Ibekwe, A Mark; Ma, Jincai; Murinda, Shelton E
2016-10-01
Microbial communities in terrestrial fresh water are diverse and dynamic in composition due to different environmental factors. The goal of this study was to undertake a comprehensive analysis of bacterial composition along different rivers and creeks and correlate these to land-use practices and pollutant sources. Here we used 454 pyrosequencing to determine the total bacterial community composition, and bacterial communities that are potentially of fecal origin, and of relevance to water quality assessment. The results were analyzed using UniFrac coupled with principal coordinate analysis (PCoA) to compare diversity, abundance, and community composition. Detrended correspondence analysis (DCA) and canonical correspondence analysis (CCA) were used to correlate bacterial composition in streams and creeks to different environmental parameters impacting bacterial communities in the sediment and surface water within the watershed. Bacteria were dominated by the phyla Proteobacteria, Bacteroidetes, Acidobacteria, and Actinobacteria, with Bacteroidetes significantly (P<0.001) higher in all water samples than sediment, where as Acidobacteria and Actinobacteria where significantly higher (P<0.05) in all the sediment samples than surface water. Overall results, using the β diversity measures, coupled with PCoA and DCA showed that bacterial composition in sediment and surface water was significantly different (P<0.001). Also, there were differences in bacterial community composition between agricultural runoff and urban runoff based on parsimony tests using 454 pyrosequencing data. Fecal indicator bacteria in surface water along different creeks and channels were significantly correlated with pH (P<0.01), NO2 (P<0.03), and NH4N (P<0.005); and in the sediment with NO3 (P<0.015). Our results suggest that microbial community compositions were influenced by several environmental factors, and pH, NO2, and NH4 were the major environmental factors driving FIB in surface water based on CCA analysis, while NO3 was the only factor in sediment. Published by Elsevier B.V.
Siniscalchi, Luciene Alves Batista; Leite, Laura Rabelo; Oliveira, Guilherme; Chernicharo, Carlos Augusto Lemos; de Araújo, Juliana Calabria
2017-07-01
Methane is produced in anaerobic environments, such as reactors used to treat wastewaters, and can be consumed by methanotrophs. The composition and structure of a microbial community enriched from anaerobic sewage sludge under methane-oxidation condition coupled to denitrification were investigated. Denaturing gradient gel electrophoresis (DGGE) analysis retrieved sequences of Methylocaldum and Chloroflexi. Deep sequencing analysis revealed a complex community that changed over time and was affected by methane concentration. Methylocaldum (8.2%), Methylosinus (2.3%), Methylomonas (0.02%), Methylacidiphilales (0.45%), Nitrospirales (0.18%), and Methanosarcinales (0.3%) were detected. Despite denitrifying conditions provided, Nitrospirales and Methanosarcinales, known to perform anaerobic methane oxidation coupled to denitrification (DAMO) process, were in very low abundance. Results demonstrated that aerobic and anaerobic methanotrophs coexisted in the reactor together with heterotrophic microorganisms, suggesting that a diverse microbial community was important to sustain methanotrophic activity. The methanogenic sludge was a good inoculum to enrich methanotrophs, and cultivation conditions play a selective role in determining community composition.
Effects of Land Use Change on C-N cycling: Microbes Matter.
NASA Astrophysics Data System (ADS)
Hofmockel, K.
2012-12-01
Large swaths of the terrestrial landscape have been altered by human actions on Earth's biophysical systems, resulting in the homogenization of Earth's biota, while simultaneously increasing greenhouse gases and reactive nitrogen (N). This is especially poignant in grasslands that have been largely replaced by managed agricultural systems with substantial N inputs, or by unmanaged grasslands that are dominated by exotic species. Impacted ecosystems may be important for global C models, because they comprise a major portion of the global land area, terrestrial NPP and the world's soil C stocks. This research investigates how anthropogenic changes in plant community composition and agricultural management systems influence the composition and function of microbial communities that mediate key aspects of belowground C and N cycling and storage. Data from agroecology and grassland climate change experiments are used to illustrate how microbial responses can have important implications for large scale coupling of C and N cycles. In this study exotic plant species significantly decreased root inputs, causing shifts in microbial community composition, including both specific taxa and functional guilds of bacteria. By contrast, climate change (precipitation manipulation) caused functional responses (increased carbon and phosphorus cycling) that were not detected in the microbial community composition. Mycorrhizal fungi in managed systems were responsive to both root biomass and nitrogen inputs, significantly altering hydrolytic enzyme activity and aggregate turnover. Collectively small-scale processes can alter the ecosystem biogeochemical cycles. Together theses results suggest that linking microbial communities to coupled C-N cycles may have important implications for terrestrial C cycling feedbacks that are an integral part of the anthropocene era.
Coupling among Microbial Communities, Biogeochemistry, and Mineralogy across Biogeochemical Facies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stegen, James C.; Konopka, Allan; McKinely, Jim
Physical properties of sediments are commonly used to define subsurface lithofacies and these same physical properties influence subsurface microbial communities. This suggests an (unexploited) opportunity to use the spatial distribution of facies to predict spatial variation in biogeochemically relevant microbial attributes. Here, we characterize three biogeochemical facies—oxidized, reduced, and transition—within one lithofacies and elucidate relationships among facies features and microbial community biomass, diversity, and community composition. Consistent with previous observations of biogeochemical hotspots at environmental transition zones, we find elevated biomass within a biogeochemical facies that occurred at the transition between oxidized and reduced biogeochemical facies. Microbial diversity—the number ofmore » microbial taxa—was lower within the reduced facies and was well-explained by a combination of pH and mineralogy. Null modeling revealed that microbial community composition was influenced by ecological selection imposed by redox state and mineralogy, possibly due to effects on nutrient availability or transport. As an illustrative case, we predict microbial biomass concentration across a three-dimensional spatial domain by coupling the spatial distribution of subsurface biogeochemical facies with biomass-facies relationships revealed here. We expect that merging such an approach with hydro-biogeochemical models will provide important constraints on simulated dynamics, thereby reducing uncertainty in model predictions.« less
Eronen-Rasimus, Eeva; Luhtanen, Anne-Mari; Rintala, Janne-Markus; Delille, Bruno; Dieckmann, Gerhard; Karkman, Antti; Tison, Jean-Louis
2017-10-01
Antarctic sea-ice bacterial community composition and dynamics in various developmental stages were investigated during the austral winter in 2013. Thick snow cover likely insulated the ice, leading to high (<4 μg l -1 ) chlorophyll-a (chl-a) concentrations and consequent bacterial production. Typical sea-ice bacterial genera, for example, Octadecabacter, Polaribacter and Glaciecola, often abundant in spring and summer during the sea-ice algal bloom, predominated in the communities. The variability in bacterial community composition in the different ice types was mainly explained by the chl-a concentrations, suggesting that as in spring and summer sea ice, the sea-ice bacteria and algae may also be coupled during the Antarctic winter. Coupling between the bacterial community and sea-ice algae was further supported by significant correlations between bacterial abundance and production with chl-a. In addition, sulphate-reducing bacteria (for example, Desulforhopalus) together with odour of H 2 S were observed in thick, apparently anoxic ice, suggesting that the development of the anaerobic bacterial community may occur in sea ice under suitable conditions. In all, the results show that bacterial community in Antarctic sea ice can stay active throughout the winter period and thus possible future warming of sea ice and consequent increase in bacterial production may lead to changes in bacteria-mediated processes in the Antarctic sea-ice zone.
Sorensen, Patrick O.; Germino, Matthew J.; Feris, Kevin P.
2013-01-01
Precipitation amount and seasonal timing determine the duration and distribution of water available for plant and microbial activity in the cold desert sagebrush steppe. In this study, we sought to determine if a sustained shift in the amount and timing of precipitation would affect soil microbial diversity, community composition, and soil carbon (C) storage. Field plots were irrigated (+200 mm) during the dormant or growing-season for 17 years. Microbial community responses were assessed over the course of a year at two depths (15–20 cm, 95–100 cm) by terminal restriction fragment length polymorphism (T-RFLP), along with co-occurring changes in plant cover and edaphic properties. Bacterial richness, Shannon Weaver diversity, and composition in shallow soils (15–20 cm) as well as evenness in deep soils (95–100 cm) differed across irrigation treatments during July. Irrigation timing affected fungal community diversity and community composition during the dormant season and most strongly in deep soils (95–100 cm). Dormant-season irrigation increased the ratio of shrubs to forbs and reduced soil C in shallow soils by 16% relative to ambient conditions. It is unclear whether or not soil C will continue to decline with continued treatment application or if microbial adaptation could mitigate sustained soil C losses. Future changes in precipitation timing will affect soil microbes in a seasonally dependent manner and be coupled to co-varying effects of water content on vegetation and soil C.
Strong coupling of plant and fungal community structure across western Amazonian rainforests
Peay, Kabir G; Baraloto, Christopher; Fine, Paul VA
2013-01-01
The Amazon basin harbors a diverse ecological community that has a critical role in the maintenance of the biosphere. Although plant and animal communities have received much attention, basic information is lacking for fungal or prokaryotic communities. This is despite the fact that recent ecological studies have suggested a prominent role for interactions with soil fungi in structuring the diversity and abundance of tropical rainforest trees. In this study, we characterize soil fungal communities across three major tropical forest types in the western Amazon basin (terra firme, seasonally flooded and white sand) using 454 pyrosequencing. Using these data, we examine the relationship between fungal diversity and tree species richness, and between fungal community composition and tree species composition, soil environment and spatial proximity. We find that the fungal community in these ecosystems is diverse, with high degrees of spatial variability related to forest type. We also find strong correlations between α- and β-diversity of soil fungi and trees. Both fungal and plant community β-diversity were also correlated with differences in environmental conditions. The correlation between plant and fungal richness was stronger in fungal lineages known for biotrophic strategies (for example, pathogens, mycorrhizas) compared with a lineage known primarily for saprotrophy (yeasts), suggesting that this coupling is, at least in part, due to direct plant–fungal interactions. These data provide a much-needed look at an understudied dimension of the biota in an important ecosystem and supports the hypothesis that fungal communities are involved in the regulation of tropical tree diversity. PMID:23598789
Detection and Composition of Bacterial Communities in Waters using RNA-based Methods
In recent years, microbial water quality assessments have shifted from solely relying on pure culture-based methods to monitoring bacterial groups of interest using molecular assays such as PCR and qPCR. Furthermore, coupling next generation sequencing technologies with ribosomal...
NASA Astrophysics Data System (ADS)
Rossel, P. E.; Bienhold, C.; Boetius, A.; Dittmar, T.
2016-02-01
Marine organic matter (OM) that sinks from surface waters to the seafloor is the energy and carbon source for benthic communities. These communities produce dissolved organic matter (DOM) in the process of remineralization, enriching the sediment porewater with fresh DOM compounds. In the Arctic Ocean, primary production is limited by nutrients and light and is thus strongly influenced by sea ice cover. Ice cover is expected to further decrease due to global warming, which may have important consequences for primary production and the quantity and quality of OM exported to the seafloor. This study focused on: 1) the molecular composition of the DOM in sediment pore waters of the deep Eurasian Arctic basins, 2) whether there is any relation between Arctic Ocean ice cover and DOM composition and 3) whether the DOM composition correlates with microbial community structure. Molecular data, obtained via 15 Tesla Fourier transform ion cyclotron resonance mass spectrometry, were statistically correlated with environmental parameters. The productive ice margin stations showed higher abundances of molecular formulae of peptides, unsaturated aliphatics and saturated fatty acids. This molecular trend is indicative of fresh OM and phytodetritus deposition, compared to the northernmost, ice-covered stations which had stronger aromatic signals. Benthic bacterial community structure, as assessed with the fingerprinting method ARISA, was significantly correlated with DOM molecular composition. Further analyses using Illumina next-generation sequencing will enable the taxonomic identification of specific bacterial groups and their interdependence with DOM compounds. This study contributes to the understanding of the coupling between Arctic Ocean productivity and its depositional regime, and provides first insights into potential links between microbial community structure and DOM molecular composition in Arctic sediments
Biogeochemical drivers of microbial community convergence across actively retreating glaciers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castle, Sarah C.; Nemergut, Diana R.; Grandy, A. Stuart
The ecological processes that influence biogeographical patterns of microorganisms are actively debated. To investigate how such patterns emerge during ecosystem succession, we examined the biogeochemical drivers of bacterial community assembly in soils over two environmentally distinct, recently deglaciated chronosequences separated by a distance of more than 1,300 kilometers. Our results show that despite different geographic, climatic, and soil chemical and physical characteristics at the two sites, soil bacterial community structure and decomposer function converged during plant succession. In a comparative analysis, we found that microbial communities in early succession soils were compositionally distinct from a group of diverse, mature forestmore » soils, but that the differences between successional soils and mature soils decreased from early to late stages of succession. Differences in bacterial community composition across glacial sites were largely explained by pH. However, successional patterns and community convergence across sites were more consistently related to soil organic carbon and organic matter chemistry, which appeared to be tightly coupled with bacterial community structure across both young and mature soils.« less
Iturrate-Garcia, Maitane; O'Brien, Michael J; Khitun, Olga; Abiven, Samuel; Niklaus, Pascal A; Schaepman-Strub, Gabriela
2016-11-01
Plant communities are coupled with abiotic factors, as species diversity and community composition both respond to and influence climate and soil characteristics. Interactions between vegetation and abiotic factors depend on plant functional types (PFT) as different growth forms will have differential responses to and effects on site characteristics. However, despite the importance of different PFT for community assembly and ecosystem functioning, research has mainly focused on vascular plants. Here, we established a set of observational plots in two contrasting habitats in northeastern Siberia in order to assess the relationship between species diversity and community composition with soil variables, as well as the relationship between vegetation cover and species diversity for two PFT (nonvascular and vascular). We found that nonvascular species diversity decreased with soil acidity and moisture and, to a lesser extent, with soil temperature and active layer thickness. In contrast, no such correlation was found for vascular species diversity. Differences in community composition were found mainly along soil acidity and moisture gradients. However, the proportion of variation in composition explained by the measured soil variables was much lower for nonvascular than for vascular species when considering the PFT separately. We also found different relationships between vegetation cover and species diversity according the PFT and habitat. In support of niche differentiation theory, species diversity and community composition were related to edaphic factors. The distinct relationships found for nonvascular and vascular species suggest the importance of considering multiple PFT when assessing species diversity and composition and their interaction with edaphic factors. Synthesis : Identifying vegetation responses to edaphic factors is a first step toward a better understanding of vegetation-soil feedbacks under climate change. Our results suggest that incorporating differential responses of PFT is important for predicting vegetation shifts, primary productivity, and in turn, ecosystem functioning in a changing climate.
School Progress Among Children of Same-Sex Couples.
Watkins, Caleb S
2018-06-01
This study uses logit regressions on a pooled sample of children from the 2012, 2013, and 2014 American Community Survey to perform a nationally representative analysis of school progress for a large sample of 4,430 children who reside with same-sex couples. Odds ratios from regressions that compare children between different-sex married couples and same-sex couples fail to show significant differences in normal school progress between households across a variety of sample compositions. Likewise, marginal effects from regressions that compare children with similar family dynamics between different-sex married couples and same-sex couples fail to predict significantly higher probabilities of grade retention for children of same-sex couples. Significantly lower grade retention rates are sometimes predicted for children of same-sex couples than for different-sex married couples, but these differences are sensitive to sample exclusions and do not indicate causal benefits to same-sex parenting.
Inbar, Ehud; Green, Stefan J; Hadar, Yitzhak; Minz, Dror
2005-07-01
Streptomycetes are important members of soil microbial communities and are particularly active in the degradation of recalcitrant macromolecules and have been implicated in biological control of plant disease. Using a streptomycetes-specific polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (PCR-DGGE) methodology coupled with band excision and sequence analysis, we examined the effect of grape marc compost amendment to soil on cucumber plant-associated streptomycetes community composition. We observed that both compost amendment and proximity to the root surface influenced the streptomycetes community composition. A strong root selection for a soil-derived Streptomycete, most closely related to Streptomyces thermotolerans, S. iakyrus, and S. thermocarboxydus, was independent of compost amendment rate. However, while the impact of compost amendment was mitigated with increasing proximity to the root, high levels of compost amendment resulted in the detection of compost-derived species on the root surface. Conversely, in rhizosphere and non-rhizosphere soils, the community composition of streptomycetes was affected strongly even by modest compost amendment. The application of a streptomycetes-specific PCR primer set combined with DGGE analysis provided a rapid means of examining the distribution and ecology of streptomycetes in soils and plant-associated environments.
Experimental warming reveals positive feedbacks to climate change in the Eurasian Steppe.
Zhang, Ximei; Johnston, Eric R; Li, Linghao; Konstantinidis, Konstantinos T; Han, Xingguo
2017-04-01
Identifying soil microbial feedbacks to increasing temperatures and moisture alterations is critical for predicting how terrestrial ecosystems will respond to climate change. We performed a 5-year field experiment manipulating warming, watering and their combination in a semiarid temperate steppe in northern China. Warming stimulated the abundance of genes responsible for degrading recalcitrant soil organic matter (SOM) and reduced SOM content by 13%. Watering, and warming plus watering also increased the abundance of recalcitrant SOM catabolism pathways, but concurrently promoted plant growth and increased labile SOM content, which somewhat offset SOM loss. The treatments also increased microbial biomass, community complexity and metabolic potential for nitrogen and sulfur assimilation. Both microbial and plant community composition shifted with the treatment conditions, and the sample-to-sample compositional variations of the two communities (pairwise β-diversity distances) were significantly correlated. In particular, microbial community composition was substantially correlated with the dominant plant species (~0.54 Spearman correlation coefficient), much more than with measured soil indices, affirming a tight coupling between both biological communities. Collectively, our study revealed the direction and underlying mechanisms of microbial feedbacks to warming and suggested that semiarid regions of northern steppes could act as a net carbon source under increased temperatures, unless precipitation increases concurrently.
Sandaa, Ruth-Anne; Pree, Bernadette; Larsen, Aud; Våge, Selina; Töpper, Birte; Töpper, Joachim P; Thyrhaug, Runar; Thingstad, Tron Frede
2017-08-23
Factors controlling the community composition of marine heterotrophic prokaryotes include organic-C, mineral nutrients, predation, and viral lysis. Two mesocosm experiments, performed at an Arctic location and bottom-up manipulated with organic-C, had very different results in community composition for both prokaryotes and viruses. Previously, we showed how a simple mathematical model could reproduce food web level dynamics observed in these mesocosms, demonstrating strong top-down control through the predator chain from copepods via ciliates and heterotrophic nanoflagellates. Here, we use a steady-state analysis to connect ciliate biomass to bacterial carbon demand. This gives a coupling of top-down and bottom-up factors whereby low initial densities of ciliates are associated with mineral nutrient-limited heterotrophic prokaryotes that do not respond to external supply of labile organic-C. In contrast, high initial densities of ciliates give carbon-limited growth and high responsiveness to organic-C. The differences observed in ciliate abundance, and in prokaryote abundance and community composition in the two experiments were in accordance with these predictions. Responsiveness in the viral community followed a pattern similar to that of prokaryotes. Our study provides a unique link between the structure of the predator chain in the microbial food web and viral abundance and diversity.
Coupling Spatiotemporal Community Assembly Processes to Changes in Microbial Metabolism.
Graham, Emily B; Crump, Alex R; Resch, Charles T; Fansler, Sarah; Arntzen, Evan; Kennedy, David W; Fredrickson, Jim K; Stegen, James C
2016-01-01
Community assembly processes generate shifts in species abundances that influence ecosystem cycling of carbon and nutrients, yet our understanding of assembly remains largely separate from ecosystem-level functioning. Here, we investigate relationships between assembly and changes in microbial metabolism across space and time in hyporheic microbial communities. We pair sampling of two habitat types (i.e., attached and planktonic) through seasonal and sub-hourly hydrologic fluctuation with null modeling and temporally explicit multivariate statistics. We demonstrate that multiple selective pressures-imposed by sediment and porewater physicochemistry-integrate to generate changes in microbial community composition at distinct timescales among habitat types. These changes in composition are reflective of contrasting associations of Betaproteobacteria and Thaumarchaeota with ecological selection and with seasonal changes in microbial metabolism. We present a conceptual model based on our results in which metabolism increases when oscillating selective pressures oppose temporally stable selective pressures. Our conceptual model is pertinent to both macrobial and microbial systems experiencing multiple selective pressures and presents an avenue for assimilating community assembly processes into predictions of ecosystem-level functioning.
Ma, Mingchao; Jiang, Xin; Wang, Qingfeng; Ongena, Marc; Wei, Dan; Ding, Jianli; Guan, Dawei; Cao, Fengming; Zhao, Baisuo; Li, Jun
2018-03-23
How fungi respond to long-term fertilization in Chinese Mollisols as sensitive indicators of soil fertility has received limited attention. To broaden our knowledge, we used high-throughput pyrosequencing and quantitative PCR to explore the response of soil fungal community to long-term chemical and organic fertilization strategies. Soils were collected in a 35-year field experiment with four treatments: no fertilizer, chemical phosphorus, and potassium fertilizer (PK), chemical phosphorus, potassium, and nitrogen fertilizer (NPK), and chemical phosphorus and potassium fertilizer plus manure (MPK). All fertilization differently changed soil properties and fungal community. The MPK application benefited soil acidification alleviation and organic matter accumulation, as well as soybean yield. Moreover, the community richness indices (Chao1 and ACE) were higher under the MPK regimes, indicating the resilience of microbial diversity and stability. With regards to fungal community composition, the phylum Ascomycota was dominant in all samples, followed by Zygomycota, Basidiomycota, Chytridiomycota, and Glomeromycota. At each taxonomic level, the community composition dramatically differed under different fertilization strategies, leading to different soil quality. The NPK application caused a loss of Leotiomycetes but an increase in Eurotiomycetes, which might reduce the plant-fungal symbioses and increase nitrogen losses and greenhouse gas emissions. According to the linear discriminant analysis (LDA) coupled with effect size (LDA score > 3.0), the NPK application significantly increased the abundances of fungal taxa with known pathogenic traits, such as order Chaetothyriales, family Chaetothyriaceae and Pleosporaceae, and genera Corynespora, Bipolaris, and Cyphellophora. In contrast, these fungi were detected at low levels under the MPK regime. Soil organic matter and pH were the two most important contributors to fungal community composition. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Soft Biological and Composite Nanomaterials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Firestone, Millicent
2016-04-01
The goal of the Center for Integrated Nanotechnologies (CINT) is to plays a leadership role in integration of nanostructured materials to enable novel capabilities and applications through its function as a Department of Energy/Office of Science Nanoscale Science Research Center (NSRC) national user facility. By coupling open access to unique and world-class capabilities and scientific expertise to an active user community, CINT supports high-impact research that no other single institution could achieve – the whole of CINT including its user community is greater than the sum of its parts.
Predictability in community dynamics.
Blonder, Benjamin; Moulton, Derek E; Blois, Jessica; Enquist, Brian J; Graae, Bente J; Macias-Fauria, Marc; McGill, Brian; Nogué, Sandra; Ordonez, Alejandro; Sandel, Brody; Svenning, Jens-Christian
2017-03-01
The coupling between community composition and climate change spans a gradient from no lags to strong lags. The no-lag hypothesis is the foundation of many ecophysiological models, correlative species distribution modelling and climate reconstruction approaches. Simple lag hypotheses have become prominent in disequilibrium ecology, proposing that communities track climate change following a fixed function or with a time delay. However, more complex dynamics are possible and may lead to memory effects and alternate unstable states. We develop graphical and analytic methods for assessing these scenarios and show that these dynamics can appear in even simple models. The overall implications are that (1) complex community dynamics may be common and (2) detailed knowledge of past climate change and community states will often be necessary yet sometimes insufficient to make predictions of a community's future state. © 2017 John Wiley & Sons Ltd/CNRS.
Repert, Deborah A.; Underwood, Jennifer C.; Smith, Richard L.; Song, Bongkeun
2014-01-01
Information on the contribution of nitrogen (N)-cycling processes in bed sediments to river nutrient fluxes in large northern latitude river systems is limited. This study examined the relationship between N-cycling processes in bed sediments and N speciation and loading in the Yukon River near its mouth at the Bering Sea. We conducted laboratory bioassays to measure N-cycling processes in sediment samples collected over distinct water cycle seasons. In conjunction, the microbial community composition in the bed sediments using genes involved in N-cycling (narG, napA, nosZ, and amoA) and 16S rRNA gene pyrosequences was examined. Temporal variation was observed in net N mineralization, nitrate uptake, and denitrification rate potentials and correlated strongly with sediment carbon (C) and extractable N content and microbial community composition rather than with river water nutrient concentrations. The C content of the bed sediment was notably impacted by the spring flood, ranging from 1.1% in the midst of an ice-jam to 0.1% immediately after ice-out, suggesting a buildup of organic material (OM) prior to scouring of the bed sediments during ice break up. The dominant members of the microbial community that explained differences in N-processing rates belonged to the genera Crenothrix,Flavobacterium, and the family of Comamonadaceae. Our results suggest that biogeochemical processing rates in the bed sediments appear to be more coupled to hydrology, nutrient availability in the sediments, and microbial community composition rather than river nutrient concentrations at Pilot Station.
NASA Astrophysics Data System (ADS)
Luria, C.; Rich, J. J.; Amaral-Zettler, L. A.; Ducklow, H. W.
2016-02-01
The marine ecosystem west of the Antarctic Peninsula (WAP) undergoes a dramatic seasonal transition every spring, from almost total darkness to almost continuous sunlight, resulting in a cascade of environmental changes, including the intense phytoplankton blooms that support a highly productive food web. Despite having important implications for the microbial loop and the biological carbon pump, the degree of trophic coupling between phytoplankton and bacteria is unclear. In particular, due to the difficulties inherent in sampling this remote system during the Antarctic winter and spring, little is known about how phytoplankton blooms may or may not drive bacterial seasonal succession. Using 16S rRNA gene amplicon sequencing, we assessed bacterial community composition in 68 samples from 24 dates that spanned the cold, dark winter, spring transitional period, and summer phytoplankton bloom. Our analysis resulted in 15 million sequences and 12,000 Operational Taxonomic Units (OTUs). We found that mid-winter bacterial communities had the highest richness ( 1,800 observed OTUs in rarefied libraries) and a greater abundance of oligotrophic and potentially chemoautolithotrophic taxa. The bacterial community changed only gradually up until the onset of a mid-summer phytoplankton bloom, which coincided with a 100-fold increase in bacterial production, a rapid decline in richness to 700 OTUs, and a shift in community composition toward copiotrophic taxa. This period lasted only a few weeks, at the end of which the bacterial community had largely reverted to its mid-winter state. Our findings provide new evidence of trophic coupling between bacteria and phytoplankton and highlight the importance of higher-resolution time series sampling in order to capture rapid seasonal changes.
McDonnell, T C; Belyazid, S; Sullivan, T J; Sverdrup, H; Bowman, W D; Porter, E M
2014-04-01
To evaluate potential long-term effects of climate change and atmospheric nitrogen (N) deposition on subalpine ecosystems, the coupled biogeochemical and vegetation community competition model ForSAFE-Veg was applied to a site at the Loch Vale watershed of Rocky Mountain National Park, Colorado. Changes in climate and N deposition since 1900 resulted in pronounced changes in simulated plant species cover as compared with ambient and estimated future community composition. The estimated critical load (CL) of N deposition to protect against an average future (2010-2100) change in biodiversity of 10% was between 1.9 and 3.5 kg N ha(-1) yr(-1). Results suggest that the CL has been exceeded and vegetation at the study site has already undergone a change of more than 10% as a result of N deposition. Future increases in air temperature are forecast to cause further changes in plant community composition, exacerbating changes in response to N deposition alone. Copyright © 2013 Elsevier Ltd. All rights reserved.
Li, Wei; Wang, Mengmeng; Pan, Haoqin; Burgaud, Gaëtan; Liang, Shengkang; Guo, Jiajia; Luo, Tian; Li, Zhaoxia; Zhang, Shoumei; Cai, Lei
2018-01-01
How ocean currents shape fungal transport, dispersal and more broadly fungal biogeography remains poorly understood. The East China Sea (ECS) is a complex and dynamic habitat with different water masses blending microbial communities. The internal transcribed spacer 2 region of fungal rDNA was analysed in water and sediment samples directly collected from the coastal (CWM), Kuroshio (KSWM), Taiwan warm (TWM) and the shelf mixed water mass (MWM), coupled with hydrographic properties measurements, to determine how ocean currents impact the fungal community composition. Almost 9k fungal operational taxonomic units (OTUs) spanning six phyla, 25 known classes, 102 orders and 694 genera were obtained. The typical terrestrial and freshwater fungal genus, Byssochlamys, was dominant in the CWM, while increasing abundance of a specific OTU affiliated with Aspergillus was revealed from coastal to open ocean water masses (TWM and KSWM). Compared with water samples, sediment harboured an increased diversity with distinct fungal communities. The proximity of the Yangtze and Qiantang estuaries homogenizes the surface water and sediment communities. A significant influence of ocean currents on community structure was found, which is believed to reduce proportionally the variation explained by environmental parameters at the scale of the total water masses. Dissolved oxygen and depth were identified as the major parameters structuring the fungal community. Our results indicate that passive fungal dispersal driven by ocean currents and river run-off, in conjunction with the distinct hydrographic conditions of individual water masses, shapes the fungal community composition and distribution pattern in the ECS. © 2017 John Wiley & Sons Ltd.
Contrasting taxonomic stratification of microbial communities in two hypersaline meromictic lakes
Andrei, Adrian-Ştefan; Robeson, Michael S; Baricz, Andreea; Coman, Cristian; Muntean, Vasile; Ionescu, Artur; Etiope, Giuseppe; Alexe, Mircea; Sicora, Cosmin Ionel; Podar, Mircea; Banciu, Horia Leonard
2015-01-01
Hypersaline meromictic lakes are extreme environments in which water stratification is associated with powerful physicochemical gradients and high salt concentrations. Furthermore, their physical stability coupled with vertical water column partitioning makes them important research model systems in microbial niche differentiation and biogeochemical cycling. Here, we compare the prokaryotic assemblages from Ursu and Fara Fund hypersaline meromictic lakes (Transylvanian Basin, Romania) in relation to their limnological factors and infer their role in elemental cycling by matching taxa to known taxon-specific biogeochemical functions. To assess the composition and structure of prokaryotic communities and the environmental factors that structure them, deep-coverage small subunit (SSU) ribosomal RNA (rDNA) amplicon sequencing, community domain-specific quantitative PCR and physicochemical analyses were performed on samples collected along depth profiles. The analyses showed that the lakes harbored multiple and diverse prokaryotic communities whose distribution mirrored the water stratification patterns. Ursu Lake was found to be dominated by Bacteria and to have a greater prokaryotic diversity than Fara Fund Lake that harbored an increased cell density and was populated mostly by Archaea within oxic strata. In spite of their contrasting diversity, the microbial populations indigenous to each lake pointed to similar physiological functions within carbon degradation and sulfate reduction. Furthermore, the taxonomy results coupled with methane detection and its stable C isotope composition indicated the presence of a yet-undescribed methanogenic group in the lakes' hypersaline monimolimnion. In addition, ultrasmall uncultivated archaeal lineages were detected in the chemocline of Fara Fund Lake, where the recently proposed Nanohaloarchaeota phylum was found to thrive. PMID:25932617
NASA Astrophysics Data System (ADS)
Stajner, I.; Hou, Y. T.; McQueen, J.; Lee, P.; Stein, A. F.; Tong, D.; Pan, L.; Huang, J.; Huang, H. C.; Upadhayay, S.
2016-12-01
NOAA provides operational air quality predictions using the National Air Quality Forecast Capability (NAQFC): ozone and wildfire smoke for the United States and airborne dust for the contiguous 48 states at http://airquality.weather.gov. NOAA's predictions of fine particulate matter (PM2.5) became publicly available in February 2016. Ozone and PM2.5 predictions are produced using a system that operationally links the Community Multiscale Air Quality (CMAQ) model with meteorological inputs from the North American mesoscale forecast Model (NAM). Smoke and dust predictions are provided using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model. Current NAQFC focus is on updating CMAQ to version 5.0.2, improving PM2.5 predictions, and updating emissions estimates, especially for NOx using recently observed trends. Wildfire smoke emissions from a newer version of the USFS BlueSky system are being included in a new configuration of the NAQFC NAM-CMAQ system, which is re-run for the previous 24 hours when the wildfires were observed from satellites, to better represent wildfire emissions prior to initiating predictions for the next 48 hours. In addition, NOAA is developing the Next Generation Global Prediction System (NGGPS) to represent the earth system for extended weather prediction. NGGPS will include a representation of atmospheric dynamics, physics, aerosols and atmospheric composition as well as coupling with ocean, wave, ice and land components. NGGPS is being developed with a broad community involvement, including community developed components and academic research to develop and test potential improvements for potentially inclusion in NGGPS. Several investigators at NOAA's research laboratories and in academia are working to improve the aerosol and gaseous chemistry representation for NGGPS, to develop and evaluate the representation of atmospheric composition, and to establish and improve the coupling with radiation and microphysics. Additional efforts may include the improved use of predicted atmospheric composition in assimilation of observations and the linkage of full global atmospheric composition predictions with national air quality predictions.
Bachelot, Benedicte; Uriarte, María; Zimmerman, Jess K; Thompson, Jill; Leff, Jonathan W; Asiaii, Ava; Koshner, Jenny; McGuire, Krista
2016-09-01
Our understanding of the long-lasting effects of human land use on soil fungal communities in tropical forests is limited. Yet, over 70% of all remaining tropical forests are growing in former agricultural or logged areas. We investigated the relationship among land use history, biotic and abiotic factors, and soil fungal community composition and diversity in a second-growth tropical forest in Puerto Rico. We coupled high-throughput DNA sequencing with tree community and environmental data to determine whether land use history had an effect on soil fungal community descriptors. We also investigated the biotic and abiotic factors that underlie such differences and asked whether the relative importance of biotic (tree diversity, basal tree area, and litterfall biomass) and abiotic (soil type, pH, iron, and total carbon, water flow, and canopy openness) factors in structuring soil fungal communities differed according to land use history. We demonstrated long-lasting effects of land use history on soil fungal communities. At our research site, most of the explained variation in soil fungal composition (R 2 = 18.6%), richness (R 2 = 11.4%), and evenness (R 2 = 10%) was associated with edaphic factors. Areas previously subject to both logging and farming had a soil fungal community with lower beta diversity and greater evenness of fungal operational taxonomic units (OTUs) than areas subject to light logging. Yet, fungal richness was similar between the two areas of historical land use. Together, these results suggest that fungal communities in disturbed areas are more homogeneous and diverse than in areas subject to light logging. Edaphic factors were the most strongly correlated with soil fungal composition, especially in areas subject to light logging, where soils are more heterogenous. High functional tree diversity in areas subject to both logging and farming led to stronger correlations between biotic factors and fungal composition than in areas subject to light logging. In contrast, fungal richness and evenness were more strongly correlated with biotic factors in areas of light logging, suggesting that these metrics might reflect long-term associations in old-growth forests. The large amount of unexplained variance in fungal composition suggests that these communities are structured by both stochastic and niche assemblage processes. © 2016 by the Ecological Society of America.
Modenutti, B E; Balseiro, E G; Bastidas Navarro, M A; Lee, Z M; Souza, M S; Corman, J R; Elser, J J
2016-01-01
Volcanic eruptions discharge massive amounts of ash and pumice that decrease light penetration in lakes and lead to concomitant increases in phosphorus (P) concentrations and shifts in soluble C/P ratios. The consequences of these sudden changes for bacteria community composition, metabolism, and enzymatic activity remain unclear, especially for the dynamic period immediately after pumice deposition. Thus, the main aim of our study was to determine how ambient bacterial communities respond to pumice inputs in lakes that differ in dissolved organic carbon (DOC) and P concentrations and to what extent these responses are moderated by substrate C/P stoichiometry. We performed an outdoor experiment with natural lake water from two lakes that differed in dissolved organic carbon (DOC) concentration. We measured nutrient concentrations, alkaline phosphatase activity (APA), and DOC consumption rates and assessed different components of bacterial community structure using next-generation sequencing of the 16S rRNA gene. Pumice inputs caused a decrease in the C/P ratio of dissolved resources, a decrease in APA, and an increase in DOC consumption, indicating reduced P limitation. These changes in bacteria metabolism were coupled with modifications in the assemblage composition and an increase in diversity, with increases in bacterial taxa associated with biofilm and sediments, in predatory bacteria, and in bacteria with gliding motility. Our results confirm that volcanic eruptions have the potential to alter nutrient partitioning and light penetration in receiving waterways which can have dramatic impacts on microbial community dynamics.
Kwon, Man Jae; O’Loughlin, Edward J.; Boyanov, Maxim I.; ...
2016-01-22
Although iron- and sulfate-reducing bacteria in subsurface environments have crucial roles in biogeochemical cycling of C, Fe, and S, how specific electron donors impact the compositional structure and activity of native iron- and/or sulfate-reducing communities is largely unknown. To understand this better, we created bicarbonate-buffered batch systems in duplicate with three different electron donors (acetate, lactate, or glucose) paired with ferrihydrite and sulfate as the electron acceptors and inoculated them with subsurface sediment as the microbial inoculum. Sulfate and ferrihydrite reduction occurred simultaneously and were faster with lactate than with acetate. 16S rRNA-based sequence analysis of the communities over timemore » revealed that Desulfotomaculum was the major driver for sulfate reduction coupled with propionate oxidation in lactate-amended incubations. The reduction of sulfate resulted in sulfide production and subsequent abiotic reduction of ferrihydrite. In contrast, glucose promoted faster reduction of ferrihydrite, but without reduction of sulfate. Interestingly, the glucose-amended incubations led to two different biogeochemical trajectories among replicate bottles that resulted in distinct coloration (white and brown). The two outcomes in geochemical evolution might be due to the stochastic evolution of the microbial communities or subtle differences in the initial composition of the fermenting microbial community and its development via the use of different glucose fermentation pathways available within the community. Synchrotron-based x-ray analysis indicated that siderite and amorphous Fe(II) were formed in the replicate bottles with glucose, while ferrous sulfide and vivianite were formed with lactate or acetate. As a result, these data sets reveal that use of different C utilization pathways projects significant changes in microbial community composition over time that uniquely impact both the geochemistry and mineralogy of subsurface environments.« less
Manis, Erin; Royer, Todd V.; Johnson, Laura T.; Leff, Laura G.
2014-01-01
Denitrifiers remove fixed nitrogen from aquatic environments and hydrologic conditions are one potential driver of denitrification rate and denitrifier community composition. In this study, two agriculturally impacted streams in the Sugar Creek watershed in Indiana, USA with different hydrologic regimes were examined; one stream is seasonally ephemeral because of its source (tile drainage), whereas the other stream has permanent flow. Additionally, a simulated flooding experiment was performed on the riparian benches of the ephemeral stream during a dry period. Denitrification activity was assayed using the chloramphenicol amended acetylene block method and bacterial communities were examined based on quantitative PCR and terminal restriction length polymorphisms of the nitrous oxide reductase (nosZ) and 16S rRNA genes. In the stream channel, hydrology had a substantial impact on denitrification rates, likely by significantly lowering water potential in sediments. Clear patterns in denitrification rates were observed among pre-drying, dry, and post-drying dates; however, a less clear scenario was apparent when analyzing bacterial community structure suggesting that denitrifier community structure and denitrification rate were not strongly coupled. This implies that the nature of the response to short-term hydrologic changes was physiological rather than increases in abundance of denitrifiers or changes in composition of the denitrifier community. Flooding of riparian bench soils had a short-term, transient effect on denitrification rate. Our results imply that brief flooding of riparian zones is unlikely to contribute substantially to removal of nitrate (NO3 -) and that seasonal drying of stream channels has a negative impact on NO3 - removal, particularly because of the time lag required for denitrification to rebound. This time lag is presumably attributable to the time required for the denitrifiers to respond physiologically rather than a change in abundance or community composition. PMID:25171209
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Man Jae; O’Loughlin, Edward J.; Boyanov, Maxim I.
Although iron- and sulfate-reducing bacteria in subsurface environments have crucial roles in biogeochemical cycling of C, Fe, and S, how specific electron donors impact the compositional structure and activity of native iron- and/or sulfate-reducing communities is largely unknown. To understand this better, we created bicarbonate-buffered batch systems in duplicate with three different electron donors (acetate, lactate, or glucose) paired with ferrihydrite and sulfate as the electron acceptors and inoculated them with subsurface sediment as the microbial inoculum. Sulfate and ferrihydrite reduction occurred simultaneously and were faster with lactate than with acetate. 16S rRNA-based sequence analysis of the communities over timemore » revealed that Desulfotomaculum was the major driver for sulfate reduction coupled with propionate oxidation in lactate-amended incubations. The reduction of sulfate resulted in sulfide production and subsequent abiotic reduction of ferrihydrite. In contrast, glucose promoted faster reduction of ferrihydrite, but without reduction of sulfate. Interestingly, the glucose-amended incubations led to two different biogeochemical trajectories among replicate bottles that resulted in distinct coloration (white and brown). The two outcomes in geochemical evolution might be due to the stochastic evolution of the microbial communities or subtle differences in the initial composition of the fermenting microbial community and its development via the use of different glucose fermentation pathways available within the community. Synchrotron-based x-ray analysis indicated that siderite and amorphous Fe(II) were formed in the replicate bottles with glucose, while ferrous sulfide and vivianite were formed with lactate or acetate. As a result, these data sets reveal that use of different C utilization pathways projects significant changes in microbial community composition over time that uniquely impact both the geochemistry and mineralogy of subsurface environments.« less
Kwon, Man Jae; O'Loughlin, Edward J; Boyanov, Maxim I; Brulc, Jennifer M; Johnston, Eric R; Kemner, Kenneth M; Antonopoulos, Dionysios A
2016-01-01
Although iron- and sulfate-reducing bacteria in subsurface environments have crucial roles in biogeochemical cycling of C, Fe, and S, how specific electron donors impact the compositional structure and activity of native iron- and/or sulfate-reducing communities is largely unknown. To understand this better, we created bicarbonate-buffered batch systems in duplicate with three different electron donors (acetate, lactate, or glucose) paired with ferrihydrite and sulfate as the electron acceptors and inoculated them with subsurface sediment as the microbial inoculum. Sulfate and ferrihydrite reduction occurred simultaneously and were faster with lactate than with acetate. 16S rRNA-based sequence analysis of the communities over time revealed that Desulfotomaculum was the major driver for sulfate reduction coupled with propionate oxidation in lactate-amended incubations. The reduction of sulfate resulted in sulfide production and subsequent abiotic reduction of ferrihydrite. In contrast, glucose promoted faster reduction of ferrihydrite, but without reduction of sulfate. Interestingly, the glucose-amended incubations led to two different biogeochemical trajectories among replicate bottles that resulted in distinct coloration (white and brown). The two outcomes in geochemical evolution might be due to the stochastic evolution of the microbial communities or subtle differences in the initial composition of the fermenting microbial community and its development via the use of different glucose fermentation pathways available within the community. Synchrotron-based x-ray analysis indicated that siderite and amorphous Fe(II) were formed in the replicate bottles with glucose, while ferrous sulfide and vivianite were formed with lactate or acetate. These data sets reveal that use of different C utilization pathways projects significant changes in microbial community composition over time that uniquely impact both the geochemistry and mineralogy of subsurface environments.
A Randomized Controlled Trial of Relationship Education in the U.S. Army: 2-Year Outcomes
Stanley, Scott M.; Rhoades, Galena K.; Loew, Benjamin A.; Allen, Elizabeth S.; Carter, Sarah; Osborne, Laura J.; Prentice, Donnella; Markman, Howard J.
2014-01-01
This study examined the effectiveness of an evidence-based, community-delivered adaptation of couple relationship education (CRE; specifically, PREP, The Prevention and Relationship Enhancement Program) delivered at two Army installations. The study is a randomized controlled trial with two years of follow-up, examining marital quality and stability. Sample composition was 662 married couples with a spouse in the U.S. Army. Analyses yielded no evidence of overall enduring intervention effects on relationship quality but couples assigned to intervention at the higher risk site were significantly less likely than controls to be divorced at the two-year follow-up (8.1% vs. 14.9%, p < .01). This effect was moderated by ethnic minority status. Specifically, the impact of the intervention on divorce was strongest for minority couples. The findings add to the literature on who may benefit most from CRE. PMID:25419027
A Social Network Comparison of Low-Income Black and White Newlywed Couples
Jackson, Grace L.; Kennedy, David; Bradbury, Thomas N.; Karney, Benjamin R.
2014-01-01
Relative to White families, Black families have been described as relying on extended social networks to compensate for other social and economic disadvantages. The presence or absence of supportive social networks should be especially relevant to young couples entering marriage, but to date there has been little effort to describe the social networks of comparable Black and White newlyweds. The current study addressed this gap by drawing on interviews with 57 first-married newlyweds from low-income communities to compare the composition and structure of Black and White couples’ duocentric social networks. The results indicated that low-income Black couples entered marriage at a social disadvantage relative to White couples, with more family relationships but fewer positive relationships and fewer sources of emotional support (for wives), fewer connections to married individuals, and fewer shared relationships between spouses. Black couples’ relative social disadvantages persisted even when various economic and demographic variables were controlled. PMID:25214673
Boucher, Delphine; Debroas, Didier
2009-10-01
This study examined the effects of temporal changes in bacterial community composition (BCC) and environmental factors on potential ectoenzymatic activities (alpha-glucosidase, beta-glucosidase, alkaline phosphatase and leucine aminopeptidase) in a lacustrine ecosystem (Sep reservoir, France). BCC was assessed by terminal restriction fragment length polymorphism. Physical parameters, and inorganic and organic nutrient concentrations (dissolved carbohydrates and proteins) were measured in lakes and tributaries. According to the multivariate statistics (redundancy analysis), physical and chemical factors explained the largest part of leucine aminopeptidase activity, whereas the temporal changes of other ectoenzymatic activities were partly dependent on the variations in the BCC. In particular, the occurrence of occasional bacterial populations seemed to explain a lot of the variation in rates and patterns of polymer hydrolysis. The relation observed in this study between the bacterial structure and activity is discussed within the framework of biodiversity-ecosystem functioning.
Klepac-Ceraj, Vanja; Lemon, Katherine P; Martin, Thomas R; Allgaier, Martin; Kembel, Steven W; Knapp, Alixandra A; Lory, Stephen; Brodie, Eoin L; Lynch, Susan V; Bohannan, Brendan J M; Green, Jessica L; Maurer, Brian A; Kolter, Roberto
2010-05-01
Polymicrobial bronchopulmonary infections in cystic fibrosis (CF) cause progressive lung damage and death. Although the arrival of Pseudomonas aeruginosa often heralds a more rapid rate of pulmonary decline, there is significant inter-individual variation in the rate of decline, the causes of which remain poorly understood. By coupling culture-independent methods with ecological analyses, we discovered correlations between bacterial community profiles and clinical disease markers in respiratory tracts of 45 children with CF. Bacterial community complexity was inversely correlated with patient age, presence of P. aeruginosa and antibiotic exposure, and was related to CF genotype. Strikingly, bacterial communities lacking P. aeruginosa were much more similar to each other than were those containing P. aeruginosa, regardless of antibiotic exposure. This suggests that community composition might be a better predictor of disease progression than the presence of P. aeruginosa alone and deserves further study.
Carrara, Joseph E; Walter, Christopher A; Hawkins, Jennifer S; Peterjohn, William T; Averill, Colin; Brzostek, Edward R
2018-06-01
Atmospheric nitrogen (N) deposition has enhanced soil carbon (C) stocks in temperate forests. Most research has posited that these soil C gains are driven primarily by shifts in fungal community composition with elevated N leading to declines in lignin degrading Basidiomycetes. Recent research, however, suggests that plants and soil microbes are dynamically intertwined, whereby plants send C subsidies to rhizosphere microbes to enhance enzyme production and the mobilization of N. Thus, under elevated N, trees may reduce belowground C allocation leading to cascading impacts on the ability of microbes to degrade soil organic matter through a shift in microbial species and/or a change in plant-microbe interactions. The objective of this study was to determine the extent to which couplings among plant, fungal, and bacterial responses to N fertilization alter the activity of enzymes that are the primary agents of soil decomposition. We measured fungal and bacterial community composition, root-microbial interactions, and extracellular enzyme activity in the rhizosphere, bulk, and organic horizon of soils sampled from a long-term (>25 years), whole-watershed, N fertilization experiment at the Fernow Experimental Forest in West Virginia, USA. We observed significant declines in plant C investment to fine root biomass (24.7%), root morphology, and arbuscular mycorrhizal (AM) colonization (55.9%). Moreover, we found that declines in extracellular enzyme activity were significantly correlated with a shift in bacterial community composition, but not fungal community composition. This bacterial community shift was also correlated with reduced AM fungal colonization indicating that declines in plant investment belowground drive the response of bacterial community structure and function to N fertilization. Collectively, we find that enzyme activity responses to N fertilization are not solely driven by fungi, but instead reflect a whole ecosystem response, whereby declines in the strength of belowground C investment to gain N cascade through the soil environment. © 2018 John Wiley & Sons Ltd.
Yu, Pengfei; Toon, Owen B.; Neely, Ryan R.; ...
2015-04-10
Recent studies revealed layers of enhanced aerosol scattering in the upper troposphere and lower stratosphere over Asia (Asian Tropopause Aerosol Layer (ATAL)) and North America (North American Tropospheric Aerosol Layer (NATAL)). We use a sectional aerosol model (Community Aerosol and Radiation Model for Atmospheres (CARMA)) coupled with the Community Earth System Model version 1 (CESM1) to explore the composition and optical properties of these aerosol layers. The observed aerosol extinction enhancement is reproduced by CESM1/CARMA. Both model and observations indicate a strong gradient of the sulfur-to-carbon ratio from Europe to the Asia on constant pressure surfaces. We found that themore » ATAL is mostly composed of sulfates, surface-emitted organics, and secondary organics; the NATAL is mostly composed of sulfates and secondary organics. In conclusion, the model also suggests that emission increases in Asia between 2000 and 2010 led to an increase of aerosol optical depth of the ATAL by 0.002 on average which is consistent with observations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Pengfei; Toon, Owen B.; Neely, Ryan R.
Recent studies revealed layers of enhanced aerosol scattering in the upper troposphere and lower stratosphere over Asia (Asian Tropopause Aerosol Layer (ATAL)) and North America (North American Tropospheric Aerosol Layer (NATAL)). We use a sectional aerosol model (Community Aerosol and Radiation Model for Atmospheres (CARMA)) coupled with the Community Earth System Model version 1 (CESM1) to explore the composition and optical properties of these aerosol layers. The observed aerosol extinction enhancement is reproduced by CESM1/CARMA. Both model and observations indicate a strong gradient of the sulfur-to-carbon ratio from Europe to the Asia on constant pressure surfaces. We found that themore » ATAL is mostly composed of sulfates, surface-emitted organics, and secondary organics; the NATAL is mostly composed of sulfates and secondary organics. In conclusion, the model also suggests that emission increases in Asia between 2000 and 2010 led to an increase of aerosol optical depth of the ATAL by 0.002 on average which is consistent with observations.« less
Pape, Ellen; Jones, Daniel O. B.; Manini, Elena; Bezerra, Tania Nara; Vanreusel, Ann
2013-01-01
Along a west-to-east axis spanning the Galicia Bank region (Iberian margin) and the Mediterranean basin, a reduction in surface primary productivity and in seafloor flux of particulate organic carbon was mirrored in the in situ organic matter quantity and quality within the underlying deep-sea sediments at different water depths (1200, 1900 and 3000 m). Nematode standing stock (abundance and biomass) and genus and trophic composition were investigated to evaluate downward benthic-pelagic coupling. The longitudinal decline in seafloor particulate organic carbon flux was reflected by a reduction in benthic phytopigment concentrations and nematode standing stock. An exception was the station sampled at the Galicia Bank seamount, where despite the maximal particulate organic carbon flux estimate, we observed reduced pigment levels and nematode standing stock. The strong hydrodynamic forcing at this station was believed to be the main cause of the local decoupling between pelagic and benthic processes. Besides a longitudinal cline in nematode standing stock, we noticed a west-to-east gradient in nematode genus and feeding type composition (owing to an increasing importance of predatory/scavenging nematodes with longitude) governed by potential proxies for food availability (percentage of nitrogen, organic carbon, and total organic matter). Within-station variability in generic composition was elevated in sediments with lower phytopigment concentrations. Standing stock appeared to be regulated by sedimentation rates and benthic environmental variables, whereas genus composition covaried only with benthic environmental variables. The coupling between deep-sea nematode assemblages and surface water processes evidenced in the present study suggests that it is likely that climate change will affect the composition and function of deep-sea nematodes. PMID:23565176
Martínez-García, Laura B; Richardson, Sarah J; Tylianakis, Jason M; Peltzer, Duane A; Dickie, Ian A
2015-03-01
Little is known about the response of arbuscular mycorrhizal fungal communities to ecosystem development. We use a long-term soil chronosequence that includes ecosystem progression and retrogression to quantify the importance of host plant identity as a factor driving fungal community composition during ecosystem development. We identified arbuscular mycorrhizal fungi and plant species from 50 individual roots from each of 10 sites spanning 5-120 000 yr of ecosystem age using terminal restriction fragment length polymorphism (T-RFLP), Sanger sequencing and pyrosequencing. Arbuscular mycorrhizal fungal communities were highly structured by ecosystem age. There was strong niche differentiation, with different groups of operational taxonomic units (OTUs) being characteristic of early succession, ecosystem progression and ecosystem retrogression. Fungal alpha diversity decreased with ecosystem age, whereas beta diversity was high at early stages and lower in subsequent stages. A total of 39% of the variance in fungal communities was explained by host plant and site age, 29% of which was attributed to host and the interaction between host and site (24% and 5%, respectively). The strong response of arbuscular mycorrhizal fungi to ecosystem development appears to be largely driven by plant host identity, supporting the concept that plant and fungal communities are tightly coupled rather than independently responding to habitat. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Mesoscale eddies drive increased silica export in the subtropical Pacific Ocean.
Benitez-Nelson, Claudia R; Bidigare, Robert R; Dickey, Tommy D; Landry, Michael R; Leonard, Carrie L; Brown, Susan L; Nencioli, Francesco; Rii, Yoshimi M; Maiti, Kanchan; Becker, Jamie W; Bibby, Thomas S; Black, Wil; Cai, Wei-Jun; Carlson, Craig A; Chen, Feizhou; Kuwahara, Victor S; Mahaffey, Claire; McAndrew, Patricia M; Quay, Paul D; Rappé, Michael S; Selph, Karen E; Simmons, Melinda P; Yang, Eun Jin
2007-05-18
Mesoscale eddies may play a critical role in ocean biogeochemistry by increasing nutrient supply, primary production, and efficiency of the biological pump, that is, the ratio of carbon export to primary production in otherwise nutrient-deficient waters. We examined a diatom bloom within a cold-core cyclonic eddy off Hawaii. Eddy primary production, community biomass, and size composition were markedly enhanced but had little effect on the carbon export ratio. Instead, the system functioned as a selective silica pump. Strong trophic coupling and inefficient organic export may be general characteristics of community perturbation responses in the warm waters of the Pacific Ocean.
Labay, Ben; Cohen, Adam E; Sissel, Blake; Hendrickson, Dean A; Martin, F Douglas; Sarkar, Sahotra
2011-01-01
Accurate establishment of baseline conditions is critical to successful management and habitat restoration. We demonstrate the ability to robustly estimate historical fish community composition and assess the current status of the urbanized Barton Creek watershed in central Texas, U.S.A. Fish species were surveyed in 2008 and the resulting data compared to three sources of fish occurrence information: (i) historical records from a museum specimen database and literature searches; (ii) a nearly identical survey conducted 15 years earlier; and (iii) a modeled historical community constructed with species distribution models (SDMs). This holistic approach, and especially the application of SDMs, allowed us to discover that the fish community in Barton Creek was more diverse than the historical data and survey methods alone indicated. Sixteen native species with high modeled probability of occurrence within the watershed were not found in the 2008 survey, seven of these were not found in either survey or in any of the historical collection records. Our approach allowed us to more rigorously establish the true baseline for the pre-development fish fauna and then to more accurately assess trends and develop hypotheses regarding factors driving current fish community composition to better inform management decisions and future restoration efforts. Smaller, urbanized freshwater systems, like Barton Creek, typically have a relatively poor historical biodiversity inventory coupled with long histories of alteration, and thus there is a propensity for land managers and researchers to apply inaccurate baseline standards. Our methods provide a way around that limitation by using SDMs derived from larger and richer biodiversity databases of a broader geographic scope. Broadly applied, we propose that this technique has potential to overcome limitations of popular bioassessment metrics (e.g., IBI) to become a versatile and robust management tool for determining status of freshwater biotic communities.
NASA Astrophysics Data System (ADS)
King, E.; Brodie, E.; Anantharaman, K.; Karaoz, U.; Bouskill, N.; Banfield, J. F.; Steefel, C. I.; Molins, S.
2016-12-01
Characterizing and predicting the microbial and chemical compositions of subsurface aquatic systems necessitates an understanding of the metabolism and physiology of organisms that are often uncultured or studied under conditions not relevant for one's environment of interest. Cultivation-independent approaches are therefore important and have greatly enhanced our ability to characterize functional microbial diversity. The capability to reconstruct genomes representing thousands of populations from microbial communities using metagenomic techniques provides a foundation for development of predictive models for community structure and function. Here, we discuss a genome-informed stochastic trait-based model incorporated into a reactive transport framework to represent the activities of coupled guilds of hypothetical microorganisms. Metabolic pathways for each microbe within a functional guild are parameterized from metagenomic data with a unique combination of traits governing organism fitness under dynamic environmental conditions. We simulate the thermodynamics of coupled electron donor and acceptor reactions to predict the energy available for cellular maintenance, respiration, biomass development, and enzyme production. While `omics analyses can now characterize the metabolic potential of microbial communities, it is functionally redundant as well as computationally prohibitive to explicitly include the thousands of recovered organisms into biogeochemical models. However, one can derive potential metabolic pathways from genomes along with trait-linkages to build probability distributions of traits. These distributions are used to assemble groups of microbes that couple one or more of these pathways. From the initial ensemble of microbes, only a subset will persist based on the interaction of their physiological and metabolic traits with environmental conditions, competing organisms, etc. Here, we analyze the predicted niches of these hypothetical microbes and assess the ability of a stochastically assembled community of organisms to predict subsurface biogeochemical dynamics.
Wright, David M; Rosato, Michael; O'Reilly, Dermot
2017-01-01
Heterogamous marriages, in which partners have dissimilar attributes (e.g. by socio-economic status or ethnicity), are often at elevated risk of dissolution. We investigated the influences of heterogamy by religion and area of residence on risk of marital dissolution in Northern Ireland, a country with a history of conflict and residential segregation along Catholic-Protestant lines. We expected Catholic-Protestant marriages to have elevated risks of dissolution, especially in areas with high concentrations of a single religious group where opposition to intermarriage was expected to be high. We estimated risks of marital dissolution from 2001 to 2011 for 19,791 couples drawn from the Northern Ireland Longitudinal Study (a record linkage study), adjusting for a range of compositional and contextual factors using multilevel logistic regression. Dissolution risk decreased with increasing age and higher socio-economic status. Catholic-Protestant marriages were rare (5.9 % of the sample) and were at increased risk of dissolution relative to homogamous marriages. We found no association between local population composition and dissolution risk for Catholic-Protestant couples, indicating that partner and household characteristics may have a greater influence on dissolution risk than the wider community.
Coupling Spatiotemporal Community Assembly Processes to Changes in Microbial Metabolism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, Emily B.; Crump, Alex R.; Resch, Charles T.
Community assembly processes govern shifts in species abundances in response to environmental change, yet our understanding of assembly remains largely decoupled from ecosystem function. Here, we test hypotheses regarding assembly and function across space and time using hyporheic microbial communities as a model system. We pair sampling of two habitat types through hydrologic fluctuation with null modeling and multivariate statistics. We demonstrate that dual selective pressures assimilate to generate compositional changes at distinct timescales among habitat types, resulting in contrasting associations of Betaproteobacteria and Thaumarchaeota with selection and with seasonal changes in aerobic metabolism. Our results culminate in a conceptualmore » model in which selection from contrasting environments regulates taxon abundance and ecosystem function through time, with increases in function when oscillating selection opposes stable selective pressures. Our model is applicable within both macrobial and microbial ecology and presents an avenue for assimilating community assembly processes into predictions of ecosystem function.« less
Richa, Kumari; Balestra, Cecilia; Piredda, Roberta; Benes, Vladimir; Borra, Marco; Passarelli, Augusto; Margiotta, Francesca; Saggiomo, Maria; Biffali, Elio; Sanges, Remo; Scanlan, David J; Casotti, Raffaella
2017-09-01
Bacterioplankton are fundamental components of marine ecosystems and influence the entire biosphere by contributing to the global biogeochemical cycles of key elements. Yet, there is a significant gap in knowledge about their diversity and specific activities, as well as environmental factors that shape their community composition and function. Here, the distribution and diversity of surface bacterioplankton along the coastline of the Gulf of Naples (GON; Italy) were investigated using flow cytometry coupled with high-throughput sequencing of the 16S rRNA gene. Heterotrophic bacteria numerically dominated the bacterioplankton and comprised mainly Alphaproteobacteria , Gammaproteobacteria , and Bacteroidetes Distinct communities occupied river-influenced, coastal, and offshore sites, as indicated by Bray-Curtis dissimilarity, distance metric (UniFrac), linear discriminant analysis effect size (LEfSe), and multivariate analyses. The heterogeneity in diversity and community composition was mainly due to salinity and changes in environmental conditions across sites, as defined by nutrient and chlorophyll a concentrations. Bacterioplankton communities were composed of a few dominant taxa and a large proportion (92%) of rare taxa (here defined as operational taxonomic units [OTUs] accounting for <0.1% of the total sequence abundance), the majority of which were unique to each site. The relationship between 16S rRNA and the 16S rRNA gene, i.e., between potential metabolic activity and abundance, was positive for the whole community. However, analysis of individual OTUs revealed high rRNA-to-rRNA gene ratios for most (71.6% ± 16.7%) of the rare taxa, suggesting that these low-abundance organisms were potentially active and hence might be playing an important role in ecosystem diversity and functioning in the GON. IMPORTANCE The study of bacterioplankton in coastal zones is of critical importance, considering that these areas are highly productive and anthropogenically impacted. Their richness and evenness, as well as their potential activity, are very important to assess ecosystem health and functioning. Here, we investigated bacterial distribution, community composition, and potential metabolic activity in the GON, which is an ideal test site due to its heterogeneous environment characterized by a complex hydrodynamics and terrestrial inputs of varied quantities and quality. Our study demonstrates that bacterioplankton communities in this region are highly diverse and strongly regulated by a combination of different environmental factors leading to their heterogeneous distribution, with the rare taxa contributing to a major proportion of diversity and shifts in community composition and potentially holding a key role in ecosystem functioning. Copyright © 2017 American Society for Microbiology.
Richa, Kumari; Balestra, Cecilia; Piredda, Roberta; Benes, Vladimir; Borra, Marco; Passarelli, Augusto; Margiotta, Francesca; Saggiomo, Maria; Biffali, Elio; Sanges, Remo; Scanlan, David J.
2017-01-01
ABSTRACT Bacterioplankton are fundamental components of marine ecosystems and influence the entire biosphere by contributing to the global biogeochemical cycles of key elements. Yet, there is a significant gap in knowledge about their diversity and specific activities, as well as environmental factors that shape their community composition and function. Here, the distribution and diversity of surface bacterioplankton along the coastline of the Gulf of Naples (GON; Italy) were investigated using flow cytometry coupled with high-throughput sequencing of the 16S rRNA gene. Heterotrophic bacteria numerically dominated the bacterioplankton and comprised mainly Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes. Distinct communities occupied river-influenced, coastal, and offshore sites, as indicated by Bray-Curtis dissimilarity, distance metric (UniFrac), linear discriminant analysis effect size (LEfSe), and multivariate analyses. The heterogeneity in diversity and community composition was mainly due to salinity and changes in environmental conditions across sites, as defined by nutrient and chlorophyll a concentrations. Bacterioplankton communities were composed of a few dominant taxa and a large proportion (92%) of rare taxa (here defined as operational taxonomic units [OTUs] accounting for <0.1% of the total sequence abundance), the majority of which were unique to each site. The relationship between 16S rRNA and the 16S rRNA gene, i.e., between potential metabolic activity and abundance, was positive for the whole community. However, analysis of individual OTUs revealed high rRNA-to-rRNA gene ratios for most (71.6% ± 16.7%) of the rare taxa, suggesting that these low-abundance organisms were potentially active and hence might be playing an important role in ecosystem diversity and functioning in the GON. IMPORTANCE The study of bacterioplankton in coastal zones is of critical importance, considering that these areas are highly productive and anthropogenically impacted. Their richness and evenness, as well as their potential activity, are very important to assess ecosystem health and functioning. Here, we investigated bacterial distribution, community composition, and potential metabolic activity in the GON, which is an ideal test site due to its heterogeneous environment characterized by a complex hydrodynamics and terrestrial inputs of varied quantities and quality. Our study demonstrates that bacterioplankton communities in this region are highly diverse and strongly regulated by a combination of different environmental factors leading to their heterogeneous distribution, with the rare taxa contributing to a major proportion of diversity and shifts in community composition and potentially holding a key role in ecosystem functioning. PMID:28667110
NASA Astrophysics Data System (ADS)
Tfaily, M. M.; Walker, L. R.; Kyle, J. E.; Chu, R. K.; Dohnalkova, A.; Tolic, N.; Orton, D.; Robinson, E. R.; Paša-Tolić, L.; Hess, N. J.
2015-12-01
The focus on soil C dynamics is currently relevant as researchers and policymakers strive to understand the feedbacks between ecosystem stress and climate change. Successful development of molecular profiles that link soil microbiology with soil carbon (C) dynamics to ascertain soil vulnerability and resilience to climate change would have great impact on assessments of soil ecosystems in response to climate change. Additionally, a better understanding of the soil C dynamics would improve climate modeling, and fate and transport of carbon across terrestrial, subsurface and atmospheric interfaces. Unravelling the wide range of possible interactions between and within the microbial communities, with minerals and organic compounds in the terrestrial ecosystem requires a multimodal, molecular approach. Here we report on the use of a combination of several molecular 'omics' approaches: metabolomics, metallomics, lipidomics, and proteomics coupled with a suite of high resolution imaging, and X-ray diffraction crystallographic techniques, as a novel methodology to understand SOM composition, and its interaction with microbial communities in different ecosystems, including C associated with mineral surfaces. The findings of these studies provide insights into the SOM persistence and microbial stabilization of carbon in ecosystems and reveal the powerful coupling of a multi-scale of techniques. Examples of this approach will be presented from field studies of simulated climate change, and laboratory column-grown Pinus resinosa mesocosms.
NASA Astrophysics Data System (ADS)
Bottos, E. M.; Bramer, L.; Kim, Y. M.; Fansler, S.; Nicora, C.; Zink, E.; Chu, R. K.; Tfaily, M. M.; Metz, T. O.; Jansson, J.; Stegen, J.
2016-12-01
Permafrost-affected soils contain enormous stocks of carbon, which are becoming increasingly available to microbial transformation as permafrost regions warm; however, how this warming will influence the permafrost microbiome and the transformation of soil carbon remains unclear. We hypothesize that the redox conditions that arise following permafrost thaw will dictate the structure and function of the microbial community, and strongly influence the nature of carbon transformations. To examine this, permafrost-affected soils from Caribou Poker Creek Research Watershed, Alaska were incubated at 4 °C under aerobic and anaerobic conditions for periods of 9 and 94 days. Over the incubation period, rates of CO2 and CH4 production were measured by gas chromatography, shifts in microbial community structure were characterized by 16S rRNA gene sequencing, and changes in metabolite and organic matter composition were analyzed by GC-MS and ESI-FTICR MS, respectively. CO2 production rates were significantly higher in aerobic treatments in 9-day and 94-day incubations, by 3-times and 12-times, respectively. Rates of CH4 production were not significantly different between treatments in 9-day incubations, but were 1.6-times higher in anaerobic treatments in 94-day incubations. The community composition remained largely unchanged in the incubated samples, with the exception of the 94-day aerobic incubations, which shifted strongly to become dominated by a single OTU, Rhodoferax ferrireducens. Metabolite profiles also shifted most strongly in the 94-day aerobic incubations, with the abundance of phosphorylated carbon compounds overrepresented in these samples. This work suggests that the redox conditions that arise following permafrost thaw will be a strong determinant of community composition and will govern the ultimate fate of carbon stocks in permafrost-affected soils. Our results are currently being integrated with numerical models aimed at predicting the coupled microbiome-ecosystem response to thaw.
Off shore wind farms change the benthic pelagic coupling in the Belgian Part of the North Sea
NASA Astrophysics Data System (ADS)
Vanaverbeke, Jan; Coates, Delphine; Braeckman, Ulrike; Soetaert, Karline; Moens, Tom
2016-04-01
Since Europe enforced renewable energy target figures upon its member states through the implementation of two main European Directives 11 2001/77/EC and 2009/28/EC, the development of offshore wind farms (OWF) has accelerated. Belgium installed OWFs on sandbanks, characterized by permeable sediments, low in organic matter content and a species-poor macrofaunal community with species occurring in low densities. A detailed monitoring campaign in the immediate vicinity of a wind turbine (1-200m), revealed a significant decrease in median grain size and permeability, coinciding with a 6-fold increase in organic matter content. The observed fining of the sediment is explained by an altered benthic-pelagic coupling in the area. The wind turbines are colonized by an abundant fouling community producing high amounts of detritus and faeces, a continuous additional source of organic matter. The changes in sediment composition, and the availability of additional organic matter resulted in drastic increase in macrofaunal densities (from 1390 ind m-2 to 18600 ind m-2), and a change from a species-poor community to a species-rich community dominated by the ecosystem engineer Lanice conchilega. Large densities of L. conchilega, as observed in our samples, are known to trap fine material from the water column, which can result in a further decrease of sediment permeability in the vicinity of the wind turbines. A preliminary experiment, where permeable sediments were subjected to artificial fining, showed a decreased penetration depth of advective water currents and a reduced trapping of diatoms by the sediment in finer sediments. Additionally, sediment community oxygen consumption rates, and efflux of NH4+ from the sediment, measured after a simulated phytoplankton bloom, decreased significantly when sediment permeability was reduced. We hypothesize that the combination of the altered macrofaunal community composition, together with the changes in the physical properties of the sediment matrix, will lead to a change in the biogeochemical properties of the sediment: highly reactive permeable sediments, poor in organic matter will shift towards sediment where organic matter will accumulate. Degradation of organic matter will then no longer be governed by physical processes, but mediated by biological processes (bioturbation, bio-irrigation).
Dynamics of an experimental microbial invasion
Acosta, Francisco; Zamor, Richard M.; Najar, Fares Z.; Roe, Bruce A.; Hambright, K. David
2015-01-01
The ecological dynamics underlying species invasions have been a major focus of research in macroorganisms for the last five decades. However, we still know little about the processes behind invasion by unicellular organisms. To expand our knowledge of microbial invasions, we studied the roles of propagule pressure, nutrient supply, and biotic resistance in the invasion success of a freshwater invasive alga, Prymnesium parvum, using microcosms containing natural freshwater microbial assemblages. Microcosms were subjected to a factorial design with two levels of nutrient-induced diversity and three levels of propagule pressure, and incubated for 7 d, during which P. parvum densities and microbial community composition were tracked. Successful invasion occurred in microcosms receiving high propagule pressure whereas nutrients or community diversity played no role in invasion success. Invaded communities experienced distinctive changes in composition compared with communities where the invasion was unsuccessful. Successfully invaded microbial communities had an increased abundance of fungi and ciliates, and decreased abundances of diatoms and cercozoans. Many of these changes mirrored the microbial community changes detected during a natural P. parvum bloom in the source system. This role of propagule pressure is particularly relevant for P. parvum in the reservoir-dominated southern United States because this species can form large, sustained blooms that can generate intense propagule pressures for downstream sites. Human impact and global climate change are currently causing widespread environmental changes in most southern US freshwater systems that may facilitate P. parvum establishment and, when coupled with strong propagule pressure, could put many more systems at risk for invasion. PMID:26324928
NASA Astrophysics Data System (ADS)
Aguilera, Victor; Escribano, Ruben; Herrera, Liliana
2009-08-01
Autotrophic and heterotrophic nanoplankton and microplankton vary widely in quantity and composition in coastal upwelling zones, causing a highly heterogeneous distribution of food resources for higher trophic levels. Here, we assessed daily changes in size-fractioned biomass and community structure of nanoplankton and microplankton at two upwelling sites off northern Chile, Mejillones (23°S) and Chipana (21°S), during summer 2006, winter 2006 and summer 2007 as related to changes in oceanographic conditions upon upwelling variation. We found highly-significant changes in quantity and community structure (species diversity and richness) of both nanoplankton and microplankton fractions after 3-5 days of observations. These changes were coupled to an intermittent upwelling regime reflected in the alongshore component of the wind. After a few days the whole community was modified in terms of species and size structure. Over-imposing this variability, during winter 2006 there was a strong perturbation of remote origin that substantially impacted temperature, oxygenation and stratification of the water column. This "abnormal" warming event altered the upwelling regime, but its impact on abundance and composition of the nanoplankton and microplankton fractions was uncertain. Over the short-time scale however, we found a strong coupling between daily changes in the alongshore component of wind and nanoplankton and microplankton abundances and their structure. All these findings indicate that despite the high biological productivity of this upwelling region, high frequency variation induced by wind forcing may be a major regulator of food resources (quantity and quality) for primary consumers, such as zooplankton, fish larvae and benthic organisms in the near-shore area. This high frequency variation may also impose a key constrain for prey-predator encounter rates and survival of short-lived zooplankton and invertebrate and fish larvae in the upwelling zone.
Lü, Xiao-Tao; Reed, Sasha; Yu, Qiang; He, Nian-Peng; Wang, Zheng-Wen; Han, Xing-Guo
2013-01-01
Human activities have significantly altered nitrogen (N) availability in most terrestrial ecosystems, with consequences for community composition and ecosystem functioning. Although studies of how changes in N availability affect biodiversity and community composition are relatively common, much less remains known about the effects of N inputs on the coupled biogeochemical cycling of N and phosphorus (P), and still fewer data exist regarding how increased N inputs affect the internal cycling of these two elements in plants. Nutrient resorption is an important driver of plant nutrient economies and of the quality of litter plants produce. Accordingly, resorption patterns have marked ecological implications for plant population and community fitness, as well as for ecosystem nutrient cycling. In a semiarid grassland in northern China, we studied the effects of a wide range of N inputs on foliar nutrient resorption of two dominant grasses, Leymus chinensis and Stipa grandis. After 4 years of treatments, N and P availability in soil and N and P concentrations in green and senesced grass leaves increased with increasing rates of N addition. Foliar N and P resorption significantly decreased along the N addition gradient, implying a resorption-mediated, positive plant–soil feedback induced by N inputs. Furthermore, N : P resorption ratios were negatively correlated with the rates of N addition, indicating the sensitivity of plant N and P stoichiometry to N inputs. Taken together, the results demonstrate that N additions accelerate ecosystem uptake and turnover of both N and P in the temperate steppe and that N and P cycles are coupled in dynamic ways. The convergence of N and P resorption in response to N inputs emphasizes the importance of nutrient resorption as a pathway by which plants and ecosystems adjust in the face of increasing N availability.
Air-Coupled Ultrasonic Measurements in Composites
NASA Astrophysics Data System (ADS)
Kommareddy, V.; Peters, J. J.; Dayal, V.; Hsu, D. K.
2004-02-01
Air-coupled ultrasound is a non-contact technique and has clear advantages over water-coupled testing. Research of air-coupled ultrasonics, especially using capacitance and micromachined transducers, has been extensively reported in the literature. This paper reports our experience of applying piezoceramic air-coupled transducers for nondestructive evaluation of composites. The beam profiles of air-coupled piezoceramic transducers, with and without apodization, were mapped out. The transmission of air-coupled ultrasonic energy through composite plates of different thickness was measured experimentally; model calculation of the transmission coefficient, taking into account the frequency bandwidth of the transducer, agreed with the measurement results. The occurrence of diffraction phenomenon ("Poisson bright spot") while imaging flaws in composite laminates was investigated. The resolution of scanned images obtained with air-coupled transducers was investigated for different frequency, focusing, and apodization conditions.
NASA Astrophysics Data System (ADS)
Hagel Svendsen, Sarah; Schostag, Morten; Voriskova, Jana; Kramshøj, Magnus; Priemé, Anders; Suhr Jacobsen, Carsten; Rinnan, Riikka
2017-04-01
Emissions of biogenic volatile organic compounds (BVOCs) from natural ecosystems have significant impact on atmospheric chemistry and belowground chemical processes. Most attention has been given to emissions from plants. However, several studies have found that soil, and especially the decomposing leaf and needle litter, emits substantial amounts of BVOCs. The contribution of litter to ecosystem BVOC emissions may be increasingly significant in the Arctic, where the living plant biomass is low, and the amount of litter increasing due to the expansion of deciduous vegetation in response to climate change. It is known that the types and amounts of BVOCs emitted from the soil are highly dependent on the microbial community composition and the type of substrate. In this study we measured emissions of BVOCs from the leaf litter of common arctic plant species at different temperatures. The BVOC measurements were coupled with an analysis of the relative abundance of dominating bacterial species (determined as operational taxonomic units, OTUs). Leaf litter from evergreen Cassiope tetragona and two species of deciduous Salix were collected from two arctic locations; one in the High Arctic and one in the Low Arctic. The litter was incubated in dark at 5 ?C. Over an eight week period the temperature was increased 7 ?C every two weeks, giving temperature incubations at 5 ?C, 12 ?C, 19 ?C and 26 ?C. Emissions of BVOCs from the litter were sampled in adsorbent cartridges weekly and analyzed using gas chromatography-mass spectrometry. The relative abundance of bacteria was determined at the end of the incubation at each temperature using DNA sequencing. Results showed that emissions of BVOCs belonging to different chemical functional groups responded differently to increasing temperatures and were highly dependent on the type of substrate. For instance, terpenoid emissions from the Cassiope litter increased with increasing temperature, whereas the emissions from the Salix litter decreased. Likewise, the relative abundance of bacteria depended on temperature and the type of substrate. Especially the actinobacteria showed strong increasing trends with increasing temperature in the Salix litter. Acidobacteria had much higher relative abundance in the Cassiope litter than in the Salix litter. Multivariate analyses were used to assess potential links between the BVOC and bacterial abundance datasets. Similar patterns in the BVOC emissions and bacterial community composition at different temperatures and for different substrates suggest that the differences in BVOC emissions, at least to some extent, are driven by changes in the microbial community composition.
Online coupled regional meteorology-chemistry models in Europe: current status and prospects
NASA Astrophysics Data System (ADS)
Baklanov, A.; Schluenzen, K. H.; Suppan, P.; Baldasano, J.; Brunner, D.; Aksoyoglu, S.; Carmichael, G.; Douros, J.; Flemming, J.; Forkel, R.; Galmarini, S.; Gauss, M.; Grell, G.; Hirtl, M.; Joffre, S.; Jorba, O.; Kaas, E.; Kaasik, M.; Kallos, G.; Kong, X.; Korsholm, U.; Kurganskiy, A.; Kushta, J.; Lohmann, U.; Mahura, A.; Manders-Groot, A.; Maurizi, A.; Moussiopoulos, N.; Rao, S. T.; Savage, N.; Seigneur, C.; Sokhi, R.; Solazzo, E.; Solomos, S.; Sørensen, B.; Tsegas, G.; Vignati, E.; Vogel, B.; Zhang, Y.
2013-05-01
The simulation of the coupled evolution of atmospheric dynamics, pollutant transport, chemical reactions and atmospheric composition is one of the most challenging tasks in environmental modelling, climate change studies, and weather forecasting for the next decades as they all involve strongly integrated processes. Weather strongly influences air quality (AQ) and atmospheric transport of hazardous materials, while atmospheric composition can influence both weather and climate by directly modifying the atmospheric radiation budget or indirectly affecting cloud formation. Until recently, however, due to the scientific complexities and lack of computational power, atmospheric chemistry and weather forecasting have developed as separate disciplines, leading to the development of separate modelling systems that are only loosely coupled. The continuous increase in computer power has now reached a stage that enables us to perform online coupling of regional meteorological models with atmospheric chemical transport models. The focus on integrated systems is timely, since recent research has shown that meteorology and chemistry feedbacks are important in the context of many research areas and applications, including numerical weather prediction (NWP), AQ forecasting as well as climate and Earth system modelling. However, the relative importance of online integration and its priorities, requirements and levels of detail necessary for representing different processes and feedbacks can greatly vary for these related communities: (i) NWP, (ii) AQ forecasting and assessments, (iii) climate and earth system modelling. Additional applications are likely to benefit from online modelling, e.g.: simulation of volcanic ash or forest fire plumes, pollen warnings, dust storms, oil/gas fires, geo-engineering tests involving changes in the radiation balance. The COST Action ES1004 - European framework for online integrated air quality and meteorology modelling (EuMetChem) - aims at paving the way towards a new generation of online integrated atmospheric chemical transport and meteorology modelling with two-way interactions between different atmospheric processes including dynamics, chemistry, clouds, radiation, boundary layer and emissions. As its first task, we summarise the current status of European modelling practices and experience with online coupled modelling of meteorology with atmospheric chemistry including feedback mechanisms and attempt reviewing the various issues connected to the different modules of such online coupled models but also providing recommendations for coping with them for the benefit of the modelling community at large.
Coupled structural/thermal/electromagnetic analysis/tailoring of graded composite structures
NASA Technical Reports Server (NTRS)
Mcknight, R. L.; Huang, H.; Hartle, M.
1992-01-01
Accomplishments are described for the third years effort of a 5-year program to develop a methodology for coupled structural/thermal/electromagnetic analysis/tailoring of graded composite structures. These accomplishments include: (1) structural analysis capability specialized for graded composite structures including large deformation and deformation position eigenanalysis technologies; (2) a thermal analyzer specialized for graded composite structures; (3) absorption of electromagnetic waves by graded composite structures; and (4) coupled structural thermal/electromagnetic analysis of graded composite structures.
NASA Astrophysics Data System (ADS)
Liu, Guoxi; Zhang, Chunli; Chen, Weiqiu; Dong, Shuxiang
2013-07-01
An analytical model of resonant magnetoelectric (ME) coupling in magnetostrictive (MS)-piezoelectric (PE) laminated composites in consideration of eddy-current effect in MS layer using equivalent circuit method is presented. Numerical calculations show that: (1) the eddy-current has a strong effect on ME coupling in MS-PE laminated composites at resonant frequency; and (2) the resonant ME coupling is then significantly dependent on the sizes of ME laminated composites, which were neglected in most previous theoretical analyses. The achieved results provide a theoretical guidance for the practice engineering design, manufacture, and application of ME laminated composites and devices.
Labay, Ben; Cohen, Adam E.; Sissel, Blake; Hendrickson, Dean A.; Martin, F. Douglas; Sarkar, Sahotra
2011-01-01
Accurate establishment of baseline conditions is critical to successful management and habitat restoration. We demonstrate the ability to robustly estimate historical fish community composition and assess the current status of the urbanized Barton Creek watershed in central Texas, U.S.A. Fish species were surveyed in 2008 and the resulting data compared to three sources of fish occurrence information: (i) historical records from a museum specimen database and literature searches; (ii) a nearly identical survey conducted 15 years earlier; and (iii) a modeled historical community constructed with species distribution models (SDMs). This holistic approach, and especially the application of SDMs, allowed us to discover that the fish community in Barton Creek was more diverse than the historical data and survey methods alone indicated. Sixteen native species with high modeled probability of occurrence within the watershed were not found in the 2008 survey, seven of these were not found in either survey or in any of the historical collection records. Our approach allowed us to more rigorously establish the true baseline for the pre-development fish fauna and then to more accurately assess trends and develop hypotheses regarding factors driving current fish community composition to better inform management decisions and future restoration efforts. Smaller, urbanized freshwater systems, like Barton Creek, typically have a relatively poor historical biodiversity inventory coupled with long histories of alteration, and thus there is a propensity for land managers and researchers to apply inaccurate baseline standards. Our methods provide a way around that limitation by using SDMs derived from larger and richer biodiversity databases of a broader geographic scope. Broadly applied, we propose that this technique has potential to overcome limitations of popular bioassessment metrics (e.g., IBI) to become a versatile and robust management tool for determining status of freshwater biotic communities. PMID:21966438
Lin, Xueju; Tfaily, Malak M; Steinweg, J Megan; Chanton, Patrick; Esson, Kaitlin; Yang, Zamin K; Chanton, Jeffrey P; Cooper, William; Schadt, Christopher W; Kostka, Joel E
2014-06-01
This study investigated the abundance, distribution, and composition of microbial communities at the watershed scale in a boreal peatland within the Marcell Experimental Forest (MEF), Minnesota, USA. Through a close coupling of next-generation sequencing, biogeochemistry, and advanced analytical chemistry, a biogeochemical hot spot was revealed in the mesotelm (30- to 50-cm depth) as a pronounced shift in microbial community composition in parallel with elevated peat decomposition. The relative abundance of Acidobacteria and the Syntrophobacteraceae, including known hydrocarbon-utilizing genera, was positively correlated with carbohydrate and organic acid content, showing a maximum in the mesotelm. The abundance of Archaea (primarily crenarchaeal groups 1.1c and 1.3) increased with depth, reaching up to 60% of total small-subunit (SSU) rRNA gene sequences in the deep peat below the 75-cm depth. Stable isotope geochemistry and potential rates of methane production paralleled vertical changes in methanogen community composition to indicate a predominance of acetoclastic methanogenesis mediated by the Methanosarcinales in the mesotelm, while hydrogen-utilizing methanogens predominated in the deeper catotelm. RNA-derived pyrosequence libraries corroborated DNA sequence data to indicate that the above-mentioned microbial groups are metabolically active in the mid-depth zone. Fungi showed a maximum in rRNA gene abundance above the 30-cm depth, which comprised only an average of 0.1% of total bacterial and archaeal rRNA gene abundance, indicating prokaryotic dominance. Ratios of C to P enzyme activities approached 0.5 at the acrotelm and catotelm, indicating phosphorus limitation. In contrast, P limitation pressure appeared to be relieved in the mesotelm, likely due to P solubilization by microbial production of organic acids and C-P lyases. Based on path analysis and the modeling of community spatial turnover, we hypothesize that P limitation outweighs N limitation at MEF, and microbial communities are structured by the dominant shrub, Chamaedaphne calyculata, which may act as a carbon source for major consumers in the peatland.
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Hoffarth, Canio; Rajan, Subramaniam; Blankenhorn, Gunther
2016-01-01
The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites under impact conditions is becoming critical as these materials are gaining increased usage in the aerospace and automotive communities. In order to address a series of issues identified by the aerospace community as being desirable to include in a next generation composite impact model, an orthotropic, macroscopic constitutive model incorporating both plasticity and damage suitable for implementation within the commercial LS-DYNA computer code is being developed. The plasticity model is based on extending the Tsai-Wu composite failure model into a strain hardening-based orthotropic plasticity model with a non-associative flow rule. The evolution of the yield surface is determined based on tabulated stress-strain curves in the various normal and shear directions and is tracked using the effective plastic strain. To compute the evolution of damage, a strain equivalent semi-coupled formulation is used in which a load in one direction results in a stiffness reduction in multiple material coordinate directions. A detailed analysis is carried out to ensure that the strain equivalence assumption is appropriate for the derived plasticity and damage formulations that are employed in the current model. Procedures to develop the appropriate input curves for the damage model are presented and the process required to develop an appropriate characterization test matrix is discussed
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Hoffarth, Canio; Rajan, Subramaniam; Blankenhorn, Gunther
2016-01-01
The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites under impact conditions is becoming critical as these materials are gaining increased usage in the aerospace and automotive communities. In order to address a series of issues identified by the aerospace community as being desirable to include in a next generation composite impact model, an orthotropic, macroscopic constitutive model incorporating both plasticity and damage suitable for implementation within the commercial LS-DYNA computer code is being developed. The plasticity model is based on extending the Tsai-Wu composite failure model into a strain hardening-based orthotropic plasticity model with a non-associative flow rule. The evolution of the yield surface is determined based on tabulated stress-strain curves in the various normal and shear directions and is tracked using the effective plastic strain. To compute the evolution of damage, a strain equivalent semi-coupled formulation is used in which a load in one direction results in a stiffness reduction in multiple material coordinate directions. A detailed analysis is carried out to ensure that the strain equivalence assumption is appropriate for the derived plasticity and damage formulations that are employed in the current model. Procedures to develop the appropriate input curves for the damage model are presented and the process required to develop an appropriate characterization test matrix is discussed.
Dried Out: Phytoplankton Drought Response in the San Francisco Estuary
NASA Astrophysics Data System (ADS)
Dawson, T.; Houskeeper, H. F.; Palacios, S. L.; Peacock, M.; Kudela, R. M.
2017-12-01
Between 2012 and 2016, the state of California experienced one of the most severe multiyear droughts in nearly 120 years, causing a drastic reduction of freshwater flow to the San Francisco Estuary (SFE). During this period, retention by dams, coupled with the lack of winter rains and spring snow melt led to roughly a third less water reaching the SFE. Decreased freshwater flow to the bay alters the ecology of the SFE, for example by advancing the seasonal timing of phytoplankton blooms, and has been linked to phytoplankton plumes of different, and often more toxic, species. Phytoplankton functional type (PFT) methods, such as PHYDOtax, enable the measurement of community composition, and has been validated in SFE. As part of the NASA Student Airborne Research Program (SARP), we test the accuracy of the PHYDOtax algorithm during the drought period in SFE using matchups between in situ pigment measurements and remotely sensed reflectance spectra from the AVIRIS airborne sensor. We will present time series of salinity and phytoplankton composition in the SFE and evaluate the effects of the drought on the estuarine phytoplankton composition. In the future, California is expected to experience increased frequency of extreme weather events, such as drought, as a consequence of climate change. We evaluate the consequences of the drought on phytoplankton community composition to understand how future extreme weather events may alter the ecology or toxicity of SFE.
Impacts of mesoscale eddies in the South China Sea on biogeochemical cycles
NASA Astrophysics Data System (ADS)
Guo, Mingxian; Chai, Fei; Xiu, Peng; Li, Shiyu; Rao, Shivanesh
2015-09-01
Biogeochemical cycles associated with mesoscale eddies in the South China Sea (SCS) were investigated. The study was based on a coupled physical-biogeochemical Pacific Ocean model (Regional Ocean Model System-Carbon, Silicate, and Nitrogen Ecosystem, ROMS-CoSiNE) simulation for the period from 1991 to 2008. A total of 568 mesoscale eddies with lifetime longer than 30 days were used in the analysis. Composite analysis revealed that the cyclonic eddies were associated with abundance of nutrients, phytoplankton, and zooplankton while the anticyclonic eddies depressed biogeochemical cycles, which are generally controlled by the eddy pumping mechanism. In addition, diatoms were dominant in phytoplankton species due to the abundance of silicate. Dipole structures of vertical fluxes with net upward motion in cyclonic eddies and net downward motion in anticyclonic eddies were revealed. During the lifetime of an eddy, the evolutions of physical, biological, and chemical structures were not linearly coupled at the eddy core where plankton grew, and composition of the community depended not only on the physical and chemical processes but also on the adjustments by the predator-prey relationship.
Cerrillo, Míriam; Viñas, Marc; Bonmatí, August
2017-03-01
Thermophilic anaerobic digestion (AD) of pig slurry coupled to a microbial electrolysis cell (MEC) with a recirculation loop was studied at lab-scale as a strategy to increase AD stability when submitted to organic and nitrogen overloads. The system performance was studied, with the recirculation loop both connected and disconnected, in terms of AD methane production, chemical oxygen demand removal (COD) and volatile fatty acid (VFA) concentrations. Furthermore, the microbial population was quantitatively and qualitatively assessed through DNA and RNA-based qPCR and high throughput sequencing (MiSeq), respectively to identify the RNA-based active microbial populations from the total DNA-based microbial community composition both in the AD and MEC reactors under different operational conditions. Suppression of the recirculation loop reduced the AD COD removal efficiency (from 40% to 22%) and the methane production (from 0.32 to 0.03 m 3 m -3 d -1 ). Restoring the recirculation loop led to a methane production of 0.55 m 3 m -3 d -1 concomitant with maximum MEC COD and ammonium removal efficiencies of 29% and 34%, respectively. Regarding microbial analysis, the composition of the AD and MEC anode populations differed from really active microorganisms. Desulfuromonadaceae was revealed as the most active family in the MEC (18%-19% of the RNA relative abundance), while hydrogenotrophic methanogens (Methanobacteriaceae) dominated the AD biomass. Copyright © 2016 Elsevier Ltd. All rights reserved.
Waldrop, M.P.; Firestone, M.K.
2006-01-01
Soil microbial communities are closely associated with aboveground plant communities, with multiple potential drivers of this relationship. Plants can affect available soil carbon, temperature, and water content, which each have the potential to affect microbial community composition and function. These same variables change seasonally, and thus plant control on microbial community composition may be modulated or overshadowed by annual climatic patterns. We examined microbial community composition, C cycling processes, and environmental data in California annual grassland soils from beneath oak canopies and in open grassland areas to distinguish factors controlling microbial community composition and function seasonally and in association with the two plant overstory communities. Every 3 months for up to 2 years, we monitored microbial community composition using phospholipid fatty acid (PLFA) analysis, microbial biomass, respiration rates, microbial enzyme activities, and the activity of microbial groups using isotope labeling of PLFA biomarkers (13C-PLFA) . Distinct microbial communities were associated with oak canopy soils and open grassland soils and microbial communities displayed seasonal patterns from year to year. The effects of plant species and seasonal climate on microbial community composition were similar in magnitude. In this Mediterranean ecosystem, plant control of microbial community composition was primarily due to effects on soil water content, whereas the changes in microbial community composition seasonally appeared to be due, in large part, to soil temperature. Available soil carbon was not a significant control on microbial community composition. Microbial community composition (PLFA) and 13C-PLFA ordination values were strongly related to intra-annual variability in soil enzyme activities and soil respiration, but microbial biomass was not. In this Mediterranean climate, soil microclimate appeared to be the master variable controlling microbial community composition and function. ?? 2006 Springer Science+Business Media, Inc.
Wang, Junfeng; Song, Xinshan; Wang, Yuhui; Abayneh, Befkadu; Ding, Yi; Yan, Denghua; Bai, Junhong
2016-12-01
The microbial fuel cell coupled with constructed wetland (CW-MFC) microcosms were operated under fed-batch mode for evaluating the effect of electrode materials on bioelectricity generation and microbial community composition. Experimental results indicated that the bioenergy output in CW-MFC increased with the substrate concentration; maximum average voltage (177mV) was observed in CW-MFC with carbon fiber felt (CFF). In addition, the four different materials resulted in the formation of significantly different microbial community distribution around the anode electrode. The relative abundance of Proteobacteria in CFF and foamed nickel (FN) was significantly higher than that in stainless steel mesh (SSM) and graphite rod (GR) samples. Notably, the findings indicate that CW-MFC utilizing FN anode electrode could apparently improve relative abundance of Dechloromonas, which has been regarded as a denitrifying and phosphate accumulating microorganism. Copyright © 2016 Elsevier Ltd. All rights reserved.
Coelho, Francisco J R C; Cleary, Daniel F R; Costa, Rodrigo; Ferreira, Marina; Polónia, Ana R M; Silva, Artur M S; Simões, Mário M Q; Oliveira, Vanessa; Gomes, Newton C M
2016-09-01
There is growing concern that predicted changes to global ocean chemistry will interact with anthropogenic pollution to significantly alter marine microbial composition and function. However, knowledge of the compounding effects of climate change stressors and anthropogenic pollution is limited. Here, we used 16S and 18S rRNA (cDNA)-based activity profiling to investigate the differential responses of selected microbial taxa to ocean acidification and oil hydrocarbon contamination under controlled laboratory conditions. Our results revealed that a lower relative abundance of sulphate-reducing bacteria (Desulfosarcina/Desulfococcus clade) due to an adverse effect of seawater acidification and oil hydrocarbon contamination (reduced pH-oil treatment) may be coupled to changes in sediment archaeal communities. In particular, we observed a pronounced compositional shift and marked reduction in the prevalence of otherwise abundant operational taxonomic units (OTUs) belonging to the archaeal Marine Benthic Group B and Marine Hydrothermal Vent Group (MHVG) in the reduced pH-oil treatment. Conversely, the abundance of several putative hydrocarbonoclastic fungal OTUs was higher in the reduced pH-oil treatment. Sediment hydrocarbon profiling, furthermore, revealed higher concentrations of several alkanes in the reduced pH-oil treatment, corroborating the functional implications of the structural changes to microbial community composition. Collectively, our results advance the understanding of the response of a complex microbial community to the interaction between reduced pH and anthropogenic pollution. In future acidified marine environments, oil hydrocarbon contamination may alter the typical mixotrophic and k-/r-strategist composition of surface sediment microbiomes towards a more heterotrophic state with lower doubling rates, thereby impairing the ability of the ecosystem to recover from acute oil contamination events. © 2016 John Wiley & Sons Ltd.
HIV Risk and Protection among Gay Male Couples: The Role of Gay Community Integration
ERIC Educational Resources Information Center
Fergus, Stevenson; Lewis, Megan A.; Darbes, Lynae A.; Butterfield, Rita M.
2005-01-01
This study examined the association between different types of integration in the gay community and HIV risk among gay male couples. Previous research linking gay community integration and involvement among couples to HIV risk has been equivocal. Each partner in 59 gay couples completed a separate anonymous questionnaire that assessed two types of…
Edwards, Arwyn; Mur, Luis A J; Girdwood, Susan E; Anesio, Alexandre M; Stibal, Marek; Rassner, Sara M E; Hell, Katherina; Pachebat, Justin A; Post, Barbara; Bussell, Jennifer S; Cameron, Simon J S; Griffith, Gareth Wyn; Hodson, Andrew J; Sattler, Birgit
2014-08-01
Cryoconite holes are known as foci of microbial diversity and activity on polar glacier surfaces, but are virtually unexplored microbial habitats in alpine regions. In addition, whether cryoconite community structure reflects ecosystem functionality is poorly understood. Terminal restriction fragment length polymorphism and Fourier transform infrared metabolite fingerprinting of cryoconite from glaciers in Austria, Greenland and Svalbard demonstrated cryoconite bacterial communities are closely correlated with cognate metabolite fingerprints. The influence of bacterial-associated fatty acids and polysaccharides was inferred, underlining the importance of bacterial community structure in the properties of cryoconite. Thus, combined application of T-RFLP and FT-IR metabolite fingerprinting promises high throughput, and hence, rapid assessment of community structure-function relationships. Pyrosequencing revealed Proteobacteria were particularly abundant, with Cyanobacteria likely acting as ecosystem engineers in both alpine and Arctic cryoconite communities. However, despite these generalities, significant differences in bacterial community structures, compositions and metabolomes are found between alpine and Arctic cryoconite habitats, reflecting the impact of local and regional conditions on the challenges of thriving in glacial ecosystems. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Tseng, Jui-Pin
2017-02-01
This investigation establishes the global cluster synchronization of complex networks with a community structure based on an iterative approach. The units comprising the network are described by differential equations, and can be non-autonomous and involve time delays. In addition, units in the different communities can be governed by different equations. The coupling configuration of the network is rather general. The coupling terms can be non-diffusive, nonlinear, asymmetric, and with heterogeneous coupling delays. Based on this approach, both delay-dependent and delay-independent criteria for global cluster synchronization are derived. We implement the present approach for a nonlinearly coupled neural network with heterogeneous coupling delays. Two numerical examples are given to show that neural networks can behave in a variety of new collective ways under the synchronization criteria. These examples also demonstrate that neural networks remain synchronized in spite of coupling delays between neurons across different communities; however, they may lose synchrony if the coupling delays between the neurons within the same community are too large, such that the synchronization criteria are violated. Copyright © 2016 Elsevier Ltd. All rights reserved.
Emergent properties of climate-vegetation feedbacks in the North American Monsoon Macrosystem
NASA Astrophysics Data System (ADS)
Mathias, A.; Niu, G.; Zeng, X.
2012-12-01
The ability of ecosystems to adapt naturally to climate change and associated disturbances (e.g. wildfires, spread of invasive species) is greatly affected by the stability of feedback interactions between climate and vegetation. In order to study climate-vegetation interactions, such as CO2 and H2O exchange in the North American Monsoon System (NAMS), we plan to couple a community land surface model (NoahMP or CLM) used in regional climate models (WRF) with an individual based, spatially explicit vegetation model (ECOTONE). Individual based modeling makes it possible to link individual plant traits with properties of plant communities. Community properties, such as species composition and species distribution arise from dynamic interactions of individual plants with each other, and with their environment. Plants interact with each other through intra- and interspecific competition for resources (H2O, nitrogen), and the outcome of these interactions depends on the properties of the plant community and the environment itself. In turn, the environment is affected by the resulting change in community structure, which may have an impact on the drivers of climate change. First, we performed sensitivity tests of ECOTONE to assess its ability to reproduce vegetation distribution in the NAMS. We compared the land surface model and ECOTONE with regard to their capability to accurately simulate soil moisture, CO2 flux and above ground biomass. For evaluating the models we used the eddy-correlation sensible and latent heat fluxes, CO2 flux and observations of other climate and environmental variables (e.g. soil temperature and moisture) from the Santa Rita experimental range. The model intercomparison helped us understand the advantages and disadvantages of each model, providing us guidance for coupling the community land surface model (NoahMP or CLM) with ECOTONE.
Modification of Higgs couplings in minimal composite models
NASA Astrophysics Data System (ADS)
Liu, Da; Low, Ian; Wagner, Carlos E. M.
2017-08-01
We present a comprehensive study of the modifications of Higgs couplings in the S O (5 )/S O (4 ) minimal composite model. We focus on three couplings of central importance to Higgs phenomenology at the LHC: the couplings to top and bottom quarks and the coupling to two gluons. We consider three possible embeddings of the fermionic partners in 5 , 10 and 14 of S O (5 ) and find t t ¯h and b b ¯h couplings to be always suppressed in 5 and 10 , while in 14 they can be either enhanced or suppressed. Assuming partial compositeness, we analyze the interplay between the t t ¯h coupling and the top sector contribution to the Coleman-Weinberg potential for the Higgs boson, and the correlation between t t ¯h and g g h couplings. In particular, if the electroweak symmetry breaking is triggered radiatively by the top sector, we demonstrate that the ratio of the t t ¯h coupling in composite Higgs models over the Standard Model expectation is preferred to be less than the corresponding ratio of the g g h coupling.
1989-06-01
K10 Summary of Soil Analyses for the Salt Marsh Transects K32 KI1 Plant Community Composition Data Along Compartment K33 B Transect K12 Plant...Community Composition Data Along Compartment K33 I Transect K13 Plant Community Composition Data Along Compartment K33 K1 Transect K14 Plant Community... Composition Data Along Compartment K34 K3 Transect K15 Plant Community Composition Data Along Compartment K34 L2 Transect K16 Plant Community Composition
Guo, Shuhai; Fan, Ruijuan; Li, Tingting; Hartog, Niels; Li, Fengmei; Yang, Xuelian
2014-08-01
The present study evaluated the coupling interactions between bioremediation (BIO) and electrokinetics (EK) in the remediation of total petroleum hydrocarbons (TPH) by using bio-electrokinetics (BIO-EK) with a rotatory 2-D electric field. The results demonstrated an obvious positive correlation between the degradation extents of TPH and electric intensity both in the EK and BIO-EK tests. The use of BIO-EK showed a significant improvement in degradation of TPH as compared to BIO or EK alone. The actual degradation curve in BIO-EK tests fitted well with the simulated curve obtained by combining the degradation curves in BIO- and EK-only tests during the first 60 d, indicating a superimposed effect of biological degradation and electrochemical stimulation. The synergistic effect was particularly expressed during the later phase of the experiment, concurrent with changes in the microbial community structure. The community composition changed mainly according to the duration of the electric field, leading to a reduction in diversity. No significant spatial shifts in microbial community composition and bacterial numbers were detected among different sampling positions. Soil pH was uniform during the experimental process, soil temperature showed no variations between the soil chambers with and without an electric field. Copyright © 2014 Elsevier Ltd. All rights reserved.
Diel shifts in the structure and function of nearshore estuarine fish communities.
Yeoh, D E; Valesini, F J; Hallett, C S; Abdo, D A; Williams, J
2017-04-01
Day-night shifts in the nearshore fish fauna of a temperate microtidal estuary were assessed using a holistic suite of structural and functional community attributes. Mean fish species richness and diversity (taxonomic distinctness) were higher at night across all regions of the estuary and seasons, concurring with the findings of numerous comparable studies reviewed worldwide, while the diel period in which mean abundance was higher varied among seasons. Likewise, species and functional guild compositions (the latter based on feeding modes and habitat use) both differed significantly between day and night, with the extent of the diel shift again varying seasonally. Daytime fish communities were characterized by higher abundances of Atherinidae, Sillaginidae and Mugilidae, while Gobiidae were far more abundant at night. Marked shifts in size composition were also evident, with smaller fishes (<100 mm total length, L T ) being more prevalent during the day and larger fishes (≥200 mm L T ) proportionally more abundant at night. The above diel shifts were feasibly related to a range of predator-prey interactions and feeding-related movements, namely a nocturnal decrease in top-order avian piscivory coupled with an increase in invertebrate prey availability, resulting in changes in the presence and catchability of certain fish species in shallow estuarine waters. © 2016 The Fisheries Society of the British Isles.
Bivalve grazing can shape phytoplankton communities
Lucas, Lisa; Cloern, James E.; Thompson, Janet K.; Stacey, Mark T.; Koseff, Jeffrey K.
2016-01-01
The ability of bivalve filter feeders to limit phytoplankton biomass in shallow waters is well-documented, but the role of bivalves in shaping phytoplankton communities is not. The coupled effect of bivalve grazing at the sediment-water interface and sinking of phytoplankton cells to that bottom filtration zone could influence the relative biomass of sinking (diatoms) and non-sinking phytoplankton. Simulations with a pseudo-2D numerical model showed that benthic filter feeding can interact with sinking to alter diatom:non-diatom ratios. Cases with the smallest proportion of diatom biomass were those with the fastest sinking speeds and strongest bivalve grazing rates. Hydrodynamics modulated the coupled sinking-grazing influence on phytoplankton communities. For example, in simulations with persistent stratification, the non-sinking forms accumulated in the surface layer away from bottom grazers while the sinking forms dropped out of the surface layer toward bottom grazers. Tidal-scale stratification also influenced vertical gradients of the two groups in opposite ways. The model was applied to Suisun Bay, a low-salinity habitat of the San Francisco Bay system that was transformed by the introduction of the exotic clam Potamocorbula amurensis. Simulation results for this Bay were similar to (but more muted than) those for generic habitats, indicating that P. amurensis grazing could have caused a disproportionate loss of diatoms after its introduction. Our model simulations suggest bivalve grazing affects both phytoplankton biomass and community composition in shallow waters. We view these results as hypotheses to be tested with experiments and more complex modeling approaches.
Kajiyama, Tetsuto; Yamanaka, Toshiyuki
2017-01-01
We have studied the effects of silane coupling agents used for the surface treatment of fiber on the tribological properties of hemp fiber (HF) reinforced plant-derived polyamide 1010 (PA1010) biomass composites. Hemp fibers were surface-treated by two surface treatment methods: (a) alkali treatment by sodium hydroxide solution and (b) surface treatment by silane coupling agents. Three types of silane coupling agents, namely aminosilane, epoxysilane and ureidosilane were used. These HF/PA1010 biomass composites were extruded using a twin extruder, and injection-molded. The mechanical and tribological properties were evaluated by the ring-on-plate type sliding wear test. It was found that tribological properties of HF/PA1010 biomass composites improved with the surface treatment by the silane coupling agent. This may be attributed to the change in the mode of friction and wear mechanism by the interfacial adhesion between fiber and matrix polymer according to the type of silane coupling agent used. In particular, the ureidosilane coupling agent showed the best improvement effect for the tribological properties of these biomass composites in this study. PMID:28872624
NASA Astrophysics Data System (ADS)
Jimenez, H.; Dumas, P.; Ponton, D.; Ferraris, J.
2012-03-01
Invertebrates represent an essential component of coral reef ecosystems; they are ecologically important and a major resource, but their assemblages remain largely unknown, particularly on Pacific islands. Understanding their distribution and building predictive models of community composition as a function of environmental variables therefore constitutes a key issue for resource management. The goal of this study was to define and classify the main environmental factors influencing tropical invertebrate distributions in New Caledonian reef flats and to test the resulting predictive model. Invertebrate assemblages were sampled by visual counting during 2 years and 2 seasons, then coupled to different environmental conditions (habitat composition, hydrodynamics and sediment characteristics) and harvesting status (MPA vs. non-MPA and islets vs. coastal flats). Environmental conditions were described by a principal component analysis (PCA), and contributing variables were selected. Permutational analysis of variance (PERMANOVA) was used to test the effects of different factors (status, flat, year and season) on the invertebrate assemblage composition. Multivariate regression trees (MRT) were then used to hierarchically classify the effects of environmental and harvesting variables. MRT model explained at least 60% of the variation in structure of invertebrate communities. Results highlighted the influence of status (MPA vs. non-MPA) and location (islet vs. coastal flat), followed by habitat composition, organic matter content, hydrodynamics and sampling year. Predicted assemblages defined by indicator families were very different for each environment-exploitation scenario and correctly matched a calibration data matrix. Predictions from MRT including both environmental variables and harvesting pressure can be useful for management of invertebrates in coral reef environments.
Coupled multi-disciplinary simulation of composite engine structures in propulsion environment
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Singhal, Surendra N.
1992-01-01
A computational simulation procedure is described for the coupled response of multi-layered multi-material composite engine structural components which are subjected to simultaneous multi-disciplinary thermal, structural, vibration, and acoustic loadings including the effect of hostile environments. The simulation is based on a three dimensional finite element analysis technique in conjunction with structural mechanics codes and with acoustic analysis methods. The composite material behavior is assessed at the various composite scales, i.e., the laminate/ply/constituents (fiber/matrix), via a nonlinear material characterization model. Sample cases exhibiting nonlinear geometrical, material, loading, and environmental behavior of aircraft engine fan blades, are presented. Results for deformed shape, vibration frequency, mode shapes, and acoustic noise emitted from the fan blade, are discussed for their coupled effect in hot and humid environments. Results such as acoustic noise for coupled composite-mechanics/heat transfer/structural/vibration/acoustic analyses demonstrate the effectiveness of coupled multi-disciplinary computational simulation and the various advantages of composite materials compared to metals.
Metagenomics of Thermophiles with a Focus on Discovery of Novel Thermozymes
DeCastro, María-Eugenia; Rodríguez-Belmonte, Esther; González-Siso, María-Isabel
2016-01-01
Microbial populations living in environments with temperatures above 50°C (thermophiles) have been widely studied, increasing our knowledge in the composition and function of these ecological communities. Since these populations express a broad number of heat-resistant enzymes (thermozymes), they also represent an important source for novel biocatalysts that can be potentially used in industrial processes. The integrated study of the whole-community DNA from an environment, known as metagenomics, coupled with the development of next generation sequencing (NGS) technologies, has allowed the generation of large amounts of data from thermophiles. In this review, we summarize the main approaches commonly utilized for assessing the taxonomic and functional diversity of thermophiles through metagenomics, including several bioinformatics tools and some metagenome-derived methods to isolate their thermozymes. PMID:27729905
Strategies for Coordination of a Serosurvey in Parallel with an Immunization Coverage Survey
Travassos, Mark A.; Beyene, Berhane; Adam, Zenaw; Campbell, James D.; Mulholland, Nigisti; Diarra, Seydou S.; Kassa, Tassew; Oot, Lisa; Sequeira, Jenny; Reymann, Mardi; Blackwelder, William C.; Pasetti, Marcela F.; Sow, Samba O.; Steinglass, Robert; Kebede, Amha; Levine, Myron M.
2015-01-01
A community-based immunization coverage survey is the standard way to estimate effective vaccination delivery to a target population in a region. Accompanying serosurveys can provide objective measures of protective immunity against vaccine-preventable diseases but pose considerable challenges with respect to specimen collection and preservation and community compliance. We performed serosurveys coupled to immunization coverage surveys in three administrative districts (woredas) in rural Ethiopia. Critical to the success of this effort were serosurvey equipment and supplies, team composition, and tight coordination with the coverage survey. Application of these techniques to future studies may foster more widespread use of serosurveys to derive more objective assessments of vaccine-derived seroprotection and monitor and compare the performance of immunization services in different districts of a country. PMID:26055737
Soil-borne bacterial structure and diversity does not reflect community activity in Pampa biome.
Lupatini, Manoeli; Suleiman, Afnan Khalil Ahmad; Jacques, Rodrigo Josemar Seminoti; Antoniolli, Zaida Inês; Kuramae, Eiko Eurya; de Oliveira Camargo, Flávio Anastácio; Roesch, Luiz Fernando Würdig
2013-01-01
The Pampa biome is considered one of the main hotspots of the world's biodiversity and it is estimated that half of its original vegetation was removed and converted to agricultural land and tree plantations. Although an increasing amount of knowledge is being assembled regarding the response of soil bacterial communities to land use change, to the associated plant community and to soil properties, our understanding about how these interactions affect the microbial community from the Brazilian Pampa is still poor and incomplete. In this study, we hypothesized that the same soil type from the same geographic region but under distinct land use present dissimilar soil bacterial communities. To test this hypothesis, we assessed the soil bacterial communities from four land-uses within the same soil type by 454-pyrosequencing of 16S rRNA gene and by soil microbial activity analyzes. We found that the same soil type under different land uses harbor similar (but not equal) bacterial communities and the differences were controlled by many microbial taxa. No differences regarding diversity and richness between natural areas and areas under anthropogenic disturbance were detected. However, the measures of microbial activity did not converge with the 16S rRNA data supporting the idea that the coupling between functioning and composition of bacterial communities is not necessarily correlated.
Dorado, Samuel; Booe, Tyra; Steichen, Jamie; McInnes, Allison S.; Windham, Rachel; Shepard, Alicia; Lucchese, Allyson E. B.; Preischel, Hannah; Pinckney, James L.; Davis, Stephen E.; Roelke, Daniel L.; Quigg, Antonietta
2015-01-01
Subtropical estuaries worldwide face increased pressure on their ecosystem health and services due to increasing human population growth and associated land use/land cover changes, expansion of ports, and climate change. We investigated freshwater inflows (river discharge) and the physico-chemical characteristics of Galveston Bay (Texas, USA) as mechanisms driving variability in phytoplankton biomass and community composition between February 2008 and December 2009. Results of multivariate analyses (hierarchical cluster analysis, PERMANOVA, Mantel test, and nMDS ordination coupled to environmental vector fitting) revealed that temporal and spatial differences in phytoplankton community structure correlate to differences in hydrographic and water quality parameters. Spatially, phytoplankton biomass and community composition responded to nutrient loading from the San Jacinto River in the northwest region of the bay (consistent with nutrient limitation) while hydraulic displacement (and perhaps other processes) resulted in overall lower biomass in the Trinity River delta (northeast region). The influence of inflows on phytoplankton diminished along a north to south gradient in the bay. Temporally, temperature and variables associated with freshwater inflow (discharge volume, salinity, inorganic nitrogen and phosphorus concentrations) were major influences on phytoplankton dynamics. Dissolved inorganic nitrogen: phosphorus (DIN:DIP) ratios suggest that phytoplankton communities will be predominately nitrogen limited. Diatoms dominated during periods of moderate to high freshwater inflows in winter/spring and were more abundant in the upper bay while cyanobacteria dominated during summer/fall when inflow was low. Given the differential influences of freshwater inflow on the phytoplankton communities of Galveston Bay, alterations upstream (magnitude, timing, frequency) will likely have a profound effect on downstream ecological processes and corresponding ecosystem services. PMID:26133991
Lindemann, Stephen R.; Moran, James J.; Stegen, James C.; Renslow, Ryan S.; Hutchison, Janine R.; Cole, Jessica K.; Dohnalkova, Alice C.; Tremblay, Julien; Singh, Kanwar; Malfatti, Stephanie A.; Chen, Feng; Tringe, Susannah G.; Beyenal, Haluk; Fredrickson, James K.
2013-01-01
Phototrophic microbial mats are compact ecosystems composed of highly interactive organisms in which energy and element cycling take place over millimeter-to-centimeter-scale distances. Although microbial mats are common in hypersaline environments, they have not been extensively characterized in systems dominated by divalent ions. Hot Lake is a meromictic, epsomitic lake that occupies a small, endorheic basin in north-central Washington. The lake harbors a benthic, phototrophic mat that assembles each spring, disassembles each fall, and is subject to greater than tenfold variation in salinity (primarily Mg2+ and SO2−4) and irradiation over the annual cycle. We examined spatiotemporal variation in the mat community at five time points throughout the annual cycle with respect to prevailing physicochemical parameters by amplicon sequencing of the V4 region of the 16S rRNA gene coupled to near-full-length 16S RNA clone sequences. The composition of these microbial communities was relatively stable over the seasonal cycle and included dominant populations of Cyanobacteria, primarily a group IV cyanobacterium (Leptolyngbya), and Alphaproteobacteria (specifically, members of Rhodobacteraceae and Geminicoccus). Members of Gammaproteobacteria (e.g., Thioalkalivibrio and Halochromatium) and Deltaproteobacteria (e.g., Desulfofustis) that are likely to be involved in sulfur cycling peaked in summer and declined significantly by mid-fall, mirroring larger trends in mat community richness and evenness. Phylogenetic turnover analysis of abundant phylotypes employing environmental metadata suggests that seasonal shifts in light variability exert a dominant influence on the composition of Hot Lake microbial mat communities. The seasonal development and organization of these structured microbial mats provide opportunities for analysis of the temporal and physical dynamics that feed back to community function. PMID:24312082
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindemann, Stephen R.; Moran, James J.; Stegen, James C.
2013-11-13
Phototrophic microbial mats are compact ecosystems composed of highly interactive organisms in which energy and element cycling take place over millimeter-to-centimeter-scale distances. Although microbial mats are common in hypersaline environments, they have not been extensively characterized in systems dominated by divalent ions. Hot Lake is a meromictic, epsomitic lake that occupies a small, endorheic basin in north-central Washington. The lake harbors a benthic, phototrophic mat that assembles each spring, disassembles each fall, and is subject to greater than tenfold variation in salinity (primarily Mg 2+ and SO 2 -4) and irradiation over the annual cycle. We examined spatiotemporal variation inmore » the mat community at five time points throughout the annual cycle with respect to prevailing physicochemical parameters by amplicon sequencing of the V4 region of the 16S rRNA gene coupled to near-full-length 16S RNA clone sequences. The composition of these microbial communities was relatively stable over the seasonal cycle and included dominant populations of Cyanobacteria, primarily a group IV cyanobacterium (Leptolyngbya), and Alphaproteobacteria (specifically, members of Rhodobacteraceae and Geminicoccus). Members of Gammaproteobacteria (e.g., Thioalkalivibrio and Halochromatium) and Deltaproteobacteria (e.g., Desulfofustis) that are likely to be involved in sulfur cycling peaked in summer and declined significantly by mid-fall, mirroring larger trends in mat community richness and evenness. Phylogenetic turnover analysis of abundant phylotypes employing environmental metadata suggests that seasonal shifts in light variability exert a dominant influence on the composition of Hot Lake microbial mat communities. The seasonal development and organization of these structured microbial mats provide opportunities for analysis of the temporal and physical dynamics that feed back to community function.« less
Yanagawa, Katsunori; Breuker, Anja; Schippers, Axel; Nishizawa, Manabu; Ijiri, Akira; Hirai, Miho; Takaki, Yoshihiro; Sunamura, Michinari; Urabe, Tetsuro; Nunoura, Takuro; Takai, Ken
2014-10-01
The impacts of lithologic structure and geothermal gradient on subseafloor microbial communities were investigated at a marginal site of the Iheya North hydrothermal field in the Mid-Okinawa Trough. Subsurface marine sediments composed of hemipelagic muds and volcaniclastic deposits were recovered through a depth of 151 m below the seafloor at site C0017 during Integrated Ocean Drilling Program Expedition 331. Microbial communities inferred from 16S rRNA gene clone sequencing in low-temperature hemipelagic sediments were mainly composed of members of the Chloroflexi and deep-sea archaeal group. In contrast, 16S rRNA gene sequences of marine group I Thaumarchaeota dominated the microbial phylotype communities in the coarse-grained pumiceous gravels interbedded between the hemipelagic sediments. Based on the physical properties of sediments such as temperature and permeability, the porewater chemistry, and the microbial phylotype compositions, the shift in the physical properties of the sediments is suggested to induce a potential subseafloor recharging flow of oxygenated seawater in the permeable zone, leading to the generation of variable chemical environments and microbial communities in the subseafloor habitats. In addition, the deepest section of sediments under high-temperature conditions (∼90°C) harbored the sequences of an uncultivated archaeal lineage of hot water crenarchaeotic group IV that may be associated with the high-temperature hydrothermal fluid flow. These results indicate that the subseafloor microbial community compositions and functions at the marginal site of the hydrothermal field are highly affected by the complex fluid flow structure, such as recharging seawater and underlying hydrothermal fluids, coupled with the lithologic transition of sediments. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Liu, Jun; Hua, Zheng-Shuang; Chen, Lin-Xing; Kuang, Jia-Liang; Li, Sheng-Jin; Shu, Wen-Sheng
2014-01-01
Recent molecular surveys have advanced our understanding of the forces shaping the large-scale ecological distribution of microbes in Earth's extreme habitats, such as hot springs and acid mine drainage. However, few investigations have attempted dense spatial analyses of specific sites to resolve the local diversity of these extraordinary organisms and how communities are shaped by the harsh environmental conditions found there. We have applied a 16S rRNA gene-targeted 454 pyrosequencing approach to explore the phylogenetic differentiation among 90 microbial communities from a massive copper tailing impoundment generating acidic drainage and coupled these variations in community composition with geochemical parameters to reveal ecological interactions in this extreme environment. Our data showed that the overall microbial diversity estimates and relative abundances of most of the dominant lineages were significantly correlated with pH, with the simplest assemblages occurring under extremely acidic conditions and more diverse assemblages associated with neutral pHs. The consistent shifts in community composition along the pH gradient indicated that different taxa were involved in the different acidification stages of the mine tailings. Moreover, the effect of pH in shaping phylogenetic structure within specific lineages was also clearly evident, although the phylogenetic differentiations within the Alphaproteobacteria, Deltaproteobacteria, and Firmicutes were attributed to variations in ferric and ferrous iron concentrations. Application of the microbial assemblage prediction model further supported pH as the major factor driving community structure and demonstrated that several of the major lineages are readily predictable. Together, these results suggest that pH is primarily responsible for structuring whole communities in the extreme and heterogeneous mine tailings, although the diverse microbial taxa may respond differently to various environmental conditions. PMID:24727268
Breuker, Anja; Schippers, Axel; Nishizawa, Manabu; Ijiri, Akira; Hirai, Miho; Takaki, Yoshihiro; Sunamura, Michinari; Urabe, Tetsuro; Nunoura, Takuro; Takai, Ken
2014-01-01
The impacts of lithologic structure and geothermal gradient on subseafloor microbial communities were investigated at a marginal site of the Iheya North hydrothermal field in the Mid-Okinawa Trough. Subsurface marine sediments composed of hemipelagic muds and volcaniclastic deposits were recovered through a depth of 151 m below the seafloor at site C0017 during Integrated Ocean Drilling Program Expedition 331. Microbial communities inferred from 16S rRNA gene clone sequencing in low-temperature hemipelagic sediments were mainly composed of members of the Chloroflexi and deep-sea archaeal group. In contrast, 16S rRNA gene sequences of marine group I Thaumarchaeota dominated the microbial phylotype communities in the coarse-grained pumiceous gravels interbedded between the hemipelagic sediments. Based on the physical properties of sediments such as temperature and permeability, the porewater chemistry, and the microbial phylotype compositions, the shift in the physical properties of the sediments is suggested to induce a potential subseafloor recharging flow of oxygenated seawater in the permeable zone, leading to the generation of variable chemical environments and microbial communities in the subseafloor habitats. In addition, the deepest section of sediments under high-temperature conditions (∼90°C) harbored the sequences of an uncultivated archaeal lineage of hot water crenarchaeotic group IV that may be associated with the high-temperature hydrothermal fluid flow. These results indicate that the subseafloor microbial community compositions and functions at the marginal site of the hydrothermal field are highly affected by the complex fluid flow structure, such as recharging seawater and underlying hydrothermal fluids, coupled with the lithologic transition of sediments. PMID:25063666
Non-minimal derivative couplings of the composite metric
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heisenberg, Lavinia, E-mail: laviniah@kth.se
2015-11-01
In the context of massive gravity, bi-gravity and multi-gravity non-minimal matter couplings via a specific composite effective metric were investigated recently. Even if these couplings generically reintroduce the Boulware-Deser ghost, this composite metric is unique in the sense that the ghost reemerges only beyond the decoupling limit and the matter quantum loop corrections do not detune the potential interactions. We consider non-minimal derivative couplings of the composite metric to matter fields for a specific subclass of Horndeski scalar-tensor interactions. We first explore these couplings in the mini-superspace and investigate in which scenario the ghost remains absent. We further study thesemore » non-minimal derivative couplings in the decoupling-limit of the theory and show that the equation of motion for the helicity-0 mode remains second order in derivatives. Finally, we discuss preliminary implications for cosmology.« less
Non-minimal derivative couplings of the composite metric
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heisenberg, Lavinia; Department of Physics & The Oskar Klein Centre,AlbaNova University Centre, 10691 Stockholm
2015-11-04
In the context of massive gravity, bi-gravity and multi-gravity non-minimal matter couplings via a specific composite effective metric were investigated recently. Even if these couplings generically reintroduce the Boulware-Deser ghost, this composite metric is unique in the sense that the ghost reemerges only beyond the decoupling limit and the matter quantum loop corrections do not detune the potential interactions. We consider non-minimal derivative couplings of the composite metric to matter fields for a specific subclass of Horndeski scalar-tensor interactions. We first explore these couplings in the mini-superspace and investigate in which scenario the ghost remains absent. We further study thesemore » non-minimal derivative couplings in the decoupling-limit of the theory and show that the equation of motion for the helicity-0 mode remains second order in derivatives. Finally, we discuss preliminary implications for cosmology.« less
Chen, Zewei; Zhang, Xin; Zhang, Zhuoyong
2016-12-01
Timely risk assessment of chronic kidney disease (CKD) and proper community-based CKD monitoring are important to prevent patients with potential risk from further kidney injuries. As many symptoms are associated with the progressive development of CKD, evaluating risk of CKD through a set of clinical data of symptoms coupled with multivariate models can be considered as an available method for prevention of CKD and would be useful for community-based CKD monitoring. Three common used multivariate models, i.e., K-nearest neighbor (KNN), support vector machine (SVM), and soft independent modeling of class analogy (SIMCA), were used to evaluate risk of 386 patients based on a series of clinical data taken from UCI machine learning repository. Different types of composite data, in which proportional disturbances were added to simulate measurement deviations caused by environment and instrument noises, were also utilized to evaluate the feasibility and robustness of these models in risk assessment of CKD. For the original data set, three mentioned multivariate models can differentiate patients with CKD and non-CKD with the overall accuracies over 93 %. KNN and SVM have better performances than SIMCA has in this study. For the composite data set, SVM model has the best ability to tolerate noise disturbance and thus are more robust than the other two models. Using clinical data set on symptoms coupled with multivariate models has been proved to be feasible approach for assessment of patient with potential CKD risk. SVM model can be used as useful and robust tool in this study.
Sutton, Nora B; Langenhoff, Alette A M; Lasso, Daniel Hidalgo; van der Zaan, Bas; van Gaans, Pauline; Maphosa, Farai; Smidt, Hauke; Grotenhuis, Tim; Rijnaarts, Huub H M
2014-03-01
To improve the coupling of in situ chemical oxidation and in situ bioremediation, a systematic analysis was performed of the effect of chemical oxidation with Fenton's reagent, modified Fenton's reagent, permanganate, or persulfate, on microbial diversity and activity during 8 weeks of incubation in two diesel-contaminated soils (peat and fill). Chemical oxidant and soil type affected the microbial community diversity and biodegradation activity; however, this was only observed following treatment with Fenton's reagent and modified Fenton's reagent, and in the biotic control without oxidation. Differences in the highest overall removal efficiencies of 69 % for peat (biotic control) and 59 % for fill (Fenton's reagent) were partially explained by changes in contaminant soil properties upon oxidation. Molecular analysis of 16S rRNA and alkane monooxygenase (alkB) gene abundances indicated that oxidation with Fenton's reagent and modified Fenton's reagent negatively affected microbial abundance. However, regeneration occurred, and final relative alkB abundances were 1-2 orders of magnitude higher in chemically treated microcosms than in the biotic control. 16S rRNA gene fragment fingerprinting with DGGE and prominent band sequencing illuminated microbial community composition and diversity differences between treatments and identified a variety of phylotypes within Alpha-, Beta-, and Gammaproteobacteria. Understanding microbial community dynamics during coupled chemical oxidation and bioremediation is integral to improved biphasic field application.
Performance of waste-paper/PETG wood–plastic composites
NASA Astrophysics Data System (ADS)
Huang, Lijie; An, Shuxiang; Li, Chunying; Huang, Chongxing; Wang, Shuangfei; Zhang, Xiaoxiao; Xu, Mingzi; Chen, Jie; Zhou, Lei
2018-05-01
Wood-plastic composites were prepared from polyethylene terephthalate- 1,4-cyclohexanedimethanol ester (PETG) and waste-paper fiber that was unmodified, modified with alkyl-ketene-dimer (AKD), and modified with a silane-coupling agent. The mechanical properties, water absorption properties, surface structure, and thermal properties of the three prepared materials were compared. The results showed that the optimum amount of waste-paper powder is 10 wt%, while that of the waste-paper particles is 60-80 mesh. The use of AKD and coupling agent KH550 can reduce the water absorption of the composite; however, the reductive effect of the coupling agent is better, in that it is reduced by 0.3%. Modification using a 1-wt% KH550 coupling agent can effectively increase the tensile strength of a composite from 31.36 to 41.67 MPa (increase of 32.8%), while the bending strength increased from 86.47 to 98.31 MPa (increase of 13.7%). This also enhances the thermal stability of the composites. With the addition of the coupling agent, the composite material maintains good mechanical properties even after being immersed in water; this can enable the safe use of these composite materials in outdoor environments.
Ocean acidification impacts bacteria-phytoplankton coupling at low-nutrient conditions
NASA Astrophysics Data System (ADS)
Hornick, Thomas; Bach, Lennart T.; Crawfurd, Katharine J.; Spilling, Kristian; Achterberg, Eric P.; Woodhouse, Jason N.; Schulz, Kai G.; Brussaard, Corina P. D.; Riebesell, Ulf; Grossart, Hans-Peter
2017-01-01
The oceans absorb about a quarter of the annually produced anthropogenic atmospheric carbon dioxide (CO2), resulting in a decrease in surface water pH, a process termed ocean acidification (OA). Surprisingly little is known about how OA affects the physiology of heterotrophic bacteria or the coupling of heterotrophic bacteria to phytoplankton when nutrients are limited. Previous experiments were, for the most part, undertaken during productive phases or following nutrient additions designed to stimulate algal blooms. Therefore, we performed an in situ large-volume mesocosm ( ˜ 55 m3) experiment in the Baltic Sea by simulating different fugacities of CO2 (fCO2) extending from present to future conditions. The study was conducted in July-August after the nominal spring bloom, in order to maintain low-nutrient conditions throughout the experiment. This resulted in phytoplankton communities dominated by small-sized functional groups (picophytoplankton). There was no consistent fCO2-induced effect on bacterial protein production (BPP), cell-specific BPP (csBPP) or biovolumes (BVs) of either free-living (FL) or particle-associated (PA) heterotrophic bacteria, when considered as individual components (univariate analyses). Permutational Multivariate Analysis of Variance (PERMANOVA) revealed a significant effect of the fCO2 treatment on entire assemblages of dissolved and particulate nutrients, metabolic parameters and the bacteria-phytoplankton community. However, distance-based linear modelling only identified fCO2 as a factor explaining the variability observed amongst the microbial community composition, but not for explaining variability within the metabolic parameters. This suggests that fCO2 impacts on microbial metabolic parameters occurred indirectly through varying physicochemical parameters and microbial species composition. Cluster analyses examining the co-occurrence of different functional groups of bacteria and phytoplankton further revealed a separation of the four fCO2-treated mesocosms from both control mesocosms, indicating that complex trophic interactions might be altered in a future acidified ocean. Possible consequences for nutrient cycling and carbon export are still largely unknown, in particular in a nutrient-limited ocean.
Mengeloglu, Fatih; Karakus, Kadir
2008-01-01
Thermal behaviors of wheat straw flour (WF) filled thermoplastic composites were measured applying the thermogravimetric analysis and differential scanning calorimetry. Morphology and mechanical properties were also studied using scanning electron microscope and universal testing machine, respectively. Presence of WF in thermoplastic matrix reduced the degradation temperature of the composites. One for WF and one for thermoplastics, two main decomposition peaks were observed. Morphological study showed that addition of coupling agent improved the compatibility between WFs and thermoplastic. WFs were embedded into the thermoplastic matrix indicating improved adhesion. However, the bonding was not perfect because some debonding can also be seen on the interface of WFs and thermoplastic matrix. In the case of mechanical properties of WF filled recycled thermoplastic, HDPE and PP based composites provided similar tensile and flexural properties. The addition of coupling agents improved the properties of thermoplastic composites. MAPE coupling agents performed better in HDPE while MAPP coupling agents were superior in PP based composites. The composites produced with the combination of 50-percent mixture of recycled HDPE and PP performed similar with the use of both coupling agents. All produced composites provided flexural properties required by the ASTM standard for polyolefin-based plastic lumber decking boards. PMID:27879719
Tfaily, Malak M.; Steinweg, J. Megan; Chanton, Patrick; Esson, Kaitlin; Yang, Zamin K.; Chanton, Jeffrey P.; Cooper, William; Schadt, Christopher W.
2014-01-01
This study investigated the abundance, distribution, and composition of microbial communities at the watershed scale in a boreal peatland within the Marcell Experimental Forest (MEF), Minnesota, USA. Through a close coupling of next-generation sequencing, biogeochemistry, and advanced analytical chemistry, a biogeochemical hot spot was revealed in the mesotelm (30- to 50-cm depth) as a pronounced shift in microbial community composition in parallel with elevated peat decomposition. The relative abundance of Acidobacteria and the Syntrophobacteraceae, including known hydrocarbon-utilizing genera, was positively correlated with carbohydrate and organic acid content, showing a maximum in the mesotelm. The abundance of Archaea (primarily crenarchaeal groups 1.1c and 1.3) increased with depth, reaching up to 60% of total small-subunit (SSU) rRNA gene sequences in the deep peat below the 75-cm depth. Stable isotope geochemistry and potential rates of methane production paralleled vertical changes in methanogen community composition to indicate a predominance of acetoclastic methanogenesis mediated by the Methanosarcinales in the mesotelm, while hydrogen-utilizing methanogens predominated in the deeper catotelm. RNA-derived pyrosequence libraries corroborated DNA sequence data to indicate that the above-mentioned microbial groups are metabolically active in the mid-depth zone. Fungi showed a maximum in rRNA gene abundance above the 30-cm depth, which comprised only an average of 0.1% of total bacterial and archaeal rRNA gene abundance, indicating prokaryotic dominance. Ratios of C to P enzyme activities approached 0.5 at the acrotelm and catotelm, indicating phosphorus limitation. In contrast, P limitation pressure appeared to be relieved in the mesotelm, likely due to P solubilization by microbial production of organic acids and C-P lyases. Based on path analysis and the modeling of community spatial turnover, we hypothesize that P limitation outweighs N limitation at MEF, and microbial communities are structured by the dominant shrub, Chamaedaphne calyculata, which may act as a carbon source for major consumers in the peatland. PMID:24682300
Emily L. Bernhardt; Teresa N. Hollingsworth; F. Stuart Chapin
2011-01-01
Question: How do pre-fire conditions (community composition and environmental characteristics) and climate-driven disturbance characteristics (fire severity) affect post-fire community composition in black spruce stands? Location: Northern boreal forest, interior Alaska. Methods: We compared plant community composition and environmental stand characteristics in 14...
Microbial diversity and carbon cycling in San Francisco Bay wetlands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Theroux, Susanna; Hartman, Wyatt; He, Shaomei
Wetland restoration efforts in San Francisco Bay aim to rebuild habitat for endangered species and provide an effective carbon storage solution, reversing land subsidence caused by a century of industrial and agricultural development. However, the benefits of carbon sequestration may be negated by increased methane production in newly constructed wetlands, making these wetlands net greenhouse gas (GHG) sources to the atmosphere. We investigated the effects of wetland restoration on below-ground microbial communities responsible for GHG cycling in a suite of historic and restored wetlands in SF Bay. Using DNA and RNA sequencing, coupled with real-time GHG monitoring, we profiled themore » diversity and metabolic potential of wetland soil microbial communities. The wetland soils harbor diverse communities of bacteria and archaea whose membership varies with sampling location, proximity to plant roots and sampling depth. Our results also highlight the dramatic differences in GHG production between historic and restored wetlands and allow us to link microbial community composition and GHG cycling with key environmental variables including salinity, soil carbon and plant species.« less
Waldrop, Mark P.; Holloway, JoAnn M.; Smith, David; Goldhaber, Martin B.; Drenovsky, R.E.; Scow, K.M.; Dick, R.; Howard, Daniel M.; Wylie, Bruce K.; Grace, James B.
2017-01-01
Soil microbial communities control critical ecosystem processes such as decomposition, nutrient cycling, and soil organic matter formation. Continental scale patterns in the composition and functioning of microbial communities are related to climatic, biotic, and edaphic factors such as temperature and precipitation, plant community composition, and soil carbon, nitrogen, and pH. Although these relationships have been well explored individually, the examination of the factors that may act directly on microbial communities vs. those that may act indirectly through other ecosystem properties has not been well developed. To further such understanding, we utilized structural equation modeling (SEM) to evaluate a set of hypotheses about the direct and indirect effects of climatic, biotic, and edaphic variables on microbial communities across the continental United States. The primary goals of this work were to test our current understanding of the interactions among climate, soils, and plants in affecting microbial community composition, and to examine whether variation in the composition of the microbial community affects potential rates of soil enzymatic activities. A model of interacting factors created through SEM shows several expected patterns. Distal factors such as climate had indirect effects on microbial communities by influencing plant productivity, soil mineralogy, and soil pH, but factors related to soil organic matter chemistry had the most direct influence on community composition. We observed that both plant productivity and soil mineral composition were important indirect influences on community composition at the continental scale, both interacting to affect organic matter content and microbial biomass and ultimately community composition. Although soil hydrolytic enzymes were related to the moisture regime and soil carbon, oxidative enzymes were also affected by community composition, reflected in the abundance of soil fungi. These results highlight that soil microbial communities can be modeled within the context of multiple interacting ecosystem properties acting both directly and indirectly on their composition and function, and this provides a rich and informative context with which to examine communities. This work also highlights that variation in climate, microbial biomass, and microbial community composition can affect maximum rates of soil enzyme activities, potentially influencing rates of decomposition and nutrient mineralization in soils.
Global Patterns of Bacterial Beta-Diversity in Seafloor and Seawater Ecosystems
Zinger, Lucie; Amaral-Zettler, Linda A.; Fuhrman, Jed A.; Horner-Devine, M. Claire; Huse, Susan M.; Welch, David B. Mark; Martiny, Jennifer B. H.; Sogin, Mitchell; Boetius, Antje; Ramette, Alban
2011-01-01
Background Marine microbial communities have been essential contributors to global biomass, nutrient cycling, and biodiversity since the early history of Earth, but so far their community distribution patterns remain unknown in most marine ecosystems. Methodology/Principal Findings The synthesis of 9.6 million bacterial V6-rRNA amplicons for 509 samples that span the global ocean's surface to the deep-sea floor shows that pelagic and benthic communities greatly differ, at all taxonomic levels, and share <10% bacterial types defined at 3% sequence similarity level. Surface and deep water, coastal and open ocean, and anoxic and oxic ecosystems host distinct communities that reflect productivity, land influences and other environmental constraints such as oxygen availability. The high variability of bacterial community composition specific to vent and coastal ecosystems reflects the heterogeneity and dynamic nature of these habitats. Both pelagic and benthic bacterial community distributions correlate with surface water productivity, reflecting the coupling between both realms by particle export. Also, differences in physical mixing may play a fundamental role in the distribution patterns of marine bacteria, as benthic communities showed a higher dissimilarity with increasing distance than pelagic communities. Conclusions/Significance This first synthesis of global bacterial distribution across different ecosystems of the World's oceans shows remarkable horizontal and vertical large-scale patterns in bacterial communities. This opens interesting perspectives for the definition of biogeographical biomes for bacteria of ocean waters and the seabed. PMID:21931760
Development of high temperature resistant graphite fiber coupling agents
NASA Technical Reports Server (NTRS)
Griffin, R. N.
1975-01-01
Surface treatments were investigated as potential coupling agents to improve the elevated temperature shear strength retention of polyimide/graphite and polyphenylquinoxaline/graphite composites. The potential coupling agents were evaluated by fiber strand tensile tests, fiber and composite weight losses at 533 and 588K, and by interlaminar shear strength retention at 533 and 588K. The two surface treatments selected for more extensive evaluation were a coating of Ventromer T-1, a complex organometallic reaction product of titanium tetrachloride and trimethyl borate, and a polyphenylquinoxaline (PPQ) sizing which was pyrolyzed in nitrogen to form a carbonaceous layer on the fiber. Pyrolyzed polyphenylquinoxaline is a satisfactory coupling agent for polyimide/Thornel 300 graphite fiber composites. During 1000 hours aging at 588K such composites lose a little over half their transverse tensile strength, and suffer a slight loss in flexural modulus. No degradation of flexural strength or interlaminar shear strength occured during 1000 hours aging at 588K. None of the coupling agents examined had a markedly beneficial effect with polyphenylquinoxaline composites.
Temporal changes in randomness of bird communities across Central Europe.
Renner, Swen C; Gossner, Martin M; Kahl, Tiemo; Kalko, Elisabeth K V; Weisser, Wolfgang W; Fischer, Markus; Allan, Eric
2014-01-01
Many studies have examined whether communities are structured by random or deterministic processes, and both are likely to play a role, but relatively few studies have attempted to quantify the degree of randomness in species composition. We quantified, for the first time, the degree of randomness in forest bird communities based on an analysis of spatial autocorrelation in three regions of Germany. The compositional dissimilarity between pairs of forest patches was regressed against the distance between them. We then calculated the y-intercept of the curve, i.e. the 'nugget', which represents the compositional dissimilarity at zero spatial distance. We therefore assume, following similar work on plant communities, that this represents the degree of randomness in species composition. We then analysed how the degree of randomness in community composition varied over time and with forest management intensity, which we expected to reduce the importance of random processes by increasing the strength of environmental drivers. We found that a high portion of the bird community composition could be explained by chance (overall mean of 0.63), implying that most of the variation in local bird community composition is driven by stochastic processes. Forest management intensity did not consistently affect the mean degree of randomness in community composition, perhaps because the bird communities were relatively insensitive to management intensity. We found a high temporal variation in the degree of randomness, which may indicate temporal variation in assembly processes and in the importance of key environmental drivers. We conclude that the degree of randomness in community composition should be considered in bird community studies, and the high values we find may indicate that bird community composition is relatively hard to predict at the regional scale.
Cohabiting family members share microbiota with one another and with their dogs.
Song, Se Jin; Lauber, Christian; Costello, Elizabeth K; Lozupone, Catherine A; Humphrey, Gregory; Berg-Lyons, Donna; Caporaso, J Gregory; Knights, Dan; Clemente, Jose C; Nakielny, Sara; Gordon, Jeffrey I; Fierer, Noah; Knight, Rob
2013-04-16
Human-associated microbial communities vary across individuals: possible contributing factors include (genetic) relatedness, diet, and age. However, our surroundings, including individuals with whom we interact, also likely shape our microbial communities. To quantify this microbial exchange, we surveyed fecal, oral, and skin microbiota from 60 families (spousal units with children, dogs, both, or neither). Household members, particularly couples, shared more of their microbiota than individuals from different households, with stronger effects of co-habitation on skin than oral or fecal microbiota. Dog ownership significantly increased the shared skin microbiota in cohabiting adults, and dog-owning adults shared more 'skin' microbiota with their own dogs than with other dogs. Although the degree to which these shared microbes have a true niche on the human body, vs transient detection after direct contact, is unknown, these results suggest that direct and frequent contact with our cohabitants may significantly shape the composition of our microbial communities. DOI:http://dx.doi.org/10.7554/eLife.00458.001.
Cohabiting family members share microbiota with one another and with their dogs
Song, Se Jin; Lauber, Christian; Costello, Elizabeth K; Lozupone, Catherine A; Humphrey, Gregory; Berg-Lyons, Donna; Caporaso, J Gregory; Knights, Dan; Clemente, Jose C; Nakielny, Sara; Gordon, Jeffrey I; Fierer, Noah; Knight, Rob
2013-01-01
Human-associated microbial communities vary across individuals: possible contributing factors include (genetic) relatedness, diet, and age. However, our surroundings, including individuals with whom we interact, also likely shape our microbial communities. To quantify this microbial exchange, we surveyed fecal, oral, and skin microbiota from 60 families (spousal units with children, dogs, both, or neither). Household members, particularly couples, shared more of their microbiota than individuals from different households, with stronger effects of co-habitation on skin than oral or fecal microbiota. Dog ownership significantly increased the shared skin microbiota in cohabiting adults, and dog-owning adults shared more ‘skin’ microbiota with their own dogs than with other dogs. Although the degree to which these shared microbes have a true niche on the human body, vs transient detection after direct contact, is unknown, these results suggest that direct and frequent contact with our cohabitants may significantly shape the composition of our microbial communities. DOI: http://dx.doi.org/10.7554/eLife.00458.001 PMID:23599893
Lin, Jia-Horng; Huang, Chien-Lin; Liu, Chi-Fan; Chen, Chih-Kuang; Lin, Zheng-Ian; Lou, Ching-Wen
2015-01-01
This study uses the melt compounding method to produce polypropylene (PP)/short glass fibers (SGF) composites. PP serves as matrix while SGF serves as reinforcement. Two coupling agents, maleic anhydride grafted polypropylene, (PP-g-MA) and maleic anhydride grafted styrene-ethylene-butylene-styrene block copolymer (SEBS-g-MA) are incorporated in the PP/SGF composites during the compounding process, in order to improve the interfacial adhesion and create diverse desired properties of the composites. According to the mechanical property evaluations, increasing PP-g-MA as a coupling agent provides the composites with higher tensile, flexural, and impact properties. In contrast, increasing SEBS-g-MA as a coupling agent provides the composites with decreasing tensile and flexural strengths, but also increasing impact strength. The DSC results indicate that using either PP-g-MA or SEBS-g-MA as the coupling agent increases the crystallization temperature. However, the melting temperature of PP barely changes. The spherulitic morphology results show that PP has a smaller spherulite size when it is processed with PP-g-MA or SEBS-g-MA as the coupling agent. The SEM results indicate that SGF is evenly distributed in PP matrices, but there are distinct voids between these two materials, indicating a poor interfacial adhesion. After PP-g-MA or SEBS-g-MA is incorporated, SGF can be encapsulated by PP, and the voids between them are fewer and indistinctive. This indicates that the coupling agents can effectively improve the interfacial compatibility between PP and SGF, and as a result improves the diverse properties of PP/SGF composites. PMID:28793710
Microbial diversity in restored wetlands of San Francisco Bay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Theroux, Susanna; Hartman, Wyatt; He, Shaomei
Wetland ecosystems may serve as either a source or a sink for atmospheric carbon and greenhouse gases. This delicate carbon balance is influenced by the activity of belowground microbial communities that return carbon dioxide and methane to the atmosphere. Wetland restoration efforts in the San Francisco Bay-Delta region may help to reverse land subsidence and possibly increase carbon storage in soils. However, the effects of wetland restoration on microbial communities, which mediate soil metabolic activity and carbon cycling, are poorly studied. In an effort to better understand the underlying factors which shape the balance of carbon flux in wetland soils,more » we targeted the microbial communities in a suite of restored and historic wetlands in the San Francisco Bay-Delta region. Using DNA and RNA sequencing, coupled with greenhouse gas monitoring, we profiled the diversity and metabolic potential of the wetland soil microbial communities along biogeochemical and wetland age gradients. Our results show relationships among geochemical gradients, availability of electron acceptors, and microbial community composition. Our study provides the first genomic glimpse into microbial populations in natural and restored wetlands of the San Francisco Bay-Delta region and provides a valuable benchmark for future studies.« less
Kocur, Chris M D; Lomheim, Line; Molenda, Olivia; Weber, Kela P; Austrins, Leanne M; Sleep, Brent E; Boparai, Hardiljeet K; Edwards, Elizabeth A; O'Carroll, Denis M
2016-07-19
Nanoscale zerovalent iron (nZVI) is an emerging technology for the remediation of contaminated sites. However, there are concerns related to the impact of nZVI on in situ microbial communities. In this study, the microbial community composition at a contaminated site was monitored over two years following the injection of nZVI stabilized with carboxymethyl cellulose (nZVI-CMC). Enhanced dechlorination of chlorinated ethenes to nontoxic ethene was observed long after the expected nZVI oxidation. The abundance of Dehalococcoides (Dhc) and vinyl chloride reductase (vcrA) genes, monitored using qPCR, increased by over an order of magnitude in nZVI-CMC-impacted wells. The entire microbial community was tracked using 16S rRNA gene amplicon pyrosequencing. Following nZVI-CMC injection, a clear shift in microbial community was observed, with most notable increases in the dechlorinating genera Dehalococcoides and Dehalogenimonas. This study suggests that coupled abiotic degradation (i.e., from reaction with nZVI) and biotic degradation fueled by CMC led to the long-term degradation of chlorinated ethenes at this field site. Furthermore, nZVI-CMC addition stimulated dehalogenator growth (e.g., Dehalococcoides) and biotic degradation of chlorinated ethenes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imke Schroeder
The Archaea are a fascinating and diverse group of prokaryotic organisms with deep roots overlapping those of eukaryotes. The focus of this GRC conference, 'Archaea: Ecology Metabolism & Molecular Biology', expands on a number of emerging topics highlighting the evolution and composition of microbial communities and novel archaeal species, their impact on the environment, archaeal metabolism, and research that stems from sequence analysis of archaeal genomes. The strength of this conference lies in its ability to couple reputable areas with new scientific topics in an atmosphere of stimulating exchange. This conference remains an excellent opportunity for younger scientists to interactmore » with world experts in this field.« less
Buckling and weight optimization for non-coupled antisymmetric laminates
NASA Astrophysics Data System (ADS)
Bhatnagar, Aditi
This research work describes the application of genetic algorithms to weight minimization and buckling load maximization of the non-coupled antisymmetric composite laminated plates. Previous studies of composite tailoring were limited to symmetric and balanced laminates. With the availability of many methodologies for composite tailoring, genetic algorithm is preferably used because of its ability to handle discrete design variable and attain multiple near optimum design solutions. A comparative study is made between optimum symmetric-balanced laminate designs and optimum non-coupled antisymmetric laminate designs, both of which are subjected to biaxial in-plane compressive loads. With the implementation of various genetic algorithm operators such as selection, crossover and mutation, critical buckling load factors are obtained for the optimum stacking sequence for both types of laminates. The mechanical properties for non-coupled antisymmetric laminates is independent of all types of coupling effects such as bending-twisting coupling, bending-extension coupling, and shear-extension coupling, thus giving the laminate a non-coupling behavior. This is in contrast to that of symmetric-balanced laminates where finite bending-twisting coupling terms are present. Optimized laminate layups satisfying the constraints of balance, buckling and adjoining were obtained for two types of graphite epoxy rectangular composite laminated plates. The current research augments the laminate thickness minimization designs with both odd and even number of layers, and the optimum buckling load maximization designs by the introduction of non-coupled antisymmetric laminates.
NASA Astrophysics Data System (ADS)
Sullivan, S. Mažeika P.; Boaz, Lindsey E.; Hossler, Katie
2016-04-01
Although mercury (Hg) contamination is common in stream ecosystems, mechanisms governing bioavailability and bioaccumulation in fluvial systems remain poorly resolved as compared to lentic systems. In particular, streams in urbanized catchments are subject to fluvial geomorphic alterations that may contribute to Hg distribution, bioaccumulation, and export across the aquatic-to-terrestrial boundary. In 12 streams of urban Columbus, Ohio, we investigated the influence of fluvial geomorphic characteristics related to channel geometry, streamflow, and sediment size and distribution on (1) Hg concentrations in sediment and body burdens in benthic larval and adult emergent aquatic insects and (2) aquatic-to-terrestrial contaminant transfer to common riparian spiders of the families Pisauridae and Tetragnathidae via changes in aquatic insect Hg body burdens as well as in aquatic insect density and community composition. Hydrogeomorphic characteristics were weakly related to Hg body burdens in emergent insects (channel geometry) and tetragnathid spiders (streamflow), but not to Hg concentrations in sediment or benthic insects. Streamflow characteristics were also related to emergent insect density, while wider channels were associated with benthic insect community shifts toward smaller-bodied and more tolerant taxa (e.g., Chironomidae). Thus, our results provide initial evidence that fluvial geomorphology may influence aquatic-to-terrestrial contaminant Hg transfer through the collective effects on emergent insect body burdens as well as on aquatic insect community composition and abundance.
Characterizing fish community diversity across Virginia landscapes: Prerequisite for conservation
Angermeier, P.L.; Winston, M.R.
1999-01-01
The number of community types occurring within landscapes is an important, but often unprotected, component of biological diversity. Generally applicable protocols for characterizing community diversity need to be developed to facilitate conservation. We used several multivariate techniques to analyze geographic variation in the composition of fish communities in Virginia streams. We examined relationships between community composition and six landscape variables: drainage basin, physiography, stream order, elevation, channel slope, and map coordinates. We compared patterns at two scales (statewide and subdrainage-specific) to assess sensitivity of community classification to spatial scale. We also compared patterns based on characterizing communities by species composition vs. ecological composition. All landscape variables explained significant proportions of the variance in community composition. Statewide, they explained 32% of the variance in species composition and 48% of the variance in ecological composition. Typical communities in each drainage or physiography were statistically distinctive. Communities in different combinations of drainage, physiography, and stream size were even more distinctive, but composition was strongly spatially autocorrelated. Ecological similarity and species similarity of community pairs were strongly related, but replacement by ecologically similar species was common among drainage-physiography combinations. Landscape variables explained significant proportions of variance in community composition within selected subdrainages, but proportions were less than at the statewide scale, and the explanatory power of individual variables varied considerably among subdrainages. Community variation within subdrainages appeared to be much more closely related to environmental variation than to replacement among ecologically similar species. Our results suggest that taxonomic and ecological characterizations of community composition are complementary; both are useful in a conservation context. Landscape features such as drainage, physiography, and water body size generally may provide a basis for assessing aquatic community diversity, especially in regions where the biota is poorly known. Systematic conservation of community types would be a major advance relative to most current conservation programs, which typically focus narrowly on populations of imperiled species. More effective conservation of aquatic biodiversity will require new approaches that recognize the value of both species and assemblages, and that emphasize protection of key landscape-scale processes.
Investigating Deformation and Failure Mechanisms in Nanoscale Multilayer Metallic Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zbib, Hussein M.; Bahr, David F.
2014-10-22
Over the history of materials science there are many examples of materials discoveries that have made superlative materials; the strongest, lightest, or toughest material is almost always a goal when we invent new materials. However, often these have been a result of enormous trial and error approaches. A new methodology, one in which researchers design, from the atoms up, new ultra-strong materials for use in energy applications, is taking hold within the science and engineering community. This project focused on one particular new classification of materials; nanolaminate metallic composites. These materials, where two metallic materials are intimately bonded and layeredmore » over and over to form sheets or coatings, have been shown over the past decade to reach strengths over 10 times that of their constituents. However, they are not yet widely used in part because while extremely strong (they don’t permanently bend), they are also not particularly tough (they break relatively easily when notched). Our program took a coupled approach to investigating new materials systems within the laminate field. We used computational materials science to explore ways to institute new deformation mechanisms that occurred when a tri-layer, rather than the more common bi-layer system was created. Our predictions suggested that copper-nickel or copper-niobium composites (two very common bi-layer systems) with layer thicknesses on the order of 20 nm and then layered 100’s of times, would be less tough than a copper-nickel-niobium metallic composite of similar thicknesses. In particular, a particular mode of permanent deformation, cross-slip, could be activated only in the tri-layer system; the crystal structure of the other bi-layers would prohibit this particular mode of deformation. We then experimentally validated this predication using a wide range of tools. We utilized a DOE user facility, the Center for Integrated Nanotechnology (CINT), to fabricate, for the first time, these tri-layer composites. CINT formed nanolaminate composites were tested in tension, with bulge testing, using nanoindentation, and using micro-compression testing to demonstrate that the tri-layer films were indeed tougher and hardened more during deformation (they got stronger as we deformed them) than equivalent bi-layers. The seven graduate students, 4 post-docs and research faculty, and the two faculty co-PI’s were able to create a collaborated computational prediction and experimental validation team to demonstrate the benefits of this class of materials to the community. The computational work crossed from atomistic to bulk simulations, and the experiments coupled form nm-scale to the mm scale; closely matching the simulations. The simulations provided viable mechanisms that explained the observed results, and new experimental results were used to push the boundaries of the simulation tools. Over the life of the 7 years of this program we proved that tri-layer nanolaminate metallic composite systems exceeded the mechanical performance of bi-layer systems if the right materials were chosen, and that the mechanism responsible for this was tied to the cross slip of dislocations. With 30 journal publications resulting from this work we have broadly disseminated this family of results to the scientific community.« less
Composite material bend-twist coupling for wind turbine blade applications
NASA Astrophysics Data System (ADS)
Walsh, Justin M.
Current efforts in wind turbine blade design seek to employ bend-twist coupling of composite materials for passive power control by twisting blades to feather. Past efforts in this area of study have proved to be problematic, especially in formulation of the bend-twist coupling coefficient alpha. Kevlar/epoxy, carbon/epoxy and glass/epoxy specimens were manufactured to study bend-twist coupling, from which numerical and analytical models could be verified. Finite element analysis was implemented to evaluate fiber orientation and material property effects on coupling magnitude. An analytical/empirical model was then derived to describe numerical results and serve as a replacement for the commonly used coupling coefficient alpha. Through the results from numerical and analytical models, a foundation for aeroelastic design of wind turbines blades utilizing biased composite materials is provided.
Park, Hyung Soo; Chatterjee, Indranil; Dong, Xiaoli; Wang, Sheng-Hung; Sensen, Christoph W.; Caffrey, Sean M.; Jack, Thomas R.; Boivin, Joe; Voordouw, Gerrit
2011-01-01
Pipelines transporting brackish subsurface water, used in the production of bitumen by steam-assisted gravity drainage, are subject to frequent corrosion failures despite the addition of the oxygen scavenger sodium bisulfite (SBS). Pyrosequencing of 16S rRNA genes was used to determine the microbial community composition for planktonic samples of transported water and for sessile samples of pipe-associated solids (PAS) scraped from pipeline cutouts representing corrosion failures. These were obtained from upstream (PAS-616P) and downstream (PAS-821TP and PAS-821LP, collected under rapid-flow and stagnant conditions, respectively) of the SBS injection point. Most transported water samples had a large fraction (1.8% to 97% of pyrosequencing reads) of Pseudomonas not found in sessile pipe samples. The sessile population of PAS-616P had methanogens (Methanobacteriaceae) as the main (56%) community component, whereas Deltaproteobacteria of the genera Desulfomicrobium and Desulfocapsa were not detected. In contrast, PAS-821TP and PAS-821LP had lower fractions (41% and 0.6%) of Methanobacteriaceae archaea but increased fractions of sulfate-reducing Desulfomicrobium (18% and 48%) and of bisulfite-disproportionating Desulfocapsa (35% and 22%) bacteria. Hence, SBS injection strongly changed the sessile microbial community populations. X-ray diffraction analysis of pipeline scale indicated that iron carbonate was present both upstream and downstream, whereas iron sulfide and sulfur were found only downstream of the SBS injection point, suggesting a contribution of the bisulfite-disproportionating and sulfate-reducing bacteria in the scale to iron corrosion. Incubation of iron coupons with pipeline waters indicated iron corrosion coupled to the formation of methane. Hence, both methanogenic and sulfidogenic microbial communities contributed to corrosion of pipelines transporting these brackish waters. PMID:21856836
Evidence of spin phonon coupling in magnetoelectric NiFe{sub 2}O{sub 4}/PMN-PT composite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahlawat, Anju; Satapathy, S., E-mail: srinu73@rrcat.gov.in, E-mail: srinusatapathy@gmail.com; Gupta, P. K.
2013-12-16
The coupling of phonon with spin in strain coupled magnetoelectric NiFe{sub 2}O{sub 4} (NFO)/0.65Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}–0.35PbTiO{sub 3} (PMN-PT) composite was investigated by temperature-dependent Raman spectroscopy and magnetic measurements in the range 30–350 °C. Pure NFO shows usual ferromagnetic behaviour in this temperature range while NFO/PMN-PT composite show dramatic change in magnetic moment across ferroelectric transition temperature (T{sub c} ∼ 180 °C) of PMN-PT. The temperature evolution of the Raman spectra for the composite shows significant phonon anomalies in T-site (Fe-O) and O-site (Ni/Fe-O) phonon modes at ferroelectric transition temperature is attributed to spin phonon coupling in NFO/PMN-PT composite. The strain mediated magnetoelectric couplingmore » mechanism in this composite is apparent from the observed spin phonon interaction.« less
Soil-Borne Bacterial Structure and Diversity Does Not Reflect Community Activity in Pampa Biome
Lupatini, Manoeli; Suleiman, Afnan Khalil Ahmad; Jacques, Rodrigo Josemar Seminoti; Antoniolli, Zaida Inês; Kuramae, Eiko Eurya; de Oliveira Camargo, Flávio Anastácio; Roesch, Luiz Fernando Würdig
2013-01-01
The Pampa biome is considered one of the main hotspots of the world’s biodiversity and it is estimated that half of its original vegetation was removed and converted to agricultural land and tree plantations. Although an increasing amount of knowledge is being assembled regarding the response of soil bacterial communities to land use change, to the associated plant community and to soil properties, our understanding about how these interactions affect the microbial community from the Brazilian Pampa is still poor and incomplete. In this study, we hypothesized that the same soil type from the same geographic region but under distinct land use present dissimilar soil bacterial communities. To test this hypothesis, we assessed the soil bacterial communities from four land-uses within the same soil type by 454-pyrosequencing of 16S rRNA gene and by soil microbial activity analyzes. We found that the same soil type under different land uses harbor similar (but not equal) bacterial communities and the differences were controlled by many microbial taxa. No differences regarding diversity and richness between natural areas and areas under anthropogenic disturbance were detected. However, the measures of microbial activity did not converge with the 16S rRNA data supporting the idea that the coupling between functioning and composition of bacterial communities is not necessarily correlated. PMID:24146873
Comparing Effects of Cluster-Coupled Patterns on Opinion Dynamics
NASA Astrophysics Data System (ADS)
Liu, Yun; Si, Xia-Meng; Zhang, Yan-Chao
2012-07-01
Community structure is another important feature besides small-world and scale-free property of complex networks. Communities can be coupled through specific fixed links between nodes, or occasional encounter behavior. We introduce a model for opinion evolution with multiple cluster-coupled patterns, in which the interconnectivity denotes the coupled degree of communities by fixed links, and encounter frequency controls the coupled degree of communities by encounter behaviors. Considering the complicated cognitive system of people, the CODA (continuous opinions and discrete actions) update rules are used to mimic how people update their decisions after interacting with someone. It is shown that, large interconnectivity and encounter frequency both can promote consensus, reduce competition between communities and propagate some opinion successfully across the whole population. Encounter frequency is better than interconnectivity at facilitating the consensus of decisions. When the degree of social cohesion is same, small interconnectivity has better effects on lessening the competence between communities than small encounter frequency does, while large encounter frequency can make the greater degree of agreement across the whole populations than large interconnectivity can.
NASA Astrophysics Data System (ADS)
Miller, H.; Lopez, T. M.; Fischer, T. P.; Schrenk, M. O.
2016-12-01
Subduction-related processes, including the movement and alteration of carbon compounds, are an important component of global geochemical cycles. Actively degassing volcanoes of the Aleutian Island arc offer interesting opportunities to not only characterize the composition and abundance of volatiles, but also to identify the origin of the discharging gases (e.g. mantle, organic matter, or carbonates). Taking this approach a step further, microbial activities in and around volcanic fumarole areas may impact the composition and flux of reduced volcanic gases, either through their modification or their assimilation into fixed biomass. Microbiological studies of these systems can be used to develop predictive models to complement those based upon geochemical data while providing greater understanding of the causal relationships between microbial populations and their environment, and ultimately refine estimates of volcanic outgassing. Coupled fumarole soil and gas samples were collected from several Aleutian Island volcanoes in 2015 (Gareloi, Kanaga, Kiska, Little Sitkin) and 2016 (Okmok, Resheschnoi). DNA was extracted from the soil and used to describe microbial community composition, while gas samples were analyzed through chromatography and mass spectrometry. Preliminary data suggests a relationship between the abundance of specific groups of prokaryotes known to metabolize reduced gases, such as sulfur-oxidizers and methanotrophs, and the abundances of the degassing volatiles, including sulfur dioxide and methane. Ongoing studies aimed at investigating the relationship between the genomic composition of the fumarolic microbial community and the physical and chemical properties of the soil (i.e. mineralogy, bulk geochemistry, nutrient concentration, gas flux, and environmental measurements) are underway. These data will be used to evaluate the potential for microbial communities to remove volcanic carbon and store it as biomass, or to modify the volatile carbon flux through metabolic activities. When holistically considered, these data will help to refine estimates of volatile flux and outgassing from the Aleutian Arc, particularly those involving carbon compounds, and potentially provide a novel predictive tool that can be applied in high throughput to volcanoes worldwide.
Pyridine-type alkaloid composition affects bacterial community composition of floral nectar
Aizenberg-Gershtein, Yana; Izhaki, Ido; Santhanam, Rakesh; Kumar, Pavan; Baldwin, Ian T.; Halpern, Malka
2015-01-01
Pyridine-type alkaloids are most common in Nicotiana species. To study the effect of alkaloid composition on bacterial community composition in floral nectar, we compared the nicotine-rich wild type (WT) N. attenuata, the nicotine biosynthesis-silenced N. attenuata that was rich in anatabine and the anabasine-rich WT N. glauca plants. We found that the composition of these secondary metabolites in the floral nectar drastically affected the bacterial community richness, diversity and composition. Significant differences were found between the bacterial community compositions in the nectar of the three plants with a much greater species richness and diversity in the nectar from the transgenic plant. The highest community composition similarity index was detected between the two wild type plants. The different microbiome composition and diversity, caused by the different pyridine-type alkaloid composition, could modify the nutritional content of the nectar and consequently, may contribute to the change in the nectar consumption and visitation. These may indirectly have an effect on plant fitness. PMID:26122961
Pyridine-type alkaloid composition affects bacterial community composition of floral nectar.
Aizenberg-Gershtein, Yana; Izhaki, Ido; Santhanam, Rakesh; Kumar, Pavan; Baldwin, Ian T; Halpern, Malka
2015-06-30
Pyridine-type alkaloids are most common in Nicotiana species. To study the effect of alkaloid composition on bacterial community composition in floral nectar, we compared the nicotine-rich wild type (WT) N. attenuata, the nicotine biosynthesis-silenced N. attenuata that was rich in anatabine and the anabasine-rich WT N. glauca plants. We found that the composition of these secondary metabolites in the floral nectar drastically affected the bacterial community richness, diversity and composition. Significant differences were found between the bacterial community compositions in the nectar of the three plants with a much greater species richness and diversity in the nectar from the transgenic plant. The highest community composition similarity index was detected between the two wild type plants. The different microbiome composition and diversity, caused by the different pyridine-type alkaloid composition, could modify the nutritional content of the nectar and consequently, may contribute to the change in the nectar consumption and visitation. These may indirectly have an effect on plant fitness.
Specifications for a coupled neutronics thermal-hydraulics SFR test case
NASA Astrophysics Data System (ADS)
Tassone, A.; Smirnov, A. D.; Tikhomirov, G. V.
2017-01-01
Coupling neutronics/thermal-hydraulics calculations for the design of nuclear reactors are a growing trend in the scientific community. This approach allows to properly represent the mutual feedbacks between the neutronic distribution and the thermal-hydraulics properties of the materials composing the reactor, details which are often lost when separate analysis are performed. In this work, a test case for a generation IV sodium-cooled fast reactor (SFR), based on the ASTRID concept developed by CEA, is proposed. Two sub-assemblies (SA) characterized by different fuel enrichment and layout are considered. Specifications for the test case are provided including geometrical data, material compositions, thermo-physical properties and coupling scheme details. Serpent and ANSYS-CFX are used as reference in the description of suitable inputs for the performing of the benchmark, but the use of other code combinations for the purpose of validation of the results is encouraged. The expected outcome of the test case are the axial distribution of volumetric power generation term (q‴), density and temperature for the fuel, the cladding and the coolant.
Coupled multi-disciplinary composites behavior simulation
NASA Technical Reports Server (NTRS)
Singhal, Surendra N.; Murthy, Pappu L. N.; Chamis, Christos C.
1993-01-01
The capabilities of the computer code CSTEM (Coupled Structural/Thermal/Electro-Magnetic Analysis) are discussed and demonstrated. CSTEM computationally simulates the coupled response of layered multi-material composite structures subjected to simultaneous thermal, structural, vibration, acoustic, and electromagnetic loads and includes the effect of aggressive environments. The composite material behavior and structural response is determined at its various inherent scales: constituents (fiber/matrix), ply, laminate, and structural component. The thermal and mechanical properties of the constituents are considered to be nonlinearly dependent on various parameters such as temperature and moisture. The acoustic and electromagnetic properties also include dependence on vibration and electromagnetic wave frequencies, respectively. The simulation is based on a three dimensional finite element analysis in conjunction with composite mechanics and with structural tailoring codes, and with acoustic and electromagnetic analysis methods. An aircraft engine composite fan blade is selected as a typical structural component to demonstrate the CSTEM capabilities. Results of various coupled multi-disciplinary heat transfer, structural, vibration, acoustic, and electromagnetic analyses for temperature distribution, stress and displacement response, deformed shape, vibration frequencies, mode shapes, acoustic noise, and electromagnetic reflection from the fan blade are discussed for their coupled effects in hot and humid environments. Collectively, these results demonstrate the effectiveness of the CSTEM code in capturing the coupled effects on the various responses of composite structures subjected to simultaneous multiple real-life loads.
Hu, Ziye; Meng, Han; Shi, Jin-Huan; Bu, Nai-Shun; Fang, Chang-Ming; Quan, Zhe-Xue
2014-01-01
Global nitrogen cycling is mainly mediated by the activity of microorganisms. Nitrogen cycle processes are mediated by functional groups of microorganisms that are affected by constantly changing environmental conditions and substrate availability. In this study, we investigated the temporal and spatial patterns of nitrifier and denitrifier communities in an intertidal wetland. Soil samples were collected over four distinct seasons from three locations with different vegetative cover. Multiple environmental factors and process rates were measured and analyzed together with the community size and composition profiles. We observed that the community size and composition of the nitrifiers and denitrifiers are affected significantly by seasonal factors, while vegetative cover affected the community composition. The seasonal impacts on the community size of ammonia oxidizing archaea (AOA) are much higher than that of ammonia oxidizing bacteria (AOB). The seasonal change was a more important indicator for AOA community composition patterns, while vegetation was more important for the AOB community patterns. The microbial process rates were correlated with both the community size and composition. PMID:25101072
MAC/GMC Code Enhanced for Coupled Electromagnetothermoelastic Analysis of Smart Composites
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Arnold, Steven M.; Aboudi, Jacob
2002-01-01
Intelligent materials are those that exhibit coupling between their electromagnetic response and their thermomechanical response. This coupling allows smart materials to react mechanically (e.g., an induced displacement) to applied electrical or magnetic fields (for instance). These materials find many important applications in sensors, actuators, and transducers. Recently interest has arisen in the development of smart composites that are formed via the combination of two or more phases, one or more of which is a smart material. To design with and utilize smart composites, designers need theories that predict the coupled smart behavior of these materials from the electromagnetothermoelastic properties of the individual phases. The micromechanics model known as the generalized method of cells (GMC) has recently been extended to provide this important capability. This coupled electromagnetothermoelastic theory has recently been incorporated within NASA Glenn Research Center's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC). This software package is user friendly and has many additional features that render it useful as a design and analysis tool for composite materials in general, and with its new capabilities, for smart composites as well.
Coupling mammalian demography to climate through satellite time series of plant phenology
NASA Astrophysics Data System (ADS)
Stoner, D.; Sexton, J. O.; Nagol, J. R.; Ironside, K.; Choate, D.; Longshore, K.; Edwards, T., Jr.
2016-12-01
The seasonality of plant productivity governs the demography of primary and secondary consumers, and in arid ecosystems primary production is constrained by water availability. We relate the behavior, demography, and spatial distribution of large mammalian herbivores and their principal predator to remotely sensed indices of climate and vegetation across the western United States from 2000-2014. Terrain and plant community composition moderate the effects of climatological drought on primary productivity, resulting in spatial variation in ecosystem susceptibility to water stress. Herbivores track these patterns through habitat selection during key periods such as birthing and migration. Across a broad climatological gradient, timing of the start of growing season explains 75% of the variation in herbivore birth timing and 56% of the variation in neonatal survival rates. Initiation of autumn migration corresponds with the end of the growing season. Although indirectly coupled to primary production, carnivore home range size and population density are strongly correlated with plant productivity and growing-season length. Satellite measures of green reflectance during the peak of the growing season explain over 84% of the variation in carnivore home range size and 59% of the variation in density. Climate projections for the western United States predict warming temperatures and shifts in the timing and form of precipitation. Our analyses suggest that increased climatological variability will contribute to fluctuations in the composition and phenology of plant communities. These changes will propagate through consumer trophic levels, manifesting as increased home range area, shifts in the timing of migration, and greater volatility in large mammal populations. Combined with expansion and amplification of human land uses, these changes will likely have economic implications stemming from increased human-wildlife conflict and loss of ecosystem services.
Biogeochemical Coupling between Ocean and Sea Ice
NASA Astrophysics Data System (ADS)
Wang, S.; Jeffery, N.; Maltrud, M. E.; Elliott, S.; Wolfe, J.
2016-12-01
Biogeochemical processes in ocean and sea ice are tightly coupled at high latitudes. Ongoing changes in Arctic and Antarctic sea ice domain likely influence the coupled system, not only through physical fields but also biogeochemical properties. Investigating the system and its changes requires representation of ocean and sea ice biogeochemical cycles, as well as their coupling in Earth System Models. Our work is based on ACME-HiLAT, a new offshoot of the Community Earth System Model (CESM), including a comprehensive representation of marine ecosystems in the form of the Biogeochemical Elemental Cycling Module (BEC). A full vertical column sea ice biogeochemical module has recently been incorporated into the sea ice component. We have further introduced code modifications to couple key growth-limiting nutrients (N, Si, Fe), dissolved and particulate organic matter, and phytoplankton classes that are important in polar regions between ocean and sea ice. The coupling of ocean and sea ice biology-chemistry will enable representation of key processes such as the release of important climate active constituents or seeding algae from melting sea ice into surface waters. Sensitivity tests suggest sea ice and ocean biogeochemical coupling influences phytoplankton competition, biological production, and the CO2 flux. Sea ice algal seeding plays an important role in determining phytoplankton composition of Arctic early spring blooms, since different groups show various responses to the seeding biomass. Iron coupling leads to increased phytoplankton biomass in the Southern Ocean, which also affects carbon uptake via the biological pump. The coupling of macronutrients and organic matter may have weaker influences on the marine ecosystem. Our developments will allow climate scientists to investigate the fully coupled responses of the sea ice-ocean BGC system to physical changes in polar climate.
Non-Contact Inspection of Composites Using Air-Coupled Ultrasound
NASA Astrophysics Data System (ADS)
Peters, J.; Kommareddy, V.; Liu, Z.; Fei, D.; Hsu, D.
2003-03-01
Conventional ultrasonic tests are conducted using water as a transmitting medium. Water coupled ultrasound cannot be applied to certain water-sensitive or porous materials and is more difficult to use in the field. In contrast, air-coupled ultrasound is non-contact and has clear advantages over water-coupled testing. The technology of air-coupled ultrasound has gained maturity in recent years. Some systems have become commercially available and researchers are pursuing several different modalities of air-coupled transduction. This paper reports our experience of applying air-coupled ultrasound to the inspection of flaws, damage, and normal internal structures of composite parts. Through-transmission C-scans at 400 kHz using a focused receiver has resolution sufficient to image honeycomb cells in the sandwich core. With the transmitter and receiver on the same side of a laminate. Lamb waves were generated and used for the imaging of substructures. Air-coupled scan results are presented for flaw detection and damage in aircraft composite structures.
Schnecker, Jörg; Wild, Birgit; Hofhansl, Florian; Eloy Alves, Ricardo J.; Bárta, Jiří; Čapek, Petr; Fuchslueger, Lucia; Gentsch, Norman; Gittel, Antje; Guggenberger, Georg; Hofer, Angelika; Kienzl, Sandra; Knoltsch, Anna; Lashchinskiy, Nikolay; Mikutta, Robert; Šantrůčková, Hana; Shibistova, Olga; Takriti, Mounir; Urich, Tim; Weltin, Georg; Richter, Andreas
2014-01-01
Enzyme-mediated decomposition of soil organic matter (SOM) is controlled, amongst other factors, by organic matter properties and by the microbial decomposer community present. Since microbial community composition and SOM properties are often interrelated and both change with soil depth, the drivers of enzymatic decomposition are hard to dissect. We investigated soils from three regions in the Siberian Arctic, where carbon rich topsoil material has been incorporated into the subsoil (cryoturbation). We took advantage of this subduction to test if SOM properties shape microbial community composition, and to identify controls of both on enzyme activities. We found that microbial community composition (estimated by phospholipid fatty acid analysis), was similar in cryoturbated material and in surrounding subsoil, although carbon and nitrogen contents were similar in cryoturbated material and topsoils. This suggests that the microbial community in cryoturbated material was not well adapted to SOM properties. We also measured three potential enzyme activities (cellobiohydrolase, leucine-amino-peptidase and phenoloxidase) and used structural equation models (SEMs) to identify direct and indirect drivers of the three enzyme activities. The models included microbial community composition, carbon and nitrogen contents, clay content, water content, and pH. Models for regular horizons, excluding cryoturbated material, showed that all enzyme activities were mainly controlled by carbon or nitrogen. Microbial community composition had no effect. In contrast, models for cryoturbated material showed that enzyme activities were also related to microbial community composition. The additional control of microbial community composition could have restrained enzyme activities and furthermore decomposition in general. The functional decoupling of SOM properties and microbial community composition might thus be one of the reasons for low decomposition rates and the persistence of 400 Gt carbon stored in cryoturbated material. PMID:24705618
USDA-ARS?s Scientific Manuscript database
This paper explores the ultraviolet (UV) weathering performance of high density polyethylene (HDPE) composites with different biofiber fillers and coupling agent. Biofiber polymer composite (BFPC) material samples were prepared using oak, cotton burr and stem (CBS) or guayule bagasse as fiber source...
ERIC Educational Resources Information Center
Hostetler, Andrew J.; Desrochers, Stephan; Kopko, Kimberly; Moen, Phyllis
2012-01-01
This study uses individual- and couple-level analyses to examine the influence of work-family demands and community resources on marital and family satisfaction within a sample of dual-earner parents with dependent children (N = 260 couples, 520 individuals). Total couple work hours were strongly negatively associated with marital satisfaction for…
An effective strong-coupling theory of composite particles in UV-domain
NASA Astrophysics Data System (ADS)
Xue, She-Sheng
2017-05-01
We briefly review the effective field theory of massive composite particles, their gauge couplings and characteristic energy scale in the UV-domain of UV-stable fixed point of strong four-fermion coupling, then mainly focus the discussions on the decay channels of composite particles into the final states of the SM gauge bosons, leptons and quarks. We calculate the rates of composite bosons decaying into two gauge bosons γγ, γZ 0, W + W -, Z 0 Z 0 and give the ratios of decay rates of different channels depending on gauge couplings only. It is shown that a composite fermion decays into an elementary fermion and a composite boson, the latter being an intermediate state decays into two gauge bosons, leading to a peculiar kinematics of final states of a quark (or a lepton) and two gauge bosons. These provide experimental implications of such an effective theory of composite particles beyond the SM. We also present some speculative discussions on the channels of composite fermions decaying into W W , W Z and ZZ two boson-tagged jets with quark jets, or to four-quark jets. Moreover, at the same energy scale of composite particles produced in high-energy experiments, composite particles are also produced by high-energy sterile neutrino (dark matter) collisions, their decays lead to excesses of cosmic ray particles in space and signals of SM particles in underground laboratories.
Dassen, Sigrid; Cortois, Roeland; Martens, Henk; de Hollander, Mattias; Kowalchuk, George A; van der Putten, Wim H; De Deyn, Gerlinde B
2017-08-01
Plants are known to influence belowground microbial community structure along their roots, but the impacts of plant species richness and plant functional group (FG) identity on microbial communities in the bulk soil are still not well understood. Here, we used 454-pyrosequencing to analyse the soil microbial community composition in a long-term biodiversity experiment at Jena, Germany. We examined responses of bacteria, fungi, archaea, and protists to plant species richness (communities varying from 1 to 60 sown species) and plant FG identity (grasses, legumes, small herbs, tall herbs) in bulk soil. We hypothesized that plant species richness and FG identity would alter microbial community composition and have a positive impact on microbial species richness. Plant species richness had a marginal positive effect on the richness of fungi, but we observed no such effect on bacteria, archaea and protists. Plant species richness also did not have a large impact on microbial community composition. Rather, abiotic soil properties partially explained the community composition of bacteria, fungi, arbuscular mycorrhizal fungi (AMF), archaea and protists. Plant FG richness did not impact microbial community composition; however, plant FG identity was more effective. Bacterial richness was highest in legume plots and lowest in small herb plots, and AMF and archaeal community composition in legume plant communities was distinct from that in communities composed of other plant FGs. We conclude that soil microbial community composition in bulk soil is influenced more by changes in plant FG composition and abiotic soil properties, than by changes in plant species richness per se. © 2017 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
Huhe; Jiang, Chao; Wu, Yanpei; Cheng, Yunxiang
2017-12-01
During composting, the composition of microbial communities is subject to constant change owing to interactions with fluctuating physicochemical parameters. This study explored the changes in bacterial and fungal communities during cattle farm waste composting and aimed to identify and prioritize the contributing physicochemical factors. Microbial community compositions were determined by high-throughput sequencing. While the predominant phyla in the bacterial and fungal communities were largely consistent during the composting, differences in relative abundances were observed. Bacterial and fungal community diversity and relative abundance varied significantly, and inversely, over time. Relationships between physicochemical factors and microbial community compositions were evaluated by redundancy analysis. The variation in bacterial community composition was significantly related to water-soluble organic carbon (WSOC), and pile temperature and moisture (p < .05), while the largest portions of variation in fungal community composition were explained by pile temperature, WSOC, and C/N (p < .05). These findings indicated that those parameters are the most likely ones to influence, or be influenced by the bacterial and fungal communities. Variation partitioning analyses indicated that WSOC and pile temperature had predominant effects on bacterial and fungal community composition, respectively. Our findings will be useful for improving the quality of cattle farm waste composts. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Gender and the Residential Mobility and Neighborhood Attainment of Black-White Couples.
Gabriel, Ryan
2018-04-01
Including black-white couples in the study of residential stratification accentuates gendered power disparities within couples that favor men over women, which allows for the analysis of whether the race of male partners in black-white couples is associated with the racial and ethnic composition of their neighborhoods. I investigate this by combining longitudinal data between 1985 and 2015 from the Panel Study of Income Dynamics linked to neighborhood- and metropolitan-level data compiled from four censuses. Using these data, I assess the mobility of black male-white female and white male-black female couples out of and into neighborhoods defined respectively by their levels of whites, blacks, and ethnoracial diversity. My results show that the race of the male partner in black-white couples tends to align with the racial and ethnic composition of the neighborhoods where these couples reside. This finding highlights that the racial hierarchy within the United States affects the residential mobility and attainment of black-white couples, but its influence is conditioned by the race and gender composition of these couples.
Aeromechanical stability of helicopters with composite rotor blades in forward flight
NASA Technical Reports Server (NTRS)
Smith, Edward C.; Chopra, Inderjit
1992-01-01
The aeromechanical stability, including air resonance in hover, air resonance in forward flight, and ground resonance, of a helicopter with elastically tailored composite rotor blades is investigated. Five soft-inplane hingeless rotor configurations, featuring elastic pitch-lag, pitch-flap and extension-torsion couplings, are analyzed. Elastic couplings introduced through tailored composite blade spars can have a powerful effect on both air and ground resonance behavior. Elastic pitch-flap couplings (positive and negative) strongly affect body, rotor and dynamic inflow modes. Air resonance stability is diminished by elastic pitch-flap couplings in hover and forward flight. Negative pitch-lag elastic coupling has a stabilizing effect on the regressive lag mode in hover and forward flight. The negative pitch-lag coupling has a detrimental effect on ground resonance stability. Extension-torsion elastic coupling (blade pitch decreases due to tension) decreases regressive lag mode stability in both airborne and ground contact conditions. Increasing thrust levels has a beneficial influence on ground resonance stability for rotors with pitch-flap and extension-torsion coupling and is only marginally effective in improving stability of rotors with pitch-lag coupling.
Air and ground resonance of helicopters with elastically tailored composite rotor blades
NASA Technical Reports Server (NTRS)
Smith, Edward C.; Chopra, Inderjit
1993-01-01
The aeromechanical stability, including air resonance in hover, air resonance in forward flight, and ground resonance, of a helicopter with elastically tailored composite rotor blades is investigated. Five soft-inplane hingeless rotor configurations, featuring elastic pitch-lag, pitch-flap and extension-torsion couplings, are analyzed. Elastic couplings introduced through tailored composite blade spars can have a powerful effect on both air and ground resonance behavior. Elastic pitch-flap couplings (positive and negative) strongly affect body, rotor and dynamic inflow modes. Air resonance stability is diminished by elastic pitch-flap couplings in hover and forwrad flight. Negative pitch-lag elastic coupling has a stabilizing effect on the regressive lag mode in hover and forward flight. The negative pitch-lag coupling has a detrimental effect on ground resonance stability. Extension-torsion elastic coupling (blade pitch decreases due to tension) decreases regressive lag mode stability in both airborne and ground contact conditions. Increasing thrust levels has a beneficial influence on ground resonance stability for rotors with pitch-flap and extension-torsion coupling and is only marginally effective in improving stability of rotors with pitch-lag coupling.
Saavedra, Serguei; Rohr, Rudolf P; Fortuna, Miguel A; Selva, Nuria; Bascompte, Jordi
2016-04-01
Many of the observed species interactions embedded in ecological communities are not permanent, but are characterized by temporal changes that are observed along with abiotic and biotic variations. While work has been done describing and quantifying these changes, little is known about their consequences for species coexistence. Here, we investigate the extent to which changes of species composition impact the likelihood of persistence of the predator-prey community in the highly seasonal Białowieza Primeval Forest (northeast Poland), and the extent to which seasonal changes of species interactions (predator diet) modulate the expected impact. This likelihood is estimated extending recent developments on the study of structural stability in ecological communities. We find that the observed species turnover strongly varies the likelihood of community persistence between summer and winter. Importantly, we demonstrate that the observed seasonal interaction changes minimize the variation in the likelihood of persistence associated with species turnover across the year. We find that these community dynamics can be explained as the coupling of individual species to their environment by minimizing both the variation in persistence conditions and the interaction changes between seasons. Our results provide a homeostatic explanation for seasonal species interactions and suggest that monitoring the association of interactions changes with the level of variation in community dynamics can provide a good indicator of the response of species to environmental pressures.
Intimate Partner Violence in Interracial and Monoracial Couples
Martin, Brittny A.; Cui, Ming; Ueno, Koji; Fincham, Frank D.
2012-01-01
This study investigated intimate partner violence in interracial and monoracial relationships. Using a nationally representative sample, regression analyses indicated that interracial couples demonstrated a higher level of mutual IPV than monoracial white couples but a level similar to monoracial black couples. There were significant gender differences in IPV, with women reporting lower levels of victimization than men. Regarding relationship status, cohabiting couples demonstrated the highest levels of IPV and dating couples reported the lowest levels. Regarding interactions among couple racial composition, relationship status, and respondents’ gender, an interaction between racial composition and relationship status was found. Implications for practitioners and directions for future research are discussed. PMID:23554541
Stegen, James C.; Fredrickson, James K.; Wilkins, Michael J.; Konopka, Allan E.; Nelson, William C.; Arntzen, Evan V.; Chrisler, William B.; Chu, Rosalie K.; Danczak, Robert E.; Fansler, Sarah J.; Kennedy, David W.; Resch, Charles T.; Tfaily, Malak
2016-01-01
Environmental transitions often result in resource mixtures that overcome limitations to microbial metabolism, resulting in biogeochemical hotspots and moments. Riverine systems, where groundwater mixes with surface water (the hyporheic zone), are spatially complex and temporally dynamic, making development of predictive models challenging. Spatial and temporal variations in hyporheic zone microbial communities are a key, but understudied, component of riverine biogeochemical function. Here, to investigate the coupling among groundwater–surface water mixing, microbial communities and biogeochemistry, we apply ecological theory, aqueous biogeochemistry, DNA sequencing and ultra-high-resolution organic carbon profiling to field samples collected across times and locations representing a broad range of mixing conditions. Our results indicate that groundwater–surface water mixing in the hyporheic zone stimulates heterotrophic respiration, alters organic carbon composition, causes ecological processes to shift from stochastic to deterministic and is associated with elevated abundances of microbial taxa that may degrade a broad suite of organic compounds. PMID:27052662
Stegen, James C; Fredrickson, James K; Wilkins, Michael J; Konopka, Allan E; Nelson, William C; Arntzen, Evan V; Chrisler, William B; Chu, Rosalie K; Danczak, Robert E; Fansler, Sarah J; Kennedy, David W; Resch, Charles T; Tfaily, Malak
2016-04-07
Environmental transitions often result in resource mixtures that overcome limitations to microbial metabolism, resulting in biogeochemical hotspots and moments. Riverine systems, where groundwater mixes with surface water (the hyporheic zone), are spatially complex and temporally dynamic, making development of predictive models challenging. Spatial and temporal variations in hyporheic zone microbial communities are a key, but understudied, component of riverine biogeochemical function. Here, to investigate the coupling among groundwater-surface water mixing, microbial communities and biogeochemistry, we apply ecological theory, aqueous biogeochemistry, DNA sequencing and ultra-high-resolution organic carbon profiling to field samples collected across times and locations representing a broad range of mixing conditions. Our results indicate that groundwater-surface water mixing in the hyporheic zone stimulates heterotrophic respiration, alters organic carbon composition, causes ecological processes to shift from stochastic to deterministic and is associated with elevated abundances of microbial taxa that may degrade a broad suite of organic compounds.
Study on the Mechanical Properties of Bionic Coupling Layered B4C/5083Al Composite Materials
Zhao, Qian; Liang, Yunhong; Liu, Qingping; Zhang, Zhihui; Yu, Zhenglei; Ren, Luquan
2018-01-01
Based on microstructure characteristics of Meretrix lusoria shell and Rapana venosa shell, bionic coupling layered B4C/5083Al composites with different layered structures and hard/soft combination models were fabricated via hot pressed sintering. The simplified bionic coupling models with hard and soft layers were similar to layered structure and hardness tendency of shells, guiding the bionic design and fabrication. B4C/5083Al composites with various B4C contents and pure 5083Al were treated as hard and soft layers, respectively. Hot pressed sintering maintained the designed bionic structure and enhanced high bonding strength between ceramics and matrix. Compared with B4C/5083Al composites, bionic layered composites exhibited high mechanical properties including flexural strength, fracture toughness, compressive strength and impact toughness. The hard layers absorbed applied loads in the form of intergranular fracture. Besides connection role, soft layers restrained slabbing phenomenon and reset extension direction of cracks among layers. The coupling functions of bionic composites proved the feasibility and practicability of bionic fabrication, providing a new method for improvement of ceramic/Al composite with properties of being lightweight and high mechanical strength. PMID:29701707
Nihei, Tomotaro; Dabanoglu, Alp; Teranaka, Toshio; Kurata, Shigeaki; Ohashi, Katsura; Kondo, Yukishige; Yoshino, Norio; Hickel, Reinhard; Kunzelmann, Karl-Heinz
2008-06-01
This paper evaluated the wear resistance of resin composite materials with fillers which were modified with a novel hydrophobic silane coupling agent. The novel silane coupling agent containing hydrophobic phenyl group 3-(3-methoxy-4-methacryloyloxyphenyl)propyltrimethoxysilane (p-MBS) was synthesized. The experimental light-cure hybrid composites containing 85wt% of filler modified with this silane were formulated. Twelve specimens were prepared for the three-body-wear test with the ACTA machine and the collected data were analyzed statistically using a one-way ANOVA and Tukey's multiple comparison test as the post hoc test. The wear of the composites containing fillers treated with p-MBS was significantly lower compared with the composite materials containing fillers pretreated with 3-methacryloyloxypropyltrimethoxysilane or the commercially composites (AP-X and ELS extra low shrinkage) after a wear test for 200,000 cycles (p<0.05). It is suggested that the resin composites containing fillers modified with the novel hydrophobic silane has high wear resistant, because of the coupling layers treated with this silane had an excellent affinity with the base resin and formed a highly hydrophobic layer on the filler surface.
Locating a silane coupling agent in silica-filled rubber composites by EFTEM.
Dohi, Hidehiko; Horiuchi, Shin
2007-11-20
A silane coupling agent (SA) was added to silica/rubber composites at different mixing temperatures and the formation of a coupling layer at the silica/rubber interface was investigated by energy-filtering transmission electron microscopy. Bis(triethoxysilypropyl)tetrasulfane (TESPT), which was used as the SA, reacted with the silanol groups on the silica surface and with styrene-butadiene rubber to form an interfacial coupling layer. The silicon and sulfur elemental distributions were analyzed by electron energy loss spectroscopy (EELS) and elemental mapping. The amount of TESPT trapped in the rubber matrix could be qualitatively estimated by EELS, and the in situ formed coupling layer could be characterized by elemental mapping. The result indicated that the formation of the coupling layer was affected by the mixing temperature. The technique described here will contribute to the study of interface-property relationships and the evaluation of the role of SAs in polymeric composites.
Stiffness Characteristics of Composite Rotor Blades With Elastic Couplings
NASA Technical Reports Server (NTRS)
Piatak, David J.; Nixon, Mark W.; Kosmatka, John B.
1997-01-01
Recent studies on rotor aeroelastic response and stability have shown the beneficial effects of incorporating elastic couplings in composite rotor blades. However, none of these studies have clearly identified elastic coupling limits and the effects of elastic couplings on classical beam stiffnesses of representative rotor blades. Knowledge of these limits and effects would greatly enhance future aeroelastic studies involving composite rotor blades. The present study addresses these voids and provides a preliminary design database for investigators who may wish to study the effects of elastic couplings on representative blade designs. The results of the present study should provide a basis for estimating the potential benefits associated with incorporating elastic couplings without the need for first designing a blade cross section and then performing a cross-section analysis to obtain the required beam section properties as is customary in the usual one-dimensional beam-type approach.
Choi, Woong-Ki; Park, Gil-Young; Kim, Byoung-Shuk; Seo, Min-Kang
2018-09-01
In this study, we investigated the effect of the silane coupling agent on the relationship between the surface free energy of carbon fibers (CFs) and the mechanical strength of CFs/acrylonitrile butadiene rubber (NBR) composites. Moreover, the creep behavior of the CF/NBR composites at surface energetic point of view were studied. The specific component of the surface free energy of the carbon fibers was found to increase upon grafting of the silane coupling agent, resulting in an increase in the tensile strength of the CF/NBR composites. On the other hand, the compressive creep strength was found to follow a slightly different trend. These results indicate the possible formation of a complex interpenetrating polymer network depending on the molecular size of the organic functional groups of the silane coupling agent.
Hawlena, Hadas; Rynkiewicz, Evelyn; Toh, Evelyn; Alfred, Andrew; Durden, Lance A; Hastriter, Michael W; Nelson, David E; Rong, Ruichen; Munro, Daniel; Dong, Qunfeng; Fuqua, Clay; Clay, Keith
2013-01-01
Bacterial community composition in blood-sucking arthropods can shift dramatically across time and space. We used 16S rRNA gene amplification and pyrosequencing to investigate the relative impact of vertebrate host-related, arthropod-related and environmental factors on bacterial community composition in fleas and ticks collected from rodents in southern Indiana (USA). Bacterial community composition was largely affected by arthropod identity, but not by the rodent host or environmental conditions. Specifically, the arthropod group (fleas vs ticks) determined the community composition of bacteria, where bacterial communities of ticks were less diverse and more dependent on arthropod traits—especially tick species and life stage—than bacterial communities of fleas. Our data suggest that both arthropod life histories and the presence of arthropod-specific endosymbionts may mask the effects of the vertebrate host and its environment. PMID:22739493
Chapter 11. Community analysis-based methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Y.; Wu, C.H.; Andersen, G.L.
2010-05-01
Microbial communities are each a composite of populations whose presence and relative abundance in water or other environmental samples are a direct manifestation of environmental conditions, including the introduction of microbe-rich fecal material and factors promoting persistence of the microbes therein. As shown by culture-independent methods, different animal-host fecal microbial communities appear distinctive, suggesting that their community profiles can be used to differentiate fecal samples and to potentially reveal the presence of host fecal material in environmental waters. Cross-comparisons of microbial communities from different hosts also reveal relative abundances of genetic groups that can be used to distinguish sources. Inmore » increasing order of their information richness, several community analysis methods hold promise for MST applications: phospholipid fatty acid (PLFA) analysis, denaturing gradient gel electrophoresis (DGGE), terminal restriction fragment length polymorphism (TRFLP), cloning/sequencing, and PhyloChip. Specific case studies involving TRFLP and PhyloChip approaches demonstrate the ability of community-based analyses of contaminated waters to confirm a diagnosis of water quality based on host-specific marker(s). The success of community-based MST for comprehensively confirming fecal sources relies extensively upon using appropriate multivariate statistical approaches. While community-based MST is still under evaluation and development as a primary diagnostic tool, results presented herein demonstrate its promise. Coupled with its inherently comprehensive ability to capture an unprecedented amount of microbiological data that is relevant to water quality, the tools for microbial community analysis are increasingly accessible, and community-based approaches have unparalleled potential for translation into rapid, perhaps real-time, monitoring platforms.« less
NASA Astrophysics Data System (ADS)
Valanko, Sebastian; Norkko, Joanna; Norkko, Alf
2015-04-01
In ecology understanding variation in connectivity is central for how biodiversity is maintained. Field studies on dispersal and temporal dynamics in community regulating processes are, however, rare. We test the short-term temporal stability in community composition in a soft-sediment benthic community by determining among-sampling interval similarity in community composition. We relate stability to in situ measures of connectivity (wind, wave, current energy) and rates of dispersal (quantified in different trap types). Waves were an important predictor of when local community taxa are most likely to disperse in different trap-types, suggesting that wave energy is important for connectivity in a region. Community composition at the site was variable and changed stochastically over time. We found changes in community composition (occurrence, abundance, dominance) to be greater at times when connectivity and rates of dispersal were low. In response to periods of lower connectedness dominant taxa in the local community only exhibited change in their relative abundance. In contrast, locally less abundant taxa varied in both their presence, as well as in relative abundance. Constancy in connectivity and rates of dispersal promotes community stability and persistence, suggesting that local community composition will be impacted by changes in the spatial extent over which immigration and emigration operates in the region. Few empirical studies have actually measured dispersal directly in a multi-species context to demonstrate the role it plays in maintaining local community structure. Even though our study does not evaluate coexistence over demographic time scales, it importantly demonstrates that dispersal is not only important in initial recruitment or following a disturbance, but also key in maintaining local community composition.
A genomic perspective on stoichiometric regulation of soil carbon cycling.
Hartman, Wyatt H; Ye, Rongzhong; Horwath, William R; Tringe, Susannah G
2017-12-01
Similar to plant growth, soil carbon (C) cycling is constrained by the availability of nitrogen (N) and phosphorus (P). We hypothesized that stoichiometric control over soil microbial C cycling may be shaped by functional guilds with distinct nutrient substrate preferences. Across a series of rice fields spanning 5-25% soil C (N:P from 1:12 to 1:70), C turnover was best correlated with P availability and increased with experimental N addition only in lower C (mineral) soils with N:P⩽16. Microbial community membership also varied with soil stoichiometry but not with N addition. Shotgun metagenome data revealed changes in community functions with increasing C turnover, including a shift from aromatic C to carbohydrate utilization accompanied by lower N uptake and P scavenging. Similar patterns of C, N and P acquisition, along with higher ribosomal RNA operon copy numbers, distinguished that microbial taxa positively correlated with C turnover. Considering such tradeoffs in genomic resource allocation patterns among taxa strengthened correlations between microbial community composition and C cycling, suggesting simplified guilds amenable to ecosystem modeling. Our results suggest that patterns of soil C turnover may reflect community-dependent metabolic shifts driven by resource allocation strategies, analogous to growth rate-stoichiometry coupling in animal and plant communities.
Rajic, Slobodan; Muhs, Jeffrey D.
1996-01-01
A fiber optic connector and method for connecting composite materials within which optical fibers are imbedded. The fiber optic connector includes a capillary tube for receiving optical fibers at opposing ends. The method involves inserting a first optical fiber into the capillary tube and imbedding the unit in the end of a softened composite material. The capillary tube is injected with a coupling medium which subsequently solidifies. The composite material is machined to a desired configuration. An external optical fiber is then inserted into the capillary tube after fluidizing the coupling medium, whereby the optical fibers are coupled.
Transcrystalline interphases in natural fiber-PP composites: effect of coupling agent
A.R. Sanadi; D.F. Caulfield
2000-01-01
The interest in lignocellulosic fiber composites has been growing in recent years because of their high specific properties. In this work, a new technique was used to prepare specimen to observe the transcrystalline zones in kenaf fiber-polypropylene composites. A maleated polypropylene (MAPP) coupling agent was used to improve the stress-transfer efficiency in the...
Perryman, Shane E; Rees, Gavin N; Walsh, Christopher J; Grace, Michael R
2011-05-01
The export of nitrogen from urban catchments is a global problem, and denitrifying bacteria in stream ecosystems are critical for reducing in-stream N. However, the environmental factors that control the composition of denitrifying communities in streams are not well understood. We determined whether denitrifying community composition in sediments of nine streams on the eastern fringe of Melbourne, Australia was correlated with two measures of catchment urban impact: effective imperviousness (EI, the proportion of a catchment covered by impervious surfaces with direct connection to streams) or septic tank density (which affects stream water chemistry, particularly stream N concentrations). Denitrifying community structure was examined by comparing terminal restriction fragment length polymorphisms of nosZ genes in the sediments, as the nosZ gene codes for nitrous oxide reductase, the last step in the denitrification pathway. We also determined the chemical and physical characteristics of the streams that were best correlated with denitrifying community composition. EI was strongly correlated with community composition and sediment physical and chemical properties, while septic tank density was not. Sites with high EI were sandier, with less fine sediment and lower organic carbon content, higher sediment cations (calcium, sodium and magnesium) and water filterable reactive phosphorus concentrations. These were also the best small-scale environmental variables that explained denitrifying community composition. Among our study streams, which differed in the degree of urban stormwater impact, sediment grain size and carbon content are the most likely drivers of change in community composition. Denitrifying community composition is another in a long list of ecological indicators that suggest the profound degradation of streams is caused by urban stormwater runoff. While the relationships between denitrifying community composition and denitrification rates are yet to be unequivocally established, landscape-scale indices of environmental impact such as EI may prove to be useful indicators of change in microbial communities.
Microbial community succession in alkaline, saline bauxite residue: a cross-refinery study
NASA Astrophysics Data System (ADS)
Santini, T.; Malcolm, L. I.; Tyson, G. W.; Warren, L. A.
2015-12-01
Bauxite residue, a byproduct of the Bayer process for alumina refining, is an alkaline, saline tailings material that is generally considered to be inhospitable to microbial life. In situ remediation strategies promote soil formation in bauxite residue by enhancing leaching of saline, alkaline pore water, and through incorporation of amendments to boost organic matter content, decrease pH, and improve physical structure. The amelioration of chemical and physical conditions in bauxite residue is assumed to support diversification of microbial communities from narrow, poorly functioning microbial communities towards diverse, well-functioning communities. This study aimed to characterise microbial communities in fresh and remediated bauxite residues from refineries worldwide, to identify (a) whether initial microbial communities differed between refineries; (b) major environmental controls on microbial community composition; and (c) whether remediation successfully shifts the composition of microbial communities in bauxite residue towards those found in reference (desired endpoint) soils. Samples were collected from 16 refineries and characterised using 16S amplicon sequencing to examine microbial community composition and structure, in conjunction with physicochemical analyses. Initial microbial community composition was similar across refineries but partitioned into two major groups. Microbial community composition changes slowly over time and indicates that alkalinity and salinity inhibit diversification. Microbially-based strategies for in situ remediation should consider the initial microbial community composition and whether the pre-treatment of chemical properties would optimise subsequent bioremediation outcomes. During in situ remediation, microbial communities become more diverse and develop wider functional capacity, indicating progression towards communities more commonly observed in natural grassland and forest soils.
Marine fish community structure and habitat associations on the Canadian Beaufort shelf and slope
NASA Astrophysics Data System (ADS)
Majewski, Andrew R.; Atchison, Sheila; MacPhee, Shannon; Eert, Jane; Niemi, Andrea; Michel, Christine; Reist, James D.
2017-03-01
Marine fishes in the Canadian Beaufort Sea have complex interactions with habitats and prey, and occupy a pivotal position in the food web by transferring energy between lower- and upper-trophic levels, and also within and among habitats (e.g., benthic-pelagic coupling). The distributions, habitat associations, and community structure of most Beaufort Sea marine fishes, however, are unknown thus precluding effective regulatory management of emerging offshore industries in the region (e.g., hydrocarbon development, shipping, and fisheries). Between 2012 and 2014, Fisheries and Oceans Canada conducted the first baseline survey of offshore marine fishes, their habitats, and ecological relationships in the Canadian Beaufort Sea. Benthic trawling was conducted at 45 stations spanning 18-1001 m depths across shelf and slope habitats. Physical oceanographic variables (depth, salinity, temperature, oxygen), biological variables (benthic chlorophyll and integrated water-column chlorophyll) and sediment composition (grain size) were assessed as potential explanatory variables for fish community structure using a non-parametric statistical approach. Selected stations were re-sampled in 2013 and 2014 for a preliminary assessment of inter-annual variability in the fish community. Four distinct fish assemblages were delineated on the Canadian Beaufort Shelf and slope: 1) Nearshore-shelf: <50 m depth, 2) Offshore-shelf: >50 and ≤200 m depths, 3) Upper-slope: ≥200 and ≤500 m depths, and 4) Lower-slope: ≥500 m depths. Depth was the environmental variable that best explained fish community structure, and each species assemblage was spatially associated with distinct aspects of the vertical water mass profile. Significant differences in the fish community from east to west were not detected, and the species composition of the assemblages on the Canadian Beaufort Shelf have not changed substantially over the past decade. This community analysis provides a framework for testing hypotheses regarding the trophic dynamics and ecosystem roles of Beaufort Sea marine fishes, including biological linkages (i.e., fish movements and trophic interactions) among offshore habitats. Understanding regional-scale habitat associations will also provide context to identify potentially unique and/or sensitive habitats and fish community characteristics, thus aiding identification of ecologically and biologically significant areas, and to inform conservation efforts.
Egidi, Eleonora; McMullan-Fisher, Sapphire; Morgan, John W; May, Tom; Zeeman, Ben; Franks, Ashley E
2016-09-01
Frequent burning is commonly undertaken to maintain diversity in temperate grasslands of southern Australia. How burning affects below-ground fungal community diversity remains unknown. We show, using a fungal rDNA metabarcoding approach (Illumina MiSeq), that the fungal community composition was influenced by fire regime (frequency) but not time-since-fire. Fungal community composition was resilient to direct fire effects, most likely because grassland fires transfer little heat to the soil. Differences in the fungal community composition due to fire regime was likely due to associated changes that occur in vegetation with recurrent fire, via the break up of obligate symbiotic relationships. However, fire history only partially explains the observed dissimilarity in composition among the soil samples, suggesting a distinctiveness in composition in each grassland site. The importance of considering changes in soil microbe communities when managing vegetation with fire is highlighted. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Spatial variability in plant species composition and peatland carbon exchange
NASA Astrophysics Data System (ADS)
Goud, E.; Moore, T. R.; Roulet, N. T.
2015-12-01
Plant species shifts in response to global change will have significant impacts on ecosystem carbon (C) exchange and storage arising from changes in hydrology. Spatial variation in peatland C fluxes have largely been attributed to the spatial distribution of microhabitats that arise from variation in surface topography and water table depth, but little is known about how plant species composition impacts peatland C cycling or how these impacts will be influenced by changing environmental conditions. We quantified the effect of species composition and environmental variables on carbon dioxide (CO2) and methane (CH4) fluxes over 2 years in a temperate peatland for four plant communities situated along a water table gradient from ombrotrophic bog to beaver pond. We hypothesized that (i) spatial heterogeneity in species composition would drive predictable spatial heterogeneity in C fluxes due to variation in plant traits and ecological tolerances, and (ii) increases in peat temperature would increase C fluxes. Species had different effects on C fluxes primarily due to differences in leaf traits. Differences in ecological tolerances among communities resulted in different rates of CO2 exchange in response to changes in water table depth. There was an overall reduction in ecosystem respiration (ER), gross primary productivity (GPP) and CH4 flux in response to colder peat temperatures in the second year, and the additive effects of a deeper water table in the bog margin and pond sites further reduced flux rates in these areas. These results demonstrate that different plant species can increase or decrease the flux of C into and out of peatlands based on differences in leaf traits and ecological tolerances, and that CO2 and CH4 fluxes are sensitive to changes in soil temperature, especially when coupled with changes in moisture availability.
Modelling the impact of climate change and atmospheric N deposition on French forests biodiversity.
Rizzetto, Simon; Belyazid, Salim; Gégout, Jean-Claude; Nicolas, Manuel; Alard, Didier; Corcket, Emmanuel; Gaudio, Noémie; Sverdrup, Harald; Probst, Anne
2016-06-01
A dynamic coupled biogeochemical-ecological model was used to simulate the effects of nitrogen deposition and climate change on plant communities at three forest sites in France. The three sites had different forest covers (sessile oak, Norway spruce and silver fir), three nitrogen loads ranging from relatively low to high, different climatic regions and different soil types. Both the availability of vegetation time series and the environmental niches of the understory species allowed to evaluate the model for predicting the composition of the three plant communities. The calibration of the environmental niches was successful, with a model performance consistently reasonably high throughout the three sites. The model simulations of two climatic and two deposition scenarios showed that climate change may entirely compromise the eventual recovery from eutrophication of the simulated plant communities in response to the reductions in nitrogen deposition. The interplay between climate and deposition was strongly governed by site characteristics and histories in the long term, while forest management remained the main driver of change in the short term. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hasan, Muhammad Sami; Ahmed, Ifty; Parsons, Andrew; Walker, Gavin; Scotchford, Colin
2012-01-01
In this study three chemical agents Amino-propyl-triethoxy-silane (APS), sorbitol ended PLA oligomer (SPLA) and Hexamethylene diisocyanate (HDI) were identified to be used as coupling agents to react with the phosphate glass fibre (PGF) reinforcement and the polylactic acid (PLA) polymer matrix of the composite. Composites were prepared with short chopped strand fibres (l = 20 mm, ϕ = 20 µm) in a random arrangement within PLA matrix. Improved, initial composite flexural strength (~20 MPa) was observed for APS treated fibres, which was suggested to be due to enhanced bonding between the fibres and polymer matrix. Both APS and HDI treated fibres were suggested to be covalently linked with the PLA matrix. The hydrophobicity induced by these coupling agents (HDI, APS) helped to resist hydrolysis of the interface and thus retained their mechanical properties for an extended period of time as compared to non-treated control. Approximately 70% of initial strength and 65% of initial modulus was retained by HDI treated fibre composites in contrast to the control, where only ~50% of strength and modulus was retained after 28 days of immersion in PBS at 37 °C. All coupling agent treated and control composites demonstrated good cytocompatibility which was comparable to the tissue culture polystyrene (TCP) control, supporting the use of these materials as coupling agent’s within medical implant devices. PMID:24955744
Effects of Agronomic Treatments on Structure and Function of Ammonia-Oxidizing Communities
Phillips, Carol J.; Harris, Dave; Dollhopf, Sherry L.; Gross, Katherine L.; Prosser, James I.; Paul, Eldor A.
2000-01-01
The aim of this study was to determine the effects of different agricultural treatments and plant communities on the diversity of ammonia oxidizer populations in soil. Denaturing gradient gel electrophoresis (DGGE), coupled with specific oligonucleotide probing, was used to analyze 16S rRNA genes of ammonia oxidizers belonging to the β subgroup of the division Proteobacteria by use of DNA extracted from cultivated, successional, and native deciduous forest soils. Community profiles of the different soil types were compared with nitrification rates and most-probable-number (MPN) counts. Despite significant variation in measured nitrification rates among communities, there were no differences in the DGGE banding profiles of DNAs extracted from these soils. DGGE profiles of DNA extracted from samples of MPN incubations, cultivated at a range of ammonia concentrations, showed the presence of bands not amplified from directly extracted DNA. Nitrosomonas-like bands were seen in the MPN DNA but were not detected in the DNA extracted directly from soils. These bands were detected in some samples taken from MPN incubations carried out with medium containing 1,000 μg of NH4+-N ml−1, to the exclusion of bands detected in the native DNA. Cell concentrations of ammonia oxidizers determined by MPN counts were between 10- and 100-fold lower than those determined by competitive PCR (cPCR). Although no differences were seen in ammonia oxidizer MPN counts from the different soil treatments, cPCR revealed higher numbers in fertilized soils. The use of a combination of traditional and molecular methods to investigate the activities and compositions of ammonia oxidizers in soil demonstrates differences in fine-scale compositions among treatments that may be associated with changes in population size and function. PMID:11097922
NASA Astrophysics Data System (ADS)
Kaufman, M.; Cardenas, M. B.; Stegen, J.; Graham, E.; Cook, P. L. M.; Kessler, A. J.
2016-12-01
The hyporheic zone (HZ) provides key ecosystem services such as heavy metal sequestration, nutrient uptake and consumption, and habitat for a diverse collection of ecologically and commercially important species. Microbes are responsible for many of the chemical transformations in the HZ. These microbe populations are intimately linked to redox conditions, and recent work has shown that redox conditions in the HZ can be highly dynamic. Here we investigate the dynamic coupling between surface flow conditions, hyporheic redox conditions, and the hyporheic microbiome. Our window into this world is a large experimental flume (5m x 0.7m x 0.3m), prepared and incubated in a way that is relatively common to hyporheic zone research, without a strong attempt to impose a specific microbial community structure. We use computer-controlled flow combined with sand bedforms within the flume to generate a pattern of oxic and anoxic sediment zones, from which we collected sediment and water samples. Dissolved oxygen was mapped with a large planar optode. The samples were analyzed for microbial community composition through 16S rRNA gene sequencing. We compare the population structure between oxic and anoxic zones, showing that the presence of oxygen in the HZ is a strong predictor of microbial composition. Additionally, we compare both the oxic and anoxic community structure from the flume to those of samples taken from natural environments, showing both interesting similarities and differences. In the future, we plan to use time-series sampling to observe the response times of microbial communities subjected to dynamic surface channel flow and redox conditions. This work will yield greater understanding of the role that dynamic rivers play in microbe-provided ecosystem services.
NASA Astrophysics Data System (ADS)
Kaufman, M.; Cardenas, M. B.; Stegen, J.; Graham, E.; Cook, P. L. M.; Kessler, A. J.
2017-12-01
The hyporheic zone (HZ) provides key ecosystem services such as heavy metal sequestration, nutrient uptake and consumption, and habitat for a diverse collection of ecologically and commercially important species. Microbes are responsible for many of the chemical transformations in the HZ. These microbe populations are intimately linked to redox conditions, and recent work has shown that redox conditions in the HZ can be highly dynamic. Here we investigate the dynamic coupling between surface flow conditions, hyporheic redox conditions, and the hyporheic microbiome. Our window into this world is a large experimental flume (5m x 0.7m x 0.3m), prepared and incubated in a way that is relatively common to hyporheic zone research, without a strong attempt to impose a specific microbial community structure. We use computer-controlled flow combined with sand bedforms within the flume to generate a pattern of oxic and anoxic sediment zones, from which we collected sediment and water samples. Dissolved oxygen was mapped with a large planar optode. The samples were analyzed for microbial community composition through 16S rRNA gene sequencing. We compare the population structure between oxic and anoxic zones, showing that the presence of oxygen in the HZ is a strong predictor of microbial composition. Additionally, we compare both the oxic and anoxic community structure from the flume to those of samples taken from natural environments, showing both interesting similarities and differences. In the future, we plan to use time-series sampling to observe the response times of microbial communities subjected to dynamic surface channel flow and redox conditions. This work will yield greater understanding of the role that dynamic rivers play in microbe-provided ecosystem services.
NASA Astrophysics Data System (ADS)
Schreiner, K. M.; Bramburger, A.; Ozersky, T.; Sheik, C.; Steinman, B. A.
2016-02-01
Lake Superior is the largest freshwater lake in the world, supporting economically important fisheries and providing drinking water to hundreds of thousands of people. In recent decades, summer surface water temperature and the intensity and duration of water column stratification in the lake has increased steadily. These physical changes have resulted in significant perturbations to lower trophic level ecosystem characteristics. Recent observations of Great Lakes plankton assemblages have revealed multi-decadal patterns of community reorganization, with increased relative abundance of taxa characteristic of warmer waters. These changes, coupled with changing nutrient concentrations and colonization by non-native taxa, threaten to shift trophic structure and carbon dynamics at the bottom of the food web. To this end, this study seeks to quantify the impacts of this ecosystem shift on carbon fixation, the biological pump, and organic carbon cycling in Lake Superior. Utilizing a combined sampling approach, in the summer of 2015 we collected water, sediment, and biological samples across a nearshore-to-offshore gradient in the western arm of Lake Superior. Analyses included the community composition of bacteria, archaea, phytoplankton, and zooplankton; water column carbon and nutrient speciation; algal pigments and pigment degradation products; and net primary productivity. The collection of surface sediments allowed for additional assessment of benthic-pelagic coupling. The novel combination of this wide-ranging set of analyses to a locally and globally important water body like Lake Superior allowed us to fully assess the interactions between lower trophic level biology and carbon and nutrient cycling throughout the water column. Preliminary data indicates that microbial community composition was variable across the western arm of Lake Superior and showed signs of stratification at individual stations (>100 m deep). Sample collection occurred soon after lake stratification in July 2015, and the presence of a deep chlorophyll maximum was noted. The results shed light on the functioning of the biological pump and nutrient and carbon dynamics in a changing ecosystem and provides insight on how further change in Lake Superior and other aquatic systems will affect ecosystem function and services.
Evaluation of CESM1 (WACCM) with Observations of Stratospheric Composition
NASA Astrophysics Data System (ADS)
Kinnison, Doug; Froidevaux, Lucien; Garcia, Rolando; Fuller, Ryan
2017-04-01
The Community Earth System Model version 1 (CESM1) Whole Atmosphere Community Climate Model (WACCM) is used in this study. CESM1 (WACCM) includes a detailed representation of tropospheric through lower thermospheric chemistry and physical processes. Simulations for this work were based on scenarios defined by the Chemistry Climate Model Initiative (CCMI). These scenarios included both free-running (FR) and specified-dynamics versions (SD) of CESM1 (WACCM). Comparisons were made with global monthly zonal mean stratospheric data records from satellite-based remote measurements created by the Global Ozone Chemistry and Related Trace gas Data Records for the Stratosphere (GOZCARDS) project. These data records were drawn from high quality measurements of stratospheric composition starting in 1979 for ozone and in the early 1990s for other species. We discuss stratospheric variability and trends through analyses of observed time series of ozone (O3), hydrogen chloride (HCl), nitrous oxide (N2O), nitric acid (HNO3), and water vapor (H2O), and we contrast the fits from the FR and SD model versions. Conclusions from this work have aided in the development of a new version of CESM (WACCM) that will be used in the next Intergovernmental Panel on Climate Change (IPCC) Coupled Model Intercomparison Project Phase 6 (CMIP6) assessment.
Exposure to the leaf litter microbiome of healthy adults protects seedlings from pathogen damage.
Christian, Natalie; Herre, Edward Allen; Mejia, Luis C; Clay, Keith
2017-07-12
It is increasingly recognized that microbiota affect host health and physiology. However, it is unclear what factors shape microbiome community assembly in nature, and how microbiome assembly can be manipulated to improve host health. All plant leaves host foliar endophytic fungi, which make up a diverse, environmentally acquired fungal microbiota. Here, we experimentally manipulated assembly of the cacao tree ( Theobroma cacao ) fungal microbiome in nature and tested the effect of assembly outcome on host health. Using next-generation sequencing, as well as culture-based methods coupled with Sanger sequencing, we found that manipulating leaf litter exposure and location within the forest canopy significantly altered microbiome composition in cacao. Exposing cacao seedlings to leaf litter from healthy conspecific adults enriched the seedling microbiome with Colletotrichum tropicale , a fungal endophyte known to enhance pathogen resistance of cacao seedlings by upregulating host defensive pathways. As a result, seedlings exposed to healthy conspecific litter experienced reduced pathogen damage. Our results link processes that affect the assembly and composition of microbiome communities to their functional consequences for host success, and have broad implications for understanding plant-microbe interactions. Deliberate manipulation of the plant-fungal microbiome also has potentially important applications for cacao production and other agricultural systems in general. © 2017 The Author(s).
Langer, Julia A F; Sharma, Rahul; Schmidt, Susanne I; Bahrdt, Sebastian; Horn, Henriette G; Algueró-Muñiz, María; Nam, Bora; Achterberg, Eric P; Riebesell, Ulf; Boersma, Maarten; Thines, Marco; Schwenk, Klaus
2017-01-01
The acidification of the oceans could potentially alter marine plankton communities with consequences for ecosystem functioning. While several studies have investigated effects of ocean acidification on communities using traditional methods, few have used genetic analyses. Here, we use community barcoding to assess the impact of ocean acidification on the composition of a coastal plankton community in a large scale, in situ, long-term mesocosm experiment. High-throughput sequencing resulted in the identification of a wide range of planktonic taxa (Alveolata, Cryptophyta, Haptophyceae, Fungi, Metazoa, Hydrozoa, Rhizaria, Straminipila, Chlorophyta). Analyses based on predicted operational taxonomical units as well as taxonomical compositions revealed no differences between communities in high CO2 mesocosms (~ 760 μatm) and those exposed to present-day CO2 conditions. Observed shifts in the planktonic community composition were mainly related to seasonal changes in temperature and nutrients. Furthermore, based on our investigations, the elevated CO2 did not affect the intraspecific diversity of the most common mesozooplankter, the calanoid copepod Pseudocalanus acuspes. Nevertheless, accompanying studies found temporary effects attributed to a raise in CO2. Differences in taxa composition between the CO2 treatments could, however, only be observed in a specific period of the experiment. Based on our genetic investigations, no compositional long-term shifts of the plankton communities exposed to elevated CO2 conditions were observed. Thus, we conclude that the compositions of planktonic communities, especially those in coastal areas, remain rather unaffected by increased CO2.
Sharma, Rahul; Schmidt, Susanne I.; Bahrdt, Sebastian; Horn, Henriette G.; Algueró-Muñiz, María; Nam, Bora; Achterberg, Eric P.; Riebesell, Ulf; Boersma, Maarten; Thines, Marco; Schwenk, Klaus
2017-01-01
The acidification of the oceans could potentially alter marine plankton communities with consequences for ecosystem functioning. While several studies have investigated effects of ocean acidification on communities using traditional methods, few have used genetic analyses. Here, we use community barcoding to assess the impact of ocean acidification on the composition of a coastal plankton community in a large scale, in situ, long-term mesocosm experiment. High-throughput sequencing resulted in the identification of a wide range of planktonic taxa (Alveolata, Cryptophyta, Haptophyceae, Fungi, Metazoa, Hydrozoa, Rhizaria, Straminipila, Chlorophyta). Analyses based on predicted operational taxonomical units as well as taxonomical compositions revealed no differences between communities in high CO2 mesocosms (~ 760 μatm) and those exposed to present-day CO2 conditions. Observed shifts in the planktonic community composition were mainly related to seasonal changes in temperature and nutrients. Furthermore, based on our investigations, the elevated CO2 did not affect the intraspecific diversity of the most common mesozooplankter, the calanoid copepod Pseudocalanus acuspes. Nevertheless, accompanying studies found temporary effects attributed to a raise in CO2. Differences in taxa composition between the CO2 treatments could, however, only be observed in a specific period of the experiment. Based on our genetic investigations, no compositional long-term shifts of the plankton communities exposed to elevated CO2 conditions were observed. Thus, we conclude that the compositions of planktonic communities, especially those in coastal areas, remain rather unaffected by increased CO2. PMID:28445483
Multi-field coupled sensing network for health monitoring of composite bolted joint
NASA Astrophysics Data System (ADS)
Wang, Yishou; Qing, Xinlin; Dong, Liang; Banerjee, Sourav
2016-04-01
Advanced fiber reinforced composite materials are becoming the main structural materials of next generation of aircraft because of their high strength and stiffness to weight ratios, and excellent designability. As key components of large composite structures, joints play important roles to ensure the integrity of the composite structures. However, it is very difficult to analyze the strength and failure modes of composite joints due to their complex nonlinear coupling factors. Therefore, there is a need to monitor, diagnose, evaluate and predict the structure state of composite joints. This paper proposes a multi-field coupled sensing network for health monitoring of composite bolted joints. Major work of this paper includes: 1) The concept of multifunctional sensor layer integrated with eddy current sensors, Rogowski coil and arrayed piezoelectric sensors; 2) Development of the process for integrating the eddy current sensor foil, Rogowski coil and piezoelectric sensor array in multifunctional sensor layer; 3) A new concept of smart composite joint with multifunctional sensing capability. The challenges for building such a structural state sensing system and some solutions to address the challenges are also discussed in the study.
Coupled structural/thermal/electromagnetic analysis/tailoring of graded composite structures
NASA Technical Reports Server (NTRS)
Mcknight, R. L.; Huang, H.; Hartle, M.
1992-01-01
Accomplishments are described for the fourth years effort of a 5-year program to develop a methodology for coupled structural/thermal/electromagnetic analysis/tailoring of graded component structures. These accomplishments include: (1) demonstration of coupled solution capability; (2) alternate CSTEM electromagnetic technology; (3) CSTEM acoustic capability; (4) CSTEM tailoring; (5) CSTEM composite micromechanics using ICAN; and (6) multiple layer elements in CSTEM.
Dissolved Organic Carbon Cycling and Transformation Dynamics in A Northern Forested Peatland
NASA Astrophysics Data System (ADS)
Tfaily, M. M.; Lin, X.; Chanton, P. R.; Steinweg, J.; Esson, K.; Kostka, J. E.; Cooper, W. T.; Schadt, C. W.; Hanson, P. J.; Chanton, J.
2013-12-01
Peatlands sequester one-third of all soil carbon and currently act as major sinks of atmospheric carbon dioxide. The ability to predict or simulate the fate of stored carbon in response to climatic disruption remains hampered by our limited understanding of the controls of carbon turnover and the composition and functioning of peatland microbial communities. A combination of advanced analytical chemistry and microbiology approaches revealed that organic matter reactivity and microbial community dynamics were closely coupled in an extensive field dataset compiled at the S1 bog site established for the SPRUCE program, Marcell Experimental Forest (MEF). The molecular composition and decomposition pathways of dissolved organic carbon (DOC) were contrasted using parallel factor (PARAFAC)-modeled excitation emission fluorescence spectroscopy (EEMS) and FT-ICR MS. The specific UV absorbance (SUVA) at 254 nm was calculated as an indicator of aromaticity. Fluorescence intensity ratios (BIX and FI) were used to infer the relative contributions from solid phase decomposition and microbial production. Distributions of bulk DOC, its stable (δ13C) and radioactive (Δ14C) isotopic composition were also utilized to infer information on its dynamics and transformation processes. Strong vertical stratification was observed in organic matter composition, the distribution of mineralization products (CO2, CH4), respiration rates, and decomposition pathways, whereas smaller variations were observed between sites. A decline in the aromaticity of pore water DOC was accompanied by an increase in microbially-produced DOC. Solid phase peat, on the other hand, became more humified and highly aromatic with depth. These observations were consistent with radiocarbon data that showed that the radiocarbon signatures of microbial respiration products in peat porewaters more closely resemble those of DOC rather than solid peat, indicating that carbon from recent photosynthesis is fueling the majority of the decomposition, even in the subsurface. Stable isotope geochemistry paralleled with vertical changes in methanogen community composition to reveal a mid-depth maximum in acetoclastic methanogenesis, while hydrogenotrophic methanogenesis appears to dominate deeper peat layers. Archaea increased in relative abundance with depth, comprising up to 60 % of the microbial community in the deep peat below 75 cm depth. The Crenarchaeota, Archaea that are not known to produce methane, are suggested to play a critical role in the carbon cycle of deeper peat layers. This is corroborated by evidence from a C isotope mass balance, which indicates that processes other than methanogenesis (fermentation, anaerobic respiration) predominate in the deep peat leading to dominance of CO2 production at depth.
Rajic, S.; Muhs, J.D.
1996-10-22
A fiber optic connector and method for connecting composite materials within which optical fibers are imbedded are disclosed. The fiber optic connector includes a capillary tube for receiving optical fibers at opposing ends. The method involves inserting a first optical fiber into the capillary tube and imbedding the unit in the end of a softened composite material. The capillary tube is injected with a coupling medium which subsequently solidifies. The composite material is machined to a desired configuration. An external optical fiber is then inserted into the capillary tube after fluidizing the coupling medium, whereby the optical fibers are coupled. 3 figs.
Yergeau, Etienne; Bezemer, T Martijn; Hedlund, Katarina; Mortimer, Simon R; Kowalchuk, George A; Van Der Putten, Wim H
2010-08-01
Microbial communities respond to a variety of environmental factors related to resources (e.g. plant and soil organic matter), habitat (e.g. soil characteristics) and predation (e.g. nematodes, protozoa and viruses). However, the relative contribution of these factors on microbial community composition is poorly understood. Here, we sampled soils from 30 chalk grassland fields located in three different chalk hill ridges of Southern England, using a spatially explicit sampling scheme. We assessed microbial communities via phospholipid fatty acid (PLFA) analyses and PCR-denaturing gradient gel electrophoresis (DGGE) and measured soil characteristics, as well as nematode and plant community composition. The relative influences of space, soil, vegetation and nematodes on soil microorganisms were contrasted using variation partitioning and path analysis. Results indicate that soil characteristics and plant community composition, representing habitat and resources, shape soil microbial community composition, whereas the influence of nematodes, a potential predation factor, appears to be relatively small. Spatial variation in microbial community structure was detected at broad (between fields) and fine (within fields) scales, suggesting that microbial communities exhibit biogeographic patterns at different scales. Although our analysis included several relevant explanatory data sets, a large part of the variation in microbial communities remained unexplained (up to 92% in some analyses). However, in several analyses, significant parts of the variation in microbial community structure could be explained. The results of this study contribute to our understanding of the relative importance of different environmental and spatial factors in driving the composition of soil-borne microbial communities. © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.
Miyata, N; Matsuura, W; Kokubo, T; Nakamura, T
2004-09-01
Time-dependent strength behavior was investigated for bisphenol-a-glycidyl methacrylate/triethylene glycol dimethacrylate (Bis-GMA/TEGDMA) resin cements combined with glass-ceramic A-W filler treated with various kinds of silane coupling agents. The fracture strength of the composite resin cements was measured by three-point bending as a function of stressing rate in a simulated body fluid (SBF), and thereby the stress-corrosion susceptibility constant was evaluated. The fracture strength was found to depend on the kind of coupling agent used. For the present Bis-GMA/TEGDMA resin, the silane coupling agents without hydrophilic amine groups can be used to obtain good adhesion between resin and A-W filler owing to their nature of co-polymerizing with the resin. On the other hand, all the composite resin cements showed nearly the same degree of stress-corrosion susceptibility whether the A-W fillers were treated or untreated with silane coupling agents. This means that the stress-corrosion susceptibility of the present composite cements is predominantly affected by that of the matrix resin. Thus, the microcrack formation and growth at the resin matrix near particle - resin interface were thought to determine overall time-dependent strength behavior of the composite cements.
Effects of climate change on plant population growth rate and community composition change.
Chang, Xiao-Yu; Chen, Bao-Ming; Liu, Gang; Zhou, Ting; Jia, Xiao-Rong; Peng, Shao-Lin
2015-01-01
The impacts of climate change on forest community composition are still not well known. Although directional trends in climate change and community composition change were reported in recent years, further quantitative analyses are urgently needed. Previous studies focused on measuring population growth rates in a single time period, neglecting the development of the populations. Here we aimed to compose a method for calculating the community composition change, and to testify the impacts of climate change on community composition change within a relatively short period (several decades) based on long-term monitoring data from two plots-Dinghushan Biosphere Reserve, China (DBR) and Barro Colorado Island, Panama (BCI)-that are located in tropical and subtropical regions. We proposed a relatively more concise index, Slnλ, which refers to an overall population growth rate based on the dominant species in a community. The results indicated that the population growth rate of a majority of populations has decreased over the past few decades. This decrease was mainly caused by population development. The increasing temperature had a positive effect on population growth rates and community change rates. Our results promote understanding and explaining variations in population growth rates and community composition rates, and are helpful to predict population dynamics and population responses to climate change.
Fuego/Scefire MPMD Coupling L2 Milestone Executive Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, Flint; Tencer, John; Pautz, Shawn D.
2017-09-01
This milestone campaign was focused on coupling Sandia physics codes SIERRA low Mach module Fuego and RAMSES Boltzmann transport code Sceptre(Scefire). Fuego enables simulation of low Mach, turbulent, reacting, particle laden flows on unstructured meshes using CVFEM for abnormal thermal environments throughout SNL and the larger national security community. Sceptre provides simulation for photon, neutron, and charged particle transport on unstructured meshes using Discontinuous Galerkin for radiation effects calculations at SNL and elsewhere. Coupling these ”best of breed” codes enables efficient modeling of thermal/fluid environments with radiation transport, including fires (pool, propellant, composite) as well as those with directed radiantmore » fluxes. We seek to improve the experience of Fuego users who require radiation transport capabilities in two ways. The first is performance. We achieve this through leveraging additional computational resources for Scefire, reducing calculation times while leaving unaffected resources for fluid physics. This approach is new to Fuego, which previously utilized the same resources for both fluid and radiation solutions. The second improvement enables new radiation capabilities, including spectral (banded) radiation, beam boundary sources, and alternate radiation solvers (i.e. Pn). This summary provides an overview of these achievements.« less
Wilkins, Laetitia G E; Rogivue, Aude; Schütz, Frédéric; Fumagalli, Luca; Wedekind, Claus
2015-11-27
The taxonomic composition of egg-associated microbial communities can play a crucial role in the development of fish embryos. In response, hosts increasingly influence the composition of their associated microbial communities during embryogenesis, as concluded from recent field studies and laboratory experiments. However, little is known about the taxonomic composition and the diversity of egg-associated microbial communities within ecosystems; e.g., river networks. We sampled late embryonic stages of naturally spawned brown trout at nine locations within two different river networks and applied 16S rRNA pyrosequencing to describe their bacterial communities. We found no evidence for a significant isolation-by-distance effect on the composition of bacterial communities, and no association between neutral genetic divergence of fish host (based on 11 microsatellites) and phylogenetic distances of the composition of their associated bacterial communities. We characterized core bacterial communities on brown trout eggs and compared them to corresponding water samples with regard to bacterial composition and its presumptive function. Bacterial diversity was positively correlated with water temperature at the spawning locations. We discuss this finding in the context of the increased water temperatures that have been recorded during the last 25 years in the study area.
Wilkins, Laetitia G. E.; Rogivue, Aude; Schütz, Frédéric; Fumagalli, Luca; Wedekind, Claus
2015-01-01
The taxonomic composition of egg-associated microbial communities can play a crucial role in the development of fish embryos. In response, hosts increasingly influence the composition of their associated microbial communities during embryogenesis, as concluded from recent field studies and laboratory experiments. However, little is known about the taxonomic composition and the diversity of egg-associated microbial communities within ecosystems; e.g., river networks. We sampled late embryonic stages of naturally spawned brown trout at nine locations within two different river networks and applied 16S rRNA pyrosequencing to describe their bacterial communities. We found no evidence for a significant isolation-by-distance effect on the composition of bacterial communities, and no association between neutral genetic divergence of fish host (based on 11 microsatellites) and phylogenetic distances of the composition of their associated bacterial communities. We characterized core bacterial communities on brown trout eggs and compared them to corresponding water samples with regard to bacterial composition and its presumptive function. Bacterial diversity was positively correlated with water temperature at the spawning locations. We discuss this finding in the context of the increased water temperatures that have been recorded during the last 25 years in the study area. PMID:26611640
Compositional Stability of the Bacterial Community in a Climate-Sensitive Sub-Arctic Peatland.
Weedon, James T; Kowalchuk, George A; Aerts, Rien; Freriks, Stef; Röling, Wilfred F M; van Bodegom, Peter M
2017-01-01
The climate sensitivity of microbe-mediated soil processes such as carbon and nitrogen cycling offers an interesting case for evaluating the corresponding sensitivity of microbial community composition to environmental change. Better understanding of the degree of linkage between functional and compositional stability would contribute to ongoing efforts to build mechanistic models aiming at predicting rates of microbe-mediated processes. We used an amplicon sequencing approach to test if previously observed large effects of experimental soil warming on C and N cycle fluxes (50-100% increases) in a sub-arctic Sphagnum peatland were reflected in changes in the composition of the soil bacterial community. We found that treatments that previously induced changes to fluxes did not associate with changes in the phylogenetic composition of the soil bacterial community. For both DNA- and RNA-based analyses, variation in bacterial communities could be explained by the hierarchy: spatial variation (12-15% of variance explained) > temporal variation (7-11%) > climate treatment (4-9%). We conclude that the bacterial community in this environment is stable under changing conditions, despite the previously observed sensitivity of process rates-evidence that microbe-mediated soil processes can alter without concomitant changes in bacterial communities. We propose that progress in linking soil microbial communities to ecosystem processes can be advanced by further investigating the relative importance of community composition effects versus physico-chemical factors in controlling biogeochemical process rates in different contexts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Shaomei; Malfatti, Stephanie A.; McFarland, Jack W.
Wetland restoration on peat islands previously drained for agriculture has potential to reverse land subsidence and sequester atmospheric carbon dioxide as peat accretes. However, the emission of methane could potentially offset the greenhouse gas benefits of captured carbon. As microbial communities play a key role in governing wetland greenhouse gas fluxes, we are interested in how microbial community composition and functions are associated with wetland hydrology, biogeochemistry, and methane emission, which is critical to modeling the microbial component in wetland methane fluxes and to managing restoration projects for maximal carbon sequestration. Here, we couple sequence-based methods with biogeochemical and greenhousemore » gas measurements to interrogate microbial communities from a pilot-scale restored wetland in the Sacramento-San Joaquin Delta of California, revealing considerable spatial heterogeneity even within this relatively small site. A number of microbial populations and functions showed strong correlations with electron acceptor availability and methane production; some also showed a preference for association with plant roots. Marker gene phylogenies revealed a diversity of major methane-producing and -consuming populations and suggested novel diversity within methanotrophs. Methanogenic archaea were observed in all samples, as were nitrate-, sulfate-, and metal-reducing bacteria, indicating that no single terminal electron acceptor was preferred despite differences in energetic favorability and suggesting spatial microheterogeneity and microniches. Notably, methanogens were negatively correlated with nitrate-, sulfate-, and metal-reducing bacteria and were most abundant at sampling sites with high peat accretion and low electron acceptor availability, where methane production was highest. Wetlands are the largest nonanthropogenic source of atmospheric methane but also a key global carbon reservoir. Characterizing belowground microbial communities that mediate carbon cycling in wetlands is critical to accurately predicting their responses to changes in land management and climate. Here, we studied a restored wetland and revealed substantial spatial heterogeneity in biogeochemistry, methane production, and microbial communities, largely associated with the wetland hydraulic design. We observed patterns in microbial community composition and functions correlated with biogeochemistry and methane production, including diverse microorganisms involved in methane production and consumption. We found that methanogenesis gene abundance is inversely correlated with genes from pathways exploiting other electron acceptors, yet the ubiquitous presence of genes from all these pathways suggests that diverse electron acceptors contribute to the energetic balance of the ecosystem. These investigations represent an important step toward effective management of wetlands to reduce methane flux to the atmosphere and enhance belowground carbon storage.« less
He, Shaomei; Malfatti, Stephanie A.; McFarland, Jack W.; ...
2015-05-19
Wetland restoration on peat islands previously drained for agriculture has potential to reverse land subsidence and sequester atmospheric carbon dioxide as peat accretes. However, the emission of methane could potentially offset the greenhouse gas benefits of captured carbon. As microbial communities play a key role in governing wetland greenhouse gas fluxes, we are interested in how microbial community composition and functions are associated with wetland hydrology, biogeochemistry, and methane emission, which is critical to modeling the microbial component in wetland methane fluxes and to managing restoration projects for maximal carbon sequestration. Here, we couple sequence-based methods with biogeochemical and greenhousemore » gas measurements to interrogate microbial communities from a pilot-scale restored wetland in the Sacramento-San Joaquin Delta of California, revealing considerable spatial heterogeneity even within this relatively small site. A number of microbial populations and functions showed strong correlations with electron acceptor availability and methane production; some also showed a preference for association with plant roots. Marker gene phylogenies revealed a diversity of major methane-producing and -consuming populations and suggested novel diversity within methanotrophs. Methanogenic archaea were observed in all samples, as were nitrate-, sulfate-, and metal-reducing bacteria, indicating that no single terminal electron acceptor was preferred despite differences in energetic favorability and suggesting spatial microheterogeneity and microniches. Notably, methanogens were negatively correlated with nitrate-, sulfate-, and metal-reducing bacteria and were most abundant at sampling sites with high peat accretion and low electron acceptor availability, where methane production was highest. Wetlands are the largest nonanthropogenic source of atmospheric methane but also a key global carbon reservoir. Characterizing belowground microbial communities that mediate carbon cycling in wetlands is critical to accurately predicting their responses to changes in land management and climate. Here, we studied a restored wetland and revealed substantial spatial heterogeneity in biogeochemistry, methane production, and microbial communities, largely associated with the wetland hydraulic design. We observed patterns in microbial community composition and functions correlated with biogeochemistry and methane production, including diverse microorganisms involved in methane production and consumption. We found that methanogenesis gene abundance is inversely correlated with genes from pathways exploiting other electron acceptors, yet the ubiquitous presence of genes from all these pathways suggests that diverse electron acceptors contribute to the energetic balance of the ecosystem. These investigations represent an important step toward effective management of wetlands to reduce methane flux to the atmosphere and enhance belowground carbon storage.« less
He, Shaomei; Malfatti, Stephanie A; McFarland, Jack W; Anderson, Frank E; Pati, Amrita; Huntemann, Marcel; Tremblay, Julien; Glavina del Rio, Tijana; Waldrop, Mark P; Windham-Myers, Lisamarie; Tringe, Susannah G
2015-05-19
Wetland restoration on peat islands previously drained for agriculture has potential to reverse land subsidence and sequester atmospheric carbon dioxide as peat accretes. However, the emission of methane could potentially offset the greenhouse gas benefits of captured carbon. As microbial communities play a key role in governing wetland greenhouse gas fluxes, we are interested in how microbial community composition and functions are associated with wetland hydrology, biogeochemistry, and methane emission, which is critical to modeling the microbial component in wetland methane fluxes and to managing restoration projects for maximal carbon sequestration. Here, we couple sequence-based methods with biogeochemical and greenhouse gas measurements to interrogate microbial communities from a pilot-scale restored wetland in the Sacramento-San Joaquin Delta of California, revealing considerable spatial heterogeneity even within this relatively small site. A number of microbial populations and functions showed strong correlations with electron acceptor availability and methane production; some also showed a preference for association with plant roots. Marker gene phylogenies revealed a diversity of major methane-producing and -consuming populations and suggested novel diversity within methanotrophs. Methanogenic archaea were observed in all samples, as were nitrate-, sulfate-, and metal-reducing bacteria, indicating that no single terminal electron acceptor was preferred despite differences in energetic favorability and suggesting spatial microheterogeneity and microniches. Notably, methanogens were negatively correlated with nitrate-, sulfate-, and metal-reducing bacteria and were most abundant at sampling sites with high peat accretion and low electron acceptor availability, where methane production was highest. Wetlands are the largest nonanthropogenic source of atmospheric methane but also a key global carbon reservoir. Characterizing belowground microbial communities that mediate carbon cycling in wetlands is critical to accurately predicting their responses to changes in land management and climate. Here, we studied a restored wetland and revealed substantial spatial heterogeneity in biogeochemistry, methane production, and microbial communities, largely associated with the wetland hydraulic design. We observed patterns in microbial community composition and functions correlated with biogeochemistry and methane production, including diverse microorganisms involved in methane production and consumption. We found that methanogenesis gene abundance is inversely correlated with genes from pathways exploiting other electron acceptors, yet the ubiquitous presence of genes from all these pathways suggests that diverse electron acceptors contribute to the energetic balance of the ecosystem. These investigations represent an important step toward effective management of wetlands to reduce methane flux to the atmosphere and enhance belowground carbon storage. Copyright © 2015 He et al.
NASA Technical Reports Server (NTRS)
Aboudi, Jacob
2000-01-01
The micromechanical generalized method of cells model is employed for the prediction of the effective moduli of electro-magneto-thermo-elastic composites. These include the effective elastic, piezoelectric, piezomagnetic, dielectric, magnetic permeability, electromagnetic coupling moduli, as well as the effective thermal expansion coefficients and the associated pyroelectric and pyromagnetic constants. Results are given for fibrous and periodically bilaminated composites.
ERIC Educational Resources Information Center
Sweet, Stephen; Swisher, Raymond; Moen, Phyllis
2005-01-01
Using a life course perspective, this study analyzes the adaptive strategy of community selection utilized by middle-class dual-earner couples, as well as the perceived family friendliness of their communities. Although many common concerns exist (most paramount being safety, jobs, and housing quality), parents are more apt than nonparents to…
Coupling of HDPE/hydroxyapatite composites by silane-based methodologies.
Sousa, R A; Reis, R L; Cunha, A M; Bevis, M J
2003-06-01
Several coupling treatments based on silane chemicals were investigated for the development of high density (HDPE)/hydroxyapatite (HA) composites. Two HA powders, sintered HA (HAs) and non sintered HA (HAns), were studied in combination with five silanes, namely y-methacryloxy propyltrimethoxy silane (MEMO), 3-(2-aminoethyl)aminopropyltrimethoxy silane (DAMO), vinyltrimethoxy silane (VTMO), 3-aminopropyltriethoxy silane (AMEO) and trimethoxypropyl silane (PTMO). The HA particles were treated by a dipping in method or by spraying with silane solutions. After drying, the treated powders were compounded with HDPE or HDPE with acrylic acid and/or organic peroxide and subsequently compression molded. The tensile test specimens obtained from the molded plates were tensile tested and their fracture surfaces were observed by scanning electron microscopy (SEM). For the sintered HA (HAs) composites, the most effective coupling treatments concerning stiffness are those based on MEMO and AMEO. The low influence of these coupling procedures on strength is believed to be associated to the low volume fraction and the relatively smooth surface of the used HA particles. For the non-sintered HA (HAns) composites, it was possible to improve significantly both the stiffness and the strength. Amino silanes demonstrated to be highly efficient concerning strength enhancement. The higher effectiveness of the coupling treatments for HAns filled composites is attributed to their higher particle surface area, smaller particle size distribution and expected higher chemical reactivity. For both cases, the improvement in mechanical performance after the coupling treatment is consistent with the enhancement in interfacial adhesion observed by SEM.
Macrofaunal production and biological traits: Spatial relationships along the UK continental shelf
NASA Astrophysics Data System (ADS)
Bolam, S. G.; Eggleton, J. D.
2014-04-01
Biological trait analysis (BTA) is increasingly being employed to improve our understanding of the ecological functioning of marine benthic invertebrate communities. However, changes in trait composition are seldomly compared with concomitant changes in metrics of ecological function. Consequently, inferences regarding the functional implications of any changes are often anecdotal; we currently have a limited understanding of the functional significance of the traits commonly used. In this study, we quantify the relationship between benthic invertebrate trait composition and secondary production estimates using data spanning almost the breadth of the UK continental shelf. Communities described by their composition of 10 traits representing life history, morphology and behaviour showed strong relationships with variations in total secondary production. A much weaker relationship was observed for community productivity (or P:B), a measure of rate of energy turnover. Furthermore, the relationship between total production and multivariate taxonomic community composition was far weaker than that for trait composition. Indeed, the similarities between communities as defined by taxonomy were very different from those depicted by their trait composition. That is, as many studies have demonstrated, taxonomically different communities may display similar trait compositions, and vice versa. Finally, we found that descriptions of community trait composition vary greatly depending on whether abundance or biomass is used as the enumeration weighting method during BTA, and trait assessments based on biomass produced better relations with secondary production than those based on abundance. We discuss the significance of these findings with respect to BTA using marine benthic invertebrates.
Dranguet, P; Cosio, C; Le Faucheur, S; Hug Peter, D; Loizeau, J-L; Ungureanu, V-Gh; Slaveykova, V I
2017-05-24
Freshwater biofilms can be useful indicators of water quality and offer the possibility to assess contaminant effects at the community level. The present field study examines the effects of chlor-alkali plant effluents on the community composition of biofilms grown in the Olt River (Romania) reservoirs. The relationship between ambient water quality variables and community composition alterations was explored. Amplicon sequencing revealed a significant modification of the composition of microalgal, bacterial and fungal communities in the biofilms collected in the impacted reservoirs in comparison with those living in the uncontaminated control reservoir. The abundance corrected Simpson index showed lower richness and diversity in biofilms collected in the impacted reservoirs than in the control reservoir. The biofilm bacterial communities of the impacted reservoirs were characterized by the contaminant-tolerant Cyanobacteria and Bacteroidetes, whereas microalgal communities were predominantly composed of Bacillariophyta and fungal communities of Lecanoromycetes and Paraglomycetes. A principal component analysis revealed that major contaminants present in the waste water of the chlor-alkali production plant, i.e. Na + , Ca 2+ , Cl - and Hg, were correlated with the alteration of biofilm community composition in the impacted reservoirs. However, the biofilm composition was also influenced by water quality variables such as NO 3 - , SO 4 2- , DOC and Zn from unknown sources. The results of the present study imply that, even when below the environmental quality standards, typical contaminants of chlor-alkali plant releases may affect biofilm composition and that their impacts on the microbial biodiversity might be currently overlooked.
Temperature compensated piezoelectric materials
NASA Astrophysics Data System (ADS)
Neurgaonkar, R. R.; Cross, L. E.
1982-01-01
From the electrostriction measurements on SBN crystals, it was found that the fourth order electrostrictive coupling terms are not adequate to fully describe the paraelectric phase above Curie temperature, and hence six rank coupling terms are needed; the electrostrictive coupling terms do not change markedly with cation substitution. Results of SAW measurements on the SBN:60 crystal showed that this composition possesses temperature-compensated orientations and it is similar to other best-known bronze composition PKN. Efforts are being made to establish acoustical losses correctly for this composition and based on this information, necessary changes in crystal composition will be made. The liquid phase epitaxial growth work has been shown to be successful not only for the Sr.5Ba.5Nb206, but other important bronze composition Sr2KNb5015 (hetero-epitaxial growth) onto the various orientations of the SBN crystal. Efforts are under way to establish their piezoelectric and acoustical properties.
Microbial biogeography of arctic streams: exploring influences of lithology and habitat.
Larouche, Julia R; Bowden, William B; Giordano, Rosanna; Flinn, Michael B; Crump, Byron C
2012-01-01
Terminal restriction fragment length polymorphism and 16S rRNA gene sequencing were used to explore the community composition of bacterial communities in biofilms on sediments (epipssamon) and rocks (epilithon) in stream reaches that drain watersheds with contrasting lithologies in the Noatak National Preserve, Alaska. Bacterial community composition varied primarily by stream habitat and secondarily by lithology. Positive correlations were detected between bacterial community structure and nutrients, base cations, and dissolved organic carbon. Our results showed significant differences at the stream habitat, between epipssamon and epilithon bacterial communities, which we expected. Our results also showed significant differences at the landscape scale that could be related to different lithologies and associated stream biogeochemistry. These results provide insight into the bacterial community composition of little known and pristine arctic stream ecosystems and illustrate how differences in the lithology, soils, and vegetation community of the terrestrial environment interact to influence stream bacterial taxonomic richness and composition.
Microbial Biogeography of Arctic Streams: Exploring Influences of Lithology and Habitat
Larouche, Julia R.; Bowden, William B.; Giordano, Rosanna; Flinn, Michael B.; Crump, Byron C.
2012-01-01
Terminal restriction fragment length polymorphism and 16S rRNA gene sequencing were used to explore the community composition of bacterial communities in biofilms on sediments (epipssamon) and rocks (epilithon) in stream reaches that drain watersheds with contrasting lithologies in the Noatak National Preserve, Alaska. Bacterial community composition varied primarily by stream habitat and secondarily by lithology. Positive correlations were detected between bacterial community structure and nutrients, base cations, and dissolved organic carbon. Our results showed significant differences at the stream habitat, between epipssamon and epilithon bacterial communities, which we expected. Our results also showed significant differences at the landscape scale that could be related to different lithologies and associated stream biogeochemistry. These results provide insight into the bacterial community composition of little known and pristine arctic stream ecosystems and illustrate how differences in the lithology, soils, and vegetation community of the terrestrial environment interact to influence stream bacterial taxonomic richness and composition. PMID:22936932
NASA Astrophysics Data System (ADS)
Rath, Kristin; Fierer, Noah; Rousk, Johannes
2017-04-01
Our knowledge of the dynamics structuring microbial communities and the consequences this has for soil functions is rudimentary. In particular, predictions of the response of microbial communities to environmental change and the implications for associated ecosystem processes remain elusive. Understanding how environmental factors structure microbial communities and regulate the functions they perform is key to a mechanistic understanding of how biogeochemical cycles respond to environmental change. Soil salinization is an agricultural problem in many parts of the world. The activity of soil microorganisms is reduced in saline soils compared to non-saline soil. However, soil salinity often co-varies with other factors, making it difficult to assign responses of microbial communities to direct effects of salinity. A trait-based approach allows us to connect the environmental factor salinity with the responses of microbial community composition and functioning. Salinity along a salinity gradient serves as a filter for the community trait distribution of salt tolerance, selecting for higher salt tolerance at more saline sites. This trait-environment relationship can be used to predict responses of microbial communities to environmental change. Our aims were to (i) use salinity along natural salinity gradients as an environmental filter, and (ii) link the resulting filtered trait-distributions of the communities (the trait being salt tolerance) to the community composition. Soil samples were obtained from two replicated salinity gradients along an Australian salt lake, spanning a wide range of soil salinities (0.1 dS m-1 to >50 dS m-1). In one of the two gradients salinity was correlated with pH. Community trait distributions for salt tolerance were assessed by establishing dose-dependences for extracted bacterial communities using growth rate assays. In addition, functional parameters were measured along the salt gradients. Community composition of sites was compared through 16S rRNA gene amplicon sequencing. Microbial community composition changed greatly along the salinity gradients. Using the salt-tolerance assessments to estimate bacterial trait-distributions we could determine substantial differences in tolerance to salt revealing a strong causal connection between environment and trait distributions. By constraining the community composition with salinity tolerance in ordinations, we could assign which community differences were directly due to a shift in community trait distributions. These analyses revealed that a substantial part (up to 30%) of the community composition differences were directly driven by environmental salt concentrations.. Even though communities in saline soils had trait-distributions aligned to their environment, their performance (respiration, growth rates) was lower than those in non-saline soils and remained low even after input of organic material. Using a trait-based approach we could connect filtered trait distributions along environmental gradients, to the composition of the microbial community. We show that soil salinity played an important role in shaping microbial community composition by selecting for communities with higher salt tolerance. The shift toward bacterial communities with trait distributions matched to salt environments probably compensated for much of the potential loss of function induced by salinity, resulting in a degree of apparent functional redundancy for decomposition. However, more tolerant communities still showed reduced functioning, suggesting a trade-off between salt tolerance and performance.
Henne, Karsten; Kahlisch, Leila; Brettar, Ingrid
2012-01-01
The bacterial core communities of bulk water and corresponding biofilms of a more than 20-year-old drinking water network were compared using 16S rRNA single-strand confirmation polymorphism (SSCP) fingerprints based on extracted DNA and RNA. The structure and composition of the bacterial core community in the bulk water was highly similar (>70%) across the city of Braunschweig, Germany, whereas all biofilm samples contained a unique community with no overlapping phylotypes from bulk water. Biofilm samples consisted mainly of Alphaproteobacteria (26% of all phylotypes), Gammaproteobacteria (11%), candidate division TM6 (11%), Chlamydiales (9%), and Betaproteobacteria (9%). The bulk water community consisted primarily of Bacteroidetes (25%), Betaproteobacteria (20%), Actinobacteria (16%), and Alphaproteobacteria (11%). All biofilm communities showed higher relative abundances of single phylotypes and a reduced richness compared to bulk water. Only biofilm communities sampled at nearby sampling points showed similar communities irrespective of support materials. In all of our bulk water studies, the community composition determined from 16S rRNA was completely different from the 16S rRNA gene-based community composition, whereas in biofilms both molecular fractions resulted in community compositions that were similar to each other. We hypothesize that a higher fraction of active bacterial phylotypes and a better protection from oxidative stress in drinking water biofilms are responsible for this higher similarity. PMID:22389373
Henne, Karsten; Kahlisch, Leila; Brettar, Ingrid; Höfle, Manfred G
2012-05-01
The bacterial core communities of bulk water and corresponding biofilms of a more than 20-year-old drinking water network were compared using 16S rRNA single-strand confirmation polymorphism (SSCP) fingerprints based on extracted DNA and RNA. The structure and composition of the bacterial core community in the bulk water was highly similar (>70%) across the city of Braunschweig, Germany, whereas all biofilm samples contained a unique community with no overlapping phylotypes from bulk water. Biofilm samples consisted mainly of Alphaproteobacteria (26% of all phylotypes), Gammaproteobacteria (11%), candidate division TM6 (11%), Chlamydiales (9%), and Betaproteobacteria (9%). The bulk water community consisted primarily of Bacteroidetes (25%), Betaproteobacteria (20%), Actinobacteria (16%), and Alphaproteobacteria (11%). All biofilm communities showed higher relative abundances of single phylotypes and a reduced richness compared to bulk water. Only biofilm communities sampled at nearby sampling points showed similar communities irrespective of support materials. In all of our bulk water studies, the community composition determined from 16S rRNA was completely different from the 16S rRNA gene-based community composition, whereas in biofilms both molecular fractions resulted in community compositions that were similar to each other. We hypothesize that a higher fraction of active bacterial phylotypes and a better protection from oxidative stress in drinking water biofilms are responsible for this higher similarity.
Biogenic volatile organic compounds in the Earth system.
Laothawornkitkul, Jullada; Taylor, Jane E; Paul, Nigel D; Hewitt, C Nicholas
2009-01-01
Biogenic volatile organic compounds produced by plants are involved in plant growth, development, reproduction and defence. They also function as communication media within plant communities, between plants and between plants and insects. Because of the high chemical reactivity of many of these compounds, coupled with their large mass emission rates from vegetation into the atmosphere, they have significant effects on the chemical composition and physical characteristics of the atmosphere. Hence, biogenic volatile organic compounds mediate the relationship between the biosphere and the atmosphere. Alteration of this relationship by anthropogenically driven changes to the environment, including global climate change, may perturb these interactions and may lead to adverse and hard-to-predict consequences for the Earth system.
Rapid recovery of soil bacterial communities after wildfire in a Chinese boreal forest
Xiang, Xingjia; Shi, Yu; Yang, Jian; Kong, Jianjian; Lin, Xiangui; Zhang, Huayong; Zeng, Jun; Chu, Haiyan
2014-01-01
Fires affect hundreds of millions of hectares annually. Above-ground community composition and diversity after fire have been studied extensively, but effects of fire on soil bacterial communities remain largely unexamined despite the central role of bacteria in ecosystem recovery and functioning. We investigated responses of bacterial community to forest fire in the Greater Khingan Mountains, China, using tagged pyrosequencing. Fire altered soil bacterial community composition substantially and high-intensity fire significantly decreased bacterial diversity 1-year-after-burn site. Bacterial community composition and diversity returned to similar levels as observed in controls (no fire) after 11 years. The understory vegetation community typically takes 20–100 years to reach pre-fire states in boreal forest, so our results suggest that soil bacteria could recover much faster than plant communities. Finally, soil bacterial community composition significantly co-varied with soil pH, moisture content, NH4+ content and carbon/nitrogen ratio (P < 0.05 in all cases) in wildfire-perturbed soils, suggesting that fire could indirectly affect bacterial communities by altering soil edaphic properties. PMID:24452061
Bacterial Community Succession in Pine-Wood Decomposition.
Kielak, Anna M; Scheublin, Tanja R; Mendes, Lucas W; van Veen, Johannes A; Kuramae, Eiko E
2016-01-01
Though bacteria and fungi are common inhabitants of decaying wood, little is known about the relationship between bacterial and fungal community dynamics during natural wood decay. Based on previous studies involving inoculated wood blocks, strong fungal selection on bacteria abundance and community composition was expected to occur during natural wood decay. Here, we focused on bacterial and fungal community compositions in pine wood samples collected from dead trees in different stages of decomposition. We showed that bacterial communities undergo less drastic changes than fungal communities during wood decay. Furthermore, we found that bacterial community assembly was a stochastic process at initial stage of wood decay and became more deterministic in later stages, likely due to environmental factors. Moreover, composition of bacterial communities did not respond to the changes in the major fungal species present in the wood but rather to the stage of decay reflected by the wood density. We concluded that the shifts in the bacterial communities were a result of the changes in wood properties during decomposition and largely independent of the composition of the wood-decaying fungal communities.
Bacterial Community Succession in Pine-Wood Decomposition
Kielak, Anna M.; Scheublin, Tanja R.; Mendes, Lucas W.; van Veen, Johannes A.; Kuramae, Eiko E.
2016-01-01
Though bacteria and fungi are common inhabitants of decaying wood, little is known about the relationship between bacterial and fungal community dynamics during natural wood decay. Based on previous studies involving inoculated wood blocks, strong fungal selection on bacteria abundance and community composition was expected to occur during natural wood decay. Here, we focused on bacterial and fungal community compositions in pine wood samples collected from dead trees in different stages of decomposition. We showed that bacterial communities undergo less drastic changes than fungal communities during wood decay. Furthermore, we found that bacterial community assembly was a stochastic process at initial stage of wood decay and became more deterministic in later stages, likely due to environmental factors. Moreover, composition of bacterial communities did not respond to the changes in the major fungal species present in the wood but rather to the stage of decay reflected by the wood density. We concluded that the shifts in the bacterial communities were a result of the changes in wood properties during decomposition and largely independent of the composition of the wood-decaying fungal communities. PMID:26973611
Babin, Doreen; Ding, Guo-Chun; Pronk, Geertje Johanna; Heister, Katja; Kögel-Knabner, Ingrid; Smalla, Kornelia
2013-10-01
Microbial communities in soil reside in a highly heterogeneous habitat where diverse mineral surfaces, complex organic matter and microorganisms interact with each other. This study aimed to elucidate the long-term effect of the soil mineral composition and charcoal on the microbial community composition established in matured artificial soils and their response to phenanthrene. One year after adding sterile manure to different artificial soils and inoculating microorganisms from a Cambisol, the matured soils were spiked with phenanthrene or not and incubated for another 70 days. 16S rRNA gene and internal transcribed spacer fragments amplified from total community DNA were analyzed by denaturing gradient gel electrophoresis. Metal oxides and clay minerals and to a lesser extent charcoal influenced the microbial community composition. Changes in the bacterial community composition in response to phenanthrene differed depending on the mineral composition and presence of charcoal, while no shifts in the fungal community composition were observed. The abundance of ring-hydroxylating dioxygenase genes was increased in phenanthrene-spiked soils except for charcoal-containing soils. Here we show that the formation of biogeochemical interfaces in soil is an ongoing process and that different properties present in artificial soils influenced the bacterial response to the phenanthrene spike. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sreenivasulu, Gollapudi; Lochbiler, Thomas A.; Panda, Manashi; Srinivasan, Gopalan; Chavez, Ferman A.
2016-04-01
Multiferroic composites of ferromagnetic and ferroelectric phases are of importance for studies on mechanical strain mediated coupling between the magnetic and electric subsystems. This work is on DNA-assisted self-assembly of superstructures of such composites with nanometer periodicity. The synthesis involved oligomeric DNA-functionalized ferroelectric and ferromagnetic nanoparticles, 600 nm BaTiO3 (BTO) and 200 nm NiFe2O4 (NFO), respectively. Mixing BTO and NFO particles, possessing complementary DNA sequences, resulted in the formation of ordered core-shell heteronanocomposites held together by DNA hybridization. The composites were imaged by scanning electron microscopy and scanning microwave microscopy. The presence of heteroassemblies along with core-shell architecture is clearly observed. The reversible nature of the DNA hybridization allows for restructuring the composites into mm-long linear chains and 2D-arrays in the presence of a static magnetic field and ring-like structures in a rotating-magnetic field. Strong magneto-electric (ME) coupling in as-assembled composites is evident from static magnetic field H induced polarization and low-frequency magnetoelectric voltage coefficient measurements. Upon annealing the nanocomposites at high temperatures, evidence for the formation of bulk composites with excellent cross-coupling between the electric and magnetic subsystems is obtained by H-induced polarization and low-frequency ME voltage coefficient. The ME coupling strength in the self-assembled composites is measured to be much stronger than in bulk composites with randomly distributed NFO and BTO prepared by direct mixing and sintering.
Moreno-Pino, Mario; De la Iglesia, Rodrigo; Valdivia, Nelson; Henríquez-Castilo, Carlos; Galán, Alexander; Díez, Beatriz; Trefault, Nicole
2016-07-01
Spatial environmental heterogeneity influences diversity of organisms at different scales. Environmental filtering suggests that local environmental conditions provide habitat-specific scenarios for niche requirements, ultimately determining the composition of local communities. In this work, we analyze the spatial variation of microbial communities across environmental gradients of sea surface temperature, salinity and photosynthetically active radiation and spatial distance in Fildes Bay, King George Island, Antarctica. We hypothesize that environmental filters are the main control of the spatial variation of these communities. Thus, strong relationships between community composition and environmental variation and weak relationships between community composition and spatial distance are expected. Combining physical characterization of the water column, cell counts by flow cytometry, small ribosomal subunit genes fingerprinting and next generation sequencing, we contrast the abundance and composition of photosynthetic eukaryotes and heterotrophic bacterial local communities at a submesoscale. Our results indicate that the strength of the environmental controls differed markedly between eukaryotes and bacterial communities. Whereas eukaryotic photosynthetic assemblages responded weakly to environmental variability, bacteria respond promptly to fine-scale environmental changes in this polar marine system. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Adaptive Same Frequency Repeater (SFR) Study
1976-03-01
Formulation 13 (2) Evaluation of the Steady State Weights!.’.’.’!.*!!."!! 21 (3) Evaluation of the Composite Transfer Function.... 2^ (4) Simplified...well as possible the amplitude and phase of the composite coupling path. Because the coupling paths have frequency-dependent transfer functions...34), (35) and the notch filter and channel transfer .’unctions (3fi) and (39). The composite transfer function Hc(f ’ ^’.f) is then found and
Modeling of composite coupling technology for oil-gas pipeline section resource-saving repair
NASA Astrophysics Data System (ADS)
Donkova, Irina; Yakubovskiy, Yuriy; Kruglov, Mikhail
2017-10-01
The article presents a variant of modeling and calculation of a main pipeline repair section with a composite coupling installation. This section is presented in a shape of a composite cylindrical shell. The aim of this work is mathematical modeling and study of main pipeline reconstruction section stress-strain state (SSS). There has been given a description of a structure deformation mathematical model. Based on physical relations of elasticity, integral characteristics of rigidity for each layer of a two-layer pipe section have been obtained. With the help of the systems of forces and moments which affect the layers differential equations for the first and second layer (pipeline and coupling) have been obtained. The study of the SSS has been conducted using the statements and hypotheses of the composite structures deformation theory with consideration of interlayer joint stresses. The relations to describe the work of the joint have been stated. Boundary conditions for each layer have been formulated. To describe the deformation of the composite coupling with consideration of the composite cylindrical shells theory a mathematical model in the form of a system of differential equations in displacements and boundary conditions has been obtained. Calculation of a two-layer cylindrical shell under the action of an axisymmetric load has been accomplished.
Influence of silane coupling agent on microstructure and properties of CCTO-P(VDF-CTFE) composites
NASA Astrophysics Data System (ADS)
Tong, Yang; Zhang, Lin; Bass, Patrick; Rolin, Terry D.; Cheng, Z.-Y.
Influence of the coupling agent on microstructure and dielectric properties of ceramic-polymer composites is systematically studied using CaCu3Ti4O12 (CCTO) as the filler, trichloro-(1H,1H,2H,2H-perfluorooctyl)-silane (Cl3-silane) as coupling agent, and P(VDF-CTFE) 88/12mol.% copolymer as the matrix. It is demonstrated that Cl3-silane molecules can be attached onto CCTO surface using a simple process. The experimental results show that coating CCTO with Cl3-silane can improve the microstructure uniformity of the composites due to the good wettability between Cl3-silane and P(VDF-CTFE), which also significantly improves the electric breakdown field of the composites. It is found that the composites using CCTO coated with 1.0wt.% Cl3-silane exhibit a higher dielectric constant with a higher electric breakdown field. For the composites with 15vol.% CCTO that is coated with 1.0wt.% Cl3-silane, an electric breakdown field of more than 240MV/m is obtained with an energy density of more than 4.5J/cm3. It is also experimentally found that the dielectric constant can be used to easily identify the optimized content of coupling agent.
NASA Astrophysics Data System (ADS)
Xiao, Zhuyun; Mohanchandra, Kotekar P.; Lo Conte, Roberto; Ty Karaba, C.; Schneider, J. D.; Chavez, Andres; Tiwari, Sidhant; Sohn, Hyunmin; Nowakowski, Mark E.; Scholl, Andreas; Tolbert, Sarah H.; Bokor, Jeffrey; Carman, Gregory P.; Candler, Rob N.
2018-05-01
Enhancing the magnetoelectric coupling in a strain-mediated multiferroic composite structure plays a vital role in controlling magnetism by electric fields. An enhancement of magnetoelastic coupling between ferroelectric single crystal (011)-cut [Pb(Mg1/3Nb2/3)O3](1-x)-[PbTiO3]x (PMN-PT, x≈ 0.30) and ferromagnetic polycrystalline Ni thin film through an interposed benzocyclobutene polymer thin film is reported. A nearly twofold increase in sensitivity of remanent magnetization in the Ni thin film to an applied electric field is observed. This observation suggests a viable method of improving the magnetoelectric response in these composite multiferroic systems.
Long-term resistance to simulated climate change in an infertile grassland.
Grime, J Philip; Fridley, Jason D; Askew, Andrew P; Thompson, Ken; Hodgson, John G; Bennett, Chris R
2008-07-22
Climate shifts over this century are widely expected to alter the structure and functioning of temperate plant communities. However, long-term climate experiments in natural vegetation are rare and largely confined to systems with the capacity for rapid compositional change. In unproductive, grazed grassland at Buxton in northern England (U.K.), one of the longest running experimental manipulations of temperature and rainfall reveals vegetation highly resistant to climate shifts maintained over 13 yr. Here we document this resistance in the form of: (i) constancy in the relative abundance of growth forms and maintained dominance by long-lived, slow-growing grasses, sedges, and small forbs; (ii) immediate but minor shifts in the abundance of several species that have remained stable over the course of the experiment; (iii) no change in productivity in response to climate treatments with the exception of reduction from chronic summer drought; and (iv) only minor species losses in response to drought and winter heating. Overall, compositional changes induced by 13-yr exposure to climate regime change were less than short-term fluctuations in species abundances driven by interannual climate fluctuations. The lack of progressive compositional change, coupled with the long-term historical persistence of unproductive grasslands in northern England, suggests the community at Buxton possesses a stabilizing capacity that leads to long-term persistence of dominant species. Unproductive ecosystems provide a refuge for many threatened plants and animals and perform a diversity of ecosystem services. Our results support the view that changing land use and overexploitation rather than climate change per se constitute the primary threats to these fragile ecosystems.
Comte, Jérôme; del Giorgio, Paul A.
2011-01-01
Bacterioplankton community metabolism is central to the functioning of aquatic ecosystems, and strongly reactive to changes in the environment, yet the processes underlying this response remain unclear. Here we explore the role that community composition plays in shaping the bacterial metabolic response to resource gradients that occur along aquatic ecotones in a complex watershed in Québec. Our results show that the response is mediated by complex shifts in community structure, and structural equation analysis confirmed two main pathways, one involving adjustments in the level of activity of existing phylotypes, and the other the replacement of the dominant phylotypes. These contrasting response pathways were not determined by the type or the intensity of the gradients involved, as we had hypothesized, but rather it would appear that some compositional configurations may be intrinsically more plastic than others. Our results suggest that community composition determines this overall level of community plasticity, but that composition itself may be driven by factors independent of the environmental gradients themselves, such that the response of bacterial communities to a given type of gradient may alternate between the adjustment and replacement pathways. We conclude that community composition influences the pathways of response in these bacterial communities, but not the metabolic outcome itself, which is driven by the environment, and which can be attained through multiple alternative configurations. PMID:21980410
Bannar-Martin, Katherine H; Kremer, Colin T; Ernest, S K Morgan; Leibold, Mathew A; Auge, Harald; Chase, Jonathan; Declerck, Steven A J; Eisenhauer, Nico; Harpole, Stanley; Hillebrand, Helmut; Isbell, Forest; Koffel, Thomas; Larsen, Stefano; Narwani, Anita; Petermann, Jana S; Roscher, Christiane; Cabral, Juliano Sarmento; Supp, Sarah R
2018-02-01
The research of a generation of ecologists was catalysed by the recognition that the number and identity of species in communities influences the functioning of ecosystems. The relationship between biodiversity and ecosystem functioning (BEF) is most often examined by controlling species richness and randomising community composition. In natural systems, biodiversity changes are often part of a bigger community assembly dynamic. Therefore, focusing on community assembly and the functioning of ecosystems (CAFE), by integrating both species richness and composition through species gains, losses and changes in abundance, will better reveal how community changes affect ecosystem function. We synthesise the BEF and CAFE perspectives using an ecological application of the Price equation, which partitions the contributions of richness and composition to function. Using empirical examples, we show how the CAFE approach reveals important contributions of composition to function. These examples show how changes in species richness and composition driven by environmental perturbations can work in concert or antagonistically to influence ecosystem function. Considering how communities change in an integrative fashion, rather than focusing on one axis of community structure at a time, will improve our ability to anticipate and predict changes in ecosystem function. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.
On the uniqueness of the non-minimal matter coupling in massive gravity and bigravity
Huang, Qing-Guo; Ribeiro, Raquel H.; Xing, Yu-Hang; ...
2015-07-03
In de Rham–Gabadadze–Tolley (dRGT) massive gravity and bi-gravity, a non-minimal matter coupling involving both metrics generically reintroduces the Boulware–Deser (BD) ghost. A non-minimal matter coupling via a simple, yet specific composite metric has been proposed, which eliminates the BD ghost below the strong coupling scale. Working explicitly in the metric formulation and for arbitrary spacetime dimensions, we show that this composite metric is the unique consistent non-minimal matter coupling below the strong coupling scale, which emerges out of two diagnostics, namely, the absence of Ostrogradski ghosts in the decoupling limit and the absence of the BD ghost from matter quantummore » loop corrections.« less
Compositional Stability of the Bacterial Community in a Climate-Sensitive Sub-Arctic Peatland
Weedon, James T.; Kowalchuk, George A.; Aerts, Rien; Freriks, Stef; Röling, Wilfred F. M.; van Bodegom, Peter M.
2017-01-01
The climate sensitivity of microbe-mediated soil processes such as carbon and nitrogen cycling offers an interesting case for evaluating the corresponding sensitivity of microbial community composition to environmental change. Better understanding of the degree of linkage between functional and compositional stability would contribute to ongoing efforts to build mechanistic models aiming at predicting rates of microbe-mediated processes. We used an amplicon sequencing approach to test if previously observed large effects of experimental soil warming on C and N cycle fluxes (50–100% increases) in a sub-arctic Sphagnum peatland were reflected in changes in the composition of the soil bacterial community. We found that treatments that previously induced changes to fluxes did not associate with changes in the phylogenetic composition of the soil bacterial community. For both DNA- and RNA-based analyses, variation in bacterial communities could be explained by the hierarchy: spatial variation (12–15% of variance explained) > temporal variation (7–11%) > climate treatment (4–9%). We conclude that the bacterial community in this environment is stable under changing conditions, despite the previously observed sensitivity of process rates—evidence that microbe-mediated soil processes can alter without concomitant changes in bacterial communities. We propose that progress in linking soil microbial communities to ecosystem processes can be advanced by further investigating the relative importance of community composition effects versus physico-chemical factors in controlling biogeochemical process rates in different contexts. PMID:28326062
Zhu, Ming-yi; Zhang, Xiu-yin
2015-06-01
To evaluate the effect of amount of silane coupling agent on flexural strength of dental composite resins reinforced with aluminium borate whisker (ABW). ABW was surface-treated with 0%, 1%, 2%, 3% and 4% silan coupling agent (γ-MPS), and mixed with resin matrix to synthesize 5 groups of composite resins. After heat-cured at 120 degrees centigrade for 1 h, specimens were tested in three-point flexure to measure strength according to ISO-4049. One specimen was selected randomly from each group and observed under scanning electron microscope (SEM). The data was analyzed with SAS 9.2 software package. The flexural strength (117.93±11.9 Mpa) of the group treated with 2% silane coupling agent was the highest, and significantly different from that of the other 4 groups (α=0.01). The amount of silane coupling agent has impact on the flexural strength of dental composite resins reinforced with whiskers; The flexual strength will be reduced whenever the amount is higher or lower than the threshold. Supported by Research Fund of Science and Technology Committee of Shanghai Municipality (08DZ2271100).
NASA Astrophysics Data System (ADS)
Peckham, S. D.; DeLuca, C.; Gochis, D. J.; Arrigo, J.; Kelbert, A.; Choi, E.; Dunlap, R.
2014-12-01
In order to better understand and predict environmental hazards of weather/climate, ecology and deep earth processes, geoscientists develop and use physics-based computational models. These models are used widely both in academic and federal communities. Because of the large effort required to develop and test models, there is widespread interest in component-based modeling, which promotes model reuse and simplified coupling to tackle problems that often cross discipline boundaries. In component-based modeling, the goal is to make relatively small changes to models that make it easy to reuse them as "plug-and-play" components. Sophisticated modeling frameworks exist to rapidly couple these components to create new composite models. They allow component models to exchange variables while accommodating different programming languages, computational grids, time-stepping schemes, variable names and units. Modeling frameworks have arisen in many modeling communities. CSDMS (Community Surface Dynamics Modeling System) serves the academic earth surface process dynamics community, while ESMF (Earth System Modeling Framework) serves many federal Earth system modeling projects. Others exist in both the academic and federal domains and each satisfies design criteria that are determined by the community they serve. While they may use different interface standards or semantic mediation strategies, they share fundamental similarities. The purpose of the Earth System Bridge project is to develop mechanisms for interoperability between modeling frameworks, such as the ability to share a model or service component. This project has three main goals: (1) Develop a Framework Description Language (ES-FDL) that allows modeling frameworks to be described in a standard way so that their differences and similarities can be assessed. (2) Demonstrate that if a model is augmented with a framework-agnostic Basic Model Interface (BMI), then simple, universal adapters can go from BMI to a modeling framework's native component interface. (3) Create semantic mappings between modeling frameworks that support semantic mediation. This third goal involves creating a crosswalk between the CF Standard Names and the CSDMS Standard Names (a set of naming conventions). This talk will summarize progress towards these goals.
Characterization of waviness in wind turbine blades using air coupled ultrasonics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakrapani, Sunil Kishore; Dayal, Vinay; Hsu, David K.
2011-06-23
Waviness in glass fiber reinforced composite is of great interest in composite research, since it results in the loss of stiffness. Several NDE techniques have been used previously to detect waviness. This work is concerned with waves normal to the plies in a composite. Air-coupled ultrasonics was used to detect waviness in thick composites used in the manufacturing of wind turbine blades. Composite samples with different wave aspect ratios were studied. Different wavy samples were characterized, and a three step process was developed to make sure the technique is field implementable. This gives us a better understanding of the effectmore » of waviness in thick composites, and how it affects the life and performance of the composite.« less
Štursová, Martina; Bárta, Jiří; Šantrůčková, Hana; Baldrian, Petr
2016-12-01
Forests are recognised as spatially heterogeneous ecosystems. However, knowledge of the small-scale spatial variation in microbial abundance, community composition and activity is limited. Here, we aimed to describe the heterogeneity of environmental properties, namely vegetation, soil chemical composition, fungal and bacterial abundance and community composition, and enzymatic activity, in the topsoil in a small area (36 m 2 ) of a highly heterogeneous regenerating temperate natural forest, and to explore the relationships among these variables. The results demonstrated a high level of spatial heterogeneity in all properties and revealed differences between litter and soil. Fungal communities had substantially higher beta-diversity than bacterial communities, which were more uniform and less spatially autocorrelated. In litter, fungal communities were affected by vegetation and appeared to be more involved in decomposition. In the soil, chemical composition affected both microbial abundance and the rates of decomposition, whereas the effect of vegetation was small. Importantly, decomposition appeared to be concentrated in hotspots with increased activity of multiple enzymes. Overall, forest topsoil should be considered a spatially heterogeneous environment in which the mean estimates of ecosystem-level processes and microbial community composition may confound the existence of highly specific microenvironments. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Nomoto, Naoki; Hatamoto, Masashi; Hirakata, Yuga; Ali, Muntjeer; Jayaswal, Komal; Iguchi, Akinori; Okubo, Tsutomu; Takahashi, Masanobu; Kubota, Kengo; Tagawa, Tadashi; Uemura, Shigeki; Yamaguchi, Takashi; Harada, Hideki
2018-05-01
The characteristics of the microbial community in a practical-scale down-flow hanging sponge (DHS) reactor, high in organic matter and sulfate ion concentration, and the seasonal variation of the microbial community composition were investigated. Microorganisms related to sulfur oxidation and reduction (2-27%), as well as Leucobacter (7.50%), were abundant in the reactor. Anaerobic bacteria (27-38% in the first layer) were also in abundance and were found to contribute to the removal of organic matter from the sewage in the reactor. By comparing the Simpson index, the abundance-based coverage estimator (ACE) index, and the species composition of the microbial community across seasons (summer/dry, summer/rainy, autumn/dry, and winter/dry), the microbial community was found to change in composition only during the winter season. In addition to the estimation of seasonal variation, the difference in the microbial community composition along the axes of the DHS reactor was investigated for the first time. Although the abundance of each bacterial species differed along both axes of the reactor, the change of the community composition in the reactor was found to be greater along the vertical axis than the horizontal axis of the DHS reactor.
Magnetic self-assembly for the synthesis of magnetically exchange coupled MnBi/Fe–Co composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Xia; Hong, Yang-Ki, E-mail: ykhong@eng.ua.edu; Park, Jihoon
2015-11-15
Exchange coupled hard/soft MnBi/Fe–Co core/shell structured composites were synthesized using a magnetic self-assembly process. MnBi particles were prepared by arc-melting, and Fe–Co nanoparticles were synthesized by an oleic acid assisted chemical reduction method. Grinding a mixture of micron-sized MnBi and Fe–Co nanoparticles in hexane resulted in MnBi/Fe–Co core/shell structured composites. The MnBi/Fe–Co (95/5 wt%) composites showed smooth magnetic hysteresis loops, enhanced remanent magnetization, and positive values in the ΔM curve, indicating exchange coupling between MnBi and Fe–Co particles. - Graphical abstract: Both MnBi and Fe–Co particles were dispersed in hexane for grinding. Because of the oleic acid used during themore » Fe–Co nanoparticle synthesis, they could be well dispersed in hexane. During the grinding, the size of MnBi particles was decreased, hexane was evaporated, and the Fe–Co nanoparticles were concentrated in the solvent and magnetically attracted by MnBi particles, forming a core/shell structure. - Highlights: • Exchange coupled MnBi/Fe–Co composites are synthesized through magnetic selfassembly. • Magnetic exchange coupling is demonstrated by smooth magnetic hysteresis loops, enhanced remanent magnetization, and dominant positive peak in the ΔM curve. • The experimental results in magnetic properties are close to the theoretical calculation results.« less
Potential disruption of seed dispersal in the absence of a native Kauai thrush
Pejchar, Liba; Crampton, Lisa H.
2018-01-01
Hawaii has experienced a catastrophic decline in frugivorous native birds coupled with the introduction of non-native species. Puaiohi (Myadestes palmeri), a critically endangered thrush, is the sole extant native songbird capable of dispersing fleshy fruited plants in the rainforest of Kauai island, Hawaii. As this species has declined to occupy a small proportion of its original range, a suite of largely omnivorous non-native birds have been introduced to this region, including the common and widespread Japanese White-eye (Zosterops japonicus). This reshuffling of the bird community could have long-term implications for plant community composition if introduced birds incompletely replace the ecological role of native species. The objective of this study was to evaluate the potential consequences of the local extirpation of Puaiohi for seed dispersal. Specifically, we compared the diet of Puaiohi and Japanese White-eye, vegetation characteristics, and seed rain at sites with and without Puaiohi in the Na Pali-Kona Forest Reserve on the island of Kauai. We found high overlap in the composition of seeds consumed by the two bird species, but differences in the characteristics of seeds consumed; Japanese White-eye appeared more likely to consume smaller seeded species compared with Puaiohi. Sites with Puaiohi received substantially higher seed rain during the study period, despite no significant differences in overall fruit abundance. Our results suggest that non-native birds are unlikely to completely replace the seed dispersal services provided by Puaiohi. If Puaohi continue to be rare and range restricted, we predict a shift in plant community composition through an increase in non-native and small-seeded plants, and possible dispersal failure of other native species. Our findings lend further support to efforts to conserve Puaiohi across its current and former range, and to consider introductions to other suitable areas to ensure the persistence not only of the species and but also its functional role in Hawaii’s montane ecosystems. PMID:29381764
NASA Astrophysics Data System (ADS)
Chandra, Ramesh; Chopra, Inderjit
1992-08-01
The objective of the study was to predict the effect of elastic couplings on the free vibration characteristics of thin-walled composite box beams and to correlate the results with experimental data. The free vibration characteristics of coupled thin-walled composite beams under rotation were determined using the Galerkin method. The theoretical results were found to be in satisfactory agreement with experimental data obtained for graphite/epoxy, kevlar/epoxy, and glass/epoxy composite beams in an in-vacuo test facility at different rotational speeds.
A Coupled Layerwise Analysis of the Thermopiezoelectric Response of Smart Composite Beams Beams
NASA Technical Reports Server (NTRS)
Lee, H.-J.; Saravanos, D. A.
1995-01-01
Thermal effects are incorporated into previously developed discrete layer mechanics for piezoelectric composite beam structures. The updated mechanics explicitly account for the complete coupled thermoelectromechanical response of smart composite beams. This unified representation leads to an inherent capability to model both the sensory and actuator responses of piezoelectric composite beams in a thermal environment. Finite element equations are developed and numerical results are presented to demonstrate the capability of the current formulation to represent the behavior of both sensory and active smart structures under thermal loadings.
Parsons, M L; Morrison, W; Rabalais, N N; Turner, R E; Tyre, K N
2015-12-01
The Macondo oil spill was likely the largest oil spill to ever occur in United States territorial waters. We report herein our findings comparing the available baseline phytoplankton data from coastal waters west of the Mississippi River, and samples collected monthly from the same sampling stations, during and after the oil spill (May-October, 2010). Our results indicate that overall, the phytoplankton abundance was 85% lower in 2010 versus the baseline, and that the species composition of the phytoplankton community moved towards diatoms and cyanobacteria and away from ciliates and phytoflagellates. The results of this study reaffirm the view that phytoplankton responses will vary by the seasonal timing of the oil spill and the specific composition of the spilled oil. The trophic impacts of the purported lower abundance of phytoplankton in 2010 coupled with the observed assemblage shift remain unknown. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kjellerup, B V; Kjeldsen, K U; Lopes, F; Abildgaard, L; Ingvorsen, K; Frølund, B; Sowers, K R; Nielsen, P H
2009-11-01
Severe biofilm formation and biocorrosion have been observed in heating systems even when the water quality complied with existing standards. The coupling between water chemistry, biofilm formation, species composition, and biocorrosion in a heating system was investigated by adding low concentrations of nutrients and oxygen under continuous and alternating dosing regimes. Molecular analysis of 16S rRNA gene fragments demonstrated that the amendments did not cause changes in the overall bacterial community composition. The combined alternating dosing of nutrients and oxygen caused increased rates of pitting (bio-) corrosion. Detection of bacteria involved in sulfide production and oxidation by retrieval of the functional dsrAB and apsA genes revealed the presence of Gram-positive sulfate- and sulfite-reducers and an unknown sulfur-oxidizer. Therefore, to control biocorrosion, sources of oxygen and nutrients must be limited, since the effect of the alternating operational conditions apparently is more important than the presence of potentially corrosive biofilm bacteria.
Nonlinear deformation of composites with consideration of the effect of couple-stresses
NASA Astrophysics Data System (ADS)
Lagzdiņš, A.; Teters, G.; Zilaucs, A.
1998-09-01
Nonlinear deformation of spatially reinforced composites under active loading (without unloading) is considered. All the theoretical constructions are based on the experimental data on unidirectional and ±π/4 cross-ply epoxy plastics reinforced with glass fibers. Based on the elastic properties of the fibers and EDT-10 epoxy binder, the linear elastic characteristics of a transversely isotropic unidirectionally reinforced fiberglass plastic are found, whereas the nonlinear characteristics are obtained from experiments. For calculating the deformation properties of the ±π/4 cross-ply plastic, a refined version of the Voigt method is applied taking into account also the couple-stresses arising in the composite due to relative rotation of the reinforcement fibers. In addition, a fourth-rank damage tensor is introduced in order to account for the impact of fracture caused by the couple-stresses. The unknown constants are found from the experimental uniaxial tension curve for the cross-ply composite. The comparison between the computed curves and experimental data for other loading paths shows that the description of the nonlinear behavior of composites can be improved by considering the effect of couple-stresses generated by rotations of the reinforcing fibers.
Magnetoelectric coupling in multiferroic BaTiO3-CoFe2O4 composite nanofibers via electrospinning
NASA Astrophysics Data System (ADS)
Fu, Bi; Lu, Ruie; Gao, Kun; Yang, Yaodong; Wang, Yaping
2015-07-01
Magnetoelectric (ME) coupling in Pb-based multiferroic composites has been widely investigated due to the excellent piezoelectric property of lead zirconate titanate (PZT). In this letter, we report a strategy to create a hybrid Pb-free ferroelectric and ferromagnetic material and detect its ME coupling at the nanoscale. Hybrid Pb-free multiferroic BaTiO3-CoFe2O4 (BTO-CFO) composite nanofibers (NFs) were generated by sol-gel electrospinning. The perovskite structure of BTO and the spinel structure of CFO nanograins were homogenously distributed in the composite NFs and verified by bright-field transmission electron microscopy observations along the perovskite [111] zone axis. Multiferroicity was confirmed by amplitude-voltage butterfly curves and magnetic hysteresis loops. ME coupling was observed in terms of a singularity on a dM/dT curve at the ferroelectric Curie temperature (TC) of BaTiO3. The lateral ME coefficient was investigated by the evolution of the piezoresponse under an external magnetic field of 1000 Oe and was estimated to be α31 =0.78× 104 \\text{mV cm}-1 \\text{Oe}-1 . These findings could enable the creation of nanoscale Pb-free multiferroic composite devices.
Aspen community types of the Intermountain Region
Walter F. Mueggler
1988-01-01
This vegetation classification is based upon existing community structure and composition in the aspen-dominated forests of the Intermountain Region of the Forest Service. The 56 community types occur within eight tree-cover types. A diagnostic key using indicator species facilitates field identification of the community types. Vegetational composition, productivity,...
NASA Astrophysics Data System (ADS)
Sutton, Tracey; Hopkins, Thomas; Remsen, Andrew; Burghart, Scott
2001-01-01
Sampling was conducted on the west Florida continental shelf ecosystem modeling site to estimate zooplankton grazing impact on primary production. Samples were collected with the high-resolution sampler, a towed array bearing electronic and optical sensors operating in tandem with a paired net/bottle verification system. A close biological-physical coupling was observed, with three main plankton communities: 1. a high-density inshore community dominated by larvaceans coincident with a salinity gradient; 2. a low-density offshore community dominated by small calanoid copepods coincident with the warm mixed layer; and 3. a high-density offshore community dominated by small poecilostomatoid and cyclopoid copepods and ostracods coincident with cooler, sub-pycnocline oceanic water. Both high-density communities were associated with relatively turbid water. Applying available grazing rates from the literature to our abundance data, grazing pressure mirrored the above bio-physical pattern, with the offshore sub-pycnocline community contributing ˜65% of grazing pressure despite representing only 19% of the total volume of the transect. This suggests that grazing pressure is highly localized, emphasizing the importance of high-resolution sampling to better understand plankton dynamics. A comparison of our grazing rate estimates with primary production estimates suggests that mesozooplankton do not control the fate of phytoplankton over much of the area studied (<5% grazing of daily primary production), but "hot spots" (˜25-50% grazing) do occur which may have an effect on floral composition.
Okada, Masahiro; Inoue, Kazusa; Irie, Masao; Taketa, Hiroaki; Torii, Yasuhiro; Matsumoto, Takuya
2017-09-26
Resin bonding to zirconia ceramics is difficult to achieve using the standard methods for conventional silica-based dental ceramics, which employ silane coupling monomers as primers. The hypothesis in this study was that a silane coupling oligomer -a condensed product of silane coupling monomers- would be a more suitable primer for zirconia. To prove this hypothesis, the shear bond strengths between a composite resin and zirconia were compared after applying either a silane coupling monomer or oligomer. The shear bond strength increased after applying a non-activated ethanol solution of the silane coupling oligomer compared with that achieved when applying the monomer. Thermal treatment of the zirconia at 110°C after application of the silane coupling agents was essential to improve the shear bond strength between the composite resin cement and zirconia.
Mueller, Rebecca C; Paula, Fabiana S; Mirza, Babur S; Rodrigues, Jorge L M; Nüsslein, Klaus; Bohannan, Brendan J M
2014-07-01
Understanding the interactions among microbial communities, plant communities and soil properties following deforestation could provide insights into the long-term effects of land-use change on ecosystem functions, and may help identify approaches that promote the recovery of degraded sites. We combined high-throughput sequencing of fungal rDNA and molecular barcoding of plant roots to estimate fungal and plant community composition in soil sampled across a chronosequence of deforestation. We found significant effects of land-use change on fungal community composition, which was more closely correlated to plant community composition than to changes in soil properties or geographic distance, providing evidence for strong links between above- and below-ground communities in tropical forests.
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Carney, Kelly S.; Dubois, Paul; Hoffarth, Canio; Khaled, Bilal; Shyamsunder, Loukham; Rajan, Subramaniam; Blankenhorn, Gunther
2017-01-01
The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites under impact conditions is becoming critical as these materials are gaining increased use in the aerospace and automotive communities. The aerospace community has identified several key capabilities which are currently lacking in the available material models in commercial transient dynamic finite element codes. To attempt to improve the predictive capability of composite impact simulations, a next generation material model is being developed for incorporation within the commercial transient dynamic finite element code LS-DYNA. The material model, which incorporates plasticity, damage and failure, utilizes experimentally based tabulated input to define the evolution of plasticity and damage and the initiation of failure as opposed to specifying discrete input parameters such as modulus and strength. The plasticity portion of the orthotropic, three-dimensional, macroscopic composite constitutive model is based on an extension of the Tsai-Wu composite failure model into a generalized yield function with a non-associative flow rule. For the damage model, a strain equivalent formulation is used to allow for the uncoupling of the deformation and damage analyses. In the damage model, a semi-coupled approach is employed where the overall damage in a particular coordinate direction is assumed to be a multiplicative combination of the damage in that direction resulting from the applied loads in various coordinate directions. For the failure model, a tabulated approach is utilized in which a stress or strain based invariant is defined as a function of the location of the current stress state in stress space to define the initiation of failure. Failure surfaces can be defined with any arbitrary shape, unlike traditional failure models where the mathematical functions used to define the failure surface impose a specific shape on the failure surface. In the current paper, the complete development of the failure model is described and the generation of a tabulated failure surface for a representative composite material is discussed.
Analysis of microbial community composition in a lab-scale membrane distillation bioreactor.
Zhang, Q; Shuwen, G; Zhang, J; Fane, A G; Kjelleberg, S; Rice, S A; McDougald, D
2015-04-01
Membrane distillation bioreactors (MDBR) have potential for industrial applications where wastewater is hot or waste heat is available, but the role of micro-organisms in MDBRs has never been determined, and thus was the purpose of this study. Microbial communities were characterized by bacterial and archaeal 16S and eukaryotic 18S rRNA gene tag-encoded pyrosequencing of DNA obtained from sludge. Taxonomy-independent analysis revealed that bacterial communities had a relatively low richness and diversity, and community composition strongly correlated with conductivity, total nitrogen and bound extracellular polymeric substances (EPS). Taxonomy-dependent analysis revealed that Rubrobacter and Caldalkalibacillus were abundant members of the bacterial community, but no archaea were detected. Eukaryotic communities had a relatively high richness and diversity, and both changes in community composition and abundance of the dominant genus, Candida, correlated with bound EPS. Thermophilic MDBR communities were comprised of a low diversity bacterial community and a highly diverse eukaryotic community with no archea detected. Communities exhibited low resilience to changes in operational parameters. Specifically, retenatate nutrient composition and concentration was strongly correlated with the dominant species. This study provides an understanding of microbial community diversity in an MDBR, which is fundamental to the optimization of reactor performance. © 2015 The Authors published by John Wiley & Sons Ltd on behalf of Society for Applied Microbiology.
Analysis of microbial community composition in a lab-scale membrane distillation bioreactor
Zhang, Q; Shuwen, G; Zhang, J; Fane, AG; Kjelleberg, S; Rice, SA; McDougald, D
2015-01-01
Aims Membrane distillation bioreactors (MDBR) have potential for industrial applications where wastewater is hot or waste heat is available, but the role of micro-organisms in MDBRs has never been determined, and thus was the purpose of this study. Methods and Results Microbial communities were characterized by bacterial and archaeal 16S and eukaryotic 18S rRNA gene tag-encoded pyrosequencing of DNA obtained from sludge. Taxonomy-independent analysis revealed that bacterial communities had a relatively low richness and diversity, and community composition strongly correlated with conductivity, total nitrogen and bound extracellular polymeric substances (EPS). Taxonomy-dependent analysis revealed that Rubrobacter and Caldalkalibacillus were abundant members of the bacterial community, but no archaea were detected. Eukaryotic communities had a relatively high richness and diversity, and both changes in community composition and abundance of the dominant genus, Candida, correlated with bound EPS. Conclusions Thermophilic MDBR communities were comprised of a low diversity bacterial community and a highly diverse eukaryotic community with no archea detected. Communities exhibited low resilience to changes in operational parameters. Specifically, retenatate nutrient composition and concentration was strongly correlated with the dominant species. Significance and Impact of the Study This study provides an understanding of microbial community diversity in an MDBR, which is fundamental to the optimization of reactor performance. PMID:25604265
Modeling mechanisms of vegetation change due to fire in a semi-arid ecosystem
White, J.D.; Gutzwiller, K.J.; Barrow, W.C.; Randall, L.J.; Swint, P.
2008-01-01
Vegetation growth and community composition in semi-arid environments is determined by water availability and carbon assimilation mechanisms specific to different plant types. Disturbance also impacts vegetation productivity and composition dependent on area affected, intensity, and frequency factors. In this study, a new spatially explicit ecosystem model is presented for the purpose of simulating vegetation cover type changes associated with fire disturbance in the northern Chihuahuan Desert region. The model is called the Landscape and Fire Simulator (LAFS) and represents physiological activity of six functional plant types incorporating site climate, fire, and seed dispersal routines for individual grid cells. We applied this model for Big Bend National Park, Texas, by assessing the impact of wildfire on the trajectory of vegetation communities over time. The model was initialized and calibrated based on landcover maps derived from Landsat-5 Thematic Mapper data acquired in 1986 and 1999 coupled with plant biomass measurements collected in the field during 2000. Initial vegetation cover change analysis from satellite data showed shrub encroachment during this time period that was captured in the simulated results. A synthetic 50-year climate record was derived from historical meteorological data to assess system response based on initial landcover conditions. This simulation showed that shrublands increased to the detriment of grass and yucca-ocotillo vegetation cover types indicating an ecosystem-level trajectory for shrub encroachment. Our analysis of simulated fires also showed that fires significantly reduced site biomass components including leaf area, stem, and seed biomass in this semi-arid ecosystem. In contrast to other landscape simulation models, this new model incorporates detailed physiological responses of functional plant types that will allow us to simulated the impact of increased atmospheric CO2 occurring with climate change coupled with fire disturbance. Simulations generated from this model are expected to be the subject of subsequent studies on landscape dynamics with specific regard to prediction of wildlife distributions associated with fire management and climate change.
NASA Astrophysics Data System (ADS)
Cheng, Ye; Wang, Hongying; Li, Zhigang; Liu, Wanhui; Bao, Ilian
2018-04-01
The magnetically exchange coupled MnBi/FeCo composites were synthesized through a magnetic self-assembly process. The MnBi/FeCo composites were then hot pressed in a magnetic field to form magnets. The thermal stability of the magnets were tested by annealing at electric motor working temperature of 200 °C for 20, 40 and 60 h, respectively. It was found that after heating for 20 h, there was negligible change in its hysteresis loop. However, when the heating time was increased 40 and 60 h, the magnetic hysteresis loops presented two-phase magnetic behaviors, and the maximum energy products of the magnet were decreased. This research showed that the magnetically exchange coupled MnBi/FeCo composites had low thermal stability at electric motor working temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sreenivasulu, Gollapudi; Srinivasan, Gopalan, E-mail: srinivas@oakland.edu, E-mail: chavez@oakland.edu; Lochbiler, Thomas A.
Multiferroic composites of ferromagnetic and ferroelectric phases are of importance for studies on mechanical strain mediated coupling between the magnetic and electric subsystems. This work is on DNA-assisted self-assembly of superstructures of such composites with nanometer periodicity. The synthesis involved oligomeric DNA-functionalized ferroelectric and ferromagnetic nanoparticles, 600 nm BaTiO{sub 3} (BTO) and 200 nm NiFe{sub 2}O{sub 4} (NFO), respectively. Mixing BTO and NFO particles, possessing complementary DNA sequences, resulted in the formation of ordered core-shell heteronanocomposites held together by DNA hybridization. The composites were imaged by scanning electron microscopy and scanning microwave microscopy. The presence of heteroassemblies along with core-shellmore » architecture is clearly observed. The reversible nature of the DNA hybridization allows for restructuring the composites into mm-long linear chains and 2D-arrays in the presence of a static magnetic field and ring-like structures in a rotating-magnetic field. Strong magneto-electric (ME) coupling in as-assembled composites is evident from static magnetic field H induced polarization and low-frequency magnetoelectric voltage coefficient measurements. Upon annealing the nanocomposites at high temperatures, evidence for the formation of bulk composites with excellent cross-coupling between the electric and magnetic subsystems is obtained by H-induced polarization and low-frequency ME voltage coefficient. The ME coupling strength in the self-assembled composites is measured to be much stronger than in bulk composites with randomly distributed NFO and BTO prepared by direct mixing and sintering.« less
Yan, Lijuan; Sinkko, Hanna; Penttinen, Petri; Lindström, Kristina
2016-01-15
The widespread use of motor oil makes it a notable risk factor to cause scattered contamination in soil. The monitoring of microbial community dynamics can serve as a comprehensive tool to assess the ecological impact of contaminants and their disappearance in the ecosystem. Hence, a field study was conducted to monitor the ecological impact of used motor oil under different perennial cropping systems (fodder galega, brome grass, galega-brome grass mixture and bare fallow) in a boreal climate zone. Length heterogeneity PCR characterized a successional pattern in bacterial community following oil contamination over a four-year bioremediation period. Soil pH and electrical conductivity were associated with the shifts in bacterial community composition. Crops had no detectable effect on bacterial community composition or complexity. However, the legume fodder galega increased soil microbial biomass, expressed as soil total DNA. Oil contamination induced an abrupt change in bacterial community composition at the early stage, yet the effect did not last as long as the oil in soil. The successional variation in bacterial community composition can serve as a sensitive ecological indicator of oil contamination and remediation in situ. Copyright © 2015 Elsevier B.V. All rights reserved.
Xiang, Dan; Verbruggen, Erik; Hu, Yajun; Veresoglou, Stavros D; Rillig, Matthias C; Zhou, Wenping; Xu, Tianle; Li, Huan; Hao, Zhipeng; Chen, Yongliang; Chen, Baodong
2014-12-01
We performed a landscape-scale investigation to compare the arbuscular mycorrhizal fungal (AMF) communities between grasslands and farmlands in the farming-pastoral ecotone of northern China. AMF richness and community composition were examined with 454 pyrosequencing. Structural equation modelling (SEM) and multivariate analyses were applied to disentangle the direct and indirect effects (mediated by multiple environmental factors) of land use on AMF. Land use conversion from grassland to farmland significantly reduced AMF richness and extraradical hyphal length density, and these land use types also differed significantly in AMF community composition. SEM showed that the effects of land use on AMF richness and hyphal length density in soil were primarily mediated by available phosphorus and soil structural quality. Soil texture was the strongest predictor of AMF community composition. Soil carbon, nitrogen and soil pH were also significantly correlated with AMF community composition, indicating that these abiotic variables could be responsible for some of the community composition differences among sites. Our study shows that land use has a partly predictable effect on AMF communities across this ecologically relevant area of China, and indicates that high soil phosphorus concentrations and poor soil structure are particularly detrimental to AMF in this fragile ecosystem. © 2014 The Author. New Phytologist © 2014 New Phytologist Trust.
Kumar, Arvind; Rai, Lal Chand
2017-07-01
Soil quality is an important factor and maintained by inhabited microorganisms. Soil physicochemical characteristics determine indigenous microbial population and rice provides food security to major population of the world. Therefore, this study aimed to assess the impact of physicochemical variables on bacterial community composition and diversity in conventional paddy fields which could reflect a real picture of the bacterial communities operating in the paddy agro-ecosystem. To fulfill the objective; soil physicochemical characterization, bacterial community composition and diversity analysis was carried out using culture-independent PCR-DGGE method from twenty soils distributed across eight districts. Bacterial communities were grouped into three clusters based on UPGMA cluster analysis of DGGE banding pattern. The linkage of measured physicochemical variables with bacterial community composition was analyzed by canonical correspondence analysis (CCA). CCA ordination biplot results were similar to UPGMA cluster analysis. High levels of species-environment correlations (0.989 and 0.959) were observed and the largest proportion of species data variability was explained by total organic carbon (TOC), available nitrogen, total nitrogen and pH. Thus, results suggest that TOC and nitrogen are key regulators of bacterial community composition in the conventional paddy fields. Further, high diversity indices and evenness values demonstrated heterogeneity and co-abundance of the bacterial communities.
Rinchard, Jacques; Kimmel, David G.
2017-01-01
The variability in zooplankton fatty acid composition may be an indicator of larval fish habitat quality as fatty acids are linked to fish larval growth and survival. We sampled an anadromous fish nursery, the Chowan River, during spring of 2013 in order to determine how the seston fatty acid composition varied in comparison with the zooplankton community composition and fatty acid composition during the period of anadromous larval fish residency. The seston fatty acid profiles showed no distinct pattern in relation to sampling time or location. The mesozooplankton community composition varied spatially and the fatty acid profiles were typical of freshwater species in April. The Chowan River experienced a saltwater intrusion event during May, which resulted in brackish water species dominating the zooplankton community and the fatty acid profile showed an increase in polyunsaturated fatty acids (PUFA), in particular eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The saltwater intrusion event was followed by an influx of freshwater due to high precipitation levels in June. The zooplankton community composition once again became dominated by freshwater species and the fatty acid profiles shifted to reflect this change; however, EPA levels remained high, particularly in the lower river. We found correlations between the seston, microzooplankton and mesozooplankton fatty acid compositions. Salinity was the main factor correlated to the observed pattern in species composition, and fatty acid changes in the mesozooplankton. These data suggest that anadromous fish nursery habitat likely experiences considerable spatial variability in fatty acid profiles of zooplankton prey and that are correlated to seston community composition and hydrodynamic changes. Our results also suggest that sufficient prey density as well as a diverse fatty acid composition is present in the Chowan River to support larval fish production. PMID:28828262
Neighboring trees affect ectomycorrhizal fungal community composition in a woodland-forest ecotone.
Hubert, Nathaniel A; Gehring, Catherine A
2008-09-01
Ectomycorrhizal fungi (EMF) are frequently species rich and functionally diverse; yet, our knowledge of the environmental factors that influence local EMF diversity and species composition remains poor. In particular, little is known about the influence of neighboring plants on EMF community structure. We tested the hypothesis that the EMF of plants with heterospecific neighbors would differ in species richness and community composition from the EMF of plants with conspecific neighbors. We conducted our study at the ecotone between pinyon (Pinus edulis)-juniper (Juniperus monosperma) woodland and ponderosa pine (Pinus ponderosa) forest in northern Arizona, USA where the dominant trees formed associations with either EMF (P. edulis and P. ponderosa) or arbuscular mycorrhizal fungi (AMF; J. monosperma). We also compared the EMF communities of pinyon and ponderosa pines where their rhizospheres overlapped. The EMF community composition, but not species richness of pinyon pines was significantly influenced by neighboring AM juniper, but not by neighboring EM ponderosa pine. Ponderosa pine EMF communities were different in species composition when growing in association with pinyon pine than when growing in association with a conspecific. The EMF communities of pinyon and ponderosa pines were similar where their rhizospheres overlapped consisting of primarily the same species in similar relative abundance. Our findings suggest that neighboring tree species identity shaped EMF community structure, but that these effects were specific to host-neighbor combinations. The overlap in community composition between pinyon pine and ponderosa pine suggests that these tree species may serve as reservoirs of EMF inoculum for one another.
Todd, Timothy C.; Blair, John M.; Herman, Michael A.
2013-01-01
Anthropogenic changes are altering the environmental conditions and the biota of ecosystems worldwide. In many temperate grasslands, such as North American tallgrass prairie, these changes include alteration in historically important disturbance regimes (e.g., frequency of fires) and enhanced availability of potentially limiting nutrients, particularly nitrogen. Such anthropogenically-driven changes in the environment are known to elicit substantial changes in plant and consumer communities aboveground, but much less is known about their effects on soil microbial communities. Due to the high diversity of soil microbes and methodological challenges associated with assessing microbial community composition, relatively few studies have addressed specific taxonomic changes underlying microbial community-level responses to different fire regimes or nutrient amendments in tallgrass prairie. We used deep sequencing of the V3 region of the 16S rRNA gene to explore the effects of contrasting fire regimes and nutrient enrichment on soil bacterial communities in a long-term (20 yrs) experiment in native tallgrass prairie in the eastern Central Plains. We focused on responses to nutrient amendments coupled with two extreme fire regimes (annual prescribed spring burning and complete fire exclusion). The dominant bacterial phyla identified were Proteobacteria, Verrucomicrobia, Bacteriodetes, Acidobacteria, Firmicutes, and Actinobacteria and made up 80% of all taxa quantified. Chronic nitrogen enrichment significantly impacted bacterial community diversity and community structure varied according to nitrogen treatment, but not phosphorus enrichment or fire regime. We also found significant responses of individual bacterial groups including Nitrospira and Gammaproteobacteria to long-term nitrogen enrichment. Our results show that soil nitrogen enrichment can significantly alter bacterial community diversity, structure, and individual taxa abundance, which have important implications for both managed and natural grassland ecosystems. PMID:23840782
NASA Astrophysics Data System (ADS)
Teel, E.; Liu, X.; Cram, J. A.; Sachdeva, R.; Fuhrman, J. A.; Levine, N. M.
2016-12-01
Global oceanic ecosystem models either disregard fluctuations in heterotrophic bacterial remineralization or vary remineralization as a simple function of temperature, available carbon, and nutrient limitation. Most of these models were developed before molecular techniques allowed for the description of microbial community composition and functional diversity. Here we investigate the impact of a dynamic heterotrophic community and variable remineralization rates on biogeochemical cycling. Specifically, we integrated variable microbial remineralization into an ecosystem model by utilizing molecular community composition data, association network analysis, and biogeochemical rate data from the San Pedro Ocean Time-series (SPOT) station. Fluctuations in free-living bacterial community function and composition were examined using monthly environmental and biological data collected at SPOT between 2000 and 2011. On average, the bacterial community showed predictable seasonal changes in community composition and peaked in abundance in the spring with a one-month lag from peak chlorophyll concentrations. Bacterial growth efficiency (BGE), estimated from bacterial production, was found to vary widely at the site (5% to 40%). In a multivariate analysis, 47.6% of BGE variability was predicted using primary production, bacterial community composition, and temperature. A classic Nutrient-Phytoplankton-Zooplankton-Detritus model was expanded to include a heterotroph module that captured the observed relationships at the SPOT site. Results show that the inclusion of dynamic bacterial remineralization into larger oceanic ecosystem models can significantly impact microzooplankton grazing, the duration of surface phytoplankton blooms, and picophytoplankton primary production rates.
Boucher, Delphine; Jardillier, Ludwig; Debroas, Didier
2006-01-01
The succession in bacterial community composition was studied over two years in the epilimnion and hypolimnion of two freshwater systems: a natural lake (Pavin Lake) and a lake-reservoir (Sep Reservoir). The bacterial community composition was determined by cloning-sequencing of 16S rRNA and by terminal restriction fragment length polymorphism. Despite large hydrogeological differences, in the Sep Reservoir and Pavin Lake the dominant bacteria were from the same taxonomic divisions, particularly Actinobacteria and Betaproteobacteria. In both ecosystems, these major bacterial divisions showed temporal fluctuations that were much less marked than those occurring at a finer phylogenetic scale. Nutrient availability and mortality factors, the nature of which differed from one lake to another, covaried with the temporal variations in the bacterial community composition at all sampling depths, whereas factors related to seasonal forces (temperature and outflow for Sep Reservoir) seemed to account only for the variation of the hypolimnion bacterial community composition. No seasonal reproducibility in temporal evolution of bacterial community from one year to the next was observed.
Hu, Yanqiu; Su, Zhiyao; Li, Wenbin; Li, Jingpeng; Ke, Xiandong
2015-01-01
We assessed the impact of species composition and stand structure on the spatial variation of forest carbon density using data collected from a 4-ha plot in a subtropical forest in southern China. We found that 1) forest biomass carbon density significantly differed among communities, reflecting a significant effect of community structure and species composition on carbon accumulation; 2) soil organic carbon density increased whereas stand biomass carbon density decreased across communities, indicating that different mechanisms might account for the accumulation of stand biomass carbon and soil organic carbon in the subtropical forest; and 3) a small number of tree individuals of the medium- and large-diameter class contributed predominantly to biomass carbon accumulation in the community, whereas a large number of seedlings and saplings were responsible for a small proportion of the total forest carbon stock. These findings demonstrate that both biomass carbon and soil carbon density in the subtropical forest are sensitive to species composition and community structure, and that heterogeneity in species composition and stand structure should be taken into account to ensure accurate forest carbon accounting. PMID:26317523
Hu, Yanqiu; Su, Zhiyao; Li, Wenbin; Li, Jingpeng; Ke, Xiandong
2015-01-01
We assessed the impact of species composition and stand structure on the spatial variation of forest carbon density using data collected from a 4-ha plot in a subtropical forest in southern China. We found that 1) forest biomass carbon density significantly differed among communities, reflecting a significant effect of community structure and species composition on carbon accumulation; 2) soil organic carbon density increased whereas stand biomass carbon density decreased across communities, indicating that different mechanisms might account for the accumulation of stand biomass carbon and soil organic carbon in the subtropical forest; and 3) a small number of tree individuals of the medium- and large-diameter class contributed predominantly to biomass carbon accumulation in the community, whereas a large number of seedlings and saplings were responsible for a small proportion of the total forest carbon stock. These findings demonstrate that both biomass carbon and soil carbon density in the subtropical forest are sensitive to species composition and community structure, and that heterogeneity in species composition and stand structure should be taken into account to ensure accurate forest carbon accounting.
Chemidlin Prévost-Bouré, Nicolas; Dequiedt, Samuel; Thioulouse, Jean; Lelièvre, Mélanie; Saby, Nicolas P A; Jolivet, Claudy; Arrouays, Dominique; Plassart, Pierre; Lemanceau, Philippe; Ranjard, Lionel
2014-01-01
Spatial scaling of microorganisms has been demonstrated over the last decade. However, the processes and environmental filters shaping soil microbial community structure on a broad spatial scale still need to be refined and ranked. Here, we compared bacterial and fungal community composition turnovers through a biogeographical approach on the same soil sampling design at a broad spatial scale (area range: 13300 to 31000 km2): i) to examine their spatial structuring; ii) to investigate the relative importance of environmental selection and spatial autocorrelation in determining their community composition turnover; and iii) to identify and rank the relevant environmental filters and scales involved in their spatial variations. Molecular fingerprinting of soil bacterial and fungal communities was performed on 413 soils from four French regions of contrasting environmental heterogeneity (Landes
Ripplinger, Julie; Franklin, Janet; Edwards, Thomas C.
2015-01-01
Questions(i) What role does the type of managed disturbance play in structuring sagebrush steppe plant communities? (ii) How does the composition of post-disturbance plant communities change with time since disturbance? (iii) Does plant community diversity change over time following managed disturbance?LocationField study within the sagebrush steppe ecosystem. Rich County, Utah, USA.MethodsWe developed a chronosequence spanning up to 50 yrs post-treatment to study sagebrush steppe vegetation dynamics. Direct ordination was used to examine plant community composition by managed disturbance type and time since disturbance, and factorial analysis of covariance was used to examine diversity dynamics following disturbance. Indicator species values were calculated in order to identify characteristic species for each disturbance type.ResultsPlant communities experienced a shift toward distinct community composition for each of the three managed disturbance types, and gave no indication of returning to untreated community composition or diversity. Small post-disturbance increases in the number of non-native grass species were observed in the treatments relative to reference, with native forb species making the largest contribution to altered composition. On fire- and chemically-treated sites the proportional native forb species richness increased over time since disturbance, while the proportional contribution of non-native forbs to total species richness decreased. For all three treatment types, native grasses contributed less on average to total richness than on reference sites, while non-native grasses made up a higher proportion of total richness.ConclusionsCommon shrubland management techniques have legacy effects on the composition and diversity of sagebrush steppe plant communities, and no-analogue disturbances, such as chemical or mechanical treatments, have more pronounced legacy effects than treatments similar to natural disturbance regimes (fire). This study informs a broader understanding of how management actions affect natural systems by highlighting the importance of long-term management legacies as drivers of plant community structure and function.
Effects of oyster harvest activities on Louisiana reef habitat and resident nekton communities
Beck, Steve; LaPeyre, Megan K.
2015-01-01
Oysters are often cited as “ecosystem engineers” because they modify their environment. Coastal Louisiana contains extensive oyster reef areas that have been harvested for decades, and whether differences in habitat functions exist between those areas and nonharvested reefs is unclear. We compared reef physical structure and resident community metrics between these 2 subtidal reef types. Harvested reefs were more fragmented and had lower densities of live eastern oysters (Crassostrea virginica) and hooked mussels (Ischadium recurvum) than the nonharvested reefs. Stable isotope values (13C and 15N) of dominant nekton species and basal food sources were used to compare food web characteristics. Nonpelagic source contributions and trophic positions of dominant species were slightly elevated at harvested sites. Oyster harvesting appeared to have decreased the number of large oysters and to have increased the percentage of reefs that were nonliving by decreasing water column filtration and benthopelagic coupling. The differences in reef matrix composition, however, had little effect on resident nekton communities. Understanding the thresholds of reef habitat areas, the oyster density or oyster size distribution below which ecosystem services may be compromised, remains key to sustainable management.
2016-05-01
Hydrofluoric acid, silane coupling agent, light cured composite and ceramic restoration specimens (10 of each IPS e.max and Empress). The surface treatment...cured composite and ceramic restoration specimens (10 of each IPS e.max and Empress). The surface treatment in group C was applied to all specimens...and light cured for 20 seconds. 4) Group D: 5% Hydrofluoric acid, silane coupling agent, light cured composite and ceramic restoration (10 of
Cleary, David W; Bishop, Alistair H; Zhang, Lihong; Topp, Edward; Wellington, Elizabeth M H; Gaze, William H
2016-10-01
Antimicrobial resistance is one of the most significant challenges facing the global medical community and can be attributed to the use and misuse of antibiotics. This includes use as growth promoters or for prophylaxis and treatment of bacterial infection in intensively farmed livestock from where antibiotics can enter the environment as residues in manure. We characterised the impact of the long-term application of a mixture of veterinary antibiotics alone (tylosin, sulfamethazine and chlortetracycline) on class 1 integron prevalence and soil microbiota composition. Class 1 integron prevalence increased significantly (P < 0.005) from 0.006% in control samples to 0.064% in the treated plots. Soil microbiota was analysed using 16S rRNA gene sequencing and revealed significant alterations in composition. Of the 19 significantly different (P < 0.05) OTUs identified, 16 were of the Class Proteobacteria and these decreased in abundance relative to the control plots. Only one OTU, of the Class Cyanobacteria, was shown to increase in abundance significantly; a curiosity given the established sensitivity of this class to antibiotics. We hypothesise that the overrepresentation of Proteobacteria as OTUs that decreased significantly in relative abundance, coupled with the observations of an increase in integron prevalence, may represent a strong selective pressure on these taxa. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Wang, Junxia; Cao, Changlin; Yu, Dingshan; Chen, Xudong
2018-02-01
In this paper, the effect of varying extensional-shear couple loading on deformation and stress response of Carbon Nanotubes/ ultra-high molecular weight polyethylene (CNTs/UHMWPE) composites was investigated using finite element numerical simulation, with expect to improve the manufacturing process of UHMWPE-based composites with reduced stress and lower distortion. When applying pure extensional loading and pure X-Y shear loading, it was found that the risk of a structural breakage greatly rises. For identifying the coupling between extensional and shear loading, distinct generations of force loading were defined by adjusting the magnitude of extensional loading and X-Y shear loading. It was shown that with the decrement of X-Y shear loading the deformation decreases obviously where the maximal Mises stress in Z-direction at 0.45 m distance is in the range from 24 to 10 MPa and the maximal shear stress at 0.61 m distance is within the range from 0.9 to 0.3 MPa. In addition, all the stresses determined were clearly below the yield strength of CNTs/UHMWPE composites under extensional-shear couple loading.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ubaidillah, E-mail: ubaidillah@uns.ac.id; Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur; Raharjo, Wijang W.
The mechanical and morphological properties of the unsaturated polyester resins (UPRs)-agave cantala roxb based composite are investigated in this paper. The cantala fiber woven in 3D angle interlock was utilized as the composite reinforcement. Surface grafting of the cantala fiber through chemical treatment was performed by introducing silane coupling agent to improving the compatibility with the polymer matrix. The fabrication of the composite specimens was conducted using vacuum bagging technique. The effect of additional coupling agent to the morphological appearance of surface fracture was observed using scanning electron microscopy. Meanwhile, the influence of additional silane to the mechanical properties wasmore » examined using tensile, bending and impact test. The photograph of surface fracture on the treated specimens showed the residual matrix left on the fibers in which the phenomenon was not found in the untreated specimens. Based on mechanical tests, the treated specimens were successfully increased their mechanical properties by 55%, 9.67%, and 92.4% for tensile strength, flexural strength, and impact strength, respectively, at 1.5% silane coupling agent.« less
Krüger, Claudia; Kohout, Petr; Janoušková, Martina; Püschel, David; Frouz, Jan; Rydlová, Jana
2017-01-01
Arbuscular mycorrhizal fungal (AMF) community assembly during primary succession has so far received little attention. It remains therefore unclear, which of the factors, driving AMF community composition, are important during ecosystem development. We addressed this question on a large spoil heap, which provides a mosaic of sites in different successional stages under different managements. We selected 24 sites of c. 12, 20, 30, or 50 years in age, including sites with spontaneously developing vegetation and sites reclaimed by alder plantations. On each site, we sampled twice a year roots of the perennial rhizomatous grass Calamagrostis epigejos (Poaceae) to determine AMF root colonization and diversity (using 454-sequencing), determined the soil chemical properties and composition of plant communities. AMF taxa richness was unaffected by site age, but AMF composition variation increased along the chronosequences. AMF communities were unaffected by soil chemistry, but related to the composition of neighboring plant communities of the sampled C. epigejos plants. In contrast, the plant communities of the sites were more distinctively structured than the AMF communities along the four successional stages. We conclude that AMF and plant community successions respond to different factors. AMF communities seem to be influenced by biotic rather than by abiotic factors and to diverge with successional age. PMID:28473828
Strong-interaction-mediated critical coupling at two distinct frequencies.
Gupta, S Dutta
2007-06-01
I study a multilayered medium consisting of a metal-dielectric composite film, a spacer layer, and a dielectric Bragg reflector. I demonstrate a greater flexibility over the critical coupling phenomenon [Tischler et al., Opt. Lett. 31, 2045 (2006)], whereby nearly all the incident light energy is absorbed by the composite film through suppression of both transmission and reflection from the structure. For a larger volume fraction of the metal inclusions, strong light-matter coupling is shown to lead to almost total absorption at two distinct frequencies.
Genomic analysis of methanogenic archaea reveals a shift towards energy conservation
Gilmore, Sean P.; Henske, John K.; Sexton, Jessica A.; ...
2017-08-21
The metabolism of archaeal methanogens drives methane release into the environment and is critical to understanding global carbon cycling. Methanogenesis operates at a very low reducing potential compared to other forms of respiration and is therefore critical to many anaerobic environments. Harnessing or altering methanogen metabolism has the potential to mitigate global warming and even be utilized for energy applications. Here, we report draft genome sequences for the isolated methanogens Methanobacterium bryantii, Methanosarcina spelaei, Methanosphaera cuniculi, and Methanocorpusculum parvum. These anaerobic, methane-producing archaea represent a diverse set of isolates, capable of methylotrophic, acetoclastic, and hydrogenotrophic methanogenesis. Assembly and analysis ofmore » the genomes allowed for simple and rapid reconstruction of metabolism in the four methanogens. Comparison of the distribution of Clusters of Orthologous Groups (COG) proteins to a sample of genomes from the RefSeq database revealed a trend towards energy conservation in genome composition of all methanogens sequenced. Further analysis of the predicted membrane proteins and transporters distinguished differing energy conservation methods utilized during methanogenesis, such as chemiosmotic coupling in Msar. spelaei and electron bifurcation linked to chemiosmotic coupling in Mbac. bryantii and Msph. cuniculi. Methanogens occupy a unique ecological niche, acting as the terminal electron acceptors in anaerobic environments, and their genomes display a significant shift towards energy conservation. The genome-enabled reconstructed metabolisms reported here have significance to diverse anaerobic communities and have led to proposed substrate utilization not previously reported in isolation, such as formate and methanol metabolism in Mbac. bryantii and CO 2 metabolism in Msph. cuniculi. The newly proposed substrates establish an important foundation with which to decipher how methanogens behave in native communities, as CO 2 and formate are common electron carriers in microbial communities.« less
NASA Astrophysics Data System (ADS)
Aguzzi, Jacopo; Sbragaglia, Valerio; Tecchio, Samuele; Navarro, Joan; Company, Joan B.
2015-01-01
Light-intensity cycles drive the relentless motion of species in the oceans, and water column migrants may cyclically make contact with the seabed, hence influencing the temporal dynamism of benthic ecosystems. The influence of light on this process remains largely unknown to date. In this study, we focus on the occurrence of day-night changes in benthic communities on the western Mediterranean continental shelf (100 m depth) and slope (400 m depth) as a potential result of a behaviourally sustained benthopelagic coupling. We analysed fluctuations in species abundance based on trawling at hourly intervals over a 4-day period as a proxy of activity rhythms at the seabed. We also measured light in situ to assess how the depth-related decrease of its intensity influences species rhythms and the occurrence of the putative benthopelagic synchronisation. Temporal similarities in the catch patterns for different species were screened by dendrogram analysis. On the continental shelf, species performing diel migrations (i.e., over a 24 h period) that were either vertical (i.e., benthopelagic) or horizontal across depths (i.e., nektobenthic) clustered together separately from the more sedentary endobenthic and epibenthic species. At the same depth, waveform analysis showed a significant diurnal increase in the catch of water column species and benthic species at night. Such coupling was absent on the continental slope, where light intensity was several orders of magnitude lower than that on the shelf. Our data indicate that diel activity rhythms, which are well known for vertical pelagic migrators, are also evident in the benthos. We discuss the role of light as a major evolutionary driver shaping the composition and biodiversity of benthic communities via visual predation.
NASA Astrophysics Data System (ADS)
Kemner, K. M.; Boyanov, M.; Flynn, T. M.; O'Loughlin, E. J.; Antonopoulos, D. A.; Kelly, S.; Skinner, K.; Mishra, B.; Brooks, S. C.; Watson, D. B.; Wu, W. M.
2015-12-01
FeIII- and SO42--reducing microorganisms and the mineral phases they produce have profound implications for many processes in aquatic and terrestrial systems. In addition, many of these microbially-catalysed geochemical transformations are highly dependent upon introduction of reactants via advective and diffusive hydrological transport. We have characterized microbial communities from a set of static microcosms to test the effect of ethanol diffusion and sulfate concentration on UVI-contaminated sediment. The spatial distribution, valence states, and speciation of both U and Fe were monitored in situ throughout the experiment by synchrotron x-ray absorption spectroscopy, in parallel with solution measurements of pH and the concentrations of sulfate, ethanol, and organic acids. After reaction initiation, a ~1-cm thick layer of sediment near the sediment-water (S-W) interface became visibly dark. Fe XANES spectra of the layer were consistent with the formation of FeS. Over the 4 year duration of the experiment, U LIII-edge XANES indicated reduction of U, first in the dark layer and then throughout the sediment. Next, the microcosms were disassembled and samples were taken from the overlying water and different sediment regions. We extracted DNA and characterized the microbial community by sequencing 16S rRNA gene amplicons with the Illumina MiSeq platform and found that the community evolved from its originally homogeneous composition, becoming significantly spatially heterogeneous. We have also developed an x-ray accessible column to probe elemental transformations as they occur along the flow path in a porous medium with the purpose of refining reactive transport models (RTMs) that describe coupled physical and biogeochemical processes in environmental systems. The elemental distribution dynamics and the RTMs of the redox driven processes within them will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, M. S.; Keene, W. C.; Easter, Richard C.
2013-02-22
A coupled atmospheric chemistry and climate system model was developed using the modal aerosol version of the National Center for Atmospheric Research Community Atmosphere Model (modal-CAM; v3.6.33) and the Max Planck Institute for Chemistry’s Module Efficiently Calculating the Chemistry of the Atmosphere (MECCA; v2.5) to provide enhanced resolution of multiphase processes, particularly those involving inorganic halogens, and associated impacts on atmospheric composition and climate. Three Rosenbrock solvers (Ros-2, Ros-3, RODAS-3) were tested in conjunction with the basic load-balancing options available to modal-CAM (1) to establish an optimal configuration of the implicitly-solved multiphase chemistry module that maximizes both computational speed andmore » repeatability of Ros- 2 and RODAS-3 results versus Ros-3, and (2) to identify potential implementation strategies for future versions of this and similar coupled systems. RODAS-3 was faster than Ros-2 and Ros-3 with good reproduction of Ros-3 results, while Ros-2 was both slower and substantially less reproducible relative to Ros-3 results. Modal-CAM with MECCA chemistry was a factor of 15 slower than modal-CAM using standard chemistry. MECCA chemistry integration times demonstrated a systematic frequency distribution for all three solvers, and revealed that the change in run-time performance was due to a change in the frequency distribution of chemical integration times; the peak frequency was similar for all solvers. This suggests that efficient chemistry-focused load-balancing schemes can be developed that rely on the parameters of this frequency distribution.« less
Genomic analysis of methanogenic archaea reveals a shift towards energy conservation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilmore, Sean P.; Henske, John K.; Sexton, Jessica A.
The metabolism of archaeal methanogens drives methane release into the environment and is critical to understanding global carbon cycling. Methanogenesis operates at a very low reducing potential compared to other forms of respiration and is therefore critical to many anaerobic environments. Harnessing or altering methanogen metabolism has the potential to mitigate global warming and even be utilized for energy applications. Here, we report draft genome sequences for the isolated methanogens Methanobacterium bryantii, Methanosarcina spelaei, Methanosphaera cuniculi, and Methanocorpusculum parvum. These anaerobic, methane-producing archaea represent a diverse set of isolates, capable of methylotrophic, acetoclastic, and hydrogenotrophic methanogenesis. Assembly and analysis ofmore » the genomes allowed for simple and rapid reconstruction of metabolism in the four methanogens. Comparison of the distribution of Clusters of Orthologous Groups (COG) proteins to a sample of genomes from the RefSeq database revealed a trend towards energy conservation in genome composition of all methanogens sequenced. Further analysis of the predicted membrane proteins and transporters distinguished differing energy conservation methods utilized during methanogenesis, such as chemiosmotic coupling in Msar. spelaei and electron bifurcation linked to chemiosmotic coupling in Mbac. bryantii and Msph. cuniculi. Methanogens occupy a unique ecological niche, acting as the terminal electron acceptors in anaerobic environments, and their genomes display a significant shift towards energy conservation. The genome-enabled reconstructed metabolisms reported here have significance to diverse anaerobic communities and have led to proposed substrate utilization not previously reported in isolation, such as formate and methanol metabolism in Mbac. bryantii and CO 2 metabolism in Msph. cuniculi. The newly proposed substrates establish an important foundation with which to decipher how methanogens behave in native communities, as CO 2 and formate are common electron carriers in microbial communities.« less
Plate Wave Resonance with Air-Coupled Ultrasonics
NASA Astrophysics Data System (ADS)
Bar, H. N.; Dayal, V.; Barnard, D.; Hsu, D. K.
2010-02-01
Air-coupled ultrasonic transducers can excite plate waves in metals and composites. The coincidence effect, i.e., the wave vector of plate wave coincides with projection of exciting airborne sound vector, leads to a resonance which strongly amplifies the sound transmission through the plate. The resonance depends on the angle of incidence and the frequency. In the present study, the incidence angle for maximum transmission (θmax) is measured in plates of steel, aluminum, carbon fiber reinforced composites and honeycomb sandwich panels. The variations of (θmax) with plate thickness are compared with theoretical values in steel, aluminum and quasi-isotropic carbon fiber composites. The enhanced transmission of air-coupled ultrasound at oblique incidence can substantially improve the probability of flaw detection in plates and especially in honeycomb structures. Experimental air-coupled ultrasonic scan of subtle flaws in CFRP laminates showed definite improvement of signal-to-noise ratio with oblique incidence at θmax.
NASA Technical Reports Server (NTRS)
Hodges, Robert V.; Nixon, Mark W.; Rehfield, Lawrence W.
1987-01-01
A methodology was developed for the structural analysis of composite rotor blades. This coupled-beam analysis is relatively simple to use compared with alternative analysis techniques. The beam analysis was developed for thin-wall single-cell rotor structures and includes the effects of elastic coupling. This paper demonstrates the effectiveness of the new composite-beam analysis method through comparison of its results with those of an established baseline analysis technique. The baseline analysis is an MSC/NASTRAN finite-element model built up from anisotropic shell elements. Deformations are compared for three linear static load cases of centrifugal force at design rotor speed, applied torque, and lift for an ideal rotor in hover. A D-spar designed to twist under axial loading is the subject of the analysis. Results indicate the coupled-beam analysis is well within engineering accuracy.
Barberán, Albert; McGuire, Krista L; Wolf, Jeffrey A; Jones, F Andrew; Wright, Stuart Joseph; Turner, Benjamin L; Essene, Adam; Hubbell, Stephen P; Faircloth, Brant C; Fierer, Noah
2015-12-01
The complexities of the relationships between plant and soil microbial communities remain unresolved. We determined the associations between plant aboveground and belowground (root) distributions and the communities of soil fungi and bacteria found across a diverse tropical forest plot. Soil microbial community composition was correlated with the taxonomic and phylogenetic structure of the aboveground plant assemblages even after controlling for differences in soil characteristics, but these relationships were stronger for fungi than for bacteria. In contrast to expectations, the species composition of roots in our soil core samples was a poor predictor of microbial community composition perhaps due to the patchy, ephemeral, and highly overlapping nature of fine root distributions. Our ability to predict soil microbial composition was not improved by incorporating information on plant functional traits suggesting that the most commonly measured plant traits are not particularly useful for predicting the plot-level variability in belowground microbial communities. © 2015 John Wiley & Sons Ltd/CNRS.
NASA Astrophysics Data System (ADS)
Jones, Chris D.; Arora, Vivek; Friedlingstein, Pierre; Bopp, Laurent; Brovkin, Victor; Dunne, John; Graven, Heather; Hoffman, Forrest; Ilyina, Tatiana; John, Jasmin G.; Jung, Martin; Kawamiya, Michio; Koven, Charlie; Pongratz, Julia; Raddatz, Thomas; Randerson, James T.; Zaehle, Sönke
2016-08-01
Coordinated experimental design and implementation has become a cornerstone of global climate modelling. Model Intercomparison Projects (MIPs) enable systematic and robust analysis of results across many models, by reducing the influence of ad hoc differences in model set-up or experimental boundary conditions. As it enters its 6th phase, the Coupled Model Intercomparison Project (CMIP6) has grown significantly in scope with the design and documentation of individual simulations delegated to individual climate science communities. The Coupled Climate-Carbon Cycle Model Intercomparison Project (C4MIP) takes responsibility for design, documentation, and analysis of carbon cycle feedbacks and interactions in climate simulations. These feedbacks are potentially large and play a leading-order contribution in determining the atmospheric composition in response to human emissions of CO2 and in the setting of emissions targets to stabilize climate or avoid dangerous climate change. For over a decade, C4MIP has coordinated coupled climate-carbon cycle simulations, and in this paper we describe the C4MIP simulations that will be formally part of CMIP6. While the climate-carbon cycle community has created this experimental design, the simulations also fit within the wider CMIP activity, conform to some common standards including documentation and diagnostic requests, and are designed to complement the CMIP core experiments known as the Diagnostic, Evaluation and Characterization of Klima (DECK). C4MIP has three key strands of scientific motivation and the requested simulations are designed to satisfy their needs: (1) pre-industrial and historical simulations (formally part of the common set of CMIP6 experiments) to enable model evaluation, (2) idealized coupled and partially coupled simulations with 1 % per year increases in CO2 to enable diagnosis of feedback strength and its components, (3) future scenario simulations to project how the Earth system will respond to anthropogenic activity over the 21st century and beyond. This paper documents in detail these simulations, explains their rationale and planned analysis, and describes how to set up and run the simulations. Particular attention is paid to boundary conditions, input data, and requested output diagnostics. It is important that modelling groups participating in C4MIP adhere as closely as possible to this experimental design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Chris D.; Arora, Vivek; Friedlingstein, Pierre
Coordinated experimental design and implementation has become a cornerstone of global climate modelling. Model Intercomparison Projects (MIPs) enable systematic and robust analysis of results across many models, by reducing the influence of ad hoc differences in model set-up or experimental boundary conditions. As it enters its 6th phase, the Coupled Model Intercomparison Project (CMIP6) has grown significantly in scope with the design and documentation of individual simulations delegated to individual climate science communities. The Coupled Climate–Carbon Cycle Model Intercomparison Project (C4MIP) takes responsibility for design, documentation, and analysis of carbon cycle feedbacks and interactions in climate simulations. These feedbacks aremore » potentially large and play a leading-order contribution in determining the atmospheric composition in response to human emissions of CO 2 and in the setting of emissions targets to stabilize climate or avoid dangerous climate change. For over a decade, C4MIP has coordinated coupled climate–carbon cycle simulations, and in this paper we describe the C4MIP simulations that will be formally part of CMIP6. While the climate–carbon cycle community has created this experimental design, the simulations also fit within the wider CMIP activity, conform to some common standards including documentation and diagnostic requests, and are designed to complement the CMIP core experiments known as the Diagnostic, Evaluation and Characterization of Klima (DECK). C4MIP has three key strands of scientific motivation and the requested simulations are designed to satisfy their needs: (1) pre-industrial and historical simulations (formally part of the common set of CMIP6 experiments) to enable model evaluation, (2) idealized coupled and partially coupled simulations with 1 % per year increases in CO 2 to enable diagnosis of feedback strength and its components, (3) future scenario simulations to project how the Earth system will respond to anthropogenic activity over the 21st century and beyond. This study documents in detail these simulations, explains their rationale and planned analysis, and describes how to set up and run the simulations. Particular attention is paid to boundary conditions, input data, and requested output diagnostics. It is important that modelling groups participating in C4MIP adhere as closely as possible to this experimental design.« less
Jones, Chris D.; Arora, Vivek; Friedlingstein, Pierre; ...
2016-08-25
Coordinated experimental design and implementation has become a cornerstone of global climate modelling. Model Intercomparison Projects (MIPs) enable systematic and robust analysis of results across many models, by reducing the influence of ad hoc differences in model set-up or experimental boundary conditions. As it enters its 6th phase, the Coupled Model Intercomparison Project (CMIP6) has grown significantly in scope with the design and documentation of individual simulations delegated to individual climate science communities. The Coupled Climate–Carbon Cycle Model Intercomparison Project (C4MIP) takes responsibility for design, documentation, and analysis of carbon cycle feedbacks and interactions in climate simulations. These feedbacks aremore » potentially large and play a leading-order contribution in determining the atmospheric composition in response to human emissions of CO 2 and in the setting of emissions targets to stabilize climate or avoid dangerous climate change. For over a decade, C4MIP has coordinated coupled climate–carbon cycle simulations, and in this paper we describe the C4MIP simulations that will be formally part of CMIP6. While the climate–carbon cycle community has created this experimental design, the simulations also fit within the wider CMIP activity, conform to some common standards including documentation and diagnostic requests, and are designed to complement the CMIP core experiments known as the Diagnostic, Evaluation and Characterization of Klima (DECK). C4MIP has three key strands of scientific motivation and the requested simulations are designed to satisfy their needs: (1) pre-industrial and historical simulations (formally part of the common set of CMIP6 experiments) to enable model evaluation, (2) idealized coupled and partially coupled simulations with 1 % per year increases in CO 2 to enable diagnosis of feedback strength and its components, (3) future scenario simulations to project how the Earth system will respond to anthropogenic activity over the 21st century and beyond. This study documents in detail these simulations, explains their rationale and planned analysis, and describes how to set up and run the simulations. Particular attention is paid to boundary conditions, input data, and requested output diagnostics. It is important that modelling groups participating in C4MIP adhere as closely as possible to this experimental design.« less
Murrell, Ebony G; Ives, Anthony R; Juliano, Steven A
2014-06-01
1. Classical studies of succession, largely dominated by plant community studies, focus on intrinsic drivers of change in community composition, such as interspecific competition and changes to the abiotic environment. They often do not consider extrinsic drivers of colonization, such as seasonal phenology, that can affect community change. 2. We investigated both intrinsic and extrinsic drivers of succession for dipteran communities that occupy ephemeral pools, such as those in artificial containers. By initiating communities at different times in the season and following them over time, we compared the relative importance of intrinsic (i.e., habitat age) vs. extrinsic (i.e., seasonal phenology) drivers of succession. 3. We placed water-filled artificial containers in a deciduous forest with 20 containers initiated in each of three months. Containers were sampled weekly to assess community composition. Repeated-measures mixed-effects analysis of community correspondence analysis (CA) scores enabled us to partition intrinsic and extrinsic effects on succession. Covariates of temperature and precipitation were also tested. 4. Community trajectories (as defined by CA) differed significantly with habitat age and season, indicating that both intrinsic and extrinsic effects influence succession patterns. Comparisons of AICcs showed that habitat age was more important than season for species composition. Temperature and precipitation did not explain composition changes beyond those explained by habitat age and season. 5. Quantification of relative strengths of intrinsic and extrinsic effects on succession in dipteran and other ephemeral communities enables us to disentangle processes that must be understood for predicting changes in community composition.
NASA Astrophysics Data System (ADS)
Hill, Christopher Brandon
Carbon fiber reinforced composite materials have become commonplace in many industries including aerospace, automotive, and sporting goods. Previous research has determined a coupling relationship between the mechanical and electrical properties of these materials where the application of electrical current has been shown to improve their mechanical strengths. The next generations of these composites have started to be produced with the addition of nanocarbon buckypaper layers which provide even greater strength and electrical conductivity potentials. The focus of this current research was to characterize these new composites and compare their electro-mechanical coupling capabilities to those composites which do not contain any nonocarbons.
NASA Astrophysics Data System (ADS)
Xu, Hao; Pei, Yongmao; Li, Faxin; Fang, Daining
2018-05-01
The magnetic, electric and mechanical behaviors are strongly coupled in magnetoelectric (ME) materials, making them great promising in the application of functional devices. In this paper, the magneto-electro-mechanical fully coupled constitutive behaviors of ME laminates are systematically studied both theoretically and experimentally. A new probabilistic domain switching function considering the surface ferromagnetic anisotropy and the interface charge-mediated effect is proposed. Then a multi-scale multi-field coupling nonlinear constitutive model for layered ME composites is developed with physical measureable parameters. The experiments were performed to compare the theoretical predictions with the experimental data. The theoretical predictions have a good agreement with experimental results. The proposed constitutive relation can be used to describe the nonlinear multi-field coupling properties of both ME laminates and thin films. Several novel coupling experimental phenomena such as the electric-field control of magnetization, and the magnetic-field tuning of polarization are observed and analyzed. Furthermore, the size-effect of the electric tuning behavior of magnetization is predicted, which demonstrates a competition mechanism between the interface strain-mediated effect and the charge-driven effect. Our study offers deep insight into the coupling microscopic mechanism and macroscopic properties of ME layered composites, which is benefit for the design of electromagnetic functional devices.
Coyne, James C; Thompson, Richard; Palmer, Steven C
2002-03-01
This study compared three groups of women--outpatient depressed, inpatient depressed, and community control--and their husbands on a range of variables including marital functioning and styles of coping with conflict. Outpatient depressed couples reported greater marital distress and more destructive and less constructive tactics for resolving conflict than did community control couples. They also were more likely to have been previously married and to express regrets about having married their current husbands. There were smaller and less consistent differences for couples with inpatient depressed spouses, although inpatient couples with younger wives were similar to outpatient depressed couples. Both groups of depressed women and their husbands reported fewer expressions of affection and more complaints about the marriage than did control couples. Results are discussed in terms of interpersonal perspectives on depression.
USDA-ARS?s Scientific Manuscript database
Fungal communities in soil are critical to plant health and ecosystem processes in agricultural systems. Although the composition of fungal communities is often related to soil edaphic characteristic and host plant identity, there is a paucity of information on how communities vary with soil depth a...
NASA Technical Reports Server (NTRS)
Winfree, William P.; Zalameda, Joseph N.; Pergantis, Charles; Flanagan, David; Deschepper, Daniel
2009-01-01
The application of a noncontact air coupled acoustic heating technique is investigated for the inspection of advanced honeycomb composite structures. A weakness in the out of plane stiffness of the structure, caused by a delamination or core damage, allows for the coupling of acoustic energy and thus this area will have a higher temperature than the surrounding area. Air coupled acoustic thermography (ACAT) measurements were made on composite sandwich structures with damage and were compared to conventional flash thermography. A vibrating plate model is presented to predict the optimal acoustic source frequency. Improvements to the measurement technique are also discussed.
Compositional and phase relations among rare earth element minerals
NASA Technical Reports Server (NTRS)
Burt, D. M.
1990-01-01
This paper discusses the compositional and phase relationships among minerals in which rare earth elements (REE) occur as essential constituents (e.g., bastnaesite, monazite, xenotime, aeschynite, allanite). Particular consideration is given to the vector representation of complex coupled substitutions in selected REE-bearing minerals and to the REE partitioning between minerals as related to the acid-base tendencies and mineral stabilities. It is shown that the treatment of coupled substitutions as vector quantities facilitates graphical representation of mineral composition spaces.
Torsional actuation with extension-torsion composite coupling and a magnetostrictive actuator
NASA Astrophysics Data System (ADS)
Bothwell, Christopher M.; Chandra, Ramesh; Chopra, Inderjit
1995-04-01
An analytical-experimental study of using magnetostrictive actuators in conjunction with an extension-torsion coupled composite tube to actuate a rotor blade trailing-edge flap to actively control helicopter vibration is presented. Thin walled beam analysis based on Vlasov theory was used to predict the induced twist and extension in a composite tube with magnetostrictive actuation. The study achieved good correlation between theory and experiment. The Kevlar-epoxy systems showed good correlation between measured and predicted twist values.
Plasma CVD of Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Delzeit, Lance; Cruden, B.; Hash, D.; Meyyappan, M.; DeVincenzi, Donald L. (Technical Monitor)
2001-01-01
Carbon nanotubes(CNT) exhibit remarkable mechanical and unique electronic properties and thus have created excitement in the research community about their potential in electronics, computing, sensor and structural applications. Realization of these applications critically depends on the ability to control the properties(such as diameter, chirality) as well purity. We have investigated CNT growth using an inductively coupled plasma(ICP) process using hydrocarbon feedstock. The catalyst required for nanotube growth consists of thin sputtered layers of aluminum and iron(10 nm each) and aligned carbon nanotubes have been obtained. Optical emission diagnostics as well as a plasma modeling effort have been undertaken to understand growth mechanisms. This presentation will discuss growth characteristics under various pressure, power and feedgas compositions and our understanding from modeling and diagnostics.
Engineering Nano-Structured Multiferroic Thin Films
NASA Astrophysics Data System (ADS)
Cheung, Pui Lam
Multiferroics exhibit remarkable tunabilities in their ferromagnetic, ferroelectric and magnetoelectric properties that provide the potential in enabling the control of magnetizations by electric field for the next generation non-volatile memories, antennas and motors. In recent research and developments in integrating single-phase ferroelectric and ferromagnetic materials, multiferroic composite demonstrated a promising magnetoelectric (ME) coupling for future applications. Atomic layer deposition (ALD) technique, on the other hand, allows fabrications of complex multiferroic nanostructures to investigate interfacial coupling between the two materials. In this work, radical-enhanced ALD of cobalt ferrite (CFO) and thermal ALD of lead zirconate titanate (PZT) were combined in fabricating complex multiferroic architectures in investigating the effect of nanostructuring and magnetic shape anisotropy on improving ME coupling. In particular, 1D CFO nanotubes and nanowires; 0D-3D CFO/PZT mesoporous composite; and 1D-1D CFO/PZT core-shell nanowire composite were studied. The potential implementation of nanostructured multiferroic composites into functioning devices was assessed by quantifying the converse ME coupling coefficient. The synthesis of 1D CFO nanostructures was realized by ALD of CFO in anodic aluminum oxide (AAO) membranes. This work provided a simple and inexpensive route to create parallel and high aspect ratio ( 55) magnetic nanostructures. The change in magnetic easy axis of (partially filled) CFO nanotubes from perpendicular to parallel in (fully-filled) nanowires indicated the significance of the geometric factor in controlling magnetizations and ME coupling. The 0D-3D CFO/PZT mesoporous composite demonstrated the optimizations of the strain transfer could be achieved by precise thickness control. 100 nm of mesoporous PZT was synthesized on Pt/TiOx/SiO2/Si using amphiphilic diblock copolymers as a porous ferroelectric template (10 nm pore diameter) for ALD CFO growth. The increased filling of CFO decreased the mechanical flexibility of the composite for electric field induced strain, hence the converse ME coupling was mitigated. The highest converse ME coefficient of 1.2 10-5 Oe-cm/mV was achieved with a 33% pore filling of CFO, in compare to 1 x 10-5 Oe-cm/mV from mesoporous CFO filled with 3 nm of PZT in literature (Chien 2016). Highly directional 1D-1D PZT-core CFO-shell composite in AAO demonstrated the magnetic shape anisotropy could be modulated. The CFO shell thickness allowed the tuning of magnetic easy axis and saturation magnetizations; whereas the PZT volume allowed the optimization of electric field induced strain of the composite. Enhanced converse ME coupling of 1.3 x 10-4 Oe-cm/mV was realized by 5 nm CFO shell on 30 nm of PZT core. In summary, the work has demonstrated nanostructuring of multiferroic composite is an effective pathway to engineer converse ME coupling through optimizations of magnetic shape anisotropy and interfacial strain transfer.
Strickland, Michael S; McCulley, Rebecca L; Nelson, Jim A; Bradford, Mark A
2015-01-01
Inputs of low molecular weight carbon (LMW-C) to soil - primarily via root exudates- are expected to be a major driver of microbial activity and source of stable soil organic carbon. It is expected that variation in the type and composition of LMW-C entering soil will influence microbial community composition and function. If this is the case then short-term changes in LMW-C inputs may alter processes regulated by these communities. To determine if change in the composition of LMW-C inputs influences microbial community function and composition, we conducted a 90 day microcosm experiment whereby soils sourced from three different land covers (meadows, deciduous forests, and white pine stands) were amended, at low concentrations, with one of eight simulated root exudate treatments. Treatments included no addition of LMW-C, and the full factorial combination of glucose, glycine, and oxalic acid. After 90 days, we conducted a functional response assay and determined microbial composition via phospholipid fatty acid analysis. Whereas we noted a statistically significant effect of exudate treatments, this only accounted for ∼3% of the variation observed in function. In comparison, land cover and site explained ∼46 and ∼41% of the variation, respectively. This suggests that exudate composition has little influence on function compared to site/land cover specific factors. Supporting the finding that exudate effects were minor, we found that an absence of LMW-C elicited the greatest difference in function compared to those treatments receiving any LMW-C. Additionally, exudate treatments did not alter microbial community composition and observable differences were instead due to land cover. These results confirm the strong effects of land cover/site legacies on soil microbial communities. In contrast, short-term changes in exudate composition, at meaningful concentrations, may have little impact on microbial function and composition.
Pec, Gregory J; Karst, Justine; Taylor, D Lee; Cigan, Paul W; Erbilgin, Nadir; Cooke, Janice E K; Simard, Suzanne W; Cahill, James F
2017-01-01
Western North American landscapes are rapidly being transformed by forest die-off caused by mountain pine beetle (Dendroctonus ponderosae), with implications for plant and soil communities. The mechanisms that drive changes in soil community structure, particularly for the highly prevalent ectomycorrhizal fungi in pine forests, are complex and intertwined. Critical to enhancing understanding will be disentangling the relative importance of host tree mortality from changes in soil chemistry following tree death. Here, we used a recent bark beetle outbreak in lodgepole pine (Pinus contorta) forests of western Canada to test whether the effects of tree mortality altered the richness and composition of belowground fungal communities, including ectomycorrhizal and saprotrophic fungi. We also determined the effects of environmental factors (i.e. soil nutrients, moisture, and phenolics) and geographical distance, both of which can influence the richness and composition of soil fungi. The richness of both groups of soil fungi declined and the overall composition was altered by beetle-induced tree mortality. Soil nutrients, soil phenolics and geographical distance influenced the community structure of soil fungi; however, the relative importance of these factors differed between ectomycorrhizal and saprotrophic fungi. The independent effects of tree mortality, soil phenolics and geographical distance influenced the community composition of ectomycorrhizal fungi, while the community composition of saprotrophic fungi was weakly but significantly correlated with the geographical distance of plots. Taken together, our results indicate that both deterministic and stochastic processes structure soil fungal communities following landscape-scale insect outbreaks and reflect the independent roles tree mortality, soil chemistry and geographical distance play in regulating the community composition of soil fungi. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Brunelli, D.; Levi, S. T.; Fragnoli, P.; Renzulli, A.; Santi, P.; Paganelli, E.; Martinelli, M. C.
2013-12-01
An integrated microchemical-petrographic approach is here proposed to discriminate the provenance of archaeological pottery artefacts from distinct production centres. Our study focuses on a statistically significant sampling ( n=186) of volcanic temper-bearing potteries representative of the manufacturing and dispersion among the islands of the Aeolian Archipelago during the Bronze Age. The widespread establishment of new settlements and the abundant recovery of Aeolian-made ceramic in southern Italy attest for the increased vitality of the Archipelago during the Capo Graziano culture (Early Bronze Age-Middle Bronze Age 2; 2300-1430 BC). Potteries from three of the main known ancient communities (Lipari, Filicudi and Stromboli) have been studied integrating old collections and newly excavated material. Volcanic tempers have been first investigated through multivariate analyses of relative abundances of mineral and rock clasts along with petrographic characters. In addition, we performed in-situ mineral chemistry microanalyses by Electron Microprobe and Laser Ablation—Inductively Coupled Plasma Mass Spectrometry to assess major and trace element composition of the most common mineral phases. Four Temper Compositional Reference Units have been recognised based on compositional trends. Two units (AI and AX) are unequivocally distinct by their peculiar trace element enrichment and petrographic composition; they mostly contain samples from the sites of Lipari and Stromboli, respectively. Units AIV and AVIII, restricted to the sites of Filicudi and Stromboli, show distinct petrographic characters but overlapped geochemical fingerprints.
Chemidlin Prévost-Bouré, Nicolas; Dequiedt, Samuel; Thioulouse, Jean; Lelièvre, Mélanie; Saby, Nicolas P. A.; Jolivet, Claudy; Arrouays, Dominique; Plassart, Pierre; Lemanceau, Philippe; Ranjard, Lionel
2014-01-01
Spatial scaling of microorganisms has been demonstrated over the last decade. However, the processes and environmental filters shaping soil microbial community structure on a broad spatial scale still need to be refined and ranked. Here, we compared bacterial and fungal community composition turnovers through a biogeographical approach on the same soil sampling design at a broad spatial scale (area range: 13300 to 31000 km2): i) to examine their spatial structuring; ii) to investigate the relative importance of environmental selection and spatial autocorrelation in determining their community composition turnover; and iii) to identify and rank the relevant environmental filters and scales involved in their spatial variations. Molecular fingerprinting of soil bacterial and fungal communities was performed on 413 soils from four French regions of contrasting environmental heterogeneity (Landes
Habitat connectivity shapes urban arthropod communities: the key role of green roofs.
Braaker, S; Ghazoul, J; Obrist, M K; Moretti, M
2014-04-01
The installation of green roofs, defined here as rooftops with a shallow soil cover and extensive vegetation, has been proposed as a possible measure to mitigate the loss of green space caused by the steady growth of cities. However, the effectiveness of green roofs in supporting arthropod communities, and the extent to which they facilitate connectivity of these communities within the urban environment is currently largely unknown. We investigated the variation of species community composition (beta diversity) of four arthropod groups with contrasting mobility (Carabidae, Araneae, Curculionidae, and Apidae) on 40 green roofs and 40 extensively managed green sites on the ground in the city of Zurich, Switzerland. With redundancy analysis and variation partitioning, we (1) disentangled the relative importance of local environmental conditions, the surrounding land cover composition, and habitat connectivity on species community composition, (2) searched for specific spatial scales of habitat connectivity for the different arthropod groups, and (3) discussed the ecological and functional value of green roofs in cities. Our study revealed that on green roofs community composition of high-mobility arthropod groups (bees and weevils) were mainly shaped by habitat connectivity, while low-mobility arthropod groups (carabids and spiders) were more influenced by local environmental conditions. A similar but less pronounced pattern was found for ground communities. The high importance of habitat connectivity in shaping high-mobility species community composition indicates that these green roof communities are substantially connected by the frequent exchange of individuals among surrounding green roofs. On the other hand, low-mobility species communities on green roofs are more likely connected to ground sites than to other green roofs. The integration of green roofs in urban spatial planning strategies has great potential to enable higher connectivity among green spaces, so that eventually even communities of low-mobility species become connected. Furthermore, improving the design of green roofs (composition and configuration of vegetation and soil types) could enhance the ecological value, particularly for low-mobility species.
Flues, Sebastian; Bass, David; Bonkowski, Michael
2017-08-01
Preferential food selection in protists is well documented, but we still lack basic understanding on how protist predation modifies the taxonomic and functional composition of bacterial communities. We conducted feeding trials using leaf-associated cercomonad Cercozoa by incubating them on a standardized, diverse bacterial community washed from plant leaves. We used a shotgun metagenomics approach to investigate the taxonomic and functional changes of the bacterial community after five days protist predation on bacteria. Predation-induced shifts in bacterial community composition could be linked to phenotypic protist traits. Protist reproduction rate, morphological plasticity and cell speed were most important in determining bacterial community composition. Analyses of co-occurrence patterns showed less complex correlations between bacterial taxa in the protist-grazed treatments with a higher proportion of positive correlations than in non-grazed controls, suggesting that predation reduced the influence of strong competitors. Protist predation influenced 14 metabolic core functions including membrane transport from which type VI secretion systems were in particular upregulated. In view of the functional importance of bacterial communities in the phyllosphere and rhizosphere of plants, a more detailed understanding of predator-prey interactions, changes in microbial composition and function, and subsequent repercussions on plant performance are clearly required. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Effects of biochar blends on microbial community composition in two coastal plain soils
The amendment of soil with biochar has been demonstrated to have an effect not only on the soil physicochemical properties, but also on soil microbial community composition and activity. Previous reports have demonstrated significant impacts on soil microbial community structure....
Composition, Cognition, Creativity, and Community
ERIC Educational Resources Information Center
Moberg, Eric Michael; Kobylarz, Philip
2015-01-01
The purpose of this study was to examine the intersection between and among creativity, cognition, composition, and community. Researchers studied hundreds of adult students from several California community colleges and private universities by means of surveys, observations, and interviews to augment an extensive historical literature review.…
Temporal Dynamics of the Human Vaginal Microbiota
Gajer, Pawel; Brotman, Rebecca M.; Bai, Guoyun; Sakamoto, Joyce; Schütte, Ursel M.E.; Zhong, Xue; Koenig, Sara S.K.; Fu, Li; Ma, Zhanshan; Zhou, Xia; Abdo, Zaid; Forney, Larry J.; Ravel, Jacques
2012-01-01
Elucidating the factors that impinge on the stability of bacterial communities in the vagina may help in predicting the risk of diseases that affect women’s health. Here, we describe the temporal dynamics of the composition of vaginal bacterial communities in 32 reproductive age women over a 16-week period. The analysis revealed the dynamics of five major classes of bacterial communities and showed that some communities change markedly over short time periods, whereas others are relatively stable. Modeling community stability using new quantitative measures indicates that deviation from stability correlates with time in the menstrual cycle, bacterial community composition and sexual activity. The women studied are healthy, thus it appears that neither variation in community composition per se, nor higher levels of observed diversity (co-dominance) are necessarily indicative of dysbiosis, in which there is microbial imbalance accompanied by symptoms. PMID:22553250
Native arbuscular mycorrhizal symbiosis alters foliar bacterial community composition.
Poosakkannu, Anbu; Nissinen, Riitta; Kytöviita, Minna-Maarit
2017-11-01
The effects of arbuscular mycorrhizal (AM) fungi on plant-associated microbes are poorly known. We tested the hypothesis that colonization by an AM fungus affects microbial species richness and microbial community composition of host plant tissues. We grew the grass, Deschampsia flexuosa in a greenhouse with or without the native AM fungus, Claroideoglomus etunicatum. We divided clonally produced tillers into two parts: one inoculated with AM fungus spores and one without AM fungus inoculation (non-mycorrhizal, NM). We characterized bacterial (16S rRNA gene) and fungal communities (internal transcribed spacer region) in surface-sterilized leaf and root plant compartments. AM fungus inoculation did not affect microbial species richness or diversity indices in leaves or roots, but the AM fungus inoculation significantly affected bacterial community composition in leaves. A total of three OTUs in leaves belonging to the phylum Firmicutes positively responded to the presence of the AM fungus in roots. Another six OTUs belonging to the Proteobacteria (Alpha, Beta, and Gamma) and Bacteroidetes were significantly more abundant in NM plants when compared to AM fungus-inoculated plants. Further, there was a significant correlation between plant dry weight and leaf microbial community compositional shift. Also, there was a significant correlation between leaf bacterial community compositional shift and foliar nitrogen content changes due to AM fungus inoculation. The results suggest that AM fungus colonization in roots has a profound effect on plant physiology that is reflected in leaf bacterial community composition.
NASA Astrophysics Data System (ADS)
Lee, Jiyoung; Lim, Jae-Hyun; Park, Junhyung; Youn, Seok-Hyun; Oh, Hyun-Ju; Kim, Ju-Hyoung; Kim, Myung Kyum; Cho, Hyeyoun; Yoon, Joo-Eun; Kim, Soyeon; Markkandan, Kesavan; Park, Ki-Tae; Kim, Il-Nam
2018-02-01
Microbial community composition varies based on seasonal dynamics (summer: strongly stratified water column; autumn: weakly stratified water column; winter: vertically homogeneous water column) and vertical distributions (surface, middle, and bottom depths) in the Gadeok Channel, which is the primary passage to exchange waters and materials between the Jinhae-Masan Bay and the South Sea waters. The microbial community composition was analyzed from June to December 2016 using 16S rRNA gene sequencing. The community was dominated by the phyla Proteobacteria (45%), Bacteroidetes (18%), Cyanobacteria (15%), Verrucomicrobia (6%), and Actinobacteria (6%). Alphaproteobacteria (29%) was the most abundant microbial class, followed by Flavobacteria (15%) and Gammaproteobacteria (15%) in all samples. The composition of the microbial communities was found to vary vertically and seasonally. The orders Flavobacteriales and Stramenopiles showed opposing seasonal patterns; Flavobacteriales was more abundant in August and December while Stramenopiles showed high abundance in June and October at all depths. The genus Synechococcus reached extremely high abundance (14%) in the June surface water column, but was much less abundant in December water columns. Clustering analysis showed that there was a difference in the microbial community composition pattern between the strongly stratified season and well-mixed season. These results indicate that the seasonal dynamics of physicochemical and hydrologic conditions throughout the water column are important parameters in shaping the microbial community composition in the Gadeok Channel.
NASA Astrophysics Data System (ADS)
Bermúdez, Rafael; Winder, Monika; Stuhr, Annegret; Almén, Anna-Karin; Engström-Öst, Jonna; Riebesell, Ulf
2016-12-01
Increasing atmospheric carbon dioxide (CO2) is changing seawater chemistry towards reduced pH, which affects various properties of marine organisms. Coastal and brackish water communities are expected to be less affected by ocean acidification (OA) as these communities are typically adapted to high fluctuations in CO2 and pH. Here we investigate the response of a coastal brackish water plankton community to increasing CO2 levels as projected for the coming decades and the end of this century in terms of community and biochemical fatty acid (FA) composition. A Baltic Sea plankton community was enclosed in a set of offshore mesocosms and subjected to a CO2 gradient ranging from natural concentrations ( ˜ 347 µatm fCO2) up to values projected for the year 2100 ( ˜ 1333 µatm fCO2). We show that the phytoplankton community composition was resilient to CO2 and did not diverge between the treatments. Seston FA composition was influenced by community composition, which in turn was driven by silicate and phosphate limitation in the mesocosms and showed no difference between the CO2 treatments. These results suggest that CO2 effects are dampened in coastal communities that already experience high natural fluctuations in pCO2. Although this coastal plankton community was tolerant of high pCO2 levels, hypoxia and CO2 uptake by the sea can aggravate acidification and may lead to pH changes outside the currently experienced range for coastal organisms.
Characterization of an improved 1-3 piezoelectric composite by simulation and experiment.
Zhong, Chao; Wang, Likun; Qin, Lei; Zhang, Yanjun
2017-06-16
To increase electromechanical coupling factor of 1-3 piezoelectric composite and reduce its bending deformation under external stress, an improved 1-3 piezoelectric composite is developed. In the improved structure, both epoxy resin and silicone rubber are used as polymer material. The simulation model of the improved 1-3 piezoelectric composite was established using the finite element software ANSYS. The relationship of the performance of the improved composite to the volume percentage of silicone rubber was determined by harmonic response analysis and the bending deformation under external stress was simulated by static analysis. The improved composite samples were prepared by cutting and filling methods, and the performance was tested. The feasibility of the improved structure was verified by finite element simulation and experiment. The electromechanical coupling factor of the improved composite can reach 0.67 and meanwhile the characteristic impedance can decline to 13 MRayl. The electromechanical coupling factor of the improved composite is higher than that of the composite with only epoxy resin as the polymer and the improved composite can reduce bending deformation. Comparison of simulation and experiment, the results of the experiment are in general agreement with those from the simulation. However, most experimental values were higher than the simulation results, and the abnormality of the test results was also more obvious than that of the simulation. These findings may be attributed to slight difference in the material parameters of simulation and experiment.
Striebel, Maren; Schabhüttl, Stefanie; Hodapp, Dorothee; Hingsamer, Peter; Hillebrand, Helmut
2016-11-01
Effects of temperature changes on phytoplankton communities seem to be highly context-specific, but few studies have analyzed whether this context specificity depends on differences in the abiotic conditions or in species composition between studies. We present an experiment that allows disentangling the contribution of abiotic and biotic differences in shaping the response to two aspects of temperature change: permanent increase of mean temperature versus pulse disturbance in form of a heat wave. We used natural communities from six different sites of a floodplain system as well as artificially mixed communities from laboratory cultures and grew both, artificial and natural communities, in water from the six different floodplain lakes (sites). All 12 contexts (2 communities × 6 sites) were first exposed to three different temperature levels (12, 18, 24 °C, respectively) and afterward to temperature pulses (4 °C increase for 7 h day(-1)). Temperature-dependent changes in biomass and community composition depended on the initial composition of phytoplankton communities. Abiotic conditions had a major effect on biomass of phytoplankton communities exposed to different temperature conditions, however, the effect of biotic and abiotic conditions together was even more pronounced. Additionally, phytoplankton community responses to pulse temperature effects depended on the warming history. By disentangling abiotic and biotic effects, our study shows that temperature-dependent effects on phytoplankton communities depend on both, biotic and abiotic constraints.
Starke, Verena; Kirshtein, Julie; Fogel, Marilyn L.; Steele, Andrew
2013-01-01
Environmental conditions shape community composition. Arctic thermal springs provide an opportunity to study how environmental gradients can impose strong selective pressures on microbial communities and provide a continuum of niche opportunities. We use microscopic and molecular methods to conduct a survey of microbial community composition at Troll Springs on Svalbard, Norway, in the high Arctic. Microorganisms there exist under a wide range of environmental conditions: in warm water as periphyton, in moist granular materials, and in cold, dry rock as endoliths. Troll Springs has two distinct ecosystems, aquatic and terrestrial, together in close proximity, with different underlying environmental factors shaping each microbial community. Periphyton are entrapped during precipitation of calcium carbonate from the spring's waters, providing microbial populations that serve as precursors for the development of endolithic communities. This process differs from most endolith colonization, in which the rock predates the communities that colonize it. Community composition is modulated as environmental conditions change within the springs. At Troll, the aquatic environments show a small number of dominant operational taxonomic units (OTUs) that are specific to each sample. The terrestrial environments show a more even distribution of OTUs common to multiple samples.
Soil biodiversity and soil community composition determine ecosystem multifunctionality
Wagg, Cameron; Bender, S. Franz; Widmer, Franco; van der Heijden, Marcel G. A.
2014-01-01
Biodiversity loss has become a global concern as evidence accumulates that it will negatively affect ecosystem services on which society depends. So far, most studies have focused on the ecological consequences of above-ground biodiversity loss; yet a large part of Earth’s biodiversity is literally hidden below ground. Whether reductions of biodiversity in soil communities below ground have consequences for the overall performance of an ecosystem remains unresolved. It is important to investigate this in view of recent observations that soil biodiversity is declining and that soil communities are changing upon land use intensification. We established soil communities differing in composition and diversity and tested their impact on eight ecosystem functions in model grassland communities. We show that soil biodiversity loss and simplification of soil community composition impair multiple ecosystem functions, including plant diversity, decomposition, nutrient retention, and nutrient cycling. The average response of all measured ecosystem functions (ecosystem multifunctionality) exhibited a strong positive linear relationship to indicators of soil biodiversity, suggesting that soil community composition is a key factor in regulating ecosystem functioning. Our results indicate that changes in soil communities and the loss of soil biodiversity threaten ecosystem multifunctionality and sustainability. PMID:24639507
High taxonomic variability despite stable functional structure across microbial communities.
Louca, Stilianos; Jacques, Saulo M S; Pires, Aliny P F; Leal, Juliana S; Srivastava, Diane S; Parfrey, Laura Wegener; Farjalla, Vinicius F; Doebeli, Michael
2016-12-05
Understanding the processes that are driving variation of natural microbial communities across space or time is a major challenge for ecologists. Environmental conditions strongly shape the metabolic function of microbial communities; however, other processes such as biotic interactions, random demographic drift or dispersal limitation may also influence community dynamics. The relative importance of these processes and their effects on community function remain largely unknown. To address this uncertainty, here we examined bacterial and archaeal communities in replicate 'miniature' aquatic ecosystems contained within the foliage of wild bromeliads. We used marker gene sequencing to infer the taxonomic composition within nine metabolic functional groups, and shotgun environmental DNA sequencing to estimate the relative abundances of these groups. We found that all of the bromeliads exhibited remarkably similar functional community structures, but that the taxonomic composition within individual functional groups was highly variable. Furthermore, using statistical analyses, we found that non-neutral processes, including environmental filtering and potentially biotic interactions, at least partly shaped the composition within functional groups and were more important than spatial dispersal limitation and demographic drift. Hence both the functional structure and taxonomic composition within functional groups of natural microbial communities may be shaped by non-neutral and roughly separate processes.
NASA Astrophysics Data System (ADS)
Zhuo, Zhao; Cai, Shi-Min; Tang, Ming; Lai, Ying-Cheng
2018-04-01
One of the most challenging problems in network science is to accurately detect communities at distinct hierarchical scales. Most existing methods are based on structural analysis and manipulation, which are NP-hard. We articulate an alternative, dynamical evolution-based approach to the problem. The basic principle is to computationally implement a nonlinear dynamical process on all nodes in the network with a general coupling scheme, creating a networked dynamical system. Under a proper system setting and with an adjustable control parameter, the community structure of the network would "come out" or emerge naturally from the dynamical evolution of the system. As the control parameter is systematically varied, the community hierarchies at different scales can be revealed. As a concrete example of this general principle, we exploit clustered synchronization as a dynamical mechanism through which the hierarchical community structure can be uncovered. In particular, for quite arbitrary choices of the nonlinear nodal dynamics and coupling scheme, decreasing the coupling parameter from the global synchronization regime, in which the dynamical states of all nodes are perfectly synchronized, can lead to a weaker type of synchronization organized as clusters. We demonstrate the existence of optimal choices of the coupling parameter for which the synchronization clusters encode accurate information about the hierarchical community structure of the network. We test and validate our method using a standard class of benchmark modular networks with two distinct hierarchies of communities and a number of empirical networks arising from the real world. Our method is computationally extremely efficient, eliminating completely the NP-hard difficulty associated with previous methods. The basic principle of exploiting dynamical evolution to uncover hidden community organizations at different scales represents a "game-change" type of approach to addressing the problem of community detection in complex networks.
Sulfate-reducing prokaryotes (SRP) play a key role in the carbon and nutrient cycles of coastal marine, vegetated ecosystems, but the interactions of SRP communities with aquatic plants remain little studied. The abundance, activity, and community composition of SRP was studied i...
Grundel, R.; Jean, R.P.; Frohnapple, K.J.; Glowacki, G.A.; Scott, P.E.; Pavlovic, N.B.
2010-01-01
Given bees' central effect on vegetation communities, it is important to understand how and why bee distributions vary across ecological gradients. We examined how plant community composition, plant diversity, nesting suitability, canopy cover, land use, and fire history affected bee distribution across an open-forest gradient in northwest Indiana, USA, a gradient similar to the historic Midwest United States landscape mosaic. When considered with the other predictors, plant community composition was not a significant predictor of bee community composition. Bee abundance was negatively related to canopy cover and positively to recent fire frequency, bee richness was positively related to plant richness and abundance of potential nesting resources, and bee community composition was significantly related to plant richness, soil characteristics potentially related to nesting suitability, and canopy cover. Thus, bee abundance was predicted by a different set of environmental characteristics than was bee species richness, and bee community composition was predicted, in large part, by a combination of the significant predictors of bee abundance and richness. Differences in bee community composition along the woody vegetation gradient were correlated with relative abundance of oligolectic, or diet specialist, bees. Because oligoleges were rarer than diet generalists and were associated with open habitats, their populations may be especially affected by degradation of open habitats. More habitat-specialist bees were documented for open and forest/scrub habitats than for savanna/woodland habitats, consistent with bees responding to habitats of intermediate woody vegetation density, such as savannas, as ecotones rather than as distinct habitat types. Similarity of bee community composition, similarity of bee abundance, and similarity of bee richness between sites were not significantly related to proximity of sites to each other. Nestedness analysis indicated that species composition in species-poor sites was not merely a subset of species composition at richer sites. The lack of significant proximity or nestedness effects suggests that factors at a small spatial scale strongly influence bees' use of sites. The findings indicate that patterns of plant diversity, nesting resource availability, recent fire, and habitat shading, present at the scale of a few hundred meters, are key determinants of bee community patterns in the mosaic open-savanna-forest landscape. ?? 2010 by the Ecological Society of America.
Confronting Models with Data: The GEWEX Cloud Systems Study
NASA Technical Reports Server (NTRS)
Randall, David; Curry, Judith; Duynkerke, Peter; Krueger, Steven; Moncrieff, Mitchell; Ryan, Brian; Starr, David OC.; Miller, Martin; Rossow, William; Tselioudis, George
2002-01-01
The GEWEX Cloud System Study (GCSS; GEWEX is the Global Energy and Water Cycle Experiment) was organized to promote development of improved parameterizations of cloud systems for use in climate and numerical weather prediction models, with an emphasis on the climate applications. The strategy of GCSS is to use two distinct kinds of models to analyze and understand observations of the behavior of several different types of clouds systems. Cloud-system-resolving models (CSRMs) have high enough spatial and temporal resolutions to represent individual cloud elements, but cover a wide enough range of space and time scales to permit statistical analysis of simulated cloud systems. Results from CSRMs are compared with detailed observations, representing specific cases based on field experiments, and also with statistical composites obtained from satellite and meteorological analyses. Single-column models (SCMs) are the surgically extracted column physics of atmospheric general circulation models. SCMs are used to test cloud parameterizations in an un-coupled mode, by comparison with field data and statistical composites. In the original GCSS strategy, data is collected in various field programs and provided to the CSRM Community, which uses the data to "certify" the CSRMs as reliable tools for the simulation of particular cloud regimes, and then uses the CSRMs to develop parameterizations, which are provided to the GCM Community. We report here the results of a re-thinking of the scientific strategy of GCSS, which takes into account the practical issues that arise in confronting models with data. The main elements of the proposed new strategy are a more active role for the large-scale modeling community, and an explicit recognition of the importance of data integration.
An improved null model for assessing the net effects of multiple stressors on communities.
Thompson, Patrick L; MacLennan, Megan M; Vinebrooke, Rolf D
2018-01-01
Ecological stressors (i.e., environmental factors outside their normal range of variation) can mediate each other through their interactions, leading to unexpected combined effects on communities. Determining whether the net effect of stressors is ecologically surprising requires comparing their cumulative impact to a null model that represents the linear combination of their individual effects (i.e., an additive expectation). However, we show that standard additive and multiplicative null models that base their predictions on the effects of single stressors on community properties (e.g., species richness or biomass) do not provide this linear expectation, leading to incorrect interpretations of antagonistic and synergistic responses by communities. We present an alternative, the compositional null model, which instead bases its predictions on the effects of stressors on individual species, and then aggregates them to the community level. Simulations demonstrate the improved ability of the compositional null model to accurately provide a linear expectation of the net effect of stressors. We simulate the response of communities to paired stressors that affect species in a purely additive fashion and compare the relative abilities of the compositional null model and two standard community property null models (additive and multiplicative) to predict these linear changes in species richness and community biomass across different combinations (both positive, negative, or opposite) and intensities of stressors. The compositional model predicts the linear effects of multiple stressors under almost all scenarios, allowing for proper classification of net effects, whereas the standard null models do not. Our findings suggest that current estimates of the prevalence of ecological surprises on communities based on community property null models are unreliable, and should be improved by integrating the responses of individual species to the community level as does our compositional null model. © 2017 John Wiley & Sons Ltd.
Impacts of mesoscale eddies on biogeochemical cycles in the South China Sea
NASA Astrophysics Data System (ADS)
Xiu, P.; Chai, F.; Guo, M.
2016-02-01
Biogeochemical cycles associated with mesoscale eddies in the South China Sea (SCS) are investigated by using satellite surface chlorophyll concentration, altimeter data, satellite sea surface temperature, and a coupled physical-biogeochemical Pacific Ocean model (ROMS-CoSiNE) simulation for the period from 1991 to 2007. Considering the annual mean, composite analysis reveals that cyclonic eddies are associated with higher concentrations of nutrients, phytoplankton and zooplankton while the anticyclonic eddies are with lower concentrations compared with surrounding waters, which is generally controlled by the eddy pumping mechanism. Dipole structures of vertical fluxes with net upward motion in cyclonic eddies and net downward motion in anticyclonic eddies are also revealed. During the lifetime of an eddy, the evolutions of physical, biological, and chemical structures are not linearly coupled at the eddy core where plankton grow and composition of the community depend not only on the physical and chemical processes but also on the adjustments by the predator-prey relationship. Considering the seasonal variability, we find eddy pumping mechanisms are generally dominant in winter and eddy advection effects are dominant in summer. Over the space, variability of chlorophyll to the west of Luzon Strait and off northwest of Luzon Island are mainly controlled by eddy pumping mechanism. In regions off the Vietnam coast, chlorophyll distributions are generally associated with horizontal eddy advection. This research highlights different mesoscale mechanisms affecting biological structures that can potentially disturb ocean biogeochemical cycling processes in the South China Sea.
DIAGNOcam--a Near Infrared Digital Imaging Transillumination (NIDIT) technology.
Abdelaziz, Marwa; Krejci, Ivo
2015-01-01
In developed countries, clinical manifestation of carious lesions is changing: instead of dentists being confronted with wide-open cavities, more and more hidden caries are seen. For a long time, the focus of the research community was on finding a method for the detection of carious lesions without the need for radiographs. The research on Digital Imaging Fiber-Optic Transillumination (DIFOTI) has been an active domain. The scope of the present article is to describe a novel technology for caries diagnostics based on Near Infrared Digital Imaging Transillumination (NIDIT), and to give first examples of its clinical indications. In addition, the coupling of NIDIT with a head-mounted retinal image display (RID) to improve clinical workflow is presented. The novel NIDIT technology was shown to be useful as a diagnostic tool in several indications, including mainly the detection of proximal caries and, less importantly, for occlusal caries, fissures, and secondary decay around amalgam and composite restorations. The coupling of this technology with a head-mounted retinal image system allows for its very efficient implementation into daily practice.
NASA Technical Reports Server (NTRS)
Kelkar, A. D.
1984-01-01
In thin composite laminates, the first level of visible damage occurs in the back face and is called back face spalling. A plate-membrane coupling model, and a finite element model to analyze the large deformation behavior of eight-ply quasi-isotropic circular composite plates under impact type point loads are developed. The back face spalling phenomenon in thin composite plates is explained by using the plate-membrane coupling model and the finite element model in conjunction with the fracture mechanics principles. The experimental results verifying these models are presented. Several conclusions concerning the deformation behavior are reached and discussed in detail.
Effect of moisture on the physical and durability properties of methyl methacrylate polymer concrete
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fontana, J.J.; Reams, W.
1983-01-01
The compressive strength of methyl methacrylate PC composites decays very rapidly as the moisture content of the coarse aggregate is increased from 0 to 1 wt %. The durability of the PC also shows evidence of decay. Addition of silane coupling agent, such as A-1120, to the monomer component of a PC composite increases the compressive strength of such composites made with moist coarse aggregates. The compressive strengths of such PC composites are as high as a normal PCC used in highway applications. The durability of PC composites made with a silane additive seems to increase as the composite undergoesmore » freeze-thaw cycling which reinforces the justification that such materials can be used for PCC repairs without a sacrifice in use lifespans. However, for the convenience of using moist aggregates, one must endure the additional cost of the silane coupling agent. If it costs more than $0.02/lb to dry the aggregate, and one is willing to accept the reduced strengths associated with moist aggregates, then the use of a silane coupling agent can be cost effective. 3 figures, 4 tables.« less
Ni, Yan; Zhang, Zhen; Nlebedim, Cajetan I.; ...
2015-03-20
Multiferroic materials exhibit magnetoelectric (ME) coupling and promise new device applications including magnetic sensors, generators, and filters. An effective method for developing ME materials with enhanced ME effect is achieved by the coupling through the interfacial strain between piezoelectric and magnetostrictive materials. In this study, the electrical and magnetic properties of Ga doped magnetoelectric CoGa xFe 2–xO 4/BaTiO 3 composite are studied systematically. It is found that Ga doping improves the sensitivity of magnetoelastic response and stabilizes the magnetic phase of the composites. More importantly, Ga doping reduces the electrical conductivity of composite, as well as the dielectric loss. Anmore » enhancement of the electrostrain with doping Ga is also observed. Quantitative estimation indicates that magnetoelectric coupling is enhanced for Ga-doped CoGa xFe 2–xO 4/BaTiO 3 composites. As a result, the present work is beneficial to the practical application of composite CoFe 2O 4/BaTiO 3-based multiferroic materials.« less
Reed, Nathan; Fang, Jiaxi; Chavalmane, Sanmathi; Biswas, Pratim
2017-01-01
Composite nanoparticles find application in catalysis, drug delivery, and energy storage and require increasingly fine control of their physical properties and composition. While composite nanoparticles have been widely synthesized and characterized, little work has systematically correlated the initial concentration of precursors and the final composition of flame synthesized composite nanoparticles. This relationship is explored in a diffusion flame aerosol reactor by coupling a scanning mobility particle sizer (SMPS) with an inductively coupled plasma optical emission spectrometer (ICP-OES). A framework for studying the relationship between the initial precursor concentrations of different elements and the final nanoparticle composition is explored. The size-resolved elemental composition was measured by directly injecting size-selected fractions of aggregated magnetite and silicon dioxide composite nanoparticles into the ICP-OES plasma. This work showed a correlation between precursor molar ratio and the measured elemental ratio in the mobility size range of 50 to 140 nm. Building on previous work studying size resolved elemental composition of engineered nanoparticles, the analysis is extended to flame synthesized composite nanoparticle aggregates in this work. PMID:28435179
Reed, Nathan; Fang, Jiaxi; Chavalmane, Sanmathi; Biswas, Pratim
2017-01-01
Composite nanoparticles find application in catalysis, drug delivery, and energy storage and require increasingly fine control of their physical properties and composition. While composite nanoparticles have been widely synthesized and characterized, little work has systematically correlated the initial concentration of precursors and the final composition of flame synthesized composite nanoparticles. This relationship is explored in a diffusion flame aerosol reactor by coupling a scanning mobility particle sizer (SMPS) with an inductively coupled plasma optical emission spectrometer (ICP-OES). A framework for studying the relationship between the initial precursor concentrations of different elements and the final nanoparticle composition is explored. The size-resolved elemental composition was measured by directly injecting size-selected fractions of aggregated magnetite and silicon dioxide composite nanoparticles into the ICP-OES plasma. This work showed a correlation between precursor molar ratio and the measured elemental ratio in the mobility size range of 50 to 140 nm. Building on previous work studying size resolved elemental composition of engineered nanoparticles, the analysis is extended to flame synthesized composite nanoparticle aggregates in this work.
Kinsman-Costello, L E; Sheik, C S; Sheldon, N D; Allen Burton, G; Costello, D M; Marcus, D; Uyl, P A Den; Dick, G J
2017-03-01
For a large part of earth's history, cyanobacterial mats thrived in low-oxygen conditions, yet our understanding of their ecological functioning is limited. Extant cyanobacterial mats provide windows into the putative functioning of ancient ecosystems, and they continue to mediate biogeochemical transformations and nutrient transport across the sediment-water interface in modern ecosystems. The structure and function of benthic mats are shaped by biogeochemical processes in underlying sediments. A modern cyanobacterial mat system in a submerged sinkhole of Lake Huron (LH) provides a unique opportunity to explore such sediment-mat interactions. In the Middle Island Sinkhole (MIS), seeping groundwater establishes a low-oxygen, sulfidic environment in which a microbial mat dominated by Phormidium and Planktothrix that is capable of both anoxygenic and oxygenic photosynthesis, as well as chemosynthesis, thrives. We explored the coupled microbial community composition and biogeochemical functioning of organic-rich, sulfidic sediments underlying the surface mat. Microbial communities were diverse and vertically stratified to 12 cm sediment depth. In contrast to previous studies, which used low-throughput or shotgun metagenomic approaches, our high-throughput 16S rRNA gene sequencing approach revealed extensive diversity. This diversity was present within microbial groups, including putative sulfate-reducing taxa of Deltaproteobacteria, some of which exhibited differential abundance patterns in the mats and with depth in the underlying sediments. The biological and geochemical conditions in the MIS were distinctly different from those in typical LH sediments of comparable depth. We found evidence for active cycling of sulfur, methane, and nutrients leading to high concentrations of sulfide, ammonium, and phosphorus in sediments underlying cyanobacterial mats. Indicators of nutrient availability were significantly related to MIS microbial community composition, while LH communities were also shaped by indicators of subsurface groundwater influence. These results show that interactions between the mats and sediments are crucial for sustaining this hot spot of biological diversity and biogeochemical cycling. © 2016 John Wiley & Sons Ltd.
Experimental soil warming shifts the fungal community composition at the alpine treeline.
Solly, Emily F; Lindahl, Björn D; Dawes, Melissa A; Peter, Martina; Souza, Rômulo C; Rixen, Christian; Hagedorn, Frank
2017-07-01
Increased CO 2 emissions and global warming may alter the composition of fungal communities through the removal of temperature limitation in the plant-soil system, faster nitrogen (N) cycling and changes in the carbon (C) allocation of host plants to the rhizosphere. At a Swiss treeline featuring Larix decidua and Pinus uncinata, the effects of multiple years of CO 2 enrichment and experimental soil warming on the fungal community composition in the organic horizons were analysed using 454-pyrosequencing of ITS2 amplicons. Sporocarp production and colonization of ectomycorrhizal root tips were investigated in parallel. Fungal community composition was significantly altered by soil warming, whereas CO 2 enrichment had little effect. Tree species influenced fungal community composition and the magnitude of the warming responses. The abundance of ectomycorrhizal fungal taxa was positively correlated with N availability, and ectomycorrhizal taxa specialized for conditions of high N availability proliferated with warming, corresponding to considerable increases in inorganic N in warmed soils. Traits related to N utilization are important in determining the responses of ectomycorrhizal fungi to warming in N-poor cold ecosystems. Shifts in the overall fungal community composition in response to higher temperatures may alter fungal-driven processes with potential feedbacks on ecosystem N cycling and C storage at the alpine treeline. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Midlatitude atmosphere-ocean interaction during El Nino. Part I. The north Pacific ocean
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, M.A.
Atmosphere-ocean modeling experiments are used to investigate the formation of sea surface temperature (SST) anomalies in the North Pacific Ocean during fall and winter of the El Nino year. Experiments in which the NCAR Community Climate Model (CCM) surface fields are used to force a mixed-layer ocean model in the North Pacific (no air-sea feedback) are compared to simulations in which the CCM and North Pacific Ocean model are coupled. Anomalies in the atmosphere and the North Pacific Ocean during El Nino are obtained from the difference between simulations with and without prescribed warm SST anomalies in the tropical Pacific.more » In both the forced and coupled experiments, the anomaly pattern resembles a composite of the actual SST anomaly field during El Nino: warm SSTs develop along the coast of North America and cold SSTs form in the central Pacific. In the coupled simulations, air-sea interaction results in a 25% to 50% reduction in the magnitude of the SST and mixed-layer depth anomalies, resulting in more realistic SST fields. Coupling also decreases the SST anomaly variance; as a result, the anomaly centers remain statistically significant even though the magnitude of the anomalies is reduced. Three additional sensitivity studies indicate that air-sea feedback and entrainment act to damp SST anomalies while Ekman pumping has a negligible effect on mixed-layer depth and SST anomalies in midatitudes.« less
Understanding the double peaked El Niño in coupled GCMs
NASA Astrophysics Data System (ADS)
Graham, Felicity S.; Wittenberg, Andrew T.; Brown, Jaclyn N.; Marsland, Simon J.; Holbrook, Neil J.
2017-03-01
Coupled general circulation models (CGCMs) simulate a diverse range of El Niño-Southern Oscillation behaviors. "Double peaked" El Niño events—where two separate centers of positive sea surface temperature (SST) anomalies evolve concurrently in the eastern and western equatorial Pacific—have been evidenced in Coupled Model Intercomparison Project version 5 CGCMs and are without precedent in observations. The characteristic CGCM double peaked El Niño may be mistaken for a central Pacific warming event in El Niño composites, shifted westwards due to the cold tongue bias. In results from the Australian Community Climate and Earth System Simulator coupled model, we find that the western Pacific warm peak of the double peaked El Niño event emerges due to an excessive westward extension of the climatological cold tongue, displacing the region of strong zonal SST gradients towards the west Pacific. A coincident westward shift in the zonal current anomalies reinforces the western peak in SST anomalies, leading to a zonal separation between the warming effect of zonal advection (in the west Pacific) and that of vertical advection (in the east Pacific). Meridional advection and net surface heat fluxes further drive growth of the western Pacific warm peak. Our results demonstrate that understanding historical CGCM El Niño behaviors is a necessary precursor to interpreting projections of future CGCM El Niño behaviors, such as changes in the frequency of eastern Pacific El Niño events, under global warming scenarios.
NASA Technical Reports Server (NTRS)
Mei, Chuh; Pates, Carl S., III
1994-01-01
A coupled boundary element (BEM)-finite element (FEM) approach is presented to accurately model structure-acoustic interaction systems. The boundary element method is first applied to interior, two and three-dimensional acoustic domains with complex geometry configurations. Boundary element results are very accurate when compared with limited exact solutions. Structure-interaction problems are then analyzed with the coupled FEM-BEM method, where the finite element method models the structure and the boundary element method models the interior acoustic domain. The coupled analysis is compared with exact and experimental results for a simplistic model. Composite panels are analyzed and compared with isotropic results. The coupled method is then extended for random excitation. Random excitation results are compared with uncoupled results for isotropic and composite panels.
Armitage, David W
2017-11-01
Ecosystem development theory predicts that successional turnover in community composition can influence ecosystem functioning. However, tests of this theory in natural systems are made difficult by a lack of replicable and tractable model systems. Using the microbial digestive associates of a carnivorous pitcher plant, I tested hypotheses linking host age-driven microbial community development to host functioning. Monitoring the yearlong development of independent microbial digestive communities in two pitcher plant populations revealed a number of trends in community succession matching theoretical predictions. These included mid-successional peaks in bacterial diversity and metabolic substrate use, predictable and parallel successional trajectories among microbial communities, and convergence giving way to divergence in community composition and carbon substrate use. Bacterial composition, biomass, and diversity positively influenced the rate of prey decomposition, which was in turn positively associated with a host leaf's nitrogen uptake efficiency. Overall digestive performance was greatest during late summer. These results highlight links between community succession and ecosystem functioning and extend succession theory to host-associated microbial communities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McHugh, Theresa A.; Morrissey, Ember M.; Mueller, Rebecca C.
Nitrogen (N) deposition affects myriad aspects of terrestrial ecosystem structure and function, and microbial communities may be particularly sensitive to anthropogenic N inputs. However, our understanding of N deposition effects on microbial communities is far from complete, especially for drylands where data are comparatively rare. To address the need for an improved understanding of dryland biological responses to N deposition, we conducted a two-year fertilization experiment in a semiarid grassland on the Colorado Plateau in the southwestern United States. We evaluated effects of varied levels of N inputs on archaeal, bacterial, fungal and chlorophyte community composition within three microhabitats: biologicalmore » soil crusts (biocrusts), soil below biocrusts, and the plant rhizosphere. Surprisingly, N addition did not affect the community composition or diversity of any of these microbial groups; however, microbial community composition varied significantly among sampling microhabitats. Further, while plant richness, diversity, and cover showed no response to N addition, there were strong linkages between plant properties and microbial community structure. Overall, these findings highlight the potential for some dryland communities to have limited biotic ability to retain augmented N inputs, possibly leading to large N losses to the atmosphere and to aquatic systems.« less
McHugh, Theresa A.; Morrissey, Ember M.; Mueller, Rebecca C.; ...
2017-03-13
Nitrogen (N) deposition affects myriad aspects of terrestrial ecosystem structure and function, and microbial communities may be particularly sensitive to anthropogenic N inputs. However, our understanding of N deposition effects on microbial communities is far from complete, especially for drylands where data are comparatively rare. To address the need for an improved understanding of dryland biological responses to N deposition, we conducted a two-year fertilization experiment in a semiarid grassland on the Colorado Plateau in the southwestern United States. We evaluated effects of varied levels of N inputs on archaeal, bacterial, fungal and chlorophyte community composition within three microhabitats: biologicalmore » soil crusts (biocrusts), soil below biocrusts, and the plant rhizosphere. Surprisingly, N addition did not affect the community composition or diversity of any of these microbial groups; however, microbial community composition varied significantly among sampling microhabitats. Further, while plant richness, diversity, and cover showed no response to N addition, there were strong linkages between plant properties and microbial community structure. Overall, these findings highlight the potential for some dryland communities to have limited biotic ability to retain augmented N inputs, possibly leading to large N losses to the atmosphere and to aquatic systems.« less
Determination of sex-ratio by birth order in an urban community in Manipur.
Brogen, Akoijam S; Shantibala, K; Rajkumari, Bishwalata; Laishram, Jalina
2009-01-01
To determine the sex ratio by birth order and to assess the sex preference of the couples in an urban community. A cross sectional study, in an urban community in Manipur, was conducted among the currently married couples. Data on background characteristics of the couple, family pedigree chart (of the offspring) including history of abortion, stillbirth, death of child of the couple, sex preference and Pre-natal Diagnostic Techniques (Regulation and Prevention of Misuse) Act [PNDT Act] were collected through a structured interview. Data were analyzed using descriptive and chi-square statistics. There were a total of 1777 births to the 855 couples interviewed. There were 900 females per 1000 males for the 1st birth order but the sex ratio was favorable towards females in the 2nd, 3rd and 4th birth orders. Among both the husbands and wives, being more educated was significantly associated (p<0.05) with preferring lesser number of children, using new technology for sex selection and having heard of the PNDT Act. Majority of those who wanted to use new technology for sex selection (128, 56.6%) preferred to have male child. Sex ratio in this community was favorable towards females, though it was less among the first born babies.
Graham, Nicholas A. J.; Chong-Seng, Karen M.; Huchery, Cindy; Januchowski-Hartley, Fraser A.; Nash, Kirsty L.
2014-01-01
Much research on coral reefs has documented differential declines in coral and associated organisms. In order to contextualise this general degradation, research on community composition is necessary in the context of varied disturbance histories and the biological processes and physical features thought to retard or promote recovery. We conducted a spatial assessment of coral reef communities across five reefs of the central Great Barrier Reef, Australia, with known disturbance histories, and assessed patterns of coral cover and community composition related to a range of other variables thought to be important for reef dynamics. Two of the reefs had not been extensively disturbed for at least 15 years prior to the surveys. Three of the reefs had been severely impacted by crown-of-thorns starfish outbreaks and coral bleaching approximately a decade before the surveys, from which only one of them was showing signs of recovery based on independent surveys. We incorporated wave exposure (sheltered and exposed) and reef zone (slope, crest and flat) into our design, providing a comprehensive assessment of the spatial patterns in community composition on these reefs. Categorising corals into life history groupings, we document major coral community differences in the unrecovered reefs, compared to the composition and covers found on the undisturbed reefs. The recovered reef, despite having similar coral cover, had a different community composition from the undisturbed reefs, which may indicate slow successional processes, or a different natural community dominance pattern due to hydrology and other oceanographic factors. The variables that best correlated with patterns in the coral community among sites included the density of juvenile corals, herbivore fish biomass, fish species richness and the cover of macroalgae. Given increasing impacts to the Great Barrier Reef, efforts to mitigate local stressors will be imperative to encouraging coral communities to persist into the future. PMID:24983747
Further development of high temperature-resistant graphite fiber coupling agents
NASA Technical Reports Server (NTRS)
Griffin, R. N.
1976-01-01
Potential coupling agents for graphite fibers were screened by their effect on the weight losses of Thornel 300, HMS, and HTS fibers at 588K for 200 and 400 hours. Unidirectional laminates were made from HMS and HTS fibers, untreated, and treated with each of the seven coupling agents. The matrix of all laminates was PMR polyimide (PMR-PR). On the basis of the best overall retention of elevated temperature interlaminar shear strength after 200 hours at 588K, composite weight after 200 hours at 588K, and fiber weight after 400 hours at 588K, ventromer T-1 applied from aqueous solution and pyrolyzed PPQ were selected for further evaluation as coupling agents for HTS fiber while ventromer T-2 and pyrolyzed PPQ were selected as coupling agents for HMS fiber. It was shown that pyrolyzed PPQ as a coupling agent improves the oxidative stability of HTS/PMR-PI composites.
USDA-ARS?s Scientific Manuscript database
The importance of rhizodeposit C and associated microbial communities in deep soil C stabilization is relatively unknown. Phenotypic variability in plant root biomass could impact C cycling through belowground plant allocation, rooting architecture, and microbial community abundance and composition...
NASA Astrophysics Data System (ADS)
Poelking, E. L.; Schaefer, C. E. R.; Fernandes Filho, E. I.; de Andrade, A. M.; Spielmann, A. A.
2014-08-01
Integrated studies on the interplay between soils, periglacial geomorphology and plant communities are crucial for the understanding of climate change effects on terrestrial ecosystems of Maritime Antarctica, one of the most sensitive areas to global warming. Knowledge on physical environmental factors that influence plant communities can greatly benefit studies on monitoring climate change in Maritime Antarctica, where new ice-free areas are being constantly exposed, allowing plant growth and organic carbon inputs. The relationship between topography, plant communities and soils was investigated in Potter Peninsula, King George Island, Maritime Antarctica. We mapped the occurrence and distribution of plant communities and identified soil-landform-vegetation relationships. The vegetation map was obtained by classification of a Quickbird image, coupled with detailed landform and characterization of 18 soil profiles. The sub-formations were identified and classified, and we also determined the total elemental composition of lichens, mosses and grasses. Plant communities at Potter Peninsula occupy 23% of the ice-free area, at different landscape positions, showing decreasing diversity and biomass from the coastal zone to inland areas where sub-desert conditions prevail. There is a clear dependency between landform and vegetated soils. Soils with greater moisture or poorly drained, and acid to neutral pH, are favourable for mosses subformations. Saline, organic-matter rich ornithogenic soils of former penguin rookeries have greater biomass and diversity, with mixed associations of mosses and grasses, while stable felseenmeers and flat rocky cryoplanation surfaces are the preferred sites for Usnea and Himantormia lugubris lichens, at the highest surface. Lichens subformations cover the largest vegetated area, showing varying associations with mosses.
Li, Weibin; Xu, Chunguang; Cho, Younho
2016-02-19
Laminate composites which are widely used in the aeronautical industry, are usually subjected to frequency variation of environmental temperature and excessive humidity in the in-service environment. The thermal fatigue and moisture absorption in composites may induce material degradation. There is a demand to investigate the coupling damages mechanism and characterize the degradation evolution of composite laminates for the particular application. In this paper, the degradation evolution in unidirectional carbon/epoxy composite laminates subjected to thermal fatigue and moisture absorption is characterized by Lamb waves. The decrease rate of Lamb wave velocity is used to track the degradation evolution in the specimens. The results show that there are two stages for the progressive degradation of composites under the coupling effect of thermal cyclic loading and moisture diffusion. The present work provides an alternative to monitoring the degradation evolution of in-service aircraft composite Laminates.
Shen, Li-Dong; Wu, Hong-Sheng; Gao, Zhi-Qiu; Liu, Xu; Li, Ji
2016-05-09
Methane oxidation coupled to nitrite reduction is mediated by 'Candidatus Methylomirabilis oxyfera' (M. oxyfera), which belongs to the NC10 phylum. In this study, the community composition and diversity of M. oxyfera-like bacteria of NC10 phylum were examined and compared in four different freshwater habitats, including reservoir sediments (RS), pond sediments (PS), wetland sediments (WS) and paddy soils (PAS), by using Illumina-based 16S rRNA gene sequencing. The recovered NC10-related sequences accounted for 0.4-2.5% of the 16S rRNA pool in the examined habitats, and the highest percentage was found in WS. The diversity of NC10 bacteria were the highest in RS, medium in WS, and lowest in PS and PAS. The observed number of OTUs (operational taxonomic unit; at 3% cut-off) were 97, 46, 61 and 40, respectively, in RS, PS, WS and PAS. A heterogeneous distribution of NC10 bacterial communities was observed in the examined habitats, though group B members were the dominant bacteria in each habitat. The copy numbers of NC10 bacterial 16S rRNA genes ranged between 5.8 × 10(6) and 3.2 × 10(7) copies g(-1) sediment/soil in the examined habitats. These results are helpful for a systematic understanding of NC10 bacterial communities in different types of freshwater habitats.
NASA Astrophysics Data System (ADS)
Plumer, M. L.; Almudallal, A. M.; Mercer, J. I.; Whitehead, J. P.; Fal, T. J.
The kinetic Monte Carlo (KMC) method developed for thermally activated magnetic reversal processes in single-layer recording media has been extended to study dual-layer Exchange Coupled Composition (ECC) media used in current and next generations of disc drives. The attempt frequency is derived from the Langer formalism with the saddle point determined using a variant of Bellman Ford algorithm. Complication (such as stagnation) arising from coupled grains having metastable states are addressed. MH-hysteresis loops are calculated over a wide range of anisotropy ratios, sweep rates and inter-layer coupling parameter. Results are compared with standard micromagnetics at fast sweep rates and experimental results at slow sweep rates.
Testing the functional significance of microbial community composition.
Michael S. Strickland; Christian Lauber; Noah Fierer; Mark A. Bradford
2009-01-01
A critical assumption underlying terrestrial ecosystem models is that soil microbial communities, when placed in a common environment, will function in an identical manner regardless of the composition...
He, Zhili; Piceno, Yvette; Deng, Ye; Xu, Meiying; Lu, Zhenmei; Desantis, Todd; Andersen, Gary; Hobbie, Sarah E; Reich, Peter B; Zhou, Jizhong
2012-02-01
One of the major factors associated with global change is the ever-increasing concentration of atmospheric CO(2). Although the stimulating effects of elevated CO(2) (eCO(2)) on plant growth and primary productivity have been established, its impacts on the diversity and function of soil microbial communities are poorly understood. In this study, phylogenetic microarrays (PhyloChip) were used to comprehensively survey the richness, composition and structure of soil microbial communities in a grassland experiment subjected to two CO(2) conditions (ambient, 368 p.p.m., versus elevated, 560 p.p.m.) for 10 years. The richness based on the detected number of operational taxonomic units (OTUs) significantly decreased under eCO(2). PhyloChip detected 2269 OTUs derived from 45 phyla (including two from Archaea), 55 classes, 99 orders, 164 families and 190 subfamilies. Also, the signal intensity of five phyla (Crenarchaeota, Chloroflexi, OP10, OP9/JS1, Verrucomicrobia) significantly decreased at eCO(2), and such significant effects of eCO(2) on microbial composition were also observed at the class or lower taxonomic levels for most abundant phyla, such as Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and Acidobacteria, suggesting a shift in microbial community composition at eCO(2). Additionally, statistical analyses showed that the overall taxonomic structure of soil microbial communities was altered at eCO(2). Mantel tests indicated that such changes in species richness, composition and structure of soil microbial communities were closely correlated with soil and plant properties. This study provides insights into our understanding of shifts in the richness, composition and structure of soil microbial communities under eCO(2) and environmental factors shaping the microbial community structure.
NASA Astrophysics Data System (ADS)
Shah, Bhavesh
This dissertation focuses on overcoming existing limitations of WPCs which prevent them from realizing their full market potential. These limitations include: (i) lack of a continuous extrusion process for microcellular foaming of polyvinyl chloride (PVC) and its composites using supercritical fluids to reduce the high density of the WPCs, (ii) need for an efficient coupling agent for WPCs to overcome the poor compatibility between wood and plastic, and (iii) unproven use of wood as a filler for the biopolymer polylactide (PLA) to make "green" composites. These limitations were addressed through experimentation to develop a continuous extrusion process for microcellular foaming, and through surface modification of wood flour using natural coupling agents. The effects of wood flour, acrylic modifier and plasticizer content on the rheological properties of PVC based WPCs were studied using an extrusion capillary rheometer and a two-level factorial design. Wood flour content and acrylic modifier content were the major factors affecting the die swell ratio. Addition of plasticizer decreased the true viscosity of unfilled and filled PVC, irrespective of the acrylic modifier content. However, the addition of acrylic modifier significantly increased the viscosity of unfilled PVC but decreased the composite viscosity. Results of the rheological study were used to set baseline conditions for the continuous extrusion foaming of PVC WPCs using supercritical CO 2. Effects of material composition and processing conditions on the morphology of foamed samples were investigated. Foamed samples were produced using various material compositions and processing conditions, but steady-state conditions could not be obtained for PVC. Thus the relationships could not be determined. Incompatibility between wood flour and PVC was the focus of another study. The natural polymers chitin and chitosan were used as novel coupling agents to improve interfacial adhesion between the polymer matrix and wood fiber. Results indicated that addition of chitin and chitosan significantly increased the flexural properties and storage modulus of PVC WPCs, compared to composites without coupling agent. Significant improvements were attained with 0.5 wt. % chitosan and with 6.67 wt. % chitin. Based on the efficiency of chitosan as a coupling agent for PVC based WPCs, a biodegradable composite using polylactide (PLA) and chitosan was developed. Wood flour (0--40 wt. %) was evaluated as a filler for PLA composites and its effect on mechanical, thermal and chemical properties was studied with and without chitosan (0--10 wt. %). Addition of wood flour significantly increased the flexural and storage moduli of PLA-wood flour composites, but had no effect on glass transition temperature (Tg). Chitosan had no significant effect on any of the properties of the composites studied. Development of an efficient and effective coupling agent for PVC wood composite is a significant development which will increase performance while reducing cost. Wood filled PLA composites can further expand WPCs into applications such as packaging and automotive. Results from these studies have broadened the current knowledge base for WPC products and will be useful in the continued expansion of wood composites technology into a variety of industries.
Ellis, Christopher J; Yahr, Rebecca; Belinchón, Rocío; Coppins, Brian J
2014-07-01
The biodiversity response to climate change is a major focus in conservation research and policy. Predictive models that are used to project the impact of climate change scenarios - such as bioclimatic envelope models - are widely applied and have come under severe scrutiny. Criticisms of such models have focussed on at least two problems. First, there is an assumption that climate is the primary driver of observed species distributions ('climatic equilibrium'), when other biogeographical controls are often reliably established. Second, a species' sensitivity to macroclimate may become less relevant when impacts are down-scaled to a local level, incorporating a modifying effect of species interactions structuring communities. This article examines the role of different drivers (climate, pollution and landscape habitat structure) in explaining spatial community variation for a widely applied bioindicator group: lichen epiphytes. To provide an analysis free of 'legacy effects' (e.g. formerly higher pollution loads), the study focused on hazel stems as a relatively short-lived and recently colonized substratum. For communities during the present day, climate is shown to interact with stem size/age as the most likely explanation of community composition, thus coupling a macroclimatic and community-scale effect. The position of present-day communities was projected into ordination space for eight sites in England and compared to the position of historical epiphyte communities from the same sites, reconstructed using preserved hazel wattles dating mainly to the 16th Century. This comparison of community structure for the late- to post-Mediaeval period, with the post-Industrial period, demonstrated a consistent shift among independent sites towards warmer and drier conditions, concurrent with the end of the Little Ice Age. Long-term temporal sensitivity of epiphyte communities to climate variation thus complements spatial community patterns. If more widely applied, preserved lichen epiphytes have potential to generate new baseline conditions of environment and biodiversity for preindustrial lowland Europe. © 2014 John Wiley & Sons Ltd.
van Agtmaal, Maaike; van Os, Gera J.; Hol, W.H. Gera; Hundscheid, Maria P.J.; Runia, Willemien T.; Hordijk, Cornelis A.; de Boer, Wietse
2015-01-01
There is increasing evidence that microbial volatiles (VOCs) play an important role in natural suppression of soil-borne diseases, but little is known on the factors that influence production of suppressing VOCs. In the current study we examined whether a stress-induced change in soil microbial community composition would affect the production by soils of VOCs suppressing the plant-pathogenic oomycete Pythium. Using pyrosequencing of 16S ribosomal gene fragments we compared the composition of bacterial communities in sandy soils that had been exposed to anaerobic disinfestation (AD), a treatment used to kill harmful soil organisms, with the composition in untreated soils. Three months after the AD treatment had been finished, there was still a clear legacy effect of the former anaerobic stress on bacterial community composition with a strong increase in relative abundance of the phylum Bacteroidetes and a significant decrease of the phyla Acidobacteria, Planctomycetes, Nitrospirae, Chloroflexi, and Chlorobi. This change in bacterial community composition coincided with loss of production of Pythium suppressing soil volatiles (VOCs) and of suppression of Pythium impacts on Hyacinth root development. One year later, the composition of the bacterial community in the AD soils was reflecting that of the untreated soils. In addition, both production of Pythium-suppressing VOCs and suppression of Pythium in Hyacinth bioassays had returned to the levels of the untreated soil. GC/MS analysis identified several VOCs, among which compounds known to be antifungal, that were produced in the untreated soils but not in the AD soils. These compounds were again produced 15 months after the AD treatment. Our data indicate that soils exposed to a drastic stress can temporarily lose pathogen suppressive characteristics and that both loss and return of these suppressive characteristics coincides with shifts in the soil bacterial community composition. Our data are supporting the suggested importance of microbial VOCs in the natural buffer of soils against diseases caused by soil-borne pathogens. PMID:26217330
Karayanni, Hera; Meziti, Alexandra; Spatharis, Sofie; Genitsaris, Savvas; Courties, Claude; Kormas, Konstantinos A.
2017-01-01
Microbes are considered to have a global distribution due to their high dispersal capabilities. However, our knowledge of the way geographically distant microbial communities assemble after dispersal in a new environment is limited. In this study, we examined whether communities would converge because similar taxa would be selected under the same environmental conditions, or would diverge because of initial community composition, after artificial dispersal. To this aim, a microcosm experiment was performed, in which the temporal changes in the composition and diversity of different prokaryoplankton assemblages from three distant geographic coastal areas (Banyuls-sur-Mer in northwest Mediterranean Sea, Pagasitikos Gulf in northeast Mediterranean and Woods Hole, MA, USA in the northwest Atlantic), were studied. Diversity was investigated using amplicon pyrosequencing of the V1–V3 hypervariable regions of the 16S rRNA. The three assemblages were grown separately in particle free and autoclaved Banyuls-sur-mer seawater at 18 °C in the dark. We found that the variability of prokaryoplankton community diversity (expressed as richness, evenness and dominance) as well as the composition were driven by patterns observed in Bacteria. Regarding community composition, similarities were found between treatments at family level. However, at the OTU level microbial communities from the three different original locations diverge rather than converge during incubation. It is suggested that slight differences in the composition of the initial prokaryoplankton communities, resulted in separate clusters the following days even when growth took place under identical abiotic conditions. PMID:28587211
Liu, Daijun; Estiarte, Marc; Ogaya, Romà; Yang, Xiaohong; Peñuelas, Josep
2017-10-01
Global warming and recurring drought are expected to accelerate water limitation for plant communities in semiarid Mediterranean ecosystems and produce directional shifts in structure and composition that are not easily detected, and supporting evidence is scarce. We conducted a long-term (17 years) nocturnal-warming (+0.6°C) and drought (-40% rainfall) experiments in an early-successional Mediterranean shrubland to study the changes in community structure and composition, contrasting functional groups and dominant species, and the superimposed effects of natural extreme drought. Species richness decreased in both the warming and drought treatments. Responses to the moderate warming were associated with decreases in herb abundance, and responses to the drought were associated with decreases in both herb and shrub abundances. The drought also significantly decreased community diversity and evenness. Changes in abundance differed between herbs (decreases) and shrubs (increases or no changes). Both warming and drought, especially drought, increased the relative species richness and abundance of shrubs, favoring the establishment of shrubs. Both warming and drought produced significant shifts in plant community composition. Experimental warming shifted the community composition from Erica multiflora toward Rosmarinus officinalis, and drought consistently shifted the composition toward Globularia alypum. The responses in biodiversity (e.g., community biodiversity, changes of functional groups and compositional shifts) were also strongly correlated with atmospheric drought (SPEI) in winter-spring and/or summer, indicating sensitivity to water limitation in this early-successional Mediterranean ecosystem, especially to natural extreme droughts. Our results suggest that the shifts in species assembles and community diversity and composition are accelerated by the long-term nocturnal-warming and drought, combined with natural severe droughts, and that the magnitude of the impacts of climate change is also correlated with the successional status of ecosystem. The results thus highlight the necessity for assessing the impacts on ecosystemic functioning and services and developing effective measures for conserving biodiversity. © 2017 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, S. Y.; Shamsudin, Z.
The rheological properties of banana fibre reinforced polypropylene (PP/BF) composites at different composition were analysed using Shimadzu capillary rheometer. The effect of coupling agent concentration on the rheological properties was studied and followed by drawing a relationship of rheological-morphological properties of PP/BF composites. It was found that all composite system exhibits pseudoplasticity and incorporation of treated fibres consequents enhanced viscosity due to improved interfacial adhesion at fibre-matrix interface. However, it was observed that PP/BF composite with 2 wt% silane concentration does not yield further enhancement in the rheological properties when compared to that of 1 wt%. Composites with 1 wt%more » silane concentration were found to yield most promising compatibility effect with well-oriented and uniformly dispersed fibre morphology.« less
Vibro-acoustic analysis of composite plates
NASA Astrophysics Data System (ADS)
Sarigül, A. S.; Karagözlü, E.
2014-03-01
Vibro-acoustic analysis plays a vital role on the design of aircrafts, spacecrafts, land vehicles and ships produced from thin plates backed by closed cavities, with regard to human health and living comfort. For this type of structures, it is required a coupled solution that takes into account structural-acoustic interaction which is crucial for sensitive solutions. In this study, coupled vibro-acoustic analyses of plates produced from composite materials have been performed by using finite element analysis software. The study has been carried out for E-glass/Epoxy, Kevlar/Epoxy and Carbon/Epoxy plates with different ply angles and numbers of ply. The effects of composite material, ply orientation and number of layer on coupled vibro-acoustic characteristics of plates have been analysed for various combinations. The analysis results have been statistically examined and assessed.
PLATE WAVE RESONANCE WITH AIR-COUPLED ULTRASONICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bar, H. N.; Dayal, V.; Barnard, D.
2010-02-22
Air-coupled ultrasonic transducers can excite plate waves in metals and composites. The coincidence effect, i.e., the wave vector of plate wave coincides with projection of exciting airborne sound vector, leads to a resonance which strongly amplifies the sound transmission through the plate. The resonance depends on the angle of incidence and the frequency. In the present study, the incidence angle for maximum transmission (theta{sub max}) is measured in plates of steel, aluminum, carbon fiber reinforced composites and honeycomb sandwich panels. The variations of (theta{sub max}) with plate thickness are compared with theoretical values in steel, aluminum and quasi-isotropic carbon fibermore » composites. The enhanced transmission of air-coupled ultrasound at oblique incidence can substantially improve the probability of flaw detection in plates and especially in honeycomb structures. Experimental air-coupled ultrasonic scan of subtle flaws in CFRP laminates showed definite improvement of signal-to-noise ratio with oblique incidence at theta{sub max}.« less
Modelling electro-active polymers with a dispersion-type anisotropy
NASA Astrophysics Data System (ADS)
Hossain, Mokarram; Steinmann, Paul
2018-02-01
We propose a novel constitutive framework for electro-active polymers (EAPs) that can take into account anisotropy with a chain dispersion. To enhance actuation behaviour, particle-filled EAPs become promising candidates nowadays. Recent studies suggest that particle-filled EAPs, which can be cured under an electric field during the manufacturing time, do not necessarily form perfect anisotropic composites, rather they create composites with dispersed chains. Hence in this contribution, an electro-mechanically coupled constitutive model is devised that considers the chain dispersion with a probability distribution function in an integral form. To obtain relevant quantities in discrete form, numerical integration over the unit sphere is utilized. Necessary constitutive equations are derived exploiting the basic laws of thermodynamics that result in a thermodynamically consistent formulation. To demonstrate the performance of the proposed electro-mechanically coupled framework, we analytically solve a non-homogeneous boundary value problem, the extension and inflation of an axisymmetric cylindrical tube under electro-mechanically coupled load. The results capture various electro-mechanical couplings with the formulation proposed for EAP composites.
Nayak, Alok Ranjan; Panfilov, A V; Pandit, Rahul
2017-02-01
We present systematic numerical studies of the possible effects of the coupling of human endocardial and Purkinje cells at cellular and two-dimensional tissue levels. We find that the autorhythmic-activity frequency of the Purkinje cell in a composite decreases with an increase in the coupling strength; this can even eliminate the autorhythmicity. We observe a delay between the beginning of the action potentials of endocardial and Purkinje cells in a composite; such a delay increases as we decrease the diffusive coupling, and eventually a failure of transmission occurs. An increase in the diffusive coupling decreases the slope of the action-potential-duration-restitution curve of an endocardial cell in a composite. By using a minimal model for the Purkinje network, in which we have a two-dimensional, bilayer tissue, with a layer of Purkinje cells on top of a layer of endocardial cells, we can stabilize spiral-wave turbulence; however, for a sparse distribution of Purkinje-ventricular junctions, at which these two layers are coupled, we can also obtain additional focal activity and many complex transient regimes. We also present additional effects resulting from the coupling of Purkinje and endocardial layers and discuss the relation of our results to the studies performed in anatomically accurate models of the Purkinje network.
NASA Astrophysics Data System (ADS)
Nayak, Alok Ranjan; Panfilov, A. V.; Pandit, Rahul
2017-02-01
We present systematic numerical studies of the possible effects of the coupling of human endocardial and Purkinje cells at cellular and two-dimensional tissue levels. We find that the autorhythmic-activity frequency of the Purkinje cell in a composite decreases with an increase in the coupling strength; this can even eliminate the autorhythmicity. We observe a delay between the beginning of the action potentials of endocardial and Purkinje cells in a composite; such a delay increases as we decrease the diffusive coupling, and eventually a failure of transmission occurs. An increase in the diffusive coupling decreases the slope of the action-potential-duration-restitution curve of an endocardial cell in a composite. By using a minimal model for the Purkinje network, in which we have a two-dimensional, bilayer tissue, with a layer of Purkinje cells on top of a layer of endocardial cells, we can stabilize spiral-wave turbulence; however, for a sparse distribution of Purkinje-ventricular junctions, at which these two layers are coupled, we can also obtain additional focal activity and many complex transient regimes. We also present additional effects resulting from the coupling of Purkinje and endocardial layers and discuss the relation of our results to the studies performed in anatomically accurate models of the Purkinje network.
Speizer, Ilene S; Zule, William A; Carney, Tara; Browne, Felicia A; Ndirangu, Jacqueline; Wechsberg, Wendee M
2018-05-18
South Africa continues to experience new HIV infections, with the highest risk among Black Africans living in poor communities. Most HIV prevention interventions target women or men separately and only a small number target couples jointly. This study examines varying strategies to engage women and men around HIV prevention and improved couple interactions. The study comprises three arms: (1) a couple-based intervention delivered to women and men jointly; (2) women and men both offered a gender-focused intervention that is delivered to them separately; and (3) an intervention offered to women only and their male partners receive standard HIV testing and counseling (comparison arm). Between June 2010 and April 2012, men were identified in and around drinking establishments in a large disadvantaged community in Cape Town and asked to participate in the study if they drink regularly, had recent unprotected sex with their partner, and have a female partner who was willing to participate in the study. A total of 299 couples completed the baseline assessment and 276 were included in the analysis of sexual risk, partner communication, conflict resolution, and gender norm outcomes at baseline and six-month follow-up. Couples that participated in the couple-level intervention and couples where both partners received the intervention separately had better couple-level gender norms than couples in the comparison arm (women only receive intervention). Further, couples in the couple-level intervention and the both partners exposed separately arms were more likely to have the man only report consistent condom use than neither partner report consistent condom use than couples in the comparison arm. Community-based HIV prevention intervention programs need to consider strategies to engage women and men and, if feasible, reach both partners jointly. Couple-level interventions are promising to improve gender norms and subsequently improve health outcomes, including reduced HIV risk among women, men, and couples. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Stegen, J.; Johnson, T. C.; Fredrickson, J.; Wilkins, M.; Konopka, A.; Nelson, W.; Arntzen, E.; Chrisler, W.; Chu, R. K.; Fansler, S.; Kennedy, D.; Resch, T.; Tfaily, M. M.
2015-12-01
The hyporheic zone (HZ) is a critical ecosystem component that links terrestrial, surface water, and groundwater ecosystems. A dominant feature of the HZ is groundwater-surface water mixing and the input of terrestrially—as well as aquatically—derived organic carbon. In many systems the HZ has a relatively small spatial extent, but in larger riverine systems groundwater-surface water mixing can occur 100s of meters beyond the surface water shoreline; we consider these more distal locations to be within the 'subsurface interaction zone' (SIZ) as they are beyond the traditional HZ. Microbial communities in the HZ and SIZ drive biogeochemical processes in these system components, yet relatively little is known about the ecological processes that drive HZ and SIZ microbial communities. Here, we applied ecological theory, aqueous biogeochemistry, DNA sequencing, and ultra-high resolution organic carbon profiling to field samples collected through space (400m spatial extent) and time (7 month temporal extent) within the Hanford Site 300 Area. These data streams were integrated to evaluate how the influence of groundwater-surface water mixing on microbial communities changes when moving from the HZ to the broader SIZ. Our results indicate that groundwater-surface water mixing (i) consistently stimulated heterotrophic respiration, but only above a threshold of surface water intrusion, (ii) did not stimulate denitrification, (iii) caused deterministic shifts in HZ microbial communities due to changes in organic carbon composition, and (iv) did not cause shifts in SIZ microbial communities. These results suggest that microbial communities and the biogeochemical processes they drive are impacted by groundwater-surface water mixing primarily in the HZ and to a lesser extent in the SIZ.
NASA Astrophysics Data System (ADS)
Allison, S. D.; Martiny, J. B. H.; Martiny, A.; Berlemont, R.; Treseder, K. K.; Goulden, M.; Brodie, E.
2016-12-01
Predicting the functioning of microbial communities under changing environmental conditions remains a key challenge in Earth system science. Metagenomics and other high-throughput molecular approaches can help address this challenge by revealing the functional potential of microbial communities. We coupled metagenomics with models and experimental manipulations to address microbial responses to drought in a California grassland ecosystem along with the consequences for carbon cycling. We developed an approach for extracting trait information from metagenomic data and asked: 1) What is the phylogenetic structure of drought response traits? 2) What is the relationship between these traits and those involved in carbohydrate degradation? 3) How do both classes of traits vary seasonally and with precipitation manipulation? 4) How resilient are these traits in the face of perturbation? We found that drought response traits are phylogenetically conserved at an equivalent of 5-8% ribosomal RNA gene sequence dissimilarity. Experimental drought treatment selected for the genetic potential to degrade starch, xylan, and mixed polysaccharides, suggesting a link between drought response and carbon cycling traits. In addition, microbial communities exposed to experimental drought showed a reduced potential to degrade plant biomass. Particularly among bacteria, seasonal drought had a larger impact on microbial composition, abundance, and carbohydrate-degrading genes compared to experimental drought. Bacterial communities were also more resilient to drought perturbation than fungal communities, which showed legacies of drought perturbation for up to three years. Altogether, these findings imply that microbial communities exhibit trait diversity that facilitates resilience but with substantial time lags and consequences for carbon turnover. This information is being used to inform new trait-based models that address the challenge of predicting microbial functioning under precipitation change.
Grassland vegetation and bird communities in the southern Great Plains of North America
Chapman, R.N.; Engle, David M.; Masters, R.E.; Leslie, David M.
2004-01-01
Structure and composition of vegetation and abundance of breeding birds in grasslands seeded to Old World bluestem (Bothriochloa ischmaeum) were compared to native mixed prairie in the southern Great Plains of North America. Abundance of birds was determined using fixed-radius point counts. Detrended correspondence analysis was used to compare plant community composition and canonical correspondence analysis was used to examine the relationships between plant species composition and vegetation structure with the bird community. Plant species composition differed distinctly between seeded grassland and native mixed prairie, but the differences were not reflected in habitat structure, bird community composition, or abundance of bird species. Seeded grassland was inferior to native mixed prairie in terms of diversity of plant species, but that difference did not translate into meaningful differences in structure that drove habitat selection by breeding birds. Conservation programs that promote establishment of seeded grassland and do not allow for suitable disturbance regimes will selectively benefit a narrow suite of birds regardless of plant species composition. ?? 2004 Elsevier B.V. All rights reserved.
Kidd, Haack S.; Garchow, H.; Odelson, D.A.; Forney, L.J.; Klug, M.J.
1994-01-01
We determined the accuracy and reproducibility of whole-community fatty acid methyl ester (FAME) analysis with two model bacterial communities differing in composition by using the Microbial ID, Inc. (MIDI), system. The biomass, taxonomic structure, and expected MIDI-FAME profiles under a variety of environmental conditions were known for these model communities a priori. Not all members of each community could be detected in the composite profile because of lack of fatty acid 'signatures' in some isolates or because of variations (approximately fivefold) in fatty acid yield across taxa. MIDI- FAME profiles of replicate subsamples of a given community were similar in terms of fatty acid yield per unit of community dry weight and relative proportions of specific fatty acids. Principal-components analysis (PCA) of MIDI-FAME profiles resulted in a clear separation of the two different communities and a clustering of replicates of each community from two separate experiments on the first PCA axis. The first PCA axis accounted for 57.1% of the variance in the data and was correlated with fatty acids that varied significantly between communities and reflected the underlying community taxonomic structure. On the basis of our data, community fatty acid profiles can be used to assess the relative similarities and differences of microbial communities that differ in taxonomic composition. However, detailed interpretation of community fatty acid profiles in terms of biomass or community taxonomic composition must be viewed with caution until our knowledge of the quantitative and qualitative distribution of fatty acids over a wide variety of taxa and the effects of growth conditions on fatty acid profiles is more extensive.
NASA Astrophysics Data System (ADS)
Stegen, J.; Bottos, E. M.; Kennedy, D.; Romero, E. B.; Fansler, S.; Chu, R. K.; Tfaily, M.; Jansson, J.; Bernstein, H. C.; Brown, J. M.; Markillie, L. M.
2017-12-01
Understanding drivers of permafrost microbial community structure and function is critical for understanding permafrost microbiology and predicting ecosystem responses to thaw; however, studies describing ecological controls on these communities are lacking. We hypothesize that permafrost communities are uniquely shaped by constraints imposed by prolonged freezing, and decoupled from the selective factors that influence non-permafrost soil communities, but that pre-thaw environmental and community characteristics will be strong determinants of community structure and function post-thaw. We characterized patterns of environmental variation and microbial community composition in sixty permafrost samples spanning landscape gradients in a boreal forest watershed, and monitored community responses to thaw. Consistent with our hypothesis, we found that, proportionally, the strongest process influencing permafrost community composition was dispersal limitation (0.36), exceeding the influence of homogenous selection (0.21) and variable selection (0.16), and that deterministic selection arose primarily from energetic constraints of the permafrost environment. Our data supported a structural equation model in which organic carbon thermodynamics and organic acid content, influenced redox conditions and total selection. Post-thaw community composition was found to be driven primarily by pre-thaw community composition, indicating a strong influence of historical conditions. Together, these results suggest that community responses to thaw may be highly varied over short distances and that changes in community structure and function are likely to be drastic, as changes to system hydrology mobilize organisms and nutrients, thereby relieving the primary constraints on the system. These findings are being integrated with metabolomic and metatranscriptomic analyses to improve understanding of how pre-thaw conditions can be used to predict microbial activity post-thaw.
Potential Impacts of Climate Change on Insect Communities: A Transplant Experiment
Nooten, Sabine S.; Andrew, Nigel R.; Hughes, Lesley
2014-01-01
Climate change will have profound impacts on the distribution, abundance and ecology of all species. We used a multi-species transplant experiment to investigate the potential effects of a warmer climate on insect community composition and structure. Eight native Australian plant species were transplanted into sites approximately 2.5°C (mean annual temperature) warmer than their native range. Subsequent insect colonisation was monitored for 12 months. We compared the insect communities on transplanted host plants at the warmer sites with control plants transplanted within the species' native range. Comparisons of the insect communities were also made among transplanted plants at warmer sites and congeneric plant species native to the warmer transplant area. We found that the morphospecies composition of the colonising Coleoptera and Hemiptera communities differed markedly between transplants at the control compared to the warmer sites. Community structure, as described by the distribution of feeding guilds, was also found to be different between the controls and transplants when the entire Coleoptera and Hemiptera community, including non-herbivore feeding guilds, was considered. However, the structure of the herbivorous insect community showed a higher level of consistency between plants at control and warm sites. There were marked differences in community composition and feeding guild structure, for both herbivores and non-herbivores, between transplants and congenerics at the warm sites. These results suggest that as the climate warms, considerable turnover in the composition of insect communities may occur, but insect herbivore communities may retain elements of their present-day structure. PMID:24465827
Stratil, Stephanie B; Neulinger, Sven C; Knecht, Henrik; Friedrichs, Anette K; Wahl, Martin
2014-05-01
Epibiotic biofilms have the potential to control major aspects of the biology and ecology of their hosts. Their composition and function may thus be essential for the health of the host. We tested the influence of salinity on the composition of epibacterial communities associated with the brown macroalga Fucus vesiculosus. Algal individuals were incubated at three salinities (5, 19, and 25) for 14 days and nonliving reference substrata (stones) were included in the experiment. Subsequently, the composition of their surface-associated bacterial communities was analyzed by 454 pyrosequencing of 16S rRNA gene sequences. Redundancy analysis revealed that the composition of epiphytic and epilithic communities significantly differed and were both affected by salinity. We found that 5% of 2494 epiphytic operational taxonomic units at 97% sequence similarity were responsible for the observed shifts. Epibacterial α-diversity was significantly lower at salinity 5 but did not differ between substrata. Our results indicate that salinity is an important factor in structuring alga-associated epibacterial communities with respect to composition and/or diversity. Whether direct or indirect mechanisms (via altered biotic interactions) may have been responsible for the observed shifts is discussed. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Beazley, Lindsay; Kenchington, Ellen; Yashayaev, Igor; Murillo, Francisco Javier
2015-04-01
Deep-water sponges are considered ecosystem engineers, and the presence of large aggregations of these organisms, commonly referred to as sponge grounds, is associated with enhanced biodiversity and abundance of epibenthic fauna compared to non-sponge habitat. However, the degree and magnitude to which the presence of these sponge grounds elicits large changes in composition of the associated megafaunal community remains unknown. Here we identify the external drivers of epibenthic megafaunal community composition and explore the patterns and magnitude of compositional change in the megafaunal community within the sponge grounds of the Sackville Spur, northwest Atlantic. Epibenthic megafauna were quantified from five image transects collected on the Sackville Spur in 2009 between 1080 and 1723 m depth. Using Gradient Forest Modelling we found that the abundance of structure-forming sponges was the most important variable for predicting compositional patterns in the Sackville Spur megafaunal community, followed by depth, range in bottom current speed, in situ salinity, and longitude. Along the gradient in structure-forming sponge abundance, the largest turnover in megafaunal community composition occurred when the sponges reached 15 individuals m-2. Examination of the regional hydrographic conditions suggests that the dense sponge grounds of the Sackville Spur are associated with a warm, salty water mass that occurs between ~1300 and 1800 m.
Semenova, Tatiana A.; Morgado, Luis N.; Welker, Jeffrey M.
2016-01-01
We characterized fungal communities in dry and moist tundra and investigated the effect of long-term experimental summer warming on three aspects of functional groups of arctic fungi: richness, community composition and species abundance. Warming had profound effects on community composition, abundance, and, to a lesser extent, on richness of fungal functional groups. In addition, our data show that even within functional groups, the direction and extent of response to warming tend to be species-specific and we recommend that studies on fungal communities and their roles in nutrient cycling take into account species-level responses. PMID:27881760
Almado, Roosevelt P; Miazaki, Angela S; Diniz, Écio S; Moreira, Luis C B; Meira-Neto, João A.A.
2016-01-01
Abstract Background To understand the impacts of global changes on future community compositions, knowledge of community dynamics is of crucial importance. To improve our knowledge of community composition, biomass stock and maintenance of gallery forests in the Brazilian Cerrado, we provide two datasets from the 0.5 ha Corrego Fazendinha Gallery Forest Dynamics Plot and the Corrego Fundo Gallery Forest Dynamics Plot situated in the Bom Despacho region, Minas Gerais, Southeastern Brazil. New information We report diameter at breast height, basal area and height measurements of 3417 trees and treelets identified during three censuses in both areas. PMID:27660529
Moora, Mari; Davison, John; Öpik, Maarja; Metsis, Madis; Saks, Ülle; Jairus, Teele; Vasar, Martti; Zobel, Martin
2014-12-01
Arbuscular mycorrhizal (AM) fungi play an important role in ecosystems, but little is known about how soil AM fungal community composition varies in relation to habitat type and land-use intensity. We molecularly characterized AM fungal communities in soil samples (n = 88) from structurally open (permanent grassland, intensive and sustainable agriculture) and forested habitats (primeval forest and spruce plantation). The habitats harboured significantly different AM fungal communities, and there was a broad difference in fungal community composition between forested and open habitats, the latter being characterized by higher average AM fungal richness. Within both open and forest habitats, intensive land use significantly influenced community composition. There was a broad difference in the phylogenetic structure of AM fungal communities between mechanically disturbed and nondisturbed habitats. Taxa from Glomeraceae served as indicator species for the nondisturbed habitats, while taxa from Archaeosporaceae, Claroideoglomeraceae and Diversisporaceae were indicators for the disturbed habitats. The distribution of these indicator taxa among habitat types in the MaarjAM global database of AM fungal diversity was in accordance with their local indicator status. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Armstrong, Alacia; Valverde, Angel; Ramond, Jean-Baptiste; Makhalanyane, Thulani P.; Jansson, Janet K.; Hopkins, David W.; Aspray, Thomas J.; Seely, Mary; Trindade, Marla I.; Cowan, Don A.
2016-01-01
The temporal dynamics of desert soil microbial communities are poorly understood. Given the implications for ecosystem functioning under a global change scenario, a better understanding of desert microbial community stability is crucial. Here, we sampled soils in the central Namib Desert on sixteen different occasions over a one-year period. Using Illumina-based amplicon sequencing of the 16S rRNA gene, we found that α-diversity (richness) was more variable at a given sampling date (spatial variability) than over the course of one year (temporal variability). Community composition remained essentially unchanged across the first 10 months, indicating that spatial sampling might be more important than temporal sampling when assessing β-diversity patterns in desert soils. However, a major shift in microbial community composition was found following a single precipitation event. This shift in composition was associated with a rapid increase in CO2 respiration and productivity, supporting the view that desert soil microbial communities respond rapidly to re-wetting and that this response may be the result of both taxon-specific selection and changes in the availability or accessibility of organic substrates. Recovery to quasi pre-disturbance community composition was achieved within one month after rainfall. PMID:27680878
Armstrong, Alacia; Valverde, Angel; Ramond, Jean-Baptiste; Makhalanyane, Thulani P; Jansson, Janet K; Hopkins, David W; Aspray, Thomas J; Seely, Mary; Trindade, Marla I; Cowan, Don A
2016-09-29
The temporal dynamics of desert soil microbial communities are poorly understood. Given the implications for ecosystem functioning under a global change scenario, a better understanding of desert microbial community stability is crucial. Here, we sampled soils in the central Namib Desert on sixteen different occasions over a one-year period. Using Illumina-based amplicon sequencing of the 16S rRNA gene, we found that α-diversity (richness) was more variable at a given sampling date (spatial variability) than over the course of one year (temporal variability). Community composition remained essentially unchanged across the first 10 months, indicating that spatial sampling might be more important than temporal sampling when assessing β-diversity patterns in desert soils. However, a major shift in microbial community composition was found following a single precipitation event. This shift in composition was associated with a rapid increase in CO 2 respiration and productivity, supporting the view that desert soil microbial communities respond rapidly to re-wetting and that this response may be the result of both taxon-specific selection and changes in the availability or accessibility of organic substrates. Recovery to quasi pre-disturbance community composition was achieved within one month after rainfall.
Predictability of bee community composition after floral removals differs by floral trait group.
Urban-Mead, Katherine R
2017-11-01
Plant-bee visitor communities are complex networks. While studies show that deleting nodes alters network topology, predicting these changes in the field remains difficult. Here, a simple trait-based approach is tested for predicting bee community composition following disturbance. I selected six fields with mixed cover of flower species with shallow (open) and deep (tube) nectar access, and removed all flowers or flower heads of species of each trait in different plots paired with controls, then observed bee foraging and composition. I compared the bee community in each manipulated plot with bees on the same flower species in control plots. The bee morphospecies composition in manipulations with only tube flowers remaining was the same as that in the control plots, while the bee morphospecies on only open flowers were dissimilar from those in control plots. However, the proportion of short- and long-tongued bees on focal flowers did not differ between control and manipulated plots for either manipulation. So, bees within some functional groups are more strongly linked to their floral trait partners than others. And, it may be more fruitful to describe expected bee community compositions in terms of relative proportions of relevant ecological traits than species, particularly in species-diverse communities. © 2017 The Author(s).
Soil resources and topography shape local tree community structure in tropical forests
Baldeck, Claire A.; Harms, Kyle E.; Yavitt, Joseph B.; John, Robert; Turner, Benjamin L.; Valencia, Renato; Navarrete, Hugo; Davies, Stuart J.; Chuyong, George B.; Kenfack, David; Thomas, Duncan W.; Madawala, Sumedha; Gunatilleke, Nimal; Gunatilleke, Savitri; Bunyavejchewin, Sarayudh; Kiratiprayoon, Somboon; Yaacob, Adzmi; Supardi, Mohd N. Nur; Dalling, James W.
2013-01-01
Both habitat filtering and dispersal limitation influence the compositional structure of forest communities, but previous studies examining the relative contributions of these processes with variation partitioning have primarily used topography to represent the influence of the environment. Here, we bring together data on both topography and soil resource variation within eight large (24–50 ha) tropical forest plots, and use variation partitioning to decompose community compositional variation into fractions explained by spatial, soil resource and topographic variables. Both soil resources and topography account for significant and approximately equal variation in tree community composition (9–34% and 5–29%, respectively), and all environmental variables together explain 13–39% of compositional variation within a plot. A large fraction of variation (19–37%) was spatially structured, yet unexplained by the environment, suggesting an important role for dispersal processes and unmeasured environmental variables. For the majority of sites, adding soil resource variables to topography nearly doubled the inferred role of habitat filtering, accounting for variation in compositional structure that would previously have been attributable to dispersal. Our results, illustrated using a new graphical depiction of community structure within these plots, demonstrate the importance of small-scale environmental variation in shaping local community structure in diverse tropical forests around the globe. PMID:23256196
Post-Fire Recovery in Coastal Sage Scrub: Seed Rain and Community Trajectory.
Conlisk, Erin; Swab, Rebecca; Martínez-Berdeja, Alejandra; Daugherty, Matthew P
2016-01-01
Disturbance is a primary mechanism structuring ecological communities. However, human activity has the potential to alter the frequency and intensity of natural disturbance regimes, with subsequent effects on ecosystem processes. In Southern California, human development has led to increased fire frequency close to urban areas that can form a positive feedback with invasive plant spread. Understanding how abiotic and biotic factors structure post-fire plant communities is a critical component of post-fire management and restoration. In this study we considered a variety of mechanisms affecting post-fire vegetation recovery in Riversidean sage scrub. Comparing recently burned plots to unburned plots, we found that burning significantly reduced species richness and percent cover of exotic vegetation the first two years following a 100-hectare wildfire. Seed rain was higher in burned plots, with more native forb seeds, while unburned plots had more exotic grass seeds. Moreover, there were significant correlations between seed rain composition and plant cover composition the year prior and the year after. Collectively, this case study suggests that fire can alter community composition, but there was not compelling evidence of a vegetation-type conversion. Instead, the changes in the community composition were temporary and convergence in community composition was apparent within two years post-fire.
Hamylton, Sarah
2014-01-01
A geomorphic assessment of reef system calcification is conducted for past (3200 Ka to present), present and future (2010–2100) time periods. Reef platform sediment production is estimated at 569 m3 yr−1 using rate laws that express gross community carbonate production as a function of seawater aragonite saturation, community composition and rugosity and incorporating estimates of carbonate removal from the reef system. Key carbonate producers including hard coral, crustose coralline algae and Halimeda are mapped accurately (mean R2 = 0.81). Community net production estimates correspond closely to independent census-based estimates made in-situ (R2 = 0.86). Reef-scale outputs are compared with historic rates of production generated from (i) radiocarbon evidence of island deposition initiation around 3200 years ago, and (ii) island volume calculated from a high resolution island digital elevation model. Contemporary carbonate production rates appear to be remarkably similar to historical values of 573 m3 yr−1. Anticipated future seawater chemistry parameters associated with an RCP8.5 emissions scenario are employed to model rates of net community calcification for the period 2000–2100 on the basis of an inorganic aragonite precipitation law, under the assumption of constant benthic community character. Simulations indicate that carbonate production will decrease linearly to a level of 118 m3 yr−1 by 2100 and that by 2150 aragonite saturation levels may no longer support the positive budgetary status necessary to sustain island accretion. Novel aspects of this assessment include the development of rate law parameters to realistically represent the variable composition of coral reef benthic carbonate producers, incorporation of three dimensional rugosity of the entire reef platform and the coupling of model outputs with both historical radiocarbon dating evidence and forward hydrochemical projections to conduct an assessment of island evolution through time. By combining several lines of evidence in a deterministic manner, an assessment of changes in carbonate production is carried out that has tangible geomorphic implications for sediment availability and associated island evolution. PMID:24759700
Hamylton, Sarah
2014-01-01
A geomorphic assessment of reef system calcification is conducted for past (3200 Ka to present), present and future (2010-2100) time periods. Reef platform sediment production is estimated at 569 m3 yr-1 using rate laws that express gross community carbonate production as a function of seawater aragonite saturation, community composition and rugosity and incorporating estimates of carbonate removal from the reef system. Key carbonate producers including hard coral, crustose coralline algae and Halimeda are mapped accurately (mean R2 = 0.81). Community net production estimates correspond closely to independent census-based estimates made in-situ (R2 = 0.86). Reef-scale outputs are compared with historic rates of production generated from (i) radiocarbon evidence of island deposition initiation around 3200 years ago, and (ii) island volume calculated from a high resolution island digital elevation model. Contemporary carbonate production rates appear to be remarkably similar to historical values of 573 m3 yr-1. Anticipated future seawater chemistry parameters associated with an RCP8.5 emissions scenario are employed to model rates of net community calcification for the period 2000-2100 on the basis of an inorganic aragonite precipitation law, under the assumption of constant benthic community character. Simulations indicate that carbonate production will decrease linearly to a level of 118 m3 yr-1 by 2100 and that by 2150 aragonite saturation levels may no longer support the positive budgetary status necessary to sustain island accretion. Novel aspects of this assessment include the development of rate law parameters to realistically represent the variable composition of coral reef benthic carbonate producers, incorporation of three dimensional rugosity of the entire reef platform and the coupling of model outputs with both historical radiocarbon dating evidence and forward hydrochemical projections to conduct an assessment of island evolution through time. By combining several lines of evidence in a deterministic manner, an assessment of changes in carbonate production is carried out that has tangible geomorphic implications for sediment availability and associated island evolution.
The assembly of ecological communities inferred from taxonomic and functional composition
Eric R. Sokol; E.F. Benfield; Lisa K. Belden; H. Maurice. Valett
2011-01-01
Among-site variation in metacommunities (beta diversity) is typically correlated with the distance separating the sites (spatial lag). This distance decay in similarity pattern has been linked to both niche-based and dispersal-based community assembly hypotheses. Here we show that beta diversity patterns in community composition, when supplemented with functional-trait...
Spatial and temporal patterns in zooplankton community composition and abundance in near-coastal areas of the Gulf of Mexico are not well understood. This survey provides information on spatial and temporal differences in zoolplankton community composition and abundance for a coa...
Fragmentation of forest communities in the eastern United States
Kurt Riitters; John Coulston; James Wickham
2011-01-01
Forest fragmentation threatens the sustainability of forest communities in the eastern United States. Forest communities exhibiting either a low total area or low percentage of intact forest are subject to relatively higher risk of shifts in stand composition towards edge-adapted and invasive species. Such changes in stand composition could result in local extirpation...
ERIC Educational Resources Information Center
Parks, Paula L.
2014-01-01
Most developmental community college students are not completing the composition sequence successfully. This mixed-methods study examined acceleration as a way to help developmental community college students complete the composition sequence more quickly and more successfully. Acceleration is a curricular redesign that includes challenging…
NASA Astrophysics Data System (ADS)
Walmsley, Alena; Vachová, Pavla; Vach, Marek
2016-04-01
This research was investigating whether topographic features, which determine soil nutrient and moisture distribution, in combination with soil fauna (wireworm and earthworm) presence, affect plant community composition at a spontaneously revegetated post mining area with an undulating surface. Two sites of different age with 3 types of topographic features were selected, soil moisture and nutrient content were measured, plant community composition and soil macrofauna community was sampled at each position. Wireworms were present at all positions and were most abundant at bottoms of waves at the younger site; their presence was correlated with several plant species, but the direction of the interaction isn't clear. Earthworms were only present at the older site and had highest abundance at flat sections. Earthworm presence affected the amount of nitrogen in soil - the most nitrogen content was at the site with highest earthworm density and was followed by higher diversity of plant community. The plant community composition was generally correlated with plant available nutrient content - especially P and N. We infer that topographic features affect nutrient and soil fauna distribution, which consequently influences plant community composition.
Lawson, Emily C; Bhatia, Maya P; Wadham, Jemma L; Kujawinski, Elizabeth B
2014-12-16
Runoff from glaciers and ice sheets has been acknowledged as a potential source of bioavailable dissolved organic matter (DOM) to downstream ecosystems. This source may become increasingly significant as glacial melt rates increase in response to future climate change. Recent work has identified significant concentrations of bioavailable carbon and iron in Greenland Ice Sheet (GrIS) runoff. The flux characteristics and export of N-rich DOM are poorly understood. Here, we employed electrospray ionization (ESI) coupled to Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to determine the elemental compositions of DOM molecules in supraglacial water and subglacial runoff from a large GrIS outlet glacier. We provide the first detailed temporal analysis of the molecular composition of DOM exported over a full melt season. We find that DOM pools in supraglacial and subglacial runoff are compositionally diverse and that N-rich material is continuously exported throughout the melt season, as the snowline retreats further inland. Identification of protein-like compounds and a high proportion of N-rich DOM, accounting for 27-41% of the DOM molecules identified by ESI FT-ICR MS, may suggest a microbial provenance and high bioavailability of glacially exported DOM to downstream microbial communities.
Shirey, T B; Thacker, R W; Olson, J B
2012-06-01
Granular activated carbon (GAC) is an alternative filter substrate for municipal water treatment as it provides a high surface area suitable for microbial colonization. The resulting microbial growth promotes biodegradation of organic materials and other contaminants from influent waters. Here, the community structure of the bacteria associated with three GAC and two anthracite filters was examined over 12 months to monitor changes in community composition. Nearly complete 16S rRNA genes were polymerase chain reaction amplified for terminal restriction fragment length polymorphism (T-RFLP) analyses. The identity of commonly occurring peaks was determined through the construction of five representative 16S rRNA clone libraries. Based on sequence analysis, the bacterial communities associated with both anthracite and GAC filters appear to be composed of environmentally derived bacteria, with no known human pathogens. Analysis of similarity tests revealed that significant differences in bacterial community structure occurred over time, with filter substrate playing an important role in determining community composition. GAC filters exhibited the greatest degree of bacterial community variability over the sampling period, while anthracite filters showed a lower degree of variability and less change in community composition. Thus, GAC may be a suitable biologically active filter substrate for the treatment of municipal drinking water.
Yan, Bing; Li, Junsheng; Xiao, Nengwen; Qi, Yue; Fu, Gang; Liu, Gaohui; Qiao, Mengping
2016-12-09
Numerous studies have implicated urbanization as a major cause of loss of biodiversity. Most of them have focused on plants and animals, even though soil microorganisms make up a large proportion of that biodiversity. However, it is unclear how the soil bacterial community is affected by urban development. Here, paired-end Illumina sequencing of the 16 S rRNA gene at V4 region was performed to study the soil microbial community across Beijing's built-up area. Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Gemmatimonadetes, Verrucomicrobia, Planctomycetes, and Chloroflexi were the dominant phyla in all samples, but the relative abundance of these phyla differed significantly across these concentric zones. The diversity and composition of the soil bacterial community were found to be closely correlated with soil pH. Variance partitioning analysis suggested that urban ring roads contributed 5.95% of the bacterial community variation, and soil environmental factors explained 17.65% of the variation. The results of the current work indicate that urban development can alter the composition and diversity of the soil microbial community, and showed pH to be a key factor in the shaping of the composition of the soil bacterial community. Urban development did have a strong impact on the bacterial community of urban soil in Beijing.
McHugh, Theresa A.; Morrissey, Ember M.; Mueller, Rebecca C.; Gallegos-Graves, La Verne; Kuske, Cheryl R.; Reed, Sasha C.
2017-01-01
Nitrogen (N) deposition affects myriad aspects of terrestrial ecosystem structure and function, and microbial communities may be particularly sensitive to anthropogenic N inputs. However, our understanding of N deposition effects on microbial communities is far from complete, especially for drylands where data are comparatively rare. To address the need for an improved understanding of dryland biological responses to N deposition, we conducted a two-year fertilization experiment in a semiarid grassland on the Colorado Plateau in the southwestern United States. We evaluated effects of varied levels of N inputs on archaeal, bacterial, fungal and chlorophyte community composition within three microhabitats: biological soil crusts (biocrusts), soil below biocrusts, and the plant rhizosphere. Surprisingly, N addition did not affect the community composition or diversity of any of these microbial groups; however, microbial community composition varied significantly among sampling microhabitats. Further, while plant richness, diversity, and cover showed no response to N addition, there were strong linkages between plant properties and microbial community structure. Overall, these findings highlight the potential for some dryland communities to have limited biotic ability to retain augmented N inputs, possibly leading to large N losses to the atmosphere and to aquatic systems.
Ecological and Evolutionary Effects of Stickleback on Community Structure
Des Roches, Simone; Shurin, Jonathan B.; Schluter, Dolph; Harmon, Luke J.
2013-01-01
Species’ ecology and evolution can have strong effects on communities. Both may change concurrently when species colonize a new ecosystem. We know little, however, about the combined effects of ecological and evolutionary change on community structure. We simultaneously examined the effects of top-predator ecology and evolution on freshwater community parameters using recently evolved generalist and specialist ecotypes of three-spine stickleback (Gasterosteus aculeatus). We used a mesocosm experiment to directly examine the effects of ecological (fish presence and density) and evolutionary (phenotypic diversity and specialization) factors on community structure at lower trophic levels. We evaluated zooplankton biomass and composition, periphyton and phytoplankton chlorophyll-a concentration, and net primary production among treatments containing different densities and diversities of stickleback. Our results showed that both ecological and evolutionary differences in the top-predator affect different aspects of community structure and composition. Community structure, specifically the abundance of organisms at each trophic level, was affected by stickleback presence and density, whereas composition of zooplankton was influenced by stickleback diversity and specialization. Primary productivity, in terms of chlorophyll-a concentration and net primary production was affected by ecological but not evolutionary factors. Our results stress the importance of concurrently evaluating both changes in density and phenotypic diversity on the structure and composition of communities. PMID:23573203
NASA Astrophysics Data System (ADS)
Yan, Bing; Li, Junsheng; Xiao, Nengwen; Qi, Yue; Fu, Gang; Liu, Gaohui; Qiao, Mengping
2016-12-01
Numerous studies have implicated urbanization as a major cause of loss of biodiversity. Most of them have focused on plants and animals, even though soil microorganisms make up a large proportion of that biodiversity. However, it is unclear how the soil bacterial community is affected by urban development. Here, paired-end Illumina sequencing of the 16 S rRNA gene at V4 region was performed to study the soil microbial community across Beijing’s built-up area. Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Gemmatimonadetes, Verrucomicrobia, Planctomycetes, and Chloroflexi were the dominant phyla in all samples, but the relative abundance of these phyla differed significantly across these concentric zones. The diversity and composition of the soil bacterial community were found to be closely correlated with soil pH. Variance partitioning analysis suggested that urban ring roads contributed 5.95% of the bacterial community variation, and soil environmental factors explained 17.65% of the variation. The results of the current work indicate that urban development can alter the composition and diversity of the soil microbial community, and showed pH to be a key factor in the shaping of the composition of the soil bacterial community. Urban development did have a strong impact on the bacterial community of urban soil in Beijing.
NASA Astrophysics Data System (ADS)
Neumann, Hermann; Diekmann, Rabea; Kröncke, Ingrid
2016-02-01
Analysis of ecosystem functioning is essential to describe the ecological status of ecosystems and is therefore directly requested in international directives. There is a lack of knowledge regarding functional aspects of benthic communities and their environmental and anthropogenic driving forces in the southern North Sea. This study linked functional composition of epibenthic communities to environmental conditions and fishing effort and investigated spatial correlations between habitat characteristics to gain insight into potential synergistic and/or cumulative effects. Functional composition of epifauna was assessed by using biological trait analysis (BTA), which considered 15 ecological traits of 54 species. Functional composition was related to ten predictor variables derived from sediment composition, bottom temperature and salinity, hydrodynamics, annual primary production and fishing effort. Our results revealed significantly different functional composition between the Dogger Bank, the Oyster Ground, the West and North Frisian coast. Mobility, feeding type, size and adult longevity were the most important traits differentiating the communities. A high proportion of trait modalities related to an opportunistic life mode were obvious in coastal areas especially at the West Frisian coast and in the area of the Frisian Front indicating disturbed communities. In contrast, functional composition in the Dogger Bank area indicated undisturbed communities with prevalence of large, long-lived and permanently attached species being sensitive towards disturbance such as fishing. Tidal stress, mud content of sediments, salinity, stratification and fishing effort were found to be the most important habitat characteristics shaping functional composition. Strong correlations were found between variables, especially between those which changed gradually from the coast to offshore areas including fishing effort. Unfavourable extremes of these factors in coastal areas resulted in disturbed epibenthic communities, while the relative influence of a single factor on functional composition cannot be quantified. Coastal communities seemed to be well adapted to disturbance and the prevalence of opportunistic trait modalities not necessarily revealed a poor ecological status according to the Marine Strategy Framework Directive (MSFD). The integration of functional aspects into the assessment of ecosystem health is recommended, since widely used structural measures failed in naturally disturbed habitats.
ARO - Terrestrial Research Program, Methodologies and Protocols for Characterization of Geomaterials
2015-05-14
of ice involves melting, digestion, and analysis using inductively coupled plasma – mass spectrometry (ICPMS). ICP-MS analysis established elemental...4] have distinct chemical compositions. Knowledge of the chemical composition of the mineral assemblage present in a rock is critical to...activation analysis (INAA), to inductively-coupled plasma analysis and mass spectrometry (ICP & ICP-MS), mass spectrometry (MS), and laser-ablation
Belote, R Travis; Jones, Robert H; Wieboldt, Thomas F
2012-03-01
Human-caused changes in disturbance regimes and introductions of nonnative species have the potential to result in widespread, directional changes in forest community structure. The degree that plant community composition persists or changes following disturbances depends on the balance between local extirpation and colonization by new species, including nonnatives. In this study, we examined species losses and gains, and entry of native vs. exotic species to determine how oak forests in the Appalachian Mountains might shift in species composition following a gradient of pulse disturbances (timber harvesting). We asked (1) how compositional stability of the plant community (resistance and resilience) was influenced by disturbance intensity, (2) whether community responses were driven by extirpation or colonization of species, and (3) how disturbance intensity influenced total and functional group diversity, including the nonnative proportion of the flora through time. We collected data at three spatial scales and three times, including just before, one year post-disturbance, and 10 years post-disturbance. Resistance was estimated using community distance measures between pre- and one year post-disturbance, and resilience using community distance between pre- and 10-year post-disturbance conditions. The number of colonizing and extirpated species between sampling times was analyzed for all species combined and for six functional groups. Resistance and resilience decreased with increasing timber-harvesting disturbance; compositional stability was lower in the most disturbed plots, which was driven by colonization, but not extirpation, of species. Colonization of species also led to increases in diversity after disturbance that was typically maintained after 10 years following disturbance. Most of the community-level responses were driven by post-disturbance colonization of native forbs and graminoids. The nonnative proportion of plant species tended to increase following disturbance, especially at large spatial scales in the most disturbed treatments, but tended to decrease through time following disturbance due to canopy development. The results of this study are consistent with the theory that resources released by disturbance have strong influences on species colonization and community composition. The effects of management activities tested in this study, which span a gradient of timber-harvesting disturbance, shift species composition largely via an increase in species colonization and diversity.
Veblen, Kari E; Porensky, Lauren M; Riginos, Corinna; Young, Truman P
2016-09-01
The widespread replacement of wild ungulate herbivores by domestic livestock in African savannas is composed of two interrelated phenomena: (1) loss or reduction in numbers of individual wildlife species or guilds and (2) addition of livestock to the system. Each can have important implications for plant community dynamics. Yet very few studies have experimentally addressed the individual, combined, and potentially interactive effects of wild vs. domestic herbivore species on herbaceous plant communities within a single system. Additionally, there is little information about whether, and in which contexts, livestock might functionally replace native herbivore wildlife or, alternatively, have fundamentally different effects on plant species composition. The Kenya Long-term Exclosure Experiment, which has been running since 1995, is composed of six treatment combinations of mega-herbivores, meso-herbivore ungulate wildlife, and cattle. We sampled herbaceous vegetation 25 times between 1999 and 2013. We used partial redundancy analysis and linear mixed models to assess effects of herbivore treatments on overall plant community composition and key plant species. Plant communities in the six different herbivore treatments shifted directionally over time and diverged from each other substantially by 2013. Plant community composition was strongly related (R 2 = 0.92) to residual plant biomass, a measure of herbivore utilization. Addition of any single herbivore type (cattle, wildlife, or mega-herbivores) caused a shift in plant community composition that was proportional to its removal of plant biomass. These results suggest that overall herbivory pressure, rather than herbivore type or complex interactions among different herbivore types, was the main driver of changes in plant community composition. Individual plant species, however, did respond most strongly to either wild ungulates or cattle. Although these results suggest considerable functional similarity between a suite of native wild herbivores (which included grazers, browsers, and mixed feeders) and cattle (mostly grazers) with respect to understory plant community composition, responses of individual plant species demonstrate that at the plant-population-level impacts of a single livestock species are not functionally identical to those of a diverse group of native herbivores. © 2016 by the Ecological Society of America.
Bezemer, T M; Fountain, M T; Barea, J M; Christensen, S; Dekker, S C; Duyts, H; van Hal, R; Harvey, J A; Hedlund, K; Maraun, M; Mikola, J; Mladenov, A G; Robin, C; de Ruiter, P C; Scheu, S; Setälä, H; Smilauer, P; van der Putten, W H
2010-10-01
Soils are extremely rich in biodiversity, and soil organisms play pivotal roles in supporting terrestrial life, but the role that individual plants and plant communities play in influencing the diversity and functioning of soil food webs remains highly debated. Plants, as primary producers and providers of resources to the soil food web, are of vital importance for the composition, structure, and functioning of soil communities. However, whether natural soil food webs that are completely open to immigration and emigration differ underneath individual plants remains unknown. In a biodiversity restoration experiment we first compared the soil nematode communities of 228 individual plants belonging to eight herbaceous species. We included grass, leguminous, and non-leguminous species. Each individual plant grew intermingled with other species, but all plant species had a different nematode community. Moreover, nematode communities were more similar when plant individuals were growing in the same as compared to different plant communities, and these effects were most apparent for the groups of bacterivorous, carnivorous, and omnivorous nematodes. Subsequently, we analyzed the composition, structure, and functioning of the complete soil food webs of 58 individual plants, belonging to two of the plant species, Lotus corniculatus (Fabaceae) and Plantago lanceolata (Plantaginaceae). We isolated and identified more than 150 taxa/groups of soil organisms. The soil community composition and structure of the entire food webs were influenced both by the species identity of the plant individual and the surrounding plant community. Unexpectedly, plant identity had the strongest effects on decomposing soil organisms, widely believed to be generalist feeders. In contrast, quantitative food web modeling showed that the composition of the plant community influenced nitrogen mineralization under individual plants, but that plant species identity did not affect nitrogen or carbon mineralization or food web stability. Hence, the composition and structure of entire soil food webs vary at the scale of individual plants and are strongly influenced by the species identity of the plant. However, the ecosystem functions these food webs provide are determined by the identity of the entire plant community.
Equivalent parameter model of 1-3 piezocomposite with a sandwich polymer
NASA Astrophysics Data System (ADS)
Zhang, Yanjun; Wang, Likun; Qin, Lei
2018-06-01
A theoretical model was developed to investigate the performance of 1-3 piezoelectric composites with a sandwich polymer. Effective parameters, such as the electromechanical coupling factor, longitudinal velocity, and characteristic acoustic impedance of the piezocomposite, were predicted using the developed model. The influences of volume fractions and components of the polymer phase on the effective parameters of the piezoelectric composite were studied. The theoretical model was verified experimentally. The proposed model can reproduce the effective parameters of 1-3 piezoelectric composites with a sandwich polymer in the thickness mode. The measured electromechanical coupling factor was improved by more than 9.8% over the PZT/resin 1-3 piezoelectric composite.
NASA Technical Reports Server (NTRS)
Saravanos, Dimitris A.
1996-01-01
Mechanics for the analysis of laminated composite shells with piezoelectric actuators and sensors are presented. A new mixed-field laminate theory for piezoelectric shells is formulated in curvilinear coordinates which combines single-layer assumptions for the displacements and a layerwise representation for the electric potential. The resultant coupled governing equations for curvilinear piezoelectric laminates are described. Structural mechanics are subsequently developed and an 8-node finite-element is formulated for the static and dynamic analysis of adaptive composite structures of general laminations containing piezoelectric layers. Evaluations of the method and comparisons with reported results are presented for laminated piezoelectric-composite plates, a closed cylindrical shell with a continuous piezoceramic layer and a laminated composite semi-circular cantilever shell with discrete cylindrical piezoelectric actuators and/or sensors.
Building Little Communities: Relational Communication and Early Parenthood in Two Young Couples.
ERIC Educational Resources Information Center
LeBlanc, H. Paul, III
The communication patterns of young married couples may affect the satisfaction and longevity of the relationship. A study examined two young married couples who reported about their relationship with each other. Each couple was interviewed together, and then each member of each couple completed a questionnaire based on the ICPS Family Functioning…
Oshiki, Mamoru; Onuki, Motoharu; Satoh, Hiroyasu; Mino, Takashi
2013-01-01
The removal of biodegradable organic matter is one of the most important objectives in biological wastewater treatments. Polyhydroxyalkanoate (PHA)-accumulating organisms (PHAAOs) significantly contribute to the removal of biodegradable organic matter; however, their microbial community composition is mostly unknown. In the present study, the microbial community composition of PHAAOs was investigated at 8 full-scale wastewater treatment plants (WWTPs), operated in fully aerobic mode, by fluorescence in situ hybridization (FISH) analysis and post-FISH Nile blue A (NBA) staining techniques. Our results demonstrated that 1) PHAAOs were in the range of 11–18% in the total number of cells, and 2) the microbial community composition of PHAAOs was similar at the bacterial domain/phylum/class/order level among the 8 full-scale WWTPs, and dominant PHAAOs were members of the class Alphaproteobacteria and Betaproteobacteria. The microbial community composition of α- and β-proteobacterial PHAAOs was examined by 16S rRNA gene clone library analysis and further by applying a set of newly designed oligonucleotide probes targeting 16S rRNA gene sequences of α- or β-proteobacterial PHAAOs. The results demonstrated that the microbial community composition of PHAAOs differed in the class Alphaproteobacteria and Betaproteobacteria, which possibly resulted in a different PHA accumulation capacity among the WWTPs (8.5–38.2 mg-C g-VSS−1 h−1). The present study extended the knowledge of the microbial diversity of PHAAOs in full-scale WWTPs operated in fully aerobic mode. PMID:23257912
Hazard, Christina; Gosling, Paul; van der Gast, Christopher J; Mitchell, Derek T; Doohan, Fiona M; Bending, Gary D
2013-03-01
Arbuscular fungi have a major role in directing the functioning of terrestrial ecosystems yet little is known about their biogeographical distribution. The Baas-Becking hypothesis ('everything is everywhere, but, the environment selects') was tested by investigating the distribution of arbuscular mycorrhizal fungi (AMF) at the landscape scale and the influence of environmental factors and geographical distance in determining community composition. AMF communities in Trifolium repens and Lolium perenne roots were assessed in 40 geographically dispersed sites in Ireland representing different land uses and soil types. Field sampling and laboratory bioassays were used, with AMF communities characterised using 18S rRNA terminal-restriction fragment length polymorphism. Landscape-scale distribution of AMF was driven by the local environment. AMF community composition was influenced by abiotic variables (pH, rainfall and soil type), but not land use or geographical distance. Trifolium repens and L. perenne supported contrasting communities of AMF, and the communities colonising each plant species were consistent across pasture habitats and over distance. Furthermore, L. perenne AMF communities grouped by soil type within pasture habitats. This is the largest and most comprehensive study that has investigated the landscape-scale distribution of AMF. Our findings support the Baas-Becking hypothesis at the landscape scale and demonstrate the strong influence the local environment has on determining AMF community composition.
Hazard, Christina; Gosling, Paul; van der Gast, Christopher J; Mitchell, Derek T; Doohan, Fiona M; Bending, Gary D
2013-01-01
Arbuscular fungi have a major role in directing the functioning of terrestrial ecosystems yet little is known about their biogeographical distribution. The Baas-Becking hypothesis (‘everything is everywhere, but, the environment selects') was tested by investigating the distribution of arbuscular mycorrhizal fungi (AMF) at the landscape scale and the influence of environmental factors and geographical distance in determining community composition. AMF communities in Trifolium repens and Lolium perenne roots were assessed in 40 geographically dispersed sites in Ireland representing different land uses and soil types. Field sampling and laboratory bioassays were used, with AMF communities characterised using 18S rRNA terminal-restriction fragment length polymorphism. Landscape-scale distribution of AMF was driven by the local environment. AMF community composition was influenced by abiotic variables (pH, rainfall and soil type), but not land use or geographical distance. Trifolium repens and L. perenne supported contrasting communities of AMF, and the communities colonising each plant species were consistent across pasture habitats and over distance. Furthermore, L. perenne AMF communities grouped by soil type within pasture habitats. This is the largest and most comprehensive study that has investigated the landscape-scale distribution of AMF. Our findings support the Baas-Becking hypothesis at the landscape scale and demonstrate the strong influence the local environment has on determining AMF community composition. PMID:23096401
Kittelmann, Sandra; Janssen, Peter H
2011-03-01
The structure and variability of ciliate protozoal communities in the rumens of domestic New Zealand ruminants feeding on different diets was investigated. The relative abundance of ciliates compared with bacteria was similar across all samples. However, molecular fingerprinting of communities showed ruminant-specific differences in species composition. Community compositions of cattle were significantly influenced by diet. In contrast, diet effects in deer and sheep were weaker than the animal-to-animal variation. Cloning and sequencing of almost-full-length 18S rRNA genes from representative samples revealed that New Zealand ruminants were colonized by at least nine genera of ciliates and allowed the assignment of samples to two distinct community types. Cattle contained A-type communities, with most sequences closely related to those of the genera Polyplastron and Ostracodinium. Deer and sheep (with one exception) harboured B-type communities, with the majority of sequences belonging to the genera Epidinium and Eudiplodinium. It has been suggested that species composition of ciliate communities may impact methane formation in ruminants, with the B-type producing more methane. Therefore, manipulation of ciliate communities may be a means of mitigating methane emissions from grazing sheep and deer in New Zealand. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Emmons, L. K.; Wiedinmyer, C.; Park, M.; Kaser, L.; Apel, E. C.; Guenther, A. B.
2014-12-01
Numerous measurements of compounds produced by biogenic and fire emissions were made during several recent field campaigns in the southeast United States, providing a unique data set for emissions and chemical model evaluation. The NCAR Community Atmosphere Model with Chemistry (CAM-chem) is coupled to the Community Land Model (CLM), which includes the biogenic emissions model MEGAN-v2.1, allowing for online calculation of emissions from vegetation for 150 compounds. Simulations of CAM-chem for summers 2012 and 2013 are evaluated with the aircraft and ground-based observations from DC3, NOMADSS and SEAC4RS. Comparison of directly emitted biogenic species, such as isoprene, terpenes, methanol and acetone, are used to evaluate the MEGAN emissions. Evaluation of oxidation products, including methyl vinyl ketone (MVK), methacrolein, formaldehyde, and other oxygenated VOCs are used to test the model chemistry mechanism. In addition, several biomass burning inventories are used in the model, including FINN, QFED, and FLAMBE, and are compared for their impact on atmospheric composition and ozone production, and evaluated with the aircraft observations.
Microbial Metabolic Response to Carbon Sources in a Uranium Contaminated Floodplain
NASA Astrophysics Data System (ADS)
Barragan, L.; Boye, K.; Bargar, J.; Fendorf, S. E.
2016-12-01
In Riverton, Wyoming, uranium (U) from a former ore processing plant, contaminated the groundwater and accumulated in Naturally Reduced Zones (NRZs). The NRZs have now become a secondary source of U and are releasing U into the ground water due to seasonal water table fluctuations. Microorganisms that mediate the mobilization and retention of U are likely to reside in these zones enriched with organic matter that comprises their energy source of carbon (C) for respiration. In this study, we are measuring microbial respiration (basal and substrate induced) by the MicroRespTM system, which is a quick screening method for respiratory activity in natural samples. This can provide information about the microbial community composition at certain depths and insight into their metabolic pathways which may explain U behavior in the ground water. In addition, we are determining elemental composition in the sediments by X-ray fluorescence spectroscopy (XRF) and elemental analysis (EA). Water soluble cations, anions and organic C is determined by inductively coupled plasma (ICP), mass spectrometry, ion chromatography (IC) and non-purgeable organic carbon (NPOC) analyses, respectively. If the behavior of the microbial community in the NRZ environment (enriched in both U and C) differs from that in unsaturated sediments, this can provide crucial clues to understand what causes U to be retained or released from the NRZs. This information will be used to develop and improve models aimed at predicting U mobility in the floodplain groundwater systems.
Data-driven reconstruction of directed networks
NASA Astrophysics Data System (ADS)
Hempel, Sabrina; Koseska, Aneta; Nikoloski, Zoran
2013-06-01
We investigate the properties of a recently introduced asymmetric association measure, called inner composition alignment (IOTA), aimed at inferring regulatory links (couplings). We show that the measure can be used to determine the direction of coupling, detect superfluous links, and to account for autoregulation. In addition, the measure can be extended to infer the type of regulation (positive or negative). The capabilities of IOTA to correctly infer couplings together with their directionality are compared against Kendall's rank correlation for time series of different lengths, particularly focussing on biological examples. We demonstrate that an extended version of the measure, bidirectional inner composition alignment (biIOTA), increases the accuracy of the network reconstruction for short time series. Finally, we discuss the applicability of the measure to infer couplings in chaotic systems.
Predicting community composition from pairwise interactions
NASA Astrophysics Data System (ADS)
Friedman, Jonathan; Higgins, Logan; Gore, Jeff
The ability to predict the structure of complex, multispecies communities is crucial for understanding the impact of species extinction and invasion on natural communities, as well as for engineering novel, synthetic communities. Communities are often modeled using phenomenological models, such as the classical generalized Lotka-Volterra (gLV) model. While a lot of our intuition comes from such models, their predictive power has rarely been tested experimentally. To directly assess the predictive power of this approach, we constructed synthetic communities comprised of up to 8 soil bacteria. We measured the outcome of competition between all species pairs, and used these measurements to predict the composition of communities composed of more than 2 species. The pairwise competitions resulted in a diverse set of outcomes, including coexistence, exclusion, and bistability, and displayed evidence for both interference and facilitation. Most pair outcomes could be captured by the gLV framework, and the composition of multispecies communities could be predicted for communities composed solely of such pairs. Our results demonstrate the predictive ability and utility of simple phenomenology, which enables accurate predictions in the absence of mechanistic details.
NASA Astrophysics Data System (ADS)
Long, Yuting; Xie, Junliang; Li, Hong; Liu, Zirui; Xie, Yahong
2017-12-01
Jellylike cylinder graphene-Mn3O4 composite with highly coupled effect was successfully synthesized by a simple solvothermal process. Without using toxic reducing agent and expensive equipment, this method is environmental compatible and suitable for low cost mass production. High capacitance Mn3O4 nanoparticles are homogeneously anchored on excellent conductivity graphene framework and a growth mechanism is hypothesized. Excellent electron conductivity and unique structure of Mn3O4-graphene composite give rise to various applications such as microwave absorber and electrode material. As a microwave absorber, the composite exhibits lowest reflection loss of -14.2 dB in the frequency range of 2-18 GHz. Good microwave absorption performance is due to the structure of the composite where conductive channels form between nano sized Mn3O4 and high conductivity graphene with defects and dangling bonds. As for electrochemical property, Mn3O4-graphene composite with coupled effect shows excellent performance with highest specific capacitance of 246.7 F g-1 in saturated K2SO4 at a scan rate of 5 mV s-1. Good electrochemical property is also attributed to the structure with high utilization of Mn3O4, fast charge carrier transmission, and excellent electronic conductivity. This composite shows a promising application in absorbing materials and electrodes.
Salinity is a key factor driving the nitrogen cycling in the mangrove sediment.
Wang, Haitao; Gilbert, Jack A; Zhu, Yongguan; Yang, Xiaoru
2018-08-01
Coastal ecosystems are hotspots for nitrogen cycling, and specifically for nitrogen removal from water and sediment through the coupled nitrification-denitrification process. Salinity is globally important in structuring bacterial and archaeal communities, but the association between salinity and microbially-mediated nitrification and denitrification remains unclear. The denitrification activity and composition and structure of microbial nitrifiers and denitrifiers were characterized across a gradient of manipulated salinity (0, 10, 20 and 30ppt) in a mangrove sediment. Salinity negatively correlated with both denitrifying activity and the abundance of nirK and nosZ denitrifying genes. Ammonia-oxidizing bacteria (AOB), which dominated nitrification, had significantly greater abundance at intermediate salinity (10 and 20ppt). However, a positive correlation between ammonia concentration and salinity suggested that nitrifying activity might also be inhibited at higher salinity. The community structure of ammonia-oxidizing archaea (AOA) and bacteria (AOB), as well as nirK, nirS and nosZ denitrifying communities, were all significantly correlated with salinity. These changes were also associated with structural shifts in phylogeny. These findings provide a strong evidence that salinity is a key factor that influences the nitrogen transformations in coastal wetlands, indicating that salinity intrusion caused by climate change might have a broader impact on the coastal biospheres. Copyright © 2018 Elsevier B.V. All rights reserved.
Diazotroph community structure in the deep oxygen minimum zone of the Costa Rica Dome.
Cheung, Shunyan; Xia, Xiaomin; Guo, Cui; Liu, Hongbin
2016-03-01
Oxygen minimum zones (OMZs), characterized by depleted dissolved oxygen concentration in the intermediate depth of the water column, are predicted to expand under the influence of global warming. Recent studies in the Eastern Tropical South Pacific Ocean and Arabian Sea have reported that heterotrophic nitrogen fixation is active in the OMZs. In this study, we investigated the community structure of diazotrophs in the OMZ of the Costa Rica Dome (CRD) upwelling region in the Eastern Tropical North Pacific Ocean, using 454-pyrosequencing of nifH gene amplicons. Comparing diazotroph assemblages in different depth strata of the OMZ (200-1000 m in depth), we found a unique diazotroph community in the OMZ core, which was mainly dominated by methanotroph-like diazotrophs, suggesting a potential coupling of nitrogen cycle and methane assimilation. In addition, some OTUs revealed in this study, especially those belonging to the large sub-cluster Vibrio diazotrophicus , were reported to be abundant and expressing the nifH gene in other OMZs. Our results suggest that the unique hydrographic conditions in OMZs may support similar assemblages of diazotrophs, and heterotrophic nitrogen fixation could also be occurring in our studied region. Our study provides the first insight into the composition and distribution of putative diazotrophs in the CRD OMZ.
Sun, Ruibo; Dsouza, Melissa; Gilbert, Jack A; Guo, Xisheng; Wang, Daozhong; Guo, Zhibin; Ni, Yingying; Chu, Haiyan
2016-12-01
Organic matter application is a widely used practice to increase soil carbon content and maintain soil fertility. However, little is known about the effect of different types of organic matter, or the input of exogenous species from these materials, on soil fungal communities. In this study, fungal community composition was characterized from soils amended with three types of organic matter over a 30-year fertilization experiment. Chemical fertilization significantly changed soil fungal community composition and structure, which was exacerbated by the addition of organic matter, with the direction of change influenced by the type of organic matter used. The addition of organic matter significantly increased soil fungal richness, with the greatest richness achieved in soils amended with pig manure. Importantly, following addition of cow and pig manure, fungal taxa associated with these materials could be found in the soil, suggesting that these exogenous species can augment soil fungal composition. Moreover, the addition of organic matter decreased the relative abundance of potential pathogenic fungi. Overall, these results indicate that organic matter addition influences the composition and structure of soil fungal communities in predictable ways. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Functional homogenization of flower visitor communities with urbanization.
Deguines, Nicolas; Julliard, Romain; de Flores, Mathieu; Fontaine, Colin
2016-04-01
Land-use intensification and resulting habitat loss are put forward as the main causes of flower visitor decline. However, the impact of urbanization, the prime driver of land-use intensification in Europe, is poorly studied. In particular, our understanding of whether and how it affects the composition and functioning of flower visitor assemblages is scant, yet required to cope with increasing urbanization worldwide. Here, we use a nation-wide dataset of plant-flower visitor (Coleoptera, Diptera, Hymenoptera, Lepidoptera) interactions sampled by citizen scientists following a standardized protocol to assess macroecological changes in richness and composition of flower visitor communities with urbanization. We measured the community composition by quantifying the relative occurrence of generalist and specialist flower visitors based on their specialisation on flowering plant families. We show that urbanization is associated with reduced flower visitor richness and a shift in community composition toward generalist insects, indicating a modification of the functional composition of communities. These results suggest that urbanization affects not only the richness of flower visitor assemblages but may also cause their large-scale functional homogenization. Future research should focus on designing measures to reconcile urban development with flower visitor conservation.
Blonder, Benjamin; Nogués-Bravo, David; Borregaard, Michael K; Donoghue, John C; Jørgensen, Peter M; Kraft, Nathan J B; Lessard, Jean-Philippe; Morueta-Holme, Naia; Sandel, Brody; Svenning, Jens-Christian; Violle, Cyrille; Rahbek, Carsten; Enquist, Brian J
2015-04-01
We present a framework to measure the strength of environmental filtering and disequilibrium of the species composition of a local community across time, relative to past, current, and future climates. We demonstrate the framework by measuring the impact of climate change on New World forests, integrating data for climate niches of more than 14000 species, community composition of 471 New World forest plots, and observed climate across the most recent glacial-interglacial interval. We show that a majority of communities have species compositions that are strongly filtered and are more in equilibrium with current climate than random samples from the regional pool. Variation in the level of current community disequilibrium can be predicted from Last Glacial Maximum climate and will increase with near-future climate change.
Schloter-Hai, Brigitte; Kublik, Susanne; Granitsiotis, Michael S.; Boschetto, Piera; Stendardo, Mariarita; Barta, Imre; Dome, Balazs; Deleuze, Jean-François; Boland, Anne; Müller-Quernheim, Joachim; Prasse, Antje; Welte, Tobias; Hohlfeld, Jens; Subramanian, Deepak; Parr, David; Gut, Ivo Glynne; Greulich, Timm; Koczulla, Andreas Rembert; Nowinski, Adam; Gorecka, Dorota; Singh, Dave; Gupta, Sumit; Brightling, Christopher E.; Hoffmann, Harald; Frankenberger, Marion; Hofer, Thomas P.; Burggraf, Dorothe; Heiss-Neumann, Marion; Ziegler-Heitbrock, Loems; Schloter, Michael; zu Castell, Wolfgang
2017-01-01
Background Changes in microbial community composition in the lung of patients suffering from moderate to severe COPD have been well documented. However, knowledge about specific microbiome structures in the human lung associated with CT defined abnormalities is limited. Methods Bacterial community composition derived from brush samples from lungs of 16 patients suffering from different CT defined subtypes of COPD and 9 healthy subjects was analyzed using a cultivation independent barcoding approach applying 454-pyrosequencing of 16S rRNA gene fragment amplicons. Results We could show that bacterial community composition in patients with changes in CT (either airway or emphysema type changes, designated as severe subtypes) was different from community composition in lungs of patients without visible changes in CT as well as from healthy subjects (designated as mild COPD subtype and control group) (PC1, Padj = 0.002). Higher abundance of Prevotella in samples from patients with mild COPD subtype and from controls and of Streptococcus in the severe subtype cases mainly contributed to the separation of bacterial communities of subjects. No significant effects of treatment with inhaled glucocorticoids on bacterial community composition were detected within COPD cases with and without abnormalities in CT in PCoA. Co-occurrence analysis suggests the presence of networks of co-occurring bacteria. Four communities of positively correlated bacteria were revealed. The microbial communities can clearly be distinguished by their associations with the CT defined disease phenotype. Conclusion Our findings indicate that CT detectable structural changes in the lung of COPD patients, which we termed severe subtypes, are associated with alterations in bacterial communities, which may induce further changes in the interaction between microbes and host cells. This might result in a changed interplay with the host immune system. PMID:28704452
Biodiversity and ecosystem functioning in dynamic landscapes
Brose, Ulrich; Hillebrand, Helmut
2016-01-01
The relationship between biodiversity and ecosystem functioning (BEF) and its consequence for ecosystem services has predominantly been studied by controlled, short-term and small-scale experiments under standardized environmental conditions and constant community compositions. However, changes in biodiversity occur in real-world ecosystems with varying environments and a dynamic community composition. In this theme issue, we present novel research on BEF in such dynamic communities. The contributions are organized in three sections on BEF relationships in (i) multi-trophic diversity, (ii) non-equilibrium biodiversity under disturbance and varying environmental conditions, and (iii) large spatial and long temporal scales. The first section shows that multi-trophic BEF relationships often appear idiosyncratic, while accounting for species traits enables a predictive understanding. Future BEF research on complex communities needs to include ecological theory that is based on first principles of species-averaged body masses, stoichiometry and effects of environmental conditions such as temperature. The second section illustrates that disturbance and varying environments have direct as well as indirect (via changes in species richness, community composition and species' traits) effects on BEF relationships. Fluctuations in biodiversity (species richness, community composition and also trait dominance within species) can severely modify BEF relationships. The third section demonstrates that BEF at larger spatial scales is driven by different variables. While species richness per se and community biomass are most important, species identity effects and community composition are less important than at small scales. Across long temporal scales, mass extinctions represent severe changes in biodiversity with mixed effects on ecosystem functions. Together, the contributions of this theme issue identify new research frontiers and answer some open questions on BEF relationships in dynamic communities of real-world landscapes. PMID:27114570
Litter quality versus soil microbial community controls over decomposition: a quantitative analysis
Cleveland, Cory C.; Reed, Sasha C.; Keller, Adrienne B.; Nemergut, Diana R.; O'Neill, Sean P.; Ostertag, Rebecca; Vitousek, Peter M.
2014-01-01
The possible effects of soil microbial community structure on organic matter decomposition rates have been widely acknowledged, but are poorly understood. Understanding these relationships is complicated by the fact that microbial community structure and function are likely to both affect and be affected by organic matter quality and chemistry, thus it is difficult to draw mechanistic conclusions from field studies. We conducted a reciprocal soil inoculum × litter transplant laboratory incubation experiment using samples collected from a set of sites that have similar climate and plant species composition but vary significantly in bacterial community structure and litter quality. The results showed that litter quality explained the majority of variation in decomposition rates under controlled laboratory conditions: over the course of the 162-day incubation, litter quality explained nearly two-thirds (64 %) of variation in decomposition rates, and a smaller proportion (25 %) was explained by variation in the inoculum type. In addition, the relative importance of inoculum type on soil respiration increased over the course of the experiment, and was significantly higher in microcosms with lower litter quality relative to those with higher quality litter. We also used molecular phylogenetics to examine the relationships between bacterial community composition and soil respiration in samples through time. Pyrosequencing revealed that bacterial community composition explained 32 % of the variation in respiration rates. However, equal portions (i.e., 16 %) of the variation in bacterial community composition were explained by inoculum type and litter quality, reflecting the importance of both the meta-community and the environment in bacterial assembly. Taken together, these results indicate that the effects of changing microbial community composition on decomposition are likely to be smaller than the potential effects of climate change and/or litter quality changes in response to increasing atmospheric CO2 concentrations or atmospheric nutrient deposition.
Engel, Marion; Endesfelder, David; Schloter-Hai, Brigitte; Kublik, Susanne; Granitsiotis, Michael S; Boschetto, Piera; Stendardo, Mariarita; Barta, Imre; Dome, Balazs; Deleuze, Jean-François; Boland, Anne; Müller-Quernheim, Joachim; Prasse, Antje; Welte, Tobias; Hohlfeld, Jens; Subramanian, Deepak; Parr, David; Gut, Ivo Glynne; Greulich, Timm; Koczulla, Andreas Rembert; Nowinski, Adam; Gorecka, Dorota; Singh, Dave; Gupta, Sumit; Brightling, Christopher E; Hoffmann, Harald; Frankenberger, Marion; Hofer, Thomas P; Burggraf, Dorothe; Heiss-Neumann, Marion; Ziegler-Heitbrock, Loems; Schloter, Michael; Zu Castell, Wolfgang
2017-01-01
Changes in microbial community composition in the lung of patients suffering from moderate to severe COPD have been well documented. However, knowledge about specific microbiome structures in the human lung associated with CT defined abnormalities is limited. Bacterial community composition derived from brush samples from lungs of 16 patients suffering from different CT defined subtypes of COPD and 9 healthy subjects was analyzed using a cultivation independent barcoding approach applying 454-pyrosequencing of 16S rRNA gene fragment amplicons. We could show that bacterial community composition in patients with changes in CT (either airway or emphysema type changes, designated as severe subtypes) was different from community composition in lungs of patients without visible changes in CT as well as from healthy subjects (designated as mild COPD subtype and control group) (PC1, Padj = 0.002). Higher abundance of Prevotella in samples from patients with mild COPD subtype and from controls and of Streptococcus in the severe subtype cases mainly contributed to the separation of bacterial communities of subjects. No significant effects of treatment with inhaled glucocorticoids on bacterial community composition were detected within COPD cases with and without abnormalities in CT in PCoA. Co-occurrence analysis suggests the presence of networks of co-occurring bacteria. Four communities of positively correlated bacteria were revealed. The microbial communities can clearly be distinguished by their associations with the CT defined disease phenotype. Our findings indicate that CT detectable structural changes in the lung of COPD patients, which we termed severe subtypes, are associated with alterations in bacterial communities, which may induce further changes in the interaction between microbes and host cells. This might result in a changed interplay with the host immune system.
Olsson, Jens; Bergström, Lena; Gårdmark, Anna
2013-01-01
The structure of many marine ecosystems has changed substantially during recent decades, as a result of overexploitation, climate change and eutrophication. Despite of the apparent ecological and economical importance of coastal areas and communities, this aspect has received relatively little attention in coastal systems. Here we assess the temporal development of zoobenthos communities in two areas on the Swedish Baltic Sea coast during 30 years, and relate their development to changes in climate, eutrophication and top-down regulation from fish. Both communities show substantial structural changes, with a decrease in marine polychaetes and species sensitive to increased water temperatures. Concurrently, opportunistic species tolerant to environmental perturbation have increased in abundance. Species composition show a similar temporal development in both communities and significant changes in species composition occurred in both data sets in the late 1980s and early 1990s. The change in species composition was associated with large scale changes in climate (salinity and water temperature) and to the structure of the local fish community, whereas we found no effects of nutrient loading or ambient nutrient concentrations. Our results suggest that these coastal zoobenthos communities have gone through substantial structural changes over the last 30 years, resulting in communities of different species composition with potentially different ecological functions. We hence suggest that the temporal development of coastal zoobenthos communities should be assessed in light of prevailing climatic conditions considering the potential for top-down effects exerted by local fish communities.
Olsson, Jens; Bergström, Lena; Gårdmark, Anna
2013-01-01
The structure of many marine ecosystems has changed substantially during recent decades, as a result of overexploitation, climate change and eutrophication. Despite of the apparent ecological and economical importance of coastal areas and communities, this aspect has received relatively little attention in coastal systems. Here we assess the temporal development of zoobenthos communities in two areas on the Swedish Baltic Sea coast during 30 years, and relate their development to changes in climate, eutrophication and top-down regulation from fish. Both communities show substantial structural changes, with a decrease in marine polychaetes and species sensitive to increased water temperatures. Concurrently, opportunistic species tolerant to environmental perturbation have increased in abundance. Species composition show a similar temporal development in both communities and significant changes in species composition occurred in both data sets in the late 1980s and early 1990s. The change in species composition was associated with large scale changes in climate (salinity and water temperature) and to the structure of the local fish community, whereas we found no effects of nutrient loading or ambient nutrient concentrations. Our results suggest that these coastal zoobenthos communities have gone through substantial structural changes over the last 30 years, resulting in communities of different species composition with potentially different ecological functions. We hence suggest that the temporal development of coastal zoobenthos communities should be assessed in light of prevailing climatic conditions considering the potential for top-down effects exerted by local fish communities. PMID:23737998
USDA-ARS?s Scientific Manuscript database
Dynamics of seasonal microbial community compositions in algae cultivation ponds are complex. There is very limited knowledge on community compositions that may play significant roles in the bioconversion of manure nu¬trients to animal feed. Algae production is an alternative where land area for pro...
Alex D. Foster; Joan Ziegltrum
2013-01-01
We evaluated the abundance of riparian gastropod communities along headwater streams and their response to logging in southwestern Washington State. Terrestrial mollusks near logged streams with ~15 m fixed-width buffers were compared to logged streams with no buffers and to unlogged controls. Mollusk communities varied among sites relative to vegetative composition,...
Avian community composition and habitat importance in the Rio Grande corridor of New Mexico
David A. Leal; Raymond A. Meyer; Bruce C. Thompson
1996-01-01
We investigated avian species richness and abundance within vegetation communities of the Rio Grande Corridor of New Mexico during spring, summer, and fall 1992 and 1993. A subset of 64 transects, for which all bird and vegetation variables were available, representing 16 composite vegetation community types were subjected to canonical correlation analysis to...
Two centuries of fire in a southwestern Virginia Pinus pungens community
E. K. Sutherland; H. Grissino-Mayer; C. A. Woodhouse; W. W. Covington; S. Horn; L. Huckaby; R. Kerr; J. Kush; M. Moore; T. Plumb
1995-01-01
Fire exclusion in fire-dependent forest communities can alter stand structure and composition. The objective was to construct a fire history of two Pinus pungens Lamb. communities growing in southwestern Virgina. Treering analysis of fire-scarred P. pungens specimens and a tree survey were used to determine species composition and age distributions. From 1798-1944,...
Eric K. Zenner; Michelle A. Martin; Brian J. Palik; Jerilynn E. Peck; Charles R. Blinn
2013-01-01
Partial timber harvest within riparian management zones (RMZs) may permit active management of riparian forests while protecting stream ecosystems, but impacts on herbaceous communities are poorly understood. We compared herbaceous plant community abundance, diversity and composition in RMZs along small streams in northern Minnesota, USA, among four treatments before...
The Microbial Ferrous Wheel in a Neutral pH Groundwater Seep
Roden, Eric E.; McBeth, Joyce M.; Blöthe, Marco; Percak-Dennett, Elizabeth M.; Fleming, Emily J.; Holyoke, Rebecca R.; Luther, George W.; Emerson, David; Schieber, Juergen
2012-01-01
Evidence for microbial Fe redox cycling was documented in a circumneutral pH groundwater seep near Bloomington, Indiana. Geochemical and microbiological analyses were conducted at two sites, a semi-consolidated microbial mat and a floating puffball structure. In situ voltammetric microelectrode measurements revealed steep opposing gradients of O2 and Fe(II) at both sites, similar to other groundwater seep and sedimentary environments known to support microbial Fe redox cycling. The puffball structure showed an abrupt increase in dissolved Fe(II) just at its surface (∼5 cm depth), suggesting an internal Fe(II) source coupled to active Fe(III) reduction. Most probable number enumerations detected microaerophilic Fe(II)-oxidizing bacteria (FeOB) and dissimilatory Fe(III)-reducing bacteria (FeRB) at densities of 102 to 105 cells mL−1 in samples from both sites. In vitro Fe(III) reduction experiments revealed the potential for immediate reduction (no lag period) of native Fe(III) oxides. Conventional full-length 16S rRNA gene clone libraries were compared with high throughput barcode sequencing of the V1, V4, or V6 variable regions of 16S rRNA genes in order to evaluate the extent to which new sequencing approaches could provide enhanced insight into the composition of Fe redox cycling microbial community structure. The composition of the clone libraries suggested a lithotroph-dominated microbial community centered around taxa related to known FeOB (e.g., Gallionella, Sideroxydans, Aquabacterium). Sequences related to recognized FeRB (e.g., Rhodoferax, Aeromonas, Geobacter, Desulfovibrio) were also well-represented. Overall, sequences related to known FeOB and FeRB accounted for 88 and 59% of total clone sequences in the mat and puffball libraries, respectively. Taxa identified in the barcode libraries showed partial overlap with the clone libraries, but were not always consistent across different variable regions and sequencing platforms. However, the barcode libraries provided confirmation of key clone library results (e.g., the predominance of Betaproteobacteria) and an expanded view of lithotrophic microbial community composition. PMID:22783228
Zhang, Xiao; Liu, Shirong; Li, Xiangzhen; Wang, Jingxin; Ding, Qiong; Wang, Hui; Tian, Chao; Yao, Minjie; An, Jiaxing; Huang, Yongtao
2016-03-01
To understand the temporal responses of soil prokaryotic communities to clear-cutting disturbance, we examined the changes in soil bacterial and archaeal community composition, structure and diversity along a chronosequence of forest successional restoration using high-throughput 16S rRNA gene sequencing. Our results demonstrated that clear-cutting significantly altered soil bacterial community structure, while no significant shifts of soil archaeal communities were observed. The hypothesis that soil bacterial communities would become similar to those of surrounding intact primary forest with natural regeneration was supported by the shifts in the bacterial community composition and structure. Bacterial community diversity patterns induced by clear-cutting were consistent with the intermediate disturbance hypothesis. Dynamics of bacterial communities was mostly driven by soil properties, which collectively explained more than 70% of the variation in bacterial community composition. Community assembly data revealed that clear-cutting promoted the importance of the deterministic processes in shaping bacterial communities, coinciding with the resultant low resource environments. But assembly processes in the secondary forest returned a similar level compared to the intact primary forest. These findings suggest that bacterial community dynamics may be predictable during the natural recovery process. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Noble, Peter A; Park, Hee-Deung; Olson, Betty H; Asvapathanagul, Pitiporn; Hunter, M Colby; Garrido-Baserba, Manel; Lee, Sang-Hoon; Rosso, Diego
2016-07-01
Aeration diffusers in wastewater treatment plants generate air bubbles that promote mixing, distribution of dissolved oxygen, and microbial processing of dissolved and suspended matter in bulk solution. Biofouling of diffusers represents a significant problem to wastewater treatment plants because biofilms decrease oxygen transfer efficiency and increase backpressure on the blower. To better understand biofouling, we conducted a pilot study to survey the bacterial community composition and function of biofilms on different diffuser substrates and compare them to those in the bulk solution. DNA was extracted from the surface of ethylene-propylene-diene monomer (EPDM), polyurethane, and silicone diffusers operated for 15 months in a municipal treatment plant and sampled at 3 and 9 months. The bacterial community composition and function of the biofilms and bulk solution were determined by amplifying the 16S rRNA genes and pyrosequencing the amplicons and raw metagenomic DNA. The ordination plots and dendrograms of the 16S rRNA and functional genes showed that while the bacterial community composition and function of the bulk solution was independent of sampling time, the composition and function of the biofilms differed by diffuser type and testing time. For the EPDM and silicone diffusers, the biofilm communities were more similar in composition to the bulk solution at 3 months than 9 months. In contrast, the bacteria on the polyurethane diffusers were more dissimilar to the bulk solution at 3 months than 9 months. Taken together, the survey showed that the community composition and function of bacterial biofilms depend on the diffuser substrate and testing time, which warrants further elucidation.
Chemical similarity and local community assembly in the species rich tropical genus Piper.
Salazar, Diego; Jaramillo, M Alejandra; Marquis, Robert J
2016-11-01
Community ecologists have strived to find mechanisms that mediate the assembly of natural communities. Recent evidence suggests that natural enemies could play an important role in the assembly of hyper-diverse tropical plant systems. Classic ecological theory predicts that in order for coexistence to occur, species differences must be maximized across biologically important niche dimensions. For plant-herbivore interactions, it has been recently suggested that, within a particular community, plant species that maximize the difference in chemical defense profiles compared to neighboring taxa will have a relative competitive advantage. Here we tested the hypothesis that plant chemical diversity can affect local community composition in the hyper-diverse genus Piper at a lowland wet forest location in Costa Rica. We first characterized the chemical composition of 27 of the most locally abundant species of Piper. We then tested whether species with different chemical compositions were more likely to coexist. Finally, we assessed the degree to which Piper phylogenetic relationships are related to differences in secondary chemical composition and community assembly. We found that, on average, co-occurring species were more likely to differ in chemical composition than expected by chance. Contrary to expectations, there was no phylogenetic signal for overall secondary chemical composition. In addition we found that species in local communities were, on average, more phylogenetically closely related than expected by chance, suggesting that functional traits other than those measured here also influence local assembly. We propose that selection by herbivores for divergent chemistries between closely related species facilitates the coexistence of a high diversity of congeneric taxa via apparent competition. © 2016 by the Ecological Society of America.
Pohlon, Elisabeth; Ochoa Fandino, Adriana; Marxsen, Jürgen
2013-01-01
Droughts are among the most important disturbance events for stream ecosystems; they not only affect stream hydrology but also the stream biota. Although desiccation of streams is common in Mediterranean regions, phases of dryness in headwaters have been observed more often and for longer periods in extended temperate regions, including Central Europe, reflecting global climate change and enhanced water withdrawal. The effects of desiccation and rewetting on the bacterial community composition and extracellular enzyme activity, a key process in the carbon flow of streams and rivers, were investigated in a typical Central European stream, the Breitenbach (Hesse, Germany). Wet streambed sediment is an important habitat in streams. It was sampled and exposed in the laboratory to different drying scenarios (fast, intermediate, slow) for 13 weeks, followed by rewetting of the sediment from the fast drying scenario via a sediment core perfusion technique for 2 weeks. Bacterial community structure was analyzed using CARD-FISH and TGGE, and extracellular enzyme activity was assessed using fluorogenic model substrates. During desiccation the bacterial community composition shifted toward composition in soil, exhibiting increasing proportions of Actinobacteria and Alphaproteobacteria and decreasing proportions of Bacteroidetes and Betaproteobacteria. Simultaneously the activities of extracellular enzymes decreased, most pronounced with aminopeptidases and less pronounced with enzymes involved in the degradation of polymeric carbohydrates. After rewetting, the general ecosystem functioning, with respect to extracellular enzyme activity, recovered after 10 to 14 days. However, the bacterial community composition had not yet achieved its original composition as in unaffected sediments within this time. Thus, whether the bacterial community eventually recovers completely after these events remains unknown. Perhaps this community undergoes permanent changes, especially after harsh desiccation, followed by loss of the specialized functions of specific groups of bacteria. PMID:24386188
Fire-mediated dieback and compositional cascade in an Amazonian forest.
Barlow, Jos; Peres, Carlos A
2008-05-27
The only fully coupled land-atmosphere global climate model predicts a widespread dieback of Amazonian forest cover through reduced precipitation. Although these predictions are controversial, the structural and compositional resilience of Amazonian forests may also have been overestimated, as current vegetation models fail to consider the potential role of fire in the degradation of forest ecosystems. We examine forest structure and composition in the Arapiuns River basin in the central Brazilian Amazon, evaluating post-fire forest recovery and the consequences of recurrent fires for the patterns of dominance of tree species. We surveyed tree plots in unburned and once-burned forests examined 1, 3 and 9 years after an unprecedented fire event, in twice-burned forests examined 3 and 9 years after fire and in thrice-burned forests examined 5 years after the most recent fire event. The number of trees recorded in unburned primary forest control plots was stable over time. However, in both once- and twice-burned forest plots, there was a marked recruitment into the 10-20cm diameter at breast height tree size classes between 3 and 9 years post-fire. Considering tree assemblage composition 9 years after the first fire contact, we observed (i) a clear pattern of community turnover among small trees and the most abundant shrubs and saplings, and (ii) that species that were common in any of the four burn treatments (unburned, once-, twice- and thrice-burned) were often rare or entirely absent in other burn treatments. We conclude that episodic wildfires can lead to drastic changes in forest structure and composition, with cascading shifts in forest composition following each additional fire event. Finally, we use these results to evaluate the validity of the savannization paradigm.
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Khaled, Bilal; Hoffarth, Canio; Rajan, Subramaniam; Blankenhorn, Gunther
2016-01-01
A material model which incorporates several key capabilities which have been identified by the aerospace community as lacking in state-of-the art composite impact models is under development. In particular, a next generation composite impact material model, jointly developed by the FAA and NASA, is being implemented into the commercial transient dynamic finite element code LS-DYNA. The material model, which incorporates plasticity, damage, and failure, utilizes experimentally based tabulated input to define the evolution of plasticity and damage and the initiation of failure as opposed to specifying discrete input parameters (such as modulus and strength). The plasticity portion of the orthotropic, three-dimensional, macroscopic composite constitutive model is based on an extension of the Tsai-Wu composite failure model into a generalized yield function with a non-associative flow rule. For the damage model, a strain equivalent formulation is utilized to allow for the uncoupling of the deformation and damage analyses. In the damage model, a semi-coupled approach is employed where the overall damage in a particular coordinate direction is assumed to be a multiplicative combination of the damage in that direction resulting from the applied loads in the various coordinate directions. Due to the fact that the plasticity and damage models are uncoupled, test procedures and methods to both characterize the damage model and to covert the material stress-strain curves from the true (damaged) stress space to the effective (undamaged) stress space have been developed. A methodology has been developed to input the experimentally determined composite failure surface in a tabulated manner. An analytical approach is then utilized to track how close the current stress state is to the failure surface.
Fine Spatial Scale Variation of Soil Microbial Communities under European Beech and Norway Spruce
Nacke, Heiko; Goldmann, Kezia; Schöning, Ingo; Pfeiffer, Birgit; Kaiser, Kristin; Castillo-Villamizar, Genis A.; Schrumpf, Marion; Buscot, François; Daniel, Rolf; Wubet, Tesfaye
2016-01-01
The complex interactions between trees and soil microbes in forests as well as their inherent seasonal and spatial variations are poorly understood. In this study, we analyzed the effects of major European tree species (Fagus sylvatica L. and Picea abies (L.) Karst) on soil bacterial and fungal communities. Mineral soil samples were collected from different depths (0–10, 10–20 cm) and at different horizontal distances from beech or spruce trunks (0.5, 1.5, 2.5, 3.5 m) in early summer and autumn. We assessed the composition of soil bacterial and fungal communities based on 16S rRNA gene and ITS DNA sequences. Community composition of bacteria and fungi was most strongly affected by soil pH and tree species. Different ectomycorrhizal fungi (e.g., Tylospora) known to establish mutualistic associations with plant roots showed a tree species preference. Moreover, bacterial and fungal community composition showed spatial and seasonal shifts in soil surrounding beech and spruce. The relative abundance of saprotrophic fungi was higher at a depth of 0–10 vs. 10–20 cm depth. This was presumably a result of changes in nutrient availability, as litter input and organic carbon content decreased with soil depth. Overall bacterial community composition showed strong variations under spruce with increasing distance from the tree trunks, which might be attributed in part to higher fine root biomass near spruce trunks. Furthermore, overall bacterial community composition was strongly affected by season under deciduous trees. PMID:28066384
Fine Spatial Scale Variation of Soil Microbial Communities under European Beech and Norway Spruce.
Nacke, Heiko; Goldmann, Kezia; Schöning, Ingo; Pfeiffer, Birgit; Kaiser, Kristin; Castillo-Villamizar, Genis A; Schrumpf, Marion; Buscot, François; Daniel, Rolf; Wubet, Tesfaye
2016-01-01
The complex interactions between trees and soil microbes in forests as well as their inherent seasonal and spatial variations are poorly understood. In this study, we analyzed the effects of major European tree species ( Fagus sylvatica L. and Picea abies (L.) Karst) on soil bacterial and fungal communities. Mineral soil samples were collected from different depths (0-10, 10-20 cm) and at different horizontal distances from beech or spruce trunks (0.5, 1.5, 2.5, 3.5 m) in early summer and autumn. We assessed the composition of soil bacterial and fungal communities based on 16S rRNA gene and ITS DNA sequences. Community composition of bacteria and fungi was most strongly affected by soil pH and tree species. Different ectomycorrhizal fungi (e.g., Tylospora ) known to establish mutualistic associations with plant roots showed a tree species preference. Moreover, bacterial and fungal community composition showed spatial and seasonal shifts in soil surrounding beech and spruce. The relative abundance of saprotrophic fungi was higher at a depth of 0-10 vs. 10-20 cm depth. This was presumably a result of changes in nutrient availability, as litter input and organic carbon content decreased with soil depth. Overall bacterial community composition showed strong variations under spruce with increasing distance from the tree trunks, which might be attributed in part to higher fine root biomass near spruce trunks. Furthermore, overall bacterial community composition was strongly affected by season under deciduous trees.
Dickens, Sara Jo M.; Allen, Edith B.; Santiago, Louis S.; Crowley, David
2015-01-01
Grasslands have a long history of invasion by exotic annuals, which may alter microbial communities and nutrient cycling through changes in litter quality and biomass turnover rates. We compared plant community composition, soil chemical and microbial community composition, potential soil respiration and nitrogen (N) turnover rates between invaded and restored plots in inland and coastal grasslands. Restoration increased microbial biomass and fungal : bacterial (F : B) ratios, but sampling season had a greater influence on the F : B ratio than did restoration. Microbial community composition assessed by phospholipid fatty acid was altered by restoration, but also varied by season and by site. Total soil carbon (C) and N and potential soil respiration did not differ between treatments, but N mineralization decreased while extractable nitrate and nitrification and N immobilization rate increased in restored compared with unrestored sites. The differences in soil chemistry and microbial community composition between unrestored and restored sites indicate that these soils are responsive, and therefore not resistant to feedbacks caused by changes in vegetation type. The resilience, or recovery, of these soils is difficult to assess in the absence of uninvaded control grasslands. However, the rapid changes in microbial and N cycling characteristics following removal of invasives in both grassland sites suggest that the soils are resilient to invasion. The lack of change in total C and N pools may provide a buffer that promotes resilience of labile pools and microbial community structure. PMID:25555522
Wang, Zhengjun; Gong, Huili; Zhang, Jing
2015-01-01
Climate and human-induced wetland degradation has accelerated in recent years, not only resulting in reduced ecosystem services but also greatly affecting the composition and diversity of wetland plant communities. To date, the knowledge of the differences in community parameters and their successional trends in degraded wetlands remains scarce. Here based on remote sensing images, geographic information system technology, and statistical methods, we produced a successional gradient map of the Yeyahu Wetland Nature Reserve in Beijing, which has experienced a steady decline in water level in recent decades. In addition, we analyzed community composition and diversity along with each identified gradient. The results showed that community diversity decreases while dominance increases with the progress of succession, with the highest diversity occurring during the early stage of succession. Moreover, the community demonstrates greater similarity among subareas during later successional stages, and the similarity coefficients calculated from the important value (IV) of each species are more accurate. Correlation analysis showed that the impact of soil factors on diversity was not significant at a subarea scale, although these nutrients showed an increasing trend with the community succession. Furthermore, the IVs of the dominant species had a particularly significant impact on diversity, showing a significantly negative correlation with diversity indices and a significantly positive correlation with dominance indices. Further analysis showed that the retreat of water level resulted from sustained drought and local human activities was a major extrinsic driving force resulting in observed differences in the community successional stages, which resulted in differences in community composition and diversity. On the other hand, interspecific competition was the main intrinsic mechanism, which significantly influenced the IVs of the dominant species and community diversity. The results of this study could aid in improving the understanding of community composition, diversity, and its successional trends in degraded wetlands. PMID:25848799
Khlifa, Rim; Paquette, Alain; Messier, Christian; Reich, Peter B; Munson, Alison D
2017-10-01
Studies of biodiversity-ecosystem function in treed ecosystems have generally focused on aboveground functions. This study investigates intertrophic links between tree diversity and soil microbial community function and composition. We examined how microbial communities in surface mineral soil responded to experimental gradients of tree species richness (SR), functional diversity (FD), community-weighted mean trait value (CWM), and tree identity. The site was a 4-year-old common garden experiment near Montreal, Canada, consisting of deciduous and evergreen tree species mixtures. Microbial community composition, community-level physiological profiles, and respiration were evaluated using phospholipid fatty acid (PLFA) analysis and the MicroResp ™ system, respectively. The relationship between tree species richness and glucose-induced respiration (GIR), basal respiration (BR), metabolic quotient (qCO 2 ) followed a positive but saturating shape. Microbial communities associated with species mixtures were more active (basal respiration [BR]), with higher biomass (glucose-induced respiration [GIR]), and used a greater number of carbon sources than monocultures. Communities associated with deciduous tree species used a greater number of carbon sources than those associated with evergreen species, suggesting a greater soil carbon storage capacity. There were no differences in microbial composition (PLFA) between monocultures and SR mixtures. The FD and the CWM of several functional traits affected both BR and GIR. In general, the CWM of traits had stronger effects than did FD, suggesting that certain traits of dominant species have more effect on ecosystem processes than does FD. Both the functions of GIR and BR were positively related to aboveground tree community productivity. Both tree diversity (SR) and identity (species and functional identity-leaf habit) affected soil microbial community respiration, biomass, and composition. For the first time, we identified functional traits related to life-history strategy, as well as root traits that influence another trophic level, soil microbial community function, via effects on BR and GIR.
Investigating the link between fish community structure and environmental state in deep-time
NASA Astrophysics Data System (ADS)
Sibert, E. C.
2017-12-01
In the modern ocean, a bottom-up ecological viewpoint posits that the composition of plankton communities is often a function of ambient oceanographic conditions, including nutrient concentrations and water temperature. Thus, certain plankton species or communities can be associated with specific oceanographic conditions, giving them potential as carriers of paleoceanographic information. Furthermore, consumer groups, such as fish, depend on the structure and composition of these plankton, and therefore different plankton communities will support different types of fish. In addition, fish have their own physiological constraints for surviving in particular environments, such as oxygen demand, and metabolic rate, causing certain clades to be selectively associated with different water mass characteristics. Thus, the relative or absolute abundances of different fish species or groups could shed light on shifting oxygen concentrations, temperature, or primary productivity in the past. To assess whether fish communities have sufficient environmental control to provide paleoceanographic insights, I use a variety of morphological, phylogenetic, and ecological statistical approaches, to correlate modern fish communities from around the world with environmental variables. I then apply these principles to a series of ichthyolith assemblages from the Cretaceous and Cenozoic, across both space and time, to assess whether fish community composition, abundance, or other characteristics can be predictive of ocean temperature or export productivity. I find that while the abundance of fish fossils in deep-sea cores is often, though not always, correlated with certain export production and temperature proxies, community composition appears to vary independently of these variables on long timescales, driven more by evolutionary processes. However, there are distinct differences in contemporary communities in different locations, suggesting that there is potential in using fish community composition in well-constrained systems. Furthermore, when fish community structure or abundance diverges from the expected state, this may provide significant insight into the structure and functioning of marine ecosystems.
Isgor, Zeynep; Powell, Lisa; Rimkus, Leah; Chaloupka, Frank
2016-05-01
This paper examines the association between the prevalence of various types of outdoor food and beverage advertising found on the building exteriors and properties of retail food outlets and community racial/ethnic and socioeconomic composition in a nationwide sample of food outlets in the U.S. Our major finding from multivariable analysis is that food stores in low-income communities have higher prevalence of all food and beverage ads, including those for unhealthy products such as regular soda, controlling for community racial/ethnic composition and other covariates. This adds to growing research pointing to socioeconomic disparities in food and beverage marketing exposure. Copyright © 2016 Elsevier Ltd. All rights reserved.
Environmental effects on long term behavior of composite laminates
NASA Astrophysics Data System (ADS)
Singhal, S. N.; Chamis, C. C.
Model equations are presented for approximate methods simulating the long-term behavior of composite materials and structures in hot/humid service environments. These equations allow laminate property upgradings with time, and can account for the effects of service environments on creep response. These methodologies are illustrated for various individual and coupled temperature/moisture, longitudinal/transverse, and composite material type cases. Creep deformation is noted to rise dramatically for cases of matrix-borne, but not of fiber-borne, loading in hot, humid environments; the coupled influence of temperature and moisture is greater than a mere combination of their individual influences.
Environmental effects on long term behavior of composite laminates
NASA Technical Reports Server (NTRS)
Singhal, S. N.; Chamis, C. C.
1992-01-01
Model equations are presented for approximate methods simulating the long-term behavior of composite materials and structures in hot/humid service environments. These equations allow laminate property upgradings with time, and can account for the effects of service environments on creep response. These methodologies are illustrated for various individual and coupled temperature/moisture, longitudinal/transverse, and composite material type cases. Creep deformation is noted to rise dramatically for cases of matrix-borne, but not of fiber-borne, loading in hot, humid environments; the coupled influence of temperature and moisture is greater than a mere combination of their individual influences.
Coupled structural/thermal/electromagnetic analysis/tailoring of graded composite structures
NASA Technical Reports Server (NTRS)
Mcknight, R. L.; Chen, P. C.; Dame, L. T.; Huang, H.
1992-01-01
Accomplishments are described for the first year effort of a 5-year program to develop a methodology for coupled structural/thermal/electromagnetic analysis/tailoring of graded composite structures. These accomplishments include: (1) the results of the selective literature survey; (2) 8-, 16-, and 20-noded isoparametric plate and shell elements; (3) large deformation structural analysis; (4) eigenanalysis; (5) anisotropic heat transfer analysis; and (6) anisotropic electromagnetic analysis.
Metabarcoding of the kombucha microbial community grown in different microenvironments.
Reva, Oleg N; Zaets, Iryna E; Ovcharenko, Leonid P; Kukharenko, Olga E; Shpylova, Switlana P; Podolich, Olga V; de Vera, Jean-Pierre; Kozyrovska, Natalia O
2015-12-01
Introducing of the DNA metabarcoding analysis of probiotic microbial communities allowed getting insight into their functioning and establishing a better control on safety and efficacy of the probiotic communities. In this work the kombucha poly-microbial probiotic community was analysed to study its flexibility under different growth conditions. Environmental DNA sequencing revealed a complex and flexible composition of the kombucha microbial culture (KMC) constituting more bacterial and fungal organisms in addition to those found by cultural method. The community comprised bacterial and yeast components including cultured and uncultivable microorganisms. Culturing the KMC under different conditions revealed the core part of the community which included acetobacteria of two genera Komagataeibacter (former Gluconacetobacter) and Gluconobacter, and representatives of several yeast genera among which Brettanomyces/Dekkera and Pichia (including former Issatchenkia) were dominant. Herbaspirillum spp. and Halomonas spp., which previously had not been described in KMC, were found to be minor but permanent members of the community. The community composition was dependent on the growth conditions. The bacterial component of KMC was relatively stable, but may include additional member-lactobacilli. The yeast species composition was significantly variable. High-throughput sequencing showed complexity and variability of KMC that may affect the quality of the probiotic drink. It was hypothesized that the kombucha core community might recruit some environmental bacteria, particularly lactobacilli, which potentially may contribute to the fermentative capacity of the probiotic drink. As many KMC-associated microorganisms cannot be cultured out of the community, a robust control for community composition should be provided by using DNA metabarcoding.
Soil microbial community response to precipitation change in a semi-arid ecosystem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cregger, Melissa; Schadt, Christopher Warren; McDowell, Nathan
2012-01-01
Microbial communities regulate many belowground carbon cycling processes; thus, the impact of climate change on the struc- ture and function of soil microbial communities could, in turn, impact the release or storage of carbon in soils. Here we used a large-scale precipitation manipulation ( 18%, 50%, or ambient) in a pi on-juniper woodland (Pinus edulis-Juniperus mono- sperma) to investigate how changes in precipitation amounts altered soil microbial communities as well as what role seasonal variation in rainfall and plant composition played in the microbial community response. Seasonal variability in precipitation had a larger role in determining the composition of soilmore » microbial communities in 2008 than the direct effect of the experimental precipitation treatments. Bacterial and fungal communities in the dry, relatively moisture-limited premonsoon season were compositionally distinct from communities in the monsoon season, when soil moisture levels and periodicity varied more widely across treatments. Fungal abundance in the drought plots during the dry premonsoon season was particularly low and was 4.7 times greater upon soil wet-up in the monsoon season, suggesting that soil fungi were water limited in the driest plots, which may result in a decrease in fungal degradation of carbon substrates. Additionally, we found that both bacterial and fungal communities beneath pi on pine and juniper were distinct, suggesting that microbial functions beneath these trees are different. We conclude that predicting the response of microbial communities to climate change is highly dependent on seasonal dynam- ics, background climatic variability, and the composition of the associated aboveground community.« less
Deng, Songqiang; Ke, Tan; Li, Longtai; Cai, Shenwen; Zhou, Yuyue; Liu, Yue; Guo, Limin; Chen, Lanzhou; Zhang, Dayi
2018-06-01
Rhizospheric microbes play important roles in plant growth and heavy metals (HMs) transformation, possessing great potential for the successful phytoremediation of environmental pollutants. In the present study, the rhizosphere of Elsholtzia haichowensis Sun was comprehensively studied to uncover the influence of environmental factors (EFs) on the whole microbial communities including bacteria, fungi and archaea, via quantitative polymerase chain reaction (qPCR) and high-throughput sequencing. By analyzing molecular ecological network and multivariate regression trees (MRT), we evaluated the distinct impacts of 37 EFs on soil microbial community. Of them, soil pH, HMs, soil texture and nitrogen were identified as the most influencing factors, and their roles varied across different domains. Soil pH was the main environmental variable on archaeal and bacterial community but not fungi, explaining 25.7%, 46.5% and 40.7% variation of bacterial taxonomic composition, archaeal taxonomic composition and a-diversity, respectively. HMs showed important roles in driving the whole microbial community and explained the major variation in different domains. Nitrogen (NH 4 -N, NO 3 -N, NO 2 -N and TN) explained 47.3% variation of microbial population composition and 15.9% of archaeal taxonomic composition, demonstrating its influence in structuring the rhizospheric microbiome, particularly archaeal and bacterial community. Soil texture accounted for 10.2% variation of population composition, 28.9% of fungal taxonomic composition, 19.2% of fungal a-diversity and 7.8% of archaeal a-diversity. Rhizosphere only showed strong impacts on fungi and bacteria, accounting for 14.7% and 4.9% variation of fungal taxonomic composition and bacterial a-diversity. Spatial distance had stronger influence on bacteria and archaea than fungi, but not as significant as other EFs. For the first time, our study provides a complete insight into key influential EFs on rhizospheric microbes and how their roles vary across microbial domains, giving a hand for understanding the construction of microbial communities in rhizosphere. Copyright © 2017 Elsevier Ltd. All rights reserved.
Luo, Gang; Angelidaki, Irini
2014-09-01
The present study investigated the changes of bacterial community composition including bacterial pathogens along a biogas plant, i.e. from the influent, to the biogas reactor and to the post-digester. The effects of post-digestion temperature and time on the changes of bacterial community composition and bacterial pathogens were also studied. Microbial analysis was made by Ion Torrent sequencing of the PCR amplicons from ethidium monoazide treated samples, and ethidium monoazide was used to cleave DNA from dead cells and exclude it from PCR amplification. Both similarity and taxonomic analysis showed that the bacterial community composition in the influent was changed after anaerobic digestion. Firmicutes were dominant in all the samples, while Proteobacteria decreased in the biogas reactor compared with the influent. Variations of bacterial community composition in the biogas reactor with time were also observed. This could be attributed to varying composition of the influent. Batch experiments showed that the methane recovery from the digested residues (obtained from biogas reactor) was mainly related with post-digestion temperature. However, post-digestion time rather than temperature had a significant effect on the changes of bacterial community composition. The changes of bacterial community composition were also reflected in the changes of relative abundance of bacterial pathogens. The richness and relative abundance of bacterial pathogens were reduced after anaerobic digestion in the biogas reactor. It was found in batch experiments that bacterial pathogens showed the highest relative abundance and richness after 30 days' post-digestion. Streptococcus bovis was found in all the samples. Our results showed that special attention should be paid to the post-digestion since the increase in relative abundance of bacterial pathogens after post-digestion might reflect regrowth of bacterial pathogens and limit biosolids disposal vectors. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yuan, Wenjin; Lu, Yunhua; Xu, Shiai
2016-01-01
A new titanate coupling agent synthesized from polyethylene glycol (PEG), isooctyl alcohol, and phosphorus pentoxide (P2O5) was used for the modification of calcium sulfate whiskers (CSWs) and the preparation of high-performance CSW/poly(vinyl chloride) (PVC) composites. The titanate coupling agent (sTi) and the modified CSWs (sTi–CSW) were characterized by Fourier transform infrared (FTIR) spectroscopy, and the mechanical, dynamic mechanical, and heat resistant properties and thermostability of sTi–CSW/PVC and CSW/PVC composites were compared. The results show that sTi–CSW/PVC composite with 10 wt. % whisker content has the best performance, and its tensile strength, Young’s modulus, elongation at break, break strength, and impact strength are 67.2 MPa, 1926 MPa, 233%, 51.1 MPa, and 12.75 KJ·m−2, with an increase of 20.9%, 11.5%, 145.3%, 24.6%, and 65.4% compared to that of CSW/PVC composite at the same whisker content. As the whisker content increases, the storage modulus increases, the Vicat softening temperature decreases slightly, and the glass transition temperature increases at first and then decreases. PMID:28773748
Contrasting cloud composition between coupled and decoupled marine boundary layer clouds
NASA Astrophysics Data System (ADS)
Wang, Zhen; Mora Ramirez, Marco; Dadashazar, Hossein; MacDonald, Alex B.; Crosbie, Ewan; Bates, Kelvin H.; Coggon, Matthew M.; Craven, Jill S.; Lynch, Peng; Campbell, James R.; Azadi Aghdam, Mojtaba; Woods, Roy K.; Jonsson, Haflidi; Flagan, Richard C.; Seinfeld, John H.; Sorooshian, Armin
2016-10-01
Marine stratocumulus clouds often become decoupled from the vertical layer immediately above the ocean surface. This study contrasts cloud chemical composition between coupled and decoupled marine stratocumulus clouds for dissolved nonwater substances. Cloud water and droplet residual particle composition were measured in clouds off the California coast during three airborne experiments in July-August of separate years (Eastern Pacific Emitted Aerosol Cloud Experiment 2011, Nucleation in California Experiment 2013, and Biological and Oceanic Atmospheric Study 2015). Decoupled clouds exhibited significantly lower air-equivalent mass concentrations in both cloud water and droplet residual particles, consistent with reduced cloud droplet number concentration and subcloud aerosol (Dp > 100 nm) number concentration, owing to detachment from surface sources. Nonrefractory submicrometer aerosol measurements show that coupled clouds exhibit higher sulfate mass fractions in droplet residual particles, owing to more abundant precursor emissions from the ocean and ships. Consequently, decoupled clouds exhibited higher mass fractions of organics, nitrate, and ammonium in droplet residual particles, owing to effects of long-range transport from more distant sources. Sodium and chloride dominated in terms of air-equivalent concentration in cloud water for coupled clouds, and their mass fractions and concentrations exceeded those in decoupled clouds. Conversely, with the exception of sea-salt constituents (e.g., Cl, Na, Mg, and K), cloud water mass fractions of all species examined were higher in decoupled clouds relative to coupled clouds. Satellite and Navy Aerosol Analysis and Prediction System-based reanalysis data are compared with each other, and the airborne data to conclude that limitations in resolving boundary layer processes in a global model prevent it from accurately quantifying observed differences between coupled and decoupled cloud composition.
COMPARISON OF ECOLOGICAL COMMUNITIES: THE PROBLEM OF SAMPLE REPRESENTATIVENESS
Obtaining an adequate, representative sample of ecological communities to make taxon richness (TR) or compositional comparisons among sites is a continuing challenge. Sample representativeness literally means the similarity in species composition and relative abundance between a ...
Macleod, Adrian K; Stanley, Michele S; Day, John G; Cook, Elizabeth J
2016-01-01
Knowledge of biofouling typical of marine structures is essential for engineers to define appropriate loading criteria in addition to informing other stakeholders about the ecological implications of creating novel artificial environments. There is a lack of information regarding biofouling community composition (including weight and density characteristics) on floating structures associated with future marine renewable energy generation technologies. A network of navigation buoys were identified across a range of geographical areas, environmental conditions (tidal flow speed, temperature and salinity), and deployment durations suitable for future developments. Despite the perceived importance of environmental and temporal factors, geographical location explained the greatest proportion of the observed variation in community composition, emphasising the importance of considering geography when assessing the impact of biofouling on device functioning and associated ecology. The principal taxa associated with variation in biofouling community composition were mussels (Mytilus edulis), which were also important when determining loading criteria.
Pugh, S Douglas; Dietz, Joerg; Brief, Arthur P; Wiley, Jack W
2008-11-01
An organization's diversity climate refers to employees' shared perceptions of the policies and practices that communicate the extent to which fostering diversity and eliminating discrimination is a priority in the organization. The authors propose a salient element of the organizational context, the racial composition of the community where the organization is located, serves an important signaling function that shapes the formation of climate perceptions. In a study of 142 retail bank units in the United States, evidence is found for a relationship between the racial composition of an organization's workforce and diversity climate that is moderated by the racial composition of the community where the organization is located. The results suggest that when few racial minorities live in the community in which an organization is embedded, workforce diversity has an impact on employees' diversity climate perceptions. As racial minority popular share increases, workforce diversity tends to lose this signaling value.
Larras, Floriane; Rimet, Frédéric; Gregorio, Vincent; Bérard, Annette; Leboulanger, Christophe; Montuelle, Bernard; Bouchez, Agnès
2016-03-01
Chemical monitoring revealed a regular decrease in herbicide concentration in Lake Geneva since last decades that may be linked to an ecotoxic restoration of nontarget phytoplanktonic communities. The Pollution-induced community tolerance (PICT) approach was tested as a tool to monitor the ecotoxic restoration of Lake Geneva for herbicides from 1999 to 2011. We conducted monthly assessments in 1999 and in 2011 for the tolerance of the phytoplankton communities to two herbicides (atrazine and copper), using PICT bioassays. The taxonomical composition of the communities was determined on the same collecting dates. The herbicide concentration decrease during the 12 years significantly influenced the composition of communities. The PICT monitoring indicated that a significant tolerance decrease in the community to both herbicides accompanied the herbicide concentration decrease. PICT measurements for atrazine and copper also changed at the intra-annual level. These variations were mainly due to community composition shifts linked to seasonal phosphorus and temperature changes. PICT monitoring on a seasonal basis is required to monitor the mean tolerance of communities. PICT appeared to be a powerful tool that reflected the toxic effects on environmental communities and to monitor ecotoxic ecosystem restoration.
Inspecting Composites with Airborne Ultrasound: Through Thick and Thin
NASA Astrophysics Data System (ADS)
Hsu, David K.; Barnard, Daniel J.
2006-03-01
The inspection of composite materials and structures with air-coupled ultrasound has the obvious advantage that it is non-contact, non-contaminating, and free from couplants. However, the transmission efficiency from air to solid is extremely low due to the enormous difference in acoustic impedance. The development of more efficient airborne ultrasonic transducers over the years has made it possible, and even practical, to inspect composites with airborne ultrasound. It is now possible to drive newer, more efficient transducers with a portable ultrasonic flaw detector to inspect 2-inch thick solid CFRP in air. In this paper we describe our experience in applying air-coupled ultrasound to the inspection of a variety of composite structures, from honeycomb with thin composite facesheet to very thick solid laminates. General considerations for making airborne ultrasonic measurement in composite are given, and mechanism of transmission through honeycomb core, and resonance effects in transmitting through thick laminates will be described. NDE results of defects and damage in various composite structures will be presented.
NASA Astrophysics Data System (ADS)
Pang, A. L.; Ismail, H.; Abu Bakar, A.
2018-02-01
Linear low-density polyethylene (LLDPE)/poly (vinyl alcohol) (PVOH) filled with untreated kenaf (UT-KNF) and eco-friendly coupling agent (ECA)-treated kenaf (ECAT-KNF) were prepared using ThermoHaake internal mixer, respectively. Filler loadings of UT-KNF and ECAT-KNF used in this study are 10 and 40 parts per hundred parts of resin (phr). The effect of ECA on tensile properties and water absorption of LLDPE/PVOH/KNF composites were investigated. Field emission scanning electron microscopy (FESEM) analysis was applied to visualize filler-matrix adhesion. The results indicate LLDPE/PVOH/ECAT-KNF composites possess higher tensile strength and tensile modulus, but lower elongation at break compared to LLDPE/PVOH/UT-KNF composites. The morphological studies of tensile fractured surfaces using FESEM support the increment in tensile properties of LLDPE/PVOH/ECAT-KNF composites. Nevertheless, LLDPE/PVOH/UT-KNF composites reveal higher water absorption compared to LLDPE/PVOH/ECAT-KNF composites.
Active shape control of composite blades using shape memory actuation
NASA Astrophysics Data System (ADS)
Chandra, Ramesh
2001-10-01
This paper presents active shape control of composite beams using shape memory actuation. Shape memory alloy (SMA) bender elements trained to memorize bending shape were used to induce bending and twisting deformations in composite beams. Bending-torsion coupled graphite-epoxy and kevlar-epoxy composite beams with Teflon inserts were manufactured using an autoclave-molding technique. Teflon inserts were replaced by trained SMA bender elements. Composite beams with SMA bender elements were activated by heating these using electrical resistive heating and the bending and twisting deformations of the beams were measured using a mirror and laser system. The structural response of the composite beams activated by SMA elements was predicted using the Vlasov theory, where these beams were modeled as open sections with many branches. The bending moment induced by a SMA bender element was calculated from its experimentally determined memorized shape. The bending, torsion, and bending-torsion coupling stiffness coefficients of these beams were obtained using analytical formulation of an open-section composite beam with many branches (Vlasov theory).
Chappell, P. Dreux; Whitney, LeAnn P.; Haddock, Traci L.; Menden-Deuer, Susanne; Roy, Eric G.; Wells, Mark L.; Jenkins, Bethany D.
2013-01-01
Diatoms are genetically diverse unicellular photosynthetic eukaryotes that are key primary producers in the ocean. Many of the over 100 extant diatom species in the cosmopolitan genus Thalassiosira are difficult to distinguish in mixed populations using light microscopy. Here, we examine shifts in Thalassiosira spp. composition along a coastal to open ocean transect that encountered a 3-month-old Haida eddy in the northeast Pacific Ocean. To quantify shifts in Thalassiosira species composition, we developed a targeted automated ribosomal intergenic spacer analysis (ARISA) method to identify Thalassiosira spp. in environmental samples. As many specific fragment lengths are indicative of individual Thalassiosira spp., the ARISA method is a useful screening tool to identify changes in the relative abundance and distribution of specific species. The method also enabled us to assess changes in Thalassiosira community composition in response to chemical and physical forcing. Thalassiosira spp. community composition in the core of a 3-month-old Haida eddy remained largely (>80%) similar over a 2-week period, despite moving 24 km southwestward. Shifts in Thalassiosira species correlated with changes in dissolved iron (Fe) and temperature throughout the sampling period. Simultaneously tracking community composition and relative abundance of Thalassiosira species within the physical and chemical context they occurred allowed us to identify quantitative linkages between environmental conditions and community response. PMID:24065961
Alessi, Anna M; Bird, Susannah M; Oates, Nicola C; Li, Yi; Dowle, Adam A; Novotny, Etelvino H; deAzevedo, Eduardo R; Bennett, Joseph P; Polikarpov, Igor; Young, J Peter W; McQueen-Mason, Simon J; Bruce, Neil C
2018-01-01
Lignocellulose is one of the most abundant forms of fixed carbon in the biosphere. Current industrial approaches to the degradation of lignocellulose employ enzyme mixtures, usually from a single fungal species, which are only effective in hydrolyzing polysaccharides following biomass pre-treatments. While the enzymatic mechanisms of lignocellulose degradation have been characterized in detail in individual microbial species, the microbial communities that efficiently breakdown plant materials in nature are species rich and secrete a myriad of enzymes to perform "community-level" metabolism of lignocellulose. Single-species approaches are, therefore, likely to miss important aspects of lignocellulose degradation that will be central to optimizing commercial processes. Here, we investigated the microbial degradation of wheat straw in liquid cultures that had been inoculated with wheat straw compost. Samples taken at selected time points were subjected to multi-omics analysis with the aim of identifying new microbial mechanisms for lignocellulose degradation that could be applied in industrial pre-treatment of feedstocks. Phylogenetic composition of the community, based on sequenced bacterial and eukaryotic ribosomal genes, showed a gradual decrease in complexity and diversity over time due to microbial enrichment. Taxonomic affiliation of bacterial species showed dominance of Bacteroidetes and Proteobacteria and high relative abundance of genera Asticcacaulis , Leadbetterella and Truepera . The eukaryotic members of the community were enriched in peritrich ciliates from genus Telotrochidium that thrived in the liquid cultures compared to fungal species that were present in low abundance. A targeted metasecretome approach combined with metatranscriptomics analysis, identified 1127 proteins and showed the presence of numerous carbohydrate-active enzymes extracted from the biomass-bound fractions and from the culture supernatant. This revealed a wide array of hydrolytic cellulases, hemicellulases and carbohydrate-binding modules involved in lignocellulose degradation. The expression of these activities correlated to the changes in the biomass composition observed by FTIR and ssNMR measurements. A combination of mass spectrometry-based proteomics coupled with metatranscriptomics has enabled the identification of a large number of lignocellulose degrading enzymes that can now be further explored for the development of improved enzyme cocktails for the treatment of plant-based feedstocks. In addition to the expected carbohydrate-active enzymes, our studies reveal a large number of unknown proteins, some of which may play a crucial role in community-based lignocellulose degradation.
Guo, Jingfei; He, Kanglai; Bai, Shuxiong; Zhang, Tiantao; Liu, Yunjun; Wang, Fuxin; Wang, Zhenying
2016-12-01
Non-lepidopteran pests are exposed to, and may be influenced by, Bt toxins when feeding on Bt maize that express insecticidal Cry proteins derived from Bacillus thuringiensis (Bt). In order to assess the potential effects of transgenic cry1Ie maize on non-lepidopteran pest species and ecological communities, a 2-year field study was conducted to compare the non-lepidopteran pest abundance, diversity and community composition between transgenic cry1Ie maize (Event IE09S034, Bt maize) and its near isoline (Zong 31, non-Bt maize) by whole plant inspections. Results showed that Bt maize had no effects on non-lepidopteran pest abundance and diversity (Shannon-Wiener diversity index, Simpson's diversity index, species richness, and Pielou's index). There was a significant effect of year and sampling time on those indices analyzed. Redundancy analysis indicated maize type, sampling time and year totally explained 20.43 % of the variance in the non-lepidopteran pest community composition, but no association was presented between maize type (Bt maize and non-Bt maize) and the variance. Nonmetric multidimensional scaling analysis showed that sampling time and year, rather than maize type had close relationship with the non-lepidopteran pest community composition. These results corroborated the hypothesis that, at least in the short-term, the transgenic cry1Ie maize had negligible effects on the non-lepidopteran pest abundance, diversity and community composition.
Lima-Perim, Julia Elidia; Romagnoli, Emiliana Manesco; Dini-Andreote, Francisco; Durrer, Ademir; Dias, Armando Cavalcante Franco; Andreote, Fernando Dini
2016-01-01
The description of microbiomes as intrinsic fractions of any given ecosystem is an important issue, for instance, by linking their compositions and functions with other biotic and abiotic components of natural systems and hosts. Here we describe the archaeal and bacterial communities from soils of the Atlantic Rainforest in Brazil. Based on the comparison of three areas located along an altitudinal gradient—namely, Santa Virginia, Picinguaba and Restinga—we detected the most abundant groups of Bacteria (Acidobacteria and Proteobacteria) and Archaea (Thaumarchaeota, Crenarchaeota and Euryarchaeota). The particular composition of such communities in each of these areas was first evidenced by PCR-DGGE patterns [determined for Bacteria, Archaea and ammonia-oxidizing organisms—ammonia-oxidizing archaea (AOA) and bacteria (AOB)]. Moreover, sequence-based analysis provided a better resolution of communities, which indicated distinct frequencies of archaeal phyla and bacterial OTUs across areas. We found, as indicated by the Mantel test and multivariate analyses, a potential effect of the flora composition that outpaces the effect of soil characteristics (either physical and chemical) influencing the assembly of these microbial communities in soils. Our results indicate a collective role of the ecosystem underlying observed differences in microbial communities in these soils. Particularly, we posit that rainforest preservation also needs to take into account the maintenance of the soil biodiversity, as this is prompted to influence major processes that affect ecosystem functioning. PMID:26752633
Lautenschlager, Karin; Hwang, Chiachi; Ling, Fangqiong; Liu, Wen-Tso; Boon, Nico; Köster, Oliver; Egli, Thomas; Hammes, Frederik
2014-10-01
Indigenous bacterial communities are essential for biofiltration processes in drinking water treatment systems. In this study, we examined the microbial community composition and abundance of three different biofilter types (rapid sand, granular activated carbon, and slow sand filters) and their respective effluents in a full-scale, multi-step treatment plant (Zürich, CH). Detailed analysis of organic carbon degradation underpinned biodegradation as the primary function of the biofilter biomass. The biomass was present in concentrations ranging between 2-5 × 10(15) cells/m(3) in all filters but was phylogenetically, enzymatically and metabolically diverse. Based on 16S rRNA gene-based 454 pyrosequencing analysis for microbial community composition, similar microbial taxa (predominantly Proteobacteria, Planctomycetes, Acidobacteria, Bacteriodetes, Nitrospira and Chloroflexi) were present in all biofilters and in their respective effluents, but the ratio of microbial taxa was different in each filter type. This change was also reflected in the cluster analysis, which revealed a change of 50-60% in microbial community composition between the different filter types. This study documents the direct influence of the filter biomass on the microbial community composition of the final drinking water, particularly when the water is distributed without post-disinfection. The results provide new insights on the complexity of indigenous bacteria colonizing drinking water systems, especially in different biofilters of a multi-step treatment plant. Copyright © 2014 Elsevier Ltd. All rights reserved.
Root controls on soil microbial community structure in forest soils.
Brant, Justin B; Myrold, David D; Sulzman, Elizabeth W
2006-07-01
We assessed microbial community composition as a function of altered above- and belowground inputs to soil in forest ecosystems of Oregon, Pennsylvania, and Hungary as part of a larger Detritus Input and Removal Treatment (DIRT) experiment. DIRT plots, which include root trenching, aboveground litter exclusion, and doubling of litter inputs, have been established in forested ecosystems in the US and Europe that vary with respect to dominant tree species, soil C content, N deposition rate, and soil type. This study used phospholipid fatty-acid (PLFA) analysis to examine changes in the soil microbial community size and composition in the mineral soil (0-10 cm) as a result of the DIRT treatments. At all sites, the PLFA profiles from the plots without roots were significantly different from all other treatments. PLFA analysis showed that the rootless plots generally contained larger quantities of actinomycete biomarkers and lower amounts of fungal biomarkers. At one of the sites in an old-growth coniferous forest, seasonal changes in PLFA profiles were also examined. Seasonal differences in soil microbial community composition were greater than treatment differences. Throughout the year, treatments without roots continued to have a different microbial community composition than the treatments with roots, although the specific PLFA biomarkers responsible for these differences varied by season. These data provide direct evidence that root C inputs exert a large control on microbial community composition in the three forested ecosystems studied.
Williams, Alwyn; Manoharan, Lokeshwaran; Rosenstock, Nicholas P; Olsson, Pål Axel; Hedlund, Katarina
2017-01-01
Agricultural fertilization significantly affects arbuscular mycorrhizal fungal (AMF) community composition. However, the functional implications of community shifts are unknown, limiting understanding of the role of AMF in agriculture. We assessed AMF community composition at four sites managed under the same nitrogen (N) and phosphorus (P) fertilizer regimes for 55 yr. We also established a glasshouse experiment with the same soils to investigate AMF-barley (Hordeum vulgare) nutrient exchange, using carbon ( 13 C) and 33 P isotopic labelling. N fertilization affected AMF community composition, reducing diversity; P had no effect. In the glasshouse, AMF contribution to plant P declined with P fertilization, but was unaffected by N. Barley C allocation to AMF also declined with P fertilization. As N fertilization increased, C allocation to AMF per unit of P exchanged increased. This occurred with and without P fertilization, and was concomitant with reduced barley biomass. AMF community composition showed no relationship with glasshouse experiment results. The results indicate that plants can reduce C allocation to AMF in response to P fertilization. Under N fertilization, plants allocate an increasing amount of C to AMF and receive relatively less P. This suggests an alteration in the terms of P-C exchange under N fertilization regardless of soil P status. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
High-Resolution Melt Analysis for Rapid Comparison of Bacterial Community Compositions
Hjelmsø, Mathis Hjort; Hansen, Lars Hestbjerg; Bælum, Jacob; Feld, Louise; Holben, William E.
2014-01-01
In the study of bacterial community composition, 16S rRNA gene amplicon sequencing is today among the preferred methods of analysis. The cost of nucleotide sequence analysis, including requisite computational and bioinformatic steps, however, takes up a large part of many research budgets. High-resolution melt (HRM) analysis is the study of the melt behavior of specific PCR products. Here we describe a novel high-throughput approach in which we used HRM analysis targeting the 16S rRNA gene to rapidly screen multiple complex samples for differences in bacterial community composition. We hypothesized that HRM analysis of amplified 16S rRNA genes from a soil ecosystem could be used as a screening tool to identify changes in bacterial community structure. This hypothesis was tested using a soil microcosm setup exposed to a total of six treatments representing different combinations of pesticide and fertilization treatments. The HRM analysis identified a shift in the bacterial community composition in two of the treatments, both including the soil fumigant Basamid GR. These results were confirmed with both denaturing gradient gel electrophoresis (DGGE) analysis and 454-based 16S rRNA gene amplicon sequencing. HRM analysis was shown to be a fast, high-throughput technique that can serve as an effective alternative to gel-based screening methods to monitor microbial community composition. PMID:24610853
Lima-Perim, Julia Elidia; Romagnoli, Emiliana Manesco; Dini-Andreote, Francisco; Durrer, Ademir; Dias, Armando Cavalcante Franco; Andreote, Fernando Dini
2016-01-01
The description of microbiomes as intrinsic fractions of any given ecosystem is an important issue, for instance, by linking their compositions and functions with other biotic and abiotic components of natural systems and hosts. Here we describe the archaeal and bacterial communities from soils of the Atlantic Rainforest in Brazil. Based on the comparison of three areas located along an altitudinal gradient-namely, Santa Virginia, Picinguaba and Restinga-we detected the most abundant groups of Bacteria (Acidobacteria and Proteobacteria) and Archaea (Thaumarchaeota, Crenarchaeota and Euryarchaeota). The particular composition of such communities in each of these areas was first evidenced by PCR-DGGE patterns [determined for Bacteria, Archaea and ammonia-oxidizing organisms-ammonia-oxidizing archaea (AOA) and bacteria (AOB)]. Moreover, sequence-based analysis provided a better resolution of communities, which indicated distinct frequencies of archaeal phyla and bacterial OTUs across areas. We found, as indicated by the Mantel test and multivariate analyses, a potential effect of the flora composition that outpaces the effect of soil characteristics (either physical and chemical) influencing the assembly of these microbial communities in soils. Our results indicate a collective role of the ecosystem underlying observed differences in microbial communities in these soils. Particularly, we posit that rainforest preservation also needs to take into account the maintenance of the soil biodiversity, as this is prompted to influence major processes that affect ecosystem functioning.
Bacterial responses to environmental change on the Tibetan Plateau over the past half century.
Liu, Yongqin; Priscu, John C; Yao, Tandong; Vick-Majors, Trista J; Xu, Baiqing; Jiao, Nianzhi; Santibáñez, Pamela; Huang, Sijun; Wang, Ninglian; Greenwood, Mark; Michaud, Alexander B; Kang, Shichang; Wang, Jianjun; Gao, Qun; Yang, Yunfeng
2016-06-01
Climate change and anthropogenic factors can alter biodiversity and can lead to changes in community structure and function. Despite the potential impacts, no long-term records of climatic influences on microbial communities exist. The Tibetan Plateau is a highly sensitive region that is currently undergoing significant alteration resulting from both climate change and increased human activity. Ice cores from glaciers in this region serve as unique natural archives of bacterial abundance and community composition, and contain concomitant records of climate and environmental change. We report high-resolution profiles of bacterial density and community composition over the past half century in ice cores from three glaciers on the Tibetan Plateau. Statistical analysis showed that the bacterial community composition in the three ice cores converged starting in the 1990s. Changes in bacterial community composition were related to changing precipitation, increasing air temperature and anthropogenic activities in the vicinity of the plateau. Collectively, our ice core data on bacteria in concert with environmental and anthropogenic proxies indicate that the convergence of bacterial communities deposited on glaciers across a wide geographical area and situated in diverse habitat types was likely induced by climatic and anthropogenic drivers. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armstrong, Alacia; Valverde, Angel; Ramond, Jean-Baptiste
The temporal dynamics of desert soil microbial communities are poorly understood. Given the implications for ecosystem functioning under a global change scenario, a better understanding of desert microbial community stability is crucial. Here, we sampled soils in the central Namib Desert on sixteen different occasions over a one-year period. Using Illumina-based amplicon sequencing of the 16S rRNA gene, we found that α-diversity (richness) was more variable at a given sampling date (spatial variability) than over the course of one year (temporal variability). Community composition remained essentially unchanged across the first 10 months, indicating that spatial sampling might be more importantmore » than temporal sampling when assessing β-diversity patterns in desert soils. However, a major shift in microbial community composition was found following a single precipitation event. This shift in composition was associated with a rapid increase in CO2 respiration and productivity, supporting the view that desert soil microbial communities respond rapidly to re-wetting and that this response may be the result of both taxon-specific selection and changes in the availability or accessibility of organic substrates. Recovery to quasi pre-disturbance community composition was achieved within one month after rainfall.« less
Albornoz, Felipe E; Teste, François P; Lambers, Hans; Bunce, Michael; Murray, Dáithí C; White, Nicole E; Laliberté, Etienne
2016-10-01
Ectomycorrhizal (ECM) fungal communities covary with host plant communities along soil fertility gradients, yet it is unclear whether this reflects changes in host composition, fungal edaphic specialization or priority effects during fungal community establishment. We grew two co-occurring ECM plant species (to control for host identity) in soils collected along a 2-million-year chronosequence representing a strong soil fertility gradient and used soil manipulations to disentangle the effects of edaphic properties from those due to fungal inoculum. Ectomycorrhizal fungal community composition changed and richness declined with increasing soil age; these changes were linked to pedogenesis-driven shifts in edaphic properties, particularly pH and resin-exchangeable and organic phosphorus. However, when differences in inoculum potential or soil abiotic properties among soil ages were removed while host identity was held constant, differences in ECM fungal communities and richness among chronosequence stages disappeared. Our results show that ECM fungal communities strongly vary during long-term ecosystem development, even within the same hosts. However, these changes could not be attributed to short-term fungal edaphic specialization or differences in fungal inoculum (i.e. density and composition) alone. Rather, they must reflect longer-term ecosystem-level feedback between soil, vegetation and ECM fungi during pedogenesis. © 2016 John Wiley & Sons Ltd.
Radujkovic, Dajana; Verbruggen, Erik; Sigurdsson, Bjarni D; Leblans, Niki I W; Janssens, Ivan A; Vicca, Sara; Weedon, James T
2018-02-01
Global change is expected to affect soil microbial communities through their responsiveness to temperature. It has been proposed that prolonged exposure to elevated temperatures may lead to progressively larger effects on soil microbial community composition. However, due to the relatively short-term nature of most warming experiments, this idea has been challenging to evaluate. The present study took the advantage of natural geothermal gradients (from +1°C to +19°C above ambient) in two subarctic grasslands to test the hypothesis that long-term exposure (>50 years) intensifies the effect of warming on microbial community composition compared to short-term exposure (5-7 years). Community profiles from amplicon sequencing of bacterial and fungal rRNA genes did not support this hypothesis: significant changes relative to ambient were observed only starting from the warming intensity of +9°C in the long term and +7°C/+3°C in the short term, for bacteria and fungi, respectively. Our results suggest that microbial communities in high-latitude grasslands will not undergo lasting shifts in community composition under the warming predicted for the coming 100 years (+2.2°C to +8.3°C). © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Chen, Yong-Liang; Hu, Hang-Wei; Han, Hong-Yan; Du, Yue; Wan, Shi-Qiang; Xu, Zhu-Wen; Chen, Bao-Dong
2014-07-01
Based on a 6-year field trial in a temperate steppe in Inner Mongolia, we investigated the effects of nitrogen (N) and phosphorus (P) fertilization and mowing on the abundance and community compositions of ammonia-oxidizing Bacteria (AOB) and Archaea (AOA) upon early (May) and peak (August) plant growth using quantitative PCR (qPCR), terminal-restriction fragment length polymorphism (T-RFLP), cloning and sequencing. The results showed that N fertilization changed AOB community composition and increased AOB abundance in both May and August, but significantly decreased AOA abundance in May. By contrast, P fertilization significantly influenced AOB abundance only in August. Mowing significantly decreased AOA abundance and had little effect on AOA community compositions in May, while significantly influencing AOB abundance in both May and August, Moreover, AOA and AOB community structures showed obvious seasonal variations between May and August. Phylogenetic analysis showed that all AOA sequences fell into the Nitrososphaera cluster, and the AOB community was dominated by Nitrosospira Cluster 3. The results suggest that fertilization and mowing play important roles in affecting the abundance and community compositions of AOA and AOB. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zeng, Lingyu; Zhou, Minhong; Bi, Ke; Lei, Ming
2016-01-01
Magnetoelectric (ME) Ni/PZT/TbFe2 and TbFe2/PZT composites with two semiring structures are prepared. The dependence between ME coupling and magnetostrictive property of the composite is discussed. Because Ni possesses negative magnetostrictive property and TbFe2 shows positive magnetostrictive property, the ME voltage coefficient of Ni/PZT/TbFe2 semiring structure is much larger than that of TbFe2/PZT. In these composites, the ME voltage coefficient increases and the resonance frequency gradually decreases with the increase of the semiring radius, showing that structural parameters are key factors to the composite properties. Due to the strong ME coupling effect, a giant ME voltage coefficient αE = 44.8 V cm-1 Oe-1 is obtained. This approach opens a way for the design of ME composites with giant ME voltage coefficient.
Kumaresan, Deepak; Stralis-Pavese, Nancy; Abell, Guy C J; Bodrossy, Levente; Murrell, J Colin
2011-10-01
Aggregates of different sizes and stability in soil create a composite of ecological niches differing in terms of physico-chemical and structural characteristics. The aim of this study was to identify, using DNA-SIP and mRNA-based microarray analysis, whether shifts in activity and community composition of methanotrophs occur when ecological niches created by soil structure are physically perturbed. Landfill cover soil was subject to three treatments termed: 'control' (minimal structural disruption), 'sieved' (sieved soil using 2 mm mesh) and 'ground' (grinding using mortar and pestle). 'Sieved' and 'ground' soil treatments exhibited higher methane oxidation potentials compared with the 'control' soil treatment. Analysis of the active community composition revealed an effect of physical disruption on active methanotrophs. Type I methanotrophs were the most active methanotrophs in 'sieved' and 'ground' soil treatments, whereas both Type I and Type II methanotrophs were active in the 'control' soil treatment. The result emphasize that changes to a particular ecological niche may not result in an immediate change to the active bacterial composition and change in composition will depend on the ability of the bacterial communities to respond to the perturbation. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
Learman, Deric R.; Henson, Michael W.; Thrash, J. Cameron; Temperton, Ben; Brannock, Pamela M.; Santos, Scott R.; Mahon, Andrew R.; Halanych, Kenneth M.
2016-01-01
Western Antarctica, one of the fastest warming locations on Earth, is a unique environment that is underexplored with regards to biodiversity. Although pelagic microbial communities in the Southern Ocean and coastal Antarctic waters have been well-studied, there are fewer investigations of benthic communities and most have a focused geographic range. We sampled surface sediment from 24 sites across a 5500 km region of Western Antarctica (covering the Ross Sea to the Weddell Sea) to examine relationships between microbial communities and sediment geochemistry. Sequencing of the 16S and 18S rRNA genes showed microbial communities in sediments from the Antarctic Peninsula (AP) and Western Antarctica (WA), including the Ross, Amundsen, and Bellingshausen Seas, could be distinguished by correlations with organic matter concentrations and stable isotope fractionation (total organic carbon; TOC, total nitrogen; TN, and δ13C). Overall, samples from the AP were higher in nutrient content (TOC, TN, and NH4+) and communities in these samples had higher relative abundances of operational taxonomic units (OTUs) classified as the diatom, Chaetoceros, a marine cercozoan, and four OTUs classified as Flammeovirgaceae or Flavobacteria. As these OTUs were strongly correlated with TOC, the data suggests the diatoms could be a source of organic matter and the Bacteroidetes and cercozoan are grazers that consume the organic matter. Additionally, samples from WA have lower nutrients and were dominated by Thaumarchaeota, which could be related to their known ability to thrive as lithotrophs. This study documents the largest analysis of benthic microbial communities to date in the Southern Ocean, representing almost half the continental shoreline of Antarctica, and documents trophic interactions and coupling of pelagic and benthic communities. Our results indicate potential modifications in carbon sequestration processes related to change in community composition, identifying a prospective mechanism that links climate change to carbon availability. PMID:27047451
Sjöstedt, Johanna; Langenheder, Silke; Kritzberg, Emma; Karlsson, Christofer M G; Lindström, Eva S
2018-05-07
Disturbances are believed to be one of the main factors influencing variations in community diversity and functioning. Here we investigated if exposure to a pH press disturbance affected the composition and functional performance of a bacterial community and its resistance, recovery and resilience to a second press disturbance (salt addition). Lake bacterial assemblages were initially exposed to reduced pH in six mesocosms whereas another six mesocosms were kept as reference. Seven days after the pH disturbance, three tanks from each treatment were exposed to a salt disturbance. Both bacterial production and enzyme activity were negatively affected by the salt treatment, regardless if the communities had been subject to a previous disturbance or not. However, cell-specific enzyme activity had a higher resistance in communities pre-exposed to the pH disturbance compared to the reference treatment. In contrast, for cell-specific bacterial production resistance was not affected, but recovery was faster in the communities that had previously been exposed to the pH disturbance. Over time, bacterial community composition diverged among treatments, in response to both pH and salinity. The difference in functional recovery, resilience and resistance may depend on differences in community composition caused by the pH disturbance, niche breadth or acquired stress resistance. This article is protected by copyright. All rights reserved. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.
Grundel, Ralph; Beamer, David; Glowacki, Gary A.; Frohnapple, Krystal; Pavlovic, Noel B.
2014-01-01
Temperate savannas are threatened across the globe. If we prioritize savanna restoration, we should ask how savanna animal communities differ from communities in related open habitats and forests. We documented distribution of amphibian and reptile species across an open-savanna–forest gradient in the Midwest U.S. to determine how fire history and habitat structure affected herpetofaunal community composition. The transition from open habitats to forests was a transition from higher reptile abundance to higher amphibian abundance and the intermediate savanna landscape supported the most species overall. These differences warn against assuming that amphibian and reptile communities will have similar ecological responses to habitat structure. Richness and abundance also often responded in opposite directions to some habitat characteristics, such as cover of bare ground or litter. Herpetofaunal community species composition changed along a fire gradient from infrequent and recent fires to frequent but less recent fires. Nearby (200-m) wetland cover was relatively unimportant in predicting overall herpetofaunal community composition while fire history and fire-related canopy and ground cover were more important predictors of composition, diversity, and abundance. Increased developed cover was negatively related to richness and abundance. This indicates the importance of fire history and fire related landscape characteristics, and the negative effects of development, in shaping the upland herpetofaunal community along the native grassland–forest continuum.
Sarah. Jovan
2012-01-01
The Forest Inventory and Analysis (FIA) Program's Lichen Communities Indicator is used for tracking epiphytic macrolichen diversity and is applied for monitoring air quality and climate change effects on forest health in the United States. Started in 1994, the Epiphytic Macrolichen Community Composition Database (GIVD ID NA-US-012) now has over 8,000 surveys of...
Ivan P. Edwards; Donald R. Zak
2011-01-01
The long-term effects of rising atmospheric carbon dioxide (CO2) and tropospheric O3 concentrations on fungal communities in soil are not well understood. Here, we examine fungal community composition and the activities of cellobiohydrolase and N-acetylglucosaminidase (NAG) after 10 years of exposure to 1...
Qin, H; Han, C; Jin, Z; Wu, L; Deng, H; Zhu, G; Zhong, W
2018-07-01
The aim of this study was to explore the vertical distribution traits of anaerobic ammonium-oxidizing (anammox) bacterial relative abundance and community composition along the oxic/anoxic sediment profiles in a shallow lake. The Illumina Miseq-based sequencing and quantitative polymerase chain reactions were utilized to analyse relative abundance of anammox hydrazine synthase (hzsB) gene in comparison with bacterial 16S rRNA genes, anammox bacterial relative abundance (the number of anammox sequences divided by total number of sequences), community composition and diversity in sediments. The relative abundance of hzsB gene at the low-nitrogen (LN) site in the lake sediments showed that the vertical distribution of anammox bacteria increased to a peak, then decreased with increasing depth. Moreover, the relative abundance of hzsB gene at the high-nitrogen site was significantly lower than that at the LN site. Additionally, the community composition results showed that Candidatus Brocadia sp. was the dominant genus. In addition, the anammox bacterial diversity was also site specific. Redundancy analysis showed that the total N and the NH 4 + -N content might be the most important factors affecting anammox bacterial community composition in the studied sites. The results revealed the specific vertical variance of anammox bacterial distribution and community composition in oxic/anoxic sediments of a eutrophic shallow lake. This is the first study to demonstrate that anammox bacteria displayed the particular distribution in freshwater sediments, which implied a strong response to the anthropogenic eutrophication. © 2018 The Society for Applied Microbiology.
Kohler, J; Caravaca, F; Azcón, R; Díaz, G; Roldán, A
2016-03-15
The recovery of species composition and functions of soil microbial community of degraded lands is crucial in order to guarantee the long-term self-sustainability of the ecosystems. A field experiment was carried out to test the influence of combining fermented sugar beet residue (SBR) addition and inoculation with the arbuscular mycorrhizal (AM) fungus Funneliformis mosseae on the plant growth parameters and microbial community composition and function in the rhizosphere of two autochthonous plant species (Dorycnium pentaphyllum L. and Asteriscus maritimus L.) growing in a semiarid soil contaminated by heavy metals. We analysed the phospholipid fatty acids (PLFAs), neutral lipids fatty acids (NLFAs) and enzyme activities to study the soil microbial community composition and function, respectively. The combined treatment was not effective for increasing plant growth. The SBR promoted the growth of both plant species, whilst the AM fungus was effective only for D. pentaphyllum. The effect of the treatments on plant growth was linked to shifts in the rhizosphere microbial community composition and function. The highest increase in dehydrogenase and β-glucosidase activities was recorded in SBR-amended soil. The SBR increased the abundance of marker PLFAs for saprophytic fungi, Gram+ and Gram- bacteria and actinobacteria, whereas the AM fungus enhanced the abundance of AM fungi-related NLFA and marker PLFAs for Gram- bacteria. Measurement of the soil microbial community composition and function was useful to assess the success of phytomanagement technologies in a semiarid, contaminated soil. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Monard, C.; Gantner, S.; Bertilsson, S.; Hallin, S.; Stenlid, J.
2016-11-01
Observations of distributions of microorganisms and their differences in community composition across habitats provide evidence of biogeographical patterns. However, little is known about the processes controlling transfers across habitat gradients. By analysing the overall microbial community composition (bacteria, fungi, archaea) across a terrestrial-freshwater gradient, the aim of this study was to understand the spatial distribution patterns of populations and identify taxa capable of crossing biome borders. Barcoded 454 pyrosequencing of taxonomic gene markers was used to describe the microbial communities in adjacent soil, freshwater and sediment samples and study the role of biotic and spatial factors in shaping their composition. Few habitat generalists but a high number of specialists were detected indicating that microbial community composition was mainly regulated by species sorting and niche partitioning. Biotic interactions within microbial groups based on an association network underlined the importance of Actinobacteria, Sordariomycetes, Agaricomycetes and Nitrososphaerales in connecting among biomes. Even if dispersion seemed limited, the shore of the lake represented a transition area, allowing populations to cross the biome boundaries. In finding few broadly distributed populations, our study points to biome specialization within microbial communities with limited potential for dispersal and colonization of new habitats along the terrestrial-freshwater continuum.
Storm-scale dynamics of bacterial community composition in throughfall and stemflow
NASA Astrophysics Data System (ADS)
Van Stan, J. T., II; Teachey, M. E.; Pound, P.; Ottesen, E. A.
2017-12-01
Transport of bacteria between ecosystem spheres can significantly affect microbially-mediated biogeochemical processes. During rainfall, there is a large, temporally-concentrated exchange of bacteria between the forest phyllosphere and the pedosphere by rain dripping from canopy surfaces, as throughfall (TF), and draining to the stem, as stemflow (SF). Many phyllosphere bacteria possibly transported by TF and SF have been linked to important litter and soil processes (like cyanobacteria and actinobacteria). Despite this, no work has applied high throughput DNA sequencing to assess the community composition of bacteria transported by TF and SF. We characterized bacterial community composition for TF and SF from an epiphyte-laden (Tillandsia usneoides L., Spanish moss) southern live oak (Quercus virginiana) forest in southeastern Georgia (USA) to address two hypotheses: that bacterial community composition will differ between (1) TF and SF, and (2) TF sampled beneath bare and epiphyte-laden canopy. Variability in family-level bacterial abundance, Bray-Curtis dissimilarity, and Shannon diversity index was greater between storms than between net rainfall fluxes. In fact, TF and SF bacterial communities were relatively similar for individual storms and may be driven by pre-storm atmospheric deposition rather than the communities affixed to leaves, bark, and epiphyte surfaces.
Enwall, Karin; Philippot, Laurent; Hallin, Sara
2005-12-01
The objective of this study was to explore the long-term effects of different organic and inorganic fertilizers on activity and composition of the denitrifying and total bacterial communities in arable soil. Soil from the following six treatments was analyzed in an experimental field site established in 1956: cattle manure, sewage sludge, Ca(NO3)2, (NH4)2SO4, and unfertilized and unfertilized bare fallow. All plots but the fallow were planted with corn. The activity was measured in terms of potential denitrification rate and basal soil respiration. The nosZ and narG genes were used as functional markers of the denitrifying community, and the composition was analyzed using denaturing gradient gel electrophoresis of nosZ and restriction fragment length polymorphism of narG, together with cloning and sequencing. A fingerprint of the total bacterial community was assessed by ribosomal intergenic spacer region analysis (RISA). The potential denitrification rates were higher in plots treated with organic fertilizer than in those with only mineral fertilizer. The basal soil respiration rates were positively correlated to soil carbon content, and the highest rates were found in the plots with the addition of sewage sludge. Fingerprints of the nosZ and narG genes, as well as the RISA, showed significant differences in the corresponding communities in the plots treated with (NH4)2SO4 and sewage sludge, which exhibited the lowest pH. In contrast, similar patterns were observed among the other four treatments, unfertilized plots with and without crops and the plots treated with Ca(NO3)2 or with manure. This study shows that the addition of different fertilizers affects both the activity and the composition of the denitrifying communities in arable soil on a long-term basis. However, the treatments in which the denitrifying and bacterial community composition differed the most did not correspond to treatments with the most different activities, showing that potential activity was uncoupled to community composition.
Dini-Andreote, Francisco; Stegen, James C; van Elsas, Jan Dirk; Salles, Joana Falcão
2015-03-17
Ecological succession and the balance between stochastic and deterministic processes are two major themes within microbial ecology, but these conceptual domains have mostly developed independent of each other. Here we provide a framework that integrates shifts in community assembly processes with microbial primary succession to better understand mechanisms governing the stochastic/deterministic balance. Synthesizing previous work, we devised a conceptual model that links ecosystem development to alternative hypotheses related to shifts in ecological assembly processes. Conceptual model hypotheses were tested by coupling spatiotemporal data on soil bacterial communities with environmental conditions in a salt marsh chronosequence spanning 105 years of succession. Analyses within successional stages showed community composition to be initially governed by stochasticity, but as succession proceeded, there was a progressive increase in deterministic selection correlated with increasing sodium concentration. Analyses of community turnover among successional stages--which provide a larger spatiotemporal scale relative to within stage analyses--revealed that changes in the concentration of soil organic matter were the main predictor of the type and relative influence of determinism. Taken together, these results suggest scale-dependency in the mechanisms underlying selection. To better understand mechanisms governing these patterns, we developed an ecological simulation model that revealed how changes in selective environments cause shifts in the stochastic/deterministic balance. Finally, we propose an extended--and experimentally testable--conceptual model integrating ecological assembly processes with primary and secondary succession. This framework provides a priori hypotheses for future experiments, thereby facilitating a systematic approach to understand assembly and succession in microbial communities across ecosystems.
Horváth, Zsófia; Vad, Csaba F.; Preiler, Christian; Birtel, Julia; Matthews, Blake; Ptáčníková, Radka; Ptáčník, Robert
2017-01-01
Abstract Lakes in the Alps represent a considerable fraction of nutrient-poor lakes in Central Europe, with unique biodiversity and ecosystem properties. Although some individual lakes are well studied, less knowledge is available on large-scale patterns essential to general understanding of their functioning. Here, we aimed to describe crustacean zooplankton communities (Cladocera, Copepoda) and identify their environmental drivers in the pelagic zone of 54 oligotrophic lakes in the montane region of the Alps (400–1200 m) in Austria, Germany, and Switzerland, covering a spatial scale of 650 km. Moreover, we aimed to provide data on the distribution and ecological requirements of the North American invader Bythotrephes longimanus in its Central European native range. Communities were mainly dominated by widespread species typical of lowland habitats, and only a few true specialists of oligotrophic alpine lakes were present. The most frequent taxa were the Daphnia longispina complex and Eudiaptomus gracilis, with 48 and 45 occurrences, respectively. Species richness decreased with altitude and increased with lake area. The main structuring factors of community composition were chlorophyll a concentration and depth, which drove an apparent separation of mesotrophic and oligotrophic communities. Bythotrephes had 13 occurrences, showing a preference for deep oligotrophic lakes. Its presence was not coupled with lower crustacean species richness, as was repeatedly observed in North America. Additionally, it frequently co-occurred with the other large predatory cladoceran, Leptodora kindtii. B. longimanus might be considered a truly montane species in Central Europe, given its absence in lowland and alpine lakes. PMID:28824797
Horváth, Zsófia; Vad, Csaba F.; Preiler, Christian; Birtel, Julia; Matthews, Blake; Ptáčníková, Radka; Ptacnik, Robert
2017-01-01
Lakes in the Alps represent a considerable fraction of nutrient-poor lakes in Central Europe, with unique biodiversity and ecosystem properties. Although some individual lakes are well-studied, less knowledge is available on large-scale patterns essential to generalise the understanding of their functioning. Here, we aimed to describe crustacean zooplankton communities (Cladocera, Copepoda) and identify their environmental drivers in the pelagic zone of 54 oligotrophic lakes in the montane region of the Alps (400–1200 m) in Austria, Germany, and Switzerland, covering a spatial scale of 650 km. Moreover, we aimed to provide data on the distribution and ecological requirements of the North American invader Bytotrephes longimanus in its Central European native range. Communities were mainly dominated by widespread species typical of lowland habitats, and only a few true specialists of oligotrophic alpine lakes were present. The most frequent taxa were the Daphnia longispina complex and Eudiaptomus gracilis, with 48 and 45 occurrences, respectively. Species richness decreased with altitude and increased with lake area. The main structuring factors of community composition were chlorophyll a concentration and depth, which drove an apparent separation of mesotrophic and oligotrophic communities. Bytotrephes had 13 occurrences, showing a preference for deep oligotrophic lakes. Its presence was not coupled with lower crustacean species richness as it was repeatedly observed in North America. Additionally, it frequently co-occurred with the other large predatory cladoceran, Leptodora kindtii. B. longimanus might be considered a truly montane species in Central Europe, given its absence in lowland and alpine lakes. PMID:28649318
Dini-Andreote, Francisco; Stegen, James C.; van Elsas, Jan Dirk; Salles, Joana Falcão
2015-01-01
Ecological succession and the balance between stochastic and deterministic processes are two major themes within microbial ecology, but these conceptual domains have mostly developed independent of each other. Here we provide a framework that integrates shifts in community assembly processes with microbial primary succession to better understand mechanisms governing the stochastic/deterministic balance. Synthesizing previous work, we devised a conceptual model that links ecosystem development to alternative hypotheses related to shifts in ecological assembly processes. Conceptual model hypotheses were tested by coupling spatiotemporal data on soil bacterial communities with environmental conditions in a salt marsh chronosequence spanning 105 years of succession. Analyses within successional stages showed community composition to be initially governed by stochasticity, but as succession proceeded, there was a progressive increase in deterministic selection correlated with increasing sodium concentration. Analyses of community turnover among successional stages—which provide a larger spatiotemporal scale relative to within stage analyses—revealed that changes in the concentration of soil organic matter were the main predictor of the type and relative influence of determinism. Taken together, these results suggest scale-dependency in the mechanisms underlying selection. To better understand mechanisms governing these patterns, we developed an ecological simulation model that revealed how changes in selective environments cause shifts in the stochastic/deterministic balance. Finally, we propose an extended—and experimentally testable—conceptual model integrating ecological assembly processes with primary and secondary succession. This framework provides a priori hypotheses for future experiments, thereby facilitating a systematic approach to understand assembly and succession in microbial communities across ecosystems. PMID:25733885
Kampichler, Christian; Angeler, David G; Holmes, Richard T; Leito, Aivar; Svensson, Sören; van der Jeugd, Henk P; Wesołowski, Tomasz
2014-08-01
Numerous anthropogenic activities threaten the biodiversity found on earth. Because all ecological communities constantly experience temporal turnover due to natural processes, it is important to distinguish between change due to anthropogenic impact and the underlying natural rate of change. In this study, we used data sets on breeding bird communities that covered at least 20 consecutive years, from a variety of terrestrial ecosystems, to address two main questions. (1) How fast does the composition of bird communities change over time, and can we identify a baseline of natural change that distinguishes primeval systems from systems experiencing varying degrees of human impact? (2) How do patterns of temporal variation in composition vary among bird communities in ecosystems with different anthropogenic impacts? Time lag analysis (TLA) showed a pattern of increasing rate of temporal compositional change from large-scale primeval systems to disturbed and protected systems to distinctly successional systems. TLA slopes of <0.04 were typical for breeding bird communities with natural turnover, while communities subjected to anthropogenic impact were characterised by TLA slopes of >0.04. Most of the temporal variability of breeding bird communities was explained by slow changes occurring over decades, regardless of the intensity of human impact. In most of the time series, medium- and short-wave periodicity was not detected, with the exception of breeding bird communities subjected to periodic pulses (e.g. caterpillar outbreaks causing food resource peaks).
Tian, Ren-Mao; Lee, On On; Wang, Yong; Cai, Lin; Bougouffa, Salim; Chiu, Jill Man Ying; Wu, Rudolf Shiu Sun; Qian, Pei-Yuan
2014-01-01
Marine sponges play important roles in benthic environments and are sensitive to environmental stresses. Polybrominated diphenyl ethers (PBDEs) have been widely used as flame retardants since the 1970s and are cytotoxic and genotoxic to organisms. In the present study, we studied the short-period effect of PBDE-47 (2,2′,4,4′-tetrabromodiphenyl ether) treatment on the community structure and functional gene composition of the bacterial community inhabiting the marine sponge Haliclona cymaeformis. Our results showed that the bacterial community shifted from an autotrophic bacteria-dominated community to a heterotrophic bacteria-dominated community in response to PBDE-47 in a time- and concentration-dependent manner. A potentially symbiotic sulfur-oxidizing bacterium (SOB) was dominant (>80% in abundance) in the untreated sponge. However, exposure to a high concentration (1 μg/L) of PBDE-47 caused a substantial decrease in the potential symbiont and an enrichment of heterotrophic bacteria like Clostridium. A metagenomic analysis showed a selective effect of the high concentration treatment on the functional gene composition of the enriched heterotrophic bacteria, revealing an enrichment for the functions responsible for DNA repair, multidrug efflux pumping, and bacterial chemotaxis and motility. This study demonstrated that PBDE-47 induced a shift in the composition of the community and functional genes in the sponge-associated bacterial community, revealing the selective effect of PBDE-47 treatment on the functions of the bacterial community in the microenvironment of the sponge. PMID:25642227
NASA Astrophysics Data System (ADS)
Myers, E.; Summons, R. E.; Schubotz, F.; Matys, E. D.
2015-12-01
Stromatolites that are biogenic in origin, a characteristic that can be determined by the coexistence of microbial mats (active microbial communities) and stromatolites (lithified structures) like in Hamelin Pool, comprise one of the best modern analogs to ancient microbial community assemblages. Comprehensive lipid biomarker profiles that include lipids of varying persistence in the rock record can help determine how previously living microbial communities are represented in lithified stromatolites. To create these profiles, the samples analyzed included non-lithified smooth, pustular, and colloform microbial mats, as well as smooth and colloform stromatolites. Select samples were separated into upper and lower layers of 5cm depth each. Intact polar lipids, glycerol dialkyl glycerol tetraethers, and bacteriohopanepolyols were analyzed via liquid chromatography-mass spectrometry (LC-MS) coupled to a Quadropole Time-of-Flight (QTOF) mass spectrometer; additionally, fatty acids from each sample were analyzed using gas chromatography-mass spectrometry (GC-MS) to prove consistent signatures with those determined by Allen et al. in 2010 for similar microbial mat samples. In accordance with those findings, 2-methylhopanoids were detected, as well as limited signals from higher (vascular) plants, the latter of which suggests terrestrial inputs, potentially from runoff. The rarely detected presence of 3-methylhopanoids appears in a significant portion of the samples, though further isolations of the molecule are needed to confirm. While all lipid profiles were relatively similar, certain differences in relative composition are likely attributable to morphological differences of the mats, some of which allow deeper oxygen and/or sunlight penetration, which influence the microbial community. However, overall similarities of transient and persistent lipids suggest that the microbial communities of both the non-lithified microbial mats and stromatolites are similar.
Balmonte, John Paul; Arnosti, Carol; Underwood, Sarah; McKee, Brent A; Teske, Andreas
2016-01-01
Riverine bacterial communities play an essential role in the biogeochemical coupling of terrestrial and marine environments, transforming elements and organic matter in their journey from land to sea. However, precisely due to the fact that rivers receive significant terrestrial input, the distinction between resident freshwater taxa vs. land-derived microbes can often become ambiguous. Furthermore, ecosystem perturbations could introduce allochthonous microbial groups and reshape riverine bacterial communities. Using full- and partial-length 16S ribosomal RNA gene sequences, we analyzed the composition of bacterial communities in the Tar River of North Carolina from November 2010 to November 2011, during which a natural perturbation occurred: the inundation of the lower reaches of an otherwise drought-stricken river associated with Hurricane Irene, which passed over eastern North Carolina in late August 2011. This event provided the opportunity to examine the microbiological, hydrological, and geochemical impacts of a disturbance, defined here as the large freshwater influx into the Tar River, superimposed on seasonal changes or other ecosystem variability independent of the hurricane. Our findings demonstrate that downstream communities are more taxonomically diverse and temporally variable than their upstream counterparts. More importantly, pre- vs. post-disturbance taxonomic comparison of the freshwater-dominant Betaproteobacteria class and the phylum Verrucomicrobia reveal a disturbance signature of previously undetected taxa of diverse origins. We use known traits of closely-related taxa to interpret the ecological function of disturbance-associated bacteria, and hypothesize that carbon cycling was enhanced post-disturbance in the Tar River, likely due to the flux of organic carbon into the system associated with the large freshwater pulse. Our analyses demonstrate the importance of geochemical and hydrological alterations in structuring bacterial communities, and illustrate the response of temperate riverine bacteria on fine taxonomic scales to a disturbance.
NASA Astrophysics Data System (ADS)
Poelking, E. L.; Schaefer, C. E. R.; Fernandes Filho, E. I.; de Andrade, A. M.; Spielmann, A. A.
2015-05-01
Integrated studies on the interplay between soils, periglacial geomorphology and plant communities are crucial for the understanding of climate change effects on terrestrial ecosystems of maritime Antarctica, one of the most sensitive areas to global warming. Knowledge on physical environmental factors that influence plant communities can greatly benefit studies on the monitoring of climate change in maritime Antarctica, where new ice-free areas are being constantly exposed, allowing plant growth and organic carbon inputs. The relationship between topography, plant communities and soils was investigated on Potter Peninsula, King George Island, maritime Antarctica. We mapped the occurrence and distribution of plant communities and identified soil-landform-vegetation relationships. The vegetation map was obtained by classification of a QuickBird image, coupled with detailed landform and characterization of 18 soil profiles. The sub-formations were identified and classified, and we also determined the total elemental composition of lichens, mosses and grasses. Plant communities on Potter Peninsula occupy 23% of the ice-free area, at different landscape positions, showing decreasing diversity and biomass from the coastal zone to inland areas where sub-desert conditions prevail. There is a clear dependency between landform and vegetated soils. Soils that have greater moisture or are poorly drained, and with acid to neutral pH, are favourable for moss sub-formations. Saline, organic-matter-rich ornithogenic soils of former penguin rookeries have greater biomass and diversity, with mixed associations of mosses and grasses, while stable felsenmeers and flat rocky cryoplanation surfaces are the preferred sites for Usnea and Himantormia lugubris lichens at the highest surface. Lichens sub-formations cover the largest vegetated area, showing varying associations with mosses.
A preliminary investigation of finite-element modeling for composite rotor blades
NASA Technical Reports Server (NTRS)
Lake, Renee C.; Nixon, Mark W.
1988-01-01
The results from an initial phase of an in-house study aimed at improving the dynamic and aerodynamic characteristics of composite rotor blades through the use of elastic couplings are presented. Large degree of freedom shell finite element models of an extension twist coupled composite tube were developed and analyzed using MSC/NASTRAN. An analysis employing a simplified beam finite element representation of the specimen with the equivalent engineering stiffness was additionally performed. Results from the shell finite element normal modes and frequency analysis were compared to those obtained experimentally, showing an agreement within 13 percent. There was appreciable degradation in the frequency prediction for the torsional mode, which is elastically coupled. This was due to the absence of off-diagonal coupling terms in the formulation of the equivalent engineering stiffness. Parametric studies of frequency variation due to small changes in ply orientation angle and ply thickness were also performed. Results showed linear frequency variations less than 2 percent per 1 degree variation in the ply orientation angle, and 1 percent per 0.0001 inch variation in the ply thickness.
NASA Technical Reports Server (NTRS)
Schreiber, Henry D.
1987-01-01
An electrochemical series for redox couples in a glass-forming oxide melt is developed. This series is a quantitative numerical scale of reference reduction potentials of the redox couples in a silicate melt that is a model for basaltic magmas. The redox couples are ordered in terms of their reference reduction potentials; the order appears to be relatively independent of the exact melt composition and temperature. Thus, upon calibration to a desired composition, oxygen fugacity, and temperature, this electrochemical series can provide estimates of redox state proportions in basaltic magmas on different planetary bodies. The geochemical electrochemical series can also be used to understand the interrelationship of the redox state of the magma and the presence of volatile species such as oxygen, water, sulfur gases, and carbon gases.
Nichols, J.D.; Boulinier, T.; Hines, J.E.; Pollock, K.H.; Sauer, J.R.
1998-01-01
Inferences about spatial variation in species richness and community composition are important both to ecological hypotheses about the structure and function of communities and to community-level conservation and management. Few sampling programs for animal communities provide censuses, and usually some species present. We present estimators useful for drawing inferences about comparative species richness and composition between different sampling locations when not all species are detected in sampling efforts. Based on capture-recapture models using the robust design, our methods estimate relative species richness, proportion of species in one location that are also found in another, and number of species found in one location but not in another. The methods use data on the presence or absence of each species at different sampling occasions (or locations) to estimate the number of species not detected at any occasions (or locations). This approach permits estimation of the number of species in the sampled community and in subsets of the community useful for estimating the fraction of species shared by two communities. We provide an illustration of our estimation methods by comparing bird species richness and composition in two locations sampled by routes of the North American Breeding Bird Survey. In this example analysis, the two locations (an associated bird communities) represented different levels of urbanization. Estimates of relative richness, proportion of shared species, and number of species present on one route but not the other indicated that the route with the smaller fraction of urban area had greater richness and a larer number of species that were not found on the more urban route than vice versa. We developed a software package, COMDYN, for computing estimates based on the methods. Because these estimation methods explicitly deal with sampling in which not all species are detected, we recommend their use for addressing questions about species richness and community composition.
Mueller, Rebecca C.; Belnap, Jayne; Kuske, Cheryl R.
2015-09-04
Arid shrublands are stressful environments, typified by alkaline soils low in organic matter, with biologically-limiting extremes in water availability, temperature, and UV radiation. The widely-spaced plants and interspace biological soil crusts in these regions provide soil nutrients in a localized fashion, creating a mosaic pattern of plant- or crust-associated microhabitats with distinct nutrient composition. With sporadic and limited rainfall, nutrients are primarily retained in the shallow surface soil, patterning biological activity. We examined soil bacterial and fungal community responses to simulated nitrogen (N) deposition in an arid Larrea tridentata-Ambrosia dumosa field experiment in southern Nevada, USA, using high-throughput sequencing ofmore » ribosomal RNA genes. To examine potential interactions among the N application, microhabitat and soil depth, we sampled soils associated with shrub canopies and interspace biological crusts at two soil depths (0–0.5 or 0–10 cm) across the N-amendment gradient (0, 7, and 15 kg ha –1 yr –1). We hypothesized that localized compositional differences in soil microbiota would constrain the impacts of N addition to a microhabitat distribution that would reflect highly localized geochemical conditions and microbial community composition. The richness and community composition of both bacterial and fungal communities differed significantly by microhabitat and with soil depth in each microhabitat. Only bacterial communities exhibited significant responses to the N addition. Community composition correlated with microhabitat and depth differences in soil geochemical features. As a result, given the distinct roles of soil bacteria and fungi in major nutrient cycles, the resilience of fungi and sensitivity of bacteria to N amendments suggests that increased N input predicted for many arid ecosystems could shift nutrient cycling toward pathways driven primarily by fungal communities.« less
Predator community composition is linked to soil carbon retention across a human land use gradient.
Schmitz, Oswald J; Buchkowski, Robert W; Smith, Jeffrey R; Telthorst, Mark; Rosenblatt, Adam E
2017-05-01
Soil carbon (C) storage is a major component of the carbon cycle. Consensus holds that soil C uptake and storage is regulated by plant-microbe-soil interactions. However, the contribution of animals in aboveground food webs to this process has been overlooked. Using insights from prior long-term experimentation in an old-field ecosystem and mathematical modeling, we predicted that the amount of soil C retention within a field should increase with the proportion of active hunting predators comprising the aboveground community of active hunting and sit-and-wait predators. This comes about because predators with different hunting modes have different cascading effects on plants. Our test of the prediction revealed that the composition of the arthropod predator community and associated cascading effects on the plant community explained 41% of variation in soil C retention among 15 old fields across a human land use gradient. We also evaluated the potential for several other candidate factors to explain variation in soil C retention among fields, independent of among-field variation in the predator community. These included live plant biomass, insect herbivore community composition, soil arthropod decomposer community composition, degree of land use development around the fields, field age, and soil texture. None of these candidate variables significantly explained soil C retention among the fields. The study offers a generalizable understanding of the pathways through which arthropod predator community composition can contribute to old-field ecosystem carbon storage. This insight helps support ongoing efforts to understand and manage the effects of anthropogenic land use change on soil C storage. © 2017 by the Ecological Society of America.
Mueller, Rebecca C.; Belnap, Jayne; Kuske, Cheryl R.
2015-01-01
Arid shrublands are stressful environments, typified by alkaline soils low in organic matter, with biologically-limiting extremes in water availability, temperature, and UV radiation. The widely-spaced plants and interspace biological soil crusts in these regions provide soil nutrients in a localized fashion, creating a mosaic pattern of plant- or crust-associated microhabitats with distinct nutrient composition. With sporadic and limited rainfall, nutrients are primarily retained in the shallow surface soil, patterning biological activity. We examined soil bacterial and fungal community responses to simulated nitrogen (N) deposition in an arid Larrea tridentata-Ambrosia dumosa field experiment in southern Nevada, USA, using high-throughput sequencing of ribosomal RNA genes. To examine potential interactions among the N application, microhabitat and soil depth, we sampled soils associated with shrub canopies and interspace biological crusts at two soil depths (0–0.5 or 0–10 cm) across the N-amendment gradient (0, 7, and 15 kg ha−1 yr−1). We hypothesized that localized compositional differences in soil microbiota would constrain the impacts of N addition to a microhabitat distribution that would reflect highly localized geochemical conditions and microbial community composition. The richness and community composition of both bacterial and fungal communities differed significantly by microhabitat and with soil depth in each microhabitat. Only bacterial communities exhibited significant responses to the N addition. Community composition correlated with microhabitat and depth differences in soil geochemical features. Given the distinct roles of soil bacteria and fungi in major nutrient cycles, the resilience of fungi and sensitivity of bacteria to N amendments suggests that increased N input predicted for many arid ecosystems could shift nutrient cycling toward pathways driven primarily by fungal communities.
Zhang, Zhiming; Yang, Jiantao; Zhu, Yiwei
2017-01-01
Arbuscular mycorrhizal fungi (AMF) play an essential role in complex ecosystems. However, the species diversity and composition of AMF communities remain unclear in semi-arid mountains. Further, it is not well understood if the characteristics of AMF community assemblies differ for different habitat types, e.g., agricultural arable land, artificial forest land, natural grassland, and bush/wood land. Here, using the high-throughput technology by Illumina sequencing on the MiSeq platform, we explored the species diversity and composition of soil AMF communities among different habitat types in a semi-arid mountain (Taihang Mountain, Mid-western region of China). Then, we analyzed the effect of nutrient composition and soil texture on AMF community assembly. Our results showed that members of the Glomus genera were predominated in all soil types. The distance-based redundancy analysis indicated that the content of water, available phosphorus, and available potassium were the most crucial geochemical factors that significantly affected AMF communities (p < 0.05). The analysis of the soil texture confirmed that AMF diversity was negatively correlated with soil clay content. The comparison of AMF diversity among the various habitat types revealed that the artificial forest land had the lowest AMF diversity in comparison with other land types. Our findings suggest that there were differences in species diversity and composition of soil AMF communities among different habitat types. These findings shed new light on the characteristics of community structure and drivers of community assembly in AMF in semi-arid mountains, and point to the potential importance of different habitat types on AMF communities. PMID:29230378
Wahl, Martin; Link, Heike; Alexandridis, Nicolaos; Thomason, Jeremy C.; Cifuentes, Mauricio; Costello, Mark J.; da Gama, Bernardo A. P.; Hillock, Kristina; Hobday, Alistair J.; Kaufmann, Manfred J.; Keller, Stefanie; Kraufvelin, Patrik; Krüger, Ina; Lauterbach, Lars; Antunes, Bruno L.; Molis, Markus; Nakaoka, Masahiro; Nyström, Julia; bin Radzi, Zulkamal; Stockhausen, Björn; Thiel, Martin; Vance, Thomas; Weseloh, Annika; Whittle, Mark; Wiesmann, Lisa; Wunderer, Laura; Yamakita, Takehisa; Lenz, Mark
2011-01-01
Species richness is the most commonly used but controversial biodiversity metric in studies on aspects of community stability such as structural composition or productivity. The apparent ambiguity of theoretical and experimental findings may in part be due to experimental shortcomings and/or heterogeneity of scales and methods in earlier studies. This has led to an urgent call for improved and more realistic experiments. In a series of experiments replicated at a global scale we translocated several hundred marine hard bottom communities to new environments simulating a rapid but moderate environmental change. Subsequently, we measured their rate of compositional change (re-structuring) which in the great majority of cases represented a compositional convergence towards local communities. Re-structuring is driven by mortality of community components (original species) and establishment of new species in the changed environmental context. The rate of this re-structuring was then related to various system properties. We show that availability of free substratum relates negatively while taxon richness relates positively to structural persistence (i.e., no or slow re-structuring). Thus, when faced with environmental change, taxon-rich communities retain their original composition longer than taxon-poor communities. The effect of taxon richness, however, interacts with another aspect of diversity, functional richness. Indeed, taxon richness relates positively to persistence in functionally depauperate communities, but not in functionally diverse communities. The interaction between taxonomic and functional diversity with regard to the behaviour of communities exposed to environmental stress may help understand some of the seemingly contrasting findings of past research. PMID:21611170
NASA Technical Reports Server (NTRS)
Ricks, Trenton M.; Lacy, Thomas E., Jr.; Pineda, Evan J.; Bednarcyk, Brett A.; Arnold, Steven M.
2013-01-01
A multiscale modeling methodology, which incorporates a statistical distribution of fiber strengths into coupled micromechanics/ finite element analyses, is applied to unidirectional polymer matrix composites (PMCs) to analyze the effect of mesh discretization both at the micro- and macroscales on the predicted ultimate tensile (UTS) strength and failure behavior. The NASA code FEAMAC and the ABAQUS finite element solver were used to analyze the progressive failure of a PMC tensile specimen that initiates at the repeating unit cell (RUC) level. Three different finite element mesh densities were employed and each coupled with an appropriate RUC. Multiple simulations were performed in order to assess the effect of a statistical distribution of fiber strengths on the bulk composite failure and predicted strength. The coupled effects of both the micro- and macroscale discretizations were found to have a noticeable effect on the predicted UTS and computational efficiency of the simulations.
NASA Astrophysics Data System (ADS)
Chai, Han-Peng; Tian, Bo; Chai, Jun; Du, Zhong
2017-10-01
We investigate the three-coupled Hirota system, which is applied to model the long distance communication and ultrafast signal routing systems governing the propagation of light pulses. With the aid of the Darboux dressing transformation, composite rogue wave solutions are derived. Spatial-temporal structures, including the four-petaled structure for the three-coupled Hirota system, are exhibited. We find that the four-petaled rogue waves occur in two of the three components, whereas the eye-shaped rogue wave occurs in the other one. The composite rogue waves can split up into two or three single rogue waves. The corresponding conditions for the occurrence of such phenomena are discussed and presented. We find that the relative position of every single rogue wave is influenced by the ratios of certain parameters. Besides, the linear instability analysis is performed, and our results agree with those from the baseband modulation instability theory.
Hakkenberg, C R; Peet, R K; Urban, D L; Song, C
2018-01-01
In light of the need to operationalize the mapping of forest composition at landscape scales, this study uses multi-scale nested vegetation sampling in conjunction with LiDAR-hyperspectral remotely sensed data from the G-LiHT airborne sensor to map vascular plant compositional turnover in a compositionally and structurally complex North Carolina Piedmont forest. Reflecting a shift in emphasis from remotely sensing individual crowns to detecting aggregate optical-structural properties of forest stands, predictive maps reflect the composition of entire vascular plant communities, inclusive of those species smaller than the resolution of the remotely sensed imagery, intertwined with proximate taxa, or otherwise obscured from optical sensors by dense upper canopies. Stand-scale vascular plant composition is modeled as community continua: where discrete community-unit classes at different compositional resolutions provide interpretable context for continuous gradient maps that depict n-dimensional compositional complexity as a single, consistent RGB color combination. In total, derived remotely sensed predictors explain 71%, 54%, and 48% of the variation in the first three components of vascular plant composition, respectively. Among all remotely sensed environmental gradients, topography derived from LiDAR ground returns, forest structure estimated from LiDAR all returns, and morphological-biochemical traits determined from hyperspectral imagery each significantly correspond to the three primary axes of floristic composition in the study site. Results confirm the complementarity of LiDAR and hyperspectral sensors for modeling the environmental gradients constraining landscape turnover in vascular plant composition and hold promise for predictive mapping applications spanning local land management to global ecosystem modeling. © 2017 by the Ecological Society of America.
Isobe, Kazuo; Otsuka, Shigeto; Sudiana, Imade; Nurkanto, Arif; Senoo, Keishi
2009-10-01
Soil bacterial community compositions in burnt and unburnt areas in a tropical rainforest in East Kalimantan, Indonesia, were investigated 8 and 9 years after a fire by denaturing gradient gel electrophoresis analysis targeting the 16S rRNA gene. Three study sites were set in the forest area devoid of fire damage (control), and in the lightly damaged and heavily damaged forest areas. Succession of aboveground vegetation in the two damaged areas had clearly proceeded after the fire, but the vegetation types still differed from the unburnt area at the time of this study. Community composition of total soil bacteria was similar among the three areas, and so was that of actinobacteria. However, the composition of ammonia oxidizing bacteria clearly differed depending on the presence or absence of past fire damage. These results indicate that even nearly a decade after the forest fire, impacts of the fire remained on the community composition of ammonia oxidizing bacteria, but not apparently on those of dominant bacteria and actinobacteria.
Variability of community interaction networks in marine reserves and adjacent exploited areas
Montano-Moctezuma, G.; Li, H.W.; Rossignol, P.A.
2008-01-01
Regional and small-scale local oceanographic conditions can lead to high variability in community structure even among similar habitats. Communities with identical species composition can depict distinct networks due to different levels of disturbance as well as physical and biological processes. In this study we reconstruct community networks in four different areas off the Oregon Coast by matching simulated communities with observed dynamics. We compared reserves with harvested areas. Simulations suggested that different community networks, but with the same species composition, can represent each study site. Differences were found in predator-prey interactions as well as non-predatory interactions between community members. In addition, each site can be represented as a set of models, creating alternative stages among sites. The set of alternative models that characterize each study area depicts a sequence of functional responses where each specific model or interaction structure creates different species composition patterns. Different management practices, either in the past or of the present, may lead to alternative communities. Our findings suggest that management strategies should be analyzed at a community level that considers the possible consequences of shifting from one community scenario to another. This analysis provides a novel conceptual framework to assess the consequences of different management options for ecological communities. ?? 2008 Elsevier B.V. All rights reserved.
HIV prevention awareness and practices among married couples in Malawi.
Chirwa, Ellen; Malata, Address; Norr, Kathleen
2011-06-01
In this study we explored the level of awareness and practice on HIV prevention among married couples from selected communities in Malawi. We carried out the study from October to December, 2008 in four communities, two each from Chiradzulu and Chikhwawa districts of Malawi. We conducted face-to-face in-depth interviews with 30 couples in each district using a semi-structured interview guide. The interviews lasted approximately 60-90 minutes. The husbands and wives were interviewed separately. The interviews were audio taped using a digital recorder. We wrote field notes during data collection and later reviewed them to provide insights into the data collection process. We computed descriptive statistics from the demographic data using SPSS version 16.0. We analyzed qualitative data using Atlas ti 5.0 computer software. The coded data generated themes and we present the themes in qualitative narration. The couples' ages ranged from 20 to 53 years, the majority (52%) being in the 20-31 year age group. Most of the couples (67%) attained only primary school education and 84% had been married only to the current partner. Most couples (83%) depended upon substance farming and 47% had been married for 3 to 9 years. The number of children per couple ranged from 1 to 10, most couples (83%) having between 1 and 5 children. All couples were aware of HIV prevention methods and talked about them in their marriages. Both wives and husbands initiated the discussions. Mutual fidelity and HIV testing were appropriate for couples to follow the HIV prevention methods. For most couples (54) there was mutual trust between husbands and wives, and members of only a few couples (6) doubted their partners' ability to maintain mutual fidelity. Actual situations of marital infidelity were however detected among 25 couples and often involved the husbands. A few couples (5) had been tested for HIV. All couples did not favor the use of condoms with a marriage partner as an HIV prevention method. The level of HIV prevention awareness among couples in Malawi is high and almost universal. However, there is low adoption of the HIV prevention methods among the couples because they are perceived to be couple unfriendly due to their incompatibility with the socio-cultural beliefs of the people. There is a need to target couples as units of intervention in the adoption of HIV prevention methods by rural communities.
NASA Astrophysics Data System (ADS)
Solly, Emily; Lindahl, Bjorn; Dawes, Melissa; Peter, Martina; Souza, Romulo; Rixen, Christian; Hagedorn, Frank
2017-04-01
Increased CO2 emissions and global warming may alter the composition of fungal communities through the reduction of low temperature limitation in the plant-soil system, faster nitrogen cycling and changes in the carbon allocation of host plants to the rhizosphere. Shifts in fungal community composition due to global changes are likely to affect the routes of carbon and nitrogen flows in the plant-soil system and alter the rates at which organic matter is decomposed. The main aim of our study was to estimate the effects of multiple years of free air CO2 enrichment (ambient concentration +200 ppm) and soil warming (+ 4°C) on the fungal community structure and composition. At an alpine treeline in Switzerland featuring two key high-elevation tree species, Larix decidua and Pinus uncinata, fungal communities within different organic horizons were analysed by high-throughput 454-pyrosequencing of ITS2 amplicons. In addition, we assessed the ectomycorrhizal community composition on root tips and monitored changes in sporocarp productivity of fungal species during the course of the experiment. Three years of experimental warming at the alpine treeline altered the composition of the fungal community in the organic horizons, whereas nine years of CO2 enrichment had only weak effects. Tree species influenced the composition of the fungal community and the magnitude of the responses of fungal functional groups to soil warming differed between plots with Larix and those with Pinus. The abundance of ectomycorrhizal fungi was positively correlated with nitrogen availability, and ectomycorrhizal taxa specialized for conditions of high nitrogen availability proliferated with warming, corresponding to considerable increases in extractable inorganic nitrogen in warmed soils. Changes in productivity of specific fungal fruiting bodies in response to soil warming (e.g. more Lactarius rufus sporocarps and less Hygrophorus speciousus sporocarps) were consistent with the 454-sequencing data and the colonization of ectomycorrhizal root tips. Several fungal taxa known to be involved in needle degradation responded positively to the warming treatment by increasing in their relative abundance. These findings provide novel insights into the spatial distribution of functional groups of fungi both vertically in the soil and between different rhizospheres of trees. Moreover, they indicate that traits related to nitrogen utilization are important in determining responses of ectomycorrhizal fungi to warming in cold regions, such as high-elevation ecosystems, with low N availability. Shifts in the overall fungal community composition in response to higher temperatures may alter fungal-driven processes with potential feedbacks on ecosystem nitrogen cycling and carbon storage at the alpine treeline.
This study demonstrates the value of a coupled chemical transport modeling system for investigating groundwater nitrate contamination responses associated with nitrogen (N) fertilizer application and increased corn production. The coupled Community Multiscale Air Quality Bidirect...
Airborne ultrasonic inspection in carbon/carbon composite materials
NASA Astrophysics Data System (ADS)
Yang, In-Young; Kim, Young-Hun; Park, Je-Woong; Hsu, David K.; Song, Song-Jin; Cho, Hyun-Jun; Kim, Sun-Kyu; Im, Kwang-Hee
2007-07-01
In this work, a carbon/carbon (C/C) composite material was nondestructively characterized with non-contact ultrasonic methods using automated acquisition scanner as well as contact ultrasonic measurement because (C/C) composite materials have obvious high price over conventional materials. Because of permeation of coupling medium such as water, it is desirable to perform contact-less nondestructive evaluation to assess material properties and part homogeneity. Also through transmission mode was performed because of the main limitation for air-coupled transducers, which is the acoustic impedance mismatch between most materials and air. Especially ultrasonic images and velocities for C/C composite disk brake was measured and found to be consistent to some degree with the non-contact and contact ultrasonic measurement methods. Low frequency through-transmission scans based on both amplitude and time-of-flight of the ultrasonic pulse were used for mapping out the material property inhomogeneity. Measured results were compared with those obtained by the motorized system with using dry-coupling ultrasonics and through transmission method in immersion. Finally, results using a proposed peak-delay measurement method well corresponded to ultrasonic velocities of the pulse overlap method.
NASA Astrophysics Data System (ADS)
Baine, G. C., II; Caffrey, J. M.
2016-02-01
The estuarine system at Grand Bay National Estuarine Research Reserve in Mississippi is a near pristine wetland home to a diversity of flora and fauna. While seasonal fluctuations in water quality are well understood, less is known about the coupled dynamics of water quality and phytoplankton production. Light availability and nutrient levels are key factors regulating phytoplankton. Previous studies have revealed Grand Bay to primarily be limited by nitrogen rather than phosphorus or light. Since then, extended phosphate inputs from the neighboring Mississippi Phosphates fertilizer plant have occurred provoking the question: will the phosphate inputs affect the growth and structure of the phytoplankton communities? This study is investigating the effects of inputs of an array of nutrients (ammonium, nitrate, silicon, and phosphate) on phytoplankton growth, community structure, and production over an annual cycle. Phytoplankton production is being monitored by accumulation of biomass (chlorophyll a concentration) and C14 incorporation. We are also evaluating changes in the phytoplankton community composition using Flowcam imaging over the course of the incubation. Currently the summer months have shown nitrogen limitation as previously observed, with little difference between nitrate and ammonium additions. Flowcam images have revealed increases in ciliate abundance in all treatments. C14 experiments show significant decreases in efficiency for all treatments compared to the initial condition, however there is no significant variation among treatments. The results of this study will provide a strong foundation in understanding the nature of phytoplankton response to various nutrient inputs in Grand Bay.
Flat laminated microbial mat communities
NASA Astrophysics Data System (ADS)
Franks, Jonathan; Stolz, John F.
2009-10-01
Flat laminated microbial mats are complex microbial ecosystems that inhabit a wide range of environments (e.g., caves, iron springs, thermal springs and pools, salt marshes, hypersaline ponds and lagoons, methane and petroleum seeps, sea mounts, deep sea vents, arctic dry valleys). Their community structure is defined by physical (e.g., light quantity and quality, temperature, density and pressure) and chemical (e.g., oxygen, oxidation/reduction potential, salinity, pH, available electron acceptors and donors, chemical species) parameters as well as species interactions. The main primary producers may be photoautotrophs (e.g., cyanobacteria, purple phototrophs, green phototrophs) or chemolithoautophs (e.g., colorless sulfur oxidizing bacteria). Anaerobic phototrophy may predominate in organic rich environments that support high rates of respiration. These communities are dynamic systems exhibiting both spatial and temporal heterogeneity. They are characterized by steep gradients with microenvironments on the submillimeter scale. Diel oscillations in the physical-chemical profile (e.g., oxygen, hydrogen sulfide, pH) and species distribution are typical for phototroph-dominated communities. Flat laminated microbial mats are often sites of robust biogeochemical cycling. In addition to well-established modes of metabolism for phototrophy (oxygenic and non-oxygenic), respiration (both aerobic and anaerobic), and fermentation, novel energetic pathways have been discovered (e.g., nitrate reduction couple to the oxidation of ammonia, sulfur, or arsenite). The application of culture-independent techniques (e.g., 16S rRNA clonal libraries, metagenomics), continue to expand our understanding of species composition and metabolic functions of these complex ecosystems.
Revealing sources and chemical identity of iron ligands across the California Current System
NASA Astrophysics Data System (ADS)
Boiteau, R.; Repeta, D.; Fitzsimmons, J. N.; Parker, C.; Twining, B. S.; Baines, S.
2016-02-01
The California Current System is one of the most productive regions of the ocean, fueled by the upwelling of nutrient rich water. Differences in the supply of micronutrient iron to surface waters along the coast lead to a mosaic of iron-replete and iron-limited conditions across the region, affecting primary production and community composition. Most of the iron in this region is supplied by upwelling of iron from the benthic boundary layer that is complexed by strong organic ligands. However, the source, identity, and bioavailability of these ligands are unknown. Here, we used novel hyphenated chromatography mass spectrometry approaches to structurally characterize organic ligands across the region. With these methods, iron ligands are detected with liquid chromatography coupled to inductively coupled plasma mass spectrometry (LC-ICPMS), and then their mass and fragmentation spectra are determined by high resolution electrospray ionization mass spectrometry (LC-ESIMS). Iron isotopic exchange was used to compare the relative binding strengths of different ligands. Our survey revealed a broad range of ligands from multiple sources. Benthic boundary layers and anoxic sediments were sources of structurally amorphous weak ligands, likely organic degradation products, as well as siderophores, strong iron binding molecules that facilitate iron acquisition. In the euphotic zone, marine microbes and zooplankton grazing produced a wide distribution of other compounds that included known and novel siderophores. This work demonstrates that the chemical nature of ligands from different sources varies substantially and has important implications for iron biogeochemical cycling and availability to members of the microbial community.
Forestry herbicide influences on biodiversity and wildlife habitat in southern forests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Karl V.; Miller, James H.
In the southern United States, herbicide use continues to increase for timber management in commercial pine (Pinus spp.) plantations, for modifying wildlife habitats, and for invasive plant control. Several studies have reported that single applications of forestry herbicides at stand initiation have minor and temporary impacts on plant communities and wildlife habitat conditions, with some reports of enhanced habitat conditions for both game and nongame species. Due to the high resiliency of floral communities, plant species richness and diversity rebound rapidly after single herbicide treatments, with short- and long-term compositional shifts according to the selectivity and efficacy of the herbicidemore » used. Recently, however, a shift to the Southeast in North American timber supplies has resulted in increased forest management intensity. Current site-preparation techniques rely on herbicide combinations, often coupled with mechanical treatments and >1 years of post-planting applications to enhance the spectrum and duration of vegetation control. This near-total control of associated vegetation at establishment and more rapid pine canopy closure, coupled with shortened and repeated rotations, likely will affect plant diversity and wildlife habitat quality. Development of mitigation methods at the stand and landscape levels will be required to minimize vegetative and wildlife impacts while allowing continued improvement in pine productivity. More uncertain are long-term impacts of increasing invasive plant occupation and the projected increase in herbicide use that will be needed to reverse this worsening situation. In addition, the potential of herbicides to meet wildlife management objectives in areas where traditional techniques have high social costs (e.g., prescribed fire) should be fully explored.« less
Liu, Kaihui; Ding, Xiaowei; Tang, Xiaofei; Wang, Jianjun; Li, Wenjun; Yan, Qingyun; Liu, Zhenghua
2018-01-01
Understanding the effects of environmental factors on microbial communities is critical for microbial ecology, but it remains challenging. In this study, we examined the diversity (alpha diversity) and community compositions (beta diversity) of prokaryotes and fungi in hypersaline sediments and salinized soils from northern China. Environmental variables were highly correlated, but they differed significantly between the sediments and saline soils. The compositions of prokaryotic and fungal communities in the hypersaline sediments were different from those in adjacent saline-alkaline soils, indicating a habitat-specific microbial distribution pattern. The macroelements (S, P, K, Mg, and Fe) and Ca were, respectively, correlated closely with the alpha diversity of prokaryotes and fungi, while the macronutrients (e.g., Na, S, P, and Ca) were correlated with the prokaryotic and fungal beta-diversity ( P ≤ 0.05). And, the nine microelements (e.g., Al, Ba, Co, Hg, and Mn) and micronutrients (Ba, Cd, and Sr) individually shaped the alpha diversity of prokaryotes and fungi, while the six microelements (e.g., As, Ba, Cr, and Ge) and only the trace elements (Cr and Cu), respectively, influenced the beta diversity of prokaryotes and fungi ( P < 0.05). Variation-partitioning analysis (VPA) showed that environmental variables jointly explained 55.49% and 32.27% of the total variation for the prokaryotic and fungal communities, respectively. Together, our findings demonstrate that the diversity and community composition of the prokaryotes and fungi were driven by different macro and microelements in saline habitats, and that geochemical elements could more widely regulate the diversity and community composition of prokaryotes than these of fungi.
Philpott, Stacy M; Serber, Zachary; De la Mora, Aldo
2018-04-05
Ant community assembly is driven by many factors including species interactions (e.g., competition, predation, parasitism), habitat filtering (e.g., vegetation differences, microclimate, food and nesting resources), and dispersal. Canopy ant communities, including dominant and twig-nesting ants, are structured by all these different factors, but we know less about the impacts of species interactions and habitat filters acting at the colonization or recruitment stage. We examined occupation of artificial twig nests placed in shade trees in coffee agroecosystems. We asked whether species interactions-aggression from the dominant canopy ant, Azteca sericeasur Longino (Hymenoptera: Formicidae)-or habitat filtering-species of tree where nests were placed or surrounding vegetation-influence colonization, species richness, and community composition of twig-nesting ants. We found 20 species of ants occupying artificial nests. Nest occupation was lower on trees with A. sericeasur, but did not differ depending on tree species or surrounding vegetation. Yet, there were species-specific differences in occupation depending on A. sericeasur presence and tree species. Ant species richness did not vary with A. sericeasur presence or tree species. Community composition varied with A. sericeasur presence and surrounding vegetation. Our results suggest that species interactions with dominant ants are important determinants of colonization and community composition of twig-nesting ants. Habitat filtering at the level of tree species did not have strong effects on twig-nesting ants, but changes in coffee management may contribute to differences in community composition with important implications for ant conservation in agricultural landscapes, as well as biological control of coffee pests.
Zhu, Chen; Ling, Ning; Guo, Junjie; Wang, Min; Guo, Shiwei; Shen, Qirong
2016-01-01
The understanding of the response of arbuscular mycorrhizal fungi (AMF) community composition to fertilization is of great significance in sustainable agriculture. However, how fertilization influences AMF diversity and composition is not well-established yet. A field experiment located in northeast China in typical black soil (Chernozem) was conducted and high-throughput sequencing approach was used to investigate the effects of different fertilizations on the variation of AMF community in the rhizosphere soil of maize crop. The results showed that AMF diversity in the maize rhizosphere was significantly altered by different fertilization regimes. As revealed by redundancy analysis, the application of organic manure was the most important factor impacting AMF community composition between samples with and without organic manure, followed by N fertilizer and P fertilizer inputs. Moreover, the organic matter composition in the rhizosphere, determined by GC–MS, was significantly altered by the organic manure amendment. Many of the chemical components displayed significant relationships with the AMF community composition according to the Mantel test, among those, 2-ethylnaphthalene explained the highest percentage (54.2%) of the variation. The relative contents of 2-ethylnaphthalene and 2, 6, 10-trimethyltetradecane had a negative correlation with Glomus relative abundance, while the relative content of 3-methylbiphenyl displayed a positive correlation with Rhizophagus. The co-occurrence patterns in treatments with and without organic manure amendment were analyzed, and more hubs were detected in the network of soils with organic manure amendment. Additionally, three operational taxonomic units (OTUs) belonging to Glomerales were identified as hubs in all treatments, indicating these OTUs likely occupied broad ecological niches and were always active for mediating AMF species interaction in the maize rhizosphere. Taken together, impacts of fertilization regimes on AMF community composition were correlated with organic matter composition in maize rhizosphere soil and the application of manure could activate more AMF species to interact with other species in the maize rhizosphere. This knowledge can be valuable in regulating the symbiotic system of plants and AMF, maintaining the health and high yields of crops and providing a primary basis for rational fertilization. PMID:27899920
NASA Astrophysics Data System (ADS)
Wang, Lulu; Qiao, Liang; Zheng, Jingwu; Cai, Wei; Ying, Yao; Li, Wangchang; Che, Shenglei; Yu, Jing
2018-04-01
FeSiCr/PA6 composites were prepared by injection molding using the FeSiCr powders modified by different phosphating agents and KH550 coupling agent. The resistivity, impact strength, magnetic permeability and magnetic loss of the FeSiCr/PA6 composites were measured. The morphologies of different FeSiCr powders and the FeSiCr/PA6 composites were also observed by scanning electron microscope (SEM). The results showed that 1-Hydroxyethylidene-1,1-diphosphonic acid, phytic acid and H3PO4 could improve the electrical resistivity of FeSiCr powders by forming the dense phosphating layer except diphenylphosphinic acid. However, the resistivity of FeSiCr/PA6 composites using the FeSiCr powders treated by all the four phosphating agents had no obvious increase though the phosphating layer on the surface of FeSiCr powder came into being. The nylon insulation layer had much stronger influence than the phosphating layer on electrical resistivity of the composites. After adding appropriate KH550 coupling agent, the impact strengths of FeSiCr/PA6 composites were significantly improved, which may be associated with the tiny gap between FeSiCr powder and PA6 matrix. The effects of the phosphating agents on the magnetic permeability and loss of the FeSiCr/PA6 were small and the mechanism were also discussed.
Richard N. Conner; James G. Dickson
1997-01-01
Bird communities of the West Gulf Coastal Plain are strongly influenced by the stage of forest succession, species composition of understory and overstory vegetation, and forest structure. Alteration of plant communities through forest management and natural disturbances typically does not eliminate birds as a fauna1 group from the area affected, but will replace some...
Bend-Twist Coupled Carbon-Fiber Laminate Beams: Fundamental Behavior and Applications
NASA Astrophysics Data System (ADS)
Babuska, Pavel
Material-induced bend-twist coupling in laminated composite beams has seen applications in engineered structures for decades, ranging from airplane wings to turbine blades. Symmetric, unbalanced, carbon fiber laminates which exhibit bend-twist coupling can be difficult to characterize and exhibit unintuitive deformation states which may pose challenges to the engineer. In this thesis, bend-twist coupled beams are investigated comprehensively, by experimentation, numerical modeling, and analytical methods. Beams of varying fiber angle and amount of coupling were manufactured and physically tested in both linear and nonlinear static and dynamic settings. Analytical mass and stiffness matrices were derived for the development of a beam element to use in the stiffness matrix analysis method. Additionally, an ABAQUS finite element model was used in conjunction with the analytical methods to predict and further characterize the behavior of the beams. The three regimes, experimental, analytical, and numerical, represent a full-field characterization of bend-twist coupling in composite beams. A notable application of bend-twist coupled composites is for passively adaptive turbine blades whereby the deformation coupling can be built into the blade structure to simultaneously bend and twist, thus pitching the blade into or away from the fluid flow, changing the blade angle of attack. Passive pitch adaptation has been implemented successfully in wind turbine blades, however, for marine turbine blades, the technology is still in the development phase. Bend-twist coupling has been shown numerically to be beneficial to the tidal turbine performance, however little validation has been conducted in the experimental regime. In this thesis, passively adaptive experiment scale tidal turbine blades were designed, analyzed, manufactured, and physically tested, validating the foundational numerical work. It was shown that blade forces and root moments as well as turbine thrust and power coefficients can be manipulated by inclusion of passive pitch adaption by bend-twist coupling.
Liu, Yanfei; Wang, Zhenqing; Li, Hao; Sun, Min; Wang, Fangxin; Chen, Bingjie
2018-01-01
In this paper, a new shape memory alloy (SMA) hybrid basalt fibre reinforced polymer (BFRP) composite laminate was fabricated and a new surface modification method with both silane coupling agent KH550 and Al2O3 nanoparticles was conducted to enhance the interface performance. The mechanical performance of BFRP composite laminates with and without SMA fibres and the influence of SMA surface modification were studied in this paper. Different SMA fibre surface treatment methods, including etching with both H2SO4 and NaOH, modification with the silane coupling agent KH550 and new modification method with both KH550 and Al2O3 nanoparticles, were conducted to enhance the bonding between the SMA fibres and polymer matrix. Scanning electron microscopy (SEM) was used to observe the micromorphology of the SMA fibre surfaces exposed to different treatments and the damage morphology of composite laminates. The mechanical performance of the composites was investigated with tensile, three-point bending and low-velocity impact tests to study the influence of embedded SMA fibres and the different surface modifications of the SMA fibres. The results demonstrated that the embedded Ni-Ti SMA fibres can significantly enhance the mechanical performance of BFRP composite laminates. SMA fibres modified with both the silane coupling agent KH550 and Al2O3 nanoparticles illustrate the best mechanical performance among all samples. PMID:29300321
NASA Astrophysics Data System (ADS)
Pawar, Prashant M.; Jung, Sung Nam
2008-12-01
In this study, an assessment is made for the helicopter vibration reduction of composite rotor blades using an active twist control concept. Special focus is given to the feasibility of implementing the benefits of the shear actuation mechanism along with elastic couplings of composite blades for achieving maximum vibration reduction. The governing equations of motion for composite rotor blades with surface bonded piezoceramic actuators are obtained using Hamilton's principle. The equations are then solved for dynamic response using finite element discretization in the spatial and time domains. A time domain unsteady aerodynamic theory with free wake model is used to obtain the airloads. A newly developed single-crystal piezoceramic material is introduced as an actuator material to exploit its superior shear actuation authority. Seven rotor blades with different elastic couplings representing stiffness properties similar to stiff-in-plane rotor blades are used to investigate the hub vibration characteristics. The rotor blades are modeled as a box beam with actuator layers bonded on the outer surface of the top and bottom of the box section. Numerical results show that a notable vibration reduction can be achieved for all the combinations of composite rotor blades. This investigation also brings out the effect of different elastic couplings on various vibration-reduction-related parameters which could be useful for the optimal design of composite helicopter blades.
Impact of livestock on a mosquito community (Diptera: Culicidae) in a Brazilian tropical dry forest.
Santos, Cleandson Ferreira; Borges, Magno
2015-01-01
This study evaluated the effects of cattle removal on the Culicidae mosquito community structure in a tropical dry forest in Brazil. Culicidae were collected during dry and wet seasons in cattle presence and absence between August 2008 and October 2010 and assessed using multivariate statistical models. Cattle removal did not significantly alter Culicidae species richness and abundance. However, alterations were noted in Culicidae community composition. This is the first study to evaluate the impact of cattle removal on Culicidae community structure in Brazil and demonstrates the importance of assessing ecological parameters such as community species composition.
NASA Astrophysics Data System (ADS)
van Maanen, Barend; Nicholls, Robert J.; French, Jon R.; Barkwith, Andrew; Bonaldo, Davide; Burningham, Helene; Brad Murray, A.; Payo, Andres; Sutherland, James; Thornhill, Gillian; Townend, Ian H.; van der Wegen, Mick; Walkden, Mike J. A.
2016-03-01
Coastal and shoreline management increasingly needs to consider morphological change occurring at decadal to centennial timescales, especially that related to climate change and sea-level rise. This requires the development of morphological models operating at a mesoscale, defined by time and length scales of the order 101 to 102 years and 101 to 102 km. So-called 'reduced complexity' models that represent critical processes at scales not much smaller than the primary scale of interest, and are regulated by capturing the critical feedbacks that govern landform behaviour, are proving effective as a means of exploring emergent coastal behaviour at a landscape scale. Such models tend to be computationally efficient and are thus easily applied within a probabilistic framework. At the same time, reductionist models, built upon a more detailed description of hydrodynamic and sediment transport processes, are capable of application at increasingly broad spatial and temporal scales. More qualitative modelling approaches are also emerging that can guide the development and deployment of quantitative models, and these can be supplemented by varied data-driven modelling approaches that can achieve new explanatory insights from observational datasets. Such disparate approaches have hitherto been pursued largely in isolation by mutually exclusive modelling communities. Brought together, they have the potential to facilitate a step change in our ability to simulate the evolution of coastal morphology at scales that are most relevant to managing erosion and flood risk. Here, we advocate and outline a new integrated modelling framework that deploys coupled mesoscale reduced complexity models, reductionist coastal area models, data-driven approaches, and qualitative conceptual models. Integration of these heterogeneous approaches gives rise to model compositions that can potentially resolve decadal- to centennial-scale behaviour of diverse coupled open coast, estuary and inner shelf settings. This vision is illustrated through an idealised composition of models for a ~ 70 km stretch of the Suffolk coast, eastern England. A key advantage of model linking is that it allows a wide range of real-world situations to be simulated from a small set of model components. However, this process involves more than just the development of software that allows for flexible model coupling. The compatibility of radically different modelling assumptions remains to be carefully assessed and testing as well as evaluating uncertainties of models in composition are areas that require further attention.
NASA Astrophysics Data System (ADS)
Bouffard, M.
2016-12-01
Convection in the Earth's outer core is driven by the combination of two buoyancy sources: a thermal source directly related to the Earth's secular cooling, the release of latent heat and possibly the heat generated by radioactive decay, and a compositional source due to the crystallization of the growing inner core which releases light elements into the liquid outer core. The dynamics of fusion/crystallization being dependent on the heat flux distribution, the thermochemical boundary conditions are coupled at the inner core boundary which may affect the dynamo in various ways, particularly if heterogeneous conditions are imposed at one boundary. In addition, the thermal and compositional molecular diffusivities differ by three orders of magnitude. This can produce significant differences in the convective dynamics compared to pure thermal or compositional convection due to the potential occurence of double-diffusive phenomena. Traditionally, temperature and composition have been combined into one single variable called codensity under the assumption that turbulence mixes all physical properties at an "eddy-diffusion" rate. This description does not allow for a proper treatment of the thermochemical coupling and is certainly incorrect within stratified layers in which double-diffusive phenomena can be expected. For a more general and rigorous approach, two distinct transport equations should therefore be solved for temperature and composition. However, the weak compositional diffusivity is technically difficult to handle in current geodynamo codes and requires the use of a semi-Lagrangian description to minimize numerical diffusion. We implemented a "particle-in-cell" method into a geodynamo code to properly describe the compositional field. The code is suitable for High Parallel Computing architectures and was successfully tested on two benchmarks. Following the work by Aubert et al. (2008) we use this new tool to perform dynamo simulations including thermochemical coupling at the inner core boundary as well as exploration of the infinite Lewis number limit to study the effect of a heterogeneous core mantle boundary heat flow on the inner core growth.
Baert, Jan M; De Laender, Frederik; Sabbe, Koen; Janssen, Colin R
2016-12-01
There is now ample evidence that biodiversity stabilizes aggregated ecosystem functions, such as primary production, in changing environments. In primary producer systems, this stabilizing effect is found to be driven by higher functional resistance (i.e., reduced changes in functions by environmental changes) rather than through higher functional resilience (i.e., rapid recovery following environmental changes) in more diverse systems. The stability of aggregated ecosystem functions directly depends on changes in species composition and by consequence their functional contributions to ecosystem functions. Still, it remains only theoretically explored how biodiversity can stabilize ecosystem functions by affecting compositional stability. Here, we demonstrate how biodiversity effects on compositional stability drive biodiversity effects on functional stability in diatom communities. In a microcosm experiment, we exposed 39 communities of five different levels of species richness (1, 2, 4, 6, and 8 species) to three concentrations of a chemical stressor (0, 25, and 250 μg/L atrazine) for four weeks, after which all communities were transferred to atrazine-free medium for three more weeks. Biodiversity simultaneously increased, increasing functional and compositional resistance, but decreased functional and compositional resilience. These results confirm the theoretically proposed link between biodiversity effects on functional and compositional stability in primary producer systems, and provide a mechanistic underpinning for observed biodiversity-stability relationships. Finally, we discuss how higher compositional stability can be expected to become increasingly important in stabilizing ecosystem functions under field conditions when multiple environmental stressors fluctuate simultaneously. © 2016 by the Ecological Society of America.
Response of soil bacterial community to repeated applications of carbendazim.
Wang, Xiuguo; Song, Min; Wang, Yiqi; Gao, Chunming; Zhang, Qun; Chu, Xiaoqiang; Fang, Hua; Yu, Yunlong
2012-01-01
The effect of repeated carbendazim applications on functional diversity of culturable microorganisms and bacterial community composition was studied under field conditions. The functional diversity of soil culturable microbial community (Shannon index, H') reduced significantly (P<0.05) after the first introduction of carbendazim at levels of 0.94, 1.88 and 4.70 kg active ingredient (a.i.)ha(-1) and then recovered to that in the control with subsequent applications. An evident (P<0.01) difference in the bacterial community composition was observed after the second carbendazim application by Temperature Gradient Gel Electrophoresis (TGGE) analysis of 16S rRNA genes amplified from treated and control soils, which remained after the third and fourth treatments. Our results indicated that repeated carbendazim applications have a transient harmful effect on functional diversity of soil culturable microbial community and result in an alteration in bacterial community composition largely due to one species within the γ-proteobacterium. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Pattanayak, Ranjit; Raut, Subhajit; Kuila, Sourav; Chandrasekhar, Mallam; Panigrahi, Simanchala
2017-02-01
Polycrystalline three novel [90 wt%Na0.5Bi0.5TiO3 (NBT)-10 wt% BaFe12O19 (BaM)] magnetoelctricmultiferroic composite systems were fabricated by considering the variation (increasing) of BaM grain size. The desired formation of composites was confirmed by X-ray diffraction study. The FESEM and SEM study were verified the variation of grain size and 0-3 type connectivity of composite systems. To predict the room temperature multiferroicbehaviour of theses composite systems we were taken PE and MH loop. For investigating the extrinsic and intrinsic magnetoelctric effect magneto impedance spectroscopy was considered for theses composite systems. The variation of intrinsic magnetoelctric coupling was predicted by proposing a simple mechanical model.
Radiation-hardened transistor and integrated circuit
Ma, Kwok K.
2007-11-20
A composite transistor is disclosed for use in radiation hardening a CMOS IC formed on an SOI or bulk semiconductor substrate. The composite transistor has a circuit transistor and a blocking transistor connected in series with a common gate connection. A body terminal of the blocking transistor is connected only to a source terminal thereof, and to no other connection point. The blocking transistor acts to prevent a single-event transient (SET) occurring in the circuit transistor from being coupled outside the composite transistor. Similarly, when a SET occurs in the blocking transistor, the circuit transistor prevents the SET from being coupled outside the composite transistor. N-type and P-type composite transistors can be used for each and every transistor in the CMOS IC to radiation harden the IC, and can be used to form inverters and transmission gates which are the building blocks of CMOS ICs.
Frank, Alexander H.; Garcia, Juan A. L.; Herndl, Gerhard J.
2016-01-01
Summary To decipher the influence of depth stratification and surface provincialism on the dark ocean prokaryotic community composition, we sampled the major deep‐water masses in the eastern North Atlantic covering three biogeographic provinces. Their diversity was evaluated using ordination and canonical analysis of 454 pyrotag sequences. Variance partitioning suggested that 16% of the variation in the bacterial community composition was based on depth stratification while 9% of the variation was due to geographic location. General linear mixed effect models showed that the community of the subsurface waters was connected to the dark ocean prokaryotic communities in different biogeographic provinces. Cluster analysis indicated that some prokaryotic taxa are specific to distinct regions in bathypelagic water masses. Taken together, our data suggest that the dark ocean prokaryotic community composition of the eastern North Atlantic is primed by the formation and the horizontal transport of water masses. PMID:26914787
Es'kov, A K
2013-01-01
Species composition of epiphytic communities within different formations of Phú Quôc Island (Southern Vietnam) is studied. The dependence of species composition and structural complexity of epiphytic communities on formation quality is demonstrated. Representatives of different families differ notably in their sensitivity to disturbances. Most vulnerable are Orchidaceae which represent the dominant group in epiphytic community of rain forest and which drop out almost completely under anthropogenic impacts. In less disturbed forests, epiphyte species diversity increases mainly at the expense of "lower" synusias and directly depends on the formation layering. Diminishing of layering numbers leads to dropping out of species belonging to "lower" synusias. Among epiphytes, the indicators of disturbed communities can be detected, namely species of ruderal strategy (explerents). In primal rain forest, they are absent or barely noticeable. An index is proposed for estimation of epiphytic communitiy complexity.
Night-time lighting alters the composition of marine epifaunal communities
Davies, Thomas W.; Coleman, Matthew; Griffith, Katherine M.; Jenkins, Stuart R.
2015-01-01
Marine benthic communities face multiple anthropogenic pressures that compromise the future of some of the most biodiverse and functionally important ecosystems in the world. Yet one of the pressures these ecosystems face, night-time lighting, remains unstudied. Light is an important cue in guiding the settlement of invertebrate larvae, and altering natural regimes of nocturnal illumination could modify patterns of recruitment among sessile epifauna. We present the first evidence of night-time lighting changing the composition of temperate epifaunal marine invertebrate communities. Illuminating settlement surfaces with white light-emitting diode lighting at night, to levels experienced by these communities locally, both inhibited and encouraged the colonization of 39% of the taxa analysed, including three sessile and two mobile species. Our results indicate that ecological light pollution from coastal development, shipping and offshore infrastructure could be changing the composition of marine epifaunal communities. PMID:25926694
Arroyo, Paula; Sáenz de Miera, Luis E; Ansola, Gemma
2015-02-15
Bacteria are key players in wetland ecosystems, however many essential aspects regarding the ecology of wetland bacterial communities remain unknown. The present study characterizes soil bacterial communities from natural and constructed wetlands through the pyrosequencing of 16S rDNA genes in order to evaluate the influence of wetland variables on bacterial community composition and structure. The results show that the composition of soil bacterial communities was significantly associated with the wetland type (natural or constructed wetland), the type of environment (lagoon, Typha or Salix) and three continuous parameters (SOM, COD and TKN). However, no clear associations were observed with soil pH. Bacterial diversity values were significantly lower in the constructed wetland with the highest inlet nutrient concentrations. The abundances of particular metabolic groups were also related to wetland characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.
Pedersen, Morten Lauge; Kristensen, Klaus Kevin; Friberg, Nikolai
2014-01-01
We evaluated the restoration of physical habitats and its influence on macroinvertebrate community structure in 18 Danish lowland streams comprising six restored streams, six streams with little physical alteration and six channelized streams. We hypothesized that physical habitats and macroinvertebrate communities of restored streams would resemble those of natural streams, while those of the channelized streams would differ from both restored and near-natural streams. Physical habitats were surveyed for substrate composition, depth, width and current velocity. Macroinvertebrates were sampled along 100 m reaches in each stream, in edge habitats and in riffle/run habitats located in the center of the stream. Restoration significantly altered the physical conditions and affected the interactions between stream habitat heterogeneity and macroinvertebrate diversity. The substrate in the restored streams was dominated by pebble, whereas the substrate in the channelized and natural streams was dominated by sand. In the natural streams a relationship was identified between slope and pebble/gravel coverage, indicating a coupling of energy and substrate characteristics. Such a relationship did not occur in the channelized or in the restored streams where placement of large amounts of pebble/gravel distorted the natural relationship. The analyses revealed, a direct link between substrate heterogeneity and macroinvertebrate diversity in the natural streams. A similar relationship was not found in either the channelized or the restored streams, which we attribute to a de-coupling of the natural relationship between benthic community diversity and physical habitat diversity. Our study results suggest that restoration schemes should aim at restoring the natural physical structural complexity in the streams and at the same time enhance the possibility of re-generating the natural geomorphological processes sustaining the habitats in streams and rivers. Documentation of restoration efforts should be intensified with continuous monitoring of geomorphological and ecological changes including surveys of reference river systems.
Pedersen, Morten Lauge; Kristensen, Klaus Kevin; Friberg, Nikolai
2014-01-01
We evaluated the restoration of physical habitats and its influence on macroinvertebrate community structure in 18 Danish lowland streams comprising six restored streams, six streams with little physical alteration and six channelized streams. We hypothesized that physical habitats and macroinvertebrate communities of restored streams would resemble those of natural streams, while those of the channelized streams would differ from both restored and near-natural streams. Physical habitats were surveyed for substrate composition, depth, width and current velocity. Macroinvertebrates were sampled along 100 m reaches in each stream, in edge habitats and in riffle/run habitats located in the center of the stream. Restoration significantly altered the physical conditions and affected the interactions between stream habitat heterogeneity and macroinvertebrate diversity. The substrate in the restored streams was dominated by pebble, whereas the substrate in the channelized and natural streams was dominated by sand. In the natural streams a relationship was identified between slope and pebble/gravel coverage, indicating a coupling of energy and substrate characteristics. Such a relationship did not occur in the channelized or in the restored streams where placement of large amounts of pebble/gravel distorted the natural relationship. The analyses revealed, a direct link between substrate heterogeneity and macroinvertebrate diversity in the natural streams. A similar relationship was not found in either the channelized or the restored streams, which we attribute to a de-coupling of the natural relationship between benthic community diversity and physical habitat diversity. Our study results suggest that restoration schemes should aim at restoring the natural physical structural complexity in the streams and at the same time enhance the possibility of re-generating the natural geomorphological processes sustaining the habitats in streams and rivers. Documentation of restoration efforts should be intensified with continuous monitoring of geomorphological and ecological changes including surveys of reference river systems. PMID:25264627
Kahmen, Ansgar; Perner, Jörg; Audorff, Volker; Weisser, Wolfgang; Buchmann, Nina
2005-02-01
In the past years, a number of studies have used experimental plant communities to test if biodiversity influences ecosystem functioning such as productivity. It has been argued, however, that the results achieved in experimental studies may have little predictive value for species loss in natural ecosystems. Studies in natural ecosystems have been equivocal, mainly because in natural ecosystems differences in diversity are often confounded with differences in land use history or abiotic parameters. In this study, we investigated the effect of plant diversity on ecosystem functioning in semi-natural grasslands. In an area of 10x20 km, we selected 78 sites and tested the effects of various measures of diversity and plant community composition on productivity. We separated the effects of plant diversity on ecosystem functioning from potentially confounding effects of community composition, management or environmental parameters, using multivariate statistical analyses. In the investigated grasslands, simple measures of biodiversity were insignificant predictors of productivity. However, plant community composition explained productivity very well (R2=0.31) and was a better predictor than environmental variables (soil and site characteristics) or management regime. Thus, complex measures such as community composition and structure are important drivers for ecosystem functions in semi-natural grasslands. Furthermore, our data show that it is difficult to extrapolate results from experimental studies to semi-natural ecosystems, although there is a need to investigate natural ecosystems to fully understand the relationship of biodiversity and ecosystem functioning.