ERIC Educational Resources Information Center
Yuan, Shupei; Oshita, Tsuyoshi; AbiGhannam, Niveen; Dudo, Anthony; Besley, John C.; Koh, Hyeseung E.
2017-01-01
The current study explores the degree to which two-way communication is applied in science communication contexts in North America, based on the experiences of science communication trainers. Interviews with 24 science communication trainers suggest that scientists rarely focus on applying two-way communication tactics, such as listening to their…
Science communication in Brazil: A historical review and considerations about the current situation.
Massarani, Luisa; Moreira, Ildeu DE Castro
2016-09-01
In this paper, we present a historical overview of the science communication activities in Brazil since the nineteenth century and we analyze the current situation and its main concerns. The principal scopes and tools for science communication discussed here are the following: science centers and museums, mass media and large public events for communicating science and technology (S&T). In recent years, such activities have had a significant breakthrough in Brazil. Yet, there is still a long way to go in order to deliver a quality and extensive science and technology communication to the Brazilians as well as to achieve a suitable level of social appropriation of knowledge on S&T by the Brazilian society. Some of the main challenges that we are facing are discussed herein.
Teaching Scientists to Communicate: Evidence-based assessment for undergraduate science education
NASA Astrophysics Data System (ADS)
Mercer-Mapstone, Lucy; Kuchel, Louise
2015-07-01
Communication skills are one of five nationally recognised learning outcomes for an Australian Bachelor of Science (BSc) degree. Previous evidence indicates that communication skills taught in Australian undergraduate science degrees are not developed sufficiently to meet the requirements of the modern-day workplace-a problem faced in the UK and USA also. Curriculum development in this area, however, hinges on first evaluating how communication skills are taught currently as a base from which to make effective changes. This study aimed to quantify the current standard of communication education within BSc degrees at Australian research-intensive universities. A detailed evidential baseline for not only what but also how communication skills are being taught was established. We quantified which communication skills were taught and assessed explicitly, implicitly, or were absent in a range of undergraduate science assessment tasks (n = 35) from four research-intensive Australian universities. Results indicate that 10 of the 12 core science communication skills used for evaluation were absent from more than 50% of assessment tasks and 77.14% of all assessment tasks taught less than 5 core communication skills explicitly. The design of assessment tasks significantly affected whether communication skills were taught explicitly. Prominent trends were that communication skills in tasks aimed at non-scientific audiences were taught more explicitly than in tasks aimed at scientific audiences, and the majority of group and multimedia tasks taught communication elements more explicitly than individual, or written and oral tasks. Implications for science communication in the BSc and further research are discussed.
Ocean Science Video Challenge Aims to Improve Science Communication
NASA Astrophysics Data System (ADS)
Showstack, Randy
2013-10-01
Given today's enormous management and protection challenges related to the world's oceans, a new competition calls on ocean scientists to effectively communicate their research in videos that last up to 3 minutes. The Ocean 180 Video Challenge, named for the number of seconds in 3 minutes, aims to improve ocean science communication while providing high school and middle school teachers and students with new and interesting educational materials about current science topics.
Communicating science in social settings.
Scheufele, Dietram A
2013-08-20
This essay examines the societal dynamics surrounding modern science. It first discusses a number of challenges facing any effort to communicate science in social environments: lay publics with varying levels of preparedness for fully understanding new scientific breakthroughs; the deterioration of traditional media infrastructures; and an increasingly complex set of emerging technologies that are surrounded by a host of ethical, legal, and social considerations. Based on this overview, I discuss four areas in which empirical social science helps clarify intuitive but sometimes faulty assumptions about the social-level mechanisms of science communication and outline an agenda for bench and social scientists--driven by current social-scientific research in the field of science communication--to guide more effective communication efforts at the societal level in the future.
NASA Astrophysics Data System (ADS)
Buxner, S.; Bitter, C.
2008-12-01
Although the Mars Exploration Rovers, Mars Reconnaissance Orbiter, and Mars Odyssey Missions set the standard for science communication and public education about Mars, the Phoenix Mission was presented with robust new communication challenges and opportunities. The new frontier includes Web 2.0, international forums, internal and external blogs, social networking sites, as well as the traditional media and education outlets for communicating science and information. We will explore the highlights and difficulties of managing the 'message from Mars' in our current multimedia saturated world while balancing authentic science discoveries, public expectations, and communication demands. Our goal is to create a more science savvy public and a more communication oriented science community for the future. The key issues are helping the public and our scientists distinguish between information and knowledge and managing the content that connects the two.
Communicating science in social settings
Scheufele, Dietram A.
2013-01-01
This essay examines the societal dynamics surrounding modern science. It first discusses a number of challenges facing any effort to communicate science in social environments: lay publics with varying levels of preparedness for fully understanding new scientific breakthroughs; the deterioration of traditional media infrastructures; and an increasingly complex set of emerging technologies that are surrounded by a host of ethical, legal, and social considerations. Based on this overview, I discuss four areas in which empirical social science helps clarify intuitive but sometimes faulty assumptions about the social-level mechanisms of science communication and outline an agenda for bench and social scientists—driven by current social-scientific research in the field of science communication—to guide more effective communication efforts at the societal level in the future. PMID:23940341
Changing the Culture of Science Communication Training for Junior Scientists
Bankston, Adriana; McDowell, Gary S.
2018-01-01
Being successful in an academic environment places many demands on junior scientists. Science communication currently may not be adequately valued and rewarded, and yet communication to multiple audiences is critical for ensuring that it remains a priority in today’s society. Due to the potential for science communication to produce better scientists, facilitate scientific progress, and influence decision-making at multiple levels, training junior scientists in both effective and ethical science communication practices is imperative, and can benefit scientists regardless of their chosen career path. However, many challenges exist in addressing specific aspects of this training. Principally, science communication training and resources should be made readily available to junior scientists at institutions, and there is a need to scale up existing science communication training programs and standardize core aspects of these programs across universities, while also allowing for experimentation with training. We propose a comprehensive core training program be adopted by universities, utilizing a centralized online resource with science communication information from multiple stakeholders. In addition, the culture of science must shift toward greater acceptance of science communication as an essential part of training. For this purpose, the science communication field itself needs to be developed, researched and better understood at multiple levels. Ultimately, this may result in a larger cultural change toward acceptance of professional development activities as valuable for training scientists. PMID:29904538
Changing the Culture of Science Communication Training for Junior Scientists.
Bankston, Adriana; McDowell, Gary S
2018-01-01
Being successful in an academic environment places many demands on junior scientists. Science communication currently may not be adequately valued and rewarded, and yet communication to multiple audiences is critical for ensuring that it remains a priority in today's society. Due to the potential for science communication to produce better scientists, facilitate scientific progress, and influence decision-making at multiple levels, training junior scientists in both effective and ethical science communication practices is imperative, and can benefit scientists regardless of their chosen career path. However, many challenges exist in addressing specific aspects of this training. Principally, science communication training and resources should be made readily available to junior scientists at institutions, and there is a need to scale up existing science communication training programs and standardize core aspects of these programs across universities, while also allowing for experimentation with training. We propose a comprehensive core training program be adopted by universities, utilizing a centralized online resource with science communication information from multiple stakeholders. In addition, the culture of science must shift toward greater acceptance of science communication as an essential part of training. For this purpose, the science communication field itself needs to be developed, researched and better understood at multiple levels. Ultimately, this may result in a larger cultural change toward acceptance of professional development activities as valuable for training scientists.
Geoscience on television: a review of science communication literature in the context of geosciences
NASA Astrophysics Data System (ADS)
Hut, Rolf; Land-Zandstra, Anne; Smeets, Ionica; Stoof, Cathelijne
2016-04-01
Geoscience communication is becoming increasingly important as climate change increases the occurrence of natural hazards around the world. Few geoscientists are trained in effective science communication, and awareness of the formal science communication literature is also low. This can be challenging when interacting with journalists on a powerful medium like TV. To provide geoscience communicators with background knowledge on effective science communication on television, we reviewed relevant theory in the context of geosciences and discuss six major themes: scientist motivation, target audience, narratives and storytelling, jargon and information transfer, relationship between scientists and journalists, and stereotypes of scientists on TV. We illustrate each theme with a case study of geosciences on TV and discuss relevant science communication literature. We then highlight how this literature applies to the geosciences and identify knowledge gaps related to science communication in the geosciences. As TV offers a unique opportunity to reach many viewers, we hope this review can not only positively contribute to effective geoscience communication but also to the wider geoscience debate in society. This work is currently under review for publication in Hydrology and Earth System Sciences (HESS)
Science Film: An Aperture into Science Advocacy
NASA Astrophysics Data System (ADS)
2015-04-01
The current funding environment for scientific research necessitates a change in how we foster support for the endeavor. Federal spending is not likely to grow unless constituents--APS members--help communicate the value of science to members of Congress and the public in a compelling and individual way. The event explores how popular film with science-based plots can help physicists communicate the value of science to members of Congress and an increasingly diverse electorate.
Enabling Communication and Navigation Technologies for Future Near Earth Science Missions
NASA Technical Reports Server (NTRS)
Israel, David J.; Heckler, Gregory; Menrad, Robert; Hudiburg, John; Boroson, Don; Robinson, Bryan; Cornwell, Donald
2016-01-01
In 2015, the Earth Regimes Network Evolution Study (ERNESt) proposed an architectural concept and technologies that evolve to enable space science and exploration missions out to the 2040 timeframe. The architectural concept evolves the current instantiations of the Near Earth Network and Space Network with new technologies to provide a global communication and navigation network that provides communication and navigation services to a wide range of space users in the near Earth domain. The technologies included High Rate Optical Communications, Optical Multiple Access (OMA), Delay Tolerant Networking (DTN), User Initiated Services (UIS), and advanced Position, Navigation, and Timing technology. This paper describes the key technologies and their current technology readiness levels. Examples of science missions that could be enabled by the technologies and the projected operational benefits of the architecture concept to missions are also described.
Video and Visualization to Communicate Current Geoscience at Museums and Science Centers
NASA Astrophysics Data System (ADS)
Allen, L.; Trakinski, V.; Gardiner, N.; Foutz, S.; Pisut, D.
2012-12-01
Science Bulletins, a current-science video exhibition program produced by the American Museum of Natural History, was developed to communicate scientific concepts and results to a wide public and educator audience. Funded by a NOAA Environmental Literacy Grant and developed in collaboration with scientists, a series of Science Bulletins pieces mixes data visualization, video, and non-narrated text to highlight recent issues and findings relevant to short and long-term change in the Earth system. Some of the pieces have been evaluated with audiences to assess learning outcomes and improve practices. Videos, evaluation results, and multiplatform dissemination strategies from this series will be shared and discussed.
Mears, Kim; Bandy, Sandra L
2017-04-01
The role of health sciences librarians has expanded in the scholarly communications landscape as a result of the increase in federal public access mandates and the continued expansion of publishing avenues. This has created the need to investigate whether academic health sciences libraries should have scholarly communications positions to provide education and services exclusively related to scholarly communication topics. A nine-question online survey was distributed through the Association of Academic Health Sciences Libraries (AAHSL) email discussion list to gather preliminary findings from and opinions of directors of health sciences libraries on the need for scholarly communications positions. The survey received a 38% response rate. The authors found that AAHSL members are currently providing scholarly communications services, and 46% of respondents expressed the need to devote a full-time position to this role. Our survey reveals a juxtaposition occurring in AAHSL member libraries. While administrators acknowledge the need to provide scholarly communications services, they often experience budget challenges in providing a full-time position for these services.
Developing tools and strategies for communicating climate change
NASA Astrophysics Data System (ADS)
Bader, D.; Yam, E. M.; Perkins, L.
2011-12-01
Research indicates that the public views zoos and aquariums as reliable and trusted sources for information on conservation. Additionally, visiting zoos and aquariums helps people reconsider their connections to conservation issues and solutions. The Aquarium of the Pacific, an AZA-accredited institution that serves the most ethnically diverse population of all aquariums in the nation, is using exhibit space, technology, public programming, and staff professional development to present a model for how aquariums can promote climate literacy. Our newest galleries and programs are designed to immerse our visitors in experiences that connect our live animal collection to larger themes on ocean change. The Aquarium is supporting our new programming with a multifaceted staff professional development that exposes our interpretive staff to current climate science and researchers as well as current social science on public perception of climate science. Our staff also leads workshops for scientists; these sessions allow us to examine learning theory and develop tools to communicate science and controversial subjects effectively. Through our partnerships in the science, social science, and informal science education communities, we are working to innovate and develop best practices in climate communication.
Röthlisberger, Michael
2012-01-01
The foundation Science et Cité was founded 1998 with the aim to inform the wider Swiss public about current scientific topics and to generate a dialogue between science and society. Initiated as an independent foundation by the former State Secretary for Science and Research, Dr. Charles Kleiber, Science et Cité is now attached to the Swiss Academies of Arts and Sciences as a competence center for dialogue with the public. Due to its branches in all language regions of the country, the foundation is ideally suited to initiate and implement communication projects on a nationwide scale. These projects are subdivided into three categories: i) science communication for children/adolescents, ii) establishing a dialogue between science and the wider public, and iii) conducting the role of a national center of competence and networking in science communication. Swiss Life Sciences is a project that fits into all of these categories: a year-round program for schools is complemented with an annual event for the wider public. With the involvement of most of the major Swiss universities, the Swiss National Science Foundation, the foundation Gen Suisse and many other partners, Swiss Life Sciences also sets an example of national networking within the science communication community.
Dispatches from the Dirt Lab: The Art of Science Communication
NASA Astrophysics Data System (ADS)
Kutcha, Matt
2014-05-01
The variety of media currently available provides more opportunities to science communicators than ever before. However, this variety can also work against the goals of science communication by diluting an individual message with thousands of others, limiting the communicator's ability to focus on an effective method, and fragmenting an already distracted audience. In addition, the technology used for content delivery may not be accessible to everyone. "Dispatches from the Dirt Lab" is a series of short (ca. 6 minutes) Internet videos centered on earth and soil science concepts. The initial goal was to condense several topics worth of classroom demonstrations into one video segment to serve as an example for educators to use in their own classrooms. As a method of science communication in their own right, they integrate best practices from classrooms and laboratories, science visualization, and even improvisational theater. This presentation will include a short example of the style and content found in the videos, and also discuss the rationale behind them.
The lure of rationality: Why does the deficit model persist in science communication?
Simis, Molly J; Madden, Haley; Cacciatore, Michael A; Yeo, Sara K
2016-05-01
Science communication has been historically predicated on the knowledge deficit model. Yet, empirical research has shown that public communication of science is more complex than what the knowledge deficit model suggests. In this essay, we pose four lines of reasoning and present empirical data for why we believe the deficit model still persists in public communication of science. First, we posit that scientists' training results in the belief that public audiences can and do process information in a rational manner. Second, the persistence of this model may be a product of current institutional structures. Many graduate education programs in science, technology, engineering, and math (STEM) fields generally lack formal training in public communication. We offer empirical evidence that demonstrates that scientists who have less positive attitudes toward the social sciences are more likely to adhere to the knowledge deficit model of science communication. Third, we present empirical evidence of how scientists conceptualize "the public" and link this to attitudes toward the deficit model. We find that perceiving a knowledge deficit in the public is closely tied to scientists' perceptions of the individuals who comprise the public. Finally, we argue that the knowledge deficit model is perpetuated because it can easily influence public policy for science issues. We propose some ways to uproot the deficit model and move toward more effective science communication efforts, which include training scientists in communication methods grounded in social science research and using approaches that engage community members around scientific issues. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Heine, F.; Zech, H.; Motzigemba, M.
2017-12-01
Space based laser communication is supporting earth observation and science missions with Gbps data download capabilities. Currently the Sentinel 1 and Sentinel 2 spacecrafts from the Copernicus earth observation program of the European Commission are using the Gbps laser communication links developed by Tesat Spacecom to download low latency data products via a commercial geostationary laser relay station- the European Data Relay Service- (EDRS) as a standard data path, in parallel to the conventional radio frequency links. The paper reports on the status of high bandwidth space laser communication as an enabler for small and large space science missions ranging from cube sat applications in low earth orbit to deep space missions. Space based laser communication has left the experimental phase and will support space science missions with unprecedented data rates.
Mears, Kim; Bandy, Sandra L.
2017-01-01
Background The role of health sciences librarians has expanded in the scholarly communications landscape as a result of the increase in federal public access mandates and the continued expansion of publishing avenues. This has created the need to investigate whether academic health sciences libraries should have scholarly communications positions to provide education and services exclusively related to scholarly communication topics. Methods A nine-question online survey was distributed through the Association of Academic Health Sciences Libraries (AAHSL) email discussion list to gather preliminary findings from and opinions of directors of health sciences libraries on the need for scholarly communications positions. Results The survey received a 38% response rate. The authors found that AAHSL members are currently providing scholarly communications services, and 46% of respondents expressed the need to devote a full-time position to this role. Discussion Our survey reveals a juxtaposition occurring in AAHSL member libraries. While administrators acknowledge the need to provide scholarly communications services, they often experience budget challenges in providing a full-time position for these services. PMID:28377677
Microblogging as an extension of science reporting.
Büchi, Moritz
2017-11-01
Mass media have long provided general publics with science news. New media such as Twitter have entered this system and provide an additional platform for the dissemination of science information. Based on automated collection and analysis of >900 news articles and 70,000 tweets, this study explores the online communication of current science news. Topic modeling (latent Dirichlet allocation) was used to extract five broad themes of science reporting: space missions, the US government shutdown, cancer research, Nobel Prizes, and climate change. Using content and network analysis, Twitter was found to extend public science communication by providing additional voices and contextualizations of science issues. It serves a recommender role by linking to web resources, connecting users, and directing users' attention. This article suggests that microblogging adds a new and relevant layer to the public communication of science.
Towards Building Science Teachers' Understandings of Contemporary Science Practices
ERIC Educational Resources Information Center
Lancaster, Greg; Corrigan, Deborah; Fazio, Lisa; Burke, Joanne; Overton, David
2017-01-01
Faculties of Education and Science at Monash University have designed a Masters unit to assist pre-service and in-service science teachers in exploring the practices of contemporary science and examine how varied understandings can influence science communication. Teachers are encouraged to explore their current understandings of the Nature of…
Communicating science better through personal divestment from ideological strongholds
NASA Astrophysics Data System (ADS)
Myhre, S. E.
2017-12-01
There is an urgent need for the geoscience community to participate as trusted brokers of information in the partisan landscape of science communication. In the current moment of political engagement, academic-industry partnerships, and social justice organizing, the most immediate, inexpensive, and effective change to facilitate public trust-building is through changing the paradigm of professional science communication. Scientists must own the public trust of their intellectual station - and to do so effectively requires a concerted effort to professionally divest from personal ideological positions. Transparency and ideological divestment are hallmarks of public leadership, and yet these values often do not percolate into the existing cannon of communication best practices. However, it is likely that even seasoned communicators rely on a handful of values-based reframing messages to scaffold their science communication in public. Without clear examination of such values, these reframing messages often can function as communicative "tells" or ideological signals, and such signal will actively backfire by disenfranchising audiences with alternate or oppositional ideology. Therefore, it behooves science communicators to actively examine their personal and political ideology, and to build communicative strategies that do not include ideological tells. This practice, while potentially uncomfortable, will strengthen scientists' capacities to communicate evidence and scientific consensus across partisan and rhetorical chasms.
Social media connecting ocean sciences and the general public: the @OceanSeaIceNPI experiment
NASA Astrophysics Data System (ADS)
Pavlov, A. K.; Granskog, M. A.; Gerland, S.; Meyer, A.; Hudson, S. R.; Rösel, A.; King, J.; Itkin, P.; Cohen, L.; Dodd, P. A.; de Steur, L.
2016-02-01
As researchers we are constantly being encouraged by funding agencies, policy-makers and journalists to conduct effective outreach and to communicate our latest research findings. As environmental scientists we also understand the necessity of communicating our research to the general public. Many of us wish to become better science communicators but have little time and limited funding available to do so. How can we expend our science communication past project-based efforts that have a limited lifetime? Most critically, how can a small research groups do it without additional resources such as funds and communication officers? Social media is one answer, and has become a powerful and inexpensive tool for communicating science to different target audiences. Many research institutions and researchers are exploring the full breadth of possibilities brought by social media for reaching out to the general public, journalists, policy-makers, stake-holders, and research community. However, smaller research groups and labs are still underrepresented in social media. When it comes to practice, some essential difficulties can be encountered: identifying key target groups, defining the framework for sharing responsibilities and interaction within the research group, and finally, choosing a currently up-to-date social medium as a technical solution for communicating your research. Here, a group of oceanography and sea ice researchers (@OceanSeaIceNPI) share the positive experience of developing and maintaining for more than one year a researcher-driven outreach effort currently implemented through Instagram, Twitter and Facebook. We will present potential pitfalls and challenges that small research groups could face, and how to better overcome them. This will hopefully inspire and help other research groups and labs to conduct their own effective ocean science communication.
Rankings and Trends in Citation Patterns of Communication Journals
ERIC Educational Resources Information Center
Levine, Timothy R.
2010-01-01
Journal citations are increasingly used as indicators of the impact of scholarly work. Because many communication journals are not included in the Social Science Citation Index (SSCI), SSCI impact factors are potentially misleading for communication journals. The current paper reports a citation analysis of 30 communication journals based on…
What does the UK public want from academic science communication?
Redfern, James; Illingworth, Sam; Verran, Joanna
2016-01-01
The overall aim of public academic science communication is to engage a non-scientist with a particular field of science and/or research topic, often driven by the expertise of the academic. An e-survey was designed to provide insight into respondent's current and future engagement with science communication activities. Respondents provided a wide range of ideas and concerns as to the 'common practice' of academic science communication, and whilst they support some of these popular approaches (such as open-door events and science festivals), there are alternatives that may enable wider engagement. Suggestions of internet-based approaches and digital media were strongly encouraged, and although respondents found merits in methods such as science festivals, limitations such as geography, time and topic of interest were a barrier to engagement for some. Academics and scientists need to think carefully about how they plan their science communication activities and carry out evaluations, including considering the point of view of the public, as although defaulting to hands-on open door events at their university may seem like the expected standard, it may not be the best way to reach the intended audience.
What does the UK public want from academic science communication?
Redfern, James; Illingworth, Sam; Verran, Joanna
2016-01-01
The overall aim of public academic science communication is to engage a non-scientist with a particular field of science and/or research topic, often driven by the expertise of the academic. An e-survey was designed to provide insight into respondent’s current and future engagement with science communication activities. Respondents provided a wide range of ideas and concerns as to the ‘common practice’ of academic science communication, and whilst they support some of these popular approaches (such as open-door events and science festivals), there are alternatives that may enable wider engagement. Suggestions of internet-based approaches and digital media were strongly encouraged, and although respondents found merits in methods such as science festivals, limitations such as geography, time and topic of interest were a barrier to engagement for some. Academics and scientists need to think carefully about how they plan their science communication activities and carry out evaluations, including considering the point of view of the public, as although defaulting to hands-on open door events at their university may seem like the expected standard, it may not be the best way to reach the intended audience. PMID:27347384
New media landscapes and the science information consumer.
Brossard, Dominique
2013-08-20
Individuals are increasingly turning to online environments to find information about science and to follow scientific developments. It is therefore crucial for scientists and scientific institutions to consider empirical findings from research in online science communication when thinking about science in the public sphere. After providing a snapshot of the current media landscape, this paper reviews recent major research findings related to science communication in the online environment and their implications for science in the 21st century. Particular emphasis is given to the bias introduced by search engines, the nature of scientific content encountered online, and the potential impact of the Internet on audiences' knowledge and attitudes toward science.
Goldina, Anna; Weeks, Ophelia I.
2014-01-01
To help bridge the increasing gap between scientists and the public, we developed an innovative two-semester course called Science Café. In this course, undergraduate biology majors learn to develop communication skills to be better able to explain science concepts and current developments in science to non-scientists. Students develop and host outreach events on various topics relevant to the community, thereby increasing interactions between budding scientists and the public. Such a Science Café course emphasizes development of science communication skills early, at the undergraduate level, and empowers students to use their science knowledge in everyday interactions with the public to increase science literacy, get involved in the local community and engage the public in a dialogue on various pressing science issues. We believe that undergraduate science majors can be great ambassadors for science and are often overlooked since many aspire to go on to medical/veterinary/pharmacy schools. However, science communication skills are especially important for these types of students because when they become healthcare professionals, they will interact with the public as part of their everyday jobs and can thus be great representatives for the field. PMID:24839510
Goldina, Anna; Weeks, Ophelia I
2014-05-01
To help bridge the increasing gap between scientists and the public, we developed an innovative two-semester course called Science Café. In this course, undergraduate biology majors learn to develop communication skills to be better able to explain science concepts and current developments in science to non-scientists. Students develop and host outreach events on various topics relevant to the community, thereby increasing interactions between budding scientists and the public. Such a Science Café course emphasizes development of science communication skills early, at the undergraduate level, and empowers students to use their science knowledge in everyday interactions with the public to increase science literacy, get involved in the local community and engage the public in a dialogue on various pressing science issues. We believe that undergraduate science majors can be great ambassadors for science and are often overlooked since many aspire to go on to medical/veterinary/pharmacy schools. However, science communication skills are especially important for these types of students because when they become healthcare professionals, they will interact with the public as part of their everyday jobs and can thus be great representatives for the field.
ERIC Educational Resources Information Center
Haselkorn, Mark P.; Sauer, Geoffrey; Turns, Jennifer; Illman, Deborah L.; Tsutsui, Michio; Plumb, Carolyn; Williams, Tom; Kolko, Beth; Spyridakis, Jan
2003-01-01
Presents eight current projects involving faculty in the University of Washington's Department of Technical Communication that illustrate the broadening of the field. Notes these projects address: the cognitive processing of visual material; Web-based education; strategic management of information; communicating science and technology in the…
New media landscapes and the science information consumer
Brossard, Dominique
2013-01-01
Individuals are increasingly turning to online environments to find information about science and to follow scientific developments. It is therefore crucial for scientists and scientific institutions to consider empirical findings from research in online science communication when thinking about science in the public sphere. After providing a snapshot of the current media landscape, this paper reviews recent major research findings related to science communication in the online environment and their implications for science in the 21st century. Particular emphasis is given to the bias introduced by search engines, the nature of scientific content encountered online, and the potential impact of the Internet on audiences’ knowledge and attitudes toward science. PMID:23940316
NASA Astrophysics Data System (ADS)
Glenn, S.; McDonnell, J.; Halversen, C.; Zimmerman, T.; Ingram, L.
2007-12-01
Ocean observatories have already demonstrated their ability to maintain long-term time series, capture episodic events, provide context for improved shipboard sampling, and improve accessibility to a broader range of participants. Communicating Ocean Sciences, an already existing college course from COSEE-California has demonstrated its ability to teach future scientists essential communication skills. The NSF-funded Communicating Ocean Sciences to Informal Audiences (COSIA) project has leveraged these experiences and others to demonstrate a long-term model for promoting effective science communication skills and techniques applicable to diverse audiences. The COSIA effort is one of the pathfinders for ensuring that the new scientific results from the increasing U.S. investments in ocean observatories is effectively communicated to the nation, and will serve as a model for other fields. Our presentation will describe a long-term model for promoting effective science communication skills and techniques applicable to diverse audiences. COSIA established partnerships between informal science education institutions and universities nationwide to facilitate quality outreach by scientists and the delivery of rigorous, cutting edge science by informal educators while teaching future scientists (college students) essential communication skills. The COSIA model includes scientist-educator partnerships that develop and deliver a college course that teaches communication skills through the understanding of learning theory specifically related to informal learning environments and the practice of these skills at aquariums and science centers. The goals of COSIA are to: provide a model for establishing substantive, long-term partnerships between scientists and informal science education institutions to meet their respective outreach needs; provide future scientists with experiences delivering outreach and promoting the broader impact of research; and provide diverse role models and inquiry-based ocean sciences activities for children and families visiting informal institutions. The following COSIA partners have taught the course: Hampton University - Virginia Aquarium; Oregon State University - Hatfield Marine Science Visitor's Center; Rutgers University - Liberty Science Center; University of California, Berkeley - Lawrence Hall of Science; University of Southern California - Aquarium of the Pacific; and Scripps Institution of Oceanography - Birch Aquarium. Communicating Ocean Sciences has also been taught at Stanford, Woods Hole Oceanographic Institute, University of Oregon (GK-12 program), University of Washington, and others. Data from surveys of students demonstrates improvement in their understanding of how people learn and how to effectively communicate. Providing college students with a background in current learning theory, and applying that theory through practical science communication experiences, will empower future generations of scientists to meet the communication challenges they will encounter in their careers.
Communicating the Value of Science--Issues, Imperatives and Insights
NASA Astrophysics Data System (ADS)
Gan, J.; Topousis, D.
2013-12-01
Over the last six decades, federal investments in scientific research have led to unquestionable economic and societal advances, while expanding human knowledge. Yet, in the current federal fiscal climate, funding for fundamental research is being challenged in some quarters. This situation has created the need for stakeholders in science to step forward and defend the role that basic research plays in creating the knowledge and workforce necessary to address current and future challenges. Communicating to fellow scientists in this environment is necessary but not sufficient to sustaining, or even expanding, support for fundamental research. A multi-faceted approach will be described for enhancing communication to broader audiences, including policy makers and the general public, increasingly responsible for ensuring the future of scientific progress.
77 FR 75885 - Control of Communicable Diseases: Foreign; Scope and Definitions
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-26
... primary authority supporting this rulemaking is section 361 of the Public Health Service Act (42 U.S.C... the scope and definitions to part 71 to reflect modern science and current practices. HHS/CDC has... products'' in subpart F. This revision more adequately reflects modern science and current practice which...
Radio Science from an Optical Communications Signal
NASA Technical Reports Server (NTRS)
Moision, Bruce; Asmar, Sami; Oudrhiri, Kamal
2013-01-01
NASA is currently developing the capability to deploy deep space optical communications links. This creates the opportunity to utilize the optical link to obtain range, doppler, and signal intensity estimates. These may, in turn, be used to complement or extend the capabilities of current radio science. In this paper we illustrate the achievable precision in estimating range, doppler, and received signal intensity of an non-coherent optical link (the current state-of-the-art for a deep-space link). We provide a joint estimation algorithm with performance close to the bound. We draw comparisons to estimates based on a coherent radio frequency signal, illustrating that large gains in either precision or observation time are possible with an optical link.
ERIC Educational Resources Information Center
Kelly, Kevin L.; Poteracki, James M.; Steury, Michael D.; Wehrwein, Erica A.
2015-01-01
Michigan State University's senior-level undergraduate physiology capstone laboratory uses a simple exercise termed "Physiology in the News," to help students explore the current research within the field of physiology while also learning to communicate science in lay terms. "Physiology in the News" is an activity that charges…
Enabling Communication and Navigation Technologies for Future Near Earth Science Missions
NASA Technical Reports Server (NTRS)
Israel, David J.; Heckler, Greg; Menrad, Robert J.; Hudiburg, John J.; Boroson, Don M.; Robinson, Bryan S.; Cornwell, Donald M.
2016-01-01
In 2015, the Earth Regimes Network Evolution Study (ERNESt) Team proposed a fundamentally new architectural concept, with enabling technologies, that defines an evolutionary pathway out to the 2040 timeframe in which an increasing user community comprised of more diverse space science and exploration missions can be supported. The architectural concept evolves the current instantiations of the Near Earth Network and Space Network through implementation of select technologies resulting in a global communication and navigation network that provides communication and navigation services to a wide range of space users in the Near Earth regime, defined as an Earth-centered sphere with radius of 2M Km. The enabling technologies include: High Rate Optical Communications, Optical Multiple Access (OMA), Delay Tolerant Networking (DTN), User Initiated Services (UIS), and advanced Position, Navigation, and Timing technology (PNT). This paper describes this new architecture, the key technologies that enable it and their current technology readiness levels. Examples of science missions that could be enabled by the technologies and the projected operational benefits of the architecture concept to missions are also described.
ERIC Educational Resources Information Center
Örnek, Funda; Turkey, Kocaeli
2014-01-01
Current approaches in Science Education attempt to enable students to develop an understanding of the nature of science, develop fundamental scientific concepts, and develop the ability to structure, analyze, reason, and communicate effectively. Students pose, solve, and interpret scientific problems, and eventually set goals and regulate their…
Informal Learning through Science Media Usage
ERIC Educational Resources Information Center
Maier, Michaela; Rothmund, Tobias; Retzbach, Andrea; Otto, Lukas; Besley, John C.
2014-01-01
This article reviews current research on informal science learning through news media. Based on a descriptive model of media-based science communication we distinguish between (a) the professional routines by which journalists select and depict scientific information in traditional media and (b) the psychological processes that account for how…
Incorporating Intercultural Communication Activities in English Language Classes
ERIC Educational Resources Information Center
Velasco, Daniel
2017-01-01
Intercultural Communication has become a relevant focal point within a variety of fields--science, psychology, politics, journalism, economics, and education, to name a few. Yet, current university students may not even be aware of Intercultural Communication's role in these fields, as well as their studies and future careers. A survey was first…
ERIC Educational Resources Information Center
Morgan, Robert P.; Eastwood, Lester F., Jr.
Research on this National Science Foundation grant to study the application of modern communications technology to educational networking was divided into three parts: assessment of the role of technology in non-traditional post-secondary education; assessment of communications technologies and educational services of current or potential future…
ERIC Educational Resources Information Center
Christodoulou, Andri; Osborne, Jonathan
2014-01-01
Current science education research and policy highlight the need to conceptualize scientific disciplines not only based on a view of "science-as-knowledge" but also on a perspective of "science-as-practice," placing an emphasis on practices such as explanation, argumentation, modeling, and communication. However, classroom…
Kawamoto, Shishin; Nakayama, Minoru; Saijo, Miki
2013-08-01
There are various definitions and survey methods for scientific literacy. Taking into consideration the contemporary significance of scientific literacy, we have defined it with an emphasis on its social aspects. To acquire the insights needed to design a form of science communication that will enhance the scientific literacy of each individual, we conducted a large-scale random survey within Japan of individuals older than 18 years, using a printed questionnaire. The data thus acquired were analyzed using factor analysis and cluster analysis to create a 3-factor/4-cluster model of people's interest and attitude toward science, technology and society and their resulting tendencies. Differences were found among the four clusters in terms of the three factors: scientific factor, social factor, and science-appreciating factor. We propose a plan for designing a form of science communication that is appropriate to this current status of scientific literacy in Japan.
The Interplanetary Internet: a communications infrastructure for Mars exploration.
Burleigh, Scott; Cerf, Vinton; Durst, Robert; Fall, Kevin; Hooke, Adrian; Scott, Keith; Weiss, Howard
2003-01-01
A strategy is being developed whereby the current set of internationally standardized space data communications protocols can be incrementally evolved so that a first version of an operational "Interplanetary Internet" is feasible by the end of the decade. This paper describes its architectural concepts, discusses the current set of standard space data communications capabilities that exist to support Mars exploration and reviews proposed new developments. We also speculate that these current capabilities can grow to support future scenarios where human intelligence is widely distributed across the Solar System and day-to-day communications dialog between planets is routine. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.
The Interplanetary Internet: a communications infrastructure for Mars exploration
NASA Technical Reports Server (NTRS)
Burleigh, Scott; Cerf, Vinton; Durst, Robert; Fall, Kevin; Hooke, Adrian; Scott, Keith; Weiss, Howard
2003-01-01
A strategy is being developed whereby the current set of internationally standardized space data communications protocols can be incrementally evolved so that a first version of an operational "Interplanetary Internet" is feasible by the end of the decade. This paper describes its architectural concepts, discusses the current set of standard space data communications capabilities that exist to support Mars exploration and reviews proposed new developments. We also speculate that these current capabilities can grow to support future scenarios where human intelligence is widely distributed across the Solar System and day-to-day communications dialog between planets is routine. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.
Beaconless Pointing for Deep-Space Optical Communication
NASA Technical Reports Server (NTRS)
Swank, Aaron J.; Aretskin-Hariton, Eliot; Le, Dzu K.; Sands, Obed S.; Wroblewski, Adam
2016-01-01
Free space optical communication is of interest to NASA as a complement to existing radio frequency communication methods. The potential for an increase in science data return capability over current radio-frequency communications is the primary objective. Deep space optical communication requires laser beam pointing accuracy on the order of a few microradians. The laser beam pointing approach discussed here operates without the aid of a terrestrial uplink beacon. Precision pointing is obtained from an on-board star tracker in combination with inertial rate sensors and an outgoing beam reference vector. The beaconless optical pointing system presented in this work is the current approach for the Integrated Radio and Optical Communication (iROC) project.
Where the Rubber Hits the Road: The Politics and Science of Climate Change in Congress
NASA Astrophysics Data System (ADS)
Koppes, M.
2004-12-01
Scientific understanding of the magnitude and rate of global and regional climate change is being actively communicated to Capitol Hill, however this information is being framed within the political debate that has brought climate change policy in the U.S. to a practical standstill. Efforts by scientists to communicate to Congress advances in the understanding of climate change have been obscured by policy-makers, lobbyists and some scientists themselves, into two polarized camps: those that who claim that current climate change is insignificant and/or of non-anthropogenic origin, and those who predict irreversible climate change in the near future and advocate a precautionary approach to anthropogenic contributions. As a science policy advisor to a Member of Congress active in the climate policy debate over the past year, I have observed firsthand most of the scientific information on climate change presented to Congress being partitioned into these camps. The political debate surrounding climate change policy has centered on the policymakers' understanding of scientific uncertainty. Communication by researchers of the definition of risk and uncertainty in climate science, in the language and framework of the legislative debate, is of utmost importance in order for policymakers to effectively understand and utilize science in the decision-making process. A comparison with the recent white paper on climate change policy developed by the UK Science and Technology council and currently adopted by UK policymakers demonstrates the importance of a general public understanding of the existing magnitude of climate change, uncertainties in the rate of future climate variability and its associated economic and social costs. Communication of research results on climate change has been most effective in the policy debate when framed within the context of economic or security risks in the short term. Other effective methods include communicating local and regional climate scenarios and associated probabilities to individual policy-makers, as is currently being utilized to promote sponsorship of the Climate Stewardship Act in Congress.
BURECS: An Interdisciplinary Undergraduate Climate Science Program
NASA Astrophysics Data System (ADS)
Dennis, D. P.; Marchant, D. R.; Christ, A. J.; Ehrenfeucht, S.
2017-12-01
The current structure of many undergraduate programs, particularly those at large research universities, requires students to engage with a major or academic emphasis early in their university careers. This oftentimes curbs exploration outside the major and can inhibit interdisciplinary collaboration. The Boston University Research Education and Communication of Science (BURECS) program seeks to bridge this institutional divide by fostering interdisciplinary and multidisciplinary collaboration on climate change-related issues by students from across Boston University (B.U.). Every year, approximately fifteen first-year students from B.U.'s College of Arts and Sciences, College of Communication, and School of Education are selected to join BURECS, which includes a climate science seminar, a hands-on lab course, a supported summer internship with Boston-area researchers, and the opportunity to participate in Antarctic field work during subsequent B.U. Antarctic Research Group expeditions. Currently in its third year, BURECS is funded through the Howard Hughes Medical Institute (HHMI) Professors Program.
ERIC Educational Resources Information Center
Millstone, Rachel Diana
2010-01-01
The current conceptualization of science set forth by the National Research Council (2008) is one of science as a social activity, rather than a view of science as a fixed body of knowledge. This requires teachers to consider how communication, processing, and meaning-making contribute to science learning. It also requires teachers to think deeply…
New Directions in Mass Communications Policy: Implications for Citizen Education and Participation.
ERIC Educational Resources Information Center
Rothstein, Larry
This paper, the second in a series of five on the current state of citizen education, focuses on mass communication. The following topics are discussed: communications today; the system of freedom of expression; social science research on the media (includes the audience and public information); minorities and the media; public broadcasting;…
ERIC Educational Resources Information Center
Metz, Dale Evan; And Others
1980-01-01
The paper presents four research projects in process in the Communication Sciences Laboratory at the National Technical Institute for the Deaf. These projects illustrate four broad areas of research on the relationships between higher order information processing systems and the communication skills and problems exhibited by deaf people. (Author)
ERIC Educational Resources Information Center
Brown, Elizabeth
2009-01-01
The current rate of change suggests scholarly communications issues such as new publication models and technology to connect library and research tools is expected to continue into the foreseeable future. As models evolve, standards develop, and scientists evolve in their communication patterns, librarians will need to embrace transitional…
What would a 'scientifically engaged Australia' look like?
NASA Astrophysics Data System (ADS)
Donald, Tegan N.
In 2010 the Australian Federal Government released the landmark report Inspiring Australia which described the first national strategy for engagement with the sciences, and aimed to create a ‘scientifically engaged Australia’. This study investigates what might be meant by a ‘scientifically engaged Australia’ by creating a snapshot picture of the current Australian science communication landscape: its priorities, its limitations and its key players’ envisioned recommendations for future activity. It draws on several sources of data to create this picture: academic and practitioner literature regarding the emerging concept of ‘public engagement’; literature and case studies that discuss the appropriate place for deficit model and one-way approaches to science communication; the Inspiring Australia report itself and other government policy documents; and a series of interviews with top level public figures in Australian science policy and advocacy. A central finding of this study is the absence of a universal and unambiguous definition of public engagement. In addition, in contrast to trends within much of the scholarly literature, the study highlights the persistence of one-way methods and to a lesser degree the deficit model in practice. The ongoing use and relevance of one-way communication is evident; it remains a popular, albeit often default, choice in practice and is seen as ideal for the communication of fixed messages. Science communication in Australia remains, for the foreseeable future, dominated by one-way methods, in particular in the use of traditional and social media. In this respect, a scientifically engaged Australia would seem to be one in which a great deal of one-way communication takes place, supplemented by small moves towards dialogical or participatory communication. Finally, this study highlights two dominant motivations behind the call for a ‘scientifically engaged Australia’. Much high level discourse on this topic is characterised by governments’ desire to safeguard future investment in science and to bolster a dwindling economy, so in this sense economic pragmatism drives much of the science communication agenda. To a lesser degree, a desire to foster science appreciation within society is also a driver. It is apparent that the nation’s science agenda is influenced by the increasing politicising of science, and the communication of it.
Presentation to Ohio State University Dept. of Electrical Engineering ElectroScience Laboratory
NASA Technical Reports Server (NTRS)
Fujikawa, Gene
2002-01-01
Presentation made during visit to The Ohio State University, ElectroScience Laboratory, on November 14, 2002. An overview of NASA and selected technology products from the Digital Communications Technology Branch (5650) for fiscal year 2003 are highlighted. The purpose of the meeting was to exchange technical information on current aeronautics and space communications research and technology being conducted at NASA Glenn Research Center and to promote faculty/student collaborations of mutual interest.
Care, compassion, and communication in professional nursing: art, science, or both.
Palos, Guadalupe R
2014-04-01
Debate continues as to whether nursing is a science, art, or a combination of the two. Given the recent growing emphasis in the current healthcare environment to deliver patient-centered care, the art of nursing and its impact on patient outcomes is being re-examined. The current article discusses a case narrative to provide a venue for self-reflection in nursing practice.
Beyond Thin Ice: Co-Communicating the Many Arctics
NASA Astrophysics Data System (ADS)
Druckenmiller, M. L.; Francis, J. A.; Huntington, H.
2015-12-01
Science communication, typically defined as informing non-expert communities of societally relevant science, is persuaded by the magnitude and pace of scientific discoveries, as well as the urgency of societal issues wherein science may inform decisions. Perhaps nowhere is the connection between these facets stronger than in the marine and coastal Arctic where environmental change is driving advancements in our understanding of natural and socio-ecological systems while paving the way for a new assortment of arctic stakeholders, who generally lack adequate operational knowledge. As such, the Arctic provides opportunity to advance the role of science communication into a collaborative process of engagement and co-communication. To date, the communication of arctic change falls within four primary genres, each with particular audiences in mind. The New Arctic communicates an arctic of new stakeholders scampering to take advantage of unprecedented access. The Global Arctic conveys the Arctic's importance to the rest of the world, primarily as a regulator of lower-latitude climate and weather. The Intra-connected Arctic emphasizes the increasing awareness of the interplay between system components, such as between sea ice loss and marine food webs. The Transforming Arctic communicates the region's trajectory relative to the historical Arctic, acknowledging the impacts on indigenous peoples. The broad societal consensus on climate change in the Arctic as compared to other regions in the world underscores the opportunity for co-communication. Seizing this opportunity requires the science community's engagement with stakeholders and indigenous peoples to construct environmental change narratives that are meaningful to climate responses relative to non-ecological priorities (e.g., infrastructure, food availability, employment, or language). Co-communication fosters opportunities for new methods of and audiences for communication, the co-production of new interdisciplinary knowledge and cross-epistemological perspectives, and direct feedback to the science community regarding the societal implications of future research. Currently, the Study for Environmental Arctic Change (SEARCH) is developing this necessary cadre of co-communicators of marine and coastal arctic change.
Gap between science and media revisited: scientists as public communicators.
Peters, Hans Peter
2013-08-20
The present article presents an up-to-date account of the current media relations of scientists, based on a comprehensive analysis of relevant surveys. The evidence suggests that most scientists consider visibility in the media important and responding to journalists a professional duty--an attitude that is reinforced by universities and other science organizations. Scientific communities continue to regulate media contacts with their members by certain norms that compete with the motivating and regulating influences of public information departments. Most scientists assume a two-arena model with a gap between the arenas of internal scientific and public communication. They want to meet the public in the public arena, not in the arena of internal scientific communication. Despite obvious changes in science and in the media system, the orientations of scientists toward the media, as well as the patterns of interaction with journalists, have their roots in the early 1980s. Although there is more influence on public communication from the science organizations and more emphasis on strategic considerations today, the available data do not indicate abrupt changes in communication practices or in the relevant beliefs and attitudes of scientists in the past 30 y. Changes in the science-media interface may be expected from the ongoing structural transformation of the public communication system. However, as yet, there is little evidence of an erosion of the dominant orientation toward the public and public communication within the younger generation of scientists.
Stepping Up: Empowering Science Communicators at UW's College of the Environment
NASA Astrophysics Data System (ADS)
Meyer, J. J.; Graumlich, L. J.; McCarthy, M. M.
2017-12-01
At the University of Washington's College of the Environment, we strive to expand the reach of our science through better communication. While sharing science broadly is often handled through a press office, there are other avenues for disseminating research results that impact society. By empowering scientists to speak authentically about their work and why it matters, we can daylight new outlets and connections where their work can create change in our world. Scientists are experts at sharing their findings with peers, yet available pathways to reaching broader audiences can often be a black box. On the advice of a Science Communication Task Force and guided by college leadership, we launched a science communication program in 2014 as a vehicle to assist our researchers. Whether the goal is to increase public appreciation for science or help shape natural resource policy, we provide support to amplify the impact of our scientist's work. This includes events and networking opportunities, trainings and workshops, one-on-one coaching and consulting, and making connections to outlets where their work can have impact. We continue to refine and expand our program, striking a balance between creating a solid foundation of best communication practices while offering resources to address current needs of the day. We will share the successes and challenges of our program and demonstrate how our model can be implemented at other institutions.
Nanotechnology Risk Communication Past and Prologue
Bostrom, Ann; Löfstedt, Ragnar E.
2013-01-01
Nanotechnologies operate at atomic, molecular, and macromolecular scales, at scales where matter behaves differently than at larger scales and quantum effects can dominate. Nanotechnologies have captured the imagination of science fiction writers as science, engineering, and industry have leapt to the challenge of harnessing them. Applications are proliferating. In contrast, despite recent progress the regulatory landscape is not yet coherent, and public awareness of nanotechnology remains low. This has led risk researchers and critics of current nanotechnology risk communication efforts to call for proactive strategies that do more than address facts, that include and go beyond the public participation stipulated by some government acts. A redoubling of nanotechnology risk communication efforts could enable consumer choice and informed public discourse about regulation and public investments in science and safety. PMID:21039707
JPL basic research review. [research and advanced development
NASA Technical Reports Server (NTRS)
1977-01-01
Current status, projected goals, and results of 49 research and advanced development programs at the Jet Propulsion Laboratory are reported in abstract form. Areas of investigation include: aerodynamics and fluid mechanics, applied mathematics and computer sciences, environment protection, materials science, propulsion, electric and solar power, guidance and navigation, communication and information sciences, general physics, and chemistry.
Telemetry Options for LDB Payloads
NASA Technical Reports Server (NTRS)
Stilwell, Bryan D.; Field, Christopher J.
2016-01-01
The Columbia Scientific Balloon Facility provides Telemetry and Command systems necessary for balloon operations and science support. There are various Line-Of-Sight (LOS) and Over-The-Horizon (OTH) systems and interfaces that provide communications to and from a science payload. This presentation will discuss the current data throughput options available and future capabilities that may be incorporated in the LDB Support Instrumentation Package (SIP) such as doubling the TDRSS data rate. We will also explore some new technologies that could potentially expand the data throughput of OTH communications.
Astronomy. Laser telemetry from space.
Bland-Hawthorn, Joss; Harwit, Alex; Harwit, Martin
2002-07-26
Space missions currently on the drawing boards are expected to gather data at rates exceeding the transmission capabilities of today's telemetry systems by many orders of magnitude. Even on current missions, onboard data compression techniques are being implemented to compensate for lack of transmission speed. But while data compression can minimize the loss of data, it is no substitute for transmitting all of the data through a faster communications link. The transmission problem will soon reach crisis proportions and will affect astronomical, Earth resources, geophysical, meteorological, planetary and other space science missions. To overcome this communications bottleneck, the authors advocate the implementation of telemetry systems based on near-infrared laser transmission techniques. The fiber-optics communications industry has developed most of the basic components required for signal transmission in this wavelength band, which should make such a system affordable on scales relevant to the cost of anticipated space science missions.
Astronomy and astrophysics communication in the UCM Observatory
NASA Astrophysics Data System (ADS)
Crespo-Chacón, I.; de Castro, E.; Díaz, C.; Gallego, J.; Gálvez, M. C.; Hernán-Obispo, M.; López-Santiago, J.; Montes, D.; Pascual, S.; Verdet, A.; Villar, V.; Zamorano, J.
We present a summary of the last activities of science communication that have taken place in the Observatorio de la Universidad Complutense de Madrid (UCM Observatory) on the occasion of the Third Science Week of the Comunidad Autónoma de Madrid (3-16 November 2003), including guided tours through the observatory facilities, solar observations, and several talks. Moreover the current telescopes, instruments and tools of the UCM Observatory have allowed us to organize other communicating activities such as the live observation, together with its internet broadcast, of total lunar eclipses and other exceptional astronomical events as the Venus transit that took place in 8 June 2004.
NASA Astrophysics Data System (ADS)
Glenn, S.; McDonnell, J.; Halversen, C.; Zimmerman, T.
2006-12-01
Ocean observatories have already demonstrated their ability to maintain long-term time series, capture episodic events, provide context for improved shipboard sampling, and improve accessibility to a broader range of participants. Communicating Ocean Sciences, an already existing college course (http://www.cacosee.net/collegecourse) from COSEE California has demonstrated its ability to teach future scientists essential communication skills. The NSF-funded Communicating Ocean Sciences to Informal Audiences (COSIA) project will leverage these experiences and others to demonstrate a long-term model for promoting effective science communication skills and techniques applicable to diverse audiences. The COSIA effort will be one of the pathfinders for ensuring that the new scientific results from the increasing U.S. investments in ocean observatories is effectively communicated to the nation, and will serve as a model for other fields. Our presentation will describe a long-term model for promoting effective science communication skills and techniques applicable to diverse audiences. COSIA established partnerships between informal science education institutions and universities nationwide to facilitate quality outreach by scientists and the delivery of rigorous, cutting edge science by informal educators while teaching future scientists (college students) essential communication skills. The COSIA model includes scientist-educator partnerships that develop and deliver a college course derived from COS that teaches communication skills through the understanding of learning theory specifically related to informal learning environments and the practice of these skills at aquariums and science centers. The goals of COSIA are to: provide a model for establishing substantive, long-term partnerships between scientists and informal science education institutions to meet their respective outreach needs; provide future scientists with experiences delivering outreach to informal institutions and promoting the broader impact of research; and provide diverse role models and inquiry-based ocean sciences activities for children and families visiting ISEI. COSIA partners include: Hampton University Virginia Aquarium; Oregon State University Hatfield Marine Science Visitor's Center; Rutgers University Liberty Science Center; University of California, Berkeley Lawrence Hall of Science; and University of Southern California Aquarium of the Pacific. COS has been or will soon be taught at Rutgers University, UC Berkeley, Stanford, Woods Hole Oceanographic Institute, University of Oregon (GK-12 program), Scripps Institution of Oceanography, and others. Data from surveys of students demonstrates improvement in their understanding of how people learn and how to effectively communicate. For example, there was a decrease in agreement with statements describing traditional didactic teaching strategies suggesting that students who took the course developed a more sophisticated, inquiry-based philosophy of learning. Providing college students with a background in current learning theory, and applying that theory through practical science communication experiences, will empower future generations of scientists to meet the communication challenges they will encounter in their careers.
NASA Astrophysics Data System (ADS)
Ickert, Johanna; Stewart, Iain S.
2016-04-01
For more than a decade, social science studies indicate that there is little or no correlation between the provision of scientific information about geohazards and risks and the adaptive changes in individual or community behaviour that would reduce risk. Bridging that gap to effectively convey hazard science 'the last mile' to those communities at risk raises a number of ethical issues about the role and responsibilities of geoscientists as communicators. Those issues emerge from a methodological shift away from the dominant interpretation of seismic risk communication as a transfer of scientific facts to "the public", towards more inclusive transdisciplinary communication strategies that incorporate peer-role models, adopt social network-based strategies and directly engage with communities in motivating preparedness actions. With this methodological shift comes ethical dilemmas. What are the target-groups that should be prioritised? What are the professional expectations and levels of personal engagement required of geo-communicators? How able and willing are geoscientists to include other forms of knowledge (e.g. from local communities or other disciplines)? What media formats can reconcile argumentative, informational "matters of fact" with sociocultural and psychological "matters of concern"? How should scientists react to political controversies related to risk mitigation and its communication? In the context of these ethical concerns, many geoscientist struggle to switch from conventional communication modes in which they are the technical 'experts' to more community-centered, participatory modes of public engagement. We examine this research question through a case study on seismic risk communication challenges in Istanbul, a megacity with one of the highest seismic vulnerabilities in the world. Currently, there are few formal mechanisms to facilitate interchange between academic geoscientists and the general public in Istanbul. In order to reduce the city's vulnerable building stock, the civic administration has initiated major seismic retrofitting and reconstruction projects. These projects have led to widespread civic unrest and social division, with inhabitants of urban transformation areas widely complaining that their views are neither represented in the procedures of the mitigation measures nor in the seismic risk communication that accompanies them. A growing lack of trust in risk mitigation measures adds to fatalistic attitudes to undermine individual and neighbourhood preparedness actions. It is in this contested, politicized arena of multi-stakeholder interests that geoscientists attempt to communicate Istanbul's acute seismic threat. Following a critical reflection on the geo-ethics of current science communication methods, we explore the potential of transdisciplinary film-based methods to provide alternative frameworks for communicating to and engaging with at-risk communities. We argue that such an approach offers novel opportunities to address key ethical concerns by bridging different communication cultures and promoting a greater reflexivity in science communication.
A Website System for Communicating Psychological Science.
Diener, Ed
2017-07-01
The peer review and journal system have shortcomings, and both computers and the Internet have made complementary or alternative systems attractive. In this article, I recommend that we implement a new platform for open communication of psychological science on a dedicated website to complement the current review and journal system, with reader reviews of the articles and with all behavioral scientists being eligible to publish and review articles. The judged merit of articles would be based on the citations and the ratings of the work by the whole scientific community. This online journal will be quicker, more democratic, and more informative than the current system. Although the details of the system should be debated and formulated by a committee of scientists, adding this online journal to the existing publications of a society such as the Association for Psychological Science has few risks and many possible gains. An online journal deserves to be tried and assessed.
Science Writing and Rhetorical Training: A New Model for Developing Graduate Science Writers
NASA Astrophysics Data System (ADS)
Karraker, N. E.; Lofgren, I.; Druschke, C. G.; McWilliams, S. R.; Morton-Aiken, J.; Reynolds, N.
2016-12-01
Graduate programs in the sciences generally offer minimal support for writing and communication, yet there is an increasing need for scientists to engage with the public and policymakers on technological, environmental, and health issues. The traditional focus on gaining particular discipline-related technical skills, coupled with the relegation of writing largely to the end of a student's academic tenure, falls short in equipping them to tackle these challenges. To address this problem, we launched a cross-disciplinary, National Science Foundation-funded training program in rhetoric and writing for science graduate students and faculty at the University of Rhode Island. This innovative program bases curricular and pedagogical support on three central practices, habitual writing, multiple genres, and frequent review, to offer a flexible model of writing training for science graduate students and pedagogical training for faculty that could be adopted in other institutional contexts. Key to the program, called SciWrite@URI, is a unique emphasis on rhetoric, which, we argue, is an essential—but currently lacking—component of science communication education. This new model has the potential to transform graduate education in the sciences by producing graduates who are as adept at the fundamentals of their science as they are at communicating that science to diverse audiences.
DTN Implementation and Utilization Options on the International Space Station
NASA Technical Reports Server (NTRS)
Nichols, Kelvin; Holbrook, Mark; Pitts, Lee; Gifford, Kevin; Jenkins, Andrew; Kuzminsky, Sebastian
2010-01-01
This slide presentation reviews the implementation and future uses of Delay/Disruption Tolerant Networking (DTN) for space communication, using the International Space Station as the primary example. The presentation includes: (1) A brief introduction of the current communications architecture of the ISS (2) How current payload operations are handled in the non-DTN environment (3) Making the case to implement DTN into the current payload science operations model (4) Phase I DTN Operations: early implementation with BioServe's CGBA Payload (5) Phase II DTN Operations: Developing the HOSC DTN Gateway
Learn About Science Policy at the 2013 AGU Fall Meeting
NASA Astrophysics Data System (ADS)
Gilley, Meg
2013-11-01
The 2013 AGU Fall Meeting offers many opportunities to explore current science policy issues. Sequestration and the recent government shutdown showed us the connection between science and policy and the impact that policy can have on researchers' work. This year's Fall Meeting Public Affairs events will give members the tools to communicate with Congress, respond to legal pressure about their science, and work with policy makers in Washington, D. C., as an AGU Congressional Science Fellow.
The communication of science to the public: A philosophy of television
NASA Astrophysics Data System (ADS)
Carter, Nicholas Brent
The communication of science to the public via the mass media, in particular the televisual format, requires a modified approach to the traditional presumptive models of communicative style. Conventional models of science communication are based on implicit but unexamined assumptions that the most effective and important means of transmission of scientific information are efforts aimed at the attentive segments of the population through specialized and detailed formats. Attempts to reach inattentive audiences with scientific information are customarily unsuccessful or have been deemed unnecessary altogether. The proposed model submits that not only are endeavors to communicate scientific ideas to the disinterested populace of overriding importance but can be quite successful if production styles are altered to reflect more "interest-motivating" designs. A new thrust toward capturing the attention of disinterested audiences before attempting to directly disseminate scientific ideas is proposed. By examining the constraints of both the scientific and communication systems, the model demonstrates that current methods utilized to transmit scientific information are incompatible with the notion of reaching more inattentive audiences. The assumptions of scientific communicators and the community of scientists are critiqued through analysis of the diverse body of research devoted to the public transmission of science and scientific concepts. The foundations of televisual communication are explored and a model of commercial television programming is proffered to redirect classical scientific production methods to more visually interesting, narrative-driven styles. A call to shift focus of scientific communication from the products of science to the process of science is also suggested in part to achieve such a direction. The model proposes that the most important aspect of this process is to begin to show scientists as human beings and the conceptual accessibility of both the scientists and their endeavors. For this to occur, scientists must begin to alter their behaviors and attitudes toward the public dissemination of their research and start by educating themselves on the communicative demands of the media. Communicators must also begin to change their long-held strategies of scientific communication by focusing on the interest factor of their stories before attempting to transmit complicated scientific information.
Communication as a Strategic Activity (Invited)
NASA Astrophysics Data System (ADS)
Fischhoff, B.
2010-12-01
Effective communication requires preparation. The first step is explicit analysis of the decisions faced by audience members, in order to identify the facts essential to their choices. The second step is assessing their current beliefs, in order to identify the gaps in their understanding, as well as their natural ways of thinking. The third step is drafting communications potentially capable of closing those gaps, taking advantage of the relevant behavioral science. The fourth step is empirically evaluating those communications, refining them as necessary. The final step is communicating through trusted channels, capable of getting the message out and receiving needed feedback. Executing these steps requires a team involving subject matter experts (for ensuring that the science is right), decision analysts (for identifying the decision-critical facts), behavioral scientists (for designing and evaluating messages), and communication specialists (for creating credible channels). Larger organizations should be able to assemble those teams and anticipate their communication needs. However, even small organizations, individuals, or large organizations that have been caught flat-footed can benefit from quickly assembling informal teams, before communicating in ways that might undermine their credibility. The work is not expensive, but does require viewing communication as a strategic activity, rather than an afterthought. The talk will illustrate the science base, with a few core research results; note the risks of miscommunication, with a few bad examples; and suggest the opportunities for communication leadership, focusing on the US Food and Drug Administration.
Klahr, David
2013-08-20
Although the "science of science communication" usually refers to the flow of scientific knowledge from scientists to the public, scientists direct most of their communications not to the public, but instead to other scientists in their field. This paper presents a case study on this understudied type of communication: within a discipline, among its practitioners. I argue that many of the contentious disagreements that exist today in the field in which I conduct my research--early science education--derive from a lack of operational definitions, such that when competing claims are made for the efficacy of one type of science instruction vs. another, the arguments are hopelessly disjointed. The aim of the paper is not to resolve the current claims and counterclaims about the most effective pedagogies in science education, but rather to note that the assessment of one approach vs. the other is all too often defended on the basis of strongly held beliefs, rather than on the results of replicable experiments, designed around operational definitions of the teaching methods being investigated. A detailed example of operational definitions from my own research on elementary school science instruction is provided. In addition, the paper addresses the issue of how casual use of labels-both within the discipline and when communicating with the public-may inadvertently "undo" the benefits of operational definitions.
Computing Education in Korea--Current Issues and Endeavors
ERIC Educational Resources Information Center
Choi, Jeongwon; An, Sangjin; Lee, Youngjun
2015-01-01
Computer education has been provided for a long period of time in Korea. Starting as a vocational program, the content of computer education for students evolved to include content on computer literacy, Information Communication Technology (ICT) literacy, and brand-new computer science. While a new curriculum related to computer science was…
Institutional and Individual Influences on Scientists' Data Sharing Behaviors
ERIC Educational Resources Information Center
Kim, Youngseek
2013-01-01
In modern research activities, scientific data sharing is essential, especially in terms of data-intensive science and scholarly communication. Scientific communities are making ongoing endeavors to promote scientific data sharing. Currently, however, data sharing is not always well-deployed throughout diverse science and engineering disciplines.…
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Ivancic, William D.; Zuzek, John E.
1991-01-01
The development of new space communications technologies by NASA has included both commercial applications and space science requirements. NASA's Systems Integration, Test and Evaluation (SITE) Space Communication System Simulator is a hardware based laboratory simulator for evaluating space communications technologies at the component, subsystem, system, and network level, geared toward high frequency, high data rate systems. The SITE facility is well-suited for evaluation of the new technologies required for the Space Exploration Initiative (SEI) and advanced commercial systems. Described here are the technology developments and evaluation requirements for current and planned commercial and space science programs. Also examined are the capabilities of SITE, the past, present and planned future configurations of the SITE facility, and applications of SITE to evaluation of SEI technology.
Directory of Graduate Programs in the Speech Communication Arts and Sciences 1975-1976.
ERIC Educational Resources Information Center
Hall, Robert N., Ed.
The primary function of this directory is to serve prospective graduate students, teachers, administrators and counselors who desire current information about graduate programs in speech communication. A secondary function is to provide a comparative analysis of the information presented. Many of the fundamental questions that a student might ask…
The ASP Sensor Network: Infrastructure for the Next Generation of NASA Airborne Science
NASA Astrophysics Data System (ADS)
Myers, J. S.; Sorenson, C. E.; Van Gilst, D. P.; Duley, A.
2012-12-01
A state-of-the-art real-time data communications network is being implemented across the NASA Airborne Science Program core platforms. Utilizing onboard Ethernet networks and satellite communications systems, it is intended to maximize the science return from both single-platform missions and complex multi-aircraft Earth science campaigns. It also provides an open platform for data visualization and synthesis software tools, for use by the science instrument community. This paper will describe the prototype implementations currently deployed on the NASA DC-8 and Global Hawk aircraft, and the ongoing effort to expand the capability to other science platforms. Emphasis will be on the basic network architecture, the enabling hardware, and new standardized instrument interfaces. The new Mission Tools Suite, which provides an web-based user interface, will be also described; together with several example use-cases of this evolving technology.
clearScience: Infrastructure for Communicating Data-Intensive Science.
Bot, Brian M; Burdick, David; Kellen, Michael; Huang, Erich S
2013-01-01
Progress in biomedical research requires effective scientific communication to one's peers and to the public. Current research routinely encompasses large datasets and complex analytic processes, and the constraints of traditional journal formats limit useful transmission of these elements. We are constructing a framework through which authors can not only provide the narrative of what was done, but the primary and derivative data, the source code, the compute environment, and web-accessible virtual machines. This infrastructure allows authors to "hand their machine"- prepopulated with libraries, data, and code-to those interested in reviewing or building off of their work. This project, "clearScience," seeks to provide an integrated system that accommodates the ad hoc nature of discovery in the data-intensive sciences and seamless transitions from working to reporting. We demonstrate that rather than merely describing the science being reported, one can deliver the science itself.
Social media is all about video these days: tips communicating science from NASA's Earth Right Now
NASA Astrophysics Data System (ADS)
Bell, S.
2016-12-01
If you're not producing video to communicate your science findings, you're missing the boat navigating the ever-evolving currents of social media. NASA's Earth Right Now communications team made video a priority the past year as we engaged a massive online audience on social media. We will share best practices on social media, lessons learned, what's on the horizon and storytelling techniques to try. PBS documentary-style is passé. Welcome to the world of ten-second Snaps, text-on-picture CNN stories, Facebook Live events and 360° video experiences. Your audience is out there, you just need to catch their attention.
Strategies for a Creative Future with Computer Science, Quality Design and Communicability
NASA Astrophysics Data System (ADS)
Cipolla Ficarra, Francisco V.; Villarreal, Maria
In the current work is presented the importance of the two-way triad between computer science, design and communicability. It is demonstrated how the principles of quality of software engineering are not universal since they are disappearing inside university training. Besides, a short analysis of the term "creativity" males apparent the existence of plagiarism as a human factor that damages the future of communicability applied to the on-line and off-line contents of the open software. A set of measures and guidelines are presented so that the triad works again correctly in the next years to foster the qualitative design of the interactive systems on-line and/or off-line.
An Evaluation of Protocols for UAV Science Applications
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Stewart, David E.; Sullivan, Donald V.; Finch, Patrick E.
2012-01-01
This paper identifies data transport needs for current and future science payloads deployed on the NASA Global Hawk Unmanned Aeronautical Vehicle (UAV). The NASA Global Hawk communication system and operational constrains are presented. The Genesis and Rapid Intensification Processes (GRIP) mission is used to provide the baseline communication requirements as a variety of payloads were utilized in this mission. User needs and desires are addressed. Protocols are matched to the payload needs and an evaluation of various techniques and tradeoffs are presented. Such techniques include utilization rate-base selective negative acknowledgement protocols and possible use of protocol enhancing proxies. Tradeoffs of communication architectures that address ease-of-use and security considerations are also presented.
Integrating communication theory and practice: Successes and challenges in boundary-spanning work
NASA Astrophysics Data System (ADS)
Weiss, M.; Fallon Lambert, K.
2014-12-01
The Science Policy Exchange (SPE) is a consortium of leaders in ecosystem research united to facilitate science from innovation to impact. In our unique model, we catalyze actionable science on pressing environmental issues such as climate change, and undertake comprehensive stakeholder engagement, public communication, and policy outreach. Built on more than 10 years of experience creating programs at the interface of science and policy at Hubbard Brook, Harvard Forest, and other LTER sites, we apply science communication research to practice in various ways depending on the context and problem being addressed. In keeping with the research on co-production and the importance of establishing credibility, salience, and legitimacy, we engage stakeholders from the outset of each project. Stakeholders and scientists collaborate to define the scope of the project, frame questions relevant to society, and define communication products to meet their needs. To promote broader distribution and uptake, we combine message development, storytelling, and media training to craft and deliver relatable stories that tap into news values and human values. Three recent SPE successes include: (1) Wildlands and Woodlands: A regional forest conservation report released in 2010 that generated 137 media stories and influenced land conservation policy, (2) Changes to the Land: A suite of communication products developed in 2013 for a landscape scenarios project in Massachusetts that saturated the state's media markets and have been widely cited by policymakers, and (3) Co-benefits of Carbon Standards: A national air quality report released in 2014 that was cited in 76 media stories and helped reframe the national debate on carbon dioxide emissions standards in terms of their potential local health and environmental benefits. We will describe our successful applications of science communication research and discuss several critical disconnections between research and practice. These include, how much and what form of stakeholder engagement is most appropriate for a given project? How does the state of the science and the current policy context shape the pathways to impact and associated communication strategies? What can we learn from advocacy campaign to make our science communication sustained and more effective?
Report on Active and Planned Spacecraft and Experiments
NASA Technical Reports Server (NTRS)
Vostreys, R. W. (Editor); Maitson, H. H. (Editor)
1981-01-01
Active and planned spacecraft activity and experiments between June 1, 1980 and May 31, 1981 known to the National Space Science Data Center are described. The information covers a wide range of disciplines: astronomy, Earth sciences, meteorology, planetary sciences, aeronomy, particles and fields, solar physics, life sciences, and material sciences. Each spacecraft and experiment is described and its current status presented. Descriptions of navigational and communications satellites and of spacecraft that contain only continuous radio beacons used for ionospheric studies are specifically excluded.
Communicating Climate Change: Lessons Learned from a Researcher-Museum Collaboration †
Parker, Christopher T.; Cockerham, Debbie; Foss, Ann W.
2018-01-01
The need for science education and outreach is great. However, despite the ever-growing body of available scientific information, facts are often misrepresented to or misunderstood by the general public. This can result in uninformed decisions that negatively impact society at both individual and community levels. One solution to this problem is to make scientific information more available to the public through outreach programs. Most outreach programs, however, focus on health initiatives, STEM programs, or young audiences exclusively. This article describes a collaboration between the Research and Learning Center at the Fort Worth Museum of Science and History and an interdisciplinary team of researchers from the Dallas–Fort Worth (DFW) metroplex area. The collaboration was a pilot effort of a science communication fellowship and was designed to train researchers to effectively convey current science information to the public with a focus on lifelong learning. We focus on the broader idea of a university-museum collaboration that bridges the science communication gap as we outline the process of forming this collaboration, lessons we learned from the process, and directions that can support future collaborations. PMID:29904536
Gap between science and media revisited: Scientists as public communicators
Peters, Hans Peter
2013-01-01
The present article presents an up-to-date account of the current media relations of scientists, based on a comprehensive analysis of relevant surveys. The evidence suggests that most scientists consider visibility in the media important and responding to journalists a professional duty—an attitude that is reinforced by universities and other science organizations. Scientific communities continue to regulate media contacts with their members by certain norms that compete with the motivating and regulating influences of public information departments. Most scientists assume a two-arena model with a gap between the arenas of internal scientific and public communication. They want to meet the public in the public arena, not in the arena of internal scientific communication. Despite obvious changes in science and in the media system, the orientations of scientists toward the media, as well as the patterns of interaction with journalists, have their roots in the early 1980s. Although there is more influence on public communication from the science organizations and more emphasis on strategic considerations today, the available data do not indicate abrupt changes in communication practices or in the relevant beliefs and attitudes of scientists in the past 30 y. Changes in the science–media interface may be expected from the ongoing structural transformation of the public communication system. However, as yet, there is little evidence of an erosion of the dominant orientation toward the public and public communication within the younger generation of scientists. PMID:23940312
Safe and Sound? Scientists’ Understandings of Public Engagement in Emerging Biotechnologies
Braun, Matthias; Starkbaum, Johannes; Dabrock, Peter
2015-01-01
Science communication is a widely debated issue, particularly in the field of biotechnology. However, the views on the interface between science and society held by scientists who work in the field of emerging biotechnologies are currently insufficiently explored. Therefore filling this gap is one of the urgent desiderata in the further development of a dialogue-oriented model of science-public interaction. Against this background, this article addresses two main questions: (1) How do the persons who work in the field of science perceive the public and its involvement in science? (2) What preferred modes of communication are stressed by those scientists? This research is based on a set of interviews with full professors from the field of biotechnology with a special focus on synthetic biology. The results show that scientists perceive the public as holding a primarily risk-focused view of science. On the one hand, different forms of science communication are thereby either seen as a chance to improve the public acceptance of science in general and one field of research in particular. On the other hand, the exchange with the public is seen as a duty because the whole of society is affected by scientific innovation. Yet, some of the stakeholders’ views discussed here conflict with debates on public engagement in technological innovation. PMID:26660160
Computers in Life Science Education. Volume 5, 1988.
ERIC Educational Resources Information Center
Computers in Life Science Education, 1988
1988-01-01
Designed to serve as a means of communication among life science educators who anticipate or are currently using microcomputers as an educational tool, this volume of newsletters provides background information and practical suggestions on computer use. Over 80 articles are included. Topic areas include: (1) using a personal computer in a plant…
Computers in Life Science Education. Volumes 1 through 4, 1984-1987.
ERIC Educational Resources Information Center
Modell, Harold, Ed.
1987-01-01
Designed to serve as a means of communication among life science educators who anticipate or are currently using microcomputers as an educational tool, these four volumes of newsletters provide background information and practical suggestions on computer use in over 80 articles. Topic areas include: (1) teaching physiology and other life sciences…
The Application of Natural Language Processing to Augmentative and Alternative Communication
ERIC Educational Resources Information Center
Higginbotham, D. Jeffery; Lesher, Gregory W.; Moulton, Bryan J.; Roark, Brian
2012-01-01
Significant progress has been made in the application of natural language processing (NLP) to augmentative and alternative communication (AAC), particularly in the areas of interface design and word prediction. This article will survey the current state-of-the-science of NLP in AAC and discuss its future applications for the development of next…
Directory of Graduate Programs in the Communication Arts and Sciences, 1986-1987. [Ninth Edition].
ERIC Educational Resources Information Center
Hall, Robert N., Ed.
Intended to provide current information about graduate programs in speech communication in the United States and Canada to prospective graduate students, teachers, administrators, and counselors, this directory is also useful to those people seeking summary data on the state of the profession and to those evaluating or expanding their own speech…
Preschool children's Collaborative Science Learning Scaffolded by Tablets
NASA Astrophysics Data System (ADS)
Fridberg, Marie; Thulin, Susanne; Redfors, Andreas
2017-06-01
This paper reports on a project aiming to extend the current understanding of how emerging technologies, i.e. tablets, can be used in preschools to support collaborative learning of real-life science phenomena. The potential of tablets to support collaborative inquiry-based science learning and reflective thinking in preschool is investigated through the analysis of teacher-led activities on science, including children making timelapse photography and Slowmation movies. A qualitative analysis of verbal communication during different learning contexts gives rise to a number of categories that distinguish and identify different themes of the discussion. In this study, groups of children work with phase changes of water. We report enhanced and focused reasoning about this science phenomenon in situations where timelapse movies are used to stimulate recall. Furthermore, we show that children communicate in a more advanced manner about the phenomenon, and they focus more readily on problem solving when active in experimentation or Slowmation producing contexts.
Terminal-oriented computer-communication networks.
NASA Technical Reports Server (NTRS)
Schwartz, M.; Boorstyn, R. R.; Pickholtz, R. L.
1972-01-01
Four examples of currently operating computer-communication networks are described in this tutorial paper. They include the TYMNET network, the GE Information Services network, the NASDAQ over-the-counter stock-quotation system, and the Computer Sciences Infonet. These networks all use programmable concentrators for combining a multiplicity of terminals. Included in the discussion for each network is a description of the overall network structure, the handling and transmission of messages, communication requirements, routing and reliability consideration where applicable, operating data and design specifications where available, and unique design features in the area of computer communications.
Betsch, Cornelia; Böhm, Robert; Airhihenbuwa, Collins O; Butler, Robb; Chapman, Gretchen B; Haase, Niels; Herrmann, Benedikt; Igarashi, Tasuku; Kitayama, Shinobu; Korn, Lars; Nurm, Ülla-Karin; Rohrmann, Bernd; Rothman, Alexander J; Shavitt, Sharon; Updegraff, John A; Uskul, Ayse K
2016-10-01
This review introduces the concept of culture-sensitive health communication. The basic premise is that congruency between the recipient's cultural characteristics and the respective message will increase the communication's effectiveness. Culture-sensitive health communication is therefore defined as the deliberate and evidence-informed adaptation of health communication to the recipients' cultural background in order to increase knowledge and improve preparation for medical decision making and to enhance the persuasiveness of messages in health promotion. To achieve effective health communication in varying cultural contexts, an empirically and theoretically based understanding of culture will be indispensable. We therefore define culture, discuss which evolutionary and structural factors contribute to the development of cultural diversity, and examine how differences are conceptualized as scientific constructs in current models of cultural differences. In addition, we will explicate the implications of cultural differences for psychological theorizing, because common constructs of health behavior theories and decision making, such as attitudes or risk perception, are subject to cultural variation. In terms of communication, we will review both communication strategies and channels that are used to disseminate health messages, and we will discuss the implications of cultural differences for their effectiveness. Finally, we propose an agenda both for science and for practice to advance and apply the evidence base for culture-sensitive health communication. This calls for more interdisciplinary research between science and practice but also between scientific disciplines and between basic and applied research. © The Author(s) 2015.
THE STUDY OF LANGUAGE, A SURVEY OF LINGUISTICS AND RELATED DISCIPLINES IN AMERICA.
ERIC Educational Resources Information Center
CARROLL, JOHN B.
EMPHASIZING THE FIELD OF LINGUISTICS, THIS BOOK DESCRIBES THE HISTORY, SCOPE, PROBLEMS, AND CURRENT STATE OF THE STUDY OF LANGUAGE AND COMMUNICATION IN THE UNITED STATES. THE MAJOR PORTION OF THE BOOK, DEVOTED TO LINGUISTIC SCIENCE, IS COMPRISED OF (1) EXPLANATIONS OF HOW LINGUISTIC SCIENCE COMPARES, FROM THE HISTORICAL AND DESCRIPTIVE POINTS OF…
The application of natural language processing to augmentative and alternative communication.
Higginbotham, D Jeffery; Lesher, Gregory W; Moulton, Bryan J; Roark, Brian
2011-01-01
Significant progress has been made in the application of natural language processing (NLP) to augmentative and alternative communication (AAC), particularly in the areas of interface design and word prediction. This article will survey the current state-of-the-science of NLP in AAC and discuss its future applications for the development of next generation of AAC technology.
Robinson, T N; Patrick, K; Eng, T R; Gustafson, D
1998-10-14
To examine the current status of interactive health communication (IHC) and propose evidence-based approaches to improve the quality of such applications. The Science Panel on Interactive Communication and Health, a 14-member, nonfederal panel with expertise in clinical medicine and nursing, public health, media and instructional design, health systems engineering, decision sciences, computer and communication technologies, and health communication, convened by the Office of Disease Prevention and Health Promotion, US Department of Health and Human Services. Published studies, online resources, expert panel opinions, and opinions from outside experts in fields related to IHC. The panel met 9 times during more than 2 years. Government agencies and private-sector experts provided review and feedback on the panel's work. Interactive health communication applications have great potential to improve health, but they may also cause harm. To date, few applications have been adequately evaluated. Physicians and other health professionals should promote and participate in an evidence-based approach to the development and diffusion of IHC applications and endorse efforts to rigorously evaluate the safety, quality, and utility of these resources. A standardized reporting template is proposed to help developers and evaluators of IHC applications conduct evaluations and disclose their results and to help clinicians, purchasers, and consumers judge the quality of IHC applications.
Mass media and marketing communication promoting primary and secondary cancer prevention.
Hannon, Peggy; Lloyd, Gareth P; Viswanath, K; Smith, Tenbroeck; Basen-Engquist, Karen; Vernon, Sally W; Turner, Gina; Hesse, Bradford W; Crammer, Corinne; von Wagner, Christian; Backinger, Cathy L
2009-01-01
People often seek and receive cancer information from mass media (including television, radio, print media, and the Internet), and marketing strategies often inform cancer information needs assessment, message development, and channel selection. In this article, we present the discussion of a 2-hour working group convened for a cancer communications workshop held at the 2008 Society of Behavioral Medicine meeting in San Diego, CA. During the session, an interdisciplinary group of investigators discussed the current state of the science for mass media and marketing communication promoting primary and secondary cancer prevention. We discussed current research, new research areas, methodologies and theories needed to move the field forward, and critical areas and disciplines for future research.
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Ivancic, William D.; Zuzek, John E.
1991-01-01
The development of new space communications technologies by NASA has included both commercial applications and space science requirements. At NASA's Lewis Research Center, methods and facilities have been developed for evaluating these new technologies in the laboratory. NASA's Systems Integration, Test and Evaluation (SITE) Space Communication System Simulator is a hardware-based laboratory simulator for evaluating space communications technologies at the component, subsystem, system, and network level, geared toward high frequency, high data rate systems. The SITE facility is well-suited for evaluation of the new technologies required for the Space Exploration Initiative (SEI) and advanced commercial systems. This paper describes the technology developments and evaluation requirements for current and planned commercial and space science programs. Also examined are the capabilities of SITE, the past, present, and planned future configurations of the SITE facility, and applications of SITE to evaluation of SEI technology.
The DEVELOP National Program's Strategy for Communicating Applied Science Outcomes
NASA Astrophysics Data System (ADS)
Childs-Gleason, L. M.; Ross, K. W.; Crepps, G.; Favors, J.; Kelley, C.; Miller, T. N.; Allsbrook, K. N.; Rogers, L.; Ruiz, M. L.
2016-12-01
NASA's DEVELOP National Program conducts rapid feasibility projects that enable the future workforce and current decision makers to collaborate and build capacity to use Earth science data to enhance environmental management and policy. The program communicates its results and applications to a broad spectrum of audiences through a variety of methods: "virtual poster sessions" that engage the general public through short project videos and interactive dialogue periods, a "Campus Ambassador Corps" that communicates about the program and its projects to academia, scientific and policy conference presentations, community engagement activities and end-of-project presentations, project "hand-offs" providing results and tools to project partners, traditional publications (both gray literature and peer-reviewed), an interactive website project gallery, targeted brochures, and through multiple social media venues and campaigns. This presentation will describe the various methods employed by DEVELOP to communicate the program's scientific outputs, target audiences, general statistics, community response and best practices.
Özdemir, Vural; Dandara, Collet; Hekim, Nezih; Birch, Kean; Springer, Simon; Kunej, Tanja; Endrenyi, Laszlo
2017-11-01
Science and its practice always had a subtext, subject to influence by scientists', funders', and other innovation actors' values and assumptions. The recent emergence of post-truth, authoritarian and populist penchants, in both developed and developing countries, has further blurred the already fluid boundaries between material scientific facts and their social construction/shaping by scientific subtext, human values, powers, and hegemony. While there are certain checks, balances, and oversight mechanisms for publication ethics, other pillars of science communication, most notably, scientific conferences and their governance, are ill prepared for post-truth science. Worrisomely, the proliferation of spam conferences is a major cause for concern for integrative biology and postgenomic science. The current gaps in conference ethics are important beyond science communication because conferences help build legitimacy of emerging technologies and frontiers of science and, thus, bestows upon the organizers, funders, enlisted scientific advisors, speakers, among others, power, which in turn needs to be checked. Denis Diderot (1713-1784), a prominent intellectual during the Enlightenment period, has aptly observed that the very act of organizing brings about power, influence, and control. If the subtext of conference practices is left unchecked, it can pave the way for hegemony, and yet more volatile and violent authoritarian governance systems in science and society. This begs for innovative solutions to increase accountability, resilience, and capacity of technology experts and scientists to discern and decode the subtext in science and its communication in the current post-truth world. We propose that the existing undergraduate and graduate programs in life and physical sciences and medicine could be redesigned to include a rotation for exposure to and training in political science. Such innovative PhD+ programs straddling technical and political science scholarship would best equip future students and citizens to grasp and respond to subtext and embedded opaque value and power systems in scientific practices in an increasingly post-truth world. Political science scholarship unpacks the inner workings, subtext, and power dynamics in science and society. Thus, knowledge of political science competency is akin to molecular biology in life sciences. Both make the invisible (e.g., cell biology versus subtext of knowledge) visible. The ability to read subtext in science and claims of post-truth knowledge is a new and essential form of societal literacy in 21 st century science and integrative biology.
The Communication Strategy of NASA's Earth Observatory
NASA Astrophysics Data System (ADS)
Simmon, R.; Ward, K.; Riebeek, H.; Allen, J.; Przyborski, P.; Scott, M.; Carlowicz, M. J.
2010-12-01
Climate change is a complex, multi-disciplinary subject. Accurately conveying this complexity to general audiences, while still communicating the basic facts, is challenging. Our approach is to combine climate change information with a wide range of Earth system science topics, illustrated by satellite imagery and data visualizations. NASA's Earth Observatory web site (earthobservatory.nasa.gov) uses the broad range of NASA's remote sensing technologies, data, and research to communicate climate change science. We serve two primary audiences: the "attentive public" --people interested in and willing to seek out information about science, technology, and the environment--and media. We cover the breadth of Earth science, with information about climate change integrated with stories about weather, geology, oceanography, and solar flares. Current event-driven imagery is used as a hook to draw readers. We then supply links to supplemental information, either about current research or the scientific basics. We use analogies, carefully explain jargon or acronyms, and build narratives which both attract readers and make information easier to remember. These narratives are accompanied by primers on topics like energy balance or the water cycle. Text is carefully integrated with illustrations and state-of-the-art data visualizations. Other site features include a growing list of climate questions and answers, addressing common misconceptions about global warming and climate change. Maps of global environmental parameters like temperature, rainfall, and vegetation show seasonal change and long-term trends. Blogs from researchers in the field provide a look at the day-to-day process of science. For the media, public domain imagery is supplied at full resolution and links are provided to primary sources.
NASA Astrophysics Data System (ADS)
Lubchenco, J.
2006-12-01
One of the most important roles of science is to inform the discussions and decisions of individuals and institutions. In a world that is changing rapidly, information is urgently needed to help citizens and leaders understand what's happening, what's causing changes, what the implications are and what are the likely consequences of various options. Most everyone agrees that decisions should be informed (not dictated) by scientific information, but achieving that goal has proven a challenge. Decision-makers need to have access to scientific information that is understandable, relevant, useable, current and credible. However, the science is complex, nuanced and difficult to communicate simply. Most scientists are ill equipped to speak in language that is non-technical. Many academic scientists are wary of talking to the press. Academia does not generally reward time spent doing outreach. As a consequence, others step into the breach and communicate their version of `the science.' All too often this means that vested interests spin, distort or cherry-pick information. The result is that decisions are made without good scientific knowledge and science is seen increasingly as a weapon, not as useful knowledge. The presentation will focus on how one program, the Aldo Leopold Leadership Program is training academic environmental scientists to be better communicators of their science to non-scientists. Lessons learned and suggestions for revolutionizing the communication of scientific information will be offered.
What Renaissance Literary Theory Tells us about Climate Communication
NASA Astrophysics Data System (ADS)
Guenther, G. J.
2017-12-01
Many current debates in climate communication-to convey the consensus or not to convey the consensus; to frighten people or encourage them-seem to center on the question of how to discuss climate science and its ability to predict climate impacts. By examining the Renaissance literary theory that represents poets as better teachers than philosophers and scientists, this paper argues that climate advocates should redefine climate communication to include a variety of artistic discourses that make meaning in order to inspire people into political action.
Communication of Energy Efficiency Information to Remodelers. Lessons From Current Practice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liaukus, C.
2012-10-01
The effective communication of energy efficiency and building science information to remodeling contractors is achieved through varying formats, timelines, and modes depending on who is delivering the information, who is intended to receive it, and what technical, intellectual, and time resources the recipients have at their disposal. This report reviews communications that are deemed effective, and selects a group to be further analyzed to determine why they are effective and how less successful formats or strategies can be revised for greater effectiveness.
None
2018-05-25
2 days of workshops at CERN. Part 1: Scientific communication: many speeches followed by questions and intense discussions: 1. François de Closet "Scientific Progress", 2. Gerhard Moosleiter, 3. H. Meyers "How to create better conditions for scientific communication". Part 2: Science and Communication. A Russian from Moscow speaks about, among other things, the current situation of the scientific press in Russia. Part 3: Conclusions and reports from the day before from different work groups. Part 4: Questions with C. Rubbia and N. Calder and thanks are given.
ERIC Educational Resources Information Center
Edmondston, Joanne; Dawson, Vaille
2014-01-01
Science communication training for undergraduate science students has been recommended to improve future scientists' ability to constructively engage with the public. This study examined biotechnology lecturers' and science communication lecturers' views of science communication training and its possible inclusion in a biotechnology degree course…
Teacher perceptions of usefulness of mobile learning devices in rural secondary science classrooms
NASA Astrophysics Data System (ADS)
Tighe, Lisa
The internet and easy accessibility to a wide range of digital content has created the necessity for teachers to embrace and integrate digitial media in their curriculums. Although there is a call for digital media integration in curriculum by current learning standards, rural schools continue to have access to fewer resources due to limited budgets, potentially preventing teachers from having access to the most current technology and science instructional materials. This dissertation identifies the perceptions rural secondary science teachers have on the usefulness of mobile learning devices in the science classroom. The successes and challenges in using mobile learning devices in the secondary classroom were also explored. Throughout this research, teachers generally supported the integration of mobile devices in the classroom, while harboring some concerns relating to student distractability and the time required for integrating mobile devices in exisiting curriculum. Quantitative and qualitative data collected through surveys, interviews, and classroom observations revealed that teachers perceive that mobile devices bring benefits such as ease of communication and easy access to digitial information. However, there are perceived challenges with the ability to effectively communicate complex scientific information via mobile devices, distractibility of students, and the time required to develop effective curriculum to integrate digital media into the secondary science classroom.
I'm Not a Warmist! Transcending Ideological Barriers in Climate Communication (Invited)
NASA Astrophysics Data System (ADS)
Denning, S.
2013-12-01
A wealth of social science research has shown that public perception of climate change is very strongly colored by ideological filters in which facts are evaluated based on their fit to previously held beliefs. Scientific discourse about climate change is well received by environmentalism, which confirms the fears and competitive impulses of libertarianism. When data and belief come into conflict in public discourse, belief nearly always dominates. Scientists, educators, and science communicators must acknowledge the cultural context of climate change in order to lift climate discourse out of its ideological gutter. Many communication strategies emerging from solid social-science research fail to acknowledge the ideological cultural filters through which people experience climate discourse. Emphasizing recent trends, current weather events and impacts, and especially argument from authority of expertise and consensus are effective with average audiences but trigger reflexive opposition from suspicious listeners. Beyond ideology, climate change is Simple, Serious, and Solvable. Effective communication of these three key ideas can succeed when the science argument is carefully framed to avoid attack of the audience's ethical identity. Simple arguments from common sense and everyday experience are more successful than data. Serious consequences to values that resonate with the audience can be avoided by solutions that don't threaten those values.
European Science Notes Information Bulletin Reports on Current European and Middle Eastern Science
1992-01-01
evclopment in the Abbey-Polymer Processing and Properties ................... 524 J, Magill Corrosion and Protection Centre at the University of...34* Software Engineering and microprocessors and communication chips. The Information Processing Systems recently announced T9000 microprocessor will...computational fluid dynamics, struc- In addition to general and special-purpose tural mechanics, partial differential equations, processing , Europe has a
European Science Notes Information Bulletin Reports on Current European and Middle Eastern Science
1992-01-01
Overcash MATERIALS Research and Development in the Abbey-Polymer Processing and Properties ................... 574 J. Magill Corrosion and Protection Centre...gressi• ely pursuing the development of powerful "* Software Engineering and microprocessors and communication chips. The Information Processing ...differential equations, processing , Europe has a number of fascinating weather forecasting) that are to be developed by a projects in distributed
Preparing Planetary Scientists to Engage Audiences
NASA Astrophysics Data System (ADS)
Shupla, C. B.; Shaner, A. J.; Hackler, A. S.
2017-12-01
While some planetary scientists have extensive experience sharing their science with audiences, many can benefit from guidance on giving presentations or conducting activities for students. The Lunar and Planetary Institute (LPI) provides resources and trainings to support planetary scientists in their communication efforts. Trainings have included sessions for students and early career scientists at conferences (providing opportunities for them to practice their delivery and receive feedback for their poster and oral presentations), as well as separate communication workshops on how to engage various audiences. LPI has similarly begun coaching planetary scientists to help them prepare their public presentations. LPI is also helping to connect different audiences and their requests for speakers to planetary scientists. Scientists have been key contributors in developing and conducting activities in LPI education and public events. LPI is currently working with scientists to identify and redesign short planetary science activities for scientists to use with different audiences. The activities will be tied to fundamental planetary science concepts, with basic materials and simple modifications to engage different ages and audience size and background. Input from the planetary science community on these efforts is welcome. Current results and resources, as well as future opportunities will be shared.
ERIC Educational Resources Information Center
Liem, Gregory Arief D.; Martin, Andrew J.; Anderson, Michael; Gibson, Robyn; Sudmalis, David
2014-01-01
Drawing on the Programme for International Student Assessment 2003 data set comprising over 190,000 15-year-old students in 25 countries, the current study sought to examine the role of arts-related information and communication technology (ICT) use in students' problem-solving skill and science and mathematics achievement. Structural equation…
Use and Acceptance of Information and Communication Technology Among Laboratory Science Students
NASA Astrophysics Data System (ADS)
Barnes, Brenda C.
Online and blended learning platforms are being promoted within laboratory science education under the assumption that students have the necessary skills to navigate online and blended learning environments. Yet little research has examined the use of information and communication technology (ICT) among the laboratory science student population. The purpose of this correlational, survey research study was to explore factors that affect use and acceptance of ICT among laboratory science students through the theoretical lens of the unified theory of acceptance and use of technology (UTAUT) model. An electronically delivered survey drew upon current students and recent graduates (within 2 years) of accredited laboratory science training programs. During the 4 week data collection period, 168 responses were received. Results showed that the UTAUT model did not perform well within this study, explaining 25.2% of the variance in use behavior. A new model incorporating attitudes toward technology and computer anxiety as two of the top variables, a model significantly different from the original UTAUT model, was developed that explained 37.0% of the variance in use behavior. The significance of this study may affect curriculum design of laboratory science training programs wanting to incorporate more teaching techniques that use ICT-based educational delivery, and provide more options for potential students who may not currently have access to this type of training.
Kirby, David A
2018-03-01
Argument As the deficit model's failure leaves scientists searching for more effective communicative approaches, science communication scholars have begun promoting narrative as a potent persuasive tool. Narratives can help the public make choices by setting out a scientific issue's contexts, establishing the stakes involved, and offering potential solutions. However, employing narrative for persuasion risks embracing the same top-down communication approach underlying deficit model thinking. This essay explores the parallels between movie censorship and the current use of narrative to influence public opinion by examining how the Hays Office and the Catholic Legion of Decency responded to science in movies. I argue that deploying narratives solely as public relations exercises demonstrates the same mistrust of audiences that provided the foundation of movie censorship. But the history of movie censorship reveals the dangers of using narrative to remove the public's agency and to coerce them towards a preferred position rather than fostering their ability to come to their own conclusions.
Advanced Communication and Networking Technologies for Mars Exploration
NASA Technical Reports Server (NTRS)
Bhasin, Kul; Hayden, Jeff; Agre, Jonathan R.; Clare, Loren P.; Yan, Tsun-Yee
2001-01-01
Next-generation Mars communications networks will provide communications and navigation services to a wide variety of Mars science vehicles including: spacecraft that are arriving at Mars, spacecraft that are entering and descending in the Mars atmosphere, scientific orbiter spacecraft, spacecraft that return Mars samples to Earth, landers, rovers, aerobots, airplanes, and sensing pods. In the current architecture plans, the communication services will be provided using capabilities deployed on the science vehicles as well as dedicated communication satellites that will together make up the Mars network. This network will evolve as additional vehicles arrive, depart or end their useful missions. Cost savings and increased reliability will result from the ability to share communication services between missions. This paper discusses the basic architecture that is needed to support the Mars Communications Network part of NASA's Space Science Enterprise (SSE) communications architecture. The network may use various networking technologies such as those employed in the terrestrial Internet, as well as special purpose deep-space protocols to move data and commands autonomously between vehicles, at disparate Mars vicinity sites (on the surface or in near-Mars space) and between Mars vehicles and earthbound users. The architecture of the spacecraft on-board local communications is being reconsidered in light of these new networking requirements. The trend towards increasingly autonomous operation of the spacecraft is aimed at reducing the dependence on resource scheduling provided by Earth-based operators and increasing system fault tolerance. However, these benefits will result in increased communication and software development requirements. As a result, the envisioned Mars communications infrastructure requires both hardware and protocol technology advancements. This paper will describe a number of the critical technology needs and some of the ongoing research activities.
Effective science teaching in a high poverty middle school: A case study
NASA Astrophysics Data System (ADS)
Meyer, Georgette Wright
This qualitative case study described the characteristics of science teachers in a high poverty urban middle school whose 2010 scores on South Carolina's Palmetto Assessment of State Standards (PASS) ranked second in the state. Data was obtained through classroom observations, open-ended interviews, school documents, and photographs taken inside the school from ten participants, who were seven science teachers, a science coach, and two administrators. Findings revealed a school culture that pursued warm and caring relationships with students while communicating high expectations for achievement, strong central leadership who communicated their vision and continuously checked for its implementation through informal conversations, frequent classroom observations, and test score analysis. A link between participants' current actions and their perception of prior personal and professional experiences was found. Participants related their classroom actions to the lives of the students outside of school, and evidenced affection for their students.
Applied Information Systems Research Program (AISRP). Workshop 2: Meeting Proceedings
NASA Technical Reports Server (NTRS)
1992-01-01
The Earth and space science participants were able to see where the current research can be applied in their disciplines and computer science participants could see potential areas for future application of computer and information systems research. The Earth and Space Science research proposals for the High Performance Computing and Communications (HPCC) program were under evaluation. Therefore, this effort was not discussed at the AISRP Workshop. OSSA's other high priority area in computer science is scientific visualization, with the entire second day of the workshop devoted to it.
NASA Technical Reports Server (NTRS)
Shameson, L.; Brass, J. A.; Hanratty, J. J.; Roberts, A. C.; Wegener, S. S.
1995-01-01
Earth science activities at NASA Ames are research in atmospheric and ecosystem science, development of remote sensing and in situ sampling instruments, and their integration into scientific research platform aircraft. The use of satellite communications can greatly extend the capability of these agency research platform aircraft. Current projects and plans involve satellite links on the Perseus UAV and the ER-2 via TDRSS and a proposed experiment on the NASA Advanced Communications Technology Satellite. Provisions for data links on the Perseus research platform, via TDRSS S-band multiple access service, have been developed and are being tested. Test flights at Dryden are planned to demonstrate successful end-to-end data transfer. A Unisys Corp. airborne satcom STARLink system is being integrated into an Ames ER-2 aircraft. This equipment will support multiple data rates up to 43 Mb/s each via the TDRS S Ku-band single access service. The first flight mission for this high-rate link is planned for August 1995. Ames and JPL have proposed an ACTS experiment to use real-time satellite communications to improve wildfire research campaigns. Researchers and fire management teams making use of instrumented aircraft platforms at a prescribed burn site will be able to communicate with experts at Ames, the U.S. Forest Service, and emergency response agencies.
Preparing Graduate Students as Science Communicators
NASA Astrophysics Data System (ADS)
Knudson, K.; Gutstein, J.
2012-12-01
Our presentation introduces our interdisciplinary curriculum that teaches graduate students at our R-1 university to translate their research to general audiences. We also discuss the challenges we have faced and strategies we have employed to broaden graduate education at our campus to include preparation in science communication. Our "Translating Research beyond Academia" curriculum consists of three separate thematically based courses taught over the academic year: Education and Community Outreach, Science Communication and Writing, Communicating with Policy- and Decision-makers. Course goals are to provide professional development training so that graduate students become more capable professionals prepared for careers inside and outside academia while increasing the public understanding of science and technology. Open to graduate students of any discipline, each course meets weekly for two hours; students receive academic credit through a co-sponsoring graduate program. Students learn effective strategies for communicating research and academic knowledge with the media, the general public, youth, stakeholders, and decision- and policy-makers. Courses combine presentations from university and regional experts with hands-on work sessions aimed towards creating effective communications, outreach and policy plans, broader impacts statements, press releases, blogs, and policy briefs. A final presentation and reflections are required. Students may opt for further training through seminars tailored to student need. Initial results of our analyses of student evaluations and work indicate that students appreciate the interdisciplinary, problem-based approach and the low-risk opportunities for learning professional development skills and for exploring non-academic employment. Several students have initiated engaged work in their disciplines, and several have secured employment in campus science communication positions. Two have changed career plans as a direct result of our courses, opting for master's degrees to pursue science communications-related positions. One received a prestigious fellowship in science communication and media. Yet, while we are successful with students, our programs are not without challenges. Our Translating Research interdisciplinary curriculum that encourages students' exploration of non-academic career options can create problems with faculty advisors in the current environment of graduate education; Carnegie scholars and other researchers argue that the traditional master-apprentice system requires a thorough overhaul to address high attrition rates and low rates of academic employment. Secondly, we situated our communications training within our environmental research institute and outside of any graduate program's degree requirements. While this gives access to motivated graduate students and creates enriching interactions within the course context, it presents problems with campus recognition and institutionalization. We are identifying new pathways and exploring the creation of a certificate program through our University Extension. Graduate student perception can also be an issue. Our courses tend to attract a particular kind of graduate student: female, early in her academic career, in the sciences, and interested in a career outside of academia. Attracting more male graduate students to science communication remains a challenge.
Business and Science - Big Data, Big Picture
NASA Astrophysics Data System (ADS)
Rosati, A.
2013-12-01
Data Science is more than the creation, manipulation, and transformation of data. It is more than Big Data. The business world seems to have a hold on the term 'data science' and, for now, they define what it means. But business is very different than science. In this talk, I address how large datasets, Big Data, and data science are conceptually different in business and science worlds. I focus on the types of questions each realm asks, the data needed, and the consequences of findings. Gone are the days of datasets being created or collected to serve only one purpose or project. The trick with data reuse is to become familiar enough with a dataset to be able to combine it with other data and extract accurate results. As a Data Curator for the Advanced Cooperative Arctic Data and Information Service (ACADIS), my specialty is communication. Our team enables Arctic sciences by ensuring datasets are well documented and can be understood by reusers. Previously, I served as a data community liaison for the North American Regional Climate Change Assessment Program (NARCCAP). Again, my specialty was communicating complex instructions and ideas to a broad audience of data users. Before entering the science world, I was an entrepreneur. I have a bachelor's degree in economics and a master's degree in environmental social science. I am currently pursuing a Ph.D. in Geography. Because my background has embraced both the business and science worlds, I would like to share my perspectives on data, data reuse, data documentation, and the presentation or communication of findings. My experiences show that each can inform and support the other.
Scientific Communication and the Nature of Science
NASA Astrophysics Data System (ADS)
Nielsen, Kristian H.
2013-09-01
Communication is an important part of scientific practice and, arguably, may be seen as constitutive to scientific knowledge. Yet, often scientific communication gets cursory treatment in science studies as well as in science education. In Nature of Science (NOS), for example, communication is rarely mentioned explicitly, even though, as will be argued in this paper, scientific communication could be treated as a central component of NOS. Like other forms of communication, scientific communication is socially and symbolically differentiated. Among other things, it encompasses technical language and grammar, lab communications, and peer reviews, all of which will be treated in this paper in an attempt to engage on an empirical and theoretical level with science as communication. Seeing science as a form of communicative action supplements the epistemological view of science that is standard to both NOS and the philosophy of science. Additions to the seven NOS aspects on Lederman's (Handbook of research on science education. Lawrence Erlbaum, Mahwah, pp. 831-879,
Outreach as a Unifying Concept in Science Education and Science Communication
NASA Astrophysics Data System (ADS)
Boyd, K.; Balgopal, M.; Birner, T.
2016-12-01
Recently there have been many calls for enhanced communication between scientists and the public in order to increase scientific literacy and improve attitudes toward science. However, these educational outreach (E/O) efforts often encounter structural barriers and the processes that support attainment of the goals of E/O are not well documented. This project provides a look at the current state of the literature on E/O done by scientists. It shows that E/O endeavors are diverse and not well-studied. Research efforts have concentrated on evaluation of specific programs, rather than the underlying principles and processes that influence how scientists interact and communicate with the public. The outcomes that have been examined focus on participants and there is little discussion of influences on facilitators. The research findings are also varied and exist in different disciplines with little overlap, making it difficult to synthesize our understanding of E/O. In this study, we contend that increasing dialogue between the fields of science education and science communication as well as building and utilizing theoretical foundations will help to scaffold the research on E/O. Studies of scientists' discourse and impacts on scientists of participating in E/O are areas that need further investigation. Preliminary results of one such study focusing on a geoscientist will also be presented. The results of this literature review project will help to expand our understanding of the research around E/O and how to extend E/O research to improve the impact of geoscience E/O.
Communicating the Benefits of a Full Sequence of High School Science Courses
NASA Astrophysics Data System (ADS)
Nicholas, Catherine Marie
High school students are generally uninformed about the benefits of enrolling in a full sequence of science courses, therefore only about a third of our nation's high school graduates have completed the science sequence of Biology, Chemistry and Physics. The lack of students completing a full sequence of science courses contributes to the deficit in the STEM degree production rate needed to fill the demand of the current job market and remain competitive as a nation. The purpose of the study was to make a difference in the number of students who have access to information about the benefits of completing a full sequence of science courses. This dissertation study employed qualitative research methodology to gain a broad perspective of staff through a questionnaire and document review and then a deeper understanding through semi-structured interview protocol. The data revealed that a universal sequence of science courses in the high school district did not exist. It also showed that not all students had access to all science courses; students were sorted and tracked according to prerequisites that did not necessarily match the skill set needed for the courses. In addition, the study showed a desire for more support and direction from the district office. It was also apparent that there was a disconnect that existed between who staff members believed should enroll in a full sequence of science courses and who actually enrolled. Finally, communication about science was shown to occur mainly through counseling and peers. A common science sequence, detracking of science courses, increased communication about the postsecondary and academic benefits of a science education, increased district direction and realistic mathematics alignment were all discussed as solutions to the problem.
Hesselbach, Renee A; Petering, David H; Berg, Craig A; Tomasiewicz, Henry; Weber, Daniel
2012-12-01
This article presents a detailed guide for high school through graduate level instructors that leads students to write effective and well-organized scientific papers. Interesting research emerges from the ability to ask questions, define problems, design experiments, analyze and interpret data, and make critical connections. This process is incomplete, unless new results are communicated to others because science fundamentally requires peer review and criticism to validate or discard proposed new knowledge. Thus, a concise and clearly written research paper is a critical step in the scientific process and is important for young researchers as they are mastering how to express scientific concepts and understanding. Moreover, learning to write a research paper provides a tool to improve science literacy as indicated in the National Research Council's National Science Education Standards (1996), and A Framework for K-12 Science Education (2011), the underlying foundation for the Next Generation Science Standards currently being developed. Background information explains the importance of peer review and communicating results, along with details of each critical component, the Abstract, Introduction, Methods, Results, and Discussion. Specific steps essential to helping students write clear and coherent research papers that follow a logical format, use effective communication, and develop scientific inquiry are described.
Petering, David H.; Berg, Craig A.; Tomasiewicz, Henry; Weber, Daniel
2012-01-01
Abstract This article presents a detailed guide for high school through graduate level instructors that leads students to write effective and well-organized scientific papers. Interesting research emerges from the ability to ask questions, define problems, design experiments, analyze and interpret data, and make critical connections. This process is incomplete, unless new results are communicated to others because science fundamentally requires peer review and criticism to validate or discard proposed new knowledge. Thus, a concise and clearly written research paper is a critical step in the scientific process and is important for young researchers as they are mastering how to express scientific concepts and understanding. Moreover, learning to write a research paper provides a tool to improve science literacy as indicated in the National Research Council's National Science Education Standards (1996), and A Framework for K–12 Science Education (2011), the underlying foundation for the Next Generation Science Standards currently being developed. Background information explains the importance of peer review and communicating results, along with details of each critical component, the Abstract, Introduction, Methods, Results, and Discussion. Specific steps essential to helping students write clear and coherent research papers that follow a logical format, use effective communication, and develop scientific inquiry are described. PMID:23094692
Nurse-physician communication - An integrated review.
Tan, Tit-Chai; Zhou, Huaqiong; Kelly, Michelle
2017-12-01
To present a comprehensive review of current evidence on the factors which impact on nurse-physician communication and interventions developed to improve nurse-physician communication. The challenges in nurse-physician communication persist since the term 'nurse-doctor game' was first used in 1967, leading to poor patient outcomes such as treatment delays and potential patient harm. Inconsistent evidence was found on the factors and interventions which foster or impair effective nurse-physician communication. An integrative review was conducted following a five-stage process: problem identification, literature search, data evaluation, data analysis and presentation. Five electronic databases were searched from 2005 to April 2016 using key search terms: "improve*," "nurse-physician," "nurse," "physician" and "communication" in five electronic databases including the Cumulative Index to Nursing and Allied Health Literature (CINAHL), MEDLINE, PubMed, Science Direct and Scopus. A total of 22 studies were included in the review. Four themes emerged from the data synthesis, namely communication styles; factors that facilitate nurse-physician communication; barriers to effective nurse-physician communication; and interventions to improve nurse-physician communication. This integrative review suggests that nurse-physician communication still remains ineffective. Current interventions only address information needs of nurses and physicians in limited situations and specific settings but cannot adequately address the interprofessional communication skills that are lacking in practice. The disparate views of nurses and physicians on communication due to differing training backgrounds confound the effectiveness of current interventions or strategies. Cross-training and interprofessional educational from undergraduate to postgraduate programmes will better align the training of nurses and physicians to communicate effectively. Further research is needed to determine the feasibility and generalisability of interventions, such as localising physicians and using communication tools, to improve nurse-physician communication. Organisational and cultural changes are needed to overcome ingrained practices impeding nurse-physician communication. © 2017 John Wiley & Sons Ltd.
The sciences of science communication.
Fischhoff, Baruch
2013-08-20
The May 2012 Sackler Colloquium on "The Science of Science Communication" brought together scientists with research to communicate and scientists whose research could facilitate that communication. The latter include decision scientists who can identify the scientific results that an audience needs to know, from among all of the scientific results that it would be nice to know; behavioral scientists who can design ways to convey those results and then evaluate the success of those attempts; and social scientists who can create the channels needed for trustworthy communications. This overview offers an introduction to these communication sciences and their roles in science-based communication programs.
NASA Astrophysics Data System (ADS)
Salmon, R. A.; Priestley, R. K.; Goven, J. F.
2014-12-01
Scientists, policymakers and science communicators generally work from an assumption that science communication, or 'outreach', is good and often work from a primarily practice-based knowledge. Meanwhile, the science, technology and society (STS) community, which is strongly grounded in theory and critical analysis, is critical of certain aspects of science communication, particularly in controversial areas of science. Unfortunately, these two groups rarely speak to each other, and when they do they don't necessarily understand one another. Much of this confusion relates to different assumptions around the goals of science communication, as well as differing understandings of the various roles and responsibilities in both science and society. The result, unfortunately, is a lack of science communication practice and theory informing each other. This research is a collaboration between a scientist communicator with a positive attitude to outreach, who works in the field of climate change; a political theorist with expertise in public dialogue around biotechnology and has been critical of motivations for engaging the public with science; and a science historian and science communicator who has uncovered surprising and significant changes in public attitudes towards nuclear science and technology in New Zealand. By exploring our understanding of science communication through these diverse disciplinary lenses, and considering three fields of science that are or have been highly controversial for different reasons, we have identified several subtleties in both the politics of communicating different areas of controversial science, and the difficulties of finding a common language across social and physical sciences. We conclude that greater reflexivity about our own roles and assumptions, and increased efforts at enhanced understanding across disciplines, is central to applying the theories in STS to the practice of communication by scientists.
Preserving the Integrity of Citations and References by All Stakeholders of Science Communication.
Gasparyan, Armen Yuri; Yessirkepov, Marlen; Voronov, Alexander A; Gerasimov, Alexey N; Kostyukova, Elena I; Kitas, George D
2015-11-01
Citations to scholarly items are building bricks for multidisciplinary science communication. Citation analyses are currently influencing individual career advancement and ranking of academic and research institutions worldwide. This article overviews the involvement of scientific authors, reviewers, editors, publishers, indexers, and learned associations in the citing and referencing to preserve the integrity of science communication. Authors are responsible for thorough bibliographic searches to select relevant references for their articles, comprehend main points, and cite them in an ethical way. Reviewers and editors may perform additional searches and recommend missing essential references. Publishers, in turn, are in a position to instruct their authors over the citations and references, provide tools for validation of references, and open access to bibliographies. Publicly available reference lists bear important information about the novelty and relatedness of the scholarly items with the published literature. Few editorial associations have dealt with the issue of citations and properly managed references. As a prime example, the International Committee of Medical Journal Editors (ICMJE) issued in December 2014 an updated set of recommendations on the need for citing primary literature and avoiding unethical references, which are applicable to the global scientific community. With the exponential growth of literature and related references, it is critically important to define functions of all stakeholders of science communication in curbing the issue of irrational and unethical citations and thereby improve the quality and indexability of scholarly journals.
Preserving the Integrity of Citations and References by All Stakeholders of Science Communication
Yessirkepov, Marlen; Voronov, Alexander A.; Gerasimov, Alexey N.; Kostyukova, Elena I.; Kitas, George D.
2015-01-01
Citations to scholarly items are building bricks for multidisciplinary science communication. Citation analyses are currently influencing individual career advancement and ranking of academic and research institutions worldwide. This article overviews the involvement of scientific authors, reviewers, editors, publishers, indexers, and learned associations in the citing and referencing to preserve the integrity of science communication. Authors are responsible for thorough bibliographic searches to select relevant references for their articles, comprehend main points, and cite them in an ethical way. Reviewers and editors may perform additional searches and recommend missing essential references. Publishers, in turn, are in a position to instruct their authors over the citations and references, provide tools for validation of references, and open access to bibliographies. Publicly available reference lists bear important information about the novelty and relatedness of the scholarly items with the published literature. Few editorial associations have dealt with the issue of citations and properly managed references. As a prime example, the International Committee of Medical Journal Editors (ICMJE) issued in December 2014 an updated set of recommendations on the need for citing primary literature and avoiding unethical references, which are applicable to the global scientific community. With the exponential growth of literature and related references, it is critically important to define functions of all stakeholders of science communication in curbing the issue of irrational and unethical citations and thereby improve the quality and indexability of scholarly journals. PMID:26538996
Emerging issues and future directions of the field of health communication.
Hannawa, Annegret F; Kreps, Gary L; Paek, Hye-Jin; Schulz, Peter J; Smith, Sandi; Street, Richard L
2014-01-01
The interdisciplinary intersections between communication science and health-related fields are pervasive, with numerous differences in regard to epistemology, career planning, funding perspectives, educational goals, and cultural orientations. This article identifies and elaborates on these challenges with illustrative examples. Furthermore, concrete suggestions for future scholarship are recommended to facilitate compatible, coherent, and interdisciplinary health communication inquiry. The authors hope that this article helps current and future generations of health communication scholars to make more informed decisions when facing some of the challenges discussed in this article so that they will be able to seize the interdisciplinary and international potential of this unique and important field of study.
Transceiver optics for interplanetary communications
NASA Astrophysics Data System (ADS)
Roberts, W. T.; Farr, W. H.; Rider, B.; Sampath, D.
2017-11-01
In-situ interplanetary science missions constantly push the spacecraft communications systems to support successively higher downlink rates. However, the highly restrictive mass and power constraints placed on interplanetary spacecraft significantly limit the desired bandwidth increases in going forward with current radio frequency (RF) technology. To overcome these limitations, we have evaluated the ability of free-space optical communications systems to make substantial gains in downlink bandwidth, while holding to the mass and power limits allocated to current state-of-the-art Ka-band communications systems. A primary component of such an optical communications system is the optical assembly, comprised of the optical support structure, optical elements, baffles and outer enclosure. We wish to estimate the total mass that such an optical assembly might require, and assess what form it might take. Finally, to ground this generalized study, we should produce a conceptual design, and use that to verify its ability to achieve the required downlink gain, estimate it's specific optical and opto-mechanical requirements, and evaluate the feasibility of producing the assembly.
The Process of Science Communications at NASA/Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Horack, John M.; Treise, Deborah
1998-01-01
The communication of new scientific knowledge and understanding is an integral component of science research, essential for its continued survival. Like any learning- based activity, science cannot continue without communication between and among peers so that skeptical inquiry and learning can take place. This communication provides necessary organic support to maintain the development of new knowledge and technology. However, communication beyond the peer-community is becoming equally critical for science to survive as an enterprise into the 21st century. Therefore, scientists not only have a 'noble responsibility' to advance and communicate scientific knowledge and understanding to audiences within and beyond the peer-community, but their fulfillment of this responsibility is necessary to maintain the survival of the science enterprise. Despite the critical importance of communication to the viability of science, the skills required to perform effective science communications historically have not been taught as a part of the training of scientist, and the culture of science is often averse to significant communication beyond the peer community. Thus scientists can find themselves ill equipped and uncomfortable with the requirements of their job in the new millennium. At NASA/Marshall Space Flight Center, we have developed and implemented an integrated science communications process, providing an institutional capability to help scientist accurately convey the content and meaning of new scientific knowledge to a wide variety of audiences, adding intrinsic value to the research itself through communication, while still maintaining the integrity of the peer-review process. The process utilizes initial communication through the world-wide web at the site http://science.nasa.gov to strategically leverage other communications vehicles and to reach a wide-variety of audiences. Here we present and discuss the basic design of the science communications process, now in operation for nearly two years. Serving scientists in Earth Science, Microgravity Science, and Space Science. Critical features of the design are illustrated, and essential skills required to operate the process are defined. Measures of success will also be presented.
ERIC Educational Resources Information Center
Simonson, Michael R., Ed.; Frey, Diane, Ed.
1989-01-01
The 46 papers is this volume represent some of the most current thinking in educational communications and technology. Individual papers address the following topics: gender differences in the selection of elective computer science courses and in the selection of non-traditional careers; instruction for individuals with different cognitive styles;…
Scientists' Prioritization of Communication Objectives for Public Engagement.
Dudo, Anthony; Besley, John C
2016-01-01
Amid calls from scientific leaders for their colleagues to become more effective public communicators, this study examines the objectives that scientists' report drive their public engagement behaviors. We explore how scientists evaluate five specific communication objectives, which include informing the public about science, exciting the public about science, strengthening the public's trust in science, tailoring messages about science, and defending science from misinformation. We use insights from extant research, the theory of planned behavior, and procedural justice theory to identify likely predictors of scientists' views about these communication objectives. Results show that scientists most prioritize communication designed to defend science from misinformation and educate the public about science, and least prioritize communication that seeks to build trust and establish resonance with the public. Regression analyses reveal factors associated with scientists who prioritize each of the five specific communication objectives. Our findings highlight the need for communication trainers to help scientists select specific communication objectives for particular contexts and audiences.
Fairness in Knowing: Science Communication and Epistemic Justice.
Medvecky, Fabien
2017-09-22
Science communication, as a field and as a practice, is fundamentally about knowledge distribution; it is about the access to, and the sharing of knowledge. All distribution (science communication included) brings with it issues of ethics and justice. Indeed, whether science communicators acknowledge it or not, they get to decide both which knowledge is shared (by choosing which topic is communicated), and who gets access to this knowledge (by choosing which audience it is presented to). As a result, the decisions of science communicators have important implications for epistemic justice: how knowledge is distributed fairly and equitably. This paper presents an overview of issues related to epistemic justice for science communication, and argues that there are two quite distinct ways in which science communicators can be just (or unjust) in the way they distribute knowledge. Both of these paths will be considered before concluding that, at least on one of these accounts, science communication as a field and as a practice is fundamentally epistemically unjust. Possible ways to redress this injustice are suggested.
Science communication in the field of fundamental biomedical research (editorial).
Illingworth, Sam; Prokop, Andreas
2017-10-01
The aim of this special issue on science communication is to inspire and help scientists who are taking part or want to take part in science communication and engage with the wider public, clinicians, other scientists or policy makers. For this, some articles provide concise and accessible advice to individual scientists, science networks, or learned societies on how to communicate effectively; others share rationales, objectives and aims, experiences, implementation strategies and resources derived from existing long-term science communication initiatives. Although this issue is primarily addressing scientists working in the field of biomedical research, much of it similarly applies to scientists from other disciplines. Furthermore, we hope that this issue will also be used as a helpful resource by academic science communicators and social scientists, as a collection that highlights some of the major communication challenges that the biomedical sciences face, and which provides interesting case studies of initiatives that use a breadth of strategies to address these challenges. In this editorial, we first discuss why we should communicate our science and contemplate some of the different approaches, aspirations and definitions of science communication. We then address the specific challenges that researchers in the biomedical sciences are faced with when engaging with wider audiences. Finally, we explain the rationales and contents of the different articles in this issue and the various science communication initiatives and strategies discussed in each of them, whilst also providing some information on the wide range of further science communication activities in the biomedical sciences that could not all be covered here. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Science, Society, and Social Networking
NASA Astrophysics Data System (ADS)
White, K. S.; Lohwater, T.
2009-12-01
The increased use of social networking is changing the way that scientific societies interact with their members and others. The American Association for the Advancement of Science (AAAS) uses a variety of online networks to engage its members and the broader scientific community. AAAS members and non-members can interact with AAAS staff and each other on AAAS sites on Facebook, YouTube, and Twitter, as well as blogs and forums on the AAAS website (www.aaas.org). These tools allow scientists to more readily become engaged in policy by providing information on current science policy topics as well as methods of involvement. For example, members and the public can comment on policy-relevant stories from Science magazine’s ScienceInsider blog, download a weekly policy podcast, receive a weekly email update of policy issues affecting the scientific community, or watch a congressional hearing from their computer. AAAS resource websites and outreach programs, including Communicating Science (www.aaas.org/communicatingscience), Working with Congress (www.aaas.org/spp/cstc/) and Science Careers (http://sciencecareers.sciencemag.org) also provide tools for scientists to become more personally engaged in communicating their findings and involved in the policy process.
NASA Technical Reports Server (NTRS)
Miranda, Felix A.
2015-01-01
As it has done in the past, NASA is currently engaged in furthering the frontiers of space and planetary exploration. The effectiveness in gathering the desired science data in the amount and quality required to perform this pioneering work relies heavily on the communications capabilities of the spacecraft and space platforms being considered to enable future missions. Accordingly, the continuous improvement and development of radiofrequency and optical communications systems are fundamental to prevent communications to become the limiting factor for space explorations. This presentation will discuss some of the research and technology development efforts currently underway at the NASA Glenn Research Center in the radio frequency (RF) and Optical Communications. Examples of work conducted in-house and also in collaboration with academia, industry, and other government agencies (OGA) in areas such as antenna technology, power amplifiers, radio frequency (RF) wave propagation through Earths atmosphere, ultra-sensitive receivers, thin films ferroelectric-based tunable components, among others, will be presented. In addition, the role of these and other related RF technologies in enabling the NASA next generation space communications architecture will be also discussed.
Using narratives and storytelling to communicate science with nonexpert audiences.
Dahlstrom, Michael F
2014-09-16
Although storytelling often has negative connotations within science, narrative formats of communication should not be disregarded when communicating science to nonexpert audiences. Narratives offer increased comprehension, interest, and engagement. Nonexperts get most of their science information from mass media content, which is itself already biased toward narrative formats. Narratives are also intrinsically persuasive, which offers science communicators tactics for persuading otherwise resistant audiences, although such use also raises ethical considerations. Future intersections of narrative research with ongoing discussions in science communication are introduced.
Using narratives and storytelling to communicate science with nonexpert audiences
Dahlstrom, Michael F.
2014-01-01
Although storytelling often has negative connotations within science, narrative formats of communication should not be disregarded when communicating science to nonexpert audiences. Narratives offer increased comprehension, interest, and engagement. Nonexperts get most of their science information from mass media content, which is itself already biased toward narrative formats. Narratives are also intrinsically persuasive, which offers science communicators tactics for persuading otherwise resistant audiences, although such use also raises ethical considerations. Future intersections of narrative research with ongoing discussions in science communication are introduced. PMID:25225368
NASA Astrophysics Data System (ADS)
Lemon, M. G.; McDonough, C. A.; Schifman, L. A.
2017-12-01
Science communication is increasingly important. Our world is facing difficult environmental challenges that can only be addressed if an understanding of the basic scientific principles exists. With this in mind, we founded oceanbites.org in 2013, and recently (August 2017) also started envirobites.org. For both blogs, graduate students, postdoctoral researchers, and science professionals come together to write and edit easy-to-read, compelling summaries of recent, cutting-edge research papers in environmental science or oceanography and make them accessible to non-experts. We want to share our passion for research with all non-scientists who are interested to learn more about the environment and our oceans: This ranges in scale from identifying science problems and solutions in cities to explaining the complex environmental challenges facing our planet as a whole. Because science is also about identifying and applying technologies to address these challenges, we also cover some success stories! For envirobites.org, topics of posts include science in and for cities, global transport of pollutants, toxic effects of pollution, climate change, and environmental remediation. Oceanbites.org covers topics ranging from chemical, to biological, and physical oceanography. Currently, oceanbites.org has 24 writers and publishes posts daily, whereas envirobites.org has 26 writers and we publish posts on our blog three times per week. We hope to recruit more members and editors, but most of all, increase our readership to make a big splash in the communication of science to the public, whether we reach K-12 classrooms or living rooms.
Communicating Science from the Inside Out
NASA Astrophysics Data System (ADS)
Clark, C.
2006-12-01
Communicating relevant science to the outside world is becoming more critical to the science research community. Now part of many institution's mission statements, communicating the broader impacts of scientific exploration and discovery has become increasingly important in informing the public, providing information to policy makers, and obtaining research funding. Although some critics say traditional coverage of science news is shrinking, media coverage of newsworthy science will always exist in today's news-hungry world. The key is access, access to media outlets by scientists and access to scientists by media representatives. Getting the word out through traditional and new media in a timely and effective manner can be daunting and time consuming to many scientists. Yet, these are the challenges being tackled on a daily basis by science communicators residing in most research and academic organizations, universities, and institutions. Professional science communicators are valuable resources who can provide crucial input on dealing with, and coping with, the media. In return, effective science communicators serve as important liaisons who efficiently connect science media with appropriate researchers. Wise use of internal science communicators can make the difference in getting news out and getting it right. For more than a decade, a national network of science communicators from institutions, organizations, and funding agencies has existed to collaborate on science news in a concerted effort to improve science coverage at all levels. This network provides collaborative resources to improve the efficiency in getting science news disseminated to the broader public. Although the media is only one audience scientists must interface with today, it is still the most far- reaching outlet for reaching and impacting the broad public by conveying the excitement, importance, and value of today's scientific research. And science communications specialists are the most valuable tool a scientist can utilize in getting relevant science communicated to the outside world.
The Need for More Scientific Approaches to Science Communication
NASA Astrophysics Data System (ADS)
Sadri, S.
2015-12-01
Two possible goals for public science communication are: a) improving the public's in-depth understanding of the scientific subject; and b) fostering the public's belief that scientific efforts make a better world. Although (a) is often a natural target when scientists try to communicate their subject, the importance of (b) is underscored by the NSF, who investigated the "cultural authority of science" to understand science's role in policymaking. Surveys consistently find that there is a huge divergence between "knowledge" and "admiration" of science in society because science literacy has very little to do with public perception of science. However, even if both goals could be achieved, it doesn't necessarily mean that the general public will act on scientific advice. Different parts of society have different criteria for reaching judgments about how to act in their best interests. This makes the study of science communication important when controversies arise requiring public engagement. Climate change, sustainability, and water crises are only a few examples of such controversial subjects. Science communication can be designed carefully to sponsor dialogue and participation, to overcome perceptual obstacles, and to engage with stakeholders and the wider public. This study reviews work in social science that tries to answer: When is science communication necessary? What is involved in science communication? What is the role of media in effective science communication? It also reviews common recommendations for improved public engagement by scientists and science organizations. As part of this effort, I will present some portions of my science films. I will conclude with suggestions on what scientific institutions can focus on to build trust, relationships, and participation across segments of the public. Keywords: informal learning, popular science, climate change, water crisis, science communication, science films, science policy.
Delivering effective science communication: advice from a professional science communicator.
Illingworth, Sam
2017-10-01
Science communication is becoming ever more prevalent, with more and more scientists expected to not only communicate their research to a wider public, but to do so in an innovative and engaging manner. Given the other commitments that researchers and academics are required to fulfil as part of their workload models, it is unfair to be expect them to also instantly produce effective science communication events and activities. However, by thinking carefully about what it is that needs to be communicated, and why this is being done, it is possible to develop high-quality activities that are of benefit to both the audience and the communicator(s). In this paper, I present some practical advice for developing, delivering and evaluating effective science communication initiatives, based on over a decade of experience as being a professional science communicator. I provide advice regarding event logistics, suggestions on how to successfully market and advertise your science communication initiatives, and recommendations for establishing effective branding and legacy. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Jönsson, Anna Maria; Anderbrant, Olle; Holmér, Jennie; Johansson, Jacob; Schurgers, Guy; Svensson, Glenn P; Smith, Henrik G
2015-04-01
In recent years, climate impact assessments of relevance to the agricultural and forestry sectors have received considerable attention. Current ecosystem models commonly capture the effect of a warmer climate on biomass production, but they rarely sufficiently capture potential losses caused by pests, pathogens and extreme weather events. In addition, alternative management regimes may not be integrated in the models. A way to improve the quality of climate impact assessments is to increase the science-stakeholder collaboration, and in a two-way dialog link empirical experience and impact modelling with policy and strategies for sustainable management. In this paper we give a brief overview of different ecosystem modelling methods, discuss how to include ecological and management aspects, and highlight the importance of science-stakeholder communication. By this, we hope to stimulate a discussion among the science-stakeholder communities on how to quantify the potential for climate change adaptation by improving the realism in the models.
ERIC Educational Resources Information Center
Jewett, John W., Jr.
1991-01-01
Describes science demonstrations with light-emitting diodes that include electrical concepts of resistance, direct and alternating current, sine wave versus square wave, series and parallel circuits, and Faraday's Law; optics concepts of real and virtual images, photoresistance, and optical communication; and modern physics concepts of spectral…
[Elucidating! But how? Insights into the impositions of modern science communication].
Lehmkuh, Markus
2015-01-01
The talk promotes the view that science communication should abandon the claim that scientific information can convince others. This is identified as one of the impositions modern science communication is exposed to. Instead of convin cing others, science communication should focus on identifying societally relevant scientific knowledge and on communicating it accurately and coherently.
Suldovsky, Brianne
2016-05-01
Despite mounting criticism, the deficit model remains an integral part of science communication research and practice. In this article, I advance three key factors that contribute to the idea of the public deficit in science communication, including the purpose of science communication, how communication processes and outcomes are conceptualized, and how science and scientific knowledge are defined. Affording science absolute epistemic privilege, I argue, is the most compelling factor contributing to the continued use of the deficit model. In addition, I contend that the deficit model plays a necessary, though not sufficient, role in science communication research and practice. Areas for future research are discussed. © The Author(s) 2016.
Matusall, Svenja
2013-01-01
Recently, several behavioral sciences became increasingly interested in investigating biological and evolutionary foundations of (human) social behavior. In this light, prosocial behavior is seen as a core element of human nature. A central role within this perspective plays the "social brain" that is not only able to communicate with the environment but rather to interact directly with other brains via neuronal mind reading capacities such as empathy. From the perspective of a sociologist, this paper investigates what "social" means in contemporary behavioral and particularly brain sciences. It will be discussed what "social" means in the light of social neuroscience and a glance into the history of social psychology and the brain sciences will show that two thought traditions come together in social neuroscience, combining an individualistic and an evolutionary notion of the "social." The paper concludes by situating current research on prosocial behavior in broader social discourses about sociality and society, suggesting that to naturalize prosocial aspects in human life is a current trend in today's behavioral sciences and beyond.
Matusall, Svenja
2013-01-01
Recently, several behavioral sciences became increasingly interested in investigating biological and evolutionary foundations of (human) social behavior. In this light, prosocial behavior is seen as a core element of human nature. A central role within this perspective plays the “social brain” that is not only able to communicate with the environment but rather to interact directly with other brains via neuronal mind reading capacities such as empathy. From the perspective of a sociologist, this paper investigates what “social” means in contemporary behavioral and particularly brain sciences. It will be discussed what “social” means in the light of social neuroscience and a glance into the history of social psychology and the brain sciences will show that two thought traditions come together in social neuroscience, combining an individualistic and an evolutionary notion of the “social.” The paper concludes by situating current research on prosocial behavior in broader social discourses about sociality and society, suggesting that to naturalize prosocial aspects in human life is a current trend in today's behavioral sciences and beyond. PMID:23755003
NASA Astrophysics Data System (ADS)
Keener, V. W.; Staal, L.
2011-12-01
The NOAA-funded Regional Integrated Sciences and Assessment (RISA) programs act as boundary organizations that both conduct and translate academic climate research in the physical and social sciences for a variety of stakeholder applications, including for local and state governments, natural resource managers, non-climate scientists, and community members. For the past six years, I have worked with two RISAs-one in the southeast United States, and recently in the Pacific region. In confronting the most immediate impacts of climate change, Florida and Hawai'i are both currently dealing with saltwater intrusion effects on infrastructure and water supply, sea level rise impacts on vulnerable coastlines, and expect the problems to worsen in the future. Both RISAs have focused on water resource sustainability as a topic of interest, and held workshops on climate variability and change impacts for water utilities and a wider range of relevant stakeholders. Methods that have been used to communicate climate science, projected impacts, and risk have included: working groups/collaborative learning, scientific presentations and presentations of relevant case studies, beach management planning, in-depth interviews, and educational radio spots. Despite the similarities in the types of issues being confronted, stakeholders in each location have responded with differing levels of acceptance, which has resulted in the usage of different methods of communication of the same types of climate science information. This talk will focus on the success of a variety of different methods in communicating similar information on comparable risks to different audiences.
Agreements/subagreements Applicable to Wallops, 12 Nov. 1991
NASA Technical Reports Server (NTRS)
1991-01-01
The status of space science agreements are noted. A general overview of the Wallops Flight Facility (WFF) is given. The geography, history, and mission of the facility are briefly surveyed. Brief accounts are given of NASA earth science activities at the WFF, including atmospheric dynamics, atmospheric optics, ocean physics, microwave altimetry, ocean color research, wind-wave-current interaction, flight support activities, the Sounding Rocket Program, and the NASA Balloon Program. Also discussed are the WFF launch range, the research airport, aircraft airborne science, telemetry, data systems, communications, and command and control.
ERIC Educational Resources Information Center
Luzón, María José
2013-01-01
New media are having a significant impact on science communication, both on the way scientists communicate with peers and on the dissemination of science to the lay public. Science blogs, in particular, provide an open space for science communication, where a diverse audience (with different degrees of expertise) may have access to science…
NASA Astrophysics Data System (ADS)
Holloway, A. E.
2016-02-01
The National Ocean Sciences Bowl (NOSB) is an informal high school education program that engages students in ocean and environmental science and exposes them to the breadth of ocean-related careers. The NOSB strives to train the next generation of interdisciplinary capable scientists and build a STEM-literate society that harnesses the power of ocean and climate science to address environmental, economic, and societal issues. Through the NOSB, students not only learn scientific principles, but also apply them to compelling real-world problems. The NOSB provides a richer STEM education and exposes students to ocean science topics they may not otherwise study through classroom curriculum. A longitudinal study that began in 2007 has shown that NOSB participants have an enhanced interest in ocean-related hobbies and environmental stewardship and an increasing number of these students have remained in the STEM pipeline and workforce.While the NOSB is primarily an academic competition, it has evolved since its creation in 1998 to include a variety of practical and professional development components. One of the program enhancements, the Scientific Expert Briefing (SEB), gives students the opportunity to apply what they have studied and think critically about current and ongoing ocean science challenges. The SEB helps students connect their knowledge of ocean science with current and proposed policy initiatives. Students gain significant research, writing, and presentation skills, while enhancing their ability for collaboration and consensus building, all vital workforce skills. Ultimately, the SEB teaches students how to communicate complex scientific research into digestible information for decision-makers and the general public.This poster will examine the impact of the NOSB and its role in strengthening the workforce pipeline through a combination of independent learning, competition, and opportunities for communication skills development.
The ASP at 125: Advancing Science Literacy in an Age of Acceleration
NASA Astrophysics Data System (ADS)
Manning, Jim
2014-01-01
On February 7, 2014, the Astronomical Society of the Pacific will celebrate its 125th birthday and a century and a quarter of advancing astronomy and astronomy/science education during a period of revolutionary change in our understanding of the universe. In keeping with both the retrospective and forward-looking nature of such milestones, the presenter will: 1) share highlights of the Society’s work in supporting the communication of astronomy research through its professional publications, and creating innovative astronomy education and public outreach projects and networks to advance student, teacher and public understanding of astronomy and science; 2) report on current NASA- and NSF-funded efforts and on plans going forward; 3) and solicit input from the assembled community on how the ASP can best serve its various constituencies and the cause of science education, communication and literacy at a time when both the universe and life on Earth are accelerating at unprecedented rates. Birthdays are for celebrating; come celebrate with us as we rededicate ourselves to a mission of advancing science literacy through astronomy.
Communication Regulatory Science: Mapping a New Field.
Noar, Seth M; Cappella, Joseph N; Price, Simani
2017-12-13
Communication regulatory science is an emerging field that uses validated techniques, tools, and models to inform regulatory actions that promote optimal communication outcomes and benefit the public. In the opening article to this special issue on communication and tobacco regulatory science, we 1) describe Food and Drug Administration (FDA) regulation of tobacco products in the US; 2) introduce communication regulatory science and provide examples in the tobacco regulatory science realm; and 3) describe the special issue process and final set of articles. Communication research on tobacco regulatory science is a burgeoning area of inquiry, and this work advances communication science, informs and potentially guides the FDA, and may help to withstand legal challenges brought by the tobacco industry. This research has the potential to have a major impact on the tobacco epidemic and population health by helping implement the most effective communications to prevent tobacco initiation and increase cessation. This special issue provides an example of 10 studies that exemplify tobacco regulatory science and demonstrate how the health communication field can affect regulation and benefit public health.
The Process of Science Communications at NASA/Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Horack, John M.; Treise, Deborah
1998-01-01
The communication of new scientific knowledge and understanding is an integral component of science research, essential for its continued survival. Like any learning-based activity, science cannot continue without communication between and among peers so that skeptical inquiry and learning can take place. This communication provides necessary organic support to maintain the development of new knowledge and technology. However, communication beyond the peer-community is becoming equally critical for science to survive as an enterprise into the 21st century. Therefore, scientists not only have a 'noble responsibility' to advance and communicate scientific knowledge and understanding to audiences within and beyond the peer-community, but their fulfillment of this responsibility is necessary to maintain the survival of the science enterprise. Despite the critical importance of communication to the viability of science, the skills required to perform effective science communications historically have not been taught as a part of the training of scientist, and the culture of science is often averse to significant communication beyond the peer community. Thus scientists can find themselves ill equipped and uncomfortable with the requirements of their job in the new millennium.
Scientists’ Prioritization of Communication Objectives for Public Engagement
2016-01-01
Amid calls from scientific leaders for their colleagues to become more effective public communicators, this study examines the objectives that scientists’ report drive their public engagement behaviors. We explore how scientists evaluate five specific communication objectives, which include informing the public about science, exciting the public about science, strengthening the public’s trust in science, tailoring messages about science, and defending science from misinformation. We use insights from extant research, the theory of planned behavior, and procedural justice theory to identify likely predictors of scientists' views about these communication objectives. Results show that scientists most prioritize communication designed to defend science from misinformation and educate the public about science, and least prioritize communication that seeks to build trust and establish resonance with the public. Regression analyses reveal factors associated with scientists who prioritize each of the five specific communication objectives. Our findings highlight the need for communication trainers to help scientists select specific communication objectives for particular contexts and audiences. PMID:26913869
Howes, Loene M
2015-03-01
Clear communication about forensic science is essential to the effectiveness and perceived trustworthiness of the criminal justice system. Communication can be seen as a meaning-making process that involves different components such as the sender of a message, the message itself, the channel in which a message is sent, and the receiver of the message. Research conducted to date on the communication between forensic scientists and non-scientists in the criminal justice system has focused on different components of the communication process as objects of study. The purpose of this paper is to bring together communication theory and past research on the communication of forensic science to contribute to a deeper understanding of it, and to provide a coherent view of it overall. The paper first outlines the broader context of communication theory and science communication as a backdrop to forensic science communication. Then it presents a conceptual framework as a way to organise past research and, using the framework, reviews recent examples of empirical research and commentary on the communication of forensic science. Finally the paper identifies aspects of the communication of forensic science that may be addressed by future research to enhance the effectiveness of communication between scientists and non-scientists in this multidisciplinary arena. Copyright © 2014 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.
Selected Research and Development Topics on Aerospace Communications at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Miranda, Felix A.; Romanofsky, Robert R.; Nessel, James A.
2014-01-01
This presentation discusses some of the efforts on communications RD that have been performed or are currently underway at NASA Glenn Research Center. The primary purpose of this presentation is to outline some RD topics to serve as talking points for a Technical Interchange Meeting with the Ohio State University. The meeting is scheduled to take place at The ElectroScience Laboratory of the Ohio State University on February 24, 2014.
The sciences of science communication
Fischhoff, Baruch
2013-01-01
The May 2012 Sackler Colloquium on “The Science of Science Communication” brought together scientists with research to communicate and scientists whose research could facilitate that communication. The latter include decision scientists who can identify the scientific results that an audience needs to know, from among all of the scientific results that it would be nice to know; behavioral scientists who can design ways to convey those results and then evaluate the success of those attempts; and social scientists who can create the channels needed for trustworthy communications. This overview offers an introduction to these communication sciences and their roles in science-based communication programs. PMID:23942125
Two Challenges to Communicating Climate Science
NASA Astrophysics Data System (ADS)
Oreskes, N.; Evans, J. H.; Feng, J.
2011-12-01
Climate scientists have been frustrated by the persistence of public opinion at odds with established scientific evidence about anthropogenic climate change. Traditionally, scientists have attributed the gap between scientific knowledge and public perception to scientific illiteracy, which could be remedied by a better and more abundant supply of well-communicated scientific information. Social scientific research, however, illustrates that this "deficit model" is insufficient to explain the current state of affairs: many individuals who reject the conclusions of climate scientists are highly educated, and some evidence suggests that, among certain demographics, more educated people are more likely than less educated ones to reject climate science. This talk explores two possible sources of resistance to, or outright rejection of, scientific conclusions about climate change: 1) the effects of long-standing organized efforts to challenge climate science and the credibility of climate scientists; 2) conservative Protestant religious beliefs concerning how factual claims about the earth are determined and how their significance is judged.
Our findings, my method: Framing science in televised interviews.
Armon, Rony; Baram-Tsabari, Ayelet
2017-11-01
The public communication of science and technology largely depends on their framing in the news media, but scientists' role in this process has only been explored indirectly. This study focuses on storied accounts told by scientists when asked to present their research or provide expert advice in the course of a news interview. A total of 150 items from a current affairs talk show broadcast in the Israeli media were explored through a methodology combining narrative and conversation analysis. Using the concept of framing as originally proposed by Erving Goffman, we show that researchers use personal accounts as a way of reframing news stories introduced by the program hosts. Elements of method and rationale, which are usually considered technical and are shunned in journalistic reports, emerged as a crucial element in the accounts that experts themselves provided. The implications for framing research and science communication training are discussed.
NASA Astrophysics Data System (ADS)
DeWitt, S.; Bovaird, E.; Stewart, N.; Reaves, J.; Tenenbaum, L. F.; Betz, L.; Kuchner, M. J.; Dodson, K. E.; Miller, A.
2013-12-01
In 2013 NASA launched its first agency-wide effort to cultivate and support scientist-communicators. The multiple motivations behind this effort are complex and overlapping, and include a desire to connect the agency's workforce to its mission and to each other in the post-Space Shuttle era; a shift in how the agency and the world communicates about science; the current public perception of science and of NASA, and a desire to share the stories of the real people behind the agency's technical work. Leaders in the NASA science, communications and public outreach communities partnered with the agency's training and leadership development organization to: identify and fully characterize the need for training and development in science communication, experiment with various learning models, and invite early-adopter scientists to evaluate these models for future agency investment. Using virtual collaboration technology, graphic facilitation, and leadership development methods, we set out to create an environment where scientist-communicators can emerge and excel. First, we asked scientists from across the agency to identify their motivations, opportunities, barriers and areas of interest in science communication. Scientists identified a need to go beyond traditional media training, a need for continuous practice and peer feedback, and a need for agency incentives and sustained support for this kind of work. This community-driven approach also uncovered a serious need for communication support in the wake of diminishing resources for travel and conference attendance. As a first step, we offered a series of virtual learning events - highly collaborative working sessions for scientists to practice their communication technique, develop and apply new skills to real-world situations, and gain valuable feedback from external subject matter experts and fellow scientists from across the agency in a supportive environment. Scientists from ten NASA centers and a broad range of research disciplines - from astrophysics to climate change to aeronautics - took part in these virtual events. This newly connected community provided continuous feedback and recommendations for how they and the agency can continue to cultivate and support scientist-communicators over the long-term. By inviting scientists to communicate in new ways using new tools, we are modeling the type of innovative communication we hope to see, and are gradually elevating scientists' exposure to and comfort level with new communication technologies. Our next challenge is to provide a deeper learning experience and strengthen connections within this community through a series of face-to-face workshops at NASA centers. We are also investigating ways to broaden and sustain the supportive environment - both virtual and institutional - needed for this new distributed network of scientist-communicators to thrive.
Scientific Communication and the Nature of Science
ERIC Educational Resources Information Center
Nielsen, Kristian H.
2013-01-01
Communication is an important part of scientific practice and, arguably, may be seen as constitutive to scientific knowledge. Yet, often scientific communication gets cursory treatment in science studies as well as in science education. In Nature of Science (NOS), for example, communication is rarely mentioned explicitly, even though, as will be…
Integration of a Communicating Science Module into an Advanced Chemistry Laboratory Course
ERIC Educational Resources Information Center
Renaud, Jessica; Squier, Christopher; Larsen, Sarah C.
2006-01-01
A communicating science module was introduced into an advanced undergraduate physical chemistry laboratory course. The module was integrated into the course such that students received formal instruction in communicating science interwoven with the chemistry laboratory curriculum. The content of the communicating science module included three…
NSI customer service representatives and user support office: NASA Science Internet
NASA Technical Reports Server (NTRS)
1991-01-01
The NASA Science Internet, (NSI) was established in 1987 to provide NASA's Offices of Space Science and Applications (OSSA) missions with transparent wide-area data connectivity to NASA's researchers, computational resources, and databases. The NSI Office at NASA/Ames Research Center has the lead responsibility for implementing a total, open networking program to serve the OSSA community. NSI is a full-service communications provider whose services include science network planning, network engineering, applications development, network operations, and network information center/user support services. NSI's mission is to provide reliable high-speed communications to the NASA science community. To this end, the NSI Office manages and operates the NASA Science Internet, a multiprotocol network currently supporting both DECnet and TCP/IP protocols. NSI utilizes state-of-the-art network technology to meet its customers' requirements. THe NASA Science Internet interconnects with other national networks including the National Science Foundation's NSFNET, the Department of Energy's ESnet, and the Department of Defense's MILNET. NSI also has international connections to Japan, Australia, New Zealand, Chile, and several European countries. NSI cooperates with other government agencies as well as academic and commercial organizations to implement networking technologies which foster interoperability, improve reliability and performance, increase security and control, and expedite migration to the OSI protocols.
Henríquez-Suarez, Milagro; Becerra-Vera, Charito E; Laos-Fernández, Elena L; Espinoza-Portilla, Elizabeth
2017-01-01
Electronic health (eHealth) requires a multidisciplinary approach and involves different areas of knowledge, including medicine, computer science, engineering, sociology, anthropology, social work, administration, law, and communication sciences. The assessment of eHealth should consider that information and communication technologies (ICTs) are only part of the information system of an organization. Understanding the human factors involved in health systems, the environment, and the contexts in which ICTs are used in health is essential. The objectives of this study were to describe the status of the assessment of eHealth in Peru and to discuss the strategies for multidisciplinary evaluation that should be considered to achieve the success and sustainability of these initiatives based on national and international experience.
Enabling Arctic Research Through Science and Engineering Partnerships
NASA Astrophysics Data System (ADS)
Kendall, E. A.; Valentic, T. A.; Stehle, R. H.
2014-12-01
Under an Arctic Research Support and Logistics contract from NSF (GEO/PLR), SRI International, as part of the CH2M HILL Polar Services (CPS) program, forms partnerships with Arctic research teams to provide data transfer, remote operations, and safety/operations communications. This teamwork is integral to the success of real-time science results and often allows for unmanned operations which are both cost-effective and safer. The CPS program utilizes a variety of communications networks, services and technologies to support researchers and instruments throughout the Arctic, including Iridium, VSAT, Inmarsat BGAN, HughesNet, TeleGreenland, radios, and personal locator beacons. Program-wide IT and communications limitations are due to the broad categories of bandwidth, availability, and power. At these sites it is essential to conserve bandwidth and power through using efficient software, coding and scheduling techniques. There are interesting new products and services on the horizon that the program may be able to take advantage of in the future such as Iridium NEXT, Inmarsat Xpress, and Omnispace mobile satellite services. Additionally, there are engineering and computer software opportunities to develop more efficient products. We will present an overview of science/engineering partnerships formed by the CPS program, discuss current limitations and identify future technological possibilities that could further advance Arctic science goals.
A Song of Our Warming Planet: Using Music to Communicate Critical Concepts in Climate Science
NASA Astrophysics Data System (ADS)
St George, S.; Crawford, D.; Reubold, T.
2014-12-01
When climate science is communicated to the broader public, many of its key findings are shared in the form of conceptual diagrams or information-dense data graphics. In this collaboration, we applied a data sonification approach to express NASA's global temperature record as a musical composition for the cello. The resulting piece, which we titled 'A Song of Our Warming Planet', transformed 133 years of annual global temperature anomalies into a haunting, atonal melody that stretched across almost all of the instrument's range. Since its release in June 2013, the song has been featured by several national and international media outlets, including the New York Times, the Weather Channel, and National Public Radio, and its accompanying video has received more than 140,000 views from nearly every corner of the world. We are currently preparing a new composition for string quartet that will add a geographic dimension to describe both the pace and place of global warming. We believe the success of our initial sonification project is testament to the power of music to reach audiences who respond less enthusiastically to traditional methods used to communicate climate science. We also imagine this approach could be applied more broadly to allow students to create novel, visceral, and memorable encounters with other aspects of the geophysical sciences.
NASA Astrophysics Data System (ADS)
2010-04-01
After a few months of physics videos, amateur science sites and educational games, the website we are highlighting in this month's column is a straightforward blog. Just A Theory was started in 2008 by freelance science journalist Jacob Aron while he was studying for a Master's degree in science communication at Imperial College London. The blog's title, Aron explains, reflects a popular misconception that scientific theories are "dreamed up by mad scientists in laboratories somewhere" rather than well-crafted explanations based on observations and experiments. To combat this impression, the site aims to highlight good and bad science coverage in the mainstream media, and to provide original commentary on current scientific events.
Science communication on YouTube: Factors that affect channel and video popularity.
Welbourne, Dustin J; Grant, Will J
2016-08-01
YouTube has become one of the largest websites on the Internet. Among its many genres, both professional and amateur science communicators compete for audience attention. This article provides the first overview of science communication on YouTube and examines content factors that affect the popularity of science communication videos on the site. A content analysis of 390 videos from 39 YouTube channels was conducted. Although professionally generated content is superior in number, user-generated content was significantly more popular. Furthermore, videos that had consistent science communicators were more popular than those without a regular communicator. This study represents an important first step to understand content factors, which increases the channel and video popularity of science communication on YouTube. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Young, C. A.
2016-12-01
Effective science communication can open doors, accelerate your career and even make you a better scientist. Part of being an effective and productive scientist means being an effective science communicator. The scientist must communicate their work in talks, posters, peer-reviewed papers, internal reports, proposals as well as to the broader public (including law makers). Despite the importance of communication, it has traditionally not been part of our core training as scientists. Today's science students are beginning to have more opportunities to formally develop their science communication skills. Fortunately, new and even more established scientists have a range of tools and resources at their disposal. In this presentation, we will share some of these resources, share our own experiences utilizing them, and provide some practical tools to improve your own science communication skills.
Science communication as political communication
Scheufele, Dietram A.
2014-01-01
Scientific debates in modern societies often blur the lines between the science that is being debated and the political, moral, and legal implications that come with its societal applications. This manuscript traces the origins of this phenomenon to professional norms within the scientific discipline and to the nature and complexities of modern science and offers an expanded model of science communication that takes into account the political contexts in which science communication takes place. In a second step, it explores what we know from empirical work in political communication, public opinion research, and communication research about the dynamics that determine how issues are debated and attitudes are formed in political environments. Finally, it discusses how and why it will be increasingly important for science communicators to draw from these different literatures to ensure that the voice of the scientific community is heard in the broader societal debates surrounding science. PMID:25225389
Science communication as political communication.
Scheufele, Dietram A
2014-09-16
Scientific debates in modern societies often blur the lines between the science that is being debated and the political, moral, and legal implications that come with its societal applications. This manuscript traces the origins of this phenomenon to professional norms within the scientific discipline and to the nature and complexities of modern science and offers an expanded model of science communication that takes into account the political contexts in which science communication takes place. In a second step, it explores what we know from empirical work in political communication, public opinion research, and communication research about the dynamics that determine how issues are debated and attitudes are formed in political environments. Finally, it discusses how and why it will be increasingly important for science communicators to draw from these different literatures to ensure that the voice of the scientific community is heard in the broader societal debates surrounding science.
Science Communication Training: What Are We Trying to Teach?
ERIC Educational Resources Information Center
Baram-Tsabari, Ayelet; Lewenstein, Bruce V.
2017-01-01
Rapid growth in public communication of science and technology has led to many diverse training programs. We ask: What are learning goals of science communication training? A comprehensive set of learning goals for future trainings will draw fully from the range of fields that contribute to science communication. Learning goals help decide what to…
NASA Astrophysics Data System (ADS)
Gunther, A.
2015-12-01
There is an ongoing need to communicate with public audiences about climate science, current and projected impacts, the importance of reducing greenhouse gas emissions, and the requirement to prepare for changes that are likely unavoidable. It is essential that scientists are engaged and active in this effort. Scientists can be more effective communicators about climate change to non-scientific audiences if we recognize that some of the normal "boundary conditions" under which we operate do not need to apply. From how we are trained to how we think about our audience, there are some specific skills and practices that allow us to be more effective communicators. The author will review concepts for making our communication more effective based upon his experience from over 60 presentations about climate change to public audiences. These include expressing how your knowledge makes you feel, anticipating (and accepting) questions unconstrained by physics, respecting beliefs and values while separating them from evidence, and using the history of climate science to provide a compelling narrative. Proper attention to presentation structure (particularly an opening statement), speaking techniques for audience engagement, and effective use of presentation software are also important.
Designing for diffusion: how can we increase uptake of cancer communication innovations?
Dearing, James W; Kreuter, Matthew W
2010-12-01
The best innovations in cancer communication do not necessarily achieve uptake by researchers, public health and clinical practitioners, and policy makers. This paper describes design activities that can be applied and combined for the purpose of spreading effective cancer communication innovations. A previously developed Push-Pull-Infrastructure Model is used to organize and highlight the types of activities that can be deployed during the design phase of innovations. Scientific literature about the diffusion of innovations, knowledge utilization, marketing, public health, and our experiences in working to spread effective practices, programs, and policies are used for this purpose. Attempts to broaden the reach, quicken the uptake, and facilitate the use of cancer communication innovations can apply design activities to increase the likelihood of diffusion. Some simple design activities hold considerable promise for improving dissemination and subsequent diffusion. Augmenting current dissemination practices with evidence-based concepts from diffusion science, marketing science, and knowledge utilization hold promise for improving results by eliciting greater market pull. Inventors and change agencies seeking to spread cancer communication innovations can experience more success by explicit consideration of design activities that reflect an expanded version of the Push-Pull-Infrastructure Model. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Designing for Diffusion: How Can We Increase Uptake of Cancer Communication Innovations?
Dearing, James W.; Kreuter, Matthew W.
2010-01-01
Objective The best innovations in cancer communication do not necessarily achieve uptake by researchers, public health and clinical practitioners, and policy makers. This paper describes design activities that can be applied and combined for the purpose of spreading effective cancer communication innovations. Methods A previously developed Push-Pull-Infrastructure Model is used to organize and highlight the types of activities that can be deployed during the design phase of innovations. Scientific literature about the diffusion of innovations, knowledge utilization, marketing, public health, and our experiences in working to spread effective practices, programs, and policies are used for this purpose. Results Attempts to broaden the reach, quicken the uptake, and facilitate the use of cancer communication innovations can apply design activities to increase the likelihood of diffusion. Some simple design activities hold considerable promise for improving dissemination and subsequent diffusion. Conclusion Augmenting current dissemination practices with evidence-based concepts from diffusion science, marketing science, and knowledge utilization hold promise for improving results by eliciting greater market pull. Practice Implications Inventors and change agencies seeking to spread cancer communication innovations can experience more success by explicit consideration of design activities that reflect an expanded version of the Push-Pull-Infrastructure Model. PMID:21067884
Telescience testbed pilot program, volume 3: Experiment summaries
NASA Technical Reports Server (NTRS)
Leiner, Barry M.
1989-01-01
Space Station Freedom and its associated labs, coupled with the availability of new computing and communications technologies, have the potential for significantly enhancing scientific research. A Telescience Testbed Pilot Program (TTPP), aimed at developing the experience base to deal with issues in the design of the future information system of the Space Station era. The testbeds represented four scientific disciplines (astronomy and astrophysics, earth science, life sciences, and microgravity sciences) and studied issues in payload design, operation, and data analysis. This volume, of a 3 volume set, which all contain the results of the TTPP, presents summaries of the experiments. This experiment involves the evaluation of the current Internet for the use of file and image transfer between SIRTF instrument teams. The main issue addressed was current network response times.
Learning from education to communicate science as a good story.
Negrete, Aquiles; Lartigue, Cecilia
2004-09-01
Science communicators must learn from science educators in their crusade to counteract the traditional boring and inefficient approaches to convey science. Educators encounter a need for methods of teaching that portray science as 'hard fun' and resources that encourage students' minds to burst into action. Narratives are considered by several authors as highly valuable resources for science education. However, little research has been undertaken to measure the efficiency of narratives in the context of science communication to the general public. Recent work however, suggests that narratives are indeed an alternative and an important means for science communication to convey information in an accurate, attractive, imaginative and memorable way. To present scientific information through stories, novels, comics and plays should be regarded as an important means to transmit information in the repertoire of both science teachers and science communicators.
Science: The Recombinant DNA Advisory Committee.
ERIC Educational Resources Information Center
Wright, Susan
1979-01-01
Reports on the status of the Recombinant DNA Advisory Committee (RAC) and attempts to rationalize Suburban Highway Policy. Effective communication among members of the RAC is a current problem facing the committee. A federal transportation priority spending policy is suggested during these times of money and fuel shortages. (MA)
NASA's Deep Space Telecommunications Roadmap
NASA Technical Reports Server (NTRS)
Edwards, C., Jr.; Stelzried, C.; Deutsch, L.; Swanson, L.
1998-01-01
This paper will present this roadmap, describe how it will support an increasing mission set while also providing significantly increased science data return, summarize the current state of key Ka-band and optical communications technologies, and identify critical path items in terms of technology developments, demonstrations, and mission users.
Communications Blackout Prediction for Atmospheric Entry of Mars Science Laboratory
NASA Technical Reports Server (NTRS)
Morabito, David; Edquist, Karl
2005-01-01
When a supersonic spacecraft enters a planetary atmosphere with v >> v(sub sound), a shock layer forms in the front of the body. An ionized sheath of plasma develops around the spacecraft, which results from the ionization of the atmospheric constituents as they are compressed and heated by the shock or heated within the boundary layer next to the surface. When the electron density surrounding the spacecraft becomes sufficiently high, communications can be disrupted (attenuation/blackout). During Mars Science Laboratory's (MSL's) atmospheric entry there will likely be a communication outage due to charged particles on the order of 60 to 100 seconds using a UHF link frequency looking out the shoulders of the wake region to orbiting relay asset. A UHF link looking out the base region would experience a shorter duration blackout, about 35 seconds for the stressed trajectory and possibly no blackout for the nominal trajectory. There is very little likelihood of a communications outage using X-band (however, X-band is not currently planned to be used during peak electron density phase of EDL).
Couples Communication Skills and Anxiety of Pregnancy: A Narrative Review.
Malary, Mina; Shahhosseini, Zohreh; Pourasghar, Mehdi; Hamzehgardeshi, Zeinab
2015-08-01
physical problems during pregnancy including Anxiety disorders form a large share of health problems. On the other hand, healthy relationship and communication skills are vital to raise a family. For couples who enjoy communication skills, parenthood will be the best and most pleasant experiences in their lives. High levels of positive communication will lead to couples and their children's mental health and couples' good relationship can have a protective effect against stressors including anxiety of pregnancy. The current study reviewed the studies on the relationship between communication skills and the anxiety of pregnancy. The current study is a review where the researcher browsed the available databases like Google Scholar, Pubmed, Magiran, SID, and Science Direct and using key words of Communication skills, marital satisfaction, and the anxiety of pregnancy, & the researcher has searched the articles of 2000-2014 & read 150 abstracts & 93 full papers and ultimately, chose 50 to write this study. By reviewing the findings literature in three general categories as Communication Skills as the Significant Component to Get Marital Satisfaction, Improving Marital Satisfaction as Pregnancy Anxiety Reducing Factor, and Communication Skills Quality as Component Influencing Pregnancy Anxiety. Having communication skills will lead to promotion of marital satisfaction and increased mental health in life. It is, therefore, recommended that communication skills be trained in routine programs for pre-marriage counseling, pre-pregnancy cares and pregnancy so that the mental health of community can be improved.
Polluting Canada's Public Square: The Harper Government's War on Science and the Environment?
NASA Astrophysics Data System (ADS)
Linnitt, C.; Hoggan, J. C.
2013-12-01
Conversations about key environmental issues like climate change are increasingly viewed as matters of politics rather than matters of science. As a result, competing -and often polarized - interests have made public debate on these issues vulnerable to aggressive politicization. This politicization, particularly when it comes to important policy decisions regarding industrial (and especially fossil fuel) development, obscures the facts on these issues, leaving democratic public debate prey to aggressive public relations tactics, misinformation campaigns, pseudo-science, modern-day propaganda and/or the deliberate ';pollution' of the public square. In Canada a coordinated effort is underway to mischaracterize environmental groups as radical ideologues, associating environmental views and pursuits with extremism. A Tea Party-style echo chamber has also emerged in Canada, coordinating anti-science messaging in an attempt to bolster industrial development while misaligning environmental non-profits with domestic terror threats. This attempt to undermine ecological agendas and to push environmental concerns to the margins is paired with government-sponsored censorship of federally-funded scientists and the elimination of vital public science programs in Canada. The result is a dearth of scientific information surrounding significant environmental concerns - such as the Alberta oil sands and industry contamination of waterways - and a dangerous and false association of these issues with an extremist agenda. Ultimately scientists and science communicators face a unique set of challenges in Canada when it comes to addressing environmental issues. Although the 'science' of science communication has evolved to address relevant cultural and socio-political barriers associated with change resistance (for example, adapting one's behavior to minimize greenhouse gas emissions), much work remains in both acknowledging and ameliorating the politicization of science and the intentional pollution of public conversations. Democracy depends on the public's access to information; however, in a climate in which that access is under threat, scientists and science communicators may need to address those fundamental concerns deliberately in order to participate effectively in the public policy and decision-making process. This paper provides a brief overview of environmental communications theory and practice, current misinformation techniques, and key instances in which either government policy and/or media and industry behavior have actively sought to contaminate or impede more constructive discourse on issues of science and environmental regulation. We conclude by offering a set of recommendations for improving the ability of scientists and experts to communicate effectively in an increasingly complex political and media environment, and for safeguarding the quality of democratic discourse on these and other issues.
Pisgah Lava Cave Communication Test: Science Case Study for the Networked Constellations Initiative
NASA Technical Reports Server (NTRS)
Belov, K.; Ellison, D.; Fraeman, A.
2017-01-01
As part of the science case study for the Networked Constellations initiative, a team of JPL scientists explore the possibility of a mission to study the lava caves on Mars. Natural caves on Mars and the Moon present a unique opportunity to learn about the planetary geology and to provide a shelter for human explorers. Due to power and communication challenges, a network of assets has significant advantages over a single asset sent inside a cave. However, communication between the assets and the data downlink present significant difficulties due to the presence of rough walls, boulders, and other obstacles with unknown dielectric constant inside a typical cave, disturbing the propagation of the radio waves. A detailed study is needed to establish the limitations of the current communication technologies and to develop requirements for the new communication technology applicable to the cave environment. On May 4 of 2017, Konstantin Belov, Doug Ellison, and Abby Fraeman visited a lava cave in Pisgah, CA. The purpose of the visit was to build a 3D map of the cave, which could be used to create a model of radio wave propagation, and to conduct a series of communication tests using off-the-shelf equipment to verify the in-cave communication challenges. This experiment should be considered as a simple 'proof of concept' and is the subject of this report.
Using Sentiment Analysis to Observe How Science is Communicated
NASA Astrophysics Data System (ADS)
Topping, David; Illingworth, Sam
2016-04-01
'Citizen Science' and 'Big data' are terms that are currently ubiquitous in the field of science communication. Whilst opinions differ as to what exactly constitutes a 'citizen', and how much information is needed in order for a data set to be considered truly 'big', what is apparent is that both of these fields have the potential to help revolutionise not just the way that science is communicated, but also the way that it is conducted. However, both the generation of sufficient data, and the efficiency of then analysing the data once it has been analysed need to be taken into account. Sentiment Analysis is the process of determining whether a piece of writing is positive, negative or neutral. The process of sentiment analysis can be automated, providing that an adequate training set has been used, and that the nuances that are associated with a particular topic have been accounted for. Given the large amounts of data that are generated by social media posts, and the often-opinionated nature of these posts, they present an ideal source of data to both train with and then scrutinize using sentiment analysis. In this work we will demonstrate how sentiment analysis can be used to examine a large number of Twitter posts, and how a training set can be established to ensure consistency and accuracy in the automation. Following an explanation of the process, we will demonstrate how automated sentiment analysis can be used to categorise opinions in relation to a large-scale science festival, and will discuss if sentiment analysis can be used to tell us if there is a bias in these communications. We will also investigate if sentiment analysis can be used to replace more traditional, and invasive evaluation strategies, and how this approach can then be adopted to investigate other topics, both within scientific communication and in the wider scientific context.
Life Sciences Research Facility automation requirements and concepts for the Space Station
NASA Technical Reports Server (NTRS)
Rasmussen, Daryl N.
1986-01-01
An evaluation is made of the methods and preliminary results of a study on prospects for the automation of the NASA Space Station's Life Sciences Research Facility. In order to remain within current Space Station resource allocations, approximately 85 percent of planned life science experiment tasks must be automated; these tasks encompass specimen care and feeding, cage and instrument cleaning, data acquisition and control, sample analysis, waste management, instrument calibration, materials inventory and management, and janitorial work. Task automation will free crews for specimen manipulation, tissue sampling, data interpretation and communication with ground controllers, and experiment management.
A Humanities Network Considers What Lies Beyond E-Mail.
ERIC Educational Resources Information Center
Guernsey, Lisa
1997-01-01
H-NET (Humanities and Social Sciences OnLine) is a new, rapidly expanding international online network of scholars that was established to increase electronic mail communication among individuals. Currently, the program is devoting more attention to World Wide Web-related projects providing information and reference sources. Internal conflict…
77 FR 75939 - Control of Communicable Diseases: Foreign; Scope and Definitions
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-26
... primary authority supporting this rulemaking is section 361 of the Public Health Service Act (42 U.S.C... ``animal products'' in subpart F. This revision more adequately reflects modern science and current... does not change the baseline costs for any of the primary stakeholders. B. Regulatory Flexibility Act...
BASIC STEPS IN DESIGNING SCIENCE LABORATORIES.
ERIC Educational Resources Information Center
WHITNEY, FRANK L.
PLANNERS OF CURRENT UNIVERSITY LABORATORIES OFTEN MAKE THE SAME MISTAKES MADE BY INDUSTRIAL LABORATORIES 20 YEARS AGO. THIS CAN BE REMEDIED BY INCREASED COMMUNICATION BETWEEN SCIENTISTS AND DESIGNERS IN SEMINARS DEFINING THE BASIC NEEDS OF A PARTICULAR LABORATORY SITUATION. ELECTRONIC AND MECHANICAL EQUIPMENT ACCOUNT FOR OVER 50 PER CENT OF TOTAL…
Communications In Postgraduate Medical Education.
ERIC Educational Resources Information Center
Meyer, Thomas C.
1970-01-01
A consequence of the knowledge explosion in the medical sciences is that health care professionals are pressed for time to keep up with developments in their fields. To deal with this problem, the Department of Postgraduate Education of the University of Wisconsin has experimented with three methods of making current pertinent and authoritative…
Applying Historic Science Communication Lessons to Today's Global Change Issues
NASA Astrophysics Data System (ADS)
Rocchio, L. E.
2009-12-01
As global population surges towards seven billion and anthropogenic impacts ricochet throughout Earth’s environment, effective science communication has become essential. In today’s digital world where science communication must contend with stiff competition for audience attention, it is crucial to understand the lessons gleaned from a century worth of science communication research. Starting in the early part of the twentieth century a cadre of American scientists began to advocate for better public understanding of science, arguing that better understanding of science meant a better quality of life, better public affairs deliberations, and the elevation of democracy and culture. To improve science communication, many models of the communication process have been developed since then. Starting in the 1940s, science communication researchers adopted the linear communication model of electrical engineering. Over time, the one-way scientific communication of the linear model came to be identified with the deficit model approach—which assumes little prior scientific knowledge on the part of the receiver. A major failure of the deficit model was witnessed during the Mad Cow Disease outbreak in the UK: beef safety was over-simplified in the communication process, people were given a false sense of security, many ended up sick, and public trust in government plummeted. Of the many lessons learned from failures of the deficit model, arguably, the most significant lesson is that the public’s prior knowledge and life experience is always brought to bear on the message, i.e. the message must be contextualized. Here, we examine the major science communication lessons of the past century and discuss how they can inform more effective global change communication.
Beginning science teachers' strategies for communicating with families
NASA Astrophysics Data System (ADS)
Bloom, Nena E.
Science learning occurs in both formal and informal spaces. Families are critical for developing student learning and interest in science because they provide important sources of knowledge, support and motivation. Bidirectional communication between teachers and families can be used to build relationships between homes and schools, leverage family knowledge of and support for learners, and create successful environments for science learning that will support both teaching and student learning. To identify the communication strategies of beginning science teachers, who are still developing their teaching practices, a multiple case study was conducted with seven first year secondary science teachers. The methods these teachers used to communicate with families, the information that was communicated and shared, and factors that shaped these teachers' continued development of communication strategies were examined. Demographic data, interview data, observations and documentation of communication through logs and artifacts were collected for this study. Results indicated that the methods teachers had access to and used for communication impacted the frequency and efficacy of their communication. Teachers and families communicated about a number of important topics, but some topics that could improve learning experiences and science futures for their students were rarely discussed, such as advancement in science, student learning in science and family knowledge. Findings showed that these early career teachers were continuing to learn about their communities and to develop their communication strategies with families. Teachers' familiarity with their school community, opportunities to practice strategies during preservice preparation and student teaching, their teaching environment, school policies, and learning from families and students in their school culture continued to shape and influence their views and communication strategies. Findings and implications for teacher preparation programs, teachers, schools and organizations are discussed.
ERIC Educational Resources Information Center
Gelmez Burakgazi, Sevinc; Yildirim, Ali; Weeth Feinstein, Noah
2016-01-01
Rooted in science education and science communication studies, this study examines 4th and 5th grade students' perceptions of science information sources (SIS) and their use in communicating science to students. It combines situated learning theory with uses and gratifications theory in a qualitative phenomenological analysis. Data were gathered…
NASA science communications strategy
NASA Technical Reports Server (NTRS)
1995-01-01
In 1994, the Clinton Administration issued a report, 'Science in the National Interest', which identified new national science goals. Two of the five goals are related to science communications: produce the finest scientists and engineers for the 21st century, and raise scientific and technological literacy of all Americans. In addition to the guidance and goals set forth by the Administration, NASA has been mandated by Congress under the 1958 Space Act to 'provide for the widest practicable and appropriate dissemination concerning its activities and the results thereof'. In addition to addressing eight Goals and Plans which resulted from a January 1994 meeting between NASA and members of the broader scientific, education, and communications community on the Public Communication of NASA's Science, the Science Communications Working Group (SCWG) took a comprehensive look at the way the Agency communicates its science to ensure that any changes the Agency made were long-term improvements. The SCWG developed a Science Communications Strategy for NASA and a plan to implement the Strategy. This report outlines a strategy from which effective science communications programs can be developed and implemented across the agency. Guiding principles and strategic themes for the strategy are provided, with numerous recommendations for improvement discussed within the respective themes of leadership, coordination, integration, participation, leveraging, and evaluation.
ERIC Educational Resources Information Center
Suprapto, Nadi; Ku, Chih-Hsiung
2016-01-01
The purpose of this study was to investigate Indonesian university students' preferences to science communication skills. Data collected from 251 students who were majoring in science education program. The Learning Preferences to Science Communication (LPSC) questionnaire was developed with Indonesian language and validated through an exploratory…
ERIC Educational Resources Information Center
Szymanski, Erika Amethyst
2016-01-01
Even as deficit model science communication falls out of favor, few studies question how written science communication constructs relationships between science and industry. Here, I investigate how textual microprocesses relate scientific research to industry practice in the Washington State wine industry, helping (or hindering) winemakers and…
Challenges and Support When Teaching Science Through an Integrated Inquiry and Literacy Approach
NASA Astrophysics Data System (ADS)
Ødegaard, Marianne; Haug, Berit; Mork, Sonja M.; Ove Sørvik, Gard
2014-12-01
In the Budding Science and Literacy project, we explored how working with an integrated inquiry-based science and literacy approach may challenge and support the teaching and learning of science at the classroom level. By studying the inter-relationship between multiple learning modalities and phases of inquiry, we wished to illuminate possible dynamics between science inquiry and literacy in an integrated science approach. Six teachers and their students were recruited from a professional development course for the current classroom study. The teachers were to try out the Budding Science teaching model. This paper presents an overall video analysis of our material demonstrating variations and patterns of inquiry-based science and literacy activities. Our analysis revealed that multiple learning modalities (read it, write it, do it, and talk it) are used in the integrated approach; oral activities dominate. The inquiry phases shifted throughout the students' investigations, but the consolidating phases of discussion and communication were given less space. The data phase of inquiry seems essential as a driving force for engaging in science learning in consolidating situations. The multiple learning modalities were integrated in all inquiry phases, but to a greater extent in preparation and data. Our results indicate that literacy activities embedded in science inquiry provide support for teaching and learning science; however, the greatest challenge for teachers is to find the time and courage to exploit the discussion and communication phases to consolidate the students' conceptual learning.
Undergraduate Biotechnology Students' Views of Science Communication
NASA Astrophysics Data System (ADS)
Edmondston, Joanne Elisabeth; Dawson, Vaille; Schibeci, Renato
2010-12-01
Despite rapid growth of the biotechnology industry worldwide, a number of public concerns about the application of biotechnology and its regulation remain. In response to these concerns, greater emphasis has been placed on promoting biotechnologists' public engagement. As tertiary science degree programmes form the foundation of the biotechnology sector by providing a pipeline of university graduates entering into the profession, it has been proposed that formal science communication training be introduced at this early stage of career development. The aim of the present study was to examine the views of biotechnology students towards science communication and science communication training. Using an Australian biotechnology degree programme as a case study, 69 undergraduates from all three years of the programme were administered a questionnaire that asked them to rank the importance of 12 components of a biotechnology curriculum, including two science communication items. The results were compared to the responses of 274 students enrolled in other science programmes. Additional questions were provided to the second year biotechnology undergraduates and semi-structured interviews were undertaken with 13 of these students to further examine their views of this area. The results of this study suggest that the biotechnology students surveyed do not value communication with non-scientists nor science communication training. The implications of these findings for the reform of undergraduate biotechnology courses yet to integrate science communication training into their science curriculum are discussed.
Sanz Merino, Noemí; Tarhuni Navarro, Daniela H
2018-06-01
This study aims to explore the perceptions and attitudes toward Public Communication of Science and Technology of the researchers of the National Council of Science and Technology (Conacyt), in order to provide a diagnosis about the ways the Mexican scientists are involved in public communication and to contribute to the visibility of researchers' needs in being able to popularize science. The results show significant differences among the researchers' opinions with respect to their perceptions about science communication, the ways they participate in PUS activities and their identified needs. In general, the researchers of Conacyt perceived public communication as very important. However, lack of time and of academic recognition stood out as determining factors in their low contribution to science popularization. We conclude that, to achieve a culture of Public Engagement in public communication of science and technology among R&D institutions, the Mexican Administration should address the above-mentioned unfavorable professional circumstances.
The use of communication technology in medicine
NASA Technical Reports Server (NTRS)
Reis, Howard P.
1991-01-01
NYNEX Science and Technology is engineering a multi-layered approach to multimedia communications by combining high-resolution images, video, voice, and text into a new fiber-optic service. The service, Media Broadband Service (MBS), is a network-based visual communications capability. It permits real time sharing of images in support of collaborative work among geographically dispersed locations. The health care industry was identified as a primary target market due to their need for high resolution images, the need to transport these images over great distances, and the need to achieve the transport in a short amount of time. The NYNEX Corporation, the current state of the MBS project, including the market needs driving the development of MBS, the overall design of the service, its current implementation and development status, and the progress of MBS projects underway for various customers participating in the initial service offering are described.
Garcia, Julie Torruellas
2018-01-01
Communicating science effectively to the general public is a necessary skill that takes practice. Generally, undergraduate science majors are taught to communicate to other scientists but are not given formal training on how to communicate with a nonscientist. An opportunity to appear on a news segment can be used as a real-world lesson on science communication for your students. This article will describe how to contact a producer to get your class on a news segment, ideas for types of research that may be of interest to the media, and how to practice communicating the results effectively.
Neuhauser, Linda; Kreps, Gary L; Morrison, Kathleen; Athanasoulis, Marcos; Kirienko, Nikolai; Van Brunt, Deryk
2013-08-01
This paper describes how design science theory and methods and use of artificial intelligence (AI) components can improve the effectiveness of health communication. We identified key weaknesses of traditional health communication and features of more successful eHealth/AI communication. We examined characteristics of the design science paradigm and the value of its user-centered methods to develop eHealth/AI communication. We analyzed a case example of the participatory design of AI components in the ChronologyMD project intended to improve management of Crohn's disease. eHealth/AI communication created with user-centered design shows improved relevance to users' needs for personalized, timely and interactive communication and is associated with better health outcomes than traditional approaches. Participatory design was essential to develop ChronologyMD system architecture and software applications that benefitted patients. AI components can greatly improve eHealth/AI communication, if designed with the intended audiences. Design science theory and its iterative, participatory methods linked with traditional health communication theory and methods can create effective AI health communication. eHealth/AI communication researchers, developers and practitioners can benefit from a holistic approach that draws from theory and methods in both design sciences and also human and social sciences to create successful AI health communication. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Geoscience on television: a review of science communication literature in the context of geosciences
NASA Astrophysics Data System (ADS)
Hut, Rolf; Land-Zandstra, Anne M.; Smeets, Ionica; Stoof, Cathelijne R.
2016-06-01
Geoscience communication is becoming increasingly important as climate change increases the occurrence of natural hazards around the world. Few geoscientists are trained in effective science communication, and awareness of the formal science communication literature is also low. This can be challenging when interacting with journalists on a powerful medium like TV. To provide geoscience communicators with background knowledge on effective science communication on television, we reviewed relevant theory in the context of geosciences and discuss six major themes: scientist motivation, target audience, narratives and storytelling, jargon and information transfer, relationship between scientists and journalists, and stereotypes of scientists on TV. We illustrate each theme with a case study of geosciences on TV and discuss relevant science communication literature. We then highlight how this literature applies to the geosciences and identify knowledge gaps related to science communication in the geosciences. As TV offers a unique opportunity to reach many viewers, we hope this review can not only positively contribute to effective geoscience communication but also to the wider geoscience debate in society.
The Science of Science Communication and Protecting the Science Communication Environment
NASA Astrophysics Data System (ADS)
Kahan, D.
2012-12-01
Promoting public comprehension of science is only one aim of the science of science communication and is likely not the most important one for the well-being of a democratic society. Ordinary citizens form quadrillions of correct beliefs on matters that turn on complicated scientific principles they cannot even identify much less understand. The reason they fail to converge on beliefs consistent with scientific evidence on certain other consequential matters—from climate change to genetically modified foods to compusory adolescent HPV vaccination—is not the failure of scientists or science communicators to speak clearly or the inability of ordinary citizens to understand what they are saying. Rather, the source of such conflict is the proliferation of antagonistic cultural meanings. When they become attached to particular facts that admit of scientific investigation, these meanings are a kind of pollution of the science communication environment that disables the faculties ordinary citizens use to reliably absorb collective knowledge from their everyday interactions. The quality of the science communication environment is thus just as critical for enlightened self-government as the quality of the natural environment is for the physical health and well-being of a society's members. Understanding how this science communication environment works, fashioning procedures to prevent it from becoming contaminated with antagonistic meanings, and formulating effective interventions to detoxify it when protective strategies fail—those are the most critical functions science communication can perform in a democratic society.
Data and Communications in Basic Energy Sciences: Creating a Pathway for Scientific Discovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nugent, Peter E.; Simonson, J. Michael
2011-10-24
This report is based on the Department of Energy (DOE) Workshop on “Data and Communications in Basic Energy Sciences: Creating a Pathway for Scientific Discovery” that was held at the Bethesda Marriott in Maryland on October 24-25, 2011. The workshop brought together leading researchers from the Basic Energy Sciences (BES) facilities and Advanced Scientific Computing Research (ASCR). The workshop was co-sponsored by these two Offices to identify opportunities and needs for data analysis, ownership, storage, mining, provenance and data transfer at light sources, neutron sources, microscopy centers and other facilities. Their charge was to identify current and anticipated issues inmore » the acquisition, analysis, communication and storage of experimental data that could impact the progress of scientific discovery, ascertain what knowledge, methods and tools are needed to mitigate present and projected shortcomings and to create the foundation for information exchanges and collaboration between ASCR and BES supported researchers and facilities. The workshop was organized in the context of the impending data tsunami that will be produced by DOE’s BES facilities. Current facilities, like SLAC National Accelerator Laboratory’s Linac Coherent Light Source, can produce up to 18 terabytes (TB) per day, while upgraded detectors at Lawrence Berkeley National Laboratory’s Advanced Light Source will generate ~10TB per hour. The expectation is that these rates will increase by over an order of magnitude in the coming decade. The urgency to develop new strategies and methods in order to stay ahead of this deluge and extract the most science from these facilities was recognized by all. The four focus areas addressed in this workshop were: Workflow Management - Experiment to Science: Identifying and managing the data path from experiment to publication. Theory and Algorithms: Recognizing the need for new tools for computation at scale, supporting large data sets and realistic theoretical models. Visualization and Analysis: Supporting near-real-time feedback for experiment optimization and new ways to extract and communicate critical information from large data sets. Data Processing and Management: Outlining needs in computational and communication approaches and infrastructure needed to handle unprecedented data volume and information content. It should be noted that almost all participants recognized that there were unlikely to be any turn-key solutions available due to the unique, diverse nature of the BES community, where research at adjacent beamlines at a given light source facility often span everything from biology to materials science to chemistry using scattering, imaging and/or spectroscopy. However, it was also noted that advances supported by other programs in data research, methodologies, and tool development could be implemented on reasonable time scales with modest effort. Adapting available standard file formats, robust workflows, and in-situ analysis tools for user facility needs could pay long-term dividends. Workshop participants assessed current requirements as well as future challenges and made the following recommendations in order to achieve the ultimate goal of enabling transformative science in current and future BES facilities: Theory and analysis components should be integrated seamlessly within experimental workflow. Develop new algorithms for data analysis based on common data formats and toolsets. Move analysis closer to experiment. Move the analysis closer to the experiment to enable real-time (in-situ) streaming capabilities, live visualization of the experiment and an increase of the overall experimental efficiency. Match data management access and capabilities with advancements in detectors and sources. Remove bottlenecks, provide interoperability across different facilities/beamlines and apply forefront mathematical techniques to more efficiently extract science from the experiments. This workshop report examines and reviews the status of several BES facilities and highlights the successes and shortcomings of the current data and communication pathways for scientific discovery. It then ascertains what methods and tools are needed to mitigate present and projected data bottlenecks to science over the next 10 years. The goal of this report is to create the foundation for information exchanges and collaborations among ASCR and BES supported researchers, the BES scientific user facilities, and ASCR computing and networking facilities. To jumpstart these activities, there was a strong desire to see a joint effort between ASCR and BES along the lines of the highly successful Scientific Discovery through Advanced Computing (SciDAC) program in which integrated teams of engineers, scientists and computer scientists were engaged to tackle a complete end-to-end workflow solution at one or more beamlines, to ascertain what challenges will need to be addressed in order to handle future increases in data« less
ERIC Educational Resources Information Center
2002
The Science Communication Interest Group Division of the proceedings contains the following 7 papers: "Forecasting the Future: How Television Weathercasters' Attitudes and Beliefs about Climate Change Affect Their Cognitive Knowledge on the Science" (Kris Wilson); "The Web and E-Mail in Science Communication: Results of In-Depth…
Interprofessional communication in healthcare: An integrative review.
Foronda, Cynthia; MacWilliams, Brent; McArthur, Erin
2016-07-01
The link between miscommunication and poor patient outcomes has been well documented. To understand the current state of knowledge regarding interprofessional communication, an integrative review was performed. The review suggested that nurses and physicians are trained differently and they exhibit differences in communication styles. The distinct frustrations that nurses and physicians expressed with each other were discussed. Egos, lack of confidence, lack of organization and structural hierarchies hindered relationships and communications. Research suggested that training programs with the use of standardized tools and simulation are effective in improving interprofessional communication skills. Recommendations include education beyond communication techniques to address the broader related constructs of patient safety, valuing diversity, team science, and cultural humility. Future directions in education are to add courses in patient safety to the curriculum, use handover tools that are interprofessional in nature, practice in simulation hospitals for training, and use virtual simulation to unite the professions. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Train, Tonya Laakko; Miyamoto, Yuko J.
2017-01-01
The ability to effectively communicate science is a skill sought after by graduate and professional schools as well as by employers in science-related fields. Are content-heavy undergraduate science curricula able to incorporate opportunities to develop science communication skills, and is promoting these skills worth the time and effort? The…
Development and Evaluation of an Undergraduate Science Communication Module
ERIC Educational Resources Information Center
Yeoman, Kay H.; James, Helen A.; Bowater, Laura
2011-01-01
This paper describes the design and evaluation of an undergraduate final year science communication module for the Science Faculty at the University of East Anglia. The module focuses specifically on science communication and aims to bring an understanding of how science is disseminated to the public. Students on the module are made aware of the…
Jia, Hepeng; Liu, Li
2014-01-01
This article critically traces the development of science communication in China in the past 30 years. While confirming the tremendous progress Chinese science communicators have achieved in popularising science, it argues that the deficit model-based popularisation effort cannot meet the diversifying demands on science in Chinese society. Citing both recent science and technology controversies and active public participation in science pilot initiatives in China, this article concludes that science communication efforts in the country must be focused on constructive dialogues and public engagement with science.
NASA Astrophysics Data System (ADS)
Kroffe, K.
2017-12-01
The mission of the Public Library of Science is to accelerate progress in science and medicine by leading a transformation in research communication. Researchers' ability to share their work without restriction is essential, but critical to sharing is open data, transparency in peer review, and an open approach to science assessment. In this session, we will discuss how PLOS ONE collaborates with many different scientific communities to help create, share, and preserve the scholarly works produced by their researchers with emphasis on current common difficulties faced by communities, practical solutions, and a broader view of the importance of open data and reproducibility.
NASA/MSFC/NSSTC Science Communication Roundtable
NASA Technical Reports Server (NTRS)
Adams, M. L.; Gallagher, D. L.; Koczor, R.; Six, N. Frank (Technical Monitor)
2002-01-01
The Science Directorate at Marshall Space Flight Center (MSFC) conducts a diverse program of Internet-based science communication through a Science Roundtable process. The Roundtable includes active researchers, writers, NASA public relations staff, educators, and administrators. The Science@NASA award-winning family of Web sites features science, mathematics, and space news to inform, involve, and inspire students and the public about science. We describe here the process of producing stories, results from research to understand the science communication process, and we highlight each member of our Web family.
Using Authentic Data in High School Earth System Science Research - Inspiring Future Scientists
NASA Astrophysics Data System (ADS)
Bruck, L. F.
2006-05-01
Using authentic data in a science research class is an effective way to teach students the scientific process, problem solving, and communication skills. In Frederick County Public Schools, MD a course has been developed to hone scientific research skills, and inspire interest in careers in science and technology. The Earth System Science Research course provides eleventh and twelfth grade students an opportunity to study Earth System Science using the latest information developed through current technologies. The system approach to this course helps students understand the complexity and interrelatedness of the Earth system. Consequently students appreciate the dynamics of local and global environments as part of a complex system. This course is an elective offering designed to engage students in the study of the atmosphere, biosphere, cryosphere, geosphere, and hydrosphere. This course allows students to utilize skills and processes gained from previous science courses to study the physical, chemical, and biological aspects of the Earth system. The research component of the course makes up fifty percent of course time in which students perform independent research on the interactions within the Earth system. Students are required to produce a scientific presentation to communicate the results of their research. Posters are then presented to the scientific community. Some of these presentations have led to internships and other scientific opportunities.
We must reach out to the public
NASA Astrophysics Data System (ADS)
Perfit, Michael; Fornari, Daniel J.
Faced with the current budget crisis, legislators and leaders of federal agencies are asking scientists to communicate why continued and even expanded funding of basic sciences is important to America. There have been repeated requests for oceanographers to communicate the importance of their science to the public at large and to legislators at both state and federal levels. It is often difficult, however, to find opportunities for public and legislative outreach.On March 17, 1996, Neal Lane, Director of the National Science Foundation, and Jerry Lewis (R.-Calif.), Chair of the House Appropriations Subcommittee for VA, HUD, and Independent Agencies, which oversees NSF, participated in a dive off the coast of California in the Deep Submergence Vehicle (DSV) Alvin. The dive was part an ongoing effort to improve science and operational systems on Alvin and to ensure that the submersible systems are ready for the next science program. It followed a 3-month shutdown of the facility imposed, in part, by budget cutbacks. The engineering dives are funded by the National Science Foundation, The U.S. Navy Office of Naval Research, and the National Oceanic and Atmospheric Administration through the Woods Hole Oceanographic Institution, the facility operator. In addition to testing out a new, integrated navigation software package for DSV operations, several vehicle systems and a new digital imaging system were tested.
Overview of NASA communications infrastructure
NASA Technical Reports Server (NTRS)
Arnold, Ray J.; Fuechsel, Charles
1991-01-01
The infrastructure of NASA communications systems for effecting coordination across NASA offices and with the national and international research and technological communities is discussed. The offices and networks of the communication system include the Office of Space Science and Applications (OSSA), which manages all NASA missions, and the Office of Space Operations, which furnishes communication support through the NASCOM, the mission critical communications support network, and the Program Support Communications network. The NASA Science Internet was established by OSSA to centrally manage, develop, and operate an integrated computer network service dedicated to NASA's space science and application research. Planned for the future is the National Research and Education Network, which will provide communications infrastructure to enhance science resources at a national level.
What conceptions of science communication are espoused by science research funding bodies?
Palmer, Sarah E; Schibeci, Renato A
2014-07-01
We examine the conceptions of science communication, especially in relation to "public engagement with science" (PES), evident in the literature and websites of science research funding bodies in Europe, North America, South America, Asia and Oceania, and Africa. The analysis uses a fourfold classification of science communication to situate these conceptions: professional, deficit, consultative and deliberative. We find that all bodies engage in professional communication (within the research community); however, engagement with the broader community is variable. Deficit (information dissemination) models still prevail but there is evidence of movement towards more deliberative, participatory models.
Xu, Linjia; Huang, Biaowen; Wu, Guosheng
2015-11-01
This study attempted to illuminate the cause and relation between government, scholars, disciplines, and societal aspects, presenting data from a content analysis of published research with the key word "science communication" (Symbol: see text) in the title or in the key words, including academic papers published in journals and dissertations from the China National Knowledge Infrastructure database. Of these, 572 articles were coded using categories that identified science topics, theory, authorship, and methods used in each study to examine the breadth and depth that Science Communication has achieved since its inception in China. This study explored the dominance of History and Philosophy of Science scholars rather than Communication scholars. We also explored how science communication research began from theories and concepts instead of science report analysis and the difficulties of the shift from public understanding of science to public engagement in China. © The Author(s) 2015.
Leopold 2.0: Training for a New Kind of Science Leadership
NASA Astrophysics Data System (ADS)
Sturner, P. H.; Matson, P. A.; Krebs, M.
2011-12-01
To meet the environment and resource challenges of the coming decade, a new kind of scientific leadership is needed - one that is defined by the ability to innovate and lead transformational change; create strategic visions and implement them; catalyze and create bridges among multiple audiences and stakeholder groups; and motivate change in patterns of behavior, processes, and key decision systems. The Leopold Leadership Program has, since 1999, been training mid-career academic leaders in both communication skills and other strategies to link and translate their knowledge to decision making. As a result of the program's recent evaluation and planning activities, and drawing on current social science research, the program has identified storytelling, message-building, interviewing, and dialogue as critical science communication skills for the future. This presentation will provide examples of these skills, and illustrate ways in which they are essential to the work of collaboration, innovation, and action at the heart of "scientific leadership 2.0."
A New Generation of Telecommunications for Mars: The Reconfigurable Software Radio
NASA Technical Reports Server (NTRS)
Adams, J.; Horne, W.
2000-01-01
Telecommunications is a critical component for any mission at Mars as it is an enabling function that provides connectivity back to Earth and provides a means for conducting science. New developments in telecommunications, specifically in software - configurable radios, expand the possible approaches for science missions at Mars. These radios provide a flexible and re-configurable platform that can evolve with the mission and that provide an integrated approach to communications and science data processing. Deep space telecommunication faces challenges not normally faced by terrestrial and near-earth communications. Radiation, thermal, highly constrained mass, volume, packaging and reliability all are significant issues. Additionally, once the spacecraft leaves earth, there is no way to go out and upgrade or replace radio components. The reconfigurable software radio is an effort to provide not only a product that is immediately usable in the harsh space environment but also to develop a radio that will stay current as the years pass and technologies evolve.
Communicating Complex Sciences by Means of Exhibitions
NASA Astrophysics Data System (ADS)
Schneider, S.
2011-12-01
Earth Sciences will have to take over the leading role in global sustainable policy and in discussions about climate change. Efforts to raise attention within the politically responsible communities as well as in the public are getting more and more support by executive and advisory boards all over the world. But how can you successfully communicate complex sciences? For example, to start communication about climate change, the first step is to encourage people to be concerned about climate change. After that, one has to start thinking about how to present data and how to include the presented data into an unprejudiced context. Therefore, the communication toolbox offers various methods to reach diverse audiences. The R&D programme GEOTECHNOLOGIEN conducts roving exhibitions as one of its most successful communication tools. With roving exhibitions GEOTECHNOLOGIEN is able to get in touch with different audiences at once. The main purpose and theme of these exhibitions is to convey the everyday means of climate change to the visitors. It is within the responsibility of science to communicate the effects of a phenomenon like climate change as well as the impact of research results to the everyday life of people. Currently, a GEOTECHNOLOGIEN roving exhibition on remote sensing with satellites deals with various issues of environmental research, including a chapter on climate change. By following the 3M-concept (Meaning - Memorable - Moving), exhibitions allow to connect the visitors daily environment and personal experiences with the presented issues and objects. Therefore, hands-on exhibits, exciting multimedia effects and high-tech artefacts have to be combined with interpretive text elements to highlight the daily significance of the scientific topics and the exhibition theme respectively. To create such an exhibition, strong conceptual planning has to be conducted. This includes the specification of stern financial as well as time wise milestones. In addition, concepts to include professional techniques of science interpretation will become a crucial step on the way to success. The elements of successful exhibitions, tips for effective interpretive writing and display design as well as milestones in the exhibition planning process accompanied by ideas and recommendations to make your exhibition even more exciting, will be discussed. Framed by Anatole France's concept of successful interpretation and Freeman Tilden's definition of interpretation, this presentation will give you a new perspective on how to communicate climate change and other scientific topics.
The Advanced Communications Technology Satellite (ACTS) capabilities for serving science
NASA Technical Reports Server (NTRS)
Meyer, Thomas R.
1990-01-01
Results of research on potential science applications of the NASA Advanced Communications Technology Satellite (ACTS) are presented. Discussed here are: (1) general research on communications related issues; (2) a survey of science-related activities and programs in the local area; (3) interviews of selected scientists and associated telecommunications support personnel whose projects have communications requirements; (4) analysis of linkages between ACTS functionality and science user communications activities and modes of operation; and (5) an analysis of survey results and the projection of conclusions to a national scale.
ERIC Educational Resources Information Center
Hemmerich, Abby L.; Hoepner, Jerry K.; Samelson, Vicki M.
2015-01-01
Students training for clinical careers must acquire skills for teaching clients, their families, and fellow professionals. Guidelines for training programs in Communication Sciences and Disorders (Speech-Language Pathology), however, do not currently include standards for pedagogy. The aim of this study was to measure changes in undergraduate…
ERIC Educational Resources Information Center
Lewis, David I.
2011-01-01
This paper reports on how science communication final year undergraduate research projects and educational internships can be utilised to provide opportunities for students to develop and utilise key employability skills. In the current difficult economic climate, the report "Working towards your future: Making the most of your time in higher…
ERIC Educational Resources Information Center
McNeill, Dennis G.
2013-01-01
Scholars and professionals alike contend our nation's competitive position and economic growth depends considerably on the acumen of its science, technology, engineering, and math (STEM) talent pool. In spite of current economic conditions and high national unemployment, there is an increasing demand for those skilled in technology and…
ERIC Educational Resources Information Center
Reed, Robyn B.; Butkovich, Nancy J.
2017-01-01
Discussions abound regarding current and future roles of academic science and medical librarians. As changes in scientific approaches, technology, scholarly communication, and funding mechanisms occur, libraries supporting scientific areas must be equipped to handle the various needs of these researchers. The purpose of this study was to examine…
Energy Detectives! Introduce Students to a Promising Career in Energy Auditing
ERIC Educational Resources Information Center
Helmholdt, Nick
2012-01-01
The growing field of energy assessment for buildings presents opportunities for teachers to engage students in topics related to current issues, science, technology, and communication skills. Students who find satisfaction in energy auditing can expand their interests into careers as the demand to stop wasteful practices in homes and businesses…
Earth Science Learning in SMALLab: A Design Experiment for Mixed Reality
ERIC Educational Resources Information Center
Birchfield, David; Megowan-Romanowicz, Colleen
2009-01-01
Conversational technologies such as email, chat rooms, and blogs have made the transition from novel communication technologies to powerful tools for learning. Currently virtual worlds are undergoing the same transition. We argue that the next wave of innovation is at the level of the computer interface, and that mixed-reality environments offer…
MAGDAIRE: A Model to Foster Pre-Service Teachers' Ability in Integrating ICT and Teaching in Taiwan
ERIC Educational Resources Information Center
Chang, Chun-Yen; Chien, Yu-Ta; Chang, Yueh-Hsia; Lin, Chen-Yung
2012-01-01
This report describes our efforts in fostering Taiwanese pre-service teachers' ability to integrate information and communication technology (ICT) and teaching. The current state of science teacher education and ICT policies in Taiwan are documented briefly. The course model, MAGDAIRE (abbreviated from Modeled Analysis, Guided Development,…
Positioning Open Access Journals in a LIS Journal Ranking
ERIC Educational Resources Information Center
Xia, Jingfeng
2012-01-01
This research uses the h-index to rank the quality of library and information science journals between 2004 and 2008. Selected open access (OA) journals are included in the ranking to assess current OA development in support of scholarly communication. It is found that OA journals have gained momentum supporting high-quality research and…
Dawson, Emily
2018-01-01
This article explores science communication from the perspective of those most at risk of exclusion, drawing on ethnographic fieldwork. I conducted five focus groups and 32 interviews with participants from low-income, minority ethnic backgrounds. Using theories of social reproduction and social justice, I argue that participation in science communication is marked by structural inequalities (particularly ethnicity and class) in two ways. First, participants' involvement in science communication practices was narrow (limited to science media consumption). Second, their experiences of exclusion centred on cultural imperialism (misrepresentation and 'Othering') and powerlessness (being unable to participate or change the terms of their participation). I argue that social reproduction in science communication constructs a narrow public that reflects the shape, values and practices of dominant groups, at the expense of the marginalised. The article contributes to how we might reimagine science communication's publics by taking inclusion/exclusion and the effects of structural inequalities into account.
ERIC Educational Resources Information Center
Mercer-Mapstone, Lucy; Kuchel, Louise
2017-01-01
Science communication is a diverse and transdisciplinary field and is taught most effectively when the skills involved are tailored to specific educational contexts. Few academic resources exist to guide the teaching of communication with non-scientific audiences for an undergraduate science context. This mixed methods study aimed to explore what…
Can we save large carnivores without losing large carnivore science?
Allen, Benjamin L.; Allen, Lee R.; Andrén, Henrik; Ballard, Guy; Boitani, Luigi; Engeman, Richard M.; Fleming, Peter J.S.; Haswell, Peter M.; Ford, Adam T.; Kowalczyk, Rafał; Mech, L. David; Linnell, John D.C.; Parker, Daniel M.
2017-01-01
Large carnivores are depicted to shape entire ecosystems through top-down processes. Studies describing these processes are often used to support interventionist wildlife management practices, including carnivore reintroduction or lethal control programs. Unfortunately, there is an increasing tendency to ignore, disregard or devalue fundamental principles of the scientific method when communicating the reliability of current evidence for the ecological roles that large carnivores may play, eroding public confidence in large carnivore science and scientists. Here, we discuss six interrelated issues that currently undermine the reliability of the available literature on the ecological roles of large carnivores: (1) the overall paucity of available data, (2) reliability of carnivore population sampling techniques, (3) general disregard for alternative hypotheses to top-down forcing, (4) lack of applied science studies, (5) frequent use of logical fallacies, and (6) generalisation of results from relatively pristine systems to those substantially altered by humans. We first describe how widespread these issues are, and given this, show, for example, that evidence for the roles of wolves (Canis lupus) and dingoes (Canis lupus dingo) in initiating trophic cascades is not as strong as is often claimed. Managers and policy makers should exercise caution when relying on this literature to inform wildlife management decisions. We emphasise the value of manipulative experiments and discuss the role of scientific knowledge in the decision-making process. We hope that the issues we raise here prompt deeper consideration of actual evidence, leading towards an improvement in both the rigour and communication of large carnivore science.
So, You Want to be a Science Communicator?
NASA Astrophysics Data System (ADS)
Radzilowicz, John G.
2009-03-01
The late Carl Sagan opined that somehow we have managed to create a global civilization dependant on science and technology in which almost no one understands science and technology. This is an unacceptable recipe for disaster with social, political and financial implications for the future of scientific research. And so, like it or not, popular science communication, more than ever before, is an important and necessary part of the scientific enterprise. Public outreach programs, media interviews, and popular articles have become required parts of the scientist's professional repertoire. But, what does it take to be a good science communicator? What is needed to develop and deliver meaningful public outreach programs? How do you handle non-technical presentations? And, what help is available in developing the necessary skills for good popular science communication? This presentation will look at the essential components of effective science communication aimed at a broad public audience. The components of successful science communication in programs, presentations and articles will be discussed. Specific attention will be given to how university-museum partnerships can expand the reach and enhance the quality of public outreach programs.
Building a Science Communication Culture: One Agency's Approach
NASA Astrophysics Data System (ADS)
DeWitt, S.; Tenenbaum, L. F.; Betz, L.
2014-12-01
Science communication does not have to be a solitary practice. And yet, many scientists go about it alone and with little support from their peers and organizations. To strengthen community and build support for science communicators, NASA designed a training course aimed at two goals: 1) to develop individual scientists' communication skills, and 2) to begin to build a science communication culture at the agency. NASA offered a pilot version of this training course in 2014: the agency's first multidisciplinary face-to-face learning experience for science communicators. Twenty-six Earth, space and life scientists from ten field centers came together for three days of learning. They took part in fundamental skill-building exercises, individual development planning, and high-impact team projects. This presentation will describe the course design and learning objectives, the experience of the participants, and the evaluation results that will inform future offerings of communication training for NASA scientists and others.
Simulating Autonomous Telecommunication Networks for Space Exploration
NASA Technical Reports Server (NTRS)
Segui, John S.; Jennings, Esther H.
2008-01-01
Currently, most interplanetary telecommunication systems require human intervention for command and control. However, considering the range from near Earth to deep space missions, combined with the increase in the number of nodes and advancements in processing capabilities, the benefits from communication autonomy will be immense. Likewise, greater mission science autonomy brings the need for unscheduled, unpredictable communication and network routing. While the terrestrial Internet protocols are highly developed their suitability for space exploration has been questioned. JPL has developed the Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) tool to help characterize network designs and protocols. The results will allow future mission planners to better understand the trade offs of communication protocols. This paper discusses various issues with interplanetary network and simulation results of interplanetary networking protocols.
Focus on Communications: Communicating the Message: Clarifying the Controversies About Caffeine.
Hogan, Edith Howard; Hornick, Betsy A.; Bouchoux, Ann
2002-01-01
Today's "coffee culture" and the widespread availability of caffeine-containing foods and beverages fuel the ongoing study of caffeine and its subsequent coverage by the media. Although the media has become influential in communicating health and nutrition information to the public, coverage of emerging science, such as the study of caffeine, does not necessarily bring clarity or improved understanding for consumers. This article highlights the current knowledge of caffeine's effects on health, with emphasis on the most common areas of interest and confusion. To address persistent misperceptions about caffeine, this article also accentuates the need for nutrition professionals to help put the findings of caffeine research into perspective and suggests practical ways to do this.
NASA Technical Reports Server (NTRS)
Elgart, Shona Robin; Shavers, Mark; Huff, Janice; Patel, Zarana; Semones, Edward
2016-01-01
Successfully communicating the complex risks associated with radiation exposure is a difficult undertaking; communicating those risks within the high-risk context of space travel is uniquely challenging. Since the potential risks of space radiation exposure are not expected to be realized until much later in life, it is hard to draw comparisons between other spaceflight risks such as hypoxia and microgravity-induced bone loss. Additionally, unlike other spaceflight risks, there is currently no established mechanism to mitigate the risks of incurred radiation exposure such as carcinogenesis. Despite these challenges, it is the duty of the Space Radiation Analysis Group (SRAG) at NASA's Johnson Space Center to provide astronauts with the appropriate information to effectively convey the risks associated with exposure to the space radiation environment. To this end, astronauts and their flight surgeons are provided with an annual radiation risk report documenting the astronaut's individual radiation exposures from space travel, medical, and internal radiological procedures throughout the astronaut's career. In an effort to improve this communication and education tool, this paper critically reviews the current report style and explores alternative report styles to define best methods to appropriately communicate risk to astronauts, flight surgeons, and management.
Wang, Jack T. H.; Power, Cheryl J.; Kahler, Charlene M.; Lyras, Dena; Young, Paul R.; Iredell, Jonathan; Robins-Browne, Roy
2018-01-01
Science communication is a skill set to be developed through ongoing interactions with different stakeholders across a variety of platforms. Opportunities to engage the general public are typically reserved for senior scientists, but the use of social media in science communication allows all scientists to instantaneously disseminate their findings and interact with online users. The Communication Ambassador program is a social media initiative launched by the Australian Society for Microbiology to expand the online presence and science communication portfolios of early-career scientists. Through their participation in the program, a rotating roster of Australian microbiologists have broadened the online reach of the Society’s social media channels as well as their own professional networks by attending and live-tweeting microbiology events throughout the year. We present the Communication Ambassador program as a case study of coordinated social media activity in science communication to the general public, and describe the potential for its applications in science education and training. PMID:29904520
Wang, Jack T H; Power, Cheryl J; Kahler, Charlene M; Lyras, Dena; Young, Paul R; Iredell, Jonathan; Robins-Browne, Roy
2018-01-01
Science communication is a skill set to be developed through ongoing interactions with different stakeholders across a variety of platforms. Opportunities to engage the general public are typically reserved for senior scientists, but the use of social media in science communication allows all scientists to instantaneously disseminate their findings and interact with online users. The Communication Ambassador program is a social media initiative launched by the Australian Society for Microbiology to expand the online presence and science communication portfolios of early-career scientists. Through their participation in the program, a rotating roster of Australian microbiologists have broadened the online reach of the Society's social media channels as well as their own professional networks by attending and live-tweeting microbiology events throughout the year. We present the Communication Ambassador program as a case study of coordinated social media activity in science communication to the general public, and describe the potential for its applications in science education and training.
NASA Astrophysics Data System (ADS)
Gardner, Grant E.; Jones, M. Gail; Albe, Virginie; Blonder, Ron; Laherto, Antti; Macher, Daniel; Paechter, Manuela
2017-10-01
Recent efforts in the science education community have highlighted the need to integrate research and theory from science communication research into more general science education scholarship. These synthesized research perspectives are relatively novel but serve an important need to better understand the impacts that the advent of rapidly emerging technologies will have on a new generation of scientists and engineers including their formal communication with engaged citizenry. This cross-national study examined postsecondary science and engineering students' ( n = 254 from five countries: Austria, Finland, France, Israel, and USA) perspectives on the role of science communication in their own formal science and engineering education. More broadly, we examined participants' understanding of their perceived responsibilities of communicating science and engineering to the general public when an issue contains complex social and ethical implications (SEI). The study is contextualized in the emergent technology of nanotechnology for which SEI are of particular concern and for which the general public often perceives conflicting risks and benefits. Findings indicate that student participants' hold similar views on the need for their own training in communication as future scientists and engineers. When asked about the role that ethics and risk perception plays in research, development, and public communication of nanotechnology, participants demonstrate similar trajectories of perspectives that are, however, often anchored in very different levels of beginning concern. Results are discussed in the context of considerations for science communication training within formal science education curricula globally.
MODIS Science Algorithms and Data Systems Lessons Learned
NASA Technical Reports Server (NTRS)
Wolfe, Robert E.; Ridgway, Bill L.; Patt, Fred S.; Masuoka, Edward J.
2009-01-01
For almost 10 years, standard global products from NASA's Earth Observing System s (EOS) two Moderate Resolution Imaging Spectroradiometer (MODIS) sensors are being used world-wide for earth science research and applications. This paper discusses the lessons learned in developing the science algorithms and the data systems needed to produce these high quality data products for the earth sciences community. Strong science team leadership and communication, an evolvable and scalable data system, and central coordination of QA and validation activities enabled the data system to grow by two orders of magnitude from the initial at-launch system to the current system able to reprocess data from both the Terra and Aqua missions in less than a year. Many of the lessons learned from MODIS are already being applied to follow-on missions.
Special Advanced Course for Core Sciences to Bring Up Project Leaders
NASA Astrophysics Data System (ADS)
Inagaki, Kenji; Tabata, Nobuhisa; Gofuku, Akio; Harada, Isao; Takada, Jun
Special Advanced Course for Core Sciences has been introduced recently to Graduate School of Natural Science and Technology, Okayama University, to bring up a project leader. The following points are key education goals in this program : (1) knowledge of core sciences, (2) communication ability by using English, and (3) wide viewpoints for researches. In order to accomplish these goals, several lectures for core sciences, patent systems and engineering ethics as well as long term internships by the collaboration with some regional companies have been put in practice. In this paper, we describe the outline of the program, educational effects, and our experiences. Then, we discuss how effective the program is for bringing up an engineer or a scientist who can lead sciences and technologies of their domains. This paper also describes current activities of the program.
Overview of the First Forum about Informal Science Education
NASA Astrophysics Data System (ADS)
Lebron Santos, Mayra; Pantoja, Carmen
2018-01-01
The First Forum on Informal Science Education was held at the University of Puerto Rico in 2015. This Forum had the following goals:1. Gather for the first time professionals dedicated to public communication and science outreach in Puerto Rico. 2. Exchange experiences and dissemination strategies with international professional science communicators.3. Encourage a fruitful dialogue between communicators with experience in museums, the media, and the integration of sciences with the arts.4. Encourage dialogue between communicators to facilitate future collaborations.The invited speakers came from Ibero-America and addressed aspects of science communication in museums and the media, the dissemination of science through the arts, the participation of universities in informal science education and the formal education of science communicators. The participants included museum specialists, journalists, artists, outreach specialists, formal educators interested in science outreach, and college students. During the Forum special events for the public were coordinated to celebrate the International Year of Light (2015). The exhibit “Light: Beyond the Bulb” was displayed. Dr. Julieta Fierro, recipient of the prestigious Kalinga Prize for the Popularization of Science awarded by UNESCO, presented the public talk “Light in the Universe”. Dr. Inés Rodríguez Hidalgo, director of the Science Museum of Valladolid, presented the talk "O Sole Mío: An Invitation to Solar Physics". We present an overview of the forum and some critical reflections on the topics discussed.
Science Communication in Teacher Personal Pronouns
NASA Astrophysics Data System (ADS)
Oliveira, Alandeom W.
2011-09-01
In this study, I explore how personal pronouns used by elementary teachers during science inquiry discussions communicate science and frame teacher-student-science relations. A semiotic framework is adopted wherein teacher pronominal choices are viewed as symbolically expressing cognitive meanings (scientific thinking, forms of expression, and concepts) and indexically communicating social meanings (hidden messages about social and personal aspects of science-human agency, science membership, and gender). Through the construction of interactional maps and micro-ethnographic analysis of classroom video-recordings, I focus specifically on participant examples (oral descriptions of actual or hypothetical situations wherein the teacher presents herself and/or her students as characters to illustrate topics under discussion). This analysis revealed that the teacher use of the generalised you communicated to the students how to mean scientifically (i.e. to speak like a scientist), while I communicated scientific ways of thinking and reasoning. Furthermore, teacher pronouns communicated the social nature of science (NOS) (e.g. science as a human enterprise) as well as multiple teacher-student-science relational frames that were inclusive of some students (mainly boys) but excluded girls (i.e. positioned them as science outsiders). Exclusive use of he was taken as indicative of a gender bias. It is argued that science teachers should become more aware of the range of personal pronouns available for science instruction, their advantages and constraints for science discussions, their potential as instructional tools for humanising and personalising impersonal science curricula as well as the risk of 'NOS' miscommunication.
Ambiguous science and the visual representation of the real
NASA Astrophysics Data System (ADS)
Newbold, Curtis Robert
The emergence of visual media as prominent and even expected forms of communication in nearly all disciplines, including those scientific, has raised new questions about how the art and science of communication epistemologically affect the interpretation of scientific phenomena. In this dissertation I explore how the influence of aesthetics in visual representations of science inevitably creates ambiguous meanings. As a means to improve visual literacy in the sciences, I call awareness to the ubiquity of visual ambiguity and its importance and relevance in scientific discourse. To do this, I conduct a literature review that spans interdisciplinary research in communication, science, art, and rhetoric. Furthermore, I create a paradoxically ambiguous taxonomy, which functions to exploit the nuances of visual ambiguities and their role in scientific communication. I then extrapolate the taxonomy of visual ambiguity and from it develop an ambiguous, rhetorical heuristic, the Tetradic Model of Visual Ambiguity. The Tetradic Model is applied to a case example of a scientific image as a demonstration of how scientific communicators may increase their awareness of the epistemological effects of ambiguity in the visual representations of science. I conclude by demonstrating how scientific communicators may make productive use of visual ambiguity, even in communications of objective science, and I argue how doing so strengthens scientific communicators' visual literacy skills and their ability to communicate more ethically and effectively.
NASA Astrophysics Data System (ADS)
Teixeira, C. A.; Gallo, P. R.
2014-12-01
Introduction - The elaboration process of public policies for science and technology in knowledge societies should include not only experts, but all society members. There are studies on lay people's perception of science and technology. However, what is the scientists' perspective on public communication of science? Objectives - To describe and characterize the concepts that coordinators of Brazilian public health graduate programs have about public communication of science. Methods - This is an analytical and descriptive report of an exploratory research (doctoral study). The answers of fifty-one coordinators to two questionnaires were submitted for content analysis. The categories were transformed into variables that allowed the data processing by the Hiérarchique Classificatoire et Cohésitive (CHIC®) software. Results - Similarity analysis strongly suggested (0,99) that coordinators understand public communication as a communication directed to academic peers and students, also as a form of participation in scientific events and communication by scientific papers. Likewise, the implication analysis suggested a strong implication (0,98) between scientific communication understood as public communication. Conclusion - The notion of public communication of science as a social right and as a commitment and responsibility of researchers and research centers is not explicitly present in the narrative of the coordinators, although in general the coordinators conceive it as a relevant activity. This study thus contributes to a reflection on the role of scientists, researchers and research centers in public communication of science and technology.
Brazilian science communication research: national and international contributions.
Barata, Germana; Caldas, Graça; Gascoigne, Toss
2017-08-31
Science communication has emerged as a new field over the last 50 years, and its progress has been marked by a rise in jobs, training courses, research, associations, conferences and publications. This paper describes science communication internationally and the trends and challenges it faces, before looking at the national level. We have documented science communication activities in Brazil, the training courses, research, financial support and associations/societies. By analyzing the publication of papers, dissertations and theses we have tracked the growth of this field, and compared the level of activity in Brazil with other countries. Brazil has boosted its national research publications since 2002, with a bigger contribution from postgraduate programs in education and communication, but compared to its national research activity Brazil has only a small international presence in science communication. The language barrier, the tradition of publishing in national journals and the solid roots in education are some of the reasons for that. Brazil could improve its international participation, first by considering collaborations within Latin America. International publication is dominated by the USA and the UK. There is a need to take science communication to the next level by developing more sophisticated tools for conceptualizing and analyzing science communication, and Brazil can be part of that.
[Brain-computer interfaces, Locked-In syndrome, and disorders of consciousness].
Lesenfants, Damien; Chatelle, Camille; Laureys, Steven; Noirhomme, Quentin
2015-10-01
Detecting signs of consciousness in patients with severe brain injury constitutes a real challenge for clinicians. The current gold standard in clinical diagnosis is the behavioral scale relying on motor abilities, which are often impaired or nonexistent in these patients. In this context, brain-computer interfaces (BCIs) could offer a potential complementary tool to detect signs of consciousness whilst bypassing the usual motor pathway. In addition to complementing behavioral assessments and potentially reducing error rate, BCIs could also serve as a communication tool for paralyzed but conscious patients, e.g., suffering from Locked-In Syndrome. In this paper, we report on recent work conducted by the Coma Science Group on BCI technology, aiming to optimize diagnosis and communication in patients with disorders of consciousness and Locked-In syndrome. © 2015 médecine/sciences – Inserm.
Gravity Probe B spacecraft description
NASA Astrophysics Data System (ADS)
Bennett, Norman R.; Burns, Kevin; Katz, Russell; Kirschenbaum, Jon; Mason, Gary; Shehata, Shawky
2015-11-01
The Gravity Probe B spacecraft, developed, integrated, and tested by Lockheed Missiles & Space Company and later Lockheed Martin Corporation, consisted of structures, mechanisms, command and data handling, attitude and translation control, electrical power, thermal control, flight software, and communications. When integrated with the payload elements, the integrated system became the space vehicle. Key requirements shaping the design of the spacecraft were: (1) the tight mission timeline (17 months, 9 days of on-orbit operation), (2) precise attitude and translational control, (3) thermal protection of science hardware, (4) minimizing aerodynamic, magnetic, and eddy current effects, and (5) the need to provide a robust, low risk spacecraft. The spacecraft met all mission requirements, as demonstrated by dewar lifetime meeting specification, positive power and thermal margins, precision attitude control and drag-free performance, reliable communications, and the collection of more than 97% of the available science data.
Planetary Cartography - Activities and Current Challenges
NASA Astrophysics Data System (ADS)
Nass, Andrea; Di, Kaichang; Elgner, Stephan; van Gasselt, Stephan; Hare, Trent; Hargitai, Henrik; Karachevtseva, Irina; Kereszturi, Akos; Kersten, Elke; Kokhanov, Alexander; Manaud, Nicolas; Roatsch, Thomas; Rossi, Angelo Pio; Skinner, James, Jr.; Wählisch, Marita
2018-05-01
Maps are one of the most important tools for communicating geospatial information between producers and receivers. Geospatial data, tools, contributions in geospatial sciences, and the communication of information and transmission of knowledge are matter of ongoing cartographic research. This applies to all topics and objects located on Earth or on any other body in our Solar System. In planetary science, cartography and mapping have a history dating back to the roots of telescopic space exploration and are now facing new technological and organizational challenges with the rise of new missions, new global initiatives, organizations and opening research markets. The focus of this contribution is to introduce the community to the field of planetary cartography and its historic foundation, to highlight some of the organizations involved and to emphasize challenges that Planetary Cartography has to face today and in the near future.
Communication of Energy Efficiency Information to Remodelers: Lessons From Current Practice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liaukus, C.
2012-10-01
The effective communication of energy efficiency and building science information to remodeling contractors is achieved through varying formats, timelines, and modes depending on who is delivering the information, who is intended to receive it, and what technical, intellectual,and time resources the recipients have at their disposal. Determining what type of communication is effective does not lend itself to a clearly quantifiable test but rather a qualitative one. That qualitative judgment can be supported by the research of current practices deemed effective for one or more of the following reasons: it has led to the successful completion of a certifying testmore » or other evaluation, it has been widely used for the remodeling industry, it has been considered effective by a sampling of remodeling contractors, and/or it has proven effective in the field for the BARA team. These criteria were used to create a select list of communications to be further analyzed to determine why they are effective and how less successful formats or strategies can be revised for greater effectiveness.« less
ERIC Educational Resources Information Center
Shea, Nicole A.
2015-01-01
Access to science information via communications in the media is rapidly becoming a central means for the public to gain knowledge about scientific advancements. However, little is known about what content knowledge is essential for understanding issues presented in news media. Very few empirical studies attempt to bridge science communication and…
ERIC Educational Resources Information Center
Martin, Ralph E., Jr.
Reported is a study designed to test Hovland's principle of attitude change as related to attitudes toward science and science teaching. Hovland's research provided information that communicators who were perceived as being highly credible and authoritative are more likely to produce greater attitude change than are communicators perceived as less…
ECHO Data Partners Join Forces to Federate Access to Resources
NASA Astrophysics Data System (ADS)
Kendall, J.; Macie, M.
2003-12-01
During the past year the NASA's Earth Science Data and Information System (ESDIS) project has been collaborating with various Earth science data and client providers to design and implement the EOS Clearinghouse (ECHO). ECHO is an open, interoperable metadata clearinghouse and order broker system. ECHO functions as a repository of information intended to streamline access to digital data and services provided by NASA's Earth Science Enterprise and the extended Earth science community. In a unique partnership, ECHO data providers are working to extend their services in the digital era, to reflect current trends in scientific and educational communications. The multi-organization, inter-disciplinary content of ECHO provides a valuable new service to a growing number of Earth science applications and interdisciplinary research efforts. As such, ECHO is expected to attract a wide audience. In this poster, we highlight the contributions of current ECHO data partners and provide information for prospective data partners on how the project supports the incorporation of new collections and effective long-term asset management that is directly under the control of the organizations who contribute resources to ECHO.
Communicating the rigor behind science results
NASA Astrophysics Data System (ADS)
Jackson, R.; Callery, S.
2015-12-01
Communicating the rigor behind science resultsNASA's Global Climate Change website and companion Facebook page have an exceptionally large reach. Moderating the vast quantity of questions, feedback and comments from these public platforms has provided a unique perspective on the way the public views science, the scientific method and how science is funded. Email feedback and social media interactions reveal widespread misperceptions about how science is carried out: There is considerable criticism and suspicion surrounding methods of funding, and the difficulty of obtaining grants is underestimated. There appears to be limited public awareness of the peer review process. This talk will highlight the need for better communication not only of science results, but the process of science--from proposal writing and getting funded to peer-review and fundamental science terminology. As a community of science communicators, we also need to highlight the inaccuracies sometimes introduced by media reports of peer-reviewed science papers.
Quantitative Decision Support Requires Quantitative User Guidance
NASA Astrophysics Data System (ADS)
Smith, L. A.
2009-12-01
Is it conceivable that models run on 2007 computer hardware could provide robust and credible probabilistic information for decision support and user guidance at the ZIP code level for sub-daily meteorological events in 2060? In 2090? Retrospectively, how informative would output from today’s models have proven in 2003? or the 1930’s? Consultancies in the United Kingdom, including the Met Office, are offering services to “future-proof” their customers from climate change. How is a US or European based user or policy maker to determine the extent to which exciting new Bayesian methods are relevant here? or when a commercial supplier is vastly overselling the insights of today’s climate science? How are policy makers and academic economists to make the closely related decisions facing them? How can we communicate deep uncertainty in the future at small length-scales without undermining the firm foundation established by climate science regarding global trends? Three distinct aspects of the communication of the uses of climate model output targeting users and policy makers, as well as other specialist adaptation scientists, are discussed. First, a brief scientific evaluation of the length and time scales at which climate model output is likely to become uninformative is provided, including a note on the applicability the latest Bayesian methodology to current state-of-the-art general circulation models output. Second, a critical evaluation of the language often employed in communication of climate model output, a language which accurately states that models are “better”, have “improved” and now “include” and “simulate” relevant meteorological processed, without clearly identifying where the current information is thought to be uninformative and misleads, both for the current climate and as a function of the state of the (each) climate simulation. And thirdly, a general approach for evaluating the relevance of quantitative climate model output for a given problem is presented. Based on climate science, meteorology, and the details of the question in hand, this approach identifies necessary (never sufficient) conditions required for the rational use of climate model output in quantitative decision support tools. Inasmuch as climate forecasting is a problem of extrapolation, there will always be harsh limits on our ability to establish where a model is fit for purpose, this does not, however, limit us from identifying model noise as such, and thereby avoiding some cases of the misapplication and over interpretation of model output. It is suggested that failure to clearly communicate the limits of today’s climate model in providing quantitative decision relevant climate information to today’s users of climate information, would risk the credibility of tomorrow’s climate science and science based policy more generally.
Why the New York Times Science Tuesday section is only eight pages and what to do about it
NASA Astrophysics Data System (ADS)
Schwartz, Brian
2011-03-01
Communicating science to the public is the responsibility of all scientists and necessary for an informed electorate and as an inspiration to young minds. Yet successful national strategies for communicating science and the venues for such communication seem limited. Science museums and TV programs like NOVA reach millions of people but still only a very small fraction of the US population. In terms of daily science reporting very few newspapers have a devoted science reporter and it is only the New York Times which has a significant weekly reporting section on science (and health). What can one do about reaching wider and new audiences? We recently ran an NSF sponsored international conference entitled Communicating Science to the Public through the Performing Arts (www.sciartconference2010.com). At the conference there were sessions on science and theater, science and TV and film, science and dance, science and music and science festivals, cafes and events (web.gc.cuny.edu/sciart). Using these new approaches one can reach a new and wider audience and one can also take advantage of the seemingly insatiable interest of the press in the arts. Examples of successful new strategies for communicating science will be presented, evaluated and shown to be replicable at a relatively modest cost of time and money.
NASA Astrophysics Data System (ADS)
Shen, Yi
This study investigated research meteorologists' current usage and evaluation of information and communication technologies (ICT) in performing research tasks and the current relationship between meteorologists' ICT use and content characteristics of their research outputs. It surveyed research meteorologists working in three NOAA funded research institutes based at universities. Follow-up interviews with two selective samples of the survey participants were conducted to provide additional evidence to survey results and make suggestions for future measurement development work. Multiple regression analysis was performed to test the hypothesized relationships between meteorologists' ICT use and two substantive characteristics of their research---data integration and intra-/interdisciplinarity. Descriptive statistics were calculated to discern inferences of the scientists' current state of use and their degree of satisfaction with ICT tools. Follow-up interviews were transcribed and analyzed qualitatively with open coding and axial coding. The study findings contradicted the two assumptions of ICT effects on meteorological research by showing that the greater frequency of networked ICT use is not significantly associated with either greater data integration in research analysis, or greater intra- or interdisciplinary research. The major ICT barrier is the lack of a data and information infrastructure and support system for integrated, standardized, specialized, and easily accessible data and information from distributed servers. Suggestions were provided on the improvements of technical, social, political, and educational settings to promote large-scale date integration and intra-/interdisciplinary research. By moving further from theoretical assumptions to practical examinations, the research findings provide empirical evidence of Bowker's theories on the social shaping and social impact of infrastructure in sciences and affirmed some of Bowker's arguments regarding both social-political aspect and technical aspect of e-science practice. The results also provide implications for Computer-Mediated-Communication theories. The knowledge helps information system developers identify several important issues in current systems planning and development. The study also helps librarians, information scientists, and meteorologists both recognize the importance of and develop their collaboration in data, information, and knowledge management. Finally, the study could aid research institutes and government funding agencies to develop appropriate strategies to optimize the effective use of ICT resources and augment its positive impact on sciences.
Internet Voice Distribution System (IVoDS) Utilization in Remote Payload Operations
NASA Technical Reports Server (NTRS)
Best, Susan; Bradford, Bob; Chamberlain, Jim; Nichols, Kelvin; Bailey, Darrell (Technical Monitor)
2002-01-01
Due to limited crew availability to support science and the large number of experiments to be operated simultaneously, telescience is key to a successful International Space Station (ISS) science program. Crew, operations personnel at NASA centers, and researchers at universities and companies around the world must work closely together to perform scientific experiments on-board ISS. NASA has initiated use of Voice over Internet Protocol (VoIP) to supplement the existing HVoDS mission voice communications system used by researchers. The Internet Voice Distribution System (IVoDS) connects researchers to mission support "loops" or conferences via Internet Protocol networks such as the high-speed Internet 2. Researchers use IVoDS software on personal computers to talk with operations personnel at NASA centers. IVoDS also has the capability, if authorized, to allow researchers to communicate with the ISS crew during experiment operations. NODS was developed by Marshall Space Flight Center with contractors A2 Technology, Inc. FVC, Lockheed- Martin, and VoIP Group. IVoDS is currently undergoing field-testing with full deployment for up to 50 simultaneous users expected in 2002. Research is currently being performed to take full advantage of the digital world - the Personal Computer and Internet Protocol networks - to qualitatively enhance communications among ISS operations personnel. In addition to the current voice capability, video and data-sharing capabilities are being investigated. Major obstacles being addressed include network bandwidth capacity and strict security requirements. Techniques being investigated to reduce and overcome these obstacles include emerging audio-video protocols and network technology including multicast and quality-of-service.
NASA Astrophysics Data System (ADS)
Rohde, J. A.; Clarkson, M.; Houghton, J.; Chen, W.
2016-12-01
Science graduate students increasingly seek science communication training, yet many do not have easy access to training programs. Students often rely on a "do it yourself" approach to gaining communication skills, and student created science communication programs are increasingly found at universities and institutions across the U.S. In 2010, graduate students at the University of Washington led a grassroots effort to improve their own communication and outreach by creating "The Engage Program." With a focus on storytelling and public speaking, this graduate level course not only trains students in science communication but also gives them real world experience practicing that training at a public speaker series at Town Hall Seattle. The Engage Program was fortunate in that it was able to find institutional champions at University of Washington and secure funding to sustain the program over the long-term. However, many grassroots communication programs find it difficult to gain institutional support if there is a perceived lack of alignment with university priorities or lack of return on investment. In order to justify and incentivize institutional support for instruction in science communication, student leaders within the program initiated, designed and carried out an evaluation of their own program focused on assessing the impact of student communication, evaluating the effectiveness of the program in teaching communication skills, and quantifying the benefits of communication training to both the students and their institution. Project leaders created the opportunity for this evaluation by initiating a crowdfunding campaign, which has helped to further engage public support of science communication and incentivized student participation in the program, and may also inspire future program leaders to pursue similar program optimizations.
NASA Astrophysics Data System (ADS)
Lustick, D. S.; Lohmeier, J.; Chen, R. F.; Wilson, R.; Rabkin, D.; Thompson, S. R.
2016-02-01
Engaging urban populations with climate change science is a difficult challenge since cities can seem so removed from the `natural environment.' However, mass transit provides an inherent means of communicating environmental messages with a cross section of the urban population. The Out of Home Media (OHM) spaces found on platforms and inside train cars provide a potentially effective means of bringing informal science learning opportunities directly to an underserved STEM audience. Our team felt that any messaging curriculum for a coastal urban subway system must complement the scary reality of the impacts of a changing climate (i.e. rising sea levels) with current examples of how the city is preparing for a more sustainable future. Urban areas such as Boston must develop adaptation and mitigation strategies that will help them not only survive, but thrive in a changing environment. In 2013-14, ScienceToGo.org ran a series of 12 engaging posters and placards staring `Ozzie the Ostrich' on the Massachusetts Bay Transit Authority's Red and Orange subway lines targeting an audience of more than 400,000 riders per day. The 12 month curriculum was divided into three phases: reality, relevance, and hope. During the presentation, we will present the results of our quasi-experimental research which identifies, quantifies, and explains the observed impacts of the campaign on adult riders. The strengths and weaknesses of the communication strategy will be discussed. Finally, we will conclude with some recommendations for how this work could improve and inform other urban informal science learning initiatives.
Putting the Social Sciences into Science Communication Courses.
ERIC Educational Resources Information Center
Stocking, S. Holly
Although the social sciences have become legitimate sources of science news, many journalism instructors of science communication do not believe the social sciences warrant special or required attention in their courses. This is unfortunate, for the social sciences are important enough and different enough to require both their inclusion and…
Science as Story: "Communicating the Nature of Science through Historical Perspectives on Science"
ERIC Educational Resources Information Center
Wieder, Will
2006-01-01
Historical perspectives on science serve to humanize the sciences, increase student motivation, communicate academic content, and convey the nature of science. This paper briefly reviews pertinent literature regarding the history of science and narrates the author's experiences of incorporating historical perspectives in high school biology…
NASA Astrophysics Data System (ADS)
Madsen, Claus
From a communication view, political lobbying for Science means targeted communication about a long established, well-tested, fact-based and logically robust system of inquiry to a highly dynamic environment in which decision-taking is influenced by many non-scientific factors and with norms that differ widely from the tenets of science. The paper discusses some of the communication issues that arise when these very different worlds meet.
Optical Communications in Support of Science from the Moon, Mars, and Beyond
NASA Technical Reports Server (NTRS)
Edwards, Bernard L.
2005-01-01
Optical communications can provide high speed communications throughout the solar system. Enable new science missions and human exploration. The technology suitable for near-earth optical communications, including communications to and from the Moon, is different than for deep space optical. NASA could leverage DoD investments for near-earth applications, including the moon. NASA will have to develop its own technology for deep space. The Mars laser communication demonstration is a pathfinder. NASA,s science mission directorate, under the leadership of Dr. Barry Geldzahler, is developing a roadmap for the development of deep space optical communications.
Science in the Sun: How Science is Performed as a Spatial Practice
NASA Astrophysics Data System (ADS)
Kass, Natalie
This study analyzes how spatial organization impacts science communication at the St. Petersburg Science Festival in Florida. Through map analysis, qualitative interviews, and a close reading of evaluation reports, the author determines that sponsorship, logistics, exhibitor ambience, and map usability and design are the factors most affecting the spatial performance of science. To mitigate their effects, technical communicators can identify these factors and provide the necessary revisions when considering how science is communicated to the public.
NASA Astrophysics Data System (ADS)
Russell, Nicholas
2009-10-01
Introduction: what this book is about and why you might want to read it; Prologue: three orphans share a common paternity: professional science communication, popular journalism, and literary fiction are not as separate as they seem; Part I. Professional Science Communication: 1. Spreading the word: the endless struggle to publish professional science; 2. Walk like an Egyptian: the alien feeling of professional science writing; 3. The future's bright? Professional science communication in the age of the internet; 4. Counting the horse's teeth: professional standards in science's barter economy; 5. Separating the wheat from the chaff: peer review on trial; Part II. Science for the Public: What Science Do People Need and How Might They Get It?: 6. The Public Understanding of Science (PUS) movement and its problems; 7. Public engagement with science and technology (PEST): fine principle, difficult practice; 8. Citizen scientists? Democratic input into science policy; 9. Teaching and learning science in schools: implications for popular science communication; Part III. Popular Science Communication: The Press and Broadcasting: 10. What every scientist should know about mass media; 11. What every scientist should know about journalists; 12. The influence of new media; 13. How the media represents science; 14. How should science journalists behave?; Part IV. The Origins of Science in Cultural Context: Five Historic Dramas: 15. A terrible storm in Wittenberg: natural knowledge through sorcery and evil; 16. A terrible storm in the Mediterranean: controlling nature with white magic and religion; 17. Thieving magpies: the subtle art of false projecting; 18. Foolish virtuosi: natural philosophy emerges as a distinct discipline but many cannot take it seriously; 19. Is scientific knowledge 'true' or should it just be 'truthfully' deployed?; Part V. Science in Literature: 20. Science and the Gothic: the three big nineteenth-century monster stories; 21. Science fiction: serious literature of ideas or low-grade entertainment?; 22. Science in British literary fiction; 23. Science on stage: the politics and ethics of science in cultural and educational contexts.
Rabinovich, Anna; Morton, Thomas A
2012-06-01
In two experimental studies we investigated the effect of beliefs about the nature and purpose of science (classical vs. Kuhnian models of science) on responses to uncertainty in scientific messages about climate change risk. The results revealed a significant interaction between both measured (Study 1) and manipulated (Study 2) beliefs about science and the level of communicated uncertainty on willingness to act in line with the message. Specifically, messages that communicated high uncertainty were more persuasive for participants who shared an understanding of science as debate than for those who believed that science is a search for absolute truth. In addition, participants who had a concept of science as debate were more motivated by higher (rather than lower) uncertainty in climate change messages. The results suggest that achieving alignment between the general public's beliefs about science and the style of the scientific messages is crucial for successful risk communication in science. Accordingly, rather than uncertainty always undermining the effectiveness of science communication, uncertainty can enhance message effects when it fits the audience's understanding of what science is. © 2012 Society for Risk Analysis.
Students' Views and Attitudes Towards the Communication Code Used in Press Articles About Science
NASA Astrophysics Data System (ADS)
Halkia, Krystallia; Mantzouridis, Dimitris
2005-10-01
The present research was designed to investigate the reaction of secondary school students to the communication code that the press uses in science articles: it attempts to trace which communication techniques can be of potential use in science education. The sample of the research consists of 351 secondary school students. The research instrument is a questionnaire, which attempts to trace students’ preferences regarding newspaper science articles, to explore students’ attitudes towards the science articles published in the press and to investigate students’ reactions towards four newspaper science articles. These articles deal with different aspects of science and reflect different communication strategies. The results of the research reveal that secondary school students view the communication codes used in press science articles as being more interesting and comprehensible than those of their science textbooks. Predominantly, they do not select science articles that present their data in a scientific way (diagrams and abstract graphs). On the contrary, they do select science articles and passages in them, which use an emotional/‘poetic’ language with a lot of metaphors and analogies to introduce complex science concepts. It also seems that the narrative elements found in popularized science articles attract students’ interest and motivate them towards further reading.
The organization of successful participative management in a health sciences library.
Wood, M B
1977-01-01
The University of Washington Health Sciences Library, Seattle, and its participative management process are described in detail. The evolution of the management system is reviewed by interrelating the various phases of the library's growth, its service complexities, and its communication needs. Staff development results of this participative management mode are discussed. Reference is made to the use of group dynamics concepts. The current organizational design, which integrates the participative subunit with the simple line management structure, is considered effective by both the library staff and its director. PMID:843648
Communicating remote sensing concepts in an interdisciplinary environment
NASA Technical Reports Server (NTRS)
Chung, R.
1981-01-01
Although remote sensing is currently multidisciplinary in its applications, many of its terms come from the engineering sciences, particularly from the field of pattern recognition. Scholars from fields such as the social sciences, botany, and biology, may experience initial difficulty with remote sensing terminology, even though parallel concepts exist in their own fields. Some parallel concepts and terminologies from nonengineering fields, which might enhance the understanding of remote sensing concepts in an interdisciplinary situation are identified. Feedbacks which this analogue strategy might have on remote sensing itself are explored.
ERIC Educational Resources Information Center
Association for Education in Journalism and Mass Communication.
The Science Communication Interest Group section of the proceedings contains the following seven papers: "Using Television to Foster Children's Interest in Science" (Marie-Louise Mares and others); "Trends in Newspaper Coverage of Science over Three Decades: A Content Analytic Study" (Marianne G. Pellechia); "Media…
Engaging in Effective Science Communication: A Response to Blancke et al. on Deproblematizing GMOs.
Landrum, Asheley R; Hallman, William K
2017-05-01
As science communication scholars, we encourage interdisciplinary efforts such as those by Blancke, Grunewald, and De Jaeger to engage with the public on GMOs and genetic engineering broadly. We extend the advice given by these scholars with tips based on what we know from the science of science communication. Copyright © 2017 Elsevier Ltd. All rights reserved.
1988-08-01
primitive model would be unthinkable. Similarly, while human operators once made plugboard connections to complete telephone circuits for long-distance...calls, the current volume of U.S. long-distance telephone traffic could not be serviced if the entire U.S. population sat before telephone plugboards
Didactics of the Use of ICT and Traditional Teaching Aids in Municipal Higher Education Institutions
ERIC Educational Resources Information Center
Lombillo Rivero, Ideleichy; López Padrón, Alexander; Zumeta Izaguirre, Ernesto
2012-01-01
Issues related to the use of teaching aids in Higher Education are currently going through constant revision and rethinking due to the rapid advancement of science and technology. Their uses have significantly changed after the introduction of Information and Communication Technologies (ICTs) within the educational field. One of the main tasks to…
Current STEREO Status on the Far Side of the Sun
NASA Astrophysics Data System (ADS)
Thompson, William T.; Gurman, Joseph; Ossing, Daniel; Luhmann, Janet; Curtis, David; Schroeder, Peter; Mewaldt, Richard; Davis, Andrew; Wortman, Kristin; Russell, Christopher; Galvin, Antoinette; Kistler, Lynn; Ellis, Lorna; Howard, Russell; Vourlidas, Angelos; Rich, Nathan; Hutting, Lynn; Maksimovic, Milan; Bale, Stuart D.; Goetz, Keith
2015-04-01
The current positions of the two STEREO spacecraft on the opposite side of the Sun from Earth (superior solar conjunction) has forced some significant changes in the spacecraft and instrument operations. No communications are possible when the spacecraft is within 2 degrees of the Sun, requiring that the spacecraft be put into safe mode until communications can be restored. Unfortunately, communications were lost with the STEREO Behind spacecraft on October 1, 2014, during testing for superior solar conjunction operations. We will discuss what is known about the causes of loss of contact, the steps being taken to try to recover the Behind spacecraft, and what has been done to prevent a similar occurrence on STEREO Ahead.We will also discuss the effect of being on the far side of the Sun on the science operations of STEREO Ahead. Starting on August 20, 2014, the telemetry rate from the STEREO Ahead spacecraft has been tremendously reduced due to the need to keep the temperature of the feed horn on the high gain antenna below acceptable limits. However, the amount of telemetry that can be brought down has been highly reduced. Even so, significant science is still possible from STEREO's unique position on the solar far side. We will discuss the science and space weather products that are, or will be, available from each STEREO instrument, when those products will be available, and how they will be used. Some data, including the regular space weather beacon products, are brought down for an average of a few hours each day during the daily real-time passes, while the in situ and radio beacon data are being stored on the onboard recorder to provide a continuous 24-hour coverage for eventual downlink once the spacecraft is back to normal operations.
Digital Earth for Earth Sciences and Public Education
NASA Astrophysics Data System (ADS)
Foresman, T. W.
2006-12-01
Buckminster Fuller was an early advocate for better comprehension of the planet and its resources related to human affairs. A comprehensive vision was articulated by a US Vice President and quickly adopted by the world's oldest country China.. Digital Earth brings fresh perspective on the current state of affairs and connects citizens with scientists through the applications of 3D visualization, spinning globes, virtual Earths, and the current collaboration with Virtual Globes. The prowess of Digital Earth technology has been so successful in both understanding and communicating the more challenging topics for global change and climate change phenomena that China has assigned it priority status with the Ministry of Science and Technology and the Chinese Academy of Sciences. New Zealand has recently begun to adjust its national strategies for sustainability with the technologies of Digital Earth. A comprehensive coverage of the results compiled over the past seven years is presented to place a foundation for the science and engineering community to prepare to align with this compelling science enterprise as a fundamental new paradigm for the registration, storage, and access of science data and information through the emerging Digital Earth Exchange under protocols developed for the Digital Earth Reference Model.
Broadening the voice of science: Promoting scientific communication in the undergraduate classroom.
Cirino, Lauren A; Emberts, Zachary; Joseph, Paul N; Allen, Pablo E; Lopatto, David; Miller, Christine W
2017-12-01
Effective and accurate communication of scientific findings is essential. Unfortunately, scientists are not always well trained in how to best communicate their results with other scientists nor do all appreciate the importance of speaking with the public. Here, we provide an example of how the development of oral communication skills can be integrated with research experiences at the undergraduate level. We describe our experiences developing, running, and evaluating a course for undergraduates that complemented their existing undergraduate research experiences with instruction on the nature of science and intensive training on the development of science communication skills. Students delivered science talks, research monologues, and poster presentations about the ecological and evolutionary research in which they were involved. We evaluated the effectiveness of our approach using the CURE survey and a focus group. As expected, undergraduates reported strong benefits to communication skills and confidence. We provide guidance for college researchers, instructors, and administrators interested in motivating and equipping the next generation of scientists to be excellent science communicators.
Why did the proton cross the road? Humour and science communication.
Riesch, Hauke
2015-10-01
The use of humour in public discourse about science has grown remarkably over the past few years, and when used in science communication activities is being seen as a great way to bring science to the public through laughter. However, barely any research has been published either on the often-assumed beneficial learning effects of humour in informal science education, or on the wider social functions and effects of humour about science and how humorous public discourse about science can influence the public understanding of science and the science-society relationship. This research note reviews some of the literature on the psychology and sociology of humour and comedy and tries to apply some of its insights to the effects humour might have when used in science communication. Although not intended to be anti-humour, this note attempts at least to start a more critical conversation on the value of humour in the communication of science. © The Author(s) 2014.
Aerospace Communications at the NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Miranda, Felix A.
2006-01-01
The Communications Division at the NASA Glenn Research Center in Cleveland Ohio has as its charter to provide NASA and the Nation with our expertise and services in innovative communications technologies that address future missions in Aerospace Technology, Spaceflight, Space Science, Earth Science, Life Science and Exploration.
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Hecht, Laura M.; Barclay, Rebecca O.; Kennedy, John M.
1994-01-01
This report describes similarities and differences between undergraduate and graduate aerospace engineering and science students in the context of two general aspects of the educational experience. First, we explore the extent to which students differ regarding the factors that lead to the choice of becoming an aerospace engineer or a scientist, current satisfaction with that choice, and career-related goals and objectives. Second, we look at the technical communication skills, practices, habits, and training of aerospace engineering and science students. The reported data were obtained from a survey of students enrolled in aerospace engineering and science programs at universities in India, Japan, Russia, and the United Kingdom. The surveys were undertaken as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. Data are reported for the following categories: student demographics; skill importance, skill training, and skill helpfulness; collaborative writing; computer and information technology use and importance, use of electronic networks; use and importance of libraries and library services; use and importance of information sources and products; use of foreign language technical reports; and foreign language (reading and speaking) skills.
Carnegie Science Academy Web Site
NASA Astrophysics Data System (ADS)
Kotwicki, John; Atzinger, Joe; Turso, Denise
1997-11-01
The Carnegie Science Academy is a professional society "For Teens...By Teens" at the Carnegie Science Center in Pittsburgh. The CSA Web Site [ http://csa.clpgh.org ] is designed for teens who have an interest in science and technology. This online or virtual science academy provides resources for teens in high school science classes. The Web site also allows students around the world to participate and communicate with other students, discuss current events in science, share opinions, find answers to questions, or make online friends. Visitors can enjoy the main components of the site or sign up for a free membership which allows access to our chat room for monthly meeting, online newsletter, members forum, and much more. Main components to the site include a spot for cool links and downloads, available for any visitor to download or view. Online exhibits are created by students to examine and publish an area of study and also allow teachers to easily post classroom activities as exhibits by submitting pictures and text. Random Access, the interactive part of the academy, allows users to share ideas and opinions. Planet CSA focuses on current events in science and the academy. In the future the CSA Web site will become a major resource for teens and science teachers providing materials that will allow students to further enhance their interest and experiences in science.
NASA Astrophysics Data System (ADS)
Dutilly, E.; Charlevoix, D. J.; Bartel, B. A.
2017-12-01
UNAVCO is a National Science Foundation (NSF) facility specializing in geodesy. As part of its education and outreach work, it operates annual summer internships. In 2016, UNAVCO joined the Portal to the Public (PoP) network and the PoP model was adapted and bent to provide science communication professional development for summer interns. PoP is one way that UNAVCO invests in and trains future generations of geoscientists. The NSF-funded PoP initiative and its network, PoPNet, is a premier outreach framework connecting scientists and public audiences for over a decade. PoPNet is a network of sixty organizations committed to using the PoP method to engage the public in face-to-face interactions with practicing scientists. The PoP initiative provides professional development to scientists focused on best practices in science communication, helps them to develop an interactive exhibit consistent with their current research, and offers them a venue for interacting with the public. No other evaluation work to date has examined how summer internships can uptake the PoP model. This presentation focuses on evaluation findings from two cohorts of summer interns across two years. Three primary domains were assessed: how demographic composition across cohorts required changes to the original PoP framework, which of the PoP professional development trainings were valued (or not) by interns, and changes to intern knowledge, attitudes, and abilities to communicate science. Analyses via surveys and interviews revealed that level of intern geoscience knowledge was a major factor in deciding the focus of the work, specifically whether to create new hands-on exhibits or use existing ones. Regarding the use of PoP trainings, there was no obvious pattern in what interns preferred. Most growth and learning for interns occurred during and after the outreach activity. Results of this evaluation can be used to inform other applications of the PoP approach in summer internships.
Making Science Whole Again: The Role of Academia
NASA Astrophysics Data System (ADS)
Lubchenco, J.
2006-12-01
Science in the 21st Century has become increasingly fragmented, not in the usual sense of disciplinary divisions, but with increased specialization in the discovery, teaching, public communication and application aspects of new knowledge. As in the infamous `telephone game', messages passed along through multiple parties, risk distortion. More insidiously, without active and effective checks and balances along the way, information can be and is being deliberately distorted, completely altered, or used selectively. Science, of course, is not the only basis for decision-making; values, politics, economics and other factors should also be considered. Nonetheless, a key role of science is to inform decision-making (not to drive it exclusively). The importance of citizens and leaders having access to accurate scientific information and knowledge is so essential to human well-being that new mechanisms must be found to ensure the integrity of scientific information. Among the multiple changes that are needed to achieve this goal, many of which will be explored in this session, one pertains specifically to the academic scientific community. That change entails growing and supporting stellar scientists who participate directly in discovery AND public communication of knowledge. More scientists whose primary jobs are research and teaching could and should also be actively involved in sharing new knowledge with non-scientists. The public expects this to happen but academia gives it lip service at best. Having more scientists who can communicate scientific knowledge that is understandable, relevant, useable, current and credible to non-technical audiences is a key (though far from the only) factor in protecting the integrity of science. The Aldo Leopold Leadership Program now based at Stanford University's Woods Institute for the Environment is a program that trains tenured, academic environmental scientists to communicate effectively with politicians, business people, the media, and multiple other interested parties. An examination of the program will provide insight into the feasibility and challenges of adopting the model more widely.
Lessons from Communicating Space Science Over the Web
NASA Technical Reports Server (NTRS)
Dooling, David, Jr.; Triese, D.
2000-01-01
The Science Directorate at NASA's Marshall Space Flight Center uses the web in an aggressive manner to expand communications beyond the traditional "public affairs" or "media relations" routines. The key to success has been developing a balanced process that A) involves laboratory personnel and the NASA center community through a weekly Science Communications Roundtable, B) vests ownership and development of the product (i.e., the story) in the scientist a writer resident in the laboratory, and C) seeks taps the talents of the outside communications community through the Research/Roadmap Communications activity. The process is flexible and responsive, allowing Science@NASA to provide daily coverage for events, such as two materials science missions managed by NASA/Marshall. In addition to developing materials for the web, Science@NASA has conducted extensive research to determine what subjects people seek on the web, and the best methods to position stories so they will be found and read.
Basic Science and Public Policy: Informed Regulation for Nicotine and Tobacco Products.
Fowler, Christie D; Gipson, Cassandra D; Kleykamp, Bethea A; Rupprecht, Laura E; Harrell, Paul T; Rees, Vaughan W; Gould, Thomas J; Oliver, Jason; Bagdas, Deniz; Damaj, M Imad; Schmidt, Heath D; Duncan, Alexander; De Biasi, Mariella
2018-06-07
Scientific discoveries over the past few decades have provided significant insight into the abuse liability and negative health consequences associated with tobacco and nicotine-containing products. While many of these advances have led to the development of policies and laws that regulate access to and formulations of these products, further research is critical to guide future regulatory efforts, especially as novel nicotine-containing products are introduced and selectively marketed to vulnerable populations. In this narrative review, we provide an overview of the scientific findings that have impacted regulatory policy and discuss considerations for further translation of science into policy decisions. We propose that open, bidirectional communication between scientists and policy makers is essential to develop transformative preventive- and intervention-focused policies and programs to reduce appeal, abuse liability, and toxicity of the products. Through these types of interactions, collaborative efforts to inform and modify policy have the potential to significantly decrease the use of tobacco and alternative nicotine products and thus enhance health outcomes for individuals. This work addresses current topics in the nicotine and tobacco research field to emphasize the importance of basic science research and provide examples of how it can be utilized to inform public policy. In addition to relaying current thoughts on the topic from experts in the field, the article encourages continued efforts and communication between basic scientists and policy officials.
Communicating Science Broadly: An NSF Point of View
NASA Astrophysics Data System (ADS)
Leinen, M. S.
2006-12-01
In the view of NSF, communicating about both the process of doing science and about scientific results are of paramount importance. But those of us in the agency are not the ones who do the science or generate the results. Thus, our policy is to encourage the community we fund to communicate their results as broadly as possible. Why does NSF feel so strongly about communicating scientific results? First, science only moves forward when there is free and open debate about scientific results through public mechanisms in which there is an opportunity for thorough analysis (e.g. scientific literature, professional meetings and workshops). Second, the research we support is done for the good of the public and should be communicated to the public. Third, scientific results are critical to many important decision-making processes and policy-making processes. Democracies thrive when an informed public is engaged, so communicating science broadly to the lay public is important. Why does NSF feel so strongly about communicating about the process of science? Science is a habit of mind; an orderly process for testing ideas. But many do not understand how science is done, the difference between fact and conjecture, why speculation, hypotheses and theory are critical to progress, or why the culture of constructive criticism is essential to progress. Without this context, science can be misunderstood as magic, opinion, or argument. Thus the efforts that we fund to enhance scientific education and outreach are critical to having discourse about scientific results.
Energy and scientific communication
NASA Astrophysics Data System (ADS)
De Sanctis, E.
2013-06-01
Energy communication is a paradigmatic case of scientific communication. It is particularly important today, when the world is confronted with a number of immediate, urgent problems. Science communication has become a real duty and a big challenge for scientists. It serves to create and foster a climate of reciprocal knowledge and trust between science and society, and to establish a good level of interest and enthusiasm for research. For an effective communication it is important to establish an open dialogue with the audience, and a close collaboration among scientists and science communicators. An international collaboration in energy communication is appropriate to better support international and interdisciplinary research and projects.
A review of radio channel models for body centric communications
Cotton, Simon L; D'Errico, Raffaele; Oestges, Claude
2014-01-01
The human body is an extremely challenging environment for the operation of wireless communications systems, not least because of the complex antenna-body electromagnetic interaction effects which can occur. This is further compounded by the impact of movement and the propagation characteristics of the local environment which all have an effect upon body centric communications channels. As the successful design of body area networks (BANs) and other types of body centric system is inextricably linked to a thorough understanding of these factors, the aim of this paper is to conduct a survey of the current state of the art in relation to propagation and channel models primarily for BANs but also considering other types of body centric communications. We initially discuss some of the standardization efforts performed by the Institute of Electrical and Electronics Engineers 802.15.6 task group before focusing on the two most popular types of technologies currently being considered for BANs, namely narrowband and Ultrawideband (UWB) communications. For narrowband communications the applicability of a generic path loss model is contended, before presenting some of the scenario specific models which have proven successful. The impacts of human body shadowing and small-scale fading are also presented alongside some of the most recent research into the Doppler and time dependencies of BANs. For UWB BAN communications, we again consider the path loss as well as empirical tap delay line models developed from a number of extensive channel measurement campaigns conducted by research institutions around the world. Ongoing efforts within collaborative projects such as Committee on Science and Technology Action IC1004 are also described. Finally, recent years have also seen significant developments in other areas of body centric communications such as off-body and body-to-body communications. We highlight some of the newest relevant research in these areas as well as discussing some of the advanced topics which are currently being addressed in the field of body centric communications. PMID:26430285
A prelinguistic gestural universal of human communication.
Liszkowski, Ulf; Brown, Penny; Callaghan, Tara; Takada, Akira; de Vos, Conny
2012-01-01
Several cognitive accounts of human communication argue for a language-independent, prelinguistic basis of human communication and language. The current study provides evidence for the universality of a prelinguistic gestural basis for human communication. We used a standardized, semi-natural elicitation procedure in seven very different cultures around the world to test for the existence of preverbal pointing in infants and their caregivers. Results were that by 10-14 months of age, infants and their caregivers pointed in all cultures in the same basic situation with similar frequencies and the same proto-typical morphology of the extended index finger. Infants' pointing was best predicted by age and caregiver pointing, but not by cultural group. Further analyses revealed a strong relation between the temporal unfolding of caregivers' and infants' pointing events, uncovering a structure of early prelinguistic gestural conversation. Findings support the existence of a gestural, language-independent universal of human communication that forms a culturally shared, prelinguistic basis for diversified linguistic communication. Copyright © 2012 Cognitive Science Society, Inc.
Halkier, Bente
2015-08-13
Public communication initiatives play a part in placing complicated scientific claims in citizen-consumers' everyday contexts. Lay reactions to scientific claims framed in public communication, and attempts to engage citizens, have been important subjects of discussion in the literatures of public understanding and public engagement with science. Many of the public communication initiatives, however, address lay people as consumers rather than citizens. This creates specific challenges for understanding public engagement with science and scientific citizenship. The article compares five different understandings of the relations between citizen-consumers and public issue communication involving science, where the first four types are widely represented in the Public Understanding of Science discussions. The fifth understanding is a practice theoretical perspective. The article suggests how the public understanding of and engagement in science literature can benefit from including a practice theoretical approach to research about mundane science use and public engagement. © The Author(s) 2015.
Portraying Real Science in Science Communication
ERIC Educational Resources Information Center
van Dijk, Esther M.
2011-01-01
In both formal and informal settings, not only science but also views on the nature of science are communicated. Although there probably is no singular nature shared by all fields of science, in the field of science education it is commonly assumed that on a certain level of generality there is a consensus on many features of science. In this…
Recognizing the importance of conversation between experts and non-experts in science communication
NASA Astrophysics Data System (ADS)
Rushlow, C. R.; Soderquist, B.; Cohn, T.; Eitel, K.
2016-12-01
Science communication is often perceived by scientists as the flow of information from experts to non-experts, and institutions have responded by providing science communication training that focuses on best practices for disseminating information. This unidirectional approach neglects a key component of science communication: scientists must understand the needs and values of the stakeholders for whom they are producing information, whether the stakeholders are community members, resource managers, or policy makers. We designed an activity for graduate students enrolled in a science communication class at the McCall Outdoor Science School to both alert them to this misconception, and to give them an opportunity to rectify it. Over the course of 24-hours, we challenged students to have a conversation about climate change with someone they encountered in the community of McCall, ID. Using material from their conversations, students created a story in podcast or video form to share with the class. Through reflecting on this activity, students experienced a change in their perceptions of their identities as science communicators. Many students expressed an increased interest in listening to the stories of community members to learn more about the community's needs and values. We repeated the activity with early career scientists attending a climate workshop in McCall offered by the USGS Northwest Climate Science Center, focusing our evaluation around the science identity model of Carlone and Johnson (2007). Evaluations suggest that participants recognized their role as scientists in not only to providing information, but also in listening to the values and needs of the people for whom they are working. We believe this understanding is fundamental to being a good science communicator and ensuring that science remains relevant to communities.
Network Communication as a Service-Oriented Capability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, William; Johnston, William; Metzger, Joe
2008-01-08
In widely distributed systems generally, and in science-oriented Grids in particular, software, CPU time, storage, etc., are treated as"services" -- they can be allocated and used with service guarantees that allows them to be integrated into systems that perform complex tasks. Network communication is currently not a service -- it is provided, in general, as a"best effort" capability with no guarantees and only statistical predictability. In order for Grids (and most types of systems with widely distributed components) to be successful in performing the sustained, complex tasks of large-scale science -- e.g., the multi-disciplinary simulation of next generation climate modelingmore » and management and analysis of the petabytes of data that will come from the next generation of scientific instrument (which is very soon for the LHC at CERN) -- networks must provide communication capability that is service-oriented: That is it must be configurable, schedulable, predictable, and reliable. In order to accomplish this, the research and education network community is undertaking a strategy that involves changes in network architecture to support multiple classes of service; development and deployment of service-oriented communication services, and; monitoring and reporting in a form that is directly useful to the application-oriented system so that it may adapt to communications failures. In this paper we describe ESnet's approach to each of these -- an approach that is part of an international community effort to have intra-distributed system communication be based on a service-oriented capability.« less
SAMS-II Requirements and Operations
NASA Technical Reports Server (NTRS)
Wald, Lawrence W.
1998-01-01
The Space Acceleration Measurements System (SAMS) II is the primary instrument for the measurement, storage, and communication of the microgravity environment aboard the International Space Station (ISS). SAMS-II is being developed by the NASA Lewis Research Center Microgravity Science Division to primarily support the Office of Life and Microgravity Science and Applications (OLMSA) Microgravity Science and Applications Division (MSAD) payloads aboard the ISS. The SAMS-II is currently in the test and verification phase at NASA LeRC, prior to its first hardware delivery scheduled for July 1998. This paper will provide an overview of the SAMS-II instrument, including the system requirements and topology, physical and electrical characteristics, and the Concept of Operations for SAMS-II aboard the ISS.
Education for sustainable development - Resources for physics and sciences teachers
NASA Astrophysics Data System (ADS)
Miličić, Dragana; Jokić, Ljiljana; Blagdanić, Sanja; Jokić, Stevan
2016-03-01
With this article we would like to stress science teachers must doing practical work and communicate on the basis of scientific knowledge and developments, but also allow their students opportunity to discover knowledge through inquiry. During the last five years Serbian project Ruka u testu (semi-mirror of the French project La main á la pâte), as well as European FIBONACCI and SUSTAIN projects have offered to our teachers the wide-scale learning opportunities based on Inquiry Based Science Education (IBSE) and Education for Sustainable Development (ESD). Our current efforts are based on pedagogical guidance, several modules and experimental kits, the website, exhibitions, and trainings and workshops for students and teachers.
Multi-copy entanglement purification with practical spontaneous parametric down conversion sources
NASA Astrophysics Data System (ADS)
Zhang, Shuai-Shuai; Shu, Qi; Zhou, Lan; Sheng, Yu-Bo
2017-06-01
Entanglement purification is to distill the high quality entanglement from the low quality entanglement with local operations and classical communications. It is one of the key technologies in long-distance quantum communication. We discuss an entanglement purification protocol (EPP) with spontaneous parametric down conversion (SPDC) sources, in contrast to previous EPP with multi-copy mixed states, which requires ideal entanglement sources. We show that the SPDC source is not an obstacle for purification, but can benefit the fidelity of the purified mixed state. This EPP works for linear optics and is feasible in current experiment technology. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474168 and 61401222), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20151502), the Qing Lan Project in Jiangsu Province, China, and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.
NASA Astrophysics Data System (ADS)
von Schneidemesser, E.; Schmale, J.; Van Aardenne, J.
2013-12-01
Air pollution and climate change are often treated at national and international level as separate problems under different regulatory or thematic frameworks and different policy departments. With air pollution and climate change being strongly linked with regard to their causes, effects and mitigation options, the integration of policies that steer air pollutant and greenhouse gas emission reductions might result in cost-efficient, more effective and thus more sustainable tackling of the two problems. To support informed decision making and to work towards an integrated air quality and climate change mitigation policy requires the identification, quantification and communication of present-day and potential future co-benefits and trade-offs. The identification of co-benefits and trade-offs requires the application of appropriate metrics that are well rooted in science, easy to understand and reflect the needs of policy, industry and the public for informed decision making. For the purpose of this workshop, metrics were loosely defined as a quantified measure of effect or impact used to inform decision-making and to evaluate mitigation measures. The workshop held on October 9 and 10 and co-organized between the European Environment Agency and the Institute for Advanced Sustainability Studies brought together representatives from science, policy, NGOs, and industry to discuss whether current available metrics are 'fit for purpose' or whether there is a need to develop alternative metrics or reassess the way current metrics are used and communicated. Based on the workshop outcome the presentation will (a) summarize the informational needs and current application of metrics by the end-users, who, depending on their field and area of operation might require health, policy, and/or economically relevant parameters at different scales, (b) provide an overview of the state of the science of currently used and newly developed metrics, and the scientific validity of these metrics, (c) identify gaps in the current information base, whether from the scientific development of metrics or their application by different users.
Prior Publication and Redundancy in Contemporary Science: Are Authors and Editors at the Crossroads?
de Vasconcelos, Sonia Maria Ramos; Roig, Miguel
2015-10-01
We discuss prior publication and redundancy in contemporary science in the context of changing perceptions of originality in the communication of research results. These perceptions have been changing in the publication realm, particularly in the last 15 years. Presenting a brief overview of the literature, we address some of the conflicts that are likely to arise between authors and editors. We illustrate our approach with conference presentations that are later published as journal articles and focus on a recent retraction of an article that had been previously published as a conference proceedings. Although we do not make definitive pronouncements on the matter-as many concepts are evolving-we do argue that conference papers that contain sufficient details for others to attempt a replication and are indexed in scientific databases such as PubMed, challenge some currently held assumptions of prior publication and originality in the sciences. Our view is that these important issues are in need of further clarification and harmonization within the science publishing community. This need is more evident when we consider current notions of research integrity when it comes to communication to peers. Revisiting long-standing views about what constitutes prior publication and developing a clearer set of guidelines for authors and editors to follow should reduce conflicts in the research environment, which already exerts considerable pressure, especially on newcomers in academia. However, while clearer guidelines are timely, developing them is only part of the challenge. The present times seem to call for deeper changes in the research and publication systems.
A Day in the Life of the Laser Communications Relay Demonstration Project
NASA Technical Reports Server (NTRS)
Edwards, Bernard; Israel, David; Caroglanian, Armen; Spero, James; Roberts, Tom; Moores, John
2016-01-01
This paper provides an overview of the planned concept of operations for the Laser Communications Relay Demonstration Project (LCRD), a joint project among NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory, California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT/LL). LCRD will provide at least two years of bi-directional optical communications at user data rates of up to 1.244 Gbps in an operational environment. The project lays the groundwork for establishing communications architecture and protocols, and developing the communications hardware and support infrastructure, concluding in a demonstration of optical communications' potential to meet NASA's growing need for higher data rates for future science and exploration missions. A pair of flight optical communications terminals will reside on a single commercial communications satellite in geostationary orbit; the two ground optical communications terminals will be located in Southern California and Hawaii. This paper summarizes the current LCRD architecture and key systems for the demonstration, focusing on what it will take to operate an optical communications relay that can support space-to-space, space-to-air, and space-to-ground optical links.
A Day in the Life of the Laser Communications Relay Demonstration (LCRD) Project.
NASA Technical Reports Server (NTRS)
Israel, David; Caroglanian, Armen; Edwards, Bernard; Spero, James; Roberts, Tom; Moores, John
2016-01-01
This presentation provides an overview of the planned concept of operations for the Laser Communications Relay Demonstration Project (LCRD), a joint project among NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory, California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MITLL). LCRD will provide at least two years of bi-directional optical communications at user data rates of up to 1.244 Gbps in an operational environment. The project lays the ground work for establishing communications architecture and protocols, and developing the communications hardware and support infrastructure, concluding in a demonstration of optical communications potential to meet NASAs growing need for higher data rates for future science and exploration missions. A pair of flight optical communications terminals will reside on a single commercial communications satellite in geostationary orbit; the two ground optical communications terminals will be located in Southern California and Hawaii. This paper summarizes the current LCRD architecture and key systems for the demonstration, focusing on what it will take to operate an optical communications relay that can support space-to-space, space-to-air, and space-to-ground optical links.
Basalt: Biologic Analog Science Associated with Lava Terrains
NASA Astrophysics Data System (ADS)
Lim, D. S. S.; Abercromby, A.; Kobs-Nawotniak, S. E.; Kobayashi, L.; Hughes, S. S.; Chappell, S.; Bramall, N. E.; Deans, M. C.; Heldmann, J. L.; Downs, M.; Cockell, C. S.; Stevens, A. H.; Caldwell, B.; Hoffman, J.; Vadhavk, N.; Marquez, J.; Miller, M.; Squyres, S. W.; Lees, D. S.; Fong, T.; Cohen, T.; Smith, T.; Lee, G.; Frank, J.; Colaprete, A.
2015-12-01
This presentation will provide an overview of the BASALT (Biologic Analog Science Associated with Lava Terrains) program. BASALT research addresses Science, Science Operations, and Technology. Specifically, BASALT is focused on the investigation of terrestrial volcanic terrains and their habitability as analog environments for early and present-day Mars. Our scientific fieldwork is conducted under simulated Mars mission constraints to evaluate strategically selected concepts of operations (ConOps) and capabilities with respect to their anticipated value for the joint human and robotic exploration of Mars. a) Science: The BASALT science program is focused on understanding habitability conditions of early and present-day Mars in two relevant Mars-analog locations (the Southwest Rift Zone (SWRZ) and the East Rift Zone (ERZ) flows on the Big Island of Hawai'i and the eastern Snake River Plain (ESRP) in Idaho) to characterize and compare the physical and geochemical conditions of life in these environments and to learn how to seek, identify, and characterize life and life-related chemistry in basaltic environments representing these two epochs of martian history. b) Science Operations: The BASALT team will conduct real (non-simulated) biological and geological science at two high-fidelity Mars analogs, all within simulated Mars mission conditions (including communication latencies and bandwidth constraints) that are based on current architectural assumptions for Mars exploration missions. We will identify which human-robotic ConOps and supporting capabilities enable science return and discovery. c) Technology: BASALT will incorporate and evaluate technologies in to our field operations that are directly relevant to conducting the scientific investigations regarding life and life-related chemistry in Mars-analogous terrestrial environments. BASALT technologies include the use of mobile science platforms, extravehicular informatics, display technologies, communication & navigation packages, remote sensing, advanced science mission planning tools, and scientifically-relevant instrument packages to achieve the project goals.
Improving together: collaborative learning in science communication, ClimateSnack case study
NASA Astrophysics Data System (ADS)
Heuzé, C.; Reeve, M. A.
2016-02-01
Most scientists today recognize that science communication is an important part of the scientific process, yet science writing and communication are often taught outside the normal academic schedule. If universities offer such courses, they are generally intensive but short-term: the participants rarely complete a science communication course with an immediate and pressing need to apply these skills. So the skills fade, stalling real progress in science communication. Continuity is key to success! Whilst waiting for the academic system to truly integrate science communication, other methods can be tested. ClimateSnack / SciSnack is a new approach that aims to motivate scientists to develop their communication skills. It adopts a collaborative learning framework where scientists voluntarily form writing groups that meet regularly at different institutes around the world. The members of the groups learn, discuss and improve together. The participants produce short posts, which are published online, where they are further discussed and improved by the global ClimateSnack community. This way, the participants learn and cement basic science communication skills. These skills are transferrable, and can be applied both to scientific articles and broader science media. Some writing groups are highly productive, while others exist no more. The reasons for success are here investigated with respect to issues both internal and external to the different groups, in particular leadership strategies. Possible further development, in particular using the online community, is suggested. ClimateSnack is one solution to fill the critical gap left by a lack of adequate teaching in early-career scientists' curriculum.
Tetro, Jason A.
2018-01-01
For effective science communication, three general objectives should be taken into consideration: 1) accurate conveyance of the scientific evidence; 2) warm public reception of the communicator; and 3) alignment of the information with social values. An examination of both successful and failed science communication efforts over the course of history can reveal strategies to better meet these objectives. This article looks back at influential moments of science communication over the past two millennia in the context of the objectives and, using lessons learned from these events as a guide, introduces a five-element approach to improve the potential for attaining the objectives. PMID:29904548
Using Model-Based Reasoning for Autonomous Instrument Operation
NASA Technical Reports Server (NTRS)
Johnson, Mike; Rilee, M.; Truszkowski, W.; Powers, Edward I. (Technical Monitor)
2000-01-01
Multiprobe missions are an important part of NASA's future: Cluster, Magnetospheric Multi Scale, Global Electrodynamics and Magnetospheric Constellation are representatives from the Sun-Earth Connections Theme. To make such missions robust, reliable, and affordable, ideally the many spacecraft of a constellation must be at least as easy to operate as one spacecraft is today. To support this need for scalability, science instrumentation must become increasingly easy to operate, even as this same instrumentation becomes more capable and advanced. Communication and control resources will be at a premium for future instruments. Many missions will be out of contact with ground operators for extended periods either to reduce operations cost or because of orbits that limit communication to weekly perigee transits. Autonomous capability is necessary if such missions are to effectively achieve their operational objectives. An autonomous system is one that acts given its situation in a mission appropriate manner without external direction to achieve mission goals. To achieve this capability autonomy must be built into the system through judicious design or through a built-in intelligence that recognizes system state and manages system response. To recognize desired or undesired system states, the system must have an implicit or explicit understanding of its expected states given its history and self observations. The systems we are concerned with, science instruments, can have stringent requirements for system state knowledge in addition to requirements driven by health and safety concerns. Without accurate knowledge of the system state, the usefulness of the science instrument may be severely limited. At the same time, health and safety concerns often lead to overly conservative instrument operations further reducing the effectiveness of the instrument. These requirements, coupled with overall mission requirements including lack of communication opportunities and tolerance of environmental hazards, frame the problem of constructing autonomous science instruments. we are developing a model of the Low Energy Neutral Atom instrument (LENA) that is currently flying on board the Imager for Magnetosphere-to-Aurora Global Exploration (IMAGE) spacecraft. LENA is a particle detector that uses high voltage electrostatic optics and time-of-flight mass spectrometry to image neutral atom emissions from the denser regions of the Earth's magnetosphere. As with most spacecraft borne science instruments, phenomena in addition to neutral atoms are detected by LENA. Solar radiation and energetic particles from Earth's radiation belts are of particular concern because they may help generate currents that may compromise LENA's long term performance. An explicit model of the instrument response has been constructed and is currently in use on board IMAGE to dynamically adapt LENA to the presence or absence of energetic background radiations. The components of LENA are common in space science instrumentation, and lessons learned by modelling this system may be applied to other instruments. This work demonstrates that a model-based approach can be used to enhance science instrument effectiveness. Our future work involves the extension of these methods to cover more aspects of LENA operation and the generalization to other space science instrumentation.
Saaranen, Terhi; Vaajoki, Anne; Kellomäki, Marjaana; Hyvärinen, Marja-Leena
2015-02-01
This article describes the experiences of master students of nursing science in learning interpersonal communication competence through the simulation method. The exercises reflected challenging interactive situations in the field of health care. Few studies have been published on using the simulation method in the communication education of teachers, managers, and experts in this field. The aim of this study is to produce information which can be utilised in developing the simulation method to promote the interpersonal communication competence of master-level students of health sciences. This study used the qualitative, descriptive research method. At the Department of Nursing Science, the University of Eastern Finland, students major in nursing science specialise in nursing leadership and management, preventive nursing science, or nurse teacher education. Students from all three specialties taking the Challenging Situations in Speech Communication course participated (n=47). Essays on meaningful learning experiences collected using the critical incident technique, underwent content analysis. Planning of teaching, carrying out different stages of the simulation exercise, participant roles, and students' personal factors were central to learning interpersonal communication competence. Simulation is a valuable method in developing the interpersonal communication competence of students of health sciences at the masters' level. The methods used in the simulation teaching of emergency care are not necessarily applicable as such to communication education. The role of teacher is essential to supervising students' learning in simulation exercises. In the future, it is important to construct questions that help students to reflect specifically on communication. Copyright © 2014 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Chi, Shaohui; Liu, Xiufeng; Gardella, Joseph A.
2016-01-01
Service learning typically involves university students in teaching and learning activities for middle and high school students, however, measurement of university students' self-efficacy in science communication is still lacking. In this study, an instrument to measure university students' perceived self-efficacy in communicating science to…
Teaching Scientists to Communicate: Evidence-Based Assessment for Undergraduate Science Education
ERIC Educational Resources Information Center
Mercer-Mapstone, Lucy; Kuchel, Louise
2015-01-01
Communication skills are one of five nationally recognised learning outcomes for an Australian Bachelor of Science (BSc) degree. Previous evidence indicates that communication skills taught in Australian undergraduate science degrees are not developed sufficiently to meet the requirements of the modern-day workplace--a problem faced in the UK and…
ERIC Educational Resources Information Center
Koballa, Thomas R., Jr.
1988-01-01
Identifies communicators whom eighth-grade girls perceive as credible regarding reasons for taking elective physical science courses in high school. Finds that father, woman science teacher, mother, and boy high school student are ranked highly. Attributes associated with the communicators were classified as prestige, trustworthiness, similarity,…
ERIC Educational Resources Information Center
Mercer-Mapstone, Lucy D.; Matthews, Kelly E.
2017-01-01
Higher education institutions globally are acknowledging the need to teach communication skills. This study used the Science Student Skills Inventory to gain insight into how science students perceive the development of communication skills across the degree programme. Responses were obtained from 635 undergraduate students enrolled in a Bachelor…
Von Glaserfeld`s Radical Constructivism: A Critical Review
NASA Astrophysics Data System (ADS)
Hardy, Michael D.
We explore Ernst von Glaserfelds radical constructivism, its criticisms, and our own thoughts on what it promises for the reform of science and mathematics teaching. Our investigation reveals that many criticisms of radical constructivism are unwarranted; nevertheless, in its current cognitivist form radical constructivism may be insufficient to empower teachers to overcome objectivist cultural traditions. Teachers need to be empowered with rich understandings of philosophies of science and mathematics that endorse relativist epistemologies; for without such they are unlikely to be prepared to reconstruct their pedagogical practices. More importantly, however, is a need for a powerful social epistemology to serve as a referent for regenerating the culture of science education. We recommend blending radical constructivism with Habermas theory of communicative action to provide science teachers with a moral imperative for adopting a constructivist epistemology.
Michael Faraday vs. the Spiritualists
NASA Astrophysics Data System (ADS)
Hirshfeld, Alan
2006-12-01
In the 1850s, renowned physicist Michael Faraday launched a public campaign against pseudoscience and spiritualism, which were rampant in England at the time. Faraday objected especially to claims that electrical or magnetic forces were responsible for paranormal phenomena, such as table-spinning and communication with the dead. Using scientific methods, Faraday unmasked the deceptions of spiritualists, clairvoyants and mediums and also laid bare the credulity of a public ill-educated in science. Despite his efforts, Victorian society's fascination with the paranormal swelled. Faraday's debacle anticipates current controversies about public science education and the interface between science and religion. This episode is one of many described in the new biography, The Electric Life of Michael Faraday (Walker & Co.), which chronicles Faraday's discoveries and his unlikely rise from poverty to the pinnacle of the English science establishment.
Bridging the Gap: Embedding Communication Courses in the Science Undergraduate Curriculum
ERIC Educational Resources Information Center
Jandciu, Eric; Stewart, Jaclyn J.; Stoodley, Robin; Birol, Gülnur; Han, Andrea; Fox, Joanne A.
2015-01-01
The authors describe a model for embedding science communication into the science curriculum without displacing science content. They describe the rationale, development, design, and implementation of two courses taught by science faculty addressing these criteria. They also outline the evaluation plan for these courses, which emphasize broad…
Communicating Ocean Sciences to Informal Audiences (COSIA): Interim Evaluation Report
ERIC Educational Resources Information Center
St. John, Mark; Phillips, Michelle; Smith, Anita; Castori, Pam
2009-01-01
Communicating Ocean Sciences to Informal Audiences (COSIA) is a National Science Foundation (NSF)-funded project consisting of seven long-term three-way partnerships between the Lawrence Hall of Science (LHS) and an informal science education institution (ISEI) partnered with an institution of higher education (IHE). Together, educators from the…
Communicating Ocean Sciences to Informal Audiences (COSIA): Final Evaluation Report
ERIC Educational Resources Information Center
Phillips, Michelle; St. John, Mark
2010-01-01
Communicating Ocean Sciences to Informal Audiences (COSIA) is a National Science Foundation (NSF)-funded project consisting of six three-way partnerships between the Lawrence Hall of Science (LHS) and an informal science education institution (ISEI) partnered with an institution of higher education (IHE). Together, educators from the ISEI (often…
Engagement as a Threshold Concept for Science Education and Science Communication
ERIC Educational Resources Information Center
McKinnon, Merryn; Vos, Judith
2015-01-01
Science communication and science education have the same overarching aim--to engage their audiences in science--and both disciplines face similar challenges in achieving this aim. Knowing how to effectively engage their "audiences" is fundamental to the success of both. Both disciplines have well-developed research fields identifying…
NASA Astrophysics Data System (ADS)
Hayden, T.
2011-12-01
Direct, effective communication with the public is an increasingly important part of the earth scientist's professional toolkit. Earth sciences issues, including climate change, ocean acidification, energy extraction and use and geological hazard assessment, are increasingly relevant to public debates, yet recent, dramatic changes in the media business have led to decreased coverage of science. Earth scientists must increasingly shoulder the burden of informing the broad public themselves, and in collaboration with professional communicators. Fortunately, the tools and venues needed to do so have never been more accessible. This presentation will describe a new model of science communication education, based on bringing together collaborating teams of students with diverse backgrounds in the sciences, engineering and journalism. The project-based approach uses group workshopping and multiple rounds of peer- and instructor-guided revision to leverage diverse expertise and facilitate both primary knowledge gain and comprehensive, effective and meaningful training and experience in audience-focused outreach, media interaction, and journalism. Courses build from fundamental communications theory to the end goal of publication in professional outlets. Course goals are regularly enhanced and reinforced with internships and individual study projects. Using examples from a series of courses and projects developed at Stanford University over the past three years, I will describe the theory and strategies underlying this new approach to science communication education, what it has to offer for scientists and journalists alike, and key points to consider for effective implementation. I will also show how combining the knowledge, expertise and experience of STEM and journalism students can inform a new model of science journalism, based on exploring and communicating the process of science, not just the results, that can avoid many of the common pitfalls of science journalism. I will present a preliminary assessment of outcomes from three courses at Stanford - environmental communications, environmental journalism and multimedia storytelling for earth scientists - including publications, retrospective post assessment of student abilities and attitudes, and ongoing application of course goals in professional and/or educational settings.
Expanding Secondary School Chinese Language Programs: A Study of Potential Challenges
ERIC Educational Resources Information Center
Dretzke, Beverly J.; Jordan, Kelly
2010-01-01
The current interest in learning Chinese has been fueled by the growing strength of the Chinese economy and the need for Americans who are able to communicate at an advanced level in fields of business, science, and government. The present study reports the results of a survey of secondary school students enrolled in Chinese language classes with…
ERIC Educational Resources Information Center
Grüninger, Rahel; Specht, Inga; Lewalter, Doris; Schnotz, Wolfgang
2014-01-01
Until recently, museums mainly communicated well-established knowledge. Current science, however, is characterized by a rapid knowledge increase, so that we often have to deal with fragile and inconsistent knowledge. In order to develop exhibitions that encourage visitors to process information in a differentiated way, museums need to know how…
ERIC Educational Resources Information Center
Pypcznski, Penny
The State of New Jersey's certification requirements mandate that school librarian professional preparation should include an internship program. Trenton State College offers such a program but lacks a formal policy manual outlining the necessary requirements and procedures. This study surveyed the current policies in the Department of Media…
Walking the Talk: Empowering Science Communication at the University of Washington
NASA Astrophysics Data System (ADS)
Meyer, J. J.; Davison, J.; Graumlich, L. J.; McCarthy, M. M.
2016-12-01
Interest is growing within the academy to strengthen scientists' abilities to be better communicators about their research and how connects to society. Yet communicating the complexities of science to external audiences — media, policy-makers, funders, and others — in a way that resonates falls outside the realm of traditional academic training. Many institutions do not provide adequate resources for their faculty, students and staff to build skills to their share their work more broadly. The University of Washington College of the Environment has built a program that breaks down some of these barriers, building capacity for faculty, students and staff to become powerful spokespeople for their work. Leadership within the College values strong science communication skills and is reflected in the College's strategic plan. As a result, the College has built a science communication program that offers numerous services to meet researchers where they are to help amplify the impact of their work. Stemming from the recommendations of a Science Communication Task Force, the College of the Environment focuses on advancing three critical areas: building and connecting networks of science communicators, offering tools and trainings to develop communication skills, and providing opportunity for researchers to share their work outside of academia. These areas are related by 1) connecting researchers to a robust and growing community of their peers interested in science communication, 2) matching interest with the skills needed to engage productively, and 3) helping provide outlets for engagement that align with the goals of the researcher. As a result, more and more scientists in the College are seeking assistance to build this skillset for engagement. Many institutions express support for increasing science communication skills, yet it can be difficult to deliver a suite of cohesive resources. Through a modest investment, we have built a replicable program that not only empowers and supports faculty, students and staff, but also helps elevate the reputation, reach and impact of our research institution.
Bringing values and deliberation to science communication.
Dietz, Thomas
2013-08-20
Decisions always involve both facts and values, whereas most science communication focuses only on facts. If science communication is intended to inform decisions, it must be competent with regard to both facts and values. Public participation inevitably involves both facts and values. Research on public participation suggests that linking scientific analysis to public deliberation in an iterative process can help decision making deal effectively with both facts and values. Thus, linked analysis and deliberation can be an effective tool for science communication. However, challenges remain in conducting such process at the national and global scales, in enhancing trust, and in reconciling diverse values.
Communicating The Need For Earth Literacy Across The Curriculum
NASA Astrophysics Data System (ADS)
Herbstrith, K. G.
2015-12-01
California needs 11 trillion gallons of water to relieve the current drought, according to NASA, and there is 1.5 million tons of debris floating across the Pacific Ocean, a side effect of the 2011 earthquake and tsunami that struck Japan. These are merely two examples of the types of massive, global issues that students in high school and college will face in the coming years and decades. With an eye towards preparing students to learn the necessary skills to solve these problems head on, The InTeGrate (Interdisciplinary Teaching about Earth for a Sustainable Future) project is developing a new breed of teaching materials that can be utilized in general education courses, teacher preparation courses, core courses within geoscience majors, and courses designed for other majors including environmental studies, social science, engineering, and other sciences. To interest faculty, educators, and students, we must communicate the need for Earth literacy not just to the general public, but also to other educators across disciplinary fields. To this end, the InTeGrate project is utilizing both macro and micro level communication strategies with key stakeholders, partnering organizations, targeted professional development, a variety of social media platforms, and educators across fields and institutional types. This combination allows us to capitalize on personal interactions while linking them into a communication network that can scale.
The National Climate Assessment: A Treasure Trove for Education, Communications and Outreach
NASA Astrophysics Data System (ADS)
McCaffrey, M.; Berbeco, M.; Connolly, R.; Niepold, F., III; Poppleton, K. L. I.; Cloyd, E.; Ledley, T. S.
2014-12-01
Required by Congress under the Global Change Act of 1990 to inform the nation on the findings of current climate research, the Third U.S. National Climate Assessment (NCA), released in May 2014, is a rich resource for climate change education, communications and outreach (ECO). Using a website design with mobile applications in mind, NCA takes advantage of mobile learning technology which is revolutionizing how, when and where learning occurs. In an effort to maximize the "teachable moments" inherent in the assessment, a community of experts from the National Center for Science Education and the CLEAN Network, working under the auspices of the National Climate Assessment Network (NCAnet) Education Affinity Group, have developed a series of NCA Learning Pathways that match key NCA messages and resources with reviewed educational materials and trusted online information sources, thereby adding pedagogical depth to the assessment. The NCA Learning Pathways, which focus on the regional chapters of the report, are designed make climate change science more local, human, relevant and, if properly framed by educators and communicators, hopeful for learners. This paper touches on the challenges and opportunities of infusing climate education, communications and outreach into curriculum and society, and details the development and content of NCA Learning Pathways, which are available online through NOAA's Climate.gov website: http://www.climate.gov/teaching
The 'credibility paradox' in China's science communication: Views from scientific practitioners.
Zhang, Joy Yueyue
2015-11-01
In contrast to increasing debates on China's rising status as a global scientific power, issues of China's science communication remain under-explored. Based on 21 in-depth interviews in three cities, this article examines Chinese scientists' accounts of the entangled web of influence which conditions the process of how scientific knowledge achieves (or fails to achieve) its civic authority. A main finding of this study is a 'credibility paradox' as a result of the over-politicisation of science and science communication in China. Respondents report that an absence of visible institutional endorsements renders them more public credibility and better communication outcomes. Thus, instead of exploiting formal channels of science communication, scientists interviewed were more keen to act as 'informal risk communicators' in grassroots and private events. Chinese scientists' perspectives on how to earn public support of their research sheds light on the nature and impact of a 'civic epistemology' in an authoritarian state. © The Author(s) 2015.
Karikari, Thomas K; Yawson, Nat Ato; Quansah, Emmanuel
2016-01-01
Despite recent improvements in scientific research output from Africa, public understanding of science in many parts of the continent remains low. Science communication there is faced with challenges such as (i) lack of interest among some scientists, (ii) low availability of training programs for scientists, (iii) low literacy rates among the public, and (iv) multiplicity of languages. To address these challenges, new ways of training and motivating scientists to dialogue with non-scientists are essential. Developing communication skills early in researchers' scientific career would be a good way to enhance their public engagement abilities. Therefore, a potentially effective means to develop science communication in Africa would be to actively involve trainee scientists (i.e., undergraduate and graduate students) in outreach activity development and delivery. These students are often enthusiastic about science, eager to develop their teaching and communication skills, and can be good mentors to younger students. Involving them in all aspects of outreach activity is, therefore, likely to be a productive implementation strategy. However, science communication training specifically for students and the involvement of these students in outreach activity design and delivery are lacking in Africa. Here, we argue that improving the training and involvement of budding scientists in science communication activities would be a good way to bridge the wide gap between scientists and the African public.
NASA Astrophysics Data System (ADS)
Huffman, L. T.
2017-12-01
Changing ice has urgent implications for people around the world. The Ice Drilling Program Office (IDPO) provides scientific leadership and oversight of ice coring and drilling activities funded by the US National Science Foundation and also has goals to enhance education and communication of current research information. In a time when misinformation is rampant and climate change science is suspect, it is essential that students receive accurate scientific information and engage in learning activities that model complex ideas through engaging and age appropriate ways, while also learning to validate and recognize reliable sources. The IDPO Education and Outreach (EO) office works to create resources, activities and professional development that bridge the gap between ice core science research and educators and their students. Ice core science is on the cutting edge of new discoveries about climate change and understanding better the past to predict the future. Hands-on inquiry activities based on ice core data allow teachers to lead their students to new discoveries about climate secrets hidden deep in the ice. Capitalizing on the inherent interest in the extremes of the Polar Regions, IDPO materials engage students in activities aligned with NGSS standards. Ice drilling technologies make an ideal platform for intertwining engineering concepts and practices with science research to meet the SEP (Science and Engineering Practices) in the NGSS. This session will highlight how the IDPO EO office has built a community of ice core scientists willing to take part in education and outreach projects and events and share some of the resources available to K-12 educators. We will highlight some of the successes and lessons learned as we continually evolve our work toward more effective science education and communication highlighting ice core and climate change science.
Identifying the Essential Elements of Effective Science Communication: What Do the Experts Say?
ERIC Educational Resources Information Center
Bray, Belinda; France, Bev; Gilbert, John K.
2012-01-01
Experts in science communication were asked to identify the essential elements of a science communication course for post-graduate students. A Delphi methodology provided a framework for a research design that accessed their opinions and allowed them to contribute to, reflect on and identify 10 essential elements. There was a high level of…
ERIC Educational Resources Information Center
Juuti, Kalle; Lavonen, Jari; Aksela, Maija; Meisalo, Veijo
2009-01-01
This paper analyses the use of various communication channels in science teachers' professional development project aiming to develop versatile uses for ICT (Information and Communication Technologies) in science teaching. A teacher network was created specifically for this project, and the researchers facilitated three forms of communication…
Good Intentions, Stubborn Practice: A Critical Appraisal of a Public Event on Cancer Genomics
ERIC Educational Resources Information Center
Verhoeff, Roald P.; Waarlo, Arend Jan
2013-01-01
Science communication has shifted considerably in Europe over the last decades. In the theoretical realm, one-way information has been replaced by models of science communication that stress public engagement and public participation in science and technology. Dialogue seems to have become a communication target on its own, beside such things as…
Students' Views and Attitudes Towards the Communication Code Used in Press Articles about Science
ERIC Educational Resources Information Center
Halkia, Krystallia; Mantzouridis, Dimitris
2005-01-01
The present research was designed to investigate the reaction of secondary school students to the communication code that the press uses in science articles: it attempts to trace which communication techniques can be of potential use in science education. The sample of the research consists of 351 secondary school students. The research instrument…
... schizophrenia. National Institute of Mental Health Office of Science Policy, Planning, and Communications Science Writing, Press, and Dissemination ... Mail: National Institute of Mental Health Office of Science Policy, Planning, and Communications 6001 Executive Boulevard, Room 6200, ...
Successful Climate Science Communication Strategies
NASA Astrophysics Data System (ADS)
Sinclair, P.
2016-12-01
In the past decade, efforts to communicate the facts of global change have not successfully moved political leaders and the general public to action. In response, a number of collaborative efforts between scientists and professional communicators, writers, journalists, bloggers, filmmakers, artists and others have arisen seeking to bridge that gap. As a result, a new cadre of science-literate communicators, and media-savvy scientists have made themselves visible across diverse mainstream, traditional, and social media outlets. Because of these collaborations, in recent years, misinformation, and disinformation have been successfully met with accurate and credible rebuttals within a single news cycle.Examples of these efforts is the Dark Snow Project, a science/communication collaboration focusing initially on accelerated arctic melt and sea level rise, and the Climate Science Rapid Response team, which matches professional journalists with appropriate science experts in order to respond within a single news cycle to misinformation or misunderstandings about climate science.The session will discuss successful examples and suggest creative approaches for the future.
Revolutionizing Climate Science: Using Teachers as Communicators
NASA Astrophysics Data System (ADS)
Warburton, J.; Crowley, S.; Wood, J.
2012-12-01
PolarTREC (Teachers and Researchers Exploring and Collaborating) is a National Science Foundation (NSF) funded program in which K-12 teachers participate in hands-on field research experiences in the Polar Regions. Teachers are the dynamic conduits for communicating climate science. In the PolarTREC final report, researchers found that teachers were vital in refining the language of their science and have shaped the goals of the scientific project. Program data demonstrates that science in classrooms is better understood when teachers have a full-spectrum grasp of project intricacies from defining the project, to field data collection, encountering situations for creativity and critical thinking, as well as participating in data and project analysis. Teachers' translating the authentic scientific process is integral in communicating climate science to the broader public. Teachers playing a major role in polar science revolutionize the old paradigm of "in-school learning". Through daily online journaling and forums, social media communication, live webinars with public, and professional development events, these teachers are moving beyond classrooms to communicate with society. Through teachers, climate policy can be shaped for the future by having scientifically literate students as well as assessable science. New paradigms come as teachers attain proficient levels of scientific understanding paired with the expert abilities for communication with years of experience. PolarTREC teachers are a model for new interactions peer-to-peer learning and mentorship for young scientists. Our programmatic goal is to expand the opportunities for PolarTREC teachers to share their involvement in science with additional formal and informal educators. 'Teaching the teachers' will reach exponential audiences in media, policy, and classrooms. Modeling this program, we designed and conducted a teacher training on climate science in Denali National Park. Utilizing expert university faculty in climate science and a PolarTREC alumni teacher the program was touted as 'the best professional opportunity to date". This program gave new teachers the tools to adequately communicate climate science with a new generation of scientifically literate students. Additionally, teachers possess the skills to inform young professional scientists on effective outreach and communication beyond peer-reviewed papers and scientific circles.
Utilization of Internet Protocol-Based Voice Systems in Remote Payload Operations
NASA Technical Reports Server (NTRS)
Chamberlain, jim; Bradford, Bob; Best, Susan; Nichols, Kelvin
2002-01-01
Due to limited crew availability to support science and the large number of experiments to be operated simultaneously, telescience is key to a successful International Space Station (ISS) science program. Crew, operations personnel at NASA centers, and researchers at universities and companies around the world must work closely together to per orm scientific experiments on-board ISS. The deployment of reliable high-speed Internet Protocol (IP)-based networks promises to greatly enhance telescience capabilities. These networks are now being used to cost-effectively extend the reach of remote mission support systems. They reduce the need for dedicated leased lines and travel while improving distributed workgroup collaboration capabilities. NASA has initiated use of Voice over Internet Protocol (VoIP) to supplement the existing mission voice communications system used by researchers at their remote sites. The Internet Voice Distribution System (IVoDS) connects remote researchers to mission support "loopsll or conferences via NASA networks and Internet 2. Researchers use NODS software on personal computers to talk with operations personnel at NASA centers. IVoDS also has the ;capability, if authorized, to allow researchers to communicate with the ISS crew during experiment operations. NODS was developed by Marshall Space Flight Center with contractors & Technology, First Virtual Communications, Lockheed-Martin, and VoIP Group. NODS is currently undergoing field-testing with full deployment for up to 50 simultaneous users expected in 2002. Research is being performed in parallel with IVoDS deployment for a next-generation system to qualitatively enhance communications among ISS operations personnel. In addition to the current voice capability, video and data/application-sharing capabilities are being investigated. IVoDS technology is also being considered for mission support systems for programs such as Space Launch Initiative and Homeland Defense.
Headlines: Planet Earth: Improving Climate Literacy with Short Format News Videos
NASA Astrophysics Data System (ADS)
Tenenbaum, L. F.; Kulikov, A.; Jackson, R.
2012-12-01
One of the challenges of communicating climate science is the sense that climate change is remote and unconnected to daily life--something that's happening to someone else or in the future. To help face this challenge, NASA's Global Climate Change website http://climate.nasa.gov has launched a new video series, "Headlines: Planet Earth," which focuses on current climate news events. This rapid-response video series uses 3D video visualization technology combined with real-time satellite data and images, to throw a spotlight on real-world events.. The "Headlines: Planet Earth" news video products will be deployed frequently, ensuring timeliness. NASA's Global Climate Change Website makes extensive use of interactive media, immersive visualizations, ground-based and remote images, narrated and time-lapse videos, time-series animations, and real-time scientific data, plus maps and user-friendly graphics that make the scientific content both accessible and engaging to the public. The site has also won two consecutive Webby Awards for Best Science Website. Connecting climate science to current real-world events will contribute to improving climate literacy by making climate science relevant to everyday life.
Commercialization and Standardization Progress Towards an Optical Communications Earth Relay
NASA Technical Reports Server (NTRS)
Edwards, Bernard L.; Israel, David J.
2015-01-01
NASA is planning to launch the next generation of a space based Earth relay in 2025 to join the current Space Network, consisting of Tracking and Data Relay Satellites in space and the corresponding infrastructure on Earth. While the requirements and architecture for that relay satellite are unknown at this time, NASA is investing in communications technologies that could be deployed to provide new communications services. One of those new technologies is optical communications. The Laser Communications Relay Demonstration (LCRD) project, scheduled for launch in 2018 as a hosted payload on a commercial communications satellite, is a critical pathfinder towards NASA providing optical communications services on the next generation space based relay. This paper will describe NASA efforts in the on-going commercialization of optical communications and the development of inter-operability standards. Both are seen as critical to making optical communications a reality on future NASA science and exploration missions. Commercialization is important because NASA would like to eventually be able to simply purchase an entire optical communications terminal from a commercial provider. Inter-operability standards are needed to ensure that optical communications terminals developed by one vendor are compatible with the terminals of another. International standards in optical communications would also allow the space missions of one nation to use the infrastructure of another.
The quickening of science communication.
Lucky, R
2000-07-14
In this month's essay, Robert Lucky examines the central sociological impacts that communications technologies have had on the way science is done as well as the critical influences science has had in the evolution of communications technology. He traces the evolution of today's infrastructure for research and collaboration in science via the Internet and the World Wide Web back to the invention of the telegraph, which first freed the flow of information from its reliance on the physical means of transportation and allowed communication to occur in real time. According to Lucky, the remaining technical hurdles in providing unlimited bandwidth are relatively simple to overcome compared with the sociotechnical engineering required to improve the three dimensions of communications--human to information, human to human, and human to computer.
Teens Discovering Science in the News: An Opportunity for Scientists to Communicate
NASA Astrophysics Data System (ADS)
Hall, Michelle; Mayhew, Michael
2010-05-01
Teens Discussing Science in the News: An Opportunity for Scientists to Communicate We have developed a program directed by teens and for teens to discuss current science and technology topics in the news. Modeled after the international Café Scientifique program for adults, we combine a social atmosphere with discussion of controversial topics to challenge teens to think about how science affects their lives. Our approach is for short story telling presentations during which the speaker identifies a single important idea and scientific principle to communicate. A good speaker will leave the audience with a dilemma or controversy to discuss, and with further opportunities to learn. A good speaker does not take him/herself too seriously and will work to fully engage the audience on the things that they can relate to. We integrate trivia quizzes at the beginning or the presenter questions the audience about assumptions they have about the topic. These techniques allow the presenter to gauge the knowledge level of the audience, while keeping them engaged and processing new information. We incorporate hands on learning from building model fuel cell cars, to analyzing the science in popular movies, to using Google Earth and remote sensing imagery to spy. Controversial topics such as geoengineering the climate, the role of nuclear energy and nuclear weapons, the future of hydrogen fuel cells/cars, carbon sequestration, and the nexus of water, climate and energy are often presented within a scientific, economic and social or political framework because science is only part of the solution. What we have learned is that teens begin to see science everywhere in their lives. We commonly hear the youth say - I did not know that is what geoscientists did! They learn to appreciate and can put the science they learn in school within a more relevant context. They like the challenge of finding solutions, but turn off to presentations on topics that seem to have no good solutions and speakers who talk down to them. And they begin to better understand what science is and that scientists are interesting people.
Practical science communication strategies for graduate students.
Kuehne, Lauren M; Twardochleb, Laura A; Fritschie, Keith J; Mims, Meryl C; Lawrence, David J; Gibson, Polly P; Stewart-Koster, Ben; Olden, Julian D
2014-10-01
Development of skills in science communication is a well-acknowledged gap in graduate training, but the constraints that accompany research (limited time, resources, and knowledge of opportunities) make it challenging to acquire these proficiencies. Furthermore, advisors and institutions may find it difficult to support graduate students adequately in these efforts. The result is fewer career and societal benefits because students have not learned to communicate research effectively beyond their scientific peers. To help overcome these hurdles, we developed a practical approach to incorporating broad science communication into any graduate-school time line. The approach consists of a portfolio approach that organizes outreach activities along a time line of planned graduate studies. To help design the portfolio, we mapped available science communication tools according to 5 core skills essential to most scientific careers: writing, public speaking, leadership, project management, and teaching. This helps graduate students consider the diversity of communication tools based on their desired skills, time constraints, barriers to entry, target audiences, and personal and societal communication goals. By designing a portfolio with an advisor's input, guidance, and approval, graduate students can gauge how much outreach is appropriate given their other commitments to teaching, research, and classes. The student benefits from the advisors' experience and mentorship, promotes the group's research, and establishes a track record of engagement. When graduate student participation in science communication is discussed, it is often recommended that institutions offer or require more training in communication, project management, and leadership. We suggest that graduate students can also adopt a do-it-yourself approach that includes determining students' own outreach objectives and time constraints and communicating these with their advisor. By doing so we hope students will help create a new culture of science communication in graduate student education. © 2014 Society for Conservation Biology.
Science and Me: A Student-Driven Science Outreach Program for Lay Adult Audiences
ERIC Educational Resources Information Center
Alexander, Hannah; Waldron, Anna M.; Abell, Sandra K.
2011-01-01
The increasing need for communicating science to the public suggests that future scientists and science educators should be educated in science outreach and trained to communicate with lay audiences. We present a recently developed novel graduate course, which trains students in outreach efforts aimed to increase the public's understanding of…
Kurath, Monika; Gisler, Priska
2009-09-01
Science communication has shifted considerably in Europe over the last decades. Three technology controversies on atoms, genes, and nanoscale sciences and nanotechnologies (NST) turned the style of communication from one-way information, participation and dialogues to the idea of an early and more democratic engagement of the public. Analyzing science communication developing over the three controversies, this article shows that what happened in one technology field fed forward to and contributed to shaping the subsequent field and that communication was initiated at a progressively earlier stage of technology development. The article concludes with an empirical analysis of six public engagement projects in NST, saying that the shift towards more democratic engagement of the public hasn't been as profound and complete as has been thought. This is particularly due to the continuing adoption of a simplistic contrast structure that opposes science and the public as two self-contained, antagonistic social entities.
Sharpen your science communication skills at a Fall Meeting workshop
NASA Astrophysics Data System (ADS)
Adams, Mary Catherine
2012-10-01
Are you eager to share your research and want to help reporters get it right? Do you yearn to enter the climate science debate but are wary of saying the wrong thing? AGU is offering two separate communications skill-building events on Sunday, 2 December 2012, for Fall Meeting attendees wishing to sharpen their communications skills. For scientists interested in talking about climate science, AGU and the Union of Concerned Scientists, an organization that combines scientific research with citizen action to create practical solutions for a healthy environment and a safer world, will offer the Communicating Climate Science Workshop on Sunday morning. A panel of experienced communicators will share their success stories and offer advice on how to avoid common missteps. Then, in an interactive workshop setting, attendees will practice identifying and effectively responding to misinformation about climate science in front of a variety of audiences.
Using the Psychology of Language to Effectively Communicate Actionable Science
NASA Astrophysics Data System (ADS)
Hall, J. M.
2014-12-01
The words used to articulate science can have as significant a psychological impact on public perception as the data itself. It is therefore essential to utilize language that not only accurately relates the scientific information, but also effectively conveys a message that is congruent with the presenter's motivation for expressing the data. This is especially relevant for environmental subjects that are surrounded by emotionally charged, political discourses. For example are terms like catastrophe and disaster; while these words may accurately illustrate impartial scientific data, they will likely trigger psychological responses in audiences such as fear or denial that have a detrimental impact on the human decision making process. I propose a set of 5 key principles to assist in communicating data to the general public that both support the transfer of ideas and the presenter's intended psychological impact. 1) Articulate the underlying intentions that motivate the communication of data in a transparent manner 2) Use language congruent with the presenter's stated intentions 3) Maintain a neutral, non-judgmental attitude towards the complex human psychological and emotional dynamics present in a target audience 4) Demonstrate acceptance and compassion when analyzing past and present human actions that adversely affect the environment 5) Develop a perspective of non-attachment when proposing future actions and/or consequences of current human behaviors. The application of these 5 principles provides a framework to move from our current understanding of problems and solutions to effective physical action that allows us to gracefully adapt with our ever changing planet.
Taking the initiative: A leadership conference for women in science and engineering
NASA Technical Reports Server (NTRS)
1994-01-01
The conference sprang from discussions on the current climate that women face in science, mathematics, engineering, and technology. The conference (and this document) is a beginning, not a culmination, of women's learning leadership skills. Conferees were active, articulate, energetic, and ready to learn leadership qualities, some of which seem universal, others that appear to require skills in specific fields. After the introduction, the workshops and presentations are arranged under vision and direction, barriers, alignment and communication, and motivation and inspiration. Some statistics are presented on women degrees and employment in various fields.
Taking the initiative. A leadership conference for women in science and engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1994-01-01
The conference sprang from discussions on the current climate that women face in science, mathematics, engineering, and technology. The conference (and this document) is a beginning, not a culmination, of women`s learning leadership skills. Conferees were active, articulate, energetic, and ready to learn leadership qualities, some of which seem universal, others that appear to require skills in specific fields. After the introduction, the workshops and presentations are arranged under vision and direction, barriers, alignment and communication, and motivation and inspiration. Some statistics are presented on women degrees and employment in various fields.
Roesler, Christian
2008-06-01
Jung's concept of the Self is compared with current theories of identity formation in post-modern society concerning the question: is the self constituted through experience and cultural influences--as it is argued by current theories in the social sciences--or is it already preformed inside the person, as Jung argues? The impact of communication media on the formation of identity in today's societies is discussed with a focus on internet communication and virtual realities. The resulting types of identities are conceptualized as polycentric which has surprising parallels to Jung's idea of the Self. The epistemology of constructivism and parallels in Jung's thought are demonstrated. Jung's work in this respect often appears contradictory in itself but this can be dealt with by a postmodern approach which accepts a plurality of truths.
NIH MedlinePlus Advisory Group
... Health Raymond MacDougall Lead Communications Specialist Office of Science Policy and Communications National Institute of Biomedical Imaging and ... Powell, Ph.D. Senior Content Strategist Office of Science Policy, Engagement, Education and Communications National Heart, Lung, and ...
The Whiteboard Revolution: Illuminating Science Communication in the Digital Age.
Mar, Florie Anne; Ordovas-Montanes, Jose; Oksenberg, Nir; Olson, Alexander M
2016-04-01
Journal-based science communication is not accessible or comprehensible to a general public curious about science and eager for the next wave of scientific innovation. We propose an alternative medium for scientists to communicate their work to the general public in an engaging and digestible way through the use of whiteboard videos. We describe the process of producing science whiteboard videos and the benefits and challenges therein. Copyright © 2016 Elsevier Ltd. All rights reserved.
... Information National Institute of Mental Health Office of Science Policy, Planning, and Communications Science Writing, Press, and Dissemination ... Mail: National Institute of Mental Health Office of Science Policy, Planning, and Communications 6001 Executive Boulevard, Room 6200, ...
Communicating Science: Translation and Tangibility
NASA Astrophysics Data System (ADS)
Johnson, Brian
2009-02-01
Until last summer, I thought communicating science was just a matter of translation. When my friends' eyes glazed over as I explained, for example, how a productivity crisis and planktrophism could have caused the Cretaceous-Tertiary mass extinction, I thought they simply needed these terms translated. While cutting through potentially difficult terminology is a key part of communicating science to the public, I now know that it is only the first of two parts. The second part is making one's subject matter tangible. Finding that out was my most important lesson last summer as an AGU-sponsored fellow in the Mass Media Fellowship program run by the American Association for the Advancement of Science. Understanding this journalistic two-step has helped me become a better science communicator and comprehend more fully why the Earth sciences fascinate me in the first place.
Zehr, E Paul
2016-01-01
Many think that communicating science is a necessary and rewarding activity. Yet finding compelling, relevant, and timely points of linkage between challenging scientific concepts and the experiences and interests of the general public can be difficult. Since science continues to influence more and more aspects of daily life and knowledge, there is a parallel need for communication about science in our society. Here I discuss the "middle-ground hypothesis" using popular culture for science communication and applying the "FUNnel model," where popular culture is used as a lead-in and wrap-up when discussing science. The scientific knowledge we find in our hands does not belong to us-we just had it first. We can honor that knowledge best by sharing it as widely as possible using the most creative means at our disposal.
NASA Astrophysics Data System (ADS)
Dodick, Jeff; Argamon, Shlomo; Chase, Paul
2009-08-01
A key focus of current science education reforms involves developing inquiry-based learning materials. However, without an understanding of how working scientists actually do science, such learning materials cannot be properly developed. Until now, research on scientific reasoning has focused on cognitive studies of individual scientific fields. However, the question remains as to whether scientists in different fields fundamentally rely on different methodologies. Although many philosophers and historians of science do indeed assert that there is no single monolithic scientific method, this has never been tested empirically. We therefore approach this problem by analyzing patterns of language used by scientists in their published work. Our results demonstrate systematic variation in language use between types of science that are thought to differ in their characteristic methodologies. The features of language use that were found correspond closely to a proposed distinction between Experimental Sciences (e.g., chemistry) and Historical Sciences (e.g., paleontology); thus, different underlying rhetorical and conceptual mechanisms likely operate for scientific reasoning and communication in different contexts.
Education and Science Connect at Sea
NASA Astrophysics Data System (ADS)
Leckie, R. Mark; St. John, Kristen; Peart, Leslie; Klaus, Ann; Slough, Scott; Niemitz, Matt
2006-06-01
In the past several decades, the scientific community's collective understanding of Earth's history and the processes that shape this dynamic planet has grown exponentially. Yet communicating the current understanding of Earth systems to the community outside of science (educators and students, policy makers, and the general public) has lagged. In 1995, the U.S. National Academy of Sciences (NAS) led the effort to establish National Science Education Standards (http://www.nap.edu/readingroom/books/nses/), with the goal of helping all students achieve scientific literacy. Earth and space sciences are one of the eight categories of content standards. Clearly the establishment of science education standards alone will not foster a scientifically literate society, as indicated in the NAS report ``Rising Above the Gathering Storm'' (http://www.nap.edu/catalog/11463.html). This report, released last fall, warns that without strong steps to improve federal support for science and technology education, the quality of life in the United States is threatened as the country loses its competitive edge.
NASA Astrophysics Data System (ADS)
Ros, Rosa M.
2010-10-01
Currently our society needs more and more scientists and technicians in order to continue its development. Moreover some areas of our society seem to be less and less interested in scientific issues. It is not possible to value something when we have no knowledge of it. This paper presents an example of a programme carried out in several Science Museums in Spain which puts the average citizen in contact with science. The main objectives of this project are: • to find innovative ideas in order to present science in a more attractive way • to emphasize the international nature of science • to stimulate European contacts • to produce materials for different levels of education • to involve researchers in science communication • to increase the scientific knowledge of citizens • to promote science within the society of participating countries • to reward the professional work of teachers and professors in their teaching activities • to recognize the efforts of journalists specializing in science
Science Education and Public Outreach in Asia - experiences in ACCENT
NASA Astrophysics Data System (ADS)
Schuepbach, E.
2006-12-01
ACCENT is the European Network of Excellence in Atmospheric Composition Change (www.accent- network.org). Its Task Training and Education aims at disseminating ACCENT results to a variety of target groups, including emerging countries. Until now, fellowships have been offered for early-career scientists to participate in European science training events. A teacher training workshop has concentrated on cross- cultural aspects of PhD supervision. The involvement of new Associated Partners from Asia has triggered reflections on science education and outreach to politicians and the public in this part of the world. Joint educational and outreach programmes and products are currently developed with China and Mongolia for training activities scheduled in autumn 2006 and autumn 2007. First experiences in joint science education programmes for early-career scientists will be presented, and the challenges associated with communicating science to non-scientists in Asia will be discussed.
Advice and Frequently Asked Questions (FAQs) for Citizen-Science Environmental Health Assessments.
Barzyk, Timothy M; Huang, Hongtai; Williams, Ronald; Kaufman, Amanda; Essoka, Jonathan
2018-05-11
Citizen science provides quantitative results to support environmental health assessments (EHAs), but standardized approaches do not currently exist to translate findings into actionable solutions. The emergence of low-cost portable sensor technologies and proliferation of publicly available datasets provides unparalleled access to supporting evidence; yet data collection, analysis, interpretation, visualization, and communication are subjective approaches that must be tailored to a decision-making audience capable of improving environmental health. A decade of collaborative efforts and two citizen science projects contributed to three lessons learned and a set of frequently asked questions (FAQs) that address the complexities of environmental health and interpersonal relations often encountered in citizen science EHAs. Each project followed a structured step-by-step process in order to compare and contrast methods and approaches. These lessons and FAQs provide advice to translate citizen science research into actionable solutions in the context of a diverse range of environmental health issues and local stakeholders.
Improving together: collaborative learning in science communication
NASA Astrophysics Data System (ADS)
Stiller-Reeve, Mathew
2015-04-01
Most scientists today recognise that science communication is an important part of the scientific process. Despite this recognition, science writing and communication are generally taught outside the normal academic schedule. If universities offer such courses, they are generally short-term and intensive. On the positive side, such courses rarely fail to motivate. At no fault of their own, the problem with such courses lies in their ephemeral nature. The participants rarely complete a science communication course with an immediate and pressing need to apply these skills. And so the skills fade. We believe that this stalls real progress in the improvement of science communication across the board. Continuity is one of the keys to success! Whilst we wait for the academic system to truly integrate science communication, we can test and develop other approaches. We suggest a new approach that aims to motivate scientists to continue nurturing their communication skills. This approach adopts a collaborative learning framework where scientists form writing groups that meet regularly at different institutes around the world. The members of the groups learn, discuss and improve together. The participants produce short posts, which are published online. In this way, the participants learn and cement basic writing skills. These skills are transferrable, and can be applied to scientific articles as well as other science communication media. In this presentation we reflect on an ongoing project, which applies a collaborative learning framework to help young and early career scientists improve their writing skills. We see that this type of project could be extended to other media such as podcasts, or video shorts.
Scientists: Engage the Public!
Shugart, Erika C.
2015-01-01
ABSTRACT Scientists must communicate about science with public audiences to promote an understanding of complex issues that we face in our technologically advanced society. Some scientists may be concerned about a social stigma or “Sagan effect” associated with participating in public communication. Recent research in the social sciences indicates that public communication by scientists is not a niche activity but is widely done and can be beneficial to a scientist’s career. There are a variety of approaches that scientists can take to become active in science communication. PMID:26695633
NASA Astrophysics Data System (ADS)
Eppler, Dean; Adams, Byron; Archer, Doug; Baiden, Greg; Brown, Adrian; Carey, William; Cohen, Barbara; Condit, Chris; Evans, Cindy; Fortezzo, Corey; Garry, Brent; Graff, Trevor; Gruener, John; Heldmann, Jennifer; Hodges, Kip; Hörz, Friedrich; Hurtado, Jose; Hynek, Brian; Isaacson, Peter; Juranek, Catherine; Klaus, Kurt; Kring, David; Lanza, Nina; Lederer, Susan; Lofgren, Gary; Marinova, Margarita; May, Lisa; Meyer, Jonathan; Ming, Doug; Monteleone, Brian; Morisset, Caroline; Noble, Sarah; Rampe, Elizabeth; Rice, James; Schutt, John; Skinner, James; Tewksbury-Christle, Carolyn M.; Tewksbury, Barbara J.; Vaughan, Alicia; Yingst, Aileen; Young, Kelsey
2013-10-01
Desert Research and Technology Studies (Desert RATS) is a multi-year series of hardware and operations tests carried out annually in the high desert of Arizona on the San Francisco Volcanic Field. These activities are designed to exercise planetary surface hardware and operations in conditions where long-distance, multi-day roving is achievable, and they allow NASA to evaluate different mission concepts and approaches in an environment less costly and more forgiving than space. The results from the RATS tests allow selection of potential operational approaches to planetary surface exploration prior to making commitments to specific flight and mission hardware development. In previous RATS operations, the Science Support Room has operated largely in an advisory role, an approach that was driven by the need to provide a loose science mission framework that would underpin the engineering tests. However, the extensive nature of the traverse operations for 2010 expanded the role of the science operations and tested specific operational approaches. Science mission operations approaches from the Apollo and Mars-Phoenix missions were merged to become the baseline for this test. Six days of traverse operations were conducted during each week of the 2-week test, with three traverse days each week conducted with voice and data communications continuously available, and three traverse days conducted with only two 1-hour communications periods per day. Within this framework, the team evaluated integrated science operations management using real-time, tactical science operations to oversee daily crew activities, and strategic level evaluations of science data and daily traverse results during a post-traverse planning shift. During continuous communications, both tactical and strategic teams were employed. On days when communications were reduced to only two communications periods per day, only a strategic team was employed. The Science Operations Team found that, if communications are good and down-linking of science data is ensured, high quality science returns is possible regardless of communications. What is absent from reduced communications is the scientific interaction between the crew on the planet and the scientists on the ground. These scientific interactions were a critical part of the science process and significantly improved mission science return over reduced communications conditions. The test also showed that the quality of science return is not measurable by simple numerical quantities but is, in fact, based on strongly non-quantifiable factors, such as the interactions between the crew and the Science Operations Teams. Although the metric evaluation data suggested some trends, there was not sufficient granularity in the data or specificity in the metrics to allow those trends to be understood on numerical data alone.
NASA Technical Reports Server (NTRS)
Eppler, Dean; Adams, Byron; Archer, Doug; Baiden, Greg; Brown, Adrian; Carey, William; Cohen, Barbara; Condit, Chris; Evans, Cindy; Fortezzo, Corey;
2012-01-01
Desert Research and Technology Studies (Desert RATS) is a multi-year series of hardware and operations tests carried out annually in the high desert of Arizona on the San Francisco Volcanic Field. These activities are designed to exercise planetary surface hardware and operations in conditions where long-distance, multi-day roving is achievable, and they allow NASA to evaluate different mission concepts and approaches in an environment less costly and more forgiving than space.The results from the RATS tests allows election of potential operational approaches to planetary surface exploration prior to making commitments to specific flight and mission hardware development. In previous RATS operations, the Science Support Room has operated largely in an advisory role, an approach that was driven by the need to provide a loose science mission framework that would underpin the engineering tests. However, the extensive nature of the traverse operations for 2010 expanded the role of the science operations and tested specific operational approaches. Science mission operations approaches from the Apollo and Mars-Phoenix missions were merged to become the baseline for this test. Six days of traverse operations were conducted during each week of the 2-week test, with three traverse days each week conducted with voice and data communications continuously available, and three traverse days conducted with only two 1-hour communications periods per day. Within this framework, the team evaluated integrated science operations management using real-time, tactical science operations to oversee daily crew activities, and strategic level evaluations of science data and daily traverse results during a post-traverse planning shift. During continuous communications, both tactical and strategic teams were employed. On days when communications were reduced to only two communications periods per day, only a strategic team was employed. The Science Operations Team found that, if communications are good and down-linking of science data is ensured, high quality science returns is possible regardless of communications. What is absent from reduced communications is the scientific interaction between the crew on the planet and the scientists on the ground. These scientific interactions were a critical part of the science process and significantly improved mission science return over reduced communications conditions. The test also showed that the quality of science return is not measurable by simple numerical quantities but is, in fact, based on strongly non-quantifiable factors, such as the interactions between the crew and the Science Operations Teams. Although the metric evaluation data suggested some trends, there was not sufficient granularity in the data or specificity in the metrics to allow those trends to be understood on numerical data alone.
ERIC Educational Resources Information Center
Association for Education in Journalism and Mass Communication.
The Science Communication section of the Proceedings contains the following seven papers: "Getting an Advance Look: Controversies over Embargoes in Science Journalism" (Vincent Kiernan); "Perceptions of Newspaper Bias in a Local Environmental Controversy" (Katherine A. McComas; Clifford W. Scherer; Cynthia Heffelfinger);…
Bringing values and deliberation to science communication
Dietz, Thomas
2013-01-01
Decisions always involve both facts and values, whereas most science communication focuses only on facts. If science communication is intended to inform decisions, it must be competent with regard to both facts and values. Public participation inevitably involves both facts and values. Research on public participation suggests that linking scientific analysis to public deliberation in an iterative process can help decision making deal effectively with both facts and values. Thus, linked analysis and deliberation can be an effective tool for science communication. However, challenges remain in conducting such process at the national and global scales, in enhancing trust, and in reconciling diverse values. PMID:23940350
Arkheia: Data Management and Communication for Open Computational Neuroscience
Antolík, Ján; Davison, Andrew P.
2018-01-01
Two trends have been unfolding in computational neuroscience during the last decade. First, a shift of focus to increasingly complex and heterogeneous neural network models, with a concomitant increase in the level of collaboration within the field (whether direct or in the form of building on top of existing tools and results). Second, a general trend in science toward more open communication, both internally, with other potential scientific collaborators, and externally, with the wider public. This multi-faceted development toward more integrative approaches and more intense communication within and outside of the field poses major new challenges for modelers, as currently there is a severe lack of tools to help with automatic communication and sharing of all aspects of a simulation workflow to the rest of the community. To address this important gap in the current computational modeling software infrastructure, here we introduce Arkheia. Arkheia is a web-based open science platform for computational models in systems neuroscience. It provides an automatic, interactive, graphical presentation of simulation results, experimental protocols, and interactive exploration of parameter searches, in a web browser-based application. Arkheia is focused on automatic presentation of these resources with minimal manual input from users. Arkheia is written in a modular fashion with a focus on future development of the platform. The platform is designed in an open manner, with a clearly defined and separated API for database access, so that any project can write its own backend translating its data into the Arkheia database format. Arkheia is not a centralized platform, but allows any user (or group of users) to set up their own repository, either for public access by the general population, or locally for internal use. Overall, Arkheia provides users with an automatic means to communicate information about not only their models but also individual simulation results and the entire experimental context in an approachable graphical manner, thus facilitating the user's ability to collaborate in the field and outreach to a wider audience. PMID:29556187
Arkheia: Data Management and Communication for Open Computational Neuroscience.
Antolík, Ján; Davison, Andrew P
2018-01-01
Two trends have been unfolding in computational neuroscience during the last decade. First, a shift of focus to increasingly complex and heterogeneous neural network models, with a concomitant increase in the level of collaboration within the field (whether direct or in the form of building on top of existing tools and results). Second, a general trend in science toward more open communication, both internally, with other potential scientific collaborators, and externally, with the wider public. This multi-faceted development toward more integrative approaches and more intense communication within and outside of the field poses major new challenges for modelers, as currently there is a severe lack of tools to help with automatic communication and sharing of all aspects of a simulation workflow to the rest of the community. To address this important gap in the current computational modeling software infrastructure, here we introduce Arkheia. Arkheia is a web-based open science platform for computational models in systems neuroscience. It provides an automatic, interactive, graphical presentation of simulation results, experimental protocols, and interactive exploration of parameter searches, in a web browser-based application. Arkheia is focused on automatic presentation of these resources with minimal manual input from users. Arkheia is written in a modular fashion with a focus on future development of the platform. The platform is designed in an open manner, with a clearly defined and separated API for database access, so that any project can write its own backend translating its data into the Arkheia database format. Arkheia is not a centralized platform, but allows any user (or group of users) to set up their own repository, either for public access by the general population, or locally for internal use. Overall, Arkheia provides users with an automatic means to communicate information about not only their models but also individual simulation results and the entire experimental context in an approachable graphical manner, thus facilitating the user's ability to collaborate in the field and outreach to a wider audience.
Neurodharma Self-Help: Personalized Science Communication as Brain Management.
Eklöf, Jenny
2017-09-01
Over the past ten to fifteen years, medical interventions, therapeutic approaches and scientific studies involving mindfulness meditation have gained traction in areas such as clinical psychology, psychotherapy, and neuroscience. Simultaneously, mindfulness has had a very strong public appeal. This article examines some of the ways in which the medical and scientific meaning of mindfulness is communicated in public and to the public. In particular, it shows how experts in the field of mindfulness neuroscience seek to communicate to the public at large the imperative of brain fitness for the promotion of health, wellbeing and happiness. The study identifies claims being made in popular outlets that, by and large, bypass traditional mass media, such as self-help books, websites and online videos. By treating this material as a form of personalized science communication, this article contributes to the body of literature that understands science communication as a continuum and the boundary between science and popularized science as the outcome of human negotiations. The study finds that processes of personalization help to build bridges between scientific findings and their supposed application, that they infuse science with subjective meaning, and turn expert communication with the public into a moral vocation.
Hiding in plain sight: communication theory in implementation science.
Manojlovich, Milisa; Squires, Janet E; Davies, Barbara; Graham, Ian D
2015-04-23
Poor communication among healthcare professionals is a pressing problem, contributing to widespread barriers to patient safety. The word "communication" means to share or make common. In the literature, two communication paradigms dominate: (1) communication as a transactional process responsible for information exchange, and (2) communication as a transformational process responsible for causing change. Implementation science has focused on information exchange attributes while largely ignoring transformational attributes of communication. In this paper, we debate the merits of encompassing both paradigms. We conducted a two-staged literature review searching for the concept of communication in implementation science to understand how communication is conceptualized. Twenty-seven theories, models, or frameworks were identified; only Rogers' Diffusion of Innovations theory provides a definition of communication and includes both communication paradigms. Most models (notable exceptions include Diffusion of Innovations, The Ottawa Model of Research Use, and Normalization Process Theory) describe communication as a transactional process. But thinking of communication solely as information transfer or exchange misrepresents reality. We recommend that implementation science theories (1) propose and test the concept of shared understanding when describing communication, (2) acknowledge that communication is multi-layered, identify at least a few layers, and posit how identified layers might affect the development of shared understanding, (3) acknowledge that communication occurs in a social context, providing a frame of reference for both individuals and groups, (4) acknowledge the unpredictability of communication (and healthcare processes in general), and (5) engage with and draw on work done by communication theorists. Implementation science literature has conceptualized communication as a transactional process (when communication has been mentioned at all), thereby ignoring a key contributor to implementation intervention success. When conceptualized as a transformational process, the focus of communication moves to shared understanding and is grounded in human interactions and the way we go about constructing knowledge. Instead of hiding in plain sight, we suggest explicitly acknowledging the role that communication plays in our implementation efforts. By using both paradigms, we can investigate when communication facilitates implementation, when it does not, and how to improve it so that our implementation and clinical interventions are embraced by clinicians and patients alike.
Videos, tweet-ups, and training unite scientist communicators at Fall Meeting
NASA Astrophysics Data System (ADS)
Adams, Mary Catherine; Ramsayer, Kate
2012-02-01
AGU's public information office held several events at the 2011 Fall Meeting designed to train, recognize, and reward member scientists who communicate with, or want to communicate with, nonscience audiences. On Sunday, about 90 researchers gathered at the Marriott Marquis hotel for an all-day science communications training event covering topics including journalism from the insider's perspective, storytelling, and using humor to share science. On Wednesday a communications panel focusing specifically on climate science shared tips on communicating with audiences via TV and the Web, among other outlets. At a social media soiree Monday evening, geobloggers, Facebook fans, Twitter followers, and others met in person and talked about how to share news and research across the many platforms of the Internet. Later in the week, bloggers from AGU's blogosphere and other sites met for lunch to discuss the online Earth and space science community.
Team science for science communication.
Wong-Parodi, Gabrielle; Strauss, Benjamin H
2014-09-16
Natural scientists from Climate Central and social scientists from Carnegie Mellon University collaborated to develop science communications aimed at presenting personalized coastal flood risk information to the public. We encountered four main challenges: agreeing on goals; balancing complexity and simplicity; relying on data, not intuition; and negotiating external pressures. Each challenge demanded its own approach. We navigated agreement on goals through intensive internal communication early on in the project. We balanced complexity and simplicity through evaluation of communication materials for user understanding and scientific content. Early user test results that overturned some of our intuitions strengthened our commitment to testing communication elements whenever possible. Finally, we did our best to negotiate external pressures through regular internal communication and willingness to compromise.
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Bhasin, Kul B.; Fabian, Theodore P.; Griner, James H.; Kachmar, Brian A.; Richard, Alan M.
1999-01-01
The continuing technological advances in satellite communications and global networking have resulted in commercial systems that now can potentially provide capabilities for communications with space-based science platforms. This reduces the need for expensive government owned communications infrastructures to support space science missions while simultaneously making available better service to the end users. An interactive, high data rate Internet type connection through commercial space communications networks would enable authorized researchers anywhere to control space-based experiments in near real time and obtain experimental results immediately. A space based communications network architecture consisting of satellite constellations connecting orbiting space science platforms to ground users can be developed to provide this service. The unresolved technical issues presented by this scenario are the subject of research at NASA's Glenn Research Center in Cleveland, Ohio. Assessment of network architectures, identification of required new or improved technologies, and investigation of data communications protocols are being performed through testbed and satellite experiments and laboratory simulations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... development in astrophysics, life sciences, Earth sciences and applications, solar system exploration, space physics, communications, microgravity science and applications, and communications and information systems... computational and experimental fluid dynamics and aerodynamics; fluid and thermal physics; rotorcraft, powered...
Code of Federal Regulations, 2014 CFR
2014-01-01
... development in astrophysics, life sciences, Earth sciences and applications, solar system exploration, space physics, communications, microgravity science and applications, and communications and information systems... computational and experimental fluid dynamics and aerodynamics; fluid and thermal physics; rotorcraft, powered...
Code of Federal Regulations, 2012 CFR
2012-01-01
... development in astrophysics, life sciences, Earth sciences and applications, solar system exploration, space physics, communications, microgravity science and applications, and communications and information systems... computational and experimental fluid dynamics and aerodynamics; fluid and thermal physics; rotorcraft, powered...
Bipolar Disorder in Children and Teens
... health. National Institute of Mental Health Office of Science Policy, Planning, and Communications Science Writing, Press, and Dissemination ... Mail: National Institute of Mental Health Office of Science Policy, Planning, and Communications 6001 Executive Boulevard, Room 6200, ...
NASA Astrophysics Data System (ADS)
Moldwin, M. B.; Hogue, T. S.; Nonacs, P.; Shope, R. E.; Daniel, J.
2008-12-01
Many science and research skills are taught by osmosis in graduate programs with the expectation that students will develop good communication skills (speaking, writing, and networking) by observing others, attending meetings, and self reflection. A new National Science Foundation Graduate Teaching Fellows in K- 12 Education (GK-12; http://ehrweb.aaas.org/gk12new/) program at UCLA (SEE-LA; http://measure.igpp.ucla.edu/GK12-SEE-LA/overview.html ) attempts to make the development of good communication skills an explicit part of the graduate program of science and engineering students. SEE-LA places the graduate fellows in two pairs of middle and high schools within Los Angeles to act as scientists-in- residence. They are partnered with two master science teachers and spend two-days per week in the classroom. They are not student teachers, or teacher aides, but scientists who contribute their content expertise, excitement and experience with research, and new ideas for classroom activities and lessons that incorporate inquiry science. During the one-year fellowship, the graduate students also attend a year-long Preparing Future Faculty seminar that discusses many skills needed as they begin their academic or research careers. Students are also required to include a brief (two-page) summary of their research that their middle or high school students would be able to understand as part of their published thesis. Having students actively thinking about and communicating their science to a pre-college audience provides important science communication training and helps contribute to science education. University and local pre- college school partnerships provide an excellent opportunity to support the development of graduate student communication skills while also contributing significantly to the dissemination of sound science to K-12 teachers and students.
Open Science: a first step towards Science Communication
NASA Astrophysics Data System (ADS)
Grigorov, Ivo; Tuddenham, Peter
2015-04-01
As Earth Science communicators gear up to adopt the new tools and captivating approaches to engage citizen scientists, budding entrepreneurs, policy makers and the public in general, researchers have the responsibility, and opportunity, to fully adopt Open Science principles and capitalize on its full societal impact and engagement. Open Science is about removing all barriers to basic research, whatever its formats, so that it can be freely used, re-used and re-hashed, thus fueling discourse and accelerating generation of innovative ideas. The concept is central to EU's Responsible Research and Innovation philosophy, and removing barriers to basic research measurably contributes to engaging citizen scientists into the research process, it sets the scene for co-creation of solutions to societal challenges, and raises the general science literacy level of the public. Despite this potential, only 50% of today's basic research is freely available. Open Science can be the first passive step of communicating marine research outside academia. Full and unrestricted access to our knowledge including data, software code and scientific publications is not just an ethical obligation, but also gives solid credibility to a more sophisticated communication strategy on engaging society. The presentation will demonstrate how Open Science perfectly compliments a coherent communication strategy for placing Marine Research in societal context, and how it underpin an effective integration of Ocean & Earth Literacy principles in standard educational, as well mobilizing citizen marine scientists, thus making marine science Open Science.
Parent Involvement Practices of High-Achieving Elementary Science Students
NASA Astrophysics Data System (ADS)
Waller, Samara Susan
This study addressed a prevalence of low achievement in science courses in an urban school district in Georgia. National leaders and educators have identified the improvement of science proficiency as critical to the future of American industry. The purpose of this study was to examine parent involvement in this school district and its contribution to the academic achievement of successful science students. Social capital theory guided this study by suggesting that students achieve best when investments are made into their academic and social development. A collective case study qualitative research design was used to interview 9 parent participants at 2 elementary schools whose children scored in the exceeds category on the Science CRCT. The research questions focused on what these parents did at home to support their children's academic achievement. Data were collected using a semi-structured interview protocol and analyzed through the categorical aggregation of transcribed interviews. Key findings revealed that the parents invested time and resources in 3 practices: communicating high expectations, supporting and developing key skills, and communicating with teachers. These findings contribute to social change at both the local and community level by creating a starting point for teachers, principals, and district leaders to reexamine the value of parent input in the educational process, and by providing data to support the revision of current parent involvement policies. Possibilities for further study building upon the findings of this study may focus on student perceptions of their parents' parenting as it relates to their science achievement.
NASA Astrophysics Data System (ADS)
Moser, F. C.; Allen, M. R.; Barberena-Arias, M.; Clark, J.; Harris, L.; Maldonado, P. M.; Olivo-Delgado, C.; Pierson, J. J.
2017-12-01
Over the last five years our multidisciplinary team explored different undergraduate research and professional development (PD) strategies to improve early stage Hispanic student retention in marine science with the objective of interesting them in pursuing degrees that may ultimately lead to geoscience careers. This research led to the 2016 launch of our current project, Centro TORTUGA (Tropical Oceanography Research Training for Undergraduate Academics). Our overarching goal is to increase the number of underrepresented students from minority serving institutions in geoscience-relevant disciplines and careers. Critical to success is building a program rich in both research and PD. Based on qualitative and quantitative evaluations we found students benefited from PD efforts to increase skills in areas such as: 1) speaking and writing English; 2) science communication; 3) teamwork; 4) project management; and 5) completing internship/graduate school applications. To build student self-confidence, networking, and science skills Centro Tortuga involves students' families, bridges cultural gaps across research and non-research institutions inside and outside of Puerto Rico, and provides a gathering place (Centro TORTUGA) for students. With our partners, Universidad del Turabo (UT), Universidad Metropolitana (UMET), and University of Maryland Center for Environmental Sciences, we are now testing a 12-month integrated research and PD curriculum. Initial results suggest areas for improved student training include: 1) science communication (reports and graphs); 2) science ethics; and 3) poster and oral presentations. Students also identified specific preparation they would like included in the Centro TORTUGA curriculum.
ERIC Educational Resources Information Center
Halversen, Catherine; Tran, Lynn Uyen
2010-01-01
Communicating Ocean Sciences to Informal Audiences (COSIA) is a college course that creates and develops partnerships between science educators in informal science education institutions, such as museums, science centers and aquariums, and ocean scientists in colleges and universities. For the course, a scientist and educator team-teach…
Making the audience a key participant in the science communication process.
Rogers, C L
2000-10-01
The public communication of science and technology has become increasingly important over the last several decades. However, understanding the audience that receives this information remains the weak link in the science communication process. This essay provides a brief review of some of the issues involved, discusses results from an audience-based study, and suggests some strategies that both scientists and journalists can use to modify media coverage in ways that can help audiences better understand major public issues that involve science and technology.
Experiencing biodiversity as a bridge over the science-society communication gap.
Meinard, Yves; Quétier, Fabien
2014-06-01
Drawing on the idea that biodiversity is simply the diversity of living things, and that everyone knows what diversity and living things mean, most conservation professionals eschew the need to explain the many complex ways in which biodiversity is understood in science. On many biodiversity-related issues, this lack of clarity leads to a communication gap between science and the general public, including decision makers who must design and implement biodiversity policies. Closing this communication gap is pivotal to the ability of science to inform sound environmental decision making. To address this communication gap, we propose a surrogate of biodiversity for communication purposes that captures the scientific definition of biodiversity yet can be understood by nonscientists; that is, biodiversity as a learning experience. The prerequisites of this or any other biodiversity communication surrogate are that it should have transdisciplinary relevance; not be measurable; be accessible to a wide audience; be usable to translate biodiversity issues; and understandably encompass biodiversity concepts. Biodiversity as a learning experience satisfies these prerequisites and is philosophically robust. More importantly, it can effectively contribute to closing the communication gap between biodiversity science and society at large. © 2013 Society for Conservation Biology.
NASA Astrophysics Data System (ADS)
Kelley, Jean Mary
The purpose of this study was to identify, analyze, and compare the perceptions of selected district science educators and teachers of middle school science students regarding the following issues: (1) Current methods of differentiating science instruction for gifted middle school students. (2) Strengths of the current methods of differentiating science instruction for gifted middle school students. (3) Weaknesses of the current methods of differentiating science instruction for gifted middle school students. (4) The types of training/experience needed to prepare teachers to effectively differentiate science instruction for gifted middle school students. (5) The steps need to develop an effective differentiated science program at the middle school level. (6) Trends for the future development of differentiated science programs at the middle school level. The panel of educators was identified using the Delphi technique and asked to participate in the study by responding to the research questions. The responses to the first round were condensed into two lists of discrete statements, and in the second round, each group of panelists was asked to rank each statement on a Likert scale. A third round was sent to each group of panel members showing the median and interquartile ranges of the second round. Panelists could adjust their responses based on the results of the second round. The analysis of the data was computed using the computer program Statistics Package for the Social Sciences. Based on the data obtained, the following results and conclusions were determined. The coordinators and the teachers both considered training of teachers, strategies for differentiation, and future trends to be the most important considerations. The areas with the most differences were those dealing with the current methods of differentiating science instruction at the middle school level. There were several limitations identified in this study. Among them were the makeup of the sample of panelists and different definitions of the same term(s). If we are to address the needs of middle school students who are academically gifted in science, teachers and coordinators need to communicate more about expectations in the classroom and what is really happening.
Publishing Ethics and Predatory Practices: A Dilemma for All Stakeholders of Science Communication.
Gasparyan, Armen Yuri; Yessirkepov, Marlen; Diyanova, Svetlana N; Kitas, George D
2015-08-01
Publishing scholarly articles in traditional and newly-launched journals is a responsible task, requiring diligence from authors, reviewers, editors, and publishers. The current generation of scientific authors has ample opportunities for publicizing their research. However, they have to selectively target journals and publish in compliance with the established norms of publishing ethics. Over the past few years, numerous illegitimate or predatory journals have emerged in most fields of science. By exploiting gold Open Access publishing, these journals paved the way for low-quality articles that threatened to change the landscape of evidence-based science. Authors, reviewers, editors, established publishers, and learned associations should be informed about predatory publishing practices and contribute to the trustworthiness of scholarly publications. In line with this, there have been several attempts to distinguish legitimate and illegitimate journals by blacklisting unethical journals (the Jeffrey Beall's list), issuing a statement on transparency and best publishing practices (the Open Access Scholarly Publishers Association's and other global organizations' draft document), and tightening the indexing criteria by the Directory of Open Access Journals. None of these measures alone turned to be sufficient. All stakeholders of science communication should be aware of multiple facets of unethical practices and publish well-checked and evidence-based articles.
Space Projects and Research by Kids (SPARK): A Web Based Research Journal for Middle School Students
NASA Astrophysics Data System (ADS)
Limaye, S. S.; Pertzborn, R. A.
1999-05-01
Project SPARK is designed to facilitate opportunities for upper elementary and middle school students to develop the necessary skills to conduct investigations that focus on the subjects of astronomy, space exploration, and earth remote sensing. This program actively engages students in conducting their own research project to acquire increased understanding and content knowledge in the space sciences. While the development of scientific inquiry skills and content literacy is the primary focus, students also enhance their critical thinking, analytical, technological and communications skills. As in the professional science community, the web based SPARK Journal presents an avenue for students to effectively communicate the results of their investigations and work to classmates as well as the "global learning community" via the world wide web. Educational outreach staff at the Sapce Science and Engineering Center have developed active partnerships with teachers and schools throughout Wisconsin to facilitate the development of standards based curriculum and research projects focusing on current topics in the space sciences. Student research projects and activities arising from these initiatives were submitted in the Spring and Fall of 1998 for inclusion in SPARK, Volume 1. The second volume of SPARK will be published in Spring, 1999. Support for the development of this journal was provided by the NASA/IDEAS Program.
Publishing Ethics and Predatory Practices: A Dilemma for All Stakeholders of Science Communication
Yessirkepov, Marlen; Diyanova, Svetlana N.; Kitas, George D.
2015-01-01
Publishing scholarly articles in traditional and newly-launched journals is a responsible task, requiring diligence from authors, reviewers, editors, and publishers. The current generation of scientific authors has ample opportunities for publicizing their research. However, they have to selectively target journals and publish in compliance with the established norms of publishing ethics. Over the past few years, numerous illegitimate or predatory journals have emerged in most fields of science. By exploiting gold Open Access publishing, these journals paved the way for low-quality articles that threatened to change the landscape of evidence-based science. Authors, reviewers, editors, established publishers, and learned associations should be informed about predatory publishing practices and contribute to the trustworthiness of scholarly publications. In line with this, there have been several attempts to distinguish legitimate and illegitimate journals by blacklisting unethical journals (the Jeffrey Beall's list), issuing a statement on transparency and best publishing practices (the Open Access Scholarly Publishers Association's and other global organizations' draft document), and tightening the indexing criteria by the Directory of Open Access Journals. None of these measures alone turned to be sufficient. All stakeholders of science communication should be aware of multiple facets of unethical practices and publish well-checked and evidence-based articles. PMID:26240476
ERIC Educational Resources Information Center
Hardman, Joanne
2005-01-01
Because computers potentially transform pedagogy, much has been made of their ability to impact positively on student performance, particularly in subjects such as mathematics and science. However, there is currently a dearth of research regarding exactly how the computer acts as a transformative tool in disadvantaged schools. Drawing on a…
Aeronautics and space report of the President, 1980 activities
NASA Technical Reports Server (NTRS)
1981-01-01
The year's achievements in the areas of communication, Earth resources, environment, space sciences, transportation, and space energy are summarized and current and planned activities in these areas at the various departments and agencies of the Federal Government are summarized. Tables show U.S. and world spacecraft records, spacecraft launchings for 1980, and scientific payload anf probes launched 1975-1980. Budget data are included.
2012-02-01
UNCLASSIFIED Fuzzing: The State of the Art Richard McNally, Ken Yiu, Duncan Grove and Damien Gerhardy Command, Control, Communications and...Intelligence Division Defence Science and Technology Organisation DSTO–TN–1043 ABSTRACT Fuzzing is an approach to software testing where the system being tested...features of fuzzers and recent advances in their development, in order to discern the current state of the art in fuzzing technologies, and to extrapolate
ERIC Educational Resources Information Center
Association for Education in Journalism and Mass Communication.
The Visual Communication and Science and Health Communication section of the proceedings contains the following 12 papers: "The Designers' Toolbox: Newsroom Experience and Ideal Characteristics of Newspaper Designers" (Wayne Wanta and Lauren Danner); "Patterned Image of the Homeless: Discourse Analysis of Television News…
NASA Astrophysics Data System (ADS)
Radencic, S.; McNeal, K. S.
2013-05-01
Observation and evaluation of STEM graduate students from Mississippi State University communicating their research of the Earth and Space Sciences in rural 7th-12th grade classrooms participating in the Initiating New Science Partnerships in Rural Education (INSPIRE) NSF GK-12 project. The methods they utilize to communicate their STEM research includes introducing new technologies and inquiry based learning experiences. These communication experiences have been observed and evaluated using two observational systems, the Mathematics Science Classroom Observational Profile System (M-SCOPS) and the Presentation Skills Protocol (PSP). M-SCOPS has been used over the first three years of the project to evaluate what Earth and Space research the STEM graduate students communicate in classroom activities along with how they are introducing STEM research through a variety of communication methods and levels of understanding. PSP, which INSPIRE began using this year, evaluates and provides feedback to the STEM graduate students on their communication during these classroom experiences using a rubric covering a range of skills for successful communication. PSP also allows the participating INSPIRE teacher partners to provide feedback to the STEM graduate students about development of their communication skills over the course of the year. In addition to feedback from the INSPIRE project and participating teachers, the STEM graduate students have the opportunity to evaluate their personal communication skills through video documentation to determine specific skills they would like to improve. Another area of research to be discussed is how the STEM graduate students communicating Earth and Space sciences research in the participating classrooms is impacting student attitudes about science and mathematics over the last three years. Student Attitudinal Surveys (SAS) are administered as a pre-evaluation tool in the fall when the STEM graduate students first enter into their partner classrooms and again each spring for post-evaluation before the STEM graduate students depart from the classrooms. An evaluation of graduate communication effectiveness will be related to the 7th-12th grade student attitudes about science and mathematics.
Activities of the Japanese space weather forecast center at Communications Research Laboratory.
Watari, Shinichi; Tomita, Fumihiko
2002-12-01
The International Space Environment Service (ISES) is an international organization for space weather forecasts and belongs to the International Union of Radio Science (URSI). There are eleven ISES forecast centers in the world, and Communications Research Laboratory (CRL) runs the Japanese one. We make forecasts on the space environment and deliver them over the phones and through the Internet. Our forecasts could be useful for human activities in space. Currently solar activity is near maximum phase of the solar cycle 23. We report the several large disturbances of space environment occurred in 2001, during which low-latitude auroras were observed several times in Japan.
Taking our own medicine: on an experiment in science communication.
Horst, Maja
2011-12-01
In 2007 a social scientist and a designer created a spatial installation to communicate social science research about the regulation of emerging science and technology. The rationale behind the experiment was to improve scientific knowledge production by making the researcher sensitive to new forms of reactions and objections. Based on an account of the conceptual background to the installation and the way it was designed, the paper discusses the nature of the engagement enacted through the experiment. It is argued that experimentation is a crucial way of making social science about science communication and engagement more robust.
Communication Sciences and Health Sciences.
ERIC Educational Resources Information Center
Lane, Shelley D.
1981-01-01
Technical skills and interpersonal communication contribute to diagnosing diseases, and evidence suggests that the quality of the interpersonal relationship can significantly influence the outcome of treatments that appear to depend solely on technical factors. Because communication directly influences health-related outcomes, communication…
Communicating Science: The Profile of Science Journalists in Spain
ERIC Educational Resources Information Center
Cassany, Roger; Cortiñas, Sergi; Elduque, Albert
2018-01-01
Science journalists are mainly responsible for publicly communicating science, which, in turn, is a major indicator of the social development of democratic societies. The transmission of quality scientific information that is rigorously researched and understandable is therefore crucial, and demand for this kind of information from both…
Exploring risk communication - results of a research project focussed on effectiveness evaluation
NASA Astrophysics Data System (ADS)
Charrière, Marie; Bogaard, Thom; Junier, Sandra; Mostert, Erik
2016-04-01
The need for effective science communication and outreach efforts is widely acknowledged in the academic community. In the field of Disaster Risk Reduction, the importance of communication is clearly stressed, e.g. in the newly adopted Sendai Framework for Disaster Risk Reduction 2015-2030 (under the 1st priority of action: understanding disaster risk). Consequently, we see increasing risk communication activities. However, the effectiveness of these activities is rarely evaluated. To address this gap, several research activities were conducted in the context of the Marie Curie Initial Training Network "Changes", the results of which we will present and discuss. First, results of a literature review show, among others, that research on effectiveness is mainly focussed on the assessment of users' needs and their ability to understand the content, rather than on the final impact of the risk communication efforts. Moreover, lab-environment research is more often undertaken than assessment of real communication efforts. Second, a comparison between perceptions of risk managers and the general public of risk communication in a French Alps Valley highlighted a gap between the two groups in terms of amount of information needed (who wants more), the important topics to address (what) and the media to use (how). Third, interviews with developers of smartphone applications for disseminating avalanche risk information showed a variety of current practices and the absence of measurements of real their effectiveness. However, our analysis allowed identifying good practices that can be an inspiration for risk communication related to other hazards. Fourth, an exhibition has been set up following a collaborative approached based on stakeholder engagement. Using a pre/post-test design, the immediate impact of the exhibition, which aimed at increasing the risk awareness of the population (Ubaye Valley, France), was measured. The data obtained suggests that visiting the exhibition increased risk awareness. It appeared that general indicators to measure change in risk awareness, such as perceived awareness or vulnerability, are more powerful than specific ones, such as perceived consequences of a given natural hazard event. Moreover, although the collaborative process was not formally assessed, we observed that the development of the exhibition promoted relationships between stakeholders, the engagement of local stakeholders in science, the exchange between generations, and further communication efforts. This broad collection of research activities applied addressed different viewpoints on the topic of the effectiveness of risk communication related to natural hazards. The evaluation of existing practices allowed identifying current limitations of risk communication and helped develop a research design that enables testing the effectiveness of a real communication effort. Based on this research, recommendations for risk communication applications and further evaluation research can be made.
2016-01-01
Abstract Many think that communicating science is a necessary and rewarding activity. Yet finding compelling, relevant, and timely points of linkage between challenging scientific concepts and the experiences and interests of the general public can be difficult. Since science continues to influence more and more aspects of daily life and knowledge, there is a parallel need for communication about science in our society. Here I discuss the “middle-ground hypothesis” using popular culture for science communication and applying the “FUNnel model,” where popular culture is used as a lead-in and wrap-up when discussing science. The scientific knowledge we find in our hands does not belong to us—we just had it first. We can honor that knowledge best by sharing it as widely as possible using the most creative means at our disposal. PMID:27642632
Bubela, T
2006-11-01
This essay reports on the final session of a 2-day workshop entitled 'Genetic Diversity and Science Communication', hosted by the CIHR Institute of Genetics in Toronto, April 2006. The first speaker, Timothy Caulfield, introduced the intersecting communities that promulgate a 'cycle of hype' of the timelines and expected outcomes of the Human Genome Project (HGP): scientists, the media and the public. Other actors also contribute to the overall hype, the social science and humanities communities, industry and politicians. There currently appears to be an abatement of the overblown rhetoric of the HGP. As pointed out by the second speaker, Sharon Kardia, there is broad recognition that most phenotypic traits, including disease susceptibility are multi-factorial. That said, George Davey-Smith reminded us that some direct genotype-phenotype associations may be useful for public health issues. The Mendelian randomization approach hopes to revitalize the discipline of epidemiology by strengthening causal influences about environmentally modifiable risk factors. A more realistic informational environment paves the way for greater public engagement in science policy. Two such initiatives were presented by Kardia and Jason Robert, and Peter Finegold emphasized that science education and professional development for science teachers are important components of later public engagement in science issues. However, pressures on public research institutions to commercialize and seek industry funding may have negative impacts in both encouraging scientists to inappropriately hype research and on diminishing public trust in the scientific enterprise. The latter may have a significant effect on public engagement processes, such as those proposed by Robert and Kardia.
Oh, The Places You'll Go! Communicating Science in Some Surprising Venues
NASA Astrophysics Data System (ADS)
Leslie-Pelecky, Diandra
2013-04-01
Science is everywhere -- but sometimes, even scientists don't appreciate how big ``everywhere'' actually is. Science outreach has taken me from K-12 classrooms to driving 160 mph in a race car at Texas Motor Speedway. I'll share the lessons I've learned about communicating science to the public, with an emphasis on the unique challenges faced during the early stages of your career: as a graduate student, postdoc and tenure-pursuing researcher. I'll also address the challenges of communicating with audiences that often don't seek out science content, are not confident in their ability to understand science, and may not even be aware that science plays a part in their favorite pastime or avocation.
Improving Access to NASA Earth Science Data through Collaborative Metadata Curation
NASA Astrophysics Data System (ADS)
Sisco, A. W.; Bugbee, K.; Shum, D.; Baynes, K.; Dixon, V.; Ramachandran, R.
2017-12-01
The NASA-developed Common Metadata Repository (CMR) is a high-performance metadata system that currently catalogs over 375 million Earth science metadata records. It serves as the authoritative metadata management system of NASA's Earth Observing System Data and Information System (EOSDIS), enabling NASA Earth science data to be discovered and accessed by a worldwide user community. The size of the EOSDIS data archive is steadily increasing, and the ability to manage and query this archive depends on the input of high quality metadata to the CMR. Metadata that does not provide adequate descriptive information diminishes the CMR's ability to effectively find and serve data to users. To address this issue, an innovative and collaborative review process is underway to systematically improve the completeness, consistency, and accuracy of metadata for approximately 7,000 data sets archived by NASA's twelve EOSDIS data centers, or Distributed Active Archive Centers (DAACs). The process involves automated and manual metadata assessment of both collection and granule records by a team of Earth science data specialists at NASA Marshall Space Flight Center. The team communicates results to DAAC personnel, who then make revisions and reingest improved metadata into the CMR. Implementation of this process relies on a network of interdisciplinary collaborators leveraging a variety of communication platforms and long-range planning strategies. Curating metadata at this scale and resolving metadata issues through community consensus improves the CMR's ability to serve current and future users and also introduces best practices for stewarding the next generation of Earth Observing System data. This presentation will detail the metadata curation process, its outcomes thus far, and also share the status of ongoing curation activities.
Connecting polar research to NGSS STEM classroom lessons
NASA Astrophysics Data System (ADS)
Brinker, R.; Kast, D.
2016-12-01
Next Generation Science Standards (NGSS) are designed to bring consistent, rigorous science teaching across the United States. Topics are categorized as Performance Expectations (PE), Disciplinary Core Ideas (DCI), Cross-Cutting Concepts (CCC), and Science and Engineering Practices (SEP). NGSS includes a focus on environmental science and climate change across grade levels. Earth and planetary sciences are required at the high school level. Integrating polar science lessons into NGSS classrooms brings relevant, rigorous climate change curriculum across grade levels. Polar science provides opportunities for students to use current data during lessons, conduct their own field work, and collaborate with scientists. Polar science provides a framework of learning that is novel to most students. Inquiry and engagement are high with polar science lessons. Phenomenon related to polar science provide an excellent tool for science teachers to use to engage students in a lesson, stimulate inquiry, and promote critical thinking. When taught effectively, students see the connections between their community, polar regions and climate change, regardless of where on the planet students live. This presentation describes examples of how to effectively implement NGSS lessons by incorporating polar science lessons and field research. Examples of introductory phenomenon and aligned PEs, CCCs, DCIs, and SEPs are given. Suggested student activities, assessments, examples of student work, student research, labs, and PolarTREC fieldwork, use of current science data, and connections to scientists in the field are provided. The goals of the presentation are to give teachers a blueprint to follow when implementing NGSS lessons, and give scientists an understanding of the basics of NGSS so they may be better able to relate their work to U.S. science education and be more effective communicators of their science findings.
Reflections on science and the communication sector
NASA Astrophysics Data System (ADS)
Raes, Frank
2015-04-01
Reflections on science and the communication sector. In this contribution I will reflect about successes and failures in communicating climate change and air pollution sciences to the general public. These communication efforts included writing popular articles, giving public presentations, working with people from the social scientists and artists. Giving the fact that communication is a very important (economic) sector on its own, the question is to what extent scientists should enter that sector, whether scientists are at all accepted in that sector, whether they should use the expertise in that sector, or whether they should merely provide the knowledge to be used by that sector.
The science between tsunami science and evacuation decisions
NASA Astrophysics Data System (ADS)
McCaughey, J.; Dewi, P. R.; Mundzir, I.; Rosemary, R.; Safrina, L.; Daly, P.; Patt, A.
2014-12-01
The science of rare natural hazards provides us an opportunity that our ancestors lacked: the chance to learn what hazards we could face, and how reliable any particular precursor may or may not be. Connecting hazard science to societal learning is far too complex a challenge for our intuitions to be of much use. Instead, we need to use evidence - the science of science communication - to identify what actually works. As practitioners, we first worked with NGOs and local governments in coastal Sumatran communities to develop tsunami evacuation guidance that is consistent with the science of tsunamis and suitable for the communities that face the threat. This work identified important practical questions that social science can address: how do people decide whether to evacuate, and how do hazard knowledge and experience influence this? How acceptable are false alarms? What modes of communicating tsunami science and its uncertainties may lead to greater willingness to evacuate, and greater acceptance of false alarms? Which parts of the vast body of research on communication, risk perception, and decision-making might be significant in these contexts? We are beginning research at the household level that will address these questions and feed back into our continuing science-communication practice.
NASA Astrophysics Data System (ADS)
Gelmez Burakgazi, Sevinc; Yildirim, Ali; Weeth Feinstein, Noah
2016-04-01
Rooted in science education and science communication studies, this study examines 4th and 5th grade students' perceptions of science information sources (SIS) and their use in communicating science to students. It combines situated learning theory with uses and gratifications theory in a qualitative phenomenological analysis. Data were gathered through classroom observations and interviews in four Turkish elementary schools. Focus group interviews with 47 students and individual interviews with 17 teachers and 10 parents were conducted. Participants identified a wide range of SIS, including TV, magazines, newspapers, internet, peers, teachers, families, science centers/museums, science exhibitions, textbooks, science books, and science camps. Students reported using various SIS in school-based and non-school contexts to satisfy their cognitive, affective, personal, and social integrative needs. SIS were used for science courses, homework/project assignments, examination/test preparations, and individual science-related research. Students assessed SIS in terms of the perceived accessibility of the sources, the quality of the content, and the content presentation. In particular, some sources such as teachers, families, TV, science magazines, textbooks, and science centers/museums ("directive sources") predictably led students to other sources such as teachers, families, internet, and science books ("directed sources"). A small number of sources crossed context boundaries, being useful in both school and out. Results shed light on the connection between science education and science communication in terms of promoting science learning.
Patel, Sanjai; Prokop, Andreas
2017-10-01
Science communication is increasingly important for scientists, although research, teaching and administration activities tend to eat up our time already, and budgets for science communication are usually low. It appears impossible to combine all these tasks and, in addition, to develop engagement activities to a quality and impact that would make the efforts worth their while. Here we argue that these challenges are easier addressed when centering science communication initiatives on a long-term vision with a view to eventually forming outreach networks where the load can be shared whilst being driven to higher momentum. As one example, we explain the science communication initiative of the Manchester Fly Facility. It aims to promote public awareness of research using the model organism Drosophila, which is a timely, economic and most efficient experimental strategy to drive discovery processes in the biomedical sciences and must have a firm place in the portfolios of funding organisations. Although this initiative by the Manchester Fly Facility is sustained on a low budget, its long-term vision has allowed gradual development into a multifaceted initiative: (1) targeting university students via resources and strategies for the advanced training in fly genetics; (2) targeting the general public via science fairs, educational YouTube videos, school visits, teacher seminars and the droso4schools project; (3) disseminating and marketing strategies and resources to the public as well as fellow scientists via dedicated websites, blogs, journal articles, conference presentations and workshops - with a view to gradually forming networks of drosophilists that will have a greater potential to drive the science communication objective to momentum and impact. Here we explain the rationales and implementation strategies for our various science communication activities - which are similarly applicable to other model animals and other areas of academic science - and share our experiences and resources to provide ideas and readily available means to those who are actively engaging or intend to do so. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Engaging Undergraduates in Methods of Communicating Global Climate Change
NASA Astrophysics Data System (ADS)
Hall, C.; Colgan, M. W.; Humphreys, R. R.
2010-12-01
Global Climate Change has become a politically contentious issue in large part because of the failure of scientists to effectively communicate this complex subject to the general public. In a Global Change class, offered within a science department and therefore focused primarily on the underlying science, we have incorporated a citizen science module into the course to raise awareness among future scientists to the importance of communicating information to a broad and diverse audience. The citizen science component of this course focuses on how the predicted climate changes will alter the ecologic and economic landscape of the southeastern region. Helping potential scientists to learn to effectively communicate with the general public is particularly poignant for this predominate southern student body. A Pew Research Center for the People and the Press study found that less than 50% of Southerners surveyed felt that global warming is a very serious problem and over 30% of Southerners did not believe that there was any credible evidence that the Earth is warming. This interdisciplinary and topical nature of the course attracts student from a variety of disciplines, which provides the class with a cross section of students not typically found in most geology classes. This mixture provides a diversity of skills and interest that leads to success of the Citizen Science component. This learning approach was adapted from an education module developed through the Earth System Science Education Alliance and a newly developed component to that program on citizen science. Student teams developed several citizen science-related public service announcements concerning projected global change effects on Charleston and the South Carolina area. The scenario concerned the development of an information campaign for the City of Charleston, culminating with the student presentations on their findings to City officials. Through this real-life process, the students developed new strategies that inform their own means of communicating science, whether to the general public, to peers, or to other scientists. This course with the citizen science component serves as a model for other programs. Incorporating a communication aspect into science courses that revolve around complex but socially important topics, such as global climate change, is necessary in building the confidence in our science students to communicate effectively, imaginatively, and memorably. In addition, the students gain a deeper understanding and appreciation of the necessity to communicate to public audiences and the value of outreach to the community.
ERIC Educational Resources Information Center
Vrchota, Denise Ann
2015-01-01
Food science researchers have pronounced the Institute of Food Technologists Success Skills to be the most important competency mastered by graduates entering the work force. Much of the content and outcomes of the Success Skills pertains to oral communication skills of public speaking and interpersonal and group communication. This qualitative…
Using Social Media to Communicate Science
NASA Astrophysics Data System (ADS)
Bohon, W.
2017-12-01
Social media (SM) is a popular and ubiquitous communication method and as such offers scientists an opportunity to directly interface with the public, improve public perception of science and scientists, and combat the growing tide of scientific misunderstanding and misinformation. It's become increasingly critical for scientists to use their voice and influence to communicate science and address misinformation. More than 60% of US adults get news from SM (1) but studies find that scientists infrequently post about science (2), missing a rich opportunity to combat scientific disinformation. While it may seem like a futile exercise to educate over SM, even passive exposure to new information can change public perceptions and behavior (3). Additionally, scientists, especially early career scientists, have social networks populated largely by non-scientists (2), allowing them an opportunity to speak to an audience that already trusts and values their scientific judgment. Importantly, these networks are often ideologically and politically diverse (4). However, science communication isn't as simple as a presentation of facts, and effective science communication via SM requires both SM competence and science communication proficiency. Thus, a discussion of best practices for both topics would benefit the scientific community. The range of potential topics for discussion is broad and could include scientific storytelling, empathetic communication, crafting a message, using SM to "humanize science", tips and tricks for broad SM information dissemination and how to run an effective SM campaign. (1) Gottfried J, Shearer E. New use across social media platforms: Pew Research Center; 2016. Available from: http://www.journalism.org/2016/05/26/news-use-across-social-media-platforms-2016/. (2) McClain, Craig R., Practices and promises of Facebook for science outreach:Becoming a "Nerd of Trust". PLOS Biology 15(6). 2017; https://doi.org/10.1371/journal.pbio.2002020(3) Messing S, Westwood SJ. Selective exposure in the age of social media: Endorsements trump partisan source affiliation when selecting news online. Communication Research. 2014;41:1042-63. (4) Bakshy E, Messing S, Adamic L. Exposure to ideologically diverse news and opinion on Facebook. Science. 2015;348:1130-2. pmid:25953820
NASA Technical Reports Server (NTRS)
Ngwira, Chigomezyo M.; Pulkkinen, Antti A.
2018-01-01
Vulnerability of man-made infrastructure to Earth-directed space weather events is a serious concern for today's technology-dependent society. Space weather-driven geomagnetically induced currents (GICs) can disrupt operation of extended electrically conducting technological systems. The threat of adverse impacts on critical technological infrastructure, like power grids, oil and gas pipelines, and communication networks, has sparked renewed interest in extreme space weather. Because extreme space weather events have low occurrence rate but potentially high impact, this presents a major challenge for our understanding of extreme GIC activity. In this chapter, we discuss some of the key science challenges pertaining to our understanding of extreme events. In addition, we present an overview of GICs including highlights of severe impacts over the last 80 years and recent U.S. Federal actions relevant to this community.
The APECS Virtual Poster Session: a virtual platform for science communication and discussion
NASA Astrophysics Data System (ADS)
Renner, A.; Jochum, K.; Jullion, L.; Pavlov, A.; Liggett, D.; Fugmann, G.; Baeseman, J. L.; Apecs Virtual Poster Session Working Group, T.
2011-12-01
The Virtual Poster Session (VPS) of the Association of Polar Early Career Scientists (APECS) was developed by early career scientists as an online tool for communicating and discussing science and research beyond the four walls of a conference venue. Poster sessions often are the backbone of a conference where especially early career scientists get a chance to communicate their research, discuss ideas, data, and scientific problems with their peers and senior scientists. There, they can hone their 'elevator pitch', discussion skills and presentation skills. APECS has taken the poster session one step further and created the VPS - the same idea but independent from conferences, travel, and location. All that is needed is a computer with internet access. Instead of letting their posters collect dust on the computer's hard drive, scientists can now upload them to the APECS website. There, others have the continuous opportunity to comment, give feedback and discuss the work. Currently, about 200 posters are accessible contributed by authors and co-authors from 34 countries. Since January 2010, researchers can discuss their poster with a broad international audience including fellow researchers, community members, potential colleagues and collaborators, policy makers and educators during monthly conference calls via an internet platform. Recordings of the calls are available online afterwards. Calls so far have included topical sessions on e.g. marine biology, glaciology, or social sciences, and interdisciplinary calls on Arctic sciences or polar research activities in a specific country, e.g. India or Romania. They attracted audiences of scientists at all career stages and from all continents, with on average about 15 persons participating per call. Online tools like the VPS open up new ways for creating collaborations and new research ideas and sharing different methodologies for future projects, pushing aside the boundaries of countries and nations, conferences, offices, and disciplines, and provide early career scientists with easily accessible training opportunities for their communication and outreach skills, independent of their location and funding situation.
Science Policy: Behind the Scenes
NASA Astrophysics Data System (ADS)
Barnett, Travis
2011-04-01
I served nine weeks as an intern in the House of Representatives Committee on Science and Technology. For the majority of the summer I served in the Research and Science Education Subcommittee, researching, among other things, cyber-enabled learning, cybersecurity, and alternate energy costs. I learned a great deal about the workings of the American government and how to contribute to a professional office environment. During these nine weeks, my personal communication skills were greatly improved. My internship was created and funded by the John and Jane Mather Foundation for the Arts and Sciences, and as the only merit-based science committee intern, I felt a great responsibility to prove my worth in the Committee. It is important to have scientists involved in the policy of our government in order to keep our nation on a progressive track, and to preserve current scientific discoveries for posterity. Immersed in government and science policy, I feel very learned and prepared to participate in these fields.
The ‘credibility paradox’ in China’s science communication: Views from scientific practitioners
Zhang, Joy Yueyue
2015-01-01
In contrast to increasing debates on China’s rising status as a global scientific power, issues of China’s science communication remain under-explored. Based on 21 in-depth interviews in three cities, this article examines Chinese scientists’ accounts of the entangled web of influence which conditions the process of how scientific knowledge achieves (or fails to achieve) its civic authority. A main finding of this study is a ‘credibility paradox’ as a result of the over-politicisation of science and science communication in China. Respondents report that an absence of visible institutional endorsements renders them more public credibility and better communication outcomes. Thus, instead of exploiting formal channels of science communication, scientists interviewed were more keen to act as ‘informal risk communicators’ in grassroots and private events. Chinese scientists’ perspectives on how to earn public support of their research sheds light on the nature and impact of a ‘civic epistemology’ in an authoritarian state. PMID:26307594
Students Explaining Science--Assessment of Science Communication Competence
ERIC Educational Resources Information Center
Kulgemeyer, Christoph; Schecker, Horst
2013-01-01
Science communication competence (SCC) is an important educational goal in the school science curricula of several countries. However, there is a lack of research about the structure and the assessment of SCC. This paper specifies the theoretical framework of SCC by a competence model. We developed a qualitative assessment method for SCC that is…
Popular Science Writing to Support Students' Learning of Science and Scientific Literacy
ERIC Educational Resources Information Center
Pelger, Susanne; Nilsson, Pernilla
2016-01-01
In higher natural science education, the scientific report is the prevailing genre of writing. Despite the fact that communicative skills are highly valued in working life, earlier studies have shown deficiencies among science students. In this paper, we highlight the need for varied communication training, in particularly arguing for the…
75 FR 62553 - Statement of Organization, Functions, and Delegations of Authority
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-12
... dissemination channels; (7) provides communication and marketing project management expertise; (8) collaborates... director and divisions on communication and marketing science, research, practice, and public affairs; (2) leads center strategic planning for communication and marketing science and public affairs programs and...
Theoretical Approaches to Political Communication.
ERIC Educational Resources Information Center
Chesebro, James W.
Political communication appears to be emerging as a theoretical and methodological academic area of research within both speech-communication and political science. Five complimentary approaches to political science (Machiavellian, iconic, ritualistic, confirmational, and dramatistic) may be viewed as a series of variations which emphasize the…
NASA Astrophysics Data System (ADS)
Sriyati, S.; Amelia, D. N.; Soniyana, G. T.
2018-05-01
Student’s science communication ability can be assessed by the Expert-Notice Dialogue (END) method which focusing on verbal explanations using graphs or images as a tool. This study aims to apply the END method to assess students’ science communication ability. The study was conducted in two high schools with each sample of one class at each school (A and B). The number of experts in class A is 8 students and 7 in class B, the number of notice in class A 24 students and 30 in class B. The material chosen for explanation by expert is Ecosystem in class A and plant classification in class B. Research instruments are rubric of science communication ability, observation rubric, notice concept test and notice questionnaire. The implementation recorded with a video camera and then transcribed based on rubric science communication ability. The results showed that the average of science communication ability in class A and B was 60% and 61.8%, respectively, in enough categories. Mastery of the notice concept is in good category with 79.10 averages in class A and 94.64 in class B. Through the questionnaire notice it is known that the END method generally helps notice in understanding the concept.
NASA Earth Observations (NEO): Data Imagery for Education and Visualization
NASA Astrophysics Data System (ADS)
Ward, K.
2008-12-01
NASA Earth Observations (NEO) has dramatically simplified public access to georeferenced imagery of NASA remote sensing data. NEO targets the non-traditional data users who are currently underserved by functionality and formats available from the existing data ordering systems. These users include formal and informal educators, museum and science center personnel, professional communicators, and citizen scientists. NEO currently serves imagery from 45 different datasets with daily, weekly, and/or monthly temporal resolutions, with more datasets currently under development. The imagery from these datasets is produced in coordination with several data partners who are affiliated either with the instrument science teams or with the respective data processing center. NEO is a system of three components -- website, WMS (Web Mapping Service), and ftp archive -- which together are able to meet the wide-ranging needs of our users. Some of these needs include the ability to: view and manipulate imagery using the NEO website -- e.g., applying color palettes, resizing, exporting to a variety of formats including PNG, JPEG, KMZ (Google Earth), GeoTIFF; access the NEO collection via a standards-based API (WMS); and create customized exports for select users (ftp archive) such as Science on a Sphere, NASA's Earth Observatory, and others.
Outrageous Outreach — Unconventional Ways of Communicating Science
NASA Astrophysics Data System (ADS)
Sandu, O.; Christensen, L. L.
2011-07-01
The golden rule of communication, advertising, public relations and marketing is "follow your target group". In this article, we look at how this mantra is applied in science communication and public outreach. Do we really follow our target groups? Do we regularly research the behaviour, interests and preferences of the individuals behind the demographic categories? Or do we just believe that we are following them when in fact we are "preaching to the converted" — the demographic group that is already intrinsically interested in science and actively scours the science sections of the national newspapers?
NASA Astrophysics Data System (ADS)
Mitchell, S.; Timm, K.; Bakker, T.
2016-12-01
Arctic Science Summit Week (ASSW) is the annual gathering of international organizations engaged in supporting and facilitating Arctic research. The University of Alaska Fairbanks hosted the 2016 ASSW and several associated side meetings that attracted over 1,000 participants from 30 nations. Unlike most scientific conferences, a strategic communication plan was developed to engage key audiences and stakeholder groups to achieve the goals of (1) advancing stakeholder collaboration in the Arctic and (2) increasing awareness of America's role in international collaboration in the Arctic. Beyond ensuring that the conference was well attended and participants had the information to have a successful meeting, the communication plan also included several objectives to engage the broader community in opportunities to benefit from subject area experts attending the conference and learn about Arctic science. The strategic communication effort was instrumental in the success of the conference and several community events. However, introducing strategic communication into a process and to people with no prior experience also added some challenges. In order to be successful, we had to develop a shared understanding of the strategic communication process and discipline-specific terms with our colleagues in the biophysical sciences. The outcomes and lessons that will be shared in this poster are valuable to anyone in science or environmental communication, planning conference communications, and/or those who are adopting strategic communication approaches where they haven't previously existed.
NASA Technical Reports Server (NTRS)
Strauss, Jeff; Shope, Richard E., III; Terebey, Susan
2005-01-01
Science literacy is a major goal of science educational reform (NRC, 1996; AAAS, 1998; NCLB Act, 2001). Some believe that teaching science only requires pedagogical content knowledge (PCK). Others believe doing science requires knowledge of the methodologies of scientific inquiry (NRC, 1996). With these two mindsets, the challenge for science educators is to create models that bring the two together. The common ground between those who teach science and those who do science is science communication, an interactive process that galvanizes dialogue among scientists, teachers, and learners in a rich ambience of mutual respect and a common, inclusive language of discourse . The dialogue between science and non-science is reflected in the polarization that separates those who do science and those who teach science, especially as it plays out everyday in the science classroom. You may be thinking, why is this important? It is vital because, although not all science learners become scientists, all K-12 students are expected to acquire science literacy, especially with the implementation of the No Child Left Behind Act of 2001 (NCLB). Students are expected to acquire the ability to follow the discourse of science as well as connect the world of science to the context of their everyday life if they plan on moving to the next grade level, and in some states, to graduate from high school. This paper posits that science communication is highly effective in providing the missing link for K-12 students cognition in science and their attainment of science literacy. This paper will focus on the "Science For Our Schools" (SFOS) model implemented at California State Univetsity, Los Angeles (CSULA) as a project of the National Science Foundation s GK-12 program, (NSF 2001) which has been a huge success in bridging the gap between those who "know" science and those who "teach" science. The SFOS model makes clear the distinctions that identify science, science communication, science education, and science literacy in the midst of science learning by bringing together graduate student scientists and science teachers to engage students in the two world s dialogue in the midst of the school science classroom. The graduate student scientists and the science teachers worked as a team throughout the school year and became effective science Communicators as they narrowed the gulf between the two worlds. 1
Bhatiasevi, Aphaluck; Chaib, Fadela; Baggio, Ombretta; Banluta, Christina; Hollenweger, Lilian; Maaroufi, Abderrahmane
2016-01-01
Biological risk management in public health focuses on the impact of outbreaks on health, the economy, and other systems and on ensuring biosafety and biosecurity. To address this broad range of risks, the International Health Regulations (IHR, 2005) request that all member states build defined core capacities, risk communication being one of them. While there is existing guidance on the communication process and on what health authorities need to consider to design risk communication strategies that meet the requirements on a governance level, little has been done on implementation because of a number of factors, including lack of resources (human, financial, and others) and systems to support effective and consistent capacity for risk communication. The international conference on “Risk communication strategies before, during and after public health emergencies” provided a platform to present current strategies, facilitate learning from recent outbreaks of infectious diseases, and discuss recommendations to inform risk communication strategy development. The discussion concluded with 4 key areas for improvement in risk communication: consider communication as a multidimensional process in risk communication, broaden the biomedical paradigm by integrating social science intelligence into epidemiologic risk assessments, strengthen multisectoral collaboration including with local organizations, and spearhead changes in organizations for better risk communication governance. National strategies should design risk communication to be proactive, participatory, and multisectoral, facilitating the connection between sectors and strengthening collaboration. PMID:27875654
Dickmann, Petra; Bhatiasevi, Aphaluck; Chaib, Fadela; Baggio, Ombretta; Banluta, Christina; Hollenweger, Lilian; Maaroufi, Abderrahmane
Biological risk management in public health focuses on the impact of outbreaks on health, the economy, and other systems and on ensuring biosafety and biosecurity. To address this broad range of risks, the International Health Regulations (IHR, 2005) request that all member states build defined core capacities, risk communication being one of them. While there is existing guidance on the communication process and on what health authorities need to consider to design risk communication strategies that meet the requirements on a governance level, little has been done on implementation because of a number of factors, including lack of resources (human, financial, and others) and systems to support effective and consistent capacity for risk communication. The international conference on "Risk communication strategies before, during and after public health emergencies" provided a platform to present current strategies, facilitate learning from recent outbreaks of infectious diseases, and discuss recommendations to inform risk communication strategy development. The discussion concluded with 4 key areas for improvement in risk communication: consider communication as a multidimensional process in risk communication, broaden the biomedical paradigm by integrating social science intelligence into epidemiologic risk assessments, strengthen multisectoral collaboration including with local organizations, and spearhead changes in organizations for better risk communication governance. National strategies should design risk communication to be proactive, participatory, and multisectoral, facilitating the connection between sectors and strengthening collaboration.
COMMUNICATING ASTRONOMY IN EUROPE: Strategies and Challenges in International Organisations
NASA Astrophysics Data System (ADS)
Barrosa, Mariana
2007-08-01
How much do Europeans really know about science and technology? What do they think about it? For more than a decade, the European Union (EU) has carried out regular surveys to measure public opinion and knowledge on a variety of themes across its member states. One survey carried out in early 2005 is of particular interest to science communication - "Europeans, Science and Technology". It's easy to see that science and technology are racing along faster than ever and you would think that people's knowledge and interest of science and technology would be keeping pace. Unfortunately, that is not the case. Over the past few years, Europeans' overall interest in science and technology has decreased. Astronomy plays a special role within public science communication. It serves as a general science "catcher", not only for young people. Astronomy embraces core sciences such as mathematics, physics, chemistry, biology and geology as well as technical disciplines including optics, observational techniques and data analysis. Astronomy reaches wide into the realm of philosophy; it rubs shoulders with religion and is at the core of many science fiction stories. In short, astronomy attracts a wide spectrum of people and may serve as a powerful vehicle for improving the public awareness and understanding of science. Several key International Organisations like the European Space Agency (ESA), the European Southern Observatory (ESO), Europlanet and the International Astronomical Union (IAU) work in Astronomy and Space Sciences in Europe. As well as a general overview of the outreach and communication actions of some of these Organisations, focus will be made in specific cases and examples in the context of these organisations. 2009 will be the International Year of Astronomy. It will be interesting to see how these European Organisations are getting ready for this ultimate science communication challenge.
Communication and relationship skills for rapid response teams at hamilton health sciences.
Cziraki, Karen; Lucas, Janie; Rogers, Toni; Page, Laura; Zimmerman, Rosanne; Hauer, Lois Ann; Daniels, Charlotte; Gregoroff, Susan
2008-01-01
Rapid response teams (RRT) are an important safety strategy in the prevention of deaths in patients who are progressively failing outside of the intensive care unit. The goal is to intervene before a critical event occurs. Effective teamwork and communication skills are frequently cited as critical success factors in the implementation of these teams. However, there is very little literature that clearly provides an education strategy for the development of these skills. Training in simulation labs offers an opportunity to assess and build on current team skills; however, this approach does not address how to meet the gaps in team communication and relationship skill management. At Hamilton Health Sciences (HHS) a two-day program was developed in collaboration with the RRT Team Leads, Organizational Effectiveness and Patient Safety Leaders. Participants reflected on their conflict management styles and considered how their personality traits may contribute to team function. Communication and relationship theories were reviewed and applied in simulated sessions in the relative safety of off-site team sessions. The overwhelming positive response to this training has been demonstrated in the incredible success of these teams from the perspective of the satisfaction surveys of the care units that call the team, and in the multi-phased team evaluation of their application to practice. These sessions offer a useful approach to the development of the soft skills required for successful RRT implementation.
Communicating science in politicized environments.
Lupia, Arthur
2013-08-20
Many members of the scientific community attempt to convey information to policymakers and the public. Much of this information is ignored or misinterpreted. This article describes why these outcomes occur and how science communicators can achieve better outcomes. The article focuses on two challenges associated with communicating scientific information to such audiences. One challenge is that people have less capacity to pay attention to scientific presentations than many communicators anticipate. A second challenge is that people in politicized environments often make different choices about whom to believe than do people in other settings. Together, these challenges cause policymakers and the public to be less responsive to scientific information than many communicators desire. Research on attention and source credibility can help science communicators better adapt to these challenges. Attention research clarifies when, and to what type of stimuli, people do (and do not) pay attention. Source credibility research clarifies the conditions under which an audience will believe scientists' descriptions of phenomena rather than the descriptions of less-valid sources. Such research can help communicators stay true to their science while making their findings more memorable and more believable to more audiences.
Communicating science in politicized environments
Lupia, Arthur
2013-01-01
Many members of the scientific community attempt to convey information to policymakers and the public. Much of this information is ignored or misinterpreted. This article describes why these outcomes occur and how science communicators can achieve better outcomes. The article focuses on two challenges associated with communicating scientific information to such audiences. One challenge is that people have less capacity to pay attention to scientific presentations than many communicators anticipate. A second challenge is that people in politicized environments often make different choices about whom to believe than do people in other settings. Together, these challenges cause policymakers and the public to be less responsive to scientific information than many communicators desire. Research on attention and source credibility can help science communicators better adapt to these challenges. Attention research clarifies when, and to what type of stimuli, people do (and do not) pay attention. Source credibility research clarifies the conditions under which an audience will believe scientists’ descriptions of phenomena rather than the descriptions of less-valid sources. Such research can help communicators stay true to their science while making their findings more memorable and more believable to more audiences. PMID:23940336
Internet Data Delivery for Future Space Missions
NASA Technical Reports Server (NTRS)
Rash, James; Casasanta, Ralph; Hogie, Keith; Hennessy, Joseph F. (Technical Monitor)
2002-01-01
Ongoing work at National Aeronautics and Space Administration Goddard Space Flight Center (NASA/GSFC), seeks to apply standard Internet applications and protocols to meet the technology challenge of future satellite missions. Internet protocols and technologies are under study as a future means to provide seamless dynamic communication among heterogeneous instruments, spacecraft, ground stations, constellations of spacecraft, and science investigators. The primary objective is to design and demonstrate in the laboratory the automated end-to-end transport of files in a simulated dynamic space environment using off-the-shelf, low-cost, commodity-level standard applications and protocols. The demonstrated functions and capabilities will become increasingly significant in the years to come as both earth and space science missions fly more sensors and as the need increases for more network-oriented mission operations. Another element of increasing significance will be the increased cost effectiveness of designing, building, integrating, and operating instruments and spacecraft that will come to the fore as more missions take up the approach of using commodity-level standard communications technologies. This paper describes how an IP (Internet Protocol)-based communication architecture can support all existing operations concepts and how it will enable some new and complex communication and science concepts. The authors identify specific end-to-end data flows from the instruments to the control centers and scientists, and then describe how each data flow can be supported using standard Internet protocols and applications. The scenarios include normal data downlink and command uplink as well as recovery scenarios for both onboard and ground failures. The scenarios are based on an Earth orbiting spacecraft with downlink data rates from 300 Kbps to 4 Mbps. Included examples are based on designs currently being investigated for potential use by the Global Precipitation Measurement (GPM) mission.
Effectively Communicating Science to Extension Audiences
ERIC Educational Resources Information Center
Robinson, Patrick
2013-01-01
This article discusses the concept of "framing" within the context of relevant communication and psychological research and considers its potential applicability to Extension science communication. Examples of research-based support for the framing of scientific issues are presented, along with a literature-based discussion of the…
Science 2.0: Communicating Science Creatively
ERIC Educational Resources Information Center
Smith, Ben; Mader, Jared
2017-01-01
This column shares web tools that support learning. The authors have been covering the International Society for Technology in Education (ISTE) standards in every issue since September 2016. This article examines the final standard, called Creative Communicator, which requires students to communicate effectively and creatively express themselves…
Negotiating the Way to Inquiry
ERIC Educational Resources Information Center
Kuhn, Mason; McDermott, Mark
2013-01-01
One challenge of teaching science is getting students to communicate as scientists do. Scientists employ many different forms of communication as they develop and pass on information to others. Unfortunately, in many classrooms, student communication about science concepts is limited to filling in information on worksheets, finishing…
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Barclay, Rebecca O.; Hecht, Laura M.; Kennedy, John M.
1994-01-01
This report describes similarities and differences between undergraduate and graduate engineering science students in the context of two general aspects of the educational experience. First, we explore the extent to which students differ regarding the factors that lead to the choice of becoming an engineer or a scientist, current satisfaction with that choice, and career-related goals and objectives. Second, we look at the technical communication practices, habits, and training of engineers and science (Physics) students. The reported data were obtained from a survey of students enrolled in the College of Engineering at the University of Illinois at Urbana-Champaign, Bowling Green State University, and Texas A&M University. The survey was undertaken as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. Data are reported for the following categories: student demographics; skill importance, skill training, and skill helpfulness; collaborative writing; computer and information technology use and importance, use of electronic networks; use and importance of libraries and library services; use and importance of information sources and products; use of foreign technical reports; and foreign language (reading and speaking) skills.
Technological aspects of hospital communication challenges: an observational study.
Popovici, Ilinca; Morita, Plinio P; Doran, Diane; Lapinsky, Stephen; Morra, Dante; Shier, Ashleigh; Wu, Robert; Cafazzo, Joseph A
2015-06-01
To gain insights into how technological communication tools impact effective communication among clinicians, which is critical for patient safety. This multi-site observational study analyzes inter-clinician communication and interaction with information technology, with a focus on the critical process of patient transfer from the Emergency Department to General Internal Medicine. Mount Sinai Hospital, Sunnybrook Health Sciences Centre and Toronto General Hospital. At least five ED and general internal medicine nurses and physicians directly involved in patient transfers were observed on separate occasions at each institution. N/A. N/A. The study provides insight into clinician workflow, evaluates current hospital communication systems and identifies key issues affecting communication: interruptions, issues with numeric pagers, lack of integrated communication tools, lack of awareness of consultation status, inefficiencies related to the paper chart, unintuitive user interfaces, mixed use of electronic and paper systems and lack of up-to-date contact information. It also identifies design trade-offs to be negotiated: synchronous communication vs. reducing interruptions, notification of patient status vs. reducing interruptions and speed vs. quality of handovers. The issues listed should be considered in the design of new technology for hospital communications. © The Author 2015. Published by Oxford University Press in association with the International Society for Quality in Health Care; all rights reserved.
McKenzie, Carly T
2016-05-01
The aim of this study was to use structured assessments to assess dental students' clinical communication skills exhibited during patient appointments. Fourth-year dental students (n=55) at the University of Alabama at Birmingham evaluated their own interpersonal skills in a clinical setting utilizing the Four Habits Coding Scheme. An instructor also assessed student-patient clinical communication. These assessments were used to identify perceived strengths and weaknesses in students' clinical communication. Both instructor assessments and student self-assessments pinpointed the following clinical communication skills as effective the most often: patient greeting, avoidance of jargon, and non-verbal behavior. There was also relative agreement between instructor assessments and student self-assessments regarding clinical communication skills that were rated as not effective most frequently: ensuring patient comprehension, identification of patient feelings, and exploration of barriers to treatment. These resulted pointed to strengths and weaknesses in the portion of the curriculum designed to prepare students for effective provider-patient communication. These results may suggest a need for the school's current behavioral science curriculum to better address discussion of potential treatment barriers and patient feelings as well as techniques to ensure patient comprehension.
Aakhus, Mark
2011-11-01
The International Radiation Protection Association's guiding principles for stakeholder engagement focus on fostering, facilitating, and enabling interaction among stakeholders that is inclusive and fosters competent decision making. Implicit in these standards is a call to cultivate knowledge and competence in designing communication for stakeholder engagement among radiation protection professionals. Communication as design is an approach to risk communication in science and policy that differs from, yet complements, the more well-known communication practices of informing and persuading. Design focuses on the recurring practical problem faced by professionals in making communication possible among stakeholders where it has otherwise been difficult, impossible, or even unimagined. The knowledge and competence associated with design involves principles for crafting interactivity across a variety of mediated and non-mediated encounters among stakeholders. Risk communication can be improved by cultivating expertise in scalable communication design that embraces the demands of involvement without abandoning the need for competence in science and policy communication.
77 FR 65417 - Proposal Review Panel for Computing Communication Foundations; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-26
...: To assess the progress of the EIC Award, ``Collaborative Research: Computational Behavioral Science... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Computing Communication Foundations; Notice... National Science Foundation announces the following meeting: Name: Site Visit, Proposal Panel Review for...
The future of 'pure' medical science: the need for a new specialist professional research system.
Charlton, Bruce G; Andras, Peter
2005-01-01
Over recent decades, medical research has become mostly an 'applied' science which implicitly aims at steady progress by an accumulation of small improvements, each increment having a high probability of validity. Applied medical science is, therefore, a social system of communications for generating pre-publication peer-reviewed knowledge that is ready for implementation. However, the need for predictability makes modern medical science risk-averse and this is leading to a decline in major therapeutic breakthroughs where new treatments for new diseases are required. There is need for the evolution of a specialized professional research system of pure medial science, whose role would be to generate and critically evaluate radically novel and potentially important theories, techniques, therapies and technologies. Pure science ideas typically have a lower probability of being valid, but the possibility of much greater benefit if they turn out to be true. The domination of medical research by applied criteria means that even good ideas from pure medical science are typically ignored or summarily rejected as being too speculative. Of course, radical and potentially important ideas may currently be published, but at present there is no formal mechanism by which pure science publications may be received, critiqued, evaluated and extended to become suitable for 'application'. Pure medical science needs to evolve to constitute a typical specialized scientific system of formal communications among a professional community. The members of this putative profession would interact via close research groupings, journals, meetings, electronic and web communications--like any other science. Pure medical science units might arise as elite grouping linked to existing world-class applied medical research institutions. However, the pure medical science system would have its own separate aims, procedures for scientific evaluation, institutional organization, funding and support arrangements; and a separate higher-professional career path with distinctive selection criteria. For instance, future leaders of pure medical science institutions would need to be selected on the basis of their specialized cognitive aptitudes and their record of having generated science-transforming ideas, as well as their research management skills. Pure medical science would work most effectively and efficiently if practiced in many independent and competing institutions in several different countries. The main 'market' for pure medical science would be the applied medical scientists, who need radical strategies to solve problems which are not yielding to established methods. The stimulus to create such elite pure medical science institutions might come from the leadership of academic 'entrepreneurs' (for instance, imaginative patrons in the major funding foundations), or be triggered by a widespread public recognition of the probable exhaustion of existing applied medical science approaches to solving major therapeutic challenges.
NASA Astrophysics Data System (ADS)
Humphreys, R. R.; Hall, C.; Colgan, M. W.; Rhodes, E.
2010-12-01
Although inquiry-based/problem-based methods have been successfully incorporated in undergraduate lecture classes, a survey of commonly used laboratory manuals indicates that few non-major geoscience laboratory classes use these strategies. The Department of Geology and Environmental Geosciences faculty members have developed a successful introductory Environmental Geology Laboratory course for undergraduate non-majors that challenges traditional teaching methodology as illustrated in most laboratory manuals. The Environmental Geology lab activities employ active learning methods to engage and challenge students. Crucial to establishing an open learning environment is capturing the attention of non-science majors from the moment they enter the classroom. We use catastrophic ‘gloom and doom’ current events to pique the imagination with images, news stories, and videos. Once our students are hooked, we can further the learning process with use of other teaching methods: an inquiry-based approach that requires students take control of their own learning, a cooperative learning approach that requires the participation of all team members in peer learning, and a problem/case study learning approach that primarily relies on activities distilled from current events. The final outcome is focused on creating innovative methods to communicate the findings to the general public. With the general public being the audience for their communiqué, students are less intimated, more focused, and more involved in solving the problem. During lab sessions, teams of students actively engage in mastering course content and develop essential communication skills while exploring real-world scenarios. These activities allow students to use scientific reasoning and concepts to develop solutions for scenarios such as volcanic eruptions, coastal erosion/sea level rise, flooding or landslide hazards, and then creatively communicate their solutions to the public. For example, during a two-week section on Earthquakes, teams study the effects of seismic motion on sediments underlying the Charleston, South Carolina region. Students discover areas where the greatest damage occurred during the 1886 earthquake via a walking tour of Charleston. Extracting information from historical and topographic maps, and aerial and satellite imagery provides students with the necessary information to produce an earthquake hazard map of the area. Applying the creativity and knowledge base of the multidisciplinary students generates a startling array of innovative methods for communicating their results: brochures, storybooks, computer-animated hazard maps, Facebook pages, YouTube videos - even Virtual Reality avatars! When allowed to use their imaginations and resourcefulness, these students have no bounds! Not only does the application of inquiry-based problem solving methodology in conjunction with cooperative learning enhance comprehension of the material, but by allowing undergraduate students to develop methods of communicating their knowledge to the public through an interesting variety of medium, students remain focused, engaged, and even excited about learning science that otherwise intimidated them.
Effective Science Communication; A practical guide to surviving as a scientist
NASA Astrophysics Data System (ADS)
Illingworth, Sam
2016-09-01
Effective Science Communication: A practical guide to surviving as a scientist is devoted to the variety of ways that scientists are expected to communicate in their day-to-day professional lives. It includes practical advice on how to publish your work in scientific journals, apply for grants, and effectively communicate your research to both scientific and non-scientific audiences. There are chapters devoted to constructing a digital footprint, dealing with the media, and influencing science policy. Guiding you throughout are a number of useful exercises that will help you to become a more effective communicator, providing a helping hand in your scientific journey to not only survive, but to prosper in the process.
Beyond war and military medicine: social factors in the development of prosthetics.
Reznick, Jeffrey S
2008-01-01
Polytrauma is an immediate outcome of current warfare, and the need to investigate this condition is equally immediate. The value of historical analysis in this endeavor should not be underestimated. It is among the best tools we have to help ensure that current research and practice involve engagement with the social contexts of polytrauma as well as with the medical science of its treatment. This special communication provides historical perspective on certain aspects of the polytraumatic condition--namely, limb loss, prosthetic rehabilitation, and community reintegration after receiving a prosthesis. It discusses the influential role of societal factors in these areas to encourage greater understanding that the care of persons with polytrauma must involve critical thinking about their relationships to and participation in society as well as their treatment by medical science. This special communication also provides historical perspective to enrich appreciation of the value of history for the field of physical medicine and rehabilitation (PM&R), the PM&R clinician, and the PM&R clinical researcher. Readers will learn that historical knowledge puts PM&R research and practice into perspective, reminding us that rehabilitation should involve critical thinking not only about medicine, but also about social roles and the participation of people in society despite physical and psychologic challenges.
Low-Latency Telerobotics from Mars Orbit: The Case for Synergy Between Science and Human Exploration
NASA Technical Reports Server (NTRS)
Valinia, A.; Garvin, J. B.; Vondrak, R.; Thronson, H.; Lester, D.; Schmidt, G.; Fong, T.; Wilcox, B.; Sellers, P.; White, N.
2012-01-01
Initial, science-directed human exploration of Mars will benefit from capabilities in which human explorers remain in orbit to control telerobotic systems on the surface (Figure 1). Low-latency, high-bandwidth telerobotics (LLT) from Mars orbit offers opportunities for what the terrestrial robotics community considers to be high-quality telepresence. Such telepresence would provide high quality sensory perception and situation awareness, and even capabilities for dexterous manipulation as required for adaptive, informed selection of scientific samples [1]. Astronauts on orbit in close communication proximity to a surface exploration site (in order to minimize communication latency) represent a capability that would extend human cognition to Mars (and potentially for other bodies such as asteroids, Venus, the Moon, etc.) without the challenges, expense, and risk of putting those humans on hazardous surfaces or within deep gravity wells. Such a strategy may be consistent with goals for a human space flight program that, are currently being developed within NASA.
Arctic research in the classroom: A teacher's experiences translated into data driven lesson plans
NASA Astrophysics Data System (ADS)
Kendrick, E. O.; Deegan, L.
2011-12-01
Incorporating research into high school science classrooms can promote critical thinking skills and provide a link between students and the scientific community. Basic science concepts become more relevant to students when taught in the context of research. A vital component of incorporating current research into classroom lessons is involving high school teachers in authentic research. The National Science Foundation sponsored Research Experience for Teachers (RET) program has inspired me to bring research to my classroom, communicate the importance of research in the classroom to other teachers and create lasting connections between students and the research community. Through my experiences as an RET at Toolik Field Station in Alaska, I have created several hands-on lessons and laboratory activities that are based on current arctic research and climate change. Each lesson uses arctic research as a theme for exemplifying basic biology concepts as well as increasing awareness of current topics such as climate change. For instance, data collected on the Kuparuk River will be incorporated into classroom activities that teach concepts such as primary production, trophic levels in a food chain and nutrient cycling within an ecosystem. Students will not only understand the biological concepts but also recognize the ecological implications of the research being conducted in the arctic. By using my experience in arctic research as a template, my students will gain a deeper understanding of the scientific process. I hope to create a crucial link of information between the science community and science education in public schools.
ERIC Educational Resources Information Center
Baker, Dale R.; Lewis, Elizabeth B.; Purzer, Senay; Watts, Nievita Bueno; Perkins, Gita; Uysal, Sibel; Wong, Sissy; Beard, Rachelle; Lang, Michael
2009-01-01
This study reports on the context and impact of the Communication in Science Inquiry Project (CISIP) professional development to promote teachers' and students' scientific literacy through the creation of science classroom discourse communities. The theoretical underpinnings of the professional development model are presented and key professional…
Vita Wright
2012-01-01
Fifty years of scientific literature on human behavior, communication and organizations offers numerous insights into the communication and use of science in the context of public land management. Using diverse but complementary social science theories and methods, I studied individual and organizational influences on the use of science by federal fire managers and...
[Have you eaten any DNA today? Science communication during Science and Technology Week in Brazil].
Possik, Patricia Abrão; Shumiski, Lívia Cantisani; Corrêa, Elisete Marcia; Maia, Roberta de Assis; Medaglia, Adriana; Mourão, Lucivana Prata de Souza; Pereira, Jairo Marques Campos; Persuhn, Darlene Camati; Rufier, Myrthes; Santos, Marcelo; Sobreira, Marise; Elblink, Marcia Triunfol
2013-11-30
During the first National Science and Technology Week held in 2004, science centers and museums, universities and schools engaged in activities with the idea of divulging science to the people. Demonstrations of the extraction of DNA from fruits were conducted in supermarkets in 11 Brazilian cities by two institutions, DNA Vai à Escola and Conselho de Informação e Biotecnologia. This article describes the formation of a national network of people interested in communicating information about genetics to the lay public and the implementation of a low-cost science communication activity in different parts of the country simultaneously. It also analyzes the impact caused by this initiative and the perceptions of those involved in its organization.
Communicating Climate Science: A Historic Look to the Future
NASA Astrophysics Data System (ADS)
Byrne, James; Andronova, Natasha; Rasch, Philip
2014-06-01
The June 2013 Chapman Conference brought together a diverse group of researchers, educators, and media for 5 days in Colorado to explore how to better communicate climate science. Multidisciplinary thinking was a key theme of the meeting. Participant expertise included urban planning, science, psychology, philosophy, history, film and documentary production, communications, journalism, public relations, and business. All helped to create a stimulating and inspirational atmosphere. The meeting program accommodated almost 100 submitted abstracts.
Brown, Ted; Boyle, Malcolm; Williams, Brett; Molloy, Andrew; McKenna, Lisa; Palermo, Claire; Molloy, Liz
2013-06-01
It is important for educators to consider the communication skills of students enrolled in health science programmes. To date, research into this area is limited, and having measures that are valid and reliable would assist educators and researchers to complete high-quality investigations. The purpose of this study was to investigate the factor structure of Communicator Styles Measure. Data from the Communicator Styles Measure completed by 860 undergraduate health science students enrolled in eight different courses at an Australian university (response rate of 59%) were analysed using principal component analysis with varimax rotation and a cluster analysis using elementary linkage analysis. The Communicator Styles Measure is a self-report scale consisting of 40 items designed to assess ten communication styles and one's perception of his/her ability to communicate. Communicator Styles Measure items loaded onto five new viable factors labelled personable, energetic, confident, open and confronting. Six items of the original 40 from the Communicator Styles Measure did not load onto any factor and were therefore considered redundant. The original factor structure proposed by the Communicator Styles Measure's author was not supported, which calls into question its construct validity. However, the five new factors identified in this study may be useful for researchers and educators when assessing the communication skills of students and practitioners. Further investigation into the construct validity and reliability of the five new Communicator Styles Measure factors is recommended. © 2012 Nordic College of Caring Science.
Cancer communication science funding trends, 2000-2012.
Ramírez, A Susana; Galica, Kasia; Blake, Kelly D; Chou, Wen-Ying Sylvia; Hesse, Bradford W
2013-12-01
Since 2000, the field of health communication has grown tremendously, owing largely to research funding by the National Cancer Institute (NCI). This study provides an overview of cancer communication science funding trends in the past decade. We conducted an analysis of communication-related grant applications submitted to the NCI in fiscal years 2000-2012. Using 103 keywords related to health communication, data were extracted from the Portfolio Management Application, a grants management application used at NCI. Automated coding described key grant characteristics such as mechanism and review study section. Manual coding determined funding across the cancer control continuum, by cancer site, and by cancer risk factors. A total of 3307 unique grant applications met initial inclusion criteria; 1013 of these were funded over the 12-year period. The top funded grant mechanisms were the R01, R21, and R03. Applications were largely investigator-initiated proposals as opposed to responses to particular funding opportunity announcements. Among funded communication research, the top risk factor being studied was tobacco, and across the cancer control continuum, cancer prevention was the most common stage investigated. NCI support of cancer communication research has been an important source of growth for health communication science over the last 12 years. The analysis' findings describe NCI's priorities in cancer communication science and suggest areas for future investments.
Internet Technology for Future Space Missions
NASA Technical Reports Server (NTRS)
Hennessy, Joseph F. (Technical Monitor); Rash, James; Casasanta, Ralph; Hogie, Keith
2002-01-01
Ongoing work at National Aeronautics and Space Administration Goddard Space Flight Center (NASA/GSFC), seeks to apply standard Internet applications and protocols to meet the technology challenge of future satellite missions. Internet protocols and technologies are under study as a future means to provide seamless dynamic communication among heterogeneous instruments, spacecraft, ground stations, constellations of spacecraft, and science investigators. The primary objective is to design and demonstrate in the laboratory the automated end-to-end transport of files in a simulated dynamic space environment using off-the-shelf, low-cost, commodity-level standard applications and protocols. The demonstrated functions and capabilities will become increasingly significant in the years to come as both earth and space science missions fly more sensors and the present labor-intensive, mission-specific techniques for processing and routing data become prohibitively. This paper describes how an IP-based communication architecture can support all existing operations concepts and how it will enable some new and complex communication and science concepts. The authors identify specific end-to-end data flows from the instruments to the control centers and scientists, and then describe how each data flow can be supported using standard Internet protocols and applications. The scenarios include normal data downlink and command uplink as well as recovery scenarios for both onboard and ground failures. The scenarios are based on an Earth orbiting spacecraft with downlink data rates from 300 Kbps to 4 Mbps. Included examples are based on designs currently being investigated for potential use by the Global Precipitation Measurement (GPM) mission.
Davies, Gail F; Greenhough, Beth J; Hobson-West, Pru; Kirk, Robert G W; Applebee, Ken; Bellingan, Laura C; Berdoy, Manuel; Buller, Henry; Cassaday, Helen J; Davies, Keith; Diefenbacher, Daniela; Druglitrø, Tone; Escobar, Maria Paula; Friese, Carrie; Herrmann, Kathrin; Hinterberger, Amy; Jarrett, Wendy J; Jayne, Kimberley; Johnson, Adam M; Johnson, Elizabeth R; Konold, Timm; Leach, Matthew C; Leonelli, Sabina; Lewis, David I; Lilley, Elliot J; Longridge, Emma R; McLeod, Carmen M; Miele, Mara; Nelson, Nicole C; Ormandy, Elisabeth H; Pallett, Helen; Poort, Lonneke; Pound, Pandora; Ramsden, Edmund; Roe, Emma; Scalway, Helen; Schrader, Astrid; Scotton, Chris J; Scudamore, Cheryl L; Smith, Jane A; Whitfield, Lucy; Wolfensohn, Sarah
2016-01-01
Improving laboratory animal science and welfare requires both new scientific research and insights from research in the humanities and social sciences. Whilst scientific research provides evidence to replace, reduce and refine procedures involving laboratory animals (the '3Rs'), work in the humanities and social sciences can help understand the social, economic and cultural processes that enhance or impede humane ways of knowing and working with laboratory animals. However, communication across these disciplinary perspectives is currently limited, and they design research programmes, generate results, engage users, and seek to influence policy in different ways. To facilitate dialogue and future research at this interface, we convened an interdisciplinary group of 45 life scientists, social scientists, humanities scholars, non-governmental organisations and policy-makers to generate a collaborative research agenda. This drew on methods employed by other agenda-setting exercises in science policy, using a collaborative and deliberative approach for the identification of research priorities. Participants were recruited from across the community, invited to submit research questions and vote on their priorities. They then met at an interactive workshop in the UK, discussed all 136 questions submitted, and collectively defined the 30 most important issues for the group. The output is a collaborative future agenda for research in the humanities and social sciences on laboratory animal science and welfare. The questions indicate a demand for new research in the humanities and social sciences to inform emerging discussions and priorities on the governance and practice of laboratory animal research, including on issues around: international harmonisation, openness and public engagement, 'cultures of care', harm-benefit analysis and the future of the 3Rs. The process outlined below underlines the value of interdisciplinary exchange for improving communication across different research cultures and identifies ways of enhancing the effectiveness of future research at the interface between the humanities, social sciences, science and science policy.
Davies, Gail F.; Greenhough, Beth J; Hobson-West, Pru; Kirk, Robert G. W.; Applebee, Ken; Bellingan, Laura C.; Berdoy, Manuel; Buller, Henry; Cassaday, Helen J.; Davies, Keith; Diefenbacher, Daniela; Druglitrø, Tone; Escobar, Maria Paula; Friese, Carrie; Herrmann, Kathrin; Hinterberger, Amy; Jarrett, Wendy J.; Jayne, Kimberley; Johnson, Adam M.; Johnson, Elizabeth R.; Konold, Timm; Leach, Matthew C.; Leonelli, Sabina; Lewis, David I.; Lilley, Elliot J.; Longridge, Emma R.; McLeod, Carmen M.; Miele, Mara; Nelson, Nicole C.; Ormandy, Elisabeth H.; Pallett, Helen; Poort, Lonneke; Pound, Pandora; Ramsden, Edmund; Roe, Emma; Scalway, Helen; Schrader, Astrid; Scotton, Chris J.; Scudamore, Cheryl L.; Smith, Jane A.; Whitfield, Lucy; Wolfensohn, Sarah
2016-01-01
Improving laboratory animal science and welfare requires both new scientific research and insights from research in the humanities and social sciences. Whilst scientific research provides evidence to replace, reduce and refine procedures involving laboratory animals (the ‘3Rs’), work in the humanities and social sciences can help understand the social, economic and cultural processes that enhance or impede humane ways of knowing and working with laboratory animals. However, communication across these disciplinary perspectives is currently limited, and they design research programmes, generate results, engage users, and seek to influence policy in different ways. To facilitate dialogue and future research at this interface, we convened an interdisciplinary group of 45 life scientists, social scientists, humanities scholars, non-governmental organisations and policy-makers to generate a collaborative research agenda. This drew on methods employed by other agenda-setting exercises in science policy, using a collaborative and deliberative approach for the identification of research priorities. Participants were recruited from across the community, invited to submit research questions and vote on their priorities. They then met at an interactive workshop in the UK, discussed all 136 questions submitted, and collectively defined the 30 most important issues for the group. The output is a collaborative future agenda for research in the humanities and social sciences on laboratory animal science and welfare. The questions indicate a demand for new research in the humanities and social sciences to inform emerging discussions and priorities on the governance and practice of laboratory animal research, including on issues around: international harmonisation, openness and public engagement, ‘cultures of care’, harm-benefit analysis and the future of the 3Rs. The process outlined below underlines the value of interdisciplinary exchange for improving communication across different research cultures and identifies ways of enhancing the effectiveness of future research at the interface between the humanities, social sciences, science and science policy. PMID:27428071
Ponzio, Nicholas M.; Alder, Janet; Nucci, Mary; Dannenfelser, David; Hilton, Holly; Linardopoulos, Nikolaos; Lutz, Carol
2018-01-01
Doctoral students in science disciplines spend countless hours learning how to conduct cutting-edge research but very little time learning to communicate the nature and significance of their science to people outside their field. To narrow this disparity, we created an unusual course titled Communicating Science for doctoral science trainees at Rutgers University. Our goal was to help students develop an advanced ability to communicate their research clearly and accurately and to emphasize its value and significance to diverse audiences. Course design included classroom instruction supplemented with improvisation, video recordings, and ample opportunity for students to practice and receive immediate, constructive feedback in a supportive environment. A multidisciplinary faculty with expertise in science, education, communication, and theater arts taught this course. PhD students came from diverse scientific disciplines, ranging from biology and chemistry to civil engineering. Students also completed a capstone project in which they worked with a professional in the academic or private sector to explore a possible career aspiration. Assessment was in the form of feedback on students’ oral and poster presentations, and written abstracts about their research. Student evaluations and comments about course format and content were mostly positive and also provided input for ways to improve the course. We discovered that the diversity of scientific backgrounds among our students enhanced their ability to learn how to communicate their science to others outside their disciplines. We are leveraging the success of our initial course offering to reach other student and faculty groups at Rutgers. PMID:29904514
The Consortium for the Valuation of Applications Benefits Linked with Earth Science (VALUABLES)
NASA Astrophysics Data System (ADS)
Kuwayama, Y.; Mabee, B.; Wulf Tregar, S.
2017-12-01
National and international organizations are placing greater emphasis on the societal and economic benefits that can be derived from applications of Earth observations, yet improvements are needed to connect to the decision processes that produce actions with direct societal benefits. There is a need to substantiate the benefits of Earth science applications in socially and economically meaningful terms in order to demonstrate return on investment and to prioritize investments across data products, modeling capabilities, and information systems. However, methods and techniques for quantifying the value proposition of Earth observations are currently not fully established. Furthermore, it has been challenging to communicate the value of these investments to audiences beyond the Earth science community. The Consortium for the Valuation of Applications Benefits Linked with Earth Science (VALUABLES), a cooperative agreement between Resources for the Future (RFF) and the National Aeronautics and Space Administration (NASA), has the goal of advancing methods for the valuation and communication of the applied benefits linked with Earth observations. The VALUABLES Consortium will focus on three pillars: (a) a research pillar that will apply existing and innovative methods to quantify the socioeconomic benefits of information from Earth observations; (b) a capacity building pillar to catalyze interdisciplinary linkages between Earth scientists and social scientists; and (c) a communications pillar that will convey the value of Earth observations to stakeholders in government, universities, the NGO community, and the interested public. In this presentation, we will describe ongoing and future activities of the VALUABLES Consortium, provide a brief overview of frameworks to quantify the socioeconomic value of Earth observations, and describe how Earth scientists and social scientist can get involved in the Consortium's activities.
77 FR 61032 - Proposal Review Panel for Computing Communication Foundations; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-05
... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Computing Communication Foundations; Notice... National Science Foundation announces the following meeting: Name: Site Visit, Proposal Panel Review for.... Type of Meeting: Partial Closed. Contact Person: Sankar Basu, National Science Foundation, 4201 Wilson...
Future Scenarios in Communications. Teacher's Guide. Preparing for Tomorrow's World.
ERIC Educational Resources Information Center
Iozzi, Louis A.; And Others
"Future Scenarios in Communications" is one of the "Preparing for Tomorrow's World" (PTW) program modules. PTW is an interdisciplinary, future-oriented program incorporating information from the sciences and social sciences and addressing societal concerns which interface science/technology/society. The program promotes…
Norms and Values in UK Science Engagement Practice
ERIC Educational Resources Information Center
Jensen, Eric; Holliman, Richard
2016-01-01
In recent years, there has been a rhetorical shift from "deficit" to "dialogue" and "engagement" in UK policy and institutional discourse about science communication. Past efforts to reduce public scientific literacy deficits have been overshadowed by calls for dialogue between scientists, science communicators and…
Keller, Vera; Penman, Leigh T I
2015-03-01
Many historians have traced the accumulation of scientific archives via communication networks. Engines for communication in early modernity have included trade, the extrapolitical Republic of Letters, religious enthusiasm, and the centralization of large emerging information states. The communication between Samuel Hartlib, John Dury, Duke Friedrich III of Gottorf-Holstein, and his key agent in England, Frederick Clodius, points to a less obvious but no less important impetus--the international negotiations of smaller states. Smaller states shaped communication networks in an international (albeit politically and religiously slanted) direction. Their networks of negotiation contributed to the internationalization of emerging science through a political and religious concept of shared interest. While interest has been central to social studies of science, interest itself has not often been historicized within the history of science. This case study demonstrates the co-production of science and society by tracing how period concepts of interest made science international.
Global Oral Health Inequalities
Pitts, N.; Amaechi, B.; Niederman, R.; Acevedo, A.-M.; Vianna, R.; Ganss, C.; Ismail, A.; Honkala, E.
2011-01-01
The IADR Global Oral Health Inequalities Task Group on Dental Caries has synthesized current evidence and opinion to identify a five-year implementation and research agenda which should lead to improvements in global oral health, with particular reference to the implementation of current best evidence as well as integrated action to reduce caries and health inequalities between and within countries. The Group determined that research should: integrate health and oral health wherever possible, using common risk factors; be able to respond to and influence international developments in health, healthcare, and health payment systems as well as dental prevention and materials; and exploit the potential for novel funding partnerships with industry and foundations. More effective communication between and among the basic science, clinical science, and health promotion/public health research communities is needed. Translation of research into policy and practice should be a priority for all. Both community and individual interventions need tailoring to achieve a more equal and person-centered preventive focus and reduce any social gradient in health. Recommendations are made for both clinical and public health implementation of existing research and for caries-related research agendas in clinical science, health promotion/public health, and basic science. PMID:21490233
Global oral health inequalities: dental caries task group--research agenda.
Pitts, N; Amaechi, B; Niederman, R; Acevedo, A-M; Vianna, R; Ganss, C; Ismail, A; Honkala, E
2011-05-01
The IADR Global Oral Health Inequalities Task Group on Dental Caries has synthesized current evidence and opinion to identify a five-year implementation and research agenda which should lead to improvements in global oral health, with particular reference to the implementation of current best evidence as well as integrated action to reduce caries and health inequalities between and within countries. The Group determined that research should: integrate health and oral health wherever possible, using common risk factors; be able to respond to and influence international developments in health, healthcare, and health payment systems as well as dental prevention and materials; and exploit the potential for novel funding partnerships with industry and foundations. More effective communication between and among the basic science, clinical science, and health promotion/public health research communities is needed. Translation of research into policy and practice should be a priority for all. Both community and individual interventions need tailoring to achieve a more equal and person-centered preventive focus and reduce any social gradient in health. Recommendations are made for both clinical and public health implementation of existing research and for caries-related research agendas in clinical science, health promotion/public health, and basic science.
U.S. Congress Considers Hurricane Research Bills
NASA Astrophysics Data System (ADS)
Von Holle, Kate
2007-07-01
Legislation currently being considered by both the U.S. House and Senate would create a National Hurricane Research Initiative. The legislation was developed in response to a January 2007 U.S. National Science Board report,"Hurricane warning: The critical need for a National Hurricane Research Initiative." Both bills require the hurricane research initiative to set objectives in order to make recommendations to the National Science Board and to assemble U.S. science and engineering expertise through an interagency effort designed to bring together the latest research focusing on infrastructure, forecasting, and mitigating impacts on coastal populations. The bills also require the initiative to set objectives for making grants for hurricane research on a variety of topics, ranging from hurricane dynamics to improving emergency communications networks. Coordination of the interagency effort would fall under the jurisdiction of the White House Office of Science and Technology Policy.
Building a bioinformatics community of practice through library education programs.
Moore, Margaret E; Vaughan, K T L; Hayes, Barrie E
2004-01-01
This paper addresses the following questions:What makes the community of practice concept an intriguing framework for developing library services for bioinformatics? What is the campus context and setting? What has been the Health Sciences Library's role in bioinformatics at the University of North Carolina (UNC) Chapel Hill? What are the Health Sciences Library's goals? What services are currently offered? How will these services be evaluated and developed? How can libraries demonstrate their value? Providing library services for an emerging community such as bioinformatics and computational biology presents special challenges for libraries including understanding needs, defining and communicating the library's role, building relationships within the community, preparing staff, and securing funding. Like many academic health sciences libraries, the University of North Carolina (UNC) at Chapel Hill Health Sciences Library is addressing these challenges in the context of its overall mission and goals.
A model of professional development for urban teachers
NASA Astrophysics Data System (ADS)
Narasimhan, C.
Over the past five years, DePaul University has established a network of urban teachers who are focused on linking the learning of fundamental concepts of physics, chemistry, and biology to relevant and current discoveries in space science. One component of this effort has been a series of annual space science symposia for Chicago-area teachers. These symposia are mixtures of space science presentations by national and local scientists and discussions in areas such as curriculum and professional development, NASA resources, and communication. Since the first symposium, planning has been done in partnership with a small group of teachers who have moved into leadership positions in advancing space science in the Chicago area. This presentation will describe the evolution of the annual symposium as a professional development activity and give the results of a recent assessment project designed to measure the impact of these symposia on Chicago teachers and their classroom practices.
Turning Participatory Microbiome Research into Usable Data: Lessons from the American Gut Project
Debelius, Justine W.; Vázquez-Baeza, Yoshiki; McDonald, Daniel; Xu, Zhenjiang; Wolfe, Elaine; Knight, Rob
2016-01-01
The role of the human microbiome is the subject of continued investigation resulting in increased understanding. However, current microbiome research has only scratched the surface of the variety of healthy microbiomes. Public participation in science through crowdsourcing and crowdfunding microbiome research provides a novel opportunity for both participants and investigators. However, turning participatory science into publishable data can be challenging. Clear communication with the participant base and among researchers can ameliorate some challenges. Three major aspects need to be considered: recruitment and ongoing interaction, sample collection, and data analysis. Usable data can be maximized through diligent participant interaction, careful survey design, and maintaining an open source pipeline. While participatory science will complement rather than replace traditional avenues, it presents new opportunities for studies in the microbiome and beyond. PMID:27047589
Turning Participatory Microbiome Research into Usable Data: Lessons from the American Gut Project.
Debelius, Justine W; Vázquez-Baeza, Yoshiki; McDonald, Daniel; Xu, Zhenjiang; Wolfe, Elaine; Knight, Rob
2016-03-01
The role of the human microbiome is the subject of continued investigation resulting in increased understanding. However, current microbiome research has only scratched the surface of the variety of healthy microbiomes. Public participation in science through crowdsourcing and crowdfunding microbiome research provides a novel opportunity for both participants and investigators. However, turning participatory science into publishable data can be challenging. Clear communication with the participant base and among researchers can ameliorate some challenges. Three major aspects need to be considered: recruitment and ongoing interaction, sample collection, and data analysis. Usable data can be maximized through diligent participant interaction, careful survey design, and maintaining an open source pipeline. While participatory science will complement rather than replace traditional avenues, it presents new opportunities for studies in the microbiome and beyond.
The Climate Science Rapid Response Team - A Model for Science Communication
NASA Astrophysics Data System (ADS)
Mandia, S. A.; Abraham, J. A.; Weymann, R.; Ashley, M.
2011-12-01
In recent years, there have been many independent initiatives which have commenced with the goal of improving communication between scientists and the larger public. These initiatives have often been motivated by the recognition that concerns amongst scientists related to the pending threats of climate change are not universally shared by the general public. Multiple studies have conclusively demonstrated that while the vast majority of climate scientists are in broad agreement that human-emitted greenhouse gases are causing increases in the Earth's temperature, the larger public is divided. Often, this divide mirrors divides on other political, societal, economic, or scientific issues. One unique approach to improve the conveyance of the state of climate-change science to the public is reflected by a self-organized effort of scientists themselves. This approach has lead to the formation of the Climate Science Rapid Response Team (CSRRT). The mission of this organization is to provide accurate and rapid information on any climate-science topic to general media and governmental inquirers. The CSRRT currently consists of approximately 135 world-class climate scientists whose members cover the sub-disciplines of climate change and include not only the natural sciences but also economics and policy. Since its formation, the CSRRT has fielded approximately four inquires each week from institutions that include The Associated Press, ABC, CBS, CNN, BBC, New York Times, Time of London, National Public Radio, The Guardian, The Washington Post, the Los Angeles Times, the Chicago Tribune, and the U.S. Congress, among others. Members of the CSRRT have been asked to provide quotations for news stories; they have also been asked to give radio, television, or print-media interviews. Some members of the CSRRT have undergone media training to help encourage the use of jargon-free language so that clear communication with the broader public can be more successful. The response from interactions with the media sources has been overwhelmingly affirmative. The CSRRT has become recognized as a high-quality service that provides accurate science information in a very rapid manner. The CSRRT encourages AGU climate scientists who wish to participate in CSRRT to contact us, and AGU members to inform their contacts in the media about our service.
The Clear Creek Envirohydrologic Observatory: From Vision Toward Reality
NASA Astrophysics Data System (ADS)
Just, C.; Muste, M.; Kruger, A.
2007-12-01
As the vision of a fully-functional Clear Creek Envirohydrologic Observatory comes closer to reality, the opportunities for significant watershed science advances in the near future become more apparent. As a starting point to approaching this vision, we focused on creating a working example of cyberinfrastructure in the hydrologic and environmental sciences. The system will integrate a broad range of technologies and ideas: wired and wireless sensors, low power wireless communication, embedded microcontrollers, commodity cellular networks, the internet, unattended quality assurance, metadata, relational databases, machine-to-machine communication, interfaces to hydrologic and environmental models, feedback, and external inputs. Hardware: An accomplishment to date is "in-house" developed sensor networking electronics to compliment commercially available communications. The first of these networkable sensors are dielectric soil moisture probes that are arrayed and equipped with wireless connectivity for communications. Commercially available data logging and telemetry-enabled systems deployed at the Clear Creek testbed include a Campbell Scientific CR1000 datalogger, a Redwing 100 cellular modem, a YA Series yagi antenna, a NP12 rechargeable battery, and a BP SX20U solar panel. This networking equipment has been coupled with Hach DS5X water quality sondes, DTS-12 turbidity probes and MicroLAB nutrient analyzers. Software: Our existing data model is an Arc Hydro-based geodatabase customized with applications for extraction and population of the database with third party data. The following third party data are acquired automatically and in real time into the Arc Hydro customized database: 1) geophysical data: 10m DEM and soil grids, soils; 2) land use/land cover data; and 3) eco-hydrological: radar-based rainfall estimates, stream gage, streamlines, and water quality data. A new processing software for data analysis of Acoustic Doppler Current Profilers (ADCP) measurements has been finalized. The software package provides mean flow field and turbulence characteristics obtained by operating the ADCP at fixed points or using the moving-boat approach. Current Work: The current development work is focused on extracting and populating the Clear Creek database with in-situ measurements acquired and transmitted in real time with sensors deployed in the Clear Creek watershed.
NASA Astrophysics Data System (ADS)
Cook, J.
2016-12-01
MOOCs (Massive Open Online Courses) are a powerful tool, making educational content available to a large and diverse audience. The MOOC "Making Sense of Climate Science Denial" applied science communication principles derived from cognitive psychology and misconception-based learning in the design of video lectures covering many aspects of climate change. As well as teaching fundamental climate science, the course also presented psychological research into climate science denial, teaching students the most effective techniques for responding to misinformation. A number of enrolled students were secondary and tertiary educators, who adopted the course content in their own classes as well as adapted their teaching techniques based on the science communication principles presented in the lectures. I will outline how we integrated cognitive psychology, educational research and climate science in an interdisciplinary online course that has had over 25,000 enrolments from over 160 countries.
Utilizing the ISS Mission as a Testbed to Develop Cognitive Communications Systems
NASA Technical Reports Server (NTRS)
Jackson, Dan
2016-01-01
The ISS provides an excellent opportunity for pioneering artificial intelligence software to meet the challenges of real-time communications (comm) link management. This opportunity empowers the ISS Program to forge a testbed for developing cognitive communications systems for the benefit of the ISS mission, manned Low Earth Orbit (LEO) science programs and future planetary exploration programs. In November, 1998, the Flight Operations Directorate (FOD) started the ISS Antenna Manager (IAM) project to develop a single processor supporting multiple comm satellite tracking for two different antenna systems. Further, the processor was developed to be highly adaptable as it supported the ISS mission through all assembly stages. The ISS mission mandated communications specialists with complete knowledge of when the ISS was about to lose or gain comm link service. The current specialty mandated cognizance of large sun-tracking solar arrays and thermal management panels in addition to the highly-dynamic satellite service schedules and rise/set tables. This mission requirement makes the ISS the ideal communications management analogue for future LEO space station and long-duration planetary exploration missions. Future missions, with their precision-pointed, dynamic, laser-based comm links, require complete autonomy for managing high-data rate communications systems. Development of cognitive communications management systems that permit any crew member or payload science specialist, regardless of experience level, to control communications is one of the greater benefits the ISS can offer new space exploration programs. The IAM project met a new mission requirement never previously levied against US space-born communications systems management: process and display the orientation of large solar arrays and thermal control panels based on real-time joint angle telemetry. However, IAM leaves the actual communications availability assessment to human judgement, which introduces unwanted variability because each specialist has a different core of experience with comm link performance. Because the ISS utilizes two different frequency bands, dynamic structure can be occasionally translucent at one frequency while it can completely interdict service at the other frequency. The impact of articulating structure on the comm link can depend on its orientation at the time it impinges on the link. It can become easy for a human specialist to cross-associate experience at one frequency with experience at the other frequency. Additionally, the specialist's experience is incremental, occurring one nine-hour shift at a time. Only the IAM processor experiences the complete 24x7x365 communications link performance for both communications links but, it has no "learning capability." If the IAM processor could be endowed with a cognitive ability to remember past structure-induced comm link outages, based on its knowledge of the ISS position, attitude, communications gear, array joint angles and tracking accuracy, it could convey such experience to the human operator. It could also use its learned communications link behaviors to accurately convey the availability of future communications sessions. Further, the tool could remember how accurately or inaccurately it predicted availability and correct future predictions based on past performance. The IAM tool could learn frequency-specific impacts due to spacecraft structures and pass that information along as "experience." Such development would provide a single artificial intelligence processor that could provide two different experience bases. If it also "knew" the satellite service schedule, it could distinguish structure blockage from schedule or planet blockage and then quickly switch to another satellite. Alternatively, just as a human operator could judge, a cognizant comm system based on the IAM model could "know" that the blockage is not going to last very long and continue tracking a comm satellite, waiting for it to track away from structure. Ultimately, once this capability was fully developed and tested in the Mission Control Center, it could be transferred on-orbit to support development of operations concepts that include more advanced cognitive communications systems. Future applications of this capability are easily foreseen because even more dynamic satellite constellations with more nodes and greater capability are coming. Currently, the ISS fully employs its high-data-rate return link for harvesting payload science. In the coming months, it will double that data rate and is forecast to fully utilize that capability. Already there is talk of an upgrade that quadruples the current data rate allocated to ISS payload science before the end of its mission and laser comm links have already been tested from the ISS. Every data rate upgrade mandates more complicated and sensitive communications equipment which implies greater expertise invested in the human operator. Future on-orbit cognizant comm systems will be needed to meet greater performance demands aboard larger, far more complicated spacecraft. In the LEO environment, the old-style one-satellite-per-spacecraft operations concept will give way to a new concept of a single customer spacecraft simultaneously using multiple comm satellites. Much more highly-dynamic manned LEO missions with decades of crew members potentially increase the demand for communications link performance. A cognizant on-board communications system will meet advanced communications demands from future LEO missions and future planetary missions. The ISS has fledgling components of future exploration programs, both LEO and planetary. Further, the Flight Operations Directorate, through the IAM project, has already begun to develop a communications management system that attempts to solve advanced problems ideally represented by dynamic structure impacting scheduled satellite service. With an earnest project to integrate artificial intelligence into the IAM processor, the ISS Program could develop a cognizant communications system that could be adapted and transferred to future on-orbit avionics designs.
SeaQuaKE: Sea-Optimized Quantum Key Exchange
2014-08-01
which is led by Applied Communications Sciences under the ONR Free Space Optical Quantum Key Distribution Special Notice (13-SN-0004 under ONRBAA13...aerosol model scenarios. 15. SUBJECT TERMS Quantum communications, free - space optical communications 16. SECURITY CLASSIFICATION OF: 17...SeaQuaKE) project, which is led by Applied Communications Sciences under the ONR Free Space Optical Quantum Key Distribution Special Notice (13-SN
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.
1995-01-01
Results are presented of a survey of aerospace engineering and science students conducted in India, Japan, Russia, the United Kingdom, and the United States. The similarities and differences among aerospace engineering and science students from the five countries are examined in the context of two general aspects of educational experience. First, the extent to which students differ regarding the factors that led to the choice of a career in aerospace, their current levels of satisfaction with that choice, and career-related goals and objectives is considered. Second, the importance of certain communications/information-use skills for professional use is examined, as well as the frequency of use and importance of specific information sources and products to meet students' educational needs. Overall, the students who participated in this research remain relatively happy with the choice of a career in aerospace engineering, despite pessimism in some quarters about the future of the industry. Regardless of national identity, aerospace engineering and science students appear to share a similar vision of the profession in terms of their career goals and aspirations. The data also indicate that aerospace engineering and science students are well aware of the importance of communications/information-use skills to professional success and that competency in these skills will help them to be productive members of their profession. Collectively, all of the students appear to use and value similar information sources and products, although some differences appear by country.
45 CFR 1706.160 - Communications.
Code of Federal Regulations, 2010 CFR
2010-10-01
... INFORMATION SCIENCE ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY NATIONAL COMMISSION ON LIBRARIES AND INFORMATION SCIENCE § 1706.160 Communications. (a) The...
NASA Astrophysics Data System (ADS)
Wein, A. M.; Potter, S.; Becker, J.; Doyle, E. E.; Jones, J. L.
2015-12-01
While communication products are developed for monitoring and forecasting hazard events, less thought may have been given to crisis and risk communication plans. During larger (and rarer) events responsible science agencies may find themselves facing new and intensified demands for information and unprepared for effectively resourcing communications. In a study of the communication of aftershock information during the 2010-12 Canterbury Earthquake Sequence (New Zealand), issues are identified and implications for communication strategy noted. Communication issues during the responses included reliability and timeliness of communication channels for immediate and short decision time frames; access to scientists by those who needed information; unfamiliar emergency management frameworks; information needs of multiple audiences, audience readiness to use the information; and how best to convey empathy during traumatic events and refer to other information sources about what to do and how to cope. Other science communication challenges included meeting an increased demand for earthquake education, getting attention on aftershock forecasts; responding to rumor management; supporting uptake of information by critical infrastructure and government and for the application of scientific information in complex societal decisions; dealing with repetitive information requests; addressing diverse needs of multiple audiences for scientific information; and coordinating communications within and outside the science domain. For a science agency, a communication strategy would consider training scientists in communication, establishing relationships with university scientists and other disaster communication roles, coordinating messages, prioritizing audiences, deliberating forecasts with community leaders, identifying user needs and familiarizing them with the products ahead of time, and practicing the delivery and use of information via scenario planning and exercises.
NASA Technical Reports Server (NTRS)
Wyatt, E. Jay; Ely, Todd A.; Klimesh, Matthew A.; Krupiarz, Christopher J.
2006-01-01
There are three primary drivers behind current investments in telecommunications information technology and navigation. One is finding ways to maximize the volume of science data returned from missions since i nstrument data generation often exceeds communication bandwidth. Another is to provide the necessary technology to enable networked spacecraft around Mars. The third driver is to enable more precise landing so in-situ vehicles can be placed in the more scientifically interesting regions. This paper describes the current NASA investments in these areas funded through the NASA Mars Technology Base Program NRA.
Using metaphor to translate the science of resilience and developmental outcomes.
Kendall-Taylor, Nathaniel; Haydon, Abigail
2016-07-01
Developmental scientists have used a variety of linguistic devices to communicate the science of resilience, but their effectiveness at improving understanding and expanding support for evidence-based social policies has not been empirically tested. We describe the process of developing, testing, and refining an Explanatory Metaphor to communicate the science of resilience to the public and policymakers. We argue that public understanding is key to bridging the research-to-practice divide and that communications is a social science endeavor in its own right that requires careful empirical research. © The Author(s) 2014.
Report of the Defense Science Board Task Force on Strategic Communication
2008-01-01
America’s interests and values. This view of the Defense Science Board remains unchanged in this, its third study on the topic of strategic...Science Board’s third report in a decade on strategic communication. The world has changed and so have our views. We remain steadfast in our belief that...Despite Progress, Much Remains to be Done In 2004, this task force found “tactical achievements” in strategic communication, notably in public affairs
78 FR 69138 - Proposal Review Panel for Computing Communication Foundations; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-18
... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Computing Communication Foundations; Notice... National Science Foundation announces the following meeting: Name: Site Visit, Proposal Panel Review for Science and Technology Centers--Integrative Partnerships ( 1192). Date/Time: December 3, 2013, 6:30 p.m.-8...
77 FR 70483 - Proposal Review Panel for Computing Communication Foundations; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-26
... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Computing Communication Foundations; Notice... National Science Foundation announces the following meeting: Name: Site Visit, Proposal Panel Review for Science and Technology Centers--Integrative Partnerships ( 1192). Date/Time: December 3, 2012, 6:30 p.m.-8...
Secularization and Popularization.
ERIC Educational Resources Information Center
Logan, Robert A.
Scientists and science writers are often thought to be at odds about the goals and strategies of communicating scientific information to the public. However, a value judgment underlies the "raison d' etre" for scientific communications and links the diffusion of information about science with an ensuing public trust for science. Scientists and…
Understanding Science: Studies of Communication and Information.
ERIC Educational Resources Information Center
Griffith, Belver C.
1989-01-01
Sets bibliometrics in the context of the sociology of science by tracing the influences of Robert Merton, Thomas Kuhn, and D. J. Price. Explores the discovery of strong empirical relationships among measured communication and information that capture important features of social process and cognitive change in science. (SR)
Communication of Science Advice to Government.
Hutchings, Jeffrey A; Stenseth, Nils Chr
2016-01-01
There are various ways to construct good processes for soliciting and understanding science. Our critique of advisory models finds that a well-supported chief science advisor (CSA) best ensures the provision of deliberative, informal, and emergency advice to government. Alternatively, bias, increasingly manifest as science-based advocacy, can hinder communication, diminish credibility, and distort scientific evidence. Copyright © 2015 Elsevier Ltd. All rights reserved.
Vita Wright
2012-01-01
Fifty years of scientific literature on human behavior, communication and organizations offers numerous insights into the communication and use of science in the context of public land management. Using diverse but complementary social science theories and methods, I studied individual and organizational influences on the use of science by federal fire managers and...
ERIC Educational Resources Information Center
Skinner, Nigel C.; Preece, Peter F. W.
2003-01-01
Describes the AstraZeneca-Exeter Science through Telematics (AZEST) project and reports that the Internet has much potential as a communication channel for the provision and discussion of INSET materials for primary science in the UK. Evaluates websites dedicated to primary science at the local level, concept mapping for stimulating discussion,…
Gas-grain simulation facility: Aerosol and particle research in microgravity
NASA Technical Reports Server (NTRS)
Huntington, Judith L. (Editor); Greenwald, Ken (Editor); Rogers, C. Fred (Editor); Stratton, David M. (Editor); Simmons, Brenda (Editor); Fonda, Mark L. (Editor)
1994-01-01
This document reports on the proceedings of the Gas-Grain Simulation Facility (GGSF) Science Workshop which was co-hosted by NASA Ames Research Center and Desert Research Institute, University of Nevada System, and held in Las Vegas, Nevada, on May 4-6, 1992. The intent of the workshop was to bring together the science community of potential GGSF experimenters, Science Working Group and staff members, and the Phase A contractor to review the Phase A design with the science participants and to facilitate communication between the science community and the hardware developers. The purpose of this report is to document the information disseminated at the workshop, to record the participants' review of the Phase A GGSF design concept and the current science and technical requirements for the Facility, and to respond to any questions or concerns that were raised at the Workshop. Recommendations for the future based on numerous discussions with the participants are documented, as well as science presentations and poster sessions that were given at the Workshop and a summary of 21 candidate experiments.
Neuhauser, Linda; Kreps, Gary L
2014-12-01
Traditional communication theory and research methods provide valuable guidance about designing and evaluating health communication programs. However, efforts to use health communication programs to educate, motivate, and support people to adopt healthy behaviors often fail to meet the desired goals. One reason for this failure is that health promotion issues are complex, changeable, and highly related to the specific needs and contexts of the intended audiences. It is a daunting challenge to effectively influence health behaviors, particularly culturally learned and reinforced behaviors concerning lifestyle factors related to diet, exercise, and substance (such as alcohol and tobacco) use. Too often, program development and evaluation are not adequately linked to provide rapid feedback to health communication program developers so that important revisions can be made to design the most relevant and personally motivating health communication programs for specific audiences. Design science theory and methods commonly used in engineering, computer science, and other fields can address such program and evaluation weaknesses. Design science researchers study human-created programs using tightly connected build-and-evaluate loops in which they use intensive participatory methods to understand problems and develop solutions concurrently and throughout the duration of the program. Such thinking and strategies are especially relevant to address complex health communication issues. In this article, the authors explore the history, scientific foundation, methods, and applications of design science and its potential to enhance health communication programs and their evaluation.
A Burger, a Beer, and a Side of Science
NASA Astrophysics Data System (ADS)
Wiehe, B. R.; Landsberg, R. H.; Wyatt, R. J.; Turner, M. S.
2008-11-01
Science cafés (a.k.a. café scientifiques) engage unconventional adult audiences and help researchers hone their communication skills in a relaxed and fun setting. Typically held in restaurants and pubs, science cafés provide a comfortable place for the public to speak with a scientist. National and local evaluations of the café format indicate that café are an effective way to engage adult audiences (especially non-scientists). Continued media coverage also demonstrates that something about them captures the public's imagination. This paper is based on an interactive oral presentation about organizing, presenting, and partnering with science café to bring IYA themes (and other current research) directly to new audiences. Real world examples from experienced café organizers and presenters provide an overview of what a science café is, how to start one, and how to use the format to draw attention to astronomy topics. The discussion includes suggestions for tapping into the existing national and international community of cafés (there are more than 60 in the U.S. alone), and information about free outreach resources. Break-out exercises in the original oral presentation were designed to help prepare participants to: find a suitable venue, advertise, work with café speakers, and foster the inclusive conversation that is the hallmark of a science café. Participants also learned about the impacts that can be expected from a science café, including benefits to audiences, café presenters, and hosting organizations. The overall goal of the original oral presentation was to stimulate a discussion about strategies for facilitating face-to-face communication between scientists and lay audiences.
NASA Technical Reports Server (NTRS)
Adams, Mitzi L.; Gallagher, D. L.; Whitt, A.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
For the last several years the Science Directorate at Marshall Space Flight Center has carried out a diverse program of Internet-based science communication. The program includes extended stories about NASA science, a curriculum resource for teachers tied to national education standards, on-line activities for students, and webcasts of real-time events. The focus of sharing real-time science related events has been to involve and excite students and the public about science. Events have involved meteor showers, solar eclipses, natural very low frequency radio emissions, and amateur balloon flights. In some cases broadcasts accommodate active feedback and questions from Internet participants. Panel participation will be used to communicate the problems and lessons learned from these activities over the last three years.
Dein, Simon; Cook, Christopher C H
2015-02-07
The agentive aspects of communicative religious experiences remain somewhat neglected in the social sciences literature. There is a need for phenomenological descriptions of these experiences and the ways in which they differ from culturally defined psychopathological states. In this semi-structured interview study, eight congregants attending an evangelical church in London were asked to describe their experiences of God communicating with them. Communications from God were related to current events rather than to the prediction of future events. These communications were received as thoughts and do not generally reveal metaphysical insights, but rather they relate to the mundane world. They provided direction, consolation and empowerment in the lives of those receiving them. Individuals recounted that on occasion God sometimes speaks audibly, or accompanied by supernatural phenomena, but in the vast majority of cases, the way God speaks is through thoughts or impressions. In all instances, agency is maintained, individuals can choose to obey the thoughts/voices or not. The findings are discussed in relation to externalisation of agency and the phenomenon of thought insertion in schizophrenia.
Dein, Simon; Cook, Christopher C.H.
2015-01-01
The agentive aspects of communicative religious experiences remain somewhat neglected in the social sciences literature. There is a need for phenomenological descriptions of these experiences and the ways in which they differ from culturally defined psychopathological states. In this semi-structured interview study, eight congregants attending an evangelical church in London were asked to describe their experiences of God communicating with them. Communications from God were related to current events rather than to the prediction of future events. These communications were received as thoughts and do not generally reveal metaphysical insights, but rather they relate to the mundane world. They provided direction, consolation and empowerment in the lives of those receiving them. Individuals recounted that on occasion God sometimes speaks audibly, or accompanied by supernatural phenomena, but in the vast majority of cases, the way God speaks is through thoughts or impressions. In all instances, agency is maintained, individuals can choose to obey the thoughts/voices or not. The findings are discussed in relation to externalisation of agency and the phenomenon of thought insertion in schizophrenia. PMID:25999778
NASA Astrophysics Data System (ADS)
Rösel, Anja; Pavlov, Alexey K.; Granskog, Mats A.; Gerland, Sebastian; Meyer, Amelie; Hudson, Stephen R.; King, Jennifer; Itkin, Polona; Cohen, Lana; Dodd, Paul; de Steur, Laura
2016-04-01
The findings of climate science need to be communicated to the general public. Researchers are encouraged to do so by journalists, policy-makers and funding agencies and many of us want to become better science communicators. But how can we do this at the lab or small research group level without specifically allocated resources in terms of funds and communication officers? And how do we sustain communication on a regular basis and not just during the limited lifetime of a specific project? One of the solutions is to use the emerging platform of social media, which has become a powerful and inexpensive tool for communicating science to different target audiences. Many research institutions and individual researchers are already advanced users of social media, but small research groups and labs remain underrepresented. The group of oceanographers, sea ice and atmospheric scientists at the Norwegian Polar Institute (@OceanSeaIceNPI( will share our experiences developing and maintaining researcher-driven outreach for over a year through Instagram, Twitter and Facebook. We will present our solutions to some of the practical considerations such as identifying key target groups, defining the framework for sharing responsibilities and interactions within the research group, and choosing an up-to-date and appropriate social medium. By sharing this information, we aim to inspire and assist other research groups and labs in conducting their own effective science communication.
Current nanoscience and nanoengineering at the Center for Nanoscale Science and Engineering
NASA Astrophysics Data System (ADS)
Hermann, A. M.; Singh, R. S.; Singh, V. P.
2006-07-01
The Center for Nanoscale Science and Engineering (CeNSE) at the
Communicating the Excitement of Science
Turner, Michael
2017-12-09
In this talk (which will include some exciting science) I will discuss some lessons I have learned about communicating science to scientists (in my own field and others), students, the public, the press, and policy makers in giving 500+ colloquia and seminars, 300+ public lectures and many informal presentations (including cocktail parties).
Advice and Frequently Asked Questions (FAQs) for Citizen-Science Environmental Health Assessments
Barzyk, Timothy M.; Huang, Hongtai; Williams, Ronald; Kaufman, Amanda; Essoka, Jonathan
2018-01-01
Citizen science provides quantitative results to support environmental health assessments (EHAs), but standardized approaches do not currently exist to translate findings into actionable solutions. The emergence of low-cost portable sensor technologies and proliferation of publicly available datasets provides unparalleled access to supporting evidence; yet data collection, analysis, interpretation, visualization, and communication are subjective approaches that must be tailored to a decision-making audience capable of improving environmental health. A decade of collaborative efforts and two citizen science projects contributed to three lessons learned and a set of frequently asked questions (FAQs) that address the complexities of environmental health and interpersonal relations often encountered in citizen science EHAs. Each project followed a structured step-by-step process in order to compare and contrast methods and approaches. These lessons and FAQs provide advice to translate citizen science research into actionable solutions in the context of a diverse range of environmental health issues and local stakeholders. PMID:29751612
TravelingGeologist: an online platform for dissemination of earth science to the masses
NASA Astrophysics Data System (ADS)
Spencer, C. J.; Hoiland, C. W.; Gunderson, K. L.
2016-12-01
To more effectively inspire the next generation of scientists, the earth science community's public outreach efforts must adapt to the changing technological and informational ecosystems in which young people interact online (e.g. blogs, social media, viral marketing, web-based education, etc.). Although there are currently a number of successful individual and institutional efforts to reach potential students through web-based outlets, many of these efforts fail to connect primary researchers directly to a lay audience, relying instead on intermediaries that tend to dilute the recruiting impact of "producer-to-consumer" interactions. Few, if any of these efforts appear to have reached a critical mass of contributing authors and subscribed followers; and there are few available detailed metrics on growth trajectories, impact, or lay reach. We offer data from the TravelingGeologist as a case study in successful direct-to-consumer science outreach and recruitment. The TravelingGeologist is a non-profit, web-based platform on which earth scientists share their experiences in the field with the expressed purpose of attracting and inspiring a new generation of scientists. The TravelingGeologist website is supplemented by various social media platforms that market the content on the main site. Because TravelingGeologist accepts contributions from a variety of earth scientists, it also provides an arena whereon research summaries and vignettes can be shared with the large lay- and expert audience. This gives contributing authors an additional opportunity to demonstrate to government institutions that fund their research projects that they are engaging in efforts to communicate their results to the wider public. Beyond the ability to inspire new students and communicate science to the general public, it is our intent that TravelingGeologist will foster communication and promote collaboration within the earth science community. We have demonstrated that through well-designed web-based media in a wide array of social media markets, earth scientists can disseminate their research to the public and inspire the next generation of earth scientists.
Science Hybrid Orbiter and Lunar Relay (SCHOLR) Architecture and Design
NASA Technical Reports Server (NTRS)
Trase, Kathryn K.; Barch, Rachel A.; Chaney, Ryan E.; Coulter, Rachel A.; Gao, Hui; Huynh, David P.; Iaconis, Nicholas A.; MacMillan, Todd S.; Pitner, Gregory M.; Schwab, Devin T.
2011-01-01
Considered both a stepping-stone to deep space and a key to unlocking the mysteries of planetary formation, the Moon offers a unique opportunity for scientific study. Robotic precursor missions are being developed to improve technology and enable new approaches to exploration. Robots, lunar landers, and satellites play significant roles in advancing science and technologies, offering close range and in-situ observations. Science and exploration data gathered from these nodes and a lunar science satellite is intended to support future human expeditions and facilitate future utilization of lunar resources. To attain a global view of lunar science, the nodes will be distributed over the lunar surface, including locations on the far side of the Moon. Given that nodes on the lunar far side do not have direct line-of-sight for Earth communications, the planned presence of such nodes creates the need for a lunar communications relay satellite. Since the communications relay capability would only be required for a small portion of the satellite s orbit, it may be possible to include communication relay components on a science spacecraft. Furthermore, an integrated satellite has the potential to reduce lunar surface mission costs. A SCience Hybrid Orbiter and Lunar Relay (SCHOLR) is proposed to accomplish scientific goals while also supporting the communications needs of landers on the far side of the Moon. User needs and design drivers for the system were derived from the anticipated needs of future robotic and lander missions. Based on these drivers and user requirements, accommodations for communications payload aboard a science spacecraft were developed. A team of interns identified and compared possible SCHOLR architectures. The final SCHOLR architecture was analyzed in terms of orbiter lifetime, lunar surface coverage, size, mass, power, and communications data rates. This paper presents the driving requirements, operational concept, and architecture views for SCHOLR within a lunar surface nodal network. Orbital and bidirectional link analysis, between lunar nodes, orbiter, and Earth, as well as a conceptual design for the spacecraft are also presented
Political Science and Speech Communication--A Team Approach to Teaching Political Communication.
ERIC Educational Resources Information Center
Blatt, Stephen J.; Fogel, Norman
This paper proposes making speech communication more interdisciplinary and, in particular, combining political science and speech in a team-taught course in election campaigning. The goals, materials, activities, and plan of such a course are discussed. The goals include: (1) gaining new insights into the process of contemporary campaigns and…
Enabling Extreme Scale Earth Science Applications at the Oak Ridge Leadership Computing Facility
NASA Astrophysics Data System (ADS)
Anantharaj, V. G.; Mozdzynski, G.; Hamrud, M.; Deconinck, W.; Smith, L.; Hack, J.
2014-12-01
The Oak Ridge Leadership Facility (OLCF), established at the Oak Ridge National Laboratory (ORNL) under the auspices of the U.S. Department of Energy (DOE), welcomes investigators from universities, government agencies, national laboratories and industry who are prepared to perform breakthrough research across a broad domain of scientific disciplines, including earth and space sciences. Titan, the OLCF flagship system, is currently listed as #2 in the Top500 list of supercomputers in the world, and the largest available for open science. The computational resources are allocated primarily via the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program, sponsored by the U.S. DOE Office of Science. In 2014, over 2.25 billion core hours on Titan were awarded via INCITE projects., including 14% of the allocation toward earth sciences. The INCITE competition is also open to research scientists based outside the USA. In fact, international research projects account for 12% of the INCITE awards in 2014. The INCITE scientific review panel also includes 20% participation from international experts. Recent accomplishments in earth sciences at OLCF include the world's first continuous simulation of 21,000 years of earth's climate history (2009); and an unprecedented simulation of a magnitude 8 earthquake over 125 sq. miles. One of the ongoing international projects involves scaling the ECMWF Integrated Forecasting System (IFS) model to over 200K cores of Titan. ECMWF is a partner in the EU funded Collaborative Research into Exascale Systemware, Tools and Applications (CRESTA) project. The significance of the research carried out within this project is the demonstration of techniques required to scale current generation Petascale capable simulation codes towards the performance levels required for running on future Exascale systems. One of the techniques pursued by ECMWF is to use Fortran2008 coarrays to overlap computations and communications and to reduce the total volume of data communicated. Use of Titan has enabled ECMWF to plan future scalability developments and resource requirements. We will also discuss the best practices developed over the years in navigating logistical, legal and regulatory hurdles involved in supporting the facility's diverse user community.