Space Physics (LASP) will produce instrument command loads for uplink by the TT&C, receive data from the ground station, monitor instrument state of health, and perform quick-look data processing. The GOLD Science Data Center at the University of Central Florida will produce, distribute and archive science data products.

  11. Applications for the MATILDA robotic platform

    NASA Astrophysics Data System (ADS)

    Munkeby, Steve H.; Jones, Don; Bugg, George; Smith, Kathryn

    2002-07-01

    Most robotic platforms have, up to this point, been designed with emphasis placed on improving mobility technologies. Minimal emphasis has been placed on payloads and mission execution. Using a top-down approach, Mesa Associates, Inc. identified specific UGV mission applications and structured its MATILDA platform using these applications for vehicle mobility and motion control requirements. Specific applications identified for the MATILDA platform include: Target surveillance, explosive device neutralization, material pickup and transport, weapon transport and firing, and law enforcement. Current performance results, lessons-learned, technical hurdles, and future applications are examined.

  12. Integrating small satellite communication in an autonomous vehicle network: A case for oceanography

    NASA Astrophysics Data System (ADS)

    Guerra, André G. C.; Ferreira, António Sérgio; Costa, Maria; Nodar-López, Diego; Aguado Agelet, Fernando

    2018-04-01

    Small satellites and autonomous vehicles have greatly evolved in the last few decades. Hundreds of small satellites have been launched with increasing functionalities, in the last few years. Likewise, numerous autonomous vehicles have been built, with decreasing costs and form-factor payloads. Here we focus on combining these two multifaceted assets in an incremental way, with an ultimate goal of alleviating the logistical expenses in remote oceanographic operations. The first goal is to create a highly reliable and constantly available communication link for a network of autonomous vehicles, taking advantage of the small satellite lower cost, with respect to conventional spacecraft, and its higher flexibility. We have developed a test platform as a proving ground for this network, by integrating a satellite software defined radio on an unmanned air vehicle, creating a system of systems, and several tests have been run successfully, over land. As soon as the satellite is fully operational, we will start to move towards a cooperative network of autonomous vehicles and small satellites, with application in maritime operations, both in-situ and remote sensing.

  13. (abstract) Tropospheric Emission Spectrometer (TES)

    NASA Technical Reports Server (NTRS)

    Beer, Reinhard

    1994-01-01

    A descope of the EOS program now requires that all EOS platforms after AM1 be launched on DELTA-class vehicles, which results in much smaller platforms (and payloads) than previously envisaged. A major part of the TES hardware design effort has therefore been redirected towards meeting this challenge. The development of the TES concept continues on a schedule to permit flight on the EOS CHEM platform in 2002, where it is planned to be accompanied by HIRDLS and MLS.

  14. International Space Station External Contamination Environment for Space Science Utilization

    NASA Technical Reports Server (NTRS)

    Soares, Carlos E.; Mikatarian, Ronald R.; Steagall, Courtney A.; Huang, Alvin Y.; Koontz, Steven; Worthy, Erica

    2014-01-01

    The International Space Station (ISS) is the largest and most complex on-orbit platform for space science utilization in low Earth orbit. Multiple sites for external payloads, with exposure to the associated natural and induced environments, are available to support a variety of space science utilization objectives. Contamination is one of the induced environments that can impact performance, mission success and science utilization on the vehicle. The ISS has been designed, built and integrated with strict contamination requirements to provide low levels of induced contamination on external payload assets. This paper addresses the ISS induced contamination environment at attached payload sites, both at the requirements level as well as measurements made on returned hardware, and contamination forecasting maps being generated to support external payload topology studies and science utilization.

  15. Mechanical features of the shuttle rotating service structure

    NASA Technical Reports Server (NTRS)

    Crump, J. M.

    1985-01-01

    With the development of the space shuttle launching facilities, it became mandatory to develop a shuttle rotating service structure to provide for the insertion and/or removal of payloads at the launch pads. The rotating service structure is a welded tubular steel space frame 189 feet high, 65 feet wide, and weighing 2100 tons. At the pivot column the structure is supported on a 30 inch diameter hemispherical bearing. At the opposite terminus the structure is supported on two truck assemblies each having eight 36 inch diameter double flanged wheels. The following features of the rotating service structure are discussed: (1) thermal expansion and contraction; (2) hurricane tie downs; (3) payload changeout room; (4) payload ground handling mechanism; (5) payload and orbiter access platforms; and (6) orbiter cargo bay access.

  16. KSC-98pc855

    NASA Image and Video Library

    1998-07-16

    KENNEDY SPACE CENTER, FLA. -- STS-95 crew members look over the Osteoporosis Experiment in Orbit (OSTEO) during a SPACEHAB familiarization tour and briefing in the SPACEHAB Payload Processing Facility in Cape Canaveral. Seated from left are Mission Specialist Scott E. Parazynski, Payload Specialist Chiaki Mukai of the National Space Development Agency of Japan (NASDA), and Payload Specialist John H. Glenn Jr., who also is a senator from Ohio. Standing, from left, are STS-95 Commander Curtis L. Brown and Canadian Space Agency representative Duncan Burnside. STS-95 will feature a variety of research payloads, including the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Platform, the International Extreme Ultraviolet Hitchhiker, and experiments on space flight and the aging process. STS-95 is targeted for an Oct. 29 launch aboard the Space Shuttle Discovery

  17. STS-95 crew members participate in a SPACEHAB familiarization

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-95 crew members look over the Osteoporosis Experiment in Orbit (OSTEO) during a SPACEHAB familiarization tour and briefing in the SPACEHAB Payload Processing Facility in Cape Canaveral. Seated from left are Mission Specialist Scott E. Parazynski, Payload Specialist Chiaki Mukai of the National Space Development Agency of Japan (NASDA), and Payload Specialist John H. Glenn Jr., who also is a senator from Ohio. Standing, from left, are STS-95 Commander Curtis L. Brown and Canadian Space Agency representative Duncan Burnside. STS-95 will feature a variety of research payloads, including the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Platform, the International Extreme Ultraviolet Hitchhiker, and experiments on space flight and the aging process. STS-95 is targeted for an Oct. 29 launch aboard the Space Shuttle Discovery.

  18. Materials experiment carrier concepts definition study. Volume 2: Technical report, part 2

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A materials experiment carrier (MEC) that provides effective accommodation of the given baseline materials processing in space (MPS) payloads and demonstration of the MPS platform concept for high priority materials processing science, multidiscipline MPS investigations, host carrier for commercial MPS payloads, and system economy of orbital operations is defined. The study flow of task work is shown. Study tasks featured analysis and trades to identify the MEC system concept options.

  19. HOST payload for STS-95 being moved into SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Hubble Space Telescope Orbiting Systems Test (HOST)is being raised to a workstand by technicians in the Space Shuttle Processing Facility. One of the payloads on the STS-95 mission, the HOST platform is carrying four experiments to validate components planned for installation during the third Hubble Space Telescope servicing mission and to evaluate new technologies in an earth orbiting environment. The STS-95 mission is scheduled to launch Oct. 29. It will carry three other payloads: the Spartan solar-observing deployable spacecraft, the International Extreme Ultraviolet Hitchhiker, and the SPACEHAB single module with experiments on space flight and the aging process.

  20. STS-95 crew members take part in the CEIT for their mission

    NASA Technical Reports Server (NTRS)

    1998-01-01

    During Crew Equipment Interface Test (CEIT), STS-95 crew members watch a monitor displaying the Spartan payload above as it is maneuvered on a stand. The CEIT gives astronauts an opportunity for a hands-on look at the payloads and equipment with which they will be working on orbit. The launch of the STS-95 mission is scheduled for Oct. 29, 1998. The mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  1. Manned Systems Utilization Analysis. Study 2.1: Space Servicing Pilot Program Study. [for automated payloads

    NASA Technical Reports Server (NTRS)

    Wolfe, R. R.

    1975-01-01

    Space servicing automated payloads was studied for potential cost benefits for future payload operations. Background information is provided on space servicing in general, and on a pilot flight test program in particular. An fight test is recommended to demonstrate space servicing. An overall program plan is provided which builds upon the pilot program through an interim servicing capability. A multipayload servicing concept for the time when the full capability tug becomes operational is presented. The space test program is specifically designed to provide low-cost booster vehicles and a flight test platform for several experiments on a single flight.

  2. KSC-98pc864

    NASA Image and Video Library

    1998-07-16

    KENNEDY SPACE CENTER, FLA. -- STS-95 Mission Specialist Stephen K. Robinson injects water into the base of the seed container where plants will grow during the upcoming mission. This is part of the Biological Research in Canisters (BRIC) experiment which is at the SPACEHAB Payload Processing Facility, Cape Canaveral, Fla. This experiment will fly in SPACEHAB in Discovery’s payload bay. STS-95 is scheduled to launch from pad 39B at KSC on Oct. 29, 1998. The mission also includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as experiments on space flight and the aging process

  3. STS-95 crew members participate in a SPACEHAB familiarization exercise

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Inside the SPACECHAB training module, STS-95 Payload Specialist John Glenn, who is a senator from Ohio, tries on the mesh cap that he will wear on the mission to monitor and record brain waves during sleep. Mission Specialist Scott Parazynski, M.D., watches. Parazynski and Glenn are participating in SPACEHAB familiarization at the SPACEHAB Payload Processing Facility, Cape Canaveral. The mission, scheduled to launch Oct. 29, includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  4. KSC-98pc974

    NASA Image and Video Library

    1998-08-21

    KENNEDY SPACE CENTER, FLA. -- Inside the SPACECHAB training module, STS-95 Payload Specialist John Glenn, who is a senator from Ohio, tries on the mesh cap that he will wear on the mission to monitor and record brain waves during sleep. Mission Specialist Scott Parazynski, M.D., watches. Parazynski and Glenn are participating in SPACEHAB familiarization at the SPACEHAB Payload Processing Facility, Cape Canaveral. The mission, scheduled to launch Oct. 29, includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process

  5. Cost Considerations of Transition toward a Disaggregated Satellite Architecture

    DTIC Science & Technology

    2013-02-14

    an average cost of $464M per launch, more than double the previous cost of $230M per launch. 16 To pursue alternatives, the Pentagon took a...High Frequency (AEHF) satellites have two payloads, one that requires nuclear hardening while the other does not. Finally, note that hosted payloads...such as the recent flight of the Commercially Hosted Infrared Payload (CHIRP) experimental missile-warning sensor on an SES Americom communications

  6. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, a cameraman films part of Discovery’s payload bay for a special feature on the KSC Web. In the background is the open hatch of the airlock, located inside the middeck of the spacecraft’s pressurized crew cabin. The airlock is sized to accommodate two fully suited flight crew members simultaneously. Support functions include airlock depressurization and repressurization, extravehicular activity equipment recharge, liquid-cooled garment water cooling, EVA equipment checkout, donning and communications. The outer hatch isolates the airlock from the unpressurized payload bay when closed and permits the EVA crew members to exit from the airlock to the payload bay when open.

    NASA Image and Video Library

    2004-01-22

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, a cameraman films part of Discovery’s payload bay for a special feature on the KSC Web. In the background is the open hatch of the airlock, located inside the middeck of the spacecraft’s pressurized crew cabin. The airlock is sized to accommodate two fully suited flight crew members simultaneously. Support functions include airlock depressurization and repressurization, extravehicular activity equipment recharge, liquid-cooled garment water cooling, EVA equipment checkout, donning and communications. The outer hatch isolates the airlock from the unpressurized payload bay when closed and permits the EVA crew members to exit from the airlock to the payload bay when open.

  7. KENNEDY SPACE CENTER, FLA. - Standing inside Discovery’s payload bay, Carol Scott (right), lead orbiter engineer, talks about her job as part of a special feature for the KSC Web. With his back to the camera is Bill Kallus, Media manager in the KSC Web Studio. Behind Scott can be seen the open hatch of the airlock, which provides support functions such as airlock depressurization and repressurization, extravehicular activity equipment recharge, liquid-cooled garment water cooling, EVA equipment checkout, donning and communications. The outer hatch isolates the airlock from the unpressurized payload bay when closed and permits the EVA crew members to exit from the airlock to the payload bay when open.

    NASA Image and Video Library

    2004-01-22

    KENNEDY SPACE CENTER, FLA. - Standing inside Discovery’s payload bay, Carol Scott (right), lead orbiter engineer, talks about her job as part of a special feature for the KSC Web. With his back to the camera is Bill Kallus, Media manager in the KSC Web Studio. Behind Scott can be seen the open hatch of the airlock, which provides support functions such as airlock depressurization and repressurization, extravehicular activity equipment recharge, liquid-cooled garment water cooling, EVA equipment checkout, donning and communications. The outer hatch isolates the airlock from the unpressurized payload bay when closed and permits the EVA crew members to exit from the airlock to the payload bay when open.

  8. Telemetry Options for LDB Payloads

    NASA Technical Reports Server (NTRS)

    Stilwell, Bryan D.; Field, Christopher J.

    2016-01-01

    The Columbia Scientific Balloon Facility provides Telemetry and Command systems necessary for balloon operations and science support. There are various Line-Of-Sight (LOS) and Over-The-Horizon (OTH) systems and interfaces that provide communications to and from a science payload. This presentation will discuss the current data throughput options available and future capabilities that may be incorporated in the LDB Support Instrumentation Package (SIP) such as doubling the TDRSS data rate. We will also explore some new technologies that could potentially expand the data throughput of OTH communications.

  9. ACTS Operational Performance Review: September 1995

    NASA Technical Reports Server (NTRS)

    Krawczyk, Richard J.

    1996-01-01

    The Advanced Communications Technology Satellite (ACTS) utilized a proven spacecraft bus with a payload that qualified new technologies to provide a wide range of on-orbit demonstrations. A comprehensive development, qualification and ground test program was implemented to reduce technology risks. Since launch in September, 1993, and insertion into its geostationary slot ACTS has accumulated over 16,000 hours of successful operation. This paper briefly reviews the technology development background then provides a summary of the operational performance observed for the spacecraft bus and communication payload subsystems and units.

  10. The 30/20 GHz flight experiment system, phase 2. Volume 2: Experiment system description

    NASA Technical Reports Server (NTRS)

    Bronstein, L.; Kawamoto, Y.; Ribarich, J. J.; Scope, J. R.; Forman, B. J.; Bergman, S. G.; Reisenfeld, S.

    1981-01-01

    A detailed technical description of the 30/20 GHz flight experiment system is presented. The overall communication system is described with performance analyses, communication operations, and experiment plans. Hardware descriptions of the payload are given with the tradeoff studies that led to the final design. The spacecraft bus which carries the payload is discussed and its interface with the launch vehicle system is described. Finally, the hardwares and the operations of the terrestrial segment are presented.

  11. 14 CFR 431.53 - Classes of payloads.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Classes of payloads. 431.53 Section 431.53 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... (for example, communications or microgravity/scientific satellites). (b) The RLV mission licensee that...

  12. 14 CFR 431.53 - Classes of payloads.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Classes of payloads. 431.53 Section 431.53 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... (for example, communications or microgravity/scientific satellites). (b) The RLV mission licensee that...

  13. 14 CFR 431.53 - Classes of payloads.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Classes of payloads. 431.53 Section 431.53 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... (for example, communications or microgravity/scientific satellites). (b) The RLV mission licensee that...

  14. 14 CFR 431.53 - Classes of payloads.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Classes of payloads. 431.53 Section 431.53 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... (for example, communications or microgravity/scientific satellites). (b) The RLV mission licensee that...

  15. 14 CFR 431.53 - Classes of payloads.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Classes of payloads. 431.53 Section 431.53 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... (for example, communications or microgravity/scientific satellites). (b) The RLV mission licensee that...

  16. Remote Sounding of the Earth's Atmospheric Limb From a Micro-Satellite Platform: a Feasibility Study of the ALTIUS Mission

    NASA Astrophysics Data System (ADS)

    Vrancken, D.; Paijmans, B.; Fussen, D.; Neefs, E.; Loodts, N.; Dekemper, E.; Vahellemont, F.; Devos, L.; Moelans, W.; Nevejans, D.; Schroeven-Deceuninck, H.; Bernaerts, D.; Zender, J.

    2008-08-01

    There is more and more interest in the understanding and the monitoring of the physics and chemistry of the Earth's atmosphere and its impact on the climate change. Currently a significantly high number of sounders provide the required data to monitor the changes in atmosphere composition, but a dramatic drop in operational atmosphere monitoring missions is expected around 2010. This drop is mainly visible in sounders capable of a high vertical resolution. Currently, instruments on ENVISAT and METOP provide relevant data but this is envisaged to be insufficient to ensure full spatial and temporal coverage and redundancy in the measurement data set. ALTIUS (Atmospheric Limb Tracker for the Investigation of the Upcoming Stratosphere) is a remote sounding experiment proposed by the Belgian Institute for Space Aeronomy (BIRA/IASB) for which a feasibility study was initiated with BELSPO (Belgian Science Policy) and ESA support. The main objective of this study phase was to establish a mission concept, to define the required payload and to establish a satellite platform design. The study was led by the BIRA/IASB team and performed in close collaboration with OIP (payload developer) and Verhaert Space (spacecraft developer). The mission scenario includes bright limb observations in basically all directions, solar occultations around the terminator passages and star occultations during eclipse. These observation modes allow imaging the atmosphere with a high vertical resolution. The spacecraft will be operated in a 10:00 sun-synchronous orbit at an altitude of 695 km, allowing a 3-day revisit time. The envisaged payload for the ALTIUS mission is an imaging spectrometer, observing in the UV, the VIS and the NIR spectral ranges. For each spectral range, an AOTF (Acousto-Optical Tunable Filter) will permit to perform observations of selectable small wavelength domains. A typical set of 10 wavelengths will be recorded within 1 second. The different operational modes impose a high agility capability on the platform. Furthermore, the quasi- continuous monitoring by the payload will drive the design of the platform in terms of power and downlink capabilities. The mission will be performed using a derivative of the PROBA platform, developed by Verhaert Space. This paper will present the mission requirements for the ALTIUS mission, the envisaged instrument, the spacecraft concept design and the related mission analysis.

  17. U.S. Space Station platform - Configuration technology for customer servicing

    NASA Technical Reports Server (NTRS)

    Dezio, Joseph A.; Walton, Barbara A.

    1987-01-01

    Features of the Space Station coorbiting and polar orbiting platforms (COP and POP, respectively) are described that will allow them to be configured optimally to meet mission requirements and to be assembled, serviced, and modified on-orbit. Both of these platforms were designed to permit servicing at the Shuttle using the remote manipulator system with teleoperated end effectors; EVA was planned as a backup and for unplanned payload failure modes. Station-based servicing is discussed as well as expendable launch vehicle-based servicing concepts.

  18. Automatic maintenance payload on board of a Mexican LEO microsatellite

    NASA Astrophysics Data System (ADS)

    Vicente-Vivas, Esaú; García-Nocetti, Fabián; Mendieta-Jiménez, Francisco

    2006-02-01

    Few research institutions from Mexico work together to finalize the integration of a technological demonstration microsatellite called Satex, aiming the launching of the first ever fully designed and manufactured domestic space vehicle. The project is based on technical knowledge gained in previous space experiences, particularly in developing GASCAN automatic experiments for NASA's space shuttle, and in some support obtained from the local team which assembled the México-OSCAR-30 microsatellites. Satex includes three autonomous payloads and a power subsystem, each one with a local microcomputer to provide intelligent and dedicated control. It also contains a flight computer (FC) with a pair of full redundancies. This enables the remote maintenance of processing boards from the ground station. A fourth communications payload depends on the flight computer for control purposes. A fifth payload was decided to be developed for the satellite. It adds value to the available on-board computers and extends the opportunity for a developing country to learn and to generate domestic space technology. Its aim is to provide automatic maintenance capabilities for the most critical on-board computer in order to achieve continuous satellite operations. This paper presents the virtual computer architecture specially developed to provide maintenance capabilities to the flight computer. The architecture is periodically implemented by software with a small amount of physical processors (FC processors) and virtual redundancies (payload processors) to emulate a hybrid redundancy computer. Communications among processors are accomplished over a fault-tolerant LAN. This allows a versatile operating behavior in terms of data communication as well as in terms of distributed fault tolerance. Obtained results, payload validation and reliability results are also presented.

  19. Opportunities for Geoscience Research Onboard Virgin Galactic's SpaceShipTwo

    NASA Astrophysics Data System (ADS)

    Pomerantz, W.; Beerer, I.; Stephens, K.; Griffith, J.; Persall, W.; Tizard, J.

    2012-12-01

    Virgin Galactic has developed a reusable spaceplane, called SpaceShipTwo (SS2), designed to make routine voyages into suborbital space. SS2 is air-launched from a jet aircraft at an altitude of 50,000 ft. before igniting its rocket motor engine. The vehicle reaches a maximum apogee as high as 110 km before gliding to a conventional runway landing. With the ability to fly multiple times per week, SS2 will be capable of providing routine access to a rarely sampled and poorly understood region of the atmosphere and ionosphere, making it a valuable platform for geoscience research. With a payload capacity up to 1300 lbs., SS2 provides access to space and the upper atmosphere for substantially larger payloads than sounding rockets and at a dramatically lower cost than orbital satellites. The main cabin provides as much as 500 cubic ft. of useable volume in a shirt-sleeve environment and payload mounting interfaces that are compatible with standard architectures, such as Middeck Lockers, Cargo Transfer Bags, and server racks. A flight test engineer will be available on board to operate payloads during flight. In the future, SS2 will also offer a variety of external payload mounting locations, enabling researchers to make frequent in situ measurements in the mesosphere (50-90 km), lower thermosphere (above 80 km), and lower ionosphere (above 60 km). SS2 may also offer optical quality windows, allowing optical investigations from main cabin payloads. Researchers will have access to their payloads until just hours before flight and within three hours post-flight. While commercial operations will begin out of Spaceport America in New Mexico, SS2 may eventually be able to launch from a variety of geographic locations. Funding to develop and fly payloads for SS2 is currently available through many NASA programs including the Flight Opportunities Program and the Game Changing Development Program. Virgin Galactic expects the SS2 research platform to enable significant progress in atmospheric chemistry and dynamics, climate science, space weather, numerical weather predictions, and many other fields of geoscience.

  20. 14 CFR 415.53 - Payloads not subject to review.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Payloads not subject to review. 415.53 Section 415.53 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... Communications Commission (FCC) or the Department of Commerce, National Oceanic and Atmospheric Administration...

  1. 14 CFR 415.53 - Payloads not subject to review.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Payloads not subject to review. 415.53 Section 415.53 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... Communications Commission (FCC) or the Department of Commerce, National Oceanic and Atmospheric Administration...

  2. 14 CFR 415.53 - Payloads not subject to review.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Payloads not subject to review. 415.53 Section 415.53 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... Communications Commission (FCC) or the Department of Commerce, National Oceanic and Atmospheric Administration...

  3. 14 CFR 415.53 - Payloads not subject to review.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Payloads not subject to review. 415.53 Section 415.53 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... Communications Commission (FCC) or the Department of Commerce, National Oceanic and Atmospheric Administration...

  4. 14 CFR 415.53 - Payloads not subject to review.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Payloads not subject to review. 415.53 Section 415.53 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... Communications Commission (FCC) or the Department of Commerce, National Oceanic and Atmospheric Administration...

  5. Penny Pettigrew in the Payload Operations Integration Center

    NASA Image and Video Library

    2017-11-09

    Penny Pettigrew chats in real time with a space station crew member conducting an experiment in microgravity some 250 miles overhead. The Payload Operations Integration Center cadre monitor science communications on station 24 hours a day, seven days a week, 365 days per year.

  6. Integrated orbital servicing and payloads study. Volume 2: Technical and cost analysis

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The details and background used in the investigation of orbital servicing and payloads are presented. Topics discussed include review of previous models, application of servicing to communications satellites, assessment of spacecraft servicing, cost of servicing, and launch vehicle effects on spacecraft.

  7. Communication satellite payload technologies - State of the art and trends in Europe

    NASA Astrophysics Data System (ADS)

    Mica, G.; Coirault, R.

    1982-09-01

    Communication satellite payload technologies are examined, in terms of past, present, and future ESA guidelines. Various existing payload systems are presented, such as Marecs, ECS, and L-Sat (which will carry four payloads). Future services within the market include 2 Mb/sec high speed data, 2-8 Mb/sec video conference, and 64 Mb/sec television distribution, and growth in these areas is dependent on traffic requirements. Pre-operational satellites are outlined, for example Telecom 1 has an estimated system capacity of 150 Mb/sec, Italsat has an expected 1180 Mb/sec, and DFS demonstrates a possible 1540 Mb/sec capacity. It is found that the 20/30 GHz band should be applied for use in wideband and high capacity trunks among heavy traffic centers. To accommodate for the noise in this waveband, the parametric amplifier developed for L-Sat must be used. Finally, development objectives for future programs include improving spectrum and geostationary orbit utilization, cost-efficiency, and standardization of systems.

  8. Air Launch: Examining Performance Potential of Various Configurations and Growth Options

    NASA Technical Reports Server (NTRS)

    Waters, Eric D.; Creech, Dennis M.; Philips, Alan D.

    2013-01-01

    The Advanced Concepts Office at NASA's George C. Marshall Space Flight Center conducted a high-level analysis of various air launch vehicle configurations, objectively determining maximum launch vehicle payload while considering carrier aircraft capabilities and given dimensional constraints. With the renewed interest in aerial launch of low-earth orbit payloads, referenced by programs such as Stratolaunch and Spaceship2, there exists a need to qualify the boundaries of the trade space, identify performance envelopes, and understand advantages and limiting factors of designing for maximum payload capability. Using the NASA/DARPA Horizontal Launch Study (HLS) Point Design 2 (PD-2) as a pointof- departure configuration, two independent design actions were undertaken. Both designs utilized a Boeing 747-400F as the carrier aircraft, LOX/RP-1 first stage and LOX/LH2 second stage. Each design was sized to meet dimensional and mass constraints while optimizing propellant loads and stage delta V splits. All concepts, when fully loaded, exceeded the allowable Gross Takeoff Weight (GTOW) of the aircraft platform. This excess mass was evaluated as propellant/fuel offload available for a potential in-flight propellant loading scenario. Results indicate many advantages such as payload delivery of approximately 47,000 lbm and significant mission flexibility including variable launch site inclination and launch window. However, in-flight cryogenic fluid transfer and carrier aircraft platform integration are substantial technical hurdles to the realization of such a system configuration.

  9. Massively Clustered CubeSats NCPS Demo Mission

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.; Young, David; Kim, Tony; Houts, Mike

    2013-01-01

    Technologies under development for the proposed Nuclear Cryogenic Propulsion Stage (NCPS) will require an un-crewed demonstration mission before they can be flight qualified over distances and time frames representative of a crewed Mars mission. In this paper, we describe a Massively Clustered CubeSats platform, possibly comprising hundreds of CubeSats, as the main payload of the NCPS demo mission. This platform would enable a mechanism for cost savings for the demo mission through shared support between NASA and other government agencies as well as leveraged commercial aerospace and academic community involvement. We believe a Massively Clustered CubeSats platform should be an obvious first choice for the NCPS demo mission when one considers that cost and risk of the payload can be spread across many CubeSat customers and that the NCPS demo mission can capitalize on using CubeSats developed by others for its own instrumentation needs. Moreover, a demo mission of the NCPS offers an unprecedented opportunity to invigorate the public on a global scale through direct individual participation coordinated through a web-based collaboration engine. The platform we describe would be capable of delivering CubeSats at various locations along a trajectory toward the primary mission destination, in this case Mars, permitting a variety of potential CubeSat-specific missions. Cameras on various CubeSats can also be used to provide multiple views of the space environment and the NCPS vehicle for video monitoring as well as allow the public to "ride along" as virtual passengers on the mission. This collaborative approach could even initiate a brand new Science, Technology, Engineering and Math (STEM) program for launching student developed CubeSat payloads beyond Low Earth Orbit (LEO) on future deep space technology qualification missions. Keywords: Nuclear Propulsion, NCPS, SLS, Mars, CubeSat.

  10. Results from Two Low Mass Cosmic Ray Experiments Flown on the HASP Platform

    NASA Astrophysics Data System (ADS)

    Fontenot, R. S.; Hollerman, W. A.; Tittsworth, M.; Fountain, W.; Christl, M.; Thibodaux, C.; Broussard, B. M.

    2009-03-01

    The High Altitude Student Payload (HASP) program is designed to carry twelve student experiments to an altitude of about 123,000 feet (˜37 km). In 2006, students participated in the first HASP launch to measure cosmic ray intensities using traditional film and absorbers. This 10 kg payload flew from Fort Sumner, New Mexico in early September 2006 and was a great success. In 2007, students participated in the second HASP flight to measure the cosmic ray intensity and flux using a traditional film and absorber stack with five layers of optically stimulated luminescent (OSL) dosimeters. Results from both payloads showed that the cosmic ray flux decreases as a function of payload depth. As the cosmic rays go through the stack, they deposit their energy in the payload material. Determining cosmic ray flux is a tedious task. It involves digitizing the film and determining the real cosmic ray density. For the first HASP payload, students used a program known as GlobalLab to count particles. For the second payload, the students decided to use a combination of the GREYCStoration image regularization algorithm, an embossing filter, and a depth-merging filter to reconstruct the paths of the cosmic rays.

  11. Microcontroller uses in Long-Duration Ballooning

    NASA Astrophysics Data System (ADS)

    Jones, Joseph

    This paper discusses how microcontrollers are being utilized to fulfill the demands of long duration ballooning (LDB) and the advantages of doing so. The Columbia Scientific Balloon Facility (CSBF) offers the service of launching high altitude balloons (120k ft) which provide an over the horizon telemetry system and platform for scientific research payloads to collect data. CSBF has utilized microcontrollers to address multiple tasks and functions which were previously performed by more complex systems. A microcontroller system has been recently developed and programmed in house to replace our previous backup navigation system which is used on all LDB flights. A similar microcontroller system was developed to be independently launched in Antarctica before the actual scientific payload. This system's function is to transmit its GPS position and a small housekeeping packet so that we can confirm the upper level float winds are as predicted from satellite derived models. Microcontrollers have also been used to create test equipment to functionally check out the flight hardware used in our telemetry systems. One test system which was developed can be used to quickly determine if our communication link we are providing for the science payloads is functioning properly. Another system was developed to provide us with the ability to easily determine the status of one of our over the horizon communication links through a closed loop system. This test system has given us the capability to provide more field support to science groups than we were able to in years past. The trend of utilizing microcontrollers has taken place for a number of reasons. By using microcontrollers to fill these needs, it has given us the ability to quickly design and implement systems which meet flight critical needs, as well as perform many of the everyday tasks in LDB. This route has also allowed us to reduce the amount of time required for personnel to perform a number of the tasks required during the initial fabrication and also refurbishing processes of flight hardware systems. The recent use of microcontrollers in the design of both LDB flight hardware and test equipment has shown some examples of the adaptability and usefulness they have provided for our workplace.

  12. OpenSatKit Enables Quick Startup for CubeSat Missions

    NASA Technical Reports Server (NTRS)

    McComas, David; Melton, Ryan

    2017-01-01

    The software required to develop, integrate, and operate a spacecraft is substantial regardless of whether its a large or small satellite. Even getting started can be a monumental task. To solve this problem, NASAs Core Flight System (cFS), NASA's 42 spacecraft dynamics simulator, and Ball Aerospaces COSMOS ground system have been integrated together into a kit called OpenSatKit that provides a complete and open source software solution for starting a new satellite mission. Users can have a working system with flight software, dynamics simulation, and a ground command and control system up and running within hours.Every satellite mission requires three primary categories of software to function. The first is Flight Software (FSW) which provides the onboard control of the satellites and its payload(s). NASA's cFS provides a great platform for developing this software. Second, while developing a satellite on earth, it is necessary to simulate the satellites orbit, attitude, and actuators, to ensure that the systems that control these aspects will work correctly in the real environment. NASAs 42 simulator provides these functionalities. Finally, the ground has to be able to communicate with the satellite, monitor its performance and health, and display its data. Additionally, test scripts have to be written to verify the system on the ground. Ball Aerospace's COSMOS command and control system provides this functionality. Once the OpenSatKit is up and running, the next step is to customize the platform and get it running on the end target. Starting from a fully working system makes porting the cFS from Linux to a users platform much easier. An example Raspberry Pi target is included in the kit so users can gain experience working with a low cost hardware target. All users can benefit from OpenSatKit but the greatest impact and benefits will be to SmallSat missions with constrained budgets and small software teams. This paper describes OpenSatKits system design, the steps necessary to run the system to target the Raspberry Pi, and future plans. OpenSatKit is a free fully functional spacecraft software system that we hope will greatly benefit the SmallSat community.

  13. STS safety approval process for small self-contained payloads

    NASA Technical Reports Server (NTRS)

    Gum, Mary A.

    1988-01-01

    The safety approval process established by the National Aeronautics and Space Administration for Get Away Special (GAS) payloads is described. Although the designing organization is ultimately responsible for the safe operation of its payload, the Get Away Special team at the Goddard Space Flight Center will act as advisors while iterative safety analyses are performed and the Safety Data Package inputs are submitted. This four phase communications process will ultimately give NASA confidence that the GAS payload is safe, and successful completion of the Phase 3 package and review will clear the way for flight aboard the Space Transportation System orbiter.

  14. PRIMA Platform capability for satellite missions in LEO and MEO (SAR, Optical, GNSS, TLC, etc.)

    NASA Astrophysics Data System (ADS)

    Logue, T.; L'Abbate, M.

    2016-12-01

    PRIMA (Piattaforma Riconfigurabile Italiana Multi Applicativa) is a multi-mission 3-axis stabilized Platform developed by Thales Alenia Space Italia under ASI contract.PRIMA is designed to operate for a wide variety of applications from LEO, MEO up to GEO and for different classes of satellites Platform Family. It has an extensive heritage in flight heritage (LEO and MEO Satellites already fully operational) in which it has successfully demonstrated the flexibility of use, low management costs and the ability to adapt to changing operational conditions.The flexibility and modularity of PRIMA provides unique capability to satisfy different Payload design and mission requirements, thanks to the utilization of recurrent adaptable modules (Service Module-SVM, Propulsion Module-PPM, Payload Module-PLM) to obtain mission dependent configuration. PRIMA product line development is continuously progressing, and is based on state of art technology, modular architecture and an Integrated Avionics. The aim is to maintain and extent multi-mission capabilities to operate in different environments (LEO to GEO) with different payloads (SAR, Optical, GNSS, TLC, etc.). The design is compatible with a wide range of European and US equipment suppliers, thus maximising cooperation opportunity. Evolution activities are mainly focused on the following areas: Structure: to enable Spacecraft configurations for multiple launch; Thermal Control: to guarantee thermal limits for new missions, more demanding in terms of environment and payload; Electrical: to cope with higher power demand (e.g. electrical propulsion, wide range of payloads, etc.) considering orbital environment (e.g. lighting condition); Avionics : AOCS solutions optimized on mission (LEO observation driven by agility and pointing, agility not a driver for GEO). Use of sensors and actuators tailored for specific mission and related environments. Optimised Propulsion control. Data Handling, SW and FDIR mission customization, ensuring robust storage and downlink capability, long lasting autonomy and flexible operations in all mission phases, nominal and non-nominal conditions. This paper starting from PRIMA flight achievements will then outline PRIMA family multi-purpose features addressed to meet multi mission requirements.

  15. Data base architecture for instrument characteristics critical to spacecraft conceptual design

    NASA Technical Reports Server (NTRS)

    Rowell, Lawrence F.; Allen, Cheryl L.

    1990-01-01

    Spacecraft designs are driven by the payloads and mission requirements that they support. Many of the payload characteristics, such as mass, power requirements, communication requirements, moving parts, and so forth directly affect the choices for the spacecraft structural configuration and its subsystem design and component selection. The conceptual design process, which translates mission requirements into early spacecraft concepts, must be tolerant of frequent changes in the payload complement and resource requirements. A computer data base was designed and implemented for the purposes of containing the payload characteristics pertinent for spacecraft conceptual design, tracking the evolution of these payloads over time, and enabling the integration of the payload data with engineering analysis programs for improving the efficiency in producing spacecraft designs. In-house tools were used for constructing the data base and for performing the actual integration with an existing program for optimizing payload mass locations on the spacecraft.

  16. Feasibility Study for an Autonomous UAV -Magnetometer System -- Final Report on SERDP SEED 1509:2206

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roelof Versteeg; Mark McKay; Matt Anderson

    2007-09-01

    Large areas across the United States are potentially contaminated with UXO, with some ranges encompassing tens to hundreds of thousands of acres. Technologies are needed which will allow for cost effective wide area scanning with 1) near 100 % coverage and 2) near 100 % detection of subsurface ordnance or features indicative of subsurface ordnance. The current approach to wide area scanning is a multi-level one, in which medium altitude fixed wing optical imaging is used for an initial site assessment. This assessment is followed with low altitude manned helicopter based magnetometry followed by surface investigations using either towed geophysicalmore » sensor arrays or man portable sensors. In order to be effective for small UXO detection, the sensing altitude for magnetic site investigations needs to be on the order of 1 – 3 meters. These altitude requirements means that manned helicopter surveys will generally only be feasible in large, open and relatively flat terrains. While such surveys are effective in mapping large areas relatively fast there are substantial mobilization/demobilization, staffing and equipment costs associated with these surveys (resulting in costs of approximately $100-$150/acre). Surface towed arrays provide high resolution maps but have other limitations, e.g. in their ability to navigate rough terrain effectively. Thus, other systems are needed allowing for effective data collection. An UAV (Unmanned Aerial Vehicle) magnetometer platform is an obvious alternative. The motivation behind such a system is that it would be safer for the operators, cheaper in initial and O&M costs, and more effective in terms of site characterization. However, while UAV data acquisition from fixed wing platforms for large (> 200 feet) stand off distances is relatively straight forward, a host of challenges exist for low stand-off distance (~ 6 feet) UAV geophysical data acquisition. The objective of SERDP SEED 1509:2006 was to identify the primary challenges associated with a low stand off distance autonomous UAV magnetometer platform and to investigate whether these challenges can be resolved successfully such that a successful UAV magnetometer platform can be constructed. The primary challenges which were identified and investigated include: 1. The feasibility of assembling a payload package which integrates magnetometers, accurate positioning systems (DGPS, height above ground measurement), obstacle avoidance systems, power infrastructure, communications and data storage as well as auxiliary flight controls 2. The availability of commercial UAV platforms with autonomous flight capability which can accommodate this payload package 3. The feasibility of integrating obstacle avoidance controls in UAV platform control 4. The feasibility of collecting high quality magnetic data in the vicinity of an UAV.« less

  17. STS-95 Payload Specialist Glenn participates in a media briefing before returning to JSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-95 Payload Specialist John H. Glenn Jr., a senator from Ohio and one of the original seven Project Mercury astronauts, participates in a media briefing at the Kennedy Space Center Press Site Auditorium before returning to the Johnson Space Center in Houston, Texas. The STS-95 mission ended with landing at Kennedy Space Center's Shuttle Landing Facility at 12:04 p.m. EST on Nov. 7. Also participating in the briefing were the other STS-95 crew members: Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist and Payload Commander Stephen K. Robinson; Mission Specialist Scott E. Parazynski; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan-201 solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as a SPACEHAB single module with experiments on space flight and the aging process.

  18. Graduate Student Researchers Program (GSRP)

    NASA Technical Reports Server (NTRS)

    Westerhoff, John

    2004-01-01

    An advanced concept in in-space transportation currently being studied is the Momentum-Exchange/Electrodynamic Reboost Tether System (MXER). The MXER system is a permanently orbiting platform designed to boost payloads from low earth orbit (LEO). Unlike conventional rockets that use propellants, MXER acts as a large momentum wheel, imparting a Av to a payload at the expense of its own orbital energy. After throwing a payload, the system reboosts itself using an electrodynamic tether to push against Earth s magnetic field and brings itself back up to an operational orbit to prepare for the next payload. The ability to reboost itself allows for continued reuse of the system without the expenditure of propellants. Considering the cost of lifting propellant from the ground to LEO to do the same Av boost at $10000 per pound, the system cuts the launch cost of the payload dramatically, and subsequently, the MXER system pays for itself after a small number of missions. As such, this technology is a valuable addition to NASA s mission for in-space transportation.

  19. Reinventing the International Space Station Payload Integration Processes and Capabilities

    NASA Technical Reports Server (NTRS)

    Jones, Rod; Price, Carmen; Copeland, Scott; Geiger, Wade; Geiger, Wade; Rice, Amanda; Lauchner, Adam

    2011-01-01

    The fundamental ISS payload integration philosophy, processes and capabilities were established in the context of how NASA science programs were conducted and executed in the early 1990 s. Today, with the designation of the United States (US) portion of ISS as a National Lab, the ISS payload customer base is growing to include other government agencies, private and commercial research. The fields of research are becoming more diverse expanding from the NASA centric physical, materials and human research sciences to test beds for exploration and technology demonstration, biology and biotechnology, and as an Earth and Space science platform. This new customer base has a broader more diverse set of expectations and requirements for payload design, verification, integration, test, training, and operations. One size fits all processes are not responsive to this broader customer base. To maintain an organization s effectiveness it must listen to its customers, understand their needs, learn from its mistakes, and foster an environment of continual process improvement. The ISS Payloads office is evolving to meet these new customer expectations.

  20. KSC-98pc1139

    NASA Image and Video Library

    1998-09-23

    KENNEDY SPACE CENTER, FLA. -- The Hubble Space Telescope Orbiting Systems Test (HOST), one of the payloads on the STS-95 mission, is placed inside its payload canister in the Space Station Processing Facility. The canister is 65 feet long, 18 feet wide and 18 feet, 7 inches high. The HOST platform is carrying four experiments to validate components planned for installation during the third Hubble Space Telescope servicing mission and to evaluate new technologies in an Earth-orbiting environment. The STS-95 mission is scheduled to launch Oct. 29. It will carry other payloads such as the Spartan solar-observing deployable spacecraft, the International Extreme Ultraviolet Hitchhiker (IEH-3), and the SPACEHAB single module with experiments on space flight and the aging process

  1. KSC-98pc1138

    NASA Image and Video Library

    1998-09-23

    KENNEDY SPACE CENTER, FLA. -- The Hubble Space Telescope Orbiting Systems Test (HOST), one of the payloads on the STS-95 mission, is suspended above its payload canister in the Space Station Processing Facility. The canister is 65 feet long, 18 feet wide and 18 feet, 7 inches high. The HOST platform is carrying four experiments to validate components planned for installation during the third Hubble Space Telescope servicing mission and to evaluate new technologies in an Earth-orbiting environment. The STS-95 mission is scheduled to launch Oct. 29. It will carry other payloads such as the Spartan solar-observing deployable spacecraft, the International Extreme Ultraviolet Hitchhiker (IEH-3), and the SPACEHAB single module with experiments on space flight and the aging process

  2. KSC-98pc975

    NASA Image and Video Library

    1998-08-21

    KENNEDY SPACE CENTER, FLA. -- Inside the SPACEHAB training module, STS-95 Mission Specialist Scott Parazynski, M.D. (right), attaches sensors to the mesh cap worn by Payload Specialist John Glenn (back to camera). In the background is Ann Elliott, University of California, San Diego. Glenn will wear the cap on the mission to monitor and record brain waves during sleep. Parazynski and Glenn are participating in SPACEHAB familiarization at the SPACEHAB Payload Processing Facility, Cape Canaveral. The mission, scheduled to launch Oct. 29, includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process

  3. STS-95 Payload Specialist Duque arrives at KSC to participate in a SPACEHAB familiarization exercise

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-95 Payload Specialist Pedro Duque of Spain, who represents the European Space Agency (ESA), waves after arriving in a T-38 jet aircraft at the Shuttle Landing Facility at KSC. He is joining other STS-95 crew members in a familiarization tour of the SPACEHAB module and the equipment that will fly with them on the Space Shuttle Discovery scheduled to launch Oct. 29, 1998. The mission includes research payloads such as the Spartan solar- observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  4. Inflight alignment of payload inertial reference from Shuttle navigation system

    NASA Astrophysics Data System (ADS)

    Treder, A. J.; Norris, R. E.; Ruprecht, R.

    Two methods for payload attitude initialization from the STS Orbiter have been proposed: body axis maneuvers (BAM) and star line maneuvers (SLM). The first achieves alignment directly through the Shuttle star tracker, while the second, indirectly through the stellar-updated Shuttle inertial platform. The Inertial Upper Stage (IUS) with its strapdown navigation system is used to demonstrate in-flight alignment techniques. Significant accuracy can be obtained with minimal impact on Orbiter operations, with payload inertial reference potentially approaching the accuracy of the Shuttle star tracker. STS-6 flight performance parameters, including alignment stability, are discussed and compared with operational complexity. Results indicate overall alignment stability of .06 deg, 3 sigma per axis.

  5. Space assembly fixtures and aids

    NASA Technical Reports Server (NTRS)

    Bloom, K. A.; Lillenas, A. N.

    1980-01-01

    Concepts and requirements for assembly fixtures and aids necessary for the assembly and maintenance of spare platforms were studied. Emphasis was placed on erectable and deployable type structures with the shuttle orbiter as the assembly base. Both single and multiple orbiter flight cases for the platform assembly were considered. Applicable space platform assembly studies were reviewed to provide a data base for establishing the assembly fixture and aids design requirements, assembly constraints, and the development of representative design concepts. Conclusions indicated that fixture requirements will vary with platform size. Larger platforms will require translation relative to the orbiter RMS working volume. The installation of platform payloads and subsystems (e.g., utility distribution) must also be considered in the specification of assembly fixtures and aids.

  6. Standard payload computer for the international space station

    NASA Astrophysics Data System (ADS)

    Knott, Karl; Taylor, Chris; Koenig, Horst; Schlosstein, Uwe

    1999-01-01

    This paper describes the development and application of a Standard PayLoad Computer (SPLC) which is being applied by the majority of ESA payloads accommodated on the International Space Station (ISS). The strategy of adopting of a standard computer leads to a radical rethink in the payload data handling procurement process. Traditionally, this has been based on a proprietary development with repeating costs for qualification, spares, expertise and maintenance for each new payload. Implementations have also tended to be unique with very little opportunity for reuse or utilisation of previous developments. While this may to some extent have been justified for short duration one-off missions, the availability of a standard, long term space infrastructure calls for a quite different approach. To support a large number of concurrent payloads, the ISS implementation relies heavily on standardisation, and this is particularly true in the area of payloads. Physical accommodation, data interfaces, protocols, component quality, operational requirements and maintenance including spares provisioning must all conform to a common set of standards. The data handling system and associated computer used by each payload must also comply with these common requirements, and thus it makes little sense to instigate multiple developments for the same task. The opportunity exists to provide a single computer suitable for all payloads, but with only a one-off development and qualification cost. If this is combined with the benefits of multiple procurement, centralised spares and maintenance, there is potential for great savings to be made by all those concerned in the payload development process. In response to the above drivers, the SPLC is based on the following concepts: • A one-off development and qualification process • A modular computer, configurable according to the payload developer's needs from a list of space-qualified items • An `open system' which may be added to by payload developers • Core software providing a suite of common communications services including a verified protocol implementation required to communicate with the ISS • A standardized ground support equipment and accompanying software development environment • The use of commercial hardware and software standards and products.

  7. 47 CFR 64.617 - Neutral Video Communication Service Platform.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 3 2013-10-01 2013-10-01 false Neutral Video Communication Service Platform... Related Customer Premises Equipment for Persons With Disabilities § 64.617 Neutral Video Communication... Neutral Video Communication Service Platform to process VRS calls. Each VRS CA service provider shall be...

  8. 47 CFR 64.617 - Neutral Video Communication Service Platform.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 3 2014-10-01 2014-10-01 false Neutral Video Communication Service Platform... Related Customer Premises Equipment for Persons With Disabilities § 64.617 Neutral Video Communication... Neutral Video Communication Service Platform to process VRS calls. Each VRS CA service provider shall be...

  9. The Deep Space Network: A Radio Communications Instrument for Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A.; Stelzried, C. T.; Noreen, G. K.; Slobin, S. D.; Petty, S. M.; Trowbridge, D. L.; Donnelly, H.; Kinman, P. W.; Armstrong, J. W.; Burow, N. A.

    1983-01-01

    The primary purpose of the Deep Space Network (DSN) is to serve as a communications instrument for deep space exploration, providing communications between the spacecraft and the ground facilities. The uplink communications channel provides instructions or commands to the spacecraft. The downlink communications channel provides command verification and spacecraft engineering and science instrument payload data.

  10. Space Shuttle Projects

    NASA Image and Video Library

    1985-07-08

    The crew assigned to the STS-51G mission included (kneeling front left to right) Daniel C. Brandenstein, commander; and John O. Creighton, pilot. Standing, left to right, are mission specialists Shannon W. Lucid, Steven R. Nagel, and John M. Fabian; and payload specialists Sultan Salman Al-Saud, and Patrick Baudrey. Launched aboard the Space Shuttle Discovery on June 17, 1985 at 7:33:00 am (EDT), the STS-51G mission’s primary payloads were three communications satellites: MORELOS-A for Mexico; ARABSAT-A , for Arab Satellite communications; and TELSTAR-3D, for ATT.

  11. KSC-2011-7017

    NASA Image and Video Library

    2011-09-01

    VANDENBERG AIR FORCE BASE, Calif. – NASA’s National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) is positioned on a test platform in a clean room inside the Astrotech Payload Processing Facility at Vandenberg Air Force Base in California. NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System (JPSS), to be launched in 2016. NPP is the bridge between NASA’s Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. NPP is targeted to launch Oct. 25 from Space Launch Complex-2 aboard a United Launch Alliance Delta II rocket. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/30th Communications Squadron, VAFB

  12. KSC-2011-7023

    NASA Image and Video Library

    2011-09-08

    VANDENBERG AIR FORCE BASE, Calif. – NASA’s National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) is positioned on a test platform in a clean room inside the Astrotech Payload Processing Facility at Vandenberg Air Force Base in California, awaiting a solar array frangible bolt pre-load verification test. NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System (JPSS), to be launched in 2016. NPP is the bridge between NASA’s Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. NPP is targeted to launch Oct. 25 from Space Launch Complex-2 aboard a United Launch Alliance Delta II rocket. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/30th Communications Squadron, VAFB

  13. The Latest Developments in NASA's Long Duration Balloon Systems

    NASA Astrophysics Data System (ADS)

    Stilwell, Bryan D.

    The Latest Developments in NASA’s Long Duration Balloon Systems Bryan D. Stilwell, bryan.stilwell@csbf.nasa.gov Columbia Scientific Balloon Facility, Palestine, Texas, USA The Columbia Scientific Balloon Facility, located in Palestine, Texas offers the scientific community a high altitude balloon based communications platform. Scientific payload mass can exceed 2722 kg with balloon float altitudes on average of 40000 km and flight duration of up to 100 days. Many developments in electrical systems have occurred over the more than 25 years of long duration flights. This paper will discuss the latest developments in electronic systems related to long duration flights. Over the years, the long duration flights have increased in durations exceeding 56 days. In order to support these longer flights, the systems have had to increase in complexity and reliability. Several different systems that have been upgraded and/or enhanced will be discussed.

  14. The 12th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Mechanisms developed for various aerospace applications are discussed. Specific topics covered include: boom release mechanisms, separation on space shuttle orbiter/Boeing 747 aircraft, payload handling, spaceborne platform support, and deployment of spaceborne antennas and telescopes.

  15. Giant Vehicles

    NASA Technical Reports Server (NTRS)

    Said, Magdi A; Schur, Willi W.; Gupta, Amit; Mock, Gary N.; Seyam, Abdelfattah M.; Theyson, Thomas

    2004-01-01

    Science and technology development from balloon-borne telescopes and experiments is a rich return on a relatively modest involvement of NASA resources. For the past three decades, the development of increasingly competitive and complex science payloads and observational programs from high altitude balloon-borne platforms has yielded significant scientific discoveries. The success and capabilities of scientific balloons are closely related to advancements in the textile and plastic industries. This paper will present an overview of scientific balloons as a viable and economical platform for transporting large telescopes and scientific instruments to the upper atmosphere to conduct scientific missions. Additionally, the paper sheds the light on the problems associated with UV degradation of high performance textile components that are used to support the payload of the balloon and proposes future research to reduce/eliminate Ultra Violet (UV) degradation in order to conduct long-term scientific missions.

  16. Payload canister for Discovery is lifted in place for transfer

    NASA Technical Reports Server (NTRS)

    1998-01-01

    At left, the payload canister for Space Shuttle Discovery is lifted from its canister movement vehicle to the top of the Rotating Service Structure on Launch Pad 39-B. Discovery (right), sitting atop the Mobile Launch Platform and next to the Fixed Service Structure (FSS), is scheduled for launch on Oct. 29, 1998, for the STS-95 mission. That mission includes the International Extreme Ultraviolet Hitchhiker (IEH-3), the Hubble Space Telescope Orbital Systems Test Platform, the Spartan solar- observing deployable spacecraft, and the SPACEHAB single module with experiments on space flight and the aging process. At the top of the FSS can be seen the 80-foot lightning mast . The 4- foot-high lightning rod on top helps prevent lightning current from passing directly through the Space Shuttle and the structures on the pad.

  17. Astrobee Guest Science

    NASA Technical Reports Server (NTRS)

    Barlow, Jonathan; Benavides, Jose; Provencher, Chris; Bualat, Maria; Smith, Marion F.; Mora Vargas, Andres

    2017-01-01

    At the end of 2017, Astrobee will launch three free-flying robots that will navigate the entire US segment of the ISS (International Space Station) and serve as a payload facility. These robots will provide guest science payloads with processor resources, space within the robot for physical attachment, power, communication, propulsion, and human interfaces.

  18. The European Mobile System (EMS)

    NASA Technical Reports Server (NTRS)

    Jongejans, A.; Rogard, R.; Mistretta, I.; Ananasso, F.

    1993-01-01

    The European Space Agency is presently procuring an L band payload in order to promote a regional European L band system coping with the specific needs of the European market. The payload, and the two communications systems to be supported, are described below. The potential market for EMS in Europe is discussed.

  19. Endeavour on way to Pad 39B for STS-77

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A road sign points the way to Launch Pad 39B, the final earthly destination for the Space Shuttle Endeavour and its steppingstone into space. Endeavour began the slow journey from the Vehicle Assembly Building at about 10 a.m., April 16, perched atop the mobile launcher platform and carried by the crawler-transporter. Upcoming activities at the pad to prepare Endeavour for flight on Mission STS-77 include installation of the payloads in the orbiter's payload bay.

  20. The extreme ultraviolet explorer mission

    NASA Technical Reports Server (NTRS)

    Malina, R. F.; Bowyer, S.

    1988-01-01

    The science design goals and engineering implementation for the Extreme Ultraviolet Explorer (EUVE) science payload are discussed. The primary scientific goal of the EUVE payload is to carry out an all-sky survey in the 100- to 900-A band of the spectrum. Another goal of the mission is to demonstrate the use of a scientific platform in near-earth orbit. EUVE data will be used to study the distribution of EUV stars in the neighborhood of the sun and the emission physics responsible for the EUV mission.

  1. Power system interface and umbilical system study

    NASA Technical Reports Server (NTRS)

    1980-01-01

    System requirements and basic design criteria were defined for berthing or docking a payload to the 25 kW power module which will provide electrical power and attitude control, cooling, data transfer, and communication services to free-flying and Orbiter sortie payloads. The selected umbilical system concept consists of four assemblies and command and display equipment to be installed at the Orbiter payload specialist station: (1) a movable platen assembly which is attached to the power system with EVA operable devices; (2) a slave platen assembly which is attached to the payload with EVA operable devices; (3) a fixed secondary platen permanently installed in the power system; and (4) a fixed secondary platen permanently installed on the payload. Operating modes and sequences are described.

  2. Solar terrestrial observatory

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Eight basic solar-terrestrial scientific objectives that benefit from the Shuttle/Platform approach and a program of measurements for each are discussed. The objectives are to understand: (1) solar variability, (2) wave-particle processes, (3) magnetosphere-ionosphere mass transport, (4) the global electric circuit, (5) upper atmospheric dynamics, (6) middle atmospheric chemistry and energetics, (7) lower atmospheric turbidity, and (8) planetary atmospheric waves. A two stage approach to a multidisciplinary payload is developed: an initial STO, that uses a single platform in a low-Earth orbit, and an advanced STO that uses two platforms in differing orbits.

  3. IMP: Using microsat technology to support engineering research inside of the International Space Station

    NASA Astrophysics Data System (ADS)

    Carroll, Kieran A.

    2000-01-01

    This paper describes an International Space Station (ISS) experiment-support facility being developed by Dynacon for the Canadian Space Agency (CSA), based on microsatellite technology. The facility is called the ``Intravehicular Maneuverable Platform,'' or IMP. The core of IMP is a small, free-floating platform (or ``bus'') deployed inside one of the pressurized crew modules of ISS. Exchangeable experimental payloads can then be mounted to the IMP bus, in order to carry out engineering development or demonstration tests, or microgravity science experiments: the bus provides these payloads with services typical of a standard satellite bus (power, attitude control, etc.). The IMP facility takes advantage of unique features of the ISS, such as the Shuttle-based logistics system and the continuous availability of crew members, to greatly reduce the expense of carrying out space engineering experiments. Further cost reduction has been made possible by incorporating technology that Dynacon has developed for use in a current microsatellite mission. Numerous potential payloads for IMP have been identified, and the first of these (a flexible satellite control experiment) is under development by Dynacon and the University of Toronto's Institute for Aerospace Studies, for the CSA. .

  4. Airborne reconnaissance in the civilian sector - Agricultural monitoring from high-altitude powered platforms

    NASA Technical Reports Server (NTRS)

    Youngblood, J. W.; Jackson, R. D.

    1983-01-01

    Design concepts and mission applications for unmanned high-altitude powered platforms (HAPPs) are discussed. A chemically powered HAPP (operating altitude 18-21 km, wingspan 26 m, payload 91 kg, endurance 2-3 days) would use current turboprop technology. A microwave-powered HAPP (operating altitude around 21 km, wingspan 57.9 m, payload 500 kg, endurance weeks or months) would circle within or perform boost-glide maneuvers around a microwave beam of density 1.1 kw/sq m. Of two solar-powered-HAPP designs presented, the more promising uses five vertical solar-panel-bearing fins, two of which can be made horizontal at night, (wingspan 57.8/98.3 m, payload 113 kg, endurance weeks or months). The operating altitude depends on the latitude and season: this HAPP design is shown to be capable of year-round 20-km-altitude flights over the San Joaquin Valley in California, where an agricultural-monitoring mission using Landsat-like remote sensors is proposed. Other applications may be better served by the characteristics of the other HAPPs. The primary advantage of HAPPs over satellites is found to be their ability to provide rapidly available high-resolution continuous or repetitive coverage of specific areas at relatively low cost.

  5. KSC-2009-2978

    NASA Image and Video Library

    2009-05-08

    CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, the payload ground-handling mechanism, known as the PGHM, is retracted after installing the payloads in space shuttle Atlantis' payload bay for the STS-125 mission. Seen here are the service platforms of the PGHM. The payload includes the Flight Support System, or FSS, carrier with the Soft Capture Mechanism; the Multi-Use Lightweight Equipment, or MULE, carrier with the Science Instrument Command and Data Handling Unit, or SIC&DH; the Orbital Replacement Unit Carrier, or ORUC, with the Cosmic Origins Spectrograph, or COS, and an IMAX 3D camera. Atlantis' crew will service NASA's Hubble Space Telescope for the fifth and final time. The flight will include five spacewalks during which astronauts will refurbish and upgrade the telescope with state-of-the-art science instruments. As a result, Hubble's capabilities will be expanded and its operational lifespan extended through at least 2014. Photo credit: NASA/Kim Shiflett

  6. Next generation satellite communications networks

    NASA Astrophysics Data System (ADS)

    Garland, P. J.; Osborne, F. J.; Streibl, I.

    The paper introduces two potential uses for new space hardware to permit enhanced levels of signal handling and switching in satellite communication service for Canada. One application involves increased private-sector services in the Ku band; the second supports new personal/mobile services by employing higher levels of handling and switching in the Ka band. First-generation satellite regeneration and switching experiments involving the NASA/ACTS spacecraft are described, where the Ka band and switching satellite network problems are emphasized. Second-generation satellite development is outlined based on demand trends for more packet-based switching, low-cost earth stations, and closed user groups. A demonstration mission for new Ka- and Ku-band technologies is proposed, including the payload configuration. The half ANIK E payload is shown to meet the demonstration objectives, and projected to maintain a fully operational payload for at least 10 years.

  7. An Evaluation of Protocol Enhancing Proxies and File Transport Protocols for Satellite Communication

    NASA Technical Reports Server (NTRS)

    Finch, Patrick Eugene; Sullivan, Donald; Ivancic, William D.

    2012-01-01

    NASA is utilizing Global Hawk aircraft in high-altitude, long-duration Earth science missions. Communications with the onboard research equipment and sensors (the science payload) is via Ku-Band radio utilizing satellites in geostationary orbits. All payload communications use standard Internet Protocols and routing, and much of the data to be transferred is comprised of very large files. The science community is interested in fully utilizing these communication links to retrieve data as quickly and reliably as possible. A test bed was developed at NASA Ames to evaluate modern transport protocols as well as Protocol Enhancing Proxies (PEPs) to determine what tools best fit the needs of the science community. This paper describes the test bed used, the protocols, the PEPs that were evaluated, the particular tests performed and the results and conclusions.

  8. Integrated source and channel encoded digital communication system design study

    NASA Technical Reports Server (NTRS)

    Alem, W. K.; Huth, G. K.; Simon, M. K.

    1978-01-01

    The particular Ku-band carrier, PN despreading, and symbol synchronization strategies, which were selected for implementation in the Ku-band transponder aboard the orbiter, were assessed and evaluated from a systems performance viewpoint, verifying that system specifications were met. A study was performed of the design and implementation of tracking techniques which are suitable for incorporation into the Orbiter Ku-band communication system. Emphasis was placed on maximizing tracking accuracy and communication system flexibility while minimizing cost, weight, and system complexity of Orbiter and ground systems hardware. The payload communication study assessed the design and performance of the forward link and return link bent-pipe relay modes for attached and detached payloads. As part of this study, a design for a forward link bent-pipe was proposed which employs a residual carrier but which is tracked by the existing Costas loop.

  9. Internet Based Remote Operations

    NASA Technical Reports Server (NTRS)

    Chamberlain, James

    1999-01-01

    This is the Final Report for the Internet Based Remote Operations Contract, has performed payload operations research support tasks March 1999 through September 1999. These tasks support the GSD goal of developing a secure, inexpensive data, voice, and video mission communications capability between remote payload investigators and the NASA payload operations team in the International Space Station (ISS) era. AZTek has provided feedback from the NASA payload community by utilizing its extensive payload development and operations experience to test and evaluate remote payload operations systems. AZTek has focused on use of the "public Internet" and inexpensive, Commercial-off-the-shelf (COTS) Internet-based tools that would most benefit "small" (e.g., $2 Million or less) payloads and small developers without permanent remote operations facilities. Such projects have limited budgets to support installation and development of high-speed dedicated communications links and high-end, custom ground support equipment and software. The primary conclusions of the study are as follows: (1) The trend of using Internet technology for "live" collaborative applications such as telescience will continue. The GSD-developed data and voice capabilities continued to work well over the "public" Internet during this period. 2. Transmitting multiple voice streams from a voice-conferencing server to a client PC to be mixed and played on the PC is feasible. 3. There are two classes of voice vendors in the market: - Large traditional phone equipment vendors pursuing integration of PSTN with Internet, and Small Internet startups.The key to selecting a vendor will be to find a company sufficiently large and established to provide a base voice-conferencing software product line for the next several years.

  10. STS-46 crewmembers participate in Fixed Base (FB) SMS training at JSC

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-46 Atlantis, Orbiter Vehicle (OV) 104, Mission Specialist (MS) and Payload Commander (PLC) Jeffrey A. Hoffman, standing at the interdeck access ladder, explains procedures to backup Italian Payload Specialist Umberto Guidoni (center) and Italian Payload Specialist Franco Malerba (right) on the middeck of JSC's fixed base (FB) shuttle mission simulator (SMS). Behind them, MS Marsha S. Ivins reviews a cheklist. Participants are wearing communications kit assembly lightweight headsets (HDSTs). FB-SMS is located in JSC's Mission Simulation and Training Facility Bldg 5.

  11. STS-46 Italian Payload Specialist Malerba uses laptop PGSC on OV-104 middeck

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-46 Italian Payload Specialist Franco Malerba, wearing communications kit assembly headset (HDST), uses laptop payload and general support computer (PGSC) on the middeck of Atlantis, Orbiter Vehicle (OV) 104. Malerba is positioned in front of the airlock and surrounded by the interdeck access ladder (foreground), a cycle ergometer (directly behind him), the forward lockers (background), and the sleep station (at his left). Food, candy, hygiene kits, beverage containers, and film reels are attached to the forward lockers.

  12. NASA Launches Parachute Test Platform from Wallops

    NASA Image and Video Library

    2017-10-04

    NASA tested a parachute platform during the flight of a Terrier-Black Brant IX suborbital sounding rocket on Oct. 4, from the agency’s Wallops Flight Facility in Virginia. The rocket carried the Advanced Supersonic Parachute Inflation Research Experiment (ASPIRE) from NASA’s Jet Propulsion Laboratory in Pasadena, Calif. The mission will evaluate the performance of the ASPIRE payload, which is designed to test parachute systems in a low-density, supersonic environment.

  13. NASA 60 GHz intersatellite communication link definition study. Baseline document

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The overall system and component concepts for a 60 GHz intersatellite communications link system (ICLS) are described. The ICLS was designed to augment the capabilities of the current Tracking and Data Relay Satellite System (TDRSS), providing a data rate capacity large enough to accommodate the expected rates for user satellites (USAT's) in the post-1995 timeframe. The use of 60 GHz for the anticipated successor to TDRSS, the Tracking and Data Acquisition System (TDAS), was selected because of current technology development that will enable multigigibit data rates. Additionally, the attenuation of the earth's atmosphere at 60 GHz means that there is virtually no possibility of terrestrially generated interference (intentional or accidental) or terrestrially based intercept. The ICLS includes the following functional areas: (1) the ICLS payload package on the GEO TDAS satellite that communicates simultaneously with up to five LEO USAT's; (2) the payload package on the USAT that communicates with the TDAS satellite; and (3) the crosslink payload package on the TDAS satellite that communicates with another TDAS satellite. Two methods of data relay on-board the TDAS spacecraft were addressed. One is a complete baseband system (demod and remod) with a bi-directional 2 Gbps data stream; the other is a channelized system wherein some of the channels are baseband and others are merely frequency translated before re-transmission. Descriptions of the TDAS antenna, transmitter, receiver, and mechanical designs are presented.

  14. Telescience Resource Kit Software Capabilities and Future Enhancements

    NASA Technical Reports Server (NTRS)

    Schneider, Michelle

    2004-01-01

    The Telescience Resource Kit (TReK) is a suite of PC-based software applications that can be used to monitor and control a payload on board the International Space Station (ISS). This software provides a way for payload users to operate their payloads from their home sites. It can be used by an individual or a team of people. TReK provides both local ground support system services and an interface to utilize remote services provided by the Payload Operations Integration Center (POIC). by the POIC and to perform local data functions such as processing the data, storing it in local files, and forwarding it to other computer systems. TReK can also be used to build, send, and track payload commands. In addition to these features, work is in progress to add a new command management capability. This capability will provide a way to manage a multi- platform command environment that can include geographically distributed computers. This is intended to help those teams that need to manage a shared on-board resource such as a facility class payload. The environment can be configured such that one individual can manage all the command activities associated with that payload. This paper will provide a summary of existing TReK capabilities and a description of the new command management capability. For example, 7'ReK can be used to receive payload data distributed

  15. Evolution of a Reconfigurable Processing Platform for a Next Generation Space Software Defined Radio

    NASA Technical Reports Server (NTRS)

    Kacpura, Thomas J.; Downey, Joseph A.; Anderson, Keffery R.; Baldwin, Keith

    2014-01-01

    The National Aeronautics and Space Administration (NASA)Harris Ka-Band Software Defined Radio (SDR) is the first, fully reprogrammable space-qualified SDR operating in the Ka-Band frequency range. Providing exceptionally higher data communication rates than previously possible, this SDR offers in-orbit reconfiguration, multi-waveform operation, and fast deployment due to its highly modular hardware and software architecture. Currently in operation on the International Space Station (ISS), this new paradigm of reconfigurable technology is enabling experimenters to investigate navigation and networking in the space environment.The modular SDR and the NASA developed Space Telecommunications Radio System (STRS) architecture standard are the basis for Harris reusable, digital signal processing space platform trademarked as AppSTAR. As a result, two new space radio products are a synthetic aperture radar payload and an Automatic Detection Surveillance Broadcast (ADS-B) receiver. In addition, Harris is currently developing many new products similar to the Ka-Band software defined radio for other applications. For NASAs next generation flight Ka-Band radio development, leveraging these advancements could lead to a more robust and more capable software defined radio.The space environment has special considerations different from terrestrial applications that must be considered for any system operated in space. Each space mission has unique requirements that can make these systems unique. These unique requirements can make products that are expensive and limited in reuse. Space systems put a premium on size, weight and power. A key trade is the amount of reconfigurability in a space system. The more reconfigurable the hardware platform, the easier it is to adapt to the platform to the next mission, and this reduces the amount of non-recurring engineering costs. However, the more reconfigurable platforms often use more spacecraft resources. Software has similar considerations to hardware. Having an architecture standard promotes reuse of software and firmware. Space platforms have limited processor capability, which makes the trade on the amount of amount of flexibility paramount.

  16. Analysis and Improvement of Large Payload Bidirectional Quantum Secure Direct Communication Without Information Leakage

    NASA Astrophysics Data System (ADS)

    Liu, Zhi-Hao; Chen, Han-Wu

    2018-02-01

    As we know, the information leakage problem should be avoided in a secure quantum communication protocol. Unfortunately, it is found that this problem does exist in the large payload bidirectional quantum secure direct communication (BQSDC) protocol (Ye Int. J. Quantum. Inf. 11(5), 1350051 2013) which is based on entanglement swapping between any two Greenberger-Horne-Zeilinger (GHZ) states. To be specific, one half of the information interchanged in this protocol is leaked out unconsciously without any active attack from an eavesdropper. Afterward, this BQSDC protocol is revised to the one without information leakage. It is shown that the improved BQSDC protocol is secure against the general individual attack and has some obvious features compared with the original one.

  17. Air Launch: Examining Performance Potential of Various Configurations and Growth Options

    NASA Technical Reports Server (NTRS)

    Waters, Eric D.; Creech, Dennis M.; Philips, Alan

    2013-01-01

    The Advanced Concepts Office at NASA's George C. Marshall Space Flight Center conducted a high-level analysis of various air launch vehicle configurations, objectively determining maximum launch vehicle payload while considering carrier aircraft capabilities and given dimensional constraints. With the renewed interest in aerial launch of low-earth orbit payloads, referenced by programs such as Stratolaunch and Spaceship2, there existed a need to qualify the boundaries of the trade space, identify performance envelopes, and understand advantages and limiting factors of designing for maximum payload capability. Using the NASA/DARPA Horizontal Launch Study (HLS) Point Design 2 (PD-2) as a point-of-departure configuration, two independent design actions were undertaken. Both configurations utilized a Boeing 747-400F as the carrier aircraft, LOX/RP-1 first stage and LOX/LH2 second stage. Each design was sized to meet dimensional and mass constraints while optimizing propellant loads and stage delta V (?V) splits. All concepts, when fully loaded, exceeded the allowable Gross Takeoff Weight (GTOW) of the aircraft platform. This excess mass was evaluated as propellant/fuel offload available for a potential in-flight refueling scenario. Results indicate many advantages such as large, relative payload delivery of approximately 47,000 lbm and significant mission flexibility, such as variable launch site inclination and launch window; however, in-flight cryogenic fluid transfer and carrier aircraft platform integration are substantial technical hurdles to the realization of such a system configuration.

  18. ISS Payload Operations: The Need for and Benefit of Responsive Planning

    NASA Technical Reports Server (NTRS)

    Nahay, Ed; Boster, Mandee

    2000-01-01

    International Space Station (ISS) payload operations are controlled through implementation of a payload operations plan. This plan, which represents the defined approach to payload operations in general, can vary in terms of level of definition. The detailed plan provides the specific sequence and timing of each component of a payload's operations. Such an approach to planning was implemented in the Spacelab program. The responsive plan provides a flexible approach to payload operations through generalization. A responsive approach to planning was implemented in the NASA/Mir Phase 1 program, and was identified as a need during the Skylab program. The current approach to ISS payload operations planning and control tends toward detailed planning, rather than responsive planning. The use of detailed plans provides for the efficient use of limited resources onboard the ISS. It restricts flexibility in payload operations, which is inconsistent with the dynamic nature of the ISS science program, and it restricts crew desires for flexibility and autonomy. Also, detailed planning is manpower intensive. The development and implementation of a responsive plan provides for a more dynamic, more accommodating, and less manpower intensive approach to planning. The science program becomes more dynamic and responsive as the plan provides flexibility to accommodate real-time science accomplishments. Communications limitations and the crew desire for flexibility and autonomy in plan implementation are readily accommodated with responsive planning. Manpower efficiencies are accomplished through a reduction in requirements collection and coordination, plan development, and maintenance. Through examples and assessments, this paper identifies the need to transition from detailed to responsive plans for ISS payload operations. Examples depict specific characteristics of the plans. Assessments identify the following: the means by which responsive plans accommodate the dynamic nature of science programs and the crew desire for flexibility; the means by which responsive plans readily accommodate ISS communications constraints; manpower efficiencies to be achieved through use of responsive plans; and the implications of responsive planning relative to resource utilization efficiency.

  19. External Contamination Control of Attached Payloads on the International Space Station

    NASA Technical Reports Server (NTRS)

    Soares, Carlos E.; Mikatarian, Ronald R.; Olsen, Randy L.; Huang, Alvin Y.; Steagall, Courtney A.; Schmidl, William D.; Wright, Bruce D.; Koontz, Steven

    2012-01-01

    The International Space Station (ISS) is an on-orbit platform for science utilization in low Earth orbit with multiple sites for external payloads with exposure to the natural and induced environments. Contamination is one of the induced environments that can impact performance, mission success and science utilization on the vehicle. This paper describes the external contamination control requirements and integration process for externally mounted payloads on the ISS. The external contamination control requirements are summarized and a description of the integration and verification process is detailed to guide payload developers in the certification process of attached payloads on the vehicle. A description of the required data certification deliverables covers the characterization of contamination sources. Such characterization includes identification, usage and operational data for each class of contamination source. Classes of external contamination sources covered are vacuum exposed materials, sources of leakage, vacuum venting and thrusters. ISS system level analyses are conducted by the ISS Space Environments Team to certify compliance with external contamination control requirements. This paper also addresses the ISS induced contamination environment at attached payload sites, both at the requirements level as well as measurements made on ISS.

  20. HOST payload for STS-95 being moved into SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers watch as the Hubble Space Telescope Orbiting Systems Test (HOST)is lowered onto a workstand in the Space Shuttle Processing Facility. To the right can be seen the Rack Insertion Device and Leonardo, a Multi-Purpose Logistics Module. The HOST platform, one of the payloads on the STS-95 mission, is carrying four experiments to validate components planned for installation during the third Hubble Space Telescope servicing mission and to evaluate new technologies in an earth orbiting environment. The STS-95 mission is scheduled to launch Oct. 29. It will carry three other payloads: the Spartan solar-observing deployable spacecraft, the International Extreme Ultraviolet Hitchhiker, and the SPACEHAB single module with experiments on space flight and the aging process.

  1. Design and Functional Validation of a Mechanism for Dual-Spinning CubeSats

    NASA Technical Reports Server (NTRS)

    Peters, Eric; Dave, Pratik; Kingsbury, Ryan; Marinan, Anne; Wise, Evan; Pong, Chris; Prinkey, Meghan; Cahoy, Kerri; Miller, David W.; Sklair, Devon

    2014-01-01

    The mission of the Micro-sized Microwave Atmospheric Satellite (MicroMAS) is to collect useful atmospheric images using a miniature passive microwave radiometer payload hosted on a low-cost CubeSat platform. In order to collect this data, the microwave radiometer payload must rotate to scan the ground-track perpendicular to the satellite's direction of travel. A custom motor assembly was developed to facilitate the rotation of the payload while allowing the spacecraft bus to remained fixed in the local-vertical, local-horizontal (LVLH) frame for increased pointing accuracy. This paper describes the mechanism used to enable this dual-spinning operation for CubeSats, and the lessons learned during the design, fabrication, integration, and testing phases of the mechanism's development lifecycle.

  2. KSC-01pp1425

    NASA Image and Video Library

    2001-08-06

    KENNEDY SPACE CENTER, Fla. -- On Launch Pad 39A, Discovery’s payload bay doors close on the payloads inside. On the Integrated Cargo Carrier seen here is the Early Ammonia Servicer (EAS) on the left. The EAS contains spare ammonia for the Station’s cooling system. Ammonia is the fluid used in the radiators that cool the Station’s electronics. The EAS will be installed on the P6 truss holding the giant U.S. solar arrays, batteries and cooling radiators. Other payloads in the bay are the Multi-Purpose Logistics Module Leonardo, filled with laboratory racks of science equipment and racks and platforms of experiments and supplies, and various experiments attached on the port and starboard adapter beams. Discovery is scheduled to be launched Aug. 9, 2001

  3. STS-95 crew members take part in the CEIT for their mission

    NASA Technical Reports Server (NTRS)

    1998-01-01

    During a break in the Crew Equipment Interface Test, Payload Specialist John H. Glenn Jr., senator from Ohio, greets Bobby Miranda. Miranda was a NASA photographer for Glenn's first flight on Friendship 7, February 1962. CEIT gives astronauts an opportunity for a hands-on look at the payloads and equipment with which they will be working on orbit. The launch of the STS- 95 mission is scheduled for Oct. 29, 1998, on the Space Shuttle Discovery. The mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  4. STS-95 crew members participate in a SPACEHAB familiarization exercise

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Inside the SPACEHAB training module, STS-95 Mission Specialist Scott Parazynski, M.D. (right), attaches sensors to the mesh cap worn by Payload Specialist John Glenn (back to camera). In the background is Ann Elliott, University of California, San Diego. Glenn will wear the cap on the mission to monitor and record brain waves during sleep. Parazynski and Glenn are participating in SPACEHAB familiarization at the SPACEHAB Payload Processing Facility, Cape Canaveral. The mission, scheduled to launch Oct. 29, includes research payloads such as the Spartan solar- observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  5. KSC-98pc1026

    NASA Image and Video Library

    1998-09-02

    During a break in the Crew Equipment Interface Test (CEIT) at KSC, Payload Specialist John H. Glenn Jr., a senator from Ohio, poses for a photo with Georgett Styers, United Space Alliance receiving scheduler, NASA Supply Logistics Depot, Cape Canaveral, Fla. The CEIT gives astronauts an opportunity for a hands-on look at the payloads and equipment with which they will be working on orbit. The launch of the STS-95 mission is scheduled for Oct. 29, 1998, on the Space Shuttle Discovery. The mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process

  6. KSC-98pc1008

    NASA Image and Video Library

    1998-09-02

    (Left to right) STS-95 Payload Specialists John H. Glenn Jr., senator from Ohio, and Chiaki Mukai, with the National Space Development Agency of Japan, talk with Kiki Chaput, trainer, United Space Alliance-Houston, during the Crew Equipment Interface Test (CEIT) for their mission. The CEIT gives astronauts an opportunity for a hands-on look at the payloads on whcih they will be working on orbit. The launch of the STS-95 mission, aboard Space Shuttle Discovery, is scheduled for Oct. 29, 1998. The mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process

  7. Demonstrating Acquisition of Real-Time Thermal Data Over Fires Utilizing UAVs

    NASA Technical Reports Server (NTRS)

    Ambrosia, Vincent G.; Wegener, Steven S.; Brass, James A.; Buechel, Sally W.; Peterson, David L. (Technical Monitor)

    2002-01-01

    A disaster mitigation demonstration, designed to integrate remote-piloted aerial platforms, a thermal infrared imaging payload, over-the-horizon (OTH) data telemetry and advanced image geo-rectification technologies was initiated in 2001. Project FiRE incorporates the use of a remotely piloted Uninhabited Aerial Vehicle (UAV), thermal imagery, and over-the-horizon satellite data telemetry to provide geo-corrected data over a controlled burn, to a fire management community in near real-time. The experiment demonstrated the use of a thermal multi-spectral scanner, integrated on a large payload capacity UAV, distributing data over-the-horizon via satellite communication telemetry equipment, and precision geo-rectification of the resultant data on the ground for data distribution to the Internet. The use of the UAV allowed remote-piloted flight (thereby reducing the potential for loss of human life during hazardous missions), and the ability to "finger and stare" over the fire for extended periods of time (beyond the capabilities of human-pilot endurance). Improved bit-rate capacity telemetry capabilities increased the amount, structure, and information content of the image data relayed to the ground. The integration of precision navigation instrumentation allowed improved accuracies in geo-rectification of the resultant imagery, easing data ingestion and overlay in a GIS framework. We focus on these technological advances and demonstrate how these emerging technologies can be readily integrated to support disaster mitigation and monitoring strategies regionally and nationally.

  8. Integration and Test of Shuttle Small Payloads

    NASA Technical Reports Server (NTRS)

    Wright, Michael R.

    2003-01-01

    Recommended approaches for space shuttle small payload integration and test (I&T) are presented. The paper is intended for consideration by developers of shuttle small payloads, including I&T managers, project managers, and system engineers. Examples and lessons learned are presented based on the extensive history of NASA's Hitchhiker project. All aspects of I&T are presented, including: (1) I&T team responsibilities, coordination, and communication; (2) Flight hardware handling practices; (3) Documentation and configuration management; (4) I&T considerations for payload development; (5) I&T at the development facility; (6) Prelaunch operations, transfer, orbiter integration and interface testing; (7) Postflight operations. This paper is of special interest to those payload projects that have small budgets and few resources: that is, the truly faster, cheaper, better projects. All shuttle small payload developers are strongly encouraged to apply these guidelines during I&T planning and ground operations to take full advantage of today's limited resources and to help ensure mission success.

  9. ARC-2006-ACD06-0091-016

    NASA Image and Video Library

    2006-06-05

    Space shuttle STS-121 FIT (Fly Immunity and Tumors) payload. Using Drosophila (fruit fly) to complete the experiments. Platform used by astronauts to change out old food trays with new food trays in space to facilitate culturing new flies.

  10. Meteorological and Remote Sensing Applications of High Altitude Unmanned Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Schoenung, S. M.; Wegener, S. S.

    1999-01-01

    Unmanned aerial vehicles (UAVs) are maturing in performance and becoming available for routine use in environmental applications including weather reconnaissance and remote sensing. This paper presents a discussion of UAV characteristics and unique features compared with other measurement platforms. A summary of potential remote sensing applications is provided, along with details for four types of tropical cyclone missions. Capabilities of platforms developed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program are reviewed, including the Altus, Perseus, and solar- powered Pathfinder, all of which have flown to over 57,000 ft (17 km). In many scientific missions, the science objectives drive the experimental design, thus defining the sensor payload, aircraft performance, and operational requirements. Some examples of science missions and the requisite UAV / payload system are given. A discussion of technology developments needed to fully mature UAV systems for routine operational use is included, along with remarks on future science and commercial UAV business opportunities.

  11. KSC-02pd0390

    NASA Image and Video Library

    2002-04-03

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Atlantis is revealed as the Rotating Service Structure rolls back into launch position. The RSS provides protected access to the orbiter for changeout and servicing of payloads at the pad. The structure has access platforms at five levels to provide access to the payload bay. The Shuttle rests on the Mobile Launcher Platform (MLP), which straddles the flame trench below. The flame trench is part of the Flame Deflector System that insulates pad structures from the intense heat of the launch. Above the golden external tank is the vent hood (known as the "beanie cap") at the end of the gaseous oxygen vent arm. Vapors are created as the liquid oxygen in the external tank boil off. The hood vents the gaseous oxygen vapors away from the Space Shuttle vehicle. Mission STS-110 is scheduled to launch April 4 on its 11-day mission to the International Space Station

  12. An Integrated Framework for Effective and Efficient Communication with Families in the Adult Intensive Care Unit.

    PubMed

    Seaman, Jennifer B; Arnold, Robert M; Scheunemann, Leslie P; White, Douglas B

    2017-06-01

    The increased focus on patient and family-centered care in adult intensive care units (ICUs) has generated multiple platforms for clinician-family communication beyond traditional interdisciplinary family meetings (family meetings)-including family-centered rounds, bedside or telephone updates, and electronic family portals. Some clinicians and administrators are now using these platforms instead of conducting family meetings. For example, some institutions are moving toward using family-centered rounds as the main platform for clinician-family communication, and some physicians rely on brief daily updates to the family at the bedside or by phone, in lieu of family meetings. We argue that although each of these platforms is useful in some circumstances, there remains an important role for family meetings. We outline five goals of clinician-family communication-establishing trust, providing emotional support, conveying clinical information, understanding the patient as a person, and facilitating careful decision making-and we examine the extent to which various communication platforms are likely to achieve the goals. We argue that because no single platform can achieve all communication goals, an integrated strategy is needed. We present a model that integrates multiple communication platforms to effectively and efficiently support families across the arc of an ICU stay. Our framework employs bedside/telephone conversations and family-centered rounds throughout the admission to address high informational needs, along with well-timed family meetings that attend to families' emotions as well as patients' values and goals. This flexible model uses various communication platforms to achieve consistent, efficient communication throughout the ICU stay.

  13. Delta capability for launch of communications satellites

    NASA Technical Reports Server (NTRS)

    Grimes, D. W.; Russell, W. A., Jr.; Kraft, J. D.

    1982-01-01

    The evolution of capabilities and the current performance levels of the Delta launch vehicle are outlined. The first payload was the Echo I passive communications satellite, weighing 179 lb, and placed in GEO in 1960. Emphasis since then has been to use off-the-shelf hardware where feasible. The latest version in the 3924 first stage, 3920 second stage, and Pam D apogee kick motor third stage. The Delta is presently equipped to place 2800 lb in GEO, as was proven with the 2717 lb Anik-D1 satellite. The GEO payload placement performance matches the Shuttle's, and work is therefore under way to enhance the Delta performance to handle more massive payloads. Installation of the Castor-IV solid motor separation system, thereby saving mass by utilizing compressed nitrogen, rather than mechanical thrusters to remove the strap-on boosters, is indicated, together with use of a higher performance propellant and a wider nose fairing.

  14. TOPEX satellite option study

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The basic design of the fleet satellite communication spacecraft (FLTSATCOM) can easily accommodate any of the three payload options for the ocean dynamic topography experiment (TOPEX). The principal mission requirements as well as the payload accommodations and communications systems needed for launching this payload are reviewed. The existing FLTSATCOM satellite design is identified and the approaches for the proposed propulsion system are described in addition to subsystems for mechanical; power; attitude and velocity control; and telemetry, tracking and control are described. The compatability of FLTSATCOM with the launch vehicle is examined and its capabilities vs TOPEX requirements are summarized. Undetermined changes needed to meet data storage, thermal control, and area to mass ratio requirements are discussed. Cost estimates are included for budgetary and planning purposes. The availability of the described design is assessed based on the continuing production of FLTSATCOM spacecraft during the schedule span planned for TOPEX.

  15. STS-35 Payload Specialist Parise sets up SAREX on OV-102's middeck

    NASA Image and Video Library

    1990-12-10

    STS-35 Payload Specialist Ronald A. Parise enters data into the payload and general support computer (PGSC) in preparation for Earth communication via the Shuttle Amateur Radio Experiment (SAREX) aboard Columbia, Orbiter Vehicle (OV) 102. The SAREX equipment is secured to the middeck starboard sleep station. SAREX provided radio transmissions between ground based amateur radio operators around the world and Parise, a licensed amateur radio operator. The experiment enabled students to communicate with an astronaut in space, as Parise (call-sign WA4SIR) devoted some of his off-duty time to that purpose. Displayed on the forward lockers beside Parise is a AMSAT (Amateur Radio Satellite Corporation) / ARRL (American Radio Relay League) banner. Food items and checklists are attached to the lockers. In locker position MF43G, the Development Test Objective (DTO) Trash Compaction and Retention System Demonstration extended duration orbiter (EDO) compactor is visible.

  16. KSC-07pd1811

    NASA Image and Video Library

    2007-07-08

    KENNEDY SPACE CENTER, FLA. -- The payload canister is lifted off its transporter up to the payload changeout room. Inside the canister are the S5 truss, SPACEHAB module and external stowage platform 3, the payload for mission STS-118. The red umbilical lines are still attached. The payloads will be transferred inside the changeout room to wait for Space Shuttle Endeavour to arrive at the pad. The changeout room is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into the orbiter payload bay. The mission will be Endeavour's first flight in more than four years. The shuttle has undergone extensive modifications, including the addition of safety upgrades already added to shuttles Discovery and Atlantis. Endeavour also features new hardware, such as the Station-to-Shuttle Power Transfer System that will allow the docked shuttle to draw electrical power from the station and extend its visits to the orbiting lab. Space Shuttle Endeavour is targeted for launch on Aug. 7 from Launch Pad 39A. Photo credit: NASA/Kim Shiflett

  17. KSC-07pd1813

    NASA Image and Video Library

    2007-07-08

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, the payload canister is lifted up to the payload changeout room. Inside the canister are the S5 truss, SPACEHAB module and external stowage platform 3, the payload for mission STS-118. The red umbilical lines are still attached. The payloads will be transferred inside the changeout room to wait for Space Shuttle Endeavour to arrive at the pad. The changeout room is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into the orbiter payload bay. The mission will be Endeavour's first flight in more than four years. The shuttle has undergone extensive modifications, including the addition of safety upgrades already added to shuttles Discovery and Atlantis. Endeavour also features new hardware, such as the Station-to-Shuttle Power Transfer System that will allow the docked shuttle to draw electrical power from the station and extend its visits to the orbiting lab. Space Shuttle Endeavour is targeted for launch on Aug. 7 from Launch Pad 39A. Photo credit: NASA/Kim Shiflett

  18. The New Payload Handling System for the G erman On- Orbit Verification Satellite TET with the Sensor Bus as Example for Payloads

    NASA Astrophysics Data System (ADS)

    Heyer, H.-V.; Föckersperger, S.; Lattner, K.; Moldenhauer, W.; Schmolke, J.; Turk, M.; Willemsen, P.; Schlicker, M.; Westerdorff, K.

    2008-08-01

    The technology verification satellite TET (Technologie ErprobungsTräger) is the core element of the German On-Orbit-Verification (OOV) program of new technologies and techniques. The goal of this program is the support of the German space industry and research facilities for on-orbit verification of satellite technologies. The TET satellite is a small satellite developed and built in Germany under leadership of Kayser-Threde. The satellite bus is based on the successfully operated satellite BIRD and the newly developed payload platform with the new payload handling system called NVS (Nutzlastversorgungs-system). The NVS can be detailed in three major parts: the power supply the processor boards and the I/O-interfaces. The NVS is realized via several PCBs in Europe format which are connected to each other via an integrated backplane. The payloads are connected by front connectors to the NVS. This paper describes the concept, architecture, and the hard-/software of the NVS. Phase B of this project was successfully finished last year.

  19. KSC-97PC1208

    NASA Image and Video Library

    1997-08-07

    KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments

  20. KSC-97PC1206

    NASA Image and Video Library

    1997-08-07

    KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments

  1. KSC-97PC1209

    NASA Image and Video Library

    1997-08-07

    KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments

  2. KSC-97PC1204

    NASA Image and Video Library

    1997-08-07

    KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments

  3. KSC-97PC1202

    NASA Image and Video Library

    1997-08-07

    KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments

  4. KSC-97PC1203

    NASA Image and Video Library

    1997-08-07

    KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments

  5. KSC-97PC1210

    NASA Image and Video Library

    1997-08-07

    KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments

  6. KSC-97pc1205

    NASA Image and Video Library

    1997-08-07

    KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments

  7. KSC-97PC1207

    NASA Image and Video Library

    1997-08-07

    KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments

  8. FASTSAT a Mini-Satellite Mission...A Way Ahead

    NASA Technical Reports Server (NTRS)

    Boudreaux, Mark; Pearson, Steve; Casas, Joseph

    2012-01-01

    The Fast Affordable Science and Technology Spacecraft (FASTSAT) is a mini-satellite weighing less than 150 kg. FASTSAT was developed as government-industry collaborative research and development flight project targeting rapid access to space to provide an alternative, low cost platform for a variety of scientific, research, and technology payloads. The initial spacecraft was designed to carry six instruments and launch as a secondary rideshare payload. This design approach greatly reduced overall mission costs while maximizing the on-board payload accommodations. FASTSAT was designed from the ground up to meet a challenging short schedule using modular components with a flexible, configurable layout to enable a broad range of payloads at a lower cost and shorter timeline than scaling down a more complex spacecraft. The integrated spacecraft along with its payloads were readied for launch 15 months from authority to proceed. As an ESPA-class spacecraft, FASTSAT is compatible with many different launch vehicles, including Minotaur I, Minotaur IV, Delta IV, Atlas V, Pegasus, Falcon 1/1e, and Falcon 9. These vehicles offer an array of options for launch sites and provide for a variety of rideshare possibilities.

  9. The AstroSat Production Line: From AstroSat 100 to AstroSat 1000

    NASA Astrophysics Data System (ADS)

    Maliet, E.; Pawlak, D.; Koeck, C.; Beaufumé, E.

    2008-08-01

    From the late 90s onward, Astrium Satellites has developed and improved several classes of high resolution optical Earth Observation satellites. The resulting product line ranges from micro-satellites (about 120 kg) type to the large satellites (in the range of 1 200 kg). They all make uses of state of the art technologies for optical payloads, as well as for avionics. Several classes of platforms have thus been defined and standardised: AstroSat 100 for satellites up to 150 kg, allowing affordable but fully operational missions, AstroSat 500 for satellites up to 800 kg, allowing complex high resolution missions, and AstroSat 1000 for satellites up to 1 200 kg, providing very high resolution and outstanding imaging and agility capabilities. A new class, AstroSat 250, has been developed by Astrium Satellites, and is now proposed, offering a state-of-the-art 3-axis agile platform for high- resolution missions, with a launch mass below 550 kg. The Astrosat platforms rely on a centralised architecture avionics based on an innovative AOCS hybridising of measurements from GPS, stellar sensors and inertial reference unit. Operational safety has been emphasised through thruster free safe modes. All optical payloads make use of all Silicon Carbide (SiC) telescopes. High performance and low consumption linear CCD arrays provide state of the art images. The satellites are designed for simple flight operations, large data collection capability, and large versatility of payload and missions. They are adaptable to a large range of performances. Astrium satellites have already been selected by various customers worldwide.

  10. ISS External Contamination Environment for Space Science Utilization

    NASA Technical Reports Server (NTRS)

    Soares, Carlos; Mikatarian, Ron; Steagall, Courtney; Huang, Alvin; Koontz, Steven; Worthy, Erica

    2014-01-01

    (1) The International Space Station is the largest and most complex on-orbit platform for space science utilization in low Earth orbit, (2) Multiple sites for external payloads, with exposure to the associated natural and induced environments, are available to support a variety of space science utilization objectives, (3) Contamination is one of the induced environments that can impact performance, mission success and science utilization on the vehicle, and (4)The ISS has been designed, built and integrated with strict contamination requirements to provide low levels of induced contamination on external payload assets.

  11. STS-95 crew members participate in a SPACEHAB familiarization exercise

    NASA Technical Reports Server (NTRS)

    1998-01-01

    (Left to right) STS-95 Mission Specialist Pedro Duque of Spain, who represents the European Space Agency (ESA), Mission Commander Curtis Brown Jr., and Mission Specialist Stephen Robinson, Ph.D., chat during SPACEHAB familiarization at the SPACEHAB Payload Processing Facility, Cape Canaveral. The mission, scheduled to launch Oct. 29, includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  12. Advanced power systems for EOS

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Weinberg, Irving; Flood, Dennis J.

    1991-01-01

    The Earth Observing System, which is part of the International Mission to Planet Earth, is NASA's main contribution to the Global Change Research Program. Five large platforms are to be launched into polar orbit: two by NASA, two by the European Space Agency, and one by the Japanese. In such an orbit the radiation resistance of indium phosphide solar cells combined with the potential of utilizing 5 micron cell structures yields an increase of 10 percent in the payload capability. If further combined with the Advanced Photovoltaic Solar Array, the total additional payload capability approaches 12 percent.

  13. Pre-flight views of orbiter Endeavour on way to launch pad for STS-77

    NASA Image and Video Library

    1996-05-01

    S96-07957 (16 April 1996) --- A road sign points to Launch Pad 39B, the final earthly destination for the Space Shuttle Endeavour and its final stepping stone into space. Endeavour began the slow journey from the Vehicle Assembly Building (VAB) at about 10:00a.m., April 16, 1996, perched atop the Mobile Launcher Platform and carried by the Crawler-Transporter. Upcoming activities at the pad to prepare Endeavour for flight on STS-77 include installation of the payloads in the Orbiter?s payload bay.

  14. Window Observational Research Facility (WORF)

    NASA Technical Reports Server (NTRS)

    Pelfrey, Joseph; Sledd, Annette

    2007-01-01

    This viewgraph document concerns the Window Observational Research Facility (WORF) Rack, a unique facility designed for use with the US Lab Destiny Module window. WORF will provide valuable resources for Earth Science payloads along with serving the purpose of protecting the lab window. The facility can be used for remote sensing instrumentation test and validation in a shirt sleeve environment. WORF will also provide a training platform for crewmembers to do orbital observations of other planetary bodies. WORF payloads will be able to conduct terrestrial studies utilizing the data collected from utilizing WORF and the lab window.

  15. Enhanced International Space Station Ku-Band Telemetry Service

    NASA Technical Reports Server (NTRS)

    Cecil, Andrew; Pitts, Lee; Welch, Steven; Bryan, Jason

    2014-01-01

    (1) The ISS is diligently working to increase utilization of the resources this unique laboratory provides; (2) Recent upgrades enabled the use of Internet Protocol communication using the CCSDS IP Encapsulation protocol; and (3) The Huntsville Operations Support Center has extended the onboard LAN to payload teams enabling the use of standard IP protocols for payload operations.

  16. KSC-08pd3005

    NASA Image and Video Library

    2008-10-01

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, STS-127 crew members become familiar with the payload and hardware for their mission. Here they are looking at the Experiment Logistics Module - Exposed Section, or ELM-ES, berthing mechanism, including the longeron trunnion/scuff plate, Payload Disconnect Assembly and WIF socket. The mission payload also includes the Extended Facility and the Inter Orbit Communication System Extended Facility, or ICS-EF. Equipment familiarization is part of a Crew Equipment Interface Test. The payload will be launched to the International Space Station aboard the space shuttle Endeavour on the STS-127 mission, targeted for launch on May 15, 2009. Photo credit: NASA/Kim Shiflett

  17. An on-board processing satellite payload for European mobile communications

    NASA Astrophysics Data System (ADS)

    Evans, B. G.; Casewell, I. E.; Craig, A. D.

    1987-06-01

    An examination of the use of satellite on-board processing (OBP) for land mobile applications shows the feasibility of designing an OBP payload to satisfy the functional requirements of the land mobile system projected for the 1990s. Following a discussion of the proposed land mobile system, advantages of OBP over conventional transport payloads are considered. The use of digital signal processing techniques is shown to provide a solution for the merging of the routing and transmultiplexing functions into a single element, and such techniques are ideally suited to space applications. It is suggested that the projected power, mass, and size estimates are compatible with the payload capacity of one of the large Olympus satellites.

  18. Development of a UAV system for VNIR-TIR acquisitions in precision agriculture

    NASA Astrophysics Data System (ADS)

    Misopolinos, L.; Zalidis, Ch.; Liakopoulos, V.; Stavridou, D.; Katsigiannis, P.; Alexandridis, T. K.; Zalidis, G.

    2015-06-01

    Adoption of precision agriculture techniques requires the development of specialized tools that provide spatially distributed information. Both flying platforms and airborne sensors are being continuously evolved to cover the needs of plant and soil sensing at affordable costs. Due to restrictions in payload, flying platforms are usually limited to carry a single sensor on board. The aim of this work is to present the development of a vertical take-off and landing autonomous unmanned aerial vehicle (VTOL UAV) system for the simultaneous acquisition of high resolution vertical images at the visible, near infrared (VNIR) and thermal infrared (TIR) wavelengths. A system was developed that has the ability to trigger two cameras simultaneously with a fully automated process and no pilot intervention. A commercial unmanned hexacopter UAV platform was optimized to increase reliability, ease of operation and automation. The designed systems communication platform is based on a reduced instruction set computing (RISC) processor running Linux OS with custom developed drivers in an efficient way, while keeping the cost and weight to a minimum. Special software was also developed for the automated image capture, data processing and on board data and metadata storage. The system was tested over a kiwifruit field in northern Greece, at flying heights of 70 and 100m above the ground. The acquired images were mosaicked and geo-corrected. Images from both flying heights were of good quality and revealed unprecedented detail within the field. The normalized difference vegetation index (NDVI) was calculated along with the thermal image in order to provide information on the accurate location of stressors and other parameters related to the crop productivity. Compared to other available sources of data, this system can provide low cost, high resolution and easily repeatable information to cover the requirements of precision agriculture.

  19. Orbiter processing facility service platform failure and redesign

    NASA Technical Reports Server (NTRS)

    Harris, Jesse L.

    1988-01-01

    In a high bay of the Orbiter Processing Facility (OPF) at the Kennedy Space Center, technicians were preparing the space shuttle orbiter Discovery for rollout to the Vehicle Assembly Building (VAB). A service platform, commonly referred to as an OPF Bucket, was being retracted when it suddenly fell, striking a technician and impacting Discovery's payload bay door. A critical component in the OPF Bucket hoist system had failed, allowing the platform to fall. The incident was thoroughly investigated by both NASA and Lockheed, revealing many design deficiencies within the system. The deficiencies and the design changes made to correct them are reviewed.

  20. Experimental validation of docking and capture using space robotics testbeds

    NASA Technical Reports Server (NTRS)

    Spofford, John

    1991-01-01

    Docking concepts include capture, berthing, and docking. The definitions of these terms, consistent with AIAA, are as follows: (1) capture (grasping)--the use of a manipulator to make initial contact and attachment between transfer vehicle and a platform; (2) berthing--positioning of a transfer vehicle or payload into platform restraints using a manipulator; and (3) docking--propulsive mechanical connection between vehicle and platform. The combination of the capture and berthing operations is effectively the same as docking; i.e., capture (grasping) + berthing = docking. These concepts are discussed in terms of Martin Marietta's ability to develop validation methods using robotics testbeds.

  1. A new stratospheric sounding platform based on unmanned aerial vehicle (UAV) droppable from meteorological balloon

    NASA Astrophysics Data System (ADS)

    Efremov, Denis; Khaykin, Sergey; Lykov, Alexey; Berezhko, Yaroslav; Lunin, Aleksey

    High-resolution measurements of climate-relevant trace gases and aerosols in the upper troposphere and stratosphere (UTS) have been and remain technically challenging. The high cost of measurements onboard airborne platforms or heavy stratospheric balloons results in a lack of accurate information on vertical distribution of atmospheric constituents. Whereas light-weight instruments carried by meteorological balloons are becoming progressively available, their usage is constrained by the cost of the equipment or the recovery operations. The evolving need in cost-efficient observations for UTS process studies has led to development of small airborne platforms - unmanned aerial vehicles (UAV), capable of carrying small sensors for in-situ measurements. We present a new UAV-based stratospheric sounding platform capable of carrying scientific payload of up to 2 kg. The airborne platform comprises of a latex meteorological balloon and detachable flying wing type UAV with internal measurement controller. The UAV is launched on a balloon to stratospheric altitudes up to 20 km, where it can be automatically released by autopilot or by a remote command sent from the ground control. Having been released from the balloon the UAV glides down and returns to the launch position. Autopilot using 3-axis gyro, accelerometer, barometer, compas and GPS navigation provides flight stabilization and optimal way back trajectory. Backup manual control is provided for emergencies. During the flight the onboard measurement controller stores the data into internal memory and transmits current flight parameters to the ground station via telemetry. Precise operation of the flight control systems ensures safe landing at the launch point. A series of field tests of the detachable stratospheric UAV has been conducted. The scientific payload included the following instruments involved in different flights: a) stratospheric Lyman-alpha hygrometer (FLASH); b) backscatter sonde; c) electrochemical ozone sonde; d) optical CO2 sensor; e) radioactivity sensor; f) solar radiation sensor. In addition, each payload included temperature sensor, barometric sensor and a GPS receiver. Design features of measurement systems onboard UAV and flight results are presented. Possible applications for atmospheric studies and validation of remote ground-based and space-borne observations is discussed.

  2. OPALS: Mission System Operations Architecture for an Optical Communications Demonstration on the ISS

    NASA Technical Reports Server (NTRS)

    Abrahamson, Matthew J.; Sindiy, Oleg V.; Oaida, Bogdan V.; Fregoso, Santos; Bowles-Martinez, Jessica N.; Kokorowski, Michael; Wilkerson, Marcus W.; Konyha, Alexander L.

    2014-01-01

    In spring 2014, the Optical PAyload for Lasercomm Science (OPALS) will launch to the International Space Station (ISS) to demonstrate space-to-ground optical communications. During a 90-day baseline mission, OPALS will downlink high quality, short duration videos to the Optical Communications Telescope Laboratory (OCTL) in Wrightwood, California. To achieve mission success, interfaces to the ISS payload operations infrastructure are established. For OPALS, the interfaces facilitate activity planning, hazardous laser operations, commanding, and telemetry transmission. In addition, internal processes such as pointing prediction and data processing satisfy the technical requirements of the mission. The OPALS operations team participates in Operational Readiness Tests (ORTs) with external partners to exercise coordination processes and train for the overall mission. The tests have provided valuable insight into operational considerations on the ISS.

  3. ExoMars Trace Gas Orbiter provides atmospheric data during Aerobraking into its final orbit

    NASA Astrophysics Data System (ADS)

    Svedhem, Hakan; Vago, Jorge L.; Bruinsma, Sean; Müller-Wodarg, Ingo; ExoMars 2016 Team

    2017-10-01

    After the arrival of the Trace Gas Orbiter (TGO) at Mars on 19 October 2016 a number of initial orbit change manoeuvres were executed and the spacecraft was put in an orbit with a 24 hour period and 74 degrees inclination. The spacecraft and its four instruments were thoroughly checked out after arrival and a few measurements and images were taken in November 2016 and in Feb-March 2017. The solar occultation observations have however not yet been possible due to lack of the proper geometry.On 15 March a long period of aerobraking to reach the final 400km semi-circular frozen orbit (370x430km, with a fixed pericentre latitude). This orbit is optimised for the payload observations and for the communication relay with the ExoMars Rover, due to arrive in 2021.The aerobraking is proceeding well and the final orbit is expected to be reached in April 2018. A large data set is being acquired for the upper atmosphere of Mars, from the limit of the sensitivity of the accelerometer, down to lowest altitude of the aerobraking at about 105km. Initial analysis has shown a highly variable atmosphere with a slightly lower density then predicted by existing models. Until the time of the abstract writing no dust storms have been observed.The ExoMars programme is a joint activity by the European Space Agency(ESA) and ROSCOSMOS, Russia. ESA is providing the TGO spacecraft and Schiaparelli (EDM) and two of the TGO instruments and ROSCOSMOS is providing the Proton launcher and the other two TGO instruments. After the arrival of the ExoMars 2020 mission, consisting of a Rover and a Surface platform also launched by a Proton rocket, the TGO will handle the communication between the Earth and the Rover and Surface Platform through its (NASA provided) UHF communication system.

  4. An Integrated Framework for Effective and Efficient Communication with Families in the Adult Intensive Care Unit

    PubMed Central

    Arnold, Robert M.; Scheunemann, Leslie P.; White, Douglas B.

    2017-01-01

    The increased focus on patient and family-centered care in adult intensive care units (ICUs) has generated multiple platforms for clinician–family communication beyond traditional interdisciplinary family meetings (family meetings)—including family-centered rounds, bedside or telephone updates, and electronic family portals. Some clinicians and administrators are now using these platforms instead of conducting family meetings. For example, some institutions are moving toward using family-centered rounds as the main platform for clinician–family communication, and some physicians rely on brief daily updates to the family at the bedside or by phone, in lieu of family meetings. We argue that although each of these platforms is useful in some circumstances, there remains an important role for family meetings. We outline five goals of clinician–family communication—establishing trust, providing emotional support, conveying clinical information, understanding the patient as a person, and facilitating careful decision making—and we examine the extent to which various communication platforms are likely to achieve the goals. We argue that because no single platform can achieve all communication goals, an integrated strategy is needed. We present a model that integrates multiple communication platforms to effectively and efficiently support families across the arc of an ICU stay. Our framework employs bedside/telephone conversations and family-centered rounds throughout the admission to address high informational needs, along with well-timed family meetings that attend to families’ emotions as well as patients’ values and goals. This flexible model uses various communication platforms to achieve consistent, efficient communication throughout the ICU stay. PMID:28282227

  5. STS-98 U.S. Lab Destiny rests in Atlantis' payload bay

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- In this view from Level 5, wing platform, of Atlantis''' payload bay, the U.S. Lab Destiny can be seen near the bottom. A key element in the construction of the International Space Station, Destiny is 28 feet long and weighs 16 tons. Destiny will be attached to the Unity node of the ISS using the Shuttle'''s robot arm, seen here on the left with the help of an elbow camera, facing left. Measurements of the elbow camera revealed only a one-inch clearance from the U.S. Lab payload, which is under review. Destiny will fly on STS-98, the seventh construction flight to the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m. EST.

  6. High temperature superconducting infrared imaging satellite

    NASA Technical Reports Server (NTRS)

    Angus, B.; Covelli, J.; Davinic, N.; Hailey, J.; Jones, E.; Ortiz, V.; Racine, J.; Satterwhite, D.; Spriesterbach, T.; Sorensen, D.

    1992-01-01

    A low earth orbiting platform for an infrared (IR) sensor payload is examined based on the requirements of a Naval Research Laboratory statement of work. The experiment payload is a 1.5-meter square by 0.5-meter high cubic structure equipped with the imaging system, radiators, and spacecraft mounting interface. The orbit is circular at 509 km (275 nmi) altitude and 70 deg. inclination. The spacecraft is three-axis stabilized with pointing accuracy of plus or minus 0.5 deg. in each axis. The experiment payload requires two 15-minute sensing periods over two contiguous orbit periods for 30 minutes of sensing time per day. The spacecraft design is presented for launch via a Delta 2 rocket. Subsystem designs include attitude control, propulsion, electric power, telemetry, tracking and command, thermal design, structure, and cost analysis.

  7. STS-95 crew members take part in the CEIT for their mission

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-95 Mission Commander Curtis L. Brown Jr. (left) and Payload Specialist John H. Glenn Jr. (right) display a newspaper published at the time of Glenn's first flight in Friendship 7, February 1962. Brown and Glenn were participating in Crew Equipment Interface Test (CEIT) for their mission. The CEIT gives astronauts an opportunity for a hands-on look at the payloads on which they will be working on orbit. The launch of the STS-95 mission, aboard Space Shuttle Discovery, is scheduled for Oct. 29, 1998. The mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  8. STS-95 crew members take part in the CEIT for their mission

    NASA Technical Reports Server (NTRS)

    1998-01-01

    During a break in the Crew Equipment Interface Test (CEIT), Payload Specialist John H. Glenn Jr.(left), senator from Ohio, greets Bobby Miranda. Miranda was a NASA photographer for Glenn's first flight on Friendship 7, February 1962. In the background is Mission Specialist Scott E. Parazynski. The CEIT gives astronauts an opportunity for a hands-on look at the payloads and equipment with which they will be working on orbit. The launch of the STS- 95 mission is scheduled for Oct. 29, 1998, on the Space Shuttle Discovery. The mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  9. Closeup view looking aft from the starboard side of the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view looking aft from the starboard side of the Orbiter Discovery looking into the payload bay and the bulkhead of the aft fuselage. Note the vertical stabilizer protruding slightly from beyond the clear sheeting used to keep positive pressure in the mid-fuselage and payload bay area during servicing. Note that the Orbiter Boom Sensor System is still attached while the Remote Manipulator System has been removed. Also note the suspended protective panels and walkways in place to protect the interior surfaces of the payload bay doors while in their open position. This view was taken from a service platform in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  10. Centaur operations at the space station

    NASA Technical Reports Server (NTRS)

    Porter, J.; Thompson, W.; Bennett, F.; Holdridge, J.

    1987-01-01

    A study was conducted on the feasibility of using a Centaur vehicle as a testbed to demonstrate critical OTV technologies at the Space Station. Two Technology Demonstration Missions (TDMs) were identified: (1) Accommodations, and (2) Operations. The Accommodations TDM contained: (1) berthing, (2) checkout, maintenance and safing, and (3) payload integration missions. The Operations TDM contained: (1) a cryogenic propellant resupply mission, and (2) Centaur deployment activities. A modified Space Station Co-Orbiting Platform (COP) was selected as the optimum refueling and launch node due to safety and operational considerations. After completion of the TDMs, the fueled Centaur would carry out a mission to actually test deployment and help offset TDM costs. From the Station, the Centaur could carry a single payload in excess of 20,000 pounds to geosynchronous orbit or multiple payloads.

  11. KSC-98PC1017

    NASA Image and Video Library

    1998-09-02

    During the Crew Equipment Interface Test (CEIT) in the payload bay of Discovery, STS-95 Mission Specialist Stephen K. Robinson (right) checks a cable that can be used to close a hatch on the orbiter. Looking over his shoulder are Mission Specialist Pedro Duque (center), of the European Space Agency, and Keith Johnson (left), United Space Alliance-Houston. The CEIT gives astronauts an opportunity for a hands-on look at the payloads and equipment they will be using on orbit. The launch of the STS-95 mission, aboard Space Shuttle Discovery, is scheduled for Oct. 29, 1998. The mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process

  12. KSC-98pc863

    NASA Image and Video Library

    1998-07-16

    STS-95 crew members gather around the Vestibular Function Experiment Unit (VFEU) which includes marine fish called toadfish. In foreground, from left, are Mission Specialist Pedro Duque of the European Space Agency (ESA), a technician from the National Space Development Agency of Japan (NASDA), Payload Specialist Chiaki Mukai of NASDA, Pilot Steven W. Lindsey, and Payload Specialist John H. Glenn Jr., who also is a senator from Ohio. At center, facing the camera, are Mission Specialist Scott E. Parazynski and Commander Curtis L. Brown Jr., in back. STS-95 will feature a variety of research payloads, including the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Platform, the International Extreme Ultraviolet Hitchhiker, and experiments on space flight and the aging process. STS-95 is targeted for an Oct. 29 launch aboard the Space Shuttle Discovery

  13. KSC-98pc1022

    NASA Image and Video Library

    1998-09-02

    During a break in the Crew Equipment Interface Test (CEIT), Payload Specialist John H. Glenn Jr., a senator from Ohio, autographs a photo for Mathew and Alexandria Taraboletti. Standing behind them are their parents, Mark Taraboletti, an engineer with United Space Alliance (USA), and Eva Taraboletti, an orbiter integrity clerk with USA. The CEIT gives astronauts an opportunity for a hands-on look at the payloads and equipment with which they will be working on orbit. The launch of the STS-95 mission is scheduled for Oct. 29, 1998, on the Space Shuttle Discovery. The mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process

  14. KSC-98pc977

    NASA Image and Video Library

    1998-08-21

    KENNEDY SPACE CENTER, FLA. -- Inside the SPACEHAB training module, STS-95 Mission Specialist Scott Parazynski, M.D., helps adjust connections for the mesh cap and the Respiratory Inductance Plethysmograph (RIP) suit worn by Payload Specialist John Glenn, who is a senator from Ohio. The cap and suit, which Glenn will wear on the mission, are part of the equipment that will be used to seek to improve the quality of sleep for future astronauts. The STS-95 crew are participating in SPACEHAB familiarization at the SPACEHAB Payload Processing Facility, Cape Canaveral. The mission, scheduled to launch Oct. 29, includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process

  15. Interdisciplinary Analysis of Drought Communication Through Social Media Platforms and Risk Communication

    NASA Astrophysics Data System (ADS)

    Wygant, M.

    2015-12-01

    As droughts continue to impact businesses and communities throughout the United States, there needs to be a greater emphasis on drought communication through interdisciplinary approaches, risk communication, and digital platforms. The purpose of this research is to provide an overview of the current literature on communicating drought and suggests areas for further improvement. Specifically, this research focuses on communicating drought through social media platforms such as Facebook, Twitter, and Instagram. It also focuses on the conglomeration of theoretical frameworks within the realm of risk communication, to provide a strong foundation towards future drought communication. This research proposal provides a critical step to advocate for paradigmatic shifts within natural hazard communication.

  16. Mars Mobile Lander Systems for 2005 and 2007 Launch Opportunities

    NASA Technical Reports Server (NTRS)

    Sabahi, D.; Graf, J. E.

    2000-01-01

    A series of Mars missions are proposed for the August 2005 launch opportunity on a medium class Evolved Expendable Launch Vehicle (EELV) with a injected mass capability of 2600 to 2750 kg. Known as the Ranger class, the primary objective of these Mars mission concepts are: (1) Deliver a mobile platform to Mars surface with large payload capability of 150 to 450 kg (depending on launch opportunity of 2005 or 2007); (2) Develop a robust, safe, and reliable workhorse entry, descent, and landing (EDL) capability for landed mass exceeding 750 kg; (3) Provide feed forward capability for the 2007 opportunity and beyond; and (4) Provide an option for a long life telecom relay orbiter. A number of future Mars mission concepts desire landers with large payload capability. Among these concepts are Mars sample return (MSR) which requires 300 to 450 kg landed payload capability to accommodate sampling, sample transfer equipment and a Mars ascent vehicle (MAV). In addition to MSR, large in situ payloads of 150 kg provide a significant step up from the Mars Pathfinder (MPF) and Mars Polar Lander (MPL) class payloads of 20 to 30 kg. This capability enables numerous and physically large science instruments as well as human exploration development payloads. The payload may consist of drills, scoops, rock corers, imagers, spectrometers, and in situ propellant production experiment, and dust and environmental monitoring.

  17. Using remotely piloted aircraft and onboard processing to optimize and expand data collection

    NASA Astrophysics Data System (ADS)

    Fladeland, M. M.; Sullivan, D. V.; Chirayath, V.; Instrella, R.; Phelps, G. A.

    2016-12-01

    Remotely piloted aircraft (RPA) have the potential to revolutionize local to regional data collection for geophysicists as platform and payload size decrease while aircraft capabilities increase. In particular, data from RPAs combine high-resolution imagery available from low flight elevations with comprehensive areal coverage, unattainable from ground investigations and difficult to acquire from manned aircraft due to budgetary and logistical costs. Low flight elevations are particularly important for detecting signals that decay exponentially with distance, such as electromagnetic fields. Onboard data processing coupled with high-bandwidth telemetry open up opportunities for real-time and near real-time data processing, producing more efficient flight plans through the use of payload-directed flight, machine learning and autonomous systems. Such applications not only strive to enhance data collection, but also enable novel sensing modalities and temporal resolution. NASA's Airborne Science Program has been refining the capabilities and applications of RPA in support of satellite calibration and data product validation for several decades. In this paper, we describe current platforms, payloads, and onboard data systems available to the research community. Case studies include Fluid Lensing for littoral zone 3D mapping, structure from motion for terrestrial 3D multispectral imaging, and airborne magnetometry on medium and small RPAs.

  18. ³Cat-3/MOTS Nanosatellite Mission for Optical Multispectral and GNSS-R Earth Observation: Concept and Analysis.

    PubMed

    Castellví, Jordi; Camps, Adriano; Corbera, Jordi; Alamús, Ramon

    2018-01-06

    The ³Cat-3/MOTS (3: Cube, Cat: Catalunya, 3: 3rd CubeSat mission/Missió Observació Terra Satèl·lit) mission is a joint initiative between the Institut Cartogràfic i Geològic de Catalunya (ICGC) and the Universitat Politècnica de Catalunya-BarcelonaTech (UPC) to foster innovative Earth Observation (EO) techniques based on data fusion of Global Navigation Satellite Systems Reflectometry (GNSS-R) and optical payloads. It is based on a 6U CubeSat platform, roughly a 10 cm × 20 cm × 30 cm parallelepiped. Since 2012, there has been a fast growing trend to use small satellites, especially nanosatellites, and in particular those following the CubeSat form factor. Small satellites possess intrinsic advantages over larger platforms in terms of cost, flexibility, and scalability, and may also enable constellations, trains, federations, or fractionated satellites or payloads based on a large number of individual satellites at an affordable cost. This work summarizes the mission analysis of ³Cat-3/MOTS, including its payload results, power budget (PB), thermal budget (TB), and data budget (DB). This mission analysis is addressed to transform EO data into territorial climate variables (soil moisture and land cover change) at the best possible achievable spatio-temporal resolution.

  19. Weathering the Storm: Unmanned Aircraft Systems in the Maritime, Atmospheric and Polar Environments

    NASA Technical Reports Server (NTRS)

    Fladeland, Matthew M.; Sullivan, Donald V.; Chirayath, Ved; Instrella, Ron; Phelps, Geoffrey

    2017-01-01

    Remotely piloted aircraft (RPA) have the potential to revolutionize local to regional data collection for geophysicists as platform and payload size decrease while aircraft capabilities increase. In particular, data from RPAs combine high-resolution imagery available from low flight elevations with comprehensive areal coverage, unattainable from ground investigations and difficult to acquire from manned aircraft due to budgetary and logistical costs. Low flight elevations are particularly important for detecting signals that decay exponentially with distance, such as electromagnetic fields. Onboard data processing coupled with high-bandwidth telemetry open up opportunities for real-time and near real-time data processing, producing more efficient flight plans through the use of payload-directed flight, machine learning and autonomous systems. Such applications not only strive to enhance data collection, but also enable novel sensing modalities and temporal resolution. NASAs Airborne Science Program has been refining the capabilities and applications of RPA in support of satellite calibration and data product validation for several decades. In this paper, we describe current platforms, payloads, and onboard data systems available to the research community. Case studies include Fluid Lensing for littoral zone 3D mapping, structure from motion for terrestrial 3D multispectral imaging, and airborne magnetometry on medium and small RPAs.

  20. Infrastructure-Less Communication Platform for Off-The-Shelf Android Smartphones

    PubMed Central

    2018-01-01

    As smartphones and other small portable devices become more sophisticated and popular, opportunities for communication and information sharing among such device users have increased. In particular, since it is known that infrastructure-less device-to-device (D2D) communication platforms consisting only of such devices are excellent in terms of, for example, bandwidth efficiency, efforts are being made to merge their information sharing capabilities with conventional infrastructure. However, efficient multi-hop communication is difficult with the D2D communication protocol, and many conventional D2D communication platforms require modifications of the protocol and terminal operating systems (OSs). In response to these issues, this paper reports on a proposed tree-structured D2D communication platform for Android devices that combines Wi-Fi Direct and Wi-Fi functions. The proposed platform, which is expected to be used with general Android 4.0 (or higher) OS equipped terminals, makes it possible to construct an ad hoc network instantaneously without sharing prior knowledge among participating devices. We will show the feasibility of our proposed platform through its design and demonstrate the implementation of a prototype using real devices. In addition, we will report on our investigation into communication delays and stability based on the number of hops and on terminal performance through experimental confirmation experiments. PMID:29510536

  1. Infrastructure-Less Communication Platform for Off-The-Shelf Android Smartphones.

    PubMed

    Oide, Takuma; Abe, Toru; Suganuma, Takuo

    2018-03-04

    As smartphones and other small portable devices become more sophisticated and popular, opportunities for communication and information sharing among such device users have increased. In particular, since it is known that infrastructure-less device-to-device (D2D) communication platforms consisting only of such devices are excellent in terms of, for example, bandwidth efficiency, efforts are being made to merge their information sharing capabilities with conventional infrastructure. However, efficient multi-hop communication is difficult with the D2D communication protocol, and many conventional D2D communication platforms require modifications of the protocol and terminal operating systems (OSs). In response to these issues, this paper reports on a proposed tree-structured D2D communication platform for Android devices that combines Wi-Fi Direct and Wi-Fi functions. The proposed platform, which is expected to be used with general Android 4.0 (or higher) OS equipped terminals, makes it possible to construct an ad hoc network instantaneously without sharing prior knowledge among participating devices. We will show the feasibility of our proposed platform through its design and demonstrate the implementation of a prototype using real devices. In addition, we will report on our investigation into communication delays and stability based on the number of hops and on terminal performance through experimental confirmation experiments.

  2. FORCEnet Net Centric Architecture - A Standards View

    DTIC Science & Technology

    2006-06-01

    SHARED SERVICES NETWORKING/COMMUNICATIONS STORAGE COMPUTING PLATFORM DATA INTERCHANGE/INTEGRATION DATA MANAGEMENT APPLICATION...R V I C E P L A T F O R M S E R V I C E F R A M E W O R K USER-FACING SERVICES SHARED SERVICES NETWORKING/COMMUNICATIONS STORAGE COMPUTING PLATFORM...E F R A M E W O R K USER-FACING SERVICES SHARED SERVICES NETWORKING/COMMUNICATIONS STORAGE COMPUTING PLATFORM DATA INTERCHANGE/INTEGRATION

  3. Phase 3 study of selected tether applications in space, mid-term review

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Topics addressed include: guidelines for the Space Transportation System (STS) payload deployer design; mini-orbital maneuvering vehicle (MOMV) design: shuttle tether deployer systems (STEDS); cost modeling; tethered platform analysis; fuel savings analysis; and STEDS control simulation.

  4. Erectable/deployable concepts for large space system technology

    NASA Technical Reports Server (NTRS)

    Agan, W. E.

    1980-01-01

    Erectable/deployable space structure concepts particularly relating to the development of a science and applications space platform are presented. Design and operating features for an automatic coupler clevis joint, a side latching detent joint, and a module-to-module auto lock coupler are given. An analysis of the packaging characteristics of stacked subassembly, single fold, hybrid, and double fold concepts is given for various platform structure configurations. Payload carrier systems and assembly techniques are also discussed.

  5. WEB - A Wireless Experiment Box for the Dextre Pointing Package ELC Payload

    NASA Technical Reports Server (NTRS)

    Bleier, Leor Z.; Marrero-Fontanez, Victor J.; Sparacino, Pietro A.; Moreau, Michael C.; Mitchell, Jason William

    2012-01-01

    The Wireless Experiment Box (WEB) was proposed to work with the International Space Station (ISS) External Wireless Communication (EWC) system to support high-definition video from the Dextre Pointing Package (DPP). DPP/WEB was a NASA GSFC proposed ExPRESS Logistics Carrier (ELC) payload designed to flight test an integrated suite of Autonomous Rendezvous and Docking (AR&D) technologies to enable a wide spectrum of future missions across NASA and other US Government agencies. The ISS EWC uses COTS Wireless Access Points (WAPs) to provide high-rate bi-directional communications to ISS. In this paper, we discuss WEB s packaging, operation, antenna development, and performance testing.

  6. Web: A Wireless Experiment Box for the Dextre Pointing Package ELC Payload

    NASA Technical Reports Server (NTRS)

    Bleier, Leor Z.; Marrero-Fontanez, Victor J.; Sparacino, Pietro A.; Moreau, Michael C.; Mitchell, Jason W.

    2012-01-01

    The Wireless Experiment Box (WEB) was proposed to work with the International Space Station (ISS) External Wireless Communication (EWC) system to support high-definition video from the Dextre Pointing Package (DPP). DPP/WEB was a NASA GSFC proposed ExPRESS Logistics Carrier (ELC) payload designed to flight test an integrated suite of Autonomous Rendezvous and Docking (AR&D) technologies to enable a wide spectrum of future missions across NASA and other US Government agencies. The ISS EWC uses COTS Wireless Access Points (WAPs) to provide high-rate bi-directional communications to ISS. In this paper, we discuss WEB s packaging, operation, antenna development, and performance testing.

  7. GSFC Systems Test and Operation Language (STOL) functional requirements and language description

    NASA Technical Reports Server (NTRS)

    Desjardins, R.; Hall, G.; Mcguire, J.; Merwarth, P.; Mocarsky, W.; Truszkowski, W.; Villasenor, A.; Brosi, F.; Burch, P.; Carey, D.

    1978-01-01

    The Systems Tests and Operation Language (STOL) provides the means for user communication with payloads, applications programs, and other ground system elements. It is a systems operation language that enables an operator or user to communicate a command to a computer system. The system interprets each high level language directive from the user and performs the indicated action, such as executing a program, printing out a snapshot, or sending a payload command. This document presents the following: (1) required language features and implementation considerations; (2) basic capabilities; (3) telemetry, command, and input/output directives; (4) procedure definition and control; (5) listing, extension, and STOL nucleus capabilities.

  8. Mobile User Objective System (MUOS)

    DTIC Science & Technology

    2015-12-01

    the current UHF Follow-On ( UFO ) constellation. MUOS includes the satellite constellation, a ground control and network management system, and a new...MUOS CAI. Each MUOS satellite carries a legacy payload similar to that flown on UFO -11. These legacy payloads will continue to support legacy...Antecedent Information The antecedent system to MUOS was the Ultra High Frequency (UHF) Follow-on ( UFO ) satellite communications program. Comparisons

  9. Geostationary payload concepts for personal satellite communications

    NASA Technical Reports Server (NTRS)

    Benedicto, J.; Rinous, P.; Roberts, I.; Roederer, A.; Stojkovic, I.

    1993-01-01

    This paper reviews candidate satellite payload architectures for systems providing world-wide communication services to mobile users equipped with hand-held terminals based on large geostationary satellites. There are a number of problems related to the payload architecture, on-board routing and beamforming, and the design of the S-band Tx and L-band Rx antenna and front ends. A number of solutions are outlined, based on trade-offs with respect to the most significant performance parameters such as capacity, G/T, flexibility of routing traffic to beams and re-configuration of the spot-beam coverage, and payload mass and power. Candidate antenna and front-end configurations were studied, in particular direct radiating arrays, arrays magnified by a reflector and active focused reflectors with overlapping feed clusters for both transmit (multimax) and receive (beam synthesis). Regarding the on-board routing and beamforming sub-systems, analog techniques based on banks of SAW filters, FET or CMOS switches and cross-bar fixed and variable beamforming are compared with a hybrid analog/digital approach based on Chirp Fourier Transform (CFT) demultiplexer combined with digital beamforming or a fully digital processor implementation, also based on CFT demultiplexing.

  10. ER-2: Flying Laboratory for Earth Science Studies

    NASA Technical Reports Server (NTRS)

    Navarro, Robert

    2007-01-01

    The National Aeronautics and Space Administration (NASA) Dryden Flight Research Center (DFRC), (Edwards, California, USA) has two Lockheed Martin Corporation (Bethesda, Maryland) Earth Research-2 (ER-2) aircraft that serve as high-altitude and long-range flying laboratories. The ER-2 has been utilized to conduct scientific studies of stratospheric and tropospheric chemistry, land-use mapping, disaster assessment, preliminary testing and calibration and validation of satellite sensors. The ER-2 aircraft provides experimenters with a wide array of payload accommodation areas with suitable environment control with required electrical and mechanical interfaces. Missions may be flown out of DFRC or from remote bases worldwide. The NASA ER-2 is utilized by a variety of customers, including U.S. Government agencies, civilian organizations, universities, and state governments. The combination of the ER-2 s range, endurance, altitude, payload power, payload volume and payload weight capabilities complemented by a trained maintenance and operations team provides an excellent and unique platform system to the science community.

  11. KSC-98pc1569

    NASA Image and Video Library

    1998-11-08

    Members of the STS-95 crew participate in a media briefing at the Kennedy Space Center Press Site Auditorium before returning to the Johnson Space Center in Houston, Texas. From left to right, they are Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist and Payload Commander Stephen K. Robinson; Mission Specialist Scott E. Parazynski; Mission Specialist Pedro Duque, with the European Space Agency (ESA); Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA); and Payload Specialist John H. Glenn Jr., a senator from Ohio and one of the original seven Project Mercury astronauts. The STS-95 mission ended with landing at Kennedy Space Center's Shuttle Landing Facility at 12:04 p.m. EST on Nov. 7. The mission included research payloads such as the Spartan-201 solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as a SPACEHAB single module with experiments on space flight and the aging process

  12. KSC-98pc1572

    NASA Image and Video Library

    1998-11-08

    STS-95 Payload Specialist John H. Glenn Jr., a senator from Ohio and one of the original seven Project Mercury astronauts, participates in a media briefing at the Kennedy Space Center Press Site Auditorium before returning to the Johnson Space Center in Houston, Texas. The STS-95 mission ended with landing at Kennedy Space Center's Shuttle Landing Facility at 12:04 p.m. EST on Nov. 7. Also participating in the briefing were the other STS-95 crew members: Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist and Payload Commander Stephen K. Robinson; Mission Specialist Scott E. Parazynski; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan-201 solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as a SPACEHAB single module with experiments on space flight and the aging process

  13. KSC-98pc1570

    NASA Image and Video Library

    1998-11-08

    STS-95 Payload Specialist John H. Glenn Jr., a senator from Ohio and one of the original seven Project Mercury astronauts, participates in a media briefing at the Kennedy Space Center Press Site Auditorium before returning to the Johnson Space Center in Houston, Texas. The STS-95 mission ended with landing at Kennedy Space Center's Shuttle Landing Facility at 12:04 p.m. EST on Nov. 7. Also participating in the briefing were the other STS-95 crew members: Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist and Payload Commander Stephen K. Robinson; Mission Specialist Scott E. Parazynski; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan-201 solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as a SPACEHAB single module with experiments on space flight and the aging process

  14. KSC-98pc1575

    NASA Image and Video Library

    1998-11-08

    Members of the STS-95 crew participate in a media briefing at the Kennedy Space Center Press Site Auditorium before returning to the Johnson Space Center in Houston, Texas. From left to right, they are Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist and Payload Commander Stephen K. Robinson; Mission Specialist Scott E. Parazynski; Mission Specialist Pedro Duque, with the European Space Agency (ESA); Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA); and Payload Specialist John H. Glenn Jr., a senator from Ohio and one of the original seven Project Mercury astronauts. The STS-95 mission ended with landing at Kennedy Space Center's Shuttle Landing Facility at 12:04 p.m. EST on Nov. 7. The mission included research payloads such as the Spartan-201 solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as a SPACEHAB single module with experiments on space flight and the aging process

  15. KSC-98pc1573

    NASA Image and Video Library

    1998-11-08

    Media representatives from all over the world fill the Kennedy Space Center Press Site Auditorium for a press conference held by the STS-95 crew before their return to the Johnson Space Center in Houston, Texas. The STS-95 crew members are Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist and Payload Commander Stephen K. Robinson; Mission Specialist Scott E. Parazynski; Mission Specialist Pedro Duque, with the European Space Agency (ESA); Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA); and Payload Specialist John H. Glenn Jr., a senator from Ohio and one of the original seven Project Mercury astronauts. The STS-95 mission ended with landing at Kennedy Space Center's Shuttle Landing Facility at 12:04 p.m. EST on Nov. 7. The mission included research payloads such as the Spartan-201 solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as a SPACEHAB single module with experiments on space flight and the aging process

  16. KSC-98pc1016

    NASA Image and Video Library

    1998-09-02

    Around a table in Orbiter Processing Facility Bay 2 , STS-95 crew members look over equipment during the Crew Equipment Interface Test (CEIT) for their mission. From left, they are Mission Specialist Pedro Duque, of the European Space Agency; Payload Specialist Chiaki Mukai, of the National Space Development Agency of Japan (NASDA); Mission Specialist Scott E. Parazynski, M.D.; Pilot Steven W. Lindsey; Payload Specialist John H. Glenn Jr., senator from Ohio; Mission Specialist Stephen K. Robinson; and Mission Commander Curtis L. Brown Jr. Behind them is Adam Flagan, United Space Alliance-Houston. The CEIT gives astronauts an opportunity for a hands-on look at the payloads and equipment with which they will be working on orbit. The launch of the STS-95 mission, aboard Space Shuttle Discovery, is scheduled for Oct. 29, 1998. The mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process

  17. STS-95 Payload Specialist Mukai poses with NASDA president

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-95 Payload Specialist Chiaki Mukai, M.D. (center), with the National Space Development Agency of Japan (NASDA), poses for a photograph with NASDA President Isao Uchida (left). Behind her at the right is a representative of the European Space Agency (ESA). Mukai was one of a crew of seven aboard orbiter Discovery, which landed at KSC at 12:04 p.m. EST, after a successful mission spanning nine days and 3.6 million miles. The other crew members are Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialists Stephen K. Robinson; Scott E. Parazynski and Pedro Duque of Spain, with the European Space Agency; and Payload Specialist John H. Glenn Jr., senator from Ohio. The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  18. STS-95 Payload Specialist Glenn and his wife pose before their return flight to JSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    At the Skid Strip at Cape Canaveral Air Station, STS-95 Payload Specialist John H. Glenn Jr., a senator from Ohio and one of the original seven Project Mercury astronauts, poses with his wife Annie before their return flight to the Johnson Space Center in Houston, Texas. The STS-95 mission ended with landing at Kennedy Space Center's Shuttle Landing Facility at 12:04 p.m. EST on Nov. 7. The STS-95 crew also includes Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan-201 solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as a SPACEHAB single module with experiments on space flight and the aging process.

  19. KSC-06pd0479

    NASA Image and Video Library

    2006-03-14

    KENNEDY SPACE CENTER, FLA. - Inside the Orbiter Processing Facility bay 3 at NASA's Kennedy Space Center, workers attach an overhead crane to Discovery's robotic arm in the payload bay. The arm is being removed due to damage found on the arm after it was accidentally bumped by a bridge bucket in the payload bay. Ultrasound inspections revealed a small crack, measuring 1.25 inches by 0.015 inch deep. The arm will be sent back to the vendor for repair. The bucket was being used by technicians cleaning the area and was in the process of being stowed. A bridge bucket is a personnel transport device that is suspended from an overhead bridge that moves back and forth above the shuttle's mid-body. It allows workers to access the payload bay area without walking or standing on the payload bay floor or on the fixed platforms. Space Shuttle Discovery is scheduled for launch on mission STS-121 during a launch planning window of July 1-19. Photo credit: NASA/Kim Shiflett

  20. KSC-06pd0484

    NASA Image and Video Library

    2006-03-14

    KENNEDY SPACE CENTER, FLA. - Inside the Orbiter Processing Facility bay 3 at NASA's Kennedy Space Center, workers lower Discovery's robotic arm onto a flat bed in a work area. The arm was removed from Discovery's payload bay. The arm was removed due to damage found on the arm after it was accidentally bumped by a bridge bucket in the payload bay. Ultrasound inspections revealed a small crack, measuring 1.25 inches by 0.015 inch deep. The arm will be sent back to the vendor for repair. The bucket was being used by technicians cleaning the area and was in the process of being stowed. A bridge bucket is a personnel transport device that is suspended from an overhead bridge that moves back and forth above the shuttle's mid-body. It allows workers to access the payload bay area without walking or standing on the payload bay floor or on the fixed platforms. Space Shuttle Discovery is scheduled for launch on mission STS-121 during a launch planning window of July 1-19. Photo credit: NASA/Kim Shiflett

  1. The STS-95 crew participates in a media briefing before returning to JSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Members of the STS-95 crew participate in a media briefing at the Kennedy Space Center Press Site Auditorium before returning to the Johnson Space Center in Houston, Texas. From left to right, they are Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist and Payload Commander Stephen K. Robinson; Mission Specialist Scott E. Parazynski; Mission Specialist Pedro Duque, with the European Space Agency (ESA); Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA); and Payload Specialist John H. Glenn Jr., a senator from Ohio and one of the original seven Project Mercury astronauts. The STS-95 mission ended with landing at Kennedy Space Center's Shuttle Landing Facility at 12:04 p.m. EST on Nov. 7. The mission included research payloads such as the Spartan-201 solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as a SPACEHAB single module with experiments on space flight and the aging process.

  2. Shuttle Ku-band and S-band communications implementation study

    NASA Technical Reports Server (NTRS)

    Dodds, J. G.; Huth, G. K.; Nilsen, P. W.; Polydoros, A.; Simon, M. K.; Weber, C. L.

    1980-01-01

    Various aspects of the shuttle orbiter S-band network communication system, the S-band payload communication system, and the Ku-band communication system are considered. A method is proposed for obtaining more accurate S-band antenna patterns of the actual shuttle orbiter vehicle during flight because the preliminary antenna patterns using mock-ups are not realistic that they do not include the effects of additional appendages such as wings and tail structures. The Ku-band communication system is discussed especially the TDRS antenna pointing accuracy with respect to the orbiter and the modifications required and resulting performance characteristics of the convolutionally encoded high data rate return link to maintain bit synchronizer lock on the ground. The TDRS user constraints on data bit clock jitter and data asymmetry on unbalanced QPSK with noisy phase references are included. The S-band payload communication system study is outlined including the advantages and experimental results of a peak regulator design built and evaluated by Axiomatrix for the bent-pipe link versus the existing RMS-type regulator. The nominal sweep rate for the deep-space transponder of 250 Hz/s, and effects of phase noise on the performance of a communication system are analyzed.

  3. Integration and Test for Small Shuttle Payloads

    NASA Technical Reports Server (NTRS)

    Wright, Michael R.; Day, John H. (Technical Monitor)

    2001-01-01

    Recommended approaches for shuttle small payload integration and test (I&T) are presented. The paper is intended for consideration by developers of small shuttle payloads, including I&T managers, project managers, and system engineers. Examples and lessons learned are presented based on the extensive history of the NASA's Hitchhiker project. All aspects of I&T are presented, including: (1) I&T team responsibilities, coordination, and communication; (2) Flight hardware handling practices; (3) Documentation and configuration management; (4) I&T considerations for payload development; (5) I&T at the development facility; (6) Prelaunch operations, transfer, orbiter integration, and interface testing; and (7) Postflight operations. This paper is of special interest to those payload projects which have small budgets and few resources: That is, the truly 'faster, cheaper, better' projects. All shuttle small payload developers are strongly encouraged to apply these guidelines during I&T planning and ground operations to take full advantage of today's limited resources and to help ensure mission success.

  4. View of the Shuttle Columbia's payload bay and payloads in orbit

    NASA Image and Video Library

    1986-01-12

    61C-39-002 (12-17 Jan 1986) --- This view of the cargo bay of the Earth-orbiting Space Shuttle Columbia reveals some of the STS 61-C mission payloads. The materials science laboratory (MSL-2), sponsored by the Marshall Space Flight Center (MSFC), is in the foreground. A small portion of the first Hitchhiker payload, sponsored by the Goddard Space Flight Center (GSFC), is in the immediate foreground, mounted to the spacecraft's starboard side. The closed sun shield for the now-vacated RCA SATCOM K-1 communications satellite is behind the MSL. Completely out of view, behind the shield, are 13 getaway specials in canisters. Clouds over ocean and the blackness of space share the backdrop for the 70mm camera's frame.

  5. An overview of the 1984 Battelle outside users payload model

    NASA Astrophysics Data System (ADS)

    Day, J. B.; Conlon, R. J.; Neale, D. B.; Fischer, N. H.

    1984-10-01

    The methodology and projections from a model for the market for non-NASA, non-DOD, reimbursable payloads from the non-Soviet bloc countries over the 1984-2000 AD time period are summarized. High and low forecast ranges were made based on demand forecasts by industrial users, NASA estimates, and other publications. The launches were assumed to be alloted to either the Shuttle or the Ariane. The greatest demand for launch services is expected to come form communications and materials processing payloads, the latter either becoming a large user or remaining a research item. The number of Shuttle payload equivalents over the reference time spanis projected as 84-194, showing the large variance that is dependent on the progress in materials processing operations.

  6. The Geo Quick Ride (GQR) Program: Providing Inexpensive and Frequent Access to Space

    NASA Technical Reports Server (NTRS)

    Caffrey, Robert; Baniszewski, John

    2004-01-01

    This paper examines piggybacking NASA, university, and industry payloads on commercial geosynchronous satellites. NASA's RSDO Office awarded Geo Quick Ride (GQR) study contracts in 1998 to spacecraft manufactures to examine the issues with flying secondary payloads. The study results were very promising. Commercial communication satellites have frequent flights and significant unused resources that could be used to fly secondary payloads. However, manifesting secondary payloads on a commercial revenue-generating satellite is a complex problem to solve. The solution requires multiple simultaneous approaches in order to be successful. There are business, economic, technical, schedule, and organizational issues to be resolved. This paper examines the Geo Quick Ride (GQR) concept, discusses the development issues, and describes how this concept solves many of these issues.

  7. Structural Dynamics and Control of Large Space Structures, 1982

    NASA Technical Reports Server (NTRS)

    Brumfield, M. L. (Compiler)

    1983-01-01

    Basic research in the control of large space structures is discussed. Active damping and control of flexible beams, active stabilization of flexible antenna feed towers, spacecraft docking, and robust pointing control of large space platform payloads are among the topics discussed.

  8. Using Orbital Platforms to Study Planet Formation

    NASA Astrophysics Data System (ADS)

    Brisset, J.; Colwell, J. E.; Dove, A.; Maukonen, D.

    2017-08-01

    We will present results from the ISS NanoRocks experiment as well as the design of the Q-PACE CubeSat to demonstrate how orbital miniaturized payloads can be used to collect unprecedented amounts of data on the collision behavior of PPD dust grains.

  9. SEA ARCHER Distributed Aviation Platform

    DTIC Science & Technology

    2001-12-01

    manual processes, but should also improve decision support functions through advanced modeling and simulation. SEA ARCHER’s information architecture...this payload model was the SH-60 for which accurate weights were attained. Weights for the Marine STOVL version of the JSF were also attained, and

  10. Opals: Mission System Operations Architecture for an Optical Communications Demonstration on the ISS

    NASA Technical Reports Server (NTRS)

    Abrahamson, Matthew J.; Sindiy, Oleg V.; Oaida, Bogdan V.; Fregoso, Santos; Bowles-Martinez, Jessica N.; Kokorowski, Michael; Wilkerson, Marcus W.; Konyha, Alexander L.

    2014-01-01

    In April of 2014, the Optical PAyload for Lasercomm Science (OPALS) Flight System (FS) launched to the International Space Station (ISS) to demonstrate space-to-ground optical communications. During a planned 90-day baseline mission, the OPALS FS will downlink high quality, short duration videos to the Optical Communications Telescope Laboratory (OCTL) ground station in Wrightwood, California. Interfaces to the ISS payload operations infrastructure have been established to facilitate activity planning, hazardous laser operations, commanding, and telemetry transmission. In addition, internal processes, such as pointing prediction and data processing, satisfy the technical requirements of the mission. The OPALS operations team participates in Operational Readiness Tests (ORTs) with external partners to exercise coordination processes and train for the overall mission. The ORTs have provided valuable insight into operational considerations for the instrument on the ISS.

  11. Highly reusable space transportation: Approaches for reducing ETO launch costs to $100 - $200 per pound of payload

    NASA Technical Reports Server (NTRS)

    Olds, John R.

    1995-01-01

    The Commercial Space Transportation Study (CSTS) suggests that considerable market expansion in earth-to-orbit transportation would take place if current launch prices could be reduced to around $400 per pound of payload. If these low prices can be achieved, annual payload delivered to low earth orbit (LEO) is predicted to reach 6.7 million pounds. The primary market growth will occur in communications, government missions, and civil transportation. By establishing a cost target of $100-$200 per pound of payload for a new launch system, the Highly Reusable Space Transportation (HRST) program has clearly set its sights on removing the current restriction on market growth imposed by today's high launch costs. In particular, achieving the goal of $100-$200 per pound of payload will require significant coordinated efforts in (1) marketing strategy development, (2) business planning, (3) system operational strategy, (4) vehicle technical design, and (5) vehicle maintenance strategy.

  12. KSC-08pd3003

    NASA Image and Video Library

    2008-10-01

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, STS-127 crew members become familiar with the payload and hardware for their mission. Here they are looking at the Experiment Logistics Module - Exposed Section, or ELM-ES, berthing mechanism. The mission payload also includes the Extended Facility and the Inter Orbit Communication System Extended Facility, or ICS-EF. Equipment familiarization is part of a Crew Equipment Interface Test. The payload will be launched to the International Space Station aboard the space shuttle Endeavour on the STS-127 mission, targeted for launch on May 15, 2009. Photo credit: NASA/Kim Shiflett

  13. KSC-08pd3004

    NASA Image and Video Library

    2008-10-01

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, STS-127 crew members become familiar with the payload and hardware for their mission. Here they are looking at the Experiment Logistics Module - Exposed Section, or ELM-ES, berthing mechanism. The mission payload also includes the Extended Facility and the Inter Orbit Communication System Extended Facility, or ICS-EF. Equipment familiarization is part of a Crew Equipment Interface Test. The payload will be launched to the International Space Station aboard the space shuttle Endeavour on the STS-127 mission, targeted for launch on May 15, 2009. Photo credit: NASA/Kim Shiflett

  14. Incubator Display Software Cost Reduction Toolset Software Requirements Specification

    NASA Technical Reports Server (NTRS)

    Moran, Susanne; Jeffords, Ralph

    2005-01-01

    The Incubator Display Software Requirements Specification was initially developed by Intrinsyx Technologies Corporation (Intrinsyx) under subcontract to Lockheed Martin, Contract Number NAS2-02090, for the National Aeronautics and Space Administration (NASA) Ames Research Center (ARC) Space Station Biological Research Project (SSBRP). The Incubator Display is a User Payload Application (UPA) used to control an Incubator subrack payload for the SSBRP. The Incubator Display functions on-orbit as part of the subrack payload laptop, on the ground as part of the Communication and Data System (CDS) ground control system, and also as part of the crew training environment.

  15. PICARD payload thermal control system and general impact of the space environment on astronomical observations

    NASA Astrophysics Data System (ADS)

    Meftah, M.; Irbah, A.; Hauchecorne, A.; Hochedez, J.-F.

    2013-05-01

    PICARD is a spacecraft dedicated to the simultaneous measurement of the absolute total and spectral solar irradiance, the diameter, the solar shape, and to probing the Sun's interior by the helioseismology method. The mission has two scientific objectives, which are the study of the origin of the solar variability, and the study of the relations between the Sun and the Earth's climate. The spacecraft was successfully launched, on June 15, 2010 on a DNEPR-1 launcher. PICARD spacecraft uses the MYRIADE family platform, developed by CNES to use as much as possible common equipment units. This platform was designed for a total mass of about 130 kg at launch. This paper focuses on the design and testing of the TCS (Thermal Control System) and in-orbit performance of the payload, which mainly consists in two absolute radiometers measuring the total solar irradiance, a photometer measuring the spectral solar irradiance, a bolometer, and an imaging telescope to determine the solar diameter and asphericity. Thermal control of the payload is fundamental. The telescope of the PICARD mission is the most critical instrument. To provide a stable measurement of the solar diameter over three years duration of mission, telescope mechanical stability has to be excellent intrinsically, and thermally controlled. Current and future space telescope missions require ever-more dimensionally stable structures. The main scientific performance related difficulty was to ensure the thermal stability of the instruments. Space is a harsh environment for optics with many physical interactions leading to potentially severe degradation of optical performance. Thermal control surfaces, and payload optics are exposed to space environmental effects including contamination, atomic oxygen, ultraviolet radiation, and vacuum temperature cycling. Environmental effects on the performance of the payload will be discussed. Telescopes are placed on spacecraft to avoid the effects of the Earth atmosphere on astronomical observations (turbulence, extinction, ...). Atmospheric effects, however, may subsist when spacecraft are launched into low orbits, with mean altitudes of the order of 735 km.

  16. Passive Thermal Design Approach for the Space Communications and Navigation (SCaN) Testbed Experiment on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Siamidis, John; Yuko, Jim

    2014-01-01

    The Space Communications and Navigation (SCaN) Program Office at NASA Headquarters oversees all of NASAs space communications activities. SCaN manages and directs the ground-based facilities and services provided by the Deep Space Network (DSN), Near Earth Network (NEN), and the Space Network (SN). Through the SCaN Program Office, NASA GRC developed a Software Defined Radio (SDR) testbed experiment (SCaN testbed experiment) for use on the International Space Station (ISS). It is comprised of three different SDR radios, the Jet Propulsion Laboratory (JPL) radio, Harris Corporation radio, and the General Dynamics Corporation radio. The SCaN testbed experiment provides an on-orbit, adaptable, SDR Space Telecommunications Radio System (STRS) - based facility to conduct a suite of experiments to advance the Software Defined Radio, Space Telecommunications Radio Systems (STRS) standards, reduce risk (Technology Readiness Level (TRL) advancement) for candidate Constellation future space flight hardware software, and demonstrate space communication links critical to future NASA exploration missions. The SCaN testbed project provides NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in the laboratory and space environment based on reconfigurable, software defined radio platforms and the STRS Architecture.The SCaN testbed is resident on the P3 Express Logistics Carrier (ELC) on the exterior truss of the International Space Station (ISS). The SCaN testbed payload launched on the Japanese Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV) and was installed on the ISS P3 ELC located on the inboard RAM P3 site. The daily operations and testing are managed out of NASA GRC in the Telescience Support Center (TSC).

  17. Operational factors affecting microgravity levels in orbit

    NASA Technical Reports Server (NTRS)

    Olsen, R. E.; Mockovciak, J., Jr.

    1980-01-01

    Microgravity levels desired for proposed materials processing payloads are fundamental considerations in the design of future space platforms. Disturbance sources, such as aerodynamic drag, attitude control torques, crew motion and orbital dynamics, influence the microgravity levels attainable in orbit. The nature of these effects are assessed relative to platform design parameters such as orbital altitude and configuration geometry, and examples are presented for a representative spacecraft configuration. The possible applications of control techniques to provide extremely low acceleration levels are also discussed.

  18. KSC-98pc1039

    NASA Image and Video Library

    1998-09-04

    Workers watch as the Hubble Space Telescope Orbiting Systems Test (HOST)is moved inside the Space Shuttle Processing Facility. The HOST platform, one of the payloads on the STS-95 mission, is carrying four experiments to validate components planned for installation during the third Hubble Space Telescope servicing mission and to evaluate new technologies in an earth orbiting environment. The STS-95 mission is scheduled to launch Oct. 29. It will carry three other payloads: the Spartan solar-observing deployable spacecraft, the International Extreme Ultraviolet Hitchhiker, and the SPACEHAB single module with experiments on space flight and the aging process

  19. KSC-98pc1037

    NASA Image and Video Library

    1998-09-04

    The Hubble Space Telescope Orbiting Systems Test (HOST)is being raised to a workstand by technicians in the Space Shuttle Processing Facility. One of the payloads on the STS-95 mission, the HOST platform is carrying four experiments to validate components planned for installation during the third Hubble Space Telescope servicing mission and to evaluate new technologies in an earth orbiting environment. The STS-95 mission is scheduled to launch Oct. 29. It will carry three other payloads: the Spartan solar-observing deployable spacecraft, the International Extreme Ultraviolet Hitchhiker, and the SPACEHAB single module with experiments on space flight and the aging process

  20. KSC-98pc1137

    NASA Image and Video Library

    1998-09-23

    KENNEDY SPACE CENTER, FLA. -- The Hubble Space Telescope Orbiting Systems Test (HOST) is suspended above its work stand in the Space Station Processing Facility before moving it to its payload canister. The HOST platform is carrying four experiments to validate components planned for installation during the third Hubble Space Telescope servicing mission and to evaluate new technologies in an Earth-orbiting environment. The STS-95 mission is scheduled to launch Oct. 29. It will carry other payloads such as the Spartan solar-observing deployable spacecraft, the International Extreme Ultraviolet Hitchhiker (IEH-3), and the SPACEHAB single module with experiments on space flight and the aging process

  1. KSC-98pc1036

    NASA Image and Video Library

    1998-09-04

    KENNEDY SPACE CENTER, FLA. -- The Hubble Space Telescope Orbiting Systems Test (HOST) is checked out by technicians in the Space Shuttle Processing Facility. One of the payloads on the STS-95 mission, the HOST platform is carrying four experiments to validate components planned for installation during the third Hubble Space Telescope servicing mission and to evaluate new technologies in an earth orbiting environment. The STS-95 mission is scheduled to launch Oct. 29. It will carry three other payloads: the Spartan solar-observing deployable spacecraft, the International Extreme Ultraviolet Hitchhiker, and the SPACEHAB single module with experiments on space flight and the aging process

  2. Space station needs, attributes, and architectural options study

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The top level, time-phased total space program support system architecture is described including progress from the use of ground-based space shuttle, teleoperator system, extended duration orbiter, and multimission spacecraft, to an initial 4-man crew station at 29 deg inclination in 1991, to a growth station with an 8-man crew with capabilities for OTV high energy orbit payload placement and servicing, assembly, and construction of mission payloads in 1994. System Z, proposed for Earth observation missions in high inclination orbit, can be accommodated in 1993 using a space station derivative platform. Mission definition, system architecture, and benefits are discussed.

  3. Autonomous mine detection system (AMDS) neutralization payload module

    NASA Astrophysics Data System (ADS)

    Majerus, M.; Vanaman, R.; Wright, N.

    2010-04-01

    The Autonomous Mine Detection System (AMDS) program is developing a landmine and explosive hazards standoff detection, marking, and neutralization system for dismounted soldiers. The AMDS Capabilities Development Document (CDD) has identified the requirement to deploy three payload modules for small robotic platforms: mine detection and marking, explosives detection and marking, and neutralization. This paper addresses the neutralization payload module. There are a number of challenges that must be overcome for the neutralization payload module to be successfully integrated into AMDS. The neutralizer must meet stringent size, weight, and power (SWaP) requirements to be compatible with a small robot. The neutralizer must be effective against a broad threat, to include metal and plastic-cased Anti-Personnel (AP) and Anti-Tank (AT) landmines, explosive devices, and Unexploded Explosive Ordnance (UXO.) It must adapt to a variety of threat concealments, overburdens, and emplacement methods, to include soil, gravel, asphalt, and concrete. A unique neutralization technology is being investigated for adaptation to the AMDS Neutralization Module. This paper will describe review this technology and how the other two payload modules influence its design for minimizing SWaP. Recent modeling and experimental efforts will be included.

  4. On-board emergent scheduling of autonomous spacecraft payload operations

    NASA Technical Reports Server (NTRS)

    Lindley, Craig A.

    1994-01-01

    This paper describes a behavioral competency level concerned with emergent scheduling of spacecraft payload operations. The level is part of a multi-level subsumption architecture model for autonomous spacecraft, and it functions as an action selection system for processing a spacecraft commands that can be considered as 'plans-as-communication'. Several versions of the selection mechanism are described, and their robustness is qualitatively compared.

  5. Mobile User Objective System (MUOS)

    DTIC Science & Technology

    2013-12-01

    system capacity of the current UHF Follow-On ( UFO ) constellation. MUOS includes the satellite constellation, a ground control and network management...terminals able to support the MUOS CAI. Each MUOS satellite carries a legacy payload similar to that flown on UFO -11. These legacy payloads will...Antecedent Information: The antecedent system to MUOS was the Ultra High Frequency (UHF) Follow-on ( UFO ) satellite communications program. Comparisons of O

  6. Orbital construction demonstration study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A conceptual design and program plan for an Orbital Construction Demonstration Article (OCDA) was developed that can be used for evaluating and establishing practical large structural assembly operations. A flight plan for initial placement and continued utility is presented as a basic for an entirely new shuttle payload line-item having great future potential benefit for space applications. The OCDA is a three-axis stabilized platform in low-earth orbit with many structural nodals for mounting large construction and fabrication equipments. This equipment would be used to explore methods for constructing the large structures for future missions. The OCDA would be supported at regular intervals by the shuttle. Construction experiments and consumables resupply are performed during shuttle visit periods. A 250 kw solar array provides sufficient power to support the shuttle while attached to the OCDA and to run construction experiments at the same time. Wide band communications with a Telemetry and Data Relay Satellite compatible high gain antenna can be used between shuttle revisits to perform remote controlled, TV assisted construction experiments.

  7. Atmospheric anthropic impacts tracked by the French atmospheric mobile observatory

    NASA Astrophysics Data System (ADS)

    Cuesta, J.; Chazette, P.; Flamant, P. H.

    2009-04-01

    A new ATmospheric Mobile ObServatory, so called "ATMOS", has been developed by the LiMAG "Lidar, Meteorology and Geophysics" team of the Institut Pierre Simon Laplace (IPSL) in France, in order to contribute to international field campaigns for studying atmospheric physico-chemistry, air quality and climate (i.e. aerosols, clouds, trace gazes, atmospheric dynamics and energy budget) and the ground-based validation of satellite observations. ATMOS has been deployed in the framework of i) LISAIR, for monitoring air quality in Paris in 2005, ii) AMMA "African Monsoon Multidisciplinary Analysis", in Tamanrasset and in Niamey for observing the aerosols and the atmospheric boundary layer in the Sahara and in the Sahel in 2006, iii) COPS "Convectively and Orographycally driven Precipitation Study" in the Rhin Valley in 2007 and iv) the validation of the spatial mission CALIPSO, launched in April 2006. In the coming years, ATMOS will be deployed i) in the Paris Megacity, in the framework of MEGAPOLI (2009-2010), ii) in southern France (near Marseille) for the Chemistry-Aerosol Mediterranean Experiment CHARMEX (2011-2012) and iii) the validation of ADM-Aeolus in 2010-2011 and Earth-Care in 2012. ATMOS payload is modular, accounting for the different platforms, instruments and measuring techniques. The deployment of ATMOS is an essential contribution to field campaigns, complementing the fixed sites, and a potential alternative of airborne platforms, heavier and more expensive. ATMOS mobile payload comprises both the remote sensing platform MOBILIS ("Moyens mOBIles de téLédetection de l'IPSL") and the in-situ physico-chemical station SAMMO ("Station Aérosols et chiMie MObile"). MOBILIS is an autonomous and high-performance system constituted by a full set of active and passive remote sensing instrumentation (i.e. Lidars and radiometers), whose payload may be adapted for either i) long term fixed monitoring in a maritime container or a shelter, ii) ground-based transect observation onboard small car and ii) an airborne deployment in an ultra-light airplane (ULA). SAMMO is a fully equipped in-situ sensor payload, oriented to pollution monitoring (i.e. particles and trace gazes), onboard a truck.

  8. KSC-98pc1555

    NASA Image and Video Library

    1998-11-07

    After nine days and 3.6 million miles in space, orbiter Discovery prepares to land on runway 33 at the Shuttle Landing Facility. Discovery returns to Earth with its crew of seven after successfully completing mission STS-95. The STS-95 crew members are Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., a senator from Ohio; Mission Specialist Pedro Duque of Spain, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process

  9. KSC-98dc1580

    NASA Image and Video Library

    1998-11-07

    After a successful mission of nearly nine days and 3.6 million miles, the orbiter Discovery glides to Earth on runway 33 at the Shuttle Landing Facility. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. The STS-95 mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. The crew consisted of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., a senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA)

  10. KSC-98pc1548

    NASA Image and Video Library

    1998-11-07

    Orbiter Discovery touches down on runway 33 at the Shuttle Landing Facility after a successful mission of nearly nine days and 3.6 million miles. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. The STS-95 crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., a senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, M.D., with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process

  11. NASA Global Hawk: A Unique Capability for the Pursuit of Earth Science

    NASA Technical Reports Server (NTRS)

    Naftel, J. Chris

    2007-01-01

    For more than 2 years, the NASA Dryden Flight Research Center has been preparing for the receipt of two Advanced Concept Technology Demonstration Global Hawk air vehicles from the United States Air Force. NASA Dryden intends to establish a Global Hawk Project Office, which will be responsible for developing the infrastructure required to operate this unmanned aerial system and establishing a trained maintenance and operations team. The first flight of a NASA Global Hawk air vehicle is expected to occur in 2008. The NASA Global Hawk system can be used by a variety of customers, including U.S. Government agencies, civilian organizations, universities, and state governments. A combination of the vehicle s range, endurance, altitude, payload power, payload volume, and payload weight capabilities separates the Global Hawk unmanned aerial system from all other platforms available to the science community.

  12. Discovery touches down after successful mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    After nine days and 3.6 million miles in space, orbiter Discovery prepares to land on runway 33 at the Shuttle Landing Facility. Discovery returns to Earth with its crew of seven after successfully completing mission STS-95. The STS-95 crew members are Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., a senator from Ohio; Mission Specialist Pedro Duque of Spain, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  13. Discovery touches down after successful mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Orbiter Discovery lowers its nose wheel after touching down on runway 33 at the Shuttle Landing Facility. Discovery returns to Earth with its crew of seven after successfully completing mission STS-95, lasting nearly nine days and 3.6 million miles. The STS-95 crew is composed of Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Mission Specialist Scott E. Parazynski, Mission Specialist Stephen K. Robinson, Payload Specialist John H. Glenn Jr., senator from Ohio, Mission Specialist Pedro Duque, with the European Space Agency (ESA), and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  14. Discovery touches down after successful mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Orbiter Discovery touches down on runway 33 at the Shuttle Landing Facility after a successful mission of nearly nine days and 3.6 million miles. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. The STS-95 crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., a senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, M.D., with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  15. Discovery prepares to land after successful mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Orbiter Discovery prepares to land on runway 33 at the Shuttle Landing Facility. Discovery returns to Earth with its crew of seven after successfully completing mission STS-95, lasting nearly nine days and 3.6 million miles. The crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Mission Specialist Scott E. Parazynski, Mission Specialist Stephen K. Robinson, Payload Specialist John H. Glenn Jr., senator from Ohio, Mission Specialist Pedro Duque, with the European Space Agency (ESA), and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar- observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  16. Discovery touches down after successful mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Orbiter Discovery touches down in a cloud of smoke on runway 33 at the Shuttle Landing Facility. Discovery returns to Earth with its crew of seven after successfully completing mission STS-95, lasting nearly nine days and 3.6 million miles. The crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Mission Specialist Scott E. Parazynski, Mission Specialist Stephen K. Robinson, Payload Specialist John H. Glenn Jr., senator from Ohio, Mission Specialist Pedro Duque, with the European Space Agency (ESA), and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar- observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  17. Discovery touches down after successful mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    After a successful mission of nearly nine days and 3.6 million miles, the orbiter Discovery glides to Earth on runway 33 at the Shuttle Landing Facility. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. The STS-95 mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. The crew consisted of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., a senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA).

  18. Control-structure interaction/mirror motion compensation

    NASA Technical Reports Server (NTRS)

    Mclaren, Mark; Chu, Peter; Price, Xen

    1992-01-01

    Space Systems/Loral (formerly Ford Aerospace, Space Systems Division) has implemented a rigid-body Mirror Motion Compensation (MMC) scheme for the GOES-I/M spacecraft currently being built for NASA and NOAA. This has resulted in a factor of 15 reduction in pointing error due to rigid-body spacecraft motion induced by the periodic black-body calibration maneuvers required for the instruments. For GOES the spacecraft and the payload mirrors are considered as rigid bodies. The structural flexibility effects are small and are included in the total pointing budget as a separate item. This paper extends the MMC technique to include structural flexibility. For large multi-payload platforms, the structural flexibility effects can be more important in sensor pointing jitter as the result of payload motion. Sensitivity results are included to show the importance of the dynamic model fidelity.

  19. KSC-98pc976

    NASA Image and Video Library

    1998-08-21

    KENNEDY SPACE CENTER, FLA. -- Inside the SPACEHAB training module, STS-95 Mission Specialist Scott Parazynski, M.D., helps with connections on the mesh cap worn by Payload Specialist John Glenn, who is a senator from Ohio. Glenn is also wearing the Respiratory Inductance Plethysmograph (RIP) suit he will wear on the mission to monitor respiration. The cap and suit are part of the equipment that will be used to seek to improve the quality of sleep for future astronauts. The STS-95 crew are participating in SPACEHAB familiarization at the SPACEHAB Payload Processing Facility, Cape Canaveral. The mission, scheduled to launch Oct. 29, includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process

  20. iss050e037283

    NASA Image and Video Library

    2017-01-31

    iss050e037283 (01/31/2017) --- NASA astronaut Peggy Whitson removes the Multi-Purpose Experiment Platform (MPEP) from inside the Kibo airlock aboard the International Space Station. The airlock is used to deploy a number of scientific payloads from inside the station out into the vacuum of space.

  1. Sub-arcminute pointing from a balloonborne platform

    NASA Astrophysics Data System (ADS)

    Craig, William W.; McLean, Ryan; Hailey, Charles J.

    1998-07-01

    We describe the design and performance of the pointing and aspect reconstruction system on the Gamma-Ray Arcminute Telescope Imaging System. The payload consists of a 4m long gamma-ray telescope, capable of producing images of the gamma-ray sky at an angular resolution of 2 arcminutes. The telescope is operated at an altitude of 40km in azimuth/elevation pointing mode. Using a variety of sensor, including attitude GPS, fiber optic gyroscopes, star and sun trackers, the system is capable of pointing the gamma-ray payload to within an arc-minute from the balloon borne platform. The system is designed for long-term autonomous operation and performed to specification throughout a recent 36 hour flight from Alice Springs, Australia. A star tracker and pattern recognition software developed for the mission permit aspect reconstruction to better than 10 arcseconds. The narrow field star tracker system is capable of acquiring and identifying a star field without external input. We present flight data form all sensors and the resultant gamma-ray source localizations.

  2. Introduction to the Special Issue on Sounding Rockets and Instrumentation

    NASA Astrophysics Data System (ADS)

    Christe, Steven; Zeiger, Ben; Pfaff, Rob; Garcia, Michael

    2016-03-01

    Rocket technology, originally developed for military applications, has provided a low-cost observing platform to carry critical and rapid-response scientific investigations for over 70 years. Even with the development of launch vehicles that could put satellites into orbit, high altitude sounding rockets have remained relevant. In addition to science observations, sounding rockets provide a unique technology test platform and a valuable training ground for scientists and engineers. Most importantly, sounding rockets remain the only way to explore the tenuous regions of the Earth’s atmosphere (the upper stratosphere, mesosphere, and lower ionosphere/thermosphere) above balloon altitudes (˜40km) and below satellite orbits (˜160km). They can lift remote sensing telescope payloads with masses up to 400kg to altitudes of 350km providing observing times of up to 6min above the blocking influence of Earth’s atmosphere. Though a number of sounding rocket research programs exist around the world, this article focuses on the NASA Sounding Rocket Program, and particularly on the astrophysical and solar sounding rocket payloads.

  3. Open-Loop Performance of COBALT Precision Landing Payload on a Commercial Sub-Orbital Rocket

    NASA Technical Reports Server (NTRS)

    Restrepo, Carolina I.; Carson, John M., III; Amzajerdian, Farzin; Seubert, Carl R.; Lovelace, Ronney S.; McCarthy, Megan M.; Tse, Teming; Stelling, Richard; Collins, Steven M.

    2018-01-01

    An open-loop flight test campaign of the NASA COBALT (CoOperative Blending of Autonomous Landing Technologies) platform was conducted onboard the Masten Xodiac suborbital rocket testbed. The COBALT platform integrates NASA Guidance, Navigation and Control (GN&C) sensing technologies for autonomous, precise soft landing, including the Navigation Doppler Lidar (NDL) velocity and range sensor and the Lander Vision System (LVS) Terrain Relative Navigation (TRN) system. A specialized navigation filter running onboard COBALT fuses the NDL and LVS data in real time to produce a navigation solution that is independent of GPS and suitable for future, autonomous, planetary, landing systems. COBALT was a passive payload during the open loop tests. COBALT's sensors were actively taking data and processing it in real time, but the Xodiac rocket flew with its own GPS-navigation system as a risk reduction activity in the maturation of the technologies towards space flight. A future closed-loop test campaign is planned where the COBALT navigation solution will be used to fly its host vehicle.

  4. Umbilical Stiffness Matrix Characterization and Testing for Microgravity Science Payloads

    NASA Technical Reports Server (NTRS)

    Engberg, Robert C.

    2003-01-01

    This paper describes efforts of testing and analysis of various candidate cables and umbilicals for International Space Station microgravity science payloads. The effects of looping, large vs. small displacements, and umbilical mounting configurations were assessed. A 3-DOF stepper motor driven fixture was used to excite the umbilicals. Forces and moments were directly measured in all three axes with a 6-DOF load cell in order to derive suitable stiffness matrices for design and analysis of vibration isolation controllers. Data obtained from these tests were used to help determine the optimum type and configuration of umbilical cables for the International Space Station microgravity science glovebox (MSG) vibration isolation platform. The data and procedures can also be implemented into control algorithm simulations to assist in validation of actively controlled vibration isolation systems. The experimental results of this work are specific in support of the Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) isolation platform, to be located in the microgravity science glovebox aboard the U.S. Destiny Laboratory Module.

  5. The Potential for Hosted Payloads at NASA

    NASA Technical Reports Server (NTRS)

    Andraschko, Mark; Antol, Jeffrey; Baize, Rosemary; Horan, Stephen; Neil, Doreen; Rinsland, Pamela; Zaiceva, Rita

    2012-01-01

    The 2010 National Space Policy encourages federal agencies to actively explore the use of inventive, nontraditional arrangements for acquiring commercial space goods and services to meet United States Government requirements, including...hosting government capabilities on commercial spacecraft. NASA's Science Mission Directorate has taken an important step towards this goal by adding an option for hosted payload responses to its recent Announcement of Opportunity (AO) for Earth Venture-2 missions. Since NASA selects a significant portion of its science missions through a competitive process, it is useful to understand the implications that this process has on the feasibility of successfully proposing a commercially hosted payload mission. This paper describes some of the impediments associated with proposing a hosted payload mission to NASA, and offers suggestions on how these impediments might be addressed. Commercially hosted payloads provide a novel way to serve the needs of the science and technology demonstration communities at a fraction of the cost of a traditional Geostationary Earth Orbit (GEO) mission. The commercial communications industry launches over 20 satellites to GEO each year. By exercising this repeatable commercial paradigm of privately financed access to space with proven vendors, NASA can achieve science goals at a significantly lower cost than the current dedicated spacecraft and launch vehicle approach affords. Commercial hosting could open up a new realm of opportunities for NASA science missions to make measurements from GEO. This paper also briefly describes two GEO missions recommended by the National Academies of Science Earth Science Decadal Survey, the Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission and the Precipitation and All-weather Temperature and Humidity (PATH) mission. Hosted payload missions recently selected for implementation by the Office of the Chief Technologist are also discussed. Finally, there are technical differences specific to hosted payloads and the GEO environment that must be considered when planning and developing a hosted payload mission. This paper addresses some of payload accommodation differences from the typical NASA LEO mission, including spacecraft interfaces, attitude control and knowledge, communications, data handling, mission operations, ground systems, and the thermal, radiation, and electromagnetic environment. The paper also discusses technical and programmatic differences such as limits to NASA's involvement with commercial quality assurance processes to conform to the commercial schedule and minimizing the price that makes hosted payloads an attractive option.

  6. The Aerosonde Robotic Aircraft: A New Paradigm for Environmental Observations.

    NASA Astrophysics Data System (ADS)

    Holland, G. J.; Webster, P. J.; Curry, J. A.; Tyrell, G.; Gauntlett, D.; Brett, G.; Becker, J.; Hoag, R.; Vaglienti, W.

    2001-05-01

    The Aerosonde is a small robotic aircraft designed for highly flexible and inexpensive operations. Missions are conducted in a completely robotic mode, with the aircraft under the command of a ground controller who monitors the mission. Here we provide an update on the Aerosonde development and operations and expand on the vision for the future, including instrument payloads, observational strategies, and platform capabilities. The aircraft was conceived in 1992 and developed to operational status in 1995-98, after a period of early prototyping. Continuing field operations and development since 1998 have led to the Aerosonde Mark 3, with ~2000 flight hours completed. A defined development path through to 2002 will enable the aircraft to become increasingly more robust with increased flexibility in the range and type of operations that can be achieved. An Aerosonde global reconnaissance facility is being developed that consists of launch and recovery sites dispersed around the globe. The use of satellite communications and internet technology enables an operation in which all aircraft around the globe are under the command of a single center. During operation, users will receive data at their home institution in near-real time via the virtual field environment, allowing the user to update the mission through interaction with the global command center. Sophisticated applications of the Aerosonde will be enabled by the development of a variety of interchangeable instrument payloads and the operation of Smart Aerosonde Clusters that allow a cluster of Aerosondes to interact intelligently in response to the data being collected.

  7. Establishing a Near Term Lunar Farside Gravity Model via Inexpensive Add-on Navigation Payload

    NASA Technical Reports Server (NTRS)

    Folta, David; Mesarch, Michael; Miller, Ronald; Bell, David; Jedrey, Tom; Butman, Stanley; Asmar, Sami

    2007-01-01

    The Space Communications and Navigation, Constellation Integration Project (SCIP) is tasked with defining, developing, deploying and operating an evolving multi-decade communications and navigation (C/N) infrastructure including services and subsystems that will support both robotic and human exploration activities at the Moon. This paper discusses an early far side gravitational mapping service and related telecom subsystem that uses an existing spacecraft (WIND) and the Lunar Reconnaissance Orbiter (LRO) to collect data that would address several needs of the SCIP. An important aspect of such an endeavor is to vastly improve the current lunar gravity model while demonstrating the navigation and stationkeeping of a relay spacecraft. We describe a gravity data acquisition activity and the trajectory design of the relay orbit in an Earth-Moon L2 co-linear libration orbit. Several phases of the transfer from an Earth-Sun to the Earth-Moon region are discussed along with transfers within the Earth-Moon system. We describe a proposed, but not integrated, add-on to LRO scheduled to be launched in October of 2008. LRO provided a real host spacecraft against which we designed the science payload and mission activities. From a strategic standpoint, LRO was a very exciting first flight opportunity for gravity science data collection. Gravity Science data collection requires the use of one or more low altitude lunar polar orbiters. Variations in the lunar gravity field will cause measurable variations in the orbit of a low altitude lunar orbiter. The primary means to capture these induced motions is to monitor the Doppler shift of a radio signal to or from the low altitude spacecraft, given that the signal is referenced to a stable frequency reference. For the lunar far side, a secondary orbiting radio signal platform is required. We provide an in-depth look at link margins, trajectory design, and hardware implications. Our approach posed minimum risk to a host mission while maintaining a very low implementation and operations cost.

  8. Advanced communications payload for mobile applications

    NASA Technical Reports Server (NTRS)

    Ames, S. A.; Kwan, R. K.

    1990-01-01

    An advanced satellite payload is proposed for single hop linking of mobile terminals of all classes as well as Very Small Aperture Terminal's (VSAT's). It relies on an intensive use of communications on-board processing and beam hopping for efficient link design to maximize capacity and a large satellite antenna aperture and high satellite transmitter power to minimize the cost of the ground terminals. Intersatellite links are used to improve the link quality and for high capacity relay. Power budgets are presented for links between the satellite and mobile, VSAT, and hub terminals. Defeating the effects of shadowing and fading requires the use of differentially coherent demodulation, concatenated forward error correction coding, and interleaving, all on a single link basis.

  9. Project Hermes 'Use of Smartphones for Receiving Telemetry and Commanding a Satellite'

    NASA Technical Reports Server (NTRS)

    Maharaja, Rishabh (Principal Investigator)

    2016-01-01

    TCPIP protocols can be applied for satellite command, control, and data transfer. Project Hermes was an experiment set-up to test the use of the TCPIP protocol for communicating with a space bound payload. The idea was successfully demonstrated on high altitude balloon flights and on a sub-orbital sounding rocket launched from NASAs Wallops Flight Facility. TCPIP protocols can be applied for satellite command, control, and data transfer. Project Hermes was an experiment set-up to test the use of the TCPIP protocol for communicating with a space bound payload. The idea was successfully demonstrated on high altitude balloon flights and on a sub-orbital sounding rocket launched from NASAs Wallops Flight Facility.

  10. Wireless Intra-Spacecraft Communication: The Benefits and the Challenges

    NASA Technical Reports Server (NTRS)

    Zheng, Will H.; Armstrong, John T.

    2010-01-01

    In this paper we present a systematic study of how intra-spacecraft wireless communication can be adopted to various subsystems of the spacecraft including C&DH (Command & Data Handling), Telecom, Power, Propulsion, and Payloads, and the interconnects between them. We discuss the advantages of intra-spacecraft wireless communication and the disadvantages and challenges and a proposal to address them.

  11. Sensing and communication trade-offs in picosatellite formation flying missions.

    PubMed

    Arnon, Shlomi; Kedar, Debbie

    2009-10-01

    One of the primary challenges in all small satellite design is the attainment of adequate sensing and communication capabilities within the stringent spatial limitations. These can be defined in terms of surface area expenditure for the different payloads. There is an inevitable trade-off between enhancing the sensing capacity at the expense of reducing communication capabilities on the one hand and, on the other hand, increasing the communication capacity to the detriment of the sensing ability. Careful balancing of the conflicting demands is necessary to achieve acceptable performance levels. In this paper we study two intersatellite optical wireless communication scenarios: (i) a direct link between two satellites and (ii) a folded path link between a master satellite and a picosatellite equipped with a modulatable retroreflector. In the latter case the picosatellite does not have a laser transmitter and the data carrier is the retroreflected beam from the master satellite. The data rate, which is bounded by the sensing payload resolution, is derived using diffraction theory and Shannon capacity considerations. We develop a mathematical model to describe the interrelations between sensing and communication facilities in a picosatellite flight formation using optical technologies and demonstrate system performance trade-offs with a numerical example.

  12. Areosynchronous weather imager

    NASA Astrophysics Data System (ADS)

    Puschell, Jeffery J.; Lock, Robert

    2016-09-01

    Mars is characterized by rapidly changing, poorly understood weather that is a concern for future human missions. Future Areosynchronous Mars Orbit (AMO) communication satellites offer possible platforms for Mars weather imagers similar to the geosynchronous Earth orbit (GEO) weather imagers that have been observing Earth since 1966. This paper describes an AReosynchronous Environmental Suite (ARES) that includes two imagers: one with two emissive infrared bands (10.8 μm and 12.0 μm) at 4 km resolution and the other with three VNIR bands (500 nm, 700 nm, 900 nm) at 1 km resolution. ARES stares at Mars and provides full disk coverage as fast as every 40 sec in the VNIR bands and every 2 min in the emissive bands with good sensitivity (SNR 200 in the VNIR for typical radiances and NEDT 0.2K at 180 K scene temperature in the emissive infrared). ARES size, mass, power and data rate characteristics are compatible with expectations for hosted payloads onboard future AMO communication satellites. Nevertheless, more work is needed to optimize ARES for future missions, especially in terms of trades between data rate, full disk coverage rate, sensitivity, number of spectral bands and spatial resolution and in study of approaches for maintaining accurate line of sight knowledge during data collection.

  13. Commercially Hosted Government Payloads: Lessons from Recent Programs

    NASA Technical Reports Server (NTRS)

    Andraschko, Mark A.; Antol, Jeffrey; Horan, Stephen; Neil, Doreen

    2011-01-01

    In a commercially hosted operational mode, a scientific instrument or operational device is attached to a spacecraft but operates independently from the spacecraft s primary mission. Despite the expected benefits of this arrangement, there are few examples of hosted payload programs actually being executed by government organizations. The lack of hosted payload programs is largely driven by programmatic challenges, both real and perceived, rather than by technical challenges. Partly for these reasons, NASA has not sponsored a hosted payload program, in spite of the benefits and visible community interest in doing so. In the interest of increasing the use of hosted payloads across the space community, this paper seeks to alleviate concerns about hosted payloads by identifying these programmatic challenges and presenting ways in which they can be avoided or mitigated. Despite the challenges, several recent hosted payload programs have been successfully completed or are currently in progress. This paper presents an assessment of these programs, with a focus on acquisition, costs, schedules, risks, and other programmatic aspects. The hosted payloads included in this study are the Federal Aviation Administration's Wide Area Augmentation System (WAAS) payloads, United States Coast Guard's Automatic Identification System (AIS) demonstration payload, Department of Defense's IP Router In Space (IRIS) demonstration payload, the United States Air Force's Commercially Hosted Infrared Payload (CHIRP), and the Australian Defence Force's Ultra High Frequency (UHF) payload. General descriptions of each of these programs are presented along with issues that have been encountered and lessons learned from those experiences. A set of recommended approaches for future hosted payload programs is presented, with a focus on addressing risks or potential problem areas through smart and flexible contracting up front. This set of lessons and recommendations is broadly applicable to future hosted payload programs, whether they are technology demonstrations, communications systems, or operational sensors. Additionally, we present a basic cost model for commercial access to space for hosted payloads as a function of payload mass

  14. KSC-98pc1086

    NASA Image and Video Library

    1998-09-14

    KENNEDY SPACE CENTER, FLA. The International Extreme Ultraviolet Hitchhiker-3 (IEH-3), one of the payloads for the STS-95 mission, is prepared for launch in the Multi-Payload Processing Facility. IEH-3 is comprised of seven experiments, including one that will be deployed on Flight Day 3. It is the small, non-recoverable Petite Amateur Navy Satellite (PANSAT) which will store and transmit digital communications. Other IEH investigations are the Solar Constant Experiment (SOLCON), Solar Extreme Ultraviolet Hitchhiker (SEH), Spectrograph/Telescope for Astronomical Research (STAR-LITE), Ultraviolet Spectrograph Telescope for Astronomical Research (UVSTAR), Consortium for Materials Development in Space Complex Autonomous Payloads (CONCAP-IV) for growing thin films via physical vapor transport, and two Get-Away Special (GAS) canister experiments. The experiments will be mounted on a hitchhiker bridge in Discovery's payload bay

  15. Servicing capability for the evolutionary Space Station

    NASA Technical Reports Server (NTRS)

    Thomas, Edward F.; Grems, Edward G., III; Corbo, James E.

    1990-01-01

    Since the beginning of the Space Station Freedom (SSF) program the concept of on-orbit servicing of user hardware has been an integral part of the program implementation. The user servicing system architecture has been divided into a baseline and a growth phase. The baseline system consists of the following hardware elements that will support user servicing - flight telerobotic servicer, crew and equipment translation aid, crew intravehicular and extravehicular servicing support, logistics supply system, mobile servicing center, and the special purpose dextrous manipulator. The growth phase incorporates a customer servicing facility (CSF), a station-based orbital maneuvering vehicle and an orbital spacecraft consumables resupply system. The requirements for user servicing were derived from the necessity to service attached payloads, free flyers and coorbiting platforms. These requirements include: orbital replacement units (ORU) and instrument changeout, National Space Transportation System cargo bay loading and unloading, contamination control and monitoring, thermal protection, payload berthing, storage, access to SSF distributed systems, functional checkout, and fluid replenishment. The baseline user servicing capabilities accommodate ORU and instrument changeout. However, this service is limited to attached payloads, either in situ or at a locally adjacent site. The growth phase satisfies all identified user servicing requirements by expanding servicing capabilities to include complex servicing tasks for attached payloads, free-flyers and coorbiting platforms at a dedicated, protected Servicing site. To provide a smooth evolution of user servicing the SSF interfaces that are necessary to accommodate the growth phase have been identified. The interface requirements on SSF have been greatly simplified by accommodating the growth servicing support elements within the CSF. This results in a single SSF interface: SSF to the CSF.

  16. University of Virginia suborbital infrared sensing experiment

    NASA Astrophysics Data System (ADS)

    Holland, Stephen; Nunnally, Clayton; Armstrong, Sarah; Laufer, Gabriel

    2002-03-01

    An Orion sounding rocket launched from Wallops Flight Facility carried a University of Virginia payload to an altitude of 47 km and returned infrared measurements of the Earth's upper atmosphere and video images of the ocean. The payload launch was the result of a three-year undergraduate design project by a multi-disciplinary student group from the University of Virginia and James Madison University. As part of a new multi-year design course, undergraduate students designed, built, tested, and participated in the launch of a suborbital platform from which atmospheric remote sensors and other scientific experiments could operate. The first launch included a simplified atmospheric measurement system intended to demonstrate full system operation and remote sensing capabilities during suborbital flight. A thermoelectrically cooled HgCdTe infrared detector, with peak sensitivity at 10 micrometers , measured upwelling radiation and a small camera and VCR system, aligned with the infrared sensor, provided a ground reference. Additionally, a simple orientation sensor, consisting of three photodiodes, equipped with red, green, and blue light with dichroic filters, was tested. Temperature measurements of the upper atmosphere were successfully obtained during the flight. Video images were successfully recorded on-board the payload and proved a valuable tool in the data analysis process. The photodiode system, intended as a replacement for the camera and VCR system, functioned well, despite low signal amplification. This fully integrated and flight tested payload will serve as a platform for future atmospheric sensing experiments. It is currently being modified for a second suborbital flight that will incorporate a gas filter correlation radiometry (GFCR) instrument to measure the distribution of stratospheric methane and imaging capabilities to record the chlorophyll distribution in the Metompkin Bay as an indicator of pollution runoff.

  17. Matroshka AstroRad Radiation Experiment (MARE) on the Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Gaza, R.; Hussein, H.; Murrow, D.; Hopkins, J.; Waterman, G.; Milstein, O.; Berger, T.; Przybyla, B.; Aeckerlein, J.; Marsalek, K.; Matthiae, D.; Rutczynska, A.

    2018-02-01

    The Matroshka AstroRad Radiation Experiment is a science payload on Orion EM-1 flight. A research platform derived from MARE is proposed for the Deep Space Gateway. Feedback is invited on desired Deep Space Gateway design features to maximize its science potential.

  18. Explosive vapor detection payload for small robots

    NASA Astrophysics Data System (ADS)

    Stimac, Phil J.; Pettit, Michael; Wetzel, John P.; Haas, John W.

    2013-05-01

    Detection of explosive hazards is a critical component of enabling and improving operational mobility and protection of US Forces. The Autonomous Mine Detection System (AMDS) developed by the US Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate (NVESD) is addressing this challenge for dismounted soldiers. Under the AMDS program, ARA has developed a vapor sampling system that enhances the detection of explosive residues using commercial-off-the-shelf (COTS) sensors. The Explosives Hazard Trace Detection (EHTD) payload is designed for plug-and-play installation and operation on small robotic platforms, addressing critical Army needs for more safely detecting concealed or exposed explosives in areas such as culverts, walls and vehicles. In this paper, we describe the development, robotic integration and performance of the explosive vapor sampling system, which consists of a sampling "head," a vapor transport tube and an extendable "boom." The sampling head and transport tube are integrated with the boom, allowing samples to be collected from targeted surfaces up to 7-ft away from the robotic platform. During sample collection, an IR lamp in the sampling head is used to heat a suspected object/surface and the vapors are drawn through the heated vapor transport tube to an ion mobility spectrometer (IMS) for detection. The EHTD payload is capable of quickly (less than 30 seconds) detecting explosives such as TNT, PETN, and RDX at nanogram levels on common surfaces (brick, concrete, wood, glass, etc.).

  19. Life Sciences Space Station planning document: A reference payload for the Life Sciences Research Facility

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Space Station, projected for construction in the early 1990s, will be an orbiting, low-gravity, permanently manned facility providing unprecedented opportunities for scientific research. Facilities for Life Sciences research will include a pressurized research laboratory, attached payloads, and platforms which will allow investigators to perform experiments in the crucial areas of Space Medicine, Space Biology, Exobiology, Biospherics and Controlled Ecological Life Support System (CELSS). These studies are designed to determine the consequences of long-term exposure to space conditions, with particular emphasis on assuring the permanent presence of humans in space. The applied and basic research to be performed, using humans, animals, and plants, will increase our understanding of the effects of the space environment on basic life processes. Facilities being planned for remote observations from platforms and attached payloads of biologically important elements and compounds in space and on other planets (Exobiology) will permit exploration of the relationship between the evolution of life and the universe. Space-based, global scale observations of terrestrial biology (Biospherics) will provide data critical for understanding and ultimately managing changes in the Earth's ecosystem. The life sciences community is encouraged to participate in the research potential the Space Station facilities will make possible. This document provides the range and scope of typical life sciences experiments which could be performed within a pressurized laboratory module on Space Station.

  20. 3Cat-3/MOTS Nanosatellite Mission for Optical Multispectral and GNSS-R Earth Observation: Concept and Analysis

    PubMed Central

    Castellví, Jordi; Corbera, Jordi; Alamús, Ramon

    2018-01-01

    The 3Cat-3/MOTS (3: Cube, Cat: Catalunya, 3: 3rd CubeSat mission/Missió Observació Terra Satèl·lit) mission is a joint initiative between the Institut Cartogràfic i Geològic de Catalunya (ICGC) and the Universitat Politècnica de Catalunya-BarcelonaTech (UPC) to foster innovative Earth Observation (EO) techniques based on data fusion of Global Navigation Satellite Systems Reflectometry (GNSS-R) and optical payloads. It is based on a 6U CubeSat platform, roughly a 10 cm × 20 cm × 30 cm parallelepiped. Since 2012, there has been a fast growing trend to use small satellites, especially nanosatellites, and in particular those following the CubeSat form factor. Small satellites possess intrinsic advantages over larger platforms in terms of cost, flexibility, and scalability, and may also enable constellations, trains, federations, or fractionated satellites or payloads based on a large number of individual satellites at an affordable cost. This work summarizes the mission analysis of 3Cat-3/MOTS, including its payload results, power budget (PB), thermal budget (TB), and data budget (DB). This mission analysis is addressed to transform EO data into territorial climate variables (soil moisture and land cover change) at the best possible achievable spatio-temporal resolution. PMID:29316649

  1. Intersatellite Link (ISL) application to commercial communications satellites. Volume 2: Technical final report

    NASA Technical Reports Server (NTRS)

    Young, S. Lee

    1987-01-01

    Intersatellite Link (ISL) applications can improve and expand communication satellite services in a number of ways. As the demand for orbital slots within prime regions of the geostationary arc increases, attention is being focused on ISLs as a method to utilize this resource more efficiently and circumvent saturation. Various GEO-to-GEO applications were determined that provide potential benefits over existing communication systems. A set of criteria was developed to assess the potential applications. Intersatellite link models, network system architectures, and payload configurations were developed. For each of the chosen ISL applications, ISL versus non-ISL satellite systems architectures were derived. Both microwave and optical ISL implementation approaches were evaluated for payload sizing and cost analysis. The technological availability for ISL implementations was assessed. Critical subsystems technology areas were identified, and an estamate of the schedule and cost to advance the technology to the requiered state of readiness was made.

  2. Planning assistance for the 30/20 GHz program, volume 2

    NASA Technical Reports Server (NTRS)

    Al-Kinani, G.; Frankfort, M.; Kaushal, D.; Markham, R.; Siperko, C.; Wall, M.

    1981-01-01

    In the baseline concept development the communications payload on Flight 1 was specified to consist of on-board trunking and emergency communications systems (ECS). On Flight 2 the communications payloads consisted of trunking and CPS on-board systems, the CPS capability replacing the Flight 1 ECS. No restriction was placed on the launch vehicle size. Constraints placed on multiple concept development effort were that launch vehicle size for Concept 1 was restricted to SUSS-D and for Concept 2 a SUSS-A. The design concept development was based on satisfying the baseline requirements set forth in the SOW for a single demonstration flight system. Key constraints on contractors were cost and launch vehicle size. Five major areas of new technology development were reviewed: (1) 30 GHz low noise receivers; (2) 20 GHz Power Amplifiers; (3) SS-TDMA switch; (4) Baseband Processor; (5) Multibeam Antennas.

  3. Payload commander Voss on aft flight deck

    NASA Image and Video Library

    2012-09-18

    STS083-305-010 (4-8 April 1997) --- Astronaut Janice E. Voss, mission specialist, works with communications systems on the aft flight deck of the Earth-orbiting Space Shuttle Columbia. Voss, along with five other NASA astronauts and two payload specialist supporting the Microgravity Sciences Laboratory (MSL-1) mission, were less than a fourth of the way through a scheduled 16-day flight when a power problem cut short their planned stay.

  4. Exploiting a GSM Network for Precise Payload Delivery

    DTIC Science & Technology

    2009-05-07

    N is shown in Fig.6. As shown in this figure the Snowflake payload now includes a standard Blackberry 8310 cell phone , which communicates with the...weather station, measuring winds and barometric pressure, serial to Bluetooth interface, and Blackberry 8310 cell phone . The portable Kestrel 4000...interfacing the serial stream with a standard Blackberry 8310 cell phone carrying a AT&T SIM card. 6 American Institute of Aeronautics and

  5. Large communications platforms versus smaller satellites

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Communications systems using large platforms are compared with systems using conventional satellites. Systems models were generated and compared for U.S. domestic application and for 1 INTELSAT's international and domestic transponder lease application. Technology advances were assumed the platforms and the evolution of conventional satellites.

  6. Using Pre-melted Phase Change Material to Keep Payload Warm without Power for Hours in Space

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2012-01-01

    During a payload transition from the transport vehicle to its worksite on the International Space Station (ISS), the payload is unpowered for up to 6 hours. Its radiator(s) will continue to radiate heat to space. It is necessary to make up the heat loss to maintain the payload temperature above the cold survival limit. Typically an interplanetary Probe has no power generation system. It relies on its battery to provide limited power for the Communication and Data Handling (C&DH) subsystem during cruise, and heater power is unavailable. It is necessary to maintain the C&DH temperature above the minimum operating limit. This paper presents a novel thermal design concept that utilizes phase change material (PCM) to store thermal energy by melting it before the payload or interplanetary Probe is unpowered. For the ISS, the PCM is melted by heaters just prior to the payload transition from the transport vehicle to its worksite. For an interplanetary Probe, the PCM is melted by heaters just prior to separation from the orbiter. The PCM releases thermal energy to keep the payload warm for several hours after power is cut off.

  7. On-Orbit Performance Verification and End-to-End Characterization of the TDRS-H Ka-Band Communications Payload

    NASA Technical Reports Server (NTRS)

    Toral, Marco; Wesdock, John; Kassa, Abby; Pogorelc, Patsy; Jenkens, Robert (Technical Monitor)

    2002-01-01

    In June 2000, NASA launched the first of three next generation Tracking and Data Relay Satellites (TDRS-H) equipped with a Ka-band forward and return service capability. This Ka-band service supports forward data rates up to 25 Mb/sec using the 22.55 - 23.55 GHz space-to-space allocation. Return services are supported via channel bandwidths of 225 and 650 MHz for data rates up to 800 Mb/sec (QPSK) using the 25.25 - 27.5 GHz space-to-space allocation. As part of NASA's acceptance of the TDRS-H spacecraft, an extensive on-orbit calibration, verification and characterization effort was performed to ensure that on-orbit spacecraft performance is within specified limits. This process verified the compliance of the Ka-band communications payload with all performance specifications and demonstrated an end-to-end Ka-band service capability. This paper summarizes the results of the TDRS-H Ka-band communications payload on-orbit performance verification and end-to-end service characterization. Performance parameters addressed include Effective Isotropically Radiated Power (EIRP), antenna Gain-to-System Noise Temperature (G/T), antenna gain pattern, frequency tunability and accuracy, channel magnitude response, and Ka-band service Bit-Error-Rate (BER) performance.

  8. On-Orbit Performance Verification and End-To-End Characterization of the TDRS-H Ka-band Communications Payload

    NASA Technical Reports Server (NTRS)

    Toral, Marco; Wesdock, John; Kassa, Abby; Pogorelc, Patsy; Jenkens, Robert (Technical Monitor)

    2002-01-01

    In June 2000, NASA launched the first of three next generation Tracking and Data Relay Satellites (TDRS-H) equipped with a Ka-band forward and return service capability. This Ka-band service supports forward data rates of up to 25 Mb/sec using the 22.55-23.55 GHz space-to-space allocation. Return services are supported via channel bandwidths of 225 and 650 MHz for data rates up to at least 800 Mb/sec using the 25.25 - 27.5 GHz space-to-space allocation. As part of NASA's acceptance of the TDRS-H spacecraft, an extensive on-orbit calibration, verification and characterization effort was performed to ensure that on-orbit spacecraft performance is within specified limits. This process verified the compliance of the Ka-band communications payload with all performance specifications, and demonstrated an end-to-end Ka-band service capability. This paper summarizes the results of the TDRS-H Ka-band communications payload on-orbit performance verification and end-to-end service characterization. Performance parameters addressed include antenna gain pattern, antenna Gain-to-System Noise Temperature (G/T), Effective Isotropically Radiated Power (EIRP), antenna pointing accuracy, frequency tunability, channel magnitude response, and Ka-band service Bit-Error-Rate (BER) performance.

  9. Transceiver for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Fitzmaurice, M.; Bruno, R.

    1990-01-01

    This paper describes the design of the Laser Communication Transceiver (LCT) system which was planned to be flight tested as an attached payload on Space Station Freedom. The objective in building and flight-testing the LCT is to perform a broad class of tests addressing the critical aspects of space-based optical communications systems, providing a base of experience for applying laser communications technology toward future communications needs. The LCT's functional and performance requirements and capabilities with respect to acquisition, spatial tracking and pointing, communications, and attitude determination are discussed.

  10. Transceiver for Space Station Freedom

    NASA Astrophysics Data System (ADS)

    Fitzmaurice, M.; Bruno, R.

    1990-07-01

    This paper describes the design of the Laser Communication Transceiver (LCT) system which was planned to be flight tested as an attached payload on Space Station Freedom. The objective in building and flight-testing the LCT is to perform a broad class of tests addressing the critical aspects of space-based optical communications systems, providing a base of experience for applying laser communications technology toward future communications needs. The LCT's functional and performance requirements and capabilities with respect to acquisition, spatial tracking and pointing, communications, and attitude determination are discussed.

  11. The Stratospheric Aerosol and Gas Experiment (SAGE III) on the International Space Station (ISS) Mission

    NASA Technical Reports Server (NTRS)

    Cisewski, Michael; Zawodny, Joseph; Gasbarre, Joseph; Eckman, Richard; Topiwala, Nandkishore; Rodriquez-Alvarez, Otilia; Cheek, Dianne; Hall, Steve

    2014-01-01

    The Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS) mission will provide the science community with high-vertical resolution and nearly global observations of ozone, aerosols, water vapor, nitrogen dioxide, and other trace gas species in the stratosphere and upper-troposphere. SAGE III/ISS measurements will extend the long-term Stratospheric Aerosol Measurement (SAM) and SAGE data record begun in the 1970s. The multi-decadal SAGE ozone and aerosol data sets have undergone intense scrutiny and are considered the international standard for accuracy and stability. SAGE data have been used to monitor the effectiveness of the Montreal Protocol. Key objectives of the mission are to assess the state of the recovery in the distribution of ozone, to re-establish the aerosol measurements needed by both climate and ozone models, and to gain further insight into key processes contributing to ozone and aerosol variability. The space station mid-inclination orbit allows for a large range in latitude sampling and nearly continuous communications with payloads. The SAGE III instrument is the fifth in a series of instruments developed for monitoring atmospheric constituents with high vertical resolution. The SAGE III instrument is a moderate resolution spectrometer covering wavelengths from 290 nm to 1550 nm. Science data is collected in solar occultation mode, lunar occultation mode, and limb scatter measurement mode. A SpaceX Falcon 9 launch vehicle will provide access to space. Mounted in the unpressurized section of the Dragon trunk, SAGE III will be robotically removed from the Dragon and installed on the space station. SAGE III/ISS will be mounted to the ExPRESS Logistics Carrier-4 (ELC-4) location on the starboard side of the station. To facilitate a nadir view from this location, a Nadir Viewing Platform (NVP) payload was developed which mounts between the carrier and the SAGE III Instrument Payload (IP).

  12. TTEthernet for Integrated Spacecraft Networks

    NASA Technical Reports Server (NTRS)

    Loveless, Andrew

    2015-01-01

    Aerospace projects have traditionally employed federated avionics architectures, in which each computer system is designed to perform one specific function (e.g. navigation). There are obvious downsides to this approach, including excessive weight (from so much computing hardware), and inefficient processor utilization (since modern processors are capable of performing multiple tasks). There has therefore been a push for integrated modular avionics (IMA), in which common computing platforms can be leveraged for different purposes. This consolidation of multiple vehicle functions to shared computing platforms can significantly reduce spacecraft cost, weight, and design complexity. However, the application of IMA principles introduces significant challenges, as the data network must accommodate traffic of mixed criticality and performance levels - potentially all related to the same shared computer hardware. Because individual network technologies are rarely so competent, the development of truly integrated network architectures often proves unreasonable. Several different types of networks are utilized - each suited to support a specific vehicle function. Critical functions are typically driven by precise timing loops, requiring networks with strict guarantees regarding message latency (i.e. determinism) and fault-tolerance. Alternatively, non-critical systems generally employ data networks prioritizing flexibility and high performance over reliable operation. Switched Ethernet has seen widespread success filling this role in terrestrial applications. Its high speed, flexibility, and the availability of inexpensive commercial off-the-shelf (COTS) components make it desirable for inclusion in spacecraft platforms. Basic Ethernet configurations have been incorporated into several preexisting aerospace projects, including both the Space Shuttle and International Space Station (ISS). However, classical switched Ethernet cannot provide the high level of network determinism required by real-time spacecraft applications. Even with modern advancements, the uncoordinated (i.e. event-driven) nature of Ethernet communication unavoidably leads to message contention within network switches. The arbitration process used to resolve such conflicts introduces variation in the time it takes for messages to be forwarded. TTEthernet1 introduces decentralized clock synchronization to switched Ethernet, enabling message transmission according to a time-triggered (TT) paradigm. A network planning tool is used to allocate each device a finite amount of time in which it may transmit a frame. Each time slot is repeated sequentially to form a periodic communication schedule that is then loaded onto each TTEthernet device (e.g. switches and end systems). Each network participant references the synchronized time in order to dispatch messages at predetermined instances. This schedule guarantees that no contention exists between time-triggered Ethernet frames in the network switches, therefore eliminating the need for arbitration (and the timing variation it causes). Besides time-triggered messaging, TTEthernet networks may provide two additional traffic classes to support communication of different criticality levels. In the rate-constrained (RC) traffic class, the frame payload size and rate of transmission along each communication channel are limited to predetermined maximums. The network switches can therefore be configured to accommodate the known worst-case traffic pattern, and buffer overflows can be eliminated. The best-effort (BE) traffic class behaves akin to classical Ethernet. No guarantees are provided regarding transmission latency or successful message delivery. TTEthernet coordinates transmission of all three traffic classes over the same physical connections, therefore accommodating the full spectrum of traffic criticality levels required in IMA architectures. Common computing platforms (e.g. LRUs) can share networking resources in such a way that failures in non-critical systems (using BE or RC communication modes) cannot impact flight-critical functions (using TT communication). Furthermore, TTEthernet hardware (e.g. switches, cabling) can be shared by both TTEthernet and classical Ethernet traffic.

  13. D.R.O.P. The Durable Reconnaissance and Observation Platform

    NASA Technical Reports Server (NTRS)

    McKenzie, Clifford; Parness, Aaron

    2012-01-01

    The Durable Reconnaissance and Observation Platform (DROP) is a prototype robotic platform with the ability to climb concrete surfaces up to 85deg at a rate of 25cm/s, make rapid horizontal to vertical transitions, carry an audio/visual reconnaissance payload, and survive impacts from 3 meters. DROP is manufactured using a combination of selective laser sintering (SLS) and shape deposition manufacturing (SDM) techniques. The platform uses a two-wheel, two-motor design that delivers high mobility with low complexity. DROP extends microspine climbing technology from linear to rotary applications, providing improved transition ability, increased speeds, and simpler body mechanics while maintaining microspines ability to opportunistically grip rough surfaces. Various aspects of prototype design and performance are discussed, including the climbing mechanism, body design, and impact survival.

  14. Considerations Affecting Satellite and Space Probe Research with Emphasis on the "Scout" as a Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Posner, Jack (Editor)

    1961-01-01

    This report reviews a number of the factors which influence space flight experiments. Included are discussions of payload considerations, payload design and packaging, environmental tests, launch facilities, tracking and telemetry requirements, data acquisition, processing and analysis procedures, communication of information, and project management. Particular emphasis is placed on the "Scout" as a launching vehicle. The document includes a description of the geometry of the "Scout" as well as its flight capabilities and limitations. Although oriented toward the "Scout" vehicle and its payload capabilities, the information presented is sufficiently general to be equally applicable to most space vehicle systems.

  15. Space station: Cost and benefits

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Costs for developing, producing, operating, and supporting the initial space station, a 4 to 8 man space station, and a 4 to 24 man space station are estimated and compared. These costs include contractor hardware; space station assembly and logistics flight costs; and payload support elements. Transportation system options examined include orbiter modules; standard and extended duration STS fights; reusable spacebased perigee kick motor OTV; and upper stages. Space station service charges assessed include crew hours; energy requirements; payload support module storage; pressurized port usage; and OTV service facility. Graphs show costs for science missions, space processing research, small communication satellites; large GEO transportation; OVT launch costs; DOD payload costs, and user costs.

  16. Mars Laser Communication Demonstration, Artist's Concept

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This illustration depicts a concept for operation of an optical communications system on NASA's Mars Telecommunications Orbiter. The orbiter is in development for launch in September 2009 with a payload including the spacecraft terminal of the Mars Laser Communication Demonstration Project. This project will also include an Earth-based terminal for two-way, high-data-rate communication using infrared light. The orbiter's primary communications with Earth will use radio frequencies. The laser demonstration is intended to build experience for use in decisions about possible use of optical communications by later missions.

  17. The STS-95 crew poses with a Mercury capsule model before returning to JSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Before returning to the Johnson Space Center in Houston, Texas, members of the STS-95 crew pose with a model of a Mercury capsule following a media briefing at the Kennedy Space Center Press Site Auditorium . From left to right are Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA); Pilot Steven W. Lindsey; Mission Commander Curtis L. Brown Jr.; Friendship 7; Payload Specialist John H. Glenn Jr., a senator from Ohio and one of the original seven Project Mercury astronauts; Mission Specialist Scott E. Parazynski; and Mission Specialist Pedro Duque, with the European Space Agency (ESA). Also on the crew is Mission Specialist and Payload Commander Stephen K. Robinson (not shown). The STS-95 mission ended with landing at Kennedy Space Center's Shuttle Landing Facility at 12:04 p.m. EST on Nov. 7. The mission included research payloads such as the Spartan-201 solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as a SPACEHAB single module with experiments on space flight and the aging process.

  18. Modular cell-internalizing aptamer nanostructure enables targeted delivery of large functional RNAs in cancer cell lines.

    PubMed

    Porciani, David; Cardwell, Leah N; Tawiah, Kwaku D; Alam, Khalid K; Lange, Margaret J; Daniels, Mark A; Burke, Donald H

    2018-06-11

    Large RNAs and ribonucleoprotein complexes have powerful therapeutic potential, but effective cell-targeted delivery tools are limited. Aptamers that internalize into target cells can deliver siRNAs (<15 kDa, 19-21 nt/strand). We demonstrate a modular nanostructure for cellular delivery of large, functional RNA payloads (50-80 kDa, 175-250 nt) by aptamers that recognize multiple human B cell cancer lines and transferrin receptor-expressing cells. Fluorogenic RNA reporter payloads enable accelerated testing of platform designs and rapid evaluation of assembly and internalization. Modularity is demonstrated by swapping in different targeting and payload aptamers. Both modules internalize into leukemic B cell lines and remained colocalized within endosomes. Fluorescence from internalized RNA persists for ≥2 h, suggesting a sizable window for aptamer payloads to exert influence upon targeted cells. This demonstration of aptamer-mediated, cell-internalizing delivery of large RNAs with retention of functional structure raises the possibility of manipulating endosomes and cells by delivering large aptamers and regulatory RNAs.

  19. Simulating Vibrations in a Complex Loaded Structure

    NASA Technical Reports Server (NTRS)

    Cao, Tim T.

    2005-01-01

    The Dynamic Response Computation (DIRECT) computer program simulates vibrations induced in a complex structure by applied dynamic loads. Developed to enable rapid analysis of launch- and landing- induced vibrations and stresses in a space shuttle, DIRECT also can be used to analyze dynamic responses of other structures - for example, the response of a building to an earthquake, or the response of an oil-drilling platform and attached tanks to large ocean waves. For a space-shuttle simulation, the required input to DIRECT includes mathematical models of the space shuttle and its payloads, and a set of forcing functions that simulates launch and landing loads. DIRECT can accommodate multiple levels of payload attachment and substructure as well as nonlinear dynamic responses of structural interfaces. DIRECT combines the shuttle and payload models into a single structural model, to which the forcing functions are then applied. The resulting equations of motion are reduced to an optimum set and decoupled into a unique format for simulating dynamics. During the simulation, maximum vibrations, loads, and stresses are monitored and recorded for subsequent analysis to identify structural deficiencies in the shuttle and/or payloads.

  20. KSC-98pc1568

    NASA Image and Video Library

    1998-11-08

    The day after their return to Earth on board the orbiter Discovery, members of the STS-95 crew participate in a media briefing at the Kennedy Space Center Press Site Auditorium before returning to the Johnson Space Center in Houston, Texas. From left to right are Lisa Malone, moderator and chief of NASA Public Affairs' Media Services at Kennedy Space Center; Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist and Payload Commander Stephen K. Robinson; Mission Specialist Scott E. Parazynski; Mission Specialist Pedro Duque, with the European Space Agency (ESA); Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA); and Payload Specialist John H. Glenn Jr., a senator from Ohio and one of the original seven Project Mercury astronauts. The STS-95 mission ended with landing at Kennedy Space Center's Shuttle Landing Facility at 12:04 p.m. EST on Nov. 7. The mission included research payloads such as the Spartan-201 solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as a SPACEHAB single module with experiments on space flight and the aging process

  1. KSC-98pc1574

    NASA Image and Video Library

    1998-11-08

    STS-95 Payload Specialist John H. Glenn Jr. (right), a senator from Ohio and one of the original seven Project Mercury astronauts, gestures during a media briefing at the Kennedy Space Center Press Site Auditorium. Glenn and the other members of the STS-95 crew held the briefing before returning to the Johnson Space Center in Houston, Texas. Others shown are (left to right) Mission Specialist Scott E. Parazynski; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The other crew members participating in the briefing were Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, and Mission Specialist and Payload Commander Stephen K. Robinson. The STS-95 mission ended with landing at Kennedy Space Center's Shuttle Landing Facility at 12:04 p.m. EST on Nov. 7. The mission included research payloads such as the Spartan-201 solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as a SPACEHAB single module with experiments on space flight and the aging process

  2. KSC-98pc1576

    NASA Image and Video Library

    1998-11-08

    Before returning to the Johnson Space Center in Houston, Texas, members of the STS-95 crew pose with a model of a Mercury capsule following a media briefing at the Kennedy Space Center Press Site Auditorium . From left to right are Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA); Pilot Steven W. Lindsey; Mission Commander Curtis L. Brown Jr.; Friendship 7; Payload Specialist John H. Glenn Jr., a senator from Ohio and one of the original seven Project Mercury astronauts; Mission Specialist Scott E. Parazynski; and Mission Specialist Pedro Duque, with the European Space Agency (ESA). Also on the crew is Mission Specialist and Payload Commander Stephen K. Robinson (not shown). The STS-95 mission ended with landing at Kennedy Space Center's Shuttle Landing Facility at 12:04 p.m. EST on Nov. 7. The mission included research payloads such as the Spartan-201 solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as a SPACEHAB single module with experiments on space flight and the aging process

  3. The STS-95 crew participates in a media briefing before returning to JSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Media representatives from all over the world fill the Kennedy Space Center Press Site Auditorium for a press conference held by the STS-95 crew before their return to the Johnson Space Center in Houston, Texas. The STS-95 crew members are Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist and Payload Commander Stephen K. Robinson; Mission Specialist Scott E. Parazynski; Mission Specialist Pedro Duque, with the European Space Agency (ESA); Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA); and Payload Specialist John H. Glenn Jr., a senator from Ohio and one of the original seven Project Mercury astronauts. The STS-95 mission ended with landing at Kennedy Space Center's Shuttle Landing Facility at 12:04 p.m. EST on Nov. 7. The mission included research payloads such as the Spartan-201 solar- observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as a SPACEHAB single module with experiments on space flight and the aging process.

  4. KSC-98pc1567

    NASA Image and Video Library

    1998-11-08

    Members of the STS-95 crew file past photographers and reporters from all over the world as they enter the Kennedy Space Center Press Site Auditorium to participate in a media briefing before returning to the Johnson Space Center in Houston, Texas. From left to right, they are Mission Specialist Pedro Duque, with the European Space Agency (ESA); Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA); and Payload Specialist John H. Glenn Jr., a senator from Ohio and one of the original seven Project Mercury astronauts. The other STS-95 crew members participating in the briefing are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Mission Specialist and Payload Commander Stephen K. Robinson, and Mission Specialist Scott E. Parazynski. The STS-95 mission ended with landing at Kennedy Space Center's Shuttle Landing Facility at 12:04 p.m. EST on Nov. 7. The mission included research payloads such as the Spartan-201 solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as a SPACEHAB single module with experiments on space flight and the aging process

  5. The Cloud-Aerosol Transport System (CATS): A New Earth Science Capability for ISS (Invited)

    NASA Astrophysics Data System (ADS)

    McGill, M. J.; Yorks, J. E.; Scott, S.; Kupchock, A.; Selmer, P.

    2013-12-01

    The Cloud-Aerosol Transport System (CATS) is a lidar remote sensing instrument developed for deployment to the International Space Station (ISS). The CATS lidar will provide range-resolved profile measurements of atmospheric aerosol and cloud distributions and properties. The CATS instrument uses a high repetition rate laser operating at three wavelengths (1064, 532, and 355 nm) to derive properties of cloud/aerosol layers including: layer height, layer thickness, backscatter, optical depth, extinction, and depolarization-based discrimination of particle type. The CATS mission was designed to capitalize on the Space Station's unique orbit and facilities to continue existing Earth Science data records, to provide observational data for use in forecast models, and to demonstrate new technologies for use in future missions. The CATS payload will be installed on the Japanese Experiment Module - Exposed Facility (JEM-EF). The payload is designed to operate on-orbit for at least six months, and up to three years. The payload is completed and currently scheduled for a mid-2014 launch. The ISS and, in particular, the JEM-EF, is an exciting new platform for spaceborne Earth observations. The ability to leverage existing aircraft instrument designs coupled with the lower cost possible for ISS external attached payloads permits rapid and cost effective development of spaceborne sensors. The CATS payload is based on existing instrumentation built and operated on the high-altitude NASA ER-2 aircraft. The payload is housed in a 1.5 m x 1 m x 0.8 m volume that attaches to the JEM-EF. The allowed volume limits the maximum size for the collecting telescope to 60 cm diameter. Figure 1 shows a schematic layout of the CATS payload, with the primary instrument components identified. Figure 2 is a photo of the completed payload. CATS payload cut-away view. Completed CATS payload assembly.

  6. Microprocessor-Based Systems Control for the Rigidized Inflatable Get-Away-Special Experiment

    DTIC Science & Technology

    2004-03-01

    communications and faster data throughput increase, satellites are becoming larger. Larger satellite antennas help to provide the needed gain to...increase communications in space. Compounding the performance and size trade-offs are the payload weight and size limit imposed by the launch vehicles...increased communications capacity, and reduce launch costs. This thesis develops and implements the computer control system and power system to

  7. Simulation of the dusty plasma environment of 65803 Didymos for the Asteroid Impact Mission (AIM)

    NASA Astrophysics Data System (ADS)

    Cipriani, Fabrice; Rodgers, David; Hilgers, Alain; Hess, Sebastien; Carnelli, Ian

    2016-10-01

    The Asteroid Impact and Deflection Assessment mission (AIDA) is a joint European-US technology demonstrator mission including the DART asteroid impactor (NASA/JHU/APL) and the AIM asteroid rendezvous platform (ESA/DLR/OCA) set to reach Near Earth binary Object 65803 Didymos in October 2022. Besides technology demonstration in the deep space communications domain and the realization of a kinetic impact on the moonlet to study deflection parameters, this asteroid rendezvous mission is an opportunity to carry out in-situ observations of the close environment of a binary system, addressing some fundamental science questions. The MASCOT-2 lander will be released from the AIM platform and operate at the surface of the moonlet of 65803 Didymos, complemented by the ability of the Cubesat Opportunity Payloads (COPINS) to sample the close environment of the binary.In this context, we have developed an model describing the plasma and charged dust components of the near surface environment of the moonlet (170m in diameter), targeted by the MASCOT-2 lander and of the DART impactor. We performed numerical simulations in order to estimate the electrostatic surface potentials at various locations of the surface, resulting from its interaction with the solar wind plasma and solar photons. In addition, we describe charging levels, density profiles, and velocity distribution of regolith grains lifted out from the surface up to about 70m above the surface.

  8. Stephen K. Robinson arrives at KSC for the STS-95 launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-95 Mission Specialist Stephen K. Robinson, arrives at Kennedy Space Center's Shuttle Landing Facility aboard a T-38 jet as part of final preparations for launch. The STS-95 mission, targeted for liftoff at 2 p.m. on Oct. 29, includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. The mission is expected to last 8 days, 21 hours and 49 minutes, and return to KSC on Nov. 7. The other STS-95 crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Mission Specialist Scott E. Parazynski, Payload Specialist John H. Glenn Jr., senator from Ohio, Mission Specialist Pedro Duque, with the European Space Agency (ESA), and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA).

  9. KSC-98pc1553

    NASA Image and Video Library

    1998-11-07

    Orbiter Discovery prepares to land on runway 33 at the Shuttle Landing Facility. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. Discovery returns to Earth with its crew of seven after successfully completing mission STS-95, lasting nearly nine days and 3.6 million miles. The crew members are Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., a senator from Ohio; Mission Specialist Pedro Duque of Spain, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, M.D., with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process

  10. KSC-98pc1560

    NASA Image and Video Library

    1998-11-07

    STS-95 Payload Specialist Chiaki Mukai, M.D. (center), with the National Space Development Agency of Japan (NASDA), poses for a photograph with NASDA President Isao Uchida (left). Behind her at the right is a representative of the European Space Agency (ESA). Mukai was one of a crew of seven aboard orbiter Discovery, which landed at KSC at 12:04 p.m. EST, after a successful mission spanning nine days and 3.6 million miles. The other crew members are Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialists Stephen K. Robinson; Scott E. Parazynski and Pedro Duque of Spain, with the European Space Agency; and Payload Specialist John H. Glenn Jr., a senator from Ohio. The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process

  11. KSC-98pc1562

    NASA Image and Video Library

    1998-11-07

    KENNEDY SPACE CENTER, FLA. -- Seen from across the creek bordering runway 33 at the Shuttle Landing Facility, orbiter Discovery touches down after a successful mission of nine days and 3.6 million miles. Flying above it (left) is the Shuttle Training Aircraft. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. The STS-95 crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process

  12. KSC-98pc1559

    NASA Image and Video Library

    1998-11-07

    Charles Precourt, chief of the Astronaut office in Houston, and Daniel Goldin, NASA administrator, welcome back to Earth Senator John H. Glenn Jr., from a successful mission STS-95 aboard orbiter Discovery. Glenn served as payload specialist, one of a crew of seven that included Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialists Stephen K. Robinson, Scott E. Parazynski and Pedro Duque of Spain, with the European Space Agency; and Payload Specialist Chiaki Mukai, M.D., with the National Space Development Agency of Japan (NASDA). They landed at the Shuttle Landing Facility at 12:04 p.m. EST, after 9 days in space, traveling 3.6 million miles. The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process

  13. KSC-98pc1551

    NASA Image and Video Library

    1998-11-07

    Orbiter Discovery prepares to land on runway 33 at the Shuttle Landing Facility. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. Discovery returns to Earth with its crew of seven after successfully completing mission STS-95, lasting nearly nine days and 3.6 million miles. The crew members are Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., a senator from Ohio; Mission Specialist Pedro Duque of Spain, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, M.D., with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process

  14. KSC-98pc1549

    NASA Image and Video Library

    1998-11-07

    Orbiter Discovery startles a great white egret (below) next to runway 33 as it touches down at the Shuttle Landing Facility. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. Discovery returns to Earth with its crew of seven after successfully completing mission STS-95, lasting nearly nine days and 3.6 million miles. The crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., a senator from Ohio; Mission Specialist Pedro Duque of Spain, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, M.D., with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process

  15. KSC-98pc1565

    NASA Image and Video Library

    1998-11-07

    The Shuttle Training Aircraft (top) seems to chase orbiter Discovery as it touches down at the Shuttle Landing Facility after a successful mission of nearly nine days and 3.6 million miles. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. In the background, right, is the Vehicle Assembly Building. The STS-95 crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process

  16. KSC-98pc1552

    NASA Image and Video Library

    1998-11-07

    Orbiter Discovery touches down in a cloud of smoke on runway 33 at the Shuttle Landing Facility. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. Discovery returns to Earth with its crew of seven after successfully completing mission STS-95, lasting nearly nine days and 3.6 million miles. The crew members are Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., a senator from Ohio; Mission Specialist Pedro Duque of Spain, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, M.D., with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process

  17. KSC-98pc1550

    NASA Image and Video Library

    1998-11-07

    Orbiter Discovery smokes its tires as it touches down on runway 33 at the Shuttle Landing Facility. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. Discovery returns to Earth with its crew of seven after successfully completing mission STS-95, lasting nearly nine days and 3.6 million miles. The crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., senator from Ohio; Mission Specialist Pedro Duque of Spain, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai,M.D., with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process

  18. KSC-98pc1554

    NASA Image and Video Library

    1998-11-07

    Orbiter Discovery lowers its nose wheel after touching down on runway 33 at the Shuttle Landing Facility. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. Discovery returns to Earth with its crew of seven after successfully completing mission STS-95, lasting nearly nine days and 3.6 million miles. The STS-95 crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., a senator from Ohio; Mission Specialist Pedro Duque of Spain, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, M.D., with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process

  19. KSC-98pc1563

    NASA Image and Video Library

    1998-11-07

    Viewed across the creek bordering runway 33, orbiter Discovery touches down at the Shuttle Landing Facility after a successful mission of nearly nine days and 3.6 million miles. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. In the background, right, is the Vehicle Assembly Building. The STS-95 crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process

  20. KSC-98pc1564

    NASA Image and Video Library

    1998-11-07

    Viewed across the creek bordering runway 33, orbiter Discovery prepares to touch down at the Shuttle Landing Facility after a successful mission of nearly nine days and 3.6 million miles. Flying above it is the Shuttle Training Aircraft. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. In the background, right, is the Vehicle Assembly Building. The STS-95 crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process

Top