Sample records for community composition regulates

  1. Top-down regulation, climate and multi-decadal changes in coastal zoobenthos communities in two Baltic Sea areas.

    PubMed

    Olsson, Jens; Bergström, Lena; Gårdmark, Anna

    2013-01-01

    The structure of many marine ecosystems has changed substantially during recent decades, as a result of overexploitation, climate change and eutrophication. Despite of the apparent ecological and economical importance of coastal areas and communities, this aspect has received relatively little attention in coastal systems. Here we assess the temporal development of zoobenthos communities in two areas on the Swedish Baltic Sea coast during 30 years, and relate their development to changes in climate, eutrophication and top-down regulation from fish. Both communities show substantial structural changes, with a decrease in marine polychaetes and species sensitive to increased water temperatures. Concurrently, opportunistic species tolerant to environmental perturbation have increased in abundance. Species composition show a similar temporal development in both communities and significant changes in species composition occurred in both data sets in the late 1980s and early 1990s. The change in species composition was associated with large scale changes in climate (salinity and water temperature) and to the structure of the local fish community, whereas we found no effects of nutrient loading or ambient nutrient concentrations. Our results suggest that these coastal zoobenthos communities have gone through substantial structural changes over the last 30 years, resulting in communities of different species composition with potentially different ecological functions. We hence suggest that the temporal development of coastal zoobenthos communities should be assessed in light of prevailing climatic conditions considering the potential for top-down effects exerted by local fish communities.

  2. Top-Down Regulation, Climate and Multi-Decadal Changes in Coastal Zoobenthos Communities in Two Baltic Sea Areas

    PubMed Central

    Olsson, Jens; Bergström, Lena; Gårdmark, Anna

    2013-01-01

    The structure of many marine ecosystems has changed substantially during recent decades, as a result of overexploitation, climate change and eutrophication. Despite of the apparent ecological and economical importance of coastal areas and communities, this aspect has received relatively little attention in coastal systems. Here we assess the temporal development of zoobenthos communities in two areas on the Swedish Baltic Sea coast during 30 years, and relate their development to changes in climate, eutrophication and top-down regulation from fish. Both communities show substantial structural changes, with a decrease in marine polychaetes and species sensitive to increased water temperatures. Concurrently, opportunistic species tolerant to environmental perturbation have increased in abundance. Species composition show a similar temporal development in both communities and significant changes in species composition occurred in both data sets in the late 1980s and early 1990s. The change in species composition was associated with large scale changes in climate (salinity and water temperature) and to the structure of the local fish community, whereas we found no effects of nutrient loading or ambient nutrient concentrations. Our results suggest that these coastal zoobenthos communities have gone through substantial structural changes over the last 30 years, resulting in communities of different species composition with potentially different ecological functions. We hence suggest that the temporal development of coastal zoobenthos communities should be assessed in light of prevailing climatic conditions considering the potential for top-down effects exerted by local fish communities. PMID:23737998

  3. Plant-soil-microbe interactions regulating soil C storage

    NASA Astrophysics Data System (ADS)

    Hofmockel, K. S.; Bach, E.; Williams, R.

    2016-12-01

    Integration across disciplines is required to identify the emergent microbial scale properties that regulate the release or occlusion of plant inputs in soil organic matter. To investigate how micro-scale processes influence soil carbon cycling, we measured microbial community composition and activity within soil aggregates monthly over two growing seasons of a long-term bioenergy field experiment. Using a biologically sensitive sieving technique, soil aggregates were isolated and microbial community activity and composition were measured. This aggregate approach revealed biogeochemical processes regulating C cycling that are not detected using whole soil approaches. Soil aggregation influenced microbe-substrate interactions, where diversified perennial grassland systems supported greater aggregation and reduced severity of aggregate turnover compared to corn systems. Aggregate turnover and concurrent increases in activity resulted in greater microbial biomass and physical protection of soil organic matter in prairie systems, especially fertilized prairies. Fertilized prairie enhanced microbial biomass, enzyme activity, and soil aggregation despite greater root biomass in unfertilized prairie. Independent of ecosystem or sampling date, N-acetyl-glucosaminidase activity and Nitrospirae abundance was greatest in large macroaggregates (>2000 µm), which harbored the highest C:N; cellobiohydrolase activity and Acidobacteria abundance was greatest in microaggregates (<250 µm) which had the lowest C:N. Aggregate fractions differed in microbial community composition (bacteria, archaea, and fungi) and potential enzyme activity, independent of cropping system. Microaggregates harbored significantly greater microbial diversity and richness across all bioenergy cropping systems. Together these results suggest that by mediating access to substrates, soil structure (aggregates) can influence the microbial community composition and extracellular enzyme activity to regulate ecosystem scale decomposition of soil organic matter.

  4. Successional change in species composition alters climate sensitivity of grassland productivity.

    PubMed

    Shi, Zheng; Lin, Yang; Wilcox, Kevin R; Souza, Lara; Jiang, Lifen; Jiang, Jiang; Jung, Chang Gyo; Xu, Xia; Yuan, Mengting; Guo, Xue; Wu, Liyou; Zhou, Jizhong; Luo, Yiqi

    2018-05-31

    Succession theory predicts altered sensitivity of ecosystem functions to disturbance (i.e., climate change) due to the temporal shift in plant community composition. However, empirical evidence in global change experiments is lacking to support this prediction. Here, we present findings from an 8-year long-term global change experiment with warming and altered precipitation manipulation (double and halved amount). First, we observed a temporal shift in species composition over 8 years, resulting in a transition from an annual C 3 -dominant plant community to a perennial C 4 -dominant plant community. This successional transition was independent of any experimental treatments. During the successional transition, the response of aboveground net primary productivity (ANPP) to precipitation addition magnified from neutral to +45.3%, while the response to halved precipitation attenuated substantially from -17.6% to neutral. However, warming did not affect ANPP in either state. The findings further reveal that the time-dependent climate sensitivity may be regulated by successional change in species composition, highlighting the importance of vegetation dynamics in regulating the response of ecosystem productivity to precipitation change. © 2018 John Wiley & Sons Ltd.

  5. Biocrust-forming mosses mitigate the impact of aridity on soil microbial communities in drylands: observational evidence from three continents.

    PubMed

    Delgado-Baquerizo, Manuel; Maestre, Fernando T; Eldridge, David J; Bowker, Matthew A; Jeffries, Thomas C; Singh, Brajesh K

    2018-04-02

    Recent research indicates that increased aridity linked to climate change will reduce the diversity of soil microbial communities and shift their community composition in drylands, Earth's largest biome. However, we lack both a theoretical framework and solid empirical evidence of how important biotic components from drylands, such as biocrust-forming mosses, will regulate the responses of microbial communities to expected increases in aridity with climate change. Here we report results from a cross-continental (North America, Europe and Australia) survey of 39 locations from arid to humid ecosystems, where we evaluated how biocrust-forming mosses regulate the relationship between aridity and the community composition and diversity of soil bacteria and fungi in dryland ecosystems. Increasing aridity was negatively related to the richness of fungi, and either positively or negatively related to the relative abundance of selected microbial phyla, when biocrust-forming mosses were absent. Conversely, we found an overall lack of relationship between aridity and the relative abundance and richness of microbial communities under biocrust-forming mosses. Our results suggest that biocrust-forming mosses mitigate the impact of aridity on the community composition of globally distributed microbial taxa, and the diversity of fungi. They emphasize the importance of maintaining biocrusts as a sanctuary for soil microbes in drylands. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  6. Does stability in local community composition depend on temporal variation in rates of dispersal and connectivity?

    NASA Astrophysics Data System (ADS)

    Valanko, Sebastian; Norkko, Joanna; Norkko, Alf

    2015-04-01

    In ecology understanding variation in connectivity is central for how biodiversity is maintained. Field studies on dispersal and temporal dynamics in community regulating processes are, however, rare. We test the short-term temporal stability in community composition in a soft-sediment benthic community by determining among-sampling interval similarity in community composition. We relate stability to in situ measures of connectivity (wind, wave, current energy) and rates of dispersal (quantified in different trap types). Waves were an important predictor of when local community taxa are most likely to disperse in different trap-types, suggesting that wave energy is important for connectivity in a region. Community composition at the site was variable and changed stochastically over time. We found changes in community composition (occurrence, abundance, dominance) to be greater at times when connectivity and rates of dispersal were low. In response to periods of lower connectedness dominant taxa in the local community only exhibited change in their relative abundance. In contrast, locally less abundant taxa varied in both their presence, as well as in relative abundance. Constancy in connectivity and rates of dispersal promotes community stability and persistence, suggesting that local community composition will be impacted by changes in the spatial extent over which immigration and emigration operates in the region. Few empirical studies have actually measured dispersal directly in a multi-species context to demonstrate the role it plays in maintaining local community structure. Even though our study does not evaluate coexistence over demographic time scales, it importantly demonstrates that dispersal is not only important in initial recruitment or following a disturbance, but also key in maintaining local community composition.

  7. Organic carbon and nitrogen availability determine bacterial community composition in paddy fields of the Indo-Gangetic plain.

    PubMed

    Kumar, Arvind; Rai, Lal Chand

    2017-07-01

    Soil quality is an important factor and maintained by inhabited microorganisms. Soil physicochemical characteristics determine indigenous microbial population and rice provides food security to major population of the world. Therefore, this study aimed to assess the impact of physicochemical variables on bacterial community composition and diversity in conventional paddy fields which could reflect a real picture of the bacterial communities operating in the paddy agro-ecosystem. To fulfill the objective; soil physicochemical characterization, bacterial community composition and diversity analysis was carried out using culture-independent PCR-DGGE method from twenty soils distributed across eight districts. Bacterial communities were grouped into three clusters based on UPGMA cluster analysis of DGGE banding pattern. The linkage of measured physicochemical variables with bacterial community composition was analyzed by canonical correspondence analysis (CCA). CCA ordination biplot results were similar to UPGMA cluster analysis. High levels of species-environment correlations (0.989 and 0.959) were observed and the largest proportion of species data variability was explained by total organic carbon (TOC), available nitrogen, total nitrogen and pH. Thus, results suggest that TOC and nitrogen are key regulators of bacterial community composition in the conventional paddy fields. Further, high diversity indices and evenness values demonstrated heterogeneity and co-abundance of the bacterial communities.

  8. Soil biodiversity and soil community composition determine ecosystem multifunctionality

    PubMed Central

    Wagg, Cameron; Bender, S. Franz; Widmer, Franco; van der Heijden, Marcel G. A.

    2014-01-01

    Biodiversity loss has become a global concern as evidence accumulates that it will negatively affect ecosystem services on which society depends. So far, most studies have focused on the ecological consequences of above-ground biodiversity loss; yet a large part of Earth’s biodiversity is literally hidden below ground. Whether reductions of biodiversity in soil communities below ground have consequences for the overall performance of an ecosystem remains unresolved. It is important to investigate this in view of recent observations that soil biodiversity is declining and that soil communities are changing upon land use intensification. We established soil communities differing in composition and diversity and tested their impact on eight ecosystem functions in model grassland communities. We show that soil biodiversity loss and simplification of soil community composition impair multiple ecosystem functions, including plant diversity, decomposition, nutrient retention, and nutrient cycling. The average response of all measured ecosystem functions (ecosystem multifunctionality) exhibited a strong positive linear relationship to indicators of soil biodiversity, suggesting that soil community composition is a key factor in regulating ecosystem functioning. Our results indicate that changes in soil communities and the loss of soil biodiversity threaten ecosystem multifunctionality and sustainability. PMID:24639507

  9. Flowering and floral visitation predict changes in community structure provided that mycorrhizas remain intact.

    PubMed

    Bennett, Jonathan A; Cahill, James F

    2018-06-01

    Pollination is critical for plant fitness and population dynamics, yet little attention is paid to the role of flowering and plant-pollinator interactions in structuring plant communities, including community responses to environmental change. Changes in arbuscular mycorrhizal fungi (AMF), nutrient abundances, and plant litter all affect plant access to different resources, and are known regulators of community structure. Each factor can also affect flowering and plant-pollinator interactions, potentially contributing to changes in community structure. To test whether AMF, nutrients, and litter influenced the relationship between pollination and community structure, we conducted a 5-yr field experiment applying fungicide, adding fertilizer, and removing plant litter in native grassland. We measured the distribution of flowers and floral visits among species in year three and linked these measures to changes in plant composition and species richness between years three and five. We hypothesized that an uneven distribution of flowers and visits among species would lead to greater community change, but that the treatments would disrupt this relationship by altering sexual allocation and recruitment. Consistent with our hypothesis, communities with uneven flower distributions exhibited greater changes in community composition and richness under ambient conditions. However, AMF suppression neutralized this relationship and regulated the other treatment effects, highlighting the potential importance of AMF for stabilizing recruitment dynamics. Combined, AMF suppression and nutrient addition caused species losses when few species flowered, likely by compounding stresses for those species. The treatment effects on the relationship between flowering and community composition were more nuanced, but were likely driven by increased competition and altered flowering among species. By contrast, community composition was more stable when visitation rates were uneven among species, irrespective of any treatments. This suggests that some species require high visitation rates to maintain their populations due to greater dependence on sexual reproduction. Combined, these results highlight the importance of flowering and floral visitation to the dynamics of grassland communities. They also suggest that altered recruitment dynamics is a major, yet understudied, mechanism by which environmental change affects communities. Consequently, understanding the effects of environmental change on plant communities will require study of both plant growth and sexual reproduction. © 2018 by the Ecological Society of America.

  10. The dual oxidase gene BdDuox regulates the intestinal bacterial community homeostasis of Bactrocera dorsalis

    PubMed Central

    Yao, Zhichao; Wang, Ailin; Li, Yushan; Cai, Zhaohui; Lemaitre, Bruno; Zhang, Hongyu

    2016-01-01

    The guts of metazoans are in permanent contact with the microbial realm that includes beneficial symbionts, nonsymbionts, food-borne microbes and life-threatening pathogens. However, little is known concerning how host immunity affects gut bacterial community. Here, we analyze the role of a dual oxidase gene (BdDuox) in regulating the intestinal bacterial community homeostasis of the oriental fruit fly Bactrocera dorsalis. The results showed that knockdown of BdDuox led to an increased bacterial load, and to a decrease in the relative abundance of Enterobacteriaceae and Leuconostocaceae bacterial symbionts in the gut. The resulting dysbiosis, in turn, stimulates an immune response by activating BdDuox and promoting reactive oxygen species (ROS) production that regulates the composition and structure of the gut bacterial community to normal status by repressing the overgrowth of minor pathobionts. Our results suggest that BdDuox plays a pivotal role in regulating the homeostasis of the gut bacterial community in B. dorsalis. PMID:26565723

  11. Effects of Bottom-up and Top-down Controls and Climate Change on Estuarine Macrophyte Communities and the Ecosystem Services they Provide

    EPA Science Inventory

    Macrophytes provide important estuarine benthic habitats and support a significant portion of estuarine productivity. The composition and characteristics of these benthic communities are regulated bottom-up by resource availability and from the top-down by herbivory and predation...

  12. Habitat generalists and specialists in microbial communities across a terrestrial-freshwater gradient

    NASA Astrophysics Data System (ADS)

    Monard, C.; Gantner, S.; Bertilsson, S.; Hallin, S.; Stenlid, J.

    2016-11-01

    Observations of distributions of microorganisms and their differences in community composition across habitats provide evidence of biogeographical patterns. However, little is known about the processes controlling transfers across habitat gradients. By analysing the overall microbial community composition (bacteria, fungi, archaea) across a terrestrial-freshwater gradient, the aim of this study was to understand the spatial distribution patterns of populations and identify taxa capable of crossing biome borders. Barcoded 454 pyrosequencing of taxonomic gene markers was used to describe the microbial communities in adjacent soil, freshwater and sediment samples and study the role of biotic and spatial factors in shaping their composition. Few habitat generalists but a high number of specialists were detected indicating that microbial community composition was mainly regulated by species sorting and niche partitioning. Biotic interactions within microbial groups based on an association network underlined the importance of Actinobacteria, Sordariomycetes, Agaricomycetes and Nitrososphaerales in connecting among biomes. Even if dispersion seemed limited, the shore of the lake represented a transition area, allowing populations to cross the biome boundaries. In finding few broadly distributed populations, our study points to biome specialization within microbial communities with limited potential for dispersal and colonization of new habitats along the terrestrial-freshwater continuum.

  13. Succession in a microbial mat community: A gaian perspective

    NASA Astrophysics Data System (ADS)

    Stolz, J. F.

    The Gaia hypothesis originally proposed by James E. Lovelock states that the composition, oxidation-reduction state and temperature of the troposphere are actively regulated by the activities of the biota. The gaian concept has been extrapolated to include the composition of surface sediments through the process of biomineralization. The stratified microbial community dominated by the cyanobacterium Microcoleus chthonoplastes is actively involved in the deposition of laminated sediments at Laguna Figueroa, Baja California, Mexico. Unusually heavy rains in the winters of 1979 and 1980 flooded the evaporite flat with up to 3 meters of meteoric water and deposited 5 - 10 cm of allocthonous sediment. The composition of the microbial community changed as a succession of dominating microbial species ensued, ultimately leading to the recolonization of the surface sediment by the original Microcoleus-dominated community. The resiliency of bacterial communities is suggested to be an important mechanism of gaian control systems. Present address: Control and Energy Conversion Division, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, U.S.A.

  14. Change in soil fungal community structure driven by a decline in ectomycorrhizal fungi following a mountain pine beetle (Dendroctonus ponderosae) outbreak.

    PubMed

    Pec, Gregory J; Karst, Justine; Taylor, D Lee; Cigan, Paul W; Erbilgin, Nadir; Cooke, Janice E K; Simard, Suzanne W; Cahill, James F

    2017-01-01

    Western North American landscapes are rapidly being transformed by forest die-off caused by mountain pine beetle (Dendroctonus ponderosae), with implications for plant and soil communities. The mechanisms that drive changes in soil community structure, particularly for the highly prevalent ectomycorrhizal fungi in pine forests, are complex and intertwined. Critical to enhancing understanding will be disentangling the relative importance of host tree mortality from changes in soil chemistry following tree death. Here, we used a recent bark beetle outbreak in lodgepole pine (Pinus contorta) forests of western Canada to test whether the effects of tree mortality altered the richness and composition of belowground fungal communities, including ectomycorrhizal and saprotrophic fungi. We also determined the effects of environmental factors (i.e. soil nutrients, moisture, and phenolics) and geographical distance, both of which can influence the richness and composition of soil fungi. The richness of both groups of soil fungi declined and the overall composition was altered by beetle-induced tree mortality. Soil nutrients, soil phenolics and geographical distance influenced the community structure of soil fungi; however, the relative importance of these factors differed between ectomycorrhizal and saprotrophic fungi. The independent effects of tree mortality, soil phenolics and geographical distance influenced the community composition of ectomycorrhizal fungi, while the community composition of saprotrophic fungi was weakly but significantly correlated with the geographical distance of plots. Taken together, our results indicate that both deterministic and stochastic processes structure soil fungal communities following landscape-scale insect outbreaks and reflect the independent roles tree mortality, soil chemistry and geographical distance play in regulating the community composition of soil fungi. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  15. Temporal variation in the biochemical ecology of lower trophic levels in the Northern California Current

    NASA Astrophysics Data System (ADS)

    Miller, J. A.; Peterson, W. T.; Copeman, L. A.; Du, X.; Morgan, C. A.; Litz, M. N. C.

    2017-06-01

    There is strong correlative evidence that variation in the growth and survival of secondary consumers is related to the copepod species composition within the Northern California Current. Potential mechanisms driving these correlations include: (1) enhanced growth and survival of secondary consumers when lipid-rich, boreal copepod species are abundant, with cascading effects on higher trophic levels; (2) the regulation of growth and condition of primary and secondary consumers by the relative proportion of certain essential fatty acids (FAs) in primary producers; or (3) a combination of these factors. Disentangling the relative importance of taxonomic composition, lipid quantity, and FA composition on the nutritional quality of copepods requires detailed information on both the consumer and primary producers. Therefore, we collected phytoplankton and copepods at an oceanographic station for 19 months and completed species community analyses and generated detailed lipid profiles, including lipid classes and FAs, for both groups. There was strong covariation between species and biochemistry within and across trophic levels and distinct seasonal differences. The amount of total lipid within both the phytoplankton and copepod communities was twice as high in spring and summer than in fall and winter, and certain FAs, such as diatom indicators 20:5ω3 and 16:1ω7, comprised a greater proportion of the FA pool in spring and summer. Indicators of bacterial production within the copepod community were proportionally twice as high during fall and winter than spring and summer. Seasonal transitions in copepod FA composition were consistently offset from transitions in copepod species composition by approximately two weeks. The timing of the seasonal transition in copepod FAs reflected seasonal shifts in the species composition and/or biochemistry of primary producers more than seasonal shifts in the copepod species composition. These results emphasize the importance of interactions between the copepod community and their available phytoplankton prey in regulating the nutritional quality of primary consumers.

  16. Compositional differences in simulated root exudates elicit a limited functional and compositional response in soil microbial communities.

    PubMed

    Strickland, Michael S; McCulley, Rebecca L; Nelson, Jim A; Bradford, Mark A

    2015-01-01

    Inputs of low molecular weight carbon (LMW-C) to soil - primarily via root exudates- are expected to be a major driver of microbial activity and source of stable soil organic carbon. It is expected that variation in the type and composition of LMW-C entering soil will influence microbial community composition and function. If this is the case then short-term changes in LMW-C inputs may alter processes regulated by these communities. To determine if change in the composition of LMW-C inputs influences microbial community function and composition, we conducted a 90 day microcosm experiment whereby soils sourced from three different land covers (meadows, deciduous forests, and white pine stands) were amended, at low concentrations, with one of eight simulated root exudate treatments. Treatments included no addition of LMW-C, and the full factorial combination of glucose, glycine, and oxalic acid. After 90 days, we conducted a functional response assay and determined microbial composition via phospholipid fatty acid analysis. Whereas we noted a statistically significant effect of exudate treatments, this only accounted for ∼3% of the variation observed in function. In comparison, land cover and site explained ∼46 and ∼41% of the variation, respectively. This suggests that exudate composition has little influence on function compared to site/land cover specific factors. Supporting the finding that exudate effects were minor, we found that an absence of LMW-C elicited the greatest difference in function compared to those treatments receiving any LMW-C. Additionally, exudate treatments did not alter microbial community composition and observable differences were instead due to land cover. These results confirm the strong effects of land cover/site legacies on soil microbial communities. In contrast, short-term changes in exudate composition, at meaningful concentrations, may have little impact on microbial function and composition.

  17. Soil microbial community response to precipitation change in a semi-arid ecosystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cregger, Melissa; Schadt, Christopher Warren; McDowell, Nathan

    2012-01-01

    Microbial communities regulate many belowground carbon cycling processes; thus, the impact of climate change on the struc- ture and function of soil microbial communities could, in turn, impact the release or storage of carbon in soils. Here we used a large-scale precipitation manipulation ( 18%, 50%, or ambient) in a pi on-juniper woodland (Pinus edulis-Juniperus mono- sperma) to investigate how changes in precipitation amounts altered soil microbial communities as well as what role seasonal variation in rainfall and plant composition played in the microbial community response. Seasonal variability in precipitation had a larger role in determining the composition of soilmore » microbial communities in 2008 than the direct effect of the experimental precipitation treatments. Bacterial and fungal communities in the dry, relatively moisture-limited premonsoon season were compositionally distinct from communities in the monsoon season, when soil moisture levels and periodicity varied more widely across treatments. Fungal abundance in the drought plots during the dry premonsoon season was particularly low and was 4.7 times greater upon soil wet-up in the monsoon season, suggesting that soil fungi were water limited in the driest plots, which may result in a decrease in fungal degradation of carbon substrates. Additionally, we found that both bacterial and fungal communities beneath pi on pine and juniper were distinct, suggesting that microbial functions beneath these trees are different. We conclude that predicting the response of microbial communities to climate change is highly dependent on seasonal dynam- ics, background climatic variability, and the composition of the associated aboveground community.« less

  18. Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe.

    PubMed

    Delgado-Baquerizo, Manuel; Eldridge, David J; Ochoa, Victoria; Gozalo, Beatriz; Singh, Brajesh K; Maestre, Fernando T

    2017-10-01

    The relationship between soil microbial communities and the resistance of multiple ecosystem functions linked to C, N and P cycling (multifunctionality resistance) to global change has never been assessed globally in natural ecosystems. We collected soils from 59 dryland ecosystems worldwide to investigate the importance of microbial communities as predictor of multifunctionality resistance to climate change and nitrogen fertilisation. Multifunctionality had a lower resistance to wetting-drying cycles than to warming or N deposition. Multifunctionality resistance was regulated by changes in microbial composition (relative abundance of phylotypes) but not by richness, total abundance of fungi and bacteria or the fungal: bacterial ratio. Our results suggest that positive effects of particular microbial taxa on multifunctionality resistance could potentially be controlled by altering soil pH. Together, our work demonstrates strong links between microbial community composition and multifunctionality resistance in dryland soils from six continents, and provides insights into the importance of microbial community composition for buffering effects of global change in drylands worldwide. © 2017 John Wiley & Sons Ltd/CNRS.

  19. Responses of gut microbiota to diet composition and weight loss in lean and obese mice.

    PubMed

    Ravussin, Yann; Koren, Omry; Spor, Ayme; LeDuc, Charles; Gutman, Roee; Stombaugh, Jesse; Knight, Rob; Ley, Ruth E; Leibel, Rudolph L

    2012-04-01

    Maintenance of a reduced body weight is accompanied by a decrease in energy expenditure beyond that accounted for by reduced body mass and composition, as well as by an increased drive to eat. These effects appear to be due--in part--to reductions in circulating leptin concentrations due to loss of body fat. Gut microbiota have been implicated in the regulation of body weight. The effects of weight loss on qualitative aspects of gut microbiota have been studied in humans and mice, but these studies have been confounded by concurrent changes in diet composition, which influence microbial community composition. We studied the impact of 20% weight loss on the microbiota of diet-induced obese (DIO: 60% calories fat) mice on a high-fat diet (HFD). Weight-reduced DIO (DIO-WR) mice had the same body weight and composition as control (CON) ad-libitum (AL) fed mice being fed a control diet (10% calories fat), allowing a direct comparison of diet and weight-perturbation effects. Microbial community composition was assessed by pyrosequencing 16S rRNA genes derived from the ceca of sacrificed animals. There was a strong effect of diet composition on the diversity and composition of the microbiota. The relative abundance of specific members of the microbiota was correlated with circulating leptin concentrations and gene expression levels of inflammation markers in subcutaneous white adipose tissue in all mice. Together, these results suggest that both host adiposity and diet composition impact microbiota composition, possibly through leptin-mediated regulation of mucus production and/or inflammatory processes that alter the gut habitat.

  20. Mechanisms shaping size structure and functional diversity of phytoplankton communities in the ocean

    PubMed Central

    Acevedo-Trejos, Esteban; Brandt, Gunnar; Bruggeman, Jorn; Merico, Agostino

    2015-01-01

    The factors regulating phytoplankton community composition play a crucial role in structuring aquatic food webs. However, consensus is still lacking about the mechanisms underlying the observed biogeographical differences in cell size composition of phytoplankton communities. Here we use a trait-based model to disentangle these mechanisms in two contrasting regions of the Atlantic Ocean. In our model, the phytoplankton community can self-assemble based on a trade-off emerging from relationships between cell size and (1) nutrient uptake, (2) zooplankton grazing, and (3) phytoplankton sinking. Grazing ‘pushes’ the community towards larger cell sizes, whereas nutrient uptake and sinking ‘pull’ the community towards smaller cell sizes. We find that the stable environmental conditions of the tropics strongly balance these forces leading to persistently small cell sizes and reduced size diversity. In contrast, the seasonality of the temperate region causes the community to regularly reorganize via shifts in species composition and to exhibit, on average, bigger cell sizes and higher size diversity than in the tropics. Our results raise the importance of environmental variability as a key structuring mechanism of plankton communities in the ocean and call for a reassessment of the current understanding of phytoplankton diversity patterns across latitudinal gradients. PMID:25747280

  1. Macro and Microelements Drive Diversity and Composition of Prokaryotic and Fungal Communities in Hypersaline Sediments and Saline-Alkaline Soils.

    PubMed

    Liu, Kaihui; Ding, Xiaowei; Tang, Xiaofei; Wang, Jianjun; Li, Wenjun; Yan, Qingyun; Liu, Zhenghua

    2018-01-01

    Understanding the effects of environmental factors on microbial communities is critical for microbial ecology, but it remains challenging. In this study, we examined the diversity (alpha diversity) and community compositions (beta diversity) of prokaryotes and fungi in hypersaline sediments and salinized soils from northern China. Environmental variables were highly correlated, but they differed significantly between the sediments and saline soils. The compositions of prokaryotic and fungal communities in the hypersaline sediments were different from those in adjacent saline-alkaline soils, indicating a habitat-specific microbial distribution pattern. The macroelements (S, P, K, Mg, and Fe) and Ca were, respectively, correlated closely with the alpha diversity of prokaryotes and fungi, while the macronutrients (e.g., Na, S, P, and Ca) were correlated with the prokaryotic and fungal beta-diversity ( P ≤ 0.05). And, the nine microelements (e.g., Al, Ba, Co, Hg, and Mn) and micronutrients (Ba, Cd, and Sr) individually shaped the alpha diversity of prokaryotes and fungi, while the six microelements (e.g., As, Ba, Cr, and Ge) and only the trace elements (Cr and Cu), respectively, influenced the beta diversity of prokaryotes and fungi ( P < 0.05). Variation-partitioning analysis (VPA) showed that environmental variables jointly explained 55.49% and 32.27% of the total variation for the prokaryotic and fungal communities, respectively. Together, our findings demonstrate that the diversity and community composition of the prokaryotes and fungi were driven by different macro and microelements in saline habitats, and that geochemical elements could more widely regulate the diversity and community composition of prokaryotes than these of fungi.

  2. Effects of rodent community diversity and composition on prevalence of an endemic bacterial pathogen - Bartonella

    USGS Publications Warehouse

    Bai, Y.; Kosoy, M.Y.; Calisher, C.H.; Cully, J.F.; Collinge, S.K.

    2009-01-01

    By studying Bartonella prevalence in rodent communities from 23 geographic sites in the western United States and one site in northern Mexico, the present study focused on the effects of rodent community diversity (measured by richness and Shannon index) and composition on prevalence of Bartonella infections. The analysis showed negative correlations of Bartonella prevalence with rodent richness and Shannon index. Further, Bartonella prevalence varied among rodent genera/species. Three models were applied to explain the observations. (1) Within-species/genus transmission: Bartonella strains usually are host-specific and adding non-host species would decrease Bartonella prevalence in its principal host through reduction of host contact (encounter reduction); (2) Frequency-dependence: Adding hosts would decrease the proportion of all infected individuals in the community, resulting in a reduction in the number of contacts between susceptible and infected individuals that usually leads to transmission (transmission reduction); and (3) Dominant species effect: Dominant species, if not susceptible to Bartonellae, can constrain the abundance of susceptible hosts (susceptible host regulation). These mechanisms work in concert; and the level of Bartonella prevalence is an outcome of regulation of all of these mechanisms on the entire system.

  3. Phylogenetic and structural response of heterotrophic bacteria to dissolved organic matter of different chemical composition in a continuous culture study.

    PubMed

    Landa, M; Cottrell, M T; Kirchman, D L; Kaiser, K; Medeiros, P M; Tremblay, L; Batailler, N; Caparros, J; Catala, P; Escoubeyrou, K; Oriol, L; Blain, S; Obernosterer, I

    2014-06-01

    Dissolved organic matter (DOM) and heterotrophic bacteria are highly diverse components of the ocean system, and their interactions are key in regulating the biogeochemical cycles of major elements. How chemical and phylogenetic diversity are linked remains largely unexplored to date. To investigate interactions between bacterial diversity and DOM, we followed the response of natural bacterial communities to two sources of phytoplankton-derived DOM over six bacterial generation times in continuous cultures. Analyses of total hydrolysable neutral sugars and amino acids, and ultrahigh resolution mass spectrometry revealed large differences in the chemical composition of the two DOM sources. According to 454 pyrosequences of 16S ribosomal ribonucleic acid genes, diatom-derived DOM sustained higher levels of bacterial richness, evenness and phylogenetic diversity than cyanobacteria-derived DOM. These distinct community structures were, however, not associated with specific taxa. Grazing pressure affected bacterial community composition without changing the overall pattern of bacterial diversity levels set by DOM. Our results demonstrate that resource composition can shape several facets of bacterial diversity without influencing the phylogenetic composition of bacterial communities, suggesting functional redundancy at different taxonomic levels for the degradation of phytoplankton-derived DOM. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Environmental Regulation of Microbial Community Structure

    NASA Technical Reports Server (NTRS)

    Bebout, Leslie; DesMarais, D.; Heyenga, G.; Nelson, F.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    Most naturally occurring microbes live in complex microbial communities consisting of thousands of phylotypes of microorganisms living in close proximity. Each of these draws nutrients from the environment and releases metabolic waste products, which may in turn serve as substrates for other microbial groups. Gross environmental changes, such as irradiance level, hydrodynamic flow regime, temperature or water chemistry can directly affect the productivity of some community members, which in turn will affect other dependent microbial populations and rate processes. As a first step towards the development of "standard" natural communities of microorganisms for a variety of potential NASA applications, we are measuring biogeochemical cycling in artificially structured communities of microorganisms, created using natural microbial mat communities as inoculum. The responses of these artificially assembled communities of microorganisms to controlled shifts in ecosystem incubation conditions is being determined. This research requires close linking of environmental monitoring, with community composition in a closed and controlled incubation setting. We are developing new incubation chamber designs to allow for this integrated approach to examine the interplay between environmental conditions, microbial community composition and biogeochemical processes.

  5. Predator community composition is linked to soil carbon retention across a human land use gradient.

    PubMed

    Schmitz, Oswald J; Buchkowski, Robert W; Smith, Jeffrey R; Telthorst, Mark; Rosenblatt, Adam E

    2017-05-01

    Soil carbon (C) storage is a major component of the carbon cycle. Consensus holds that soil C uptake and storage is regulated by plant-microbe-soil interactions. However, the contribution of animals in aboveground food webs to this process has been overlooked. Using insights from prior long-term experimentation in an old-field ecosystem and mathematical modeling, we predicted that the amount of soil C retention within a field should increase with the proportion of active hunting predators comprising the aboveground community of active hunting and sit-and-wait predators. This comes about because predators with different hunting modes have different cascading effects on plants. Our test of the prediction revealed that the composition of the arthropod predator community and associated cascading effects on the plant community explained 41% of variation in soil C retention among 15 old fields across a human land use gradient. We also evaluated the potential for several other candidate factors to explain variation in soil C retention among fields, independent of among-field variation in the predator community. These included live plant biomass, insect herbivore community composition, soil arthropod decomposer community composition, degree of land use development around the fields, field age, and soil texture. None of these candidate variables significantly explained soil C retention among the fields. The study offers a generalizable understanding of the pathways through which arthropod predator community composition can contribute to old-field ecosystem carbon storage. This insight helps support ongoing efforts to understand and manage the effects of anthropogenic land use change on soil C storage. © 2017 by the Ecological Society of America.

  6. A comparative study of AMF diversity in annual and perennial plant species from semiarid gypsum soils.

    NASA Astrophysics Data System (ADS)

    Alguacil, M. M.; Torrecillas, E.; Roldán, A.; Díaz, G.; Torres, P.

    2012-04-01

    The arbuscular mycorrhizal fungi (AMF) communities composition regulate plant interactions and determine the structure of plant communities. In this study we analysed the diversity of AMF in the roots of two perennial gypsophyte plant species, Herniaria fruticosa and Senecio auricula, and an annual herbaceous species, Bromus rubens, growing in a gypsum soil from a semiarid area. The objective was to determine whether perennial and annual host plants support different AMF communities in their roots and whether there are AMF species that might be indicators of specific functional plant roles in these ecosystems. The roots were analysed by nested PCR, cloning, sequencing of the ribosomal DNA small subunit region and phylogenetic analysis. Twenty AMF sequence types, belonging to the Glomus group A, Glomus group B, Diversisporaceae, Acaulosporaceae, Archaeosporaceae and Paraglomeraceae, were identified. Both gypsophyte perennial species had differing compositions of the AMF community and higher diversity when compared with the annual species, showing preferential selection by specific AMF sequences types. B. rubens did not show host specificity, sharing the full composition of its AMF community with both perennial plant species. Seasonal variations in the competitiveness of AM fungi could explain the observed differences in AMF community composition, but this is still a working hypothesis that requires the analysis of further data obtained from a higher number of both annual and perennial plant species in order to be fully tested.

  7. Successional and seasonal variations in soil and litter microbial community structure and function during tropical postagricultural forest regeneration: a multiyear study.

    PubMed

    Smith, A Peyton; Marín-Spiotta, Erika; Balser, Teri

    2015-09-01

    Soil microorganisms regulate fundamental biochemical processes in plant litter decomposition and soil organic matter (SOM) transformations. Understanding how microbial communities respond to changes in vegetation is critical for improving predictions of how land-cover change affects belowground carbon storage and nutrient availability. We measured intra- and interannual variability in soil and forest litter microbial community composition and activity via phospholipid fatty acid analysis (PLFA) and extracellular enzyme activity across a well-replicated, long-term chronosequence of secondary forests growing on abandoned pastures in the wet subtropical forest life zone of Puerto Rico. Microbial community PLFA structure differed between young secondary forests and older secondary and primary forests, following successional shifts in tree species composition. These successional patterns held across seasons, but the microbial groups driving these patterns differed over time. Microbial community composition from the forest litter differed greatly from those in the soil, but did not show the same successional trends. Extracellular enzyme activity did not differ with forest succession, but varied by season with greater rates of potential activity in the dry seasons. We found few robust significant relationships among microbial community parameters and soil pH, moisture, carbon, and nitrogen concentrations. Observed inter- and intrannual variability in microbial community structure and activity reveal the importance of a multiple, temporal sampling strategy when investigating microbial community dynamics with land-use change. Successional control over microbial composition with forest recovery suggests strong links between above and belowground communities. © 2015 John Wiley & Sons Ltd.

  8. Plant community, geographic distance and abiotic factors play different roles in predicting AMF biogeography at the regional scale in northern China.

    PubMed

    Xu, Tianle; Veresoglou, Stavros D; Chen, Yongliang; Rillig, Matthias C; Xiang, Dan; Ondřej, Daniel; Hao, Zhipeng; Liu, Lei; Deng, Ye; Hu, Yajun; Chen, Weiping; Wang, Juntao; He, Jizheng; Chen, Baodong

    2016-12-01

    Arbuscular mycorrhizal fungi (AMF) are ubiquitous mutualists of terrestrial plants and play key roles in regulating various ecosystem processes, but little is known about AMF biogeography at regional scale. This study aims at exploring the key predictors of AMF communities across a 5000-km transect in northern China. We determined the soil AMF species richness and community composition at 47 sites representative of four vegetation types (meadow steppe, typical steppe, desert steppe and desert) and related them to plant community characteristics, abiotic factors and geographic distance. The results showed that soil pH was the strongest predictor of AMF richness and phylogenetic diversity. However, abiotic factors only have a low predictive effect on AMF community composition or phylogenetic patterns. By contrast, we found a significant relationship between community composition of AMF and plants, which was a surprising result given the extent of heterogeneity in the plant community across this transect. Moreover, the geographic distance predominantly explained the AMF phylogenetic structure, implying that history evolutionary may play a role in shaping AMF biogeographic patterns. This study highlighted the different roles of main factors in predicting AMF biogeography, and bridge landscape-scale studies to more recent global-scale efforts. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Complexity of Bacterial Communities in a River-Floodplain System (Danube, Austria)

    PubMed Central

    Besemer, Katharina; Moeseneder, Markus M.; Arrieta, Jesus M.; Herndl, Gerhard J.; Peduzzi, Peter

    2005-01-01

    Natural floodplains play an essential role in the processing and decomposition of organic matter and in the self-purification ability of rivers, largely due to the activity of bacteria. Knowledge about the composition of bacterial communities and its impact on organic-matter cycling is crucial for the understanding of ecological processes in river-floodplain systems. Particle-associated and free-living bacterial assemblages from the Danube River and various floodplain pools with different hydrological characteristics were investigated using terminal restriction fragment length polymorphism analysis. The particle-associated bacterial community exhibited a higher number of operational taxonomic units (OTUs) and was more heterogeneous in time and space than the free-living community. The temporal dynamics of the community structure were generally higher in isolated floodplain pools. The community structures of the river and the various floodplain pools, as well as those of the particle-associated and free-living bacteria, differed significantly. The compositional dynamics of the planktonic bacterial communities were related to changes in the algal biomass, temperature, and concentrations of organic and inorganic nutrients. The OTU richness of the free-living community was correlated with the concentration and origin of organic matter and the concentration of inorganic nutrients, while no correlation with the OTU richness of the particle-associated assemblage was found. Our results demonstrate the importance of the river-floodplain interactions and the influence of damming and regulation on the bacterial-community composition. PMID:15691909

  10. Using a trait-based approach to link microbial community composition and functioning to soil salinity

    NASA Astrophysics Data System (ADS)

    Rath, Kristin; Fierer, Noah; Rousk, Johannes

    2017-04-01

    Our knowledge of the dynamics structuring microbial communities and the consequences this has for soil functions is rudimentary. In particular, predictions of the response of microbial communities to environmental change and the implications for associated ecosystem processes remain elusive. Understanding how environmental factors structure microbial communities and regulate the functions they perform is key to a mechanistic understanding of how biogeochemical cycles respond to environmental change. Soil salinization is an agricultural problem in many parts of the world. The activity of soil microorganisms is reduced in saline soils compared to non-saline soil. However, soil salinity often co-varies with other factors, making it difficult to assign responses of microbial communities to direct effects of salinity. A trait-based approach allows us to connect the environmental factor salinity with the responses of microbial community composition and functioning. Salinity along a salinity gradient serves as a filter for the community trait distribution of salt tolerance, selecting for higher salt tolerance at more saline sites. This trait-environment relationship can be used to predict responses of microbial communities to environmental change. Our aims were to (i) use salinity along natural salinity gradients as an environmental filter, and (ii) link the resulting filtered trait-distributions of the communities (the trait being salt tolerance) to the community composition. Soil samples were obtained from two replicated salinity gradients along an Australian salt lake, spanning a wide range of soil salinities (0.1 dS m-1 to >50 dS m-1). In one of the two gradients salinity was correlated with pH. Community trait distributions for salt tolerance were assessed by establishing dose-dependences for extracted bacterial communities using growth rate assays. In addition, functional parameters were measured along the salt gradients. Community composition of sites was compared through 16S rRNA gene amplicon sequencing. Microbial community composition changed greatly along the salinity gradients. Using the salt-tolerance assessments to estimate bacterial trait-distributions we could determine substantial differences in tolerance to salt revealing a strong causal connection between environment and trait distributions. By constraining the community composition with salinity tolerance in ordinations, we could assign which community differences were directly due to a shift in community trait distributions. These analyses revealed that a substantial part (up to 30%) of the community composition differences were directly driven by environmental salt concentrations.. Even though communities in saline soils had trait-distributions aligned to their environment, their performance (respiration, growth rates) was lower than those in non-saline soils and remained low even after input of organic material. Using a trait-based approach we could connect filtered trait distributions along environmental gradients, to the composition of the microbial community. We show that soil salinity played an important role in shaping microbial community composition by selecting for communities with higher salt tolerance. The shift toward bacterial communities with trait distributions matched to salt environments probably compensated for much of the potential loss of function induced by salinity, resulting in a degree of apparent functional redundancy for decomposition. However, more tolerant communities still showed reduced functioning, suggesting a trade-off between salt tolerance and performance.

  11. Responses of plant community composition and biomass production to warming and nitrogen deposition in a temperate meadow ecosystem.

    PubMed

    Zhang, Tao; Guo, Rui; Gao, Song; Guo, Jixun; Sun, Wei

    2015-01-01

    Climate change has profound influences on plant community composition and ecosystem functions. However, its effects on plant community composition and biomass production are not well understood. A four-year field experiment was conducted to examine the effects of warming, nitrogen (N) addition, and their interactions on plant community composition and biomass production in a temperate meadow ecosystem in northeast China. Experimental warming had no significant effect on plant species richness, evenness, and diversity, while N addition highly reduced the species richness and diversity. Warming tended to reduce the importance value of graminoid species but increased the value of forbs, while N addition had the opposite effect. Warming tended to increase the belowground biomass, but had an opposite tendency to decrease the aboveground biomass. The influences of warming on aboveground production were dependent upon precipitation. Experimental warming had little effect on aboveground biomass in the years with higher precipitation, but significantly suppressed aboveground biomass in dry years. Our results suggest that warming had indirect effects on plant production via its effect on the water availability. Nitrogen addition significantly increased above- and below-ground production, suggesting that N is one of the most important limiting factors determining plant productivity in the studied meadow steppe. Significant interactive effects of warming plus N addition on belowground biomass were also detected. Our observations revealed that environmental changes (warming and N deposition) play significant roles in regulating plant community composition and biomass production in temperate meadow steppe ecosystem in northeast China.

  12. Mechanistic links between gut microbial community dynamics, microbial functions and metabolic health.

    PubMed

    Ha, Connie W Y; Lam, Yan Y; Holmes, Andrew J

    2014-11-28

    Gut microbes comprise a high density, biologically active community that lies at the interface of an animal with its nutritional environment. Consequently their activity profoundly influences many aspects of the physiology and metabolism of the host animal. A range of microbial structural components and metabolites directly interact with host intestinal cells and tissues to influence nutrient uptake and epithelial health. Endocrine, neuronal and lymphoid cells in the gut also integrate signals from these microbial factors to influence systemic responses. Dysregulation of these host-microbe interactions is now recognised as a major risk factor in the development of metabolic dysfunction. This is a two-way process and understanding the factors that tip host-microbiome homeostasis over to dysbiosis requires greater appreciation of the host feedbacks that contribute to regulation of microbial community composition. To date, numerous studies have employed taxonomic profiling approaches to explore the links between microbial composition and host outcomes (especially obesity and its comorbidities), but inconsistent host-microbe associations have been reported. Available data indicates multiple factors have contributed to discrepancies between studies. These include the high level of functional redundancy in host-microbiome interactions combined with individual variation in microbiome composition; differences in study design, diet composition and host system between studies; and inherent limitations to the resolution of rRNA-based community profiling. Accounting for these factors allows for recognition of the common microbial and host factors driving community composition and development of dysbiosis on high fat diets. New therapeutic intervention options are now emerging.

  13. Mechanistic links between gut microbial community dynamics, microbial functions and metabolic health

    PubMed Central

    Ha, Connie WY; Lam, Yan Y; Holmes, Andrew J

    2014-01-01

    Gut microbes comprise a high density, biologically active community that lies at the interface of an animal with its nutritional environment. Consequently their activity profoundly influences many aspects of the physiology and metabolism of the host animal. A range of microbial structural components and metabolites directly interact with host intestinal cells and tissues to influence nutrient uptake and epithelial health. Endocrine, neuronal and lymphoid cells in the gut also integrate signals from these microbial factors to influence systemic responses. Dysregulation of these host-microbe interactions is now recognised as a major risk factor in the development of metabolic dysfunction. This is a two-way process and understanding the factors that tip host-microbiome homeostasis over to dysbiosis requires greater appreciation of the host feedbacks that contribute to regulation of microbial community composition. To date, numerous studies have employed taxonomic profiling approaches to explore the links between microbial composition and host outcomes (especially obesity and its comorbidities), but inconsistent host-microbe associations have been reported. Available data indicates multiple factors have contributed to discrepancies between studies. These include the high level of functional redundancy in host-microbiome interactions combined with individual variation in microbiome composition; differences in study design, diet composition and host system between studies; and inherent limitations to the resolution of rRNA-based community profiling. Accounting for these factors allows for recognition of the common microbial and host factors driving community composition and development of dysbiosis on high fat diets. New therapeutic intervention options are now emerging. PMID:25469018

  14. Macro and Microelements Drive Diversity and Composition of Prokaryotic and Fungal Communities in Hypersaline Sediments and Saline–Alkaline Soils

    PubMed Central

    Liu, Kaihui; Ding, Xiaowei; Tang, Xiaofei; Wang, Jianjun; Li, Wenjun; Yan, Qingyun; Liu, Zhenghua

    2018-01-01

    Understanding the effects of environmental factors on microbial communities is critical for microbial ecology, but it remains challenging. In this study, we examined the diversity (alpha diversity) and community compositions (beta diversity) of prokaryotes and fungi in hypersaline sediments and salinized soils from northern China. Environmental variables were highly correlated, but they differed significantly between the sediments and saline soils. The compositions of prokaryotic and fungal communities in the hypersaline sediments were different from those in adjacent saline–alkaline soils, indicating a habitat-specific microbial distribution pattern. The macroelements (S, P, K, Mg, and Fe) and Ca were, respectively, correlated closely with the alpha diversity of prokaryotes and fungi, while the macronutrients (e.g., Na, S, P, and Ca) were correlated with the prokaryotic and fungal beta-diversity (P ≤ 0.05). And, the nine microelements (e.g., Al, Ba, Co, Hg, and Mn) and micronutrients (Ba, Cd, and Sr) individually shaped the alpha diversity of prokaryotes and fungi, while the six microelements (e.g., As, Ba, Cr, and Ge) and only the trace elements (Cr and Cu), respectively, influenced the beta diversity of prokaryotes and fungi (P < 0.05). Variation-partitioning analysis (VPA) showed that environmental variables jointly explained 55.49% and 32.27% of the total variation for the prokaryotic and fungal communities, respectively. Together, our findings demonstrate that the diversity and community composition of the prokaryotes and fungi were driven by different macro and microelements in saline habitats, and that geochemical elements could more widely regulate the diversity and community composition of prokaryotes than these of fungi. PMID:29535703

  15. Intraspecies variation in a widely distributed tree species regulates the responses of soil microbiome to different temperature regimes.

    PubMed

    Zhang, Cui-Jing; Delgado-Baquerizo, Manuel; Drake, John E; Reich, Peter B; Tjoelker, Mark G; Tissue, David T; Wang, Jun-Tao; He, Ji-Zheng; Singh, Brajesh K

    2018-04-01

    Plant characteristics in different provenances within a single species may vary in response to climate change, which might alter soil microbial communities and ecosystem functions. We conducted a glasshouse experiment and grew seedlings of three provenances (temperate, subtropical and tropical origins) of a tree species (i.e., Eucalyptus tereticornis) at different growth temperatures (18, 21.5, 25, 28.5, 32 and 35.5°C) for 54 days. At the end of the experiment, bacterial and fungal community composition, diversity and abundance were characterized. Measured soil functions included surrogates of microbial respiration, enzyme activities and nutrient cycling. Using Permutation multivariate analysis of variance (PerMANOVA) and network analysis, we found that the identity of tree provenances regulated both structure and function of soil microbiomes. In some cases, tree provenances substantially affected the response of microbial communities to the temperature treatments. For example, we found significant interactions of temperature and tree provenance on bacterial community and relative abundances of Chloroflexi and Zygomycota, and inorganic nitrogen. Microbial abundance was altered in response to increasing temperature, but was not affected by tree provenances. Our study provides novel evidence that even a small variation in biotic components (i.e., intraspecies tree variation) can significantly influence the response of soil microbial community composition and specific soil functions to global warming. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Effect of copper treatment on the composition and function of the bacterial community in the sponge Haliclona cymaeformis.

    PubMed

    Tian, Ren-Mao; Wang, Yong; Bougouffa, Salim; Gao, Zhao-Ming; Cai, Lin; Zhang, Wei-Peng; Bajic, Vladimir; Qian, Pei-Yuan

    2014-11-04

    Marine sponges are the most primitive metazoan and host symbiotic microorganisms. They are crucial components of the marine ecological system and play an essential role in pelagic processes. Copper pollution is currently a widespread problem and poses a threat to marine organisms. Here, we examined the effects of copper treatment on the composition of the sponge-associated bacterial community and the genetic features that facilitate the survival of enriched bacteria under copper stress. The 16S rRNA gene sequencing results showed that the sponge Haliclona cymaeformis harbored symbiotic sulfur-oxidizing Ectothiorhodospiraceae and photosynthetic Cyanobacteria as dominant species. However, these autotrophic bacteria decreased substantially after treatment with a high copper concentration, which enriched for a heterotrophic-bacterium-dominated community. Metagenomic comparison revealed a varied profile of functional genes and enriched functions, including bacterial motility and chemotaxis, extracellular polysaccharide and capsule synthesis, virulence-associated genes, and genes involved in cell signaling and regulation, suggesting short-period mechanisms of the enriched bacterial community for surviving copper stress in the microenvironment of the sponge. Microscopic observation and comparison revealed dynamic bacterial aggregation within the matrix and lysis of sponge cells. The bacteriophage community was also enriched, and the complete genome of a dominant phage was determined, implying that a lytic phage cycle was stimulated by the high copper concentration. This study demonstrated a copper-induced shift in the composition of functional genes of the sponge-associated bacterial community, revealing the selective effect of copper treatment on the functions of the bacterial community in the microenvironment of the sponge. This study determined the bacterial community structure of the common sponge Haliclona cymaeformis and examined the effect of copper treatment on the community structure and functional gene composition, revealing that copper treatment had a selective effect on the functions of the bacterial community in the sponge. These findings suggest that copper pollution has an ecological impact on the sponge symbiont. The analysis showed that the untreated sponges hosted symbiotic autotrophic bacteria as dominant species, and the high-concentration copper treatment enriched for a heterotrophic bacterial community with enrichment for genes important for bacterial motility, supplementary cellular components, signaling and regulation, and virulence. Microscopic observation showed obvious bacterial aggregation and a reduction of sponge cell numbers in treated sponges, which suggested the formation of aggregates to reduce the copper concentration. The enrichment for functions of directional bacterial movement and supplementary cellular components and the formation of bacterial aggregates and phage enrichment are novel findings in sponge studies. Copyright © 2014 Tian et al.

  17. Small-scale spatial variability of soil microbial community composition and functional diversity in a mixed forest

    NASA Astrophysics Data System (ADS)

    Wang, Qiufeng; Tian, Jing; Yu, Guirui

    2014-05-01

    Patterns in the spatial distribution of organisms provide important information about mechanisms that regulate the diversity and complexity of soil ecosystems. Therefore, information on spatial distribution of microbial community composition and functional diversity is urgently necessary. The spatial variability on a 26×36 m plot and vertical distribution (0-10 cm and 10-20 cm) of soil microbial community composition and functional diversity were studied in a natural broad-leaved Korean pine (Pinus koraiensis) mixed forest soil in Changbai Mountain. The phospholipid fatty acid (PLFA) pattern was used to characterize the soil microbial community composition and was compared with the community substrate utilization pattern using Biolog. Bacterial biomass dominated and showed higher variability than fungal biomass at all scales examined. The microbial biomass decreased with soil depths increased and showed less variability in lower 10-20 cm soil layer. The Shannon-Weaver index value for microbial functional diversity showed higher variability in upper 0-10 cm than lower 10-20 cm soil layer. Carbohydrates, carboxylic acids, polymers and amino acids are the main carbon sources possessing higher utilization efficiency or utilization intensity. At the same time, the four carbon source types contributed to the differentiation of soil microbial communities. This study suggests the higher diversity and complexity for this mix forest ecosystem. To determine the driving factors that affect this spatial variability of microorganism is the next step for our study.

  18. Effects of Dietary Yogurt on the Healthy Human Gastrointestinal (GI) Microbiome

    PubMed Central

    Lisko, Daniel J.; Johnston, G. Patricia; Johnston, Carl G.

    2017-01-01

    The gastrointestinal (GI) tract performs key functions that regulate the relationship between the host and the microbiota. Research has shown numerous benefits of probiotic intake in the modulation of immune responses and human metabolic processes. However, unfavorable attention has been paid to temporal changes of the microbial composition and diversity of the GI tract. This study aimed to investigate the effects of yogurt consumption on the GI microbiome bacteria community composition, structure and diversity during and after a short-term period (42 days). We used a multi-approach combining classical fingerprinting techniques (T-RFLPs), Sanger analyses and Illumina MiSeq 16S rRNA gene amplicon sequencing to elucidate bacterial communities and Lactobacilli and Bifidobacteria populations within healthy adults that consume high doses of yogurt daily. Results indicated that overall GI microbial community and diversity was method-dependent, yet we found individual specific changes in bacterial composition and structure in healthy subjects that consumed high doses of yogurt throughout the study. PMID:28212267

  19. Predicting effects of climate change on the composition and function of soil microbial communities

    NASA Astrophysics Data System (ADS)

    Dubinsky, E.; Brodie, E.; Myint, C.; Ackerly, D.; van Nostrand, J.; Bird, J.; Zhou, J.; Andersen, G.; Firestone, M.

    2008-12-01

    Complex soil microbial communities regulate critical ecosystem processes that will be altered by climate change. A critical step towards predicting the impacts of climate change on terrestrial ecosystems is to determine the primary controllers of soil microbial community composition and function, and subsequently evaluate climate change scenarios that alter these controllers. We surveyed complex soil bacterial and archaeal communities across a range of climatic and edaphic conditions to identify critical controllers of soil microbial community composition in the field and then tested the resulting predictions using a 2-year manipulation of precipitation and temperature using mesocosms of California annual grasslands. Community DNA extracted from field soils sampled from six different ecosystems was assayed for bacterial and archaeal communities using high-density phylogenetic microarrays as well as functional gene arrays. Correlations among the relative abundances of thousands of microbial taxa and edaphic factors such as soil moisture and nutrient content provided a basis for predicting community responses to changing soil conditions. Communities of soil bacteria and archaea were strongly structured by single environmental predictors, particularly variables related to soil water. Bacteria in the Actinomycetales and Bacilli consistently demonstrated a strong negative response to increasing soil moisture, while taxa in a greater variety of lineages responded positively to increasing soil moisture. In the climate change experiment, overall bacterial community structure was impacted significantly by total precipitation but not by plant species. Changes in soil moisture due to decreased rainfall resulted in significant and predictable alterations in community structure. Over 70% of the bacterial taxa in common with the cross-ecosystem study responded as predicted to altered precipitation, with the most conserved response from Actinobacteria. The functional consequences of these predictable changes in community composition were measured with functional arrays that detect genes involved in the metabolism of carbon, nitrogen and other elements. The response of soil microbial communities to altered precipitation can be predicted from the distribution of microbial taxa across moisture gradients.

  20. Mapping the microbiome of Ictalurid catfish: tissue and species-specific community composition

    USDA-ARS?s Scientific Manuscript database

    Host mucosal immunity is regulated by the complex interplay between environmental factors, host genetics, and commensal and pathogen dynamics. Microbial imbalances due to physiological stressors, changes in nutrition, and/or antibiotic application can potentiate over-exuberant host immune responses ...

  1. Fish-mediated changes in bacterioplankton community composition: an in situ mesocosm experiment

    NASA Astrophysics Data System (ADS)

    Luo, Congqiang; Yi, Chunlong; Ni, Leyi; Guo, Longgen

    2017-06-01

    We characterized variations in bacterioplankton community composition (BCC) in mesocosms subject to three different treatments. Two groups contained fish (group one: Cyprinus carpio; group two: Hypophthalmichthys molitrix); and group three, the untreated mesocosm, was the control. Samples were taken seven times over a 49-day period, and BCC was analyzed by PCR-denaturing gradient gel electrophoresis (DGGE) and real-time quantitative PCR (qPCR). Results revealed that introduction of C. carpio and H. molitrix had a remarkable impact on the composition of bacterioplankton communities, and the BCC was significantly different between each treatment. Sequencing of DGGE bands revealed that the bacterioplankton community in the different treatment groups was consistent at a taxonomic level, but differed in its abundance. H. molitrix promoted the richness of Alphaproteobacteria and Actinobacteria, while more bands affiliated to Cyanobacteria were detected inC. carpio mesocosms. The redundancy analysis (RDA) result demonstrated that the BCC was closely related to the bottom-up (total phosphorus, chlorophyll a, phytoplankton biomass) and top-down forces (biomass of copepods and cladocera) in C. carpio and control mesocosms, respectively. We found no evidence for top-down regulation of BCC by zooplankton in H. molitrix mesocosms, while grazing by protozoa (heterotrophic nanoflagellates, ciliates) became the major way to regulate BCC. Total bacterioplankton abundances were significantly higher in C. carpio mesocosms because of high nutrient concentration and suspended solids. Our study provided insights into the relationship between fish and bacterioplankton at species level, leading to a deep understanding of the function of the microbial loop and the aquatic ecosystem.

  2. Fish-mediated changes in bacterioplankton community composition: an in situ mesocosm experiment

    NASA Astrophysics Data System (ADS)

    Luo, Congqiang; Yi, Chunlong; Ni, Leyi; Guo, Longgen

    2018-03-01

    We characterized variations in bacterioplankton community composition (BCC) in mesocosms subject to three different treatments. Two groups contained fish (group one: Cyprinus carpio; group two: Hypophthalmichthys molitrix); and group three, the untreated mesocosm, was the control. Samples were taken seven times over a 49-d period, and BCC was analyzed by PCR-denaturing gradient gel electrophoresis (DGGE) and real-time quantitative PCR (qPCR). Results revealed that introduction of C. carpio and H. molitrix had a remarkable impact on the composition of bacterioplankton communities, and the BCC was significantly different between each treatment. Sequencing of DGGE bands revealed that the bacterioplankton community in the different treatment groups was consistent at a taxonomic level, but differed in its abundance. H. molitrix promoted the richness of Alphaproteobacteria and Actinobacteria, while more bands affiliated to Cyanobacteria were detected in C. carpio mesocosms. The redundancy analysis (RDA) result demonstrated that the BCC was closely related to the bottom-up (total phosphorus, chlorophyll a, phytoplankton biomass) and top-down forces (biomass of copepods and cladocera) in C. carpio and control mesocosms, respectively. We found no evidence for top-down regulation of BCC by zooplankton in H. molitrix mesocosms, while grazing by protozoa (heterotrophic nanoflagellates, ciliates) became the major way to regulate BCC. Total bacterioplankton abundances were significantly higher in C. carpio mesocosms because of high nutrient concentration and suspended solids. Our study provided insights into the relationship between fish and bacterioplankton at species level, leading to a deep understanding of the function of the microbial loop and the aquatic ecosystem.

  3. Impacts of Fertilization Regimes on Arbuscular Mycorrhizal Fungal (AMF) Community Composition Were Correlated with Organic Matter Composition in Maize Rhizosphere Soil

    PubMed Central

    Zhu, Chen; Ling, Ning; Guo, Junjie; Wang, Min; Guo, Shiwei; Shen, Qirong

    2016-01-01

    The understanding of the response of arbuscular mycorrhizal fungi (AMF) community composition to fertilization is of great significance in sustainable agriculture. However, how fertilization influences AMF diversity and composition is not well-established yet. A field experiment located in northeast China in typical black soil (Chernozem) was conducted and high-throughput sequencing approach was used to investigate the effects of different fertilizations on the variation of AMF community in the rhizosphere soil of maize crop. The results showed that AMF diversity in the maize rhizosphere was significantly altered by different fertilization regimes. As revealed by redundancy analysis, the application of organic manure was the most important factor impacting AMF community composition between samples with and without organic manure, followed by N fertilizer and P fertilizer inputs. Moreover, the organic matter composition in the rhizosphere, determined by GC–MS, was significantly altered by the organic manure amendment. Many of the chemical components displayed significant relationships with the AMF community composition according to the Mantel test, among those, 2-ethylnaphthalene explained the highest percentage (54.2%) of the variation. The relative contents of 2-ethylnaphthalene and 2, 6, 10-trimethyltetradecane had a negative correlation with Glomus relative abundance, while the relative content of 3-methylbiphenyl displayed a positive correlation with Rhizophagus. The co-occurrence patterns in treatments with and without organic manure amendment were analyzed, and more hubs were detected in the network of soils with organic manure amendment. Additionally, three operational taxonomic units (OTUs) belonging to Glomerales were identified as hubs in all treatments, indicating these OTUs likely occupied broad ecological niches and were always active for mediating AMF species interaction in the maize rhizosphere. Taken together, impacts of fertilization regimes on AMF community composition were correlated with organic matter composition in maize rhizosphere soil and the application of manure could activate more AMF species to interact with other species in the maize rhizosphere. This knowledge can be valuable in regulating the symbiotic system of plants and AMF, maintaining the health and high yields of crops and providing a primary basis for rational fertilization. PMID:27899920

  4. Arbuscular mycorrhizal fungal communities along a pedo-hydrological gradient in a Central Amazonian terra firme forest.

    PubMed

    de Oliveira Freitas, Rejane; Buscardo, Erika; Nagy, Laszlo; dos Santos Maciel, Alex Bruno; Carrenho, Rosilaine; Luizão, Regina C C

    2014-01-01

    Little attention has been paid to plant mutualistic interactions in the Amazon rainforest, and the general pattern of occurrence and diversity of arbuscular mycorrhizal fungi (AMF) in these ecosystems is largely unknown. This study investigated AMF communities through their spores in soil in a 'terra firme forest' in Central Amazonia. The contribution played by abiotic factors and plant host species identity in regulating the composition, abundance and diversity of such communities along a topographic gradient with different soils and hydrology was also evaluated. Forty-one spore morphotypes were observed with species belonging to the genera Glomus and Acaulospora, representing 44 % of the total taxa. Soil texture and moisture, together with host identity, were predominant factors responsible for shaping AMF communities along the pedo-hydrological gradient. However, the variability within AMF communities was largely associated with shifts in the relative abundance of spores rather than changes in species composition, confirming that common AMF species are widely distributed in plant communities and all plants recruited into the forest are likely to be exposed to the dominant sporulating AMF species.

  5. Responses of Plant Community Composition and Biomass Production to Warming and Nitrogen Deposition in a Temperate Meadow Ecosystem

    PubMed Central

    Gao, Song; Guo, Jixun; Sun, Wei

    2015-01-01

    Climate change has profound influences on plant community composition and ecosystem functions. However, its effects on plant community composition and biomass production are not well understood. A four-year field experiment was conducted to examine the effects of warming, nitrogen (N) addition, and their interactions on plant community composition and biomass production in a temperate meadow ecosystem in northeast China. Experimental warming had no significant effect on plant species richness, evenness, and diversity, while N addition highly reduced the species richness and diversity. Warming tended to reduce the importance value of graminoid species but increased the value of forbs, while N addition had the opposite effect. Warming tended to increase the belowground biomass, but had an opposite tendency to decrease the aboveground biomass. The influences of warming on aboveground production were dependent upon precipitation. Experimental warming had little effect on aboveground biomass in the years with higher precipitation, but significantly suppressed aboveground biomass in dry years. Our results suggest that warming had indirect effects on plant production via its effect on the water availability. Nitrogen addition significantly increased above- and below-ground production, suggesting that N is one of the most important limiting factors determining plant productivity in the studied meadow steppe. Significant interactive effects of warming plus N addition on belowground biomass were also detected. Our observations revealed that environmental changes (warming and N deposition) play significant roles in regulating plant community composition and biomass production in temperate meadow steppe ecosystem in northeast China. PMID:25874975

  6. Plant attributes explain the distribution of soil microbial communities in two contrasting regions of the globe.

    PubMed

    Delgado-Baquerizo, Manuel; Fry, Ellen L; Eldridge, David J; de Vries, Franciska T; Manning, Peter; Hamonts, Kelly; Kattge, Jens; Boenisch, Gerhard; Singh, Brajesh K; Bardgett, Richard D

    2018-04-19

    We lack strong empirical evidence for links between plant attributes (plant community attributes and functional traits) and the distribution of soil microbial communities at large spatial scales. Using datasets from two contrasting regions and ecosystem types in Australia and England, we report that aboveground plant community attributes, such as diversity (species richness) and cover, and functional traits can predict a unique portion of the variation in the diversity (number of phylotypes) and community composition of soil bacteria and fungi that cannot be explained by soil abiotic properties and climate. We further identify the relative importance and evaluate the potential direct and indirect effects of climate, soil properties and plant attributes in regulating the diversity and community composition of soil microbial communities. Finally, we deliver a list of examples of common taxa from Australia and England that are strongly related to specific plant traits, such as specific leaf area index, leaf nitrogen and nitrogen fixation. Together, our work provides new evidence that plant attributes, especially plant functional traits, can predict the distribution of soil microbial communities at the regional scale and across two hemispheres. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  7. An optimized regulating method for composting phosphorus fractions transformation based on biochar addition and phosphate-solubilizing bacteria inoculation.

    PubMed

    Wei, Yuquan; Zhao, Yue; Wang, Huan; Lu, Qian; Cao, Zhenyu; Cui, Hongyang; Zhu, Longji; Wei, Zimin

    2016-12-01

    The study was conducted to investigate the influence of biochar and/or phosphate-solubilizing bacteria (PSB) inoculants on microbial biomass, bacterial community composition and phosphorus (P) fractions during kitchen waste composting amended with rock phosphate (RP). There were distinct differences in the physic-chemical parameters, the proportion of P fractions and bacterial diversity in different treatments. The contribution of available P fractions increased during composting especially in the treatment with the addition of PSB and biochar. Redundancy analysis showed that bacterial compositions were significantly influenced by P content, inoculation and biochar. Variance partitioning further showed that synergy of inoculated PSB and indigenous bacterial communities and the joint effect between biochar and bacteria explained the largest two proportion of the variation in P fractions. Therefore, the combined application of PSB and biochar to improve the inoculation effect and an optimized regulating method were suggested based on the distribution of P fractions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Culturable heterotrophic bacteria from the marine sponge Dendrilla nigra: isolation and phylogenetic diversity of actinobacteria

    NASA Astrophysics Data System (ADS)

    Selvin, Joseph; Gandhimathi, R.; Kiran, G. Seghal; Priya, S. Shanmugha; Ravji, T. Rajeetha; Hema, T. A.

    2009-09-01

    Culturable heterotrophic bacterial composition of marine sponge Dendrilla nigra was analysed using different enrichments. Five media compositions including without enrichment (control), enriched with sponge extract, with growth regulator (antibiotics), with autoinducers, and complete enrichment containing sponge extract, antibiotics, and autoinducers were developed. DNA hybridization assay was performed to explore host specific bacteria and ecotypes of culturable sponge-associated bacteria. Enrichment with selective inducers (AHLs and sponge extract) and regulators (antibiotics) considerably enhanced the cultivation potential of sponge-associated bacteria. It was found that Marinobacter (MSI032), Micromonospora (MSI033), Streptomyces (MSI051), and Pseudomonas (MSI057) were sponge-associated obligate symbionts. The present findings envisaged that “ Micromonospora-Saccharomonospora-Streptomyces” group was the major culturable actinobacteria in the marine sponge D. nigra. The DNA hybridization assay was a reliable method for the analysis of culturable bacterial community in marine sponges. Based on the culturable community structure, the sponge-associated bacteria can be grouped (ecotypes) as general symbionts, specific symbionts, habitat flora, and antagonists.

  9. Stress during pregnancy alters temporal and spatial dynamics of the maternal and offspring microbiome in a sex-specific manner

    PubMed Central

    Jašarević, Eldin; Howard, Christopher D.; Misic, Ana M.; Beiting, Daniel P.; Bale, Tracy L.

    2017-01-01

    The microbiome is a regulator of host immunity, metabolism, neurodevelopment, and behavior. During early life, bacterial communities within maternal gut and vaginal compartments can have an impact on directing these processes. Maternal stress experience during pregnancy may impact offspring development by altering the temporal and spatial dynamics of the maternal microbiome during pregnancy. To examine the hypothesis that maternal stress disrupts gut and vaginal microbial dynamics during critical prenatal and postnatal windows, we used high-resolution 16S rRNA marker gene sequencing to examine outcomes in our mouse model of early prenatal stress. Consistent with predictions, maternal fecal communities shift across pregnancy, a process that is disrupted by stress. Vaginal bacterial community structure and composition exhibit lasting disruption following stress exposure. Comparison of maternal and offspring microbiota revealed that similarities in bacterial community composition was predicted by a complex interaction between maternal body niche and offspring age and sex. Importantly, early prenatal stress influenced offspring bacterial community assembly in a temporal and sex-specific manner. Taken together, our results demonstrate that early prenatal stress may influence offspring development through converging modifications to gut microbial composition during pregnancy and transmission of dysbiotic vaginal microbiome at birth. PMID:28266645

  10. Allochthonous carbon is a major regulator to bacterial growth and community composition in subarctic freshwaters

    PubMed Central

    Roiha, Toni; Peura, Sari; Cusson, Mathieu; Rautio, Milla

    2016-01-01

    In the subarctic region, climate warming and permafrost thaw are leading to emergence of ponds and to an increase in mobility of catchment carbon. As carbon of terrestrial origin is increasing in subarctic freshwaters the resource pool supporting their microbial communities and metabolism is changing, with consequences to overall aquatic productivity. By sampling different subarctic water bodies for a one complete year we show how terrestrial and algal carbon compounds vary in a range of freshwaters and how differential organic carbon quality is linked to bacterial metabolism and community composition. We show that terrestrial drainage and associated nutrients supported higher bacterial growth in ponds and river mouths that were influenced by fresh terrestrial carbon than in large lakes with carbon from algal production. Bacterial diversity, however, was lower at sites influenced by terrestrial carbon inputs. Bacterial community composition was highly variable among different water bodies and especially influenced by concentrations of dissolved organic carbon (DOC), fulvic acids, proteins and nutrients. Furthermore, a distinct preference was found for terrestrial vs. algal carbon among certain bacterial tribes. The results highlight the contribution of the numerous ponds to cycling of terrestrial carbon in the changing subarctic and arctic regions. PMID:27686416

  11. Allochthonous carbon is a major regulator to bacterial growth and community composition in subarctic freshwaters.

    PubMed

    Roiha, Toni; Peura, Sari; Cusson, Mathieu; Rautio, Milla

    2016-09-30

    In the subarctic region, climate warming and permafrost thaw are leading to emergence of ponds and to an increase in mobility of catchment carbon. As carbon of terrestrial origin is increasing in subarctic freshwaters the resource pool supporting their microbial communities and metabolism is changing, with consequences to overall aquatic productivity. By sampling different subarctic water bodies for a one complete year we show how terrestrial and algal carbon compounds vary in a range of freshwaters and how differential organic carbon quality is linked to bacterial metabolism and community composition. We show that terrestrial drainage and associated nutrients supported higher bacterial growth in ponds and river mouths that were influenced by fresh terrestrial carbon than in large lakes with carbon from algal production. Bacterial diversity, however, was lower at sites influenced by terrestrial carbon inputs. Bacterial community composition was highly variable among different water bodies and especially influenced by concentrations of dissolved organic carbon (DOC), fulvic acids, proteins and nutrients. Furthermore, a distinct preference was found for terrestrial vs. algal carbon among certain bacterial tribes. The results highlight the contribution of the numerous ponds to cycling of terrestrial carbon in the changing subarctic and arctic regions.

  12. Biocrusts in the context of global change

    USGS Publications Warehouse

    Reed, Sasha C.; Maestre, Fernando T.; Ochoa-Hueso, Raul; Kuske, Cheryl; Darrouzet-Nardi, Anthony N.; Darby, Brian; Sinsabaugh, Bob; Oliver, Mel; Sancho, Leo; Belnap, Jayne

    2016-01-01

    A wide range of studies show global environmental change will profoundly affect the structure, function, and dynamics of terrestrial ecosystems. The research synthesized here underscores that biocrust communities are also likely to respond significantly to global change drivers, with a large potential for modification to their abundance, composition, and function. We examine how elevated atmospheric CO2 concentrations, climate change (increased temperature and altered precipitation), and nitrogen deposition affect biocrusts and the ecosystems they inhabit. We integrate experimental and observational data, as well as physiological, community ecology, and biogeochemical perspectives. Taken together, these data highlight the potential for biocrust organisms to respond dramatically to environmental change and show how changes to biocrust community composition translate into effects on ecosystem function (e.g., carbon and nutrient cycling, soil stability, energy balance). Due to the importance of biocrusts in regulating dryland ecosystem processes and the potential for large modifications to biocrust communities, an improved understanding and predictive capacity regarding biocrust responses to environmental change are of scientific and societal relevance.

  13. Salt marsh sediment bacteria: their distribution and response to external nutrient inputs.

    PubMed

    Bowen, Jennifer L; Crump, Byron C; Deegan, Linda A; Hobbie, John E

    2009-08-01

    A primary focus among microbial ecologists in recent years has been to understand controls on the distribution of microorganisms in various habitats. Much less attention has been paid to the way that environmental disturbance interacts with processes that regulate bacterial community composition. We determined how human disturbance affected the distribution and community structure of salt marsh sediment bacteria by using denaturing gradient gel electrophoresis of 16S rRNA in five different habitats in each of four salt marshes located in northeastern Massachusetts, USA. Two of the four marsh creeks were experimentally enriched 15 x above background by the addition of nitrogen and phosphorus fertilizers for two or more growing seasons. Our results indicate that extrinsic factors acting at broad scales do not influence the distribution of salt marsh sediment bacteria. Intrinsic factors, controlled by local-scale environmental heterogeneity, do play a role in structuring these sediment microbial communities, although nutrient enrichment did not have a consequential effect on the microbial community in most marsh habitats. Only in one habitat, a region of the marsh creek wall that is heavily colonized by filamentous algae, did we see any effect of fertilization on the microbial community structure. When similar habitats were compared among marshes, there was considerable convergence in the microbial community composition during the growing season. Environmental factors that correlated best with microbial community composition varied with habitat, suggesting that habitat-specific intrinsic forces are primarily responsible for maintaining microbial diversity in salt marsh sediments.

  14. Literacy and Community Pariticpation. Prepublication Draft.

    ERIC Educational Resources Information Center

    Peschke, Edith

    Literacy experts in composition have examined the exclusionary forces of academic discourse, and have identified various forms of classroom power that result from the system of academic literacy. Little is understood about the power relations that function to relate and regulate the classroom. Largely a humanistic notion, literacy has been defined…

  15. Direct and indirect influences of 8 yr of nitrogen and phosphorus fertilization on Glomeromycota in an alpine meadow ecosystem.

    PubMed

    Liu, Yongjun; Shi, Guoxi; Mao, Lin; Cheng, Gang; Jiang, Shengjing; Ma, Xiaojun; An, Lizhe; Du, Guozhen; Collins Johnson, Nancy; Feng, Huyuan

    2012-04-01

    We measured the influences of soil fertility and plant community composition on Glomeromycota, and tested the prediction of the functional equilibrium hypothesis that increased availability of soil resources will reduce the abundance of arbuscular mycorrhizal (AM) fungi. Communities of plants and AM fungi were measured in mixed roots and in Elymus nutans roots across an experimental fertilization gradient in an alpine meadow on the Tibetan Plateau. As predicted, fertilization reduced the abundance of Glomeromycota as well as the species richness of plants and AM fungi. The response of the glomeromycotan community was strongly linked to the plant community shift towards dominance by Elymus nutans. A reduction in the extraradical hyphae of AM fungi was associated with both the changes in soil factors and shifts in the plant community composition that were caused by fertilization. Our findings highlight the importance of soil fertility in regulating both plant and glomeromycotan communities, and emphasize that high fertilizer inputs can reduce the biodiversity of plants and AM fungi, and influence the sustainability of ecosystems. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  16. Estimates of Phytoplankton Community Composition in the Productive Coastal Waters of Antarctica and Potential Impacts on Carbon Cycling

    NASA Astrophysics Data System (ADS)

    Randolph, K. L.; Dierssen, H. M.; Schofield, O.; Munro, D. R.

    2016-12-01

    As a region of exchange between the major ocean basins and between the surface and deep oceans, the Southern Ocean regulates the global transport of heat, carbon, and macronutrients and thus has a profound influence on global climate. Primary production plays a fundamental role in controlling the partial pressure of carbon dioxide in the surface ocean and thus the exchange of carbon dioxide between ocean and atmosphere. Here, we evaluated the relationship between phytoplankton community composition and the optical and biogeochemical properties of the water column in the Drake Passage and along the Western Antarctic Peninsula. Profile measurements of inherent optical properties (i.e., spectral absorption, scattering and backscattering), HPLC pigments, and hyperspectral remote sensing reflectance were collected from the ARSV Gould in January 2016 near the Western Antarctic Peninsula and in the Drake Passage as a part of the Oxygen/nitrogen Ratio and Carbon dioxide Airborne Southern Ocean (ORCAS) experiment and the Palmer Long Term Ecological Research Project. Measured inherent optical properties were used to investigate phytoplankton abundance, distribution and community composition. These data were also used to assess the accuracy of algorithms to retrieve chlorophyll, absorption, and backscattering and to evaluate how carbonate chemistry can be influenced by the phytoplankton composition in this dynamic region.

  17. The role of the commensal microbiota in adaptive and maladaptive stressor-induced immunomodulation

    PubMed Central

    Mackos, Amy R.; Maltz, Ross; Bailey, Michael T.

    2016-01-01

    Over the past decade, it has become increasingly evident that there are extensive bidirectional interactions between the body and its microbiota. These interactions are evident during stressful periods, where it is recognized that commensal microbiota community structure is significantly changed. Many different stressors, ranging from early life stressors to stressors administered during adulthood, lead to significant, community-wide differences in the microbiota. The mechanisms through which this occurs are not yet known, but it is known that commensal microbes can recognize, and respond to, mammalian hormones and neurotransmitters, including those that are involved with the physiological response to stressful stimuli. In addition, the physiological stress response also changes many aspects of gastrointestinal physiology that can impact microbial community composition. Thus, there are many routes through which microbial community composition might be disrupted during stressful periods. The implications of these disruptions in commensal microbial communities for host health are still not well understood, but the commensal microbiota have been linked to stressor-induced immunopotentiation. The role of the microbiota in stressor-induced immunopotentiation can be adaptive, such as when these microbes stimulate innate defenses against bacterial infection. However, the commensal microbiota can also lead to maladaptive immune responses during stressor-exposure. This is evident in animal models of colonic inflammation where stressor exposure increases the inflammation through mechanisms involving the microbiota. It is likely that during stressor exposure, immune cell functioning is regulated by combined effects of both neurotransmitters/hormones and commensal microbes. Defining this regulation should be a focus of future studies. PMID:27760302

  18. The role of the commensal microbiota in adaptive and maladaptive stressor-induced immunomodulation.

    PubMed

    Mackos, Amy R; Maltz, Ross; Bailey, Michael T

    2017-02-01

    Over the past decade, it has become increasingly evident that there are extensive bidirectional interactions between the body and its microbiota. These interactions are evident during stressful periods, where it is recognized that commensal microbiota community structure is significantly changed. Many different stressors, ranging from early life stressors to stressors administered during adulthood, lead to significant, community-wide differences in the microbiota. The mechanisms through which this occurs are not yet known, but it is known that commensal microbes can recognize, and respond to, mammalian hormones and neurotransmitters, including those that are involved with the physiological response to stressful stimuli. In addition, the physiological stress response also changes many aspects of gastrointestinal physiology that can impact microbial community composition. Thus, there are many routes through which microbial community composition might be disrupted during stressful periods. The implications of these disruptions in commensal microbial communities for host health are still not well understood, but the commensal microbiota have been linked to stressor-induced immunopotentiation. The role of the microbiota in stressor-induced immunopotentiation can be adaptive, such as when these microbes stimulate innate defenses against bacterial infection. However, the commensal microbiota can also lead to maladaptive immune responses during stressor-exposure. This is evident in animal models of colonic inflammation where stressor exposure increases the inflammation through mechanisms involving the microbiota. It is likely that during stressor exposure, immune cell functioning is regulated by combined effects of both neurotransmitters/hormones and commensal microbes. Defining this regulation should be a focus of future studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Nearly a decade-long repeatable seasonal diversity patterns of bacterioplankton communities in the eutrophic Lake Donghu (Wuhan, China)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Qingyun; Stegen, James C.; Yu, Yuhe

    Uncovering which environmental factors have the greatest influence on community diversity patterns and how ecological processes govern community turnover are key questions related to understanding community assembly mechanisms. Although we have good understanding of plant and animal community assembly, the mechanisms regulating diversity patterns of aquatic bacterial communities in lake ecosystems remains poorly understood. Here we present nearly a decade-long time-series study of bacterioplankton communities from the eutrophic Lake Donghu (Wuhan, China) using 16S rRNA gene amplicon sequencing. We found strong repeatable seasonal patterns for the overall community, common (detected in more than 50% samples) and dominant bacterial taxa (relativemore » abundance > 1%). Moreover, community composition tracked the seasonal temperature gradient, indicating that temperature is an important environmental factor controlling observed diversity patterns. Total phosphorus also contributed significantly to the seasonal shifts in bacterioplankton composition. However, any spatial pattern across the main lake areas was overwhelmed by temporal variability in this eutrophic lake system. Phylogenetic analysis further indicated that 75%-82% of community turnover was governed by homogeneous selection, suggesting that the bacterioplankton communities are mainly controlled by niche-based processes. However, dominant niches available within seasons might be occupied by similar combinations of bacterial taxa with modest dispersal rates throughout this lake system. This study gives us important insights into community assembly and seasonal turnover of lake bacterioplankton, it may be also useful to predict temporal patterns of other planktonic communities.« less

  20. Effect of Copper Treatment on the Composition and Function of the Bacterial Community in the Sponge Haliclona cymaeformis

    PubMed Central

    Tian, Ren-Mao; Wang, Yong; Bougouffa, Salim; Gao, Zhao-Ming; Cai, Lin; Zhang, Wei-Peng; Bajic, Vladimir

    2014-01-01

    ABSTRACT Marine sponges are the most primitive metazoan and host symbiotic microorganisms. They are crucial components of the marine ecological system and play an essential role in pelagic processes. Copper pollution is currently a widespread problem and poses a threat to marine organisms. Here, we examined the effects of copper treatment on the composition of the sponge-associated bacterial community and the genetic features that facilitate the survival of enriched bacteria under copper stress. The 16S rRNA gene sequencing results showed that the sponge Haliclona cymaeformis harbored symbiotic sulfur-oxidizing Ectothiorhodospiraceae and photosynthetic Cyanobacteria as dominant species. However, these autotrophic bacteria decreased substantially after treatment with a high copper concentration, which enriched for a heterotrophic-bacterium-dominated community. Metagenomic comparison revealed a varied profile of functional genes and enriched functions, including bacterial motility and chemotaxis, extracellular polysaccharide and capsule synthesis, virulence-associated genes, and genes involved in cell signaling and regulation, suggesting short-period mechanisms of the enriched bacterial community for surviving copper stress in the microenvironment of the sponge. Microscopic observation and comparison revealed dynamic bacterial aggregation within the matrix and lysis of sponge cells. The bacteriophage community was also enriched, and the complete genome of a dominant phage was determined, implying that a lytic phage cycle was stimulated by the high copper concentration. This study demonstrated a copper-induced shift in the composition of functional genes of the sponge-associated bacterial community, revealing the selective effect of copper treatment on the functions of the bacterial community in the microenvironment of the sponge. PMID:25370493

  1. Dietary Carotenoid Supplementation Enhances the Cutaneous Bacterial Communities of the Critically Endangered Southern Corroboree Frog (Pseudophryne corroboree).

    PubMed

    Edwards, Casey L; Byrne, Phillip G; Harlow, Peter; Silla, Aimee J

    2017-02-01

    The rapid spread of infectious disease has resulted in the decline of animal populations globally. Amphibians support a diversity of microbial symbionts on their skin surface that help to inhibit pathogen colonisation and reduce disease susceptibility and virulence. These cutaneous microbial communities represent an important component of amphibian immune defence, however, very little is known about the environmental factors that influence the cutaneous microbiome. Here, we characterise the cutaneous bacterial communities of a captive colony of the critically endangered Australian southern corroboree frog, Pseudophyrne corroboree, and examine the effect of dietary carotenoid supplementation on bacterial abundance, species richness and community composition. Individuals receiving a carotenoid-supplemented diet exhibited significantly higher bacterial abundance and species richness as well as an altered bacterial community composition compared to individuals that did not receive dietary carotenoids. Our findings suggest that dietary carotenoid supplementation enhances the cutaneous bacteria community of the southern corroboree frog and regulates the presence of bacteria species within the cutaneous microbiome. Our study is the second to demonstrate that carotenoid supplementation can improve amphibian cutaneous bacterial community dynamics, drawing attention to the possibility that dietary manipulation may assist with the ex situ management of endangered species and improve resilience to lethal pathogens such as Batrachochytrium dendrobatidis (Bd).

  2. Community Characteristics and Leaf Stoichiometric Traits of Desert Ecosystems Regulated by Precipitation and Soil in an Arid Area of China.

    PubMed

    Zhang, Xiaolong; Guan, Tianyu; Zhou, Jihua; Cai, Wentao; Gao, Nannan; Du, Hui; Jiang, Lianhe; Lai, Liming; Zheng, Yuanrun

    2018-01-10

    Precipitation is a key environmental factor determining plant community structure and function. Knowledge of how community characteristics and leaf stoichiometric traits respond to variation in precipitation is crucial for assessing the effects of global changes on terrestrial ecosystems. In this study, we measured community characteristics, leaf stoichiometric traits, and soil properties along a precipitation gradient (35-209 mm) in a desert ecosystem of Northwest China to explore the drivers of these factors. With increasing precipitation, species richness, aboveground biomass, community coverage, foliage projective cover (FPC), and leaf area index (LAI) all significantly increased, while community height decreased. The hyperarid desert plants were characterized by lower leaf carbon (C) and nitrogen/phosphorus (N/P) levels, and stable N and P, and these parameters did not change significantly with precipitation. The growth of desert plants was limited more by N than P. Soil properties, rather than precipitation, were the main drivers of desert plant leaf stoichiometric traits, whereas precipitation made the biggest contribution to vegetation structure and function. These results test the importance of precipitation in regulating plant community structure and composition together with soil properties, and provide further insights into the adaptive strategy of communities at regional scale in response to global climate change.

  3. Community Characteristics and Leaf Stoichiometric Traits of Desert Ecosystems Regulated by Precipitation and Soil in an Arid Area of China

    PubMed Central

    Guan, Tianyu; Zhou, Jihua; Cai, Wentao; Gao, Nannan; Du, Hui; Jiang, Lianhe; Lai, Liming; Zheng, Yuanrun

    2018-01-01

    Precipitation is a key environmental factor determining plant community structure and function. Knowledge of how community characteristics and leaf stoichiometric traits respond to variation in precipitation is crucial for assessing the effects of global changes on terrestrial ecosystems. In this study, we measured community characteristics, leaf stoichiometric traits, and soil properties along a precipitation gradient (35–209 mm) in a desert ecosystem of Northwest China to explore the drivers of these factors. With increasing precipitation, species richness, aboveground biomass, community coverage, foliage projective cover (FPC), and leaf area index (LAI) all significantly increased, while community height decreased. The hyperarid desert plants were characterized by lower leaf carbon (C) and nitrogen/phosphorus (N/P) levels, and stable N and P, and these parameters did not change significantly with precipitation. The growth of desert plants was limited more by N than P. Soil properties, rather than precipitation, were the main drivers of desert plant leaf stoichiometric traits, whereas precipitation made the biggest contribution to vegetation structure and function. These results test the importance of precipitation in regulating plant community structure and composition together with soil properties, and provide further insights into the adaptive strategy of communities at regional scale in response to global climate change. PMID:29320458

  4. The role of plant mycorrhizal type and status in modulating the relationship between plant and arbuscular mycorrhizal fungal communities.

    PubMed

    Neuenkamp, Lena; Moora, Mari; Öpik, Maarja; Davison, John; Gerz, Maret; Männistö, Minna; Jairus, Teele; Vasar, Martti; Zobel, Martin

    2018-01-25

    Interactions between communities of plants and arbuscular mycorrhizal (AM) fungi shape fundamental ecosystem properties. Experimental evidence suggests that compositional changes in plant and AM fungal communities should be correlated, but empirical data from natural ecosystems are scarce. We investigated the dynamics of covariation between plant and AM fungal communities during three stages of grassland succession, and the biotic and abiotic factors shaping these dynamics. Plant communities were characterised using vegetation surveys. AM fungal communities were characterised by 454-sequencing of the small subunit rRNA gene and identification against the AM fungal reference database MaarjAM. AM fungal abundance was estimated using neutral-lipid fatty acids (NLFAs). Multivariate correlation analysis (Procrustes) revealed a significant relationship between plant and AM fungal community composition. The strength of plant-AM fungal correlation weakened during succession following cessation of grassland management, reflecting changes in the proportion of plants exhibiting different AM status. Plant-AM fungal correlation was strong when the abundance of obligate AM plants was high, and declined as the proportion of facultative AM plants increased. We conclude that the extent to which plants rely on AM symbiosis can determine how tightly communities of plants and AM fungi are interlinked, regulating community assembly of both symbiotic partners. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  5. Nitrogen Forms Influence Microcystin Concentration and Composition via Changes in Cyanobacterial Community Structure

    PubMed Central

    Monchamp, Marie-Eve; Pick, Frances R.; Beisner, Beatrix E.; Maranger, Roxane

    2014-01-01

    The eutrophication of freshwaters is a global health concern as lakes with excess nutrients are often subject to toxic cyanobacterial blooms. Although phosphorus is considered the main element regulating cyanobacterial biomass, nitrogen (N) concentration and more specifically the availability of different N forms may influence the overall toxicity of blooms. In this study of three eutrophic lakes prone to cyanobacterial blooms, we examined the effects of nitrogen species and concentrations and other environmental factors in influencing cyanobacterial community structure, microcystin (MC) concentrations and MC congener composition. The identification of specific MC congeners was of particular interest as they vary widely in toxicity. Different nitrogen forms appeared to influence cyanobacterial community structure leading to corresponding effects on MC concentrations and composition. Total MC concentrations across the lakes were largely explained by a combination of abiotic factors: dissolved organic nitrogen, water temperature and ammonium, but Microcystis spp. biomass was overall the best predictor of MC concentrations. Environmental factors did not appear to affect MC congener composition directly but there were significant associations between specific MC congeners and particular species. Based on redundancy analyses (RDA), the relative biomass of Microcystis aeruginosa was associated with MC-RR, M. wesenbergii with MC-LA and Aphanizomenon flos-aquae with MC-YR. The latter two species are not generally considered capable of MC production. Total nitrogen, water temperature, ammonium and dissolved organic nitrogen influenced the cyanobacterial community structure, which in turn resulted in differences in the dominant MC congener and the overall toxicity. PMID:24427318

  6. Taxonomic and compositional differences of ground-dwelling arthropods in riparian habitats in Glen Canyon, Arizona, USA

    USGS Publications Warehouse

    Ralston, Barbara; Cobb, Neil S.; Brantley, Sandra L.; Higgins, Jacob; Yackulic, Charles B.

    2017-01-01

    The disturbance history, plant species composition, productivity, and structural complexity of a site can exert bottom-up controls on arthropod diversity, abundance, and trophic structure. Regulation alters the hydrology and disturbance regimes of rivers and affects riparian habitats by changing plant quality parameters. Fifty years of regulation along the Colorado River downstream of Glen Canyon Dam has created a no-analog, postdam “lower” riparian zone close to the water's edge that includes tamarisk (Tamarix sp.), a nonnative riparian shrub. At the same time, the predam “upper” facultative riparian zone has persisted several meters above the current flood stage. In summer 2009, we used pitfall traps within these 2 riparian zones that differ in plant composition, productivity, and disturbance frequency to test for differences in arthropod community (Hymenoptera, Arachnida, and Coleoptera) structure. Arthropod community structure differed substantially between the 2 zones. Arthropod abundance and species richness was highest in the predam upper riparian zone, even though there was a greater amount of standing plant biomass in the postdam lower riparian zone. Omnivore abundance was proportionately greater in the upper riparian zone and was associated with lower estimated productivity values. Predators and detritivores were proportionately greater in the postdam lower riparian zone. In this case, river regulation may create habitats that support species of spiders and carabid beetles, but few other species that are exclusive to this zone. The combined richness found in both zones suggests a small increase in total richness and functional diversity for the Glen Canyon reach of the Colorado River.

  7. Colony Location and Captivity Influence the Gut Microbial Community Composition of the Australian Sea Lion (Neophoca cinerea)

    PubMed Central

    Delport, Tiffany C.; Power, Michelle L.; Harcourt, Robert G.; Webster, Koa N.

    2016-01-01

    ABSTRACT Gut microbiota play an important role in maintenance of mammalian metabolism and immune system regulation, and disturbances to this community can have adverse impacts on animal health. To better understand the composition of gut microbiota in marine mammals, fecal bacterial communities of the Australian sea lion (Neophoca cinerea), an endangered pinniped with localized distribution, were examined. A comparison of samples from individuals across 11 wild colonies in South and Western Australia and three Australian captive populations showed five dominant bacterial phyla: Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, and Fusobacteria. The phylum Firmicutes was dominant in both wild (76.4% ± 4.73%) and captive animals (61.4% ± 10.8%), while Proteobacteria contributed more to captive (29.3% ± 11.5%) than to wild (10.6% ± 3.43%) fecal communities. Qualitative differences were observed between fecal communities from wild and captive animals based on principal-coordinate analysis. SIMPER (similarity percentage procedure) analyses indicated that operational taxonomic units (OTU) from the bacterial families Clostridiaceae and Ruminococcaceae were more abundant in wild than in captive animals and contributed most to the average dissimilarity between groups (SIMPER contributions of 19.1% and 10.9%, respectively). Differences in the biological environment, the foraging site fidelity, and anthropogenic impacts may provide various opportunities for unique microbial establishment in Australian sea lions. As anthropogenic disturbances to marine mammals are likely to increase, understanding the potential for such disturbances to impact microbial community compositions and subsequently affect animal health will be beneficial for management of these vulnerable species. IMPORTANCE The Australian sea lion is an endangered species for which there is currently little information regarding disease and microbial ecology. In this work, we present an in-depth study of the fecal microbiota of a large number of Australian sea lions from geographically diverse wild and captive populations. Colony location and captivity were found to influence the gut microbial community compositions of these animals. Our findings significantly extend the baseline knowledge of marine mammal gut microbiome composition and variability. PMID:27037116

  8. Novel techniques and findings in the study of plant microbiota: search for plant probiotics.

    PubMed

    Berlec, Aleš

    2012-09-01

    Plants live in intimate relationships with numerous microorganisms present inside or outside plant tissues. The plant exterior provides two distinct ecosystems, the rhizosphere (below ground) and the phyllosphere (above ground), both populated by microbial communities. Most studies on plant microbiota deal with pathogens or mutualists. This review focuses on plant commensal bacteria, which could represent a rich source of bacteria beneficial to plants, alternatively termed plant probiotics. Plant commensal bacteria have been addressed only recently with culture-independent studies. These use next-generation sequencing, DNA microarray technologies and proteomics to decipher microbial community composition and function. Diverse bacterial populations are described in both rhizosphere and phyllosphere of different plants. The microorganisms can emerge from neighboring environmental ecosystems at random; however their survival is regulated by the plant. Influences from the environment, such as pesticides, farming practice and atmosphere, also affect the composition of microbial communities. Apart from community composition studies, some functional studies have also been performed. These include identification of broad-substrate surface receptors and methanol utilization enzymes by the proteomic approach, as well as identification of bacterial species that are important mediators of disease-suppressive soil phenomenon. Experience from more advanced human microbial studies could provide useful information and is discussed in the context of methodology and common trends. Administration of microbial mixtures of whole communities, rather than individual species, is highlighted and should be considered in future agricultural applications. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. A Lipid Extraction and Analysis Method for Characterizing Soil Microbes in Experiments with Many Samples

    PubMed Central

    Oates, Lawrence G.; Read, Harry W.; Gutknecht, Jessica L. M.; Duncan, David S.; Balser, Teri B.; Jackson, Randall D.

    2017-01-01

    Microbial communities are important drivers and regulators of ecosystem processes. To understand how management of ecosystems may affect microbial communities, a relatively precise but effort-intensive technique to assay microbial community composition is phospholipid fatty acid (PLFA) analysis. PLFA was developed to analyze phospholipid biomarkers, which can be used as indicators of microbial biomass and the composition of broad functional groups of fungi and bacteria. It has commonly been used to compare soils under alternative plant communities, ecology, and management regimes. The PLFA method has been shown to be sensitive to detecting shifts in microbial community composition. An alternative method, fatty acid methyl ester extraction and analysis (MIDI-FA) was developed for rapid extraction of total lipids, without separation of the phospholipid fraction, from pure cultures as a microbial identification technique. This method is rapid but is less suited for soil samples because it lacks an initial step separating soil particles and begins instead with a saponification reaction that likely produces artifacts from the background organic matter in the soil. This article describes a method that increases throughput while balancing effort and accuracy for extraction of lipids from the cell membranes of microorganisms for use in characterizing both total lipids and the relative abundance of indicator lipids to determine soil microbial community structure in studies with many samples. The method combines the accuracy achieved through PLFA profiling by extracting and concentrating soil lipids as a first step, and a reduction in effort by saponifying the organic material extracted and processing with the MIDI-FA method as a second step. PMID:28745639

  10. Seasonality in the dung beetle community in a Brazilian tropical dry forest: Do small changes make a difference?

    PubMed

    Medina, Anderson Matos; Lopes, Priscila Paixão

    2014-01-01

    Dung beetle (Coleoptera: Scarabaeoidea: Scarabaeinae) activity is influenced by rainfall seasonality. We hypothesized that rainfall might also play a major role in regulating the community structure of this group. In this study, we describe seasonal changes in the richness, composition, and structure of the Scarabaeinae community in a Brazilian tropical dry forest. A fragment of arboreal Caatinga was sampled using baited pitfall traps during the early dry season (EDS), late dry season (LDS), early wet season (EWS), and middle wet season (MWS). We compared the dung beetle community in each season in relationship to species richness, rank-dominance, curves, and composition. We collected 1352 Scarabaeinae individuals , belonging to 15 species. Dichotomius aff. laevicollis Felsche (Coleoptera: Scarabaeidae) was the dominant species, representing 73.89% of the individuals. There were no seasonal changes in the rank dominance curves; all had a single dominant species and a few species with low abundance, typical for arid areas. Estimated richness was highest in MWS, followed by EWS. Dry-season samples (EDS and LDS) had lower richness, with no significant difference between the dry seasons. Although species richness increased as the habitat became wetter, the difference between the wet and dry seasons was small, which differs completely from the findings of other studies in Neotropical dry forests, where almost all species cease activities in the dry season. Species composition changes were found in non-metric multidimensional scaling and sustained by analysis of similarity. All the seasons had pairwise differences in composition, with the exception of EDS and MWS, which indicates that the dung beetle community in this fragment requires more than three months of drought to trigger changes in species composition; this is probably due to small changes in the forest canopy. There was no difference in composition between EDS and MWS. As in other tropical dry forests, although to a lesser extent, the dung beetle community of this fragment responded to rainfall seasonality with changes in species composition and reduced species richness. Such responses, even to this lesser extent, may occur because of small changes in tree cover and minor microclimate changes. This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed.

  11. Drosophila Regulate Yeast Density and Increase Yeast Community Similarity in a Natural Substrate

    PubMed Central

    Stamps, Judy A.; Yang, Louie H.; Morales, Vanessa M.; Boundy-Mills, Kyria L.

    2012-01-01

    Drosophila melanogaster adults and larvae, but especially larvae, had profound effects on the densities and community structure of yeasts that developed in banana fruits. Pieces of fruit exposed to adult female flies previously fed fly-conditioned bananas developed higher yeast densities than pieces of the same fruits that were not exposed to flies, supporting previous suggestions that adult Drosophila vector yeasts to new substrates. However, larvae alone had dramatic effects on yeast density and species composition. When yeast densities were compared in pieces of the same fruits assigned to different treatments, fruits that developed low yeast densities in the absence of flies developed significantly higher yeast densities when exposed to larvae. Across all of the fruits, larvae regulated yeast densities within narrow limits, as compared to a much wider range of yeast densities that developed in pieces of the same fruits not exposed to flies. Larvae also affected yeast species composition, dramatically reducing species diversity across fruits, reducing variation in yeast communities from one fruit to the next (beta diversity), and encouraging the consistent development of a yeast community composed of three species of yeast (Candida californica, C. zemplinina, and Pichia kluvyeri), all of which were palatable to larvae. Larvae excreted viable cells of these three yeast species in their fecal pools, and discouraged the growth of filamentous fungi, processes which may have contributed to their effects on the yeast communities in banana fruits. These and other findings suggest that D. melanogaster adults and their larval offspring together engage in ‘niche construction’, facilitating a predictable microbial environment in the fruit substrates in which the larvae live and develop. PMID:22860093

  12. Temporal and Spatial Variation of Soil Bacteria Richness, Composition, and Function in a Neotropical Rainforest

    PubMed Central

    Kivlin, Stephanie N; Hawkes, Christine V

    2016-01-01

    The high diversity of tree species has traditionally been considered an important controller of belowground processes in tropical rainforests. However, soil water availability and resources are also primary regulators of soil bacteria in many ecosystems. Separating the effects of these biotic and abiotic factors in the tropics is challenging because of their high spatial and temporal heterogeneity. To determine the drivers of tropical soil bacteria, we examined tree species effects using experimental tree monocultures and secondary forests at La Selva Biological Station in Costa Rica. A randomized block design captured spatial variation and we sampled at four dates across two years to assess temporal variation. We measured bacteria richness, phylogenetic diversity, community composition, biomass, and functional potential. All bacteria parameters varied significantly across dates. In addition, bacteria richness and phylogenetic diversity were affected by the interaction of vegetation type and date, whereas bacteria community composition was affected by the interaction of vegetation type and block. Shifts in bacteria community richness and composition were unrelated to shifts in enzyme function, suggesting physiological overlap among taxa. Based on the observed temporal and spatial heterogeneity, our understanding of tropical soil bacteria will benefit from additional work to determine the optimal temporal and spatial scales for sampling. Understanding spatial and temporal variation will facilitate prediction of how tropical soil microbes will respond to future environmental change. PMID:27391450

  13. Temporal and Spatial Variation of Soil Bacteria Richness, Composition, and Function in a Neotropical Rainforest.

    PubMed

    Kivlin, Stephanie N; Hawkes, Christine V

    2016-01-01

    The high diversity of tree species has traditionally been considered an important controller of belowground processes in tropical rainforests. However, soil water availability and resources are also primary regulators of soil bacteria in many ecosystems. Separating the effects of these biotic and abiotic factors in the tropics is challenging because of their high spatial and temporal heterogeneity. To determine the drivers of tropical soil bacteria, we examined tree species effects using experimental tree monocultures and secondary forests at La Selva Biological Station in Costa Rica. A randomized block design captured spatial variation and we sampled at four dates across two years to assess temporal variation. We measured bacteria richness, phylogenetic diversity, community composition, biomass, and functional potential. All bacteria parameters varied significantly across dates. In addition, bacteria richness and phylogenetic diversity were affected by the interaction of vegetation type and date, whereas bacteria community composition was affected by the interaction of vegetation type and block. Shifts in bacteria community richness and composition were unrelated to shifts in enzyme function, suggesting physiological overlap among taxa. Based on the observed temporal and spatial heterogeneity, our understanding of tropical soil bacteria will benefit from additional work to determine the optimal temporal and spatial scales for sampling. Understanding spatial and temporal variation will facilitate prediction of how tropical soil microbes will respond to future environmental change.

  14. Colonization in the Photic Zone and Subsequent Changes during Sinking Determine Bacterial Community Composition in Marine Snow

    PubMed Central

    Thiele, Stefan; Fuchs, Bernhard M.; Amann, Rudolf

    2014-01-01

    Due to sampling difficulties, little is known about microbial communities associated with sinking marine snow in the twilight zone. A drifting sediment trap was equipped with a viscous cryogel and deployed to collect intact marine snow from depths of 100 and 400 m off Cape Blanc (Mauritania). Marine snow aggregates were fixed and washed in situ to prevent changes in microbial community composition and to enable subsequent analysis using catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH). The attached microbial communities collected at 100 m were similar to the free-living community at the depth of the fluorescence maximum (20 m) but different from those at other depths (150, 400, 550, and 700 m). Therefore, the attached microbial community seemed to be “inherited” from that at the fluorescence maximum. The attached microbial community structure at 400 m differed from that of the attached community at 100 m and from that of any free-living community at the tested depths, except that collected near the sediment at 700 m. The differences between the particle-associated communities at 400 m and 100 m appeared to be due to internal changes in the attached microbial community rather than de novo colonization, detachment, or grazing during the sinking of marine snow. The new sampling method presented here will facilitate future investigations into the mechanisms that shape the bacterial community within sinking marine snow, leading to better understanding of the mechanisms which regulate biogeochemical cycling of settling organic matter. PMID:25527538

  15. Soil macrofauna and litter nutrients in three tropical tree plantations on a disturbed site in Puerto Rico.

    Treesearch

    Matthew W. Warren; Xiaoming Zou

    2002-01-01

    Tree plantations are increasingly common in tropical landscapes due to their multiple uses. Plantations vary in structure and composition, and these variations may alter soil fauna communities. Recent studies have demonstrated the important role of soil fauna in the regulation of plant litter decomposition in the tropics. However, little is known about how plantation...

  16. Seasonal dynamics of microbial community composition and function in oak canopy and open grassland soils

    USGS Publications Warehouse

    Waldrop, M.P.; Firestone, M.K.

    2006-01-01

    Soil microbial communities are closely associated with aboveground plant communities, with multiple potential drivers of this relationship. Plants can affect available soil carbon, temperature, and water content, which each have the potential to affect microbial community composition and function. These same variables change seasonally, and thus plant control on microbial community composition may be modulated or overshadowed by annual climatic patterns. We examined microbial community composition, C cycling processes, and environmental data in California annual grassland soils from beneath oak canopies and in open grassland areas to distinguish factors controlling microbial community composition and function seasonally and in association with the two plant overstory communities. Every 3 months for up to 2 years, we monitored microbial community composition using phospholipid fatty acid (PLFA) analysis, microbial biomass, respiration rates, microbial enzyme activities, and the activity of microbial groups using isotope labeling of PLFA biomarkers (13C-PLFA) . Distinct microbial communities were associated with oak canopy soils and open grassland soils and microbial communities displayed seasonal patterns from year to year. The effects of plant species and seasonal climate on microbial community composition were similar in magnitude. In this Mediterranean ecosystem, plant control of microbial community composition was primarily due to effects on soil water content, whereas the changes in microbial community composition seasonally appeared to be due, in large part, to soil temperature. Available soil carbon was not a significant control on microbial community composition. Microbial community composition (PLFA) and 13C-PLFA ordination values were strongly related to intra-annual variability in soil enzyme activities and soil respiration, but microbial biomass was not. In this Mediterranean climate, soil microclimate appeared to be the master variable controlling microbial community composition and function. ?? 2006 Springer Science+Business Media, Inc.

  17. Intrinsic association between diet and the gut microbiome: current evidence

    PubMed Central

    Winglee, Kathryn; Fodor, Anthony A

    2017-01-01

    The gut microbiome performs many crucial functions for the human host, but the molecular mechanisms by which host, microbe and diet interact to mediate health and disease are only starting to be revealed. Here we review the literature on how changes in the diet affect the microbiome. A number of studies have shown that within a geographic region, different diets (such as vegan vs. omnivore) are associated with differences in a modest number of taxa but do not reliably produce radical differences within the gut microbial community. In contrast, studies that look across continents consistently find profoundly different microbial communities between Westernized and traditional populations, although it remains unclear to what extent diet or other differences in lifestyle drive these distinct microbial community structures. Furthermore, studies that place subjects on controlled short term experimental diets have found the resulting alterations to the gut microbial community to generally be small in scope, with changes that do not overcome initial individual differences in microbial community structure. These results emphasize that the human gut microbial community is relatively stable over time. In contrast, short term changes in diet can cause large changes in metabolite profiles, including metabolites processed by the gut microbial community. These results suggest that commensal gut microbes have a great deal of genetic plasticity and can activate different metabolic pathways independent of changes to microbial community composition. Thus, future studies of the how diet impacts host health via the microbiome may wish to focus on functional assays such as transcriptomics and metabolomics, in addition to 16S rRNA and whole-genome metagenome shotgun analyses of DNA. Taken together, the literature is most consistent with a model in which the composition of the adult gut microbial community undergoes modest compositional changes in response to altered diet but can nonetheless respond very rapidly to dietary changes via up- or down-regulation of metabolic pathways that can have profound and immediate consequences for host health. PMID:28690398

  18. Feedback Interactions between Trace Metal Nutrients and Phytoplankton in the Ocean

    PubMed Central

    Sunda, William G.

    2012-01-01

    In addition to control by major nutrient elements (nitrogen, phosphorus, and silicon) the productivity and species composition of marine phytoplankton communities are also regulated by a number of trace metal nutrients (iron, zinc, cobalt, manganese, copper, and cadmium). Of these, iron is most limiting to phytoplankton growth and has the greatest effect on algal species diversity. It also plays an important role in limiting di-nitrogen (N2) fixation rates, and thus is important in controlling ocean inventories of fixed nitrogen. Because of these effects, iron is thought to play a key role in regulating biological cycles of carbon and nitrogen in the ocean, including the biological transfer of carbon to the deep sea, the so-called biological CO2 pump, which helps regulate atmospheric CO2 and CO2-linked global warming. Other trace metal nutrients (zinc, cobalt, copper, and manganese) have lesser effects on productivity; but may exert an important influence on the species composition of algal communities because of large differences in metal requirements among species. The interactions between trace metals and ocean plankton are reciprocal: not only do the metals control the plankton, but the plankton regulate the distributions, chemical speciation, and cycling of these metals through cellular uptake and recycling processes, downward flux of biogenic particles, biological release of organic chelators, and mediation of redox reactions. This two way interaction has influenced not only the biology and chemistry of the modern ocean, but has had a profound influence on biogeochemistry of the ocean and earth system as a whole, and on the evolution of marine and terrestrial biology over geologic history. PMID:22701115

  19. Mineral Control of Soil Carbon Dynamics in Forest Soils: A Lithosequence Under Ponderosa Pine

    NASA Astrophysics Data System (ADS)

    Heckman, K. A.; Welty-Bernard, A.; Rasmussen, C.; Schwartz, E.; Chorover, J.

    2008-12-01

    The role of soil organic carbon in regulating atmospheric CO2 concentration has spurred interest in both quantifying existing soil C stocks and modeling the behavior of soil C under climate change scenarios. Soil parent material exerts direct control over soil organic carbon content through its influence on soil pH and mineral composition. Soil acidity and mineral composition also influence soil microbial community composition and activity, thereby controlling soil respiration rates and microbial biomass size. We sampled a lithosequence of four parent materials (rhyolite, granite, basalt, limestone) under Pinus ponderosa to examine the effects of soil mineralogy and acidity on soil organic carbon content and soil microbial community. Three soil profiles were examined on each parent material and analyzed by X-ray diffraction, pH, selective dissolution, C and N content, and 13C signature. Soils from each of the four parent materials were incubated for 40 days, and microbial communities were compared on the basis of community composition (as determined through T-RFLP analysis), specific metabolic activity, biomass, δ13C of respired CO2, and cumulative amount of C mineralized over the course of the incubation. Soil C content varied significantly among soils of different parent material, and was strongly and positively associated with the abundance of Al-humus complexes r2 = 0.71; P < 0.0001, Fe-humus complexes r2 = 0.74; P = 0.0003, and crystalline Fe-oxide content r2 = 0.63; P = 0.0023. Microbial community composition varied significantly among soils and showed strong associations with soil pH 1:1 in KCl; r2 = 0.87; P < 0.0001, concentration of exchangeable Al r2 = 0.81; P < 0.0001, amorphous Fe oxide content r2 = 0.59; P < 0.004, and Al-humus content r2 = 0.35; P < 0.04. Mineralization rates, biomass and δ13C of respired CO2 differed among parent materials, and also varied with incubation time as substrate quality and N availability changed. The results demonstrate that within a specific ecosystem type, soil parent material exerts significant control over the lability and bioavailability of soil C and soil microbial community composition. We suggest that soil parent material and mineralogy are critical parameters for predicting soil C dynamics and recalcitrance of soil C stocks.

  20. Ecological effects of soil properties and metal concentrations on the composition and diversity of microbial communities associated with land use patterns in an electronic waste recycling region.

    PubMed

    Wu, Wencheng; Dong, Changxun; Wu, Jiahui; Liu, Xiaowen; Wu, Yingxin; Chen, Xianbin; Yu, Shixiao

    2017-12-01

    Soil microbes play vital roles in ecosystem functions, and soil microbial communities may be strongly structured by land use patterns associated with electronic waste (e-waste) recycling activities, which can increase the heavy metal concentration in soils. In this study, a suite of soils from five land use types (paddy field, vegetable field, dry field, forest field, and e-waste recycling site) were collected in Longtang Town, Guangdong Province, South China. Soil physicochemical properties and heavy metal concentrations were measured, and the indigenous microbial assemblages were profiled using 16S rRNA high-throughput sequencing and clone library analyses. The results showed that mercury concentration was positively correlated with both Faith's PD and Chao1 estimates, suggesting that the soil microbial alpha diversity was predominantly regulated by mercury. In addition, redundancy analysis indicated that available phosphorus, soil moisture, and mercury were the three major drivers affecting the microbial assemblages. Overall, the microbial composition was determined primarily by land use patterns, and this study provides a novel insight on the composition and diversity of microbial communities in soils associated with e-waste recycling activities. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Phosphorus and Cu2+ removal by periphytic biofilm stimulated by upconversion phosphors doped with Pr3+-Li.

    PubMed

    Zhu, Yan; Zhang, Jianhong; Zhu, Ningyuan; Tang, Jun; Liu, Junzhuo; Sun, Pengfei; Wu, Yonghong; Wong, Po Keung

    2018-01-01

    Upconversion phosphors (UCPs) can convert visible light into luminescence, such as UV, which can regulate the growth of microbes. Based on these fundamentals, the community composition of periphytic biofilms stimulated by UCPs doped with Pr 3+ -Li + was proposed to augment the removal of phosphorus (P) and copper (Cu). Results showed that the biofilms with community composition optimized by UCPs doped with Pr 3+ -Li + had high P and Cu 2+ removal rates. This was partly due to overall bacterial and algal abundance and biomass increases. The synergistic actions of algal, bacterial biomass and carbon metabolic capacity in the Pr-Li stimulated biofilms facilitated the removal of P and Cu 2+ . The results show that the stimulation of periphytic biofilms by lanthanide-doped UCPs is a promising approach for augmenting P and Cu 2+ removal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Microorganism-regulated mechanisms of temperature effects on the performance of anaerobic digestion.

    PubMed

    Lin, Qiang; He, Guihua; Rui, Junpeng; Fang, Xiaoyu; Tao, Yong; Li, Jiabao; Li, Xiangzhen

    2016-06-03

    Temperature is an important factor determining the performance and stability of the anaerobic digestion process. However, the microorganism-regulated mechanisms of temperature effects on the performance of anaerobic digestion systems remain further elusive. To address this issue, we investigated the changes in composition, diversity and activities of microbial communities under temperature gradient from 25 to 55 °C using 16S rRNA gene amplicon sequencing approach based on genomic DNA (refer to as "16S rDNA") and total RNA (refer to as "16S rRNA"). Microbial community structure and activities changed dramatically along the temperature gradient, which corresponded to the variations in digestion performance (e.g., daily CH4 production, total biogas production and volatile fatty acids concentration). The ratios of 16S rRNA to 16S rDNA of microbial taxa, as an indicator of the potentially relative activities in situ, and whole activities of microbial community assessed by the similarity between microbial community based on 16S rDNA and rRNA, varied strongly along the temperature gradient, reflecting different metabolic activities. The daily CH4 production increased with temperature from 25 to 50 °C and declined at 55 °C. Among all the examined microbial properties, the whole activities of microbial community and alpha-diversity indices of both microbial communities and potentially relative activities showed highest correlations to the performance. The whole activities of microbial community and alpha-diversity indices of both microbial communities and potentially relative activities were sensitive indicators for the performance of anaerobic digestion systems under temperature gradient, while beta-diversity could predict functional differences. Microorganism-regulated mechanisms of temperature effects on anaerobic digestion performance were likely realized through increasing alpha-diversity of both microbial communities and potentially relative activities to supply more functional pathways and activities for metabolic network, and increasing the whole activities of microbial community, especially methanogenesis, to improve the strength and efficiency in anaerobic digestion process.

  3. Distribution, Community Composition, and Potential Metabolic Activity of Bacterioplankton in an Urbanized Mediterranean Sea Coastal Zone.

    PubMed

    Richa, Kumari; Balestra, Cecilia; Piredda, Roberta; Benes, Vladimir; Borra, Marco; Passarelli, Augusto; Margiotta, Francesca; Saggiomo, Maria; Biffali, Elio; Sanges, Remo; Scanlan, David J; Casotti, Raffaella

    2017-09-01

    Bacterioplankton are fundamental components of marine ecosystems and influence the entire biosphere by contributing to the global biogeochemical cycles of key elements. Yet, there is a significant gap in knowledge about their diversity and specific activities, as well as environmental factors that shape their community composition and function. Here, the distribution and diversity of surface bacterioplankton along the coastline of the Gulf of Naples (GON; Italy) were investigated using flow cytometry coupled with high-throughput sequencing of the 16S rRNA gene. Heterotrophic bacteria numerically dominated the bacterioplankton and comprised mainly Alphaproteobacteria , Gammaproteobacteria , and Bacteroidetes Distinct communities occupied river-influenced, coastal, and offshore sites, as indicated by Bray-Curtis dissimilarity, distance metric (UniFrac), linear discriminant analysis effect size (LEfSe), and multivariate analyses. The heterogeneity in diversity and community composition was mainly due to salinity and changes in environmental conditions across sites, as defined by nutrient and chlorophyll a concentrations. Bacterioplankton communities were composed of a few dominant taxa and a large proportion (92%) of rare taxa (here defined as operational taxonomic units [OTUs] accounting for <0.1% of the total sequence abundance), the majority of which were unique to each site. The relationship between 16S rRNA and the 16S rRNA gene, i.e., between potential metabolic activity and abundance, was positive for the whole community. However, analysis of individual OTUs revealed high rRNA-to-rRNA gene ratios for most (71.6% ± 16.7%) of the rare taxa, suggesting that these low-abundance organisms were potentially active and hence might be playing an important role in ecosystem diversity and functioning in the GON. IMPORTANCE The study of bacterioplankton in coastal zones is of critical importance, considering that these areas are highly productive and anthropogenically impacted. Their richness and evenness, as well as their potential activity, are very important to assess ecosystem health and functioning. Here, we investigated bacterial distribution, community composition, and potential metabolic activity in the GON, which is an ideal test site due to its heterogeneous environment characterized by a complex hydrodynamics and terrestrial inputs of varied quantities and quality. Our study demonstrates that bacterioplankton communities in this region are highly diverse and strongly regulated by a combination of different environmental factors leading to their heterogeneous distribution, with the rare taxa contributing to a major proportion of diversity and shifts in community composition and potentially holding a key role in ecosystem functioning. Copyright © 2017 American Society for Microbiology.

  4. Distribution, Community Composition, and Potential Metabolic Activity of Bacterioplankton in an Urbanized Mediterranean Sea Coastal Zone

    PubMed Central

    Richa, Kumari; Balestra, Cecilia; Piredda, Roberta; Benes, Vladimir; Borra, Marco; Passarelli, Augusto; Margiotta, Francesca; Saggiomo, Maria; Biffali, Elio; Sanges, Remo; Scanlan, David J.

    2017-01-01

    ABSTRACT Bacterioplankton are fundamental components of marine ecosystems and influence the entire biosphere by contributing to the global biogeochemical cycles of key elements. Yet, there is a significant gap in knowledge about their diversity and specific activities, as well as environmental factors that shape their community composition and function. Here, the distribution and diversity of surface bacterioplankton along the coastline of the Gulf of Naples (GON; Italy) were investigated using flow cytometry coupled with high-throughput sequencing of the 16S rRNA gene. Heterotrophic bacteria numerically dominated the bacterioplankton and comprised mainly Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes. Distinct communities occupied river-influenced, coastal, and offshore sites, as indicated by Bray-Curtis dissimilarity, distance metric (UniFrac), linear discriminant analysis effect size (LEfSe), and multivariate analyses. The heterogeneity in diversity and community composition was mainly due to salinity and changes in environmental conditions across sites, as defined by nutrient and chlorophyll a concentrations. Bacterioplankton communities were composed of a few dominant taxa and a large proportion (92%) of rare taxa (here defined as operational taxonomic units [OTUs] accounting for <0.1% of the total sequence abundance), the majority of which were unique to each site. The relationship between 16S rRNA and the 16S rRNA gene, i.e., between potential metabolic activity and abundance, was positive for the whole community. However, analysis of individual OTUs revealed high rRNA-to-rRNA gene ratios for most (71.6% ± 16.7%) of the rare taxa, suggesting that these low-abundance organisms were potentially active and hence might be playing an important role in ecosystem diversity and functioning in the GON. IMPORTANCE The study of bacterioplankton in coastal zones is of critical importance, considering that these areas are highly productive and anthropogenically impacted. Their richness and evenness, as well as their potential activity, are very important to assess ecosystem health and functioning. Here, we investigated bacterial distribution, community composition, and potential metabolic activity in the GON, which is an ideal test site due to its heterogeneous environment characterized by a complex hydrodynamics and terrestrial inputs of varied quantities and quality. Our study demonstrates that bacterioplankton communities in this region are highly diverse and strongly regulated by a combination of different environmental factors leading to their heterogeneous distribution, with the rare taxa contributing to a major proportion of diversity and shifts in community composition and potentially holding a key role in ecosystem functioning. PMID:28667110

  5. Saugus River and Tributaries, Lynn Malden, Revere and Saugus, Massachusetts. Flood Damage Reduction. Volume 8. Appendix K. Environmental

    DTIC Science & Technology

    1989-06-01

    K10 Summary of Soil Analyses for the Salt Marsh Transects K32 KI1 Plant Community Composition Data Along Compartment K33 B Transect K12 Plant...Community Composition Data Along Compartment K33 I Transect K13 Plant Community Composition Data Along Compartment K33 K1 Transect K14 Plant Community... Composition Data Along Compartment K34 K3 Transect K15 Plant Community Composition Data Along Compartment K34 L2 Transect K16 Plant Community Composition

  6. Trade-off between taxon diversity and functional diversity in European lake ecosystems.

    PubMed

    Grossmann, Lars; Beisser, Daniela; Bock, Christina; Chatzinotas, Antonis; Jensen, Manfred; Preisfeld, Angelika; Psenner, Roland; Rahmann, Sven; Wodniok, Sabina; Boenigk, Jens

    2016-12-01

    Inferring ecosystem functioning and ecosystem services through inspections of the species inventory is a major aspect of ecological field studies. Ecosystem functions are often stable despite considerable species turnover. Using metatranscriptome analyses, we analyse a thus-far unparalleled freshwater data set which comprises 21 mainland European freshwater lakes from the Sierra Nevada (Spain) to the Carpathian Mountains (Romania) and from northern Germany to the Apennines (Italy) and covers an altitudinal range from 38 m above sea level (a.s.l) to 3110 m a.s.l. The dominant taxa were Chlorophyta and streptophytic algae, Ciliophora, Bacillariophyta and Chrysophyta. Metatranscriptomics provided insights into differences in community composition and into functional diversity via the relative share of taxa to the overall read abundance of distinct functional genes on the ecosystem level. The dominant metabolic pathways in terms of the fraction of expressed sequences in the cDNA libraries were affiliated with primary metabolism, specifically oxidative phosphorylation, photosynthesis and the TCA cycle. Our analyses indicate that community composition is a good first proxy for the analysis of ecosystem functions. However, differential gene regulation modifies the relative importance of taxa in distinct pathways. Whereas taxon composition varies considerably between lakes, the relative importance of distinct metabolic pathways is much more stable, indicating that ecosystem functioning is buffered against shifts in community composition through a functional redundancy of taxa. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  7. Strong coupling of plant and fungal community structure across western Amazonian rainforests

    PubMed Central

    Peay, Kabir G; Baraloto, Christopher; Fine, Paul VA

    2013-01-01

    The Amazon basin harbors a diverse ecological community that has a critical role in the maintenance of the biosphere. Although plant and animal communities have received much attention, basic information is lacking for fungal or prokaryotic communities. This is despite the fact that recent ecological studies have suggested a prominent role for interactions with soil fungi in structuring the diversity and abundance of tropical rainforest trees. In this study, we characterize soil fungal communities across three major tropical forest types in the western Amazon basin (terra firme, seasonally flooded and white sand) using 454 pyrosequencing. Using these data, we examine the relationship between fungal diversity and tree species richness, and between fungal community composition and tree species composition, soil environment and spatial proximity. We find that the fungal community in these ecosystems is diverse, with high degrees of spatial variability related to forest type. We also find strong correlations between α- and β-diversity of soil fungi and trees. Both fungal and plant community β-diversity were also correlated with differences in environmental conditions. The correlation between plant and fungal richness was stronger in fungal lineages known for biotrophic strategies (for example, pathogens, mycorrhizas) compared with a lineage known primarily for saprotrophy (yeasts), suggesting that this coupling is, at least in part, due to direct plant–fungal interactions. These data provide a much-needed look at an understudied dimension of the biota in an important ecosystem and supports the hypothesis that fungal communities are involved in the regulation of tropical tree diversity. PMID:23598789

  8. The meaning of functional trait composition of food webs for ecosystem functioning.

    PubMed

    Gravel, Dominique; Albouy, Camille; Thuiller, Wilfried

    2016-05-19

    There is a growing interest in using trait-based approaches to characterize the functional structure of animal communities. Quantitative methods have been derived mostly for plant ecology, but it is now common to characterize the functional composition of various systems such as soils, coral reefs, pelagic food webs or terrestrial vertebrate communities. With the ever-increasing availability of distribution and trait data, a quantitative method to represent the different roles of animals in a community promise to find generalities that will facilitate cross-system comparisons. There is, however, currently no theory relating the functional composition of food webs to their dynamics and properties. The intuitive interpretation that more functional diversity leads to higher resource exploitation and better ecosystem functioning was brought from plant ecology and does not apply readily to food webs. Here we appraise whether there are interpretable metrics to describe the functional composition of food webs that could foster a better understanding of their structure and functioning. We first distinguish the various roles that traits have on food web topology, resource extraction (bottom-up effects), trophic regulation (top-down effects), and the ability to keep energy and materials within the community. We then discuss positive effects of functional trait diversity on food webs, such as niche construction and bottom-up effects. We follow with a discussion on the negative effects of functional diversity, such as enhanced competition (both exploitation and apparent) and top-down control. Our review reveals that most of our current understanding of the impact of functional trait diversity on food web properties and functioning comes from an over-simplistic representation of network structure with well-defined levels. We, therefore, conclude with propositions for new research avenues for both theoreticians and empiricists. © 2016 The Author(s).

  9. The meaning of functional trait composition of food webs for ecosystem functioning

    PubMed Central

    Albouy, Camille

    2016-01-01

    There is a growing interest in using trait-based approaches to characterize the functional structure of animal communities. Quantitative methods have been derived mostly for plant ecology, but it is now common to characterize the functional composition of various systems such as soils, coral reefs, pelagic food webs or terrestrial vertebrate communities. With the ever-increasing availability of distribution and trait data, a quantitative method to represent the different roles of animals in a community promise to find generalities that will facilitate cross-system comparisons. There is, however, currently no theory relating the functional composition of food webs to their dynamics and properties. The intuitive interpretation that more functional diversity leads to higher resource exploitation and better ecosystem functioning was brought from plant ecology and does not apply readily to food webs. Here we appraise whether there are interpretable metrics to describe the functional composition of food webs that could foster a better understanding of their structure and functioning. We first distinguish the various roles that traits have on food web topology, resource extraction (bottom-up effects), trophic regulation (top-down effects), and the ability to keep energy and materials within the community. We then discuss positive effects of functional trait diversity on food webs, such as niche construction and bottom-up effects. We follow with a discussion on the negative effects of functional diversity, such as enhanced competition (both exploitation and apparent) and top-down control. Our review reveals that most of our current understanding of the impact of functional trait diversity on food web properties and functioning comes from an over-simplistic representation of network structure with well-defined levels. We, therefore, conclude with propositions for new research avenues for both theoreticians and empiricists. PMID:27114571

  10. Water Bacterial and Fungal Community Compositions Associated with Urban Lakes, Xi’an, China

    PubMed Central

    Zhang, Haihan; Wang, Yue; Chen, Shengnan; Zhao, Zhenfang; Feng, Ji; Zhang, Zhonghui; Lu, Kuanyu; Jia, Jingyu

    2018-01-01

    Urban lakes play a vital role in the sustainable development of urbanized areas. In this freshwater ecosystem, massive microbial communities can drive the recycling of nutrients and regulate the water quality. However, water bacterial and fungal communities in the urban lakes are not well understood. In the present work, scanning electron microscopy (SEM) was combined with community level physiological profiles (CLPPs) and Illumina Miseq sequence techniques to determine the diversity and composition of the water bacterial and fungal community in three urban lakes, namely Xingqing lake (LX), Geming lake (LG) and Lianhu lake (LL), located in Xi’an City (Shaanxi Province, China). The results showed that these three lakes were eutrophic water bodies. The highest total nitrogen (TN) was observed in LL, with a value of 12.1 mg/L, which is 2 times higher than that of LG. The permanganate index (CODMn) concentrations were 21.6 mg/L, 35.4 mg/L and 28.8 mg/L in LG, LL and LX, respectively (p < 0.01). Based on the CLPPs test, the results demonstrated that water bacterial communities in the LL and LX urban lakes had higher carbon source utilization ability. A total of 62,742 and 55,346 high quality reads were grouped into 894 and 305 operational taxonomic units (OTUs) for bacterial and fungal communities, respectively. Water bacterial and fungal community was distributed across 14 and 6 phyla. The most common phyla were Proteobacteriaand Cyanobacteria. Cryptomycota was particularly dominant in LL, while Chytridiomycota and Entomophthormycota were the most abundant fungal phyla, accounting for 95% of the population in the LL and 56% in the LG. Heat map and redundancy analysis (RDA) highlighted the dramatic differences of water bacterial communities among three urban lakes. Meanwhile, the profiles of fungal communities were significantly correlated with the water quality parameters (e.g., CODMn and total nitrogen, TN). Several microbes (Legionella sp. and Streptococcus sp.) related to human diseases, such as infectious diseases, were also found. The results from this study provides useful information related to the water quality and microbial community compositions harbored in the aquatic ecosystems of urban lakes. PMID:29518989

  11. Water Bacterial and Fungal Community Compositions Associated with Urban Lakes, Xi'an, China.

    PubMed

    Zhang, Haihan; Wang, Yue; Chen, Shengnan; Zhao, Zhenfang; Feng, Ji; Zhang, Zhonghui; Lu, Kuanyu; Jia, Jingyu

    2018-03-07

    Urban lakes play a vital role in the sustainable development of urbanized areas. In this freshwater ecosystem, massive microbial communities can drive the recycling of nutrients and regulate the water quality. However, water bacterial and fungal communities in the urban lakes are not well understood. In the present work, scanning electron microscopy (SEM) was combined with community level physiological profiles (CLPPs) and Illumina Miseq sequence techniques to determine the diversity and composition of the water bacterial and fungal community in three urban lakes, namely Xingqing lake (LX), Geming lake (LG) and Lianhu lake (LL), located in Xi'an City (Shaanxi Province, China). The results showed that these three lakes were eutrophic water bodies. The highest total nitrogen (TN) was observed in LL, with a value of 12.1 mg/L, which is 2 times higher than that of LG. The permanganate index (COD Mn ) concentrations were 21.6 mg/L, 35.4 mg/L and 28.8 mg/L in LG, LL and LX, respectively ( p < 0.01). Based on the CLPPs test, the results demonstrated that water bacterial communities in the LL and LX urban lakes had higher carbon source utilization ability. A total of 62,742 and 55,346 high quality reads were grouped into 894 and 305 operational taxonomic units (OTUs) for bacterial and fungal communities, respectively. Water bacterial and fungal community was distributed across 14 and 6 phyla. The most common phyla were Proteobacteriaand Cyanobacteria. Cryptomycota was particularly dominant in LL, while Chytridiomycota and Entomophthormycota were the most abundant fungal phyla, accounting for 95% of the population in the LL and 56% in the LG. Heat map and redundancy analysis (RDA) highlighted the dramatic differences of water bacterial communities among three urban lakes. Meanwhile, the profiles of fungal communities were significantly correlated with the water quality parameters (e.g., COD Mn and total nitrogen, TN). Several microbes ( Legionella sp. and Streptococcus sp.) related to human diseases, such as infectious diseases, were also found. The results from this study provides useful information related to the water quality and microbial community compositions harbored in the aquatic ecosystems of urban lakes.

  12. Modeling the Mechanical Behavior of Ceramic Matrix Composite Materials

    NASA Technical Reports Server (NTRS)

    Jordan, William

    1998-01-01

    Ceramic matrix composites are ceramic materials, such as SiC, that have been reinforced by high strength fibers, such as carbon. Designers are interested in using ceramic matrix composites because they have the capability of withstanding significant loads while at relatively high temperatures (in excess of 1,000 C). Ceramic matrix composites retain the ceramic materials ability to withstand high temperatures, but also possess a much greater ductility and toughness. Their high strength and medium toughness is what makes them of so much interest to the aerospace community. This work concentrated on two different tasks. The first task was to do an extensive literature search into the mechanical behavior of ceramic matrix composite materials. This report contains the results of this task. The second task was to use this understanding to help interpret the ceramic matrix composite mechanical test results that had already been obtained by NASA. Since the specific details of these test results are subject to the International Traffic in Arms Regulations (ITAR), they are reported in a separate document (Jordan, 1997).

  13. Mechanisms and Factors Regulating the Uptake and Toxicity of Heavy Metals in Phytoplankton

    DTIC Science & Technology

    1997-09-30

    Laboratory, National Marine Fisheries Service, NOAA, Beaufort, NC 28516 Phone: 919/728-8754; Fax: 919/728-8784 E-mail: BSUNDA@HATTERAS.BEA.NMFS.GOV Award...composition of phytoplankton communities in coastal waters and to determine the role of algal metal uptake in controlling the particulate removal and...7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) National Oceanic and Atmospheric Administration (NOAA),National Marine Fisheries Service,325

  14. Resource availability controls fungal diversity across a plant diversity gradient

    USGS Publications Warehouse

    Waldrop, M.P.; Zak, D.R.; Blackwood, C.B.; Curtis, C.D.; Tilman, D.

    2006-01-01

    Despite decades of research, the ecological determinants of microbial diversity remain poorly understood. Here, we test two alternative hypotheses concerning the factors regulating fungal diversity in soil. The first states that higher levels of plant detritus production increase the supply of limiting resources (i.e. organic substrates) thereby increasing fungal diversity. Alternatively, greater plant diversity increases the range of organic substrates entering soil, thereby increasing the number of niches to be filled by a greater array of heterotrophic fungi. These two hypotheses were simultaneously examined in experimental plant communities consisting of one to 16 species that have been maintained for a decade. We used ribosomal intergenic spacer analysis (RISA), in combination with cloning and sequencing, to quantify fungal community composition and diversity within the experimental plant communities. We used soil microbial biomass as a temporally integrated measure of resource supply. Plant diversity was unrelated to fungal diversity, but fungal diversity was a unimodal function of resource supply. Canonical correspondence analysis (CCA) indicated that plant diversity showed a relationship to fungal community composition, although the occurrence of RISA bands and operational taxonomic units (OTUs) did not differ among the treatments. The relationship between fungal diversity and resource availability parallels similar relationships reported for grasslands, tropical forests, coral reefs, and other biotic communities, strongly suggesting that the same underlying mechanisms determine the diversity of organisms at multiple scales. ?? 2006 Blackwell Publishing Ltd/CNRS.

  15. Decoupling of microbial carbon, nitrogen, and phosphorus cycling in response to extreme temperature events

    PubMed Central

    Mooshammer, Maria; Hofhansl, Florian; Frank, Alexander H.; Wanek, Wolfgang; Hämmerle, Ieda; Leitner, Sonja; Schnecker, Jörg; Wild, Birgit; Watzka, Margarete; Keiblinger, Katharina M.; Zechmeister-Boltenstern, Sophie; Richter, Andreas

    2017-01-01

    Predicted changes in the intensity and frequency of climate extremes urge a better mechanistic understanding of the stress response of microbially mediated carbon (C) and nutrient cycling processes. We analyzed the resistance and resilience of microbial C, nitrogen (N), and phosphorus (P) cycling processes and microbial community composition in decomposing plant litter to transient, but severe, temperature disturbances, namely, freeze-thaw and heat. Disturbances led temporarily to a more rapid cycling of C and N but caused a down-regulation of P cycling. In contrast to the fast recovery of the initially stimulated C and N processes, we found a slow recovery of P mineralization rates, which was not accompanied by significant changes in community composition. The functional and structural responses to the two distinct temperature disturbances were markedly similar, suggesting that direct negative physical effects and costs associated with the stress response were comparable. Moreover, the stress response of extracellular enzyme activities, but not that of intracellular microbial processes (for example, respiration or N mineralization), was dependent on the nutrient content of the resource through its effect on microbial physiology and community composition. Our laboratory study provides novel insights into the mechanisms of microbial functional stress responses that can serve as a basis for field studies and, in particular, illustrates the need for a closer integration of microbial C-N-P interactions into climate extremes research. PMID:28508070

  16. Significant Phylogenetic Signal and Climate-Related Trends in Leaf Caloric Value from Tropical to Cold-Temperate Forests.

    PubMed

    Song, Guangyan; Li, Ying; Zhang, Jiahui; Li, Meiling; Hou, Jihua; He, Nianpeng

    2016-11-18

    Leaf caloric value (LCV) is a useful index to represent the conversion efficiency of leaves for solar energy. We investigated the spatial pattern of LCV and explored the factors (phylogeny, climate, and soil) that influence them at a large scale by determining LCV standardized by leaf area in 920 plant species from nine forest communities along the 3700 km North-South Transect of Eastern China. LCV ranged from 0.024 to 1.056 kJ cm -2 with an average of 0.151 kJ cm -2 . LCV declined linearly with increasing latitude along the transect. Altogether, 57.29% of the total variation in LCV was explained by phylogenetic group (44.03% of variation), climate (1.27%), soil (0.02%) and their interacting effects. Significant phylogenetic signals in LCV were observed not only within forest communities but also across the whole transect. This phylogenetic signal was higher at higher latitudes, reflecting latitudinal change in the species composition of forest communities from complex to simple. We inferred that climate influences the spatial pattern of LCV through directly regulating the species composition of plant communities, since most plant species might tolerate only a limited temperature range. Our findings provide new insights into the adaptive mechanisms in plant traits in future studies.

  17. Selection of associated heterotrophs by methane-oxidizing bacteria at different copper concentrations.

    PubMed

    van der Ha, David; Vanwonterghem, Inka; Hoefman, Sven; De Vos, Paul; Boon, Nico

    2013-03-01

    Due to the increasing atmospheric concentration of the greenhouse gas methane, more knowledge is needed on the management of methanotrophic communities. While most studies have focused on the characteristics of the methane-oxidizing bacteria (MOB), less is known about their interactions with the associated heterotrophs. Interpretative tools based on denaturing gradient gel electrophoresis allowed to evaluate the influence of copper-an important enzymatic regulator for MOB-on the activity and composition of the bacterial community. Over 30 days, enrichments with 0.1, 1.0 and 10 μM Cu(2+) respectively, showed comparable methane oxidation activities. The different copper concentrations did not create major shifts in the methanotrophic communities, as a Methylomonas sp. was able to establish dominance at all different copper concentrations by switching between both known methane monooxygenases. The associated heterotrophic communities showed continuous shifts, but over time all cultures evolved to a comparable composition, independent of the copper concentration. This indicates that the MOB selected for certain heterotrophs, possibly fulfilling vital processes such as removal of toxic compounds. The presence of a large heterotrophic food web indirectly depending on methane as sole carbon and energy source was confirmed by a clone library wherein MOB only formed a minority of the identified species.

  18. Non-random assembly of bacterioplankton communities in the subtropical north pacific ocean.

    PubMed

    Eiler, Alexander; Hayakawa, Darin H; Rappé, Michael S

    2011-01-01

    The exploration of bacterial diversity in the global ocean has revealed new taxa and previously unrecognized metabolic potential; however, our understanding of what regulates this diversity is limited. Using terminal restriction fragment length polymorphism (T-RFLP) data from bacterial small-subunit ribosomal RNA genes we show that, independent of depth and time, a large fraction of bacterioplankton co-occurrence patterns are non-random in the oligotrophic North Pacific subtropical gyre (NPSG). Pair-wise correlations of all identified operational taxonomic units (OTUs) revealed a high degree of significance, with 6.6% of the pair-wise co-occurrences being negatively correlated and 20.7% of them being positive. The most abundant OTUs, putatively identified as Prochlorococcus, SAR11, and SAR116 bacteria, were among the most correlated OTUs. As expected, bacterial community composition lacked statistically significant patterns of seasonality in the mostly stratified water column except in a few depth horizons of the sunlit surface waters, with higher frequency variations in community structure apparently related to populations associated with the deep chlorophyll maximum. Communities were structured vertically into epipelagic, mesopelagic, and bathypelagic populations. Permutation-based statistical analyses of T-RFLP data and their corresponding metadata revealed a broad range of putative environmental drivers controlling bacterioplankton community composition in the NPSG, including concentrations of inorganic nutrients and phytoplankton pigments. Together, our results suggest that deterministic forces such as environmental filtering and interactions among taxa determine bacterioplankton community patterns, and consequently affect ecosystem functions in the NPSG.

  19. Community-Level Analysis of psbA Gene Sequences and Irgarol Tolerance in Marine Periphyton▿

    PubMed Central

    Eriksson, K. M.; Clarke, A. K.; Franzen, L.-G.; Kuylenstierna, M.; Martinez, K.; Blanck, H.

    2009-01-01

    This study analyzes psbA gene sequences, predicted D1 protein sequences, species relative abundance, and pollution-induced community tolerance in marine periphyton communities exposed to the antifouling compound Irgarol 1051. The mechanism of action of Irgarol is the inhibition of photosynthetic electron transport at photosystem II by binding to the D1 protein. The metagenome of the communities was used to produce clone libraries containing fragments of the psbA gene encoding the D1 protein. Community tolerance was quantified with a short-term test for the inhibition of photosynthesis. The communities were established in a continuous flow of natural seawater through microcosms with or without added Irgarol. The selection pressure from Irgarol resulted in an altered species composition and an inducted community tolerance to Irgarol. Moreover, there was a very high diversity in the psbA gene sequences in the periphyton, and the composition of psbA and D1 fragments within the communities was dramatically altered by increased Irgarol exposure. Even though tolerance to this type of compound in land plants often depends on a single amino acid substitution (Ser264→Gly) in the D1 protein, this was not the case for marine periphyton species. Instead, the tolerance mechanism likely involves increased degradation of D1. When we compared sequences from low and high Irgarol exposure, differences in nonconserved amino acids were found only in the so-called PEST region of D1, which is involved in regulating its degradation. Our results suggest that environmental contamination with Irgarol has led to selection for high-turnover D1 proteins in marine periphyton communities at the west coast of Sweden. PMID:19088321

  20. Fire severity mediates climate-driven shifts in understorey community composition of black spruce stands of interior Alaska

    Treesearch

    Emily L. Bernhardt; Teresa N. Hollingsworth; F. Stuart Chapin

    2011-01-01

    Question: How do pre-fire conditions (community composition and environmental characteristics) and climate-driven disturbance characteristics (fire severity) affect post-fire community composition in black spruce stands? Location: Northern boreal forest, interior Alaska. Methods: We compared plant community composition and environmental stand characteristics in 14...

  1. The interacting roles of climate, soils, and plant production on soil microbial communities at a continental scale

    USGS Publications Warehouse

    Waldrop, Mark P.; Holloway, JoAnn M.; Smith, David; Goldhaber, Martin B.; Drenovsky, R.E.; Scow, K.M.; Dick, R.; Howard, Daniel M.; Wylie, Bruce K.; Grace, James B.

    2017-01-01

    Soil microbial communities control critical ecosystem processes such as decomposition, nutrient cycling, and soil organic matter formation. Continental scale patterns in the composition and functioning of microbial communities are related to climatic, biotic, and edaphic factors such as temperature and precipitation, plant community composition, and soil carbon, nitrogen, and pH. Although these relationships have been well explored individually, the examination of the factors that may act directly on microbial communities vs. those that may act indirectly through other ecosystem properties has not been well developed. To further such understanding, we utilized structural equation modeling (SEM) to evaluate a set of hypotheses about the direct and indirect effects of climatic, biotic, and edaphic variables on microbial communities across the continental United States. The primary goals of this work were to test our current understanding of the interactions among climate, soils, and plants in affecting microbial community composition, and to examine whether variation in the composition of the microbial community affects potential rates of soil enzymatic activities. A model of interacting factors created through SEM shows several expected patterns. Distal factors such as climate had indirect effects on microbial communities by influencing plant productivity, soil mineralogy, and soil pH, but factors related to soil organic matter chemistry had the most direct influence on community composition. We observed that both plant productivity and soil mineral composition were important indirect influences on community composition at the continental scale, both interacting to affect organic matter content and microbial biomass and ultimately community composition. Although soil hydrolytic enzymes were related to the moisture regime and soil carbon, oxidative enzymes were also affected by community composition, reflected in the abundance of soil fungi. These results highlight that soil microbial communities can be modeled within the context of multiple interacting ecosystem properties acting both directly and indirectly on their composition and function, and this provides a rich and informative context with which to examine communities. This work also highlights that variation in climate, microbial biomass, and microbial community composition can affect maximum rates of soil enzyme activities, potentially influencing rates of decomposition and nutrient mineralization in soils.

  2. Nitrogen Addition Regulates Soil Nematode Community Composition through Ammonium Suppression

    PubMed Central

    Wei, Cunzheng; Zheng, Huifen; Li, Qi; Lü, Xiaotao; Yu, Qiang; Zhang, Haiyang; Chen, Quansheng; He, Nianpeng; Kardol, Paul; Liang, Wenju; Han, Xingguo

    2012-01-01

    Nitrogen (N) enrichment resulting from anthropogenic activities has greatly changed the composition and functioning of soil communities. Nematodes are one of the most abundant and diverse groups of soil organisms, and they occupy key trophic positions in the soil detritus food web. Nematodes have therefore been proposed as useful indicators for shifts in soil ecosystem functioning under N enrichment. Here, we monitored temporal dynamics of the soil nematode community using a multi-level N addition experiment in an Inner Mongolia grassland. Measurements were made three years after the start of the experiment. We used structural equation modeling (SEM) to explore the mechanisms regulating nematode responses to N enrichment. Across the N enrichment gradient, significant reductions in total nematode abundance, diversity (H' and taxonomic richness), maturity index (MI), and the abundance of root herbivores, fungivores and omnivores-predators were found in August. Root herbivores recovered in September, contributing to the temporal variation of total nematode abundance across the N gradient. Bacterivores showed a hump-shaped relationship with N addition rate, both in August and September. Ammonium concentration was negatively correlated with the abundance of total and herbivorous nematodes in August, but not in September. Ammonium suppression explained 61% of the variation in nematode richness and 43% of the variation in nematode trophic group composition. Ammonium toxicity may occur when herbivorous nematodes feed on root fluid, providing a possible explanation for the negative relationship between herbivorous nematodes and ammonium concentration in August. We found a significantly positive relationship between fungivores and fungal phospholipid fatty acids (PLFA), suggesting bottom-up control of fungivores. No such relationship was found between bacterivorous nematodes and bacterial PLFA. Our findings contribute to the understanding of effects of N enrichment in semiarid grassland on soil nematode trophic groups, and the cascading effects in the detrital soil food web. PMID:22952671

  3. Coupling Spatiotemporal Community Assembly Processes to Changes in Microbial Metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, Emily B.; Crump, Alex R.; Resch, Charles T.

    Community assembly processes govern shifts in species abundances in response to environmental change, yet our understanding of assembly remains largely decoupled from ecosystem function. Here, we test hypotheses regarding assembly and function across space and time using hyporheic microbial communities as a model system. We pair sampling of two habitat types through hydrologic fluctuation with null modeling and multivariate statistics. We demonstrate that dual selective pressures assimilate to generate compositional changes at distinct timescales among habitat types, resulting in contrasting associations of Betaproteobacteria and Thaumarchaeota with selection and with seasonal changes in aerobic metabolism. Our results culminate in a conceptualmore » model in which selection from contrasting environments regulates taxon abundance and ecosystem function through time, with increases in function when oscillating selection opposes stable selective pressures. Our model is applicable within both macrobial and microbial ecology and presents an avenue for assimilating community assembly processes into predictions of ecosystem function.« less

  4. Cross-Cordillera exchange mediated by the Panama Canal increased the species richness of local freshwater fish assemblages.

    PubMed Central

    Smith, Scott A.; Bell, Graham; Bermingham, Eldredge

    2004-01-01

    Completion of the Panama Canal in 1914 breached the continental divide and set into motion a natural experiment of unprecedented magnitude by bringing previously isolated freshwater fish communities into contact. The construction of a freshwater corridor connecting evolutionarily isolated communities in Pacific and Caribbean watersheds dramatically increased the rate of dispersal, without directly affecting species interactions. Here, we report that a large fraction of species have been able to establish themselves on the other side of the continental divide, whereas no species have become extinct, leading to a local increase in species richness. Our results suggest that communities are not saturated and that competitive exclusion does not occur over the time-scale previously envisioned. Moreover, the results of this unintentional experiment demonstrate that community composition and species richness were regulated by the regional process of dispersal, rather than by local processes such as competition and predation. PMID:15347510

  5. Marine protected areas increase resilience among coral reef communities.

    PubMed

    Mellin, Camille; Aaron MacNeil, M; Cheal, Alistair J; Emslie, Michael J; Julian Caley, M

    2016-06-01

    With marine biodiversity declining globally at accelerating rates, maximising the effectiveness of conservation has become a key goal for local, national and international regulators. Marine protected areas (MPAs) have been widely advocated for conserving and managing marine biodiversity yet, despite extensive research, their benefits for conserving non-target species and wider ecosystem functions remain unclear. Here, we demonstrate that MPAs can increase the resilience of coral reef communities to natural disturbances, including coral bleaching, coral diseases, Acanthaster planci outbreaks and storms. Using a 20-year time series from Australia's Great Barrier Reef, we show that within MPAs, (1) reef community composition was 21-38% more stable; (2) the magnitude of disturbance impacts was 30% lower and (3) subsequent recovery was 20% faster that in adjacent unprotected habitats. Our results demonstrate that MPAs can increase the resilience of marine communities to natural disturbance possibly through herbivory, trophic cascades and portfolio effects. © 2016 John Wiley & Sons Ltd/CNRS.

  6. Impact of Peat Mining and Restoration on Methane Turnover Potential and Methane-Cycling Microorganisms in a Northern Bog.

    PubMed

    Reumer, Max; Harnisz, Monika; Lee, Hyo Jung; Reim, Andreas; Grunert, Oliver; Putkinen, Anuliina; Fritze, Hannu; Bodelier, Paul L E; Ho, Adrian

    2018-02-01

    Ombrotrophic peatlands are a recognized global carbon reservoir. Without restoration and peat regrowth, harvested peatlands are dramatically altered, impairing their carbon sink function, with consequences for methane turnover. Previous studies determined the impact of commercial mining on the physicochemical properties of peat and the effects on methane turnover. However, the response of the underlying microbial communities catalyzing methane production and oxidation have so far received little attention. We hypothesize that with the return of Sphagnum spp. postharvest, methane turnover potential and the corresponding microbial communities will converge in a natural and restored peatland. To address our hypothesis, we determined the potential methane production and oxidation rates in natural (as a reference), actively mined, abandoned, and restored peatlands over two consecutive years. In all sites, the methanogenic and methanotrophic population sizes were enumerated using quantitative PCR (qPCR) assays targeting the mcrA and pmoA genes, respectively. Shifts in the community composition were determined using Illumina MiSeq sequencing of the mcrA gene and a pmoA -based terminal restriction fragment length polymorphism (t-RFLP) analysis, complemented by cloning and sequence analysis of the mmoX gene. Peat mining adversely affected methane turnover potential, but the rates recovered in the restored site. The recovery in potential activity was reflected in the methanogenic and methanotrophic abundances. However, the microbial community composition was altered, being more pronounced for the methanotrophs. Overall, we observed a lag between the recovery of the methanogenic/methanotrophic activity and the return of the corresponding microbial communities, suggesting that a longer duration (>15 years) is needed to reverse mining-induced effects on the methane-cycling microbial communities. IMPORTANCE Ombrotrophic peatlands are a crucial carbon sink, but this environment is also a source of methane, an important greenhouse gas. Methane emission in peatlands is regulated by methane production and oxidation catalyzed by methanogens and methanotrophs, respectively. Methane-cycling microbial communities have been documented in natural peatlands. However, less is known of their response to peat mining and of the recovery of the community after restoration. Mining exerts an adverse impact on potential methane production and oxidation rates and on methanogenic and methanotrophic population abundances. Peat mining also induced a shift in the methane-cycling microbial community composition. Nevertheless, with the return of Sphagnum spp. in the restored site after 15 years, methanogenic and methanotrophic activity and population abundance recovered well. The recovery, however, was not fully reflected in the community composition, suggesting that >15 years are needed to reverse mining-induced effects. Copyright © 2018 American Society for Microbiology.

  7. Antarctic Phytoplankton down-regulate Their Carbon-Concentrating Mechanisms under High CO2 with no Change in Growth Rates

    NASA Astrophysics Data System (ADS)

    Kranz, S. A.; Young, J. N.; Goldman, J.; Tortell, P. D.; Morel, F. M.

    2016-02-01

    High-latitude oceans, in particular the coastal Western Antarctic Peninsula (WAP) region of the Southern Ocean, are experiencing a rapidly changing environment due to rising surface ocean temperatures and CO2 concentrations. However, the direct effect of increasing CO2 on polar ocean primary production is unclear, with a number of experiments showing conflicting results. It has been hypothesized that increased CO2 may cause a reduction of the energy-intensive carbon concentrating mechanism (CCM) in phytoplankton, and these energy savings may lead to increased productivity. To test this hypothesis, we incubated natural phytoplankton communities in the WAP under high (800 ppm), current (400 ppm) and low (100 ppm) CO2 for 2 to 3 wk during the austral spring-summer of 2012/2013. In 2 incubations with diatom-dominated phytoplankton assemblages, high CO2 led to a clear down-regulation of CCM activity, as evidenced by an increase in half-saturation constants for CO2, a decrease in external carbonic anhydrase activity and a higher biological fractionation of stable carbon isotopes. In a third incubation, there was no observable regulation of the CCM. We did not observe a significant effect of CO2 on growth rates or community composition in the diatom-dominated communities. The lack of a measureable effect on growth despite CCM down-regulation is likely explained by a very small energetic requirement to concentrate CO2 and saturate Rubisco at low temperatures.

  8. Temporal changes in randomness of bird communities across Central Europe.

    PubMed

    Renner, Swen C; Gossner, Martin M; Kahl, Tiemo; Kalko, Elisabeth K V; Weisser, Wolfgang W; Fischer, Markus; Allan, Eric

    2014-01-01

    Many studies have examined whether communities are structured by random or deterministic processes, and both are likely to play a role, but relatively few studies have attempted to quantify the degree of randomness in species composition. We quantified, for the first time, the degree of randomness in forest bird communities based on an analysis of spatial autocorrelation in three regions of Germany. The compositional dissimilarity between pairs of forest patches was regressed against the distance between them. We then calculated the y-intercept of the curve, i.e. the 'nugget', which represents the compositional dissimilarity at zero spatial distance. We therefore assume, following similar work on plant communities, that this represents the degree of randomness in species composition. We then analysed how the degree of randomness in community composition varied over time and with forest management intensity, which we expected to reduce the importance of random processes by increasing the strength of environmental drivers. We found that a high portion of the bird community composition could be explained by chance (overall mean of 0.63), implying that most of the variation in local bird community composition is driven by stochastic processes. Forest management intensity did not consistently affect the mean degree of randomness in community composition, perhaps because the bird communities were relatively insensitive to management intensity. We found a high temporal variation in the degree of randomness, which may indicate temporal variation in assembly processes and in the importance of key environmental drivers. We conclude that the degree of randomness in community composition should be considered in bird community studies, and the high values we find may indicate that bird community composition is relatively hard to predict at the regional scale.

  9. Latitudinal variation of leaf stomatal traits from species to community level in forests: linkage with ecosystem productivity

    PubMed Central

    Wang, Ruili; Yu, Guirui; He, Nianpeng; Wang, Qiufeng; Zhao, Ning; Xu, Zhiwei; Ge, Jianping

    2015-01-01

    To explore the latitudinal variation of stomatal traits from species to community level and their linkage with net primary productivity (NPP), we investigated leaf stomatal density (SDL) and stomatal length (SLL) across 760 species from nine forest ecosystems in eastern China, and calculated the community-level SD (SDC) and SL (SLC) through species-specific leaf area index (LAI). Our results showed that latitudinal variation in species-level SDL and SLL was minimal, but community-level SDC and SLC decreased clearly with increasing latitude. The relationship between SD and SL was negative across species and different plant functional types (PFTs), but positive at the community level. Furthermore, community-level SDC correlated positively with forest NPP, and explained 51% of the variation in NPP. These findings indicate that the trade-off by regulating SDL and SLL may be an important strategy for plant individuals to adapt to environmental changes, and temperature acts as the main factor influencing community-level stomatal traits through alteration of species composition. Importantly, our findings provide new insight into the relationship between plant traits and ecosystem function. PMID:26403303

  10. Emotion regulation and well-being in primary classrooms situated in low-socioeconomic communities.

    PubMed

    Somerville, Matthew P; Whitebread, David

    2018-04-14

    Although emotion is central to most models of children's well-being, few studies have looked at how well-being is related to the ways in which children regulate their emotions. The aim of this study was to examine the associations among children's emotion regulation strategy choice and their emotional expression, behaviour, and well-being. The study also investigated whether contextual factors influenced the emotion regulation strategies children chose to use. Participants (N = 33) were selected from four Year 5/6 composite classrooms situated in low-socioeconomic urban communities in New Zealand. Questionnaires were used to measure children's well-being and teacher-reported emotional and behavioural problems. Emotional expression and emotion regulation strategies were measured through video-recorded observations in the classroom. A total of 1,184 instances of emotion regulation strategy use were coded using a framework based on Gross' process model of emotion regulation. The findings highlight the complexity of the relations among emotion regulation, emotion expression, and well-being. Some strategies, such as Cognitive Reappraisal, were effective at upregulating negative emotion in the short term, yet not strongly associated with well-being. Others, such as Situation Modification: Physical, were positively associated with well-being, yet not with an immediate change in a child's emotional experience. The findings also suggest children flexibly use different strategies in relation to different contextual demands. These findings may be used to guide future intervention efforts which target emotion regulation strategy use as well as those which focus on teachers' support of children during emotionally challenging situations. © 2018 The British Psychological Society.

  11. Habitat filtering of bacterioplankton communities above polymetallic nodule fields and sediments in the Clarion-Clipperton zone of the Pacific Ocean.

    PubMed

    Lindh, Markus V; Maillot, Brianne M; Smith, Craig R; Church, Matthew J

    2018-04-01

    Deep-sea mining of commercially valuable polymetallic nodule fields will generate a seabed sediment plume into the water column. Yet, the response of bacterioplankton communities, critical in regulating energy and matter fluxes in marine ecosystems, to such disturbances is unknown. Metacommunity theory, traditionally used in general ecology for macroorganisms, offers mechanistic understanding on the relative role of spatial differences compared with local environmental conditions (habitat filtering) for community assembly. We examined bacterioplankton metacommunities using 16S rRNA amplicons from the Clarion-Clipperton Zone (CCZ) in the eastern Pacific Ocean and in global ocean transect samples to determine sensitivity of these assemblages to environmental perturbations. Habitat filtering was the main assembly mechanism of bacterioplankton community composition in the epi- and mesopelagic waters of the CCZ and the Tara Oceans transect. Bathy- and abyssopelagic bacterioplankton assemblages were mainly assembled by undetermined metacommunity types or neutral and dispersal-driven patch-dynamics for the CCZ and the Malaspina transect. Environmental disturbances may alter the structure of upper-ocean microbial assemblages, with potentially even more substantial, yet unknown, impact on deep-sea communities. Predicting such responses in bacterioplankton assemblage dynamics can improve our understanding of microbially-mediated regulation of ecosystem services in the abyssal seabed likely to be exploited by future deep-sea mining operations. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Characterizing fish community diversity across Virginia landscapes: Prerequisite for conservation

    USGS Publications Warehouse

    Angermeier, P.L.; Winston, M.R.

    1999-01-01

    The number of community types occurring within landscapes is an important, but often unprotected, component of biological diversity. Generally applicable protocols for characterizing community diversity need to be developed to facilitate conservation. We used several multivariate techniques to analyze geographic variation in the composition of fish communities in Virginia streams. We examined relationships between community composition and six landscape variables: drainage basin, physiography, stream order, elevation, channel slope, and map coordinates. We compared patterns at two scales (statewide and subdrainage-specific) to assess sensitivity of community classification to spatial scale. We also compared patterns based on characterizing communities by species composition vs. ecological composition. All landscape variables explained significant proportions of the variance in community composition. Statewide, they explained 32% of the variance in species composition and 48% of the variance in ecological composition. Typical communities in each drainage or physiography were statistically distinctive. Communities in different combinations of drainage, physiography, and stream size were even more distinctive, but composition was strongly spatially autocorrelated. Ecological similarity and species similarity of community pairs were strongly related, but replacement by ecologically similar species was common among drainage-physiography combinations. Landscape variables explained significant proportions of variance in community composition within selected subdrainages, but proportions were less than at the statewide scale, and the explanatory power of individual variables varied considerably among subdrainages. Community variation within subdrainages appeared to be much more closely related to environmental variation than to replacement among ecologically similar species. Our results suggest that taxonomic and ecological characterizations of community composition are complementary; both are useful in a conservation context. Landscape features such as drainage, physiography, and water body size generally may provide a basis for assessing aquatic community diversity, especially in regions where the biota is poorly known. Systematic conservation of community types would be a major advance relative to most current conservation programs, which typically focus narrowly on populations of imperiled species. More effective conservation of aquatic biodiversity will require new approaches that recognize the value of both species and assemblages, and that emphasize protection of key landscape-scale processes.

  13. Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: What lies ahead?

    DOE PAGES

    Classen, Aimée T.; Sundqvist, Maja K.; Henning, Jeremiah A.; ...

    2015-08-07

    Global change is altering species distributions and thus interactions among organisms. Organisms live in concert with thousands of other species, some beneficial, some pathogenic, some which have little to no effect in complex communities. Since natural communities are composed of organisms with very different life history traits and dispersal ability it is unlikely they will all respond to climatic change in a similar way. Disjuncts in plant-pollinator and plant-herbivore interactions under global change have been relatively well described, but plant-soil microorganism and soil microbe-microbe relationships have received less attention. Since soil microorganisms regulate nutrient transformations, provide plants with nutrients, allowmore » co-existence among neighbors, and control plant populations, changes in soil microorganism-plant interactions could have significant ramifications for plant community composition and ecosystem function. Finally, in this paper we explore how climatic change affects soil microbes and soil microbe-plant interactions directly and indirectly, discuss what we see as emerging and exciting questions and areas for future research, and discuss what ramifications changes in these interactions may have on the composition and function of ecosystems.« less

  14. Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: What lies ahead?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Classen, Aimée T.; Sundqvist, Maja K.; Henning, Jeremiah A.

    Global change is altering species distributions and thus interactions among organisms. Organisms live in concert with thousands of other species, some beneficial, some pathogenic, some which have little to no effect in complex communities. Since natural communities are composed of organisms with very different life history traits and dispersal ability it is unlikely they will all respond to climatic change in a similar way. Disjuncts in plant-pollinator and plant-herbivore interactions under global change have been relatively well described, but plant-soil microorganism and soil microbe-microbe relationships have received less attention. Since soil microorganisms regulate nutrient transformations, provide plants with nutrients, allowmore » co-existence among neighbors, and control plant populations, changes in soil microorganism-plant interactions could have significant ramifications for plant community composition and ecosystem function. Finally, in this paper we explore how climatic change affects soil microbes and soil microbe-plant interactions directly and indirectly, discuss what we see as emerging and exciting questions and areas for future research, and discuss what ramifications changes in these interactions may have on the composition and function of ecosystems.« less

  15. Abandoned floodplain plant communities along a regulated dryland river

    USGS Publications Warehouse

    Reynolds, L. V.; Shafroth, Patrick B.; House, P. K.

    2014-01-01

    Rivers and their floodplains worldwide have changed dramatically over the last century because of regulation by dams, flow diversions and channel stabilization. Floodplains no longer inundated by river flows following dam-induced flood reduction comprise large areas of bottomland habitat, but the effects of abandonment on plant communities are not well understood. Using a hydraulic flow model, geomorphic mapping and field surveys, we addressed the following questions along the Bill Williams River, Arizona: (i) What per cent of the bottomland do abandoned floodplains comprise? and (ii) Are abandoned floodplains quantitatively different from adjacent xeric and riparian surfaces in terms of vegetation composition and surface sediment? We found that nearly 70% of active channel and floodplain area was abandoned following dam installation. Abandoned floodplains along the Bill Williams River tend to be similar to each other yet distinct from neighbouring habitats: they have been altered physically from their historic state, leading to distinct combinations of surface sediments, hydrology and plant communities. Abandoned floodplains may transition to xeric communities over time but are likely to retain some riparian qualities as long as there is access to relatively shallow ground water. With expected increases in water demand and drying climatic conditions in many regions, these surfaces and associated vegetation will continue to be extensive in riparian landscapes worldwide

  16. Methane dynamics regulated by microbial community response to permafrost thaw.

    PubMed

    McCalley, Carmody K; Woodcroft, Ben J; Hodgkins, Suzanne B; Wehr, Richard A; Kim, Eun-Hae; Mondav, Rhiannon; Crill, Patrick M; Chanton, Jeffrey P; Rich, Virginia I; Tyson, Gene W; Saleska, Scott R

    2014-10-23

    Permafrost contains about 50% of the global soil carbon. It is thought that the thawing of permafrost can lead to a loss of soil carbon in the form of methane and carbon dioxide emissions. The magnitude of the resulting positive climate feedback of such greenhouse gas emissions is still unknown and may to a large extent depend on the poorly understood role of microbial community composition in regulating the metabolic processes that drive such ecosystem-scale greenhouse gas fluxes. Here we show that changes in vegetation and increasing methane emissions with permafrost thaw are associated with a switch from hydrogenotrophic to partly acetoclastic methanogenesis, resulting in a large shift in the δ(13)C signature (10-15‰) of emitted methane. We used a natural landscape gradient of permafrost thaw in northern Sweden as a model to investigate the role of microbial communities in regulating methane cycling, and to test whether a knowledge of community dynamics could improve predictions of carbon emissions under loss of permafrost. Abundance of the methanogen Candidatus 'Methanoflorens stordalenmirensis' is a key predictor of the shifts in methane isotopes, which in turn predicts the proportions of carbon emitted as methane and as carbon dioxide, an important factor for simulating the climate feedback associated with permafrost thaw in global models. By showing that the abundance of key microbial lineages can be used to predict atmospherically relevant patterns in methane isotopes and the proportion of carbon metabolized to methane during permafrost thaw, we establish a basis for scaling changing microbial communities to ecosystem isotope dynamics. Our findings indicate that microbial ecology may be important in ecosystem-scale responses to global change.

  17. Pyridine-type alkaloid composition affects bacterial community composition of floral nectar

    PubMed Central

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Santhanam, Rakesh; Kumar, Pavan; Baldwin, Ian T.; Halpern, Malka

    2015-01-01

    Pyridine-type alkaloids are most common in Nicotiana species. To study the effect of alkaloid composition on bacterial community composition in floral nectar, we compared the nicotine-rich wild type (WT) N. attenuata, the nicotine biosynthesis-silenced N. attenuata that was rich in anatabine and the anabasine-rich WT N. glauca plants. We found that the composition of these secondary metabolites in the floral nectar drastically affected the bacterial community richness, diversity and composition. Significant differences were found between the bacterial community compositions in the nectar of the three plants with a much greater species richness and diversity in the nectar from the transgenic plant. The highest community composition similarity index was detected between the two wild type plants. The different microbiome composition and diversity, caused by the different pyridine-type alkaloid composition, could modify the nutritional content of the nectar and consequently, may contribute to the change in the nectar consumption and visitation. These may indirectly have an effect on plant fitness. PMID:26122961

  18. Pyridine-type alkaloid composition affects bacterial community composition of floral nectar.

    PubMed

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Santhanam, Rakesh; Kumar, Pavan; Baldwin, Ian T; Halpern, Malka

    2015-06-30

    Pyridine-type alkaloids are most common in Nicotiana species. To study the effect of alkaloid composition on bacterial community composition in floral nectar, we compared the nicotine-rich wild type (WT) N. attenuata, the nicotine biosynthesis-silenced N. attenuata that was rich in anatabine and the anabasine-rich WT N. glauca plants. We found that the composition of these secondary metabolites in the floral nectar drastically affected the bacterial community richness, diversity and composition. Significant differences were found between the bacterial community compositions in the nectar of the three plants with a much greater species richness and diversity in the nectar from the transgenic plant. The highest community composition similarity index was detected between the two wild type plants. The different microbiome composition and diversity, caused by the different pyridine-type alkaloid composition, could modify the nutritional content of the nectar and consequently, may contribute to the change in the nectar consumption and visitation. These may indirectly have an effect on plant fitness.

  19. Community size and composition of ammonia oxidizers and denitrifiers in an alluvial intertidal wetland ecosystem

    PubMed Central

    Hu, Ziye; Meng, Han; Shi, Jin-Huan; Bu, Nai-Shun; Fang, Chang-Ming; Quan, Zhe-Xue

    2014-01-01

    Global nitrogen cycling is mainly mediated by the activity of microorganisms. Nitrogen cycle processes are mediated by functional groups of microorganisms that are affected by constantly changing environmental conditions and substrate availability. In this study, we investigated the temporal and spatial patterns of nitrifier and denitrifier communities in an intertidal wetland. Soil samples were collected over four distinct seasons from three locations with different vegetative cover. Multiple environmental factors and process rates were measured and analyzed together with the community size and composition profiles. We observed that the community size and composition of the nitrifiers and denitrifiers are affected significantly by seasonal factors, while vegetative cover affected the community composition. The seasonal impacts on the community size of ammonia oxidizing archaea (AOA) are much higher than that of ammonia oxidizing bacteria (AOB). The seasonal change was a more important indicator for AOA community composition patterns, while vegetation was more important for the AOB community patterns. The microbial process rates were correlated with both the community size and composition. PMID:25101072

  20. Effects of Soil Organic Matter Properties and Microbial Community Composition on Enzyme Activities in Cryoturbated Arctic Soils

    PubMed Central

    Schnecker, Jörg; Wild, Birgit; Hofhansl, Florian; Eloy Alves, Ricardo J.; Bárta, Jiří; Čapek, Petr; Fuchslueger, Lucia; Gentsch, Norman; Gittel, Antje; Guggenberger, Georg; Hofer, Angelika; Kienzl, Sandra; Knoltsch, Anna; Lashchinskiy, Nikolay; Mikutta, Robert; Šantrůčková, Hana; Shibistova, Olga; Takriti, Mounir; Urich, Tim; Weltin, Georg; Richter, Andreas

    2014-01-01

    Enzyme-mediated decomposition of soil organic matter (SOM) is controlled, amongst other factors, by organic matter properties and by the microbial decomposer community present. Since microbial community composition and SOM properties are often interrelated and both change with soil depth, the drivers of enzymatic decomposition are hard to dissect. We investigated soils from three regions in the Siberian Arctic, where carbon rich topsoil material has been incorporated into the subsoil (cryoturbation). We took advantage of this subduction to test if SOM properties shape microbial community composition, and to identify controls of both on enzyme activities. We found that microbial community composition (estimated by phospholipid fatty acid analysis), was similar in cryoturbated material and in surrounding subsoil, although carbon and nitrogen contents were similar in cryoturbated material and topsoils. This suggests that the microbial community in cryoturbated material was not well adapted to SOM properties. We also measured three potential enzyme activities (cellobiohydrolase, leucine-amino-peptidase and phenoloxidase) and used structural equation models (SEMs) to identify direct and indirect drivers of the three enzyme activities. The models included microbial community composition, carbon and nitrogen contents, clay content, water content, and pH. Models for regular horizons, excluding cryoturbated material, showed that all enzyme activities were mainly controlled by carbon or nitrogen. Microbial community composition had no effect. In contrast, models for cryoturbated material showed that enzyme activities were also related to microbial community composition. The additional control of microbial community composition could have restrained enzyme activities and furthermore decomposition in general. The functional decoupling of SOM properties and microbial community composition might thus be one of the reasons for low decomposition rates and the persistence of 400 Gt carbon stored in cryoturbated material. PMID:24705618

  1. Phylogenetic and functional potential links pH and N2O emissions in pasture soils.

    PubMed

    Samad, Md Sainur; Biswas, Ambarish; Bakken, Lars R; Clough, Timothy J; de Klein, Cecile A M; Richards, Karl G; Lanigan, Gary J; Morales, Sergio E

    2016-10-26

    Denitrification is mediated by microbial, and physicochemical, processes leading to nitrogen loss via N 2 O and N 2 emissions. Soil pH regulates the reduction of N 2 O to N 2 , however, it can also affect microbial community composition and functional potential. Here we simultaneously test the link between pH, community composition, and the N 2 O emission ratio (N 2 O/(NO + N 2 O + N 2 )) in 13 temperate pasture soils. Physicochemical analysis, gas kinetics, 16S rRNA amplicon sequencing, metagenomic and quantitative PCR (of denitrifier genes: nirS, nirK, nosZI and nosZII) analysis were carried out to characterize each soil. We found strong evidence linking pH to both N 2 O emission ratio and community changes. Soil pH was negatively associated with N 2 O emission ratio, while being positively associated with both community diversity and total denitrification gene (nir &nos) abundance. Abundance of nosZII was positively linked to pH, and negatively linked to N 2 O emissions. Our results confirm that pH imposes a general selective pressure on the entire community and that this results in changes in emission potential. Our data also support the general model that with increased microbial diversity efficiency increases, demonstrated in this study with lowered N 2 O emission ratio through more efficient conversion of N 2 O to N 2 .

  2. Phylogenetic and functional potential links pH and N2O emissions in pasture soils

    NASA Astrophysics Data System (ADS)

    Samad, M. D. Sainur; Biswas, Ambarish; Bakken, Lars R.; Clough, Timothy J.; de Klein, Cecile A. M.; Richards, Karl G.; Lanigan, Gary J.; Morales, Sergio E.

    2016-10-01

    Denitrification is mediated by microbial, and physicochemical, processes leading to nitrogen loss via N2O and N2 emissions. Soil pH regulates the reduction of N2O to N2, however, it can also affect microbial community composition and functional potential. Here we simultaneously test the link between pH, community composition, and the N2O emission ratio (N2O/(NO + N2O + N2)) in 13 temperate pasture soils. Physicochemical analysis, gas kinetics, 16S rRNA amplicon sequencing, metagenomic and quantitative PCR (of denitrifier genes: nirS, nirK, nosZI and nosZII) analysis were carried out to characterize each soil. We found strong evidence linking pH to both N2O emission ratio and community changes. Soil pH was negatively associated with N2O emission ratio, while being positively associated with both community diversity and total denitrification gene (nir & nos) abundance. Abundance of nosZII was positively linked to pH, and negatively linked to N2O emissions. Our results confirm that pH imposes a general selective pressure on the entire community and that this results in changes in emission potential. Our data also support the general model that with increased microbial diversity efficiency increases, demonstrated in this study with lowered N2O emission ratio through more efficient conversion of N2O to N2.

  3. Phylogenetic and functional potential links pH and N2O emissions in pasture soils

    PubMed Central

    Samad, M. d. Sainur; Biswas, Ambarish; Bakken, Lars R.; Clough, Timothy J.; de Klein, Cecile A. M.; Richards, Karl G.; Lanigan, Gary J.; Morales, Sergio E.

    2016-01-01

    Denitrification is mediated by microbial, and physicochemical, processes leading to nitrogen loss via N2O and N2 emissions. Soil pH regulates the reduction of N2O to N2, however, it can also affect microbial community composition and functional potential. Here we simultaneously test the link between pH, community composition, and the N2O emission ratio (N2O/(NO + N2O + N2)) in 13 temperate pasture soils. Physicochemical analysis, gas kinetics, 16S rRNA amplicon sequencing, metagenomic and quantitative PCR (of denitrifier genes: nirS, nirK, nosZI and nosZII) analysis were carried out to characterize each soil. We found strong evidence linking pH to both N2O emission ratio and community changes. Soil pH was negatively associated with N2O emission ratio, while being positively associated with both community diversity and total denitrification gene (nir & nos) abundance. Abundance of nosZII was positively linked to pH, and negatively linked to N2O emissions. Our results confirm that pH imposes a general selective pressure on the entire community and that this results in changes in emission potential. Our data also support the general model that with increased microbial diversity efficiency increases, demonstrated in this study with lowered N2O emission ratio through more efficient conversion of N2O to N2. PMID:27782174

  4. Plant rhizosphere species-specific stoichiometry and regulation of extracellular enzyme and microbial community structure

    NASA Astrophysics Data System (ADS)

    Bell, C. W.; Calderon, F.; Pendall, E.; Wallenstein, M. D.

    2012-12-01

    Plant communities affect the activity and composition of soil microbial communities through alteration of the soil environment during root growth; substrate availability through root exudation; nutrient availability through plant uptake; and moisture regimes through transpiration. As a result, positive feedbacks in soil properties can result from alterations in microbial community composition and function in the rhizosphere zone. At the ecosystem-scale, many properties of soil microbial communities can vary between forest stands dominated by different species, including community composition and stoichiometry. However, the influence of smaller individual plants on grassland soils and microbial communities is less well documented. There is evidence to suggest that some plants can modify their soil environment in a manner that favors their persistence. For example, when Bromus tectorum plants invade, soil microbial communities tend to have higher N mineralization rates (in the rhizosphere zone) relative to native plants. If tight linkages between individual plant species and microbial communities inhabiting the rhizosphere exist, we hypothesized that any differences among plant species specific rhizosphere zones could be observed by shifts in: 1) soil -rhizosphere microbial community structure, 2) enzymatic C:N:P acquisition activities, 3) alterations in the soil C chemistry composition in the rhizosphere, and 4) plant - soil - microbial C:N:P elemental stoichiometry. We selected and grew 4 different C3 grasses species including three species native to the Shortgrass Steppe region (Pascopyrum smithii, Koeleria macrantha, and Vulpia octoflora) and one exotic invasive plant species (B. tectorum) in root-boxes that are designed to allow for easy access to the rhizosphere. The field soil was homogenized using a 4mm sieve and mixed 1:1 with sterile sand and seeded as monocultures (24 replicate root - boxes for each species). Plant and soil samples (along with no - plant control soil samples) were collected on day 28, 78, and 148 (N = 4 /sample period/species). Microbial community structure was quantified using the barcoded pyrosequencing protocols. We measured the potential activity of seven hydrolytic soil enzymes to represent the degradation of C, N, and P-rich substrates. Soil microbial C:N biomass responses to specific plant rhizospheres (MBC and MBN) were measured using the chloroform fumigation extraction method followed by DOC & N analysis. Fourier Transform Infrared Spectroscopy was used to assess differences in plant and soil C chemistry. We found that species specific rhizospheres are characteristic of very different soil chemical, edaphic, and microbial properties. These plant species act as gateways that introduce variability into soil C, N, and P ecosystem functional dynamics directly facilitated by rhizosphere - microbe associations. Our results suggest that nutrient stoichiometry within plant species' rhizospheres is a useful tool for identifying intra-ecosystem functional patterns. By identifying what and how specific species rhizospheres differ among the overall plant community, we can better predict how below-ground microbial community function and subsequent ecosystem processes can be influenced by alterations in plant community shifts based on the rhizosphere effects.

  5. Low Light Availability Alters Root Exudation and Reduces Putative Beneficial Microorganisms in Seagrass Roots

    PubMed Central

    Martin, Belinda C.; Gleeson, Deirdre; Statton, John; Siebers, Andre R.; Grierson, Pauline; Ryan, Megan H.; Kendrick, Gary A.

    2018-01-01

    Seagrass roots host a diverse microbiome that is critical for plant growth and health. Composition of microbial communities can be regulated in part by root exudates, but the specifics of these interactions in seagrass rhizospheres are still largely unknown. As light availability controls primary productivity, reduced light may impact root exudation and consequently the composition of the root microbiome. Hence, we analyzed the influence of light availability on root exudation and community structure of the root microbiome of three co-occurring seagrass species, Halophila ovalis, Halodule uninervis and Cymodocea serrulata. Plants were grown under four light treatments in mesocosms for 2 weeks; control (100% surface irradiance (SI), medium (40% SI), low (20% SI) and fluctuating light (10 days 20% and 4 days 100%). 16S rDNA amplicon sequencing revealed that microbial diversity, composition and predicted function were strongly influenced by the presence of seagrass roots, such that root microbiomes were unique to each seagrass species. Reduced light availability altered seagrass root exudation, as characterized using fluorescence spectroscopy, and altered the composition of seagrass root microbiomes with a reduction in abundance of potentially beneficial microorganisms. Overall, this study highlights the potential for above-ground light reduction to invoke a cascade of changes from alterations in root exudation to a reduction in putative beneficial microorganisms and, ultimately, confirms the importance of the seagrass root environment – a critical, but often overlooked space. PMID:29375529

  6. Prolonged restraint stressor exposure in outbred CD-1 mice impacts microbiota, colonic inflammation, and short chain fatty acids.

    PubMed

    Maltz, Ross M; Keirsey, Jeremy; Kim, Sandra C; Mackos, Amy R; Gharaibeh, Raad Z; Moore, Cathy C; Xu, Jinyu; Bakthavatchalu, Vasudevan; Somogyi, Arpad; Bailey, Michael T

    2018-01-01

    Stressor-exposure has been shown to exacerbate inflammation and change the composition of the gastrointestinal microbiota; however stressor-induced effects on microbiota-derived metabolites and their receptors are unknown. Thus, bacterial-produced short chain fatty acids (SCFAs), as well as microbial community composition, were assessed in the colons of mice exposed to stress during infection with Citrobacter rodentium. Mice were exposed to overnight restraint on 7 consecutive nights, or left undisturbed as a control. After the first exposure of restraint, mice were orally challenged with C. rodentium or with vehicle. Microbial community composition was assessed using 16S rRNA gene sequencing and SCFA levels measured using gas chromatography-mass spectrometry (GC-MS). Pathogen levels and colonic inflammation were also assessed 6 days post-infection. Results demonstrated that the microbial community structure and SCFA production were significantly affected by both stressor exposure and C. rodentium-infection. Exposure to prolonged restraint in the absence of infection significantly reduced SCFAs (acetic acid, butyric acid, and propionic acid). Multiple bacterial taxa were affected by stressor exposure, with the relative abundance of Lactobacillus being significantly reduced and directly correlated with propionic acid. Lactobacillus abundances were inversely correlated with colonic inflammation, supporting the contention that Lactobacillus helps to regulate mucosal inflammatory responses. Our data indicates that restraint stressor can have significant effects on pathogen-induced colonic inflammation and suggest that stressor-induced changes in the microbiota, microbial-produced SCFAs and their receptors may be involved.

  7. Bacterial Community Assembly and Turnover within the Intestines of Developing Zebrafish

    PubMed Central

    Yan, Qingyun; van der Gast, Christopher J.; Yu, Yuhe

    2012-01-01

    Background The majority of animal associated microorganisms are present in digestive tract communities. These intestinal communities arise from selective pressures of the gut habitats as well as host's genotype are regarded as an extra ‘organ’ regulate functions that have not evolved wholly on the host. They are functionally essential in providing nourishment, regulating epithelial development, and influencing immunity in the vertebrate host. As vertebrates are born free of microorganisms, what is poorly understood is how intestinal bacterial communities assemble and develop in conjunction with the development of the host. Methodology/Principal Findings Set within an ecological framework, we investigated the bacterial community assembly and turnover within the intestinal habitats of developing zebrafish (from larvae to adult animals). Spatial and temporal species-richness relationships and Mantel and partial Mantel tests revealed that turnover was low and that richness and composition was best predicted by time and not intestinal volume (habitat size) or changes in food diet. We also observed that bacterial communities within the zebrafish intestines were deterministically assembled (reflected by the observed low turnover) switching to stochastic assembly in the later stages of zebrafish development. Conclusions/Significance This study is of importance as it provides a novel insight into how intestinal bacterial communities assemble in tandem with the host's development (from early to adult stages). It is our hope that by studying intestinal microbiota of this vertebrate model with such or some more refined approaches in the future could well provide ecological insights for clinical benefit. In addition, this study also adds to our still fledgling knowledge of how spatial and temporal species-richness relationships are shaped and provides further mounting evidence that bacterial community assembly and dynamics are shaped by both deterministic and stochastic considerations. PMID:22276219

  8. Differential responses of soil bacteria, fungi, archaea and protists to plant species richness and plant functional group identity.

    PubMed

    Dassen, Sigrid; Cortois, Roeland; Martens, Henk; de Hollander, Mattias; Kowalchuk, George A; van der Putten, Wim H; De Deyn, Gerlinde B

    2017-08-01

    Plants are known to influence belowground microbial community structure along their roots, but the impacts of plant species richness and plant functional group (FG) identity on microbial communities in the bulk soil are still not well understood. Here, we used 454-pyrosequencing to analyse the soil microbial community composition in a long-term biodiversity experiment at Jena, Germany. We examined responses of bacteria, fungi, archaea, and protists to plant species richness (communities varying from 1 to 60 sown species) and plant FG identity (grasses, legumes, small herbs, tall herbs) in bulk soil. We hypothesized that plant species richness and FG identity would alter microbial community composition and have a positive impact on microbial species richness. Plant species richness had a marginal positive effect on the richness of fungi, but we observed no such effect on bacteria, archaea and protists. Plant species richness also did not have a large impact on microbial community composition. Rather, abiotic soil properties partially explained the community composition of bacteria, fungi, arbuscular mycorrhizal fungi (AMF), archaea and protists. Plant FG richness did not impact microbial community composition; however, plant FG identity was more effective. Bacterial richness was highest in legume plots and lowest in small herb plots, and AMF and archaeal community composition in legume plant communities was distinct from that in communities composed of other plant FGs. We conclude that soil microbial community composition in bulk soil is influenced more by changes in plant FG composition and abiotic soil properties, than by changes in plant species richness per se. © 2017 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  9. Bacterial and fungal communities and contribution of physicochemical factors during cattle farm waste composting.

    PubMed

    Huhe; Jiang, Chao; Wu, Yanpei; Cheng, Yunxiang

    2017-12-01

    During composting, the composition of microbial communities is subject to constant change owing to interactions with fluctuating physicochemical parameters. This study explored the changes in bacterial and fungal communities during cattle farm waste composting and aimed to identify and prioritize the contributing physicochemical factors. Microbial community compositions were determined by high-throughput sequencing. While the predominant phyla in the bacterial and fungal communities were largely consistent during the composting, differences in relative abundances were observed. Bacterial and fungal community diversity and relative abundance varied significantly, and inversely, over time. Relationships between physicochemical factors and microbial community compositions were evaluated by redundancy analysis. The variation in bacterial community composition was significantly related to water-soluble organic carbon (WSOC), and pile temperature and moisture (p < .05), while the largest portions of variation in fungal community composition were explained by pile temperature, WSOC, and C/N (p < .05). These findings indicated that those parameters are the most likely ones to influence, or be influenced by the bacterial and fungal communities. Variation partitioning analyses indicated that WSOC and pile temperature had predominant effects on bacterial and fungal community composition, respectively. Our findings will be useful for improving the quality of cattle farm waste composts. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  10. Dynamics in benthic community composition and influencing factors in an upwelling-exposed coral reef on the Pacific coast of Costa Rica

    PubMed Central

    Sánchez-Noguera, Celeste; Roth, Florian; Jiménez, Carlos; Rixen, Tim; Cortés, Jorge; Wild, Christian

    2015-01-01

    Seasonal upwelling at the northern Pacific coast of Costa Rica offers the opportunity to investigate the effects of pronounced changes in key water parameters on fine-scale dynamics of local coral reef communities. This study monitored benthic community composition at Matapalo reef (10.539°N, 85.766°W) by weekly observations of permanent benthic quadrats from April 2013 to April 2014. Monitoring was accompanied by surveys of herbivore abundance and biomass and measurements of water temperature and inorganic nutrient concentrations. Findings revealed that the reef-building corals Pocillopora spp. exhibited an exceptional rapid increase from 22 to 51% relative benthic cover. By contrast, turf algae cover decreased from 63 to 24%, resulting in a corresponding increase in crustose coralline algae cover. The macroalga Caulerpa sertularioides covered up to 15% of the reef in April 2013, disappeared after synchronized gamete release in May, and subsequently exhibited slow regrowth. Parallel monitoring of influencing factors suggest that C. sertularioides cover was mainly regulated by their reproductive cycle, while that of turf algae was likely controlled by high abundances of herbivores. Upwelling events in February and March 2014 decreased mean daily seawater temperatures by up to 7 °C and increased nutrient concentrations up to 5- (phosphate) and 16-fold (nitrate) compared to mean values during the rest of the year. Changes in benthic community composition did not appear to correspond to the strong environmental changes, but rather shifted from turf algae to hard coral dominance over the entire year of observation. The exceptional high dynamic over the annual observation period encourages further research on the adaptation potential of coral reefs to environmental variability. PMID:26623190

  11. Interaction strength between different grazers and macroalgae mediated by ocean acidification over warming gradients.

    PubMed

    Sampaio, E; Rodil, I F; Vaz-Pinto, F; Fernández, A; Arenas, F

    2017-04-01

    Since the past century, rising CO 2 levels have led to global changes (ocean warming and acidification) with subsequent effects on marine ecosystems and organisms. Macroalgae-herbivore interactions have a main role in the regulation of marine community structure (top-down control). Gradients of warming prompt complex non-linear effects on organism metabolism, cascading into altered trophic interactions and community dynamics. However, not much is known on how will acidification and grazer assemblage composition shape these effects. Within this context, we aimed to assess the combined effects of warming gradients and acidification on macroalgae-herbivore interactions, using three cosmopolitan species, abundant in the Iberian Peninsula and closely associated in nature: the amphipod Melita palmata, the gastropod Gibbula umbilicalis, and the green macroalga Ulva rigida. Under two CO 2 treatments (ΔCO 2 ≃ 450 μatm) across a temperature gradient (13.5, 16.6, 19.9 and 22.1 °C), two mesocosm experiments were performed to assess grazer consumption rates and macroalgae-herbivore interaction, respectively. Warming (Experiment I and II) and acidification (Experiment II) prompted negative effects in grazer's survival and species-specific differences in consumption rates. M. palmata was shown to be the stronger grazer per biomass (but not per capita), and also the most affected by climate stressors. Macroalgae-herbivore interaction strength was markedly shaped by the temperature gradient, while simultaneous acidification lowered thermal optimal threshold. In the near future, warming and acidification are likely to strengthen top-down control, but further increases in disturbances may lead to bottom-up regulated communities. Finally, our results suggest that grazer assemblage composition may modulate future macroalgae-herbivore interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. [Responses of plant community structure and species composition to warming and N addition in an alpine meadow, northern Tibetan Plateau, China].

    PubMed

    Zong, Ning; Chai, Xi; Shi, Pei Li; Jiang, Jing; Niu, Ben; Zhang, Xian Zhou; He, Yong Tao

    2016-12-01

    Global climate warming and increasing nitrogen (N) deposition, as controversial global environmental issues, may distinctly affect the functions and processes of terrestrial ecosystems. It has been reported that the Qinghai-Tibet Plateau has been experiencing significant warming in recent decades, especially in winter. Previous studies have mainly focused on the effects of warming all the year round; however, few studies have tested the effects of winter warming. To investigate the effects of winter warming and N addition on plant community structure and species composition of alpine meadow, long-term N addition and simulated warming experiment was conducted in alpine meadow from 2010 in Damxung, northern Tibet. The experiment consisted of three warming patterns: Year-round warming (YW), winter warming (WW) and control (NW), crossed respectively with five N gradients: 0, 10, 20, 40, 80 kg N·hm -2 ·a -1 . From 2012 to 2014, both warming and N addition significantly affected the total coverage of plant community. Specifically, YW significantly decreased the total coverage of plant community. Without N addition, WW remarkably reduced the vegetation coverage. However, with N addition, the total vegetation coverage gradually increased with the increase of N level. Warming and N addition had different effects on plants from different functional groups. Warming significantly reduced the plant coverage of grasses and sedges, while N addition significantly enhanced the plant coverage of grasses. Regression analyses showed that the total coverage of plant community was positively related to soil water content in vigorous growth stages, indicating that the decrease in soil water content resulted from warming during dry seasons might be the main reason for the decline of total community coverage. As soil moisture in semi-arid alpine meadow is mainly regulated by rainfalls, our results indicated that changes in spatial and temporal patterns of rainfalls under the future climate change scenarios would dramatically influence the vegetation coverage and species composition. Additionally, the effects of increasing atmospheric N deposition on vegetation community might also depend on the change of rainfall patterns.

  13. Effect of water flow and chemical environment on microbiota growth and composition in the human colon.

    PubMed

    Cremer, Jonas; Arnoldini, Markus; Hwa, Terence

    2017-06-20

    The human gut harbors a dynamic microbial community whose composition bears great importance for the health of the host. Here, we investigate how colonic physiology impacts bacterial growth, which ultimately dictates microbiota composition. Combining measurements of bacterial physiology with analysis of published data on human physiology into a quantitative, comprehensive modeling framework, we show how water flow in the colon, in concert with other physiological factors, determine the abundances of the major bacterial phyla. Mechanistically, our model shows that local pH values in the lumen, which differentially affect the growth of different bacteria, drive changes in microbiota composition. It identifies key factors influencing the delicate regulation of colonic pH, including epithelial water absorption, nutrient inflow, and luminal buffering capacity, and generates testable predictions on their effects. Our findings show that a predictive and mechanistic understanding of microbial ecology in the gut is possible. Such predictive understanding is needed for the rational design of intervention strategies to actively control the microbiota.

  14. Effect of water flow and chemical environment on microbiota growth and composition in the human colon

    PubMed Central

    Cremer, Jonas; Arnoldini, Markus; Hwa, Terence

    2017-01-01

    The human gut harbors a dynamic microbial community whose composition bears great importance for the health of the host. Here, we investigate how colonic physiology impacts bacterial growth, which ultimately dictates microbiota composition. Combining measurements of bacterial physiology with analysis of published data on human physiology into a quantitative, comprehensive modeling framework, we show how water flow in the colon, in concert with other physiological factors, determine the abundances of the major bacterial phyla. Mechanistically, our model shows that local pH values in the lumen, which differentially affect the growth of different bacteria, drive changes in microbiota composition. It identifies key factors influencing the delicate regulation of colonic pH, including epithelial water absorption, nutrient inflow, and luminal buffering capacity, and generates testable predictions on their effects. Our findings show that a predictive and mechanistic understanding of microbial ecology in the gut is possible. Such predictive understanding is needed for the rational design of intervention strategies to actively control the microbiota. PMID:28588144

  15. Policing of gut microbiota by the adaptive immune system.

    PubMed

    Dollé, Laurent; Tran, Hao Q; Etienne-Mesmin, Lucie; Chassaing, Benoit

    2016-02-12

    The intestinal microbiota is a large and diverse microbial community that inhabits the intestine, containing about 100 trillion bacteria of 500-1000 distinct species that, collectively, provide benefits to the host. The human gut microbiota composition is determined by a myriad of factors, among them genetic and environmental, including diet and medication. The microbiota contributes to nutrient absorption and maturation of the immune system. As reciprocity, the host immune system plays a central role in shaping the composition and localization of the intestinal microbiota. Secretory immunoglobulins A (sIgAs), component of the adaptive immune system, are important player in the protection of epithelium, and are known to have an important impact on the regulation of microbiota composition. A recent study published in Immunity by Fransen and colleagues aimed to mechanistically decipher the interrelationship between sIgA and microbiota diversity/composition. This commentary will discuss these important new findings, as well as how future therapies can ultimately benefit from such discovery.

  16. The arthropod, but not the vertebrate host or its environment, dictates bacterial community composition of fleas and ticks

    PubMed Central

    Hawlena, Hadas; Rynkiewicz, Evelyn; Toh, Evelyn; Alfred, Andrew; Durden, Lance A; Hastriter, Michael W; Nelson, David E; Rong, Ruichen; Munro, Daniel; Dong, Qunfeng; Fuqua, Clay; Clay, Keith

    2013-01-01

    Bacterial community composition in blood-sucking arthropods can shift dramatically across time and space. We used 16S rRNA gene amplification and pyrosequencing to investigate the relative impact of vertebrate host-related, arthropod-related and environmental factors on bacterial community composition in fleas and ticks collected from rodents in southern Indiana (USA). Bacterial community composition was largely affected by arthropod identity, but not by the rodent host or environmental conditions. Specifically, the arthropod group (fleas vs ticks) determined the community composition of bacteria, where bacterial communities of ticks were less diverse and more dependent on arthropod traits—especially tick species and life stage—than bacterial communities of fleas. Our data suggest that both arthropod life histories and the presence of arthropod-specific endosymbionts may mask the effects of the vertebrate host and its environment. PMID:22739493

  17. Possible ecological role of pseudopterosins G and P-U and seco-pseudopterosins J and K from the gorgonian Pseudopterogorgia elisabethae from Providencia Island (SW Caribbean) in regulating microbial surface communities.

    PubMed

    Correa, Hebelin; Zorro, Pamela; Arevalo-Ferro, Catalina; Puyana, Monica; Duque, Carmenza

    2012-09-01

    The gorgonian Pseudopterogorgia elisabethae collected at Providencia Island (Colombia) has an unfouled surface, free of obvious algal and invertebrate growth. This gorgonian produces significant amounts of the glycosilated diterpenes pseudopterosins and seco-pseudopterosins (Ps and seco-Ps). Our previous experiments have shown activity of these compounds against eukaryotic (human cancer cell lines and Candida albicans) and prokaryotic cells (Staphylococcus aureus and Enterococcus faecalis). However, the potential role of pseudopterosins on the regulation of the fouling process is still under study. We evaluated the activity of these compounds against bacteria isolated from heavily fouled marine surfaces as an indicator of antifouling activity. Additionally, we assessed their activity against bacteria isolated from P. elisabethae to determine whether potentially they play a role in preventing surface bacterial colonization, thus impairing presumptively the establishment of further successional stages of fouling communities. Results showed that Ps and seco-Ps seem to modulate bacterial growth (controlling Gram-positive bacterial growth and inducing Gram-negative bacterial associations). We thus hypothesized that Ps and seco-Ps may play a role in controlling microbial fouling communities on the surface of this gorgonian. By using bTEFAP and FISH we showed that the most abundant bacteria present in the microbial communities associated with P. elisabethae are Gram-negative bacteria, with Proteobacteria and Gammaproteobacteria the most representative. To evaluate whether Ps and seco-Ps have a direct effect on the structure of the bacterial community associated with P. elisabethae, we tested these compounds against culturable bacteria associated with the surface of P. elisabethae, finding remarkable selectivity against Gram-positive bacteria. The evidence presented here suggests that Ps and seco-Ps might have a role in the selection of organisms associated with the gorgonian surface and in the regulation of the associated bacterial community composition.

  18. Investigating the microbial community responsible for unusually high soil N2O and NOx emissions in the Colorado Desert

    NASA Astrophysics Data System (ADS)

    Eberwein, J. R.; Carey, C.; Aronson, E. L.; Jenerette, D.

    2016-12-01

    Although the importance of soil nitrogenous emissions are well accepted in terms of local and global ecological relevance, there remain considerable knowledge gaps concerning the mechanisms regulating production, particularly in arid systems. This study aimed to connect desert soil trace gas emissions of nitrous oxide (N2O) and nitrogen oxides (NOx) with compositional changes in the microbial community. We quantified real-time soil trace gas emissions at two sites in the Colorado Desert experiencing contrasting anthropogenic nitrogen (N) deposition loads (<5 and 15 kg N ha-1 y-1). Measurements were made through 48 hours following water (to simulate a 2 cm rain event) and N additions (at 30 kg NH4NO3 ha-1). In conjunction with flux measurements, soil samples were collected for 16S rRNA gene sequencing to characterize the soil microbial community. N2O fluxes reached as high as 1200 ng N2O-N m-2 s-1, well above most published emissions, but returned to pre-wetting conditions within 12 hours. NOx emissions reached as high as 350 ng NOx-N m-2 s-1 and remained elevated past 24 hours post-wetting. Results from the 16S analysis indicate distinct differences in the microbial community composition between the high and low N deposition sites, with less than 50% of operational taxonomic units (OTUs) in common between sites. N addition had a significant effect on the soil microbial community at the low deposition site, but not at the high deposition site. Furthermore, significant shifts in the bacterial community occurred after wetting, with only one third of the community remaining constant between time points. These results suggest that gaseous N export, particularly N2O emission, is a greater form of nitrogen loss in this system than is currently assumed. Experimental N additions and anthropogenic N deposition show potential for shifting soil microbial community composition, with implications for soil N emissions. Furthermore, shifts in the microbial community can occur as quickly as 15 minutes post-wetting, representing a remarkable ability for soil microorganisms to recover from extreme water stress. As aridlands cover approximately one third of the Earth's land surface, understanding the mechanisms that contribute to soil N emissions in these systems is of important global relevance.

  19. Microbial community composition explains soil respiration responses to changing carbon inputs along an Andes-to-Amazon elevation gradient

    PubMed Central

    Whitaker, Jeanette; Ostle, Nicholas; Nottingham, Andrew T; Ccahuana, Adan; Salinas, Norma; Bardgett, Richard D; Meir, Patrick; McNamara, Niall P; Austin, Amy

    2014-01-01

    1. The Andes are predicted to warm by 3–5 °C this century with the potential to alter the processes regulating carbon (C) cycling in these tropical forest soils. This rapid warming is expected to stimulate soil microbial respiration and change plant species distributions, thereby affecting the quantity and quality of C inputs to the soil and influencing the quantity of soil-derived CO2 released to the atmosphere. 2. We studied tropical lowland, premontane and montane forest soils taken from along a 3200-m elevation gradient located in south-east Andean Peru. We determined how soil microbial communities and abiotic soil properties differed with elevation. We then examined how these differences in microbial composition and soil abiotic properties affected soil C-cycling processes, by amending soils with C substrates varying in complexity and measuring soil heterotrophic respiration (RH). 3. Our results show that there were consistent patterns of change in soil biotic and abiotic properties with elevation. Microbial biomass and the abundance of fungi relative to bacteria increased significantly with elevation, and these differences in microbial community composition were strongly correlated with greater soil C content and C:N (nitrogen) ratios. We also found that RH increased with added C substrate quality and quantity and was positively related to microbial biomass and fungal abundance. 4. Statistical modelling revealed that RH responses to changing C inputs were best predicted by soil pH and microbial community composition, with the abundance of fungi relative to bacteria, and abundance of gram-positive relative to gram-negative bacteria explaining much of the model variance. 5. Synthesis. Our results show that the relative abundance of microbial functional groups is an important determinant of RH responses to changing C inputs along an extensive tropical elevation gradient in Andean Peru. Although we do not make an experimental test of the effects of climate change on soil, these results challenge the assumption that different soil microbial communities will be ‘functionally equivalent’ as climate change progresses, and they emphasize the need for better ecological metrics of soil microbial communities to help predict C cycle responses to climate change in tropical biomes. PMID:25520527

  20. Coccolithophore responses to environmental variability in the South China Sea: species composition and calcite content

    NASA Astrophysics Data System (ADS)

    Jin, Xiaobo; Liu, Chuanlian; Poulton, Alex J.; Dai, Minhan; Guo, Xianghui

    2016-08-01

    Coccolithophore contributions to the global marine carbon cycle are regulated by the calcite content of their scales (coccoliths) and the relative cellular levels of photosynthesis and calcification rates. All three of these factors vary between coccolithophore species and with response to the growth environment. Here, water samples were collected in the northern basin of the South China Sea (SCS) during summer 2014 in order to examine how environmental variability influenced species composition and cellular levels of calcite content. Average coccolithophore abundance and their calcite concentration in the water column were 11.82 cells mL-1 and 1508.3 pg C mL-1, respectively, during the cruise. Water samples can be divided into three floral groups according to their distinct coccolithophore communities. The vertical structure of the coccolithophore community in the water column was controlled by the trophic conditions, which were regulated by mesoscale eddies across the SCS basin. The evaluation of coccolithophore-based calcite in the surface ocean also showed that three key species in the SCS (Emiliania huxleyi, Gephyrocapsa oceanica, Florisphaera profunda) and other larger, numerically rare species made almost equal contributions to total coccolith-based calcite in the water column. For Emiliania huxleyi biometry measurements, coccolith size positively correlated with nutrients (nitrate, phosphate), and it is suggested that coccolith length is influenced by light and nutrients through the regulation of growth rates. Larger-sized coccoliths were also linked statistically to low pH and calcite saturation states; however, it is not a simple cause and effect relationship, as carbonate chemistry was strongly co-correlated with the other key environmental factors (nutrients, light).

  1. Foraging traits modulate stingless bee community disassembly under forest loss.

    PubMed

    Lichtenberg, Elinor M; Mendenhall, Chase D; Brosi, Berry

    2017-10-01

    Anthropogenic land use change is an important driver of impacts to biological communities and the ecosystem services they provide. Pollination is one ecosystem service that may be threatened by community disassembly. Relatively little is known about changes in bee community composition in the tropics, where pollination limitation is most severe and land use change is rapid. Understanding how anthropogenic changes alter community composition and functioning has been hampered by high variability in responses of individual species. Trait-based approaches, however, are emerging as a potential method for understanding responses of ecologically similar species to global change. We studied how communities of tropical, eusocial stingless bees (Apidae: Meliponini) disassemble when forest is lost. These bees are vital tropical pollinators that exhibit high trait diversity, but are under considerable threat from human activities. We compared functional traits of stingless bee species found in pastures surrounded by differing amounts of forest in an extensively deforested landscape in southern Costa Rica. Our results suggest that foraging traits modulate competitive interactions that underlie community disassembly patterns. In contrast to both theoretical predictions and temperate bee communities, we found that stingless bee species with the widest diet breadths were less likely to persist in sites with less forest. These wide-diet-breadth species also tend to be solitary foragers, and are competitively subordinate to group-foraging stingless bee species. Thus, displacement by dominant, group-foraging species may make subordinate species more dependent on the larger or more diversified resource pool that natural habitats offer. We also found that traits that may reduce reliance on trees-nesting in the ground or inside nests of other species-correlated with persistence in highly deforested landscapes. The functional trait perspective we employed enabled capturing community processes in analyses and suggests that land use change may disassemble bee communities via different mechanisms in temperate and tropical areas. Our results further suggest that community processes, such as competition, can be important regulators of community disassembly under land use change. A better understanding of community disassembly processes is critical for conserving and restoring pollinator communities and the ecosystem services and functions they provide. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  2. A comparative study of composting the solid fraction of dairy manure with or without bulking material: Performance and microbial community dynamics.

    PubMed

    Zhong, Xiao-Zhong; Ma, Shi-Chun; Wang, Shi-Peng; Wang, Ting-Ting; Sun, Zhao-Yong; Tang, Yue-Qin; Deng, Yu; Kida, Kenji

    2018-01-01

    The present study compared the development of various physicochemical properties and the composition of microbial communities involved in the composting process in the solid fraction of dairy manure (SFDM) with a sawdust-regulated SFDM (RDM). The changes in several primary physicochemical properties were similar in the two composting processes, and both resulted in mature end-products within 48days. The bacterial communities in both composting processes primarily comprised Proteobacteria and Bacteroidetes. Firmicutes were predominant in the thermophilic phase, whereas Chloroflexi, Planctomycetes, and Nitrospirae were more abundant in the final mature phase. Furthermore, the succession of bacteria in both groups proceeded in a similar pattern, suggesting that the effects of the bulking material on bacterial dynamics were minor. These results demonstrate the feasibility of composting using only the SFDM, reflected by the evolution of physicochemical properties and the microbial communities involved in the composting process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Urban stormwater runoff drives denitrifying community composition through changes in sediment texture and carbon content.

    PubMed

    Perryman, Shane E; Rees, Gavin N; Walsh, Christopher J; Grace, Michael R

    2011-05-01

    The export of nitrogen from urban catchments is a global problem, and denitrifying bacteria in stream ecosystems are critical for reducing in-stream N. However, the environmental factors that control the composition of denitrifying communities in streams are not well understood. We determined whether denitrifying community composition in sediments of nine streams on the eastern fringe of Melbourne, Australia was correlated with two measures of catchment urban impact: effective imperviousness (EI, the proportion of a catchment covered by impervious surfaces with direct connection to streams) or septic tank density (which affects stream water chemistry, particularly stream N concentrations). Denitrifying community structure was examined by comparing terminal restriction fragment length polymorphisms of nosZ genes in the sediments, as the nosZ gene codes for nitrous oxide reductase, the last step in the denitrification pathway. We also determined the chemical and physical characteristics of the streams that were best correlated with denitrifying community composition. EI was strongly correlated with community composition and sediment physical and chemical properties, while septic tank density was not. Sites with high EI were sandier, with less fine sediment and lower organic carbon content, higher sediment cations (calcium, sodium and magnesium) and water filterable reactive phosphorus concentrations. These were also the best small-scale environmental variables that explained denitrifying community composition. Among our study streams, which differed in the degree of urban stormwater impact, sediment grain size and carbon content are the most likely drivers of change in community composition. Denitrifying community composition is another in a long list of ecological indicators that suggest the profound degradation of streams is caused by urban stormwater runoff. While the relationships between denitrifying community composition and denitrification rates are yet to be unequivocally established, landscape-scale indices of environmental impact such as EI may prove to be useful indicators of change in microbial communities.

  4. Microbial community succession in alkaline, saline bauxite residue: a cross-refinery study

    NASA Astrophysics Data System (ADS)

    Santini, T.; Malcolm, L. I.; Tyson, G. W.; Warren, L. A.

    2015-12-01

    Bauxite residue, a byproduct of the Bayer process for alumina refining, is an alkaline, saline tailings material that is generally considered to be inhospitable to microbial life. In situ remediation strategies promote soil formation in bauxite residue by enhancing leaching of saline, alkaline pore water, and through incorporation of amendments to boost organic matter content, decrease pH, and improve physical structure. The amelioration of chemical and physical conditions in bauxite residue is assumed to support diversification of microbial communities from narrow, poorly functioning microbial communities towards diverse, well-functioning communities. This study aimed to characterise microbial communities in fresh and remediated bauxite residues from refineries worldwide, to identify (a) whether initial microbial communities differed between refineries; (b) major environmental controls on microbial community composition; and (c) whether remediation successfully shifts the composition of microbial communities in bauxite residue towards those found in reference (desired endpoint) soils. Samples were collected from 16 refineries and characterised using 16S amplicon sequencing to examine microbial community composition and structure, in conjunction with physicochemical analyses. Initial microbial community composition was similar across refineries but partitioned into two major groups. Microbial community composition changes slowly over time and indicates that alkalinity and salinity inhibit diversification. Microbially-based strategies for in situ remediation should consider the initial microbial community composition and whether the pre-treatment of chemical properties would optimise subsequent bioremediation outcomes. During in situ remediation, microbial communities become more diverse and develop wider functional capacity, indicating progression towards communities more commonly observed in natural grassland and forest soils.

  5. Interaction between Host MicroRNAs and the Gut Microbiota in Colorectal Cancer.

    PubMed

    Yuan, Ce; Burns, Michael B; Subramanian, Subbaya; Blekhman, Ran

    2018-01-01

    Although variation in gut microbiome composition has been linked with colorectal cancer (CRC), the factors that mediate the interactions between CRC tumors and the microbiome are poorly understood. MicroRNAs (miRNAs) are known to regulate CRC progression and are associated with patient survival outcomes. In addition, recent studies suggested that host miRNAs can also regulate bacterial growth and influence the composition of the gut microbiome. Here, we investigated the association between miRNA expression and microbiome composition in human CRC tumor and normal tissues. We identified 76 miRNAs as differentially expressed (DE) in tissue from CRC tumors and normal tissue, including the known oncogenic miRNAs miR-182, miR-503, and mir-17~92 cluster. These DE miRNAs were correlated with the relative abundances of several bacterial taxa, including Firmicutes , Bacteroidetes , and Proteobacteria . Bacteria correlated with DE miRNAs were enriched with distinct predicted metabolic categories. Additionally, we found that miRNAs that correlated with CRC-associated bacteria are predicted to regulate targets that are relevant for host-microbiome interactions and highlight a possible role for miRNA-driven glycan production in the recruitment of pathogenic microbial taxa. Our work characterized a global relationship between microbial community composition and miRNA expression in human CRC tissues. IMPORTANCE Recent studies have found an association between colorectal cancer (CRC) and the gut microbiota. One potential mechanism by which the microbiota can influence host physiology is through affecting gene expression in host cells. MicroRNAs (miRNAs) are small noncoding RNA molecules that can regulate gene expression and have important roles in cancer development. Here, we investigated the link between the gut microbiota and the expression of miRNA in CRC. We found that dozens of miRNAs are differentially regulated in CRC tumors and adjacent normal colon and that these miRNAs are correlated with the abundance of microbes in the tumor microenvironment. Moreover, we found that microbes that have been previously associated with CRC are correlated with miRNAs that regulate genes related to interactions with microbes. Notably, these miRNAs likely regulate glycan production, which is important for the recruitment of pathogenic microbial taxa to the tumor. This work provides a first systems-level map of the association between microbes and host miRNAs in the context of CRC and provides targets for further experimental validation and potential interventions.

  6. Fire regime, not time-since-fire, affects soil fungal community diversity and composition in temperate grasslands.

    PubMed

    Egidi, Eleonora; McMullan-Fisher, Sapphire; Morgan, John W; May, Tom; Zeeman, Ben; Franks, Ashley E

    2016-09-01

    Frequent burning is commonly undertaken to maintain diversity in temperate grasslands of southern Australia. How burning affects below-ground fungal community diversity remains unknown. We show, using a fungal rDNA metabarcoding approach (Illumina MiSeq), that the fungal community composition was influenced by fire regime (frequency) but not time-since-fire. Fungal community composition was resilient to direct fire effects, most likely because grassland fires transfer little heat to the soil. Differences in the fungal community composition due to fire regime was likely due to associated changes that occur in vegetation with recurrent fire, via the break up of obligate symbiotic relationships. However, fire history only partially explains the observed dissimilarity in composition among the soil samples, suggesting a distinctiveness in composition in each grassland site. The importance of considering changes in soil microbe communities when managing vegetation with fire is highlighted. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Community barcoding reveals little effect of ocean acidification on the composition of coastal plankton communities: Evidence from a long-term mesocosm study in the Gullmar Fjord, Skagerrak.

    PubMed

    Langer, Julia A F; Sharma, Rahul; Schmidt, Susanne I; Bahrdt, Sebastian; Horn, Henriette G; Algueró-Muñiz, María; Nam, Bora; Achterberg, Eric P; Riebesell, Ulf; Boersma, Maarten; Thines, Marco; Schwenk, Klaus

    2017-01-01

    The acidification of the oceans could potentially alter marine plankton communities with consequences for ecosystem functioning. While several studies have investigated effects of ocean acidification on communities using traditional methods, few have used genetic analyses. Here, we use community barcoding to assess the impact of ocean acidification on the composition of a coastal plankton community in a large scale, in situ, long-term mesocosm experiment. High-throughput sequencing resulted in the identification of a wide range of planktonic taxa (Alveolata, Cryptophyta, Haptophyceae, Fungi, Metazoa, Hydrozoa, Rhizaria, Straminipila, Chlorophyta). Analyses based on predicted operational taxonomical units as well as taxonomical compositions revealed no differences between communities in high CO2 mesocosms (~ 760 μatm) and those exposed to present-day CO2 conditions. Observed shifts in the planktonic community composition were mainly related to seasonal changes in temperature and nutrients. Furthermore, based on our investigations, the elevated CO2 did not affect the intraspecific diversity of the most common mesozooplankter, the calanoid copepod Pseudocalanus acuspes. Nevertheless, accompanying studies found temporary effects attributed to a raise in CO2. Differences in taxa composition between the CO2 treatments could, however, only be observed in a specific period of the experiment. Based on our genetic investigations, no compositional long-term shifts of the plankton communities exposed to elevated CO2 conditions were observed. Thus, we conclude that the compositions of planktonic communities, especially those in coastal areas, remain rather unaffected by increased CO2.

  8. Community barcoding reveals little effect of ocean acidification on the composition of coastal plankton communities: Evidence from a long-term mesocosm study in the Gullmar Fjord, Skagerrak

    PubMed Central

    Sharma, Rahul; Schmidt, Susanne I.; Bahrdt, Sebastian; Horn, Henriette G.; Algueró-Muñiz, María; Nam, Bora; Achterberg, Eric P.; Riebesell, Ulf; Boersma, Maarten; Thines, Marco; Schwenk, Klaus

    2017-01-01

    The acidification of the oceans could potentially alter marine plankton communities with consequences for ecosystem functioning. While several studies have investigated effects of ocean acidification on communities using traditional methods, few have used genetic analyses. Here, we use community barcoding to assess the impact of ocean acidification on the composition of a coastal plankton community in a large scale, in situ, long-term mesocosm experiment. High-throughput sequencing resulted in the identification of a wide range of planktonic taxa (Alveolata, Cryptophyta, Haptophyceae, Fungi, Metazoa, Hydrozoa, Rhizaria, Straminipila, Chlorophyta). Analyses based on predicted operational taxonomical units as well as taxonomical compositions revealed no differences between communities in high CO2 mesocosms (~ 760 μatm) and those exposed to present-day CO2 conditions. Observed shifts in the planktonic community composition were mainly related to seasonal changes in temperature and nutrients. Furthermore, based on our investigations, the elevated CO2 did not affect the intraspecific diversity of the most common mesozooplankter, the calanoid copepod Pseudocalanus acuspes. Nevertheless, accompanying studies found temporary effects attributed to a raise in CO2. Differences in taxa composition between the CO2 treatments could, however, only be observed in a specific period of the experiment. Based on our genetic investigations, no compositional long-term shifts of the plankton communities exposed to elevated CO2 conditions were observed. Thus, we conclude that the compositions of planktonic communities, especially those in coastal areas, remain rather unaffected by increased CO2. PMID:28445483

  9. Deduction and Analysis of the Interacting Stress Response Pathways of Metal/Radionuclide-reducing Bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Jizhong; He, Zhili

    2010-02-28

    Project Title: Deduction and Analysis of the Interacting Stress Response Pathways of Metal/Radionuclide-reducing Bacteria DOE Grant Number: DE-FG02-06ER64205 Principal Investigator: Jizhong (Joe) Zhou (University of Oklahoma) Key members: Zhili He, Aifen Zhou, Christopher Hemme, Joy Van Nostrand, Ye Deng, and Qichao Tu Collaborators: Terry Hazen, Judy Wall, Adam Arkin, Matthew Fields, Aindrila Mukhopadhyay, and David Stahl Summary Three major objectives have been conducted in the Zhou group at the University of Oklahoma (OU): (i) understanding of gene function, regulation, network and evolution of Desulfovibrio vugaris Hildenborough in response to environmental stresses, (ii) development of metagenomics technologies for microbial community analysis,more » and (iii) functional characterization of microbial communities with metagenomic approaches. In the past a few years, we characterized four CRP/FNR regulators, sequenced ancestor and evolved D. vulgaris strains, and functionally analyzed those mutated genes identified in salt-adapted strains. Also, a new version of GeoChip 4.0 has been developed, which also includes stress response genes (StressChip), and a random matrix theory-based conceptual framework for identifying functional molecular ecological networks has been developed with the high throughput functional gene array hybridization data as well as pyrosequencing data from 16S rRNA genes. In addition, GeoChip and sequencing technologies as well as network analysis approaches have been used to analyze microbial communities from different habitats. Those studies provide a comprehensive understanding of gene function, regulation, network, and evolution in D. vulgaris, and microbial community diversity, composition and structure as well as their linkages with environmental factors and ecosystem functioning, which has resulted in more than 60 publications.« less

  10. Rapid Shifts in Soil and Forest Floor Microbial Communities with Changes in Vegetation during Secondary Tropical Forest Succession

    NASA Astrophysics Data System (ADS)

    Smith, A.; Marin-Spiotta, E.; Balser, T. C.

    2012-12-01

    Soil microorganisms regulate fundamental biochemical processes in plant litter decomposition and soil organic matter (SOM) transformations. In order to predict how disturbance affects belowground carbon storage, it is important to understand how the forest floor and soil microbial community respond to changes in land cover, and the consequences on SOM formation and stabilization. We are measuring microbial functional diversity and activity across a long-term successional chronosequence of secondary forests regrowing on abandoned pastures in the wet subtropical forest life zone of Puerto Rico. Here we report intra- and interannual data on soil and litter microbial community composition (via phospholipid fatty acid analysis, PLFA) and microbial activity (via extracellular enzyme activity) from active pastures, secondary forests aged 20, 30, 40, 70, and 90-years, and primary forests. Microbial community composition and extracellular enzyme activity differed significantly by season in these wet subtropical ecosystems, even though differences in mean monthly precipitation between the middle of the dry season (January) and the wet season (July) is only 30mm. Despite seasonal differences, there was a persistent strong effect of land cover type and forest successional stage, or age, on overall microbial community PLFA structure. Using principal component analysis, we found differences in microbial community structure among active pastures, early, and late successional forests. The separation of soil microbes into early and late successional communities parallels the clustering of tree composition data. While the successional patterns held across seasons, the importance of different microbial groups driving these patterns differed seasonally. Biomarkers for gram-positive and actinobacteria (i15:0 and 16:0 10Me) were associated with early (20, 30 & 40 year old) secondary forests in the dry season. These younger forest communities were identified by the biomarker for anaerobic gram-negative bacteria (c19:0) in the wet season, which suggests the presence of anaerobic microsites in these very clayey Oxisols. Enzymatic activity did not differ with succession but was highest in the dry season. We expect this may be due to decreased turnover of enzymes with low soil moisture. Interannual sampling has revealed a very rapid microbial response to changes in aboveground cover. Within a year following woody biomass encroachment, we detected a shift in the soil microbial community from a pasture-associated community to an early secondary forest community in one of our replicate pasture sites. This very rapid response in the belowground microbial community structure to changes in vegetation has not been strongly documented in the literature. This data supports a direct link between aboveground and belowground biotic community structures and highlights the importance of long-term repeated sampling of microbial communities in dynamic ecosystems. Our findings have implications for predicting rapid ecological responses to land-cover change.

  11. Denaturing gradient gel electrophoresis and barcoded pyrosequencing reveal unprecedented archaeal diversity in mangrove sediment and rhizosphere samples.

    PubMed

    Pires, Ana C C; Cleary, Daniel F R; Almeida, Adelaide; Cunha, Angela; Dealtry, Simone; Mendonça-Hagler, Leda C S; Smalla, Kornelia; Gomes, Newton C M

    2012-08-01

    Mangroves are complex ecosystems that regulate nutrient and sediment fluxes to the open sea. The importance of bacteria and fungi in regulating nutrient cycles has led to an interest in their diversity and composition in mangroves. However, very few studies have assessed Archaea in mangroves, and virtually nothing is known about whether mangrove rhizospheres affect archaeal diversity and composition. Here, we studied the diversity and composition of Archaea in mangrove bulk sediment and the rhizospheres of two mangrove trees, Rhizophora mangle and Laguncularia racemosa, using denaturing gradient gel electrophoresis (DGGE) and pyrosequencing of archaeal 16S rRNA genes with a nested-amplification approach. DGGE profiles revealed significant structural differences between bulk sediment and rhizosphere samples, suggesting that roots of both mangrove species influence the sediment archaeal community. Nearly all of the detected sequences obtained with pyrosequencing were identified as Archaea, but most were unclassified at the level of phylum or below. Archaeal richness was, furthermore, the highest in the L. racemosa rhizosphere, intermediate in bulk sediment, and the lowest in the R. mangle rhizosphere. This study shows that rhizosphere microhabitats of R. mangle and L. racemosa, common plants in subtropical mangroves located in Rio de Janeiro, Brazil, hosted distinct archaeal assemblages.

  12. Denaturing Gradient Gel Electrophoresis and Barcoded Pyrosequencing Reveal Unprecedented Archaeal Diversity in Mangrove Sediment and Rhizosphere Samples

    PubMed Central

    Pires, Ana C. C.; Cleary, Daniel F. R.; Almeida, Adelaide; Cunha, Ângela; Dealtry, Simone; Mendonça-Hagler, Leda C. S.; Smalla, Kornelia

    2012-01-01

    Mangroves are complex ecosystems that regulate nutrient and sediment fluxes to the open sea. The importance of bacteria and fungi in regulating nutrient cycles has led to an interest in their diversity and composition in mangroves. However, very few studies have assessed Archaea in mangroves, and virtually nothing is known about whether mangrove rhizospheres affect archaeal diversity and composition. Here, we studied the diversity and composition of Archaea in mangrove bulk sediment and the rhizospheres of two mangrove trees, Rhizophora mangle and Laguncularia racemosa, using denaturing gradient gel electrophoresis (DGGE) and pyrosequencing of archaeal 16S rRNA genes with a nested-amplification approach. DGGE profiles revealed significant structural differences between bulk sediment and rhizosphere samples, suggesting that roots of both mangrove species influence the sediment archaeal community. Nearly all of the detected sequences obtained with pyrosequencing were identified as Archaea, but most were unclassified at the level of phylum or below. Archaeal richness was, furthermore, the highest in the L. racemosa rhizosphere, intermediate in bulk sediment, and the lowest in the R. mangle rhizosphere. This study shows that rhizosphere microhabitats of R. mangle and L. racemosa, common plants in subtropical mangroves located in Rio de Janeiro, Brazil, hosted distinct archaeal assemblages. PMID:22660713

  13. Influences of space, soil, nematodes and plants on microbial community composition of chalk grassland soils.

    PubMed

    Yergeau, Etienne; Bezemer, T Martijn; Hedlund, Katarina; Mortimer, Simon R; Kowalchuk, George A; Van Der Putten, Wim H

    2010-08-01

    Microbial communities respond to a variety of environmental factors related to resources (e.g. plant and soil organic matter), habitat (e.g. soil characteristics) and predation (e.g. nematodes, protozoa and viruses). However, the relative contribution of these factors on microbial community composition is poorly understood. Here, we sampled soils from 30 chalk grassland fields located in three different chalk hill ridges of Southern England, using a spatially explicit sampling scheme. We assessed microbial communities via phospholipid fatty acid (PLFA) analyses and PCR-denaturing gradient gel electrophoresis (DGGE) and measured soil characteristics, as well as nematode and plant community composition. The relative influences of space, soil, vegetation and nematodes on soil microorganisms were contrasted using variation partitioning and path analysis. Results indicate that soil characteristics and plant community composition, representing habitat and resources, shape soil microbial community composition, whereas the influence of nematodes, a potential predation factor, appears to be relatively small. Spatial variation in microbial community structure was detected at broad (between fields) and fine (within fields) scales, suggesting that microbial communities exhibit biogeographic patterns at different scales. Although our analysis included several relevant explanatory data sets, a large part of the variation in microbial communities remained unexplained (up to 92% in some analyses). However, in several analyses, significant parts of the variation in microbial community structure could be explained. The results of this study contribute to our understanding of the relative importance of different environmental and spatial factors in driving the composition of soil-borne microbial communities. © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.

  14. State-Level Community Benefit Regulation and Nonprofit Hospitals' Provision of Community Benefits.

    PubMed

    Singh, Simone R; Young, Gary J; Loomer, Lacey; Madison, Kristin

    2018-04-01

    Do nonprofit hospitals provide enough community benefits to justify their tax exemptions? States have sought to enhance nonprofit hospitals' accountability and oversight through regulation, including requirements to report community benefits, conduct community health needs assessments, provide minimum levels of community benefits, and adhere to minimum income eligibility standards for charity care. However, little research has assessed these regulations' impact on community benefits. Using 2009-11 Internal Revenue Service data on community benefit spending for more than eighteen hundred hospitals and the Hilltop Institute's data on community benefit regulation, we investigated the relationship between these four types of regulation and the level and types of hospital-provided community benefits. Our multivariate regression analyses showed that only community health needs assessments were consistently associated with greater community benefit spending. The results for reporting and minimum spending requirements were mixed, while minimum income eligibility standards for charity care were unrelated to community benefit spending. State adoption of multiple types of regulation was consistently associated with higher levels of hospital-provided community benefits, possibly because regulatory intensity conveys a strong signal to the hospital community that more spending is expected. This study can inform efforts to design regulations that will encourage hospitals to provide community benefits consistent with policy makers' goals. Copyright © 2018 by Duke University Press.

  15. Effects of climate change on plant population growth rate and community composition change.

    PubMed

    Chang, Xiao-Yu; Chen, Bao-Ming; Liu, Gang; Zhou, Ting; Jia, Xiao-Rong; Peng, Shao-Lin

    2015-01-01

    The impacts of climate change on forest community composition are still not well known. Although directional trends in climate change and community composition change were reported in recent years, further quantitative analyses are urgently needed. Previous studies focused on measuring population growth rates in a single time period, neglecting the development of the populations. Here we aimed to compose a method for calculating the community composition change, and to testify the impacts of climate change on community composition change within a relatively short period (several decades) based on long-term monitoring data from two plots-Dinghushan Biosphere Reserve, China (DBR) and Barro Colorado Island, Panama (BCI)-that are located in tropical and subtropical regions. We proposed a relatively more concise index, Slnλ, which refers to an overall population growth rate based on the dominant species in a community. The results indicated that the population growth rate of a majority of populations has decreased over the past few decades. This decrease was mainly caused by population development. The increasing temperature had a positive effect on population growth rates and community change rates. Our results promote understanding and explaining variations in population growth rates and community composition rates, and are helpful to predict population dynamics and population responses to climate change.

  16. Increased diversity of egg-associated bacteria on brown trout (Salmo trutta) at elevated temperatures.

    PubMed

    Wilkins, Laetitia G E; Rogivue, Aude; Schütz, Frédéric; Fumagalli, Luca; Wedekind, Claus

    2015-11-27

    The taxonomic composition of egg-associated microbial communities can play a crucial role in the development of fish embryos. In response, hosts increasingly influence the composition of their associated microbial communities during embryogenesis, as concluded from recent field studies and laboratory experiments. However, little is known about the taxonomic composition and the diversity of egg-associated microbial communities within ecosystems; e.g., river networks. We sampled late embryonic stages of naturally spawned brown trout at nine locations within two different river networks and applied 16S rRNA pyrosequencing to describe their bacterial communities. We found no evidence for a significant isolation-by-distance effect on the composition of bacterial communities, and no association between neutral genetic divergence of fish host (based on 11 microsatellites) and phylogenetic distances of the composition of their associated bacterial communities. We characterized core bacterial communities on brown trout eggs and compared them to corresponding water samples with regard to bacterial composition and its presumptive function. Bacterial diversity was positively correlated with water temperature at the spawning locations. We discuss this finding in the context of the increased water temperatures that have been recorded during the last 25 years in the study area.

  17. Increased diversity of egg-associated bacteria on brown trout (Salmo trutta) at elevated temperatures

    PubMed Central

    Wilkins, Laetitia G. E.; Rogivue, Aude; Schütz, Frédéric; Fumagalli, Luca; Wedekind, Claus

    2015-01-01

    The taxonomic composition of egg-associated microbial communities can play a crucial role in the development of fish embryos. In response, hosts increasingly influence the composition of their associated microbial communities during embryogenesis, as concluded from recent field studies and laboratory experiments. However, little is known about the taxonomic composition and the diversity of egg-associated microbial communities within ecosystems; e.g., river networks. We sampled late embryonic stages of naturally spawned brown trout at nine locations within two different river networks and applied 16S rRNA pyrosequencing to describe their bacterial communities. We found no evidence for a significant isolation-by-distance effect on the composition of bacterial communities, and no association between neutral genetic divergence of fish host (based on 11 microsatellites) and phylogenetic distances of the composition of their associated bacterial communities. We characterized core bacterial communities on brown trout eggs and compared them to corresponding water samples with regard to bacterial composition and its presumptive function. Bacterial diversity was positively correlated with water temperature at the spawning locations. We discuss this finding in the context of the increased water temperatures that have been recorded during the last 25 years in the study area. PMID:26611640

  18. The interplay of plant and animal disease in a changing landscape: the role of sudden aspen decline in moderating Sin Nombre virus prevalence in natural deer mouse populations.

    PubMed

    Lehmer, Erin M; Korb, Julie; Bombaci, Sara; McLean, Nellie; Ghachu, Joni; Hart, Lacey; Kelly, Ashley; Jara-Molinar, Edlin; O'Brien, Colleen; Wright, Kimberly

    2012-06-01

    We examined how climate-mediated forest dieback regulates zoonotic disease prevalence using the relationship between sudden aspen decline (SAD) and Sin Nombre virus (SNV) as a model system. We compared understory plant community structure, small mammal community composition, and SNV prevalence on 12 study sites within aspen forests experiencing levels of SAD ranging from <10.0% crown fade to >95.0% crown fade. Our results show that sites with the highest levels of SAD had reduced canopy cover, stand density, and basal area, and these differences were reflected by reductions in understory vegetation cover. Conversely, sites with the highest levels of SAD had greater understory standing biomass, suggesting that vegetation on these sites was highly clustered. Changes in forest and understory vegetation structure likely resulted in shifts in small mammal community composition across the SAD gradient, as we found reduced species diversity and higher densities of deer mice, the primary host for SNV, on sites with the highest levels of SAD. Sites with the highest levels of SAD also had significantly greater SNV prevalence compared to sites with lower levels of SAD, which is likely a result of their abundance of deer mice. Collectively, results of our research provide strong evidence to show SAD has considerable impacts on vegetation community structure, small mammal density and biodiversity and the prevalence of SNV.

  19. Gene-centric approach to integrating environmental genomics and biogeochemical models.

    PubMed

    Reed, Daniel C; Algar, Christopher K; Huber, Julie A; Dick, Gregory J

    2014-02-04

    Rapid advances in molecular microbial ecology have yielded an unprecedented amount of data about the evolutionary relationships and functional traits of microbial communities that regulate global geochemical cycles. Biogeochemical models, however, are trailing in the wake of the environmental genomics revolution, and such models rarely incorporate explicit representations of bacteria and archaea, nor are they compatible with nucleic acid or protein sequence data. Here, we present a functional gene-based framework for describing microbial communities in biogeochemical models by incorporating genomics data to provide predictions that are readily testable. To demonstrate the approach in practice, nitrogen cycling in the Arabian Sea oxygen minimum zone (OMZ) was modeled to examine key questions about cryptic sulfur cycling and dinitrogen production pathways in OMZs. Simulations support previous assertions that denitrification dominates over anammox in the central Arabian Sea, which has important implications for the loss of fixed nitrogen from the oceans. Furthermore, cryptic sulfur cycling was shown to attenuate the secondary nitrite maximum often observed in OMZs owing to changes in the composition of the chemolithoautotrophic community and dominant metabolic pathways. Results underscore the need to explicitly integrate microbes into biogeochemical models rather than just the metabolisms they mediate. By directly linking geochemical dynamics to the genetic composition of microbial communities, the method provides a framework for achieving mechanistic insights into patterns and biogeochemical consequences of marine microbes. Such an approach is critical for informing our understanding of the key role microbes play in modulating Earth's biogeochemistry.

  20. Compositional Stability of the Bacterial Community in a Climate-Sensitive Sub-Arctic Peatland.

    PubMed

    Weedon, James T; Kowalchuk, George A; Aerts, Rien; Freriks, Stef; Röling, Wilfred F M; van Bodegom, Peter M

    2017-01-01

    The climate sensitivity of microbe-mediated soil processes such as carbon and nitrogen cycling offers an interesting case for evaluating the corresponding sensitivity of microbial community composition to environmental change. Better understanding of the degree of linkage between functional and compositional stability would contribute to ongoing efforts to build mechanistic models aiming at predicting rates of microbe-mediated processes. We used an amplicon sequencing approach to test if previously observed large effects of experimental soil warming on C and N cycle fluxes (50-100% increases) in a sub-arctic Sphagnum peatland were reflected in changes in the composition of the soil bacterial community. We found that treatments that previously induced changes to fluxes did not associate with changes in the phylogenetic composition of the soil bacterial community. For both DNA- and RNA-based analyses, variation in bacterial communities could be explained by the hierarchy: spatial variation (12-15% of variance explained) > temporal variation (7-11%) > climate treatment (4-9%). We conclude that the bacterial community in this environment is stable under changing conditions, despite the previously observed sensitivity of process rates-evidence that microbe-mediated soil processes can alter without concomitant changes in bacterial communities. We propose that progress in linking soil microbial communities to ecosystem processes can be advanced by further investigating the relative importance of community composition effects versus physico-chemical factors in controlling biogeochemical process rates in different contexts.

  1. Diurnal cycling of rhizosphere bacterial communities is associated with shifts in carbon metabolism

    DOE PAGES

    Staley, Christopher; Ferrieri, Abigail P.; Tfaily, Malak M.; ...

    2017-06-24

    The circadian clock regulates plant metabolic functions and is an important component in plant health and productivity. Rhizosphere bacteria play critical roles in plant growth, health, and development and are shaped primarily by soil communities. Using Illumina next-generation sequencing and high-resolution mass spectrometry, we characterized bacterial communities of wild-type (Col-0) Arabidopsis thaliana and an acyclic line (OX34) ectopically expressing the circadian clock-associated cca1 transcription factor, relative to a soil control, to determine how cycling dynamics affected the microbial community. Microbial communities associated with Brachypodium distachyon (BD21) were also evaluated.Significantly different bacterial community structures ( P = 0.031) were observed inmore » the rhizosphere of wild-type plants between light and dark cycle samples. Furthermore, 13% of the community showed cycling, with abundances of several families, including Burkholderiaceae, Rhodospirillaceae, Planctomycetaceae, and Gaiellaceae, exhibiting fluctuation in abundances relative to the light cycle. However, limited-to-no cycling was observed in the acyclic CCAox34 line or in soil controls. Significant cycling was also observed, to a lesser extent, in Brachypodium. Functional gene inference revealed that genes involved in carbohydrate metabolism were likely more abundant in near-dawn, dark samples. Additionally, the composition of organic matter in the rhizosphere showed a significant variation between dark and light cycles.The results of this study suggest that the rhizosphere bacterial community is regulated, to some extent, by the circadian clock and is likely influenced by, and exerts influences, on plant metabolism and productivity. The timing of bacterial cycling in relation to that of Arabidopsis further suggests that diurnal dynamics influence plant-microbe carbon metabolism and exchange. Equally important, our results suggest that previous studies done without relevance to time of day may need to be reevaluated with regard to the impact of diurnal cycles on the rhizosphere microbial community.« less

  2. Diurnal cycling of rhizosphere bacterial communities is associated with shifts in carbon metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staley, Christopher; Ferrieri, Abigail P.; Tfaily, Malak M.

    The circadian clock regulates plant metabolic functions and is an important component in plant health and productivity. Rhizosphere bacteria play critical roles in plant growth, health, and development and are shaped primarily by soil communities. Using Illumina next-generation sequencing and high-resolution mass spectrometry, we characterized bacterial communities of wild-type (Col-0) Arabidopsis thaliana and an acyclic line (OX34) ectopically expressing the circadian clock-associated cca1 transcription factor, relative to a soil control, to determine how cycling dynamics affected the microbial community. Microbial communities associated with Brachypodium distachyon (BD21) were also evaluated.Significantly different bacterial community structures ( P = 0.031) were observed inmore » the rhizosphere of wild-type plants between light and dark cycle samples. Furthermore, 13% of the community showed cycling, with abundances of several families, including Burkholderiaceae, Rhodospirillaceae, Planctomycetaceae, and Gaiellaceae, exhibiting fluctuation in abundances relative to the light cycle. However, limited-to-no cycling was observed in the acyclic CCAox34 line or in soil controls. Significant cycling was also observed, to a lesser extent, in Brachypodium. Functional gene inference revealed that genes involved in carbohydrate metabolism were likely more abundant in near-dawn, dark samples. Additionally, the composition of organic matter in the rhizosphere showed a significant variation between dark and light cycles.The results of this study suggest that the rhizosphere bacterial community is regulated, to some extent, by the circadian clock and is likely influenced by, and exerts influences, on plant metabolism and productivity. The timing of bacterial cycling in relation to that of Arabidopsis further suggests that diurnal dynamics influence plant-microbe carbon metabolism and exchange. Equally important, our results suggest that previous studies done without relevance to time of day may need to be reevaluated with regard to the impact of diurnal cycles on the rhizosphere microbial community.« less

  3. Macrofaunal production and biological traits: Spatial relationships along the UK continental shelf

    NASA Astrophysics Data System (ADS)

    Bolam, S. G.; Eggleton, J. D.

    2014-04-01

    Biological trait analysis (BTA) is increasingly being employed to improve our understanding of the ecological functioning of marine benthic invertebrate communities. However, changes in trait composition are seldomly compared with concomitant changes in metrics of ecological function. Consequently, inferences regarding the functional implications of any changes are often anecdotal; we currently have a limited understanding of the functional significance of the traits commonly used. In this study, we quantify the relationship between benthic invertebrate trait composition and secondary production estimates using data spanning almost the breadth of the UK continental shelf. Communities described by their composition of 10 traits representing life history, morphology and behaviour showed strong relationships with variations in total secondary production. A much weaker relationship was observed for community productivity (or P:B), a measure of rate of energy turnover. Furthermore, the relationship between total production and multivariate taxonomic community composition was far weaker than that for trait composition. Indeed, the similarities between communities as defined by taxonomy were very different from those depicted by their trait composition. That is, as many studies have demonstrated, taxonomically different communities may display similar trait compositions, and vice versa. Finally, we found that descriptions of community trait composition vary greatly depending on whether abundance or biomass is used as the enumeration weighting method during BTA, and trait assessments based on biomass produced better relations with secondary production than those based on abundance. We discuss the significance of these findings with respect to BTA using marine benthic invertebrates.

  4. Biofilm composition in the Olt River (Romania) reservoirs impacted by a chlor-alkali production plant.

    PubMed

    Dranguet, P; Cosio, C; Le Faucheur, S; Hug Peter, D; Loizeau, J-L; Ungureanu, V-Gh; Slaveykova, V I

    2017-05-24

    Freshwater biofilms can be useful indicators of water quality and offer the possibility to assess contaminant effects at the community level. The present field study examines the effects of chlor-alkali plant effluents on the community composition of biofilms grown in the Olt River (Romania) reservoirs. The relationship between ambient water quality variables and community composition alterations was explored. Amplicon sequencing revealed a significant modification of the composition of microalgal, bacterial and fungal communities in the biofilms collected in the impacted reservoirs in comparison with those living in the uncontaminated control reservoir. The abundance corrected Simpson index showed lower richness and diversity in biofilms collected in the impacted reservoirs than in the control reservoir. The biofilm bacterial communities of the impacted reservoirs were characterized by the contaminant-tolerant Cyanobacteria and Bacteroidetes, whereas microalgal communities were predominantly composed of Bacillariophyta and fungal communities of Lecanoromycetes and Paraglomycetes. A principal component analysis revealed that major contaminants present in the waste water of the chlor-alkali production plant, i.e. Na + , Ca 2+ , Cl - and Hg, were correlated with the alteration of biofilm community composition in the impacted reservoirs. However, the biofilm composition was also influenced by water quality variables such as NO 3 - , SO 4 2- , DOC and Zn from unknown sources. The results of the present study imply that, even when below the environmental quality standards, typical contaminants of chlor-alkali plant releases may affect biofilm composition and that their impacts on the microbial biodiversity might be currently overlooked.

  5. Microbial biogeography of arctic streams: exploring influences of lithology and habitat.

    PubMed

    Larouche, Julia R; Bowden, William B; Giordano, Rosanna; Flinn, Michael B; Crump, Byron C

    2012-01-01

    Terminal restriction fragment length polymorphism and 16S rRNA gene sequencing were used to explore the community composition of bacterial communities in biofilms on sediments (epipssamon) and rocks (epilithon) in stream reaches that drain watersheds with contrasting lithologies in the Noatak National Preserve, Alaska. Bacterial community composition varied primarily by stream habitat and secondarily by lithology. Positive correlations were detected between bacterial community structure and nutrients, base cations, and dissolved organic carbon. Our results showed significant differences at the stream habitat, between epipssamon and epilithon bacterial communities, which we expected. Our results also showed significant differences at the landscape scale that could be related to different lithologies and associated stream biogeochemistry. These results provide insight into the bacterial community composition of little known and pristine arctic stream ecosystems and illustrate how differences in the lithology, soils, and vegetation community of the terrestrial environment interact to influence stream bacterial taxonomic richness and composition.

  6. Microbial Biogeography of Arctic Streams: Exploring Influences of Lithology and Habitat

    PubMed Central

    Larouche, Julia R.; Bowden, William B.; Giordano, Rosanna; Flinn, Michael B.; Crump, Byron C.

    2012-01-01

    Terminal restriction fragment length polymorphism and 16S rRNA gene sequencing were used to explore the community composition of bacterial communities in biofilms on sediments (epipssamon) and rocks (epilithon) in stream reaches that drain watersheds with contrasting lithologies in the Noatak National Preserve, Alaska. Bacterial community composition varied primarily by stream habitat and secondarily by lithology. Positive correlations were detected between bacterial community structure and nutrients, base cations, and dissolved organic carbon. Our results showed significant differences at the stream habitat, between epipssamon and epilithon bacterial communities, which we expected. Our results also showed significant differences at the landscape scale that could be related to different lithologies and associated stream biogeochemistry. These results provide insight into the bacterial community composition of little known and pristine arctic stream ecosystems and illustrate how differences in the lithology, soils, and vegetation community of the terrestrial environment interact to influence stream bacterial taxonomic richness and composition. PMID:22936932

  7. Analysis of Structure and Composition of Bacterial Core Communities in Mature Drinking Water Biofilms and Bulk Water of a Citywide Network in Germany

    PubMed Central

    Henne, Karsten; Kahlisch, Leila; Brettar, Ingrid

    2012-01-01

    The bacterial core communities of bulk water and corresponding biofilms of a more than 20-year-old drinking water network were compared using 16S rRNA single-strand confirmation polymorphism (SSCP) fingerprints based on extracted DNA and RNA. The structure and composition of the bacterial core community in the bulk water was highly similar (>70%) across the city of Braunschweig, Germany, whereas all biofilm samples contained a unique community with no overlapping phylotypes from bulk water. Biofilm samples consisted mainly of Alphaproteobacteria (26% of all phylotypes), Gammaproteobacteria (11%), candidate division TM6 (11%), Chlamydiales (9%), and Betaproteobacteria (9%). The bulk water community consisted primarily of Bacteroidetes (25%), Betaproteobacteria (20%), Actinobacteria (16%), and Alphaproteobacteria (11%). All biofilm communities showed higher relative abundances of single phylotypes and a reduced richness compared to bulk water. Only biofilm communities sampled at nearby sampling points showed similar communities irrespective of support materials. In all of our bulk water studies, the community composition determined from 16S rRNA was completely different from the 16S rRNA gene-based community composition, whereas in biofilms both molecular fractions resulted in community compositions that were similar to each other. We hypothesize that a higher fraction of active bacterial phylotypes and a better protection from oxidative stress in drinking water biofilms are responsible for this higher similarity. PMID:22389373

  8. Analysis of structure and composition of bacterial core communities in mature drinking water biofilms and bulk water of a citywide network in Germany.

    PubMed

    Henne, Karsten; Kahlisch, Leila; Brettar, Ingrid; Höfle, Manfred G

    2012-05-01

    The bacterial core communities of bulk water and corresponding biofilms of a more than 20-year-old drinking water network were compared using 16S rRNA single-strand confirmation polymorphism (SSCP) fingerprints based on extracted DNA and RNA. The structure and composition of the bacterial core community in the bulk water was highly similar (>70%) across the city of Braunschweig, Germany, whereas all biofilm samples contained a unique community with no overlapping phylotypes from bulk water. Biofilm samples consisted mainly of Alphaproteobacteria (26% of all phylotypes), Gammaproteobacteria (11%), candidate division TM6 (11%), Chlamydiales (9%), and Betaproteobacteria (9%). The bulk water community consisted primarily of Bacteroidetes (25%), Betaproteobacteria (20%), Actinobacteria (16%), and Alphaproteobacteria (11%). All biofilm communities showed higher relative abundances of single phylotypes and a reduced richness compared to bulk water. Only biofilm communities sampled at nearby sampling points showed similar communities irrespective of support materials. In all of our bulk water studies, the community composition determined from 16S rRNA was completely different from the 16S rRNA gene-based community composition, whereas in biofilms both molecular fractions resulted in community compositions that were similar to each other. We hypothesize that a higher fraction of active bacterial phylotypes and a better protection from oxidative stress in drinking water biofilms are responsible for this higher similarity.

  9. Rapid recovery of soil bacterial communities after wildfire in a Chinese boreal forest

    PubMed Central

    Xiang, Xingjia; Shi, Yu; Yang, Jian; Kong, Jianjian; Lin, Xiangui; Zhang, Huayong; Zeng, Jun; Chu, Haiyan

    2014-01-01

    Fires affect hundreds of millions of hectares annually. Above-ground community composition and diversity after fire have been studied extensively, but effects of fire on soil bacterial communities remain largely unexamined despite the central role of bacteria in ecosystem recovery and functioning. We investigated responses of bacterial community to forest fire in the Greater Khingan Mountains, China, using tagged pyrosequencing. Fire altered soil bacterial community composition substantially and high-intensity fire significantly decreased bacterial diversity 1-year-after-burn site. Bacterial community composition and diversity returned to similar levels as observed in controls (no fire) after 11 years. The understory vegetation community typically takes 20–100 years to reach pre-fire states in boreal forest, so our results suggest that soil bacteria could recover much faster than plant communities. Finally, soil bacterial community composition significantly co-varied with soil pH, moisture content, NH4+ content and carbon/nitrogen ratio (P < 0.05 in all cases) in wildfire-perturbed soils, suggesting that fire could indirectly affect bacterial communities by altering soil edaphic properties. PMID:24452061

  10. Bacterial Community Succession in Pine-Wood Decomposition.

    PubMed

    Kielak, Anna M; Scheublin, Tanja R; Mendes, Lucas W; van Veen, Johannes A; Kuramae, Eiko E

    2016-01-01

    Though bacteria and fungi are common inhabitants of decaying wood, little is known about the relationship between bacterial and fungal community dynamics during natural wood decay. Based on previous studies involving inoculated wood blocks, strong fungal selection on bacteria abundance and community composition was expected to occur during natural wood decay. Here, we focused on bacterial and fungal community compositions in pine wood samples collected from dead trees in different stages of decomposition. We showed that bacterial communities undergo less drastic changes than fungal communities during wood decay. Furthermore, we found that bacterial community assembly was a stochastic process at initial stage of wood decay and became more deterministic in later stages, likely due to environmental factors. Moreover, composition of bacterial communities did not respond to the changes in the major fungal species present in the wood but rather to the stage of decay reflected by the wood density. We concluded that the shifts in the bacterial communities were a result of the changes in wood properties during decomposition and largely independent of the composition of the wood-decaying fungal communities.

  11. Bacterial Community Succession in Pine-Wood Decomposition

    PubMed Central

    Kielak, Anna M.; Scheublin, Tanja R.; Mendes, Lucas W.; van Veen, Johannes A.; Kuramae, Eiko E.

    2016-01-01

    Though bacteria and fungi are common inhabitants of decaying wood, little is known about the relationship between bacterial and fungal community dynamics during natural wood decay. Based on previous studies involving inoculated wood blocks, strong fungal selection on bacteria abundance and community composition was expected to occur during natural wood decay. Here, we focused on bacterial and fungal community compositions in pine wood samples collected from dead trees in different stages of decomposition. We showed that bacterial communities undergo less drastic changes than fungal communities during wood decay. Furthermore, we found that bacterial community assembly was a stochastic process at initial stage of wood decay and became more deterministic in later stages, likely due to environmental factors. Moreover, composition of bacterial communities did not respond to the changes in the major fungal species present in the wood but rather to the stage of decay reflected by the wood density. We concluded that the shifts in the bacterial communities were a result of the changes in wood properties during decomposition and largely independent of the composition of the wood-decaying fungal communities. PMID:26973611

  12. Metal oxides, clay minerals and charcoal determine the composition of microbial communities in matured artificial soils and their response to phenanthrene.

    PubMed

    Babin, Doreen; Ding, Guo-Chun; Pronk, Geertje Johanna; Heister, Katja; Kögel-Knabner, Ingrid; Smalla, Kornelia

    2013-10-01

    Microbial communities in soil reside in a highly heterogeneous habitat where diverse mineral surfaces, complex organic matter and microorganisms interact with each other. This study aimed to elucidate the long-term effect of the soil mineral composition and charcoal on the microbial community composition established in matured artificial soils and their response to phenanthrene. One year after adding sterile manure to different artificial soils and inoculating microorganisms from a Cambisol, the matured soils were spiked with phenanthrene or not and incubated for another 70 days. 16S rRNA gene and internal transcribed spacer fragments amplified from total community DNA were analyzed by denaturing gradient gel electrophoresis. Metal oxides and clay minerals and to a lesser extent charcoal influenced the microbial community composition. Changes in the bacterial community composition in response to phenanthrene differed depending on the mineral composition and presence of charcoal, while no shifts in the fungal community composition were observed. The abundance of ring-hydroxylating dioxygenase genes was increased in phenanthrene-spiked soils except for charcoal-containing soils. Here we show that the formation of biogeochemical interfaces in soil is an ongoing process and that different properties present in artificial soils influenced the bacterial response to the phenanthrene spike. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  13. Variation in coastal Antarctic microbial community composition at sub-mesoscale: spatial distance or environmental filtering?

    PubMed

    Moreno-Pino, Mario; De la Iglesia, Rodrigo; Valdivia, Nelson; Henríquez-Castilo, Carlos; Galán, Alexander; Díez, Beatriz; Trefault, Nicole

    2016-07-01

    Spatial environmental heterogeneity influences diversity of organisms at different scales. Environmental filtering suggests that local environmental conditions provide habitat-specific scenarios for niche requirements, ultimately determining the composition of local communities. In this work, we analyze the spatial variation of microbial communities across environmental gradients of sea surface temperature, salinity and photosynthetically active radiation and spatial distance in Fildes Bay, King George Island, Antarctica. We hypothesize that environmental filters are the main control of the spatial variation of these communities. Thus, strong relationships between community composition and environmental variation and weak relationships between community composition and spatial distance are expected. Combining physical characterization of the water column, cell counts by flow cytometry, small ribosomal subunit genes fingerprinting and next generation sequencing, we contrast the abundance and composition of photosynthetic eukaryotes and heterotrophic bacterial local communities at a submesoscale. Our results indicate that the strength of the environmental controls differed markedly between eukaryotes and bacterial communities. Whereas eukaryotic photosynthetic assemblages responded weakly to environmental variability, bacteria respond promptly to fine-scale environmental changes in this polar marine system. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Composition Influences the Pathway but not the Outcome of the Metabolic Response of Bacterioplankton to Resource Shifts

    PubMed Central

    Comte, Jérôme; del Giorgio, Paul A.

    2011-01-01

    Bacterioplankton community metabolism is central to the functioning of aquatic ecosystems, and strongly reactive to changes in the environment, yet the processes underlying this response remain unclear. Here we explore the role that community composition plays in shaping the bacterial metabolic response to resource gradients that occur along aquatic ecotones in a complex watershed in Québec. Our results show that the response is mediated by complex shifts in community structure, and structural equation analysis confirmed two main pathways, one involving adjustments in the level of activity of existing phylotypes, and the other the replacement of the dominant phylotypes. These contrasting response pathways were not determined by the type or the intensity of the gradients involved, as we had hypothesized, but rather it would appear that some compositional configurations may be intrinsically more plastic than others. Our results suggest that community composition determines this overall level of community plasticity, but that composition itself may be driven by factors independent of the environmental gradients themselves, such that the response of bacterial communities to a given type of gradient may alternate between the adjustment and replacement pathways. We conclude that community composition influences the pathways of response in these bacterial communities, but not the metabolic outcome itself, which is driven by the environment, and which can be attained through multiple alternative configurations. PMID:21980410

  15. Integrating community assembly and biodiversity to better understand ecosystem function: the Community Assembly and the Functioning of Ecosystems (CAFE) approach.

    PubMed

    Bannar-Martin, Katherine H; Kremer, Colin T; Ernest, S K Morgan; Leibold, Mathew A; Auge, Harald; Chase, Jonathan; Declerck, Steven A J; Eisenhauer, Nico; Harpole, Stanley; Hillebrand, Helmut; Isbell, Forest; Koffel, Thomas; Larsen, Stefano; Narwani, Anita; Petermann, Jana S; Roscher, Christiane; Cabral, Juliano Sarmento; Supp, Sarah R

    2018-02-01

    The research of a generation of ecologists was catalysed by the recognition that the number and identity of species in communities influences the functioning of ecosystems. The relationship between biodiversity and ecosystem functioning (BEF) is most often examined by controlling species richness and randomising community composition. In natural systems, biodiversity changes are often part of a bigger community assembly dynamic. Therefore, focusing on community assembly and the functioning of ecosystems (CAFE), by integrating both species richness and composition through species gains, losses and changes in abundance, will better reveal how community changes affect ecosystem function. We synthesise the BEF and CAFE perspectives using an ecological application of the Price equation, which partitions the contributions of richness and composition to function. Using empirical examples, we show how the CAFE approach reveals important contributions of composition to function. These examples show how changes in species richness and composition driven by environmental perturbations can work in concert or antagonistically to influence ecosystem function. Considering how communities change in an integrative fashion, rather than focusing on one axis of community structure at a time, will improve our ability to anticipate and predict changes in ecosystem function. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  16. Compositional Stability of the Bacterial Community in a Climate-Sensitive Sub-Arctic Peatland

    PubMed Central

    Weedon, James T.; Kowalchuk, George A.; Aerts, Rien; Freriks, Stef; Röling, Wilfred F. M.; van Bodegom, Peter M.

    2017-01-01

    The climate sensitivity of microbe-mediated soil processes such as carbon and nitrogen cycling offers an interesting case for evaluating the corresponding sensitivity of microbial community composition to environmental change. Better understanding of the degree of linkage between functional and compositional stability would contribute to ongoing efforts to build mechanistic models aiming at predicting rates of microbe-mediated processes. We used an amplicon sequencing approach to test if previously observed large effects of experimental soil warming on C and N cycle fluxes (50–100% increases) in a sub-arctic Sphagnum peatland were reflected in changes in the composition of the soil bacterial community. We found that treatments that previously induced changes to fluxes did not associate with changes in the phylogenetic composition of the soil bacterial community. For both DNA- and RNA-based analyses, variation in bacterial communities could be explained by the hierarchy: spatial variation (12–15% of variance explained) > temporal variation (7–11%) > climate treatment (4–9%). We conclude that the bacterial community in this environment is stable under changing conditions, despite the previously observed sensitivity of process rates—evidence that microbe-mediated soil processes can alter without concomitant changes in bacterial communities. We propose that progress in linking soil microbial communities to ecosystem processes can be advanced by further investigating the relative importance of community composition effects versus physico-chemical factors in controlling biogeochemical process rates in different contexts. PMID:28326062

  17. Small-scale spatial heterogeneity of ecosystem properties, microbial community composition and microbial activities in a temperate mountain forest soil.

    PubMed

    Štursová, Martina; Bárta, Jiří; Šantrůčková, Hana; Baldrian, Petr

    2016-12-01

    Forests are recognised as spatially heterogeneous ecosystems. However, knowledge of the small-scale spatial variation in microbial abundance, community composition and activity is limited. Here, we aimed to describe the heterogeneity of environmental properties, namely vegetation, soil chemical composition, fungal and bacterial abundance and community composition, and enzymatic activity, in the topsoil in a small area (36 m 2 ) of a highly heterogeneous regenerating temperate natural forest, and to explore the relationships among these variables. The results demonstrated a high level of spatial heterogeneity in all properties and revealed differences between litter and soil. Fungal communities had substantially higher beta-diversity than bacterial communities, which were more uniform and less spatially autocorrelated. In litter, fungal communities were affected by vegetation and appeared to be more involved in decomposition. In the soil, chemical composition affected both microbial abundance and the rates of decomposition, whereas the effect of vegetation was small. Importantly, decomposition appeared to be concentrated in hotspots with increased activity of multiple enzymes. Overall, forest topsoil should be considered a spatially heterogeneous environment in which the mean estimates of ecosystem-level processes and microbial community composition may confound the existence of highly specific microenvironments. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Defining microbial community composition and seasonal variation in a sewage treatment plant in India using a down-flow hanging sponge reactor.

    PubMed

    Nomoto, Naoki; Hatamoto, Masashi; Hirakata, Yuga; Ali, Muntjeer; Jayaswal, Komal; Iguchi, Akinori; Okubo, Tsutomu; Takahashi, Masanobu; Kubota, Kengo; Tagawa, Tadashi; Uemura, Shigeki; Yamaguchi, Takashi; Harada, Hideki

    2018-05-01

    The characteristics of the microbial community in a practical-scale down-flow hanging sponge (DHS) reactor, high in organic matter and sulfate ion concentration, and the seasonal variation of the microbial community composition were investigated. Microorganisms related to sulfur oxidation and reduction (2-27%), as well as Leucobacter (7.50%), were abundant in the reactor. Anaerobic bacteria (27-38% in the first layer) were also in abundance and were found to contribute to the removal of organic matter from the sewage in the reactor. By comparing the Simpson index, the abundance-based coverage estimator (ACE) index, and the species composition of the microbial community across seasons (summer/dry, summer/rainy, autumn/dry, and winter/dry), the microbial community was found to change in composition only during the winter season. In addition to the estimation of seasonal variation, the difference in the microbial community composition along the axes of the DHS reactor was investigated for the first time. Although the abundance of each bacterial species differed along both axes of the reactor, the change of the community composition in the reactor was found to be greater along the vertical axis than the horizontal axis of the DHS reactor.

  19. Prokaryotic Responses to Ammonium and Organic Carbon Reveal Alternative CO2 Fixation Pathways and Importance of Alkaline Phosphatase in the Mesopelagic North Atlantic

    PubMed Central

    Baltar, Federico; Lundin, Daniel; Palovaara, Joakim; Lekunberri, Itziar; Reinthaler, Thomas; Herndl, Gerhard J.; Pinhassi, Jarone

    2016-01-01

    To decipher the response of mesopelagic prokaryotic communities to input of nutrients, we tracked changes in prokaryotic abundance, extracellular enzymatic activities, heterotrophic production, dark dissolved inorganic carbon (DIC) fixation, community composition (16S rRNA sequencing) and community gene expression (metatranscriptomics) in 3 microcosm experiments with water from the mesopelagic North Atlantic. Responses in 3 different treatments amended with thiosulfate, ammonium or organic matter (i.e., pyruvate plus acetate) were compared to unamended controls. The strongest stimulation was found in the organic matter enrichments, where all measured rates increased >10-fold. Strikingly, in the organic matter treatment, the dark DIC fixation rates—assumed to be related to autotrophic metabolisms—were equally stimulated as all the other heterotrophic-related parameters. This increase in DIC fixation rates was paralleled by an up-regulation of genes involved in DIC assimilation via anaplerotic pathways. Alkaline phosphatase was the metabolic rate most strongly stimulated and its activity seemed to be related to cross-activation by nonpartner histidine kinases, and/or the activation of genes involved in the regulation of elemental balance during catabolic processes. These findings suggest that episodic events such as strong sedimentation of organic matter into the mesopelagic might trigger rapid increases of originally rare members of the prokaryotic community, enhancing heterotrophic and autotrophic carbon uptake rates, ultimately affecting carbon cycling. Our experiments highlight a number of fairly unstudied microbial processes of potential importance in mesopelagic waters that require future attention. PMID:27818655

  20. Effects of carbon sources on the enrichment of halophilic polyhydroxyalkanoate-storing mixed microbial culture in an aerobic dynamic feeding process

    PubMed Central

    Cui, You-Wei; Zhang, Hong-Yu; Lu, Peng-Fei; Peng, Yong-Zhen

    2016-01-01

    Microbial polyhydroxyalkanoate (PHA) production serves as a substitute for petroleum-based plastics. Enriching mixed microbial cultures (MMCs) with the capacity to store PHA is a key precursor for low-cost PHA production. This study investigated the impact of carbon types on enrichment outcomes. Three MMCs were separately fed by acetate sodium, glucose, and starch as an enriching carbon source, and were exposed to long-term aerobic dynamic feeding (ADF) periods. The PHA production capacity, kinetics and stoichiometry of the enrichments, the PHA composition, and the microbial diversity and community composition were explored to determine carbon and enrichment correlations. After 350-cycle enriching periods under feast-famine (F-F) regimes, the MMCs enriched by acetate sodium and glucose contained a maximum PHA content of 64.7% and 60.5% cell dry weight (CDW). The starch-enriched MMC only had 27.3% CDW of PHA. High-throughput sequencing revealed that non-PHA bacteria survived alongside PHA storing bacteria, even under severe F-F selective pressure. Genus of Pseudomonas and Stappia were the possible PHA accumulating bacteria in acetate-enriched MMC. Genus of Oceanicella, Piscicoccus and Vibrio were found as PHA accumulating bacteria in glucose-enriched MMC. Vibrio genus was the only PHA accumulating bacteria in starch-enriched MMC. The community diversity and composition were regulated by the substrate types. PMID:27485896

  1. Effects of carbon sources on the enrichment of halophilic polyhydroxyalkanoate-storing mixed microbial culture in an aerobic dynamic feeding process

    NASA Astrophysics Data System (ADS)

    Cui, You-Wei; Zhang, Hong-Yu; Lu, Peng-Fei; Peng, Yong-Zhen

    2016-08-01

    Microbial polyhydroxyalkanoate (PHA) production serves as a substitute for petroleum-based plastics. Enriching mixed microbial cultures (MMCs) with the capacity to store PHA is a key precursor for low-cost PHA production. This study investigated the impact of carbon types on enrichment outcomes. Three MMCs were separately fed by acetate sodium, glucose, and starch as an enriching carbon source, and were exposed to long-term aerobic dynamic feeding (ADF) periods. The PHA production capacity, kinetics and stoichiometry of the enrichments, the PHA composition, and the microbial diversity and community composition were explored to determine carbon and enrichment correlations. After 350-cycle enriching periods under feast-famine (F-F) regimes, the MMCs enriched by acetate sodium and glucose contained a maximum PHA content of 64.7% and 60.5% cell dry weight (CDW). The starch-enriched MMC only had 27.3% CDW of PHA. High-throughput sequencing revealed that non-PHA bacteria survived alongside PHA storing bacteria, even under severe F-F selective pressure. Genus of Pseudomonas and Stappia were the possible PHA accumulating bacteria in acetate-enriched MMC. Genus of Oceanicella, Piscicoccus and Vibrio were found as PHA accumulating bacteria in glucose-enriched MMC. Vibrio genus was the only PHA accumulating bacteria in starch-enriched MMC. The community diversity and composition were regulated by the substrate types.

  2. Effects of carbon sources on the enrichment of halophilic polyhydroxyalkanoate-storing mixed microbial culture in an aerobic dynamic feeding process.

    PubMed

    Cui, You-Wei; Zhang, Hong-Yu; Lu, Peng-Fei; Peng, Yong-Zhen

    2016-08-03

    Microbial polyhydroxyalkanoate (PHA) production serves as a substitute for petroleum-based plastics. Enriching mixed microbial cultures (MMCs) with the capacity to store PHA is a key precursor for low-cost PHA production. This study investigated the impact of carbon types on enrichment outcomes. Three MMCs were separately fed by acetate sodium, glucose, and starch as an enriching carbon source, and were exposed to long-term aerobic dynamic feeding (ADF) periods. The PHA production capacity, kinetics and stoichiometry of the enrichments, the PHA composition, and the microbial diversity and community composition were explored to determine carbon and enrichment correlations. After 350-cycle enriching periods under feast-famine (F-F) regimes, the MMCs enriched by acetate sodium and glucose contained a maximum PHA content of 64.7% and 60.5% cell dry weight (CDW). The starch-enriched MMC only had 27.3% CDW of PHA. High-throughput sequencing revealed that non-PHA bacteria survived alongside PHA storing bacteria, even under severe F-F selective pressure. Genus of Pseudomonas and Stappia were the possible PHA accumulating bacteria in acetate-enriched MMC. Genus of Oceanicella, Piscicoccus and Vibrio were found as PHA accumulating bacteria in glucose-enriched MMC. Vibrio genus was the only PHA accumulating bacteria in starch-enriched MMC. The community diversity and composition were regulated by the substrate types.

  3. Bacterial water quality and network hydraulic characteristics: a field study of a small, looped water distribution system using culture-independent molecular methods.

    PubMed

    Sekar, R; Deines, P; Machell, J; Osborn, A M; Biggs, C A; Boxall, J B

    2012-06-01

    To determine the spatial and temporal variability in the abundance, structure and composition of planktonic bacterial assemblages sampled from a small, looped water distribution system and to interpret results with respect to hydraulic conditions. Water samples were collected from five sampling points, twice a day at 06:00 h and 09:00 h on a Monday (following low weekend demand) and a Wednesday (higher midweek demand). All samples were fully compliant with current regulated parameter standards. This study did not show obvious changes in bacterial abundance (DAPI count) or community structure Denaturing gradient gel electrophoresis analysis with respect to sample site and hence to water age; however, the study did show temporal variability with respect to both sampling day and sample times. Data suggests that variations in the bacterial assemblages may be associated with the local system hydraulics: the bacterial composition and numbers, over short durations, are governed by the interaction of the bulk water and the biofilm influenced by the hydraulic conditions. This study demonstrates general stability in bacterial abundance, community structure and composition within the system studied. Trends and patterns supporting the transfer of idealized understanding to the real world were evident. Ultimately, such work will help to safeguard potable water quality, fundamental to public health. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  4. Aspen community types of the Intermountain Region

    Treesearch

    Walter F. Mueggler

    1988-01-01

    This vegetation classification is based upon existing community structure and composition in the aspen-dominated forests of the Intermountain Region of the Forest Service. The 56 community types occur within eight tree-cover types. A diagnostic key using indicator species facilitates field identification of the community types. Vegetational composition, productivity,...

  5. Bacterial community composition and structure in an Urban River impacted by different pollutant sources.

    PubMed

    Ibekwe, A Mark; Ma, Jincai; Murinda, Shelton E

    2016-10-01

    Microbial communities in terrestrial fresh water are diverse and dynamic in composition due to different environmental factors. The goal of this study was to undertake a comprehensive analysis of bacterial composition along different rivers and creeks and correlate these to land-use practices and pollutant sources. Here we used 454 pyrosequencing to determine the total bacterial community composition, and bacterial communities that are potentially of fecal origin, and of relevance to water quality assessment. The results were analyzed using UniFrac coupled with principal coordinate analysis (PCoA) to compare diversity, abundance, and community composition. Detrended correspondence analysis (DCA) and canonical correspondence analysis (CCA) were used to correlate bacterial composition in streams and creeks to different environmental parameters impacting bacterial communities in the sediment and surface water within the watershed. Bacteria were dominated by the phyla Proteobacteria, Bacteroidetes, Acidobacteria, and Actinobacteria, with Bacteroidetes significantly (P<0.001) higher in all water samples than sediment, where as Acidobacteria and Actinobacteria where significantly higher (P<0.05) in all the sediment samples than surface water. Overall results, using the β diversity measures, coupled with PCoA and DCA showed that bacterial composition in sediment and surface water was significantly different (P<0.001). Also, there were differences in bacterial community composition between agricultural runoff and urban runoff based on parsimony tests using 454 pyrosequencing data. Fecal indicator bacteria in surface water along different creeks and channels were significantly correlated with pH (P<0.01), NO2 (P<0.03), and NH4N (P<0.005); and in the sediment with NO3 (P<0.015). Our results suggest that microbial community compositions were influenced by several environmental factors, and pH, NO2, and NH4 were the major environmental factors driving FIB in surface water based on CCA analysis, while NO3 was the only factor in sediment. Published by Elsevier B.V.

  6. Links between plant and fungal communities across a deforestation chronosequence in the Amazon rainforest.

    PubMed

    Mueller, Rebecca C; Paula, Fabiana S; Mirza, Babur S; Rodrigues, Jorge L M; Nüsslein, Klaus; Bohannan, Brendan J M

    2014-07-01

    Understanding the interactions among microbial communities, plant communities and soil properties following deforestation could provide insights into the long-term effects of land-use change on ecosystem functions, and may help identify approaches that promote the recovery of degraded sites. We combined high-throughput sequencing of fungal rDNA and molecular barcoding of plant roots to estimate fungal and plant community composition in soil sampled across a chronosequence of deforestation. We found significant effects of land-use change on fungal community composition, which was more closely correlated to plant community composition than to changes in soil properties or geographic distance, providing evidence for strong links between above- and below-ground communities in tropical forests.

  7. Lymphotoxin Regulates Commensal Responses to Enable Diet-Induced Obesity

    PubMed Central

    Upadhyay, Vaibhav; Poroyko, Valeriy; Kim, Tae-jin; Devkota, Suzanne; Fu, Sherry; Liu, Donald; Tumanov, Alexei V.; Koroleva, Ekaterina P.; Deng, Liufu; Nagler, Cathryn; Chang, Eugene; Tang, Hong; Fu, Yang-Xin

    2013-01-01

    The microbiota plays a critical, weight-promoting role in diet-induced obesity (DIO), but the pathways that cause the microbiota to induce weight gain are unknown. We report that mice deficient in lymphotoxin (LT), a key molecule in gut immunity, were resistant to DIO. Ltbr−/− mice differed in microbial community composition compared to their heterozygous littermates, including an overgrowth of segmented filamentous bacteria (SFB). Furthermore, cecal transplantation conferred leanness to germ-free recipients. Housing Ltbr−/− mice with their obese siblings rescued weight gain, demonstrating the communicability of the obese phenotype. Ltbr−/− animals lacked interleukin 23 (IL-23) and IL-22 that can regulate SFB. Mice deficient in these pathways also resisted DIO, demonstrating that intact mucosal immunity guides diet-induced changes to the microbiota to enable obesity. PMID:22922363

  8. Isolating causal pathways between flow and fish in the regulated river hierarchy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManamay, Ryan A.; Peoples, Brandon K.; Orth, Donald J.

    Unregulated river systems are organized in a hierarchy in which large-scale factors (i.e., landscape and segment scales) influence local habitats (i.e., reach, meso-, and microhabitat scales), and both differentially exert selective pressures on biota. Dams, however, create discontinua in these processes and change the hierarchical structure. We examined the relative roles of hydrology and other instream factors, within a hierarchical landscape context, in organizing fish communities in regulated and unregulated tributaries to the Upper Tennessee River, USA. We also used multivariate regression trees to identify factors that partition fish assemblages based on trait similarities, irrespective of spatial scale. Then, wemore » used classical path analysis and structural equation modeling to evaluate the most plausible hierarchical causal structure of specific trait-based community components, given the data. Both statistical approaches suggested that river regulation affects stream fishes through a variety of reach-scale variables, not always through hydrology itself. Though we observed different changes in flow, temperature, and biotic responses according to regulation types, the most predominant path in which dam regulation affected biota was via temperature alterations. Diversion dams had the strongest effects on fish assemblages. Diversion dams reduced flow magnitudes, leading to declines in fish richness but increased temperatures, leading to lower abundances in equilibrium species and nest guarders. Peaking and run-of-river dams increased flow variability, leading to lower abundances in nest-guarding fishes. Flow displayed direct relationships with biotic responses; however, results indicated that changes in temperature and substrate had equal, if not stronger, effects on fish assemblage composition. The strength and nature of relationships depended on whether flow metrics were standardized for river size. Here, we suggest that restoration efforts in regulated rivers focus on improving flow conditions in conjunction with temperature and substrate restoration.« less

  9. Isolating causal pathways between flow and fish in the regulated river hierarchy

    DOE PAGES

    McManamay, Ryan A.; Peoples, Brandon K.; Orth, Donald J.; ...

    2015-07-07

    Unregulated river systems are organized in a hierarchy in which large-scale factors (i.e., landscape and segment scales) influence local habitats (i.e., reach, meso-, and microhabitat scales), and both differentially exert selective pressures on biota. Dams, however, create discontinua in these processes and change the hierarchical structure. We examined the relative roles of hydrology and other instream factors, within a hierarchical landscape context, in organizing fish communities in regulated and unregulated tributaries to the Upper Tennessee River, USA. We also used multivariate regression trees to identify factors that partition fish assemblages based on trait similarities, irrespective of spatial scale. Then, wemore » used classical path analysis and structural equation modeling to evaluate the most plausible hierarchical causal structure of specific trait-based community components, given the data. Both statistical approaches suggested that river regulation affects stream fishes through a variety of reach-scale variables, not always through hydrology itself. Though we observed different changes in flow, temperature, and biotic responses according to regulation types, the most predominant path in which dam regulation affected biota was via temperature alterations. Diversion dams had the strongest effects on fish assemblages. Diversion dams reduced flow magnitudes, leading to declines in fish richness but increased temperatures, leading to lower abundances in equilibrium species and nest guarders. Peaking and run-of-river dams increased flow variability, leading to lower abundances in nest-guarding fishes. Flow displayed direct relationships with biotic responses; however, results indicated that changes in temperature and substrate had equal, if not stronger, effects on fish assemblage composition. The strength and nature of relationships depended on whether flow metrics were standardized for river size. Here, we suggest that restoration efforts in regulated rivers focus on improving flow conditions in conjunction with temperature and substrate restoration.« less

  10. Dry/Wet Cycles Change the Activity and Population Dynamics of Methanotrophs in Rice Field Soil

    PubMed Central

    Ma, Ke; Conrad, Ralf

    2013-01-01

    The methanotrophs in rice field soil are crucial in regulating the emission of methane. Drainage substantially reduces methane emission from rice fields. However, it is poorly understood how drainage affects microbial methane oxidation. Therefore, we analyzed the dynamics of methane oxidation rates, composition (using terminal restriction fragment length polymorphism [T-RFLP]), and abundance (using quantitative PCR [qPCR]) of methanotroph pmoA genes (encoding a subunit of particulate methane monooxygenase) and their transcripts over the season and in response to alternate dry/wet cycles in planted paddy field microcosms. In situ methane oxidation accounted for less than 15% of total methane production but was enhanced by intermittent drainage. The dry/wet alternations resulted in distinct effects on the methanotrophic communities in different soil compartments (bulk soil, rhizosphere soil, surface soil). The methanotrophic communities of the different soil compartments also showed distinct seasonal dynamics. In bulk soil, potential methanotrophic activity and transcription of pmoA were relatively low but were significantly stimulated by drainage. In contrast, however, in the rhizosphere and surface soils, potential methanotrophic activity and pmoA transcription were relatively high but decreased after drainage events and resumed after reflooding. While type II methanotrophs dominated the communities in the bulk soil and rhizosphere soil compartments (and to a lesser extent also in the surface soil), it was the pmoA of type I methanotrophs that was mainly transcribed under flooded conditions. Drainage affected the composition of the methanotrophic community only minimally but strongly affected metabolically active methanotrophs. Our study revealed dramatic dynamics in the abundance, composition, and activity of the various type I and type II methanotrophs on both a seasonal and a spatial scale and showed strong effects of dry/wet alternation cycles, which enhanced the attenuation of methane flux into the atmosphere. PMID:23770899

  11. Analysis of microbial community composition in a lab-scale membrane distillation bioreactor.

    PubMed

    Zhang, Q; Shuwen, G; Zhang, J; Fane, A G; Kjelleberg, S; Rice, S A; McDougald, D

    2015-04-01

    Membrane distillation bioreactors (MDBR) have potential for industrial applications where wastewater is hot or waste heat is available, but the role of micro-organisms in MDBRs has never been determined, and thus was the purpose of this study. Microbial communities were characterized by bacterial and archaeal 16S and eukaryotic 18S rRNA gene tag-encoded pyrosequencing of DNA obtained from sludge. Taxonomy-independent analysis revealed that bacterial communities had a relatively low richness and diversity, and community composition strongly correlated with conductivity, total nitrogen and bound extracellular polymeric substances (EPS). Taxonomy-dependent analysis revealed that Rubrobacter and Caldalkalibacillus were abundant members of the bacterial community, but no archaea were detected. Eukaryotic communities had a relatively high richness and diversity, and both changes in community composition and abundance of the dominant genus, Candida, correlated with bound EPS. Thermophilic MDBR communities were comprised of a low diversity bacterial community and a highly diverse eukaryotic community with no archea detected. Communities exhibited low resilience to changes in operational parameters. Specifically, retenatate nutrient composition and concentration was strongly correlated with the dominant species. This study provides an understanding of microbial community diversity in an MDBR, which is fundamental to the optimization of reactor performance. © 2015 The Authors published by John Wiley & Sons Ltd on behalf of Society for Applied Microbiology.

  12. Analysis of microbial community composition in a lab-scale membrane distillation bioreactor

    PubMed Central

    Zhang, Q; Shuwen, G; Zhang, J; Fane, AG; Kjelleberg, S; Rice, SA; McDougald, D

    2015-01-01

    Aims Membrane distillation bioreactors (MDBR) have potential for industrial applications where wastewater is hot or waste heat is available, but the role of micro-organisms in MDBRs has never been determined, and thus was the purpose of this study. Methods and Results Microbial communities were characterized by bacterial and archaeal 16S and eukaryotic 18S rRNA gene tag-encoded pyrosequencing of DNA obtained from sludge. Taxonomy-independent analysis revealed that bacterial communities had a relatively low richness and diversity, and community composition strongly correlated with conductivity, total nitrogen and bound extracellular polymeric substances (EPS). Taxonomy-dependent analysis revealed that Rubrobacter and Caldalkalibacillus were abundant members of the bacterial community, but no archaea were detected. Eukaryotic communities had a relatively high richness and diversity, and both changes in community composition and abundance of the dominant genus, Candida, correlated with bound EPS. Conclusions Thermophilic MDBR communities were comprised of a low diversity bacterial community and a highly diverse eukaryotic community with no archea detected. Communities exhibited low resilience to changes in operational parameters. Specifically, retenatate nutrient composition and concentration was strongly correlated with the dominant species. Significance and Impact of the Study This study provides an understanding of microbial community diversity in an MDBR, which is fundamental to the optimization of reactor performance. PMID:25604265

  13. Effect of mining activities in biotic communities of Villa de la Paz, San Luis Potosi, Mexico.

    PubMed

    Espinosa-Reyes, Guillermo; González-Mille, Donaji J; Ilizaliturri-Hernández, César A; Mejía-Saavedra, Jesús; Cilia-López, V Gabriela; Costilla-Salazar, Rogelio; Díaz-Barriga, Fernando

    2014-01-01

    Mining is one of the most important industrial activities worldwide. During its different stages numerous impacts are generated to the environment. The activities in the region have generated a great amount of mining residues, which have caused severe pollution and health effects in both human population and biotic components. The aim of this paper was to assess the impact of mining activities on biotic communities within the district of Villa de la Paz. The results showed that the concentrations of As and Pb in soil were higher than the national regulations for urban or agricultural areas. The bioavailability of these metals was certified by the presence of them in the roots of species of plants and in kidneys and livers of wild rodents. In regard to the community analysis, the sites that were located close to the mining district of Villa de la Paz registered a lower biological diversity, in both plants and wild rodents, aside from showing a change in the species composition of plant communities. The results of this study are evidence of the impact of mining on biotic communities, and the need to take into account the wildlife in the assessment of contaminated sites.

  14. Effects of low-level radioactive soil contamination and sterilization on the degradation of radiolabeled wheat straw.

    PubMed

    Niedrée, Bastian; Vereecken, Harry; Burauel, Peter

    2012-07-01

    After the explosion of reactor 4 in the nuclear power plant near Chernobyl, huge agricultural areas became contaminated with radionuclides. In this study, we want to elucidate whether (137)Cs and (90)Sr affect microorganisms and their community structure and functions in agricultural soil. For this purpose, the mineralization of radiolabeled wheat straw was examined in lab-scale microcosms. Native soils and autoclaved and reinoculated soils were incubated for 70 days at 20 °C. After incubation, the microbial community structure was compared via 16S and 18S rDNA denaturing gradient gel electrophoresis (DGGE). The radioactive contamination with (137)Cs and (90)Sr was found to have little effect on community structure and no effect on the straw mineralization. The autoclaving and reinoculation of soil had a strong influence on the mineralization and the community structure. Additionally we analyzed the effect of soil treatment on mineralization and community composition. It can be concluded that other environmental factors (such as changing content of dissolved organic carbon) are much stronger regulating factors in the mineralization of wheat straw and that low-level radiation only plays a minor role. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Effect of Mining Activities in Biotic Communities of Villa de la Paz, San Luis Potosi, Mexico

    PubMed Central

    Espinosa-Reyes, Guillermo; González-Mille, Donaji J.; Ilizaliturri-Hernández, César A.; Mejía-Saavedra, Jesús; Cilia-López, V. Gabriela; Costilla-Salazar, Rogelio; Díaz-Barriga, Fernando

    2014-01-01

    Mining is one of the most important industrial activities worldwide. During its different stages numerous impacts are generated to the environment. The activities in the region have generated a great amount of mining residues, which have caused severe pollution and health effects in both human population and biotic components. The aim of this paper was to assess the impact of mining activities on biotic communities within the district of Villa de la Paz. The results showed that the concentrations of As and Pb in soil were higher than the national regulations for urban or agricultural areas. The bioavailability of these metals was certified by the presence of them in the roots of species of plants and in kidneys and livers of wild rodents. In regard to the community analysis, the sites that were located close to the mining district of Villa de la Paz registered a lower biological diversity, in both plants and wild rodents, aside from showing a change in the species composition of plant communities. The results of this study are evidence of the impact of mining on biotic communities, and the need to take into account the wildlife in the assessment of contaminated sites. PMID:24592381

  16. Diversity of herbaceous plants and bacterial communities regulates soil resistome across forest biomes.

    PubMed

    Hu, Hang-Wei; Wang, Jun-Tao; Singh, Brajesh K; Liu, Yu-Rong; Chen, Yong-Liang; Zhang, Yu-Jing; He, Ji-Zheng

    2018-04-24

    Antibiotic resistance is ancient and prevalent in natural ecosystems and evolved long before the utilization of synthetic antibiotics started, but factors influencing the large-scale distribution patterns of natural antibiotic resistance genes (ARGs) remain largely unknown. Here, a large-scale investigation over 4000 km was performed to profile soil ARGs, plant communities and bacterial communities from 300 quadrats across five forest biomes with minimal human impact. We detected diverse and abundant ARGs in forests, including over 160 genes conferring resistance to eight major categories of antibiotics. The diversity of ARGs was strongly and positively correlated with the diversity of bacteria, herbaceous plants and mobile genetic elements (MGEs). The ARG composition was strongly correlated with the taxonomic structure of bacteria and herbs. Consistent with this strong correlation, structural equation modelling demonstrated that the positive effects of bacterial and herb communities on ARG patterns were maintained even when simultaneously accounting for multiple drivers (climate, spatial predictors and edaphic factors). These findings suggest a paradigm that the interactions between aboveground and belowground communities shape the large-scale distribution of soil resistomes, providing new knowledge for tackling the emerging environmental antibiotic resistance. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Characterization of successional changes in bacterial community composition during bioremediation of used motor oil-contaminated soil in a boreal climate.

    PubMed

    Yan, Lijuan; Sinkko, Hanna; Penttinen, Petri; Lindström, Kristina

    2016-01-15

    The widespread use of motor oil makes it a notable risk factor to cause scattered contamination in soil. The monitoring of microbial community dynamics can serve as a comprehensive tool to assess the ecological impact of contaminants and their disappearance in the ecosystem. Hence, a field study was conducted to monitor the ecological impact of used motor oil under different perennial cropping systems (fodder galega, brome grass, galega-brome grass mixture and bare fallow) in a boreal climate zone. Length heterogeneity PCR characterized a successional pattern in bacterial community following oil contamination over a four-year bioremediation period. Soil pH and electrical conductivity were associated with the shifts in bacterial community composition. Crops had no detectable effect on bacterial community composition or complexity. However, the legume fodder galega increased soil microbial biomass, expressed as soil total DNA. Oil contamination induced an abrupt change in bacterial community composition at the early stage, yet the effect did not last as long as the oil in soil. The successional variation in bacterial community composition can serve as a sensitive ecological indicator of oil contamination and remediation in situ. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Land use influences arbuscular mycorrhizal fungal communities in the farming-pastoral ecotone of northern China.

    PubMed

    Xiang, Dan; Verbruggen, Erik; Hu, Yajun; Veresoglou, Stavros D; Rillig, Matthias C; Zhou, Wenping; Xu, Tianle; Li, Huan; Hao, Zhipeng; Chen, Yongliang; Chen, Baodong

    2014-12-01

    We performed a landscape-scale investigation to compare the arbuscular mycorrhizal fungal (AMF) communities between grasslands and farmlands in the farming-pastoral ecotone of northern China. AMF richness and community composition were examined with 454 pyrosequencing. Structural equation modelling (SEM) and multivariate analyses were applied to disentangle the direct and indirect effects (mediated by multiple environmental factors) of land use on AMF. Land use conversion from grassland to farmland significantly reduced AMF richness and extraradical hyphal length density, and these land use types also differed significantly in AMF community composition. SEM showed that the effects of land use on AMF richness and hyphal length density in soil were primarily mediated by available phosphorus and soil structural quality. Soil texture was the strongest predictor of AMF community composition. Soil carbon, nitrogen and soil pH were also significantly correlated with AMF community composition, indicating that these abiotic variables could be responsible for some of the community composition differences among sites. Our study shows that land use has a partly predictable effect on AMF communities across this ecologically relevant area of China, and indicates that high soil phosphorus concentrations and poor soil structure are particularly detrimental to AMF in this fragile ecosystem. © 2014 The Author. New Phytologist © 2014 New Phytologist Trust.

  19. Changes in zooplankton community, and seston and zooplankton fatty acid profiles at the freshwater/saltwater interface of the Chowan River, North Carolina

    PubMed Central

    Rinchard, Jacques; Kimmel, David G.

    2017-01-01

    The variability in zooplankton fatty acid composition may be an indicator of larval fish habitat quality as fatty acids are linked to fish larval growth and survival. We sampled an anadromous fish nursery, the Chowan River, during spring of 2013 in order to determine how the seston fatty acid composition varied in comparison with the zooplankton community composition and fatty acid composition during the period of anadromous larval fish residency. The seston fatty acid profiles showed no distinct pattern in relation to sampling time or location. The mesozooplankton community composition varied spatially and the fatty acid profiles were typical of freshwater species in April. The Chowan River experienced a saltwater intrusion event during May, which resulted in brackish water species dominating the zooplankton community and the fatty acid profile showed an increase in polyunsaturated fatty acids (PUFA), in particular eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The saltwater intrusion event was followed by an influx of freshwater due to high precipitation levels in June. The zooplankton community composition once again became dominated by freshwater species and the fatty acid profiles shifted to reflect this change; however, EPA levels remained high, particularly in the lower river. We found correlations between the seston, microzooplankton and mesozooplankton fatty acid compositions. Salinity was the main factor correlated to the observed pattern in species composition, and fatty acid changes in the mesozooplankton. These data suggest that anadromous fish nursery habitat likely experiences considerable spatial variability in fatty acid profiles of zooplankton prey and that are correlated to seston community composition and hydrodynamic changes. Our results also suggest that sufficient prey density as well as a diverse fatty acid composition is present in the Chowan River to support larval fish production. PMID:28828262

  20. Neighboring trees affect ectomycorrhizal fungal community composition in a woodland-forest ecotone.

    PubMed

    Hubert, Nathaniel A; Gehring, Catherine A

    2008-09-01

    Ectomycorrhizal fungi (EMF) are frequently species rich and functionally diverse; yet, our knowledge of the environmental factors that influence local EMF diversity and species composition remains poor. In particular, little is known about the influence of neighboring plants on EMF community structure. We tested the hypothesis that the EMF of plants with heterospecific neighbors would differ in species richness and community composition from the EMF of plants with conspecific neighbors. We conducted our study at the ecotone between pinyon (Pinus edulis)-juniper (Juniperus monosperma) woodland and ponderosa pine (Pinus ponderosa) forest in northern Arizona, USA where the dominant trees formed associations with either EMF (P. edulis and P. ponderosa) or arbuscular mycorrhizal fungi (AMF; J. monosperma). We also compared the EMF communities of pinyon and ponderosa pines where their rhizospheres overlapped. The EMF community composition, but not species richness of pinyon pines was significantly influenced by neighboring AM juniper, but not by neighboring EM ponderosa pine. Ponderosa pine EMF communities were different in species composition when growing in association with pinyon pine than when growing in association with a conspecific. The EMF communities of pinyon and ponderosa pines were similar where their rhizospheres overlapped consisting of primarily the same species in similar relative abundance. Our findings suggest that neighboring tree species identity shaped EMF community structure, but that these effects were specific to host-neighbor combinations. The overlap in community composition between pinyon pine and ponderosa pine suggests that these tree species may serve as reservoirs of EMF inoculum for one another.

  1. Modeling the effects of free-living marine bacterial community composition on heterotrophic remineralization rates and biogeochemical carbon cycling

    NASA Astrophysics Data System (ADS)

    Teel, E.; Liu, X.; Cram, J. A.; Sachdeva, R.; Fuhrman, J. A.; Levine, N. M.

    2016-12-01

    Global oceanic ecosystem models either disregard fluctuations in heterotrophic bacterial remineralization or vary remineralization as a simple function of temperature, available carbon, and nutrient limitation. Most of these models were developed before molecular techniques allowed for the description of microbial community composition and functional diversity. Here we investigate the impact of a dynamic heterotrophic community and variable remineralization rates on biogeochemical cycling. Specifically, we integrated variable microbial remineralization into an ecosystem model by utilizing molecular community composition data, association network analysis, and biogeochemical rate data from the San Pedro Ocean Time-series (SPOT) station. Fluctuations in free-living bacterial community function and composition were examined using monthly environmental and biological data collected at SPOT between 2000 and 2011. On average, the bacterial community showed predictable seasonal changes in community composition and peaked in abundance in the spring with a one-month lag from peak chlorophyll concentrations. Bacterial growth efficiency (BGE), estimated from bacterial production, was found to vary widely at the site (5% to 40%). In a multivariate analysis, 47.6% of BGE variability was predicted using primary production, bacterial community composition, and temperature. A classic Nutrient-Phytoplankton-Zooplankton-Detritus model was expanded to include a heterotroph module that captured the observed relationships at the SPOT site. Results show that the inclusion of dynamic bacterial remineralization into larger oceanic ecosystem models can significantly impact microzooplankton grazing, the duration of surface phytoplankton blooms, and picophytoplankton primary production rates.

  2. Succession of bacterial community composition over two consecutive years in two aquatic systems: a natural lake and a lake-reservoir.

    PubMed

    Boucher, Delphine; Jardillier, Ludwig; Debroas, Didier

    2006-01-01

    The succession in bacterial community composition was studied over two years in the epilimnion and hypolimnion of two freshwater systems: a natural lake (Pavin Lake) and a lake-reservoir (Sep Reservoir). The bacterial community composition was determined by cloning-sequencing of 16S rRNA and by terminal restriction fragment length polymorphism. Despite large hydrogeological differences, in the Sep Reservoir and Pavin Lake the dominant bacteria were from the same taxonomic divisions, particularly Actinobacteria and Betaproteobacteria. In both ecosystems, these major bacterial divisions showed temporal fluctuations that were much less marked than those occurring at a finer phylogenetic scale. Nutrient availability and mortality factors, the nature of which differed from one lake to another, covaried with the temporal variations in the bacterial community composition at all sampling depths, whereas factors related to seasonal forces (temperature and outflow for Sep Reservoir) seemed to account only for the variation of the hypolimnion bacterial community composition. No seasonal reproducibility in temporal evolution of bacterial community from one year to the next was observed.

  3. Influence of Tree Species Composition and Community Structure on Carbon Density in a Subtropical Forest

    PubMed Central

    Hu, Yanqiu; Su, Zhiyao; Li, Wenbin; Li, Jingpeng; Ke, Xiandong

    2015-01-01

    We assessed the impact of species composition and stand structure on the spatial variation of forest carbon density using data collected from a 4-ha plot in a subtropical forest in southern China. We found that 1) forest biomass carbon density significantly differed among communities, reflecting a significant effect of community structure and species composition on carbon accumulation; 2) soil organic carbon density increased whereas stand biomass carbon density decreased across communities, indicating that different mechanisms might account for the accumulation of stand biomass carbon and soil organic carbon in the subtropical forest; and 3) a small number of tree individuals of the medium- and large-diameter class contributed predominantly to biomass carbon accumulation in the community, whereas a large number of seedlings and saplings were responsible for a small proportion of the total forest carbon stock. These findings demonstrate that both biomass carbon and soil carbon density in the subtropical forest are sensitive to species composition and community structure, and that heterogeneity in species composition and stand structure should be taken into account to ensure accurate forest carbon accounting. PMID:26317523

  4. Influence of Tree Species Composition and Community Structure on Carbon Density in a Subtropical Forest.

    PubMed

    Hu, Yanqiu; Su, Zhiyao; Li, Wenbin; Li, Jingpeng; Ke, Xiandong

    2015-01-01

    We assessed the impact of species composition and stand structure on the spatial variation of forest carbon density using data collected from a 4-ha plot in a subtropical forest in southern China. We found that 1) forest biomass carbon density significantly differed among communities, reflecting a significant effect of community structure and species composition on carbon accumulation; 2) soil organic carbon density increased whereas stand biomass carbon density decreased across communities, indicating that different mechanisms might account for the accumulation of stand biomass carbon and soil organic carbon in the subtropical forest; and 3) a small number of tree individuals of the medium- and large-diameter class contributed predominantly to biomass carbon accumulation in the community, whereas a large number of seedlings and saplings were responsible for a small proportion of the total forest carbon stock. These findings demonstrate that both biomass carbon and soil carbon density in the subtropical forest are sensitive to species composition and community structure, and that heterogeneity in species composition and stand structure should be taken into account to ensure accurate forest carbon accounting.

  5. Similar processes but different environmental filters for soil bacterial and fungal community composition turnover on a broad spatial scale.

    PubMed

    Chemidlin Prévost-Bouré, Nicolas; Dequiedt, Samuel; Thioulouse, Jean; Lelièvre, Mélanie; Saby, Nicolas P A; Jolivet, Claudy; Arrouays, Dominique; Plassart, Pierre; Lemanceau, Philippe; Ranjard, Lionel

    2014-01-01

    Spatial scaling of microorganisms has been demonstrated over the last decade. However, the processes and environmental filters shaping soil microbial community structure on a broad spatial scale still need to be refined and ranked. Here, we compared bacterial and fungal community composition turnovers through a biogeographical approach on the same soil sampling design at a broad spatial scale (area range: 13300 to 31000 km2): i) to examine their spatial structuring; ii) to investigate the relative importance of environmental selection and spatial autocorrelation in determining their community composition turnover; and iii) to identify and rank the relevant environmental filters and scales involved in their spatial variations. Molecular fingerprinting of soil bacterial and fungal communities was performed on 413 soils from four French regions of contrasting environmental heterogeneity (Landes

  6. Legacy effects of no-analogue disturbances alter plant community diversity and composition in semi-arid sagebrush steppe

    USGS Publications Warehouse

    Ripplinger, Julie; Franklin, Janet; Edwards, Thomas C.

    2015-01-01

    Questions(i) What role does the type of managed disturbance play in structuring sagebrush steppe plant communities? (ii) How does the composition of post-disturbance plant communities change with time since disturbance? (iii) Does plant community diversity change over time following managed disturbance?LocationField study within the sagebrush steppe ecosystem. Rich County, Utah, USA.MethodsWe developed a chronosequence spanning up to 50 yrs post-treatment to study sagebrush steppe vegetation dynamics. Direct ordination was used to examine plant community composition by managed disturbance type and time since disturbance, and factorial analysis of covariance was used to examine diversity dynamics following disturbance. Indicator species values were calculated in order to identify characteristic species for each disturbance type.ResultsPlant communities experienced a shift toward distinct community composition for each of the three managed disturbance types, and gave no indication of returning to untreated community composition or diversity. Small post-disturbance increases in the number of non-native grass species were observed in the treatments relative to reference, with native forb species making the largest contribution to altered composition. On fire- and chemically-treated sites the proportional native forb species richness increased over time since disturbance, while the proportional contribution of non-native forbs to total species richness decreased. For all three treatment types, native grasses contributed less on average to total richness than on reference sites, while non-native grasses made up a higher proportion of total richness.ConclusionsCommon shrubland management techniques have legacy effects on the composition and diversity of sagebrush steppe plant communities, and no-analogue disturbances, such as chemical or mechanical treatments, have more pronounced legacy effects than treatments similar to natural disturbance regimes (fire). This study informs a broader understanding of how management actions affect natural systems by highlighting the importance of long-term management legacies as drivers of plant community structure and function.

  7. Mesocosms of aquatic bacterial communities from the Cuatro Cienegas Basin (Mexico): a tool to test bacterial community response to environmental stress.

    PubMed

    Pajares, Silvia; Bonilla-Rosso, German; Travisano, Michael; Eguiarte, Luis E; Souza, Valeria

    2012-08-01

    Microbial communities are responsible for important ecosystem processes, and their activities are regulated by environmental factors such as temperature and solar ultraviolet radiation. Here we investigate changes in aquatic microbial community structure, diversity, and evenness in response to changes in temperature and UV radiation. For this purpose, 15 mesocosms were seeded with both microbial mat communities and plankton from natural pools within the Cuatro Cienegas Basin (Mexico). Clone libraries (16S rRNA) were obtained from water samples at the beginning and at the end of the experiment (40 days). Phylogenetic analysis indicated substantial changes in aquatic community composition and structure in response to temperature and UV radiation. Extreme treatments with elevation in temperature or UV radiation reduced diversity in relation to the Control treatments, causing a reduction in richness and increase in dominance, with a proliferation of a few resistant operational taxonomic units. Each phylum was affected differentially by the new conditions, which translates in a differential modification of ecosystem functioning. This suggests that the impact of environmental stress, at least at short term, will reshape the aquatic bacterial communities of this unique ecosystem. This work also demonstrates the possibility of designing manageable synthetic microbial community ecosystems where controlled environmental variables can be manipulated. Therefore, microbial model systems offer a complementary approach to field and laboratory studies of global research problems associated with the environment.

  8. Exposure to dairy manure leads to greater antibiotic resistance and increased mass-specific respiration in soil microbial communities

    PubMed Central

    Avera, Bethany; Badgley, Brian; Barrett, John E.; Franklin, Josh; Knowlton, Katharine F.; Ray, Partha P.; Smitherman, Crystal

    2017-01-01

    Intensifying livestock production to meet the demands of a growing global population coincides with increases in both the administration of veterinary antibiotics and manure inputs to soils. These trends have the potential to increase antibiotic resistance in soil microbial communities. The effect of maintaining increased antibiotic resistance on soil microbial communities and the ecosystem processes they regulate is unknown. We compare soil microbial communities from paired reference and dairy manure-exposed sites across the USA. Given that manure exposure has been shown to elicit increased antibiotic resistance in soil microbial communities, we expect that manure-exposed sites will exhibit (i) compositionally different soil microbial communities, with shifts toward taxa known to exhibit resistance; (ii) greater abundance of antibiotic resistance genes; and (iii) corresponding maintenance of antibiotic resistance would lead to decreased microbial efficiency. We found that bacterial and fungal communities differed between reference and manure-exposed sites. Additionally, the β-lactam resistance gene ampC was 5.2-fold greater under manure exposure, potentially due to the use of cephalosporin antibiotics in dairy herds. Finally, ampC abundance was positively correlated with indicators of microbial stress, and microbial mass-specific respiration, which increased 2.1-fold under manure exposure. These findings demonstrate that the maintenance of antibiotic resistance associated with manure inputs alters soil microbial communities and ecosystem function. PMID:28356447

  9. Exposure to dairy manure leads to greater antibiotic resistance and increased mass-specific respiration in soil microbial communities.

    PubMed

    Wepking, Carl; Avera, Bethany; Badgley, Brian; Barrett, John E; Franklin, Josh; Knowlton, Katharine F; Ray, Partha P; Smitherman, Crystal; Strickland, Michael S

    2017-03-29

    Intensifying livestock production to meet the demands of a growing global population coincides with increases in both the administration of veterinary antibiotics and manure inputs to soils. These trends have the potential to increase antibiotic resistance in soil microbial communities. The effect of maintaining increased antibiotic resistance on soil microbial communities and the ecosystem processes they regulate is unknown. We compare soil microbial communities from paired reference and dairy manure-exposed sites across the USA. Given that manure exposure has been shown to elicit increased antibiotic resistance in soil microbial communities, we expect that manure-exposed sites will exhibit (i) compositionally different soil microbial communities, with shifts toward taxa known to exhibit resistance; (ii) greater abundance of antibiotic resistance genes; and (iii) corresponding maintenance of antibiotic resistance would lead to decreased microbial efficiency. We found that bacterial and fungal communities differed between reference and manure-exposed sites. Additionally, the β-lactam resistance gene ampC was 5.2-fold greater under manure exposure, potentially due to the use of cephalosporin antibiotics in dairy herds. Finally, ampC abundance was positively correlated with indicators of microbial stress, and microbial mass-specific respiration, which increased 2.1-fold under manure exposure. These findings demonstrate that the maintenance of antibiotic resistance associated with manure inputs alters soil microbial communities and ecosystem function. © 2017 The Author(s).

  10. MyD88 signaling in T cells directs IgA-mediated control of the microbiota to promote health

    PubMed Central

    Kubinak, Jason L.; Petersen, Charisse; Stephens, W. Zac; Soto, Ray; Bake, Erin; O’Connell, Ryan M.; Round, June L.

    2015-01-01

    SUMMARY Altered commensal communities are associated with human disease. IgA mediates intestinal homeostasis and regulates microbiota composition. Intestinal IgA is produced at high levels as a result of T follicular helper cell (TFH) and B cell interactions in germinal centers. However, the pathways directing host IgA responses towards the microbiota remain unknown. Here, we report that signaling through the innate adaptor MyD88 in gut T cells coordinates germinal center responses, including TFH and IgA+ B cell development. TFH development is deficient in germfree mice and can be restored by feeding TLR2 agonists that activate T cell intrinsic MyD88 signaling. Loss of this pathway diminishes high affinity IgA targeting of the microbiota and fails to control the bacterial community, leading to worsened disease. Our findings identify that T cells converge innate and adaptive immune signals to coordinate IgA against the microbiota, constraining microbial community membership to promote symbiosis. PMID:25620548

  11. Cu removal and response mechanisms of periphytic biofilms in a tubular bioreactor.

    PubMed

    Ma, Lan; Wang, Fengwu; Yu, Yuanchun; Liu, Junzhuo; Wu, Yonghong

    2018-01-01

    This work studied Cu removal and response mechanisms of periphytic biofilms in a tubular bioreactor. Periphytic biofilms immobilized in a tubular bioreactor were used to remove Cu from wastewater with different Cu concentrations. Results showed that periphytic biofilms had a high removal efficiency (max. 99%) at a hydraulic retention time (HRT) of 12h under initial Cu concentrations of 2.0 and 10.0mgL -1 . Periphyton quickly adapted to Cu stress by regulating the community composition. Species richness, evenness and carbon metabolic diversity of the periphytic community increased when exposed to Cu. Diatoms, green algae, and bacteria (Gammaproteobacteria and Bacteroidia) were the dominant microorganisms and responsible for Cu removal. This study indicates that periphytic biofilms are promising in Cu removal from wastewater due to their strong adaptation capacity to Cu toxicity and also provides valuable information for understanding the relationships between microbial communities and heavy metal stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Integrating Environmental Genomics and Biogeochemical Models: a Gene-centric Approach

    NASA Astrophysics Data System (ADS)

    Reed, D. C.; Algar, C. K.; Huber, J. A.; Dick, G.

    2013-12-01

    Rapid advances in molecular microbial ecology have yielded an unprecedented amount of data about the evolutionary relationships and functional traits of microbial communities that regulate global geochemical cycles. Biogeochemical models, however, are trailing in the wake of the environmental genomics revolution and such models rarely incorporate explicit representations of bacteria and archaea, nor are they compatible with nucleic acid or protein sequence data. Here, we present a functional gene-based framework for describing microbial communities in biogeochemical models that uses genomics data and provides predictions that are readily testable using cutting-edge molecular tools. To demonstrate the approach in practice, nitrogen cycling in the Arabian Sea oxygen minimum zone (OMZ) was modelled to examine key questions about cryptic sulphur cycling and dinitrogen production pathways in OMZs. By directly linking geochemical dynamics to the genetic composition of microbial communities, the method provides mechanistic insights into patterns and biogeochemical consequences of marine microbes. Such an approach is critical for informing our understanding of the key role microbes play in modulating Earth's biogeochemistry.

  13. Defence Chemistry Modulation by Light and Temperature Shifts and the Resulting Effects on Associated Epibacteria of Fucus vesiculosus

    PubMed Central

    Saha, Mahasweta; Rempt, Martin; Stratil, Stephanie B.; Wahl, Martin; Pohnert, Georg; Weinberger, Florian

    2014-01-01

    The goals of this study were (1) to investigate whether Fucus vesiculosus regulates the production of its antifouling defence chemicals against epibacteria in response to light limitation and temperature shifts and (2) to investigate if different surface concentrations of defence compounds shape epibacterial communities. F. vesiculosus was incubated in indoor mesocosms at five different temperature conditions (5 to 25°C) and in outdoor mesocosms under six differently reduced sunlight conditions (0 to 100%), respectively. Algal surface concentrations of previously identified antifouling compounds - dimethylsulphopropionate (DMSP), fucoxanthin and proline – were determined and the bacterial community composition was characterized by in-depth sequencing of the 16S-rRNA gene. Altogether, the effect of different treatment levels upon defence compound concentrations was limited. Under all conditions DMSP alone appeared to be sufficiently concentrated to warrant for at least a partial inhibitory action against epibiotic bacteria of F. vesiculosus. In contrast, proline and fucoxanthin rarely reached the necessary concentration ranges for self-contained inhibition. Nonetheless, in both experiments along with the direct influence of temperature and light, all three compounds apparently affected the overall bacterial community composition associated with F. vesiculosus since tendencies for insensitivity towards all three compounds were observed among bacterial taxa that typically dominate those communities. Given that the concentrations of at least one of the compounds (in most cases DMSP) were always high enough to inhibit bacterial settlement, we conclude that the capacity of F. vesiculosus for such defence will hardly be compromised by shading or warming to temperatures up to 25°C. PMID:25360717

  14. Defence chemistry modulation by light and temperature shifts and the resulting effects on associated epibacteria of Fucus vesiculosus.

    PubMed

    Saha, Mahasweta; Rempt, Martin; Stratil, Stephanie B; Wahl, Martin; Pohnert, Georg; Weinberger, Florian

    2014-01-01

    The goals of this study were (1) to investigate whether Fucus vesiculosus regulates the production of its antifouling defence chemicals against epibacteria in response to light limitation and temperature shifts and (2) to investigate if different surface concentrations of defence compounds shape epibacterial communities. F. vesiculosus was incubated in indoor mesocosms at five different temperature conditions (5 to 25°C) and in outdoor mesocosms under six differently reduced sunlight conditions (0 to 100%), respectively. Algal surface concentrations of previously identified antifouling compounds--dimethylsulphopropionate (DMSP), fucoxanthin and proline--were determined and the bacterial community composition was characterized by in-depth sequencing of the 16S-rRNA gene. Altogether, the effect of different treatment levels upon defence compound concentrations was limited. Under all conditions DMSP alone appeared to be sufficiently concentrated to warrant for at least a partial inhibitory action against epibiotic bacteria of F. vesiculosus. In contrast, proline and fucoxanthin rarely reached the necessary concentration ranges for self-contained inhibition. Nonetheless, in both experiments along with the direct influence of temperature and light, all three compounds apparently affected the overall bacterial community composition associated with F. vesiculosus since tendencies for insensitivity towards all three compounds were observed among bacterial taxa that typically dominate those communities. Given that the concentrations of at least one of the compounds (in most cases DMSP) were always high enough to inhibit bacterial settlement, we conclude that the capacity of F. vesiculosus for such defence will hardly be compromised by shading or warming to temperatures up to 25°C.

  15. Plant Communities Rather than Soil Properties Structure Arbuscular Mycorrhizal Fungal Communities along Primary Succession on a Mine Spoil

    PubMed Central

    Krüger, Claudia; Kohout, Petr; Janoušková, Martina; Püschel, David; Frouz, Jan; Rydlová, Jana

    2017-01-01

    Arbuscular mycorrhizal fungal (AMF) community assembly during primary succession has so far received little attention. It remains therefore unclear, which of the factors, driving AMF community composition, are important during ecosystem development. We addressed this question on a large spoil heap, which provides a mosaic of sites in different successional stages under different managements. We selected 24 sites of c. 12, 20, 30, or 50 years in age, including sites with spontaneously developing vegetation and sites reclaimed by alder plantations. On each site, we sampled twice a year roots of the perennial rhizomatous grass Calamagrostis epigejos (Poaceae) to determine AMF root colonization and diversity (using 454-sequencing), determined the soil chemical properties and composition of plant communities. AMF taxa richness was unaffected by site age, but AMF composition variation increased along the chronosequences. AMF communities were unaffected by soil chemistry, but related to the composition of neighboring plant communities of the sampled C. epigejos plants. In contrast, the plant communities of the sites were more distinctively structured than the AMF communities along the four successional stages. We conclude that AMF and plant community successions respond to different factors. AMF communities seem to be influenced by biotic rather than by abiotic factors and to diverge with successional age. PMID:28473828

  16. Relating belowground microbial composition to the taxonomic, phylogenetic, and functional trait distributions of trees in a tropical forest.

    PubMed

    Barberán, Albert; McGuire, Krista L; Wolf, Jeffrey A; Jones, F Andrew; Wright, Stuart Joseph; Turner, Benjamin L; Essene, Adam; Hubbell, Stephen P; Faircloth, Brant C; Fierer, Noah

    2015-12-01

    The complexities of the relationships between plant and soil microbial communities remain unresolved. We determined the associations between plant aboveground and belowground (root) distributions and the communities of soil fungi and bacteria found across a diverse tropical forest plot. Soil microbial community composition was correlated with the taxonomic and phylogenetic structure of the aboveground plant assemblages even after controlling for differences in soil characteristics, but these relationships were stronger for fungi than for bacteria. In contrast to expectations, the species composition of roots in our soil core samples was a poor predictor of microbial community composition perhaps due to the patchy, ephemeral, and highly overlapping nature of fine root distributions. Our ability to predict soil microbial composition was not improved by incorporating information on plant functional traits suggesting that the most commonly measured plant traits are not particularly useful for predicting the plot-level variability in belowground microbial communities. © 2015 John Wiley & Sons Ltd/CNRS.

  17. Intrinsic and extrinsic drivers of succession: Effects of habitat age and season on an aquatic insect community.

    PubMed

    Murrell, Ebony G; Ives, Anthony R; Juliano, Steven A

    2014-06-01

    1. Classical studies of succession, largely dominated by plant community studies, focus on intrinsic drivers of change in community composition, such as interspecific competition and changes to the abiotic environment. They often do not consider extrinsic drivers of colonization, such as seasonal phenology, that can affect community change. 2. We investigated both intrinsic and extrinsic drivers of succession for dipteran communities that occupy ephemeral pools, such as those in artificial containers. By initiating communities at different times in the season and following them over time, we compared the relative importance of intrinsic (i.e., habitat age) vs. extrinsic (i.e., seasonal phenology) drivers of succession. 3. We placed water-filled artificial containers in a deciduous forest with 20 containers initiated in each of three months. Containers were sampled weekly to assess community composition. Repeated-measures mixed-effects analysis of community correspondence analysis (CA) scores enabled us to partition intrinsic and extrinsic effects on succession. Covariates of temperature and precipitation were also tested. 4. Community trajectories (as defined by CA) differed significantly with habitat age and season, indicating that both intrinsic and extrinsic effects influence succession patterns. Comparisons of AICcs showed that habitat age was more important than season for species composition. Temperature and precipitation did not explain composition changes beyond those explained by habitat age and season. 5. Quantification of relative strengths of intrinsic and extrinsic effects on succession in dipteran and other ephemeral communities enables us to disentangle processes that must be understood for predicting changes in community composition.

  18. Management intensity alters decomposition via biological pathways

    USGS Publications Warehouse

    Wickings, Kyle; Grandy, A. Stuart; Reed, Sasha; Cleveland, Cory

    2011-01-01

    Current conceptual models predict that changes in plant litter chemistry during decomposition are primarily regulated by both initial litter chemistry and the stage-or extent-of mass loss. Far less is known about how variations in decomposer community structure (e.g., resulting from different ecosystem management types) could influence litter chemistry during decomposition. Given the recent agricultural intensification occurring globally and the importance of litter chemistry in regulating soil organic matter storage, our objectives were to determine the potential effects of agricultural management on plant litter chemistry and decomposition rates, and to investigate possible links between ecosystem management, litter chemistry and decomposition, and decomposer community composition and activity. We measured decomposition rates, changes in litter chemistry, extracellular enzyme activity, microarthropod communities, and bacterial versus fungal relative abundance in replicated conventional-till, no-till, and old field agricultural sites for both corn and grass litter. After one growing season, litter decomposition under conventional-till was 20% greater than in old field communities. However, decomposition rates in no-till were not significantly different from those in old field or conventional-till sites. After decomposition, grass residue in both conventional- and no-till systems was enriched in total polysaccharides relative to initial litter, while grass litter decomposed in old fields was enriched in nitrogen-bearing compounds and lipids. These differences corresponded with differences in decomposer communities, which also exhibited strong responses to both litter and management type. Overall, our results indicate that agricultural intensification can increase litter decomposition rates, alter decomposer communities, and influence litter chemistry in ways that could have important and long-term effects on soil organic matter dynamics. We suggest that future efforts to more accurately predict soil carbon dynamics under different management regimes may need to explicitly consider how changes in litter chemistry during decomposition are influenced by the specific metabolic capabilities of the extant decomposer communities.

  19. Fungal community composition and diversity vary with soil depths and landscape position in a no-till wheat cropping system.

    USDA-ARS?s Scientific Manuscript database

    Fungal communities in soil are critical to plant health and ecosystem processes in agricultural systems. Although the composition of fungal communities is often related to soil edaphic characteristic and host plant identity, there is a paucity of information on how communities vary with soil depth a...

  20. Soil moisture--a regulator of arbuscular mycorrhizal fungal community assembly and symbiotic phosphorus uptake.

    PubMed

    Deepika, Sharma; Kothamasi, David

    2015-01-01

    Multiple species of arbuscular mycorrhizal fungi (AMF) can colonize roots of an individual plant species but factors which determine the selection of a particular AMF species in a plant root are largely unknown. The present work analysed the effects of drought, flooding and optimal soil moisture (15-20 %) on AMF community composition and structure in Sorghum vulgare roots, using PCR-RFLP. Rhizophagus irregularis (isolate BEG 21), and rhizosphere soil (mixed inoculum) of Heteropogon contortus, a perennial C4 grass, collected from the semi-arid Delhi ridge, were used as AMF inocula. Soil moisture functioned as an abiotic filter and affected AMF community assembly inside plant roots by regulating AMF colonization and phylotype diversity. Roots of plants in flooded soils had lowest AMF diversity whilst root AMF diversity was highest under the soil moisture regime of 15-20 %. Although plant biomass was not affected, root P uptake was significantly influenced by soil moisture. Plants colonized with R. irregularis or mixed AMF inoculum showed higher root P uptake than non-mycorrhizal plants in drought and control treatments. No differences in root P levels were found in the flooded treatment between plants colonized with R. irregularis and non-mycorrhizal plants, whilst under the same treatment, root P uptake was lower in plants colonized with mixed AMF inoculum than in non-mycorrhizal plants.

  1. Ecosystem response to removal of exotic riparian shrubs and a transition to upland vegetation

    USGS Publications Warehouse

    Reynolds, Lindsay V.; Cooper, David J.

    2011-01-01

    Understanding plant community change over time is essential for managing important ecosystems such as riparian areas. This study analyzed historic vegetation using soil seed banks and the effects of riparian shrub removal treatments and channel incision on ecosystem and plant community dynamics in Canyon de Chelly National Monument, Arizona. We focused on how seeds, nutrients, and ground water influence the floristic composition of post-treatment vegetation and addressed three questions: (1) How does pre-treatment soil seed bank composition reflect post-treatment vegetation composition? (2) How does shrub removal affect post-treatment riparian vegetation composition, seed rain inputs, and ground water dynamics? and (3) Is available soil nitrogen increased near dead Russian olive plants following removal and does this influence post-treatment vegetation? We analyzed seed bank composition across the study area, analyzed differences in vegetation, ground water levels, and seed rain between control, cut-stump and whole-plant removal areas, and compared soil nitrogen and vegetation near removed Russian olive to areas lacking Russian olive. The soil seed bank contained more riparian plants, more native and fewer exotic plants than the extant vegetation. Both shrub removal methods decreased exotic plant cover, decreased tamarisk and Russian olive seed inputs, and increased native plant cover after 2 years. Neither method increased ground water levels. Soil near dead Russian olive trees indicated a short-term increase in soil nitrogen following plant removal but did not influence vegetation composition compared to areas without Russian olive. Following tamarisk and Russian olive removal, our study sites were colonized by upland plant species. Many western North American rivers have tamarisk and Russian olive on floodplains abandoned by channel incision, river regulation or both. Our results are widely applicable to sites where drying has occurred and vegetation establishment following shrub removal is likely to be by upland species.

  2. Climate Warming and Soil Carbon in Tropical Forests: Insights from an Elevation Gradient in the Peruvian Andes

    PubMed Central

    Nottingham, Andrew T.; Whitaker, Jeanette; Turner, Benjamin L.; Salinas, Norma; Zimmermann, Michael; Malhi, Yadvinder; Meir, Patrick

    2015-01-01

    The temperature sensitivity of soil organic matter (SOM) decomposition in tropical forests will influence future climate. Studies of a 3.5-kilometer elevation gradient in the Peruvian Andes, including short-term translocation experiments and the examination of the long-term adaptation of biota to local thermal and edaphic conditions, have revealed several factors that may regulate this sensitivity. Collectively this work suggests that, in the absence of a moisture constraint, the temperature sensitivity of decomposition is regulated by the chemical composition of plant debris (litter) and both the physical and chemical composition of preexisting SOM: higher temperature sensitivities are found in litter or SOM that is more chemically complex and in SOM that is less occluded within aggregates. In addition, the temperature sensitivity of SOM in tropical montane forests may be larger than previously recognized because of the presence of “cold-adapted” and nitrogen-limited microbial decomposers and the possible future alterations in plant and microbial communities associated with warming. Studies along elevation transects, such as those reviewed here, can reveal factors that will regulate the temperature sensitivity of SOM. They can also complement and guide in situ soil-warming experiments, which will be needed to understand how this vulnerability to temperature may be mediated by altered plant productivity under future climatic change. PMID:26955086

  3. Similar Processes but Different Environmental Filters for Soil Bacterial and Fungal Community Composition Turnover on a Broad Spatial Scale

    PubMed Central

    Chemidlin Prévost-Bouré, Nicolas; Dequiedt, Samuel; Thioulouse, Jean; Lelièvre, Mélanie; Saby, Nicolas P. A.; Jolivet, Claudy; Arrouays, Dominique; Plassart, Pierre; Lemanceau, Philippe; Ranjard, Lionel

    2014-01-01

    Spatial scaling of microorganisms has been demonstrated over the last decade. However, the processes and environmental filters shaping soil microbial community structure on a broad spatial scale still need to be refined and ranked. Here, we compared bacterial and fungal community composition turnovers through a biogeographical approach on the same soil sampling design at a broad spatial scale (area range: 13300 to 31000 km2): i) to examine their spatial structuring; ii) to investigate the relative importance of environmental selection and spatial autocorrelation in determining their community composition turnover; and iii) to identify and rank the relevant environmental filters and scales involved in their spatial variations. Molecular fingerprinting of soil bacterial and fungal communities was performed on 413 soils from four French regions of contrasting environmental heterogeneity (Landes

  4. Habitat connectivity shapes urban arthropod communities: the key role of green roofs.

    PubMed

    Braaker, S; Ghazoul, J; Obrist, M K; Moretti, M

    2014-04-01

    The installation of green roofs, defined here as rooftops with a shallow soil cover and extensive vegetation, has been proposed as a possible measure to mitigate the loss of green space caused by the steady growth of cities. However, the effectiveness of green roofs in supporting arthropod communities, and the extent to which they facilitate connectivity of these communities within the urban environment is currently largely unknown. We investigated the variation of species community composition (beta diversity) of four arthropod groups with contrasting mobility (Carabidae, Araneae, Curculionidae, and Apidae) on 40 green roofs and 40 extensively managed green sites on the ground in the city of Zurich, Switzerland. With redundancy analysis and variation partitioning, we (1) disentangled the relative importance of local environmental conditions, the surrounding land cover composition, and habitat connectivity on species community composition, (2) searched for specific spatial scales of habitat connectivity for the different arthropod groups, and (3) discussed the ecological and functional value of green roofs in cities. Our study revealed that on green roofs community composition of high-mobility arthropod groups (bees and weevils) were mainly shaped by habitat connectivity, while low-mobility arthropod groups (carabids and spiders) were more influenced by local environmental conditions. A similar but less pronounced pattern was found for ground communities. The high importance of habitat connectivity in shaping high-mobility species community composition indicates that these green roof communities are substantially connected by the frequent exchange of individuals among surrounding green roofs. On the other hand, low-mobility species communities on green roofs are more likely connected to ground sites than to other green roofs. The integration of green roofs in urban spatial planning strategies has great potential to enable higher connectivity among green spaces, so that eventually even communities of low-mobility species become connected. Furthermore, improving the design of green roofs (composition and configuration of vegetation and soil types) could enhance the ecological value, particularly for low-mobility species.

  5. Grazing of leaf-associated Cercomonads (Protists: Rhizaria: Cercozoa) structures bacterial community composition and function.

    PubMed

    Flues, Sebastian; Bass, David; Bonkowski, Michael

    2017-08-01

    Preferential food selection in protists is well documented, but we still lack basic understanding on how protist predation modifies the taxonomic and functional composition of bacterial communities. We conducted feeding trials using leaf-associated cercomonad Cercozoa by incubating them on a standardized, diverse bacterial community washed from plant leaves. We used a shotgun metagenomics approach to investigate the taxonomic and functional changes of the bacterial community after five days protist predation on bacteria. Predation-induced shifts in bacterial community composition could be linked to phenotypic protist traits. Protist reproduction rate, morphological plasticity and cell speed were most important in determining bacterial community composition. Analyses of co-occurrence patterns showed less complex correlations between bacterial taxa in the protist-grazed treatments with a higher proportion of positive correlations than in non-grazed controls, suggesting that predation reduced the influence of strong competitors. Protist predation influenced 14 metabolic core functions including membrane transport from which type VI secretion systems were in particular upregulated. In view of the functional importance of bacterial communities in the phyllosphere and rhizosphere of plants, a more detailed understanding of predator-prey interactions, changes in microbial composition and function, and subsequent repercussions on plant performance are clearly required. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Effects of biochar blends on microbial community composition in two coastal plain soils

    EPA Science Inventory

    The amendment of soil with biochar has been demonstrated to have an effect not only on the soil physicochemical properties, but also on soil microbial community composition and activity. Previous reports have demonstrated significant impacts on soil microbial community structure....

  7. Composition, Cognition, Creativity, and Community

    ERIC Educational Resources Information Center

    Moberg, Eric Michael; Kobylarz, Philip

    2015-01-01

    The purpose of this study was to examine the intersection between and among creativity, cognition, composition, and community. Researchers studied hundreds of adult students from several California community colleges and private universities by means of surveys, observations, and interviews to augment an extensive historical literature review.…

  8. Temporal Dynamics of the Human Vaginal Microbiota

    PubMed Central

    Gajer, Pawel; Brotman, Rebecca M.; Bai, Guoyun; Sakamoto, Joyce; Schütte, Ursel M.E.; Zhong, Xue; Koenig, Sara S.K.; Fu, Li; Ma, Zhanshan; Zhou, Xia; Abdo, Zaid; Forney, Larry J.; Ravel, Jacques

    2012-01-01

    Elucidating the factors that impinge on the stability of bacterial communities in the vagina may help in predicting the risk of diseases that affect women’s health. Here, we describe the temporal dynamics of the composition of vaginal bacterial communities in 32 reproductive age women over a 16-week period. The analysis revealed the dynamics of five major classes of bacterial communities and showed that some communities change markedly over short time periods, whereas others are relatively stable. Modeling community stability using new quantitative measures indicates that deviation from stability correlates with time in the menstrual cycle, bacterial community composition and sexual activity. The women studied are healthy, thus it appears that neither variation in community composition per se, nor higher levels of observed diversity (co-dominance) are necessarily indicative of dysbiosis, in which there is microbial imbalance accompanied by symptoms. PMID:22553250

  9. Native arbuscular mycorrhizal symbiosis alters foliar bacterial community composition.

    PubMed

    Poosakkannu, Anbu; Nissinen, Riitta; Kytöviita, Minna-Maarit

    2017-11-01

    The effects of arbuscular mycorrhizal (AM) fungi on plant-associated microbes are poorly known. We tested the hypothesis that colonization by an AM fungus affects microbial species richness and microbial community composition of host plant tissues. We grew the grass, Deschampsia flexuosa in a greenhouse with or without the native AM fungus, Claroideoglomus etunicatum. We divided clonally produced tillers into two parts: one inoculated with AM fungus spores and one without AM fungus inoculation (non-mycorrhizal, NM). We characterized bacterial (16S rRNA gene) and fungal communities (internal transcribed spacer region) in surface-sterilized leaf and root plant compartments. AM fungus inoculation did not affect microbial species richness or diversity indices in leaves or roots, but the AM fungus inoculation significantly affected bacterial community composition in leaves. A total of three OTUs in leaves belonging to the phylum Firmicutes positively responded to the presence of the AM fungus in roots. Another six OTUs belonging to the Proteobacteria (Alpha, Beta, and Gamma) and Bacteroidetes were significantly more abundant in NM plants when compared to AM fungus-inoculated plants. Further, there was a significant correlation between plant dry weight and leaf microbial community compositional shift. Also, there was a significant correlation between leaf bacterial community compositional shift and foliar nitrogen content changes due to AM fungus inoculation. The results suggest that AM fungus colonization in roots has a profound effect on plant physiology that is reflected in leaf bacterial community composition.

  10. First Investigation of Microbial Community Composition in the Bridge (Gadeok Channel) between the Jinhae-Masan Bay and the South Sea of Korea

    NASA Astrophysics Data System (ADS)

    Lee, Jiyoung; Lim, Jae-Hyun; Park, Junhyung; Youn, Seok-Hyun; Oh, Hyun-Ju; Kim, Ju-Hyoung; Kim, Myung Kyum; Cho, Hyeyoun; Yoon, Joo-Eun; Kim, Soyeon; Markkandan, Kesavan; Park, Ki-Tae; Kim, Il-Nam

    2018-02-01

    Microbial community composition varies based on seasonal dynamics (summer: strongly stratified water column; autumn: weakly stratified water column; winter: vertically homogeneous water column) and vertical distributions (surface, middle, and bottom depths) in the Gadeok Channel, which is the primary passage to exchange waters and materials between the Jinhae-Masan Bay and the South Sea waters. The microbial community composition was analyzed from June to December 2016 using 16S rRNA gene sequencing. The community was dominated by the phyla Proteobacteria (45%), Bacteroidetes (18%), Cyanobacteria (15%), Verrucomicrobia (6%), and Actinobacteria (6%). Alphaproteobacteria (29%) was the most abundant microbial class, followed by Flavobacteria (15%) and Gammaproteobacteria (15%) in all samples. The composition of the microbial communities was found to vary vertically and seasonally. The orders Flavobacteriales and Stramenopiles showed opposing seasonal patterns; Flavobacteriales was more abundant in August and December while Stramenopiles showed high abundance in June and October at all depths. The genus Synechococcus reached extremely high abundance (14%) in the June surface water column, but was much less abundant in December water columns. Clustering analysis showed that there was a difference in the microbial community composition pattern between the strongly stratified season and well-mixed season. These results indicate that the seasonal dynamics of physicochemical and hydrologic conditions throughout the water column are important parameters in shaping the microbial community composition in the Gadeok Channel.

  11. Effect of ocean acidification on the structure and fatty acid composition of a natural plankton community in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Bermúdez, Rafael; Winder, Monika; Stuhr, Annegret; Almén, Anna-Karin; Engström-Öst, Jonna; Riebesell, Ulf

    2016-12-01

    Increasing atmospheric carbon dioxide (CO2) is changing seawater chemistry towards reduced pH, which affects various properties of marine organisms. Coastal and brackish water communities are expected to be less affected by ocean acidification (OA) as these communities are typically adapted to high fluctuations in CO2 and pH. Here we investigate the response of a coastal brackish water plankton community to increasing CO2 levels as projected for the coming decades and the end of this century in terms of community and biochemical fatty acid (FA) composition. A Baltic Sea plankton community was enclosed in a set of offshore mesocosms and subjected to a CO2 gradient ranging from natural concentrations ( ˜ 347 µatm fCO2) up to values projected for the year 2100 ( ˜ 1333 µatm fCO2). We show that the phytoplankton community composition was resilient to CO2 and did not diverge between the treatments. Seston FA composition was influenced by community composition, which in turn was driven by silicate and phosphate limitation in the mesocosms and showed no difference between the CO2 treatments. These results suggest that CO2 effects are dampened in coastal communities that already experience high natural fluctuations in pCO2. Although this coastal plankton community was tolerant of high pCO2 levels, hypoxia and CO2 uptake by the sea can aggravate acidification and may lead to pH changes outside the currently experienced range for coastal organisms.

  12. Body composition impacts appetite regulation in middle childhood. A prospective study of Norwegian community children.

    PubMed

    Steinsbekk, Silje; Llewellyn, Clare H; Fildes, Alison; Wichstrøm, Lars

    2017-05-30

    Research suggests a role for both fat mass and muscle mass in appetite regulation, but the longitudinal relationships between them have not yet been examined in children. The present study therefore aimed to explore the prospective relationships between fat mass, muscle mass and the appetitive traits food responsiveness and satiety responsiveness in middle childhood. Food responsiveness and satiety responsiveness were measured using the parent-reported Children's Eating Behavior Questionnaire in a representative sample of Norwegian 6 year olds, followed up at 8 and 10 years of age (n = 807). Body composition was measured by bioelectrical impedance. Applying a structural equation modeling framework we found that higher fat mass predicted greater increases in food responsiveness over time, whereas greater muscle mass predicted decreases in satiety responsiveness. This pattern was consistent both from ages 6 to 8 and from ages 8 to 10 years. Our study is the first to reveal that fat mass and muscle mass predict distinct changes in different appetitive traits over time. Replication of findings in non-European populations are needed, as are studies of children in other age groups. Future studies should also aim to reveal the underlying mechanisms.

  13. Diversity of the human intestinal microbial flora.

    PubMed

    Eckburg, Paul B; Bik, Elisabeth M; Bernstein, Charles N; Purdom, Elizabeth; Dethlefsen, Les; Sargent, Michael; Gill, Steven R; Nelson, Karen E; Relman, David A

    2005-06-10

    The human endogenous intestinal microflora is an essential "organ" in providing nourishment, regulating epithelial development, and instructing innate immunity; yet, surprisingly, basic features remain poorly described. We examined 13,355 prokaryotic ribosomal RNA gene sequences from multiple colonic mucosal sites and feces of healthy subjects to improve our understanding of gut microbial diversity. A majority of the bacterial sequences corresponded to uncultivated species and novel microorganisms. We discovered significant intersubject variability and differences between stool and mucosa community composition. Characterization of this immensely diverse ecosystem is the first step in elucidating its role in health and disease.

  14. Phytoplankton responses to temperature increases are constrained by abiotic conditions and community composition.

    PubMed

    Striebel, Maren; Schabhüttl, Stefanie; Hodapp, Dorothee; Hingsamer, Peter; Hillebrand, Helmut

    2016-11-01

    Effects of temperature changes on phytoplankton communities seem to be highly context-specific, but few studies have analyzed whether this context specificity depends on differences in the abiotic conditions or in species composition between studies. We present an experiment that allows disentangling the contribution of abiotic and biotic differences in shaping the response to two aspects of temperature change: permanent increase of mean temperature versus pulse disturbance in form of a heat wave. We used natural communities from six different sites of a floodplain system as well as artificially mixed communities from laboratory cultures and grew both, artificial and natural communities, in water from the six different floodplain lakes (sites). All 12 contexts (2 communities × 6 sites) were first exposed to three different temperature levels (12, 18, 24 °C, respectively) and afterward to temperature pulses (4 °C increase for 7 h day(-1)). Temperature-dependent changes in biomass and community composition depended on the initial composition of phytoplankton communities. Abiotic conditions had a major effect on biomass of phytoplankton communities exposed to different temperature conditions, however, the effect of biotic and abiotic conditions together was even more pronounced. Additionally, phytoplankton community responses to pulse temperature effects depended on the warming history. By disentangling abiotic and biotic effects, our study shows that temperature-dependent effects on phytoplankton communities depend on both, biotic and abiotic constraints.

  15. Microbial community composition and endolith colonization at an Arctic thermal spring are driven by calcite precipitation

    USGS Publications Warehouse

    Starke, Verena; Kirshtein, Julie; Fogel, Marilyn L.; Steele, Andrew

    2013-01-01

    Environmental conditions shape community composition. Arctic thermal springs provide an opportunity to study how environmental gradients can impose strong selective pressures on microbial communities and provide a continuum of niche opportunities. We use microscopic and molecular methods to conduct a survey of microbial community composition at Troll Springs on Svalbard, Norway, in the high Arctic. Microorganisms there exist under a wide range of environmental conditions: in warm water as periphyton, in moist granular materials, and in cold, dry rock as endoliths. Troll Springs has two distinct ecosystems, aquatic and terrestrial, together in close proximity, with different underlying environmental factors shaping each microbial community. Periphyton are entrapped during precipitation of calcium carbonate from the spring's waters, providing microbial populations that serve as precursors for the development of endolithic communities. This process differs from most endolith colonization, in which the rock predates the communities that colonize it. Community composition is modulated as environmental conditions change within the springs. At Troll, the aquatic environments show a small number of dominant operational taxonomic units (OTUs) that are specific to each sample. The terrestrial environments show a more even distribution of OTUs common to multiple samples.

  16. High taxonomic variability despite stable functional structure across microbial communities.

    PubMed

    Louca, Stilianos; Jacques, Saulo M S; Pires, Aliny P F; Leal, Juliana S; Srivastava, Diane S; Parfrey, Laura Wegener; Farjalla, Vinicius F; Doebeli, Michael

    2016-12-05

    Understanding the processes that are driving variation of natural microbial communities across space or time is a major challenge for ecologists. Environmental conditions strongly shape the metabolic function of microbial communities; however, other processes such as biotic interactions, random demographic drift or dispersal limitation may also influence community dynamics. The relative importance of these processes and their effects on community function remain largely unknown. To address this uncertainty, here we examined bacterial and archaeal communities in replicate 'miniature' aquatic ecosystems contained within the foliage of wild bromeliads. We used marker gene sequencing to infer the taxonomic composition within nine metabolic functional groups, and shotgun environmental DNA sequencing to estimate the relative abundances of these groups. We found that all of the bromeliads exhibited remarkably similar functional community structures, but that the taxonomic composition within individual functional groups was highly variable. Furthermore, using statistical analyses, we found that non-neutral processes, including environmental filtering and potentially biotic interactions, at least partly shaped the composition within functional groups and were more important than spatial dispersal limitation and demographic drift. Hence both the functional structure and taxonomic composition within functional groups of natural microbial communities may be shaped by non-neutral and roughly separate processes.

  17. Different land use intensities in grassland ecosystems drive ecology of microbial communities involved in nitrogen turnover in soil.

    PubMed

    Meyer, Annabel; Focks, Andreas; Radl, Viviane; Keil, Daniel; Welzl, Gerhard; Schöning, Ingo; Boch, Steffen; Marhan, Sven; Kandeler, Ellen; Schloter, Michael

    2013-01-01

    Understanding factors driving the ecology of N cycling microbial communities is of central importance for sustainable land use. In this study we report changes of abundance of denitrifiers, nitrifiers and nitrogen-fixing microorganisms (based on qPCR data for selected functional genes) in response to different land use intensity levels and the consequences for potential turnover rates. We investigated selected grassland sites being comparable with respect to soil type and climatic conditions, which have been continuously treated for many years as intensely used meadows (IM), intensely used mown pastures (IP) and extensively used pastures (EP), respectively. The obtained data were linked to above ground biodiversity pattern as well as water extractable fractions of nitrogen and carbon in soil. Shifts in land use intensity changed plant community composition from systems dominated by s-strategists in extensive managed grasslands to c-strategist dominated communities in intensive managed grasslands. Along the different types of land use intensity, the availability of inorganic nitrogen regulated the abundance of bacterial and archaeal ammonia oxidizers. In contrast, the amount of dissolved organic nitrogen determined the abundance of denitrifiers (nirS and nirK). The high abundance of nifH carrying bacteria at intensive managed sites gave evidence that the amounts of substrates as energy source outcompete the high availability of inorganic nitrogen in these sites. Overall, we revealed that abundance and function of microorganisms involved in key processes of inorganic N cycling (nitrification, denitrification and N fixation) might be independently regulated by different abiotic and biotic factors in response to land use intensity.

  18. Different Land Use Intensities in Grassland Ecosystems Drive Ecology of Microbial Communities Involved in Nitrogen Turnover in Soil

    PubMed Central

    Meyer, Annabel; Focks, Andreas; Radl, Viviane; Keil, Daniel; Welzl, Gerhard; Schöning, Ingo; Boch, Steffen; Marhan, Sven; Kandeler, Ellen; Schloter, Michael

    2013-01-01

    Understanding factors driving the ecology of N cycling microbial communities is of central importance for sustainable land use. In this study we report changes of abundance of denitrifiers, nitrifiers and nitrogen-fixing microorganisms (based on qPCR data for selected functional genes) in response to different land use intensity levels and the consequences for potential turnover rates. We investigated selected grassland sites being comparable with respect to soil type and climatic conditions, which have been continuously treated for many years as intensely used meadows (IM), intensely used mown pastures (IP) and extensively used pastures (EP), respectively. The obtained data were linked to above ground biodiversity pattern as well as water extractable fractions of nitrogen and carbon in soil. Shifts in land use intensity changed plant community composition from systems dominated by s-strategists in extensive managed grasslands to c-strategist dominated communities in intensive managed grasslands. Along the different types of land use intensity, the availability of inorganic nitrogen regulated the abundance of bacterial and archaeal ammonia oxidizers. In contrast, the amount of dissolved organic nitrogen determined the abundance of denitrifiers (nirS and nirK). The high abundance of nifH carrying bacteria at intensive managed sites gave evidence that the amounts of substrates as energy source outcompete the high availability of inorganic nitrogen in these sites. Overall, we revealed that abundance and function of microorganisms involved in key processes of inorganic N cycling (nitrification, denitrification and N fixation) might be independently regulated by different abiotic and biotic factors in response to land use intensity. PMID:24039974

  19. Seasonal composition and activity of sulfate-reducing prokaryotic communities in seagrass bed sediments

    EPA Science Inventory

    Sulfate-reducing prokaryotes (SRP) play a key role in the carbon and nutrient cycles of coastal marine, vegetated ecosystems, but the interactions of SRP communities with aquatic plants remain little studied. The abundance, activity, and community composition of SRP was studied i...

  20. Floral and nesting resources, habitat structure, and fire influence bee distribution across an open-forest gradient

    USGS Publications Warehouse

    Grundel, R.; Jean, R.P.; Frohnapple, K.J.; Glowacki, G.A.; Scott, P.E.; Pavlovic, N.B.

    2010-01-01

    Given bees' central effect on vegetation communities, it is important to understand how and why bee distributions vary across ecological gradients. We examined how plant community composition, plant diversity, nesting suitability, canopy cover, land use, and fire history affected bee distribution across an open-forest gradient in northwest Indiana, USA, a gradient similar to the historic Midwest United States landscape mosaic. When considered with the other predictors, plant community composition was not a significant predictor of bee community composition. Bee abundance was negatively related to canopy cover and positively to recent fire frequency, bee richness was positively related to plant richness and abundance of potential nesting resources, and bee community composition was significantly related to plant richness, soil characteristics potentially related to nesting suitability, and canopy cover. Thus, bee abundance was predicted by a different set of environmental characteristics than was bee species richness, and bee community composition was predicted, in large part, by a combination of the significant predictors of bee abundance and richness. Differences in bee community composition along the woody vegetation gradient were correlated with relative abundance of oligolectic, or diet specialist, bees. Because oligoleges were rarer than diet generalists and were associated with open habitats, their populations may be especially affected by degradation of open habitats. More habitat-specialist bees were documented for open and forest/scrub habitats than for savanna/woodland habitats, consistent with bees responding to habitats of intermediate woody vegetation density, such as savannas, as ecotones rather than as distinct habitat types. Similarity of bee community composition, similarity of bee abundance, and similarity of bee richness between sites were not significantly related to proximity of sites to each other. Nestedness analysis indicated that species composition in species-poor sites was not merely a subset of species composition at richer sites. The lack of significant proximity or nestedness effects suggests that factors at a small spatial scale strongly influence bees' use of sites. The findings indicate that patterns of plant diversity, nesting resource availability, recent fire, and habitat shading, present at the scale of a few hundred meters, are key determinants of bee community patterns in the mosaic open-savanna-forest landscape. ?? 2010 by the Ecological Society of America.

  1. An improved null model for assessing the net effects of multiple stressors on communities.

    PubMed

    Thompson, Patrick L; MacLennan, Megan M; Vinebrooke, Rolf D

    2018-01-01

    Ecological stressors (i.e., environmental factors outside their normal range of variation) can mediate each other through their interactions, leading to unexpected combined effects on communities. Determining whether the net effect of stressors is ecologically surprising requires comparing their cumulative impact to a null model that represents the linear combination of their individual effects (i.e., an additive expectation). However, we show that standard additive and multiplicative null models that base their predictions on the effects of single stressors on community properties (e.g., species richness or biomass) do not provide this linear expectation, leading to incorrect interpretations of antagonistic and synergistic responses by communities. We present an alternative, the compositional null model, which instead bases its predictions on the effects of stressors on individual species, and then aggregates them to the community level. Simulations demonstrate the improved ability of the compositional null model to accurately provide a linear expectation of the net effect of stressors. We simulate the response of communities to paired stressors that affect species in a purely additive fashion and compare the relative abilities of the compositional null model and two standard community property null models (additive and multiplicative) to predict these linear changes in species richness and community biomass across different combinations (both positive, negative, or opposite) and intensities of stressors. The compositional model predicts the linear effects of multiple stressors under almost all scenarios, allowing for proper classification of net effects, whereas the standard null models do not. Our findings suggest that current estimates of the prevalence of ecological surprises on communities based on community property null models are unreliable, and should be improved by integrating the responses of individual species to the community level as does our compositional null model. © 2017 John Wiley & Sons Ltd.

  2. [Secret remedies in France until abolition in 1926].

    PubMed

    Warolin, Christian

    2002-01-01

    Secret remedies are preparations or medicines whose composition is not disclosed by the inventor in order to protect his invention or to deceive the public. Secret remedies have always existed. From time immemorial the communities of apothecaries in Paris or in the provinces were opposed to quack doctors or healers who sold inactive mixtures. The 1352 Royal Edict forbade preparations of secret remedies. However, in the 17th century secret remedies were authorized through commission letters or warrants. In the 18th century regulations were implemented to control secret trade. The famous 11 April 1803 Law called the Germinal Law banned the sale of secret remedies but its severity was softened through successive decrees based on divergent interpretations of the regulations. The final banning of secret remedies was pronounced by a decree on 13 July 1926.

  3. Experimental soil warming shifts the fungal community composition at the alpine treeline.

    PubMed

    Solly, Emily F; Lindahl, Björn D; Dawes, Melissa A; Peter, Martina; Souza, Rômulo C; Rixen, Christian; Hagedorn, Frank

    2017-07-01

    Increased CO 2 emissions and global warming may alter the composition of fungal communities through the removal of temperature limitation in the plant-soil system, faster nitrogen (N) cycling and changes in the carbon (C) allocation of host plants to the rhizosphere. At a Swiss treeline featuring Larix decidua and Pinus uncinata, the effects of multiple years of CO 2 enrichment and experimental soil warming on the fungal community composition in the organic horizons were analysed using 454-pyrosequencing of ITS2 amplicons. Sporocarp production and colonization of ectomycorrhizal root tips were investigated in parallel. Fungal community composition was significantly altered by soil warming, whereas CO 2 enrichment had little effect. Tree species influenced fungal community composition and the magnitude of the warming responses. The abundance of ectomycorrhizal fungal taxa was positively correlated with N availability, and ectomycorrhizal taxa specialized for conditions of high N availability proliferated with warming, corresponding to considerable increases in inorganic N in warmed soils. Traits related to N utilization are important in determining the responses of ectomycorrhizal fungi to warming in N-poor cold ecosystems. Shifts in the overall fungal community composition in response to higher temperatures may alter fungal-driven processes with potential feedbacks on ecosystem N cycling and C storage at the alpine treeline. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  4. Linking the development and functioning of a carnivorous pitcher plant's microbial digestive community.

    PubMed

    Armitage, David W

    2017-11-01

    Ecosystem development theory predicts that successional turnover in community composition can influence ecosystem functioning. However, tests of this theory in natural systems are made difficult by a lack of replicable and tractable model systems. Using the microbial digestive associates of a carnivorous pitcher plant, I tested hypotheses linking host age-driven microbial community development to host functioning. Monitoring the yearlong development of independent microbial digestive communities in two pitcher plant populations revealed a number of trends in community succession matching theoretical predictions. These included mid-successional peaks in bacterial diversity and metabolic substrate use, predictable and parallel successional trajectories among microbial communities, and convergence giving way to divergence in community composition and carbon substrate use. Bacterial composition, biomass, and diversity positively influenced the rate of prey decomposition, which was in turn positively associated with a host leaf's nitrogen uptake efficiency. Overall digestive performance was greatest during late summer. These results highlight links between community succession and ecosystem functioning and extend succession theory to host-associated microbial communities.

  5. Bacterial, fungal, and plant communities exhibit no biomass or compositional response to two years of simulated nitrogen deposition in a semiarid grassland: Bacterial, fungal, and plant communities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McHugh, Theresa A.; Morrissey, Ember M.; Mueller, Rebecca C.

    Nitrogen (N) deposition affects myriad aspects of terrestrial ecosystem structure and function, and microbial communities may be particularly sensitive to anthropogenic N inputs. However, our understanding of N deposition effects on microbial communities is far from complete, especially for drylands where data are comparatively rare. To address the need for an improved understanding of dryland biological responses to N deposition, we conducted a two-year fertilization experiment in a semiarid grassland on the Colorado Plateau in the southwestern United States. We evaluated effects of varied levels of N inputs on archaeal, bacterial, fungal and chlorophyte community composition within three microhabitats: biologicalmore » soil crusts (biocrusts), soil below biocrusts, and the plant rhizosphere. Surprisingly, N addition did not affect the community composition or diversity of any of these microbial groups; however, microbial community composition varied significantly among sampling microhabitats. Further, while plant richness, diversity, and cover showed no response to N addition, there were strong linkages between plant properties and microbial community structure. Overall, these findings highlight the potential for some dryland communities to have limited biotic ability to retain augmented N inputs, possibly leading to large N losses to the atmosphere and to aquatic systems.« less

  6. Bacterial, fungal, and plant communities exhibit no biomass or compositional response to two years of simulated nitrogen deposition in a semiarid grassland: Bacterial, fungal, and plant communities

    DOE PAGES

    McHugh, Theresa A.; Morrissey, Ember M.; Mueller, Rebecca C.; ...

    2017-03-13

    Nitrogen (N) deposition affects myriad aspects of terrestrial ecosystem structure and function, and microbial communities may be particularly sensitive to anthropogenic N inputs. However, our understanding of N deposition effects on microbial communities is far from complete, especially for drylands where data are comparatively rare. To address the need for an improved understanding of dryland biological responses to N deposition, we conducted a two-year fertilization experiment in a semiarid grassland on the Colorado Plateau in the southwestern United States. We evaluated effects of varied levels of N inputs on archaeal, bacterial, fungal and chlorophyte community composition within three microhabitats: biologicalmore » soil crusts (biocrusts), soil below biocrusts, and the plant rhizosphere. Surprisingly, N addition did not affect the community composition or diversity of any of these microbial groups; however, microbial community composition varied significantly among sampling microhabitats. Further, while plant richness, diversity, and cover showed no response to N addition, there were strong linkages between plant properties and microbial community structure. Overall, these findings highlight the potential for some dryland communities to have limited biotic ability to retain augmented N inputs, possibly leading to large N losses to the atmosphere and to aquatic systems.« less

  7. Coral Reef Community Composition in the Context of Disturbance History on the Great Barrier Reef, Australia

    PubMed Central

    Graham, Nicholas A. J.; Chong-Seng, Karen M.; Huchery, Cindy; Januchowski-Hartley, Fraser A.; Nash, Kirsty L.

    2014-01-01

    Much research on coral reefs has documented differential declines in coral and associated organisms. In order to contextualise this general degradation, research on community composition is necessary in the context of varied disturbance histories and the biological processes and physical features thought to retard or promote recovery. We conducted a spatial assessment of coral reef communities across five reefs of the central Great Barrier Reef, Australia, with known disturbance histories, and assessed patterns of coral cover and community composition related to a range of other variables thought to be important for reef dynamics. Two of the reefs had not been extensively disturbed for at least 15 years prior to the surveys. Three of the reefs had been severely impacted by crown-of-thorns starfish outbreaks and coral bleaching approximately a decade before the surveys, from which only one of them was showing signs of recovery based on independent surveys. We incorporated wave exposure (sheltered and exposed) and reef zone (slope, crest and flat) into our design, providing a comprehensive assessment of the spatial patterns in community composition on these reefs. Categorising corals into life history groupings, we document major coral community differences in the unrecovered reefs, compared to the composition and covers found on the undisturbed reefs. The recovered reef, despite having similar coral cover, had a different community composition from the undisturbed reefs, which may indicate slow successional processes, or a different natural community dominance pattern due to hydrology and other oceanographic factors. The variables that best correlated with patterns in the coral community among sites included the density of juvenile corals, herbivore fish biomass, fish species richness and the cover of macroalgae. Given increasing impacts to the Great Barrier Reef, efforts to mitigate local stressors will be imperative to encouraging coral communities to persist into the future. PMID:24983747

  8. Seasonal switchgrass ecotype contributions to soil organic carbon, deep soil microbial community composition and rhizodeposit uptake during an extreme drought

    USDA-ARS?s Scientific Manuscript database

    The importance of rhizodeposit C and associated microbial communities in deep soil C stabilization is relatively unknown. Phenotypic variability in plant root biomass could impact C cycling through belowground plant allocation, rooting architecture, and microbial community abundance and composition...

  9. Wintering waterbirds in a large river floodplain: Hydrological connectivity is the key for reconciling development and conservation.

    PubMed

    Xia, Shaoxia; Liu, Yu; Wang, Yuyu; Chen, Bin; Jia, Yifei; Liu, Guanhua; Yu, Xiubo; Wen, Li

    2016-12-15

    An alteration in the hydrological connectivity reduces the synergistic processes and interactions between rivers and their floodplains, and changes the distribution of waterbirds that rely on floodplains as foraging grounds. Recent river and wetland conservation and restoration efforts have been partially focused on reinstating the natural river-floodplain connectivity to ameliorate the ecological effects of regulation in river systems. However, in regions where human well-being is tightly linked with the cultivation of the floodplain (such as fisheries), management options are constrained and trade-offs among competing social, economic and ecological goals may be necessary for the wise use of wetlands. Poyang Lake in east central China includes numerous sub-lakes with different types of hydrological regulation; therefore, this lake may provide a useful context for exploring the likelihood of such trade-offs. In this study, we used multiyear simultaneous waterbird survey data together with habitat maps derived from satellite imagery for Poyang Lake to examine the variations in waterbird community structure and abundance within sub-lakes with different types of hydrological regulation. Using a Bayesian Markov chain Monte Carlo approach, we built generalized linear mixed models to explore the differences in wetland composition and waterbird abundance/diversity among three lake types (i.e. isolated, freely connected, and controlled) at community, guild and species levels. The results showed hydrological connectivity alteration clearly affects wintering waterbirds; in addition, the ecological benefits of a natural flow regime were most unambiguous at the community level. Nevertheless, little evidence exists to indicate that the lakes' ecological values as waterbird foraging grounds were compromised by partial regulation. That is, species richness and population size were comparable in naturally connected and controlled lakes. Our results suggest that, with carefully designed management plans, a delicate balance between waterbird conservation and development can be accomplished in large river floodplains. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  10. Comparative Analysis of Korean Human Gut Microbiota by Barcoded Pyrosequencing

    PubMed Central

    Nam, Young-Do; Jung, Mi-Ja; Roh, Seong Woon; Kim, Min-Soo; Bae, Jin-Woo

    2011-01-01

    Human gut microbiota plays important roles in harvesting energy from the diet, stimulating the proliferation of the intestinal epithelium, developing the immune system, and regulating fat storage in the host. Characterization of gut microbiota, however, has been limited to western people and is not sufficiently extensive to fully describe microbial communities. In this study, we investigated the overall composition of the gut microbiota and its host specificity and temporal stability in 20 Koreans using 454-pyrosequencing with barcoded primers targeting the V1 to V3 region of the bacterial 16S rRNA gene. A total of 303,402 high quality reads covered each sample and 8,427 reads were analyzed on average. The results were compared with those of individuals from the USA, China and Japan. In general, microbial communities were dominated by five previously identified phyla: Actinobacteria, Firmicutes, Bacteroidetes, Fusobacteria, and Proteobacteria. UPGMA cluster analysis showed that the species composition of gut microbiota was host-specific and stable over the duration of the test period, but the relative abundance of each member fluctuated. 43 core Korean gut microbiota were identified by comparison of sequences from each individual, of which 15 species level phylotypes were related to previously-reported butyrate-producing bacteria. UniFrac analysis revealed that human gut microbiota differed between countries: Korea, USA, Japan and China, but tended to vary less between individual Koreans, suggesting that gut microbial composition is related to internal and external characteristics of each country member such as host genetics and diet styles. PMID:21829445

  11. Testing the functional significance of microbial community composition.

    Treesearch

    Michael S. Strickland; Christian Lauber; Noah Fierer; Mark A. Bradford

    2009-01-01

    A critical assumption underlying terrestrial ecosystem models is that soil microbial communities, when placed in a common environment, will function in an identical manner regardless of the composition...

  12. The phylogenetic composition and structure of soil microbial communities shifts in response to elevated carbon dioxide.

    PubMed

    He, Zhili; Piceno, Yvette; Deng, Ye; Xu, Meiying; Lu, Zhenmei; Desantis, Todd; Andersen, Gary; Hobbie, Sarah E; Reich, Peter B; Zhou, Jizhong

    2012-02-01

    One of the major factors associated with global change is the ever-increasing concentration of atmospheric CO(2). Although the stimulating effects of elevated CO(2) (eCO(2)) on plant growth and primary productivity have been established, its impacts on the diversity and function of soil microbial communities are poorly understood. In this study, phylogenetic microarrays (PhyloChip) were used to comprehensively survey the richness, composition and structure of soil microbial communities in a grassland experiment subjected to two CO(2) conditions (ambient, 368 p.p.m., versus elevated, 560 p.p.m.) for 10 years. The richness based on the detected number of operational taxonomic units (OTUs) significantly decreased under eCO(2). PhyloChip detected 2269 OTUs derived from 45 phyla (including two from Archaea), 55 classes, 99 orders, 164 families and 190 subfamilies. Also, the signal intensity of five phyla (Crenarchaeota, Chloroflexi, OP10, OP9/JS1, Verrucomicrobia) significantly decreased at eCO(2), and such significant effects of eCO(2) on microbial composition were also observed at the class or lower taxonomic levels for most abundant phyla, such as Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and Acidobacteria, suggesting a shift in microbial community composition at eCO(2). Additionally, statistical analyses showed that the overall taxonomic structure of soil microbial communities was altered at eCO(2). Mantel tests indicated that such changes in species richness, composition and structure of soil microbial communities were closely correlated with soil and plant properties. This study provides insights into our understanding of shifts in the richness, composition and structure of soil microbial communities under eCO(2) and environmental factors shaping the microbial community structure.

  13. Legacy effects of anaerobic soil disinfestation on soil bacterial community composition and production of pathogen-suppressing volatiles

    PubMed Central

    van Agtmaal, Maaike; van Os, Gera J.; Hol, W.H. Gera; Hundscheid, Maria P.J.; Runia, Willemien T.; Hordijk, Cornelis A.; de Boer, Wietse

    2015-01-01

    There is increasing evidence that microbial volatiles (VOCs) play an important role in natural suppression of soil-borne diseases, but little is known on the factors that influence production of suppressing VOCs. In the current study we examined whether a stress-induced change in soil microbial community composition would affect the production by soils of VOCs suppressing the plant-pathogenic oomycete Pythium. Using pyrosequencing of 16S ribosomal gene fragments we compared the composition of bacterial communities in sandy soils that had been exposed to anaerobic disinfestation (AD), a treatment used to kill harmful soil organisms, with the composition in untreated soils. Three months after the AD treatment had been finished, there was still a clear legacy effect of the former anaerobic stress on bacterial community composition with a strong increase in relative abundance of the phylum Bacteroidetes and a significant decrease of the phyla Acidobacteria, Planctomycetes, Nitrospirae, Chloroflexi, and Chlorobi. This change in bacterial community composition coincided with loss of production of Pythium suppressing soil volatiles (VOCs) and of suppression of Pythium impacts on Hyacinth root development. One year later, the composition of the bacterial community in the AD soils was reflecting that of the untreated soils. In addition, both production of Pythium-suppressing VOCs and suppression of Pythium in Hyacinth bioassays had returned to the levels of the untreated soil. GC/MS analysis identified several VOCs, among which compounds known to be antifungal, that were produced in the untreated soils but not in the AD soils. These compounds were again produced 15 months after the AD treatment. Our data indicate that soils exposed to a drastic stress can temporarily lose pathogen suppressive characteristics and that both loss and return of these suppressive characteristics coincides with shifts in the soil bacterial community composition. Our data are supporting the suggested importance of microbial VOCs in the natural buffer of soils against diseases caused by soil-borne pathogens. PMID:26217330

  14. Changes in Microbial (Bacteria and Archaea) Plankton Community Structure after Artificial Dispersal in Grazer-Free Microcosms

    PubMed Central

    Karayanni, Hera; Meziti, Alexandra; Spatharis, Sofie; Genitsaris, Savvas; Courties, Claude; Kormas, Konstantinos A.

    2017-01-01

    Microbes are considered to have a global distribution due to their high dispersal capabilities. However, our knowledge of the way geographically distant microbial communities assemble after dispersal in a new environment is limited. In this study, we examined whether communities would converge because similar taxa would be selected under the same environmental conditions, or would diverge because of initial community composition, after artificial dispersal. To this aim, a microcosm experiment was performed, in which the temporal changes in the composition and diversity of different prokaryoplankton assemblages from three distant geographic coastal areas (Banyuls-sur-Mer in northwest Mediterranean Sea, Pagasitikos Gulf in northeast Mediterranean and Woods Hole, MA, USA in the northwest Atlantic), were studied. Diversity was investigated using amplicon pyrosequencing of the V1–V3 hypervariable regions of the 16S rRNA. The three assemblages were grown separately in particle free and autoclaved Banyuls-sur-mer seawater at 18 °C in the dark. We found that the variability of prokaryoplankton community diversity (expressed as richness, evenness and dominance) as well as the composition were driven by patterns observed in Bacteria. Regarding community composition, similarities were found between treatments at family level. However, at the OTU level microbial communities from the three different original locations diverge rather than converge during incubation. It is suggested that slight differences in the composition of the initial prokaryoplankton communities, resulted in separate clusters the following days even when growth took place under identical abiotic conditions. PMID:28587211

  15. Shift in community structure in an early-successional Mediterranean shrubland driven by long-term experimental warming and drought and natural extreme droughts.

    PubMed

    Liu, Daijun; Estiarte, Marc; Ogaya, Romà; Yang, Xiaohong; Peñuelas, Josep

    2017-10-01

    Global warming and recurring drought are expected to accelerate water limitation for plant communities in semiarid Mediterranean ecosystems and produce directional shifts in structure and composition that are not easily detected, and supporting evidence is scarce. We conducted a long-term (17 years) nocturnal-warming (+0.6°C) and drought (-40% rainfall) experiments in an early-successional Mediterranean shrubland to study the changes in community structure and composition, contrasting functional groups and dominant species, and the superimposed effects of natural extreme drought. Species richness decreased in both the warming and drought treatments. Responses to the moderate warming were associated with decreases in herb abundance, and responses to the drought were associated with decreases in both herb and shrub abundances. The drought also significantly decreased community diversity and evenness. Changes in abundance differed between herbs (decreases) and shrubs (increases or no changes). Both warming and drought, especially drought, increased the relative species richness and abundance of shrubs, favoring the establishment of shrubs. Both warming and drought produced significant shifts in plant community composition. Experimental warming shifted the community composition from Erica multiflora toward Rosmarinus officinalis, and drought consistently shifted the composition toward Globularia alypum. The responses in biodiversity (e.g., community biodiversity, changes of functional groups and compositional shifts) were also strongly correlated with atmospheric drought (SPEI) in winter-spring and/or summer, indicating sensitivity to water limitation in this early-successional Mediterranean ecosystem, especially to natural extreme droughts. Our results suggest that the shifts in species assembles and community diversity and composition are accelerated by the long-term nocturnal-warming and drought, combined with natural severe droughts, and that the magnitude of the impacts of climate change is also correlated with the successional status of ecosystem. The results thus highlight the necessity for assessing the impacts on ecosystemic functioning and services and developing effective measures for conserving biodiversity. © 2017 John Wiley & Sons Ltd.

  16. A genomic perspective on stoichiometric regulation of soil carbon cycling.

    PubMed

    Hartman, Wyatt H; Ye, Rongzhong; Horwath, William R; Tringe, Susannah G

    2017-12-01

    Similar to plant growth, soil carbon (C) cycling is constrained by the availability of nitrogen (N) and phosphorus (P). We hypothesized that stoichiometric control over soil microbial C cycling may be shaped by functional guilds with distinct nutrient substrate preferences. Across a series of rice fields spanning 5-25% soil C (N:P from 1:12 to 1:70), C turnover was best correlated with P availability and increased with experimental N addition only in lower C (mineral) soils with N:P⩽16. Microbial community membership also varied with soil stoichiometry but not with N addition. Shotgun metagenome data revealed changes in community functions with increasing C turnover, including a shift from aromatic C to carbohydrate utilization accompanied by lower N uptake and P scavenging. Similar patterns of C, N and P acquisition, along with higher ribosomal RNA operon copy numbers, distinguished that microbial taxa positively correlated with C turnover. Considering such tradeoffs in genomic resource allocation patterns among taxa strengthened correlations between microbial community composition and C cycling, suggesting simplified guilds amenable to ecosystem modeling. Our results suggest that patterns of soil C turnover may reflect community-dependent metabolic shifts driven by resource allocation strategies, analogous to growth rate-stoichiometry coupling in animal and plant communities.

  17. Grassland vegetation and bird communities in the southern Great Plains of North America

    USGS Publications Warehouse

    Chapman, R.N.; Engle, David M.; Masters, R.E.; Leslie, David M.

    2004-01-01

    Structure and composition of vegetation and abundance of breeding birds in grasslands seeded to Old World bluestem (Bothriochloa ischmaeum) were compared to native mixed prairie in the southern Great Plains of North America. Abundance of birds was determined using fixed-radius point counts. Detrended correspondence analysis was used to compare plant community composition and canonical correspondence analysis was used to examine the relationships between plant species composition and vegetation structure with the bird community. Plant species composition differed distinctly between seeded grassland and native mixed prairie, but the differences were not reflected in habitat structure, bird community composition, or abundance of bird species. Seeded grassland was inferior to native mixed prairie in terms of diversity of plant species, but that difference did not translate into meaningful differences in structure that drove habitat selection by breeding birds. Conservation programs that promote establishment of seeded grassland and do not allow for suitable disturbance regimes will selectively benefit a narrow suite of birds regardless of plant species composition. ?? 2004 Elsevier B.V. All rights reserved.

  18. Accuracy, reproducibility, and interpretation of fatty acid methyl ester profiles of model bacterial communities

    USGS Publications Warehouse

    Kidd, Haack S.; Garchow, H.; Odelson, D.A.; Forney, L.J.; Klug, M.J.

    1994-01-01

    We determined the accuracy and reproducibility of whole-community fatty acid methyl ester (FAME) analysis with two model bacterial communities differing in composition by using the Microbial ID, Inc. (MIDI), system. The biomass, taxonomic structure, and expected MIDI-FAME profiles under a variety of environmental conditions were known for these model communities a priori. Not all members of each community could be detected in the composite profile because of lack of fatty acid 'signatures' in some isolates or because of variations (approximately fivefold) in fatty acid yield across taxa. MIDI- FAME profiles of replicate subsamples of a given community were similar in terms of fatty acid yield per unit of community dry weight and relative proportions of specific fatty acids. Principal-components analysis (PCA) of MIDI-FAME profiles resulted in a clear separation of the two different communities and a clustering of replicates of each community from two separate experiments on the first PCA axis. The first PCA axis accounted for 57.1% of the variance in the data and was correlated with fatty acids that varied significantly between communities and reflected the underlying community taxonomic structure. On the basis of our data, community fatty acid profiles can be used to assess the relative similarities and differences of microbial communities that differ in taxonomic composition. However, detailed interpretation of community fatty acid profiles in terms of biomass or community taxonomic composition must be viewed with caution until our knowledge of the quantitative and qualitative distribution of fatty acids over a wide variety of taxa and the effects of growth conditions on fatty acid profiles is more extensive.

  19. Permafrost soil characteristics and microbial community structure across a boreal forest watershed vary over short spatial scales and dictate community responses to thaw.

    NASA Astrophysics Data System (ADS)

    Stegen, J.; Bottos, E. M.; Kennedy, D.; Romero, E. B.; Fansler, S.; Chu, R. K.; Tfaily, M.; Jansson, J.; Bernstein, H. C.; Brown, J. M.; Markillie, L. M.

    2017-12-01

    Understanding drivers of permafrost microbial community structure and function is critical for understanding permafrost microbiology and predicting ecosystem responses to thaw; however, studies describing ecological controls on these communities are lacking. We hypothesize that permafrost communities are uniquely shaped by constraints imposed by prolonged freezing, and decoupled from the selective factors that influence non-permafrost soil communities, but that pre-thaw environmental and community characteristics will be strong determinants of community structure and function post-thaw. We characterized patterns of environmental variation and microbial community composition in sixty permafrost samples spanning landscape gradients in a boreal forest watershed, and monitored community responses to thaw. Consistent with our hypothesis, we found that, proportionally, the strongest process influencing permafrost community composition was dispersal limitation (0.36), exceeding the influence of homogenous selection (0.21) and variable selection (0.16), and that deterministic selection arose primarily from energetic constraints of the permafrost environment. Our data supported a structural equation model in which organic carbon thermodynamics and organic acid content, influenced redox conditions and total selection. Post-thaw community composition was found to be driven primarily by pre-thaw community composition, indicating a strong influence of historical conditions. Together, these results suggest that community responses to thaw may be highly varied over short distances and that changes in community structure and function are likely to be drastic, as changes to system hydrology mobilize organisms and nutrients, thereby relieving the primary constraints on the system. These findings are being integrated with metabolomic and metatranscriptomic analyses to improve understanding of how pre-thaw conditions can be used to predict microbial activity post-thaw.

  20. Effects of growth stage and fulvic acid on the diversity and dynamics of endophytic bacterial community in Stevia rebaudiana Bertoni leaves

    PubMed Central

    Yu, Xuejian; Yang, Jinshui; Wang, Entao; Li, Baozhen; Yuan, Hongli

    2015-01-01

    The aim of this study was to learn the interactions among the endophytic bacteria, the plant growth, the foliar spray of fulvic acid, and the accumulation of steviol glycosides in the leaves of Stevia rebaudiana. Metagenomic DNA was extracted from the Stevia leaves at different growth stages with or without the fulvic acid treatment; and the diversity of endophytic bacteria in Stevia leaves was estimated by pyrosequencing of 16S rRNA genes. As results, Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes were found to be the dominant phyla despite the growth stages and fulvic acid application. Stevia growth stages strongly regulated composition of endophytic community. The genera Agrobacterium (12.3%) and Erwinia (7.2%) dominated in seedling stage were apparently declined in the vegetable and initial flowering stages, while Sphingomonas and Methylobacterium increased in mature leaves at harvest time, which showed that the mature leaves of Stevia preferred to accumulate some certain endophytic bacteria. Sphingomonas and Methylobacterium constituted an important part of the core endophytic community and were positively correlated with the stevioside content and UGT74G1 gene expression, respectively; while Erwinia, Agrobacterium, and Bacillus were negatively correlated with the stevioside accumulation. Fulvic acid treatment accelerated the variation of endophytes along the growth stages and increased the steviol glycosides content. This is the first study to reveal the community composition of endophytic bacteria in the Stevia leaves, to evidence the strong effects of growth stage and fulvic acid application on the endophytes of Stevia, and to demonstrate the correlation between the endophytic bacteria and the steviol glycosides accumulation. PMID:26379644

  1. Potential Impacts of Climate Change on Insect Communities: A Transplant Experiment

    PubMed Central

    Nooten, Sabine S.; Andrew, Nigel R.; Hughes, Lesley

    2014-01-01

    Climate change will have profound impacts on the distribution, abundance and ecology of all species. We used a multi-species transplant experiment to investigate the potential effects of a warmer climate on insect community composition and structure. Eight native Australian plant species were transplanted into sites approximately 2.5°C (mean annual temperature) warmer than their native range. Subsequent insect colonisation was monitored for 12 months. We compared the insect communities on transplanted host plants at the warmer sites with control plants transplanted within the species' native range. Comparisons of the insect communities were also made among transplanted plants at warmer sites and congeneric plant species native to the warmer transplant area. We found that the morphospecies composition of the colonising Coleoptera and Hemiptera communities differed markedly between transplants at the control compared to the warmer sites. Community structure, as described by the distribution of feeding guilds, was also found to be different between the controls and transplants when the entire Coleoptera and Hemiptera community, including non-herbivore feeding guilds, was considered. However, the structure of the herbivorous insect community showed a higher level of consistency between plants at control and warm sites. There were marked differences in community composition and feeding guild structure, for both herbivores and non-herbivores, between transplants and congenerics at the warm sites. These results suggest that as the climate warms, considerable turnover in the composition of insect communities may occur, but insect herbivore communities may retain elements of their present-day structure. PMID:24465827

  2. Salinity affects compositional traits of epibacterial communities on the brown macroalga Fucus vesiculosus.

    PubMed

    Stratil, Stephanie B; Neulinger, Sven C; Knecht, Henrik; Friedrichs, Anette K; Wahl, Martin

    2014-05-01

    Epibiotic biofilms have the potential to control major aspects of the biology and ecology of their hosts. Their composition and function may thus be essential for the health of the host. We tested the influence of salinity on the composition of epibacterial communities associated with the brown macroalga Fucus vesiculosus. Algal individuals were incubated at three salinities (5, 19, and 25) for 14 days and nonliving reference substrata (stones) were included in the experiment. Subsequently, the composition of their surface-associated bacterial communities was analyzed by 454 pyrosequencing of 16S rRNA gene sequences. Redundancy analysis revealed that the composition of epiphytic and epilithic communities significantly differed and were both affected by salinity. We found that 5% of 2494 epiphytic operational taxonomic units at 97% sequence similarity were responsible for the observed shifts. Epibacterial α-diversity was significantly lower at salinity 5 but did not differ between substrata. Our results indicate that salinity is an important factor in structuring alga-associated epibacterial communities with respect to composition and/or diversity. Whether direct or indirect mechanisms (via altered biotic interactions) may have been responsible for the observed shifts is discussed. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  3. Drivers of epibenthic megafaunal composition in the sponge grounds of the Sackville Spur, northwest Atlantic

    NASA Astrophysics Data System (ADS)

    Beazley, Lindsay; Kenchington, Ellen; Yashayaev, Igor; Murillo, Francisco Javier

    2015-04-01

    Deep-water sponges are considered ecosystem engineers, and the presence of large aggregations of these organisms, commonly referred to as sponge grounds, is associated with enhanced biodiversity and abundance of epibenthic fauna compared to non-sponge habitat. However, the degree and magnitude to which the presence of these sponge grounds elicits large changes in composition of the associated megafaunal community remains unknown. Here we identify the external drivers of epibenthic megafaunal community composition and explore the patterns and magnitude of compositional change in the megafaunal community within the sponge grounds of the Sackville Spur, northwest Atlantic. Epibenthic megafauna were quantified from five image transects collected on the Sackville Spur in 2009 between 1080 and 1723 m depth. Using Gradient Forest Modelling we found that the abundance of structure-forming sponges was the most important variable for predicting compositional patterns in the Sackville Spur megafaunal community, followed by depth, range in bottom current speed, in situ salinity, and longitude. Along the gradient in structure-forming sponge abundance, the largest turnover in megafaunal community composition occurred when the sponges reached 15 individuals m-2. Examination of the regional hydrographic conditions suggests that the dense sponge grounds of the Sackville Spur are associated with a warm, salty water mass that occurs between ~1300 and 1800 m.

  4. Changes in composition and abundance of functional groups of arctic fungi in response to long-term summer warming

    PubMed Central

    Semenova, Tatiana A.; Morgado, Luis N.; Welker, Jeffrey M.

    2016-01-01

    We characterized fungal communities in dry and moist tundra and investigated the effect of long-term experimental summer warming on three aspects of functional groups of arctic fungi: richness, community composition and species abundance. Warming had profound effects on community composition, abundance, and, to a lesser extent, on richness of fungal functional groups. In addition, our data show that even within functional groups, the direction and extent of response to warming tend to be species-specific and we recommend that studies on fungal communities and their roles in nutrient cycling take into account species-level responses. PMID:27881760

  5. Species composition, community and population dynamics of two gallery forests from the Brazilian Cerrado domain

    PubMed Central

    Almado, Roosevelt P; Miazaki, Angela S; Diniz, Écio S; Moreira, Luis C B; Meira-Neto, João A.A.

    2016-01-01

    Abstract Background To understand the impacts of global changes on future community compositions, knowledge of community dynamics is of crucial importance. To improve our knowledge of community composition, biomass stock and maintenance of gallery forests in the Brazilian Cerrado, we provide two datasets from the 0.5 ha Corrego Fazendinha Gallery Forest Dynamics Plot and the Corrego Fundo Gallery Forest Dynamics Plot situated in the Bom Despacho region, Minas Gerais, Southeastern Brazil. New information We report diameter at breast height, basal area and height measurements of 3417 trees and treelets identified during three censuses in both areas. PMID:27660529

  6. Anthropogenic land use shapes the composition and phylogenetic structure of soil arbuscular mycorrhizal fungal communities.

    PubMed

    Moora, Mari; Davison, John; Öpik, Maarja; Metsis, Madis; Saks, Ülle; Jairus, Teele; Vasar, Martti; Zobel, Martin

    2014-12-01

    Arbuscular mycorrhizal (AM) fungi play an important role in ecosystems, but little is known about how soil AM fungal community composition varies in relation to habitat type and land-use intensity. We molecularly characterized AM fungal communities in soil samples (n = 88) from structurally open (permanent grassland, intensive and sustainable agriculture) and forested habitats (primeval forest and spruce plantation). The habitats harboured significantly different AM fungal communities, and there was a broad difference in fungal community composition between forested and open habitats, the latter being characterized by higher average AM fungal richness. Within both open and forest habitats, intensive land use significantly influenced community composition. There was a broad difference in the phylogenetic structure of AM fungal communities between mechanically disturbed and nondisturbed habitats. Taxa from Glomeraceae served as indicator species for the nondisturbed habitats, while taxa from Archaeosporaceae, Claroideoglomeraceae and Diversisporaceae were indicators for the disturbed habitats. The distribution of these indicator taxa among habitat types in the MaarjAM global database of AM fungal diversity was in accordance with their local indicator status. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  7. Temporal dynamics of hot desert microbial communities reveal structural and functional responses to water input

    PubMed Central

    Armstrong, Alacia; Valverde, Angel; Ramond, Jean-Baptiste; Makhalanyane, Thulani P.; Jansson, Janet K.; Hopkins, David W.; Aspray, Thomas J.; Seely, Mary; Trindade, Marla I.; Cowan, Don A.

    2016-01-01

    The temporal dynamics of desert soil microbial communities are poorly understood. Given the implications for ecosystem functioning under a global change scenario, a better understanding of desert microbial community stability is crucial. Here, we sampled soils in the central Namib Desert on sixteen different occasions over a one-year period. Using Illumina-based amplicon sequencing of the 16S rRNA gene, we found that α-diversity (richness) was more variable at a given sampling date (spatial variability) than over the course of one year (temporal variability). Community composition remained essentially unchanged across the first 10 months, indicating that spatial sampling might be more important than temporal sampling when assessing β-diversity patterns in desert soils. However, a major shift in microbial community composition was found following a single precipitation event. This shift in composition was associated with a rapid increase in CO2 respiration and productivity, supporting the view that desert soil microbial communities respond rapidly to re-wetting and that this response may be the result of both taxon-specific selection and changes in the availability or accessibility of organic substrates. Recovery to quasi pre-disturbance community composition was achieved within one month after rainfall. PMID:27680878

  8. Temporal dynamics of hot desert microbial communities reveal structural and functional responses to water input.

    PubMed

    Armstrong, Alacia; Valverde, Angel; Ramond, Jean-Baptiste; Makhalanyane, Thulani P; Jansson, Janet K; Hopkins, David W; Aspray, Thomas J; Seely, Mary; Trindade, Marla I; Cowan, Don A

    2016-09-29

    The temporal dynamics of desert soil microbial communities are poorly understood. Given the implications for ecosystem functioning under a global change scenario, a better understanding of desert microbial community stability is crucial. Here, we sampled soils in the central Namib Desert on sixteen different occasions over a one-year period. Using Illumina-based amplicon sequencing of the 16S rRNA gene, we found that α-diversity (richness) was more variable at a given sampling date (spatial variability) than over the course of one year (temporal variability). Community composition remained essentially unchanged across the first 10 months, indicating that spatial sampling might be more important than temporal sampling when assessing β-diversity patterns in desert soils. However, a major shift in microbial community composition was found following a single precipitation event. This shift in composition was associated with a rapid increase in CO 2 respiration and productivity, supporting the view that desert soil microbial communities respond rapidly to re-wetting and that this response may be the result of both taxon-specific selection and changes in the availability or accessibility of organic substrates. Recovery to quasi pre-disturbance community composition was achieved within one month after rainfall.

  9. Predictability of bee community composition after floral removals differs by floral trait group.

    PubMed

    Urban-Mead, Katherine R

    2017-11-01

    Plant-bee visitor communities are complex networks. While studies show that deleting nodes alters network topology, predicting these changes in the field remains difficult. Here, a simple trait-based approach is tested for predicting bee community composition following disturbance. I selected six fields with mixed cover of flower species with shallow (open) and deep (tube) nectar access, and removed all flowers or flower heads of species of each trait in different plots paired with controls, then observed bee foraging and composition. I compared the bee community in each manipulated plot with bees on the same flower species in control plots. The bee morphospecies composition in manipulations with only tube flowers remaining was the same as that in the control plots, while the bee morphospecies on only open flowers were dissimilar from those in control plots. However, the proportion of short- and long-tongued bees on focal flowers did not differ between control and manipulated plots for either manipulation. So, bees within some functional groups are more strongly linked to their floral trait partners than others. And, it may be more fruitful to describe expected bee community compositions in terms of relative proportions of relevant ecological traits than species, particularly in species-diverse communities. © 2017 The Author(s).

  10. Soil resources and topography shape local tree community structure in tropical forests

    PubMed Central

    Baldeck, Claire A.; Harms, Kyle E.; Yavitt, Joseph B.; John, Robert; Turner, Benjamin L.; Valencia, Renato; Navarrete, Hugo; Davies, Stuart J.; Chuyong, George B.; Kenfack, David; Thomas, Duncan W.; Madawala, Sumedha; Gunatilleke, Nimal; Gunatilleke, Savitri; Bunyavejchewin, Sarayudh; Kiratiprayoon, Somboon; Yaacob, Adzmi; Supardi, Mohd N. Nur; Dalling, James W.

    2013-01-01

    Both habitat filtering and dispersal limitation influence the compositional structure of forest communities, but previous studies examining the relative contributions of these processes with variation partitioning have primarily used topography to represent the influence of the environment. Here, we bring together data on both topography and soil resource variation within eight large (24–50 ha) tropical forest plots, and use variation partitioning to decompose community compositional variation into fractions explained by spatial, soil resource and topographic variables. Both soil resources and topography account for significant and approximately equal variation in tree community composition (9–34% and 5–29%, respectively), and all environmental variables together explain 13–39% of compositional variation within a plot. A large fraction of variation (19–37%) was spatially structured, yet unexplained by the environment, suggesting an important role for dispersal processes and unmeasured environmental variables. For the majority of sites, adding soil resource variables to topography nearly doubled the inferred role of habitat filtering, accounting for variation in compositional structure that would previously have been attributable to dispersal. Our results, illustrated using a new graphical depiction of community structure within these plots, demonstrate the importance of small-scale environmental variation in shaping local community structure in diverse tropical forests around the globe. PMID:23256196

  11. Post-Fire Recovery in Coastal Sage Scrub: Seed Rain and Community Trajectory.

    PubMed

    Conlisk, Erin; Swab, Rebecca; Martínez-Berdeja, Alejandra; Daugherty, Matthew P

    2016-01-01

    Disturbance is a primary mechanism structuring ecological communities. However, human activity has the potential to alter the frequency and intensity of natural disturbance regimes, with subsequent effects on ecosystem processes. In Southern California, human development has led to increased fire frequency close to urban areas that can form a positive feedback with invasive plant spread. Understanding how abiotic and biotic factors structure post-fire plant communities is a critical component of post-fire management and restoration. In this study we considered a variety of mechanisms affecting post-fire vegetation recovery in Riversidean sage scrub. Comparing recently burned plots to unburned plots, we found that burning significantly reduced species richness and percent cover of exotic vegetation the first two years following a 100-hectare wildfire. Seed rain was higher in burned plots, with more native forb seeds, while unburned plots had more exotic grass seeds. Moreover, there were significant correlations between seed rain composition and plant cover composition the year prior and the year after. Collectively, this case study suggests that fire can alter community composition, but there was not compelling evidence of a vegetation-type conversion. Instead, the changes in the community composition were temporary and convergence in community composition was apparent within two years post-fire.

  12. The underlying processes of a soil mite metacommunity on a small scale.

    PubMed

    Dong, Chengxu; Gao, Meixiang; Guo, Chuanwei; Lin, Lin; Wu, Donghui; Zhang, Limin

    2017-01-01

    Metacommunity theory provides an understanding of how ecological processes regulate local community assemblies. However, few field studies have evaluated the underlying mechanisms of a metacommunity on a small scale through revealing the relative roles of spatial and environmental filtering in structuring local community composition. Based on a spatially explicit sampling design in 2012 and 2013, this study aims to evaluate the underlying processes of a soil mite metacommunity on a small spatial scale (50 m) in a temperate deciduous forest located at the Maoershan Ecosystem Research Station, Northeast China. Moran's eigenvector maps (MEMs) were used to model independent spatial variables. The relative importance of spatial (including trend variables, i.e., geographical coordinates, and broad- and fine-scale spatial variables) and environmental factors in driving the soil mite metacommunity was determined by variation partitioning. Mantel and partial Mantel tests and a redundancy analysis (RDA) were also used to identify the relative contributions of spatial and environmental variables. The results of variation partitioning suggested that the relatively large and significant variance was a result of spatial variables (including broad- and fine-scale spatial variables and trend), indicating the importance of dispersal limitation and autocorrelation processes. The significant contribution of environmental variables was detected in 2012 based on a partial Mantel test, and soil moisture and soil organic matter were especially important for the soil mite metacommunity composition in both years. The study suggested that the soil mite metacommunity was primarily regulated by dispersal limitation due to broad-scale and neutral biotic processes at a fine-scale and that environmental filtering might be of subordinate importance. In conclusion, a combination of metacommunity perspectives between neutral and species sorting theories was suggested to be important in the observed structure of the soil mite metacommunity at the studied small scale.

  13. The underlying processes of a soil mite metacommunity on a small scale

    PubMed Central

    Guo, Chuanwei; Lin, Lin; Wu, Donghui; Zhang, Limin

    2017-01-01

    Metacommunity theory provides an understanding of how ecological processes regulate local community assemblies. However, few field studies have evaluated the underlying mechanisms of a metacommunity on a small scale through revealing the relative roles of spatial and environmental filtering in structuring local community composition. Based on a spatially explicit sampling design in 2012 and 2013, this study aims to evaluate the underlying processes of a soil mite metacommunity on a small spatial scale (50 m) in a temperate deciduous forest located at the Maoershan Ecosystem Research Station, Northeast China. Moran’s eigenvector maps (MEMs) were used to model independent spatial variables. The relative importance of spatial (including trend variables, i.e., geographical coordinates, and broad- and fine-scale spatial variables) and environmental factors in driving the soil mite metacommunity was determined by variation partitioning. Mantel and partial Mantel tests and a redundancy analysis (RDA) were also used to identify the relative contributions of spatial and environmental variables. The results of variation partitioning suggested that the relatively large and significant variance was a result of spatial variables (including broad- and fine-scale spatial variables and trend), indicating the importance of dispersal limitation and autocorrelation processes. The significant contribution of environmental variables was detected in 2012 based on a partial Mantel test, and soil moisture and soil organic matter were especially important for the soil mite metacommunity composition in both years. The study suggested that the soil mite metacommunity was primarily regulated by dispersal limitation due to broad-scale and neutral biotic processes at a fine-scale and that environmental filtering might be of subordinate importance. In conclusion, a combination of metacommunity perspectives between neutral and species sorting theories was suggested to be important in the observed structure of the soil mite metacommunity at the studied small scale. PMID:28481906

  14. The assembly of ecological communities inferred from taxonomic and functional composition

    Treesearch

    Eric R. Sokol; E.F. Benfield; Lisa K. Belden; H. Maurice. Valett

    2011-01-01

    Among-site variation in metacommunities (beta diversity) is typically correlated with the distance separating the sites (spatial lag). This distance decay in similarity pattern has been linked to both niche-based and dispersal-based community assembly hypotheses. Here we show that beta diversity patterns in community composition, when supplemented with functional-trait...

  15. SPATIAL AND TEMPORAL VARIABILITY IN ZOOPLANKTON COMMUNITY DYNAMICS IN THREE URBANIZED BAYOUS OF THE PENSACOLA BAY SYSTEM, FLORIDA, USA

    EPA Science Inventory

    Spatial and temporal patterns in zooplankton community composition and abundance in near-coastal areas of the Gulf of Mexico are not well understood. This survey provides information on spatial and temporal differences in zoolplankton community composition and abundance for a coa...

  16. Fragmentation of forest communities in the eastern United States

    Treesearch

    Kurt Riitters; John Coulston; James Wickham

    2011-01-01

    Forest fragmentation threatens the sustainability of forest communities in the eastern United States. Forest communities exhibiting either a low total area or low percentage of intact forest are subject to relatively higher risk of shifts in stand composition towards edge-adapted and invasive species. Such changes in stand composition could result in local extirpation...

  17. Moving at the Speed of Potential: A Mixed-Methods Study of Accelerating Developmental Students in a California Community College

    ERIC Educational Resources Information Center

    Parks, Paula L.

    2014-01-01

    Most developmental community college students are not completing the composition sequence successfully. This mixed-methods study examined acceleration as a way to help developmental community college students complete the composition sequence more quickly and more successfully. Acceleration is a curricular redesign that includes challenging…

  18. The role of topographic structure and soil macrofauna presence at spoil heaps during spontaneous succession.

    NASA Astrophysics Data System (ADS)

    Walmsley, Alena; Vachová, Pavla; Vach, Marek

    2016-04-01

    This research was investigating whether topographic features, which determine soil nutrient and moisture distribution, in combination with soil fauna (wireworm and earthworm) presence, affect plant community composition at a spontaneously revegetated post mining area with an undulating surface. Two sites of different age with 3 types of topographic features were selected, soil moisture and nutrient content were measured, plant community composition and soil macrofauna community was sampled at each position. Wireworms were present at all positions and were most abundant at bottoms of waves at the younger site; their presence was correlated with several plant species, but the direction of the interaction isn't clear. Earthworms were only present at the older site and had highest abundance at flat sections. Earthworm presence affected the amount of nitrogen in soil - the most nitrogen content was at the site with highest earthworm density and was followed by higher diversity of plant community. The plant community composition was generally correlated with plant available nutrient content - especially P and N. We infer that topographic features affect nutrient and soil fauna distribution, which consequently influences plant community composition.

  19. Adult trees cause density-dependent mortality in conspecific seedlings by regulating the frequency of pathogenic soil fungi.

    PubMed

    Liang, Minxia; Liu, Xubing; Gilbert, Gregory S; Zheng, Yi; Luo, Shan; Huang, Fengmin; Yu, Shixiao

    2016-12-01

    Negative density-dependent seedling mortality has been widely detected in tropical, subtropical and temperate forests, with soil pathogens as a major driver. Here we investigated how host density affects the composition of soil pathogen communities and consequently influences the strength of plant-soil feedbacks. In field censuses of six 1-ha permanent plots, we found that survival was much lower for newly germinated seedlings that were surrounded by more conspecific adults. The relative abundance of pathogenic fungi in soil increased with increasing conspecific tree density for five of nine tree species; more soil pathogens accumulated around roots where adult tree density was higher, and this greater pathogen frequency was associated with lower seedling survival. Our findings show how tree density influences populations of soil pathogens, which creates plant-soil feedbacks that contribute to community-level and population-level compensatory trends in seedling survival. © 2016 John Wiley & Sons Ltd/CNRS.

  20. Cnidarian-microbe interactions and the origin of innate immunity in metazoans.

    PubMed

    Bosch, Thomas C G

    2013-01-01

    Most epithelia in animals are colonized by microbial communities. These resident microbes influence fitness and thus ecologically important traits of their hosts, ultimately forming a metaorganism consisting of a multicellular host and a community of associated microorganisms. Recent discoveries in the cnidarian Hydra show that components of the innate immune system as well as transcriptional regulators of stem cells are involved in maintaining homeostasis between animals and their resident microbiota. Here I argue that components of the innate immune system with its host-specific antimicrobial peptides and a rich repertoire of pattern recognition receptors evolved in early-branching metazoans because of the need to control the resident beneficial microbes, not because of invasive pathogens. I also propose a mutual intertwinement between the stem cell regulatory machinery of the host and the resident microbiota composition, such that disturbances in one trigger a restructuring and resetting of the other.

  1. Composition and stability of bacterial communities associated with granular activated carbon and anthracite filters in a pilot scale municipal drinking water treatment facility.

    PubMed

    Shirey, T B; Thacker, R W; Olson, J B

    2012-06-01

    Granular activated carbon (GAC) is an alternative filter substrate for municipal water treatment as it provides a high surface area suitable for microbial colonization. The resulting microbial growth promotes biodegradation of organic materials and other contaminants from influent waters. Here, the community structure of the bacteria associated with three GAC and two anthracite filters was examined over 12 months to monitor changes in community composition. Nearly complete 16S rRNA genes were polymerase chain reaction amplified for terminal restriction fragment length polymorphism (T-RFLP) analyses. The identity of commonly occurring peaks was determined through the construction of five representative 16S rRNA clone libraries. Based on sequence analysis, the bacterial communities associated with both anthracite and GAC filters appear to be composed of environmentally derived bacteria, with no known human pathogens. Analysis of similarity tests revealed that significant differences in bacterial community structure occurred over time, with filter substrate playing an important role in determining community composition. GAC filters exhibited the greatest degree of bacterial community variability over the sampling period, while anthracite filters showed a lower degree of variability and less change in community composition. Thus, GAC may be a suitable biologically active filter substrate for the treatment of municipal drinking water.

  2. Urban-development-induced Changes in the Diversity and Composition of the Soil Bacterial Community in Beijing.

    PubMed

    Yan, Bing; Li, Junsheng; Xiao, Nengwen; Qi, Yue; Fu, Gang; Liu, Gaohui; Qiao, Mengping

    2016-12-09

    Numerous studies have implicated urbanization as a major cause of loss of biodiversity. Most of them have focused on plants and animals, even though soil microorganisms make up a large proportion of that biodiversity. However, it is unclear how the soil bacterial community is affected by urban development. Here, paired-end Illumina sequencing of the 16 S rRNA gene at V4 region was performed to study the soil microbial community across Beijing's built-up area. Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Gemmatimonadetes, Verrucomicrobia, Planctomycetes, and Chloroflexi were the dominant phyla in all samples, but the relative abundance of these phyla differed significantly across these concentric zones. The diversity and composition of the soil bacterial community were found to be closely correlated with soil pH. Variance partitioning analysis suggested that urban ring roads contributed 5.95% of the bacterial community variation, and soil environmental factors explained 17.65% of the variation. The results of the current work indicate that urban development can alter the composition and diversity of the soil microbial community, and showed pH to be a key factor in the shaping of the composition of the soil bacterial community. Urban development did have a strong impact on the bacterial community of urban soil in Beijing.

  3. Bacterial, fungal, and plant communities exhibit no biomass or compositional response to two years of simulated nitrogen deposition in a semiarid grassland

    USGS Publications Warehouse

    McHugh, Theresa A.; Morrissey, Ember M.; Mueller, Rebecca C.; Gallegos-Graves, La Verne; Kuske, Cheryl R.; Reed, Sasha C.

    2017-01-01

    Nitrogen (N) deposition affects myriad aspects of terrestrial ecosystem structure and function, and microbial communities may be particularly sensitive to anthropogenic N inputs. However, our understanding of N deposition effects on microbial communities is far from complete, especially for drylands where data are comparatively rare. To address the need for an improved understanding of dryland biological responses to N deposition, we conducted a two-year fertilization experiment in a semiarid grassland on the Colorado Plateau in the southwestern United States. We evaluated effects of varied levels of N inputs on archaeal, bacterial, fungal and chlorophyte community composition within three microhabitats: biological soil crusts (biocrusts), soil below biocrusts, and the plant rhizosphere. Surprisingly, N addition did not affect the community composition or diversity of any of these microbial groups; however, microbial community composition varied significantly among sampling microhabitats. Further, while plant richness, diversity, and cover showed no response to N addition, there were strong linkages between plant properties and microbial community structure. Overall, these findings highlight the potential for some dryland communities to have limited biotic ability to retain augmented N inputs, possibly leading to large N losses to the atmosphere and to aquatic systems.

  4. Ecological and Evolutionary Effects of Stickleback on Community Structure

    PubMed Central

    Des Roches, Simone; Shurin, Jonathan B.; Schluter, Dolph; Harmon, Luke J.

    2013-01-01

    Species’ ecology and evolution can have strong effects on communities. Both may change concurrently when species colonize a new ecosystem. We know little, however, about the combined effects of ecological and evolutionary change on community structure. We simultaneously examined the effects of top-predator ecology and evolution on freshwater community parameters using recently evolved generalist and specialist ecotypes of three-spine stickleback (Gasterosteus aculeatus). We used a mesocosm experiment to directly examine the effects of ecological (fish presence and density) and evolutionary (phenotypic diversity and specialization) factors on community structure at lower trophic levels. We evaluated zooplankton biomass and composition, periphyton and phytoplankton chlorophyll-a concentration, and net primary production among treatments containing different densities and diversities of stickleback. Our results showed that both ecological and evolutionary differences in the top-predator affect different aspects of community structure and composition. Community structure, specifically the abundance of organisms at each trophic level, was affected by stickleback presence and density, whereas composition of zooplankton was influenced by stickleback diversity and specialization. Primary productivity, in terms of chlorophyll-a concentration and net primary production was affected by ecological but not evolutionary factors. Our results stress the importance of concurrently evaluating both changes in density and phenotypic diversity on the structure and composition of communities. PMID:23573203

  5. Urban-development-induced Changes in the Diversity and Composition of the Soil Bacterial Community in Beijing

    NASA Astrophysics Data System (ADS)

    Yan, Bing; Li, Junsheng; Xiao, Nengwen; Qi, Yue; Fu, Gang; Liu, Gaohui; Qiao, Mengping

    2016-12-01

    Numerous studies have implicated urbanization as a major cause of loss of biodiversity. Most of them have focused on plants and animals, even though soil microorganisms make up a large proportion of that biodiversity. However, it is unclear how the soil bacterial community is affected by urban development. Here, paired-end Illumina sequencing of the 16 S rRNA gene at V4 region was performed to study the soil microbial community across Beijing’s built-up area. Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Gemmatimonadetes, Verrucomicrobia, Planctomycetes, and Chloroflexi were the dominant phyla in all samples, but the relative abundance of these phyla differed significantly across these concentric zones. The diversity and composition of the soil bacterial community were found to be closely correlated with soil pH. Variance partitioning analysis suggested that urban ring roads contributed 5.95% of the bacterial community variation, and soil environmental factors explained 17.65% of the variation. The results of the current work indicate that urban development can alter the composition and diversity of the soil microbial community, and showed pH to be a key factor in the shaping of the composition of the soil bacterial community. Urban development did have a strong impact on the bacterial community of urban soil in Beijing.

  6. Functional composition of epifauna in the south-eastern North Sea in relation to habitat characteristics and fishing effort

    NASA Astrophysics Data System (ADS)

    Neumann, Hermann; Diekmann, Rabea; Kröncke, Ingrid

    2016-02-01

    Analysis of ecosystem functioning is essential to describe the ecological status of ecosystems and is therefore directly requested in international directives. There is a lack of knowledge regarding functional aspects of benthic communities and their environmental and anthropogenic driving forces in the southern North Sea. This study linked functional composition of epibenthic communities to environmental conditions and fishing effort and investigated spatial correlations between habitat characteristics to gain insight into potential synergistic and/or cumulative effects. Functional composition of epifauna was assessed by using biological trait analysis (BTA), which considered 15 ecological traits of 54 species. Functional composition was related to ten predictor variables derived from sediment composition, bottom temperature and salinity, hydrodynamics, annual primary production and fishing effort. Our results revealed significantly different functional composition between the Dogger Bank, the Oyster Ground, the West and North Frisian coast. Mobility, feeding type, size and adult longevity were the most important traits differentiating the communities. A high proportion of trait modalities related to an opportunistic life mode were obvious in coastal areas especially at the West Frisian coast and in the area of the Frisian Front indicating disturbed communities. In contrast, functional composition in the Dogger Bank area indicated undisturbed communities with prevalence of large, long-lived and permanently attached species being sensitive towards disturbance such as fishing. Tidal stress, mud content of sediments, salinity, stratification and fishing effort were found to be the most important habitat characteristics shaping functional composition. Strong correlations were found between variables, especially between those which changed gradually from the coast to offshore areas including fishing effort. Unfavourable extremes of these factors in coastal areas resulted in disturbed epibenthic communities, while the relative influence of a single factor on functional composition cannot be quantified. Coastal communities seemed to be well adapted to disturbance and the prevalence of opportunistic trait modalities not necessarily revealed a poor ecological status according to the Marine Strategy Framework Directive (MSFD). The integration of functional aspects into the assessment of ecosystem health is recommended, since widely used structural measures failed in naturally disturbed habitats.

  7. Compositional stability and diversity of vascular plant communities following logging disturbance in Appalachian forests.

    PubMed

    Belote, R Travis; Jones, Robert H; Wieboldt, Thomas F

    2012-03-01

    Human-caused changes in disturbance regimes and introductions of nonnative species have the potential to result in widespread, directional changes in forest community structure. The degree that plant community composition persists or changes following disturbances depends on the balance between local extirpation and colonization by new species, including nonnatives. In this study, we examined species losses and gains, and entry of native vs. exotic species to determine how oak forests in the Appalachian Mountains might shift in species composition following a gradient of pulse disturbances (timber harvesting). We asked (1) how compositional stability of the plant community (resistance and resilience) was influenced by disturbance intensity, (2) whether community responses were driven by extirpation or colonization of species, and (3) how disturbance intensity influenced total and functional group diversity, including the nonnative proportion of the flora through time. We collected data at three spatial scales and three times, including just before, one year post-disturbance, and 10 years post-disturbance. Resistance was estimated using community distance measures between pre- and one year post-disturbance, and resilience using community distance between pre- and 10-year post-disturbance conditions. The number of colonizing and extirpated species between sampling times was analyzed for all species combined and for six functional groups. Resistance and resilience decreased with increasing timber-harvesting disturbance; compositional stability was lower in the most disturbed plots, which was driven by colonization, but not extirpation, of species. Colonization of species also led to increases in diversity after disturbance that was typically maintained after 10 years following disturbance. Most of the community-level responses were driven by post-disturbance colonization of native forbs and graminoids. The nonnative proportion of plant species tended to increase following disturbance, especially at large spatial scales in the most disturbed treatments, but tended to decrease through time following disturbance due to canopy development. The results of this study are consistent with the theory that resources released by disturbance have strong influences on species colonization and community composition. The effects of management activities tested in this study, which span a gradient of timber-harvesting disturbance, shift species composition largely via an increase in species colonization and diversity.

  8. Are cattle surrogate wildlife? Savanna plant community composition explained by total herbivory more than herbivore type.

    PubMed

    Veblen, Kari E; Porensky, Lauren M; Riginos, Corinna; Young, Truman P

    2016-09-01

    The widespread replacement of wild ungulate herbivores by domestic livestock in African savannas is composed of two interrelated phenomena: (1) loss or reduction in numbers of individual wildlife species or guilds and (2) addition of livestock to the system. Each can have important implications for plant community dynamics. Yet very few studies have experimentally addressed the individual, combined, and potentially interactive effects of wild vs. domestic herbivore species on herbaceous plant communities within a single system. Additionally, there is little information about whether, and in which contexts, livestock might functionally replace native herbivore wildlife or, alternatively, have fundamentally different effects on plant species composition. The Kenya Long-term Exclosure Experiment, which has been running since 1995, is composed of six treatment combinations of mega-herbivores, meso-herbivore ungulate wildlife, and cattle. We sampled herbaceous vegetation 25 times between 1999 and 2013. We used partial redundancy analysis and linear mixed models to assess effects of herbivore treatments on overall plant community composition and key plant species. Plant communities in the six different herbivore treatments shifted directionally over time and diverged from each other substantially by 2013. Plant community composition was strongly related (R 2  = 0.92) to residual plant biomass, a measure of herbivore utilization. Addition of any single herbivore type (cattle, wildlife, or mega-herbivores) caused a shift in plant community composition that was proportional to its removal of plant biomass. These results suggest that overall herbivory pressure, rather than herbivore type or complex interactions among different herbivore types, was the main driver of changes in plant community composition. Individual plant species, however, did respond most strongly to either wild ungulates or cattle. Although these results suggest considerable functional similarity between a suite of native wild herbivores (which included grazers, browsers, and mixed feeders) and cattle (mostly grazers) with respect to understory plant community composition, responses of individual plant species demonstrate that at the plant-population-level impacts of a single livestock species are not functionally identical to those of a diverse group of native herbivores. © 2016 by the Ecological Society of America.

  9. Divergent composition but similar function of soil food webs of individual plants: plant species and community effects.

    PubMed

    Bezemer, T M; Fountain, M T; Barea, J M; Christensen, S; Dekker, S C; Duyts, H; van Hal, R; Harvey, J A; Hedlund, K; Maraun, M; Mikola, J; Mladenov, A G; Robin, C; de Ruiter, P C; Scheu, S; Setälä, H; Smilauer, P; van der Putten, W H

    2010-10-01

    Soils are extremely rich in biodiversity, and soil organisms play pivotal roles in supporting terrestrial life, but the role that individual plants and plant communities play in influencing the diversity and functioning of soil food webs remains highly debated. Plants, as primary producers and providers of resources to the soil food web, are of vital importance for the composition, structure, and functioning of soil communities. However, whether natural soil food webs that are completely open to immigration and emigration differ underneath individual plants remains unknown. In a biodiversity restoration experiment we first compared the soil nematode communities of 228 individual plants belonging to eight herbaceous species. We included grass, leguminous, and non-leguminous species. Each individual plant grew intermingled with other species, but all plant species had a different nematode community. Moreover, nematode communities were more similar when plant individuals were growing in the same as compared to different plant communities, and these effects were most apparent for the groups of bacterivorous, carnivorous, and omnivorous nematodes. Subsequently, we analyzed the composition, structure, and functioning of the complete soil food webs of 58 individual plants, belonging to two of the plant species, Lotus corniculatus (Fabaceae) and Plantago lanceolata (Plantaginaceae). We isolated and identified more than 150 taxa/groups of soil organisms. The soil community composition and structure of the entire food webs were influenced both by the species identity of the plant individual and the surrounding plant community. Unexpectedly, plant identity had the strongest effects on decomposing soil organisms, widely believed to be generalist feeders. In contrast, quantitative food web modeling showed that the composition of the plant community influenced nitrogen mineralization under individual plants, but that plant species identity did not affect nitrogen or carbon mineralization or food web stability. Hence, the composition and structure of entire soil food webs vary at the scale of individual plants and are strongly influenced by the species identity of the plant. However, the ecosystem functions these food webs provide are determined by the identity of the entire plant community.

  10. The Comparison of Different Heterotrophic Bacteria on the Decomposition of DOC molecule

    NASA Astrophysics Data System (ADS)

    Xie, R.; Zheng, Q.; Jiao, N.

    2016-02-01

    Marine dissolved organic carbon (DOC) pool is one of the largest reservoirs of organic carbon on Earth. Heterotrophic bacteria are the primary biotic force regulating the fate of marine DOC. Comparison of genomic data, microbes belonging to different clades have diverse DOC molecule utilization genes. That's give us a hint that different microbial groups may have their own pattern to decompose DOC, biosynthesize diverse DOC molecule and contribute to the in situ DOC reservoirs in the ocean. The interaction between marine microbes and DOC molecule is hotspots in current research. We will choose some important microbial groups (e.g., Roseobacter, Altermonas, Halomonas, SAR11 and CFB) to identify their contribution to environmental DOC pool and their specific recalcitrant DOC component using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Combined with the composition of hydrolases, lyases and ligases in their genomes, we try to establish a linkage between the specific DOC composition and microbial genetic information. Future more the environmental metagenomic data would help us understand the relationship between the endemic DOC composition and microbial communities in the environment.

  11. Microbial Community Composition of Polyhydroxyalkanoate-Accumulating Organisms in Full-Scale Wastewater Treatment Plants Operated in Fully Aerobic Mode

    PubMed Central

    Oshiki, Mamoru; Onuki, Motoharu; Satoh, Hiroyasu; Mino, Takashi

    2013-01-01

    The removal of biodegradable organic matter is one of the most important objectives in biological wastewater treatments. Polyhydroxyalkanoate (PHA)-accumulating organisms (PHAAOs) significantly contribute to the removal of biodegradable organic matter; however, their microbial community composition is mostly unknown. In the present study, the microbial community composition of PHAAOs was investigated at 8 full-scale wastewater treatment plants (WWTPs), operated in fully aerobic mode, by fluorescence in situ hybridization (FISH) analysis and post-FISH Nile blue A (NBA) staining techniques. Our results demonstrated that 1) PHAAOs were in the range of 11–18% in the total number of cells, and 2) the microbial community composition of PHAAOs was similar at the bacterial domain/phylum/class/order level among the 8 full-scale WWTPs, and dominant PHAAOs were members of the class Alphaproteobacteria and Betaproteobacteria. The microbial community composition of α- and β-proteobacterial PHAAOs was examined by 16S rRNA gene clone library analysis and further by applying a set of newly designed oligonucleotide probes targeting 16S rRNA gene sequences of α- or β-proteobacterial PHAAOs. The results demonstrated that the microbial community composition of PHAAOs differed in the class Alphaproteobacteria and Betaproteobacteria, which possibly resulted in a different PHA accumulation capacity among the WWTPs (8.5–38.2 mg-C g-VSS−1 h−1). The present study extended the knowledge of the microbial diversity of PHAAOs in full-scale WWTPs operated in fully aerobic mode. PMID:23257912

  12. The role of local environment and geographical distance in determining community composition of arbuscular mycorrhizal fungi at the landscape scale.

    PubMed

    Hazard, Christina; Gosling, Paul; van der Gast, Christopher J; Mitchell, Derek T; Doohan, Fiona M; Bending, Gary D

    2013-03-01

    Arbuscular fungi have a major role in directing the functioning of terrestrial ecosystems yet little is known about their biogeographical distribution. The Baas-Becking hypothesis ('everything is everywhere, but, the environment selects') was tested by investigating the distribution of arbuscular mycorrhizal fungi (AMF) at the landscape scale and the influence of environmental factors and geographical distance in determining community composition. AMF communities in Trifolium repens and Lolium perenne roots were assessed in 40 geographically dispersed sites in Ireland representing different land uses and soil types. Field sampling and laboratory bioassays were used, with AMF communities characterised using 18S rRNA terminal-restriction fragment length polymorphism. Landscape-scale distribution of AMF was driven by the local environment. AMF community composition was influenced by abiotic variables (pH, rainfall and soil type), but not land use or geographical distance. Trifolium repens and L. perenne supported contrasting communities of AMF, and the communities colonising each plant species were consistent across pasture habitats and over distance. Furthermore, L. perenne AMF communities grouped by soil type within pasture habitats. This is the largest and most comprehensive study that has investigated the landscape-scale distribution of AMF. Our findings support the Baas-Becking hypothesis at the landscape scale and demonstrate the strong influence the local environment has on determining AMF community composition.

  13. The role of local environment and geographical distance in determining community composition of arbuscular mycorrhizal fungi at the landscape scale

    PubMed Central

    Hazard, Christina; Gosling, Paul; van der Gast, Christopher J; Mitchell, Derek T; Doohan, Fiona M; Bending, Gary D

    2013-01-01

    Arbuscular fungi have a major role in directing the functioning of terrestrial ecosystems yet little is known about their biogeographical distribution. The Baas-Becking hypothesis (‘everything is everywhere, but, the environment selects') was tested by investigating the distribution of arbuscular mycorrhizal fungi (AMF) at the landscape scale and the influence of environmental factors and geographical distance in determining community composition. AMF communities in Trifolium repens and Lolium perenne roots were assessed in 40 geographically dispersed sites in Ireland representing different land uses and soil types. Field sampling and laboratory bioassays were used, with AMF communities characterised using 18S rRNA terminal-restriction fragment length polymorphism. Landscape-scale distribution of AMF was driven by the local environment. AMF community composition was influenced by abiotic variables (pH, rainfall and soil type), but not land use or geographical distance. Trifolium repens and L. perenne supported contrasting communities of AMF, and the communities colonising each plant species were consistent across pasture habitats and over distance. Furthermore, L. perenne AMF communities grouped by soil type within pasture habitats. This is the largest and most comprehensive study that has investigated the landscape-scale distribution of AMF. Our findings support the Baas-Becking hypothesis at the landscape scale and demonstrate the strong influence the local environment has on determining AMF community composition. PMID:23096401

  14. Characterization of rumen ciliate community composition in domestic sheep, deer, and cattle, feeding on varying diets, by means of PCR-DGGE and clone libraries.

    PubMed

    Kittelmann, Sandra; Janssen, Peter H

    2011-03-01

    The structure and variability of ciliate protozoal communities in the rumens of domestic New Zealand ruminants feeding on different diets was investigated. The relative abundance of ciliates compared with bacteria was similar across all samples. However, molecular fingerprinting of communities showed ruminant-specific differences in species composition. Community compositions of cattle were significantly influenced by diet. In contrast, diet effects in deer and sheep were weaker than the animal-to-animal variation. Cloning and sequencing of almost-full-length 18S rRNA genes from representative samples revealed that New Zealand ruminants were colonized by at least nine genera of ciliates and allowed the assignment of samples to two distinct community types. Cattle contained A-type communities, with most sequences closely related to those of the genera Polyplastron and Ostracodinium. Deer and sheep (with one exception) harboured B-type communities, with the majority of sequences belonging to the genera Epidinium and Eudiplodinium. It has been suggested that species composition of ciliate communities may impact methane formation in ruminants, with the B-type producing more methane. Therefore, manipulation of ciliate communities may be a means of mitigating methane emissions from grazing sheep and deer in New Zealand. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  15. Predicting community composition from pairwise interactions

    NASA Astrophysics Data System (ADS)

    Friedman, Jonathan; Higgins, Logan; Gore, Jeff

    The ability to predict the structure of complex, multispecies communities is crucial for understanding the impact of species extinction and invasion on natural communities, as well as for engineering novel, synthetic communities. Communities are often modeled using phenomenological models, such as the classical generalized Lotka-Volterra (gLV) model. While a lot of our intuition comes from such models, their predictive power has rarely been tested experimentally. To directly assess the predictive power of this approach, we constructed synthetic communities comprised of up to 8 soil bacteria. We measured the outcome of competition between all species pairs, and used these measurements to predict the composition of communities composed of more than 2 species. The pairwise competitions resulted in a diverse set of outcomes, including coexistence, exclusion, and bistability, and displayed evidence for both interference and facilitation. Most pair outcomes could be captured by the gLV framework, and the composition of multispecies communities could be predicted for communities composed solely of such pairs. Our results demonstrate the predictive ability and utility of simple phenomenology, which enables accurate predictions in the absence of mechanistic details.

  16. Fungal community composition in soils subjected to long-term chemical fertilization is most influenced by the type of organic matter.

    PubMed

    Sun, Ruibo; Dsouza, Melissa; Gilbert, Jack A; Guo, Xisheng; Wang, Daozhong; Guo, Zhibin; Ni, Yingying; Chu, Haiyan

    2016-12-01

    Organic matter application is a widely used practice to increase soil carbon content and maintain soil fertility. However, little is known about the effect of different types of organic matter, or the input of exogenous species from these materials, on soil fungal communities. In this study, fungal community composition was characterized from soils amended with three types of organic matter over a 30-year fertilization experiment. Chemical fertilization significantly changed soil fungal community composition and structure, which was exacerbated by the addition of organic matter, with the direction of change influenced by the type of organic matter used. The addition of organic matter significantly increased soil fungal richness, with the greatest richness achieved in soils amended with pig manure. Importantly, following addition of cow and pig manure, fungal taxa associated with these materials could be found in the soil, suggesting that these exogenous species can augment soil fungal composition. Moreover, the addition of organic matter decreased the relative abundance of potential pathogenic fungi. Overall, these results indicate that organic matter addition influences the composition and structure of soil fungal communities in predictable ways. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Functional homogenization of flower visitor communities with urbanization.

    PubMed

    Deguines, Nicolas; Julliard, Romain; de Flores, Mathieu; Fontaine, Colin

    2016-04-01

    Land-use intensification and resulting habitat loss are put forward as the main causes of flower visitor decline. However, the impact of urbanization, the prime driver of land-use intensification in Europe, is poorly studied. In particular, our understanding of whether and how it affects the composition and functioning of flower visitor assemblages is scant, yet required to cope with increasing urbanization worldwide. Here, we use a nation-wide dataset of plant-flower visitor (Coleoptera, Diptera, Hymenoptera, Lepidoptera) interactions sampled by citizen scientists following a standardized protocol to assess macroecological changes in richness and composition of flower visitor communities with urbanization. We measured the community composition by quantifying the relative occurrence of generalist and specialist flower visitors based on their specialisation on flowering plant families. We show that urbanization is associated with reduced flower visitor richness and a shift in community composition toward generalist insects, indicating a modification of the functional composition of communities. These results suggest that urbanization affects not only the richness of flower visitor assemblages but may also cause their large-scale functional homogenization. Future research should focus on designing measures to reconcile urban development with flower visitor conservation.

  18. Linking environmental filtering and disequilibrium to biogeography with a community climate framework.

    PubMed

    Blonder, Benjamin; Nogués-Bravo, David; Borregaard, Michael K; Donoghue, John C; Jørgensen, Peter M; Kraft, Nathan J B; Lessard, Jean-Philippe; Morueta-Holme, Naia; Sandel, Brody; Svenning, Jens-Christian; Violle, Cyrille; Rahbek, Carsten; Enquist, Brian J

    2015-04-01

    We present a framework to measure the strength of environmental filtering and disequilibrium of the species composition of a local community across time, relative to past, current, and future climates. We demonstrate the framework by measuring the impact of climate change on New World forests, integrating data for climate niches of more than 14000 species, community composition of 471 New World forest plots, and observed climate across the most recent glacial-interglacial interval. We show that a majority of communities have species compositions that are strongly filtered and are more in equilibrium with current climate than random samples from the regional pool. Variation in the level of current community disequilibrium can be predicted from Last Glacial Maximum climate and will increase with near-future climate change.

  19. Influence of lung CT changes in chronic obstructive pulmonary disease (COPD) on the human lung microbiome

    PubMed Central

    Schloter-Hai, Brigitte; Kublik, Susanne; Granitsiotis, Michael S.; Boschetto, Piera; Stendardo, Mariarita; Barta, Imre; Dome, Balazs; Deleuze, Jean-François; Boland, Anne; Müller-Quernheim, Joachim; Prasse, Antje; Welte, Tobias; Hohlfeld, Jens; Subramanian, Deepak; Parr, David; Gut, Ivo Glynne; Greulich, Timm; Koczulla, Andreas Rembert; Nowinski, Adam; Gorecka, Dorota; Singh, Dave; Gupta, Sumit; Brightling, Christopher E.; Hoffmann, Harald; Frankenberger, Marion; Hofer, Thomas P.; Burggraf, Dorothe; Heiss-Neumann, Marion; Ziegler-Heitbrock, Loems; Schloter, Michael; zu Castell, Wolfgang

    2017-01-01

    Background Changes in microbial community composition in the lung of patients suffering from moderate to severe COPD have been well documented. However, knowledge about specific microbiome structures in the human lung associated with CT defined abnormalities is limited. Methods Bacterial community composition derived from brush samples from lungs of 16 patients suffering from different CT defined subtypes of COPD and 9 healthy subjects was analyzed using a cultivation independent barcoding approach applying 454-pyrosequencing of 16S rRNA gene fragment amplicons. Results We could show that bacterial community composition in patients with changes in CT (either airway or emphysema type changes, designated as severe subtypes) was different from community composition in lungs of patients without visible changes in CT as well as from healthy subjects (designated as mild COPD subtype and control group) (PC1, Padj = 0.002). Higher abundance of Prevotella in samples from patients with mild COPD subtype and from controls and of Streptococcus in the severe subtype cases mainly contributed to the separation of bacterial communities of subjects. No significant effects of treatment with inhaled glucocorticoids on bacterial community composition were detected within COPD cases with and without abnormalities in CT in PCoA. Co-occurrence analysis suggests the presence of networks of co-occurring bacteria. Four communities of positively correlated bacteria were revealed. The microbial communities can clearly be distinguished by their associations with the CT defined disease phenotype. Conclusion Our findings indicate that CT detectable structural changes in the lung of COPD patients, which we termed severe subtypes, are associated with alterations in bacterial communities, which may induce further changes in the interaction between microbes and host cells. This might result in a changed interplay with the host immune system. PMID:28704452

  20. Biodiversity and ecosystem functioning in dynamic landscapes

    PubMed Central

    Brose, Ulrich; Hillebrand, Helmut

    2016-01-01

    The relationship between biodiversity and ecosystem functioning (BEF) and its consequence for ecosystem services has predominantly been studied by controlled, short-term and small-scale experiments under standardized environmental conditions and constant community compositions. However, changes in biodiversity occur in real-world ecosystems with varying environments and a dynamic community composition. In this theme issue, we present novel research on BEF in such dynamic communities. The contributions are organized in three sections on BEF relationships in (i) multi-trophic diversity, (ii) non-equilibrium biodiversity under disturbance and varying environmental conditions, and (iii) large spatial and long temporal scales. The first section shows that multi-trophic BEF relationships often appear idiosyncratic, while accounting for species traits enables a predictive understanding. Future BEF research on complex communities needs to include ecological theory that is based on first principles of species-averaged body masses, stoichiometry and effects of environmental conditions such as temperature. The second section illustrates that disturbance and varying environments have direct as well as indirect (via changes in species richness, community composition and species' traits) effects on BEF relationships. Fluctuations in biodiversity (species richness, community composition and also trait dominance within species) can severely modify BEF relationships. The third section demonstrates that BEF at larger spatial scales is driven by different variables. While species richness per se and community biomass are most important, species identity effects and community composition are less important than at small scales. Across long temporal scales, mass extinctions represent severe changes in biodiversity with mixed effects on ecosystem functions. Together, the contributions of this theme issue identify new research frontiers and answer some open questions on BEF relationships in dynamic communities of real-world landscapes. PMID:27114570

  1. Litter quality versus soil microbial community controls over decomposition: a quantitative analysis

    USGS Publications Warehouse

    Cleveland, Cory C.; Reed, Sasha C.; Keller, Adrienne B.; Nemergut, Diana R.; O'Neill, Sean P.; Ostertag, Rebecca; Vitousek, Peter M.

    2014-01-01

    The possible effects of soil microbial community structure on organic matter decomposition rates have been widely acknowledged, but are poorly understood. Understanding these relationships is complicated by the fact that microbial community structure and function are likely to both affect and be affected by organic matter quality and chemistry, thus it is difficult to draw mechanistic conclusions from field studies. We conducted a reciprocal soil inoculum × litter transplant laboratory incubation experiment using samples collected from a set of sites that have similar climate and plant species composition but vary significantly in bacterial community structure and litter quality. The results showed that litter quality explained the majority of variation in decomposition rates under controlled laboratory conditions: over the course of the 162-day incubation, litter quality explained nearly two-thirds (64 %) of variation in decomposition rates, and a smaller proportion (25 %) was explained by variation in the inoculum type. In addition, the relative importance of inoculum type on soil respiration increased over the course of the experiment, and was significantly higher in microcosms with lower litter quality relative to those with higher quality litter. We also used molecular phylogenetics to examine the relationships between bacterial community composition and soil respiration in samples through time. Pyrosequencing revealed that bacterial community composition explained 32 % of the variation in respiration rates. However, equal portions (i.e., 16 %) of the variation in bacterial community composition were explained by inoculum type and litter quality, reflecting the importance of both the meta-community and the environment in bacterial assembly. Taken together, these results indicate that the effects of changing microbial community composition on decomposition are likely to be smaller than the potential effects of climate change and/or litter quality changes in response to increasing atmospheric CO2 concentrations or atmospheric nutrient deposition.

  2. Influence of lung CT changes in chronic obstructive pulmonary disease (COPD) on the human lung microbiome.

    PubMed

    Engel, Marion; Endesfelder, David; Schloter-Hai, Brigitte; Kublik, Susanne; Granitsiotis, Michael S; Boschetto, Piera; Stendardo, Mariarita; Barta, Imre; Dome, Balazs; Deleuze, Jean-François; Boland, Anne; Müller-Quernheim, Joachim; Prasse, Antje; Welte, Tobias; Hohlfeld, Jens; Subramanian, Deepak; Parr, David; Gut, Ivo Glynne; Greulich, Timm; Koczulla, Andreas Rembert; Nowinski, Adam; Gorecka, Dorota; Singh, Dave; Gupta, Sumit; Brightling, Christopher E; Hoffmann, Harald; Frankenberger, Marion; Hofer, Thomas P; Burggraf, Dorothe; Heiss-Neumann, Marion; Ziegler-Heitbrock, Loems; Schloter, Michael; Zu Castell, Wolfgang

    2017-01-01

    Changes in microbial community composition in the lung of patients suffering from moderate to severe COPD have been well documented. However, knowledge about specific microbiome structures in the human lung associated with CT defined abnormalities is limited. Bacterial community composition derived from brush samples from lungs of 16 patients suffering from different CT defined subtypes of COPD and 9 healthy subjects was analyzed using a cultivation independent barcoding approach applying 454-pyrosequencing of 16S rRNA gene fragment amplicons. We could show that bacterial community composition in patients with changes in CT (either airway or emphysema type changes, designated as severe subtypes) was different from community composition in lungs of patients without visible changes in CT as well as from healthy subjects (designated as mild COPD subtype and control group) (PC1, Padj = 0.002). Higher abundance of Prevotella in samples from patients with mild COPD subtype and from controls and of Streptococcus in the severe subtype cases mainly contributed to the separation of bacterial communities of subjects. No significant effects of treatment with inhaled glucocorticoids on bacterial community composition were detected within COPD cases with and without abnormalities in CT in PCoA. Co-occurrence analysis suggests the presence of networks of co-occurring bacteria. Four communities of positively correlated bacteria were revealed. The microbial communities can clearly be distinguished by their associations with the CT defined disease phenotype. Our findings indicate that CT detectable structural changes in the lung of COPD patients, which we termed severe subtypes, are associated with alterations in bacterial communities, which may induce further changes in the interaction between microbes and host cells. This might result in a changed interplay with the host immune system.

  3. Microbial community structures in algae cultivation ponds for bioconversion of agricultural wastes from livestock industry for feed production

    USDA-ARS?s Scientific Manuscript database

    Dynamics of seasonal microbial community compositions in algae cultivation ponds are complex. There is very limited knowledge on community compositions that may play significant roles in the bioconversion of manure nu¬trients to animal feed. Algae production is an alternative where land area for pro...

  4. Riparian-associated gastropods in western Washington: community composition and the effects of forest management

    Treesearch

    Alex D. Foster; Joan Ziegltrum

    2013-01-01

    We evaluated the abundance of riparian gastropod communities along headwater streams and their response to logging in southwestern Washington State. Terrestrial mollusks near logged streams with ~15 m fixed-width buffers were compared to logged streams with no buffers and to unlogged controls. Mollusk communities varied among sites relative to vegetative composition,...

  5. Avian community composition and habitat importance in the Rio Grande corridor of New Mexico

    Treesearch

    David A. Leal; Raymond A. Meyer; Bruce C. Thompson

    1996-01-01

    We investigated avian species richness and abundance within vegetation communities of the Rio Grande Corridor of New Mexico during spring, summer, and fall 1992 and 1993. A subset of 64 transects, for which all bird and vegetation variables were available, representing 16 composite vegetation community types were subjected to canonical correlation analysis to...

  6. Two centuries of fire in a southwestern Virginia Pinus pungens community

    Treesearch

    E. K. Sutherland; H. Grissino-Mayer; C. A. Woodhouse; W. W. Covington; S. Horn; L. Huckaby; R. Kerr; J. Kush; M. Moore; T. Plumb

    1995-01-01

    Fire exclusion in fire-dependent forest communities can alter stand structure and composition. The objective was to construct a fire history of two Pinus pungens Lamb. communities growing in southwestern Virgina. Treering analysis of fire-scarred P. pungens specimens and a tree survey were used to determine species composition and age distributions. From 1798-1944,...

  7. Response of herbaceous plant community diversity and composition to overstorey harvest within riparian management zones in Northern Hardwoods

    Treesearch

    Eric K. Zenner; Michelle A. Martin; Brian J. Palik; Jerilynn E. Peck; Charles R. Blinn

    2013-01-01

    Partial timber harvest within riparian management zones (RMZs) may permit active management of riparian forests while protecting stream ecosystems, but impacts on herbaceous communities are poorly understood. We compared herbaceous plant community abundance, diversity and composition in RMZs along small streams in northern Minnesota, USA, among four treatments before...

  8. Expression of the aryl hydrocarbon receptor contributes to the establishment of intestinal microbial community structure in mice

    PubMed Central

    Murray, Iain A.; Nichols, Robert G.; Zhang, Limin; Patterson, Andrew D.; Perdew, Gary H.

    2016-01-01

    Environmental and genetic factors represent key components in the establishment/maintenance of the intestinal microbiota. The aryl hydrocarbon receptor (AHR) is emerging as a pleiotropic factor, modulating pathways beyond its established role as a xenobiotic sensor. The AHR is known to regulate immune surveillance within the intestine through retention of intraepithelial lymphocytes, functional redistribution of Th17/Treg balance. Consequently, environmental/genetic manipulation of AHR activity likely influences host-microbe homeostasis. Utilizing C57BL6/J Ahr−/+ and Ahr−/− co-housed littermates followed by 18 days of genotypic segregation, we examined the influence of AHR expression upon intestinal microbe composition/functionality and host physiology. 16S sequencing/quantitative PCR (qPCR) revealed significant changes in phyla abundance, particularly Verrucomicrobia together with segmented filamentous bacteria, and an increase in species diversity in Ahr−/− mice following genotypic segregation. Metagenomics/metabolomics indicate microbial composition is associated with functional shifts in bacterial metabolism. Analysis identified Ahr−/−-dependent increases in ileal gene expression, indicating increased inflammatory tone. Transfer of Ahr−/− microbiota to wild-type germ-free mice recapitulated the increase Verrucomicrobia and inflammatory tone, indicating Ahr−/−-microbial dependence. These data suggest a role for the AHR in influencing the community structure of the intestinal microbiota. PMID:27659481

  9. Limnology of the Green Lakes Valley: Phytoplankton ecology and dissolved organic matter biogeochemistry at a long-term ecological research site

    USGS Publications Warehouse

    Miller, Matthew P.; McKnight, Diane M.

    2015-01-01

    Background: Surface waters are the lowest points in the landscape, and therefore serve as excellent integrators and indicators of changes taking place in the surrounding terrestrial and atmospheric environment.Aims: Here we synthesise the findings of limnological studies conducted during the past 15 years in streams and lakes in the Green Lakes Valley, which is part of the Niwot Ridge Long-term Ecological Research (LTER) Site.Methods: The importance of these studies is discussed in the context of aquatic ecosystems as indicators, integrators, and regulators of environmental change. Specifically, investigations into climatic, hydrologic, and nutrient controls on present-day phytoplankton, and historical diatom, community composition in the alpine lake, Green Lake 4, are reviewed. In addition, studies of spatial and temporal patterns in dissolved organic matter (DOM) biogeochemistry and reactive transport modelling that have taken place in the Green Lakes Valley are highlighted.Results and conclusions: The findings of these studies identify specific shifts in algal community composition and DOM biogeochemistry that are indicative of changing environmental conditions and provide a framework for detecting future environmental change in the Green Lakes Valley and in other alpine watersheds. Moreover, the studies summarised here demonstrate the importance of long-term monitoring programmes such as the LTER programme.

  10. Nutrients removal and bacterial community structure for low C/N municipal wastewater using a modified anaerobic/anoxic/oxic (mA2/O) process in North China.

    PubMed

    Zhang, Shihua; Huang, Zhijia; Lu, Shujian; Zheng, Jun; Zhang, Xinxi

    2017-11-01

    A modified anaerobic/anoxic/oxic (mA2/O) process based on utilizing the internal carbon source and adding polypropylene carriers was operated for 90d to investigate the nutrients removal performance and bacterial community. This system exhibited a stable and efficient performance, particularly, in removing the NH 4 + -N and total phosphorus. The results of high-throughput sequencing showed that the 13 dominant genera containing Pseudomonas, Comamonas, Arcobacter, Nitrobacteria, Nitrosospira, Nitrosomonas, Bacteroides, Flavobacterium, Rhizobium, Acinetobacter, Zoogloea, Rhodocyclus and Moraxella were shared by five zones, inferring that they were the essential players in treating low C/N (below 5.0) municipal wastewater around 10°C. The average abundance of Nitrosospira (4.21%) was higher than that of Nitrosomonas (2.93%), suggested that Nitrosospira performed well under low temperature for nitrification. Additionally, both known Rhodocyclus-related PAOs and GAOs Competibacter were not detected possibly due to low temperature. Redundancy analysis (RDA) indicated that DO played more important roles in regulating bacterial community composition than HRT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. [Research progress in chemical communication among insect-resistant genetically modified plants, insect pests and natural enemies].

    PubMed

    Liu, Qing-Song; Li, Yun-He; Chen, Xiu-Ping; Peng, Yu-Fa

    2014-08-01

    Semiochemicals released by plants or insects play an important role in the communication among plants, phytophagous insects and their natural enemies. They thus form a chemical information network which regulates intra- and inter-specific behaviors and sustains the composition and structure of plant and insect communities. The application of insect-resistant genetically modified (IRGM) crops may affect the chemical communication within and among the tritrophic levels, and thus cause disturbances to the biotic community structure and the stability of the farmland ecosystem. This has raised concerns about the environmental safety of IRGM crops and triggered research worldwide. In the current article we provided a brief summary of the chemical communication among plants, herbivores and natural enemies; analyzed the potential of IRGM crops to affect the chemical communication between plants and arthropods and the related mechanisms; and discussed the current research progress and the future prospects in this field. We hope that this will promote the research in this field by Chinese scientists and increase our understanding of the potential effects of growing of IRGM crops on the arthropod community structure.

  12. A Multi-Omics Approach to Evaluate the Quality of Milk Whey Used in Ricotta Cheese Production

    PubMed Central

    Sattin, Eleonora; Andreani, Nadia A.; Carraro, Lisa; Lucchini, Rosaria; Fasolato, Luca; Telatin, Andrea; Balzan, Stefania; Novelli, Enrico; Simionati, Barbara; Cardazzo, Barbara

    2016-01-01

    In the past, milk whey was only a by-product of cheese production, but currently, it has a high commercial value for use in the food industries. However, the regulation of whey management (i.e., storage and hygienic properties) has not been updated, and as a consequence, its microbiological quality is very challenging for food safety. The Next Generation Sequencing (NGS) technique was applied to several whey samples used for Ricotta production to evaluate the microbial community composition in depth using both RNA and DNA as templates for NGS library construction. Whey samples demonstrating a high microbial and aerobic spore load contained mostly Firmicutes; although variable, some samples contained a relevant amount of Gammaproteobacteria. Several lots of whey acquired as raw material for Ricotta production presented defective organoleptic properties. To define the volatile compounds in normal and defective whey samples, a headspace gas chromatography/mass spectrometry (GC/MS) analysis was conducted. The statistical analysis demonstrated that different microbial communities resulted from DNA or cDNA library sequencing, and distinguishable microbiota composed the communities contained in the organoleptic-defective whey samples. PMID:27582735

  13. Ectomycorrhizal-dominated boreal and tropical forests have distinct fungal communities, but analogous spatial patterns across soil horizons.

    PubMed

    McGuire, Krista L; Allison, Steven D; Fierer, Noah; Treseder, Kathleen K

    2013-01-01

    Fungi regulate key nutrient cycling processes in many forest ecosystems, but their diversity and distribution within and across ecosystems are poorly understood. Here, we examine the spatial distribution of fungi across a boreal and tropical ecosystem, focusing on ectomycorrhizal fungi. We analyzed fungal community composition across litter (organic horizons) and underlying soil horizons (0-20 cm) using 454 pyrosequencing and clone library sequencing. In both forests, we found significant clustering of fungal communities by site and soil horizons with analogous patterns detected by both sequencing technologies. Free-living saprotrophic fungi dominated the recently-shed leaf litter and ectomycorrhizal fungi dominated the underlying soil horizons. This vertical pattern of fungal segregation has also been found in temperate and European boreal forests, suggesting that these results apply broadly to ectomycorrhizal-dominated systems, including tropical rain forests. Since ectomycorrhizal and free-living saprotrophic fungi have different influences on soil carbon and nitrogen dynamics, information on the spatial distribution of these functional groups will improve our understanding of forest nutrient cycling.

  14. Changes of soil prokaryotic communities after clear-cutting in a karst forest: evidences for cutting-based disturbance promoting deterministic processes.

    PubMed

    Zhang, Xiao; Liu, Shirong; Li, Xiangzhen; Wang, Jingxin; Ding, Qiong; Wang, Hui; Tian, Chao; Yao, Minjie; An, Jiaxing; Huang, Yongtao

    2016-03-01

    To understand the temporal responses of soil prokaryotic communities to clear-cutting disturbance, we examined the changes in soil bacterial and archaeal community composition, structure and diversity along a chronosequence of forest successional restoration using high-throughput 16S rRNA gene sequencing. Our results demonstrated that clear-cutting significantly altered soil bacterial community structure, while no significant shifts of soil archaeal communities were observed. The hypothesis that soil bacterial communities would become similar to those of surrounding intact primary forest with natural regeneration was supported by the shifts in the bacterial community composition and structure. Bacterial community diversity patterns induced by clear-cutting were consistent with the intermediate disturbance hypothesis. Dynamics of bacterial communities was mostly driven by soil properties, which collectively explained more than 70% of the variation in bacterial community composition. Community assembly data revealed that clear-cutting promoted the importance of the deterministic processes in shaping bacterial communities, coinciding with the resultant low resource environments. But assembly processes in the secondary forest returned a similar level compared to the intact primary forest. These findings suggest that bacterial community dynamics may be predictable during the natural recovery process. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. A survey of biofilms on wastewater aeration diffusers suggests bacterial community composition and function vary by substrate type and time.

    PubMed

    Noble, Peter A; Park, Hee-Deung; Olson, Betty H; Asvapathanagul, Pitiporn; Hunter, M Colby; Garrido-Baserba, Manel; Lee, Sang-Hoon; Rosso, Diego

    2016-07-01

    Aeration diffusers in wastewater treatment plants generate air bubbles that promote mixing, distribution of dissolved oxygen, and microbial processing of dissolved and suspended matter in bulk solution. Biofouling of diffusers represents a significant problem to wastewater treatment plants because biofilms decrease oxygen transfer efficiency and increase backpressure on the blower. To better understand biofouling, we conducted a pilot study to survey the bacterial community composition and function of biofilms on different diffuser substrates and compare them to those in the bulk solution. DNA was extracted from the surface of ethylene-propylene-diene monomer (EPDM), polyurethane, and silicone diffusers operated for 15 months in a municipal treatment plant and sampled at 3 and 9 months. The bacterial community composition and function of the biofilms and bulk solution were determined by amplifying the 16S rRNA genes and pyrosequencing the amplicons and raw metagenomic DNA. The ordination plots and dendrograms of the 16S rRNA and functional genes showed that while the bacterial community composition and function of the bulk solution was independent of sampling time, the composition and function of the biofilms differed by diffuser type and testing time. For the EPDM and silicone diffusers, the biofilm communities were more similar in composition to the bulk solution at 3 months than 9 months. In contrast, the bacteria on the polyurethane diffusers were more dissimilar to the bulk solution at 3 months than 9 months. Taken together, the survey showed that the community composition and function of bacterial biofilms depend on the diffuser substrate and testing time, which warrants further elucidation.

  16. Chemical similarity and local community assembly in the species rich tropical genus Piper.

    PubMed

    Salazar, Diego; Jaramillo, M Alejandra; Marquis, Robert J

    2016-11-01

    Community ecologists have strived to find mechanisms that mediate the assembly of natural communities. Recent evidence suggests that natural enemies could play an important role in the assembly of hyper-diverse tropical plant systems. Classic ecological theory predicts that in order for coexistence to occur, species differences must be maximized across biologically important niche dimensions. For plant-herbivore interactions, it has been recently suggested that, within a particular community, plant species that maximize the difference in chemical defense profiles compared to neighboring taxa will have a relative competitive advantage. Here we tested the hypothesis that plant chemical diversity can affect local community composition in the hyper-diverse genus Piper at a lowland wet forest location in Costa Rica. We first characterized the chemical composition of 27 of the most locally abundant species of Piper. We then tested whether species with different chemical compositions were more likely to coexist. Finally, we assessed the degree to which Piper phylogenetic relationships are related to differences in secondary chemical composition and community assembly. We found that, on average, co-occurring species were more likely to differ in chemical composition than expected by chance. Contrary to expectations, there was no phylogenetic signal for overall secondary chemical composition. In addition we found that species in local communities were, on average, more phylogenetically closely related than expected by chance, suggesting that functional traits other than those measured here also influence local assembly. We propose that selection by herbivores for divergent chemistries between closely related species facilitates the coexistence of a high diversity of congeneric taxa via apparent competition. © 2016 by the Ecological Society of America.

  17. Bacterial Community Composition and Extracellular Enzyme Activity in Temperate Streambed Sediment during Drying and Rewetting

    PubMed Central

    Pohlon, Elisabeth; Ochoa Fandino, Adriana; Marxsen, Jürgen

    2013-01-01

    Droughts are among the most important disturbance events for stream ecosystems; they not only affect stream hydrology but also the stream biota. Although desiccation of streams is common in Mediterranean regions, phases of dryness in headwaters have been observed more often and for longer periods in extended temperate regions, including Central Europe, reflecting global climate change and enhanced water withdrawal. The effects of desiccation and rewetting on the bacterial community composition and extracellular enzyme activity, a key process in the carbon flow of streams and rivers, were investigated in a typical Central European stream, the Breitenbach (Hesse, Germany). Wet streambed sediment is an important habitat in streams. It was sampled and exposed in the laboratory to different drying scenarios (fast, intermediate, slow) for 13 weeks, followed by rewetting of the sediment from the fast drying scenario via a sediment core perfusion technique for 2 weeks. Bacterial community structure was analyzed using CARD-FISH and TGGE, and extracellular enzyme activity was assessed using fluorogenic model substrates. During desiccation the bacterial community composition shifted toward composition in soil, exhibiting increasing proportions of Actinobacteria and Alphaproteobacteria and decreasing proportions of Bacteroidetes and Betaproteobacteria. Simultaneously the activities of extracellular enzymes decreased, most pronounced with aminopeptidases and less pronounced with enzymes involved in the degradation of polymeric carbohydrates. After rewetting, the general ecosystem functioning, with respect to extracellular enzyme activity, recovered after 10 to 14 days. However, the bacterial community composition had not yet achieved its original composition as in unaffected sediments within this time. Thus, whether the bacterial community eventually recovers completely after these events remains unknown. Perhaps this community undergoes permanent changes, especially after harsh desiccation, followed by loss of the specialized functions of specific groups of bacteria. PMID:24386188

  18. Decoupling the direct and indirect effects of climate on plant litter decomposition: Accounting for stress-induced modifications in plant chemistry.

    PubMed

    Suseela, Vidya; Tharayil, Nishanth

    2018-04-01

    Decomposition of plant litter is a fundamental ecosystem process that can act as a feedback to climate change by simultaneously influencing both the productivity of ecosystems and the flux of carbon dioxide from the soil. The influence of climate on decomposition from a postsenescence perspective is relatively well known; in particular, climate is known to regulate the rate of litter decomposition via its direct influence on the reaction kinetics and microbial physiology on processes downstream of tissue senescence. Climate can alter plant metabolism during the formative stage of tissues and could shape the final chemical composition of plant litter that is available for decomposition, and thus indirectly influence decomposition; however, these indirect effects are relatively poorly understood. Climatic stress disrupts cellular homeostasis in plants and results in the reprogramming of primary and secondary metabolic pathways, which leads to changes in the quantity, composition, and organization of small molecules and recalcitrant heteropolymers, including lignins, tannins, suberins, and cuticle within the plant tissue matrix. Furthermore, by regulating metabolism during tissue senescence, climate influences the resorption of nutrients from senescing tissues. Thus, the final chemical composition of plant litter that forms the substrate of decomposition is a combined product of presenescence physiological processes through the production and resorption of metabolites. The changes in quantity, composition, and localization of the molecular construct of the litter could enhance or hinder tissue decomposition and soil nutrient cycling by altering the recalcitrance of the lignocellulose matrix, the composition of microbial communities, and the activity of microbial exo-enzymes via various complexation reactions. Also, the climate-induced changes in the molecular composition of litter could differentially influence litter decomposition and soil nutrient cycling. Compared with temperate ecosystems, the indirect effects of climate on litter decomposition in the tropics are not well understood, which underscores the need to conduct additional studies in tropical biomes. We also emphasize the need to focus on how climatic stress affects the root chemistry as roots contribute significantly to biogeochemical cycling, and on utilizing more robust analytical approaches to capture the molecular composition of tissue matrix that fuel microbial metabolism. © 2017 John Wiley & Sons Ltd.

  19. Fine Spatial Scale Variation of Soil Microbial Communities under European Beech and Norway Spruce

    PubMed Central

    Nacke, Heiko; Goldmann, Kezia; Schöning, Ingo; Pfeiffer, Birgit; Kaiser, Kristin; Castillo-Villamizar, Genis A.; Schrumpf, Marion; Buscot, François; Daniel, Rolf; Wubet, Tesfaye

    2016-01-01

    The complex interactions between trees and soil microbes in forests as well as their inherent seasonal and spatial variations are poorly understood. In this study, we analyzed the effects of major European tree species (Fagus sylvatica L. and Picea abies (L.) Karst) on soil bacterial and fungal communities. Mineral soil samples were collected from different depths (0–10, 10–20 cm) and at different horizontal distances from beech or spruce trunks (0.5, 1.5, 2.5, 3.5 m) in early summer and autumn. We assessed the composition of soil bacterial and fungal communities based on 16S rRNA gene and ITS DNA sequences. Community composition of bacteria and fungi was most strongly affected by soil pH and tree species. Different ectomycorrhizal fungi (e.g., Tylospora) known to establish mutualistic associations with plant roots showed a tree species preference. Moreover, bacterial and fungal community composition showed spatial and seasonal shifts in soil surrounding beech and spruce. The relative abundance of saprotrophic fungi was higher at a depth of 0–10 vs. 10–20 cm depth. This was presumably a result of changes in nutrient availability, as litter input and organic carbon content decreased with soil depth. Overall bacterial community composition showed strong variations under spruce with increasing distance from the tree trunks, which might be attributed in part to higher fine root biomass near spruce trunks. Furthermore, overall bacterial community composition was strongly affected by season under deciduous trees. PMID:28066384

  20. Fine Spatial Scale Variation of Soil Microbial Communities under European Beech and Norway Spruce.

    PubMed

    Nacke, Heiko; Goldmann, Kezia; Schöning, Ingo; Pfeiffer, Birgit; Kaiser, Kristin; Castillo-Villamizar, Genis A; Schrumpf, Marion; Buscot, François; Daniel, Rolf; Wubet, Tesfaye

    2016-01-01

    The complex interactions between trees and soil microbes in forests as well as their inherent seasonal and spatial variations are poorly understood. In this study, we analyzed the effects of major European tree species ( Fagus sylvatica L. and Picea abies (L.) Karst) on soil bacterial and fungal communities. Mineral soil samples were collected from different depths (0-10, 10-20 cm) and at different horizontal distances from beech or spruce trunks (0.5, 1.5, 2.5, 3.5 m) in early summer and autumn. We assessed the composition of soil bacterial and fungal communities based on 16S rRNA gene and ITS DNA sequences. Community composition of bacteria and fungi was most strongly affected by soil pH and tree species. Different ectomycorrhizal fungi (e.g., Tylospora ) known to establish mutualistic associations with plant roots showed a tree species preference. Moreover, bacterial and fungal community composition showed spatial and seasonal shifts in soil surrounding beech and spruce. The relative abundance of saprotrophic fungi was higher at a depth of 0-10 vs. 10-20 cm depth. This was presumably a result of changes in nutrient availability, as litter input and organic carbon content decreased with soil depth. Overall bacterial community composition showed strong variations under spruce with increasing distance from the tree trunks, which might be attributed in part to higher fine root biomass near spruce trunks. Furthermore, overall bacterial community composition was strongly affected by season under deciduous trees.

  1. Extractable nitrogen and microbial community structure respond to grassland restoration regardless of historical context and soil composition

    PubMed Central

    Dickens, Sara Jo M.; Allen, Edith B.; Santiago, Louis S.; Crowley, David

    2015-01-01

    Grasslands have a long history of invasion by exotic annuals, which may alter microbial communities and nutrient cycling through changes in litter quality and biomass turnover rates. We compared plant community composition, soil chemical and microbial community composition, potential soil respiration and nitrogen (N) turnover rates between invaded and restored plots in inland and coastal grasslands. Restoration increased microbial biomass and fungal : bacterial (F : B) ratios, but sampling season had a greater influence on the F : B ratio than did restoration. Microbial community composition assessed by phospholipid fatty acid was altered by restoration, but also varied by season and by site. Total soil carbon (C) and N and potential soil respiration did not differ between treatments, but N mineralization decreased while extractable nitrate and nitrification and N immobilization rate increased in restored compared with unrestored sites. The differences in soil chemistry and microbial community composition between unrestored and restored sites indicate that these soils are responsive, and therefore not resistant to feedbacks caused by changes in vegetation type. The resilience, or recovery, of these soils is difficult to assess in the absence of uninvaded control grasslands. However, the rapid changes in microbial and N cycling characteristics following removal of invasives in both grassland sites suggest that the soils are resilient to invasion. The lack of change in total C and N pools may provide a buffer that promotes resilience of labile pools and microbial community structure. PMID:25555522

  2. Receding Water Line and Interspecific Competition Determines Plant Community Composition and Diversity in Wetlands in Beijing

    PubMed Central

    Wang, Zhengjun; Gong, Huili; Zhang, Jing

    2015-01-01

    Climate and human-induced wetland degradation has accelerated in recent years, not only resulting in reduced ecosystem services but also greatly affecting the composition and diversity of wetland plant communities. To date, the knowledge of the differences in community parameters and their successional trends in degraded wetlands remains scarce. Here based on remote sensing images, geographic information system technology, and statistical methods, we produced a successional gradient map of the Yeyahu Wetland Nature Reserve in Beijing, which has experienced a steady decline in water level in recent decades. In addition, we analyzed community composition and diversity along with each identified gradient. The results showed that community diversity decreases while dominance increases with the progress of succession, with the highest diversity occurring during the early stage of succession. Moreover, the community demonstrates greater similarity among subareas during later successional stages, and the similarity coefficients calculated from the important value (IV) of each species are more accurate. Correlation analysis showed that the impact of soil factors on diversity was not significant at a subarea scale, although these nutrients showed an increasing trend with the community succession. Furthermore, the IVs of the dominant species had a particularly significant impact on diversity, showing a significantly negative correlation with diversity indices and a significantly positive correlation with dominance indices. Further analysis showed that the retreat of water level resulted from sustained drought and local human activities was a major extrinsic driving force resulting in observed differences in the community successional stages, which resulted in differences in community composition and diversity. On the other hand, interspecific competition was the main intrinsic mechanism, which significantly influenced the IVs of the dominant species and community diversity. The results of this study could aid in improving the understanding of community composition, diversity, and its successional trends in degraded wetlands. PMID:25848799

  3. Do temperate tree species diversity and identity influence soil microbial community function and composition?

    PubMed

    Khlifa, Rim; Paquette, Alain; Messier, Christian; Reich, Peter B; Munson, Alison D

    2017-10-01

    Studies of biodiversity-ecosystem function in treed ecosystems have generally focused on aboveground functions. This study investigates intertrophic links between tree diversity and soil microbial community function and composition. We examined how microbial communities in surface mineral soil responded to experimental gradients of tree species richness (SR), functional diversity (FD), community-weighted mean trait value (CWM), and tree identity. The site was a 4-year-old common garden experiment near Montreal, Canada, consisting of deciduous and evergreen tree species mixtures. Microbial community composition, community-level physiological profiles, and respiration were evaluated using phospholipid fatty acid (PLFA) analysis and the MicroResp ™ system, respectively. The relationship between tree species richness and glucose-induced respiration (GIR), basal respiration (BR), metabolic quotient (qCO 2 ) followed a positive but saturating shape. Microbial communities associated with species mixtures were more active (basal respiration [BR]), with higher biomass (glucose-induced respiration [GIR]), and used a greater number of carbon sources than monocultures. Communities associated with deciduous tree species used a greater number of carbon sources than those associated with evergreen species, suggesting a greater soil carbon storage capacity. There were no differences in microbial composition (PLFA) between monocultures and SR mixtures. The FD and the CWM of several functional traits affected both BR and GIR. In general, the CWM of traits had stronger effects than did FD, suggesting that certain traits of dominant species have more effect on ecosystem processes than does FD. Both the functions of GIR and BR were positively related to aboveground tree community productivity. Both tree diversity (SR) and identity (species and functional identity-leaf habit) affected soil microbial community respiration, biomass, and composition. For the first time, we identified functional traits related to life-history strategy, as well as root traits that influence another trophic level, soil microbial community function, via effects on BR and GIR.

  4. Investigating the link between fish community structure and environmental state in deep-time

    NASA Astrophysics Data System (ADS)

    Sibert, E. C.

    2017-12-01

    In the modern ocean, a bottom-up ecological viewpoint posits that the composition of plankton communities is often a function of ambient oceanographic conditions, including nutrient concentrations and water temperature. Thus, certain plankton species or communities can be associated with specific oceanographic conditions, giving them potential as carriers of paleoceanographic information. Furthermore, consumer groups, such as fish, depend on the structure and composition of these plankton, and therefore different plankton communities will support different types of fish. In addition, fish have their own physiological constraints for surviving in particular environments, such as oxygen demand, and metabolic rate, causing certain clades to be selectively associated with different water mass characteristics. Thus, the relative or absolute abundances of different fish species or groups could shed light on shifting oxygen concentrations, temperature, or primary productivity in the past. To assess whether fish communities have sufficient environmental control to provide paleoceanographic insights, I use a variety of morphological, phylogenetic, and ecological statistical approaches, to correlate modern fish communities from around the world with environmental variables. I then apply these principles to a series of ichthyolith assemblages from the Cretaceous and Cenozoic, across both space and time, to assess whether fish community composition, abundance, or other characteristics can be predictive of ocean temperature or export productivity. I find that while the abundance of fish fossils in deep-sea cores is often, though not always, correlated with certain export production and temperature proxies, community composition appears to vary independently of these variables on long timescales, driven more by evolutionary processes. However, there are distinct differences in contemporary communities in different locations, suggesting that there is potential in using fish community composition in well-constrained systems. Furthermore, when fish community structure or abundance diverges from the expected state, this may provide significant insight into the structure and functioning of marine ecosystems.

  5. Salt Marsh Bacterial Communities before and after the Deepwater Horizon Oil Spill

    PubMed Central

    Liu, Chang; Paterson, Audrey T.; Anderson, Laurie C.; Turner, R. Eugene; Overton, Edward B.

    2017-01-01

    ABSTRACT Coastal salt marshes along the northern Gulf of Mexico shoreline received varied types and amounts of weathered oil residues after the 2010 Deepwater Horizon oil spill. At the time, predicting how marsh bacterial communities would respond and/or recover to oiling and other environmental stressors was difficult because baseline information on community composition and dynamics was generally unavailable. Here, we evaluated marsh vegetation, physicochemistry, flooding frequency, hydrocarbon chemistry, and subtidal sediment bacterial communities from 16S rRNA gene surveys at 11 sites in southern Louisiana before the oil spill and resampled the same marshes three to four times over 38 months after the spill. Calculated hydrocarbon biomarker indices indicated that oil replaced native natural organic matter (NOM) originating from Spartina alterniflora and marine phytoplankton in the marshes between May 2010 and September 2010. At all the studied marshes, the major class- and order-level shifts among the phyla Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria occurred within these first 4 months, but another community shift occurred at the time of peak oiling in 2011. Two years later, hydrocarbon levels decreased and bacterial communities became more diverse, being dominated by Alphaproteobacteria (Rhizobiales), Chloroflexi (Dehalococcoidia), and Planctomycetes. Compositional changes through time could be explained by NOM source differences, perhaps due to vegetation changes, as well as marsh flooding and salinity excursions linked to freshwater diversions. These findings indicate that persistent hydrocarbon exposure alone did not explain long-term community shifts. IMPORTANCE Significant deterioration of coastal salt marshes in Louisiana has been linked to natural and anthropogenic stressors that can adversely affect how ecosystems function. Although microorganisms carry out and regulate most biogeochemical reactions, the diversity of bacterial communities in coastal marshes is poorly known, with limited investigation of potential changes in bacterial communities in response to various environmental stressors. The Deepwater Horizon oil spill provided an unprecedented opportunity to study the long-term effects of an oil spill on microbial systems in marshes. Compared to previous studies, the significance of our research stems from (i) a broader geographic range of studied marshes, (ii) an extended time frame of data collection that includes prespill conditions, (iii) a more accurate procedure using biomarker indices to understand oiling, and (iv) an examination of other potential stressors linked to in situ environmental changes, aside from oil exposure. PMID:28778895

  6. An examination of the nutrient content and on-package marketing of novel beverages.

    PubMed

    Dachner, Naomi; Mendelson, Rena; Sacco, Jocelyn; Tarasuk, Valerie

    2015-02-01

    Changing regulatory approaches to fortification in Canada have enabled the expansion of the novel beverage market, but the nutritional implications of these new products are poorly understood. This study assessed the micronutrient composition of energy drinks, vitamin waters, and novel juices sold in Canadian supermarkets, and critically examined their on-package marketing at 2 time points: 2010-2011, when they were regulated as Natural Health Products, and 2014, when they fell under food regulations. We examined changes in micronutrient composition and on-package marketing among a sample of novel beverages (n = 46) over time, compared micronutrient content with Dietary Reference Intakes and the results of the 2004 Canadian Community Health Survey to assess potential benefits, and conducted a content analysis of product labels. The median number of nutrients per product was 4.5, with vitamins B6, B12, C, and niacin most commonly added. Almost every beverage provided at least 1 nutrient in excess of requirements, and most contained 3 or more nutrients at such levels. With the exception of vitamin C, there was no discernible prevalence of inadequacy among young Canadian adults for the nutrients. Product labels promoted performance and emotional benefits related to nutrient formulations that go beyond conventional nutritional science. Label graphics continued to communicate these attributes even after reformatting to comply with food regulations. In contrast with the on-package marketing of novel beverages, there is little evidence that consumers stand to benefit from the micronutrients most commonly found in these products.

  7. Associations between retail food store exterior advertisements and community demographic and socioeconomic composition.

    PubMed

    Isgor, Zeynep; Powell, Lisa; Rimkus, Leah; Chaloupka, Frank

    2016-05-01

    This paper examines the association between the prevalence of various types of outdoor food and beverage advertising found on the building exteriors and properties of retail food outlets and community racial/ethnic and socioeconomic composition in a nationwide sample of food outlets in the U.S. Our major finding from multivariable analysis is that food stores in low-income communities have higher prevalence of all food and beverage ads, including those for unhealthy products such as regular soda, controlling for community racial/ethnic composition and other covariates. This adds to growing research pointing to socioeconomic disparities in food and beverage marketing exposure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Comparative analysis of the intestinal bacterial communities in different species of carp by pyrosequencing.

    PubMed

    Li, Tongtong; Long, Meng; Gatesoupe, François-Joël; Zhang, Qianqian; Li, Aihua; Gong, Xiaoning

    2015-01-01

    Gut microbiota is increasingly regarded as an integral component of the host, due to important roles in the modulation of the immune system, the proliferation of the intestinal epithelium and the regulation of the dietary energy intake. Understanding the factors that influence the composition of these microbial communities is essential to health management, and the application to aquatic animals still requires basic investigation. In this study, we compared the bacterial communities harboured in the intestines and in the rearing water of grass carp (Ctenopharyngodon idellus), crucian carp (Carassius cuvieri), and bighead carp (Hypophthalmichthys nobilis), by using 454-pyrosequencing with barcoded primers targeting the V4 to V5 regions of the bacterial 16S rRNA gene. The specimens of the three species were cohabiting in the same pond. Between 6,218 and 10,220 effective sequences were read from each sample, resulting in a total of 110,398 sequences for 13 samples from gut microbiota and pond water. In general, the microbial communities of the three carps were dominated by Fusobacteria, Firmicutes, Proteobacteria and Bacteroidetes, but the abundance of each phylum was significantly different between species. At the genus level, the overwhelming group was Cetobacterium (97.29 ± 0.46 %) in crucian carp, while its abundance averaged c. 40 and 60 % of the sequences read in the other two species. There was higher microbial diversity in the gut of filter-feeding bighead carp than the gut of the two other species, with grazing feeding habits. The composition of intestine microbiota of grass carp and crucian carp shared higher similarity when compared with bighead carp. The principal coordinates analysis (PCoA) with the weighted UniFrac distance and the heatmap analysis suggested that gut microbiota was not a simple reflection of the microbial community in the local habitat but resulted from species-specific selective pressures, possibly dependent on behavioural, immune and metabolic characteristics.

  9. Metabarcoding of the kombucha microbial community grown in different microenvironments.

    PubMed

    Reva, Oleg N; Zaets, Iryna E; Ovcharenko, Leonid P; Kukharenko, Olga E; Shpylova, Switlana P; Podolich, Olga V; de Vera, Jean-Pierre; Kozyrovska, Natalia O

    2015-12-01

    Introducing of the DNA metabarcoding analysis of probiotic microbial communities allowed getting insight into their functioning and establishing a better control on safety and efficacy of the probiotic communities. In this work the kombucha poly-microbial probiotic community was analysed to study its flexibility under different growth conditions. Environmental DNA sequencing revealed a complex and flexible composition of the kombucha microbial culture (KMC) constituting more bacterial and fungal organisms in addition to those found by cultural method. The community comprised bacterial and yeast components including cultured and uncultivable microorganisms. Culturing the KMC under different conditions revealed the core part of the community which included acetobacteria of two genera Komagataeibacter (former Gluconacetobacter) and Gluconobacter, and representatives of several yeast genera among which Brettanomyces/Dekkera and Pichia (including former Issatchenkia) were dominant. Herbaspirillum spp. and Halomonas spp., which previously had not been described in KMC, were found to be minor but permanent members of the community. The community composition was dependent on the growth conditions. The bacterial component of KMC was relatively stable, but may include additional member-lactobacilli. The yeast species composition was significantly variable. High-throughput sequencing showed complexity and variability of KMC that may affect the quality of the probiotic drink. It was hypothesized that the kombucha core community might recruit some environmental bacteria, particularly lactobacilli, which potentially may contribute to the fermentative capacity of the probiotic drink. As many KMC-associated microorganisms cannot be cultured out of the community, a robust control for community composition should be provided by using DNA metabarcoding.

  10. Impacts of environmental factors on the whole microbial communities in the rhizosphere of a metal-tolerant plant: Elsholtzia haichowensis Sun.

    PubMed

    Deng, Songqiang; Ke, Tan; Li, Longtai; Cai, Shenwen; Zhou, Yuyue; Liu, Yue; Guo, Limin; Chen, Lanzhou; Zhang, Dayi

    2018-06-01

    Rhizospheric microbes play important roles in plant growth and heavy metals (HMs) transformation, possessing great potential for the successful phytoremediation of environmental pollutants. In the present study, the rhizosphere of Elsholtzia haichowensis Sun was comprehensively studied to uncover the influence of environmental factors (EFs) on the whole microbial communities including bacteria, fungi and archaea, via quantitative polymerase chain reaction (qPCR) and high-throughput sequencing. By analyzing molecular ecological network and multivariate regression trees (MRT), we evaluated the distinct impacts of 37 EFs on soil microbial community. Of them, soil pH, HMs, soil texture and nitrogen were identified as the most influencing factors, and their roles varied across different domains. Soil pH was the main environmental variable on archaeal and bacterial community but not fungi, explaining 25.7%, 46.5% and 40.7% variation of bacterial taxonomic composition, archaeal taxonomic composition and a-diversity, respectively. HMs showed important roles in driving the whole microbial community and explained the major variation in different domains. Nitrogen (NH 4 -N, NO 3 -N, NO 2 -N and TN) explained 47.3% variation of microbial population composition and 15.9% of archaeal taxonomic composition, demonstrating its influence in structuring the rhizospheric microbiome, particularly archaeal and bacterial community. Soil texture accounted for 10.2% variation of population composition, 28.9% of fungal taxonomic composition, 19.2% of fungal a-diversity and 7.8% of archaeal a-diversity. Rhizosphere only showed strong impacts on fungi and bacteria, accounting for 14.7% and 4.9% variation of fungal taxonomic composition and bacterial a-diversity. Spatial distance had stronger influence on bacteria and archaea than fungi, but not as significant as other EFs. For the first time, our study provides a complete insight into key influential EFs on rhizospheric microbes and how their roles vary across microbial domains, giving a hand for understanding the construction of microbial communities in rhizosphere. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Analysis of bacterial communities and bacterial pathogens in a biogas plant by the combination of ethidium monoazide, PCR and Ion Torrent sequencing.

    PubMed

    Luo, Gang; Angelidaki, Irini

    2014-09-01

    The present study investigated the changes of bacterial community composition including bacterial pathogens along a biogas plant, i.e. from the influent, to the biogas reactor and to the post-digester. The effects of post-digestion temperature and time on the changes of bacterial community composition and bacterial pathogens were also studied. Microbial analysis was made by Ion Torrent sequencing of the PCR amplicons from ethidium monoazide treated samples, and ethidium monoazide was used to cleave DNA from dead cells and exclude it from PCR amplification. Both similarity and taxonomic analysis showed that the bacterial community composition in the influent was changed after anaerobic digestion. Firmicutes were dominant in all the samples, while Proteobacteria decreased in the biogas reactor compared with the influent. Variations of bacterial community composition in the biogas reactor with time were also observed. This could be attributed to varying composition of the influent. Batch experiments showed that the methane recovery from the digested residues (obtained from biogas reactor) was mainly related with post-digestion temperature. However, post-digestion time rather than temperature had a significant effect on the changes of bacterial community composition. The changes of bacterial community composition were also reflected in the changes of relative abundance of bacterial pathogens. The richness and relative abundance of bacterial pathogens were reduced after anaerobic digestion in the biogas reactor. It was found in batch experiments that bacterial pathogens showed the highest relative abundance and richness after 30 days' post-digestion. Streptococcus bovis was found in all the samples. Our results showed that special attention should be paid to the post-digestion since the increase in relative abundance of bacterial pathogens after post-digestion might reflect regrowth of bacterial pathogens and limit biosolids disposal vectors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Interactive effects between plant functional types and soil factors on tundra species diversity and community composition.

    PubMed

    Iturrate-Garcia, Maitane; O'Brien, Michael J; Khitun, Olga; Abiven, Samuel; Niklaus, Pascal A; Schaepman-Strub, Gabriela

    2016-11-01

    Plant communities are coupled with abiotic factors, as species diversity and community composition both respond to and influence climate and soil characteristics. Interactions between vegetation and abiotic factors depend on plant functional types (PFT) as different growth forms will have differential responses to and effects on site characteristics. However, despite the importance of different PFT for community assembly and ecosystem functioning, research has mainly focused on vascular plants. Here, we established a set of observational plots in two contrasting habitats in northeastern Siberia in order to assess the relationship between species diversity and community composition with soil variables, as well as the relationship between vegetation cover and species diversity for two PFT (nonvascular and vascular). We found that nonvascular species diversity decreased with soil acidity and moisture and, to a lesser extent, with soil temperature and active layer thickness. In contrast, no such correlation was found for vascular species diversity. Differences in community composition were found mainly along soil acidity and moisture gradients. However, the proportion of variation in composition explained by the measured soil variables was much lower for nonvascular than for vascular species when considering the PFT separately. We also found different relationships between vegetation cover and species diversity according the PFT and habitat. In support of niche differentiation theory, species diversity and community composition were related to edaphic factors. The distinct relationships found for nonvascular and vascular species suggest the importance of considering multiple PFT when assessing species diversity and composition and their interaction with edaphic factors. Synthesis : Identifying vegetation responses to edaphic factors is a first step toward a better understanding of vegetation-soil feedbacks under climate change. Our results suggest that incorporating differential responses of PFT is important for predicting vegetation shifts, primary productivity, and in turn, ecosystem functioning in a changing climate.

  13. Dynamics of Molecular Hydrogen in Hypersaline Microbial Mars

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; Bebout, Brad M.; Visscher, Pieter T.; DesMarais, David J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Early Earth microbial communities that centered around the anaerobic decomposition of organic molecular hydrogen as a carrier of electrons, regulator of energy metabolism, and facilitator of syntroph'c microbial interactions. The advent of oxygenic photosynthetic organisms added a highly dynamic and potentially dominant term to the hydrogen economy of these communities. We have examined the daily variations of hydrogen concentrations in cyanobacteria-dominated microbial mats from hypersaline ponds in Baja California Sur, Mexico. These mats bring together phototrophic and anaerobic bacteria (along with virtually all other trophic groups) in a spatially ordered and chemically dynamic matrix that provides a good analog for early Earth microbial ecosystems. Hydrogen concentrations in the photic zone of the mat can be three orders of magnitude or more higher than in the photic zone, which are, in turn, an order of magnitude higher than in the unconsolidated sediments underlying the mat community. Within the photic zone, hydrogen concentrations can fluctuate dramatically during the diel (24 hour day-night) cycle, ranging from less than 0.001% during the day to nearly 10% at night. The resultant nighttime flux of hydrogen from the mat to the environment was up to 17% of the daytime oxygen flux. The daily pattern observed is highly dependent on cyanobacterial species composition within the mat, with Lyngbya-dominated systems having a much greater dynamic range than those dominated by Microcoleus; this may relate largely to differing degrees of nitrogen-fixing and fermentative activity in the two mats. The greatest H2 concentrations and fluxes were observed in the absence of oxygen, suggesting an important potential feedback control in the context of the evolution of atmospheric composition. The impact of adding this highly dynamic photosynthetic term to the hydrogen economy of early microbial ecosystems must have been substantial. From an evolutionary standpoint, the H2 generated in mats could have represented a very important new source of electrons and energy - but one that could not be harnessed without substantial adaptation to the highly variable chemistry of the mat surface. In addition, the emergent chemistry of anaerobic communities is often highly dependent on ambient hydrogen concentrations, so that incorporation of these communities into photosynthetic mats could have significantly affected the composition and flux of reduced "biosignature' gases to the environment.

  14. COMPARISON OF ECOLOGICAL COMMUNITIES: THE PROBLEM OF SAMPLE REPRESENTATIVENESS

    EPA Science Inventory

    Obtaining an adequate, representative sample of ecological communities to make taxon richness (TR) or compositional comparisons among sites is a continuing challenge. Sample representativeness literally means the similarity in species composition and relative abundance between a ...

  15. Biofouling community composition across a range of environmental conditions and geographical locations suitable for floating marine renewable energy generation.

    PubMed

    Macleod, Adrian K; Stanley, Michele S; Day, John G; Cook, Elizabeth J

    2016-01-01

    Knowledge of biofouling typical of marine structures is essential for engineers to define appropriate loading criteria in addition to informing other stakeholders about the ecological implications of creating novel artificial environments. There is a lack of information regarding biofouling community composition (including weight and density characteristics) on floating structures associated with future marine renewable energy generation technologies. A network of navigation buoys were identified across a range of geographical areas, environmental conditions (tidal flow speed, temperature and salinity), and deployment durations suitable for future developments. Despite the perceived importance of environmental and temporal factors, geographical location explained the greatest proportion of the observed variation in community composition, emphasising the importance of considering geography when assessing the impact of biofouling on device functioning and associated ecology. The principal taxa associated with variation in biofouling community composition were mussels (Mytilus edulis), which were also important when determining loading criteria.

  16. Looking inside and out: the impact of employee and community demographic composition on organizational diversity climate.

    PubMed

    Pugh, S Douglas; Dietz, Joerg; Brief, Arthur P; Wiley, Jack W

    2008-11-01

    An organization's diversity climate refers to employees' shared perceptions of the policies and practices that communicate the extent to which fostering diversity and eliminating discrimination is a priority in the organization. The authors propose a salient element of the organizational context, the racial composition of the community where the organization is located, serves an important signaling function that shapes the formation of climate perceptions. In a study of 142 retail bank units in the United States, evidence is found for a relationship between the racial composition of an organization's workforce and diversity climate that is moderated by the racial composition of the community where the organization is located. The results suggest that when few racial minorities live in the community in which an organization is embedded, workforce diversity has an impact on employees' diversity climate perceptions. As racial minority popular share increases, workforce diversity tends to lose this signaling value.

  17. Succession and regulation factors of small eukaryote community composition in a lacustrine ecosystem (Lake Pavin).

    PubMed

    Lepère, Cécile; Boucher, Delphine; Jardillier, Ludwig; Domaizon, Isabelle; Debroas, Didier

    2006-04-01

    The structure and dynamics of small eukaryotes (cells with a diameter less than 5 microm) were studied over two consecutive years in an oligomesotrophic lake (Lake Pavin in France). Water samples were collected at 5 and 30 m below the surface; when the lake was stratified, these depths corresponded to the epilimnion and hypolimnion. Changes in small-eukaryote structure were analyzed using terminal restriction fragment length polymorphism (T-RFLP) and cloning and sequencing of the 18S rRNA genes. Terminal restriction fragments from clones were used to reveal the dominant taxa in T-RFLP profiles of the environmental samples. Spumella-like cells (Chrysophyceae) did not dominate the small eukaryote community identified by molecular techniques in lacustrine ecosystems. Small eukaryotes appeared to be dominated by heterotrophic cells, particularly Cercozoa, which represented nearly half of the identified phylotypes, followed by the Fungi-LKM11 group (25%), choanoflagellates (10.3%) and Chrysophyceae (8.9%). Bicosoecida, Cryptophyta, and ciliates represented less than 9% of the community studied. No seasonal reproducibility in temporal evolution of the small-eukaryote community was observed from 1 year to the next. The T-RFLP patterns were related to bottom-up (resources) and top-down (grazing) variables using canonical correspondence analysis. The results showed a strong top-down regulation of small eukaryotes by zooplankton, more exactly, by cladocerans at 5 m and copepods at 30 m. Among bottom-up factors, temperature had a significant effect at both depths. The concentrations of nitrogenous nutrients and total phosphorus also had an effect on small-eukaryote dynamics at 5 m, whereas bacterial abundance and dissolved oxygen played a more important structuring role in the deeper zone.

  18. Pollution-induced community tolerance (PICT) as a tool for monitoring Lake Geneva long-term in situ ecotoxic restoration from herbicide contamination.

    PubMed

    Larras, Floriane; Rimet, Frédéric; Gregorio, Vincent; Bérard, Annette; Leboulanger, Christophe; Montuelle, Bernard; Bouchez, Agnès

    2016-03-01

    Chemical monitoring revealed a regular decrease in herbicide concentration in Lake Geneva since last decades that may be linked to an ecotoxic restoration of nontarget phytoplanktonic communities. The Pollution-induced community tolerance (PICT) approach was tested as a tool to monitor the ecotoxic restoration of Lake Geneva for herbicides from 1999 to 2011. We conducted monthly assessments in 1999 and in 2011 for the tolerance of the phytoplankton communities to two herbicides (atrazine and copper), using PICT bioassays. The taxonomical composition of the communities was determined on the same collecting dates. The herbicide concentration decrease during the 12 years significantly influenced the composition of communities. The PICT monitoring indicated that a significant tolerance decrease in the community to both herbicides accompanied the herbicide concentration decrease. PICT measurements for atrazine and copper also changed at the intra-annual level. These variations were mainly due to community composition shifts linked to seasonal phosphorus and temperature changes. PICT monitoring on a seasonal basis is required to monitor the mean tolerance of communities. PICT appeared to be a powerful tool that reflected the toxic effects on environmental communities and to monitor ecotoxic ecosystem restoration.

  19. Thalassiosira spp. community composition shifts in response to chemical and physical forcing in the northeast Pacific Ocean

    PubMed Central

    Chappell, P. Dreux; Whitney, LeAnn P.; Haddock, Traci L.; Menden-Deuer, Susanne; Roy, Eric G.; Wells, Mark L.; Jenkins, Bethany D.

    2013-01-01

    Diatoms are genetically diverse unicellular photosynthetic eukaryotes that are key primary producers in the ocean. Many of the over 100 extant diatom species in the cosmopolitan genus Thalassiosira are difficult to distinguish in mixed populations using light microscopy. Here, we examine shifts in Thalassiosira spp. composition along a coastal to open ocean transect that encountered a 3-month-old Haida eddy in the northeast Pacific Ocean. To quantify shifts in Thalassiosira species composition, we developed a targeted automated ribosomal intergenic spacer analysis (ARISA) method to identify Thalassiosira spp. in environmental samples. As many specific fragment lengths are indicative of individual Thalassiosira spp., the ARISA method is a useful screening tool to identify changes in the relative abundance and distribution of specific species. The method also enabled us to assess changes in Thalassiosira community composition in response to chemical and physical forcing. Thalassiosira spp. community composition in the core of a 3-month-old Haida eddy remained largely (>80%) similar over a 2-week period, despite moving 24 km southwestward. Shifts in Thalassiosira species correlated with changes in dissolved iron (Fe) and temperature throughout the sampling period. Simultaneously tracking community composition and relative abundance of Thalassiosira species within the physical and chemical context they occurred allowed us to identify quantitative linkages between environmental conditions and community response. PMID:24065961

  20. Effects of transgenic cry1Ie maize on non-lepidopteran pest abundance, diversity and community composition.

    PubMed

    Guo, Jingfei; He, Kanglai; Bai, Shuxiong; Zhang, Tiantao; Liu, Yunjun; Wang, Fuxin; Wang, Zhenying

    2016-12-01

    Non-lepidopteran pests are exposed to, and may be influenced by, Bt toxins when feeding on Bt maize that express insecticidal Cry proteins derived from Bacillus thuringiensis (Bt). In order to assess the potential effects of transgenic cry1Ie maize on non-lepidopteran pest species and ecological communities, a 2-year field study was conducted to compare the non-lepidopteran pest abundance, diversity and community composition between transgenic cry1Ie maize (Event IE09S034, Bt maize) and its near isoline (Zong 31, non-Bt maize) by whole plant inspections. Results showed that Bt maize had no effects on non-lepidopteran pest abundance and diversity (Shannon-Wiener diversity index, Simpson's diversity index, species richness, and Pielou's index). There was a significant effect of year and sampling time on those indices analyzed. Redundancy analysis indicated maize type, sampling time and year totally explained 20.43 % of the variance in the non-lepidopteran pest community composition, but no association was presented between maize type (Bt maize and non-Bt maize) and the variance. Nonmetric multidimensional scaling analysis showed that sampling time and year, rather than maize type had close relationship with the non-lepidopteran pest community composition. These results corroborated the hypothesis that, at least in the short-term, the transgenic cry1Ie maize had negligible effects on the non-lepidopteran pest abundance, diversity and community composition.

  1. Linking the Composition of Bacterial and Archaeal Communities to Characteristics of Soil and Flora Composition in the Atlantic Rainforest

    PubMed Central

    Lima-Perim, Julia Elidia; Romagnoli, Emiliana Manesco; Dini-Andreote, Francisco; Durrer, Ademir; Dias, Armando Cavalcante Franco; Andreote, Fernando Dini

    2016-01-01

    The description of microbiomes as intrinsic fractions of any given ecosystem is an important issue, for instance, by linking their compositions and functions with other biotic and abiotic components of natural systems and hosts. Here we describe the archaeal and bacterial communities from soils of the Atlantic Rainforest in Brazil. Based on the comparison of three areas located along an altitudinal gradient—namely, Santa Virginia, Picinguaba and Restinga—we detected the most abundant groups of Bacteria (Acidobacteria and Proteobacteria) and Archaea (Thaumarchaeota, Crenarchaeota and Euryarchaeota). The particular composition of such communities in each of these areas was first evidenced by PCR-DGGE patterns [determined for Bacteria, Archaea and ammonia-oxidizing organisms—ammonia-oxidizing archaea (AOA) and bacteria (AOB)]. Moreover, sequence-based analysis provided a better resolution of communities, which indicated distinct frequencies of archaeal phyla and bacterial OTUs across areas. We found, as indicated by the Mantel test and multivariate analyses, a potential effect of the flora composition that outpaces the effect of soil characteristics (either physical and chemical) influencing the assembly of these microbial communities in soils. Our results indicate a collective role of the ecosystem underlying observed differences in microbial communities in these soils. Particularly, we posit that rainforest preservation also needs to take into account the maintenance of the soil biodiversity, as this is prompted to influence major processes that affect ecosystem functioning. PMID:26752633

  2. Abundance and composition of indigenous bacterial communities in a multi-step biofiltration-based drinking water treatment plant.

    PubMed

    Lautenschlager, Karin; Hwang, Chiachi; Ling, Fangqiong; Liu, Wen-Tso; Boon, Nico; Köster, Oliver; Egli, Thomas; Hammes, Frederik

    2014-10-01

    Indigenous bacterial communities are essential for biofiltration processes in drinking water treatment systems. In this study, we examined the microbial community composition and abundance of three different biofilter types (rapid sand, granular activated carbon, and slow sand filters) and their respective effluents in a full-scale, multi-step treatment plant (Zürich, CH). Detailed analysis of organic carbon degradation underpinned biodegradation as the primary function of the biofilter biomass. The biomass was present in concentrations ranging between 2-5 × 10(15) cells/m(3) in all filters but was phylogenetically, enzymatically and metabolically diverse. Based on 16S rRNA gene-based 454 pyrosequencing analysis for microbial community composition, similar microbial taxa (predominantly Proteobacteria, Planctomycetes, Acidobacteria, Bacteriodetes, Nitrospira and Chloroflexi) were present in all biofilters and in their respective effluents, but the ratio of microbial taxa was different in each filter type. This change was also reflected in the cluster analysis, which revealed a change of 50-60% in microbial community composition between the different filter types. This study documents the direct influence of the filter biomass on the microbial community composition of the final drinking water, particularly when the water is distributed without post-disinfection. The results provide new insights on the complexity of indigenous bacteria colonizing drinking water systems, especially in different biofilters of a multi-step treatment plant. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Root controls on soil microbial community structure in forest soils.

    PubMed

    Brant, Justin B; Myrold, David D; Sulzman, Elizabeth W

    2006-07-01

    We assessed microbial community composition as a function of altered above- and belowground inputs to soil in forest ecosystems of Oregon, Pennsylvania, and Hungary as part of a larger Detritus Input and Removal Treatment (DIRT) experiment. DIRT plots, which include root trenching, aboveground litter exclusion, and doubling of litter inputs, have been established in forested ecosystems in the US and Europe that vary with respect to dominant tree species, soil C content, N deposition rate, and soil type. This study used phospholipid fatty-acid (PLFA) analysis to examine changes in the soil microbial community size and composition in the mineral soil (0-10 cm) as a result of the DIRT treatments. At all sites, the PLFA profiles from the plots without roots were significantly different from all other treatments. PLFA analysis showed that the rootless plots generally contained larger quantities of actinomycete biomarkers and lower amounts of fungal biomarkers. At one of the sites in an old-growth coniferous forest, seasonal changes in PLFA profiles were also examined. Seasonal differences in soil microbial community composition were greater than treatment differences. Throughout the year, treatments without roots continued to have a different microbial community composition than the treatments with roots, although the specific PLFA biomarkers responsible for these differences varied by season. These data provide direct evidence that root C inputs exert a large control on microbial community composition in the three forested ecosystems studied.

  4. Long-term agricultural fertilization alters arbuscular mycorrhizal fungal community composition and barley (Hordeum vulgare) mycorrhizal carbon and phosphorus exchange.

    PubMed

    Williams, Alwyn; Manoharan, Lokeshwaran; Rosenstock, Nicholas P; Olsson, Pål Axel; Hedlund, Katarina

    2017-01-01

    Agricultural fertilization significantly affects arbuscular mycorrhizal fungal (AMF) community composition. However, the functional implications of community shifts are unknown, limiting understanding of the role of AMF in agriculture. We assessed AMF community composition at four sites managed under the same nitrogen (N) and phosphorus (P) fertilizer regimes for 55 yr. We also established a glasshouse experiment with the same soils to investigate AMF-barley (Hordeum vulgare) nutrient exchange, using carbon ( 13 C) and 33 P isotopic labelling. N fertilization affected AMF community composition, reducing diversity; P had no effect. In the glasshouse, AMF contribution to plant P declined with P fertilization, but was unaffected by N. Barley C allocation to AMF also declined with P fertilization. As N fertilization increased, C allocation to AMF per unit of P exchanged increased. This occurred with and without P fertilization, and was concomitant with reduced barley biomass. AMF community composition showed no relationship with glasshouse experiment results. The results indicate that plants can reduce C allocation to AMF in response to P fertilization. Under N fertilization, plants allocate an increasing amount of C to AMF and receive relatively less P. This suggests an alteration in the terms of P-C exchange under N fertilization regardless of soil P status. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  5. High-Resolution Melt Analysis for Rapid Comparison of Bacterial Community Compositions

    PubMed Central

    Hjelmsø, Mathis Hjort; Hansen, Lars Hestbjerg; Bælum, Jacob; Feld, Louise; Holben, William E.

    2014-01-01

    In the study of bacterial community composition, 16S rRNA gene amplicon sequencing is today among the preferred methods of analysis. The cost of nucleotide sequence analysis, including requisite computational and bioinformatic steps, however, takes up a large part of many research budgets. High-resolution melt (HRM) analysis is the study of the melt behavior of specific PCR products. Here we describe a novel high-throughput approach in which we used HRM analysis targeting the 16S rRNA gene to rapidly screen multiple complex samples for differences in bacterial community composition. We hypothesized that HRM analysis of amplified 16S rRNA genes from a soil ecosystem could be used as a screening tool to identify changes in bacterial community structure. This hypothesis was tested using a soil microcosm setup exposed to a total of six treatments representing different combinations of pesticide and fertilization treatments. The HRM analysis identified a shift in the bacterial community composition in two of the treatments, both including the soil fumigant Basamid GR. These results were confirmed with both denaturing gradient gel electrophoresis (DGGE) analysis and 454-based 16S rRNA gene amplicon sequencing. HRM analysis was shown to be a fast, high-throughput technique that can serve as an effective alternative to gel-based screening methods to monitor microbial community composition. PMID:24610853

  6. Linking the Composition of Bacterial and Archaeal Communities to Characteristics of Soil and Flora Composition in the Atlantic Rainforest.

    PubMed

    Lima-Perim, Julia Elidia; Romagnoli, Emiliana Manesco; Dini-Andreote, Francisco; Durrer, Ademir; Dias, Armando Cavalcante Franco; Andreote, Fernando Dini

    2016-01-01

    The description of microbiomes as intrinsic fractions of any given ecosystem is an important issue, for instance, by linking their compositions and functions with other biotic and abiotic components of natural systems and hosts. Here we describe the archaeal and bacterial communities from soils of the Atlantic Rainforest in Brazil. Based on the comparison of three areas located along an altitudinal gradient-namely, Santa Virginia, Picinguaba and Restinga-we detected the most abundant groups of Bacteria (Acidobacteria and Proteobacteria) and Archaea (Thaumarchaeota, Crenarchaeota and Euryarchaeota). The particular composition of such communities in each of these areas was first evidenced by PCR-DGGE patterns [determined for Bacteria, Archaea and ammonia-oxidizing organisms-ammonia-oxidizing archaea (AOA) and bacteria (AOB)]. Moreover, sequence-based analysis provided a better resolution of communities, which indicated distinct frequencies of archaeal phyla and bacterial OTUs across areas. We found, as indicated by the Mantel test and multivariate analyses, a potential effect of the flora composition that outpaces the effect of soil characteristics (either physical and chemical) influencing the assembly of these microbial communities in soils. Our results indicate a collective role of the ecosystem underlying observed differences in microbial communities in these soils. Particularly, we posit that rainforest preservation also needs to take into account the maintenance of the soil biodiversity, as this is prompted to influence major processes that affect ecosystem functioning.

  7. Using geographic information systems to compare the density of stores selling tobacco and alcohol: youth making an argument for increased regulation of the tobacco permitting process in Worcester, Massachusetts, USA.

    PubMed

    Ogneva-Himmelberger, Yelena; Ross, Laurie; Burdick, William; Simpson, Sheryl-Ann

    2010-12-01

    This study is based on a community participatory research (CBPR) partnership between a youth group and a local university to explore whether greater regulation of tobacco permits would reduce the density of tobacco outlets overall, and particularly in low-income, high minority neighbourhoods in Worcester, Massachusetts, USA. Applying Geographic Information Systems and regression analyses to neighbourhood demographics and the location of stores selling tobacco and alcohol, the study predicts the density of tobacco outlets as compared to alcohol outlets at the neighborhood block group level and in relation to the location and demographic composition of public schools. This study found that there are more than double the number of stores that sell tobacco as compared to alcohol in the city of Worcester. For every alcohol vendor there was a 41% increase in the estimated number of tobacco vendors, independent of the effect of other variables. The likelihood of having a tobacco outlet located near a school was greater than having an alcohol outlet as the percentage of minority students in schools increases. Based on these findings, the authors conclude that to reduce the impact of tobacco on socially and economically disadvantaged communities, the issuing of tobacco permits requires more regulation and oversight and should take into consideration the density and actual location of other licensees in an area.

  8. Bacterial responses to environmental change on the Tibetan Plateau over the past half century.

    PubMed

    Liu, Yongqin; Priscu, John C; Yao, Tandong; Vick-Majors, Trista J; Xu, Baiqing; Jiao, Nianzhi; Santibáñez, Pamela; Huang, Sijun; Wang, Ninglian; Greenwood, Mark; Michaud, Alexander B; Kang, Shichang; Wang, Jianjun; Gao, Qun; Yang, Yunfeng

    2016-06-01

    Climate change and anthropogenic factors can alter biodiversity and can lead to changes in community structure and function. Despite the potential impacts, no long-term records of climatic influences on microbial communities exist. The Tibetan Plateau is a highly sensitive region that is currently undergoing significant alteration resulting from both climate change and increased human activity. Ice cores from glaciers in this region serve as unique natural archives of bacterial abundance and community composition, and contain concomitant records of climate and environmental change. We report high-resolution profiles of bacterial density and community composition over the past half century in ice cores from three glaciers on the Tibetan Plateau. Statistical analysis showed that the bacterial community composition in the three ice cores converged starting in the 1990s. Changes in bacterial community composition were related to changing precipitation, increasing air temperature and anthropogenic activities in the vicinity of the plateau. Collectively, our ice core data on bacteria in concert with environmental and anthropogenic proxies indicate that the convergence of bacterial communities deposited on glaciers across a wide geographical area and situated in diverse habitat types was likely induced by climatic and anthropogenic drivers. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Temporal dynamics of hot desert microbial communities reveal structural and functional responses to water input

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, Alacia; Valverde, Angel; Ramond, Jean-Baptiste

    The temporal dynamics of desert soil microbial communities are poorly understood. Given the implications for ecosystem functioning under a global change scenario, a better understanding of desert microbial community stability is crucial. Here, we sampled soils in the central Namib Desert on sixteen different occasions over a one-year period. Using Illumina-based amplicon sequencing of the 16S rRNA gene, we found that α-diversity (richness) was more variable at a given sampling date (spatial variability) than over the course of one year (temporal variability). Community composition remained essentially unchanged across the first 10 months, indicating that spatial sampling might be more importantmore » than temporal sampling when assessing β-diversity patterns in desert soils. However, a major shift in microbial community composition was found following a single precipitation event. This shift in composition was associated with a rapid increase in CO2 respiration and productivity, supporting the view that desert soil microbial communities respond rapidly to re-wetting and that this response may be the result of both taxon-specific selection and changes in the availability or accessibility of organic substrates. Recovery to quasi pre-disturbance community composition was achieved within one month after rainfall.« less

  10. Changes in ectomycorrhizal fungal community composition and declining diversity along a 2-million-year soil chronosequence.

    PubMed

    Albornoz, Felipe E; Teste, François P; Lambers, Hans; Bunce, Michael; Murray, Dáithí C; White, Nicole E; Laliberté, Etienne

    2016-10-01

    Ectomycorrhizal (ECM) fungal communities covary with host plant communities along soil fertility gradients, yet it is unclear whether this reflects changes in host composition, fungal edaphic specialization or priority effects during fungal community establishment. We grew two co-occurring ECM plant species (to control for host identity) in soils collected along a 2-million-year chronosequence representing a strong soil fertility gradient and used soil manipulations to disentangle the effects of edaphic properties from those due to fungal inoculum. Ectomycorrhizal fungal community composition changed and richness declined with increasing soil age; these changes were linked to pedogenesis-driven shifts in edaphic properties, particularly pH and resin-exchangeable and organic phosphorus. However, when differences in inoculum potential or soil abiotic properties among soil ages were removed while host identity was held constant, differences in ECM fungal communities and richness among chronosequence stages disappeared. Our results show that ECM fungal communities strongly vary during long-term ecosystem development, even within the same hosts. However, these changes could not be attributed to short-term fungal edaphic specialization or differences in fungal inoculum (i.e. density and composition) alone. Rather, they must reflect longer-term ecosystem-level feedback between soil, vegetation and ECM fungi during pedogenesis. © 2016 John Wiley & Sons Ltd.

  11. Prolonged exposure does not increase soil microbial community compositional response to warming along geothermal gradients.

    PubMed

    Radujkovic, Dajana; Verbruggen, Erik; Sigurdsson, Bjarni D; Leblans, Niki I W; Janssens, Ivan A; Vicca, Sara; Weedon, James T

    2018-02-01

    Global change is expected to affect soil microbial communities through their responsiveness to temperature. It has been proposed that prolonged exposure to elevated temperatures may lead to progressively larger effects on soil microbial community composition. However, due to the relatively short-term nature of most warming experiments, this idea has been challenging to evaluate. The present study took the advantage of natural geothermal gradients (from +1°C to +19°C above ambient) in two subarctic grasslands to test the hypothesis that long-term exposure (>50 years) intensifies the effect of warming on microbial community composition compared to short-term exposure (5-7 years). Community profiles from amplicon sequencing of bacterial and fungal rRNA genes did not support this hypothesis: significant changes relative to ambient were observed only starting from the warming intensity of +9°C in the long term and +7°C/+3°C in the short term, for bacteria and fungi, respectively. Our results suggest that microbial communities in high-latitude grasslands will not undergo lasting shifts in community composition under the warming predicted for the coming 100 years (+2.2°C to +8.3°C). © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Abundance and community structure of ammonia-oxidizing Archaea and Bacteria in response to fertilization and mowing in a temperate steppe in Inner Mongolia.

    PubMed

    Chen, Yong-Liang; Hu, Hang-Wei; Han, Hong-Yan; Du, Yue; Wan, Shi-Qiang; Xu, Zhu-Wen; Chen, Bao-Dong

    2014-07-01

    Based on a 6-year field trial in a temperate steppe in Inner Mongolia, we investigated the effects of nitrogen (N) and phosphorus (P) fertilization and mowing on the abundance and community compositions of ammonia-oxidizing Bacteria (AOB) and Archaea (AOA) upon early (May) and peak (August) plant growth using quantitative PCR (qPCR), terminal-restriction fragment length polymorphism (T-RFLP), cloning and sequencing. The results showed that N fertilization changed AOB community composition and increased AOB abundance in both May and August, but significantly decreased AOA abundance in May. By contrast, P fertilization significantly influenced AOB abundance only in August. Mowing significantly decreased AOA abundance and had little effect on AOA community compositions in May, while significantly influencing AOB abundance in both May and August, Moreover, AOA and AOB community structures showed obvious seasonal variations between May and August. Phylogenetic analysis showed that all AOA sequences fell into the Nitrososphaera cluster, and the AOB community was dominated by Nitrosospira Cluster 3. The results suggest that fertilization and mowing play important roles in affecting the abundance and community compositions of AOA and AOB. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  13. Physical disturbance to ecological niches created by soil structure alters community composition of methanotrophs.

    PubMed

    Kumaresan, Deepak; Stralis-Pavese, Nancy; Abell, Guy C J; Bodrossy, Levente; Murrell, J Colin

    2011-10-01

    Aggregates of different sizes and stability in soil create a composite of ecological niches differing in terms of physico-chemical and structural characteristics. The aim of this study was to identify, using DNA-SIP and mRNA-based microarray analysis, whether shifts in activity and community composition of methanotrophs occur when ecological niches created by soil structure are physically perturbed. Landfill cover soil was subject to three treatments termed: 'control' (minimal structural disruption), 'sieved' (sieved soil using 2 mm mesh) and 'ground' (grinding using mortar and pestle). 'Sieved' and 'ground' soil treatments exhibited higher methane oxidation potentials compared with the 'control' soil treatment. Analysis of the active community composition revealed an effect of physical disruption on active methanotrophs. Type I methanotrophs were the most active methanotrophs in 'sieved' and 'ground' soil treatments, whereas both Type I and Type II methanotrophs were active in the 'control' soil treatment. The result emphasize that changes to a particular ecological niche may not result in an immediate change to the active bacterial composition and change in composition will depend on the ability of the bacterial communities to respond to the perturbation. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  14. Repeated disturbances affect functional but not compositional resistance and resilience in an aquatic bacterioplankton community.

    PubMed

    Sjöstedt, Johanna; Langenheder, Silke; Kritzberg, Emma; Karlsson, Christofer M G; Lindström, Eva S

    2018-05-07

    Disturbances are believed to be one of the main factors influencing variations in community diversity and functioning. Here we investigated if exposure to a pH press disturbance affected the composition and functional performance of a bacterial community and its resistance, recovery and resilience to a second press disturbance (salt addition). Lake bacterial assemblages were initially exposed to reduced pH in six mesocosms whereas another six mesocosms were kept as reference. Seven days after the pH disturbance, three tanks from each treatment were exposed to a salt disturbance. Both bacterial production and enzyme activity were negatively affected by the salt treatment, regardless if the communities had been subject to a previous disturbance or not. However, cell-specific enzyme activity had a higher resistance in communities pre-exposed to the pH disturbance compared to the reference treatment. In contrast, for cell-specific bacterial production resistance was not affected, but recovery was faster in the communities that had previously been exposed to the pH disturbance. Over time, bacterial community composition diverged among treatments, in response to both pH and salinity. The difference in functional recovery, resilience and resistance may depend on differences in community composition caused by the pH disturbance, niche breadth or acquired stress resistance. This article is protected by copyright. All rights reserved. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Opposing resonses to ecological gradients structure amphibian and reptile communities across a temperate grassland-savanna-forest landscape

    USGS Publications Warehouse

    Grundel, Ralph; Beamer, David; Glowacki, Gary A.; Frohnapple, Krystal; Pavlovic, Noel B.

    2014-01-01

    Temperate savannas are threatened across the globe. If we prioritize savanna restoration, we should ask how savanna animal communities differ from communities in related open habitats and forests. We documented distribution of amphibian and reptile species across an open-savanna–forest gradient in the Midwest U.S. to determine how fire history and habitat structure affected herpetofaunal community composition. The transition from open habitats to forests was a transition from higher reptile abundance to higher amphibian abundance and the intermediate savanna landscape supported the most species overall. These differences warn against assuming that amphibian and reptile communities will have similar ecological responses to habitat structure. Richness and abundance also often responded in opposite directions to some habitat characteristics, such as cover of bare ground or litter. Herpetofaunal community species composition changed along a fire gradient from infrequent and recent fires to frequent but less recent fires. Nearby (200-m) wetland cover was relatively unimportant in predicting overall herpetofaunal community composition while fire history and fire-related canopy and ground cover were more important predictors of composition, diversity, and abundance. Increased developed cover was negatively related to richness and abundance. This indicates the importance of fire history and fire related landscape characteristics, and the negative effects of development, in shaping the upland herpetofaunal community along the native grassland–forest continuum.

  16. Epiphytic Macrolichen Community Composition Database—epiphytic lichen synusiae in forested areas of the US

    Treesearch

    Sarah. Jovan

    2012-01-01

    The Forest Inventory and Analysis (FIA) Program's Lichen Communities Indicator is used for tracking epiphytic macrolichen diversity and is applied for monitoring air quality and climate change effects on forest health in the United States. Started in 1994, the Epiphytic Macrolichen Community Composition Database (GIVD ID NA-US-012) now has over 8,000 surveys of...

  17. Fungal community composition and function after long-term exposure of northern forests to elevated atmospheric CO2 and tropospheric O3

    Treesearch

    Ivan P. Edwards; Donald R. Zak

    2011-01-01

    The long-term effects of rising atmospheric carbon dioxide (CO2) and tropospheric O3 concentrations on fungal communities in soil are not well understood. Here, we examine fungal community composition and the activities of cellobiohydrolase and N-acetylglucosaminidase (NAG) after 10 years of exposure to 1...

  18. Vertical distribution and community composition of anammox bacteria in sediments of a eutrophic shallow lake.

    PubMed

    Qin, H; Han, C; Jin, Z; Wu, L; Deng, H; Zhu, G; Zhong, W

    2018-07-01

    The aim of this study was to explore the vertical distribution traits of anaerobic ammonium-oxidizing (anammox) bacterial relative abundance and community composition along the oxic/anoxic sediment profiles in a shallow lake. The Illumina Miseq-based sequencing and quantitative polymerase chain reactions were utilized to analyse relative abundance of anammox hydrazine synthase (hzsB) gene in comparison with bacterial 16S rRNA genes, anammox bacterial relative abundance (the number of anammox sequences divided by total number of sequences), community composition and diversity in sediments. The relative abundance of hzsB gene at the low-nitrogen (LN) site in the lake sediments showed that the vertical distribution of anammox bacteria increased to a peak, then decreased with increasing depth. Moreover, the relative abundance of hzsB gene at the high-nitrogen site was significantly lower than that at the LN site. Additionally, the community composition results showed that Candidatus Brocadia sp. was the dominant genus. In addition, the anammox bacterial diversity was also site specific. Redundancy analysis showed that the total N and the NH 4 + -N content might be the most important factors affecting anammox bacterial community composition in the studied sites. The results revealed the specific vertical variance of anammox bacterial distribution and community composition in oxic/anoxic sediments of a eutrophic shallow lake. This is the first study to demonstrate that anammox bacteria displayed the particular distribution in freshwater sediments, which implied a strong response to the anthropogenic eutrophication. © 2018 The Society for Applied Microbiology.

  19. Suitability of the microbial community composition and function in a semiarid mine soil for assessing phytomanagement practices based on mycorrhizal inoculation and amendment addition.

    PubMed

    Kohler, J; Caravaca, F; Azcón, R; Díaz, G; Roldán, A

    2016-03-15

    The recovery of species composition and functions of soil microbial community of degraded lands is crucial in order to guarantee the long-term self-sustainability of the ecosystems. A field experiment was carried out to test the influence of combining fermented sugar beet residue (SBR) addition and inoculation with the arbuscular mycorrhizal (AM) fungus Funneliformis mosseae on the plant growth parameters and microbial community composition and function in the rhizosphere of two autochthonous plant species (Dorycnium pentaphyllum L. and Asteriscus maritimus L.) growing in a semiarid soil contaminated by heavy metals. We analysed the phospholipid fatty acids (PLFAs), neutral lipids fatty acids (NLFAs) and enzyme activities to study the soil microbial community composition and function, respectively. The combined treatment was not effective for increasing plant growth. The SBR promoted the growth of both plant species, whilst the AM fungus was effective only for D. pentaphyllum. The effect of the treatments on plant growth was linked to shifts in the rhizosphere microbial community composition and function. The highest increase in dehydrogenase and β-glucosidase activities was recorded in SBR-amended soil. The SBR increased the abundance of marker PLFAs for saprophytic fungi, Gram+ and Gram- bacteria and actinobacteria, whereas the AM fungus enhanced the abundance of AM fungi-related NLFA and marker PLFAs for Gram- bacteria. Measurement of the soil microbial community composition and function was useful to assess the success of phytomanagement technologies in a semiarid, contaminated soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Storm-scale dynamics of bacterial community composition in throughfall and stemflow

    NASA Astrophysics Data System (ADS)

    Van Stan, J. T., II; Teachey, M. E.; Pound, P.; Ottesen, E. A.

    2017-12-01

    Transport of bacteria between ecosystem spheres can significantly affect microbially-mediated biogeochemical processes. During rainfall, there is a large, temporally-concentrated exchange of bacteria between the forest phyllosphere and the pedosphere by rain dripping from canopy surfaces, as throughfall (TF), and draining to the stem, as stemflow (SF). Many phyllosphere bacteria possibly transported by TF and SF have been linked to important litter and soil processes (like cyanobacteria and actinobacteria). Despite this, no work has applied high throughput DNA sequencing to assess the community composition of bacteria transported by TF and SF. We characterized bacterial community composition for TF and SF from an epiphyte-laden (Tillandsia usneoides L., Spanish moss) southern live oak (Quercus virginiana) forest in southeastern Georgia (USA) to address two hypotheses: that bacterial community composition will differ between (1) TF and SF, and (2) TF sampled beneath bare and epiphyte-laden canopy. Variability in family-level bacterial abundance, Bray-Curtis dissimilarity, and Shannon diversity index was greater between storms than between net rainfall fluxes. In fact, TF and SF bacterial communities were relatively similar for individual storms and may be driven by pre-storm atmospheric deposition rather than the communities affixed to leaves, bark, and epiphyte surfaces.

  1. Association Mapping of Cell Wall Synthesis Regulatory Genes and Cell Wall Quality in Switchgrass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartley, Laura; Wu, Y.; Zhu, L.

    Inefficient conversion of biomass to biofuels is one of the main barriers for biofuel production from such materials. Approximately half of polysaccharides in biomass remain unused by typical biochemical conversion methods. Conversion efficiency is influenced by the composition and structure of cell walls of biomass. Grasses such as wheat, maize, and rice, as well as dedicated perennial bioenergy crops, like switchgrass, make up ~55% of biomass that can be produced in the United States. Grass cell walls have a different composition and patterning compared with dicotyledonous plants, including the well-studied model plant, Arabidopsis. This project identified genetic determinants of cellmore » wall composition in grasses using both naturally occurring genetic variation of switchgrass and gene network reconstruction and functional assays in rice. In addition, the project linked functional data in rice and other species to switchgrass improvement efforts through curation of the most abundant class of regulators in the switchgrass genome. Characterizing natural diversity of switchgrass for variation in cell wall composition and properties, also known as quality, provides an unbiased avenue for identifying biologically viable diversity in switchgrass cell walls. To characterizing natural diversity, this project generated cell wall composition and enzymatic deconstruction data for ~450 genotypes of the Switchgrass Southern Association Collection (SSAC), a diverse collection composed of 36 switchgrass accessions from the southern U.S. distribution of switchgrass. Comparing these data with other measures of cell wall quality for the same samples demonstrated the complementary nature of the diverse characterization platforms now being used for biomass characterization. Association of the composition data with ~3.2K single nucleotide variant markers identified six significant single nucleotide variant markers co-associated with digestibility and another compositional trait. These markers might be used to select switchgrass genotypes with improved composition in breeding programs for biofuel and forage production. Because the SSAC continues to be characterized by collaborators in the bioenergy community, the data generated will be used to identify additional markers in higher resolution genotyping data to approach identifying the genes and alleles that cause natural variation in switchgrass cell wall quality. For example, these markers can be surveyed in the 2100-member Oklahoma Southern and Northern Lowland switchgrass collections that this project also characterized. An orthogonal approach to biodiversity studies, using comparative functional genomics permits systematic querying of how much regulatory information is likely to be transferable from dicots to grasses and use of accumulated functional genomics resources for better-characterized grass species, such as rice, itself a biomass source in global agriculture and in certain regions. The project generated and tested a number of specific hypotheses regarding cell wall transcription factors and enzymes of grasses. To aid identification of cell wall regulators, the project assembled a novel, highdepth and -quality gene association network using a general linearized model scoring system to combine rice gene network data. Using known or putative orthologs of Arabidopsis cell wall biosynthesis genes and regulators, the project pulled from this network a cell wall sub-network that includes 96 transcription factors. Reverse genetics of a co-ortholog of the Arabidopsis MYB61 transcription factor in rice revealed that this regulatory node has evolved the ability to regulate grass-specific cell wall synthesis enzymes. A transcription factor with such activity has not been previously characterized to our knowledge, representing a major conclusion of this work. Changes in gene expression in a protoplast-based assay demonstrated positive or negative roles in cell wall regulation for eleven other transcription factors from the rice gene network. Eight of fifteen (53%) of these have not previously been examined for this function. Some of these may represent novel grass-diverged cell wall regulators, while others are likely to have this function across angiosperms. A parallel effort of this project to expand knowledge of enzymes that have evolved to function in grass cell wall synthesis, revealed that a grass-diverged enzyme in rice, OsAT 5, ferulates monolignols that are naturally incorporated into grass cell walls. This finding opens potential natural selection avenues for improving biomass composition for downstream processing by weak base pretreatment. Thus, this project has significantly expanded knowledge of cell wall synthesis and regulation in rice, information that can be used in reverse genetics and synthetic biology approaches to re-engineer cell walls for improved production of biofuel and high-value products. To lay the foundation for translating these results directly for switchgrass improvement, the project employed a comparative phylogenetic analysis of the major group of cell wall transcription factors that have been found to function in cell wall regulation, the R 2R 3 MYBs. This analysis concluded that known cell wall regulators are largely conserved across switchgrass, rice, maize, poplar, and Arabidopsis. This interpretation is also largely consistent with the gene network analysis described above, though both approaches provide evidence that some co-orthologs of Arabidopsis regulators have diminished or increased in importance based on gene expression patterns. Also, several clades containing dicot cell wall regulators have expanded, consistent with the evolution of new cell wall regulators. This latter result is supported by functional analysis of the R 2R 3 MYB protein SWAM 1 in a collaboration between this project and the DOE-funded group of Dr. S. Hazen at the University of Massachusettes. The curation of the switchgrass genome through this project provides specific targets for future engineering of switchgrass cell wall regulation and may also facilitate identification of regulators that underlie the molecular markers that are genetically linked to differences in cell wall quality. With the goal of spurring further research and technological developments in lignocellulosic biofuel production, this work has been communicated to the bioenergy and cell wall communities though various presentations and publications. To date, three manuscripts have been published, two others are near to publication, three others are in an advanced state, and two to four more are likely to be written based on analyses still in progress. In addition, project participants have presented thirteen posters and talks at regional, national, and international meetings about aspects of this project. In sum, the work supported by this funding has made and communicated significant progress in identifying the genes that grasses use for cell wall synthesis and regulation, information that will be used by project participants and others to improve the efficiency of conversion of lignocellulosic biomass to biofuels.« less

  2. Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization.

    PubMed

    Enwall, Karin; Philippot, Laurent; Hallin, Sara

    2005-12-01

    The objective of this study was to explore the long-term effects of different organic and inorganic fertilizers on activity and composition of the denitrifying and total bacterial communities in arable soil. Soil from the following six treatments was analyzed in an experimental field site established in 1956: cattle manure, sewage sludge, Ca(NO3)2, (NH4)2SO4, and unfertilized and unfertilized bare fallow. All plots but the fallow were planted with corn. The activity was measured in terms of potential denitrification rate and basal soil respiration. The nosZ and narG genes were used as functional markers of the denitrifying community, and the composition was analyzed using denaturing gradient gel electrophoresis of nosZ and restriction fragment length polymorphism of narG, together with cloning and sequencing. A fingerprint of the total bacterial community was assessed by ribosomal intergenic spacer region analysis (RISA). The potential denitrification rates were higher in plots treated with organic fertilizer than in those with only mineral fertilizer. The basal soil respiration rates were positively correlated to soil carbon content, and the highest rates were found in the plots with the addition of sewage sludge. Fingerprints of the nosZ and narG genes, as well as the RISA, showed significant differences in the corresponding communities in the plots treated with (NH4)2SO4 and sewage sludge, which exhibited the lowest pH. In contrast, similar patterns were observed among the other four treatments, unfertilized plots with and without crops and the plots treated with Ca(NO3)2 or with manure. This study shows that the addition of different fertilizers affects both the activity and the composition of the denitrifying communities in arable soil on a long-term basis. However, the treatments in which the denitrifying and bacterial community composition differed the most did not correspond to treatments with the most different activities, showing that potential activity was uncoupled to community composition.

  3. Temporal dynamics of bird community composition: an analysis of baseline conditions from long-term data.

    PubMed

    Kampichler, Christian; Angeler, David G; Holmes, Richard T; Leito, Aivar; Svensson, Sören; van der Jeugd, Henk P; Wesołowski, Tomasz

    2014-08-01

    Numerous anthropogenic activities threaten the biodiversity found on earth. Because all ecological communities constantly experience temporal turnover due to natural processes, it is important to distinguish between change due to anthropogenic impact and the underlying natural rate of change. In this study, we used data sets on breeding bird communities that covered at least 20 consecutive years, from a variety of terrestrial ecosystems, to address two main questions. (1) How fast does the composition of bird communities change over time, and can we identify a baseline of natural change that distinguishes primeval systems from systems experiencing varying degrees of human impact? (2) How do patterns of temporal variation in composition vary among bird communities in ecosystems with different anthropogenic impacts? Time lag analysis (TLA) showed a pattern of increasing rate of temporal compositional change from large-scale primeval systems to disturbed and protected systems to distinctly successional systems. TLA slopes of <0.04 were typical for breeding bird communities with natural turnover, while communities subjected to anthropogenic impact were characterised by TLA slopes of >0.04. Most of the temporal variability of breeding bird communities was explained by slow changes occurring over decades, regardless of the intensity of human impact. In most of the time series, medium- and short-wave periodicity was not detected, with the exception of breeding bird communities subjected to periodic pulses (e.g. caterpillar outbreaks causing food resource peaks).

  4. Effect of polybrominated diphenyl ether (PBDE) treatment on the composition and function of the bacterial community in the sponge Haliclona cymaeformis

    PubMed Central

    Tian, Ren-Mao; Lee, On On; Wang, Yong; Cai, Lin; Bougouffa, Salim; Chiu, Jill Man Ying; Wu, Rudolf Shiu Sun; Qian, Pei-Yuan

    2014-01-01

    Marine sponges play important roles in benthic environments and are sensitive to environmental stresses. Polybrominated diphenyl ethers (PBDEs) have been widely used as flame retardants since the 1970s and are cytotoxic and genotoxic to organisms. In the present study, we studied the short-period effect of PBDE-47 (2,2′,4,4′-tetrabromodiphenyl ether) treatment on the community structure and functional gene composition of the bacterial community inhabiting the marine sponge Haliclona cymaeformis. Our results showed that the bacterial community shifted from an autotrophic bacteria-dominated community to a heterotrophic bacteria-dominated community in response to PBDE-47 in a time- and concentration-dependent manner. A potentially symbiotic sulfur-oxidizing bacterium (SOB) was dominant (>80% in abundance) in the untreated sponge. However, exposure to a high concentration (1 μg/L) of PBDE-47 caused a substantial decrease in the potential symbiont and an enrichment of heterotrophic bacteria like Clostridium. A metagenomic analysis showed a selective effect of the high concentration treatment on the functional gene composition of the enriched heterotrophic bacteria, revealing an enrichment for the functions responsible for DNA repair, multidrug efflux pumping, and bacterial chemotaxis and motility. This study demonstrated that PBDE-47 induced a shift in the composition of the community and functional genes in the sponge-associated bacterial community, revealing the selective effect of PBDE-47 treatment on the functions of the bacterial community in the microenvironment of the sponge. PMID:25642227

  5. Inference methods for spatial variation in species richness and community composition when not all species are detected

    USGS Publications Warehouse

    Nichols, J.D.; Boulinier, T.; Hines, J.E.; Pollock, K.H.; Sauer, J.R.

    1998-01-01

    Inferences about spatial variation in species richness and community composition are important both to ecological hypotheses about the structure and function of communities and to community-level conservation and management. Few sampling programs for animal communities provide censuses, and usually some species present. We present estimators useful for drawing inferences about comparative species richness and composition between different sampling locations when not all species are detected in sampling efforts. Based on capture-recapture models using the robust design, our methods estimate relative species richness, proportion of species in one location that are also found in another, and number of species found in one location but not in another. The methods use data on the presence or absence of each species at different sampling occasions (or locations) to estimate the number of species not detected at any occasions (or locations). This approach permits estimation of the number of species in the sampled community and in subsets of the community useful for estimating the fraction of species shared by two communities. We provide an illustration of our estimation methods by comparing bird species richness and composition in two locations sampled by routes of the North American Breeding Bird Survey. In this example analysis, the two locations (an associated bird communities) represented different levels of urbanization. Estimates of relative richness, proportion of shared species, and number of species present on one route but not the other indicated that the route with the smaller fraction of urban area had greater richness and a larer number of species that were not found on the more urban route than vice versa. We developed a software package, COMDYN, for computing estimates based on the methods. Because these estimation methods explicitly deal with sampling in which not all species are detected, we recommend their use for addressing questions about species richness and community composition.

  6. Soil bacterial and fungal community responses to nitrogen addition across soil depth and microhabitat in an arid shrubland

    DOE PAGES

    Mueller, Rebecca C.; Belnap, Jayne; Kuske, Cheryl R.

    2015-09-04

    Arid shrublands are stressful environments, typified by alkaline soils low in organic matter, with biologically-limiting extremes in water availability, temperature, and UV radiation. The widely-spaced plants and interspace biological soil crusts in these regions provide soil nutrients in a localized fashion, creating a mosaic pattern of plant- or crust-associated microhabitats with distinct nutrient composition. With sporadic and limited rainfall, nutrients are primarily retained in the shallow surface soil, patterning biological activity. We examined soil bacterial and fungal community responses to simulated nitrogen (N) deposition in an arid Larrea tridentata-Ambrosia dumosa field experiment in southern Nevada, USA, using high-throughput sequencing ofmore » ribosomal RNA genes. To examine potential interactions among the N application, microhabitat and soil depth, we sampled soils associated with shrub canopies and interspace biological crusts at two soil depths (0–0.5 or 0–10 cm) across the N-amendment gradient (0, 7, and 15 kg ha –1 yr –1). We hypothesized that localized compositional differences in soil microbiota would constrain the impacts of N addition to a microhabitat distribution that would reflect highly localized geochemical conditions and microbial community composition. The richness and community composition of both bacterial and fungal communities differed significantly by microhabitat and with soil depth in each microhabitat. Only bacterial communities exhibited significant responses to the N addition. Community composition correlated with microhabitat and depth differences in soil geochemical features. As a result, given the distinct roles of soil bacteria and fungi in major nutrient cycles, the resilience of fungi and sensitivity of bacteria to N amendments suggests that increased N input predicted for many arid ecosystems could shift nutrient cycling toward pathways driven primarily by fungal communities.« less

  7. Soil bacterial and fungal community responses to nitrogen addition across soil depth and microhabitat in an arid shrubland

    USGS Publications Warehouse

    Mueller, Rebecca C.; Belnap, Jayne; Kuske, Cheryl R.

    2015-01-01

    Arid shrublands are stressful environments, typified by alkaline soils low in organic matter, with biologically-limiting extremes in water availability, temperature, and UV radiation. The widely-spaced plants and interspace biological soil crusts in these regions provide soil nutrients in a localized fashion, creating a mosaic pattern of plant- or crust-associated microhabitats with distinct nutrient composition. With sporadic and limited rainfall, nutrients are primarily retained in the shallow surface soil, patterning biological activity. We examined soil bacterial and fungal community responses to simulated nitrogen (N) deposition in an arid Larrea tridentata-Ambrosia dumosa field experiment in southern Nevada, USA, using high-throughput sequencing of ribosomal RNA genes. To examine potential interactions among the N application, microhabitat and soil depth, we sampled soils associated with shrub canopies and interspace biological crusts at two soil depths (0–0.5 or 0–10 cm) across the N-amendment gradient (0, 7, and 15 kg ha−1 yr−1). We hypothesized that localized compositional differences in soil microbiota would constrain the impacts of N addition to a microhabitat distribution that would reflect highly localized geochemical conditions and microbial community composition. The richness and community composition of both bacterial and fungal communities differed significantly by microhabitat and with soil depth in each microhabitat. Only bacterial communities exhibited significant responses to the N addition. Community composition correlated with microhabitat and depth differences in soil geochemical features. Given the distinct roles of soil bacteria and fungi in major nutrient cycles, the resilience of fungi and sensitivity of bacteria to N amendments suggests that increased N input predicted for many arid ecosystems could shift nutrient cycling toward pathways driven primarily by fungal communities.

  8. Species diversity and drivers of arbuscular mycorrhizal fungal communities in a semi-arid mountain in China

    PubMed Central

    Zhang, Zhiming; Yang, Jiantao; Zhu, Yiwei

    2017-01-01

    Arbuscular mycorrhizal fungi (AMF) play an essential role in complex ecosystems. However, the species diversity and composition of AMF communities remain unclear in semi-arid mountains. Further, it is not well understood if the characteristics of AMF community assemblies differ for different habitat types, e.g., agricultural arable land, artificial forest land, natural grassland, and bush/wood land. Here, using the high-throughput technology by Illumina sequencing on the MiSeq platform, we explored the species diversity and composition of soil AMF communities among different habitat types in a semi-arid mountain (Taihang Mountain, Mid-western region of China). Then, we analyzed the effect of nutrient composition and soil texture on AMF community assembly. Our results showed that members of the Glomus genera were predominated in all soil types. The distance-based redundancy analysis indicated that the content of water, available phosphorus, and available potassium were the most crucial geochemical factors that significantly affected AMF communities (p < 0.05). The analysis of the soil texture confirmed that AMF diversity was negatively correlated with soil clay content. The comparison of AMF diversity among the various habitat types revealed that the artificial forest land had the lowest AMF diversity in comparison with other land types. Our findings suggest that there were differences in species diversity and composition of soil AMF communities among different habitat types. These findings shed new light on the characteristics of community structure and drivers of community assembly in AMF in semi-arid mountains, and point to the potential importance of different habitat types on AMF communities. PMID:29230378

  9. Re-Structuring of Marine Communities Exposed to Environmental Change: A Global Study on the Interactive Effects of Species and Functional Richness

    PubMed Central

    Wahl, Martin; Link, Heike; Alexandridis, Nicolaos; Thomason, Jeremy C.; Cifuentes, Mauricio; Costello, Mark J.; da Gama, Bernardo A. P.; Hillock, Kristina; Hobday, Alistair J.; Kaufmann, Manfred J.; Keller, Stefanie; Kraufvelin, Patrik; Krüger, Ina; Lauterbach, Lars; Antunes, Bruno L.; Molis, Markus; Nakaoka, Masahiro; Nyström, Julia; bin Radzi, Zulkamal; Stockhausen, Björn; Thiel, Martin; Vance, Thomas; Weseloh, Annika; Whittle, Mark; Wiesmann, Lisa; Wunderer, Laura; Yamakita, Takehisa; Lenz, Mark

    2011-01-01

    Species richness is the most commonly used but controversial biodiversity metric in studies on aspects of community stability such as structural composition or productivity. The apparent ambiguity of theoretical and experimental findings may in part be due to experimental shortcomings and/or heterogeneity of scales and methods in earlier studies. This has led to an urgent call for improved and more realistic experiments. In a series of experiments replicated at a global scale we translocated several hundred marine hard bottom communities to new environments simulating a rapid but moderate environmental change. Subsequently, we measured their rate of compositional change (re-structuring) which in the great majority of cases represented a compositional convergence towards local communities. Re-structuring is driven by mortality of community components (original species) and establishment of new species in the changed environmental context. The rate of this re-structuring was then related to various system properties. We show that availability of free substratum relates negatively while taxon richness relates positively to structural persistence (i.e., no or slow re-structuring). Thus, when faced with environmental change, taxon-rich communities retain their original composition longer than taxon-poor communities. The effect of taxon richness, however, interacts with another aspect of diversity, functional richness. Indeed, taxon richness relates positively to persistence in functionally depauperate communities, but not in functionally diverse communities. The interaction between taxonomic and functional diversity with regard to the behaviour of communities exposed to environmental stress may help understand some of the seemingly contrasting findings of past research. PMID:21611170

  10. Modeling plant composition as community continua in a forest landscape with LiDAR and hyperspectral remote sensing.

    PubMed

    Hakkenberg, C R; Peet, R K; Urban, D L; Song, C

    2018-01-01

    In light of the need to operationalize the mapping of forest composition at landscape scales, this study uses multi-scale nested vegetation sampling in conjunction with LiDAR-hyperspectral remotely sensed data from the G-LiHT airborne sensor to map vascular plant compositional turnover in a compositionally and structurally complex North Carolina Piedmont forest. Reflecting a shift in emphasis from remotely sensing individual crowns to detecting aggregate optical-structural properties of forest stands, predictive maps reflect the composition of entire vascular plant communities, inclusive of those species smaller than the resolution of the remotely sensed imagery, intertwined with proximate taxa, or otherwise obscured from optical sensors by dense upper canopies. Stand-scale vascular plant composition is modeled as community continua: where discrete community-unit classes at different compositional resolutions provide interpretable context for continuous gradient maps that depict n-dimensional compositional complexity as a single, consistent RGB color combination. In total, derived remotely sensed predictors explain 71%, 54%, and 48% of the variation in the first three components of vascular plant composition, respectively. Among all remotely sensed environmental gradients, topography derived from LiDAR ground returns, forest structure estimated from LiDAR all returns, and morphological-biochemical traits determined from hyperspectral imagery each significantly correspond to the three primary axes of floristic composition in the study site. Results confirm the complementarity of LiDAR and hyperspectral sensors for modeling the environmental gradients constraining landscape turnover in vascular plant composition and hold promise for predictive mapping applications spanning local land management to global ecosystem modeling. © 2017 by the Ecological Society of America.

  11. Community composition of soil bacteria nearly a decade after a fire in a tropical rainforest in East Kalimantan, Indonesia.

    PubMed

    Isobe, Kazuo; Otsuka, Shigeto; Sudiana, Imade; Nurkanto, Arif; Senoo, Keishi

    2009-10-01

    Soil bacterial community compositions in burnt and unburnt areas in a tropical rainforest in East Kalimantan, Indonesia, were investigated 8 and 9 years after a fire by denaturing gradient gel electrophoresis analysis targeting the 16S rRNA gene. Three study sites were set in the forest area devoid of fire damage (control), and in the lightly damaged and heavily damaged forest areas. Succession of aboveground vegetation in the two damaged areas had clearly proceeded after the fire, but the vegetation types still differed from the unburnt area at the time of this study. Community composition of total soil bacteria was similar among the three areas, and so was that of actinobacteria. However, the composition of ammonia oxidizing bacteria clearly differed depending on the presence or absence of past fire damage. These results indicate that even nearly a decade after the forest fire, impacts of the fire remained on the community composition of ammonia oxidizing bacteria, but not apparently on those of dominant bacteria and actinobacteria.

  12. Variability of community interaction networks in marine reserves and adjacent exploited areas

    USGS Publications Warehouse

    Montano-Moctezuma, G.; Li, H.W.; Rossignol, P.A.

    2008-01-01

    Regional and small-scale local oceanographic conditions can lead to high variability in community structure even among similar habitats. Communities with identical species composition can depict distinct networks due to different levels of disturbance as well as physical and biological processes. In this study we reconstruct community networks in four different areas off the Oregon Coast by matching simulated communities with observed dynamics. We compared reserves with harvested areas. Simulations suggested that different community networks, but with the same species composition, can represent each study site. Differences were found in predator-prey interactions as well as non-predatory interactions between community members. In addition, each site can be represented as a set of models, creating alternative stages among sites. The set of alternative models that characterize each study area depicts a sequence of functional responses where each specific model or interaction structure creates different species composition patterns. Different management practices, either in the past or of the present, may lead to alternative communities. Our findings suggest that management strategies should be analyzed at a community level that considers the possible consequences of shifting from one community scenario to another. This analysis provides a novel conceptual framework to assess the consequences of different management options for ecological communities. ?? 2008 Elsevier B.V. All rights reserved.

  13. Marketing activities of vape shops across racial/ethnic communities.

    PubMed

    Garcίa, Robert; Sidhu, Anupreet; Allem, Jon-Patrick; Baezconde-Garbanati, Lourdes; Unger, Jennifer B; Sussman, Steve

    2016-01-01

    There has been a surge in the number of vape shops in the USA. Research on the marketing practices of e-cigarette manufacturers is scarce and even less known are the practices of vape shop retailers. Past research on tobacco marketing has shown differences in the amount and content of marketing material, based on a community's demographic profile. This study examined marketing strategies in vape shops and explored differences among vape shops located in communities that differ by ethnic composition. Data was gathered in 2014 from a pilot-study on vape shops (n=77) in Los Angeles, which documented the characteristics of shops through employee interviews and in-store observations. Data were collected from shops located in communities that were predominantly, African-American (n=20), Hispanic (n=17), Korean (n=18), or non-Hispanic White (n=22). Sixty-one percent of vape shops had advertisements (print ads and posters) for e-cigarettes and 84% offered discounts. Vape shops in Hispanic communities were more likely to have ethnic specific marketing material compared to shops in other communities. All the shops provided customers with free samples, however those in Korean and non-Hispanic White communities had a significantly higher prevalence of customer accessible free samples. Vape shop marketing practices differed by ethnic community. A large majority of shops provided free samples to their customers, a practice which is now banned by the FDA. It will be important to monitor how vape shops will adjust their marketing strategy because of this ban. Future research should expand on the findings presented here to provide regulators with further crucial information.

  14. Changes in fungal community composition in response to experimental soil warming at the alpine treeline

    NASA Astrophysics Data System (ADS)

    Solly, Emily; Lindahl, Bjorn; Dawes, Melissa; Peter, Martina; Souza, Romulo; Rixen, Christian; Hagedorn, Frank

    2017-04-01

    Increased CO2 emissions and global warming may alter the composition of fungal communities through the reduction of low temperature limitation in the plant-soil system, faster nitrogen cycling and changes in the carbon allocation of host plants to the rhizosphere. Shifts in fungal community composition due to global changes are likely to affect the routes of carbon and nitrogen flows in the plant-soil system and alter the rates at which organic matter is decomposed. The main aim of our study was to estimate the effects of multiple years of free air CO2 enrichment (ambient concentration +200 ppm) and soil warming (+ 4°C) on the fungal community structure and composition. At an alpine treeline in Switzerland featuring two key high-elevation tree species, Larix decidua and Pinus uncinata, fungal communities within different organic horizons were analysed by high-throughput 454-pyrosequencing of ITS2 amplicons. In addition, we assessed the ectomycorrhizal community composition on root tips and monitored changes in sporocarp productivity of fungal species during the course of the experiment. Three years of experimental warming at the alpine treeline altered the composition of the fungal community in the organic horizons, whereas nine years of CO2 enrichment had only weak effects. Tree species influenced the composition of the fungal community and the magnitude of the responses of fungal functional groups to soil warming differed between plots with Larix and those with Pinus. The abundance of ectomycorrhizal fungi was positively correlated with nitrogen availability, and ectomycorrhizal taxa specialized for conditions of high nitrogen availability proliferated with warming, corresponding to considerable increases in extractable inorganic nitrogen in warmed soils. Changes in productivity of specific fungal fruiting bodies in response to soil warming (e.g. more Lactarius rufus sporocarps and less Hygrophorus speciousus sporocarps) were consistent with the 454-sequencing data and the colonization of ectomycorrhizal root tips. Several fungal taxa known to be involved in needle degradation responded positively to the warming treatment by increasing in their relative abundance. These findings provide novel insights into the spatial distribution of functional groups of fungi both vertically in the soil and between different rhizospheres of trees. Moreover, they indicate that traits related to nitrogen utilization are important in determining responses of ectomycorrhizal fungi to warming in cold regions, such as high-elevation ecosystems, with low N availability. Shifts in the overall fungal community composition in response to higher temperatures may alter fungal-driven processes with potential feedbacks on ecosystem nitrogen cycling and carbon storage at the alpine treeline.

  15. 7 CFR 3570.91 - Regulations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Regulations. 3570.91 Section 3570.91 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, DEPARTMENT OF AGRICULTURE COMMUNITY PROGRAMS Community Facilities Grant Program § 3570.91 Regulations. Grants under this part will be...

  16. 7 CFR 3570.91 - Regulations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Regulations. 3570.91 Section 3570.91 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, DEPARTMENT OF AGRICULTURE COMMUNITY PROGRAMS Community Facilities Grant Program § 3570.91 Regulations. Grants under this part will be...

  17. Influences of Species Interactions With Aggressive Ants and Habitat Filtering on Nest Colonization and Community Composition of Arboreal Twig-Nesting Ants.

    PubMed

    Philpott, Stacy M; Serber, Zachary; De la Mora, Aldo

    2018-04-05

    Ant community assembly is driven by many factors including species interactions (e.g., competition, predation, parasitism), habitat filtering (e.g., vegetation differences, microclimate, food and nesting resources), and dispersal. Canopy ant communities, including dominant and twig-nesting ants, are structured by all these different factors, but we know less about the impacts of species interactions and habitat filters acting at the colonization or recruitment stage. We examined occupation of artificial twig nests placed in shade trees in coffee agroecosystems. We asked whether species interactions-aggression from the dominant canopy ant, Azteca sericeasur Longino (Hymenoptera: Formicidae)-or habitat filtering-species of tree where nests were placed or surrounding vegetation-influence colonization, species richness, and community composition of twig-nesting ants. We found 20 species of ants occupying artificial nests. Nest occupation was lower on trees with A. sericeasur, but did not differ depending on tree species or surrounding vegetation. Yet, there were species-specific differences in occupation depending on A. sericeasur presence and tree species. Ant species richness did not vary with A. sericeasur presence or tree species. Community composition varied with A. sericeasur presence and surrounding vegetation. Our results suggest that species interactions with dominant ants are important determinants of colonization and community composition of twig-nesting ants. Habitat filtering at the level of tree species did not have strong effects on twig-nesting ants, but changes in coffee management may contribute to differences in community composition with important implications for ant conservation in agricultural landscapes, as well as biological control of coffee pests.

  18. Relationships Between Bird Communities and Forest Age, Structure, Species Composition and Fragmentation in the West Gulf Coastal Plain

    Treesearch

    Richard N. Conner; James G. Dickson

    1997-01-01

    Bird communities of the West Gulf Coastal Plain are strongly influenced by the stage of forest succession, species composition of understory and overstory vegetation, and forest structure. Alteration of plant communities through forest management and natural disturbances typically does not eliminate birds as a fauna1 group from the area affected, but will replace some...

  19. L-Glutamine Supplementation Alleviates Constipation during Late Gestation of Mini Sows by Modifying the Microbiota Composition in Feces

    PubMed Central

    Lu, Taofeng; Han, Lingxia; Zhao, Lili; Niu, Yinjie

    2017-01-01

    Constipation occurs frequently in both sows and humans, particularly, during late gestation. The microbial community of the porcine gut, the enteric microbiota, plays a critical role in functions that sustain intestinal health. Hence, microbial regulation during pregnancy may be important to prevent host constipation. The present study was conducted to determine whether L-glutamine (Gln) supplementation improved intestinal function and alleviated constipation by regulation of enteric microbiota. 16S rRNA sequences obtained from fecal samples from 9 constipated sows (3 in the constipation group and 6 in the 1.0% Gln group) were assessed from gestational day 70 to 84. Comparative analysis showed that the abundance of intestinal-friendly microbiota, that is, Bacteroidetes (P = 0.007) and Actinobacteria (P = 0.037), was comparatively increased in the 1.0% Gln group, while the abundance of pernicious bacteria, Oscillospira (P < 0.001) and Treponema (P = 0.011), was decreased. Dietary supplementation with 1.0% Gln may ameliorate constipation of sows by regulated endogenous gut microbiota. PMID:28386552

  20. Impact of livestock on a mosquito community (Diptera: Culicidae) in a Brazilian tropical dry forest.

    PubMed

    Santos, Cleandson Ferreira; Borges, Magno

    2015-01-01

    This study evaluated the effects of cattle removal on the Culicidae mosquito community structure in a tropical dry forest in Brazil. Culicidae were collected during dry and wet seasons in cattle presence and absence between August 2008 and October 2010 and assessed using multivariate statistical models. Cattle removal did not significantly alter Culicidae species richness and abundance. However, alterations were noted in Culicidae community composition. This is the first study to evaluate the impact of cattle removal on Culicidae community structure in Brazil and demonstrates the importance of assessing ecological parameters such as community species composition.

  1. Biodiversity increases functional and compositional resistance, but decreases resilience in phytoplankton communities.

    PubMed

    Baert, Jan M; De Laender, Frederik; Sabbe, Koen; Janssen, Colin R

    2016-12-01

    There is now ample evidence that biodiversity stabilizes aggregated ecosystem functions, such as primary production, in changing environments. In primary producer systems, this stabilizing effect is found to be driven by higher functional resistance (i.e., reduced changes in functions by environmental changes) rather than through higher functional resilience (i.e., rapid recovery following environmental changes) in more diverse systems. The stability of aggregated ecosystem functions directly depends on changes in species composition and by consequence their functional contributions to ecosystem functions. Still, it remains only theoretically explored how biodiversity can stabilize ecosystem functions by affecting compositional stability. Here, we demonstrate how biodiversity effects on compositional stability drive biodiversity effects on functional stability in diatom communities. In a microcosm experiment, we exposed 39 communities of five different levels of species richness (1, 2, 4, 6, and 8 species) to three concentrations of a chemical stressor (0, 25, and 250 μg/L atrazine) for four weeks, after which all communities were transferred to atrazine-free medium for three more weeks. Biodiversity simultaneously increased, increasing functional and compositional resistance, but decreased functional and compositional resilience. These results confirm the theoretically proposed link between biodiversity effects on functional and compositional stability in primary producer systems, and provide a mechanistic underpinning for observed biodiversity-stability relationships. Finally, we discuss how higher compositional stability can be expected to become increasingly important in stabilizing ecosystem functions under field conditions when multiple environmental stressors fluctuate simultaneously. © 2016 by the Ecological Society of America.

  2. Restoration with pioneer plants changes soil properties and remodels the diversity and structure of bacterial communities in rhizosphere and bulk soil of copper mine tailings in Jiangxi Province, China.

    PubMed

    Sun, Xiaoyan; Zhou, Yanling; Tan, Yinjing; Wu, Zhaoxiang; Lu, Ping; Zhang, Guohua; Yu, Faxin

    2018-05-25

    To unravel the ecological function played by pioneer plants in the practical restoration of mine tailings, it is vital to explore changes of soil characteristics and microbial communities in rhizosphere and bulk soil following the adaptation and survival of plants. In the present study, the diversity and structure of rhizospheric bacterial communities of three pioneer plants in copper mine tailings were investigated by Illumina MiSeq sequencing, and the effects of pioneer plants on soil properties were also evaluated. Significant soil improvement was detected in rhizospheric samples, and Alnus cremastogyne showed higher total organic matter, total nitrogen, and available phosphorus than two other herbaceous plants. Microbial diversity indices in rhizosphere and bulk soil of reclaimed tailings were significantly higher than bare tailings, even the soil properties of bulk soil in reclaimed tailings were not significantly different from those of bare tailings. A detailed taxonomic composition analysis demonstrated that Alphaproteobacteria and Deltaproteobacteria, Chloroflexi, Acidobacteria, and Gemmatimonadetes showed significantly higher relative abundance in rhizosphere and bulk soil. In contrast, Gammaproteobacteria and Firmicutes were abundant in bare tailings, in which Bacillus, Pseudomonas, and Lactococcus made up the majority of the bacterial community (63.04%). Many species within known heavy metal resistance and nutrient regulatory microorganism were identified in reclaimed tailings, and were more abundant among rhizospheric microbes. Hierarchical clustering and principal coordinate analysis (PCoA) analysis demonstrated that the bacterial profiles in the rhizosphere clustered strictly together according to plant types, and were distinguishable from bulk soil. However, we also identified a large shared OTUs that occurred repeatedly and was unaffected by highly diverse soil properties in rhizosphere and bulk samples. Redundancy analysis indicated that water content and Cu and As concentrations were the main environmental regulators of microbial composition. These results suggest that the interactive effect of pioneer plants and harsh soil environmental conditions remodel the specific bacterial communities in rhizosphere and bulk soil in mine tailings. And A. cremastogyne might be approximate candidate for phytoremediation of mine tailings for better soil amelioration effect and relative higher diversity of bacterial community in rhizosphere.

  3. Response of soil bacterial community to repeated applications of carbendazim.

    PubMed

    Wang, Xiuguo; Song, Min; Wang, Yiqi; Gao, Chunming; Zhang, Qun; Chu, Xiaoqiang; Fang, Hua; Yu, Yunlong

    2012-01-01

    The effect of repeated carbendazim applications on functional diversity of culturable microorganisms and bacterial community composition was studied under field conditions. The functional diversity of soil culturable microbial community (Shannon index, H') reduced significantly (P<0.05) after the first introduction of carbendazim at levels of 0.94, 1.88 and 4.70 kg active ingredient (a.i.)ha(-1) and then recovered to that in the control with subsequent applications. An evident (P<0.01) difference in the bacterial community composition was observed after the second carbendazim application by Temperature Gradient Gel Electrophoresis (TGGE) analysis of 16S rRNA genes amplified from treated and control soils, which remained after the third and fourth treatments. Our results indicated that repeated carbendazim applications have a transient harmful effect on functional diversity of soil culturable microbial community and result in an alteration in bacterial community composition largely due to one species within the γ-proteobacterium. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Spartina alterniflora invasion alters soil microbial community composition and microbial respiration following invasion chronosequence in a coastal wetland of China

    PubMed Central

    Yang, Wen; Jeelani, Nasreen; Leng, Xin; Cheng, Xiaoli; An, Shuqing

    2016-01-01

    The role of exotic plants in regulating soil microbial community structure and activity following invasion chronosequence remains unclear. We investigated soil microbial community structure and microbial respiration following Spartina alterniflora invasion in a chronosequence of 6-, 10-, 17-, and 20-year-old by comparing with bare flat in a coastal wetland of China. S. alterniflora invasion significantly increased soil moisture and salinity, the concentrations of soil water-soluble organic carbon and microbial biomass carbon (MBC), the quantities of total and various types of phospholipid fatty acids (PLFAs), the fungal:bacterial PLFAs ratio and cumulative microbial respiration compared with bare flat. The highest MBC, gram-negative bacterial and saturated straight-chain PLFAs were found in 10-year-old S. alterniflora soil, while the greatest total PLFAs, bacterial and gram-positive bacterial PLFAs were found in 10- and 17-year-old S. alterniflora soils. The monounsaturated:branched PLFAs ratio declined, and cumulative microbial respiration on a per-unit-PLFAs increased following S. alterniflora invasion in the chronosequence. Our results suggest that S. alterniflora invasion significantly increased the biomass of soil various microbial groups and microbial respiration compared to bare flat soil by increasing soil available substrate, and modifying soil physiochemical properties. Soil microbial community reached the most enriched condition in the 10-year-old S. alterniflora community. PMID:27241173

  5. Supplementary feeding restructures urban bird communities

    PubMed Central

    Galbraith, Josie A.; Jones, Darryl N.; Stanley, Margaret C.

    2015-01-01

    Food availability is a primary driver of avian population regulation. However, few studies have considered the effects of what is essentially a massive supplementary feeding experiment: the practice of wild bird feeding. Bird feeding has been posited as an important factor influencing the structure of bird communities, especially in urban areas, although experimental evidence to support this is almost entirely lacking. We carried out an 18-mo experimental feeding study at 23 residential properties to investigate the effects of bird feeding on local urban avian assemblages. Our feeding regime was based on predominant urban feeding practices in our region. We used monthly bird surveys to compare avian community composition, species richness, and the densities of local species at feeding and nonfeeding properties. Avian community structure diverged at feeding properties and five of the commonest garden bird species were affected by the experimental feeding regime. Introduced birds particularly benefitted, with dramatic increases observed in the abundances of house sparrow (Passer domesticus) and spotted dove (Streptopelia chinensis) in particular. We also found evidence of a negative effect on the abundance of a native insectivore, the grey warbler (Gerygone igata). Almost all of the observed changes did not persist once feeding had ceased. Our study directly demonstrates that the human pastime of bird feeding substantially contributes to the structure of avian community in urban areas, potentially altering the balance between native and introduced species. PMID:25941361

  6. Connectivity between surface and deep waters determines prokaryotic diversity in the North Atlantic Deep Water

    PubMed Central

    Frank, Alexander H.; Garcia, Juan A. L.; Herndl, Gerhard J.

    2016-01-01

    Summary To decipher the influence of depth stratification and surface provincialism on the dark ocean prokaryotic community composition, we sampled the major deep‐water masses in the eastern North Atlantic covering three biogeographic provinces. Their diversity was evaluated using ordination and canonical analysis of 454 pyrotag sequences. Variance partitioning suggested that 16% of the variation in the bacterial community composition was based on depth stratification while 9% of the variation was due to geographic location. General linear mixed effect models showed that the community of the subsurface waters was connected to the dark ocean prokaryotic communities in different biogeographic provinces. Cluster analysis indicated that some prokaryotic taxa are specific to distinct regions in bathypelagic water masses. Taken together, our data suggest that the dark ocean prokaryotic community composition of the eastern North Atlantic is primed by the formation and the horizontal transport of water masses. PMID:26914787

  7. [Epiphytic communities of arboreal formations in Southern Vietnam: an analysis of species composition and synusias structure in dependence on the extent of anthropogenic impact].

    PubMed

    Es'kov, A K

    2013-01-01

    Species composition of epiphytic communities within different formations of Phú Quôc Island (Southern Vietnam) is studied. The dependence of species composition and structural complexity of epiphytic communities on formation quality is demonstrated. Representatives of different families differ notably in their sensitivity to disturbances. Most vulnerable are Orchidaceae which represent the dominant group in epiphytic community of rain forest and which drop out almost completely under anthropogenic impacts. In less disturbed forests, epiphyte species diversity increases mainly at the expense of "lower" synusias and directly depends on the formation layering. Diminishing of layering numbers leads to dropping out of species belonging to "lower" synusias. Among epiphytes, the indicators of disturbed communities can be detected, namely species of ruderal strategy (explerents). In primal rain forest, they are absent or barely noticeable. An index is proposed for estimation of epiphytic communitiy complexity.

  8. Night-time lighting alters the composition of marine epifaunal communities

    PubMed Central

    Davies, Thomas W.; Coleman, Matthew; Griffith, Katherine M.; Jenkins, Stuart R.

    2015-01-01

    Marine benthic communities face multiple anthropogenic pressures that compromise the future of some of the most biodiverse and functionally important ecosystems in the world. Yet one of the pressures these ecosystems face, night-time lighting, remains unstudied. Light is an important cue in guiding the settlement of invertebrate larvae, and altering natural regimes of nocturnal illumination could modify patterns of recruitment among sessile epifauna. We present the first evidence of night-time lighting changing the composition of temperate epifaunal marine invertebrate communities. Illuminating settlement surfaces with white light-emitting diode lighting at night, to levels experienced by these communities locally, both inhibited and encouraged the colonization of 39% of the taxa analysed, including three sessile and two mobile species. Our results indicate that ecological light pollution from coastal development, shipping and offshore infrastructure could be changing the composition of marine epifaunal communities. PMID:25926694

  9. Influence of environmental variables on the structure and composition of soil bacterial communities in natural and constructed wetlands.

    PubMed

    Arroyo, Paula; Sáenz de Miera, Luis E; Ansola, Gemma

    2015-02-15

    Bacteria are key players in wetland ecosystems, however many essential aspects regarding the ecology of wetland bacterial communities remain unknown. The present study characterizes soil bacterial communities from natural and constructed wetlands through the pyrosequencing of 16S rDNA genes in order to evaluate the influence of wetland variables on bacterial community composition and structure. The results show that the composition of soil bacterial communities was significantly associated with the wetland type (natural or constructed wetland), the type of environment (lagoon, Typha or Salix) and three continuous parameters (SOM, COD and TKN). However, no clear associations were observed with soil pH. Bacterial diversity values were significantly lower in the constructed wetland with the highest inlet nutrient concentrations. The abundances of particular metabolic groups were also related to wetland characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. 32 CFR 705.22 - Relations with community groups.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Relations with community groups. 705.22 Section... REGULATIONS AND OFFICIAL RECORDS PUBLIC AFFAIRS REGULATIONS § 705.22 Relations with community groups. (a) Naval commands will cooperate with and assist community groups within their capabilities, to the event...

  11. 32 CFR 705.22 - Relations with community groups.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Relations with community groups. 705.22 Section... REGULATIONS AND OFFICIAL RECORDS PUBLIC AFFAIRS REGULATIONS § 705.22 Relations with community groups. (a) Naval commands will cooperate with and assist community groups within their capabilities, to the event...

  12. 32 CFR 705.22 - Relations with community groups.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Relations with community groups. 705.22 Section... REGULATIONS AND OFFICIAL RECORDS PUBLIC AFFAIRS REGULATIONS § 705.22 Relations with community groups. (a) Naval commands will cooperate with and assist community groups within their capabilities, to the event...

  13. Effects of plant diversity, community composition and environmental parameters on productivity in montane European grasslands.

    PubMed

    Kahmen, Ansgar; Perner, Jörg; Audorff, Volker; Weisser, Wolfgang; Buchmann, Nina

    2005-02-01

    In the past years, a number of studies have used experimental plant communities to test if biodiversity influences ecosystem functioning such as productivity. It has been argued, however, that the results achieved in experimental studies may have little predictive value for species loss in natural ecosystems. Studies in natural ecosystems have been equivocal, mainly because in natural ecosystems differences in diversity are often confounded with differences in land use history or abiotic parameters. In this study, we investigated the effect of plant diversity on ecosystem functioning in semi-natural grasslands. In an area of 10x20 km, we selected 78 sites and tested the effects of various measures of diversity and plant community composition on productivity. We separated the effects of plant diversity on ecosystem functioning from potentially confounding effects of community composition, management or environmental parameters, using multivariate statistical analyses. In the investigated grasslands, simple measures of biodiversity were insignificant predictors of productivity. However, plant community composition explained productivity very well (R2=0.31) and was a better predictor than environmental variables (soil and site characteristics) or management regime. Thus, complex measures such as community composition and structure are important drivers for ecosystem functions in semi-natural grasslands. Furthermore, our data show that it is difficult to extrapolate results from experimental studies to semi-natural ecosystems, although there is a need to investigate natural ecosystems to fully understand the relationship of biodiversity and ecosystem functioning.

  14. Contrasting outcomes of species- and community-level analyses of the temporal consistency of functional composition.

    PubMed

    Katabuchi, Masatoshi; Wright, S Joseph; Swenson, Nathan G; Feeley, Kenneth J; Condit, Richard; Hubbell, Stephen P; Davies, Stuart J

    2017-09-01

    Multiple anthropogenic drivers affect every natural community, and there is broad interest in using functional traits to understand and predict the consequences for future biodiversity. There is, however, no consensus regarding the choice of analytical methods. We contrast species- and community-level analyses of change in the functional composition for four traits related to drought tolerance using three decades of repeat censuses of trees in the 50-ha Forest Dynamics Plot on Barro Colorado Island, Panama. Community trait distributions shifted significantly through time, which may indicate a shift toward more drought tolerant species. However, at the species level, changes in abundance were unrelated to trait values. To reconcile these seemingly contrasting results, we evaluated species-specific contributions to the directional shifts observed at the community level. Abundance changes of just one to six of 312 species were responsible for the community-level shifts observed for each trait. Our results demonstrate that directional changes in community-level functional composition can result from idiosyncratic change in a few species rather than widespread community-wide changes associated with functional traits. Future analyses of directional change in natural communities should combine community-, species-, and possibly individual-level analyses to uncover relationships with function that can improve understanding and enable prediction. © 2017 by the Ecological Society of America.

  15. A Greenhouse Assay on the Effect of Applied Urea Amount on the Rhizospheric Soil Bacterial Communities.

    PubMed

    Shang, Shuanghua; Yi, Yanli

    2015-12-01

    The rhizospheric bacteria play key role in plant nutrition and growth promotion. The effects of increased nitrogen inputs on plant rhizospheric soils also have impacted on whole soil microbial communities. In this study, we analyzed the effects of applied nitrogen (urea) on rhizospheric bacterial composition and diversity in a greenhouse assay using the high-throughput sequencing technique. To explore the environmental factors driving the abundance, diversity and composition of soil bacterial communities, the relationship between soil variables and the bacterial communities were also analyzed using the mantel test as well as the redundancy analysis. The results revealed significant bacterial diversity changes at different amounts of applied urea, especially between the control treatment and the N fertilized treatments. Mantel tests showed that the bacterial communities were significantly correlated with the soil nitrate nitrogen, available nitrogen, soil pH, ammonium nitrogen and total organic carbon. The present study deepened the understanding about the rhizospheric soil microbial communities under different amounts of applied urea in greenhouse conditions, and our work revealed the environmental factors affecting the abundance, diversity and composition of rhizospheric bacterial communities.

  16. Integrated analysis of bacterial and microeukaryotic communities from differentially active mud volcanoes in the Gulf of Cadiz

    NASA Astrophysics Data System (ADS)

    Coelho, Francisco J. R. C.; Louvado, António; Domingues, Patrícia M.; Cleary, Daniel F. R.; Ferreira, Marina; Almeida, Adelaide; Cunha, Marina R.; Cunha, Ângela; Gomes, Newton C. M.

    2016-10-01

    The present study assesses the diversity and composition of sediment bacterial and microeukaryotic communities from deep-sea mud volcanoes (MVs) associated with strike-slip faults in the South-West Iberian Margin (SWIM). We used a 16S/18S rRNA gene based pyrosequencing approach to characterize and correlate the sediment bacterial and microeukaryotic communities from MVs with differing gas seep regimes and from an additional site with no apparent seeping activity. In general, our results showed significant compositional changes of bacterial and microeukaryotic communities in sampling sites with different seepage regimes. Sediment bacterial communities were enriched with Methylococcales (putative methanotrophs) but had lower abundances of Rhodospirillales, Nitrospirales and SAR202 in the more active MVs. Within microeukaryotic communities, members of the Lobosa (lobose amoebae) were enriched in more active MVs. We also showed a strong correlation between Methylococcales populations and lobose amoeba in active MVs. This study provides baseline information on the diversity and composition of bacterial and microeukaryotic communities in deep-sea MVs associated with strike-slip faults.

  17. Seasonal Patterns in Microbial Community Composition in Denitrifying Bioreactors Treating Subsurface Agricultural Drainage.

    PubMed

    Porter, Matthew D; Andrus, J Malia; Bartolerio, Nicholas A; Rodriguez, Luis F; Zhang, Yuanhui; Zilles, Julie L; Kent, Angela D

    2015-10-01

    Denitrifying bioreactors, consisting of water flow control structures and a woodchip-filled trench, are a promising approach for removing nitrate from agricultural subsurface or tile drainage systems. To better understand the seasonal dynamics and the ecological drivers of the microbial communities responsible for denitrification in these bioreactors, we employed microbial community "fingerprinting" techniques in a time-series examination of three denitrifying bioreactors over 2 years, looking at bacteria, fungi, and the denitrifier functional group responsible for the final step of complete denitrification. Our analysis revealed that microbial community composition responds to depth and seasonal variation in moisture content and inundation of the bioreactor media, as well as temperature. Using a geostatistical analysis approach, we observed recurring temporal patterns in bacterial and denitrifying bacterial community composition in these bioreactors, consistent with annual cycling. The fungal communities were more stable, having longer temporal autocorrelations, and did not show significant annual cycling. These results suggest a recurring seasonal cycle in the denitrifying bioreactor microbial community, likely due to seasonal variation in moisture content.

  18. Integrated analysis of bacterial and microeukaryotic communities from differentially active mud volcanoes in the Gulf of Cadiz

    PubMed Central

    Coelho, Francisco J. R. C.; Louvado, António; Domingues, Patrícia M.; Cleary, Daniel F. R.; Ferreira, Marina; Almeida, Adelaide; Cunha, Marina R.; Cunha, Ângela; Gomes, Newton C. M.

    2016-01-01

    The present study assesses the diversity and composition of sediment bacterial and microeukaryotic communities from deep-sea mud volcanoes (MVs) associated with strike-slip faults in the South-West Iberian Margin (SWIM). We used a 16S/18S rRNA gene based pyrosequencing approach to characterize and correlate the sediment bacterial and microeukaryotic communities from MVs with differing gas seep regimes and from an additional site with no apparent seeping activity. In general, our results showed significant compositional changes of bacterial and microeukaryotic communities in sampling sites with different seepage regimes. Sediment bacterial communities were enriched with Methylococcales (putative methanotrophs) but had lower abundances of Rhodospirillales, Nitrospirales and SAR202 in the more active MVs. Within microeukaryotic communities, members of the Lobosa (lobose amoebae) were enriched in more active MVs. We also showed a strong correlation between Methylococcales populations and lobose amoeba in active MVs. This study provides baseline information on the diversity and composition of bacterial and microeukaryotic communities in deep-sea MVs associated with strike-slip faults. PMID:27762306

  19. Integrated analysis of bacterial and microeukaryotic communities from differentially active mud volcanoes in the Gulf of Cadiz.

    PubMed

    Coelho, Francisco J R C; Louvado, António; Domingues, Patrícia M; Cleary, Daniel F R; Ferreira, Marina; Almeida, Adelaide; Cunha, Marina R; Cunha, Ângela; Gomes, Newton C M

    2016-10-20

    The present study assesses the diversity and composition of sediment bacterial and microeukaryotic communities from deep-sea mud volcanoes (MVs) associated with strike-slip faults in the South-West Iberian Margin (SWIM). We used a 16S/18S rRNA gene based pyrosequencing approach to characterize and correlate the sediment bacterial and microeukaryotic communities from MVs with differing gas seep regimes and from an additional site with no apparent seeping activity. In general, our results showed significant compositional changes of bacterial and microeukaryotic communities in sampling sites with different seepage regimes. Sediment bacterial communities were enriched with Methylococcales (putative methanotrophs) but had lower abundances of Rhodospirillales, Nitrospirales and SAR202 in the more active MVs. Within microeukaryotic communities, members of the Lobosa (lobose amoebae) were enriched in more active MVs. We also showed a strong correlation between Methylococcales populations and lobose amoeba in active MVs. This study provides baseline information on the diversity and composition of bacterial and microeukaryotic communities in deep-sea MVs associated with strike-slip faults.

  20. Divergent environmental filters drive functional segregation of European peatlands

    NASA Astrophysics Data System (ADS)

    Robroek, B.; Jassey, V.; Bragazza, L.; Buttler, A.

    2015-12-01

    Plant communities are largely shaped by prevailing climatic conditions. As a result, environmental change is expected to alter the (functional) composition in plant communities. Because plants, and particularly the composition of plant species, play an important role in driving ecosystem processes, it is crucial that we improve our understanding on which environmental factors are most important in shaping plant communities. Here we presnt the results for a cross-Eurpean study, were we assessed the role of environmnetal conditions on plant community composition in 56 peatlands. We show that plant species richness and diversity are relatively stable across the main environmental gradients. Nevertheless, we observe large changes in the plant community structure. In other words, species turnover increased with increasing differences in environmental viariables. Such turnover in the community composition is largely associated to gradients temperature and precipitation, whilst nutrients -often reported as major driver for changes in peatland ecosystems- were only important at the end of the gradient of current deposition levels in Europe. Using a combination of species distribution modelling and species co-occurence patterns, we identified two spatially non-exclusive groups of plant species. Species within a distinct group responded similarly to bioclimatic variables and nutrient deposition levels, whilst between group response was mirrored. These results suggest that these two groups of plants are subjected to divergent environmental filters. Additionally, European peatlands aggregate into two distinct clusters based on plant functional trait composition. Each cluster was dominated by plant species from either one of the two co-response groups. Overall, our results demonstrate that environmental change results in a gradual replacement of plant species from two divergent groups, consequently affecting the functional trait composition in peatlands.

  1. Soil drying procedure affects the DNA quantification of Lactarius vinosus but does not change the fungal community composition.

    PubMed

    Castaño, Carles; Parladé, Javier; Pera, Joan; Martínez de Aragón, Juan; Alday, Josu G; Bonet, José Antonio

    2016-11-01

    Drying soil samples before DNA extraction is commonly used for specific fungal DNA quantification and metabarcoding studies, but the impact of different drying procedures on both the specific fungal DNA quantity and the fungal community composition has not been analyzed. We tested three different drying procedures (freeze-drying, oven-drying, and room temperature) on 12 different soil samples to determine (a) the soil mycelium biomass of the ectomycorrhizal species Lactarius vinosus using qPCR with a specifically designed TaqMan® probe and (b) the fungal community composition and diversity using the PacBio® RS II sequencing platform. Mycelium biomass of L. vinosus was significantly greater in the freeze-dried soil samples than in samples dried at oven and room temperature. However, drying procedures had no effect on fungal community composition or on fungal diversity. In addition, there were no significant differences in the proportions of fungi according to their functional roles (moulds vs. mycorrhizal species) in response to drying procedures. Only six out of 1139 operational taxonomic units (OTUs) had increased their relative proportions after soil drying at room temperature, with five of these OTUs classified as mould or yeast species. However, the magnitude of these changes was small, with an overall increase in relative abundance of these OTUs of approximately 2 %. These results suggest that DNA degradation may occur especially after drying soil samples at room temperature, but affecting equally nearly all fungi and therefore causing no significant differences in diversity and community composition. Despite the minimal effects caused by the drying procedures at the fungal community composition, freeze-drying resulted in higher concentrations of L. vinosus DNA and prevented potential colonization from opportunistic species.

  2. Dissolved organic matter (DOM) in pore water of Arctic Ocean sediments: linking DOM molecular composition with microbial community structure

    NASA Astrophysics Data System (ADS)

    Rossel, P. E.; Bienhold, C.; Boetius, A.; Dittmar, T.

    2016-02-01

    Marine organic matter (OM) that sinks from surface waters to the seafloor is the energy and carbon source for benthic communities. These communities produce dissolved organic matter (DOM) in the process of remineralization, enriching the sediment porewater with fresh DOM compounds. In the Arctic Ocean, primary production is limited by nutrients and light and is thus strongly influenced by sea ice cover. Ice cover is expected to further decrease due to global warming, which may have important consequences for primary production and the quantity and quality of OM exported to the seafloor. This study focused on: 1) the molecular composition of the DOM in sediment pore waters of the deep Eurasian Arctic basins, 2) whether there is any relation between Arctic Ocean ice cover and DOM composition and 3) whether the DOM composition correlates with microbial community structure. Molecular data, obtained via 15 Tesla Fourier transform ion cyclotron resonance mass spectrometry, were statistically correlated with environmental parameters. The productive ice margin stations showed higher abundances of molecular formulae of peptides, unsaturated aliphatics and saturated fatty acids. This molecular trend is indicative of fresh OM and phytodetritus deposition, compared to the northernmost, ice-covered stations which had stronger aromatic signals. Benthic bacterial community structure, as assessed with the fingerprinting method ARISA, was significantly correlated with DOM molecular composition. Further analyses using Illumina next-generation sequencing will enable the taxonomic identification of specific bacterial groups and their interdependence with DOM compounds. This study contributes to the understanding of the coupling between Arctic Ocean productivity and its depositional regime, and provides first insights into potential links between microbial community structure and DOM molecular composition in Arctic sediments

  3. Field-based evaluation of two herbaceous plant community composition sampling methods for long-term monitoring in Northern Great Plains National Parks

    USGS Publications Warehouse

    Symstad, Amy J.; Wienk, Cody L.; Thorstenson, Andy

    2006-01-01

    The Northern Great Plains Inventory & Monitoring (I&M) Network (Network) of the National Park Service (NPS) consists of 13 NPS units in North Dakota, South Dakota, Nebraska, and eastern Wyoming. The Network is in the planning phase of a long-term program to monitor the health of park ecosystems. Plant community composition is one of the 'Vital Signs,' or indicators, that will be monitored as part of this program for three main reasons. First, plant community composition is information-rich; a single sampling protocol can provide information on the diversity of native and non-native species, the abundance of individual dominant species, and the abundance of groups of plants. Second, plant community composition is of specific management concern. The abundance and diversity of exotic plants, both absolute and relative to native species, is one of the greatest management concerns in almost all Network parks (Symstad 2004). Finally, plant community composition reflects the effects of a variety of current or anticipated stressors on ecosystem health in the Network parks including invasive exotic plants, large ungulate grazing, lack of fire in a fire-adapted system, chemical exotic plant control, nitrogen deposition, increased atmospheric carbon dioxide concentrations, and climate change. Before the Network begins its Vital Signs monitoring, a detailed plan describing specific protocols used for each of the Vital Signs must go through rigorous development and review. The pilot study on which we report here is one of the components of this protocol development. The goal of the work we report on here was to determine a specific method to use for monitoring plant community composition of the herb layer (< 2 m tall).

  4. Niche partitioning in arbuscular mycorrhizal communities in temperate grasslands: a lesson from adjacent serpentine and nonserpentine habitats.

    PubMed

    Kohout, Petr; Doubková, Pavla; Bahram, Mohammad; Suda, Jan; Tedersoo, Leho; Voříšková, Jana; Sudová, Radka

    2015-04-01

    Arbuscular mycorrhizal fungi (AMF) represent an important soil microbial group playing a fundamental role in many terrestrial ecosystems. We explored the effects of deterministic (soil characteristics, host plant life stage, neighbouring plant communities) and stochastic processes on AMF colonization, richness and community composition in roots of Knautia arvensis (Dipsacaceae) plants from three serpentine grasslands and adjacent nonserpentine sites. Methodically, the study was based on 454-sequencing of the ITS region of rDNA. In total, we detected 81 molecular taxonomical operational units (MOTUs) belonging to the Glomeromycota. Serpentine character of the site negatively influenced AMF root colonization, similarly as higher Fe concentration. AMF MOTUs richness linearly increased along a pH gradient from 3.5 to 5.8. Contrary, K and Cr soil concentration had a negative influence on AMF MOTUs richness. We also detected a strong relation between neighbouring plant community composition and AMF MOTUs richness. Although spatial distance between the sampled sites (c. 0.3-3 km) contributed to structuring AMF communities in K. arvensis roots, environmental parameters were key factors in this respect. In particular, the composition of AMF communities was shaped by the complex of serpentine conditions, pH and available soil Ni concentration. The composition of AMF communities was also dependent on host plant life stage (vegetative vs. generative). Our study supports the dominance of deterministic factors in structuring AMF communities in heterogeneous environment composed of an edaphic mosaic of serpentine and nonserpentine soils. © 2015 John Wiley & Sons Ltd.

  5. Identification of Cellulose-Responsive Bacterial and Fungal Communities in Geographically and Edaphically Different Soils by Using Stable Isotope Probing

    PubMed Central

    Eichorst, Stephanie A.

    2012-01-01

    Many bacteria and fungi are known to degrade cellulose in culture, but their combined response to cellulose in different soils is unknown. Replicate soil microcosms amended with [13C]cellulose were used to identify bacterial and fungal communities responsive to cellulose in five geographically and edaphically different soils. The diversity and composition of the cellulose-responsive communities were assessed by DNA-stable isotope probing combined with Sanger sequencing of small-subunit and large-subunit rRNA genes for the bacterial and fungal communities, respectively. In each soil, the 13C-enriched, cellulose-responsive communities were of distinct composition compared to the original soil community or 12C-nonenriched communities. The composition of cellulose-responsive taxa, as identified by sequence operational taxonomic unit (OTU) similarity, differed in each soil. When OTUs were grouped at the bacterial order level, we found that members of the Burkholderiales, Caulobacteriales, Rhizobiales, Sphingobacteriales, Xanthomonadales, and the subdivision 1 Acidobacteria were prevalent in the 13C-enriched DNA in at least three of the soils. The cellulose-responsive fungi were identified as members of the Trichocladium, Chaetomium, Dactylaria, and Arthrobotrys genera, along with two novel Ascomycota clusters, unique to one soil. Although similarities were identified in higher-level taxa among some soils, the composition of cellulose-responsive bacteria and fungi was generally unique to a certain soil type, suggesting a strong potential influence of multiple edaphic factors in shaping the community. PMID:22287013

  6. Defoliation and arbuscular mycorrhizal fungi shape plant communities in overgrazed semi-arid grasslands.

    PubMed

    Yang, Xin; Shen, Yue; Liu, Nan; Wilson, Gail W T; Cobb, Adam B; Zhang, Yingjun

    2018-05-30

    Overgrazing substantially contributes to global grassland degradation by decreasing plant community productivity and diversity through trampling, defoliation, and removal of nutrients. Arbuscular mycorrhizal (AM) fungi also play a critical role in plant community diversity, composition, and primary productivity, maintaining ecosystem functions. However, interactions between grazing disturbances, such as trampling and defoliation, and AM fungi in grassland communities are not well known. We examined influences of trampling, defoliation, and AM fungi on semi-arid grassland plant community composition for three years, by comparing all combinations of these factors. Benomyl fungicide was applied to reduce AM fungal abundance. Overgrazing typically resulted in reduced dominance of Stipa Krylovii, contributing to degradation of typical steppe grasslands. Our results indicated trampling generally had little effect on plant community composition, unless combined with defoliation or AM fungal suppression. Defoliation was the main component of grazing that promoted dominance of Potentilla acaulis over Stipa krylovii and Artemisia frigida, presumably by alleviating light limitation. In non-defoliated plots, AM fungi promoted A. frigida, with a concomitant reduction in S. krylovii growth compared to corresponding AM suppressed plots. Our results indicate AM fungi and defoliation jointly suppress S. krylovii biomass; however, prolonged defoliation weakens mycorrhizal influence on plant community composition. These findings give new insight into dominant plant species shifts in degraded semi-arid grasslands. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Composition and development of oral bacterial communities.

    PubMed

    Palmer, Robert J

    2014-02-01

    The oral bacterial microbiome encompasses approximately 700 commonly occurring phylotypes, approximately half of which can be present at any time in any individual. These bacteria are largely indigenous to the oral cavity; this limited habitat range suggests that interactions between the various phylotypes, and between the phylotypes and their environment, are crucial for their existence. Molecular cataloging has confirmed many basic observations on the composition of the oral microbiome that were formulated well before ribosomal RNA-based systematics, but the power and the scope of molecular taxonomy have resulted in the discovery of new phylotypes and, more importantly, have made possible a level of bacterial community analysis that was unachievable with classical methods. Bacterial community structure varies with location within the mouth, and changes in community structure are related to disease initiation and disease progression. Factors that influence the formation and the evolution of communities include selective adherence to epithelial or tooth surfaces, specific cell-to-cell binding as a driver of early community composition, and interorganismal interaction leading to alteration of the local environment, which represents the first step on the road to oral disease. A comprehensive understanding of how these factors interact to drive changes in the composition of the oral microbial community can lead to new strategies for the inhibition of periodontal diseases and dental caries. Published 2013. This article is a US Government work and is in the public domain in the USA.

  8. A computer model to forecast wetland vegetation changes resulting from restoration and protection in coastal Louisiana

    USGS Publications Warehouse

    Visser, Jenneke M.; Duke-Sylvester, Scott M.; Carter, Jacoby; Broussard, Whitney P.

    2013-01-01

    The coastal wetlands of Louisiana are a unique ecosystem that supports a diversity of wildlife as well as a diverse community of commercial interests of both local and national importance. The state of Louisiana has established a 5-year cycle of scientific investigation to provide up-to-date information to guide future legislation and regulation aimed at preserving this critical ecosystem. Here we report on a model that projects changes in plant community distribution and composition in response to environmental conditions. This model is linked to a suite of other models and requires input from those that simulate the hydrology and morphology of coastal Louisiana. Collectively, these models are used to assess how alternative management plans may affect the wetland ecosystem through explicit spatial modeling of the physical and biological processes affected by proposed modifications to the ecosystem. We have also taken the opportunity to advance the state-of-the-art in wetland plant community modeling by using a model that is more species-based in its description of plant communities instead of one based on aggregated community types such as brackish marsh and saline marsh. The resulting model provides an increased level of ecological detail about how wetland communities are expected to respond. In addition, the output from this model provides critical inputs for estimating the effects of management on higher trophic level species though a more complete description of the shifts in habitat.

  9. Hierarchical spatial structure of stream fish colonization and extinction

    USGS Publications Warehouse

    Hitt, N.P.; Roberts, J.H.

    2012-01-01

    Spatial variation in extinction and colonization is expected to influence community composition over time. In stream fish communities, local species richness (alpha diversity) and species turnover (beta diversity) are thought to be regulated by high extinction rates in headwater streams and high colonization rates in downstream areas. We evaluated the spatiotemporal structure of fish communities in streams originally surveyed by Burton and Odum 1945 (Ecology 26: 182-194) in Virginia, USA and explored the effects of species traits on extinction and colonization dynamics. We documented dramatic changes in fish community structure at both the site and stream scales. Of the 34 fish species observed, 20 (59%) were present in both time periods, but 11 (32%) colonized the study area and three (9%) were extirpated over time. Within streams, alpha diversity increased in two of three streams but beta diversity decreased dramatically in all streams due to fish community homogenization caused by colonization of common species and extirpation of rare species. Among streams, however, fish communities differentiated over time. Regression trees indicated that reproductive life-history traits such as spawning mound construction, associations with mound-building species, and high fecundity were important predictors of species persistence or colonization. Conversely, native fishes not associated with mound-building exhibited the highest rates of extirpation from streams. Our results demonstrate that stream fish colonization and extinction dynamics exhibit hierarchical spatial structure and suggest that mound-building fishes serve as keystone species for colonization of headwater streams.

  10. Pycnoscelus surinamensis cockroach gut microbiota respond consistently to a fungal diet without mirroring those of fungus-farming termites.

    PubMed

    Richards, Callum; Otani, Saria; Mikaelyan, Aram; Poulsen, Michael

    2017-01-01

    The gut microbiotas of cockroaches and termites play important roles in the symbiotic digestion of dietary components, such as lignocellulose. Diet has been proposed as a primary determinant of community structure within the gut, acting as a selection force to shape the diversity observed within this "bioreactor", and as a key factor for the divergence of the termite gut microbiota from the omnivorous cockroach ancestor. The gut microbiota in most termites supports primarily the breakdown of lignocellulose, but the fungus-farming sub-family of higher termites has become similar in gut microbiota to the ancestral omnivorous cockroaches. To assess the importance of a fungus diet as a driver of community structure, we compare community compositions in the guts of experimentally manipulated Pycnoscelus surinamensis cockroaches fed on fungus cultivated by fungus-farming termites. MiSeq amplicon analysis of gut microbiotas from 49 gut samples showed a step-wise gradient pattern in community similarity that correlated with an increase in the proportion of fungal material provided to the cockroaches. Comparison of the taxonomic composition of manipulated communities to that of gut communities of a fungus-feeding termite species showed that although some bacteria OTUs shared by P. surinamensis and the farming termites increased in the guts of cockroaches on a fungal diet, cockroach communities remained distinct from those of termites. These results demonstrate that a fungal diet can play a role in structuring gut community composition, but at the same time exemplifies how original community compositions constrain the magnitude of such change.

  11. Microbial legacies alter decomposition in response to simulated global change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martiny, Jennifer B. H.; Martiny, Adam C.; Weihe, Claudia

    Terrestrial ecosystem models assume that microbial communities respond instantaneously, or are immediately resilient, to environmental change. Here we tested this assumption by quantifying the resilience of a leaf litter community to changes in precipitation or nitrogen availability. By manipulating composition within a global change experiment, we decoupled the legacies of abiotic parameters versus that of the microbial community itself. After one rainy season, more variation in fungal composition could be explained by the original microbial inoculum than the litterbag environment (18% versus 5.5% of total variation). This compositional legacy persisted for 3 years, when 6% of the variability in fungalmore » composition was still explained by the microbial origin. In contrast, bacterial composition was generally more resilient than fungal composition. Microbial functioning (measured as decomposition rate) was not immediately resilient to the global change manipulations; decomposition depended on both the contemporary environment and rainfall the year prior. Finally, using metagenomic sequencing, we showed that changes in precipitation, but not nitrogen availability, altered the potential for bacterial carbohydrate degradation, suggesting why the functional consequences of the two experiments may have differed. Predictions of how terrestrial ecosystem processes respond to environmental change may thus be improved by considering the legacies of microbial communities.« less

  12. Microbial legacies alter decomposition in response to simulated global change

    DOE PAGES

    Martiny, Jennifer B. H.; Martiny, Adam C.; Weihe, Claudia; ...

    2016-10-14

    Terrestrial ecosystem models assume that microbial communities respond instantaneously, or are immediately resilient, to environmental change. Here we tested this assumption by quantifying the resilience of a leaf litter community to changes in precipitation or nitrogen availability. By manipulating composition within a global change experiment, we decoupled the legacies of abiotic parameters versus that of the microbial community itself. After one rainy season, more variation in fungal composition could be explained by the original microbial inoculum than the litterbag environment (18% versus 5.5% of total variation). This compositional legacy persisted for 3 years, when 6% of the variability in fungalmore » composition was still explained by the microbial origin. In contrast, bacterial composition was generally more resilient than fungal composition. Microbial functioning (measured as decomposition rate) was not immediately resilient to the global change manipulations; decomposition depended on both the contemporary environment and rainfall the year prior. Finally, using metagenomic sequencing, we showed that changes in precipitation, but not nitrogen availability, altered the potential for bacterial carbohydrate degradation, suggesting why the functional consequences of the two experiments may have differed. Predictions of how terrestrial ecosystem processes respond to environmental change may thus be improved by considering the legacies of microbial communities.« less

  13. Characterization of Unexplored Deadwood Mycobiome in Highly Diverse Subtropical Forests Using Culture-independent Molecular Technique.

    PubMed

    Purahong, Witoon; Pietsch, Katherina A; Lentendu, Guillaume; Schöps, Ricardo; Bruelheide, Helge; Wirth, Christian; Buscot, François; Wubet, Tesfaye

    2017-01-01

    The deadwood mycobiome, also known as wood-inhabiting fungi (WIF), are among the key players in wood decomposition, having a large impact on nutrient cycling in forest soils. However, our knowledge of WIF richness and distribution patterns in different forest biomes is limited. Here, we used pyrotag sequencing of the fungal internal transcribed spacer (ITS2) region to characterize the deadwood mycobiome of two tree species with greatly different wood characteristics ( Schima superba and Pinus massoniana ) in a Chinese subtropical forest ecosystem. Specifically, we tested (i) the effects of tree species and wood quality properties on WIF OTU richness and community composition; (ii) the role of biotic and abiotic factors in shaping the WIF communities; and (iii) the relationship between WIF OTU richness, community composition and decomposition rates. Due to different wood chemical properties, we hypothesized that the WIF communities derived from the two tree species would be correlated differently with biotic and abiotic factors. Our results show that deadwood in subtropical forests harbors diverse fungal communities comprising six ecological functional groups. We found interesting colonization patterns for this subtropical biome, where Resinicium spp. were highly detected in both broadleaved and coniferous deadwood. In addition, the members of Xylariales were frequently found in Schima . The two deadwood species differed significantly in WIF OTU richness ( Pinus > Schima ) and community composition ( P < 0.001). Variations in WIF community composition of both tree species were significantly explained by wood pH and ecological factors (biotic: deadwood species, basal area and abiotic: soil pH), but the WIF communities derived from each tree species correlated differently with abiotic factors. Interestingly, we found that deadwood decomposition rate significantly correlated with WIF communities and negatively correlated with WIF OTU richness. We conclude that the pattern of WIF OTU richness and community composition are controlled by multiple interacting biotic and abiotic factors. Overall, our study provides an in-depth picture of the deadwood mycobiome in this subtropical forest. Furthermore, by comparing our results to results from temperate and boreal forests we contribute to a better understanding of patterns of WIF communities across different biomes and geographic locations.

  14. Characterization of Unexplored Deadwood Mycobiome in Highly Diverse Subtropical Forests Using Culture-independent Molecular Technique

    PubMed Central

    Purahong, Witoon; Pietsch, Katherina A.; Lentendu, Guillaume; Schöps, Ricardo; Bruelheide, Helge; Wirth, Christian; Buscot, François; Wubet, Tesfaye

    2017-01-01

    The deadwood mycobiome, also known as wood-inhabiting fungi (WIF), are among the key players in wood decomposition, having a large impact on nutrient cycling in forest soils. However, our knowledge of WIF richness and distribution patterns in different forest biomes is limited. Here, we used pyrotag sequencing of the fungal internal transcribed spacer (ITS2) region to characterize the deadwood mycobiome of two tree species with greatly different wood characteristics (Schima superba and Pinus massoniana) in a Chinese subtropical forest ecosystem. Specifically, we tested (i) the effects of tree species and wood quality properties on WIF OTU richness and community composition; (ii) the role of biotic and abiotic factors in shaping the WIF communities; and (iii) the relationship between WIF OTU richness, community composition and decomposition rates. Due to different wood chemical properties, we hypothesized that the WIF communities derived from the two tree species would be correlated differently with biotic and abiotic factors. Our results show that deadwood in subtropical forests harbors diverse fungal communities comprising six ecological functional groups. We found interesting colonization patterns for this subtropical biome, where Resinicium spp. were highly detected in both broadleaved and coniferous deadwood. In addition, the members of Xylariales were frequently found in Schima. The two deadwood species differed significantly in WIF OTU richness (Pinus > Schima) and community composition (P < 0.001). Variations in WIF community composition of both tree species were significantly explained by wood pH and ecological factors (biotic: deadwood species, basal area and abiotic: soil pH), but the WIF communities derived from each tree species correlated differently with abiotic factors. Interestingly, we found that deadwood decomposition rate significantly correlated with WIF communities and negatively correlated with WIF OTU richness. We conclude that the pattern of WIF OTU richness and community composition are controlled by multiple interacting biotic and abiotic factors. Overall, our study provides an in-depth picture of the deadwood mycobiome in this subtropical forest. Furthermore, by comparing our results to results from temperate and boreal forests we contribute to a better understanding of patterns of WIF communities across different biomes and geographic locations. PMID:28469600

  15. Spatial heterogeneity in species composition constrains plant community responses to herbivory and fertilization

    USDA-ARS?s Scientific Manuscript database

    Changing environmental conditions result in substantial shifts in the composition of communities. The associated immigration and extinction events are likely constrained by the spatial distribution of species. Still, most studies on environmental change quantify the biotic responses at single spat...

  16. Phytoplankton community composition in nearshore coastal waters of Louisiana

    EPA Science Inventory

    Phytoplankton community compositions within near-shore coastal and estuarine waters of Louisiana were characterized by relative abundance, biovolume, and taxonomic identification to genus and species when possible. The range of total nitrogen was 0.5 to 1.3 mg L-1 and total phos...

  17. FORAGE FISH AND ZOOPLANKTON COMMUNITY COMPOSITION IN WESTERN LAKE SUPERIOR

    EPA Science Inventory

    We assessed the abundance, size, and species composition of the fish and zooplankton communities of western Lake Superior during 1996 and 1997. Data were analyzed for 3 ecoregions (Duluth-Superior (1), Apostle Islands (2), Minnesota coast (3) differing in lake bathymetry, phsiodo...

  18. COMMUNITY SCALE STREAM TAXA SENSITIVITIES TO DIFFERENT COMPOSITIONS OF EXCESS TOTAL DISSOLVED SOLIDS

    EPA Science Inventory

    Model stream chronic dosing studies (42 d) were conducted with three total dissolved solids (TDS) recipes. The recipes differed in composition of major ions. Community scale emergence was compared with single-species responses conducted simultaneously using the whole effluent tox...

  19. Effects of long-term drainage on microbial community composition vary between peatland types

    NASA Astrophysics Data System (ADS)

    Urbanová, Zuzana; Barta, Jiri

    2016-04-01

    Peatlands represent an important reservoir of carbon, but their functioning can be threatened by water level drawdown caused by climate or land use change. Knowledge of how microbial communities respond to long-term drainage in different peatland types could help improve predictions of the effect of climate change on these ecosystems. We investigated the effect of long-term drainage on microbial community composition in bog, fen and spruce swamp forests (SSF) in the Sumava Mountains (Czech Republic), using high-throughput barcoded sequencing, in relation to peat biochemical properties. Longterm drainage had substantial effects, which depended strongly on peatland type, on peat biochemical properties and microbial community composition. The effect of drainage was most apparent on fen, followed by SSF, and lowest on bog. Long-term drainage led to lower pH, reduced peat decomposability and increased bulk density, which was reflected by reduced microbial activity. Bacterial diversity decreased and Acidobacteria became the dominant phylum on drained sites, reflecting a convergence in bacterial community composition across peatlands after long-term drainage. The archaeal communities changed very strongly and became similar across drained peatlands. Overall, the characteristic differences between distinct peatland types under natural conditions were diminished by long-term drainage. Bog represented a relatively resilient system while fen seemed to be very sensitive to environmental changes.

  20. The effects of forest-savanna-grassland gradients on bird communities of Chiquitano Dry Forests domain, in western Brazil.

    PubMed

    Godoi, Mauricio N; Souza, Edivaldo O DE

    2016-01-01

    Different vegetation types are distributed in mountains according to altitude, topography and soil. The composition and structure of bird communities in these areas can change in relation to the vegetation gradient, with particular communities occupying each habitat type. In this study we present the changes in composition, species richness and bird abundance over the gradient of forests, savannas and altitudinal grasslands of Maciço do Urucum, a mountainous region located in the Chiquitano Dry Forests domain in western Brazil. We recorded 165 bird species through qualitative and quantitative methods. Forested savannas, riparian forests and submontane forests presented the highest richness and abundance of birds, while arboreal savannas and altitudinal grasslands had intermediate and low values, respectively. The bird composition was similar between riparian and submontane forests, while other vegetation types present more dissimilar bird communities. Our results show differences in composition, richness and bird abundance among the vegetation types present at Maciço do Urucum, and highlight an important function of vegetation gradients for the conservation of bird communities in mountains. Additionally, this is the first study of the bird communities in the Brazilian Chiquitano Dry Forests, an important domain in the west of Brazil which has been poorly studied.

  1. Long-term experimental warming alters community composition of ascomycetes in Alaskan moist and dry arctic tundra.

    PubMed

    Semenova, Tatiana A; Morgado, Luis N; Welker, Jeffrey M; Walker, Marilyn D; Smets, Erik; Geml, József

    2015-01-01

    Arctic tundra regions have been responding to global warming with visible changes in plant community composition, including expansion of shrubs and declines in lichens and bryophytes. Even though it is well known that the majority of arctic plants are associated with their symbiotic fungi, how fungal community composition will be different with climate warming remains largely unknown. In this study, we addressed the effects of long-term (18 years) experimental warming on the community composition and taxonomic richness of soil ascomycetes in dry and moist tundra types. Using deep Ion Torrent sequencing, we quantified how OTU assemblage and richness of different orders of Ascomycota changed in response to summer warming. Experimental warming significantly altered ascomycete communities with stronger responses observed in the moist tundra compared with dry tundra. The proportion of several lichenized and moss-associated fungi decreased with warming, while the proportion of several plant and insect pathogens and saprotrophic species was higher in the warming treatment. The observed alterations in both taxonomic and ecological groups of ascomycetes are discussed in relation to previously reported warming-induced shifts in arctic plant communities, including decline in lichens and bryophytes and increase in coverage and biomass of shrubs. © 2014 John Wiley & Sons Ltd.

  2. Soil ecosystem functioning under climate change: plant species and community effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kardol, Paul; Cregger, Melissa; Campany, Courtney E

    2010-01-01

    Feedbacks of terrestrial ecosystems to climate change depend on soil ecosystem dynamics. Soil ecosystems can directly and indirectly respond to climate change. For example, warming directly alters microbial communities by increasing their activity. Climate change may also alter plant community composition, thus indirectly altering the microbial communities that feed on their inputs. To better understand how climate change may directly and indirectly alter soil ecosystem functioning, we investigated old-field plant community and soil ecosystem responses to single and combined effects of elevated [CO2], warming, and water availability. Specifically, we collected soils at the plot level (plant community soils), and beneathmore » dominant plant species (plant-specific soils). We used microbial enzyme activities and soil nematodes as indicators for soil ecosystem functioning. Our study resulted in two main findings: 1) Overall, while there were some interactions, water, relative to increases in [CO2] and warming, had the largest impact on plant community composition, soil enzyme activities, and soil nematodes. Multiple climate change factors can interact to shape ecosystems, but in this case, those interactions were largely driven by changes in water availability. 2) Indirect effects of climate change, via changes in plant communities, had a significant impact on soil ecosystem functioning and this impact was not obvious when looking at plant community soils. Climate change effects on enzyme activities and soil nematode abundance and community structure strongly differed between plant community soils and plant-specific soils, but also within plant-specific soils. In sum, these results indicate that accurate assessments of climate change impacts on soil ecosystem functioning require incorporating the concurrent changes in plant function and plant community composition. Climate change-induced shifts in plant community composition will likely modify or counteract the direct impact of climate change on soil ecosystem functioning, and hence, these indirect effects should be taken into account when predicting how climate change will alter ecosystem functioning.« less

  3. The Interplay between Environmental Filtering and Spatial Processes in Structuring Communities: The Case of Neotropical Snake Communities

    PubMed Central

    Cavalheri, Hamanda; Both, Camila; Martins, Marcio

    2015-01-01

    Both habitat filters and spatial processes can influence community structure. Space alone affects species immigration from the regional species pool, whereas habitat filters affect species distribution and inter-specific interactions. This study aimed to understand how the interplay between environmental and geographical processes influenced the structure of Neotropical snake communities in different habitat types. We selected six studies that sampled snakes in forests, four conducted in savannas and two in grasslands (the latter two are grouped in a non-forest category). We used the net relatedness and nearest taxon indices to assess phylogenetic structure within forest and non-forest areas. We also used the phylogenetic fuzzy-weighting algorithm to characterize phylogenetic structure across communities and the relation of phylogenetic composition patterns to habitat type, structure, and latitude. Finally, we tested for morphological trait convergence and phylogenetic niche conservatism using four forest and four non-forest areas for which morphological data were available. Community phylogenetic composition changed across forest and non-forest areas suggesting that environmental filtering influences community structure. Species traits were affected by habitat type, indicating convergence at the metacommunity level. Tail length, robustness, and number of ventral scales maximized community convergence among forest and non-forest areas. The observed patterns suggested environmental filtering, indicating that less vertically structured habitats represent a strong filter. Despite the fact that phylogenetic structure was not detected individually for each community, we observed a trend towards communities composed by more closely related species in higher latitudes and more overdispersed compositions in lower latitudes. Such pattern suggests that the limited distribution of major snake lineages constrained species distributions. Structure indices for each community were also related to habitat type, showing that communities from non-forest areas tend to be more clustered. Our study showed that both environmental filtering and spatial gradients play important roles in shaping the composition of Neotropical snake communities. PMID:26061038

  4. Soil ecosystem functioning under climate change: plant species and community effects.

    PubMed

    Kardol, Paul; Cregger, Melissa A; Campany, Courtney E; Classen, Aimee T

    2010-03-01

    Feedbacks of terrestrial ecosystems to atmospheric and climate change depend on soil ecosystem dynamics. Soil ecosystems can directly and indirectly respond to climate change. For example, warming directly alters microbial communities by increasing their activity. Climate change may also alter plant community composition, thus indirectly altering the soil communities that depend on their inputs. To better understand how climate change may directly and indirectly alter soil ecosystem functioning, we investigated old-field plant community and soil ecosystem responses to single and combined effects of elevated [CO2], warming, and precipitation in Tennessee (USA). Specifically, we collected soils at the plot level (plant community soils) and beneath dominant plant species (plant-specific soils). We used microbial enzyme activities and soil nematodes as indicators for soil ecosystem functioning. Our study resulted in two main findings: (1) Overall, while there were some interactions, water, relative to increases in [CO2] and warming, had the largest impact on plant community composition, soil enzyme activity, and soil nematodes. Multiple climate-change factors can interact to shape ecosystems, but in our study, those interactions were largely driven by changes in water. (2) Indirect effects of climate change, via changes in plant communities, had a significant impact on soil ecosystem functioning, and this impact was not obvious when looking at plant community soils. Climate-change effects on enzyme activities and soil nematode abundance and community structure strongly differed between plant community soils and plant-specific soils, but also within plant-specific soils. These results indicate that accurate assessments of climate-change impacts on soil ecosystem functioning require incorporating the concurrent changes in plant function and plant community composition. Climate-change-induced shifts in plant community composition will likely modify or counteract the direct impact of atmospheric and climate change on soil ecosystem functioning, and hence, these indirect effects should be taken into account when predicting the manner in which global change will alter ecosystem functioning.

  5. Relationships among plants, soils and microbial communities along a hydrological gradient in the New Jersey Pinelands, USA

    PubMed Central

    Yu, Shen; Ehrenfeld, Joan G.

    2010-01-01

    Background and Aims Understanding the role of different components of hydrology in structuring wetland communities is not well developed. A sequence of adjacent wetlands located on a catenary sequence of soils and receiving the same sources and qualities of water is used to examine specifically the role of water-table median position and variability in affecting plant and microbial community composition and soil properties. Methods Two replicates of three types of wetland found adjacent to each other along a hydrological gradient in the New Jersey Pinelands (USA) were studied. Plant-community and water-table data were obtained within a 100-m2 plot in each community (pine swamp, maple swamp and Atlantic-white-cedar swamp). Monthly soil samples from each plot were analysed for soil moisture, organic matter, extractable nitrogen fractions, N mineralization rate and microbial community composition. Multivariate ordination methods were used to compare patterns among sites within and between data sets. Key Results The maple and pine wetlands were more similar to each other in plant community composition, soil properties and microbial community composition than either was to the cedar swamps. However, maple and pine wetlands differed from each other in water-table descriptors as much as they differed from the cedar swamps. All microbial communities were dominated by Gram-positive bacteria despite hydrologic differences among the sites. Water-table variability was as important as water-table level in affecting microbial communities. Conclusions Water tables affect wetland communities through both median level and variability. Differentiation of both plant and microbial communities are not simple transforms of differences in water-table position, even when other hydrologic factors are kept constant. Rather, soil genesis, a result of both water-table position and geologic history, appears to be the main factor affecting plant and microbial community similarities. PMID:19643908

  6. The Interplay between Environmental Filtering and Spatial Processes in Structuring Communities: The Case of Neotropical Snake Communities.

    PubMed

    Cavalheri, Hamanda; Both, Camila; Martins, Marcio

    2015-01-01

    Both habitat filters and spatial processes can influence community structure. Space alone affects species immigration from the regional species pool, whereas habitat filters affect species distribution and inter-specific interactions. This study aimed to understand how the interplay between environmental and geographical processes influenced the structure of Neotropical snake communities in different habitat types. We selected six studies that sampled snakes in forests, four conducted in savannas and two in grasslands (the latter two are grouped in a non-forest category). We used the net relatedness and nearest taxon indices to assess phylogenetic structure within forest and non-forest areas. We also used the phylogenetic fuzzy-weighting algorithm to characterize phylogenetic structure across communities and the relation of phylogenetic composition patterns to habitat type, structure, and latitude. Finally, we tested for morphological trait convergence and phylogenetic niche conservatism using four forest and four non-forest areas for which morphological data were available. Community phylogenetic composition changed across forest and non-forest areas suggesting that environmental filtering influences community structure. Species traits were affected by habitat type, indicating convergence at the metacommunity level. Tail length, robustness, and number of ventral scales maximized community convergence among forest and non-forest areas. The observed patterns suggested environmental filtering, indicating that less vertically structured habitats represent a strong filter. Despite the fact that phylogenetic structure was not detected individually for each community, we observed a trend towards communities composed by more closely related species in higher latitudes and more overdispersed compositions in lower latitudes. Such pattern suggests that the limited distribution of major snake lineages constrained species distributions. Structure indices for each community were also related to habitat type, showing that communities from non-forest areas tend to be more clustered. Our study showed that both environmental filtering and spatial gradients play important roles in shaping the composition of Neotropical snake communities.

  7. Species- and community-level responses combine to drive phenology of lake phytoplankton

    USGS Publications Warehouse

    Walters, Annika; Sagrario, María de los Ángeles González; Schindler, Daniel E.

    2013-01-01

    Global change is leading to shifts in the seasonal timing of growth and maturation for primary producers. Remote sensing is increasingly used to measure the timing of primary production in both aquatic and terrestrial ecosystems, but there is often a poor correlation between these results and direct observations of life-history responses of individual species. One explanation may be that in addition to phenological shifts, global change is also causing shifts in community composition among species with different seasonal timing of growth and maturation. We quantified how shifts in species phenology and in community composition translated into phenological change in a diverse phytoplankton community from 1962-2000. During this time the aggregate community spring-summer phytoplankton peak has shifted 63 days earlier. The mean taxon shift was only 3 days earlier and shifts in taxa phenology explained only 40% of the observed community phenological shift. The remaining community shift was attributed to dominant early season taxa increasing in abundance while a dominant late season taxon decreased in abundance. In diverse producer communities experiencing multiple stressors, changes in species composition must be considered to fully understand and predict shifts in the seasonal timing of primary production.

  8. Top-down and bottom-up control on bacterial diversity in a western Norwegian deep-silled fjord.

    PubMed

    Storesund, Julia E; Erga, Svein Rune; Ray, Jessica L; Thingstad, T Frede; Sandaa, Ruth-Anne

    2015-07-01

    We investigated the relationship between viruses and co-occurring bacterial communities in the Sognefjord, a deep-silled fjord in Western Norway. A combination of flow cytometry and automated ribosomal intergenic spacer analysis (ARISA) was used to assess prokaryote and viral abundances, and bacterial diversity and community composition, respectively, in depth profiles and at two different sampling seasons (November and May). With one exception, bacterial diversity did not vary between samples regardless of depth or season. The virus and prokaryote abundances as well as bacterial community composition, however, varied significantly with season and depth, suggesting a link between the Sognefjord viral community and potential bacterial host community diversity. To our knowledge, these findings provide the first description of microbial communities in the unique Sognefjord ecosystem, and in addition are in agreement with the simple model version of the 'Killing the Winner' theory (KtW), which postulates that microbial community diversity is a feature that is essentially top-down controlled by viruses, while community composition is bottom-up controlled by competition for limiting growth substrates. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Falling palm fronds structure amazonian rainforest sapling communities.

    PubMed

    Peters, Halton A; Pauw, Anton; Silman, Miles R; Terborgh, John W

    2004-08-07

    The senescence and loss of photosynthetic and support structures is a nearly universal aspect of tree life history, and can be a major source of disturbance in forest understoreys, but the ability of falling canopy debris in determining the stature and composition of understorey communities seems not to have been documented. In this study, we show that senescent fronds of the palm Iriartea deltoidea cause substantial disturbance in tropical forest sapling communities. This disturbance influences the species composition of the canopy and subcanopy by acting as an ecological filter, favouring sapling species with characteristics conducive to recovery after physical damage. The scale of this dominance suggests that falling I. deltoidea debris may be influencing sapling community structure and species composition in Amazonian rainforests over very large spatial scales.

  10. Biogeography and Biodiversity in Sulfide Structures of Active and Inactive Vents at Deep-Sea Hydrothermal Fields of the Southern Mariana Trough▿ †

    PubMed Central

    Kato, Shingo; Takano, Yoshinori; Kakegawa, Takeshi; Oba, Hironori; Inoue, Kazuhiko; Kobayashi, Chiyori; Utsumi, Motoo; Marumo, Katsumi; Kobayashi, Kensei; Ito, Yuki; Ishibashi, Jun-ichiro; Yamagishi, Akihiko

    2010-01-01

    The abundance, diversity, activity, and composition of microbial communities in sulfide structures both of active and inactive vents were investigated by culture-independent methods. These sulfide structures were collected at four hydrothermal fields, both on- and off-axis of the back-arc spreading center of the Southern Mariana Trough. The microbial abundance and activity in the samples were determined by analyzing total organic content, enzymatic activity, and copy number of the 16S rRNA gene. To assess the diversity and composition of the microbial communities, 16S rRNA gene clone libraries including bacterial and archaeal phylotypes were constructed from the sulfide structures. Despite the differences in the geological settings among the sampling points, phylotypes related to the Epsilonproteobacteria and cultured hyperthermophilic archaea were abundant in the libraries from the samples of active vents. In contrast, the relative abundance of these phylotypes was extremely low in the libraries from the samples of inactive vents. These results suggest that the composition of microbial communities within sulfide structures dramatically changes depending on the degree of hydrothermal activity, which was supported by statistical analyses. Comparative analyses suggest that the abundance, activity and diversity of microbial communities within sulfide structures of inactive vents are likely to be comparable to or higher than those in active vent structures, even though the microbial community composition is different between these two types of vents. The microbial community compositions in the sulfide structures of inactive vents were similar to those in seafloor basaltic rocks rather than those in marine sediments or the sulfide structures of active vents, suggesting that the microbial community compositions on the seafloor may be constrained by the available energy sources. Our findings provide helpful information for understanding the biogeography, biodiversity and microbial ecosystems in marine environments. PMID:20228114

  11. Foliar fungal communities strongly differ between habitat patches in a landscape mosaic

    PubMed Central

    Robin, Cécile; Capdevielle, Xavier; Delière, Laurent; Vacher, Corinne

    2016-01-01

    Background Dispersal events between habitat patches in a landscape mosaic can structure ecological communities and influence the functioning of agrosystems. Here we investigated whether short-distance dispersal events between vineyard and forest patches shape foliar fungal communities. We hypothesized that these communities homogenize between habitats over the course of the growing season, particularly along habitat edges, because of aerial dispersal of spores. Methods We monitored the richness and composition of foliar and airborne fungal communities over the season, along transects perpendicular to edges between vineyard and forest patches, using Illumina sequencing of the Internal Transcribed Spacer 2 (ITS2) region. Results In contrast to our expectation, foliar fungal communities in vineyards and forest patches increasingly differentiate over the growing season, even along habitat edges. Moreover, the richness of foliar fungal communities in grapevine drastically decreased over the growing season, in contrast to that of forest trees. The composition of airborne communities did not differ between habitats. The composition of oak foliar fungal communities change between forest edge and centre. Discussion These results suggest that dispersal events between habitat patches are not major drivers of foliar fungal communities at the landscape scale. Selective pressures exerted in each habitat by the host plant, the microclimate and the agricultural practices play a greater role, and might account for the differentiation of foliar fugal communities between habitats. PMID:27833817

  12. The impact of failure: unsuccessful bacterial invasions steer the soil microbial community away from the invader's niche.

    PubMed

    Mallon, C A; Le Roux, X; van Doorn, G S; Dini-Andreote, F; Poly, F; Salles, J F

    2018-03-01

    Although many environments like soils are constantly subjected to invasion by alien microbes, invaders usually fail to succeed, succumbing to the robust diversity often found in nature. So far, only successful invasions have been explored, and it remains unknown to what extent an unsuccessful invasion can impact resident communities. Here we hypothesized that unsuccessful invasions can cause impacts to soil functioning by decreasing the diversity and niche breadth of resident bacterial communities, which could cause shifts to community composition and niche structure-an effect that is likely exacerbated when diversity is compromised. To examine this question, diversity gradients of soil microbial communities were subjected to invasion by the frequent, yet oft-unsuccessful soil invader, Escherichia coli, and evaluated for changes to diversity, bacterial community composition, niche breadth, and niche structure. Contrary to expectations, diversity and niche breadth increased across treatments upon invasion. Community composition and niche structure were also altered, with shifts of niche structure revealing an escape by the resident community away from the invader's resources. Importantly, the extent of the escape varied in response to the community's diversity, where less diverse communities experienced larger shifts. Thus, although transient and unsuccessful, the invader competed for resources with resident species and caused tangible impacts that modified both the diversity and functioning of resident communities, which can likely generate a legacy effect that influences future invasion attempts.

  13. Plant community influence on soil microbial response after a wildfire in Sierra Nevada National Park (Spain).

    PubMed

    Bárcenas-Moreno, Gema; García-Orenes, Fuensanta; Mataix-Solera, Jorge; Mataix-Beneyto, Jorge

    2016-12-15

    Plant community influence on microbial response after fire has been studied in a Sierra Nevada National Park area affected by a wildfire in 2005. Two different plant communities adapted to different altitudes were selected to analyse possible differences on soil microbial recolonisation process after fire, in oak forest and high mountain shrub communities. Microbial abundance, activity and community composition were monitored to evaluate medium-term changes. Microbial abundance was studied by mean of microbial biomass carbon and plate count methods; microbial activity was analysed by microbial respiration and bacterial growth while microbial community composition was determined by analysing phospholipid fatty acid pattern. Under unburnt conditions oak forest showed higher nutrient content, pH and microbial abundance and activity values than the high mountain shrubs community. Different parameters studied showed different trends with time, highlighting important changes in microbial community composition in high mountain shrubs from first sampling to the second one. Post-fire recolonisation process was different depending on plant community studied. Highlighting fungal response and microbial activity were stimulated in burnt high mountain shrubs community whilst it was negatively affected in oak forest. Fire induced changes in oak forest were almost neutralized 20months after the fire, while high mountain shrubs community still showed fire-induced changes at the end of the study. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Dynamic Succession of Groundwater Functional Microbial Communities in Response to Emulsified Vegetable Oil Amendment during Sustained In Situ U(VI) Reduction.

    PubMed

    Zhang, Ping; Wu, Wei-Min; Van Nostrand, Joy D; Deng, Ye; He, Zhili; Gihring, Thomas; Zhang, Gengxin; Schadt, Chris W; Watson, David; Jardine, Phil; Criddle, Craig S; Brooks, Scott; Marsh, Terence L; Tiedje, James M; Arkin, Adam P; Zhou, Jizhong

    2015-06-15

    A pilot-scale field experiment demonstrated that a one-time amendment of emulsified vegetable oil (EVO) reduced groundwater U(VI) concentrations for 1 year in a fast-flowing aquifer. However, little is known about how EVO amendment stimulates the functional gene composition, structure, and dynamics of groundwater microbial communities toward prolonged U(VI) reduction. In this study, we hypothesized that EVO amendment would shift the functional gene composition and structure of groundwater microbial communities and stimulate key functional genes/groups involved in EVO biodegradation and reduction of electron acceptors in the aquifer. To test these hypotheses, groundwater microbial communities after EVO amendment were analyzed using a comprehensive functional gene microarray. Our results showed that EVO amendment stimulated sequential shifts in the functional composition and structure of groundwater microbial communities. Particularly, the relative abundance of key functional genes/groups involved in EVO biodegradation and the reduction of NO3 (-), Mn(IV), Fe(III), U(VI), and SO4 (2-) significantly increased, especially during the active U(VI) reduction period. The relative abundance for some of these key functional genes/groups remained elevated over 9 months. Montel tests suggested that the dynamics in the abundance, composition, and structure of these key functional genes/groups were significantly correlated with groundwater concentrations of acetate, NO3 (-), Mn(II), Fe(II), U(VI), and SO4 (2-). Our results suggest that EVO amendment stimulated dynamic succession of key functional microbial communities. This study improves our understanding of the composition, structure, and function changes needed for groundwater microbial communities to sustain a long-term U(VI) reduction. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Dynamic Succession of Groundwater Functional Microbial Communities in Response to Emulsified Vegetable Oil Amendment during Sustained In Situ U(VI) Reduction

    PubMed Central

    Zhang, Ping; Wu, Wei-Min; Van Nostrand, Joy D.; Deng, Ye; He, Zhili; Gihring, Thomas; Zhang, Gengxin; Schadt, Chris W.; Watson, David; Jardine, Phil; Criddle, Craig S.; Brooks, Scott; Marsh, Terence L.; Tiedje, James M.; Arkin, Adam P.

    2015-01-01

    A pilot-scale field experiment demonstrated that a one-time amendment of emulsified vegetable oil (EVO) reduced groundwater U(VI) concentrations for 1 year in a fast-flowing aquifer. However, little is known about how EVO amendment stimulates the functional gene composition, structure, and dynamics of groundwater microbial communities toward prolonged U(VI) reduction. In this study, we hypothesized that EVO amendment would shift the functional gene composition and structure of groundwater microbial communities and stimulate key functional genes/groups involved in EVO biodegradation and reduction of electron acceptors in the aquifer. To test these hypotheses, groundwater microbial communities after EVO amendment were analyzed using a comprehensive functional gene microarray. Our results showed that EVO amendment stimulated sequential shifts in the functional composition and structure of groundwater microbial communities. Particularly, the relative abundance of key functional genes/groups involved in EVO biodegradation and the reduction of NO3−, Mn(IV), Fe(III), U(VI), and SO42− significantly increased, especially during the active U(VI) reduction period. The relative abundance for some of these key functional genes/groups remained elevated over 9 months. Montel tests suggested that the dynamics in the abundance, composition, and structure of these key functional genes/groups were significantly correlated with groundwater concentrations of acetate, NO3−, Mn(II), Fe(II), U(VI), and SO42−. Our results suggest that EVO amendment stimulated dynamic succession of key functional microbial communities. This study improves our understanding of the composition, structure, and function changes needed for groundwater microbial communities to sustain a long-term U(VI) reduction. PMID:25862231

  16. Dynamic Succession of Groundwater Functional Microbial Communities in Response to Emulsified Vegetable Oil Amendment during Sustained In Situ U(VI) Reduction

    DOE PAGES

    Zhang, Ping; Wu, Wei-Min; Van Nostrand, Joy D.; ...

    2015-04-10

    A pilot-scale field experiment demonstrated that a one-time amendment of emulsified vegetable oil (EVO) reduced groundwater U(VI) concentrations for 1 year in a fast-flowing aquifer. However, little is known about how EVO amendment stimulates the functional gene composition, structure, and dynamics of groundwater microbial communities toward prolonged U(VI) reduction. In this paper, we hypothesized that EVO amendment would shift the functional gene composition and structure of groundwater microbial communities and stimulate key functional genes/groups involved in EVO biodegradation and reduction of electron acceptors in the aquifer. To test these hypotheses, groundwater microbial communities after EVO amendment were analyzed using amore » comprehensive functional gene microarray. Our results showed that EVO amendment stimulated sequential shifts in the functional composition and structure of groundwater microbial communities. Particularly, the relative abundance of key functional genes/groups involved in EVO biodegradation and the reduction of NO 3 -, Mn(IV), Fe(III), U(VI), and SO 4 2- significantly increased, especially during the active U(VI) reduction period. The relative abundance for some of these key functional genes/groups remained elevated over 9 months. Montel tests suggested that the dynamics in the abundance, composition, and structure of these key functional genes/groups were significantly correlated with groundwater concentrations of acetate, NO 3 -, Mn(II), Fe(II), U(VI), and SO 4 2-. Our results suggest that EVO amendment stimulated dynamic succession of key functional microbial communities. Finally, this study improves our understanding of the composition, structure, and function changes needed for groundwater microbial communities to sustain a long-term U(VI) reduction.« less

  17. Dynamic Succession of Groundwater Functional Microbial Communities in Response to Emulsified Vegetable Oil Amendment during Sustained In Situ U(VI) Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ping; Wu, Wei-Min; Van Nostrand, Joy D.

    A pilot-scale field experiment demonstrated that a one-time amendment of emulsified vegetable oil (EVO) reduced groundwater U(VI) concentrations for 1 year in a fast-flowing aquifer. However, little is known about how EVO amendment stimulates the functional gene composition, structure, and dynamics of groundwater microbial communities toward prolonged U(VI) reduction. In this paper, we hypothesized that EVO amendment would shift the functional gene composition and structure of groundwater microbial communities and stimulate key functional genes/groups involved in EVO biodegradation and reduction of electron acceptors in the aquifer. To test these hypotheses, groundwater microbial communities after EVO amendment were analyzed using amore » comprehensive functional gene microarray. Our results showed that EVO amendment stimulated sequential shifts in the functional composition and structure of groundwater microbial communities. Particularly, the relative abundance of key functional genes/groups involved in EVO biodegradation and the reduction of NO 3 -, Mn(IV), Fe(III), U(VI), and SO 4 2- significantly increased, especially during the active U(VI) reduction period. The relative abundance for some of these key functional genes/groups remained elevated over 9 months. Montel tests suggested that the dynamics in the abundance, composition, and structure of these key functional genes/groups were significantly correlated with groundwater concentrations of acetate, NO 3 -, Mn(II), Fe(II), U(VI), and SO 4 2-. Our results suggest that EVO amendment stimulated dynamic succession of key functional microbial communities. Finally, this study improves our understanding of the composition, structure, and function changes needed for groundwater microbial communities to sustain a long-term U(VI) reduction.« less

  18. Spatio-Temporal Interdependence of Bacteria and Phytoplankton during a Baltic Sea Spring Bloom

    PubMed Central

    Bunse, Carina; Bertos-Fortis, Mireia; Sassenhagen, Ingrid; Sildever, Sirje; Sjöqvist, Conny; Godhe, Anna; Gross, Susanna; Kremp, Anke; Lips, Inga; Lundholm, Nina; Rengefors, Karin; Sefbom, Josefin; Pinhassi, Jarone; Legrand, Catherine

    2016-01-01

    In temperate systems, phytoplankton spring blooms deplete inorganic nutrients and are major sources of organic matter for the microbial loop. In response to phytoplankton exudates and environmental factors, heterotrophic microbial communities are highly dynamic and change their abundance and composition both on spatial and temporal scales. Yet, most of our understanding about these processes comes from laboratory model organism studies, mesocosm experiments or single temporal transects. Spatial-temporal studies examining interactions of phytoplankton blooms and bacterioplankton community composition and function, though being highly informative, are scarce. In this study, pelagic microbial community dynamics (bacteria and phytoplankton) and environmental variables were monitored during a spring bloom across the Baltic Proper (two cruises between North Germany to Gulf of Finland). To test to what extent bacterioplankton community composition relates to the spring bloom, we used next generation amplicon sequencing of the 16S rRNA gene, phytoplankton diversity analysis based on microscopy counts and population genotyping of the dominating diatom Skeletonema marinoi. Several phytoplankton bloom related and environmental variables were identified to influence bacterial community composition. Members of Bacteroidetes and Alphaproteobacteria dominated the bacterial community composition but the bacterial groups showed no apparent correlation with direct bloom related variables. The less abundant bacterial phyla Actinobacteria, Planctomycetes, and Verrucomicrobia, on the other hand, were strongly associated with phytoplankton biomass, diatom:dinoflagellate ratio, and colored dissolved organic matter (cDOM). Many bacterial operational taxonomic units (OTUs) showed high niche specificities. For example, particular Bacteroidetes OTUs were associated with two distinct genetic clusters of S. marinoi. Our study revealed the complexity of interactions of bacterial taxa with inter- and intraspecific genetic variation in phytoplankton. Overall, our findings imply that biotic and abiotic factors during spring bloom influence bacterial community dynamics in a hierarchical manner. PMID:27148206

  19. Land Cover and Rainfall Interact to Shape Waterbird Community Composition

    PubMed Central

    Studds, Colin E.; DeLuca, William V.; Baker, Matthew E.; King, Ryan S.; Marra, Peter P.

    2012-01-01

    Human land cover can degrade estuaries directly through habitat loss and fragmentation or indirectly through nutrient inputs that reduce water quality. Strong precipitation events are occurring more frequently, causing greater hydrological connectivity between watersheds and estuaries. Nutrient enrichment and dissolved oxygen depletion that occur following these events are known to limit populations of benthic macroinvertebrates and commercially harvested species, but the consequences for top consumers such as birds remain largely unknown. We used non-metric multidimensional scaling (MDS) and structural equation modeling (SEM) to understand how land cover and annual variation in rainfall interact to shape waterbird community composition in Chesapeake Bay, USA. The MDS ordination indicated that urban subestuaries shifted from a mixed generalist-specialist community in 2002, a year of severe drought, to generalist-dominated community in 2003, of year of high rainfall. The SEM revealed that this change was concurrent with a sixfold increase in nitrate-N concentration in subestuaries. In the drought year of 2002, waterbird community composition depended only on the direct effect of urban development in watersheds. In the wet year of 2003, community composition depended both on this direct effect and on indirect effects associated with high nitrate-N inputs to northern parts of the Bay, particularly in urban subestuaries. Our findings suggest that increased runoff during periods of high rainfall can depress water quality enough to alter the composition of estuarine waterbird communities, and that this effect is compounded in subestuaries dominated by urban development. Estuarine restoration programs often chart progress by monitoring stressors and indicators, but rarely assess multivariate relationships among them. Estuarine management planning could be improved by tracking the structure of relationships among land cover, water quality, and waterbirds. Unraveling these complex relationships may help managers identify and mitigate ecological thresholds that occur with increasing human land cover. PMID:22558286

  20. Land cover and rainfall interact to shape waterbird community composition.

    PubMed

    Studds, Colin E; DeLuca, William V; Baker, Matthew E; King, Ryan S; Marra, Peter P

    2012-01-01

    Human land cover can degrade estuaries directly through habitat loss and fragmentation or indirectly through nutrient inputs that reduce water quality. Strong precipitation events are occurring more frequently, causing greater hydrological connectivity between watersheds and estuaries. Nutrient enrichment and dissolved oxygen depletion that occur following these events are known to limit populations of benthic macroinvertebrates and commercially harvested species, but the consequences for top consumers such as birds remain largely unknown. We used non-metric multidimensional scaling (MDS) and structural equation modeling (SEM) to understand how land cover and annual variation in rainfall interact to shape waterbird community composition in Chesapeake Bay, USA. The MDS ordination indicated that urban subestuaries shifted from a mixed generalist-specialist community in 2002, a year of severe drought, to generalist-dominated community in 2003, of year of high rainfall. The SEM revealed that this change was concurrent with a sixfold increase in nitrate-N concentration in subestuaries. In the drought year of 2002, waterbird community composition depended only on the direct effect of urban development in watersheds. In the wet year of 2003, community composition depended both on this direct effect and on indirect effects associated with high nitrate-N inputs to northern parts of the Bay, particularly in urban subestuaries. Our findings suggest that increased runoff during periods of high rainfall can depress water quality enough to alter the composition of estuarine waterbird communities, and that this effect is compounded in subestuaries dominated by urban development. Estuarine restoration programs often chart progress by monitoring stressors and indicators, but rarely assess multivariate relationships among them. Estuarine management planning could be improved by tracking the structure of relationships among land cover, water quality, and waterbirds. Unraveling these complex relationships may help managers identify and mitigate ecological thresholds that occur with increasing human land cover.

  1. Macroinvertebrate community assembly on deep-sea wood falls in Monterey Bay is strongly influenced by wood type.

    PubMed

    Judge, Jenna; Barry, James P

    2016-11-01

    Environmental filtering, including the influence of environmental constraints and biological interactions on species' survival, is known to significantly affect patterns of community assembly in terrestrial ecosystems. However, its role in regulating patterns and processes of community assembly in deep-sea environments is poorly studied. Here we investigated the role of wood characteristics in the assembly of deep-sea wood fall communities. Ten different wood species (substrata) that varied in structural complexity were sunk to a depth of 3,100 m near Monterey Bay, CA. In total, 28 wood parcels were deployed on the deep-sea bed. After 2 yr, the wood parcels were recovered with over 7,000 attached or colonizing macroinvertebrates. All macroinvertebrates were identified to the lowest taxonomic level possible, and included several undescribed species. Diversity indices and multivariate analyses of variance detected significant variation in the colonizing community assemblages among different wood substrata. Structural complexity seemed to be the primary factor altering community composition between wood substrata. For example, wood-boring clams were most abundant on solid logs, while small arthropods and limpets were more abundant on bundles of branches that provided more surface area and small, protected spaces to occupy. Other factors such as chemical defenses, the presence of bark, and wood hardness likely also played a role. Our finding that characteristics of woody debris entering the marine realm can have significant effects on community assembly supports the notion of ecological and perhaps evolutionarily significant links between land and sea. © 2016 by the Ecological Society of America.

  2. Microbial community assembly patterns under incipient conditions in a basaltic soil system

    NASA Astrophysics Data System (ADS)

    Sengupta, A.; Stegen, J.; Alves Meira Neto, A.; Wang, Y.; Chorover, J.; Troch, P. A. A.; Maier, R. M.

    2017-12-01

    In sub-surface environments, the biotic components are critically linked to the abiotic processes. However, there is limited understanding of community establishment, functional associations, and community assembly processes of such microbes in sub-surface environments. This study presents the first analysis of microbial signatures in an incipient terrestrial basalt soil system conducted under controlled conditions. A sub-meter scale sampling of a soil mesocosm revealed the contrasting distribution patterns of simple soil parameters such as bulk density and electrical conductivity. Phylogenetic analysis of 16S rRNA gene indicated the presence of a total 40 bacterial and archaeal phyla, with high relative abundance of Actinobacteria on the surface and highest abundance of Proteobacteria throughout the system. Community diversity patterns were inferred to be dependent on depth profile and average water content in the system. Predicted functional gene analysis suggested mixotrophy lifestyles with both autotrophic and heterotrophic metabolisms, likelihood of a unique salt tolerant methanogenic pathway with links to novel Euryarchea, signatures of an incomplete nitrogen cycle, and predicted enzymes of extracellular iron (II) to iron (III) conversion followed by intracellular uptake, transport and regulation. Null modeling revealed microbial community assembly was predominantly governed by variable selection, but the influence of the variable selection did not show systematic spatial structure. The presence of significant heterogeneity in predicted functions and ecologically deterministic shifts in community composition in a homogeneous incipient basalt highlights the complexity exhibited by microorganisms even in the simplest of environmental systems. This presents an opportunity to further develop our understanding of how microbial communities establish, evolve, impact, and respond in sub-surface environments.

  3. Macroinvertebrate community responses to gravel augmentation in a high-gradient, Southeastern regulated river

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManamay, Ryan A; Orth, Dr. Donald J; Dolloff, Dr. Charles A

    2013-01-01

    Sediment transport, one of the key processes of river systems, is altered or stopped by dams, leaving lower river reaches barren of sand and gravel, both of which are essential habitat for fish and macroinvertebrates. One way to compensate for losses in sediment is to supplement gravel to river reaches below impoundments. Because gravel addition has become a widespread practice, it is essential to evaluate the biotic response to restoration projects in order to improve the efficacy of future applications. The purpose of our study was to evaluate the response of the macroinvertebrate community to gravel addition in a high-gradient,more » regulated river in western North Carolina. We collected benthic macroinvertebrate samples from gravel-enhanced areas and unenhanced areas for 1 season before gravel addition, and for 4 seasons afterwards. Repeated measures multivariate analysis of variance indicated that the responses of macroinvertebrates to gravel addition were generally specific to individual taxa or particular functional feeding groups and did not lead to consistent patterns in overall family richness, diversity, density, or evenness. Non-metric multi-dimensional scaling showed that shifts in macroinvertebrate community composition were temporary and dependent upon site conditions and season. Correlations between macroinvertebrate response variables and substrate microhabitat variables existed with or without the inclusion of data from enhanced areas, which suggests that substrate-biotic relationships were present before gravel addition. A review of the current literature suggests that the responses of benthic macroinvertebrates to substrate restoration are inconsistent and dependent upon site conditions and the degree habitat improvement of pre-restoration site conditions.« less

  4. Bacterial community structure and function shift along a successional series of tidal flats in the Yellow River Delta

    PubMed Central

    Lv, Xiaofei; Ma, Bin; Yu, Junbao; Chang, Scott X.; Xu, Jianming; Li, Yunzhao; Wang, Guangmei; Han, Guangxuan; Bo, Guan; Chu, Xiaojing

    2016-01-01

    Coastal ecosystems play significant ecological and economic roles but are threatened and facing decline. Microbes drive various biogeochemical processes in coastal ecosystems. Tidal flats are critical components of coastal ecosystems; however, the structure and function of microbial communities in tidal flats are poorly understood. Here we investigated the seasonal variations of bacterial communities along a tidal flat series (subtidal, intertidal and supratidal flats) and the factors affecting the variations. Bacterial community composition and diversity were analyzed over four seasons by 16S rRNA genes using the Ion Torrent PGM platform. Bacterial community composition differed significantly along the tidal flat series. Bacterial phylogenetic diversity increased while phylogenetic turnover decreased from subtidal to supratidal flats. Moreover, the bacterial community structure differed seasonally. Canonical correspondence analysis identified salinity as a major environmental factor structuring the microbial community in the sediment along the successional series. Meanwhile, temperature and nitrite concentration were major drivers of seasonal microbial changes. Despite major compositional shifts, nitrogen, methane and energy metabolisms predicted by PICRUSt were inhibited in the winter. Taken together, this study indicates that bacterial community structure changed along the successional tidal flat series and provides new insights on the characteristics of bacterial communities in coastal ecosystems. PMID:27824160

  5. Bacterial community structure and function shift along a successional series of tidal flats in the Yellow River Delta.

    PubMed

    Lv, Xiaofei; Ma, Bin; Yu, Junbao; Chang, Scott X; Xu, Jianming; Li, Yunzhao; Wang, Guangmei; Han, Guangxuan; Bo, Guan; Chu, Xiaojing

    2016-11-08

    Coastal ecosystems play significant ecological and economic roles but are threatened and facing decline. Microbes drive various biogeochemical processes in coastal ecosystems. Tidal flats are critical components of coastal ecosystems; however, the structure and function of microbial communities in tidal flats are poorly understood. Here we investigated the seasonal variations of bacterial communities along a tidal flat series (subtidal, intertidal and supratidal flats) and the factors affecting the variations. Bacterial community composition and diversity were analyzed over four seasons by 16S rRNA genes using the Ion Torrent PGM platform. Bacterial community composition differed significantly along the tidal flat series. Bacterial phylogenetic diversity increased while phylogenetic turnover decreased from subtidal to supratidal flats. Moreover, the bacterial community structure differed seasonally. Canonical correspondence analysis identified salinity as a major environmental factor structuring the microbial community in the sediment along the successional series. Meanwhile, temperature and nitrite concentration were major drivers of seasonal microbial changes. Despite major compositional shifts, nitrogen, methane and energy metabolisms predicted by PICRUSt were inhibited in the winter. Taken together, this study indicates that bacterial community structure changed along the successional tidal flat series and provides new insights on the characteristics of bacterial communities in coastal ecosystems.

  6. Transported biofilms and their influence on subsequent macrofouling colonization.

    PubMed

    Sweat, L Holly; Swain, Geoffrey W; Hunsucker, Kelli Z; Johnson, Kevin B

    2017-05-01

    Biofilm organisms such as diatoms are potential regulators of global macrofouling dispersal because they ubiquitously colonize submerged surfaces, resist antifouling efforts and frequently alter larval recruitment. Although ships continually deliver biofilms to foreign ports, it is unclear how transport shapes biofilm microbial structure and subsequent macrofouling colonization. This study demonstrates that different ship hull coatings and transport methods change diatom assemblage composition in transported coastal marine biofilms. Assemblages carried on the hull experienced significant cell losses and changes in composition through hydrodynamic stress, whereas those that underwent sheltered transport, even through freshwater, were largely unaltered. Coatings and their associated biofilms shaped distinct macrofouling communities and affected recruitment for one third of all species, while biofilms from different transport treatments had little effect on macrofouling colonization. These results demonstrate that transport conditions can shape diatom assemblages in biofilms carried by ships, but the properties of the underlying coatings are mainly responsible for subsequent macrofouling. The methods by which organisms colonize and are transferred by ships have implications for their distribution, establishment and invasion success.

  7. Shifts in microbial communities in soil, rhizosphere and roots of two major crop systems under elevated CO2 and O3.

    PubMed

    Wang, Peng; Marsh, Ellen L; Ainsworth, Elizabeth A; Leakey, Andrew D B; Sheflin, Amy M; Schachtman, Daniel P

    2017-11-03

    Rising atmospheric concentrations of CO 2 and O 3 are key features of global environmental change. To investigate changes in the belowground bacterial community composition in response to elevated CO 2 and O 3 (eCO 2 and eO 3 ) the endosphere, rhizosphere and soil were sampled from soybeans under eCO 2 and maize under eO 3 . The maize rhizosphere and endosphere α-diversity was higher than soybean, which may be due to a high relative abundance of Rhizobiales. Only the rhizosphere microbiome composition of the soybeans changed in response to eCO 2 , associated with an increased abundance of nitrogen fixing microbes. In maize, the microbiome composition was altered by the genotype and linked to differences in root exudate profiles. The eO 3 treatment did not change the microbial communities in the rhizosphere, but altered the soil communities where hybrid maize was grown. In contrast to previous studies that focused exclusively on the soil, this study provides new insights into the effects of plant root exudates on the composition of the belowground microbiome in response to changing atmospheric conditions. Our results demonstrate that plant species and plant genotype were key factors driving the changes in the belowground bacterial community composition in agroecosystems that experience rising levels of atmospheric CO 2 and O 3 .

  8. Effects of pyrite and sphalerite on population compositions, dynamics and copper extraction efficiency in chalcopyrite bioleaching process.

    PubMed

    Xiao, Yunhua; Liu, Xueduan; Dong, Weiling; Liang, Yili; Niu, Jiaojiao; Gu, Yabing; Ma, Liyuan; Hao, Xiaodong; Zhang, Xian; Xu, Zhen; Yin, Huaqun

    2017-07-01

    This study used an artificial microbial community with four known moderately thermophilic acidophiles (three bacteria including Acidithiobacillus caldus S1, Sulfobacillus thermosulfidooxidans ST and Leptospirillum ferriphilum YSK, and one archaea, Ferroplasma thermophilum L1) to explore the variation of microbial community structure, composition, dynamics and function (e.g., copper extraction efficiency) in chalcopyrite bioleaching (C) systems with additions of pyrite (CP) or sphalerite (CS). The community compositions and dynamics in the solution and on the ore surface were investigated by real-time quantitative PCR (qPCR). The results showed that the addition of pyrite or sphalerite changed the microbial community composition and dynamics dramatically during the chalcopyrite bioleaching process. For example, A. caldus (above 60%) was the dominant species at the initial stage in three groups, and at the middle stage, still dominated C group (above 70%), but it was replaced by L. ferriphilum (above 60%) in CP and CS groups; at the final stage, L. ferriphilum dominated C group, while F. thermophilum dominated CP group on the ore surface. Furthermore, the additions of pyrite or sphalerite both made the increase of redox potential (ORP) and the concentrations of Fe 3+ and H + , which would affect the microbial community compositions and copper extraction efficiency. Additionally, pyrite could enhance copper extraction efficiency (e.g., improving around 13.2% on day 6) during chalcopyrite bioleaching; on the contrary, sphalerite restrained it.

  9. Method for regulation of plant lignin composition

    DOEpatents

    Chapple, Clint

    1999-01-01

    A method is disclosed for the regulation of lignin composition in plant tissue. Plants are transformed with a gene encoding an active F5H gene. The expression of the F5H gene results in increased levels of syringyl monomer providing a lignin composition more easily degraded with chemicals and enzymes.

  10. Thermal Regulation of Heat Transfer Processes

    DTIC Science & Technology

    2014-10-02

    determine the contrasts of thermophysical properties of composites and thin films , and various approaches to regulate heat transport processes. In the...nanofluids, 2) thermal regulation of optical properties in thin film , and 3) thermal regulation of phase transition for efficient steam generation...stress generated during the crystals growth forces CNTs to contact with each other and form a conductive percolation network. Hence the composite

  11. Hydrogen Fluxes from Photosynthetic Communities: Implications for Early Earth Biogeochemistry

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; Bebout, Brad M.; DesMarais, David J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    More than half the history of life on Earth was dominated by photosynthetic microbial mats, which must have represented the preeminent biological influence on global geochemical cycling during that time. In modem analogs of then ancient communities, hypersaline microbial mats from Guerrero Negro, Mexico, we have observed a large flux of molecular hydrogen originating in the cyanobacteria-dominated surface layers. Hydrogen production follows a distinct diel pattern and is sensitive to both oxygen tension and microbial species composition within the mat. On an early Earth dominated by microbial mats, the observed H2 fluxes would scale to global levels far in excess of geothermal emissions. A hydrogen flux of this magnitude represents a profound transmission of reducing power from oxygenic photosynthesis, both to the anaerobic biosphere, where H2 is an almost universally-utilized substrate and regulator of microbial redox chemistry, and to the atmosphere, where subsequent escape to space could provide an important mechanism for the net oxidation of Earth's surface.

  12. Diptera community composition and succession following habitat disturbance by wildfire

    Treesearch

    Michael A. Patten; Jutta C. Burger; Thomas R. Prentice; John T. Rotenberry; Richard A. Redak

    2005-01-01

    Both biogeographic (for example, latitude) and local (for example, soil) processes determine composition and succession of biotic communities. Postfire succession of vegetation has been studied intensively in chaparral and coastal sage scrub. Fewer studies have examined postfire succession of animals, even though fires can drastically alter their abundance and...

  13. Composition Instructors' Interactions with Classroom Discourse Communities: A Qualitative Study

    ERIC Educational Resources Information Center

    Winterberg, Sarah Griffith

    2017-01-01

    This study offered insight on the intermingling of discourse communities in the learning environment by examining experiences of composition instructors from a regional Southern university and their reflections of teaching students who struggled to navigate from home discourse to academic discourse. Merriam's basic qualitative research design…

  14. Sensitivity of grassland plant community composition to spatial vs. temporal variation in precipitation

    USDA-ARS?s Scientific Manuscript database

    Climate gradients shape spatial variation in the richness and composition of plant communities. Given future predicted changes in climate means and variability, and likely regional variation in the magnitudes of these changes, it is important to determine how temporal variation in climate influences...

  15. SIMILARITY OF PARTICLE-ASSOCIATED AND FREE-LIVING BACTERIAL COMMUNITIES IN NORTHERN SAN FRANCISCO BAY, CALIFORNIA

    EPA Science Inventory

    We used denaturing gradient gel electrophoresis (DGGE) of 16S rDNA PCR amplicons to analyze the composition of Bacteria communities in samples collected during the summer, low flow season from northern San Francisco Bay, California. There were clear compositional differences in ...

  16. Competition from below for light and nutrients shifts productivity among tropical species

    Treesearch

    J. J. Ewel; M. J. Mazzarino

    2008-01-01

    Chance events such as seed dispersal determine the potential composition of plant communities, but the eventual assemblage is determined in large part by subsequent interactions among species. Postcolonization sorting also affects the ultimate composition of communities assembled by people for restoration, horticulture, or conservation. Thus,...

  17. Influence of fertilisation regimes on a nosZ-containing denitrifying community in a rice paddy soil.

    PubMed

    Chen, Zhe; Hou, Haijun; Zheng, Yan; Qin, Hongling; Zhu, Yijun; Wu, Jinshui; Wei, Wenxue

    2012-03-30

    Denitrification is a microbial process that has received considerable attention during the past decade since it can result in losses of added nitrogen fertilisers from agricultural soils. Paddy soil has been known to have strong denitrifying activity, but the denitrifying microorganisms responsible for fertilisers in paddy soil are not well known. The objective of this study was to explore the impacts of 17-year application of inorganic and organic fertiliser (rice straw) on the abundance and composition of a nosZ-denitrifier community in paddy soil. Soil samples were collected from CK plots (no fertiliser), N (nitrogen fertiliser), NPK (nitrogen, phosphorus and potassium fertilisers) and NPK + OM (NPK plus organic matter). The nitrous oxide reductase gene (nosZ) community composition was analysed using terminal restriction fragment length polymorphism, and the abundance was determined by quantitative PCR. Both the largest abundance of nosZ-denitrifier and the highest potential denitrifying activity (PDA) occurred in the NPK + OM treatment with about four times higher than that in the CK and two times higher than that in the N and NPK treatments (no significant difference). Denitrifying community composition differed significantly among fertilisation treatments except for the comparison between CK and N treatments. Of the measured abiotic factors, total organic carbon was significantly correlated with the observed differences in community composition and abundance (P < 0.01 by Monte Carlo permutation). This study shows that the addition of different fertilisers affects the size and composition of the nosZ-denitrifier community in paddy soil. Copyright © 2011 Society of Chemical Industry.

  18. Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere.

    PubMed

    Knief, Claudia; Ramette, Alban; Frances, Lisa; Alonso-Blanco, Carlos; Vorholt, Julia A

    2010-06-01

    The plant phyllosphere constitutes a habitat for numerous microorganisms; among them are members of the genus Methylobacterium. Owing to the ubiquitous occurrence of methylobacteria on plant leaves, they represent a suitable target for studying plant colonization patterns. The influence of the factor site, host plant species, time and the presence of other phyllosphere bacteria on Methylobacterium community composition and population size were evaluated in this study. Leaf samples were collected from Arabidopsis thaliana or Medicago truncatula plants and from the surrounding plant species at several sites. The abundance of cultivable Methylobacterium clearly correlated with the abundance of other phyllosphere bacteria, suggesting that methylobacteria constitute a considerable and rather stable fraction of the phyllosphere microbiota under varying environmental conditions. Automated ribosomal intergenic spacer analysis (ARISA) was applied to characterize the Methylobacterium community composition and showed the presence of similar communities on A. thaliana plants at most sites in 2 consecutive years of sampling. A substantial part of the observed variation in the community composition was explained by site and plant species, especially in the case of the plants collected at the Arabidopsis sites (50%). The dominating ARISA peaks that were detected on A. thaliana plants were found on other plant species grown at the same site, whereas some different peaks were detected on A. thaliana plants from other sites. This indicates that site-specific factors had a stronger impact on the Methylobacterium community composition than did plant-specific factors and that the Methylobacterium-plant association is not highly host plant species specific.

  19. Comparison of microbial taxonomic and functional shift pattern along contamination gradient.

    PubMed

    Ren, Youhua; Niu, Jiaojiao; Huang, Wenkun; Peng, Deliang; Xiao, Yunhua; Zhang, Xian; Liang, Yili; Liu, Xueduan; Yin, Huaqun

    2016-06-14

    The interaction mechanism between microbial communities and environment is a key issue in microbial ecology. Microbial communities usually change significantly under environmental stress, which has been studied both phylogenetically and functionally, however which method is more effective in assessing the relationship between microbial communities shift and environmental changes still remains controversial. By comparing the microbial taxonomic and functional shift pattern along heavy metal contamination gradient, we found that both sedimentary composition and function shifted significantly along contamination gradient. For example, the relative abundance of Geobacter and Fusibacter decreased along contamination gradient (from high to low), while Janthinobacterium and Arthrobacter increased their abundances. Most genes involved in heavy metal resistance (e.g., metc, aoxb and mer) showed higher intensity in sites with higher concentration of heavy metals. Comparing the two shift patterns, there were correlations between them, because functional and phylogenetic β-diversities were significantly correlated, and many heavy metal resistance genes were derived from Geobacter, explaining their high abundance in heavily contaminated sites. However, there was a stronger link between functional composition and environmental drivers, while stochasticity played an important role in formation and succession of phylogenetic composition demonstrated by null model test. Overall our research suggested that the responses of functional traits depended more on environmental changes, while stochasticity played an important role in formation and succession of phylogenetic composition for microbial communities. So profiling microbial functional composition seems more appropriate to study the relationship between microbial communities and environment, as well as explore the adaptation and remediation mechanism of microbial communities to heavy metal contamination.

  20. Changes in soil bacterial community structure with increasing disturbance frequency.

    PubMed

    Kim, Mincheol; Heo, Eunjung; Kang, Hojeong; Adams, Jonathan

    2013-07-01

    Little is known of the responsiveness of soil bacterial community structure to disturbance. In this study, we subjected a soil microcosm to physical disturbance, sterilizing 90 % of the soil volume each time, at a range of frequencies. We analysed the bacterial community structure using 454 pyrosequencing of the 16S rRNA gene. Bacterial diversity was found to decline with the increasing disturbance frequencies. Total bacterial abundance was, however, higher at intermediate and high disturbance frequencies, compared to low and no-disturbance treatments. Changing disturbance frequency also led to changes in community composition, with changes in overall species composition and some groups becoming abundant at the expense of others. Some phylogenetic groups were found to be relatively more disturbance-sensitive or tolerant than others. With increasing disturbance frequency, phylogenetic species variability (an index of community composition) itself became more variable from one sample to another, suggesting a greater role of chance in community composition. Compared to the tightly clustered community of the original undisturbed soil, in all the aged disturbed soils the lists of most abundant operational taxonomic units (OTUs) in each replicate were very different, suggesting a possible role of stochasticity in resource colonization and exploitation in the aged and disturbed soils. For example, colonization may be affected by whichever localized concentrations of bacterial populations happen to survive the last disturbance and be reincorporated in abundance into each pot. Overall, it appears that the soil bacterial community is very sensitive to physical disturbance, losing diversity, and that certain groups have identifiable 'high disturbance' vs. 'low disturbance' niches.

  1. Community composition of ammonia-oxidizing archaea from surface and anoxic depths of oceanic oxygen minimum zones.

    PubMed

    Peng, Xuefeng; Jayakumar, Amal; Ward, Bess B

    2013-01-01

    Ammonia-oxidizing archaea (AOA) have been reported at high abundance in much of the global ocean, even in environments, such as pelagic oxygen minimum zones (OMZs), where conditions seem unlikely to support aerobic ammonium oxidation. Due to the lack of information on any potential alternative metabolism of AOA, the AOA community composition might be expected to differ between oxic and anoxic environments. This hypothesis was tested by evaluating AOA community composition using a functional gene microarray that targets the ammonia monooxygenase gene subunit A (amoA). The relationship between environmental parameters and the biogeography of the Arabian Sea and the Eastern Tropical South Pacific (ETSP) AOA assemblages was investigated using principal component analysis (PCA) and redundancy analysis (RDA). In both the Arabian Sea and the ETSP, AOA communities within the core of the OMZ were not significantly different from those inhabiting the oxygenated surface waters above the OMZ. The AOA communities in the Arabian Sea were significantly different from those in the ETSP. In both oceans, the abundance of archaeal amoA gene in the core of the OMZ was higher than that in the surface waters. Our results indicate that AOA communities are distinguished by their geographic origin. RDA suggested that temperature (higher in the Arabian Sea than in the ETSP) was the main factor that correlated with the differences between the AOA communities. Physicochemical properties that characterized the different environments of the OMZ and surface waters played a less important role, than did geography, in shaping the AOA community composition.

  2. Does Tropical Forest Fragmentation Increase Long-Term Variability of Butterfly Communities?

    PubMed Central

    Leidner, Allison K.; Haddad, Nick M.; Lovejoy, Thomas E.

    2010-01-01

    Habitat fragmentation is a major driver of biodiversity loss. Yet, the overall effects of fragmentation on biodiversity may be obscured by differences in responses among species. These opposing responses to fragmentation may be manifest in higher variability in species richness and abundance (termed hyperdynamism), and in predictable changes in community composition. We tested whether forest fragmentation causes long-term hyperdynamism in butterfly communities, a taxon that naturally displays large variations in species richness and community composition. Using a dataset from an experimentally fragmented landscape in the central Amazon that spanned 11 years, we evaluated the effect of fragmentation on changes in species richness and community composition through time. Overall, adjusted species richness (adjusted for survey duration) did not differ between fragmented forest and intact forest. However, spatial and temporal variation of adjusted species richness was significantly higher in fragmented forests relative to intact forest. This variation was associated with changes in butterfly community composition, specifically lower proportions of understory shade species and higher proportions of edge species in fragmented forest. Analysis of rarefied species richness, estimated using indices of butterfly abundance, showed no differences between fragmented and intact forest plots in spatial or temporal variation. These results do not contradict the results from adjusted species richness, but rather suggest that higher variability in butterfly adjusted species richness may be explained by changes in butterfly abundance. Combined, these results indicate that butterfly communities in fragmented tropical forests are more variable than in intact forest, and that the natural variability of butterflies was not a buffer against the effects of fragmentation on community dynamics. PMID:20224772

  3. Shifts in the bacterial community composition along deep soil profiles in monospecific and mixed stands of Eucalyptus grandis and Acacia mangium.

    PubMed

    Pereira, Arthur Prudêncio de Araujo; Andrade, Pedro Avelino Maia de; Bini, Daniel; Durrer, Ademir; Robin, Agnès; Bouillet, Jean Pierre; Andreote, Fernando Dini; Cardoso, Elke Jurandy Bran Nogueira

    2017-01-01

    Our knowledge of the rhizosphere bacterial communities in deep soils and the role of Eucalyptus and Acacia on the structure of these communities remains very limited. In this study, we targeted the bacterial community along a depth profile (0 to 800 cm) and compared community structure in monospecific or mixed plantations of Acacia mangium and Eucalyptus grandis. We applied quantitative PCR (qPCR) and sequence the V6 region of the 16S rRNA gene to characterize composition of bacterial communities. We identified a decrease in bacterial abundance with soil depth, and differences in community patterns between monospecific and mixed cultivations. Sequence analysis indicated a prevalent effect of soil depth on bacterial communities in the mixed plant cultivation system, and a remarkable differentiation of bacterial communities in areas solely cultivated with Eucalyptus. The groups most influenced by soil depth were Proteobacteria and Acidobacteria (more frequent in samples between 0 and 300 cm). The predominant bacterial groups differentially displayed in the monospecific stands of Eucalyptus were Firmicutes and Proteobacteria. Our results suggest that the addition of an N2-fixing tree in a monospecific cultivation system modulates bacterial community composition even at a great depth. We conclude that co-cultivation systems may represent a key strategy to improve soil resources and to establish more sustainable cultivation of Eucalyptus in Brazil.

  4. Bacterial diversity and community composition from seasurface to subseafloor.

    PubMed

    Walsh, Emily A; Kirkpatrick, John B; Rutherford, Scott D; Smith, David C; Sogin, Mitchell; D'Hondt, Steven

    2016-04-01

    We investigated compositional relationships between bacterial communities in the water column and those in deep-sea sediment at three environmentally distinct Pacific sites (two in the Equatorial Pacific and one in the North Pacific Gyre). Through pyrosequencing of the v4-v6 hypervariable regions of the 16S ribosomal RNA gene, we characterized 450,104 pyrotags representing 29,814 operational taxonomic units (OTUs, 97% similarity). Hierarchical clustering and non-metric multidimensional scaling partition the samples into four broad groups, regardless of geographic location: a photic-zone community, a subphotic community, a shallow sedimentary community and a subseafloor sedimentary community (⩾1.5 meters below seafloor). Abundance-weighted community compositions of water-column samples exhibit a similar trend with depth at all sites, with successive epipelagic, mesopelagic, bathypelagic and abyssopelagic communities. Taxonomic richness is generally highest in the water-column O2 minimum zone and lowest in the subseafloor sediment. OTUs represented by abundant tags in the subseafloor sediment are often present but represented by few tags in the water column, and represented by moderately abundant tags in the shallow sediment. In contrast, OTUs represented by abundant tags in the water are generally absent from the subseafloor sediment. These results are consistent with (i) dispersal of marine sedimentary bacteria via the ocean, and (ii) selection of the subseafloor sedimentary community from within the community present in shallow sediment.

  5. Shifts in the bacterial community composition along deep soil profiles in monospecific and mixed stands of Eucalyptus grandis and Acacia mangium

    PubMed Central

    de Andrade, Pedro Avelino Maia; Bini, Daniel; Durrer, Ademir; Robin, Agnès; Bouillet, Jean Pierre; Andreote, Fernando Dini; Cardoso, Elke Jurandy Bran Nogueira

    2017-01-01

    Our knowledge of the rhizosphere bacterial communities in deep soils and the role of Eucalyptus and Acacia on the structure of these communities remains very limited. In this study, we targeted the bacterial community along a depth profile (0 to 800 cm) and compared community structure in monospecific or mixed plantations of Acacia mangium and Eucalyptus grandis. We applied quantitative PCR (qPCR) and sequence the V6 region of the 16S rRNA gene to characterize composition of bacterial communities. We identified a decrease in bacterial abundance with soil depth, and differences in community patterns between monospecific and mixed cultivations. Sequence analysis indicated a prevalent effect of soil depth on bacterial communities in the mixed plant cultivation system, and a remarkable differentiation of bacterial communities in areas solely cultivated with Eucalyptus. The groups most influenced by soil depth were Proteobacteria and Acidobacteria (more frequent in samples between 0 and 300 cm). The predominant bacterial groups differentially displayed in the monospecific stands of Eucalyptus were Firmicutes and Proteobacteria. Our results suggest that the addition of an N2-fixing tree in a monospecific cultivation system modulates bacterial community composition even at a great depth. We conclude that co-cultivation systems may represent a key strategy to improve soil resources and to establish more sustainable cultivation of Eucalyptus in Brazil. PMID:28686690

  6. Top predators affect the composition of naive protist communities, but only in their early-successional stage.

    PubMed

    Zander, Axel; Gravel, Dominique; Bersier, Louis-Félix; Gray, Sarah M

    2016-02-01

    Introduced top predators have the potential to disrupt community dynamics when prey species are naive to predation. The impact of introduced predators may also vary depending on the stage of community development. Early-succession communities are likely to have small-bodied and fast-growing species, but are not necessarily good at defending against predators. In contrast, late-succession communities are typically composed of larger-bodied species that are more predator resistant relative to small-bodied species. Yet, these aspects are greatly neglected in invasion studies. We therefore tested the effect of top predator presence on early- and late-succession communities that were either naive or non-naive to top predators. We used the aquatic community held within the leaves of Sarracenia purpurea. In North America, communities have experienced the S. purpurea top predator and are therefore non-naive. In Europe, this predator is not present and its niche has not been filled, making these communities top-predator naive. We collected early- and late-succession communities from two non-naive and two naive sites, which are climatically similar. We then conducted a common-garden experiment, with and without the presence of the top predator, in which we recorded changes in community composition, body size spectra, bacterial density, and respiration. We found that the top predator had no statistical effect on global measures of community structure and functioning. However, it significantly altered protist composition, but only in naive, early-succession communities, highlighting that the state of community development is important for understanding the impact of invasion.

  7. Use of in-field bioreactors demonstrate groundwater filtration influences planktonic bacterial community assembly, but not biofilm composition

    DOE PAGES

    Christensen, Geoffrey A.; Moon, Ji Won; Veach, Allison M.; ...

    2018-03-20

    Using in-field bioreactors, we investigated the influence of exogenous microorganisms in groundwater planktonic and biofilm microbial communities as part of the Integrated Field Research Challenge (IFRC). After an acclimation period with source groundwater, bioreactors received either filtered (0.22 μM filter) or unfiltered well groundwater in triplicate and communities were tracked routinely for 23 days after filtration was initiated. To address geochemical influences, the planktonic phase was assayed periodically for protein, organic acids, physico-/geochemical measurements and bacterial community (via 16S rRNA gene sequencing), while biofilms (i.e. microbial growth on sediment coupons) were targeted for bacterial community composition at the completion ofmore » the experiment (23 d). Based on Bray-Curtis distance, planktonic bacterial community composition varied temporally and between treatments (filtered, unfiltered bioreactors). Notably, filtration led to an increase in the dominant genus, Zoogloea relative abundance over time within the planktonic community, while remaining relatively constant when unfiltered. At day 23, biofilm communities were more taxonomically and phylogenetically diverse and substantially different from planktonic bacterial communities; however, the biofilm bacterial communities were similar regardless of filtration. These results suggest that although planktonic communities were sensitive to groundwater filtration, bacterial biofilm communities were stable and resistant to filtration. Bioreactors are useful tools in addressing questions pertaining to microbial community assembly and succession. These data provide a first step in understanding how an extrinsic factor, such as a groundwater inoculation and flux of microbial colonizers, impact how microbial communities assemble in environmental systems.« less

  8. Use of in-field bioreactors demonstrate groundwater filtration influences planktonic bacterial community assembly, but not biofilm composition

    PubMed Central

    Moon, JiWon; Veach, Allison M.; Mosher, Jennifer J.; Wymore, Ann M.; van Nostrand, Joy D.; Zhou, Jizhong; Hazen, Terry C.; Arkin, Adam P.; Elias, Dwayne A.

    2018-01-01

    Using in-field bioreactors, we investigated the influence of exogenous microorganisms in groundwater planktonic and biofilm microbial communities as part of the Integrated Field Research Challenge (IFRC). After an acclimation period with source groundwater, bioreactors received either filtered (0.22 μM filter) or unfiltered well groundwater in triplicate and communities were tracked routinely for 23 days after filtration was initiated. To address geochemical influences, the planktonic phase was assayed periodically for protein, organic acids, physico-/geochemical measurements and bacterial community (via 16S rRNA gene sequencing), while biofilms (i.e. microbial growth on sediment coupons) were targeted for bacterial community composition at the completion of the experiment (23 d). Based on Bray-Curtis distance, planktonic bacterial community composition varied temporally and between treatments (filtered, unfiltered bioreactors). Notably, filtration led to an increase in the dominant genus, Zoogloea relative abundance over time within the planktonic community, while remaining relatively constant when unfiltered. At day 23, biofilm communities were more taxonomically and phylogenetically diverse and substantially different from planktonic bacterial communities; however, the biofilm bacterial communities were similar regardless of filtration. These results suggest that although planktonic communities were sensitive to groundwater filtration, bacterial biofilm communities were stable and resistant to filtration. Bioreactors are useful tools in addressing questions pertaining to microbial community assembly and succession. These data provide a first step in understanding how an extrinsic factor, such as a groundwater inoculation and flux of microbial colonizers, impact how microbial communities assemble in environmental systems. PMID:29558522

  9. Use of in-field bioreactors demonstrate groundwater filtration influences planktonic bacterial community assembly, but not biofilm composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, Geoffrey A.; Moon, Ji Won; Veach, Allison M.

    Using in-field bioreactors, we investigated the influence of exogenous microorganisms in groundwater planktonic and biofilm microbial communities as part of the Integrated Field Research Challenge (IFRC). After an acclimation period with source groundwater, bioreactors received either filtered (0.22 μM filter) or unfiltered well groundwater in triplicate and communities were tracked routinely for 23 days after filtration was initiated. To address geochemical influences, the planktonic phase was assayed periodically for protein, organic acids, physico-/geochemical measurements and bacterial community (via 16S rRNA gene sequencing), while biofilms (i.e. microbial growth on sediment coupons) were targeted for bacterial community composition at the completion ofmore » the experiment (23 d). Based on Bray-Curtis distance, planktonic bacterial community composition varied temporally and between treatments (filtered, unfiltered bioreactors). Notably, filtration led to an increase in the dominant genus, Zoogloea relative abundance over time within the planktonic community, while remaining relatively constant when unfiltered. At day 23, biofilm communities were more taxonomically and phylogenetically diverse and substantially different from planktonic bacterial communities; however, the biofilm bacterial communities were similar regardless of filtration. These results suggest that although planktonic communities were sensitive to groundwater filtration, bacterial biofilm communities were stable and resistant to filtration. Bioreactors are useful tools in addressing questions pertaining to microbial community assembly and succession. These data provide a first step in understanding how an extrinsic factor, such as a groundwater inoculation and flux of microbial colonizers, impact how microbial communities assemble in environmental systems.« less

  10. Carbon availability structures microbial community composition and function in soil aggregate fractions

    NASA Astrophysics Data System (ADS)

    Hofmockel, K. S.; Bach, E.; Williams, R.; Howe, A.

    2014-12-01

    Identifying the microbial metabolic pathways that most strongly influence ecosystem carbon (C) cycling requires a deeper understanding of the availability and accessibility of microbial substrates. A first step towards this goal is characterizing the relationships between microbial community function and soil C chemistry in a field context. For this perspective, soil aggregate fractions can be used as model systems that scale between microbe-substrate interactions and ecosystem C cycling and storage. The present study addresses how physicochemical variation among soil aggregate fractions influences the composition and functional potential of C cycling microbial communities. We report variation across soil aggregates using plot scale biological replicates from biofuel agroecosystems (fertilized, reconstructed, tallgrass prairie). Our results suggest that C and nitrogen (N) chemistry significantly differ among aggregate fractions. This leads to variation in microbial community composition, which was better characterized among aggregates than by using the whole soil. In fact by considering soil aggregation, we were able to characterize almost 2000 more taxa than whole soil alone, resulting in 65% greater community richness. Availability of C and N strongly influenced the composition of microbial communities among soil aggregate fractions. The normalized abundance of microbial functional guilds among aggregate fractions correlated with C and N chemistry, as did functional potential, measured by extracellular enzyme activity. Metagenomic results suggest that soil aggregate fractions select for functionally distinct microbial communities, which may significantly influence decomposition and soil C storage. Our study provides support for the premise that integration of soil aggregate chemistry, especially microaggregates that have greater microbial richness and occur at spatial scales relevant to microbial community functioning, may be necessary to understand the role of microbial communities on terrestrial C and N cycling.

  11. Ecosystem and Community Responses to Rainfall Manipulations in Shrublands Depends on Dominant Vegetation Cover

    NASA Astrophysics Data System (ADS)

    Esch, E. H.; Lipson, D.; Kim, J. B.; Cleland, E. E.

    2014-12-01

    Southern California is predicted to face decreasing precipitation with increased interannual variability in the coming century. Native shrublands in this area are increasingly invaded by exotic annual grasses, though invasion dynamics can vary by rainfall scenario, with wet years generally associated with high invasion pressure. Interplay between rainfall and invasion scenarios can influence carbon stocks and community composition. Here we asked how invasion alters ecosystem and community responses in drought versus high rainfall scenarios, as quantified by community identity, biomass production, and the normalized difference vegetation index (NDVI). To do this, we performed a rainfall manipulation experiment with paired plots dominated either by native shrubs or exotic herbaceous species, subjected to treatments of 50%, 100%, or 150% of ambient rainfall. The study site was located in a coastal sage scrub ecosystem, with patches dominated by native shrubs and exotic grasses located in San Diego County, USA. During two growing seasons, we found that native, herbaceous biomass production was significantly affected by rainfall treatment (p<0.05 for both years), though was not affected by dominant community composition. Photosynthetic biomass production of shrub species also varied by treatment (p=0.035). Exotic biomass production showed a significant interaction between dominant community composition and rainfall treatment, and both individual effects (p<0.001 for all). NDVI showed similar results, but also indicated the importance of rainfall timing on overall biomass production between years. Community composition data showed certain species, of both native and exotic identities, segregating by treatment. These results indicate that exotic species are more sensitive to rainfall, and that increased rainfall may promote greater carbon storage in annual dominated communities when compared to shrub dominated communities in high rainfall years, but with drought, this trend is reversed.

  12. Resilience of Alaska's Boreal Forest to Climatic Change

    NASA Technical Reports Server (NTRS)

    Chapin, F. S., III; McGuire, A. D.; Ruess, R. W.; Hollingsworth, T. N.; Mack, M. C.; Johnstone, J. F.; Kasischke, E. S.; Euskirchen, E. S.; Jones, J. B.; Jorgenson, M. T.; hide

    2010-01-01

    This paper assesses the resilience of Alaska s boreal forest system to rapid climatic change. Recent warming is associated with reduced growth of dominant tree species, plant disease and insect outbreaks, warming and thawing of permafrost, drying of lakes, increased wildfire extent, increased postfire recruitment of deciduous trees, and reduced safety of hunters traveling on river ice. These changes have modified key structural features, feedbacks, and interactions in the boreal forest, including reduced effects of upland permafrost on regional hydrology, expansion of boreal forest into tundra, and amplification of climate warming because of reduced albedo (shorter winter season) and carbon release from wildfires. Other temperature-sensitive processes for which no trends have been detected include composition of plant and microbial communities, long-term landscape-scale change in carbon stocks, stream discharge, mammalian population dynamics, and river access and subsistence opportunities for rural indigenous communities. Projections of continued warming suggest that Alaska s boreal forest will undergo significant functional and structural changes within the next few decades that are unprecedented in the last 6000 years. The impact of these social ecological changes will depend in part on the extent of landscape reorganization between uplands and lowlands and on policies regulating subsistence opportunities for rural communities.

  13. Resilience of Alaska’s boreal forest to climatic change

    USGS Publications Warehouse

    Chapin, F.S.; McGuire, A. David; Ruess, Roger W.; Hollingsworth, Teresa N.; Mack, M.C.; Johnstone, J.F.; Kasischke, E.S.; Euskirchen, E.S.; Jones, J.B.; Jorgenson, M.T.; Kielland, K.; Kofinas, G.; Turetsky, M.R.; Yarie, J.; Lloyd, A.H.; Taylor, D.L.

    2010-01-01

    This paper assesses the resilience of Alaska’s boreal forest system to rapid climatic change. Recent warming is associated with reduced growth of dominant tree species, plant disease and insect outbreaks, warming and thawing of permafrost, drying of lakes, increased wildfire extent, increased postfire recruitment of deciduous trees, and reduced safety of hunters traveling on river ice. These changes have modified key structural features, feedbacks, and interactions in the boreal forest, including reduced effects of upland permafrost on regional hydrology, expansion of boreal forest into tundra, and amplification of climate warming because of reduced albedo (shorter winter season) and carbon release from wildfires. Other temperature-sensitive processes for which no trends have been detected include composition of plant and microbial communities, long-term landscape-scale change in carbon stocks, stream discharge, mammalian population dynamics, and river access and subsistence opportunities for rural indigenous communities. Projections of continued warming suggest that Alaska’s boreal forest will undergo significant functional and structural changes within the next few decades that are unprecedented in the last 6000 years. The impact of these social–ecological changes will depend in part on the extent of landscape reorganization between uplands and lowlands and on policies regulating subsistence opportunities for rural communities.

  14. Aquatic urban ecology at the scale of a capital: community structure and interactions in street gutters.

    PubMed

    Hervé, Vincent; Leroy, Boris; Da Silva Pires, Albert; Lopez, Pascal Jean

    2018-01-01

    In most cities, streets are designed for collecting and transporting dirt, litter, debris, storm water and other wastes as a municipal sanitation system. Microbial mats can develop on street surfaces and form microbial communities that have never been described. Here, we performed the first molecular inventory of the street gutter-associated eukaryotes across the entire French capital of Paris and the non-potable waters sources. We found that the 5782 OTUs (operational taxonomic units) present in the street gutters which are dominated by diatoms (photoautotrophs), fungi (heterotrophs), Alveolata and Rhizaria, includes parasites, consumers of phototrophs and epibionts that may regulate the dynamics of gutter mat microbial communities. Network analyses demonstrated that street microbiome present many species restricted to gutters, and an overlapping composition between the water sources used for street cleaning (for example, intra-urban aquatic networks and the associated rivers) and the gutters. We propose that street gutters, which can cover a significant surface area of cities worldwide, potentially have important ecological roles in the remediation of pollutants or downstream wastewater treatments, might also be a niche for growth and dissemination of putative parasite and pathogens.

  15. Aquatic urban ecology at the scale of a capital: community structure and interactions in street gutters

    PubMed Central

    Hervé, Vincent; Leroy, Boris; Da Silva Pires, Albert; Lopez, Pascal Jean

    2018-01-01

    In most cities, streets are designed for collecting and transporting dirt, litter, debris, storm water and other wastes as a municipal sanitation system. Microbial mats can develop on street surfaces and form microbial communities that have never been described. Here, we performed the first molecular inventory of the street gutter-associated eukaryotes across the entire French capital of Paris and the non-potable waters sources. We found that the 5782 OTUs (operational taxonomic units) present in the street gutters which are dominated by diatoms (photoautotrophs), fungi (heterotrophs), Alveolata and Rhizaria, includes parasites, consumers of phototrophs and epibionts that may regulate the dynamics of gutter mat microbial communities. Network analyses demonstrated that street microbiome present many species restricted to gutters, and an overlapping composition between the water sources used for street cleaning (for example, intra-urban aquatic networks and the associated rivers) and the gutters. We propose that street gutters, which can cover a significant surface area of cities worldwide, potentially have important ecological roles in the remediation of pollutants or downstream wastewater treatments, might also be a niche for growth and dissemination of putative parasite and pathogens. PMID:29027996

  16. 48 CFR 1632.171 - Clause-community-rated contracts.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false Clause-community-rated contracts. 1632.171 Section 1632.171 Federal Acquisition Regulations System OFFICE OF PERSONNEL MANAGEMENT FEDERAL EMPLOYEES HEALTH BENEFITS ACQUISITION REGULATION GENERAL CONTRACTING REQUIREMENTS CONTRACT...

  17. 48 CFR 1632.171 - Clause-community-rated contracts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Clause-community-rated contracts. 1632.171 Section 1632.171 Federal Acquisition Regulations System OFFICE OF PERSONNEL MANAGEMENT FEDERAL EMPLOYEES HEALTH BENEFITS ACQUISITION REGULATION GENERAL CONTRACTING REQUIREMENTS CONTRACT...

  18. 48 CFR 1632.171 - Clause-community-rated contracts.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false Clause-community-rated contracts. 1632.171 Section 1632.171 Federal Acquisition Regulations System OFFICE OF PERSONNEL MANAGEMENT FEDERAL EMPLOYEES HEALTH BENEFITS ACQUISITION REGULATION GENERAL CONTRACTING REQUIREMENTS CONTRACT...

  19. Picoplankton community structure before, during and after convection event in the offshore waters of the Southern Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Najdek, M.; Paliaga, P.; Šilović, T.; Batistić, M.; Garić, R.; Supić, N.; Ivančić, I.; Ljubimir, S.; Korlević, M.; Jasprica, N.; Hrustić, E.; Dupčić-Radić, I.; Blažina, M.; Orlić, S.

    2014-05-01

    This paper documents the picoplankton community's response to changes in oceanographic conditions in the period between October 2011 and September 2012 at two stations belonging to the South Adriatic Pit (SAP). The recorded data include the community's abundance, composition, prokaryotic production rates and bacterial metabolic capacity. The sampling period included an intense sea cooling with formation of exceptional, record-breaking dense water. We documented an especially intense winter convection episode that completely diluted the core of Levantine intermediate waters (LIW) in a large area encompassing the SAP's center and its margin. During this convection event the whole picoplankton community had significantly higher abundances with a recorded picoeukaryotic peak at the SAP margin. In the post-convection phase in March, prokaryotic heterotrophic production strongly increased in the entire SAP area (up to 50 times; 456.8 nM C day-1). An autotrophic biomass increase (up to 5 times; 4.86 μg L-1) and a disruption of a close correspondence between prokaryotic heterotrophic biomass production and cell replication rates were observed only in the center of the SAP, which was not under the influence of LIW. At the SAP's margin such an effect was attenuated by LIW, since the waters affected by LIW were characterized by decreased concentrations of dissolved inorganic nitrogen, decreased autotrophic biomasses, and by increased bacterial biomass production balanced with cell replication rates as well as by the domination of Synechococcus among autotrophic picoplankton. The metabolic capacity was lowest in spring when autotrophic biomass largely increased, while the highest levels found in the pre-convection phase (October 2011) suggest that the system was more oligotrophic before than after the convection event. Furthermore, we showed that metabolic capacity is a trait of bacterial community independent of environmental conditions and tightly linked to cell replication and substrate availability. In contrast, the bacterial community composition appears to be strongly influenced by physico-chemical characteristics of waters (e.g., temperature and nutrients) and environmental forcing (e.g., convection and LIW). Our results showed that the two oceanographic phenomena of the Southern Adriatic, strongly relevant for the total production of the Adriatic Sea, winter convection and LIW intrusion, regulate the changes in picoplankton community structure and activities.

  20. Self-Regulated Learning in Virtual Communities

    ERIC Educational Resources Information Center

    Delfino, Manuela; Dettori, Giuliana; Persico, Donatella

    2008-01-01

    This paper investigates self-regulated learning (SRL) in a virtual learning community of adults interacting through asynchronous textual communication. The investigation method chosen is interaction analysis, a qualitative/quantitative approach allowing a systematic study of the contents of the messages exchanged within online communities. The…

  1. Successive DNA extractions improve characterization of soil microbial communities

    PubMed Central

    de Hollander, Mattias; Smidt, Hauke; van Veen, Johannes A.

    2017-01-01

    Currently, characterization of soil microbial communities relies heavily on the use of molecular approaches. Independently of the approach used, soil DNA extraction is a crucial step, and success of downstream procedures will depend on how well DNA extraction was performed. Often, studies describing and comparing soil microbial communities are based on a single DNA extraction, which may not lead to a representative recovery of DNA from all organisms present in the soil. The use of successive DNA extractions might improve soil microbial characterization, but the benefit of this approach has only been limitedly studied. To determine whether successive DNA extractions of the same soil sample would lead to different observations in terms of microbial abundance and community composition, we performed three successive extractions, with two widely used commercial kits, on a range of clay and sandy soils. Successive extractions increased DNA yield considerably (1–374%), as well as total bacterial and fungal abundances in most of the soil samples. Analysis of the 16S and 18S ribosomal RNA genes using 454-pyrosequencing, revealed that microbial community composition (taxonomic groups) observed in the successive DNA extractions were similar. However, successive DNA extractions did reveal several additional microbial groups. For some soil samples, shifts in microbial community composition were observed, mainly due to shifts in relative abundance of a number of microbial groups. Our results highlight that performing successive DNA extractions optimize DNA yield, and can lead to a better picture of overall community composition. PMID:28168105

  2. Shifts in microbial community composition following surface application of dredged river sediments.

    PubMed

    Baniulyte, Dovile; Favila, Emmanuel; Kelly, John J

    2009-01-01

    Sediment input to the Illinois River has drastically decreased river depth and reduced habitats for aquatic organisms. Dredging is being used to remove sediment from the Illinois River, and the dredged sediment is being applied to the surface of a brownfield site in Chicago with the goal of revegetating the site. In order to determine the effects of this drastic habitat change on sediment microbial communities, we examined sediment physical, chemical, and microbial characteristics at the time of sediment application to the soil surface as well as 1 and 2 years after application. Microbial community biomass was determined by measurement of lipid phosphate. Microbial community composition was assessed using phospholipid fatty acid (PLFA) analysis, terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes, and clone library sequencing of 16S rRNA genes. Results indicated that the moisture content, organic carbon, and total nitrogen content of the sediment all decreased over time. Total microbial biomass did not change over the course of the study, but there were significant changes in the composition of the microbial communities. PLFA analysis revealed relative increases in fungi, actinomycetes, and Gram positive bacteria. T-RFLP analysis indicated a significant shift in bacterial community composition within 1 year of application, and clone library analysis revealed relative increases in Proteobacteria, Gemmatimonadetes, and Bacteriodetes and relative decreases in Acidobacteria, Spirochaetes, and Planctomycetes. These results provide insight into microbial community shifts following land application of dredged sediment.

  3. Microbial biodiversity in glacier-fed streams

    PubMed Central

    Wilhelm, Linda; Singer, Gabriel A; Fasching, Christina; Battin, Tom J; Besemer, Katharina

    2013-01-01

    While glaciers become increasingly recognised as a habitat for diverse and active microbial communities, effects of their climate change-induced retreat on the microbial ecology of glacier-fed streams remain elusive. Understanding the effect of climate change on microorganisms in these ecosystems is crucial given that microbial biofilms control numerous stream ecosystem processes with potential implications for downstream biodiversity and biogeochemistry. Here, using a space-for-time substitution approach across 26 Alpine glaciers, we show how microbial community composition and diversity, based on 454-pyrosequencing of the 16S rRNA gene, in biofilms of glacier-fed streams may change as glaciers recede. Variations in streamwater geochemistry correlated with biofilm community composition, even at the phylum level. The most dominant phyla detected in glacial habitats were Proteobacteria, Bacteroidetes, Actinobacteria and Cyanobacteria/chloroplasts. Microorganisms from ice had the lowest α diversity and contributed marginally to biofilm and streamwater community composition. Rather, streamwater apparently collected microorganisms from various glacial and non-glacial sources forming the upstream metacommunity, thereby achieving the highest α diversity. Biofilms in the glacier-fed streams had intermediate α diversity and species sorting by local environmental conditions likely shaped their community composition. α diversity of streamwater and biofilm communities decreased with elevation, possibly reflecting less diverse sources of microorganisms upstream in the catchment. In contrast, β diversity of biofilms decreased with increasing streamwater temperature, suggesting that glacier retreat may contribute to the homogenisation of microbial communities among glacier-fed streams. PMID:23486246

  4. Pine Forest Harvest Leads to Decade-Scale Alterations in Soil Fungal Communities

    NASA Astrophysics Data System (ADS)

    Boutton, T. W.; Mushinski, R. M.; Gentry, T. J.

    2016-12-01

    Forestlands provide a multitude of ecosystem services, and sustainable management is crucial to maintaining the benefits of these ecosystems. Intensive organic matter removal (OMR) of logging residues and forest litter during forest harvest may result in long-term alterations to soil properties and processes. Because fungal activity regulates essential biogeochemical processes in forestlands, changes in soil fungal community structure following OMR may translate into altered soil function. Using a replicated field experiment in southern pine forest in eastern Texas, USA, we sampled soil to a depth of 1 m to assess the impact of intensive OMR on soil fungal communities. Soils were collected from replicated (n = 3 ) loblolly pine (Pinus taeda L.) stands subjected to 3 different harvest intensities (i.e., unharvested old growth stands, bole-only harvest stands, and whole-tree harvest + forest floor removal stands) in 1997. Nearly two decades after trees were harvested and replanted, next generation sequencing of the fungal internal transcribed spacer showed the diversity and community structure of the entire fungal community was altered relative to the unharvested stands. The relative abundance of Ascomycetes increased as OMR intensity increased and was positively correlated to concurrent changes in soil pH. The community composition of fungal functional groups (e.g., ecto- and arbuscular mycorrhizal, saprophytic fungi) was also altered by OMR. The most abundant taxa, Russula exhibited significant reductions in response to increasing intensity of OMR. Results of this study illustrate a linkage between anthropogenically-induced aboveground perturbation, edaphic factors, and belowground soil fungal communities of southern pine forests. Also, these results indicate that tree harvesting effects on soil fungal communities can persist for decades post-harvest, with potential implications for soil functional characteristics.

  5. Land-use history alters contemporary insect herbivore community composition and decouples plant-herbivore relationships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, Philip G.; Orrock, John L.

    1. Past land use can create altered soil conditions and plant communities that persist for decades, although the effects of these altered conditions on consumers are rarely investigated. 2. Using a large-scale field study at 36 sites in longleaf pine (Pinus palustris) woodlands, we examined whether historic agricultural land use leads to differences in the abundance and community composition of insect herbivores (grasshoppers, families Acrididae and Tettigoniidae). 3. We measured the cover of six plant functional groups and several environmental variables to determine whether historic agricultural land use affects the relationships between plant cover or environmental conditions and grasshopper assemblages.more » 4. Land-use history had taxa-specific effects and interacted with herbaceous plant cover to alter grasshopper abundances, leading to significant changes in community composition. Abundance of most grasshopper taxa increased with herbaceous cover in woodlands with no history of agriculture, but there was no relationship in post-agricultural woodlands. We also found that grasshopper abundance was negatively correlated with leaf litter cover. Soil hardness was greater in post-agricultural sites (i.e. more compacted) and was associated with grasshopper community composition. Both herbaceous cover and leaf litter cover are influenced by fire frequency, suggesting a potential indirect role of fire on grasshopper assemblages. 5. Our results demonstrate that historic land use may create persistent differences in the composition of grasshopper assemblages, while contemporary disturbances (e.g. prescribed fire) may be important for determining the abundance of grasshoppers, largely through the effect of fire on plants and leaf litter. Therefore, our results suggest that changes in the contemporary management regimes (e.g. increasing prescribed fire) may not be sufficient to shift the structure of grasshopper communities in post-agricultural sites towards communities in nonagricultural habitats. Rather, repairing degraded soil conditions and restoring plant communities are likely necessary for restoring grasshopper assemblages in post-agricultural woodlands.« less

  6. Land-use history alters contemporary insect herbivore community composition and decouples plant-herbivore relationships

    DOE PAGES

    Hahn, Philip G.; Orrock, John L.

    2014-11-23

    1. Past land use can create altered soil conditions and plant communities that persist for decades, although the effects of these altered conditions on consumers are rarely investigated. 2. Using a large-scale field study at 36 sites in longleaf pine (Pinus palustris) woodlands, we examined whether historic agricultural land use leads to differences in the abundance and community composition of insect herbivores (grasshoppers, families Acrididae and Tettigoniidae). 3. We measured the cover of six plant functional groups and several environmental variables to determine whether historic agricultural land use affects the relationships between plant cover or environmental conditions and grasshopper assemblages.more » 4. Land-use history had taxa-specific effects and interacted with herbaceous plant cover to alter grasshopper abundances, leading to significant changes in community composition. Abundance of most grasshopper taxa increased with herbaceous cover in woodlands with no history of agriculture, but there was no relationship in post-agricultural woodlands. We also found that grasshopper abundance was negatively correlated with leaf litter cover. Soil hardness was greater in post-agricultural sites (i.e. more compacted) and was associated with grasshopper community composition. Both herbaceous cover and leaf litter cover are influenced by fire frequency, suggesting a potential indirect role of fire on grasshopper assemblages. 5. Our results demonstrate that historic land use may create persistent differences in the composition of grasshopper assemblages, while contemporary disturbances (e.g. prescribed fire) may be important for determining the abundance of grasshoppers, largely through the effect of fire on plants and leaf litter. Therefore, our results suggest that changes in the contemporary management regimes (e.g. increasing prescribed fire) may not be sufficient to shift the structure of grasshopper communities in post-agricultural sites towards communities in nonagricultural habitats. Rather, repairing degraded soil conditions and restoring plant communities are likely necessary for restoring grasshopper assemblages in post-agricultural woodlands.« less

  7. Unraveling the drivers of community dissimilarity and species extinction in fragmented landscapes.

    PubMed

    Banks-Leite, Cristina; Ewers, Robert M; Metzger, Jean Paul

    2012-12-01

    Communities in fragmented landscapes are often assumed to be structured by species extinction due to habitat loss, which has led to extensive use of the species-area relationship (SAR) in fragmentation studies. However, the use of the SAR presupposes that habitat loss leads species to extinction but does not allow for extinction to be offset by colonization of disturbed-habitat specialists. Moreover, the use of SAR assumes that species richness is a good proxy of community changes in fragmented landscapes. Here, we assessed how communities dwelling in fragmented landscapes are influenced by habitat loss at multiple scales; then we estimated the ability of models ruled by SAR and by species turnover in successfully predicting changes in community composition, and asked whether species richness is indeed an informative community metric. To address these issues, we used a data set consisting of 140 bird species sampled in 65 patches, from six landscapes with different proportions of forest cover in the Atlantic Forest of Brazil. We compared empirical patterns against simulations of over 8 million communities structured by different magnitudes of the power-law SAR and with species-specific rules to assign species to sites. Empirical results showed that, while bird community composition was strongly influenced by habitat loss at the patch and landscape scale, species richness remained largely unaffected. Modeling results revealed that the compositional changes observed in the Atlantic Forest bird metacommunity were only matched by models with either unrealistic magnitudes of the SAR or by models ruled by species turnover, akin to what would be observed along natural gradients. We show that, in the presence of such compositional turnover, species richness is poorly correlated with species extinction, and z values of the SAR strongly underestimate the effects of habitat loss. We suggest that the observed compositional changes are driven by each species reaching its individual extinction threshold: either a threshold of forest cover for species that disappear with habitat loss, or of matrix cover for species that benefit from habitat loss.

  8. Dispersal rates affect species composition in metacommunities of Sarracenia purpurea inquilines.

    PubMed

    Kneitel, Jamie M; Miller, Thomas E

    2003-08-01

    Dispersal among local communities can have a variety of effects on species composition and diversity at local and regional scales. Local conditions (e.g., resource and predator densities) can have independent effects, as well as interact with dispersal, to alter these patterns. Based on metacommunity models, we predicted that local diversity would show a unimodal relationship with dispersal frequency. We manipulated dispersal frequencies, resource levels, and the presence of predators (mosquito larvae) among communities found in the water-filled leaves of the pitcher plant Sarracenia purpurea. Diversity and abundance of species of the middle trophic level, protozoa and rotifers, were measured. Increased dispersal frequencies significantly increased regional species richness and protozoan abundance while decreasing the variance among local communities. Dispersal frequency interacted with predation at the local community scale to produce patterns of diversity consistent with the model. When predators were absent, we found a unimodal relationship between dispersal frequency and diversity, and when predators were present, there was a flat relationship. Intermediate dispersal frequencies maintained some species in the inquiline communities by offsetting extinction rates. Local community composition and the degree of connectivity between communities are both important for understanding species diversity patterns at local and regional scales.

  9. Changes in community structure of active protistan assemblages from the lower Pearl River to coastal Waters of the South China Sea.

    PubMed

    Li, Ran; Jiao, Nianzhi; Warren, Alan; Xu, Dapeng

    2018-04-01

    Protists make up an important component of aquatic ecosystems, playing crucial roles in biogeochemical processes on local and global scales. To reveal the changes of diversity and community structure of protists along the salinity gradients, community compositions of active protistan assemblages were characterized along a transect from the lower Pearl River estuary to the open waters of the South China Sea (SCS), using high-throughput sequencing of the hyper-variable V9 regions of 18S rRNA. This study showed that the alpha diversity of protists, both in the freshwater and in the coastal SCS stations was higher than that in the estuary. The protist community structure also changed along the salinity gradient. The relative sequence abundance of Stramenopiles was highest at stations with lower salinity and decreased with the increasing of salinity. By contrast, the contributions of Alveolata, Hacrobia and Rhizaria to the protistan communities generally increased with the increasing of salinity. The composition of the active protistan community was strongly correlated with salinity, indicating that salinity was the dominant factor among measured environmental parameters affecting protistan community composition and structure. Copyright © 2018 Elsevier GmbH. All rights reserved.

  10. Experimental insights into the importance of aquatic bacterial community composition to the degradation of dissolved organic matter

    PubMed Central

    Logue, Jürg B; Stedmon, Colin A; Kellerman, Anne M; Nielsen, Nikoline J; Andersson, Anders F; Laudon, Hjalmar; Lindström, Eva S; Kritzberg, Emma S

    2016-01-01

    Bacteria play a central role in the cycling of carbon, yet our understanding of the relationship between the taxonomic composition and the degradation of dissolved organic matter (DOM) is still poor. In this experimental study, we were able to demonstrate a direct link between community composition and ecosystem functioning in that differently structured aquatic bacterial communities differed in their degradation of terrestrially derived DOM. Although the same amount of carbon was processed, both the temporal pattern of degradation and the compounds degraded differed among communities. We, moreover, uncovered that low-molecular-weight carbon was available to all communities for utilisation, whereas the ability to degrade carbon of greater molecular weight was a trait less widely distributed. Finally, whereas the degradation of either low- or high-molecular-weight carbon was not restricted to a single phylogenetic clade, our results illustrate that bacterial taxa of similar phylogenetic classification differed substantially in their association with the degradation of DOM compounds. Applying techniques that capture the diversity and complexity of both bacterial communities and DOM, our study provides new insight into how the structure of bacterial communities may affect processes of biogeochemical significance. PMID:26296065

  11. Competitive and demographic leverage points of community shifts under climate warming

    PubMed Central

    Sorte, Cascade J. B.; White, J. Wilson

    2013-01-01

    Accelerating rates of climate change and a paucity of whole-community studies of climate impacts limit our ability to forecast shifts in ecosystem structure and dynamics, particularly because climate change can lead to idiosyncratic responses via both demographic effects and altered species interactions. We used a multispecies model to predict which processes and species' responses are likely to drive shifts in the composition of a space-limited benthic marine community. Our model was parametrized from experimental manipulations of the community. Model simulations indicated shifts in species dominance patterns as temperatures increase, with projected shifts in composition primarily owing to the temperature dependence of growth, mortality and competition for three critical species. By contrast, warming impacts on two other species (rendering them weaker competitors for space) and recruitment rates of all species were of lesser importance in determining projected community changes. Our analysis reveals the importance of temperature-dependent competitive interactions for predicting effects of changing climate on such communities. Furthermore, by identifying processes and species that could disproportionately leverage shifts in community composition, our results contribute to a mechanistic understanding of climate change impacts, thereby allowing more insightful predictions of future biodiversity patterns. PMID:23658199

  12. Diversity and composition of vaginal microbiota of pregnant women at risk for transmitting Group B Streptococcus treated with intrapartum penicillin.

    PubMed

    Roesch, Luiz Fernando Wurdig; Silveira, Rita C; Corso, Andréa L; Dobbler, Priscila Thiago; Mai, Volker; Rojas, Bruna S; Laureano, Álvaro M; Procianoy, Renato S

    2017-01-01

    Administering intravenous antibiotics during labor to women at risk for transmitting Group B Streptococcus (GBS) can prevent infections in newborns. However, the impact of intrapartum antibiotic prophylaxis on mothers' microbial community composition is largely unknown. We compared vaginal microbial composition in pregnant women experiencing preterm birth at ≤ 32 weeks gestation that received intrapartum antibiotic prophylaxis with that in controls. Microbiota in vaginal swabs collected shortly before delivery from GBS positive women that received penicillin intravenously during labor or after premature rupture of membranes was compared to controls. Microbiota was analyzed by 16S rRNA sequencing using the PGM Ion Torrent to determine the effects of penicillin use during hospitalization and GBS status on its composition. Penicillin administration was associated with an altered vaginal microbial community composition characterized by increased microbial diversity. Lactobacillus sp. contributed only 13.1% of the total community in the women that received penicillin compared to 88.1% in the controls. Streptococcus sp. were present in higher abundance in GBS positive woman compared to controls, with 60% of the total vaginal microbiota in severe cases identified as Streptococcus sp. Vaginal communities of healthy pregnant women were dominated by Lactobacillus sp. and contained low diversity, while Group B Streptococcus positive women receiving intrapartum antibiotic prophylaxis had a modified vaginal microbiota composition with low abundance of Lactobacillus but higher microbial diversity.

  13. Bacterial Community Composition and Dynamics Spanning Five Years in Freshwater Bog Lakes

    DOE PAGES

    Linz, Alexandra M.; Crary, Benjamin C.; Shade, Ashley; ...

    2017-06-28

    Bacteria play a key role in freshwater biogeochemical cycling, but long-term trends in freshwater bacterial community composition and dynamics are not yet well characterized. We used a multiyear time series of 16S rRNA gene amplicon sequencing data from eight bog lakes to census the freshwater bacterial community and observe annual and seasonal trends in abundance. The sites that we studied encompassed a range of water column mixing frequencies, which we hypothesized would be associated with trends in alpha and beta diversity. Each lake and layer contained a distinct bacterial community, with distinct levels of richness and indicator taxa that likelymore » reflected the environmental conditions of each lake type sampled, including Actinobacteria in polymictic lakes (i.e., lakes with multiple mixing events per year), Methylophilales in dimictic lakes (lakes with two mixing events per year, usually in spring and fall), and “CandidatusOmnitrophica” in meromictic lakes (lakes with no recorded mixing events). The community present during each year at each site was also surprisingly unique. Despite unexpected interannual variability in community composition, we detected a core community of taxa found in all lakes and layers, including Actinobacteria tribe acI-B2 and Betaprotobacteria lineage PnecC. Although trends in abundance did not repeat annually, each freshwater lineage within the communities had a consistent lifestyle, defined by persistence, abundance, and variability. The results of our analysis emphasize the importance of long-term multisite observations, as analyzing only a single year of data or one lake would not have allowed us to describe the dynamics and composition of these freshwater bacterial communities to the extent presented here. Lakes are excellent systems for investigating bacterial community dynamics because they have clear boundaries and strong environmental gradients. The results of our research demonstrate that bacterial community composition varies by year, a finding which likely applies to other ecosystems and has implications for study design and interpretation. Understanding the drivers and controls of bacterial communities on long time scales would improve both our knowledge of fundamental properties of bacterial communities and our ability to predict community states. In this specific ecosystem, bog lakes play a disproportionately large role in global carbon cycling, and the information presented here may ultimately help refine carbon budgets for these lakes. Finally, all data and code in this study are publicly available. We hope that this will serve as a resource for anyone seeking to answer their own microbial ecology questions using a multiyear time series.« less

  14. Bacterial Community Composition and Dynamics Spanning Five Years in Freshwater Bog Lakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linz, Alexandra M.; Crary, Benjamin C.; Shade, Ashley

    Bacteria play a key role in freshwater biogeochemical cycling, but long-term trends in freshwater bacterial community composition and dynamics are not yet well characterized. We used a multiyear time series of 16S rRNA gene amplicon sequencing data from eight bog lakes to census the freshwater bacterial community and observe annual and seasonal trends in abundance. The sites that we studied encompassed a range of water column mixing frequencies, which we hypothesized would be associated with trends in alpha and beta diversity. Each lake and layer contained a distinct bacterial community, with distinct levels of richness and indicator taxa that likelymore » reflected the environmental conditions of each lake type sampled, including Actinobacteria in polymictic lakes (i.e., lakes with multiple mixing events per year), Methylophilales in dimictic lakes (lakes with two mixing events per year, usually in spring and fall), and “CandidatusOmnitrophica” in meromictic lakes (lakes with no recorded mixing events). The community present during each year at each site was also surprisingly unique. Despite unexpected interannual variability in community composition, we detected a core community of taxa found in all lakes and layers, including Actinobacteria tribe acI-B2 and Betaprotobacteria lineage PnecC. Although trends in abundance did not repeat annually, each freshwater lineage within the communities had a consistent lifestyle, defined by persistence, abundance, and variability. The results of our analysis emphasize the importance of long-term multisite observations, as analyzing only a single year of data or one lake would not have allowed us to describe the dynamics and composition of these freshwater bacterial communities to the extent presented here. Lakes are excellent systems for investigating bacterial community dynamics because they have clear boundaries and strong environmental gradients. The results of our research demonstrate that bacterial community composition varies by year, a finding which likely applies to other ecosystems and has implications for study design and interpretation. Understanding the drivers and controls of bacterial communities on long time scales would improve both our knowledge of fundamental properties of bacterial communities and our ability to predict community states. In this specific ecosystem, bog lakes play a disproportionately large role in global carbon cycling, and the information presented here may ultimately help refine carbon budgets for these lakes. Finally, all data and code in this study are publicly available. We hope that this will serve as a resource for anyone seeking to answer their own microbial ecology questions using a multiyear time series.« less

  15. Triclosan alterations of estuarine phytoplankton community structure.

    PubMed

    Pinckney, James L; Thompson, Laura; Hylton, Sarah

    2017-06-15

    Antimicrobial additives in pharmaceutical and personal care products are a major environmental concern due to their potential ecological impacts on aquatic ecosystems. Triclosan (TCS) has been used as an antiseptic, disinfectant, and preservative in various media. The sublethal and lethal effects of TCS on estuarine phytoplankton community composition were investigated using bioassays of natural phytoplankton communities to measure phytoplankton responses to different concentrations of TCS ranging from 1 to 200μgl -1 . The EC 50 (the concentration of an inhibitor where the growth is reduced by half) for phytoplankton groups (diatoms, chlorophytes, cryptophytes) examined in this ranged from 10.7 to 113.8μg TCS l -1 . Exposures resulted in major shifts in phytoplankton community composition at concentrations as low as 1.0μg TCS l -1 . This study demonstrates estuarine ecosystem sensitivity to TCS exposure and highlights potential alterations in phytoplankton community composition at what are typically environmental concentrations of TCS in urbanized estuaries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Connectivity between surface and deep waters determines prokaryotic diversity in the North Atlantic Deep Water.

    PubMed

    Frank, Alexander H; Garcia, Juan A L; Herndl, Gerhard J; Reinthaler, Thomas

    2016-06-01

    To decipher the influence of depth stratification and surface provincialism on the dark ocean prokaryotic community composition, we sampled the major deep-water masses in the eastern North Atlantic covering three biogeographic provinces. Their diversity was evaluated using ordination and canonical analysis of 454 pyrotag sequences. Variance partitioning suggested that 16% of the variation in the bacterial community composition was based on depth stratification while 9% of the variation was due to geographic location. General linear mixed effect models showed that the community of the subsurface waters was connected to the dark ocean prokaryotic communities in different biogeographic provinces. Cluster analysis indicated that some prokaryotic taxa are specific to distinct regions in bathypelagic water masses. Taken together, our data suggest that the dark ocean prokaryotic community composition of the eastern North Atlantic is primed by the formation and the horizontal transport of water masses. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina high-throughput sequencing.

    PubMed

    Ma, Qiao; Qu, Yuanyuan; Shen, Wenli; Zhang, Zhaojing; Wang, Jingwei; Liu, Ziyan; Li, Duanxing; Li, Huijie; Zhou, Jiti

    2015-03-01

    In this study, Illumina high-throughput sequencing was used to reveal the community structures of nine coking wastewater treatment plants (CWWTPs) in China for the first time. The sludge systems exhibited a similar community composition at each taxonomic level. Compared to previous studies, some of the core genera in municipal wastewater treatment plants such as Zoogloea, Prosthecobacter and Gp6 were detected as minor species. Thiobacillus (20.83%), Comamonas (6.58%), Thauera (4.02%), Azoarcus (7.78%) and Rhodoplanes (1.42%) were the dominant genera shared by at least six CWWTPs. The percentages of autotrophic ammonia-oxidizing bacteria and nitrite-oxidizing bacteria were unexpectedly low, which were verified by both real-time PCR and fluorescence in situ hybridization analyses. Hierarchical clustering and canonical correspondence analysis indicated that operation mode, flow rate and temperature might be the key factors in community formation. This study provides new insights into our understanding of microbial community compositions and structures of CWWTPs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Decreases in Soil Moisture and Organic Matter Quality Suppress Microbial Decomposition Following a Boreal Forest Fire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holden, Sandra R.; Berhe, Asmeret A.; Treseder, Kathleen K.

    Climate warming is projected to increase the frequency and severity of wildfires in boreal forests, and increased wildfire activity may alter the large soil carbon (C) stocks in boreal forests. Changes in boreal soil C stocks that result from increased wildfire activity will be regulated in part by the response of microbial decomposition to fire, but post-fire changes in microbial decomposition are poorly understood. Here, we investigate the response of microbial decomposition to a boreal forest fire in interior Alaska and test the mechanisms that control post-fire changes in microbial decomposition. We used a reciprocal transplant between a recently burnedmore » boreal forest stand and a late successional boreal forest stand to test how post-fire changes in abiotic conditions, soil organic matter (SOM) composition, and soil microbial communities influence microbial decomposition. We found that SOM decomposing at the burned site lost 30.9% less mass over two years than SOM decomposing at the unburned site, indicating that post-fire changes in abiotic conditions suppress microbial decomposition. Our results suggest that moisture availability is one abiotic factor that constrains microbial decomposition in recently burned forests. In addition, we observed that burned SOM decomposed more slowly than unburned SOM, but the exact nature of SOM changes in the recently burned stand are unclear. Finally, we found no evidence that post-fire changes in soil microbial community composition significantly affect decomposition. Taken together, our study has demonstrated that boreal forest fires can suppress microbial decomposition due to post-fire changes in abiotic factors and the composition of SOM. Models that predict the consequences of increased wildfires for C storage in boreal forests may increase their predictive power by incorporating the observed negative response of microbial decomposition to boreal wildfires.« less

  19. 48 CFR 1609.7101-2 - Community-rated carrier performance factors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Community-rated carrier performance factors. 1609.7101-2 Section 1609.7101-2 Federal Acquisition Regulations System OFFICE OF PERSONNEL MANAGEMENT FEDERAL EMPLOYEES HEALTH BENEFITS ACQUISITION REGULATION ACQUISITION PLANNING...

  20. 48 CFR 1609.7101-2 - Community-rated carrier performance factors.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 6 2013-10-01 2013-10-01 false Community-rated carrier performance factors. 1609.7101-2 Section 1609.7101-2 Federal Acquisition Regulations System OFFICE OF PERSONNEL MANAGEMENT FEDERAL EMPLOYEES HEALTH BENEFITS ACQUISITION REGULATION ACQUISITION PLANNING...

Top