NASA Astrophysics Data System (ADS)
Amarnath, N. S.; Pound, M. W.; Wolfire, M. G.
The Dust InfraRed ToolBox (DIRT - a part of the Web Infrared ToolShed, or WITS, located at http://dustem.astro.umd.edu) is a Java applet for modeling astrophysical processes in circumstellar shells around young and evolved stars. DIRT has been used by the astrophysics community for about 4 years. DIRT uses results from a number of numerical models of astrophysical processes, and has an AWT based user interface. DIRT has been refactored to decouple data representation from plotting and curve fitting. This makes it easier to add new kinds of astrophysical models, use the plotter in other applications, migrate the user interface to Swing components, and modify the user interface to add functionality (for example, SIRTF tools). DIRT is now an extension of two generic libraries, one of which manages data representation and caching, and the second of which manages plotting and curve fitting. This project is an example of refactoring with no impact on user interface, so the existing user community was not affected.
NASA Astrophysics Data System (ADS)
Peckham, S. D.; DeLuca, C.; Gochis, D. J.; Arrigo, J.; Kelbert, A.; Choi, E.; Dunlap, R.
2014-12-01
In order to better understand and predict environmental hazards of weather/climate, ecology and deep earth processes, geoscientists develop and use physics-based computational models. These models are used widely both in academic and federal communities. Because of the large effort required to develop and test models, there is widespread interest in component-based modeling, which promotes model reuse and simplified coupling to tackle problems that often cross discipline boundaries. In component-based modeling, the goal is to make relatively small changes to models that make it easy to reuse them as "plug-and-play" components. Sophisticated modeling frameworks exist to rapidly couple these components to create new composite models. They allow component models to exchange variables while accommodating different programming languages, computational grids, time-stepping schemes, variable names and units. Modeling frameworks have arisen in many modeling communities. CSDMS (Community Surface Dynamics Modeling System) serves the academic earth surface process dynamics community, while ESMF (Earth System Modeling Framework) serves many federal Earth system modeling projects. Others exist in both the academic and federal domains and each satisfies design criteria that are determined by the community they serve. While they may use different interface standards or semantic mediation strategies, they share fundamental similarities. The purpose of the Earth System Bridge project is to develop mechanisms for interoperability between modeling frameworks, such as the ability to share a model or service component. This project has three main goals: (1) Develop a Framework Description Language (ES-FDL) that allows modeling frameworks to be described in a standard way so that their differences and similarities can be assessed. (2) Demonstrate that if a model is augmented with a framework-agnostic Basic Model Interface (BMI), then simple, universal adapters can go from BMI to a modeling framework's native component interface. (3) Create semantic mappings between modeling frameworks that support semantic mediation. This third goal involves creating a crosswalk between the CF Standard Names and the CSDMS Standard Names (a set of naming conventions). This talk will summarize progress towards these goals.
Bailey, Allan L; Moe, Grace; Moe, Jessica; Oland, Ryan
2009-01-01
The WestView community-based medication reconciliation (CMR) aims to decrease medication error risk. A clinical pharmacist visits patients' homes within 72 hours of hospital discharge and compares medications in discharge orders, family physicians' charts, community pharmacy profiles and in the home. Discrepancies are discussed and reconciled with the dispenser, hospital prescriber and follow-up care provider. The CMR demonstrates successful integration that is patient-centred and standardized, bridging the hospital-community interface and improving information flow and communication channels across a family-physician-led multi-disciplinary team. A concurrent research study will evaluate the impact of CMR on health services utilization and to develop a risk prediction model.
A Model Process for Institutional Goals-Setting. A Module of the Needs Assessment Project.
ERIC Educational Resources Information Center
King, Maxwell C.; And Others
A goals-setting model for the community/junior college that would interface with the community needs assessment model was developed, using as the survey instrument the Institutional Goals Inventory (I.G.I.) developed by the Educational Testing Service. The nine steps in the model are: Establish Committee on College Goals and Identify Goals Project…
NASA Astrophysics Data System (ADS)
Lin, Y.; Zhang, W. J.
2005-02-01
This paper presents an approach to human-machine interface design for control room operators of nuclear power plants. The first step in designing an interface for a particular application is to determine information content that needs to be displayed. The design methodology for this step is called the interface design framework (called framework ). Several frameworks have been proposed for applications at varying levels, including process plants. However, none is based on the design and manufacture of a plant system for which the interface is designed. This paper presents an interface design framework which originates from design theory and methodology for general technical systems. Specifically, the framework is based on a set of core concepts of a function-behavior-state model originally proposed by the artificial intelligence research community and widely applied in the design research community. Benefits of this new framework include the provision of a model-based fault diagnosis facility, and the seamless integration of the design (manufacture, maintenance) of plants and the design of human-machine interfaces. The missing linkage between design and operation of a plant was one of the causes of the Three Mile Island nuclear reactor incident. A simulated plant system is presented to explain how to apply this framework in designing an interface. The resulting human-machine interface is discussed; specifically, several fault diagnosis examples are elaborated to demonstrate how this interface could support operators' fault diagnosis in an unanticipated situation.
Sustainability Transdisciplinary Education Model: Interface of Arts, Science, and Community (STEM)
ERIC Educational Resources Information Center
Clark, Barbara; Button, Charles
2011-01-01
Purpose: The purpose of this paper is to describe the components of a sustainability transdisciplinary education model (STEM), a contemporary approach linking art, science, and community, that were developed to provide university and K-12 students, and society at large shared learning opportunities. The goals and application of the STEM curriculum…
Unraveling the Complexity of Wildland Urban Interface Fires.
Mahmoud, Hussam; Chulahwat, Akshat
2018-06-18
Recent wildland urban interface fires have demonstrated the unrelenting destructive nature of these events and have called for an urgent need to address the problem. The Wildfire paradox reinforces the ideology that forest fires are inevitable and are actually beneficial; therefore focus should to be shifted towards minimizing potential losses to communities. This requires the development of vulnerability-based frameworks that can be used to provide holistic understanding of risk. In this study, we devise a probabilistic approach for quantifying community vulnerability to wildfires by applying concepts of graph theory. A directed graph for community in question is developed to model wildfire inside a community by incorporating different fire propagation modes. The model accounts for relevant community-specific characteristics including wind conditions, community layout, individual structural features, and the surrounding wildland vegetation. We calibrate the framework to study the infamous 1991 Oakland fire in an attempt to unravel the complexity of community fires. We use traditional centrality measures to identify critical behavior patterns and to evaluate the effect of fire mitigation strategies. Unlike current practice, the results are shown to be community-specific with substantial dependency of risk on meteorological conditions, environmental factors, and community characteristics and layout.
MaizeGDB update: New tools, data, and interface for the maize model organism database
USDA-ARS?s Scientific Manuscript database
MaizeGDB is a highly curated, community-oriented database and informatics service to researchers focused on the crop plant and model organism Zea mays ssp. mays. Although some form of the maize community database has existed over the last 25 years, there have only been two major releases. In 1991, ...
NASA Astrophysics Data System (ADS)
Corkindale, David; Ram, Jiwat; Chen, Howard
2018-02-01
Online communities are a powerful device for collaborative creativity and innovation. Developments in Web 2.0 technologies have given rise to such interactions through firm-hosted online communities (FHOCs) - firm-run online information services that also provide self-help to a community. We devise a model that seeks to explain the factors that encourage people to become members of a FHOC and test the model using structural equation modelling based on data collected from 511 users of a FHOC. The study finds that: (a) an understanding of Perceived Usefulness (PU) plays a mediating role between Behavioural Intention (BI) to adopt FHOC and Trust, as well as Interface design; b) Networking among users has an indirect effect on BI; and c) design of the Interface has a direct influence on BI. A managerial implication is that Networking plays a role in the way supplementary services, including blogs and discussion forums, are perceived. Theoretically, when service quality is decomposed into components such as core services and supplementary services, it also positively influences PU.
The BioMart community portal: an innovative alternative to large, centralized data repositories
Smedley, Damian; Haider, Syed; Durinck, Steffen; Pandini, Luca; Provero, Paolo; Allen, James; Arnaiz, Olivier; Awedh, Mohammad Hamza; Baldock, Richard; Barbiera, Giulia; Bardou, Philippe; Beck, Tim; Blake, Andrew; Bonierbale, Merideth; Brookes, Anthony J.; Bucci, Gabriele; Buetti, Iwan; Burge, Sarah; Cabau, Cédric; Carlson, Joseph W.; Chelala, Claude; Chrysostomou, Charalambos; Cittaro, Davide; Collin, Olivier; Cordova, Raul; Cutts, Rosalind J.; Dassi, Erik; Genova, Alex Di; Djari, Anis; Esposito, Anthony; Estrella, Heather; Eyras, Eduardo; Fernandez-Banet, Julio; Forbes, Simon; Free, Robert C.; Fujisawa, Takatomo; Gadaleta, Emanuela; Garcia-Manteiga, Jose M.; Goodstein, David; Gray, Kristian; Guerra-Assunção, José Afonso; Haggarty, Bernard; Han, Dong-Jin; Han, Byung Woo; Harris, Todd; Harshbarger, Jayson; Hastings, Robert K.; Hayes, Richard D.; Hoede, Claire; Hu, Shen; Hu, Zhi-Liang; Hutchins, Lucie; Kan, Zhengyan; Kawaji, Hideya; Keliet, Aminah; Kerhornou, Arnaud; Kim, Sunghoon; Kinsella, Rhoda; Klopp, Christophe; Kong, Lei; Lawson, Daniel; Lazarevic, Dejan; Lee, Ji-Hyun; Letellier, Thomas; Li, Chuan-Yun; Lio, Pietro; Liu, Chu-Jun; Luo, Jie; Maass, Alejandro; Mariette, Jerome; Maurel, Thomas; Merella, Stefania; Mohamed, Azza Mostafa; Moreews, Francois; Nabihoudine, Ibounyamine; Ndegwa, Nelson; Noirot, Céline; Perez-Llamas, Cristian; Primig, Michael; Quattrone, Alessandro; Quesneville, Hadi; Rambaldi, Davide; Reecy, James; Riba, Michela; Rosanoff, Steven; Saddiq, Amna Ali; Salas, Elisa; Sallou, Olivier; Shepherd, Rebecca; Simon, Reinhard; Sperling, Linda; Spooner, William; Staines, Daniel M.; Steinbach, Delphine; Stone, Kevin; Stupka, Elia; Teague, Jon W.; Dayem Ullah, Abu Z.; Wang, Jun; Ware, Doreen; Wong-Erasmus, Marie; Youens-Clark, Ken; Zadissa, Amonida; Zhang, Shi-Jian; Kasprzyk, Arek
2015-01-01
The BioMart Community Portal (www.biomart.org) is a community-driven effort to provide a unified interface to biomedical databases that are distributed worldwide. The portal provides access to numerous database projects supported by 30 scientific organizations. It includes over 800 different biological datasets spanning genomics, proteomics, model organisms, cancer data, ontology information and more. All resources available through the portal are independently administered and funded by their host organizations. The BioMart data federation technology provides a unified interface to all the available data. The latest version of the portal comes with many new databases that have been created by our ever-growing community. It also comes with better support and extensibility for data analysis and visualization tools. A new addition to our toolbox, the enrichment analysis tool is now accessible through graphical and web service interface. The BioMart community portal averages over one million requests per day. Building on this level of service and the wealth of information that has become available, the BioMart Community Portal has introduced a new, more scalable and cheaper alternative to the large data stores maintained by specialized organizations. PMID:25897122
GillesPy: A Python Package for Stochastic Model Building and Simulation.
Abel, John H; Drawert, Brian; Hellander, Andreas; Petzold, Linda R
2016-09-01
GillesPy is an open-source Python package for model construction and simulation of stochastic biochemical systems. GillesPy consists of a Python framework for model building and an interface to the StochKit2 suite of efficient simulation algorithms based on the Gillespie stochastic simulation algorithms (SSA). To enable intuitive model construction and seamless integration into the scientific Python stack, we present an easy to understand, action-oriented programming interface. Here, we describe the components of this package and provide a detailed example relevant to the computational biology community.
GillesPy: A Python Package for Stochastic Model Building and Simulation
Abel, John H.; Drawert, Brian; Hellander, Andreas; Petzold, Linda R.
2017-01-01
GillesPy is an open-source Python package for model construction and simulation of stochastic biochemical systems. GillesPy consists of a Python framework for model building and an interface to the StochKit2 suite of efficient simulation algorithms based on the Gillespie stochastic simulation algorithms (SSA). To enable intuitive model construction and seamless integration into the scientific Python stack, we present an easy to understand, action-oriented programming interface. Here, we describe the components of this package and provide a detailed example relevant to the computational biology community. PMID:28630888
LINKING THE CMAQ AND HYSPLIT MODELING SYSTEM INTERFACE PROGRAM AND EXAMPLE APPLICATION
A new software tool has been developed to link the Eulerian-based Community Multiscale Air Quality (CMAQ) modeling system with the Lagrangian-based HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) model. Both models require many of the same hourly meteorological...
Payao: a community platform for SBML pathway model curation
Matsuoka, Yukiko; Ghosh, Samik; Kikuchi, Norihiro; Kitano, Hiroaki
2010-01-01
Summary: Payao is a community-based, collaborative web service platform for gene-regulatory and biochemical pathway model curation. The system combines Web 2.0 technologies and online model visualization functions to enable a collaborative community to annotate and curate biological models. Payao reads the models in Systems Biology Markup Language format, displays them with CellDesigner, a process diagram editor, which complies with the Systems Biology Graphical Notation, and provides an interface for model enrichment (adding tags and comments to the models) for the access-controlled community members. Availability and implementation: Freely available for model curation service at http://www.payaologue.org. Web site implemented in Seaser Framework 2.0 with S2Flex2, MySQL 5.0 and Tomcat 5.5, with all major browsers supported. Contact: kitano@sbi.jp PMID:20371497
Establishing a Novel Modeling Tool: A Python-Based Interface for a Neuromorphic Hardware System
Brüderle, Daniel; Müller, Eric; Davison, Andrew; Muller, Eilif; Schemmel, Johannes; Meier, Karlheinz
2008-01-01
Neuromorphic hardware systems provide new possibilities for the neuroscience modeling community. Due to the intrinsic parallelism of the micro-electronic emulation of neural computation, such models are highly scalable without a loss of speed. However, the communities of software simulator users and neuromorphic engineering in neuroscience are rather disjoint. We present a software concept that provides the possibility to establish such hardware devices as valuable modeling tools. It is based on the integration of the hardware interface into a simulator-independent language which allows for unified experiment descriptions that can be run on various simulation platforms without modification, implying experiment portability and a huge simplification of the quantitative comparison of hardware and simulator results. We introduce an accelerated neuromorphic hardware device and describe the implementation of the proposed concept for this system. An example setup and results acquired by utilizing both the hardware system and a software simulator are demonstrated. PMID:19562085
Establishing a novel modeling tool: a python-based interface for a neuromorphic hardware system.
Brüderle, Daniel; Müller, Eric; Davison, Andrew; Muller, Eilif; Schemmel, Johannes; Meier, Karlheinz
2009-01-01
Neuromorphic hardware systems provide new possibilities for the neuroscience modeling community. Due to the intrinsic parallelism of the micro-electronic emulation of neural computation, such models are highly scalable without a loss of speed. However, the communities of software simulator users and neuromorphic engineering in neuroscience are rather disjoint. We present a software concept that provides the possibility to establish such hardware devices as valuable modeling tools. It is based on the integration of the hardware interface into a simulator-independent language which allows for unified experiment descriptions that can be run on various simulation platforms without modification, implying experiment portability and a huge simplification of the quantitative comparison of hardware and simulator results. We introduce an accelerated neuromorphic hardware device and describe the implementation of the proposed concept for this system. An example setup and results acquired by utilizing both the hardware system and a software simulator are demonstrated.
Meyer, Caroline; Desalme, Dorine; Bernard, Nadine; Binet, Philippe; Toussaint, Marie-Laure; Gilbert, Daniel
2013-03-01
Microecosystem models could allow understanding of the impacts of pollutants such as polycyclic aromatic hydrocarbons on ecosystem functioning. We studied the effects of atmospheric phenanthrene (PHE) deposition on the microecosystem "moss/soil interface-testate amoebae (TA) community" over a 1-month period under controlled conditions. We found that PHE had an impact on the microecosystem. PHE was accumulated by the moss/soil interface and was significantly negatively correlated (0.4 < r(2) < 0.7) with total TA abundance and the abundance of five species of TA (Arcella sp., Centropyxis sp., Nebela lageniformis, Nebela tincta and Phryganella sp.). Among sensitive species, species with a superior trophic level (determined by the test aperture size) were more sensitive than other TA species. This result suggests that links between microbial groups in the microecosystems are disrupted by PHE and that this pollutant had effects both direct (ingestion of the pollutant or direct contact with cell) and/or indirect (decrease of prey) on the TA community. The TA community seems to offer a potential integrative tool to understand mechanisms and processes by which the atmospheric PHE deposition affects the links between microbial communities.
MOOsburg: Multi-User Domain Support for a Community Network.
ERIC Educational Resources Information Center
Carroll, John M.; Rosson, Mary Beth; Isenhour, Philip L.; Van Metre, Christina; Schafer, Wendy A.; Ganoe, Craig H.
2001-01-01
Explains MOOsburg, a community-oriented MOO that models the geography of the town of Blacksburg, Virginia and is designed to be used by local residents. Highlights include the software architecture; client-server communication; spatial database; user interface; interaction; map-based navigation; application development; and future plans. (LRW)
The BioMart community portal: an innovative alternative to large, centralized data repositories.
Smedley, Damian; Haider, Syed; Durinck, Steffen; Pandini, Luca; Provero, Paolo; Allen, James; Arnaiz, Olivier; Awedh, Mohammad Hamza; Baldock, Richard; Barbiera, Giulia; Bardou, Philippe; Beck, Tim; Blake, Andrew; Bonierbale, Merideth; Brookes, Anthony J; Bucci, Gabriele; Buetti, Iwan; Burge, Sarah; Cabau, Cédric; Carlson, Joseph W; Chelala, Claude; Chrysostomou, Charalambos; Cittaro, Davide; Collin, Olivier; Cordova, Raul; Cutts, Rosalind J; Dassi, Erik; Di Genova, Alex; Djari, Anis; Esposito, Anthony; Estrella, Heather; Eyras, Eduardo; Fernandez-Banet, Julio; Forbes, Simon; Free, Robert C; Fujisawa, Takatomo; Gadaleta, Emanuela; Garcia-Manteiga, Jose M; Goodstein, David; Gray, Kristian; Guerra-Assunção, José Afonso; Haggarty, Bernard; Han, Dong-Jin; Han, Byung Woo; Harris, Todd; Harshbarger, Jayson; Hastings, Robert K; Hayes, Richard D; Hoede, Claire; Hu, Shen; Hu, Zhi-Liang; Hutchins, Lucie; Kan, Zhengyan; Kawaji, Hideya; Keliet, Aminah; Kerhornou, Arnaud; Kim, Sunghoon; Kinsella, Rhoda; Klopp, Christophe; Kong, Lei; Lawson, Daniel; Lazarevic, Dejan; Lee, Ji-Hyun; Letellier, Thomas; Li, Chuan-Yun; Lio, Pietro; Liu, Chu-Jun; Luo, Jie; Maass, Alejandro; Mariette, Jerome; Maurel, Thomas; Merella, Stefania; Mohamed, Azza Mostafa; Moreews, Francois; Nabihoudine, Ibounyamine; Ndegwa, Nelson; Noirot, Céline; Perez-Llamas, Cristian; Primig, Michael; Quattrone, Alessandro; Quesneville, Hadi; Rambaldi, Davide; Reecy, James; Riba, Michela; Rosanoff, Steven; Saddiq, Amna Ali; Salas, Elisa; Sallou, Olivier; Shepherd, Rebecca; Simon, Reinhard; Sperling, Linda; Spooner, William; Staines, Daniel M; Steinbach, Delphine; Stone, Kevin; Stupka, Elia; Teague, Jon W; Dayem Ullah, Abu Z; Wang, Jun; Ware, Doreen; Wong-Erasmus, Marie; Youens-Clark, Ken; Zadissa, Amonida; Zhang, Shi-Jian; Kasprzyk, Arek
2015-07-01
The BioMart Community Portal (www.biomart.org) is a community-driven effort to provide a unified interface to biomedical databases that are distributed worldwide. The portal provides access to numerous database projects supported by 30 scientific organizations. It includes over 800 different biological datasets spanning genomics, proteomics, model organisms, cancer data, ontology information and more. All resources available through the portal are independently administered and funded by their host organizations. The BioMart data federation technology provides a unified interface to all the available data. The latest version of the portal comes with many new databases that have been created by our ever-growing community. It also comes with better support and extensibility for data analysis and visualization tools. A new addition to our toolbox, the enrichment analysis tool is now accessible through graphical and web service interface. The BioMart community portal averages over one million requests per day. Building on this level of service and the wealth of information that has become available, the BioMart Community Portal has introduced a new, more scalable and cheaper alternative to the large data stores maintained by specialized organizations. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Thayer-Calder, K.; Gettelman, A.; Craig, C.; ...
2015-06-30
Most global climate models parameterize separate cloud types using separate parameterizations. This approach has several disadvantages, including obscure interactions between parameterizations and inaccurate triggering of cumulus parameterizations. Alternatively, a unified cloud parameterization uses one equation set to represent all cloud types. Such cloud types include stratiform liquid and ice cloud, shallow convective cloud, and deep convective cloud. Vital to the success of a unified parameterization is a general interface between clouds and microphysics. One such interface involves drawing Monte Carlo samples of subgrid variability of temperature, water vapor, cloud liquid, and cloud ice, and feeding the sample points into amore » microphysics scheme.This study evaluates a unified cloud parameterization and a Monte Carlo microphysics interface that has been implemented in the Community Atmosphere Model (CAM) version 5.3. Results describing the mean climate and tropical variability from global simulations are presented. The new model shows a degradation in precipitation skill but improvements in short-wave cloud forcing, liquid water path, long-wave cloud forcing, precipitable water, and tropical wave simulation. Also presented are estimations of computational expense and investigation of sensitivity to number of subcolumns.« less
Thayer-Calder, Katherine; Gettelman, A.; Craig, Cheryl; ...
2015-12-01
Most global climate models parameterize separate cloud types using separate parameterizations.This approach has several disadvantages, including obscure interactions between parameterizations and inaccurate triggering of cumulus parameterizations. Alternatively, a unified cloud parameterization uses one equation set to represent all cloud types. Such cloud types include stratiform liquid and ice cloud, shallow convective cloud, and deep convective cloud. Vital to the success of a unified parameterization is a general interface between clouds and microphysics. One such interface involves drawing Monte Carlo samples of subgrid variability of temperature, water vapor, cloud liquid, and cloud ice, and feeding the sample points into a microphysicsmore » scheme. This study evaluates a unified cloud parameterization and a Monte Carlo microphysics interface that has been implemented in the Community Atmosphere Model (CAM) version 5.3. Results describing the mean climate and tropical variability from global simulations are presented. In conclusion, the new model shows a degradation in precipitation skill but improvements in short-wave cloud forcing, liquid water path, long-wave cloud forcing, perceptible water, and tropical wave simulation. Also presented are estimations of computational expense and investigation of sensitivity to number of subcolumns.« less
The Community Multiscale Air Quality (CMAQ) modeling system is a state-of-the science regional air quality modeling system. The CMAQ modeling system has been primarily developed by the U.S. Environmental Protection Agency, and it has been publically and freely available for more...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gettelman, Andrew
2015-10-01
In this project we have been upgrading the Multiscale Modeling Framework (MMF) in the Community Atmosphere Model (CAM), also known as Super-Parameterized CAM (SP-CAM). This has included a major effort to update the coding standards and interface with CAM so that it can be placed on the main development trunk. It has also included development of a new software structure for CAM to be able to handle sub-grid column information. These efforts have formed the major thrust of the work.
Framework for non-coherent interface models at finite displacement jumps and finite strains
NASA Astrophysics Data System (ADS)
Ottosen, Niels Saabye; Ristinmaa, Matti; Mosler, Jörn
2016-05-01
This paper deals with a novel constitutive framework suitable for non-coherent interfaces, such as cracks, undergoing large deformations in a geometrically exact setting. For this type of interface, the displacement field shows a jump across the interface. Within the engineering community, so-called cohesive zone models are frequently applied in order to describe non-coherent interfaces. However, for existing models to comply with the restrictions imposed by (a) thermodynamical consistency (e.g., the second law of thermodynamics), (b) balance equations (in particular, balance of angular momentum) and (c) material frame indifference, these models are essentially fiber models, i.e. models where the traction vector is collinear with the displacement jump. This constraints the ability to model shear and, in addition, anisotropic effects are excluded. A novel, extended constitutive framework which is consistent with the above mentioned fundamental physical principles is elaborated in this paper. In addition to the classical tractions associated with a cohesive zone model, the main idea is to consider additional tractions related to membrane-like forces and out-of-plane shear forces acting within the interface. For zero displacement jump, i.e. coherent interfaces, this framework degenerates to existing formulations presented in the literature. For hyperelasticity, the Helmholtz energy of the proposed novel framework depends on the displacement jump as well as on the tangent vectors of the interface with respect to the current configuration - or equivalently - the Helmholtz energy depends on the displacement jump and the surface deformation gradient. It turns out that by defining the Helmholtz energy in terms of the invariants of these variables, all above-mentioned fundamental physical principles are automatically fulfilled. Extensions of the novel framework necessary for material degradation (damage) and plasticity are also covered.
A theory-based model of translation practices in public health participatory research.
Clavier, Carole; Sénéchal, Yan; Vibert, Stéphane; Potvin, Louise
2012-06-01
This article explores the innovative practices of actors specifically mandated to support interactions between academic researchers and their partners from the community during public health participatory research. Drawing on the concept of translation as developed in actor-network theory and found in the literature on knowledge transfer and the sociology of intermediate actors, we build a theory-based model of the translation practices developed by these actors at the interface between community and university. We refine this model by using it to analyse material from two focus groups comprising participants purposively selected because they work at the nexus between research and practice. Our model of translation practices includes cognitive (dealing with the contents of the research), strategic (geared to facilitating the research process and balancing power relationships among the partners) and logistic practices (the hands-on tasks of coordination). Combined, these three types of translation practices demonstrate that actors working at the interface in participatory research contribute to multidirectional exchanges and the co-construction of knowledge among research partners. Beyond the case of participatory research, theorising translation practices helps understand how knowledge is produced at the interface between academic and experiential (or lay) knowledge. © 2011 The Authors. Sociology of Health & Illness © 2011 Foundation for the Sociology of Health & Illness/Blackwell Publishing Ltd.
2010-01-01
We present an extensible software model for the genotype and phenotype community, XGAP. Readers can download a standard XGAP (http://www.xgap.org) or auto-generate a custom version using MOLGENIS with programming interfaces to R-software and web-services or user interfaces for biologists. XGAP has simple load formats for any type of genotype, epigenotype, transcript, protein, metabolite or other phenotype data. Current functionality includes tools ranging from eQTL analysis in mouse to genome-wide association studies in humans. PMID:20214801
Swertz, Morris A; Velde, K Joeri van der; Tesson, Bruno M; Scheltema, Richard A; Arends, Danny; Vera, Gonzalo; Alberts, Rudi; Dijkstra, Martijn; Schofield, Paul; Schughart, Klaus; Hancock, John M; Smedley, Damian; Wolstencroft, Katy; Goble, Carole; de Brock, Engbert O; Jones, Andrew R; Parkinson, Helen E; Jansen, Ritsert C
2010-01-01
We present an extensible software model for the genotype and phenotype community, XGAP. Readers can download a standard XGAP (http://www.xgap.org) or auto-generate a custom version using MOLGENIS with programming interfaces to R-software and web-services or user interfaces for biologists. XGAP has simple load formats for any type of genotype, epigenotype, transcript, protein, metabolite or other phenotype data. Current functionality includes tools ranging from eQTL analysis in mouse to genome-wide association studies in humans.
A continuously growing web-based interface structure databank
NASA Astrophysics Data System (ADS)
Erwin, N. A.; Wang, E. I.; Osysko, A.; Warner, D. H.
2012-07-01
The macroscopic properties of materials can be significantly influenced by the presence of microscopic interfaces. The complexity of these interfaces coupled with the vast configurational space in which they reside has been a long-standing obstacle to the advancement of true bottom-up material behavior predictions. In this vein, atomistic simulations have proven to be a valuable tool for investigating interface behavior. However, before atomistic simulations can be utilized to model interface behavior, meaningful interface atomic structures must be generated. The generation of structures has historically been carried out disjointly by individual research groups, and thus, has constituted an overlap in effort across the broad research community. To address this overlap and to lower the barrier for new researchers to explore interface modeling, we introduce a web-based interface structure databank (www.isdb.cee.cornell.edu) where users can search, download and share interface structures. The databank is intended to grow via two mechanisms: (1) interface structure donations from individual research groups and (2) an automated structure generation algorithm which continuously creates equilibrium interface structures. In this paper, we describe the databank, the automated interface generation algorithm, and compare a subset of the autonomously generated structures to structures currently available in the literature. To date, the automated generation algorithm has been directed toward aluminum grain boundary structures, which can be compared with experimentally measured population densities of aluminum polycrystals.
GRACKLE: a chemistry and cooling library for astrophysics
NASA Astrophysics Data System (ADS)
Smith, Britton D.; Bryan, Greg L.; Glover, Simon C. O.; Goldbaum, Nathan J.; Turk, Matthew J.; Regan, John; Wise, John H.; Schive, Hsi-Yu; Abel, Tom; Emerick, Andrew; O'Shea, Brian W.; Anninos, Peter; Hummels, Cameron B.; Khochfar, Sadegh
2017-04-01
We present the GRACKLE chemistry and cooling library for astrophysical simulations and models. GRACKLE provides a treatment of non-equilibrium primordial chemistry and cooling for H, D and He species, including H2 formation on dust grains; tabulated primordial and metal cooling; multiple ultraviolet background models; and support for radiation transfer and arbitrary heat sources. The library has an easily implementable interface for simulation codes written in C, C++ and FORTRAN as well as a PYTHON interface with added convenience functions for semi-analytical models. As an open-source project, GRACKLE provides a community resource for accessing and disseminating astrochemical data and numerical methods. We present the full details of the core functionality, the simulation and PYTHON interfaces, testing infrastructure, performance and range of applicability. GRACKLE is a fully open-source project and new contributions are welcome.
FEST-C 1.3 & 2.0 for CMAQ Bi-directional NH3, Crop Production, and SWAT Modeling
The Fertilizer Emission Scenario Tool for CMAQ (FEST-C) is developed in a Linux environment, a festc JAVA interface that integrates 14 tools and scenario management options facilitating land use/crop data processing for the Community Multiscale Air Quality (CMAQ) modeling system ...
Collaboration and Self-Regulation in Teachers' Professional Development
ERIC Educational Resources Information Center
Butler, Deborah L.; Lauscher, Helen Novak; Jarvis-Selinger, Sandra; Beckingham, Beverly
2004-01-01
This paper describes a professional development model with promise for supporting meaningful shifts in practice. We begin by introducing the theoretical principles underlying our professional development model, with a focus on explicating the interface between collaborative inquiry in a learning community (Lave, 1991, In L.B. Resnick, J.M. Levine,…
A Prototype Visualization of Real-time River Drainage Network Response to Rainfall
NASA Astrophysics Data System (ADS)
Demir, I.; Krajewski, W. F.
2011-12-01
The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to and visualization of flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, and other flood-related data for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS streams rainfall data from NEXRAD radar, and provides three interfaces including animation for rainfall intensity, daily rainfall totals and rainfall accumulations for past 14 days for Iowa. A real-time interactive visualization interface is developed using past rainfall intensity data. The interface creates community-based rainfall products on-demand using watershed boundaries of each community as a mask. Each individual rainfall pixel is tracked in the interface along the drainage network, and the ones drains to same pixel location are accumulated. The interface loads recent rainfall data in five minute intervals that are combined with current values. Latest web technologies are utilized for the development of the interface including HTML 5 Canvas, and JavaScript. The performance of the interface is optimized to run smoothly on modern web browsers. The interface controls allow users to change internal parameters of the system, and operation conditions of the animation. The interface will help communities understand the effects of rainfall on water transport in stream and river networks and make better-informed decisions regarding the threat of floods. This presentation provides an overview of a unique visualization interface and discusses future plans for real-time dynamic presentations of streamflow forecasting.
A Web-based Data Intensive Visualization of Real-time River Drainage Network Response to Rainfall
NASA Astrophysics Data System (ADS)
Demir, I.; Krajewski, W. F.
2012-04-01
The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to and visualization of flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, and other flood-related data for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS streams rainfall data from NEXRAD radar, and provides three interfaces including animation for rainfall intensity, daily rainfall totals and rainfall accumulations for past 14 days for Iowa. A real-time interactive visualization interface is developed using past rainfall intensity data. The interface creates community-based rainfall products on-demand using watershed boundaries of each community as a mask. Each individual rainfall pixel is tracked in the interface along the drainage network, and the ones drains to same pixel location are accumulated. The interface loads recent rainfall data in five minute intervals that are combined with current values. Latest web technologies are utilized for the development of the interface including HTML 5 Canvas, and JavaScript. The performance of the interface is optimized to run smoothly on modern web browsers. The interface controls allow users to change internal parameters of the system, and operation conditions of the animation. The interface will help communities understand the effects of rainfall on water transport in stream and river networks and make better-informed decisions regarding the threat of floods. This presentation provides an overview of a unique visualization interface and discusses future plans for real-time dynamic presentations of streamflow forecasting.
Web-based Visual Analytics for Extreme Scale Climate Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steed, Chad A; Evans, Katherine J; Harney, John F
In this paper, we introduce a Web-based visual analytics framework for democratizing advanced visualization and analysis capabilities pertinent to large-scale earth system simulations. We address significant limitations of present climate data analysis tools such as tightly coupled dependencies, ineffi- cient data movements, complex user interfaces, and static visualizations. Our Web-based visual analytics framework removes critical barriers to the widespread accessibility and adoption of advanced scientific techniques. Using distributed connections to back-end diagnostics, we minimize data movements and leverage HPC platforms. We also mitigate system dependency issues by employing a RESTful interface. Our framework embraces the visual analytics paradigm via newmore » visual navigation techniques for hierarchical parameter spaces, multi-scale representations, and interactive spatio-temporal data mining methods that retain details. Although generalizable to other science domains, the current work focuses on improving exploratory analysis of large-scale Community Land Model (CLM) and Community Atmosphere Model (CAM) simulations.« less
Microbial community profiles and microbial carbon cycling in Orca Basin
NASA Astrophysics Data System (ADS)
Hyde, A.; Teske, A.; Joye, S. B.; Montoya, J. P.; Nigro, L.
2016-12-01
Orca Basin is the largest seafloor brine pools in the world, covering over 400 km2 and reaching brine layer depths of 200 m. The brine pool contains water 8 times denser than the overlying seawater and is separated from the overlying water column by a sharp pycnocline that prevents vertical mixing. The transition from ambient seawater to brine occurs over 100 m [2150 to 2250 m] and is characterized by distinct changes in temperature, salinity, chemical conditions, oxygen, and organic matter concentration. The sharp brine-seawater interface results in a sharp pycnocline, which serves as a particle trap for sinking marine organic matter. Previous studies have used lipids to show that this organic-rich interface is host to an active microbial community which is potentially involved in deep-sea carbon remineralization and metal-cycling. Additionally, previous work on methane, ethane, and propane concentrations and 13C-isotopic signatures has also implicated the brine pool, as well as the interface, as sources for biogenic low-molecular weight hydrocarbons, resulting from the high concentration of suspended organic matter above and within the brine pool. Here we investigate the profiles of microbial community composition and metabolic potential in Orca Basin, ranging from seawater through the Orca Basin chemocline and into the deep Orca Basin brine. To characterize the microbial community and stratification, we used high-throughput bacterial and archaeal 16S rRNA gene sequencing of filtered water above, within, and below the Orca Basin chemocline. Our sequence data shows that three distinct and unique communities exist in the Orca Basin water column. We also use thermodynamic modeling of hydrocarbon degradation to investigate the favorability of C1-C3 hydrocarbon oxidation at the brine-seawater interface and the potential for Orca Basin to serve as a deep-sea hydrocarbon sink.
Frostegård, A; Petersen, S O; Bååth, E; Nielsen, T H
1997-01-01
Microbial community dynamics associated with manure hot spots were studied by using a model system consisting of a gel-stabilized mixture of soil and manure, placed between layers of soil, during a 3-week incubation period. The microbial biomass, measured as the total amount of phospholipid fatty acids (PLFA), had doubled within a 2-mm distance from the soil-manure interface after 3 days. Principal-component analyses demonstrated that this increase was accompanied by reproducible changes in the composition of PLFA, indicating changes in the microbial community structure. The effect of the manure was strongest in the 2-mm-thick soil layer closest to the interface, in which the PLFA composition was statistically significantly different (P < 0.05) from that of the unaffected soil layers throughout the incubation period. An effect was also observed in the soil layer 2 to 4 mm from the interface. The changes in microbial biomass and community structure were mainly attributed to the diffusion of dissolved organic carbon from the manure. During the initial period of microbial growth, PLFA, which were already more abundant in the manure than in the soil, increased in the manure core and in the 2-mm soil layer closest to the interface. After day 3, the PLFA composition of these layers gradually became more similar to that of the soil. The dynamics of individual PLFA suggested that both taxonomic and physiological changes occurred during growth. Examples of the latter were decreases in the ratios of 16:1 omega 7t to 16:1 omega 7c and of cyclopropyl fatty acids to their respective precursors, indicating a more active bacterial community. An inverse relationship between bacterial PLFA and the eucaryotic 20:4 PLFA (arachidonic acid) suggested that grazing was important. PMID:9172342
NASA Astrophysics Data System (ADS)
Williams, J. W.; Ashworth, A. C.; Betancourt, J. L.; Bills, B.; Blois, J.; Booth, R.; Buckland, P.; Charles, D.; Curry, B. B.; Goring, S. J.; Davis, E.; Grimm, E. C.; Graham, R. W.; Smith, A. J.
2015-12-01
Community-supported data repositories (CSDRs) in paleoecology and paleoclimatology have a decades-long tradition and serve multiple critical scientific needs. CSDRs facilitate synthetic large-scale scientific research by providing open-access and curated data that employ community-supported metadata and data standards. CSDRs serve as a 'middle tail' or boundary organization between information scientists and the long-tail community of individual geoscientists collecting and analyzing paleoecological data. Over the past decades, a distributed network of CSDRs has emerged, each serving a particular suite of data and research communities, e.g. Neotoma Paleoecology Database, Paleobiology Database, International Tree Ring Database, NOAA NCEI for Paleoclimatology, Morphobank, iDigPaleo, and Integrated Earth Data Alliance. Recently, these groups have organized into a common Paleobiology Data Consortium dedicated to improving interoperability and sharing best practices and protocols. The Neotoma Paleoecology Database offers one example of an active and growing CSDR, designed to facilitate research into ecological and evolutionary dynamics during recent past global change. Neotoma combines a centralized database structure with distributed scientific governance via multiple virtual constituent data working groups. The Neotoma data model is flexible and can accommodate a variety of paleoecological proxies from many depositional contests. Data input into Neotoma is done by trained Data Stewards, drawn from their communities. Neotoma data can be searched, viewed, and returned to users through multiple interfaces, including the interactive Neotoma Explorer map interface, REST-ful Application Programming Interfaces (APIs), the neotoma R package, and the Tilia stratigraphic software. Neotoma is governed by geoscientists and provides community engagement through training workshops for data contributors, stewards, and users. Neotoma is engaged in the Paleobiological Data Consortium and other efforts to improve interoperability among cyberinfrastructure in the paleogeosciences.
The community ecology of pathogens: coinfection, coexistence and community composition.
Seabloom, Eric W; Borer, Elizabeth T; Gross, Kevin; Kendig, Amy E; Lacroix, Christelle; Mitchell, Charles E; Mordecai, Erin A; Power, Alison G
2015-04-01
Disease and community ecology share conceptual and theoretical lineages, and there has been a resurgence of interest in strengthening links between these fields. Building on recent syntheses focused on the effects of host community composition on single pathogen systems, we examine pathogen (microparasite) communities using a stochastic metacommunity model as a starting point to bridge community and disease ecology perspectives. Such models incorporate the effects of core community processes, such as ecological drift, selection and dispersal, but have not been extended to incorporate host-pathogen interactions, such as immunosuppression or synergistic mortality, that are central to disease ecology. We use a two-pathogen susceptible-infected (SI) model to fill these gaps in the metacommunity approach; however, SI models can be intractable for examining species-diverse, spatially structured systems. By placing disease into a framework developed for community ecology, our synthesis highlights areas ripe for progress, including a theoretical framework that incorporates host dynamics, spatial structuring and evolutionary processes, as well as the data needed to test the predictions of such a model. Our synthesis points the way for this framework and demonstrates that a deeper understanding of pathogen community dynamics will emerge from approaches working at the interface of disease and community ecology. © 2015 John Wiley & Sons Ltd/CNRS.
Hurst, Zachary M.; McCleery, Robert A.; Collier, Bret A.; Fletcher, Robert J.; Silvy, Nova J.; Taylor, Peter J.; Monadjem, Ara
2013-01-01
Across the planet, high-intensity farming has transformed native vegetation into monocultures, decreasing biodiversity on a landscape scale. Yet landscape-scale changes to biodiversity and community structure often emerge from processes operating at local scales. One common process that can explain changes in biodiversity and community structure is the creation of abrupt habitat edges, which, in turn, generate edge effects. Such effects, while incredibly common, can be highly variable across space and time; however, we currently lack a general analytical framework that can adequately capture such spatio-temporal variability. We extend previous approaches for estimating edge effects to a non-linear mixed modeling framework that captures such spatio-temporal heterogeneity and apply it to understand how agricultural land-uses alter wildlife communities. We trapped small mammals along a conservation-agriculture land-use interface extending 375 m into sugarcane plantations and conservation land-uses at three sites during dry and wet seasons in Swaziland, Africa. Sugarcane plantations had significant reductions in species richness and heterogeneity, and showed an increase in community similarity, suggesting a more homogenized small mammal community. Furthermore, our modeling framework identified strong variation in edge effects on communities across sites and seasons. Using small mammals as an indicator, intensive agricultural practices appear to create high-density communities of generalist species while isolating interior species in less than 225 m. These results illustrate how agricultural land-use can reduce diversity across the landscape and that effects can be masked or magnified, depending on local conditions. Taken together, our results emphasize the need to create or retain natural habitat features in agricultural mosaics. PMID:24040269
The IRIS Federator: Accessing Seismological Data Across Data Centers
NASA Astrophysics Data System (ADS)
Trabant, C. M.; Van Fossen, M.; Ahern, T. K.; Weekly, R. T.
2015-12-01
In 2013 the International Federation of Digital Seismograph Networks (FDSN) approved a specification for web service interfaces for accessing seismological station metadata, time series and event parameters. Since then, a number of seismological data centers have implemented FDSN service interfaces, with more implementations in development. We have developed a new system called the IRIS Federator which leverages this standardization and provides the scientific community with a service for easy discovery and access of seismological data across FDSN data centers. These centers are located throughout the world and this work represents one model of a system for data collection across geographic and political boundaries.The main components of the IRIS Federator are a catalog of time series metadata holdings at each data center and a web service interface for searching the catalog. The service interface is designed to support client-side federated data access, a model in which the client (software run by the user) queries the catalog and then collects the data from each identified center. By default the results are returned in a format suitable for direct submission to those web services, but could also be formatted in a simple text format for general data discovery purposes. The interface will remove any duplication of time series channels between data centers according to a set of business rules by default, however a user may request results with all duplicate time series entries included. We will demonstrate how client-side federation is being incorporated into some of the DMC's data access tools. We anticipate further enhancement of the IRIS Federator to improve data discovery in various scenarios and to improve usefulness to communities beyond seismology.Data centers with FDSN web services: http://www.fdsn.org/webservices/The IRIS Federator query interface: http://service.iris.edu/irisws/fedcatalog/1/
An approach to and web-based tool for infectious disease outbreak intervention analysis
NASA Astrophysics Data System (ADS)
Daughton, Ashlynn R.; Generous, Nicholas; Priedhorsky, Reid; Deshpande, Alina
2017-04-01
Infectious diseases are a leading cause of death globally. Decisions surrounding how to control an infectious disease outbreak currently rely on a subjective process involving surveillance and expert opinion. However, there are many situations where neither may be available. Modeling can fill gaps in the decision making process by using available data to provide quantitative estimates of outbreak trajectories. Effective reduction of the spread of infectious diseases can be achieved through collaboration between the modeling community and public health policy community. However, such collaboration is rare, resulting in a lack of models that meet the needs of the public health community. Here we show a Susceptible-Infectious-Recovered (SIR) model modified to include control measures that allows parameter ranges, rather than parameter point estimates, and includes a web user interface for broad adoption. We apply the model to three diseases, measles, norovirus and influenza, to show the feasibility of its use and describe a research agenda to further promote interactions between decision makers and the modeling community.
PRay - A graphical user interface for interactive visualization and modification of rayinvr models
NASA Astrophysics Data System (ADS)
Fromm, T.
2016-01-01
PRay is a graphical user interface for interactive displaying and editing of velocity models for seismic refraction. It is optimized for editing rayinvr models but can also be used as a dynamic viewer for ray tracing results from other software. The main features are the graphical editing of nodes and fast adjusting of the display (stations and phases). It can be extended by user-defined shell scripts and links to phase picking software. PRay is open source software written in the scripting language Perl, runs on Unix-like operating systems including Mac OS X and provides a version controlled source code repository for community development (https://sourceforge.net/projects/pray-plot-rayinvr/).
NASA Astrophysics Data System (ADS)
McNamara, Laura A.; Berg, Leif; Butler, Karin; Klein, Laura
2017-05-01
Even as remote sensing technology has advanced in leaps and bounds over the past decade, the remote sensing community lacks interfaces and interaction models that facilitate effective human operation of our sensor platforms. Interfaces that make great sense to electrical engineers and flight test crews can be anxiety-inducing to operational users who lack professional experience in the design and testing of sophisticated remote sensing platforms. In this paper, we reflect on an 18-month collaboration which our Sandia National Laboratory research team partnered with an industry software team to identify and fix critical issues in a widely-used sensor interface. Drawing on basic principles from cognitive and perceptual psychology and interaction design, we provide simple, easily learned guidance for minimizing common barriers to system learnability, memorability, and user engagement.
Molray--a web interface between O and the POV-Ray ray tracer.
Harris, M; Jones, T A
2001-08-01
A publicly available web-based interface is presented for producing high-quality ray-traced images and movies from the molecular-modelling program O [Jones et al. (1991), Acta Cryst. A47, 110-119]. The interface allows the user to select O-plot files and set parameters to create standard input files for the popular ray-tracing renderer POV-Ray, which can then produce publication-quality still images or simple movies. To ensure ease of use, we have made this service available to the O user community via the World Wide Web. The public Molray server is available at http://xray.bmc.uu.se/molray.
Integrated musculoskeletal service design by GP consortia
2011-01-01
Background Musculoskeletal conditions are common in primary care and are associated with significant co-morbidity and impairment of quality of life. Traditional care pathways combined community-based physiotherapy with GP referral to hospital for a consultant opinion. Locally, this model led to only 30% of hospital consultant orthopaedic referrals being listed for surgery, with the majority being referred for physiotherapy. The NHS musculoskeletal framework proposed the use of interface services to provide expertise in diagnosis, triage and management of musculoskeletal problems not requiring surgery. The White Paper Equity and Excellence: Liberating the NHS has replaced PCT commissioning with GP consortia, who will lead future service development. Setting Primary and community care, integrated with secondary care, in the NHS in England. Question How can GP consortia lead the development of integrated musculoskeletal services? Review: The Ealing experience We explore here how Ealing implemented a ‘See and Treat’ interface clinic model to improve surgical conversion rates, reduce unnecessary hospital referrals and provide community treatment more efficiently than a triage model. A high-profile GP education programme enabled GPs to triage in their practices and manage patients without referral. Conclusion In Ealing, we demonstrated that most patients with musculoskeletal conditions can be managed in primary care and community settings. The integrated musculoskeletal service provides clear and fast routes to secondary care. This is both clinically effective and cost-effective, reserving hospital referral for patients most likely to need surgery. GP consortia, in conjunction with strong clinical leadership, inbuilt organisational and professional learning, and a GP champion, are well placed to deliver service redesign by co-ordinating primary care development, local commissioning of community services and the acute commissioning vehicles responsible for secondary care. The immediate priority for GP consortia is to develop a truly integrated service by facilitating consultant opinions within a community setting. PMID:25949643
PyMT: A Python package for model-coupling in the Earth sciences
NASA Astrophysics Data System (ADS)
Hutton, E.
2016-12-01
The current landscape of Earth-system models is not only broad in scientific scope, but also broad in type. On the one hand, the large variety of models is exciting, as it provides fertile ground for extending or linking models together in novel ways to answer new scientific questions. However, the heterogeneity in model type acts to inhibit model coupling, model development, or even model use. Existing models are written in a variety of programming languages, operate on different grids, use their own file formats (both for input and output), have different user interfaces, have their own time steps, etc. Each of these factors become obstructions to scientists wanting to couple, extend - or simply run - existing models. For scientists whose main focus may not be computer science these barriers become even larger and become significant logistical hurdles. And this is all before the scientific difficulties of coupling or running models are addressed. The CSDMS Python Modeling Toolkit (PyMT) was developed to help non-computer scientists deal with these sorts of modeling logistics. PyMT is the fundamental package the Community Surface Dynamics Modeling System uses for the coupling of models that expose the Basic Modeling Interface (BMI). It contains: Tools necessary for coupling models of disparate time and space scales (including grid mappers) Time-steppers that coordinate the sequencing of coupled models Exchange of data between BMI-enabled models Wrappers that automatically load BMI-enabled models into the PyMT framework Utilities that support open-source interfaces (UGRID, SGRID,CSDMS Standard Names, etc.) A collection of community-submitted models, written in a variety of programminglanguages, from a variety of process domains - but all usable from within the Python programming language A plug-in framework for adding additional BMI-enabled models to the framework In this presentation we intoduce the basics of the PyMT as well as provide an example of coupling models of different domains and grid types.
NASA Technical Reports Server (NTRS)
Thompson, David E.
2005-01-01
Procedures and methods for veri.cation of coding algebra and for validations of models and calculations used in the aerospace computational fluid dynamics (CFD) community would be ef.cacious if used by the glacier dynamics modeling community. This paper presents some of those methods, and how they might be applied to uncertainty management supporting code veri.cation and model validation for glacier dynamics. The similarities and differences between their use in CFD analysis and the proposed application of these methods to glacier modeling are discussed. After establishing sources of uncertainty and methods for code veri.cation, the paper looks at a representative sampling of veri.cation and validation efforts that are underway in the glacier modeling community, and establishes a context for these within an overall solution quality assessment. Finally, a vision of a new information architecture and interactive scienti.c interface is introduced and advocated.
A. Simpson County, KY is facing suburban growth pressure like many communities across the country at the rural urban interface. This presents opportunities and challenges to maintain community identity, build economic diversity, protect environmental resources, and imp...
Tadmor, Brigitta; Tidor, Bruce
2005-09-01
Progress in the life sciences, including genome sequencing and high-throughput experimentation, offers an opportunity for understanding biology and medicine from a systems perspective. This 'new view', which complements the more traditional component-based approach, involves the integration of biological research with approaches from engineering disciplines and computer science. The result is more than a new set of technologies. Rather, it promises a fundamental reconceptualization of the life sciences based on the development of quantitative and predictive models to describe crucial processes. To achieve this change, learning communities are being formed at the interface of the life sciences, engineering and computer science. Through these communities, research and education will be integrated across disciplines and the challenges associated with multidisciplinary team-based science will be addressed.
A web-based screening tool for near-port air quality assessments
Isakov, Vlad; Barzyk, Timothy M.; Smith, Elizabeth R.; Arunachalam, Saravanan; Naess, Brian; Venkatram, Akula
2018-01-01
The Community model for near-PORT applications (C-PORT) is a screening tool with an intended purpose of calculating differences in annual averaged concentration patterns and relative contributions of various source categories over the spatial domain within about 10 km of the port. C-PORT can inform decision-makers and concerned citizens about local air quality due to mobile source emissions related to commercial port activities. It allows users to visualize and evaluate different planning scenarios, helping them identify the best alternatives for making long-term decisions that protect community health and sustainability. The web-based, easy-to-use interface currently includes data from 21 seaports primarily in the Southeastern U.S., and has a map-based interface based on Google Maps. The tool was developed to visualize and assess changes in air quality due to changes in emissions and/or meteorology in order to analyze development scenarios, and is not intended to support or replace any regulatory models or programs. PMID:29681760
Bridging the Gap Between the iLEAPS and GEWEX Land-Surface Modeling Communities
NASA Technical Reports Server (NTRS)
Bonan, Gordon; Santanello, Joseph A., Jr.
2013-01-01
Models of Earth's weather and climate require fluxes of momentum, energy, and moisture across the land-atmosphere interface to solve the equations of atmospheric physics and dynamics. Just as atmospheric models can, and do, differ between weather and climate applications, mostly related to issues of scale, resolved or parameterised physics,and computational requirements, so too can the land models that provide the required surface fluxes differ between weather and climate models. Here, however, the issue is less one of scale-dependent parameterisations.Computational demands can influence other minor land model differences, especially with respect to initialisation, data assimilation, and forecast skill. However, the distinction among land models (and their development and application) is largely driven by the different science and research needs of the weather and climate communities.
An approach to and web-based tool for infectious disease outbreak intervention analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daughton, Ashlynn R.; Generous, Nicholas; Priedhorsky, Reid
Infectious diseases are a leading cause of death globally. Decisions surrounding how to control an infectious disease outbreak currently rely on a subjective process involving surveillance and expert opinion. However, there are many situations where neither may be available. Modeling can fill gaps in the decision making process by using available data to provide quantitative estimates of outbreak trajectories. Effective reduction of the spread of infectious diseases can be achieved through collaboration between the modeling community and public health policy community. However, such collaboration is rare, resulting in a lack of models that meet the needs of the public healthmore » community. Here we show a Susceptible-Infectious-Recovered (SIR) model modified to include control measures that allows parameter ranges, rather than parameter point estimates, and includes a web user interface for broad adoption. We apply the model to three diseases, measles, norovirus and influenza, to show the feasibility of its use and describe a research agenda to further promote interactions between decision makers and the modeling community.« less
An approach to and web-based tool for infectious disease outbreak intervention analysis
Daughton, Ashlynn R.; Generous, Nicholas; Priedhorsky, Reid; ...
2017-04-18
Infectious diseases are a leading cause of death globally. Decisions surrounding how to control an infectious disease outbreak currently rely on a subjective process involving surveillance and expert opinion. However, there are many situations where neither may be available. Modeling can fill gaps in the decision making process by using available data to provide quantitative estimates of outbreak trajectories. Effective reduction of the spread of infectious diseases can be achieved through collaboration between the modeling community and public health policy community. However, such collaboration is rare, resulting in a lack of models that meet the needs of the public healthmore » community. Here we show a Susceptible-Infectious-Recovered (SIR) model modified to include control measures that allows parameter ranges, rather than parameter point estimates, and includes a web user interface for broad adoption. We apply the model to three diseases, measles, norovirus and influenza, to show the feasibility of its use and describe a research agenda to further promote interactions between decision makers and the modeling community.« less
Language Model Applications to Spelling with Brain-Computer Interfaces
Mora-Cortes, Anderson; Manyakov, Nikolay V.; Chumerin, Nikolay; Van Hulle, Marc M.
2014-01-01
Within the Ambient Assisted Living (AAL) community, Brain-Computer Interfaces (BCIs) have raised great hopes as they provide alternative communication means for persons with disabilities bypassing the need for speech and other motor activities. Although significant advancements have been realized in the last decade, applications of language models (e.g., word prediction, completion) have only recently started to appear in BCI systems. The main goal of this article is to review the language model applications that supplement non-invasive BCI-based communication systems by discussing their potential and limitations, and to discern future trends. First, a brief overview of the most prominent BCI spelling systems is given, followed by an in-depth discussion of the language models applied to them. These language models are classified according to their functionality in the context of BCI-based spelling: the static/dynamic nature of the user interface, the use of error correction and predictive spelling, and the potential to improve their classification performance by using language models. To conclude, the review offers an overview of the advantages and challenges when implementing language models in BCI-based communication systems when implemented in conjunction with other AAL technologies. PMID:24675760
BioMart Central Portal: an open database network for the biological community
Guberman, Jonathan M.; Ai, J.; Arnaiz, O.; Baran, Joachim; Blake, Andrew; Baldock, Richard; Chelala, Claude; Croft, David; Cros, Anthony; Cutts, Rosalind J.; Di Génova, A.; Forbes, Simon; Fujisawa, T.; Gadaleta, E.; Goodstein, D. M.; Gundem, Gunes; Haggarty, Bernard; Haider, Syed; Hall, Matthew; Harris, Todd; Haw, Robin; Hu, S.; Hubbard, Simon; Hsu, Jack; Iyer, Vivek; Jones, Philip; Katayama, Toshiaki; Kinsella, R.; Kong, Lei; Lawson, Daniel; Liang, Yong; Lopez-Bigas, Nuria; Luo, J.; Lush, Michael; Mason, Jeremy; Moreews, Francois; Ndegwa, Nelson; Oakley, Darren; Perez-Llamas, Christian; Primig, Michael; Rivkin, Elena; Rosanoff, S.; Shepherd, Rebecca; Simon, Reinhard; Skarnes, B.; Smedley, Damian; Sperling, Linda; Spooner, William; Stevenson, Peter; Stone, Kevin; Teague, J.; Wang, Jun; Wang, Jianxin; Whitty, Brett; Wong, D. T.; Wong-Erasmus, Marie; Yao, L.; Youens-Clark, Ken; Yung, Christina; Zhang, Junjun; Kasprzyk, Arek
2011-01-01
BioMart Central Portal is a first of its kind, community-driven effort to provide unified access to dozens of biological databases spanning genomics, proteomics, model organisms, cancer data, ontology information and more. Anybody can contribute an independently maintained resource to the Central Portal, allowing it to be exposed to and shared with the research community, and linking it with the other resources in the portal. Users can take advantage of the common interface to quickly utilize different sources without learning a new system for each. The system also simplifies cross-database searches that might otherwise require several complicated steps. Several integrated tools streamline common tasks, such as converting between ID formats and retrieving sequences. The combination of a wide variety of databases, an easy-to-use interface, robust programmatic access and the array of tools make Central Portal a one-stop shop for biological data querying. Here, we describe the structure of Central Portal and show example queries to demonstrate its capabilities. Database URL: http://central.biomart.org. PMID:21930507
BioMart Central Portal: an open database network for the biological community.
Guberman, Jonathan M; Ai, J; Arnaiz, O; Baran, Joachim; Blake, Andrew; Baldock, Richard; Chelala, Claude; Croft, David; Cros, Anthony; Cutts, Rosalind J; Di Génova, A; Forbes, Simon; Fujisawa, T; Gadaleta, E; Goodstein, D M; Gundem, Gunes; Haggarty, Bernard; Haider, Syed; Hall, Matthew; Harris, Todd; Haw, Robin; Hu, S; Hubbard, Simon; Hsu, Jack; Iyer, Vivek; Jones, Philip; Katayama, Toshiaki; Kinsella, R; Kong, Lei; Lawson, Daniel; Liang, Yong; Lopez-Bigas, Nuria; Luo, J; Lush, Michael; Mason, Jeremy; Moreews, Francois; Ndegwa, Nelson; Oakley, Darren; Perez-Llamas, Christian; Primig, Michael; Rivkin, Elena; Rosanoff, S; Shepherd, Rebecca; Simon, Reinhard; Skarnes, B; Smedley, Damian; Sperling, Linda; Spooner, William; Stevenson, Peter; Stone, Kevin; Teague, J; Wang, Jun; Wang, Jianxin; Whitty, Brett; Wong, D T; Wong-Erasmus, Marie; Yao, L; Youens-Clark, Ken; Yung, Christina; Zhang, Junjun; Kasprzyk, Arek
2011-01-01
BioMart Central Portal is a first of its kind, community-driven effort to provide unified access to dozens of biological databases spanning genomics, proteomics, model organisms, cancer data, ontology information and more. Anybody can contribute an independently maintained resource to the Central Portal, allowing it to be exposed to and shared with the research community, and linking it with the other resources in the portal. Users can take advantage of the common interface to quickly utilize different sources without learning a new system for each. The system also simplifies cross-database searches that might otherwise require several complicated steps. Several integrated tools streamline common tasks, such as converting between ID formats and retrieving sequences. The combination of a wide variety of databases, an easy-to-use interface, robust programmatic access and the array of tools make Central Portal a one-stop shop for biological data querying. Here, we describe the structure of Central Portal and show example queries to demonstrate its capabilities.
Wildland-urban interface resident's views on risk and attribution
Patricia J. Cohn; Daniel R. Williams; Matthew S. Carroll
2008-01-01
Catastrophic wildfires that impact human communities have become increasingly common in recent years. To reduce the potential for damage to human communities, wildland-urban interface (WUI) residents have been encouraged to perform mitigation or fire-safing measures around their homes and communities. Yet homeowners have not wholeheartedly adopted these measures, even...
A crisis recovery model for adolescents with severe mental health problems.
Kaplan, Tony; Racussen, Lisa
2013-04-01
A model of intervention at the interface and for the in-patient phase for adolescents with severe mental health crises was developed to reduce length of stay while maintaining quality of service consonant with the 'recovery model'. The model is described, and discussed in the context of the limited literature on both crisis intervention with adolescents and families, and 'recovery' in this age-group. The model may be suitable also for use by community teams dealing with adolescents in crisis.
Christopher A. Dicus; Michael E. Scott
2006-01-01
This manuscript details a collaborative effort that reduced the risk of wildfire in an affluent, wildland-urban interface community in southern California while simultaneously minimizing the environmental impact to the site. FARSITE simulations illustrated the potential threat to the community of Rancho Santa Fe in San Diego County, California, where multimillion-...
WRF-CMAQ Two-way Coupled System with Aerosol Feedback: Software Development and Preliminary Results
Air quality models such as the EPA Community Multiscale Air Quality (CMAQ) require meteorological data as part of the input to drive the chemistry and transport simulation. The Meteorology-Chemistry Interface Processor (MCIP) is used to convert meteorological data into CMAQ-ready...
Christine A. Vogt; Greg Winter; Jeremy S. Fried
2005-01-01
Social science models are increasingly needed as a framework for explaining and predicting how members of the public respond to the natural environment and their communities. The theory of reasoned action is widely used in human dimensions research on natural resource problems and work is ongoing to increase the predictive power of models based on this theory. This...
Argañaraz, J P; Radeloff, V C; Bar-Massada, A; Gavier-Pizarro, G I; Scavuzzo, C M; Bellis, L M
2017-07-01
Wildfires are a major threat to people and property in Wildland Urban Interface (WUI) communities worldwide, but while the patterns of the WUI in North America, Europe and Oceania have been studied before, this is not the case in Latin America. Our goals were to a) map WUI areas in central Argentina, and b) assess wildfire exposure for WUI communities in relation to historic fires, with special emphasis on large fires and estimated burn probability based on an empirical model. We mapped the WUI in the mountains of central Argentina (810,000 ha), after digitizing the location of 276,700 buildings and deriving vegetation maps from satellite imagery. The areas where houses and wildland vegetation intermingle were classified as Intermix WUI (housing density > 6.17 hu/km 2 and wildland vegetation cover > 50%), and the areas where wildland vegetation abuts settlements were classified as Interface WUI (housing density > 6.17 hu/km 2 , wildland vegetation cover < 50%, but within 600 m of a vegetated patch larger than 5 km 2 ). We generated burn probability maps based on historical fire data from 1999 to 2011; as well as from an empirical model of fire frequency. WUI areas occupied 15% of our study area and contained 144,000 buildings (52%). Most WUI area was Intermix WUI, but most WUI buildings were in the Interface WUI. Our findings suggest that central Argentina has a WUI fire problem. WUI areas included most of the buildings exposed to wildfires and most of the buildings located in areas of higher burn probability. Our findings can help focus fire management activities in areas of higher risk, and ultimately provide support for landscape management and planning aimed at reducing wildfire risk in WUI communities. Copyright © 2017 Elsevier Ltd. All rights reserved.
EpiPOD : community vaccination and dispensing model user's guide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berry, M.; Samsa, M.; Walsh, D.
EpiPOD is a modeling system that enables local, regional, and county health departments to evaluate and refine their plans for mass distribution of antiviral and antibiotic medications and vaccines. An intuitive interface requires users to input as few or as many plan specifics as are available in order to simulate a mass treatment campaign. Behind the input interface, a system dynamics model simulates pharmaceutical supply logistics, hospital and first-responder personnel treatment, population arrival dynamics and treatment, and disease spread. When the simulation is complete, users have estimates of the number of illnesses in the population at large, the number ofmore » ill persons seeking treatment, and queuing and delays within the mass treatment system--all metrics by which the plan can be judged.« less
RadVel: The Radial Velocity Modeling Toolkit
NASA Astrophysics Data System (ADS)
Fulton, Benjamin J.; Petigura, Erik A.; Blunt, Sarah; Sinukoff, Evan
2018-04-01
RadVel is an open-source Python package for modeling Keplerian orbits in radial velocity (RV) timeseries. RadVel provides a convenient framework to fit RVs using maximum a posteriori optimization and to compute robust confidence intervals by sampling the posterior probability density via Markov Chain Monte Carlo (MCMC). RadVel allows users to float or fix parameters, impose priors, and perform Bayesian model comparison. We have implemented real-time MCMC convergence tests to ensure adequate sampling of the posterior. RadVel can output a number of publication-quality plots and tables. Users may interface with RadVel through a convenient command-line interface or directly from Python. The code is object-oriented and thus naturally extensible. We encourage contributions from the community. Documentation is available at http://radvel.readthedocs.io.
First Insights into the Viral Communities of the Deep-sea Anoxic Brines of the Red Sea.
Antunes, André; Alam, Intikhab; Simões, Marta Filipa; Daniels, Camille; Ferreira, Ari J S; Siam, Rania; El-Dorry, Hamza; Bajic, Vladimir B
2015-10-01
The deep-sea brines of the Red Sea include some of the most extreme and unique environments on Earth. They combine high salinities with increases in temperature, heavy metals, hydrostatic pressure, and anoxic conditions, creating unique settings for thriving populations of novel extremophiles. Despite a recent increase of studies focusing on these unusual biotopes, their viral communities remain unexplored. The current survey explores four metagenomic datasets obtained from different brine-seawater interface samples, focusing specifically on the diversity of their viral communities. Data analysis confirmed that the particle-attached viral communities present in the brine-seawater interfaces were diverse and generally dominated by Caudovirales, yet appearing distinct from sample to sample. With a level of caution, we report the unexpected finding of Phycodnaviridae, which infects algae and plants, and trace amounts of insect-infecting Iridoviridae. Results from Kebrit Deep revealed stratification in the viral communities present in the interface: the upper-interface was enriched with viruses associated with typical marine bacteria, while the lower-interface was enriched with haloviruses and halophages. These results provide first insights into the unexplored viral communities present in deep-sea brines of the Red Sea, representing one of the first steps for ongoing and future sampling efforts and studies. Copyright © 2015 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.
The New LASP Interactive Solar IRradiance Datacenter (LISIRD)
NASA Astrophysics Data System (ADS)
Baltzer, T.; Wilson, A.; Lindholm, D. M.; Snow, M. A.; Woodraska, D.; Pankratz, C. K.
2017-12-01
The New LASP Interactive Solar IRradiance Datacenter (LISIRD) The University of Colorado at Boulder's Laboratory for Atmospheric and Space Physics (LASP) has a long history of providing state of the art Solar instrumentation and datasets to the community. In 2005, LASP created a web interface called LISIRD which provided plotting of and access to a number of Solar Irradiance measured and modeled datasets, and it has been used extensively by members of the community both within and outside of LASP. In August of 2017, LASP is set to release a new version of LISIRD for use by anyone interested in viewing and downloading the datasets it serves. This talk will describe the new LISIRD with emphasis on features enabled by it to include: New and more functional plotting interfaces Better dataset browse and search capabilities More datasets Easier to add datasets from a wider array of resources Cleaner interface with better use of screen real estate Much easier to update metadata describing each dataset Much of this capability is leveraged off new infrastructure that will also be touched upon.
NASA Technical Reports Server (NTRS)
Talbot, Bryan; Zhou, Shu-Jia; Higgins, Glenn
2002-01-01
One of the most significant challenges in large-scale climate modeling, as well as in high-performance computing in other scientific fields, is that of effectively integrating many software models from multiple contributors. A software framework facilitates the integration task. both in the development and runtime stages of the simulation. Effective software frameworks reduce the programming burden for the investigators, freeing them to focus more on the science and less on the parallel communication implementation, while maintaining high performance across numerous supercomputer and workstation architectures. This document proposes a strawman framework design for the climate community based on the integration of Cactus, from the relativistic physics community, and UCLA/UCB Distributed Data Broker (DDB) from the climate community. This design is the result of an extensive survey of climate models and frameworks in the climate community as well as frameworks from many other scientific communities. The design addresses fundamental development and runtime needs using Cactus, a framework with interfaces for FORTRAN and C-based languages, and high-performance model communication needs using DDB. This document also specifically explores object-oriented design issues in the context of climate modeling as well as climate modeling issues in terms of object-oriented design.
OpenKIM - Building a Knowledgebase of Interatomic Models
NASA Astrophysics Data System (ADS)
Bierbaum, Matthew; Tadmor, Ellad; Elliott, Ryan; Wennblom, Trevor; Alemi, Alexander; Chen, Yan-Jiun; Karls, Daniel; Ludvik, Adam; Sethna, James
2014-03-01
The Knowledgebase of Interatomic Models (KIM) is an effort by the computational materials community to provide a standard interface for the development, characterization, and use of interatomic potentials. The KIM project has developed an API between simulation codes and interatomic models written in several different languages including C, Fortran, and Python. This interface is already supported in popular simulation environments such as LAMMPS and ASE, giving quick access to over a hundred compatible potentials that have been contributed so far. To compare and characterize models, we have developed a computational processing pipeline which automatically runs a series of tests for each model in the system, such as phonon dispersion relations and elastic constant calculations. To view the data from these tests, we created a rich set of interactive visualization tools located online. Finally, we created a Web repository to store and share these potentials, tests, and visualizations which can be found at https://openkim.org along with futher information.
Stock, Alexandra; Edgcomb, Virginia; Orsi, William; Filker, Sabine; Breiner, Hans-Werner; Yakimov, Michail M; Stoeck, Thorsten
2013-07-08
Deep hypersaline anoxic basins (DHABs) are isolated habitats at the bottom of the eastern Mediterranean Sea, which originate from the ancient dissolution of Messinian evaporites. The different basins have recruited their original biota from the same source, but their geological evolution eventually constituted sharp environmental barriers, restricting genetic exchange between the individual basins. Therefore, DHABs are unique model systems to assess the effect of geological events and environmental conditions on the evolution and diversification of protistan plankton. Here, we examine evidence for isolated evolution of unicellular eukaryote protistan plankton communities driven by geological separation and environmental selection. We specifically focused on ciliated protists as a major component of protistan DHAB plankton by pyrosequencing the hypervariable V4 fragment of the small subunit ribosomal RNA. Geospatial distributions and responses of marine ciliates to differential hydrochemistries suggest strong physical and chemical barriers to dispersal that influence the evolution of this plankton group. Ciliate communities in the brines of four investigated DHABs are distinctively different from ciliate communities in the interfaces (haloclines) immediately above the brines. While the interface ciliate communities from different sites are relatively similar to each other, the brine ciliate communities are significantly different between sites. We found no distance-decay relationship, and canonical correspondence analyses identified oxygen and sodium as most important hydrochemical parameters explaining the partitioning of diversity between interface and brine ciliate communities. However, none of the analyzed hydrochemical parameters explained the significant differences between brine ciliate communities in different basins. Our data indicate a frequent genetic exchange in the deep-sea water above the brines. The "isolated island character" of the different brines, that resulted from geological events and contemporary environmental conditions, create selective pressures driving evolutionary processes, and with time, lead to speciation and shape protistan community composition. We conclude that community assembly in DHABs is a mixture of isolated evolution (as evidenced by small changes in V4 primary structure in some taxa) and species sorting (as indicated by the regional absence/presence of individual taxon groups on high levels in taxonomic hierarchy).
Information Architecture for Interactive Archives at the Community Coordianted Modeling Center
NASA Astrophysics Data System (ADS)
De Zeeuw, D.; Wiegand, C.; Kuznetsova, M.; Mullinix, R.; Boblitt, J. M.
2017-12-01
The Community Coordinated Modeling Center (CCMC) is upgrading its meta-data system for model simulations to be compliant with the SPASE meta-data standard. This work is helping to enhance the SPASE standards for simulations to better describe the wide variety of models and their output. It will enable much more sophisticated and automated metrics and validation efforts at the CCMC, as well as much more robust searches for specific types of output. The new meta-data will also allow much more tailored run submissions as it will allow some code options to be selected for Run-On-Request models. We will also demonstrate data accessibility through an implementation of the Heliophysics Application Programmer's Interface (HAPI) protocol of data otherwise available throught the integrated space weather analysis system (iSWA).
NASA Astrophysics Data System (ADS)
Leung, Kevin
2015-03-01
Electrochemical reactions at electrode/electrolyte interfaces are critically dependent on the total electrochemical potential or voltage. In this presentation, we briefly review ab initio molecular dynamics (AIMD)-based estimate of voltages on graphite basal and edge planes, and then apply similar concepts to solid-solid interfaces relevant to lithium ion and Li-air batteries. Thin solid films on electrode surfaces, whether naturally occuring during power cycling (e.g., undesirable lithium carbonate on Li-air cathodes) or are artificially introduced, can undergo electrochemical reactions as the applied voltage varies. Here the onset of oxidation of lithium carbonate and other oxide thin films on model gold electrode surfaces is correlated with the electronic structure in the presence/absence of solvent molecules. Our predictions help determine whether oxidation first occurs at the electrode-thin film or electrolyte-thin film interface. Finally, we will critically compare the voltage estimate methodology used in the fuel cell community with the lithium cohesive energy calibration method broadly applied in the battery community, and discuss why they may yield different predictions. This work was supported by Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DESC0001160. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Deparment of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
A new open-source Python-based Space Weather data access, visualization, and analysis toolkit
NASA Astrophysics Data System (ADS)
de Larquier, S.; Ribeiro, A.; Frissell, N. A.; Spaleta, J.; Kunduri, B.; Thomas, E. G.; Ruohoniemi, J.; Baker, J. B.
2013-12-01
Space weather research relies heavily on combining and comparing data from multiple observational platforms. Current frameworks exist to aggregate some of the data sources, most based on file downloads via web or ftp interfaces. Empirical models are mostly fortran based and lack interfaces with more useful scripting languages. In an effort to improve data and model access, the SuperDARN community has been developing a Python-based Space Science Data Visualization Toolkit (DaViTpy). At the center of this development was a redesign of how our data (from 30 years of SuperDARN radars) was made available. Several access solutions are now wrapped into one convenient Python interface which probes local directories, a new remote NoSQL database, and an FTP server to retrieve the requested data based on availability. Motivated by the efficiency of this interface and the inherent need for data from multiple instruments, we implemented similar modules for other space science datasets (POES, OMNI, Kp, AE...), and also included fundamental empirical models with Python interfaces to enhance data analysis (IRI, HWM, MSIS...). All these modules and more are gathered in a single convenient toolkit, which is collaboratively developed and distributed using Github and continues to grow. While still in its early stages, we expect this toolkit will facilitate multi-instrument space weather research and improve scientific productivity.
Smart Grid Interoperability Maturity Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Widergren, Steven E.; Levinson, Alex; Mater, J.
2010-04-28
The integration of automation associated with electricity resources (including transmission and distribution automation and demand-side resources operated by end-users) is key to supporting greater efficiencies and incorporating variable renewable resources and electric vehicles into the power system. The integration problems faced by this community are analogous to those faced in the health industry, emergency services, and other complex communities with many stakeholders. To highlight this issue and encourage communication and the development of a smart grid interoperability community, the GridWise Architecture Council (GWAC) created an Interoperability Context-Setting Framework. This "conceptual model" has been helpful to explain the importance of organizationalmore » alignment in addition to technical and informational interface specifications for "smart grid" devices and systems. As a next step to building a community sensitive to interoperability, the GWAC is investigating an interoperability maturity model (IMM) based on work done by others to address similar circumstances. The objective is to create a tool or set of tools that encourages a culture of interoperability in this emerging community. The tools would measure status and progress, analyze gaps, and prioritize efforts to improve the situation.« less
Canto: an online tool for community literature curation.
Rutherford, Kim M; Harris, Midori A; Lock, Antonia; Oliver, Stephen G; Wood, Valerie
2014-06-15
Detailed curation of published molecular data is essential for any model organism database. Community curation enables researchers to contribute data from their papers directly to databases, supplementing the activity of professional curators and improving coverage of a growing body of literature. We have developed Canto, a web-based tool that provides an intuitive curation interface for both curators and researchers, to support community curation in the fission yeast database, PomBase. Canto supports curation using OBO ontologies, and can be easily configured for use with any species. Canto code and documentation are available under an Open Source license from http://curation.pombase.org/. Canto is a component of the Generic Model Organism Database (GMOD) project (http://www.gmod.org/). © The Author 2014. Published by Oxford University Press.
The Planetary Data System Web Catalog Interface--Another Use of the Planetary Data System Data Model
NASA Technical Reports Server (NTRS)
Hughes, S.; Bernath, A.
1995-01-01
The Planetary Data System Data Model consists of a set of standardized descriptions of entities within the Planetary Science Community. These can be real entities in the space exploration domain such as spacecraft, instruments, and targets; conceptual entities such as data sets, archive volumes, and data dictionaries; or the archive data products such as individual images, spectrum, series, and qubes.
The climate4impact platform: Providing, tailoring and facilitating climate model data access
NASA Astrophysics Data System (ADS)
Pagé, Christian; Pagani, Andrea; Plieger, Maarten; Som de Cerff, Wim; Mihajlovski, Andrej; de Vreede, Ernst; Spinuso, Alessandro; Hutjes, Ronald; de Jong, Fokke; Bärring, Lars; Vega, Manuel; Cofiño, Antonio; d'Anca, Alessandro; Fiore, Sandro; Kolax, Michael
2017-04-01
One of the main objectives of climate4impact is to provide standardized web services and tools that are reusable in other portals. These services include web processing services, web coverage services and web mapping services (WPS, WCS and WMS). Tailored portals can be targeted to specific communities and/or countries/regions while making use of those services. Easier access to climate data is very important for the climate change impact communities. To fulfill this objective, the climate4impact (http://climate4impact.eu/) web portal and services has been developed, targeting climate change impact modellers, impact and adaptation consultants, as well as other experts using climate change data. It provides to users harmonized access to climate model data through tailored services. It features static and dynamic documentation, Use Cases and best practice examples, an advanced search interface, an integrated authentication and authorization system with the Earth System Grid Federation (ESGF), a visualization interface with ADAGUC web mapping tools. In the latest version, statistical downscaling services, provided by the Santander Meteorology Group Downscaling Portal, were integrated. An innovative interface to integrate statistical downscaling services will be released in the upcoming version. The latter will be a big step in bridging the gap between climate scientists and the climate change impact communities. The climate4impact portal builds on the infrastructure of an international distributed database that has been set to disseminate the results from the global climate model results of the Coupled Model Intercomparison project Phase 5 (CMIP5). This database, the ESGF, is an international collaboration that develops, deploys and maintains software infrastructure for the management, dissemination, and analysis of climate model data. The European FP7 project IS-ENES, Infrastructure for the European Network for Earth System modelling, supports the European contribution to ESGF and contributes to the ESGF open source effort, notably through the development of search, monitoring, quality control, and metadata services. In its second phase, IS-ENES2 supports the implementation of regional climate model results from the international Coordinated Regional Downscaling Experiments (CORDEX). These services were extended within the European FP7 Climate Information Portal for Copernicus (CLIPC) project, and some could be later integrated into the European Copernicus platform.
NASA Astrophysics Data System (ADS)
Cich, Matthew J.; Guillaume, Alexandre; Drouin, Brian; Benner, D. Chris
2017-06-01
Multispectrum analysis can be a challenge for a variety of reasons. It can be computationally intensive to fit a proper line shape model especially for high resolution experimental data. Band-wide analyses including many transitions along with interactions, across many pressures and temperatures are essential to accurately model, for example, atmospherically relevant systems. Labfit is a fast multispectrum analysis program originally developed by D. Chris Benner with a text-based interface. More recently at JPL a graphical user interface was developed with the goal of increasing the ease of use but also the number of potential users. The HTP lineshape model has been added to Labfit keeping it up-to-date with community standards. Recent analyses using labfit will be shown to demonstrate its ability to competently handle large experimental datasets, including high order lineshape effects, that are otherwise unmanageable.
NASA Astrophysics Data System (ADS)
Williams, J. W.; Grimm, E. C.; Ashworth, A. C.; Blois, J.; Charles, D. F.; Crawford, S.; Davis, E.; Goring, S. J.; Graham, R. W.; Miller, D. A.; Smith, A. J.; Stryker, M.; Uhen, M. D.
2017-12-01
The Neotoma Paleoecology Database supports global change research at the intersection of geology and ecology by providing a high-quality, community-curated data repository for paleoecological data. These data are widely used to study biological responses and feedbacks to past environmental change at local to global scales. The Neotoma data model is flexible and can store multiple kinds of fossil, biogeochemical, or physical variables measured from sedimentary archives. Data additions to Neotoma are growing and include >3.5 million observations, >16,000 datasets, and >8,500 sites. Dataset types include fossil pollen, vertebrates, diatoms, ostracodes, macroinvertebrates, plant macrofossils, insects, testate amoebae, geochronological data, and the recently added organic biomarkers, stable isotopes, and specimen-level data. Neotoma data can be found and retrieved in multiple ways, including the Explorer map-based interface, a RESTful Application Programming Interface, the neotoma R package, and digital object identifiers. Neotoma has partnered with the Paleobiology Database to produce a common data portal for paleobiological data, called the Earth Life Consortium. A new embargo management is designed to allow investigators to put their data into Neotoma and then make use of Neotoma's value-added services. Neotoma's distributed scientific governance model is flexible and scalable, with many open pathways for welcoming new members, data contributors, stewards, and research communities. As the volume and variety of scientific data grow, community-curated data resources such as Neotoma have become foundational infrastructure for big data science.
NASA Astrophysics Data System (ADS)
Chatterjee, A.; Anderson, J. L.; Moncrieff, M.; Collins, N.; Danabasoglu, G.; Hoar, T.; Karspeck, A. R.; Neale, R. B.; Raeder, K.; Tribbia, J. J.
2014-12-01
We present a quantitative evaluation of the simulated MJO in analyses produced with a coupled data assimilation (CDA) framework developed at the National Center for Atmosphere Research. This system is based on the Community Earth System Model (CESM; previously known as the Community Climate System Model -CCSM) interfaced to a community facility for ensemble data assimilation (Data Assimilation Research Testbed - DART). The system (multi-component CDA) assimilates data into each of the respective ocean/atmosphere/land model components during the assimilation step followed by an exchange of information between the model components during the forecast step. Note that this is an advancement over many existing prototypes of coupled data assimilation systems, which typically assimilate observations only in one of the model components (i.e., single-component CDA). The more realistic treatment of air-sea interactions and improvements to the model mean state in the multi-component CDA recover many aspects of MJO representation, from its space-time structure and propagation (see Figure 1) to the governing relationships between precipitation and sea surface temperature on intra-seasonal scales. Standard qualitative and process-based diagnostics identified by the MJO Task Force (currently under the auspices of the Working Group on Numerical Experimentation) have been used to detect the MJO signals across a suite of coupled model experiments involving both multi-component and single-component DA experiments as well as a free run of the coupled CESM model (i.e., CMIP5 style without data assimilation). Short predictability experiments during the boreal winter are used to demonstrate that the decay rates of the MJO convective anomalies are slower in the multi-component CDA system, which allows it to retain the MJO dynamics for a longer period. We anticipate that the knowledge gained through this study will enhance our understanding of the MJO feedback mechanisms across the air-sea interface, especially regarding ocean impacts on the MJO as well as highlight the capability of coupled data assimilation systems for related tropical intraseasonal variability predictions.
Zooniverse - A Platform for Data-Driven Citizen Science
NASA Astrophysics Data System (ADS)
Smith, A.; Lintott, C.; Bamford, S.; Fortson, L.
2011-12-01
In July 2007 a team of astrophysicists created a web-based astronomy project called Galaxy Zoo in which members of the public were asked to classify galaxies from the Sloan Digital Sky Survey by their shape. Over the following year a community of more than 150,000 people classified each of the 1 million galaxies more than 50 times each. Four years later this community of 'citizen scientists' is more than 450,000 strong and is contributing their time and efforts to more than 10 Zooniverse projects each with its own science team and research case. With projects ranging from transcribing ancient greek texts (ancientlives.org) to lunar science (moonzoo.org) the challenges to the Zooniverse community have gone well beyond the relatively simple original Galaxy Zoo interface. Delivering a range of citizen science projects to a large web-based audience presents challenges on a number of fronts including interface design, data architecture/modelling and reduction techniques, web-infrastructure and software design. In this paper we will describe how the Zooniverse team (a collaboration of scientists, software developers and educators ) have developed tools and techniques to solve some of these issues.
On improving the communication between models and data.
Dietze, Michael C; Lebauer, David S; Kooper, Rob
2013-09-01
The potential for model-data synthesis is growing in importance as we enter an era of 'big data', greater connectivity and faster computation. Realizing this potential requires that the research community broaden its perspective about how and why they interact with models. Models can be viewed as scaffolds that allow data at different scales to inform each other through our understanding of underlying processes. Perceptions of relevance, accessibility and informatics are presented as the primary barriers to broader adoption of models by the community, while an inability to fully utilize the breadth of expertise and data from the community is a primary barrier to model improvement. Overall, we promote a community-based paradigm to model-data synthesis and highlight some of the tools and techniques that facilitate this approach. Scientific workflows address critical informatics issues in transparency, repeatability and automation, while intuitive, flexible web-based interfaces make running and visualizing models more accessible. Bayesian statistics provides powerful tools for assimilating a diversity of data types and for the analysis of uncertainty. Uncertainty analyses enable new measurements to target those processes most limiting our predictive ability. Moving forward, tools for information management and data assimilation need to be improved and made more accessible. © 2013 John Wiley & Sons Ltd.
Introduction to special section on The U.S. IOOS Coastal and Ocean Modeling Testbed
NASA Astrophysics Data System (ADS)
Luettich, Richard A.; Wright, L. Donelson; Signell, Richard; Friedrichs, Carl; Friedrichs, Marjy; Harding, John; Fennel, Katja; Howlett, Eoin; Graves, Sara; Smith, Elizabeth; Crane, Gary; Baltes, Rebecca
2013-12-01
Strong and strategic collaborations among experts from academia, federal operational centers, and industry have been forged to create a U.S. IOOS Coastal and Ocean Modeling Testbed (COMT). The COMT mission is to accelerate the transition of scientific and technical advances from the coastal and ocean modeling research community to improved operational ocean products and services. This is achieved via the evaluation of existing technology or the development of new technology depending on the status of technology within the research community. The initial phase of the COMT has addressed three coastal and ocean prediction challenges of great societal importance: estuarine hypoxia, shelf hypoxia, and coastal inundation. A fourth effort concentrated on providing and refining the cyberinfrastructure and cyber tools to support the modeling work and to advance interoperability and community access to the COMT archive. This paper presents an overview of the initiation of the COMT, the findings of each team and a discussion of the role of the COMT in research to operations and its interface with the coastal and ocean modeling community in general. Detailed technical results are presented in the accompanying series of 16 technical papers in this special issue.
Community Coordinated Modeling Center Support of Science Needs for Integrated Data Environment
NASA Technical Reports Server (NTRS)
Kuznetsova, M. M.; Hesse, M.; Rastatter, L.; Maddox, M.
2007-01-01
Space science models are essential component of integrated data environment. Space science models are indispensable tools to facilitate effective use of wide variety of distributed scientific sources and to place multi-point local measurements into global context. The Community Coordinated Modeling Center (CCMC) hosts a set of state-of-the- art space science models ranging from the solar atmosphere to the Earth's upper atmosphere. The majority of models residing at CCMC are comprehensive computationally intensive physics-based models. To allow the models to be driven by data relevant to particular events, the CCMC developed an online data file generation tool that automatically downloads data from data providers and transforms them to required format. CCMC provides a tailored web-based visualization interface for the model output, as well as the capability to download simulations output in portable standard format with comprehensive metadata and user-friendly model output analysis library of routines that can be called from any C supporting language. CCMC is developing data interpolation tools that enable to present model output in the same format as observations. CCMC invite community comments and suggestions to better address science needs for the integrated data environment.
Data Archival and Retrieval Enhancement (DARE) Metadata Modeling and Its User Interface
NASA Technical Reports Server (NTRS)
Hyon, Jason J.; Borgen, Rosana B.
1996-01-01
The Defense Nuclear Agency (DNA) has acquired terabytes of valuable data which need to be archived and effectively distributed to the entire nuclear weapons effects community and others...This paper describes the DARE (Data Archival and Retrieval Enhancement) metadata model and explains how it is used as a source for generating HyperText Markup Language (HTML)or Standard Generalized Markup Language (SGML) documents for access through web browsers such as Netscape.
Exploration of Uncertainty in Glacier Modelling
NASA Technical Reports Server (NTRS)
Thompson, David E.
1999-01-01
There are procedures and methods for verification of coding algebra and for validations of models and calculations that are in use in the aerospace computational fluid dynamics (CFD) community. These methods would be efficacious if used by the glacier dynamics modelling community. This paper is a presentation of some of those methods, and how they might be applied to uncertainty management supporting code verification and model validation for glacier dynamics. The similarities and differences between their use in CFD analysis and the proposed application of these methods to glacier modelling are discussed. After establishing sources of uncertainty and methods for code verification, the paper looks at a representative sampling of verification and validation efforts that are underway in the glacier modelling community, and establishes a context for these within overall solution quality assessment. Finally, an information architecture and interactive interface is introduced and advocated. This Integrated Cryospheric Exploration (ICE) Environment is proposed for exploring and managing sources of uncertainty in glacier modelling codes and methods, and for supporting scientific numerical exploration and verification. The details and functionality of this Environment are described based on modifications of a system already developed for CFD modelling and analysis.
Comparative dynamics of avian communities across edges and interiors of North American ecoregions
Karanth, K.K.; Nichols, J.D.; Sauer, J.R.; Hines, J.E.
2006-01-01
Aim Based on a priori hypotheses, we developed predictions about how avian communities might differ at the edges vs. interiors of ecoregions. Specifically, we predicted lower species richness and greater local turnover and extinction probabilities for regional edges. We tested these predictions using North American Breeding Bird Survey (BBS) data across nine ecoregions over a 20-year time period. Location Data from 2238 BBS routes within nine ecoregions of the United States were used. Methods The estimation methods used accounted for species detection probabilities < 1. Parameter estimates for species richness, local turnover and extinction probabilities were obtained using the program COMDYN. We examined the difference in community-level parameters estimated from within exterior edges (the habitat interface between ecoregions), interior edges (the habitat interface between two bird conservation regions within the same ecoregion) and interior (habitat excluding interfaces). General linear models were constructed to examine sources of variation in community parameters for five ecoregions (containing all three habitat types) and all nine ecoregions (containing two habitat types). Results Analyses provided evidence that interior habitats and interior edges had on average higher bird species richness than exterior edges, providing some evidence of reduced species richness near habitat edges. Lower average extinction probabilities and turnover rates in interior habitats (five-region analysis) provided some support for our predictions about these quantities. However, analyses directed at all three response variables, i.e. species richness, local turnover, and local extinction probability, provided evidence of an interaction between habitat and region, indicating that the relationships did not hold in all regions. Main conclusions The overall predictions of lower species richness, higher local turnover and extinction probabilities in regional edge habitats, as opposed to interior habitats, were generally supported. However, these predicted tendencies did not hold in all regions.
Python as a federation tool for GENESIS 3.0.
Cornelis, Hugo; Rodriguez, Armando L; Coop, Allan D; Bower, James M
2012-01-01
The GENESIS simulation platform was one of the first broad-scale modeling systems in computational biology to encourage modelers to develop and share model features and components. Supported by a large developer community, it participated in innovative simulator technologies such as benchmarking, parallelization, and declarative model specification and was the first neural simulator to define bindings for the Python scripting language. An important feature of the latest version of GENESIS is that it decomposes into self-contained software components complying with the Computational Biology Initiative federated software architecture. This architecture allows separate scripting bindings to be defined for different necessary components of the simulator, e.g., the mathematical solvers and graphical user interface. Python is a scripting language that provides rich sets of freely available open source libraries. With clean dynamic object-oriented designs, they produce highly readable code and are widely employed in specialized areas of software component integration. We employ a simplified wrapper and interface generator to examine an application programming interface and make it available to a given scripting language. This allows independent software components to be 'glued' together and connected to external libraries and applications from user-defined Python or Perl scripts. We illustrate our approach with three examples of Python scripting. (1) Generate and run a simple single-compartment model neuron connected to a stand-alone mathematical solver. (2) Interface a mathematical solver with GENESIS 3.0 to explore a neuron morphology from either an interactive command-line or graphical user interface. (3) Apply scripting bindings to connect the GENESIS 3.0 simulator to external graphical libraries and an open source three dimensional content creation suite that supports visualization of models based on electron microscopy and their conversion to computational models. Employed in this way, the stand-alone software components of the GENESIS 3.0 simulator provide a framework for progressive federated software development in computational neuroscience.
Python as a Federation Tool for GENESIS 3.0
Cornelis, Hugo; Rodriguez, Armando L.; Coop, Allan D.; Bower, James M.
2012-01-01
The GENESIS simulation platform was one of the first broad-scale modeling systems in computational biology to encourage modelers to develop and share model features and components. Supported by a large developer community, it participated in innovative simulator technologies such as benchmarking, parallelization, and declarative model specification and was the first neural simulator to define bindings for the Python scripting language. An important feature of the latest version of GENESIS is that it decomposes into self-contained software components complying with the Computational Biology Initiative federated software architecture. This architecture allows separate scripting bindings to be defined for different necessary components of the simulator, e.g., the mathematical solvers and graphical user interface. Python is a scripting language that provides rich sets of freely available open source libraries. With clean dynamic object-oriented designs, they produce highly readable code and are widely employed in specialized areas of software component integration. We employ a simplified wrapper and interface generator to examine an application programming interface and make it available to a given scripting language. This allows independent software components to be ‘glued’ together and connected to external libraries and applications from user-defined Python or Perl scripts. We illustrate our approach with three examples of Python scripting. (1) Generate and run a simple single-compartment model neuron connected to a stand-alone mathematical solver. (2) Interface a mathematical solver with GENESIS 3.0 to explore a neuron morphology from either an interactive command-line or graphical user interface. (3) Apply scripting bindings to connect the GENESIS 3.0 simulator to external graphical libraries and an open source three dimensional content creation suite that supports visualization of models based on electron microscopy and their conversion to computational models. Employed in this way, the stand-alone software components of the GENESIS 3.0 simulator provide a framework for progressive federated software development in computational neuroscience. PMID:22276101
NASA Astrophysics Data System (ADS)
Raeder, K.; Hoar, T. J.; Anderson, J. L.; Collins, N.; Hendricks, J.; Kershaw, H.; Ha, S.; Snyder, C.; Skamarock, W. C.; Mizzi, A. P.; Liu, H.; Liu, J.; Pedatella, N. M.; Karspeck, A. R.; Karol, S. I.; Bitz, C. M.; Zhang, Y.
2017-12-01
The capabilities of the Data Assimilation Research Testbed (DART) at NCAR have been significantly expanded with the recent "Manhattan" release. DART is an ensemble Kalman filter based suite of tools, which enables researchers to use data assimilation (DA) without first becoming DA experts. Highlights: significant improvement in efficient ensemble DA for very large models on thousands of processors, direct read and write of model state files in parallel, more control of the DA output for finer-grained analysis, new model interfaces which are useful to a variety of geophysical researchers, new observation forward operators and the ability to use precomputed forward operators from the forecast model. The new model interfaces and example applications include the following: MPAS-A; Model for Prediction Across Scales - Atmosphere is a global, nonhydrostatic, variable-resolution mesh atmospheric model, which facilitates multi-scale analysis and forecasting. The absence of distinct subdomains eliminates problems associated with subdomain boundaries. It demonstrates the ability to consistently produce higher-quality analyses than coarse, uniform meshes do. WRF-Chem; Weather Research and Forecasting + (MOZART) Chemistry model assimilates observations from FRAPPÉ (Front Range Air Pollution and Photochemistry Experiment). WACCM-X; Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension assimilates observations of electron density to investigate sudden stratospheric warming. CESM (weakly) coupled assimilation; NCAR's Community Earth System Model is used for assimilation of atmospheric and oceanic observations into their respective components using coupled atmosphere+land+ocean+sea+ice forecasts. CESM2.0; Assimilation in the atmospheric component (CAM, WACCM) of the newly released version is supported. This version contains new and extensively updated components and software environment. CICE; Los Alamos sea ice model (in CESM) is used to assimilate multivariate sea ice concentration observations to constrain the model's ice thickness, concentration, and parameters.
A community in the wildland-urban interface
María Cecilia Ciampoli Halaman
2013-01-01
Communities located in the wildland-urban interface undergo a process of transformation until they can guard against fires occurring in the area. This study analyzed this process for the Estación neighborhood in the city of Esquel, Chubut Province, Argentina. The analysis was performed by comparing the level of danger diagnosed for each neighborhood home in 2004 with...
ERIC Educational Resources Information Center
Stoecker, Randy
2014-01-01
This article explores how on-the-ground Extension educators interface with higher education service-learning. Most service-learning in Extension has focused on precollege youth and 4-H. When we look at higher education service-learning and Extension in Wisconsin, we see that there is not as much connection as might be expected. County-based…
The climate4impact portal: bridging the CMIP5 and CORDEX data infrastructure to impact users
NASA Astrophysics Data System (ADS)
Plieger, Maarten; Som de Cerff, Wim; Pagé, Christian; Tatarinova, Natalia; Cofiño, Antonio; Vega Saldarriaga, Manuel; Hutjes, Ronald; de Jong, Fokke; Bärring, Lars; Sjökvist, Elin
2015-04-01
The aim of climate4impact is to enhance the use of Climate Research Data and to enhance the interaction with climate effect/impact communities. The portal is based on 21 impact use cases from 5 different European countries, and is evaluated by a user panel consisting of use case owners. It has been developed within the European projects IS-ENES and IS-ENES2 for more than 5 years, and its development currently continues within IS-ENES2 and CLIPC. As the climate impact community is very broad, the focus is mainly on the scientific impact community. This work has resulted in the ENES portal interface for climate impact communities and can be visited at www.climate4impact.eu. The climate4impact is connected to the Earth System Grid Federation (ESGF) nodes containing global climate model data (GCM data) from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) and regional climate model data (RCM) data from the Coordinated Regional Climate Downscaling Experiment (CORDEX). This global network of climate model data centers offers services for data description, discovery and download. The climate4impact portal connects to these services using OpenID, and offers a user interface for searching, visualizing and downloading global climate model data and more. A challenging task was to describe the available model data and how it can be used. The portal tries to inform users about possible caveats when using climate model data. All impact use cases are described in the documentation section, using highlighted keywords pointing to detailed information in the glossary. During the project, the content management system Drupal was used to enable partners to contribute on the documentation section. In this presentation the architecture and following items will be detailed: - Visualization: Visualize data from ESGF data nodes using ADAGUC Web Map Services. - Processing: Transform data, subset, export into other formats, and perform climate indices calculations using Web Processing Services implemented by PyWPS, based on NCAR NCPP OpenClimateGIS and IS-ENES2 icclim. - Security: Login using OpenID for access to the ESGF data nodes. The ESGF works in conjunction with several external websites and systems. The climate4impact portal uses X509 based short lived credentials, generated on behalf of the user with a MyProxy service. Single Sign-on (SSO) is used to make these websites and systems work together. - Discovery: Facetted search based on e.g. variable name, model and institute using the ESGF search services. A catalog browser allows for browsing through CMIP5 and any other climate model data catalogues (e.g. ESSENCE, EOBS, UNIDATA). - Download: Directly from ESGF nodes and other THREDDS catalogs This architecture will also be used for the future Copernicus platform, developed in the EU FP7 CLIPC project. - Connection with the downscaling portal of the university of Cantabria - Experiences on the question and answer site via Askbot The current main objectives for climate4impact can be summarized in two objectives. The first one is to work on a web interface which automatically generates a graphical user interface on WPS endpoints. The WPS calculates climate indices and subset data using OpenClimateGIS/icclim on data stored in ESGF data nodes. Data is then transmitted from ESGF nodes over secured OpenDAP and becomes available in a new, per user, secured OpenDAP server. The results can then be visualized again using ADAGUC WMS. Dedicated wizards for processing of climate indices will be developed in close collaboration with users. The second one is to expose climate4impact services, so as to offer standardized services which can be used by other portals. This has the advantage to add interoperability between several portals, as well as to enable the design of specific portals aimed at different impact communities, either thematic or national, for example.
Climate Model Diagnostic Analyzer Web Service System
NASA Astrophysics Data System (ADS)
Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Jiang, J. H.
2014-12-01
We have developed a cloud-enabled web-service system that empowers physics-based, multi-variable model performance evaluations and diagnoses through the comprehensive and synergistic use of multiple observational data, reanalysis data, and model outputs. We have developed a methodology to transform an existing science application code into a web service using a Python wrapper interface and Python web service frameworks. The web-service system, called Climate Model Diagnostic Analyzer (CMDA), currently supports (1) all the observational datasets from Obs4MIPs and a few ocean datasets from NOAA and Argo, which can serve as observation-based reference data for model evaluation, (2) many of CMIP5 model outputs covering a broad range of atmosphere, ocean, and land variables from the CMIP5 specific historical runs and AMIP runs, and (3) ECMWF reanalysis outputs for several environmental variables in order to supplement observational datasets. Analysis capabilities currently supported by CMDA are (1) the calculation of annual and seasonal means of physical variables, (2) the calculation of time evolution of the means in any specified geographical region, (3) the calculation of correlation between two variables, (4) the calculation of difference between two variables, and (5) the conditional sampling of one physical variable with respect to another variable. A web user interface is chosen for CMDA because it not only lowers the learning curve and removes the adoption barrier of the tool but also enables instantaneous use, avoiding the hassle of local software installation and environment incompatibility. CMDA will be used as an educational tool for the summer school organized by JPL's Center for Climate Science in 2014. In order to support 30+ simultaneous users during the school, we have deployed CMDA to the Amazon cloud environment. The cloud-enabled CMDA will provide each student with a virtual machine while the user interaction with the system will remain the same through web-browser interfaces. The summer school will serve as a valuable testbed for the tool development, preparing CMDA to serve its target community: Earth-science modeling and model-analysis community.
Hierarchy and Interactions in Environmental Interfaces Regarded as Biophysical Complex Systems
NASA Astrophysics Data System (ADS)
Mihailovic, Dragutin T.; Balaz, Igor
The field of environmental sciences is abundant with various interfaces and is the right place for the application of new fundamental approaches leading towards a better understanding of environmental phenomena. For example, following the definition of environmental interface by Mihailovic and Balaž [23], such interface can be placed between: human or animal bodies and surrounding air, aquatic species and water and air around them, and natural or artificially built surfaces (vegetation, ice, snow, barren soil, water, urban communities) and the atmosphere. Complex environmental interface systems are open and hierarchically organised, interactions between their constituent parts are nonlinear, and the interaction with the surrounding environment is noisy. These systems are therefore very sensitive to initial conditions, deterministic external perturbations and random fluctuations always present in nature. The study of noisy non-equilibrium processes is fundamental for modelling the dynamics of environmental interface systems and for understanding the mechanisms of spatio-temporal pattern formation in contemporary environmental sciences, particularly in environmental fluid mechanics. In modelling complex biophysical systems one of the main tasks is to successfully create an operative interface with the external environment. It should provide a robust and prompt translation of the vast diversity of external physical and/or chemical changes into a set of signals, which are "understandable" for an organism. Although the establishment of organisation in any system is of crucial importance for its functioning, it should not be forgotten that in biophysical systems we deal with real-life problems where a number of other conditions should be reached in order to put the system to work. One of them is the proper supply of the system by the energy. Therefore, we will investigate an aspect of dynamics of energy flow based on the energy balance equation. The energy as well as the exchange of biological, chemical and other physical quantities between interacting environmental interfaces can be represented by coupled maps. In this chapter we will address only two illustrative issues important for the modelling of interacting environmental interfaces regarded as complex systems. These are (i) use of algebra for modelling the autonomous establishment of local hierarchies in biophysical systems and (ii) numerical investigation of coupled maps representing exchange of energy, chemical and other relevant biophysical quantities between biophysical entities in their surrounding environment.
Actor groups, related needs, and challenges at the climate downscaling interface
NASA Astrophysics Data System (ADS)
Rössler, Ole; Benestad, Rasmus; Diamando, Vlachogannis; Heike, Hübener; Kanamaru, Hideki; Pagé, Christian; Margarida Cardoso, Rita; Soares, Pedro; Maraun, Douglas; Kreienkamp, Frank; Christodoulides, Paul; Fischer, Andreas; Szabo, Peter
2016-04-01
At the climate downscaling interface, numerous downscaling techniques and different philosophies compete on being the best method in their specific terms. Thereby, it remains unclear to what extent and for which purpose these downscaling techniques are valid or even the most appropriate choice. A common validation framework that compares all the different available methods was missing so far. The initiative VALUE closes this gap with such a common validation framework. An essential part of a validation framework for downscaling techniques is the definition of appropriate validation measures. The selection of validation measures should consider the needs of the stakeholder: some might need a temporal or spatial average of a certain variable, others might need temporal or spatial distributions of some variables, still others might need extremes for the variables of interest or even inter-variable dependencies. Hence, a close interaction of climate data providers and climate data users is necessary. Thus, the challenge in formulating a common validation framework mirrors also the challenges between the climate data providers and the impact assessment community. This poster elaborates the issues and challenges at the downscaling interface as it is seen within the VALUE community. It suggests three different actor groups: one group consisting of the climate data providers, the other two groups being climate data users (impact modellers and societal users). Hence, the downscaling interface faces classical transdisciplinary challenges. We depict a graphical illustration of actors involved and their interactions. In addition, we identified four different types of issues that need to be considered: i.e. data based, knowledge based, communication based, and structural issues. They all may, individually or jointly, hinder an optimal exchange of data and information between the actor groups at the downscaling interface. Finally, some possible ways to tackle these issues are discussed.
The JASMIN Cloud: specialised and hybrid to meet the needs of the Environmental Sciences Community
NASA Astrophysics Data System (ADS)
Kershaw, Philip; Lawrence, Bryan; Churchill, Jonathan; Pritchard, Matt
2014-05-01
Cloud computing provides enormous opportunities for the research community. The large public cloud providers provide near-limitless scaling capability. However, adapting Cloud to scientific workloads is not without its problems. The commodity nature of the public cloud infrastructure can be at odds with the specialist requirements of the research community. Issues such as trust, ownership of data, WAN bandwidth and costing models make additional barriers to more widespread adoption. Alongside the application of public cloud for scientific applications, a number of private cloud initiatives are underway in the research community of which the JASMIN Cloud is one example. Here, cloud service models are being effectively super-imposed over more established services such as data centres, compute cluster facilities and Grids. These have the potential to deliver the specialist infrastructure needed for the science community coupled with the benefits of a Cloud service model. The JASMIN facility based at the Rutherford Appleton Laboratory was established in 2012 to support the data analysis requirements of the climate and Earth Observation community. In its first year of operation, the 5PB of available storage capacity was filled and the hosted compute capability used extensively. JASMIN has modelled the concept of a centralised large-volume data analysis facility. Key characteristics have enabled success: peta-scale fast disk connected via low latency networks to compute resources and the use of virtualisation for effective management of the resources for a range of users. A second phase is now underway funded through NERC's (Natural Environment Research Council) Big Data initiative. This will see significant expansion to the resources available with a doubling of disk-based storage to 12PB and an increase of compute capacity by a factor of ten to over 3000 processing cores. This expansion is accompanied by a broadening in the scope for JASMIN, as a service available to the entire UK environmental science community. Experience with the first phase demonstrated the range of user needs. A trade-off is needed between access privileges to resources, flexibility of use and security. This has influenced the form and types of service under development for the new phase. JASMIN will deploy a specialised private cloud organised into "Managed" and "Unmanaged" components. In the Managed Cloud, users have direct access to the storage and compute resources for optimal performance but for reasons of security, via a more restrictive PaaS (Platform-as-a-Service) interface. The Unmanaged Cloud is deployed in an isolated part of the network but co-located with the rest of the infrastructure. This enables greater liberty to tenants - full IaaS (Infrastructure-as-a-Service) capability to provision customised infrastructure - whilst at the same time protecting more sensitive parts of the system from direct access using these elevated privileges. The private cloud will be augmented with cloud-bursting capability so that it can exploit the resources available from public clouds, making it effectively a hybrid solution. A single interface will overlay the functionality of both the private cloud and external interfaces to public cloud providers giving users the flexibility to migrate resources between infrastructures as requirements dictate.
Health care reform and care at the behavioral health--primary care interface.
Druss, Benjamin G; Mauer, Barbara J
2010-11-01
The historic passage of the Patient Protection and Affordable Care Act in March 2010 offers the potential to address long-standing deficits in quality and integration of services at the interface between behavioral health and primary care. Many of the efforts to reform the care delivery system will come in the form of demonstration projects, which, if successful, will become models for the broader health system. This article reviews two of the programs that might have a particular impact on care on the two sides of that interface: Medicaid and Medicare patient-centered medical home demonstration projects and expansion of a Substance Abuse and Mental Health Services Administration program that colocates primary care services in community mental health settings. The authors provide an overview of key supporting factors, including new financing mechanisms, quality assessment metrics, information technology infrastructure, and technical support, that will be important for ensuring that initiatives achieve their potential for improving care.
Knowledge Development Generic Framework Concept
2008-12-18
requirements. The conceptual model serves as a communication interface among analysts, military staff, and other actors involved [22015] Systems Analysis will...It designates all long- lived basic mechanisms of material and institutional kind, which guarantee the functioning of a complex community . 2.2.3.2...cooperation with users) • Analyze and decide whether it is better to communicate an information object automatically (“document-to-people”) or via human
ERIC Educational Resources Information Center
Black, Jan L.; Roelofs, Alice R.
This book is a resource for human service professionals with detailed information necessary to start, maintain, monitor, assess, and reevaluate a program targeting independence. It describes the Whole Life Program, an interdependent apartment program combined with continuing education for adults with developmental, physical, and emotional…
Neutron Source Facility Training Simulator Based on EPICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Young Soo; Wei, Thomas Y.; Vilim, Richard B.
A plant operator training simulator is developed for training the plant operators as well as for design verification of plant control system (PCS) and plant protection system (PPS) for the Kharkov Institute of Physics and Technology Neutron Source Facility. The simulator provides the operator interface for the whole plant including the sub-critical assembly coolant loop, target coolant loop, secondary coolant loop, and other facility systems. The operator interface is implemented based on Experimental Physics and Industrial Control System (EPICS), which is a comprehensive software development platform for distributed control systems. Since its development at Argonne National Laboratory, it has beenmore » widely adopted in the experimental physics community, e.g. for control of accelerator facilities. This work is the first implementation for a nuclear facility. The main parts of the operator interface are the plant control panel and plant protection panel. The development involved implementation of process variable database, sequence logic, and graphical user interface (GUI) for the PCS and PPS utilizing EPICS and related software tools, e.g. sequencer for sequence logic, and control system studio (CSS-BOY) for graphical use interface. For functional verification of the PCS and PPS, a plant model is interfaced, which is a physics-based model of the facility coolant loops implemented as a numerical computer code. The training simulator is tested and demonstrated its effectiveness in various plant operation sequences, e.g. start-up, shut-down, maintenance, and refueling. It was also tested for verification of the plant protection system under various trip conditions.« less
Exposing NASA's Earth Observations to the Applications Community and Public
NASA Astrophysics Data System (ADS)
Boller, R. A.; Baynes, K.; Pressley, N. N.; Thompson, C. K.; Schmaltz, J. E.; King, B. A.; Wong, M. M.; Rice, Z.; Gunnoe, T.; Roberts, J. T.; Rodriguez, J.; De Luca, A. P.; King, J.
2017-12-01
NASA's Earth Observing System (EOS) generates a wealth of data products which are generally intended for scientific research. In recent years, however, this data has also become more accessible to the applications community and public through the Worldview app and Global Imagery Browse Services (GIBS). These mapping interfaces provide historical and near real-time access to NASA's Earth observations for a wide range of uses. This presentation will focus on how the applications community, public, and media use these interfaces for decision-making, leisure, and anything in between.
Exposing NASA's Earth Observations to the Applications Community and Public
NASA Technical Reports Server (NTRS)
Boller, R.; Baynes, K.; Pressley, N.; Thompson, C.; Cechini, M.; Schmaltz, J.; Wong, M.; King, B.; Rice, Z.; Sprague, J.;
2017-01-01
NASA's Earth Observing System (EOS) generates a wealth of data products which are generally intended for scientific research. In recent years, however, this data has also become more accessible to the applications community and public through the Worldview app and Global Imagery Browse Services (GIBS). These mapping interfaces provide historical and near real time access to NASA's Earth observations for a wide range of uses. This presentation will focus on how the applications community, public, and media use these interfaces for decision-making, leisure, and anything in between.
Rnomads: An R Interface with the NOAA Operational Model Archive and Distribution System
NASA Astrophysics Data System (ADS)
Bowman, D. C.; Lees, J. M.
2014-12-01
The National Oceanic and Atmospheric Administration Operational Model Archive and Distribution System (NOMADS) facilitates rapid delivery of real time and archived environmental data sets from multiple agencies. These data are distributed free to the scientific community, industry, and the public. The rNOMADS package provides an interface between NOMADS and the R programming language. Like R itself, rNOMADS is open source and cross platform. It utilizes server-side functionality on the NOMADS system to subset model outputs for delivery to client R users. There are currently 57 real time and 10 archived models available through rNOMADS. Atmospheric models include the Global Forecast System and North American Mesoscale. Oceanic models include WAVEWATCH III and U. S. Navy Operational Global Ocean Model. rNOMADS has been downloaded 1700 times in the year since it was released. At the time of writing, it is being used for wind and solar power modeling, climate monitoring related to food security concerns, and storm surge/inundation calculations, among others. We introduce this new package and show how it can be used to extract data for infrasonic waveform modeling in the atmosphere.
mcaGUI: microbial community analysis R-Graphical User Interface (GUI).
Copeland, Wade K; Krishnan, Vandhana; Beck, Daniel; Settles, Matt; Foster, James A; Cho, Kyu-Chul; Day, Mitch; Hickey, Roxana; Schütte, Ursel M E; Zhou, Xia; Williams, Christopher J; Forney, Larry J; Abdo, Zaid
2012-08-15
Microbial communities have an important role in natural ecosystems and have an impact on animal and human health. Intuitive graphic and analytical tools that can facilitate the study of these communities are in short supply. This article introduces Microbial Community Analysis GUI, a graphical user interface (GUI) for the R-programming language (R Development Core Team, 2010). With this application, researchers can input aligned and clustered sequence data to create custom abundance tables and perform analyses specific to their needs. This GUI provides a flexible modular platform, expandable to include other statistical tools for microbial community analysis in the future. The mcaGUI package and source are freely available as part of Bionconductor at http://www.bioconductor.org/packages/release/bioc/html/mcaGUI.html
Raju, Emmanuel
2013-04-03
Disaster recovery after the Indian Ocean tsunami in 2004 led to a number of challenges and raised issues concerning land rights and housing reconstruction in the affected countries. This paper discusses the resistance to relocation of fishing communities in Chennai, India. Qualitative research methods were used to describe complexities in the debate between the state and the community regarding relocation, and the paper draws attention to the dimensions of the state-community interface in the recovery process. The results of this study highlight the effects of differences in the values held by each of the stakeholders regarding relocation, the lack of community participation, and thereby the interfaces that emerge between the state and the community regarding relocation. The failure to establish a nexus between disaster recovery and the importance of a sustainable livelihood for fishing communities severely delayed housing reconstruction.
TOOKUIL: A case study in user interface development for safety code application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, D.L.; Harkins, C.K.; Hoole, J.G.
1997-07-01
Traditionally, there has been a very high learning curve associated with using nuclear power plant (NPP) analysis codes. Even for seasoned plant analysts and engineers, the process of building or modifying an input model for present day NPP analysis codes is tedious, error prone, and time consuming. Current cost constraints and performance demands place an additional burden on today`s safety analysis community. Advances in graphical user interface (GUI) technology have been applied to obtain significant productivity and quality assurance improvements for the Transient Reactor Analysis Code (TRAC) input model development. KAPL Inc. has developed an X Windows-based graphical user interfacemore » named TOOKUIL which supports the design and analysis process, acting as a preprocessor, runtime editor, help system, and post processor for TRAC. This paper summarizes the objectives of the project, the GUI development process and experiences, and the resulting end product, TOOKUIL.« less
Yedla, Sudhakar
2012-01-01
Dhaka's community-based decentralized composting (DCDC) is a successful demonstration of solid waste management by adopting low-cost technology, local resources community participation and partnerships among the various actors involved. This paper attempts to understand the model, necessary conditions, strategies and their priorities to replicate DCDC in the other developing cities of Asia. Thirteen strategies required for its replication are identified and assessed based on various criteria, namely transferability, longevity, economic viability, adaptation and also overall replication. Priority setting by multi-criteria analysis by applying analytic hierarchy process revealed that immediate transferability without long-term and economic viability consideration is not advisable as this would result in unsustainable replication of DCDC. Based on the analysis, measures to ensure the product quality control; partnership among stakeholders (public-private-community); strategies to achieve better involvement of the private sector in solid waste management (entrepreneurship in approach); simple and low-cost technology; and strategies to provide an effective interface among the complementing sectors are identified as important strategies for its replication.
Zhang, Li-Mei; Duff, Aoife M; Smith, Cindy J
2018-04-24
Terrestrial-marine boundaries are significant sites of biogeochemical activity with delineated gradients from land to sea. While niche differentiation of ammonia-oxidizing archaea (AOA) and bacteria (AOB) driven by pH and nitrogen is well known, the patterns and environmental drivers of AOA and AOB community structure and activity across soil-sediment boundaries have not yet been determined. In this study, nitrification potential rate, community composition and transcriptional activity of AOA and AOB in soil, soil/sediment interface and sediments of two coastal Bays were characterized using a combination of field investigations and microcosm incubations. At DNA level, amoA gene abundances of AOA were significantly greater than AOB in soil, while in sediments AOB were significantly more abundant than AOA, but at the soil/sediment interface there were equal numbers of AOA and AOB amoA genes. Microcosm incubations provided further evidence, through qPCR and DGGE-sequencing analysis of amoA transcripts, that AOA were active in soil, AOB in sediment and both AOA and AOB were active at the soil/sediment interface. The AOA and AOB community composition shifted across the coastal soil-interface-sediment gradient with salinity and pH identified as major environmental drivers. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.
Ndengu, M; DE Garine-Wichatitsky, M; Pfukenyi, D M; Tivapasi, M; Mukamuri, B; Matope, G
2017-05-01
A study was conducted to assess the awareness of cattle abortions due to brucellosis, Rift Valley fever (RVF) and leptospirosis, and to compare frequencies of reported abortions in communities living at the periphery of the Great Limpopo Transfrontier Conservation Area in southeastern Zimbabwe. Three study sites were selected based on the type of livestock-wildlife interface: porous livestock-wildlife interface (unrestricted); non-porous livestock-wildlife interface (restricted by fencing); and livestock-wildlife non-interface (totally absent or control). Respondents randomly selected from a list of potential cattle farmers (N = 379) distributed at porous (40·1%), non-interface (35·5%) and non-porous (26·4%), were interviewed using a combined close- and open-ended questionnaire. Focus group discussions were conducted with 10-12 members of each community. More abortions in the last 5 years were reported from the porous interface (52%) and a significantly higher per cent of respondents from the porous interface (P < 0·05) perceived wildlife as playing a role in livestock abortions compared with the other interface types. The odds of reporting abortions in cattle were higher in large herd sizes (odds ratio (OR) = 2·6; 95% confidence interval (CI) 1·5-4·3), porous (OR = 1·9; 95% CI 1·0-3·5) and non-porous interface (OR = 2·2; 95% CI 1·1-4·3) compared with livestock-wildlife non-interface areas. About 21·6% of the respondents knew brucellosis as a cause of abortion, compared with RVF (9·8%) and leptospirosis (3·7%). These results explain to some extent, the existence of human/wildlife conflict in the studied livestock-wildlife interface areas of Zimbabwe, which militates against biodiversity conservation efforts. The low awareness of zoonoses means the public is at risk of contracting some of these infections. Thus, further studies should focus on livestock-wildlife interface areas to assess if the increased rates of abortions reported in cattle may be due to exposure to wildlife or other factors. The government of Zimbabwe needs to launch educational programmes on public health awareness in these remote areas at the periphery of transfrontier conservation areas where livestock-wildlife interface exists to help mitigate the morbidity and mortality of people from some of the known zoonotic diseases.
SPARK: A Framework for Multi-Scale Agent-Based Biomedical Modeling.
Solovyev, Alexey; Mikheev, Maxim; Zhou, Leming; Dutta-Moscato, Joyeeta; Ziraldo, Cordelia; An, Gary; Vodovotz, Yoram; Mi, Qi
2010-01-01
Multi-scale modeling of complex biological systems remains a central challenge in the systems biology community. A method of dynamic knowledge representation known as agent-based modeling enables the study of higher level behavior emerging from discrete events performed by individual components. With the advancement of computer technology, agent-based modeling has emerged as an innovative technique to model the complexities of systems biology. In this work, the authors describe SPARK (Simple Platform for Agent-based Representation of Knowledge), a framework for agent-based modeling specifically designed for systems-level biomedical model development. SPARK is a stand-alone application written in Java. It provides a user-friendly interface, and a simple programming language for developing Agent-Based Models (ABMs). SPARK has the following features specialized for modeling biomedical systems: 1) continuous space that can simulate real physical space; 2) flexible agent size and shape that can represent the relative proportions of various cell types; 3) multiple spaces that can concurrently simulate and visualize multiple scales in biomedical models; 4) a convenient graphical user interface. Existing ABMs of diabetic foot ulcers and acute inflammation were implemented in SPARK. Models of identical complexity were run in both NetLogo and SPARK; the SPARK-based models ran two to three times faster.
Simon, Melissa A.; Samaras, Athena T.; Nonzee, Narissa J.; Hajjar, Nadia; Frankovich, Carmi; Bularzik, Charito; Murphy, Kara; Endress, Richard; Tom, Laura S.; Dong, XinQi
2016-01-01
Patient navigation is an internationally utilized, culturally grounded, and multifaceted strategy to optimize patients’ interface with the health-care team and system. The DuPage County Patient Navigation Collaborative (DPNC) is a campus–community partnership designed to improve access to care among uninsured breast and cervical cancer patients in DuPage County, IL. Importantly, the DPNC connects community-based social service delivery with the patient-centered medical home to achieve a community-nested patient-centered medical home model for cancer care. While the patient navigator experience has been qualitatively documented, the literature pertaining to patient navigation has largely focused on efficacy outcomes and program cost effectiveness. Here, we uniquely highlight stories of women enrolled in the DPNC, told from the perspective of patient navigators, to shed light on the myriad barriers that DPNC patients faced and document the strategies DPNC patient navigators implemented. PMID:27594792
Architectural Aspects of Grid Computing and its Global Prospects for E-Science Community
NASA Astrophysics Data System (ADS)
Ahmad, Mushtaq
2008-05-01
The paper reviews the imminent Architectural Aspects of Grid Computing for e-Science community for scientific research and business/commercial collaboration beyond physical boundaries. Grid Computing provides all the needed facilities; hardware, software, communication interfaces, high speed internet, safe authentication and secure environment for collaboration of research projects around the globe. It provides highly fast compute engine for those scientific and engineering research projects and business/commercial applications which are heavily compute intensive and/or require humongous amounts of data. It also makes possible the use of very advanced methodologies, simulation models, expert systems and treasure of knowledge available around the globe under the umbrella of knowledge sharing. Thus it makes possible one of the dreams of global village for the benefit of e-Science community across the globe.
Scientific Benefits of Space Science Models Archiving at Community Coordinated Modeling Center
NASA Technical Reports Server (NTRS)
Kuznetsova, Maria M.; Berrios, David; Chulaki, Anna; Hesse, Michael; MacNeice, Peter J.; Maddox, Marlo M.; Pulkkinen, Antti; Rastaetter, Lutz; Taktakishvili, Aleksandre
2009-01-01
The Community Coordinated Modeling Center (CCMC) hosts a set of state-of-the-art space science models ranging from the solar atmosphere to the Earth's upper atmosphere. CCMC provides a web-based Run-on-Request system, by which the interested scientist can request simulations for a broad range of space science problems. To allow the models to be driven by data relevant to particular events CCMC developed a tool that automatically downloads data from data archives and transform them to required formats. CCMC also provides a tailored web-based visualization interface for the model output, as well as the capability to download the simulation output in portable format. CCMC offers a variety of visualization and output analysis tools to aid scientists in interpretation of simulation results. During eight years since the Run-on-request system became available the CCMC archived the results of almost 3000 runs that are covering significant space weather events and time intervals of interest identified by the community. The simulation results archived at CCMC also include a library of general purpose runs with modeled conditions that are used for education and research. Archiving results of simulations performed in support of several Modeling Challenges helps to evaluate the progress in space weather modeling over time. We will highlight the scientific benefits of CCMC space science model archive and discuss plans for further development of advanced methods to interact with simulation results.
Generic magnetohydrodynamic model at the Community Coordinated Modeling Center
NASA Astrophysics Data System (ADS)
Honkonen, I. J.; Rastaetter, L.; Glocer, A.
2016-12-01
The Community Coordinated Modeling Center (CCMC) at NASA Goddard Space Flight Center is a multi-agency partnership to enable, support and perform research and development for next-generation space science and space weather models. CCMC currently hosts nearly 100 numerical models and a cornerstone of this activity is the Runs on Request (RoR) system which allows anyone to request a model run and analyse/visualize the results via a web browser. CCMC is also active in the education community by organizing student research contests, heliophysics summer schools, and space weather forecaster training for students, government and industry representatives. Recently a generic magnetohydrodynamic (MHD) model was added to the CCMC RoR system which allows the study of a variety of fluid and plasma phenomena in one, two and three dimensions using a dynamic point-and-click web interface. For example students can experiment with the physics of fundamental wave modes of hydrodynamic and MHD theory, behavior of discontinuities and shocks as well as instabilities such as Kelvin-Helmholtz.Students can also use the model to experiments with numerical effects of models, i.e. how the process of discretizing a system of equations and solving them on a computer changes the solution. This can provide valuable background understanding e.g. for space weather forecasters on the effects of model resolution, numerical resistivity, etc. on the prediction.
Interface between Education and Technology: Australia. Education and Polity 1.
ERIC Educational Resources Information Center
Birch, Ian; And Others
The first of three main sections in this review of research covers current and recent developments in the interfacing of education and technology in Australia, with particular attention paid to policy initiatives adopted by governments, industry, academic institutions, and the community with respect to the interface. The second part reviews…
Algers, Anne; Silva-Fletcher, Ayona; Gregory, Neville; Hunt, Melvin
2013-11-01
Design science research was used for the generation, use and evaluation of a model for knowledge sharing in the user community through open educational resources (OER). The focus of interest was on the development process of a model for knowledge sharing that emphasizes the characteristics and the needs of the user community; the empowerment and democratic issues of openness; the collaboration between institutions and dialog with society; and the consideration of quality and sustainability issues. Initially, the community needs were analyzed through surveys and workshops, and the findings used, through negotiations, to formulate the development process. An open-training platform served as an infrastructure and included a repository with OER, a wiki and a discussion forum. The purpose of this article is an attempt to provide universities with a plan and template for integrated knowledge sharing that responds to societal needs. Usability and usefulness has not been evaluated. Copyright © 2013 Elsevier Ltd. All rights reserved.
PODIO: An Event-Data-Model Toolkit for High Energy Physics Experiments
NASA Astrophysics Data System (ADS)
Gaede, F.; Hegner, B.; Mato, P.
2017-10-01
PODIO is a C++ library that supports the automatic creation of event data models (EDMs) and efficient I/O code for HEP experiments. It is developed as a new EDM Toolkit for future particle physics experiments in the context of the AIDA2020 EU programme. Experience from LHC and the linear collider community shows that existing solutions partly suffer from overly complex data models with deep object-hierarchies or unfavorable I/O performance. The PODIO project was created in order to address these problems. PODIO is based on the idea of employing plain-old-data (POD) data structures wherever possible, while avoiding deep object-hierarchies and virtual inheritance. At the same time it provides the necessary high-level interface towards the developer physicist, such as the support for inter-object relations and automatic memory-management, as well as a Python interface. To simplify the creation of efficient data models PODIO employs code generation from a simple yaml-based markup language. In addition, it was developed with concurrency in mind in order to support the use of modern CPU features, for example giving basic support for vectorization techniques.
SNAVA-A real-time multi-FPGA multi-model spiking neural network simulation architecture.
Sripad, Athul; Sanchez, Giovanny; Zapata, Mireya; Pirrone, Vito; Dorta, Taho; Cambria, Salvatore; Marti, Albert; Krishnamourthy, Karthikeyan; Madrenas, Jordi
2018-01-01
Spiking Neural Networks (SNN) for Versatile Applications (SNAVA) simulation platform is a scalable and programmable parallel architecture that supports real-time, large-scale, multi-model SNN computation. This parallel architecture is implemented in modern Field-Programmable Gate Arrays (FPGAs) devices to provide high performance execution and flexibility to support large-scale SNN models. Flexibility is defined in terms of programmability, which allows easy synapse and neuron implementation. This has been achieved by using a special-purpose Processing Elements (PEs) for computing SNNs, and analyzing and customizing the instruction set according to the processing needs to achieve maximum performance with minimum resources. The parallel architecture is interfaced with customized Graphical User Interfaces (GUIs) to configure the SNN's connectivity, to compile the neuron-synapse model and to monitor SNN's activity. Our contribution intends to provide a tool that allows to prototype SNNs faster than on CPU/GPU architectures but significantly cheaper than fabricating a customized neuromorphic chip. This could be potentially valuable to the computational neuroscience and neuromorphic engineering communities. Copyright © 2017 Elsevier Ltd. All rights reserved.
Apollo: a community resource for genome annotation editing
Ed, Lee; Nomi, Harris; Mark, Gibson; Raymond, Chetty; Suzanna, Lewis
2009-01-01
Summary: Apollo is a genome annotation-editing tool with an easy to use graphical interface. It is a component of the GMOD project, with ongoing development driven by the community. Recent additions to the software include support for the generic feature format version 3 (GFF3), continuous transcriptome data, a full Chado database interface, integration with remote services for on-the-fly BLAST and Primer BLAST analyses, graphical interfaces for configuring user preferences and full undo of all edit operations. Apollo's user community continues to grow, including its use as an educational tool for college and high-school students. Availability: Apollo is a Java application distributed under a free and open source license. Installers for Windows, Linux, Unix, Solaris and Mac OS X are available at http://apollo.berkeleybop.org, and the source code is available from the SourceForge CVS repository at http://gmod.cvs.sourceforge.net/gmod/apollo. Contact: elee@berkeleybop.org PMID:19439563
Apollo: a community resource for genome annotation editing.
Lee, Ed; Harris, Nomi; Gibson, Mark; Chetty, Raymond; Lewis, Suzanna
2009-07-15
Apollo is a genome annotation-editing tool with an easy to use graphical interface. It is a component of the GMOD project, with ongoing development driven by the community. Recent additions to the software include support for the generic feature format version 3 (GFF3), continuous transcriptome data, a full Chado database interface, integration with remote services for on-the-fly BLAST and Primer BLAST analyses, graphical interfaces for configuring user preferences and full undo of all edit operations. Apollo's user community continues to grow, including its use as an educational tool for college and high-school students. Apollo is a Java application distributed under a free and open source license. Installers for Windows, Linux, Unix, Solaris and Mac OS X are available at http://apollo.berkeleybop.org, and the source code is available from the SourceForge CVS repository at http://gmod.cvs.sourceforge.net/gmod/apollo.
Distributed Multi-interface Catalogue for Geospatial Data
NASA Astrophysics Data System (ADS)
Nativi, S.; Bigagli, L.; Mazzetti, P.; Mattia, U.; Boldrini, E.
2007-12-01
Several geosciences communities (e.g. atmospheric science, oceanography, hydrology) have developed tailored data and metadata models and service protocol specifications for enabling online data discovery, inventory, evaluation, access and download. These specifications are conceived either profiling geospatial information standards or extending the well-accepted geosciences data models and protocols in order to capture more semantics. These artifacts have generated a set of related catalog -and inventory services- characterizing different communities, initiatives and projects. In fact, these geospatial data catalogs are discovery and access systems that use metadata as the target for query on geospatial information. The indexed and searchable metadata provide a disciplined vocabulary against which intelligent geospatial search can be performed within or among communities. There exists a clear need to conceive and achieve solutions to implement interoperability among geosciences communities, in the context of the more general geospatial information interoperability framework. Such solutions should provide search and access capabilities across catalogs, inventory lists and their registered resources. Thus, the development of catalog clearinghouse solutions is a near-term challenge in support of fully functional and useful infrastructures for spatial data (e.g. INSPIRE, GMES, NSDI, GEOSS). This implies the implementation of components for query distribution and virtual resource aggregation. These solutions must implement distributed discovery functionalities in an heterogeneous environment, requiring metadata profiles harmonization as well as protocol adaptation and mediation. We present a catalog clearinghouse solution for the interoperability of several well-known cataloguing systems (e.g. OGC CSW, THREDDS catalog and data services). The solution implements consistent resource discovery and evaluation over a dynamic federation of several well-known cataloguing and inventory systems. Prominent features include: 1)Support to distributed queries over a hierarchical data model, supporting incremental queries (i.e. query over collections, to be subsequently refined) and opaque/translucent chaining; 2)Support to several client protocols, through a compound front-end interface module. This allows to accommodate a (growing) number of cataloguing standards, or profiles thereof, including the OGC CSW interface, ebRIM Application Profile (for Core ISO Metadata and other data models), and the ISO Application Profile. The presented catalog clearinghouse supports both the opaque and translucent pattern for service chaining. In fact, the clearinghouse catalog may be configured either to completely hide the underlying federated services or to provide clients with services information. In both cases, the clearinghouse solution presents a higher level interface (i.e. OGC CSW) which harmonizes multiple lower level services (e.g. OGC CSW, WMS and WCS, THREDDS, etc.), and handles all control and interaction with them. In the translucent case, client has the option to directly access the lower level services (e.g. to improve performances). In the GEOSS context, the solution has been experimented both as a stand-alone user application and as a service framework. The first scenario allows a user to download a multi-platform client software and query a federation of cataloguing systems, that he can customize at will. The second scenario support server-side deployment and can be flexibly adapted to several use-cases, such as intranet proxy, catalog broker, etc.
Lofthus, Synnøve; Netzer, Roman; Lewin, Anna S; Heggeset, Tonje M B; Haugen, Tone; Brakstad, Odd Gunnar
2018-04-01
Oil biodegradation studies have mainly focused on microbial processes in dispersions, not specifically on the interfaces between the oil and the seawater in the dispersions. In this study, a hydrophobic adsorbent system, consisting of Fluortex fabrics, was used to investigate biodegradation of n-alkanes and microbial communities on oil-seawater interfaces in natural non-amended seawater. The study was performed over a temperature range from 0 to 20 °C, to determine how temperature affected biodegradation at the oil-seawater interfaces. Biodegradation of n-alkanes were influenced both by seawater temperature and chain-length. Biotransformation rates of n-alkanes decreased by reduced seawater temperature. Low rate coefficients at a seawater temperature of 0 °C were probably associated with changes in physical-chemical properties of alkanes. The primary bacterial colonization of the interfaces was predominated by the family Oceanospirillaceae at all temperatures, demonstrating the wide temperature range of these hydrocarbonoclastic bacteria. The mesophilic genus Oleibacter was predominant at the seawater temperature of 20 °C, and the psychrophilic genus Oleispira at 5 and 0 °C. Upon completion of n-alkane biotransformation, other oil-degrading and heterotrophic bacteria became abundant, including Piscirickettsiaceae (Cycloclasticus), Colwelliaceae (Colwellia), Altermonadaceae (Altermonas), and Rhodobacteraceae. This is one of a few studies that describe the biodegradation of oil, and the microbial communities associated with the degradation, directly at the oil-seawater interfaces over a large temperature interval.
An Integrated Ecological Modeling System for Assessing ...
We demonstrate a novel, spatially explicit assessment of the current condition of aquatic ecosystem services, with limited sensitivity analysis for the atmospheric contaminant mercury. The Integrated Ecological Modeling System (IEMS) forecasts water quality and quantity, habitat suitability for aquatic biota, fish biomasses, population densities, productivities, and contamination by methylmercury across headwater watersheds. We applied this IEMS to the Coal River Basin (CRB), West Virginia (USA), an 8-digit hydrologic unit watershed, by simulating a network of 97 stream segments using the SWAT watershed model, a watershed mercury loading model, the WASP water quality model, the PiSCES fish community estimation model, a fish habitat suitability model, the BASS fish community and bioaccumulation model, and an ecoservices post-processer. Model application was facilitated by automated data retrieval and model setup and updated model wrappers and interfaces for data transfers between these models from a prior study. This companion study evaluates baseline predictions of ecoservices provided for 1990 – 2010 for the population of streams in the CRB and serves as a foundation for future model development. Published in the journal, Ecological Modeling. Highlights: • Demonstrate a spatially-explicit IEMS for multiple scales. • Design a flexible IEMS for
NASA Technical Reports Server (NTRS)
Pulkkinen, A.; Rastaetter, L.; Kuznetsova, M.; Singer, H.; Balch, C.; Weimer, D.; Toth, G.; Ridley, A.; Gombosi, T.; Wiltberger, M.;
2013-01-01
In this paper we continue the community-wide rigorous modern space weather model validation efforts carried out within GEM, CEDAR and SHINE programs. In this particular effort, in coordination among the Community Coordinated Modeling Center (CCMC), NOAA Space Weather Prediction Center (SWPC), modelers, and science community, we focus on studying the models' capability to reproduce observed ground magnetic field fluctuations, which are closely related to geomagnetically induced current phenomenon. One of the primary motivations of the work is to support NOAA SWPC in their selection of the next numerical model that will be transitioned into operations. Six geomagnetic events and 12 geomagnetic observatories were selected for validation.While modeled and observed magnetic field time series are available for all 12 stations, the primary metrics analysis is based on six stations that were selected to represent the high-latitude and mid-latitude locations. Events-based analysis and the corresponding contingency tables were built for each event and each station. The elements in the contingency table were then used to calculate Probability of Detection (POD), Probability of False Detection (POFD) and Heidke Skill Score (HSS) for rigorous quantification of the models' performance. In this paper the summary results of the metrics analyses are reported in terms of POD, POFD and HSS. More detailed analyses can be carried out using the event by event contingency tables provided as an online appendix. An online interface built at CCMC and described in the supporting information is also available for more detailed time series analyses.
NASA Astrophysics Data System (ADS)
Larour, Eric; Cheng, Daniel; Perez, Gilberto; Quinn, Justin; Morlighem, Mathieu; Duong, Bao; Nguyen, Lan; Petrie, Kit; Harounian, Silva; Halkides, Daria; Hayes, Wayne
2017-12-01
Earth system models (ESMs) are becoming increasingly complex, requiring extensive knowledge and experience to deploy and use in an efficient manner. They run on high-performance architectures that are significantly different from the everyday environments that scientists use to pre- and post-process results (i.e., MATLAB, Python). This results in models that are hard to use for non-specialists and are increasingly specific in their application. It also makes them relatively inaccessible to the wider science community, not to mention to the general public. Here, we present a new software/model paradigm that attempts to bridge the gap between the science community and the complexity of ESMs by developing a new JavaScript application program interface (API) for the Ice Sheet System Model (ISSM). The aforementioned API allows cryosphere scientists to run ISSM on the client side of a web page within the JavaScript environment. When combined with a web server running ISSM (using a Python API), it enables the serving of ISSM computations in an easy and straightforward way. The deep integration and similarities between all the APIs in ISSM (MATLAB, Python, and now JavaScript) significantly shortens and simplifies the turnaround of state-of-the-art science runs and their use by the larger community. We demonstrate our approach via a new Virtual Earth System Laboratory (VESL) website (http://vesl.jpl.nasa.gov, VESL(2017)).
Field, Erin K.; D'Imperio, Seth; Miller, Amber R.; VanEngelen, Michael R.; Gerlach, Robin; Lee, Brady D.; Apel, William A.; Peyton, Brent M.
2010-01-01
Low-level-radioactive-waste (low-level-waste) sites, including those at various U.S. Department of Energy sites, frequently contain cellulosic waste in the form of paper towels, cardboard boxes, or wood contaminated with heavy metals and radionuclides such as chromium and uranium. To understand how the soil microbial community is influenced by the presence of cellulosic waste products, multiple soil samples were obtained from a nonradioactive model low-level-waste test pit at the Idaho National Laboratory. Samples were analyzed using 16S rRNA gene clone libraries and 16S rRNA gene microarray (PhyloChip) analyses. Both methods revealed changes in the bacterial community structure with depth. In all samples, the PhyloChip detected significantly more operational taxonomic units, and therefore relative diversity, than the clone libraries. Diversity indices suggest that diversity is lowest in the fill and fill-waste interface (FW) layers and greater in the wood waste and waste-clay interface layers. Principal-coordinate analysis and lineage-specific analysis determined that the Bacteroidetes and Actinobacteria phyla account for most of the significant differences observed between the layers. The decreased diversity in the FW layer and increased members of families containing known cellulose-degrading microorganisms suggest that the FW layer is an enrichment environment for these organisms. These results suggest that the presence of the cellulosic material significantly influences the bacterial community structure in a stratified soil system. PMID:20305022
Development practices and lessons learned in developing SimPEG
NASA Astrophysics Data System (ADS)
Cockett, R.; Heagy, L. J.; Kang, S.; Rosenkjaer, G. K.
2015-12-01
Inverse modelling provides a mathematical framework for constructing a model of physical property distributions in the subsurface that are consistent with the data collected in geophysical surveys. The geosciences are increasingly moving towards the integration of geological, geophysical, and hydrological information to better characterize the subsurface. This integration must span disciplines and is not only challenging scientifically, but additionally the inconsistencies between conventions often makes implementations complicated, non reproducible, or inefficient. SimPEG is an open-source, multi-university effort aimed at providing a generalized framework for solving forward and inverse problems. SimPEG includes finite volume discretizations on structured and unstructured meshes, interfaces to standard numerical solver packages, convex optimization algorithms, model parameterizations, and visualization routines. The SimPEG package (http://simpeg.xyz) supports an ecosystem of forward and inverse modelling applications, including electromagnetics, vadose zone flow, seismic, and potential fields, that are all written with a common interface and toolbox. The goal of SimPEG is to support a community of researchers with well-tested, extensible tools, and encourage transparency and reproducibility both of the SimPEG software and the geoscientific research it is applied to. In this presentation, we will share some of the lessons we have learned in designing the modular infrastructure, testing and development practices of SimPEG. We will discuss our use of version control, extensive unit-testing, continuous integration, documentation, issue tracking, and resources that facilitate communication between existing team members and allows new researchers to get involved. These practices have enabled the use of SimPEG in research, industry, and education as well as the ability to support a growing number of dependent repositories and applications. We hope that sharing our practices and experiences will help other researchers who are creating communities around their own scientific software. As this session suggests, "software is critical to the success of science," but, it is the *communities* of researchers that must be supported as we strive to create top quality research tools.
NASA Astrophysics Data System (ADS)
Graw, M. F.; Solomon, E. A.; Chrisler, W.; Krause, S.; Treude, T.; Ruppel, C. D.; Pohlman, J.; Colwell, F. S.
2015-12-01
Methane advecting through continental margin sediments may enter the water column and potentially contribute to ocean acidification and increase atmospheric methane concentrations. Anaerobic oxidation of methane (AOM), mediated by syntrophic consortia of anaerobic methanotrophic archaea and sulfate-reducing bacteria (ANME-SRB), consumes nearly all dissolved methane in methane-bearing sediments before it reaches the sediment-water interface. Despite the significant role ANME-SRB play in carbon cycling, our knowledge of these organisms and their surrounding microbial communities is limited. Our objective is to develop a metabolic model of ANME-SRB within methane-bearing sediments and to couple this to a geochemical reaction-transport model for these margins. As a first step towards this goal, we undertook fluorescent microscopic imaging, 16S rRNA gene deep-sequencing, and shotgun metagenomic sequencing of sediments from the US Pacific (Washington) and northern Atlantic margins where ANME-SRB are present. A successful Illumina MiSeq sequencing run yielded 106,257 bacterial and 857,834 archaeal 16S rRNA gene sequences from 12 communities from the Washington Margin using both universal prokaryotic and archaeal-specific primer sets. Fluorescent microscopy confirmed the presence of cells of the ANME-2c lineage in the sequenced communities. Microbial community characterization was coupled with measurements of sediment physical and geochemical properties and, for samples from the US Atlantic margin, 14C-based measurements of AOM rates and 35S-based measurements of sulfate reduction rates. These findings have the potential to increase understanding of ANME-SRB, their surrounding microbial communities, and their role in carbon cycling within continental margins. In addition, they pave the way for future efforts at developing a metabolic model of ANME-SRB and coupling it to geochemical models of the US Washington and Atlantic margins.
The SAMPEX Data Center and User Interface for the Heliophysics Community
NASA Astrophysics Data System (ADS)
Davis, A. J.; Kanekal, S. G.; Looper, M. D.; Mazur, J. E.
2012-12-01
The Solar, Anomalous, Magnetospheric Particle Explorer (SAMPEX) was the first of NASA's Small Explorer (SMEX) series. SAMPEX was launched July 3, 1992 into a 520 by 670 km orbit at 82 degrees inclination. SAMPEX carries four instruments designed to study energetic particles of solar, interplanetary, and magnetospheric origin, as well as "anomalous" and galactic cosmic rays. As an outcome of the Senior Review process, the NASA SAMPEX science mission ended on June 30, 2004, leaving a 12-year continuous record of observations. (The spacecraft and instruments are still operating and returning science data under a partnership between NASA and the Aerospace Corporation). SAMPEX was launched before the development of the WWW and implementation of NASA's open data policy. This, and the complexity of the data analysis have made it difficult for the general community to make full use of the SAMPEX science data set. The SAMPEX Data Center remedies the situation. The data center set-up and operation was funded for 3 years by NASA, and it remains in operation. The goals of the data center are to enable community access to the full SAMPEX data set by developing an up-to-date, flexible web-based system, and to provide for the eventual permanent archiving of this version of the SAMPEX data set at the NSSDC. Knowledgeable members of the SAMPEX science team have prepared the data, and members of the ACE Science Center at Caltech are involved in maintaining the data distribution pipeline and user interface. The system is modeled in part on the ACE Science Center, but enhanced to accommodate the more-complex SAMPEX data set. We will describe the current status of the SAMPEX Data Center, the user interface, and the contents of the data that are available.
The SAMPEX Data Center and User Interface for the SEC Community
NASA Astrophysics Data System (ADS)
Davis, A. J.; Mason, G. M.; Walpole, P.; von Rosenvinge, T. T.; Looper, M. D.; Blake, J. B.; Mazur, J. E.; Stone, E. C.; Leske, R. A.; Labrador, A. W.; Mewaldt, R. A.; Kanekal, S. G.; Baker, D. N.; Li, X.; Klecker, B.
2005-05-01
The Solar, Anomalous, Magnetospheric Particle Explorer (SAMPEX) was the first of NASA's Small Explorer (SMEX) series. SAMPEX was launched July 3, 1992 into a 520 by 670 km orbit at 82 degrees inclination. SAMPEX carries four instruments designed to study energetic particles of solar, interplanetary, and magnetospheric origin, as well as "anomalous" and galactic cosmic rays. As an outcome of the Senior Review process, the NASA SAMPEX science mission ended on June 30, 2004, leaving a 12-year continuous record of observations. (The spacecraft and instruments are still operating and returning science data for a 1-year trial period under a partnership between NASA and the Aerospace Corporation). SAMPEX was launched before the development of the WWW and implementation of NASA's open data policy. This, and the complexity of the data analysis have made it difficult for the general community to make full use of the SAMPEX science data set. The SAMPEX Data Center will remedy the situation. The data center set-up and operation is funded for 3 years by NASA. The goals of the data center are to enable community access to the full SAMPEX data set by developing an up-to-date, flexible web-based system, and to provide for the eventual permanent archiving of this version of the SAMPEX data set at the NSSDC. Knowledgeable members of the SAMPEX science team are preparing the data, and members of the ACE Science Center at Caltech are involved in developing the data distribution pipeline and user interface. The system is modeled in part on the ACE Science Center, but enhanced to accommodate the more-complex SAMPEX data set. We will describe the current status of the SAMPEX Data Center development, the user interface, and the contents of the data that will be made available.
The Next Information Revolution in Astronomy
NASA Astrophysics Data System (ADS)
Kennicutt, R. C.
2006-08-01
The information revolution has truly revolutionized our profession, through such innovations as the astronomical data centres, electronic journals and preprint servers, and bibliographic interfaces that link these resources through instantaneous and freely available web interfaces. For most of us the effects of these innovations have been profound, changing forever the way we access the research literature, disseminate results to our colleagues, and even in the ways we carry out our research and write papers. Astronomy's efforts in this area have attracted the attention and admiration of other scientific professions as well as the information technology community. We now stand at the threshold of a second revolution, in which enormous and rich collections of astronomical observations, models, software, and tools will be accessible through a common Virtual Observatory interface. The next logical step beyond that is an integration of these VO resources with the web of astronomical literature, to provide mechanisms for quality certification of those resources, and to provide a seamless mechanism by which authors can make the results of their research available to other scientists in their most useful form. If this is done successfully its impacts on the way we conduct and disseminate our research may be as profound as those of the past decade. However this success will require cooperative approaches to information archiving and publication involving the data centres, journals, and library communities, and which incorporate or at least emulate the features of curation, provenance, quality assurance, and intellectual property protections that underlie the traditional publishing system. This talk will highlight some of the efforts being made in the VO and journal communities to make this vision a reality, and identify some of the key challenges that remain.
The European ALMA Regional Centre: a model of user support
NASA Astrophysics Data System (ADS)
Andreani, P.; Stoehr, F.; Zwaan, M.; Hatziminaoglou, E.; Biggs, A.; Diaz-Trigo, M.; Humphreys, E.; Petry, D.; Randall, S.; Stanke, T.; van Kampen, E.; Bárta, M.; Brand, J.; Gueth, F.; Hogerheijde, M.; Bertoldi, F.; Muxlow, T.; Richards, A.; Vlemmings, W.
2014-08-01
The ALMA Regional Centres (ARCs) form the interface between the ALMA observatory and the user community from the proposal preparation stage to the delivery of data and their subsequent analysis. The ARCs provide critical services to both the ALMA operations in Chile and to the user community. These services were split by the ALMA project into core and additional services. The core services are financed by the ALMA operations budget and are critical to the successful operation of ALMA. They are contractual obligations and must be delivered to the ALMA project. The additional services are not funded by the ALMA project and are not contractual obligations, but are critical to achieve ALMA full scientific potential. A distributed network of ARC nodes (with ESO being the central ARC) has been set up throughout Europe at the following seven locations: Bologna, Bonn-Cologne, Grenoble, Leiden, Manchester, Ondrejov, Onsala. These ARC nodes are working together with the central node at ESO and provide both core and additional services to the ALMA user community. This paper presents the European ARC, and how it operates in Europe to support the ALMA community. This model, although complex in nature, is turning into a very successful one, providing a service to the scientific community that has been so far highly appreciated. The ARC could become a reference support model in an age where very large collaborations are required to build large facilities, and support is needed for geographically and culturally diverse communities.
Managing for fire in the interface: Challenges and opportunities
Alan J. Long; Dale D. Wade; Feank C. Beall
2004-01-01
Fire managers define the wildland-urban interface as all areas were flammable wildland fuels are adjacent to homes and communities. With this definition, the wild-land-urban interface may encompass a much broader landscape than traditionally perceived. For example, the Tunnel Fire in the Oakland hills in 1991 included a large area that, for practical purposes, could be...
The wildland-urban interface raster dataset of Catalonia.
Alcasena, Fermín J; Evers, Cody R; Vega-Garcia, Cristina
2018-04-01
We provide the wildland urban interface (WUI) map of the autonomous community of Catalonia (Northeastern Spain). The map encompasses an area of some 3.21 million ha and is presented as a 150-m resolution raster dataset. Individual housing location, structure density and vegetation cover data were used to spatially assess in detail the interface, intermix and dispersed rural WUI communities with a geographical information system. Most WUI areas concentrate in the coastal belt where suburban sprawl has occurred nearby or within unmanaged forests. This geospatial information data provides an approximation of residential housing potential for loss given a wildfire, and represents a valuable contribution to assist landscape and urban planning in the region.
Evaluation of simulated ocean carbon in the CMIP5 earth system models
NASA Astrophysics Data System (ADS)
Orr, James; Brockmann, Patrick; Seferian, Roland; Servonnat, Jérôme; Bopp, Laurent
2013-04-01
We maintain a centralized model output archive containing output from the previous generation of Earth System Models (ESMs), 7 models used in the IPCC AR4 assessment. Output is in a common format located on a centralized server and is publicly available through a web interface. Through the same interface, LSCE/IPSL has also made available output from the Coupled Model Intercomparison Project (CMIP5), the foundation for the ongoing IPCC AR5 assessment. The latter includes ocean biogeochemical fields from more than 13 ESMs. Modeling partners across 3 EU projects refer to the combined AR4-AR5 archive and comparison as OCMIP5, building on previous phases of OCMIP (Ocean Carbon Cycle Intercomparison Project) and making a clear link to IPCC AR5 (CMIP5). While now focusing on assessing the latest generation of results (AR5, CMIP5), this effort is also able to put them in context (AR4). For model comparison and evaluation, we have also stored computed derived variables (e.g., those needed to assess ocean acidification) and key fields regridded to a common 1°x1° grid, thus complementing the standard CMIP5 archive. The combined AR4-AR5 output (OCMIP5) has been used to compute standard quantitative metrics, both global and regional, and those have been synthesized with summary diagrams. In addition, for key biogeochemical fields we have deconvolved spatiotemporal components of the mean square error in order to constrain which models go wrong where. Here we will detail results from these evaluations which have exploited gridded climatological data. The archive, interface, and centralized evaluation provide a solid technical foundation, upon which collaboration and communication is being broadened in the ocean biogeochemical modeling community. Ultimately we aim to encourage wider use of the OCMIP5 archive.
NASA Astrophysics Data System (ADS)
Zheng, Y.; Ganushkina, N. Y.; Guild, T. B.; Jiggens, P.; Jun, I.; Mazur, J. E.; Meier, M. M.; Minow, J. I.; Pitchford, D. A.; O'Brien, T. P., III; Shprits, Y.; Tobiska, W. K.; Xapsos, M.; Rastaetter, L.; Jordanova, V. K.; Kellerman, A. C.; Fok, M. C. H.
2017-12-01
The Community Coordinated Modeling Center (CCMC) has been leading the community-wide model validation projects for many years. Such effort has been broadened and extended via the newly-launched International Forum for Space Weather Modeling Capabilities Assessment (https://ccmc.gsfc.nasa.gov/assessment/), Its objective is to track space weather models' progress and performance over time, which is critically needed in space weather operations. The Radiation and Plasma Effects Working Team is working on one of the many focused evaluation topics and deals with five different subtopics: Surface Charging from 10s eV to 40 keV electrons, Internal Charging due to energetic electrons from hundreds keV to several MeVs. Single Event Effects from solar energetic particles (SEPs) and galactic cosmic rays (GCRs) (several MeV to TeVs), Total Dose due to accumulation of doses from electrons (>100 KeV) and protons (> 1 MeV) in a broad energy range, and Radiation Effects from SEPs and GCRs at aviation altitudes. A unique aspect of the Radiation and Plasma Effects focus area is that it bridges the space environments, engineering and user community. This presentation will summarize the working team's progress in metrics discussion/definition and the CCMC web interface/tools to facilitate the validation efforts. As an example, tools in the areas of surface charging/internal charging will be demoed.
Smith, E R; Parker, D M
2010-12-01
Corridor disease, transmitted by the brown ear tick (Rhipicephalus appendiculatus), is one of Africa's most pathogenic tick-borne diseases for cattle. With a focus on this species, we investigated the community parameters (richness, diversity and abundance) of ticks in the Eastern Cape, South Africa, and how this may be linked to the increasing wildlife/cattle interface in the region. There were significantly more ticks of a greater diversity and richness at sites positioned at the wildlife/cattle interface ('treatment sites') compared to sites where wildlife was absent (controls). Significantly, R. appendiculatus was only found at the treatment sites. Therefore, it is believed that the wildlife/cattle interface may be playing a crucial role in increasing the occurrence, abundance and distribution of R. appendiculatus in the Eastern Cape. The implications of a Corridor disease outbreak in the region are discussed.
How risk management can prevent future wildfire disasters in the wildland-urban interface
Calkin, David E.; Cohen, Jack D.; Finney, Mark A.; Thompson, Matthew P.
2014-01-01
Recent fire seasons in the western United States are some of the most damaging and costly on record. Wildfires in the wildland-urban interface on the Colorado Front Range, resulting in thousands of homes burned and civilian fatalities, although devastating, are not without historical reference. These fires are consistent with the characteristics of large, damaging, interface fires that threaten communities across much of the western United States. Wildfires are inevitable, but the destruction of homes, ecosystems, and lives is not. We propose the principles of risk analysis to provide land management agencies, first responders, and affected communities who face the inevitability of wildfires the ability to reduce the potential for loss. Overcoming perceptions of wildland-urban interface fire disasters as a wildfire control problem rather than a home ignition problem, determined by home ignition conditions, will reduce home loss. PMID:24344292
Yakimov, Michail M; La Cono, Violetta; Denaro, Renata; D'Auria, Giuseppe; Decembrini, Franco; Timmis, Kenneth N; Golyshin, Peter N; Giuliano, Laura
2007-12-01
Meso- and bathypelagic ecosystems represent the most common marine ecological niche on Earth and contain complex communities of microorganisms that are for the most part ecophysiologically poorly characterized. Gradients of physico-chemical factors (for example, depth-related gradients of light, temperature, salinity, nutrients and pressure) constitute major forces shaping ecosystems at activity 'hot spots' on the ocean floor, such as hydrothermal vents, cold seepages and mud volcanoes and hypersaline lakes, though the relationships between community composition, activities and environmental parameters remain largely elusive. We report here results of a detailed study of primary producing microbial communities in the deep Eastern Mediterranean Sea. The brine column of the deep anoxic hypersaline brine lake, L'Atalante, the overlying water column and the brine-seawater interface, were characterized physico- and geochemically, and microbiologically, in terms of their microbial community compositions, functional gene distributions and [(14)C]bicarbonate assimilation activities. The depth distribution of genes encoding the crenarchaeal ammonia monooxygenase alpha subunit (amoA), and the bacterial ribulose-1,5-biphosphate carboxylase/oxygenase large subunit (RuBisCO), was found to coincide with two different types of chemoautotrophy. Meso- and bathypelagic microbial communities were enriched in ammonia-oxidizing Crenarchaeota, whereas the autotrophic community at the oxic/anoxic interface of L'Atalante lake was dominated by Epsilonproteobacteria and sulfur-oxidizing Gammaproteobacteria. These autotrophic microbes are thus the basis of the food webs populating these deep-sea ecosystems.
The climate4impact portal: bridging CMIP5 data to impact users
NASA Astrophysics Data System (ADS)
Som de Cerff, Wim; Plieger, Maarten; Page, Christian; Hutjes, Ronald; de Jong, Fokke; Barring, Lars; Sjökvist, Elin
2013-04-01
Together with seven other partners (CERFACS, CNRS-IPSL, SMHI, INHGA, CMCC, WUR, MF-CNRM), KNMI is involved in the FP7 project IS-ENES (http://is.enes.org), which supports the European climate modeling infrastructure, in the work package 'Bridging Climate Research Data and the Needs of the Impact Community'. The aim of this work package is to enhance the use of climate model data and to enhance the interaction with climate effect/impact communities. The portal is based on 17 impact use cases from 5 different European countries, and is evaluated by a user panel consisting of use case owners. As the climate impact community is very broad, the focus is mainly on the scientific impact community. This work has resulted in a prototype portal, the ENES portal interface for climate impact communities, that can be visited at www.climate4impact.eu. The portal is connected to all Earth System Grid Federation (ESGF) nodes containing global climate model data (GCM data) from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) and later from the Coordinated Regional Climate Downscaling Experiment (CORDEX). This global network of all major climate model data centers offers services for data description, discovery and download. The climate4impact portal connects to these services and offers a user interface for searching, visualizing and downloading global climate model data and more. A challenging task was to describe the available model data and how it can be used. The portal tries to inform users about possible caveats when using model data. All impact use cases are described in the documentation section, using highlighted keywords pointing to detailed information in the glossary. The current portal is a Prototype. It is built to explore state-of-art technologies to provide improved access to climate model data. The prototype will be evaluated and is the basis for development of an operational service. The portal and services provided will be sustained and supported during the development of these operational services (2013-2016) in the second phase of the FP7 IS-ENES project, ISENES2. In this presentation the architecture and following items will be detailed: • Security: Login using OpenID for access to the ESGF data nodes. The ESGF works in conjunction with several external websites and systems. The portal provides access to several distributed archives, most importantly the ESGF nodes. Single Sign-on (SSO) is used to let these websites and systems work together. • Discovery: Intelligent search based on e.g. variable name, model, institute. A catalog browser allows for browsing through CMIP5 and other climate model data catalogues (e.g. ESSENCE, EOBS, UNIDATA). • Download: Directly from ESGF nodes and other THREDDS catalogs • Visualization: Visualize any data directly on a map (ADAGUC Map services). • Transformation: Transform your data into other formats, perform basic calculations and extractions
NASA Astrophysics Data System (ADS)
Kohler, M. D.; Castillo, J.; Massari, A.; Clayton, R. W.
2017-12-01
Earthquake-induced motions recorded by spatially dense seismic arrays in buildings located in the northern Los Angeles basin suggest the presence of complex, amplified surface wave effects on the seismic demand of mid-rise buildings. Several moderate earthquakes produced large-amplitude, seismic energy with slow shear-wave velocities that cannot be explained or accurately modeled by any published 3D seismic velocity models or by Vs30 values. Numerical experiments are conducted to determine if sedimentary basin features are responsible for these rarely modeled and poorly documented contributions to seismic demand computations. This is accomplished through a physics-based wave propagation examination of the effects of different sedimentary basin geometries on the nonlinear response of a mid-rise structural model based on an existing, instrumented building. Using two-dimensional finite-difference predictive modeling, we show that when an earthquake focal depth is near the vertical edge of an elongated and relatively shallow sedimentary basin, dramatically amplified and complex surface waves are generated as a result of the waveguide effect introduced by this velocity structure. In addition, for certain source-receiver distances and basin geometries, body waves convert to secondary Rayleigh waves that propagate both at the free-surface interface and along the depth interface of the basin that show up as multiple large-amplitude arrivals. This study is motivated by observations from the spatially dense, high-sample-rate acceleration data recorded by the Community Seismic Network, a community-hosted strong-motion network, currently consisting of hundreds of sensors located in the southern California area. The results provide quantitative insight into the causative relationship between a sedimentary basin shape and the generation of Rayleigh waves at depth, surface waves at the free surface, scattered seismic energy, and the sensitivity of building responses to each of these.
NASA Technical Reports Server (NTRS)
Long, M. S.; Yantosca, R.; Nielsen, J. E; Keller, C. A.; Da Silva, A.; Sulprizio, M. P.; Pawson, S.; Jacob, D. J.
2015-01-01
The GEOS-Chem global chemical transport model (CTM), used by a large atmospheric chemistry research community, has been re-engineered to also serve as an atmospheric chemistry module for Earth system models (ESMs). This was done using an Earth System Modeling Framework (ESMF) interface that operates independently of the GEOSChem scientific code, permitting the exact same GEOSChem code to be used as an ESM module or as a standalone CTM. In this manner, the continual stream of updates contributed by the CTM user community is automatically passed on to the ESM module, which remains state of science and referenced to the latest version of the standard GEOS-Chem CTM. A major step in this re-engineering was to make GEOS-Chem grid independent, i.e., capable of using any geophysical grid specified at run time. GEOS-Chem data sockets were also created for communication between modules and with external ESM code. The grid-independent, ESMF-compatible GEOS-Chem is now the standard version of the GEOS-Chem CTM. It has been implemented as an atmospheric chemistry module into the NASA GEOS- 5 ESM. The coupled GEOS-5-GEOS-Chem system was tested for scalability and performance with a tropospheric oxidant-aerosol simulation (120 coupled species, 66 transported tracers) using 48-240 cores and message-passing interface (MPI) distributed-memory parallelization. Numerical experiments demonstrate that the GEOS-Chem chemistry module scales efficiently for the number of cores tested, with no degradation as the number of cores increases. Although inclusion of atmospheric chemistry in ESMs is computationally expensive, the excellent scalability of the chemistry module means that the relative cost goes down with increasing number of cores in a massively parallel environment.
Interface through Cooperative Agreements: Eleven Examples of How It Can Work.
ERIC Educational Resources Information Center
Jellison, Holly M., Ed.
Designed as a resource for community colleges wishing to initiate a cooperative agreement with a local agency to offer community education programs, this publication offers 11 representative examples of such agreements. After explaining that the Center for Community Education collected the agreements as part of a 1981 study of community education…
Agent-based Modeling with MATSim for Hazards Evacuation Planning
NASA Astrophysics Data System (ADS)
Jones, J. M.; Ng, P.; Henry, K.; Peters, J.; Wood, N. J.
2015-12-01
Hazard evacuation planning requires robust modeling tools and techniques, such as least cost distance or agent-based modeling, to gain an understanding of a community's potential to reach safety before event (e.g. tsunami) arrival. Least cost distance modeling provides a static view of the evacuation landscape with an estimate of travel times to safety from each location in the hazard space. With this information, practitioners can assess a community's overall ability for timely evacuation. More information may be needed if evacuee congestion creates bottlenecks in the flow patterns. Dynamic movement patterns are best explored with agent-based models that simulate movement of and interaction between individual agents as evacuees through the hazard space, reacting to potential congestion areas along the evacuation route. The multi-agent transport simulation model MATSim is an agent-based modeling framework that can be applied to hazard evacuation planning. Developed jointly by universities in Switzerland and Germany, MATSim is open-source software written in Java and freely available for modification or enhancement. We successfully used MATSim to illustrate tsunami evacuation challenges in two island communities in California, USA, that are impacted by limited escape routes. However, working with MATSim's data preparation, simulation, and visualization modules in an integrated development environment requires a significant investment of time to develop the software expertise to link the modules and run a simulation. To facilitate our evacuation research, we packaged the MATSim modules into a single application tailored to the needs of the hazards community. By exposing the modeling parameters of interest to researchers in an intuitive user interface and hiding the software complexities, we bring agent-based modeling closer to practitioners and provide access to the powerful visual and analytic information that this modeling can provide.
Benchmarking on Tsunami Currents with ComMIT
NASA Astrophysics Data System (ADS)
Sharghi vand, N.; Kanoglu, U.
2015-12-01
There were no standards for the validation and verification of tsunami numerical models before 2004 Indian Ocean tsunami. Even, number of numerical models has been used for inundation mapping effort, evaluation of critical structures, etc. without validation and verification. After 2004, NOAA Center for Tsunami Research (NCTR) established standards for the validation and verification of tsunami numerical models (Synolakis et al. 2008 Pure Appl. Geophys. 165, 2197-2228), which will be used evaluation of critical structures such as nuclear power plants against tsunami attack. NCTR presented analytical, experimental and field benchmark problems aimed to estimate maximum runup and accepted widely by the community. Recently, benchmark problems were suggested by the US National Tsunami Hazard Mitigation Program Mapping & Modeling Benchmarking Workshop: Tsunami Currents on February 9-10, 2015 at Portland, Oregon, USA (http://nws.weather.gov/nthmp/index.html). These benchmark problems concentrated toward validation and verification of tsunami numerical models on tsunami currents. Three of the benchmark problems were: current measurement of the Japan 2011 tsunami in Hilo Harbor, Hawaii, USA and in Tauranga Harbor, New Zealand, and single long-period wave propagating onto a small-scale experimental model of the town of Seaside, Oregon, USA. These benchmark problems were implemented in the Community Modeling Interface for Tsunamis (ComMIT) (Titov et al. 2011 Pure Appl. Geophys. 168, 2121-2131), which is a user-friendly interface to the validated and verified Method of Splitting Tsunami (MOST) (Titov and Synolakis 1995 J. Waterw. Port Coastal Ocean Eng. 121, 308-316) model and is developed by NCTR. The modeling results are compared with the required benchmark data, providing good agreements and results are discussed. Acknowledgment: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 603839 (Project ASTARTE - Assessment, Strategy and Risk Reduction for Tsunamis in Europe)
Community managed services for persons with intellectual disability: Andhra Pradesh experience.
Narayan, Jayanthi; Pratapkumar, Raja; Reddy, Sudhakara P
2017-09-01
In resource poor settings innovative and bottom-up approaches are required to provide services to people with with disabilities. In this context, the present paper explains a community-based model of manpower development and coordination of services for people with intellectual disabilities in unified state of Andhra Pradesh in India. Women with disabilities from the village were identified, and those willing to be trained to work as community resource persons (CRPs) were selected and given hands-on training in a phased manner. A total of 130 women were trained in five groups of 25-30 per group and were deployed in the community to screen, identify and refer children with intellectual disabilities. The training content included basic stimulation and interface with functionaries of other government departments of health, education and welfare to ensure comprehensive service delivery. Neighbourhood centres (NHCs) were established where the CRPs could meet with families collectively. The results indicated that the CRPs were welcomed by the families. The NHCs established primarily as recreation centres, promoted inclusion and functioned as information dissemination centre. The services provided by the CRPs were owned and monitored by the Women's self-help group and the disability groups thus ensuring sustainability of the model.
Recent developments in the CCP-EM software suite.
Burnley, Tom; Palmer, Colin M; Winn, Martyn
2017-06-01
As part of its remit to provide computational support to the cryo-EM community, the Collaborative Computational Project for Electron cryo-Microscopy (CCP-EM) has produced a software framework which enables easy access to a range of programs and utilities. The resulting software suite incorporates contributions from different collaborators by encapsulating them in Python task wrappers, which are then made accessible via a user-friendly graphical user interface as well as a command-line interface suitable for scripting. The framework includes tools for project and data management. An overview of the design of the framework is given, together with a survey of the functionality at different levels. The current CCP-EM suite has particular strength in the building and refinement of atomic models into cryo-EM reconstructions, which is described in detail.
Recent developments in the CCP-EM software suite
Burnley, Tom
2017-01-01
As part of its remit to provide computational support to the cryo-EM community, the Collaborative Computational Project for Electron cryo-Microscopy (CCP-EM) has produced a software framework which enables easy access to a range of programs and utilities. The resulting software suite incorporates contributions from different collaborators by encapsulating them in Python task wrappers, which are then made accessible via a user-friendly graphical user interface as well as a command-line interface suitable for scripting. The framework includes tools for project and data management. An overview of the design of the framework is given, together with a survey of the functionality at different levels. The current CCP-EM suite has particular strength in the building and refinement of atomic models into cryo-EM reconstructions, which is described in detail. PMID:28580908
Deep sub-seafloor prokaryotes stimulated at interfaces over geological time.
Parkes, R John; Webster, Gordon; Cragg, Barry A; Weightman, Andrew J; Newberry, Carole J; Ferdelman, Timothy G; Kallmeyer, Jens; Jørgensen, Bo B; Aiello, Ivano W; Fry, John C
2005-07-21
The sub-seafloor biosphere is the largest prokaryotic habitat on Earth but also a habitat with the lowest metabolic rates. Modelled activity rates are very low, indicating that most prokaryotes may be inactive or have extraordinarily slow metabolism. Here we present results from two Pacific Ocean sites, margin and open ocean, both of which have deep, subsurface stimulation of prokaryotic processes associated with geochemical and/or sedimentary interfaces. At 90 m depth in the margin site, stimulation was such that prokaryote numbers were higher (about 13-fold) and activity rates higher than or similar to near-surface values. Analysis of high-molecular-mass DNA confirmed the presence of viable prokaryotes and showed changes in biodiversity with depth that were coupled to geochemistry, including a marked community change at the 90-m interface. At the open ocean site, increases in numbers of prokaryotes at depth were more restricted but also corresponded to increased activity; however, this time they were associated with repeating layers of diatom-rich sediments (about 9 Myr old). These results show that deep sedimentary prokaryotes can have high activity, have changing diversity associated with interfaces and are active over geological timescales.
NASA Astrophysics Data System (ADS)
Suleimani, E.; Nicolsky, D.; Freymueller, J. T.; Koehler, R.
2013-12-01
The Alaska Earthquake Information Center conducts tsunami inundation mapping for coastal communities in Alaska along several segments of the Aleutian Megathrust, each having a unique seismic history and tsunami generation potential. Accurate identification and characterization of potential tsunami sources is a critical component of our project. As demonstrated by the 2011 Tohoku-oki tsunami, correct estimation of the maximum size event for a given segment of the subduction zone is particularly important. In that event, unexpectedly large slip occurred approximately updip of the epicenter of the main shock, based on seafloor GPS and seafloor pressure gage observations, generating a much larger tsunami than anticipated. This emphasizes the importance of the detailed knowledge of the region-specific subduction processes, and using the most up-to-date geophysical data and research models that define the magnitude range of possible future tsunami events. Our study area extends from the eastern half of the 1957 rupture zone to Kodiak Island, covering the 1946 and 1938 rupture areas, the Shumagin gap, and the western part of the 1964 rupture area. We propose a strategy for generating worst-case credible tsunami scenarios for locations that have a short or nonexistent paleoseismic/paleotsunami record, and in some cases lack modern seismic and GPS data. The potential tsunami scenarios are built based on a discretized plate interface model fit to the Slab 1.0 model geometry. We employ estimates of slip deficit along the Aleutian Megathrust from GPS campaign surveys, the Slab 1.0 interface surface, empirical magnitude-slip relationships, and a numerical code that distributes slip among the subfault elements, calculates coseismic deformations and solves the shallow water equations of tsunami propagation and runup. We define hypothetical asperities along the megathrust and in down-dip direction, and perform a set of sensitivity model runs to identify coseismic deformation patterns resulting in highest runup at a given community. Because of the extra fine discretization of the interface, we can prescribe variable slip patterns, using simple parameters to describe slip variations in the along-strike and down-dip directions. Since it was demonstrated by studies of the 1964 tsunami that changes in slip distribution result in significant variations in the local tsunami wave field, we expect that the near-field tsunami runup in target communities will be highly sensitive to variability of slip along the rupture area. We perform simulations for each source scenario using AEIC's numerical model of tsunami propagation and runup, which is validated through a set of analytical benchmarks and tested against laboratory and field data. Results of numerical modeling combined with historical observations are compiled on inundation maps and used for site-specific tsunami hazard assessment by local emergency planners.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ehleringer, James; Randerson, James; Lai, Chun-Ta
The objective of the proposed research was to collect data and develop models to improve our understanding of the role of drought and fire impacts on the terrestrial carbon cycle in the western US, including impacts associated with urban systems as they impacted regional carbon cycles. Using data we collected and a synthesis of other measurements, we developed new ways (a) to evaluate the representation of drought stress and fire emissions in the Community Land Model, (b) to model net ecosystem exchange combining ground level atmospheric observations with boundary layer theory, (c) to model upstream impacts of fire and fossilmore » fuel emissions on atmospheric carbon dioxide observations, and (d) to model carbon dioxide observations within urban systems and at the urban-wildland interfaces of forest ecosystems.« less
The IS-ENES climate4impact portal: bridging the CMIP5 and CORDEX data to impact users
NASA Astrophysics Data System (ADS)
Som de Cerff, Wim; Plieger, Maarten; Page, Christian; Tatarinova, Natalia; Hutjes, Ronald; de Jong, Fokke; Bärring, Lars; Sjökvist, Elin; Vega Saldarriaga, Manuel; Santiago Cofiño Gonzalez, Antonio
2015-04-01
The aim of climate4impact (climate4impact.eu) is to enhance the use of Climate Research Data and to enhance the interaction with climate effect/impact communities. The portal is based on 17 impact use cases from 5 different European countries, and is evaluated by a user panel consisting of use case owners. It has been developed within the IS-ENES European project and is currently operated and further developed in the IS ENES2 project. As the climate impact community is very broad, the focus is mainly on the scientific impact community. Climate4impact is connected to the Earth System Grid Federation (ESGF) nodes containing global climate model data (GCM data) from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) and regional climate model data (RCM) data from the Coordinated Regional Climate Downscaling Experiment (CORDEX). This global network of climate model data centers offers services for data description, discovery and download. The climate4impact portal connects to these services using OpenID, and offers a user interface for searching, visualizing and downloading global climate model data and more. A challenging task is to describe the available model data and how it can be used. The portal informs users about possible caveats when using climate model data. All impact use cases are described in the documentation section, using highlighted keywords pointing to detailed information in the glossary. Climate4impact currently has two main objectives. The first one is to work on a web interface which automatically generates a graphical user interface on WPS endpoints. The WPS calculates climate indices and subset data using OpenClimateGIS/icclim on data stored in ESGF data nodes. Data is then transmitted from ESGF nodes over secured OpenDAP and becomes available in a new, per user, secured OpenDAP server. The results can then be visualized again using ADAGUC WMS. Dedicated wizards for processing of climate indices will be developed in close collaboration with users. The second one is to expose climate4impact services, so as to offer standardized services which can be used by other portals (like the future Copernicus platform, developed in the EU FP7 CLIPC project). This has the advantage to add interoperability between several portals, as well as to enable the design of specific portals aimed at different impact communities, either thematic or national. In the presentation the following subjects will be detailed: - Lessons learned developing climate4impact.eu - Download: Directly from ESGF nodes and other THREDDS catalogs - Connection with the downscaling portal of the university of Cantabria - Experiences on the question and answer site via Askbot - Visualization: Visualize data from ESGF data nodes using ADAGUC Web Map Services. - Processing: Transform data, subset, export into other formats, and perform climate indices calculations using Web Processing Services implemented by PyWPS, based on NCAR NCPP OpenClimateGIS and IS-ENES2 icclim. - Security: Login using OpenID for access to the ESGF data nodes. The ESGF works in conjunction with several external websites and systems. The climate4impact portal uses X509 based short lived credentials, generated on behalf of the user with a MyProxy service. Single Sign-on (SSO) is used to make these websites and systems work together. - Discovery: Facetted search based on e.g. variable name, model and institute using the ESGF search services. A catalog browser allows for browsing through CMIP5 and any other climate model data catalogues (e.g. ESSENCE, EOBS, UNIDATA).
Velankar, Sameer; Kryshtafovych, Andriy; Huang, Shen‐You; Schneidman‐Duhovny, Dina; Sali, Andrej; Segura, Joan; Fernandez‐Fuentes, Narcis; Viswanath, Shruthi; Elber, Ron; Grudinin, Sergei; Popov, Petr; Neveu, Emilie; Lee, Hasup; Baek, Minkyung; Park, Sangwoo; Heo, Lim; Rie Lee, Gyu; Seok, Chaok; Qin, Sanbo; Zhou, Huan‐Xiang; Ritchie, David W.; Maigret, Bernard; Devignes, Marie‐Dominique; Ghoorah, Anisah; Torchala, Mieczyslaw; Chaleil, Raphaël A.G.; Bates, Paul A.; Ben‐Zeev, Efrat; Eisenstein, Miriam; Negi, Surendra S.; Weng, Zhiping; Vreven, Thom; Pierce, Brian G.; Borrman, Tyler M.; Yu, Jinchao; Ochsenbein, Françoise; Guerois, Raphaël; Vangone, Anna; Rodrigues, João P.G.L.M.; van Zundert, Gydo; Nellen, Mehdi; Xue, Li; Karaca, Ezgi; Melquiond, Adrien S.J.; Visscher, Koen; Kastritis, Panagiotis L.; Bonvin, Alexandre M.J.J.; Xu, Xianjin; Qiu, Liming; Yan, Chengfei; Li, Jilong; Ma, Zhiwei; Cheng, Jianlin; Zou, Xiaoqin; Shen, Yang; Peterson, Lenna X.; Kim, Hyung‐Rae; Roy, Amit; Han, Xusi; Esquivel‐Rodriguez, Juan; Kihara, Daisuke; Yu, Xiaofeng; Bruce, Neil J.; Fuller, Jonathan C.; Wade, Rebecca C.; Anishchenko, Ivan; Kundrotas, Petras J.; Vakser, Ilya A.; Imai, Kenichiro; Yamada, Kazunori; Oda, Toshiyuki; Nakamura, Tsukasa; Tomii, Kentaro; Pallara, Chiara; Romero‐Durana, Miguel; Jiménez‐García, Brian; Moal, Iain H.; Férnandez‐Recio, Juan; Joung, Jong Young; Kim, Jong Yun; Joo, Keehyoung; Lee, Jooyoung; Kozakov, Dima; Vajda, Sandor; Mottarella, Scott; Hall, David R.; Beglov, Dmitri; Mamonov, Artem; Xia, Bing; Bohnuud, Tanggis; Del Carpio, Carlos A.; Ichiishi, Eichiro; Marze, Nicholas; Kuroda, Daisuke; Roy Burman, Shourya S.; Gray, Jeffrey J.; Chermak, Edrisse; Cavallo, Luigi; Oliva, Romina; Tovchigrechko, Andrey
2016-01-01
ABSTRACT We present the results for CAPRI Round 30, the first joint CASP‐CAPRI experiment, which brought together experts from the protein structure prediction and protein–protein docking communities. The Round comprised 25 targets from amongst those submitted for the CASP11 prediction experiment of 2014. The targets included mostly homodimers, a few homotetramers, and two heterodimers, and comprised protein chains that could readily be modeled using templates from the Protein Data Bank. On average 24 CAPRI groups and 7 CASP groups submitted docking predictions for each target, and 12 CAPRI groups per target participated in the CAPRI scoring experiment. In total more than 9500 models were assessed against the 3D structures of the corresponding target complexes. Results show that the prediction of homodimer assemblies by homology modeling techniques and docking calculations is quite successful for targets featuring large enough subunit interfaces to represent stable associations. Targets with ambiguous or inaccurate oligomeric state assignments, often featuring crystal contact‐sized interfaces, represented a confounding factor. For those, a much poorer prediction performance was achieved, while nonetheless often providing helpful clues on the correct oligomeric state of the protein. The prediction performance was very poor for genuine tetrameric targets, where the inaccuracy of the homology‐built subunit models and the smaller pair‐wise interfaces severely limited the ability to derive the correct assembly mode. Our analysis also shows that docking procedures tend to perform better than standard homology modeling techniques and that highly accurate models of the protein components are not always required to identify their association modes with acceptable accuracy. Proteins 2016; 84(Suppl 1):323–348. © 2016 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc. PMID:27122118
Ontology Design Patterns as Interfaces (invited)
NASA Astrophysics Data System (ADS)
Janowicz, K.
2015-12-01
In recent years ontology design patterns (ODP) have gained popularity among knowledge engineers. ODPs are modular but self-contained building blocks that are reusable and extendible. They minimize the amount of ontological commitments and thereby are easier to integrate than large monolithic ontologies. Typically, patterns are not directly used to annotate data or to model certain domain problems but are combined and extended to form data and purpose-driven local ontologies that serve the needs of specific applications or communities. By relying on a common set of patterns these local ontologies can be aligned to improve interoperability and enable federated queries without enforcing a top-down model of the domain. In previous work, we introduced ontological views as layer on top of ontology design patterns to ease the reuse, combination, and integration of patterns. While the literature distinguishes multiple types of patterns, e.g., content patterns or logical patterns, we propose to use them as interfaces here to guide the development of ontology-driven systems.
OpenSeesPy: Python library for the OpenSees finite element framework
NASA Astrophysics Data System (ADS)
Zhu, Minjie; McKenna, Frank; Scott, Michael H.
2018-01-01
OpenSees, an open source finite element software framework, has been used broadly in the earthquake engineering community for simulating the seismic response of structural and geotechnical systems. The framework allows users to perform finite element analysis with a scripting language and for developers to create both serial and parallel finite element computer applications as interpreters. For the last 15 years, Tcl has been the primary scripting language to which the model building and analysis modules of OpenSees are linked. To provide users with different scripting language options, particularly Python, the OpenSees interpreter interface was refactored to provide multi-interpreter capabilities. This refactoring, resulting in the creation of OpenSeesPy as a Python module, is accomplished through an abstract interface for interpreter calls with concrete implementations for different scripting languages. Through this approach, users are able to develop applications that utilize the unique features of several scripting languages while taking advantage of advanced finite element analysis models and algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-09-01
COMPLEAT takes its name, as an acronym, from Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies. It is an electric utility planning model designed for use principally by publicly owned electric utilities and agencies serving such utilities. As a model, COMPLEAT is significantly more full-featured and complex than called out in APPA's original plan and proposal to DOE. The additional complexity grew out of a series of discussions early in the development schedule, in which it became clear to APPA staff and advisors that the simplicity characterizing the original plan, while highly desirable in terms of utility applications, wasmore » not achievable if practical utility problems were to be addressed. The project teams settled on Energy 20/20, an existing model developed by Dr. George Backus of Policy Assessment Associates, as the best candidate for the kinds of modifications and extensions that would be required. The remainder of the project effort was devoted to designing specific input data files, output files, and user screens and to writing and testing the compute programs that would properly implement the desired features around Energy 20/20 as a core program. This report presents in outline form, the features and user interface of COMPLEAT.« less
PREFACE: Interfacial Nanostructures in Ceramics: a Multiscale Approach
NASA Astrophysics Data System (ADS)
Finnis, Mike; Gautier-Soyer, Martine; Hoffmann, Michael
2008-04-01
This volume contains a selection of invited and contributed papers that were presented in Symposium J at the European Materials Research Society Spring Meeting, 28 May-1 June 2007. Electronic and mechanical properties of interfaces are sensitive to their atomic scale structures, which in turn depend on composition, temperature and indeed the history of environments of the material during its manufacture. The richness of structure and numbers of parameters involved, even for planar interfaces, present enormous challenges to the community of theory and simulation of materials, at all lengthscales from the atomic to the macroscopic. While there is a need for modelling and simulation in order to understand, predict and then design materials, this can only be achieved when researchers at each length scale learn about the strengths and limitations of each others' approaches, and how they can validate their models by exchange of information and analysis of experimental data. To this end the Symposium brought such researchers from the theoretical community together with experimentalists. A volume like this gives a snapshot of progress made, but does not fully capture the value of the Symposium in setting new ideas in motion, or helping to bury old ones. We are grateful to all participants for the lively discussions, to E-MRS for enabling the meeting, and to the European Community INCEMS Project, which has provided funding for this research activity. This volume is dedicated to Rowland Cannon, who was deeply involved in the conception and elaboration of the ideas about Interfacial Nanostructures that are at the heart of the INCEMS project, and whose unexpected death two years ago was a great loss to our community. Finally we acknowledge the support of IOP Publishing for enabling these papers to be made freely available to download from the electronic version of Journal of Physics: Conference Series. Mike Finnis, Martine Gautier-Soyer and Michael Hoffmann Editors
TVB-EduPack—An Interactive Learning and Scripting Platform for The Virtual Brain
Matzke, Henrik; Schirner, Michael; Vollbrecht, Daniel; Rothmeier, Simon; Llarena, Adalberto; Rojas, Raúl; Triebkorn, Paul; Domide, Lia; Mersmann, Jochen; Solodkin, Ana; Jirsa, Viktor K.; McIntosh, Anthony Randal; Ritter, Petra
2015-01-01
The Virtual Brain (TVB; thevirtualbrain.org) is a neuroinformatics platform for full brain network simulation based on individual anatomical connectivity data. The framework addresses clinical and neuroscientific questions by simulating multi-scale neural dynamics that range from local population activity to large-scale brain function and related macroscopic signals like electroencephalography and functional magnetic resonance imaging. TVB is equipped with a graphical and a command-line interface to create models that capture the characteristic biological variability to predict the brain activity of individual subjects. To enable researchers from various backgrounds a quick start into TVB and brain network modeling in general, we developed an educational module: TVB-EduPack. EduPack offers two educational functionalities that seamlessly integrate into TVB's graphical user interface (GUI): (i) interactive tutorials introduce GUI elements, guide through the basic mechanics of software usage and develop complex use-case scenarios; animations, videos and textual descriptions transport essential principles of computational neuroscience and brain modeling; (ii) an automatic script generator records model parameters and produces input files for TVB's Python programming interface; thereby, simulation configurations can be exported as scripts that allow flexible customization of the modeling process and self-defined batch- and post-processing applications while benefitting from the full power of the Python language and its toolboxes. This article covers the implementation of TVB-EduPack and its integration into TVB architecture. Like TVB, EduPack is an open source community project that lives from the participation and contribution of its users. TVB-EduPack can be obtained as part of TVB from thevirtualbrain.org. PMID:26635597
A Lifecycle Approach to Brokered Data Management for Hydrologic Modeling Data Using Open Standards.
NASA Astrophysics Data System (ADS)
Blodgett, D. L.; Booth, N.; Kunicki, T.; Walker, J.
2012-12-01
The U.S. Geological Survey Center for Integrated Data Analytics has formalized an information management-architecture to facilitate hydrologic modeling and subsequent decision support throughout a project's lifecycle. The architecture is based on open standards and open source software to decrease the adoption barrier and to build on existing, community supported software. The components of this system have been developed and evaluated to support data management activities of the interagency Great Lakes Restoration Initiative, Department of Interior's Climate Science Centers and WaterSmart National Water Census. Much of the research and development of this system has been in cooperation with international interoperability experiments conducted within the Open Geospatial Consortium. Community-developed standards and software, implemented to meet the unique requirements of specific disciplines, are used as a system of interoperable, discipline specific, data types and interfaces. This approach has allowed adoption of existing software that satisfies the majority of system requirements. Four major features of the system include: 1) assistance in model parameter and forcing creation from large enterprise data sources; 2) conversion of model results and calibrated parameters to standard formats, making them available via standard web services; 3) tracking a model's processes, inputs, and outputs as a cohesive metadata record, allowing provenance tracking via reference to web services; and 4) generalized decision support tools which rely on a suite of standard data types and interfaces, rather than particular manually curated model-derived datasets. Recent progress made in data and web service standards related to sensor and/or model derived station time series, dynamic web processing, and metadata management are central to this system's function and will be presented briefly along with a functional overview of the applications that make up the system. As the separate pieces of this system progress, they will be combined and generalized to form a sort of social network for nationally consistent hydrologic modeling.
Pyles, Richard B; Vincent, Kathleen L; Baum, Marc M; Elsom, Barry; Miller, Aaron L; Maxwell, Carrie; Eaves-Pyles, Tonyia D; Li, Guangyu; Popov, Vsevolod L; Nusbaum, Rebecca J; Ferguson, Monique R
2014-01-01
There is a pressing need for modeling of the symbiotic and at times dysbiotic relationship established between bacterial microbiomes and human mucosal surfaces. In particular clinical studies have indicated that the complex vaginal microbiome (VMB) contributes to the protection against sexually-transmitted pathogens including the life-threatening human immunodeficiency virus (HIV-1). The human microbiome project has substantially increased our understanding of the complex bacterial communities in the vagina however, as is the case for most microbiomes, very few of the community member species have been successfully cultivated in the laboratory limiting the types of studies that can be completed. A genetically controlled ex vivo model system is critically needed to study the complex interactions and associated molecular dialog. We present the first vaginal mucosal culture model that supports colonization by both healthy and dysbiotic VMB from vaginal swabs collected from routine gynecological patients. The immortalized vaginal epithelial cells used in the model and VMB cryopreservation methods provide the opportunity to reproducibly create replicates for lab-based evaluations of this important mucosal/bacterial community interface. The culture system also contains HIV-1 susceptible cells allowing us to study the impact of representative microbiomes on replication. Our results show that our culture system supports stable and reproducible colonization by VMB representing distinct community state types and that the selected representatives have significantly different effects on the replication of HIV-1. Further, we show the utility of the system to predict unwanted alterations in efficacy or bacterial community profiles following topical application of a front line antiretroviral.
Pyles, Richard B.; Vincent, Kathleen L.; Baum, Marc M.; Elsom, Barry; Miller, Aaron L.; Maxwell, Carrie; Eaves-Pyles, Tonyia D.; Li, Guangyu; Popov, Vsevolod L.; Nusbaum, Rebecca J.; Ferguson, Monique R.
2014-01-01
There is a pressing need for modeling of the symbiotic and at times dysbiotic relationship established between bacterial microbiomes and human mucosal surfaces. In particular clinical studies have indicated that the complex vaginal microbiome (VMB) contributes to the protection against sexually-transmitted pathogens including the life-threatening human immunodeficiency virus (HIV-1). The human microbiome project has substantially increased our understanding of the complex bacterial communities in the vagina however, as is the case for most microbiomes, very few of the community member species have been successfully cultivated in the laboratory limiting the types of studies that can be completed. A genetically controlled ex vivo model system is critically needed to study the complex interactions and associated molecular dialog. We present the first vaginal mucosal culture model that supports colonization by both healthy and dysbiotic VMB from vaginal swabs collected from routine gynecological patients. The immortalized vaginal epithelial cells used in the model and VMB cryopreservation methods provide the opportunity to reproducibly create replicates for lab-based evaluations of this important mucosal/bacterial community interface. The culture system also contains HIV-1 susceptible cells allowing us to study the impact of representative microbiomes on replication. Our results show that our culture system supports stable and reproducible colonization by VMB representing distinct community state types and that the selected representatives have significantly different effects on the replication of HIV-1. Further, we show the utility of the system to predict unwanted alterations in efficacy or bacterial community profiles following topical application of a front line antiretroviral. PMID:24676219
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sayan Ghosh, Jeff Hammond
OpenSHMEM is a community effort to unifyt and standardize the SHMEM programming model. MPI (Message Passing Interface) is a well-known community standard for parallel programming using distributed memory. The most recen t release of MPI, version 3.0, was designed in part to support programming models like SHMEM.OSHMPI is an implementation of the OpenSHMEM standard using MPI-3 for the Linux operating system. It is the first implementation of SHMEM over MPI one-sided communication and has the potential to be widely adopted due to the portability and widely availability of Linux and MPI-3. OSHMPI has been tested on a variety of systemsmore » and implementations of MPI-3, includingInfiniBand clusters using MVAPICH2 and SGI shared-memory supercomputers using MPICH. Current support is limited to Linux but may be extended to Apple OSX if there is sufficient interest. The code is opensource via https://github.com/jeffhammond/oshmpi« less
ERIC Educational Resources Information Center
Cullen, Eileen M.
2010-01-01
The role of land-grant university Extension specialist originates in a community of place, enters into communities of interest to leverage resources or partnership opportunities, and returns to the local level with more effective outcomes than possible by operating solely within the community of place. A case study describes synergistic specialist…
Demonstrating the climate4impact portal: bridging the CMIP5 data infrastructure to impact users
NASA Astrophysics Data System (ADS)
Plieger, Maarten; Som de Cerff, Wim; Page, Christian; Hutjes, Ronald; de Jong, Fokke; Bärring, Lars; Sjökvist, Elin
2013-04-01
Together with seven other partners (CERFACS, CNRS-IPSL, SMHI, INHGA, CMCC, WUR, MF-CNRM), KNMI is involved in the FP7 project IS-ENES (http://is.enes.org), which supports the European climate modeling infrastructure, in the work package 'Bridging Climate Research Data and the Needs of the Impact Community'. The aim of this work package is to enhance the use of climate model data and to enhance the interaction with climate effect/impact communities. The portal is based on 17 impact use cases from 5 different European countries, and is evaluated by a user panel consisting of use case owners. As the climate impact community is very broad, the focus is mainly on the scientific impact community. This work has resulted in a prototype portal, the ENES portal interface for climate impact communities, that can be visited at www.climate4impact.eu. The portal is connected to all Earth System Grid Federation (ESGF) nodes containing global climate model data (GCM data) from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) and later from the Coordinated Regional Climate Downscaling Experiment (CORDEX). This global network of all major climate model data centers offers services for data description, discovery and download. The climate4impact portal connects to these services and offers a user interface for searching, visualizing and downloading global climate model data and more. During the project, the content management system Drupal was used to enable partners to contribute on the documentation section. The following topics will be demonstrated: - Security: Login using OpenID for access to the ESG data nodes. The ESG works in conjunction with several external websites and systems. The climate4impact portal uses X509 based short lived credentials, generated on behalf of the user with a MyProxy service. Single Sign-on (SSO) is used to make these websites and systems work together. - Discovery: Facetted search based on e.g. variable name, model and institute using the ESG search services. A catalog browser allows for browsing through CMIP5 and other climate model data catalogues (e.g. ESSENCE, EOBS, UNIDATA). - Download: Directly from ESG nodes and other THREDDS catalogs - Visualization: Visualize any data directly using ADAGUC dynamic Web Map Services. - Transformation: Transform your data into other formats, perform basic calculations and extractions using OCG Web Processing Services The current portal is a Prototype. It is built to explore state-of-art technologies to provide improved access to climate model data. The prototype will be evaluated and is the basis for development of an operational service. The portal and services provided will be sustained and supported during the development of these operational services (2013-2016) in the second phase of the FP7 IS-ENES project, ISENES2.
WholeCellSimDB: a hybrid relational/HDF database for whole-cell model predictions
Karr, Jonathan R.; Phillips, Nolan C.; Covert, Markus W.
2014-01-01
Mechanistic ‘whole-cell’ models are needed to develop a complete understanding of cell physiology. However, extracting biological insights from whole-cell models requires running and analyzing large numbers of simulations. We developed WholeCellSimDB, a database for organizing whole-cell simulations. WholeCellSimDB was designed to enable researchers to search simulation metadata to identify simulations for further analysis, and quickly slice and aggregate simulation results data. In addition, WholeCellSimDB enables users to share simulations with the broader research community. The database uses a hybrid relational/hierarchical data format architecture to efficiently store and retrieve both simulation setup metadata and results data. WholeCellSimDB provides a graphical Web-based interface to search, browse, plot and export simulations; a JavaScript Object Notation (JSON) Web service to retrieve data for Web-based visualizations; a command-line interface to deposit simulations; and a Python API to retrieve data for advanced analysis. Overall, we believe WholeCellSimDB will help researchers use whole-cell models to advance basic biological science and bioengineering. Database URL: http://www.wholecellsimdb.org Source code repository URL: http://github.com/CovertLab/WholeCellSimDB PMID:25231498
Tsamados, Michel; Feltham, Daniel; Petty, Alek; Schroeder, David; Flocco, Daniela
2015-10-13
We present a modelling study of processes controlling the summer melt of the Arctic sea ice cover. We perform a sensitivity study and focus our interest on the thermodynamics at the ice-atmosphere and ice-ocean interfaces. We use the Los Alamos community sea ice model CICE, and additionally implement and test three new parametrization schemes: (i) a prognostic mixed layer; (ii) a three equation boundary condition for the salt and heat flux at the ice-ocean interface; and (iii) a new lateral melt parametrization. Recent additions to the CICE model are also tested, including explicit melt ponds, a form drag parametrization and a halodynamic brine drainage scheme. The various sea ice parametrizations tested in this sensitivity study introduce a wide spread in the simulated sea ice characteristics. For each simulation, the total melt is decomposed into its surface, bottom and lateral melt components to assess the processes driving melt and how this varies regionally and temporally. Because this study quantifies the relative importance of several processes in driving the summer melt of sea ice, this work can serve as a guide for future research priorities. © 2015 The Author(s).
NASA Astrophysics Data System (ADS)
Xing, Aitang; Arumugam, Sankar; Holloway, Lois; Goozee, Gary
2014-03-01
Scripting in radiotherapy treatment planning systems not only simplifies routine planning tasks but can also be used for clinical research. Treatment planning scripting can only be utilized in a system that has a built-in scripting interface. Among the commercially available treatment planning systems, Pinnacle (Philips) and Raystation (Raysearch Lab.) have inherent scripting functionality. CMS XiO (Elekta) is a widely used treatment planning system in radiotherapy centres around the world, but it does not have an interface that allows the user to script radiotherapy plans. In this study an external scripting interface, PyCMSXiO, was developed for XiO using the Python programming language. The interface was implemented as a python package/library using a modern object-oriented programming methodology. The package was organized as a hierarchy of different classes (objects). Each class (object) corresponds to a plan object such as the beam of a clinical radiotherapy plan. The interface of classes was implemented as object functions. Scripting in XiO using PyCMSXiO is comparable with Pinnacle scripting. This scripting package has been used in several research projects including commissioning of a beam model, independent three-dimensional dose verification for IMRT plans and a setup-uncertainty study. Ease of use and high-level functions provided in the package achieve a useful research tool. It was released as an open-source tool that may benefit the medical physics community.
NASA Astrophysics Data System (ADS)
Huang, Bo
Enzyme-catalyzed degradation of the restoration-tooth interface compromises interfacial integrity, thereby contributing to secondary caries, which is a major cause of resin-based restoration failure. It is hypothesized that in addition to salivary esterases, the cariogenic bacterium Streptococcus mutans has specific esterases that degrade the resin-dentin interface, releasing biodegradation by- products (BBPs) such as bis-hydroxy-propoxy-phenyl-propane (BisHPPP). In turn, BisHPPP affects S. mutans by stimulating the expression of esterases. Another hypothesis is that the biostability of the resin-dentin interface is affected by simulated salivary esterases, dentinal matrix metalloproteinase (MMP) inhibition, and restorative materials. To test the first hypothesis, putative esterase genes in S. mutans UA159 were identified, purified, and characterized. SMU_118c was identified as the dominant esterase in S. mutans UA159 and showed a similar hydrolytic activity profile to salivary esterases. BisHPPP upregulated expression of the SMU_118c gene and related protein in a concentration-dependent manner. This positive feedback process could accelerate the degradation of the restoration-tooth interface and lead to premature restoration failure. To test the second hypothesis, an in vitro model was established to evaluate the effects of salivary esterases, MMP inhibition and restorative materials on interfacial integrity. It was confirmed that interfacial integrity was compromised with time and was further deteriorated by simulated salivary esterases, as indicated by the greater depth of bacterial ingress and more bacterial biomass of biofilm along the interface. However, this process could be modulated by using different restorative materials and MMPs inhibition. This project elucidated the mechanistic interaction between oral bacteria and restorative materials and established a new, in vitro, and physiologically relevant model to assess the effect of material chemistry, properties, and application modes on bacterial penetration and biofilm formation. These findings offer the oral health community practical ways to reduce secondary caries by altering material composition and restorative procedures.
NASA Astrophysics Data System (ADS)
Spak, S.; Pooley, M.
2012-12-01
The next generation of coupled human and earth systems models promises immense potential and grand challenges as they transition toward new roles as core tools for defining and living within planetary boundaries. New frontiers in community model development include not only computational, organizational, and geophysical process questions, but also the twin objectives of more meaningfully integrating the human dimension and extending applicability to informing policy decisions on a range of new and interconnected issues. We approach these challenges by posing key policy questions that require more comprehensive coupled human and geophysical models, identify necessary model and organizational processes and outputs, and work backwards to determine design criteria in response to these needs. We find that modular community earth system model design must: * seamlessly scale in space (global to urban) and time (nowcasting to paleo-studies) and fully coupled on all component systems * automatically differentiate to provide complete coupled forward and adjoint models for sensitivity studies, optimization applications, and 4DVAR assimilation across Earth and human observing systems * incorporate diagnostic tools to quantify uncertainty in couplings, and in how human activity affects them * integrate accessible community development and application with JIT-compilation, cloud computing, game-oriented interfaces, and crowd-sourced problem-solving We outline accessible near-term objectives toward these goals, and describe attempts to incorporate these design objectives in recent pilot activities using atmosphere-land-ocean-biosphere-human models (WRF-Chem, IBIS, UrbanSim) at urban and regional scales for policy applications in climate, energy, and air quality.
ERIC Educational Resources Information Center
Smith-Tolken, Antoinette; Bitzer, Eli
2017-01-01
This study addresses underlying principles to interpret scholarly-based service-related teaching and learning. Such principles include addressing specific concerns of communities, transforming theoretical knowledge into lived experiences for students, making the knowledge generated within communities meaningful and forging constant growth and…
The BioMart community portal: an innovative alternative to large, centralized data repositories
USDA-ARS?s Scientific Manuscript database
The BioMart Community Portal (www.biomart.org) is a community-driven effort to provide a unified interface to biomedical databases that are distributed worldwide. The portal provides access to numerous database projects supported by 30 scientific organizations. It includes over 800 different biologi...
ERIC Educational Resources Information Center
Kunda, Sue; Anderson-Wilk, Mark
2011-01-01
Our institutions of record are facing a new digital knowledge management challenge: stakeholder communities are now expecting customized Web interfaces to institutional knowledge repositories, online environments where community members can contribute content and see themselves represented, as well as access archived resources. Digital curation…
Nutrient processes at the stream-lake interface for a channelized versus unmodified stream mouth
Niswonger, Richard G.; Naranjo, Ramon C.; Smith, David; Constantz, James E.; Allander, Kip K.; Rosenberry, Donald O.; Neilson, Bethany; Rosen, Michael R.; Stonestrom, David A.
2017-01-01
Inorganic forms of nitrogen and phosphorous impact freshwater lakes by stimulating primary production and affecting water quality and ecosystem health. Communities around the world are motivated to sustain and restore freshwater resources and are interested in processes controlling nutrient inputs. We studied the environment where streams flow into lakes, referred to as the stream-lake interface (SLI), for a channelized and unmodified stream outlet. Channelization is done to protect infrastructure or recreational beach areas. We collected hydraulic and nutrient data for surface water and shallow groundwater in two SLIs to develop conceptual models that describe characteristics that are representative of these hydrologic features. Water, heat, and solute transport models were used to evaluate hydrologic conceptualizations and estimate mean residence times of water in the sediment. A nutrient mass balance model is developed to estimate net rates of adsorption and desorption, mineralization, and nitrification along subsurface flow paths. Results indicate that SLIs are dynamic sources of nutrients to lakes and that the common practice of channelizing the stream at the SLI decreases nutrient concentrations in pore water discharging along the lakeshore. This is in contrast to the unmodified SLI that forms a barrier beach that disconnects the stream from the lake and results in higher nutrient concentrations in pore water discharging to the lake. These results are significant because nutrient delivery through pore water seepage at the lakebed from the natural SLI contributes to nearshore algal communities and produces elevated concentrations of inorganic nutrients in the benthic zone where attached algae grow.
Bivalve grazing can shape phytoplankton communities
Lucas, Lisa; Cloern, James E.; Thompson, Janet K.; Stacey, Mark T.; Koseff, Jeffrey K.
2016-01-01
The ability of bivalve filter feeders to limit phytoplankton biomass in shallow waters is well-documented, but the role of bivalves in shaping phytoplankton communities is not. The coupled effect of bivalve grazing at the sediment-water interface and sinking of phytoplankton cells to that bottom filtration zone could influence the relative biomass of sinking (diatoms) and non-sinking phytoplankton. Simulations with a pseudo-2D numerical model showed that benthic filter feeding can interact with sinking to alter diatom:non-diatom ratios. Cases with the smallest proportion of diatom biomass were those with the fastest sinking speeds and strongest bivalve grazing rates. Hydrodynamics modulated the coupled sinking-grazing influence on phytoplankton communities. For example, in simulations with persistent stratification, the non-sinking forms accumulated in the surface layer away from bottom grazers while the sinking forms dropped out of the surface layer toward bottom grazers. Tidal-scale stratification also influenced vertical gradients of the two groups in opposite ways. The model was applied to Suisun Bay, a low-salinity habitat of the San Francisco Bay system that was transformed by the introduction of the exotic clam Potamocorbula amurensis. Simulation results for this Bay were similar to (but more muted than) those for generic habitats, indicating that P. amurensis grazing could have caused a disproportionate loss of diatoms after its introduction. Our model simulations suggest bivalve grazing affects both phytoplankton biomass and community composition in shallow waters. We view these results as hypotheses to be tested with experiments and more complex modeling approaches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, D. N.
2015-06-22
The Earth System Grid Federation (ESGF) is a multi-agency, international collaboration whose purpose is to develop the software infrastructure needed to facilitate and empower the study of climate change on a global scale. ESGF’s architecture employs a system of geographically distributed peer nodes that are independently administered yet united by common federation protocols and application programming interfaces. The cornerstones of its interoperability are the peer-to-peer messaging, which is continuously exchanged among all nodes in the federation; a shared architecture for search and discovery; and a security infrastructure based on industry standards. ESGF integrates popular application engines available from the open-sourcemore » community with custom components (for data publishing, searching, user interface, security, and messaging) that were developed collaboratively by the team. The full ESGF infrastructure has now been adopted by multiple Earth science projects and allows access to petabytes of geophysical data, including the Coupled Model Intercomparison Project (CMIP)—output used by the Intergovernmental Panel on Climate Change assessment reports. ESGF is a successful example of integration of disparate open-source technologies into a cohesive functional system that serves the needs of the global climate science community.« less
The space shuttle payload planning working groups. Volume 10: Space technology
NASA Technical Reports Server (NTRS)
1973-01-01
The findings and recommendations of the Space Technology group of the space shuttle payload planning activity are presented. The elements of the space technology program are: (1) long duration exposure facility, (2) advanced technology laboratory, (3) physics and chemistry laboratory, (4) contamination experiments, and (5) laser information/data transmission technology. The space technology mission model is presented in tabular form. The proposed experiments to be conducted by each test facility are described. Recommended approaches for user community interfacing are included.
Cummings, E Mark; Merrilees, Christine; Taylor, Laura K; Goeke-Morey, Marcie; Shirlow, Peter
2017-02-01
Over 1 billion children worldwide are exposed to political violence and armed conflict. The current conclusions are qualified by limited longitudinal research testing sophisticated process-oriented explanatory models for child adjustment outcomes. In this study, consistent with a developmental psychopathology perspective emphasizing the value of process-oriented longitudinal study of child adjustment in developmental and social-ecological contexts, we tested emotional insecurity about the community as a dynamic, within-person mediating process for relations between sectarian community violence and child adjustment. Specifically, this study explored children's emotional insecurity at a person-oriented level of analysis assessed over 5 consecutive years, with child gender examined as a moderator of indirect effects between sectarian community violence and child adjustment. In the context of a five-wave longitudinal research design, participants included 928 mother-child dyads in Belfast (453 boys, 475 girls) drawn from socially deprived, ethnically homogenous areas that had experienced political violence. Youth ranged in age from 10 to 20 years and were 13.24 (SD = 1.83) years old on average at the initial time point. Greater insecurity about the community measured over multiple time points mediated relations between sectarian community violence and youth's total adjustment problems. The pathway from sectarian community violence to emotional insecurity about the community was moderated by child gender, with relations to emotional insecurity about the community stronger for girls than for boys. The results suggest that ameliorating children's insecurity about community in contexts of political violence is an important goal toward improving adolescents' well-being and adjustment. These results are discussed in terms of their translational research implications, consistent with a developmental psychopathology model for the interface between basic and intervention research.
Self-Assembled Magnetic Surface Swimmers: Theoretical Model
NASA Astrophysics Data System (ADS)
Aranson, Igor; Belkin, Maxim; Snezhko, Alexey
2009-03-01
The mechanisms of self-propulsion of living microorganisms are a fascinating phenomenon attracting enormous attention in the physics community. A new type of self-assembled micro-swimmers, magnetic snakes, is an excellent tool to model locomotion in a simple table-top experiment. The snakes self-assemble from a dispersion of magnetic microparticles suspended on the liquid-air interface and subjected to an alternating magnetic field. Formation and dynamics of these swimmers are captured in the framework of theoretical model coupling paradigm equation for the amplitude of surface waves, conservation law for the density of particles, and the Navier-Stokes equation for hydrodynamic flows. The results of continuum modeling are supported by hybrid molecular dynamics simulations of magnetic particles floating on the surface of fluid.
Prieto, Iván; Armas, Cristina; Pugnaire, Francisco I
2012-03-01
Hydraulic redistribution (HR) is the passive movement of water between different soil parts via plant root systems, driven by water potential gradients in the soil-plant interface. New data suggest that HR is a heterogeneous and patchy process. In this review we examine the main biophysical and environmental factors controlling HR and its main implications at the plant, community and ecosystem levels. Experimental evidence and the use of novel modelling approaches suggest that HR may have important implications at the community scale, affecting net primary productivity as well as water and vegetation dynamics. Globally, HR may influence hydrological and biogeochemical cycles and, ultimately, climate. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
Maturity Model for Advancing Smart Grid Interoperability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knight, Mark; Widergren, Steven E.; Mater, J.
2013-10-28
Abstract—Interoperability is about the properties of devices and systems to connect and work properly. Advancing interoperability eases integration and maintenance of the resulting interconnection. This leads to faster integration, lower labor and component costs, predictability of projects and the resulting performance, and evolutionary paths for upgrade. When specifications are shared and standardized, competition and novel solutions can bring new value streams to the community of stakeholders involved. Advancing interoperability involves reaching agreement for how things join at their interfaces. The quality of the agreements and the alignment of parties involved in the agreement present challenges that are best met withmore » process improvement techniques. The GridWise® Architecture Council (GWAC) sponsored by the United States Department of Energy is supporting an effort to use concepts from capability maturity models used in the software industry to advance interoperability of smart grid technology. An interoperability maturity model has been drafted and experience is being gained through trials on various types of projects and community efforts. This paper describes the value and objectives of maturity models, the nature of the interoperability maturity model and how it compares with other maturity models, and experiences gained with its use.« less
Iowa Flood Information System: Towards Integrated Data Management, Analysis and Visualization
NASA Astrophysics Data System (ADS)
Demir, I.; Krajewski, W. F.; Goska, R.; Mantilla, R.; Weber, L. J.; Young, N.
2012-04-01
The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. Simple 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for around 500 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert communities in advance to help minimize damage of floods. This presentation provides an overview and live demonstration of the tools and interfaces in the IFIS developed to date to provide a platform for one-stop access to flood related data, visualizations, flood conditions, and forecast.
NASA Astrophysics Data System (ADS)
Demir, I.; Krajewski, W. F.; Goska, R.; Mantilla, R.; Weber, L. J.; Young, N.
2011-12-01
The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. Simple 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for around 500 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert communities in advance to help minimize damage of floods. This presentation provides an overview of the tools and interfaces in the IFIS developed to date to provide a platform for one-stop access to flood related data, visualizations, flood conditions, and forecast.
Flood Risk Management in Iowa through an Integrated Flood Information System
NASA Astrophysics Data System (ADS)
Demir, Ibrahim; Krajewski, Witold
2013-04-01
The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. Simple 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for around 1100 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert communities in advance to help minimize damage of floods. This presentation provides an overview and live demonstration of the tools and interfaces in the IFIS developed to date to provide a platform for one-stop access to flood related data, visualizations, flood conditions, and forecast.
Li, Bo; Zhao, Yanxiang
2013-01-01
Central in a variational implicit-solvent description of biomolecular solvation is an effective free-energy functional of the solute atomic positions and the solute-solvent interface (i.e., the dielectric boundary). The free-energy functional couples together the solute molecular mechanical interaction energy, the solute-solvent interfacial energy, the solute-solvent van der Waals interaction energy, and the electrostatic energy. In recent years, the sharp-interface version of the variational implicit-solvent model has been developed and used for numerical computations of molecular solvation. In this work, we propose a diffuse-interface version of the variational implicit-solvent model with solute molecular mechanics. We also analyze both the sharp-interface and diffuse-interface models. We prove the existence of free-energy minimizers and obtain their bounds. We also prove the convergence of the diffuse-interface model to the sharp-interface model in the sense of Γ-convergence. We further discuss properties of sharp-interface free-energy minimizers, the boundary conditions and the coupling of the Poisson-Boltzmann equation in the diffuse-interface model, and the convergence of forces from diffuse-interface to sharp-interface descriptions. Our analysis relies on the previous works on the problem of minimizing surface areas and on our observations on the coupling between solute molecular mechanical interactions with the continuum solvent. Our studies justify rigorously the self consistency of the proposed diffuse-interface variational models of implicit solvation.
THR ROLE OF SEABED DYNAMICS IN STRUCTURING A MESOHALINE MACROBENTIC INFAUNAL COMMUNITY
Estuaries are dynamic physical environments. The stability of the sediment-water interface is influenced by sources and rates of sediment delivery and reworking of sediments by currents, tides, waves and biology, but effects of disruption of this interface on benthic biology are...
NASA Astrophysics Data System (ADS)
Aufdenkampe, A. K.; Damiano, S. G.; Hicks, S.; Horsburgh, J. S.
2017-12-01
EnviroDIY is a community for do-it-yourself environmental science and monitoring (https://envirodiy.org), largely focused on sharing ideas for developing Arduino-compatible open-source sensor stations, similar to the EnviroDIY Mayfly datalogger (http://envirodiy.org/mayfly/). Here we present the ModularSensors Arduino code library (https://github.com/EnviroDIY/ModularSensors), deisigned to give all sensors and variables a common interface of functions and returns and to make it very easy to iterate through and log data from many sensors and variables. This library was written primarily for the EnviroDIY Mayfly, but we have begun to test it on other Arduino based boards. We will show the large number of developed sensor interfaces, and examples of using this library code to stream near real time data to the new EnviroDIY Water Quality Data Portal (http://data.envirodiy.org/), a data and software system based on the Observations Data Model v2 (http://www.odm2.org).
THE EARTH SYSTEM PREDICTION SUITE: Toward a Coordinated U.S. Modeling Capability
Theurich, Gerhard; DeLuca, C.; Campbell, T.; Liu, F.; Saint, K.; Vertenstein, M.; Chen, J.; Oehmke, R.; Doyle, J.; Whitcomb, T.; Wallcraft, A.; Iredell, M.; Black, T.; da Silva, AM; Clune, T.; Ferraro, R.; Li, P.; Kelley, M.; Aleinov, I.; Balaji, V.; Zadeh, N.; Jacob, R.; Kirtman, B.; Giraldo, F.; McCarren, D.; Sandgathe, S.; Peckham, S.; Dunlap, R.
2017-01-01
The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open source terms or to credentialed users. The ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the U.S. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC) Layer, a set of ESMF-based component templates and interoperability conventions. This shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multi-agency development of coupled modeling systems, controlled experimentation and testing, and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NavGEM), HYbrid Coordinate Ocean Model (HYCOM), and Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS®); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and GEOS-5 atmospheric general circulation model. PMID:29568125
THE EARTH SYSTEM PREDICTION SUITE: Toward a Coordinated U.S. Modeling Capability.
Theurich, Gerhard; DeLuca, C; Campbell, T; Liu, F; Saint, K; Vertenstein, M; Chen, J; Oehmke, R; Doyle, J; Whitcomb, T; Wallcraft, A; Iredell, M; Black, T; da Silva, A M; Clune, T; Ferraro, R; Li, P; Kelley, M; Aleinov, I; Balaji, V; Zadeh, N; Jacob, R; Kirtman, B; Giraldo, F; McCarren, D; Sandgathe, S; Peckham, S; Dunlap, R
2016-07-01
The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open source terms or to credentialed users. The ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the U.S. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC) Layer, a set of ESMF-based component templates and interoperability conventions. This shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multi-agency development of coupled modeling systems, controlled experimentation and testing, and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NavGEM), HYbrid Coordinate Ocean Model (HYCOM), and Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS ® ); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and GEOS-5 atmospheric general circulation model.
The Earth System Prediction Suite: Toward a Coordinated U.S. Modeling Capability
NASA Technical Reports Server (NTRS)
Theurich, Gerhard; DeLuca, C.; Campbell, T.; Liu, F.; Saint, K.; Vertenstein, M.; Chen, J.; Oehmke, R.; Doyle, J.; Whitcomb, T.;
2016-01-01
The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open source terms or to credentialed users.The ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the U.S. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC) Layer, a set of ESMF-based component templates and interoperability conventions. This shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multi-agency development of coupled modeling systems, controlled experimentation and testing, and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NavGEM), HYbrid Coordinate Ocean Model (HYCOM), and Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and GEOS-5 atmospheric general circulation model.
Analyzing rasters, vectors and time series using new Python interfaces in GRASS GIS 7
NASA Astrophysics Data System (ADS)
Petras, Vaclav; Petrasova, Anna; Chemin, Yann; Zambelli, Pietro; Landa, Martin; Gebbert, Sören; Neteler, Markus; Löwe, Peter
2015-04-01
GRASS GIS 7 is a free and open source GIS software developed and used by many scientists (Neteler et al., 2012). While some users of GRASS GIS prefer its graphical user interface, significant part of the scientific community takes advantage of various scripting and programing interfaces offered by GRASS GIS to develop new models and algorithms. Here we will present different interfaces added to GRASS GIS 7 and available in Python, a popular programming language and environment in geosciences. These Python interfaces are designed to satisfy the needs of scientists and programmers under various circumstances. PyGRASS (Zambelli et al., 2013) is a new object-oriented interface to GRASS GIS modules and libraries. The GRASS GIS libraries are implemented in C to ensure maximum performance and the PyGRASS interface provides an intuitive, pythonic access to their functionality. GRASS GIS Python scripting library is another way of accessing GRASS GIS modules. It combines the simplicity of Bash and the efficiency of the Python syntax. When full access to all low-level and advanced functions and structures from GRASS GIS library is required, Python programmers can use an interface based on the Python ctypes package. Ctypes interface provides complete, direct access to all functionality as it would be available to C programmers. GRASS GIS provides specialized Python library for managing and analyzing spatio-temporal data (Gebbert and Pebesma, 2014). The temporal library introduces space time datasets representing time series of raster, 3D raster or vector maps and allows users to combine various spatio-temporal operations including queries, aggregation, sampling or the analysis of spatio-temporal topology. We will also discuss the advantages of implementing scientific algorithm as a GRASS GIS module and we will show how to write such module in Python. To facilitate the development of the module, GRASS GIS provides a Python library for testing (Petras and Gebbert, 2014) which helps researchers to ensure the robustness of the algorithm, correctness of the results in edge cases as well as the detection of changes in results due to new development. For all modules GRASS GIS automatically creates standardized command line and graphical user interfaces and documentation. Finally, we will show how GRASS GIS can be used together with powerful Python tools such as the NumPy package and the IPython Notebook. References: Gebbert, S., Pebesma, E., 2014. A temporal GIS for field based environmental modeling. Environmental Modelling & Software 53, 1-12. Neteler, M., Bowman, M.H., Landa, M. and Metz, M., 2012. GRASS GIS: a multi-purpose Open Source GIS. Environmental Modelling & Software 31: 124-130. Petras, V., Gebbert, S., 2014. Testing framework for GRASS GIS: ensuring reproducibility of scientific geospatial computing. Poster presented at: AGU Fall Meeting, December 15-19, 2014, San Francisco, USA. Zambelli, P., Gebbert, S., Ciolli, M., 2013. Pygrass: An Object Oriented Python Application Programming Interface (API) for Geographic Resources Analysis Support System (GRASS) Geographic Information System (GIS). ISPRS International Journal of Geo-Information 2, 201-219.
BioCatalogue: a universal catalogue of web services for the life sciences
Bhagat, Jiten; Tanoh, Franck; Nzuobontane, Eric; Laurent, Thomas; Orlowski, Jerzy; Roos, Marco; Wolstencroft, Katy; Aleksejevs, Sergejs; Stevens, Robert; Pettifer, Steve; Lopez, Rodrigo; Goble, Carole A.
2010-01-01
The use of Web Services to enable programmatic access to on-line bioinformatics is becoming increasingly important in the Life Sciences. However, their number, distribution and the variable quality of their documentation can make their discovery and subsequent use difficult. A Web Services registry with information on available services will help to bring together service providers and their users. The BioCatalogue (http://www.biocatalogue.org/) provides a common interface for registering, browsing and annotating Web Services to the Life Science community. Services in the BioCatalogue can be described and searched in multiple ways based upon their technical types, bioinformatics categories, user tags, service providers or data inputs and outputs. They are also subject to constant monitoring, allowing the identification of service problems and changes and the filtering-out of unavailable or unreliable resources. The system is accessible via a human-readable ‘Web 2.0’-style interface and a programmatic Web Service interface. The BioCatalogue follows a community approach in which all services can be registered, browsed and incrementally documented with annotations by any member of the scientific community. PMID:20484378
BioCatalogue: a universal catalogue of web services for the life sciences.
Bhagat, Jiten; Tanoh, Franck; Nzuobontane, Eric; Laurent, Thomas; Orlowski, Jerzy; Roos, Marco; Wolstencroft, Katy; Aleksejevs, Sergejs; Stevens, Robert; Pettifer, Steve; Lopez, Rodrigo; Goble, Carole A
2010-07-01
The use of Web Services to enable programmatic access to on-line bioinformatics is becoming increasingly important in the Life Sciences. However, their number, distribution and the variable quality of their documentation can make their discovery and subsequent use difficult. A Web Services registry with information on available services will help to bring together service providers and their users. The BioCatalogue (http://www.biocatalogue.org/) provides a common interface for registering, browsing and annotating Web Services to the Life Science community. Services in the BioCatalogue can be described and searched in multiple ways based upon their technical types, bioinformatics categories, user tags, service providers or data inputs and outputs. They are also subject to constant monitoring, allowing the identification of service problems and changes and the filtering-out of unavailable or unreliable resources. The system is accessible via a human-readable 'Web 2.0'-style interface and a programmatic Web Service interface. The BioCatalogue follows a community approach in which all services can be registered, browsed and incrementally documented with annotations by any member of the scientific community.
NASA Astrophysics Data System (ADS)
O'Kuinghttons, Ryan; Koziol, Benjamin; Oehmke, Robert; DeLuca, Cecelia; Theurich, Gerhard; Li, Peggy; Jacob, Joseph
2016-04-01
The Earth System Modeling Framework (ESMF) Python interface (ESMPy) supports analysis and visualization in Earth system modeling codes by providing access to a variety of tools for data manipulation. ESMPy started as a Python interface to the ESMF grid remapping package, which provides mature and robust high-performance and scalable grid remapping between 2D and 3D logically rectangular and unstructured grids and sets of unconnected data. ESMPy now also interfaces with OpenClimateGIS (OCGIS), a package that performs subsetting, reformatting, and computational operations on climate datasets. ESMPy exposes a subset of ESMF grid remapping utilities. This includes bilinear, finite element patch recovery, first-order conservative, and nearest neighbor grid remapping methods. There are also options to ignore unmapped destination points, mask points on source and destination grids, and provide grid structure in the polar regions. Grid remapping on the sphere takes place in 3D Cartesian space, so the pole problem is not an issue as it can be with other grid remapping software. Remapping can be done between any combination of 2D and 3D logically rectangular and unstructured grids with overlapping domains. Grid pairs where one side of the regridding is represented by an appropriate set of unconnected data points, as is commonly found with observational data streams, is also supported. There is a developing interoperability layer between ESMPy and OpenClimateGIS (OCGIS). OCGIS is a pure Python, open source package designed for geospatial manipulation, subsetting, and computation on climate datasets stored in local NetCDF files or accessible remotely via the OPeNDAP protocol. Interfacing with OCGIS has brought GIS-like functionality to ESMPy (i.e. subsetting, coordinate transformations) as well as additional file output formats (i.e. CSV, ESRI Shapefile). ESMPy is distinguished by its strong emphasis on open source, community governance, and distributed development. The user base has grown quickly, and the package is integrating with several other software tools and frameworks. These include the Ultrascale Visualization Climate Data Analysis Tools (UV-CDAT), Iris, PyFerret, cfpython, and the Community Surface Dynamics Modeling System (CSDMS). ESMPy minimum requirements include Python 2.6, Numpy 1.6.1 and an ESMF installation. Optional dependencies include NetCDF and OCGIS-related dependencies: GDAL, Shapely, and Fiona. ESMPy is regression tested nightly, and supported on Darwin, Linux and Cray systems with the GNU compiler suite and MPI communications. OCGIS is supported on Linux, and also undergoes nightly regression testing. Both packages are installable from Anaconda channels. Upcoming development plans for ESMPy involve development of a higher order conservative grid remapping method. Future OCGIS development will focus on mesh and location stream interoperability and streamlined access to ESMPy's MPI implementation.
Indigenous Research: Three Researchers Reflect on Their Experiences at the Interface
ERIC Educational Resources Information Center
Minniecon, Deanne; Franks, Naomi; Heffernan, Maree
2007-01-01
Utilising Nakata's (2007) description of the "cultural interface", two Indigenous researchers and one non-Indigenous researcher examine their development of Indigenous research in and with Aboriginal and Torres Strait Islander communities conducted from within an institution of higher education. The authors reflect on their experiences in…
The climate4impact portal: bridging the CMIP5 data infrastructure to impact users
NASA Astrophysics Data System (ADS)
Plieger, Maarten; Som de Cerff, Wim; Page, Christian; Hutjes, Ronald; de Jong, Fokke; Bärring, Lars; Sjökvist, Elin
2013-04-01
Together with seven other partners (CERFACS, CNRS-IPSL, SMHI, INHGA, CMCC, WUR, MF-CNRM), KNMI is involved in the FP7 project IS-ENES (http://is.enes.org), which supports the European climate modeling infrastructure, in the work package 'Bridging Climate Research Data and the Needs of the Impact Community'. The aim of this work package is to enhance the use of climate model data and to enhance the interaction with climate effect/impact communities. The portal is based on 17 impact use cases from 5 different European countries, and is evaluated by a user panel consisting of use case owners. As the climate impact community is very broad, the focus is mainly on the scientific impact community. This work has resulted in a prototype portal, the ENES portal interface for climate impact communities, that can be visited at www.climate4impact.eu. The portal is connected to all Earth System Grid Federation (ESGF) nodes containing global climate model data (GCM data) from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) and later from the Coordinated Regional Climate Downscaling Experiment (CORDEX). This global network of all major climate model data centers offers services for data description, discovery and download. The climate4impact portal connects to these services and offers a user interface for searching, visualizing and downloading global climate model data and more. A challenging task was to describe the available model data and how it can be used. The portal tries to inform users about possible caveats when using GCM data. All impact use cases are described in the documentation section, using highlighted keywords pointing to detailed information in the glossary. During the project, the content management system Drupal was used to enable partners to contribute on the documentation section. In this presentation the architecture and following items will be detailed: - Security: Login using OpenID for access to the ESG data nodes. The ESG works in conjunction with several external websites and systems. The climate4impact portal uses X509 based short lived credentials, generated on behalf of the user with a MyProxy service. Single Sign-on (SSO) is used to make these websites and systems work together. - Discovery: Facetted search based on e.g. variable name, model and institute using the ESG search services. A catalog browser allows for browsing through CMIP5 and other climate model data catalogues (e.g. ESSENCE, EOBS, UNIDATA). - Download: Directly from ESG nodes and other THREDDS catalogs - Visualization: Visualize any data directly using ADAGUC dynamic Web Map Services. - Transformation: Transform your data into other formats, perform basic calculations and extractions using OCG Web Processing Services The current portal is a Prototype. It is built to explore state-of-art technologies to provide improved access to climate model data. The prototype will be evaluated and is the basis for development of an operational service. The portal and services provided will be sustained and supported during the development of these operational services (2013-2016) in the second phase of the FP7 IS-ENES project, ISENES2.
Models Archive and ModelWeb at NSSDC
NASA Astrophysics Data System (ADS)
Bilitza, D.; Papitashvili, N.; King, J. H.
2002-05-01
In addition to its large data holdings, NASA's National Space Science Data Center (NSSDC) also maintains an archive of space physics models for public use (ftp://nssdcftp.gsfc.nasa.gov/models/). The more than 60 model entries cover a wide range of parameters from the atmosphere, to the ionosphere, to the magnetosphere, to the heliosphere. The models are primarily empirical models developed by the respective model authors based on long data records from ground and space experiments. An online model catalog (http://nssdc.gsfc.nasa.gov/space/model/) provides information about these and other models and links to the model software if available. We will briefly review the existing model holdings and highlight some of its usages and users. In response to a growing need by the user community, NSSDC began to develop web-interfaces for the most frequently requested models. These interfaces enable users to compute and plot model parameters online for the specific conditions that they are interested in. Currently included in the Modelweb system (http://nssdc.gsfc.nasa.gov/space/model/) are the following models: the International Reference Ionosphere (IRI) model, the Mass Spectrometer Incoherent Scatter (MSIS) E90 model, the International Geomagnetic Reference Field (IGRF) and the AP/AE-8 models for the radiation belt electrons and protons. User accesses to both systems have been steadily increasing over the last years with occasional spikes prior to large scientific meetings. The current monthly rate is between 5,000 to 10,000 accesses for either system; in February 2002 13,872 accesses were recorded to the Modelsweb and 7092 accesses to the models archive.
Center for Nanophase Materials Sciences
NASA Astrophysics Data System (ADS)
Horton, Linda
2002-10-01
The Center for Nanophase Materials Sciences (CNMS) will be a user facility with a strong component of joint, collaborative research. CNMS is being developed, together with the scientific community, with support from DOE's Office of Basic Energy Sciences. The Center will provide a thriving, multidisciplinary environment for research as well as the education of students and postdoctoral scholars. It will be co-located with the Spallation Neutron Source (SNS) and the Joint Institute for Neutron Sciences (JINS). The CNMS will integrate nanoscale research with neutron science, synthesis science, and theory/modeling/simulation, bringing together four areas in which the United States has clear national research and educational needs. The Center's research will be organized under three scientific thrusts: nano-dimensioned "soft" materials (including organic, hybrid, and interfacial nanophases); complex "hard" materials systems (including the crosscutting areas of interfaces and reduced dimensionality that become scientifically critical on the nanoscale); and theory/modeling/simulation. This presentation will summarize the progress towards identification of the specific research focus topics for the Center. Currently proposed topics, based on two workshops with the potential user community, include catalysis, nanomagnetism, synthetic and bio-inspired macromolecular materials, nanophase biomaterials, nanofluidics, optics/photonics, carbon-based nanostructures, collective behavior, nanoscale interface science, virtual synthesis and nanomaterials design, and electronic structure, correlations, and transport. In addition, the proposed 80,000 square foot facility (wet/dry labs, nanofabrication clean rooms, and offices) and the associated technical equipment will be described. The CNMS is scheduled to begin construction in spring, 2003. Initial operations are planned for late in 2004.
Comparative Study of Advanced Turbulence Models for Turbomachinery
NASA Technical Reports Server (NTRS)
Hadid, Ali H.; Sindir, Munir M.
1996-01-01
A computational study has been undertaken to study the performance of advanced phenomenological turbulence models coded in a modular form to describe incompressible turbulent flow behavior in two dimensional/axisymmetric and three dimensional complex geometry. The models include a variety of two equation models (single and multi-scale k-epsilon models with different near wall treatments) and second moment algebraic and full Reynolds stress closure models. These models were systematically assessed to evaluate their performance in complex flows with rotation, curvature and separation. The models are coded as self contained modules that can be interfaced with a number of flow solvers. These modules are stand alone satellite programs that come with their own formulation, finite-volume discretization scheme, solver and boundary condition implementation. They will take as input (from any generic Navier-Stokes solver) the velocity field, grid (structured H-type grid) and computational domain specification (boundary conditions), and will deliver, depending on the model used, turbulent viscosity, or the components of the Reynolds stress tensor. There are separate 2D/axisymmetric and/or 3D decks for each module considered. The modules are tested using Rocketdyn's proprietary code REACT. The code utilizes an efficient solution procedure to solve Navier-Stokes equations in a non-orthogonal body-fitted coordinate system. The differential equations are discretized over a finite-volume grid using a non-staggered variable arrangement and an efficient solution procedure based on the SIMPLE algorithm for the velocity-pressure coupling is used. The modules developed have been interfaced and tested using finite-volume, pressure-correction CFD solvers which are widely used in the CFD community. Other solvers can also be used to test these modules since they are independently structured with their own discretization scheme and solver methodology. Many of these modules have been independently tested by Professor C.P. Chen and his group at the University of Alabama at Huntsville (UAH) by interfacing them with own flow solver (MAST).
NASA Astrophysics Data System (ADS)
Mangosing, D. C.; Chen, G.; Kusterer, J.; Rinsland, P.; Perez, J.; Sorlie, S.; Parker, L.
2011-12-01
One of the objectives of the NASA Langley Research Center's MEaSURES project, "Creating a Unified Airborne Database for Model Assessment", is the development of airborne Earth System Data Records (ESDR) for the regional and global model assessment and validation activities performed by the tropospheric chemistry and climate modeling communities. The ongoing development of ADAM, a web site designed to access a unified, standardized and relational ESDR database, meets this objective. The ESDR database is derived from publically available data sets, from NASA airborne field studies to airborne and in-situ studies sponsored by NOAA, NSF, and numerous international partners. The ADAM web development activities provide an opportunity to highlight a growing synergy between the Airborne Science Data for Atmospheric Composition (ASD-AC) group at NASA Langley and the NASA Langley's Atmospheric Sciences Data Center (ASDC). These teams will collaborate on the ADAM web application by leveraging the state-of-the-art service and message-oriented data distribution architecture developed and implemented by ASDC and using a web-based tool provided by the ASD-AC group whose user interface accommodates the nuanced perspective of science users in the atmospheric chemistry and composition and climate modeling communities.
DART: Tools and Support for Ensemble Data Assimilation Research, Operations, and Education
NASA Astrophysics Data System (ADS)
Hoar, T. J.; Anderson, J. L.; Collins, N.; Raeder, K.; Kershaw, H.; Romine, G. S.; Mizzi, A. P.; Chatterjee, A.; Karspeck, A. R.; Zarzycki, C. M.; Ha, S. Y.; Barre, J.; Gaubert, B.
2014-12-01
The Data Assimilation Research Testbed (DART) is a community facility for ensemble data assimilation developed and supported by the National Center for Atmospheric Research. DART provides a comprehensive suite of software, documentation, examples and tutorials that can be used for ensemble data assimilation research, operations, and education. Scientists and software engineers from the Data Assimilation Research Section at NCAR are available to actively support DART users who want to use existing DART products or develop their own new applications. Current DART users range from university professors teaching data assimilation, to individual graduate students working with simple models, through national laboratories doing operational prediction with large state-of-the-art models. DART runs efficiently on many computational platforms ranging from laptops through thousands of cores on the newest supercomputers. This poster focuses on several recent research activities using DART with geophysical models. First, DART is being used with the Community Atmosphere Model Spectral Element (CAM-SE) and Model for Prediction Across Scales (MPAS) global atmospheric models that support locally enhanced grid resolution. Initial results from ensemble assimilation with both models are presented. DART is also being used to produce ensemble analyses of atmospheric tracers, in particular CO, in both the global CAM-Chem model and the regional Weather Research and Forecast with chemistry (WRF-Chem) model by assimilating observations from the Measurements of Pollution in the Troposphere (MOPITT) and Infrared Atmospheric Sounding Interferometer (IASI) instruments. Results from ensemble analyses in both models are presented. An interface between DART and the Community Atmosphere Biosphere Land Exchange (CABLE) model has been completed and ensemble land surface analyses with DART/CABLE will be discussed. Finally, an update on ensemble analyses in the fully-coupled Community Earth System (CESM) is presented. The poster includes instructions on how to get started using DART for research or educational applications.
Climate Information and Misinformation: Getting the Message Out
NASA Astrophysics Data System (ADS)
Carr, M.; Rubenstein, M.; Brash, K.; Hernandez, T. E.; Anderson, R. F.; Fulton, M.; Kahn, B.
2010-12-01
While it is commonly accepted that improved science comprehension is a key element to informed decisions on the many societal issues that interface with science and technology, it is not always clear what that understanding should entail. Is it knowledge of a set of facts and their context, the ability to read scientific papers, familiarity with data sets and their strengths and limitations, the development of original research? Physical scientists continue to operate assuming the deficit model: that lack of societal engagement results from ignorance or lack of information. Yet, in the case of climate, an active community of citizen scientists is engaged in a parallel research activity that aims to audit the basic tenets of the field, thus illustrating that greater literacy does not necessarily lead to consensus. Communication experts have long noted the inadequacy of the deficit model, highlighting the importance of prior knowledge, interests, and values. Science communicators recommend direct public engagement using non-traditional tools and fora. Here we explore three modes of engaging the public on the theme of climate change skepticism: a report published by a major financial institution (following a deficit model, but targeting a highly educated non-science community), blogging (using the broad potential reach and ongoing engagement of the internet), and student discussion groups (taking a participatory 'community outreach' approach).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, L.H., E-mail: Luhui.Han@tum.de; Hu, X.Y., E-mail: Xiangyu.Hu@tum.de; Adams, N.A., E-mail: Nikolaus.Adams@tum.de
In this paper we present a scale separation approach for multi-scale modeling of free-surface and two-phase flows with complex interface evolution. By performing a stimulus-response operation on the level-set function representing the interface, separation of resolvable and non-resolvable interface scales is achieved efficiently. Uniform positive and negative shifts of the level-set function are used to determine non-resolvable interface structures. Non-resolved interface structures are separated from the resolved ones and can be treated by a mixing model or a Lagrangian-particle model in order to preserve mass. Resolved interface structures are treated by the conservative sharp-interface model. Since the proposed scale separationmore » approach does not rely on topological information, unlike in previous work, it can be implemented in a straightforward fashion into a given level set based interface model. A number of two- and three-dimensional numerical tests demonstrate that the proposed method is able to cope with complex interface variations accurately and significantly increases robustness against underresolved interface structures.« less
Human-computer interfaces applied to numerical solution of the Plateau problem
NASA Astrophysics Data System (ADS)
Elias Fabris, Antonio; Soares Bandeira, Ivana; Ramos Batista, Valério
2015-09-01
In this work we present a code in Matlab to solve the Problem of Plateau numerically, and the code will include human-computer interface. The Problem of Plateau has applications in areas of knowledge like, for instance, Computer Graphics. The solution method will be the same one of the Surface Evolver, but the difference will be a complete graphical interface with the user. This will enable us to implement other kinds of interface like ocular mouse, voice, touch, etc. To date, Evolver does not include any graphical interface, which restricts its use by the scientific community. Specially, its use is practically impossible for most of the Physically Challenged People.
CLIPS application user interface for the PC
NASA Technical Reports Server (NTRS)
Jenkins, Jim; Holbrook, Rebecca; Shewhart, Mark; Crouse, Joey; Yarost, Stuart
1991-01-01
The majority of applications that utilize expert system development programs for their knowledge representation and inferencing capability require some form of interface with the end user. This interface is more than likely an interaction through the computer screen. When building an application the user interface can prove to be the most difficult and time consuming aspect to program. Commercial products currently exist which address this issue. To keep pace C Language Integrated Production System (CLIPS) will need to find a solution for their lack of an easy to use Application User Interface (AUI). This paper represents a survey of the DoD CLIPS' user community and provides the backbone of a possible solution.
Revisiting and Extending Interface Penalties for Multi-Domain Summation-by-Parts Operators
NASA Technical Reports Server (NTRS)
Carpenter, Mark H.; Nordstrom, Jan; Gottlieb, David
2007-01-01
General interface coupling conditions are presented for multi-domain collocation methods, which satisfy the summation-by-parts (SBP) spatial discretization convention. The combined interior/interface operators are proven to be L2 stable, pointwise stable, and conservative, while maintaining the underlying accuracy of the interior SBP operator. The new interface conditions resemble (and were motivated by) those used in the discontinuous Galerkin finite element community, and maintain many of the same properties. Extensive validation studies are presented using two classes of high-order SBP operators: 1) central finite difference, and 2) Legendre spectral collocation.
Leahy-Warren, Patricia; Mulcahy, Helen; Benefield, Lazelle; Bradley, Colin; Coffey, Alice; Donohoe, Ann; Fitzgerald, Serena; Frawley, Tim; Healy, Elizabeth; Healy, Maria; Kelly, Marcella; McCarthy, Bernard; McLoughlin, Kathleen; Meagher, Catherine; O'Connell, Rhona; O'Mahony, Aoife; Paul, Gillian; Phelan, Amanda; Stokes, Diarmuid; Walsh, Jessica; Savage, Eileen
2017-01-01
Successful models of nursing and midwifery in the community delivering healthcare throughout the lifespan and across a health and illness continuum are limited, yet necessary to guide global health services. Primary and community health services are the typical points of access for most people and the location where most care is delivered. The scope of primary healthcare is complex and multifaceted and therefore requires a practice framework with sound conceptual and theoretical underpinnings. The aim of this paper is to present a conceptual model informed by a scoping evidence review of the literature. A scoping evidence review of the literature was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement. Databases included CINAHL, MEDLINE, PsycINFO and SocINDEX using the EBSCO platform and the Cochrane Library using the keywords: model, nursing, midwifery, community, primary care. Grey literature for selected countries was searched using the Google 'advanced' search interface. Data extraction and quality appraisal for both empirical and grey literature were conducted independently by two reviewers. From 127 empirical and 24 non-empirical papers, data extraction parameters, in addition to the usual methodological features, included: the nature of nursing and midwifery; the population group; interventions and main outcomes; components of effective nursing and midwifery outcomes. The evidence was categorised into six broad areas and subsequently synthesised into four themes. These were not mutually exclusive: (1) Integrated and Collaborative Care; (2) Organisation and Delivery of Nursing and Midwifery Care in the Community; (3) Adjuncts to Nursing Care and (4) Overarching Conceptual Model. It is the latter theme that is the focus of this paper. In essence, the model depicts a person/client on a lifespan and preventative-curative trajectory. The health related needs of the client, commensurate with their point position, relative to both trajectories, determines the nurse or midwife intervention. Consequently, it is this need, that determines the discipline or speciality of the nurse or midwife with the most appropriate competencies. Use of a conceptual model of nursing and midwifery to inform decision-making in primary/community based care ensures clinical outcomes are meaningful and more sustainable. Operationalising this model for nursing and midwifery in the community demands strong leadership and effective clinical governance.
Ndengu, Masimba; Matope, Gift; de Garine-Wichatitsky, Michel; Tivapasi, Musavengana; Scacchia, Massimo; Bonfini, Barbara; Pfukenyi, Davis Mubika
2017-10-01
A study was conducted to investigate seroprevalence and risk factors for Brucella species infection in cattle and some wildlife species in communities living at the periphery of the Great Limpopo Transfrontier Conservation Area in south eastern Zimbabwe. Three study sites were selected based on the type of livestock-wildlife interface: porous livestock-wildlife interface (unrestricted); non-porous livestock-wildlife interface (restricted by fencing); and livestock-wildlife non-interface (totally absent or control). Sera were collected from cattle aged≥2years representing both female and intact male animals. Sera were also collected from selected wild ungulates from Mabalauta (porous interface) and Chipinda (non-interface) areas of the Gonarezhou National Park. Samples were screened for Brucellaantibodies using the Rose Bengal plate test and confirmed by the complement fixation test. Data were analysed by descriptive statistics and multivariate logistic regression modelling. In cattle, brucellosis seroprevalence from all areas was 16.7% (169/1011; 95% CI: 14.5-19.2%). The porous interface recorded a significantly (p=0.03) higher seroprevalence (19.5%; 95% CI: 16.1-23.4%) compared to the non-interface area (13.0%; 95% CI: 9.2-19.9%).The odds of Brucellaseropositivity increased progressively with parity of animals and were also three times higher (OR=3.0, 2.0
NASA Astrophysics Data System (ADS)
Lindholm, D. M.; Wilson, A.
2012-12-01
The steps many scientific data users go through to use data (after discovering it) can be rather tedious, even when dealing with datasets within their own discipline. Accessing data across domains often seems intractable. We present here, LaTiS, an Open Source brokering solution that bridges the gap between the source data and the user's code by defining a unified data model plus a plugin framework for "adapters" to read data from their native source, "filters" to perform server side data processing, and "writers" to output any number of desired formats or streaming protocols. A great deal of work is being done in the informatics community to promote multi-disciplinary science with a focus on search and discovery based on metadata - information about the data. The goal of LaTiS is to go that last step to provide a uniform interface to read the dataset into computer programs and other applications once it has been identified. The LaTiS solution for integrating a wide variety of data models is to return to mathematical fundamentals. The LaTiS data model emphasizes functional relationships between variables. For example, a time series of temperature measurements can be thought of as a function that maps a time to a temperature. With just three constructs: "Scalar" for a single variable, "Tuple" for a collection of variables, and "Function" to represent a set of independent and dependent variables, the LaTiS data model can represent most scientific datasets at a low level that enables uniform data access. Higher level abstractions can be built on top of the basic model to add more meaningful semantics for specific user communities. LaTiS defines its data model in terms of the Unified Modeling Language (UML). It also defines a very thin Java Interface that can be implemented by numerous existing data interfaces (e.g. NetCDF-Java) such that client code can access any dataset via the Java API, independent of the underlying data access mechanism. LaTiS also provides a reference implementation of the data model and server framework (with a RESTful service interface) in the Scala programming language. Scala can be thought of as the next generation of Java. It runs on the Java Virtual Machine and can directly use Java code. Scala improves upon Java's object-oriented capabilities and adds support for functional programming paradigms which are particularly well suited for scientific data analysis. The Scala implementation of LaTiS can be thought of as a Domain Specific Language (DSL) which presents an API that better matches the semantics of the problems scientific data users are trying to solve. Instead of working with bytes, ints, or arrays, the data user can directly work with data as "time series" or "spectra". LaTiS provides many layers of abstraction with which users can interact to support a wide variety of data access and analysis needs.
KiMoSys: a web-based repository of experimental data for KInetic MOdels of biological SYStems
2014-01-01
Background The kinetic modeling of biological systems is mainly composed of three steps that proceed iteratively: model building, simulation and analysis. In the first step, it is usually required to set initial metabolite concentrations, and to assign kinetic rate laws, along with estimating parameter values using kinetic data through optimization when these are not known. Although the rapid development of high-throughput methods has generated much omics data, experimentalists present only a summary of obtained results for publication, the experimental data files are not usually submitted to any public repository, or simply not available at all. In order to automatize as much as possible the steps of building kinetic models, there is a growing requirement in the systems biology community for easily exchanging data in combination with models, which represents the main motivation of KiMoSys development. Description KiMoSys is a user-friendly platform that includes a public data repository of published experimental data, containing concentration data of metabolites and enzymes and flux data. It was designed to ensure data management, storage and sharing for a wider systems biology community. This community repository offers a web-based interface and upload facility to turn available data into publicly accessible, centralized and structured-format data files. Moreover, it compiles and integrates available kinetic models associated with the data. KiMoSys also integrates some tools to facilitate the kinetic model construction process of large-scale metabolic networks, especially when the systems biologists perform computational research. Conclusions KiMoSys is a web-based system that integrates a public data and associated model(s) repository with computational tools, providing the systems biology community with a novel application facilitating data storage and sharing, thus supporting construction of ODE-based kinetic models and collaborative research projects. The web application implemented using Ruby on Rails framework is freely available for web access at http://kimosys.org, along with its full documentation. PMID:25115331
Improving assessment and modelling of climate change impacts on global terrestrial biodiversity.
McMahon, Sean M; Harrison, Sandy P; Armbruster, W Scott; Bartlein, Patrick J; Beale, Colin M; Edwards, Mary E; Kattge, Jens; Midgley, Guy; Morin, Xavier; Prentice, I Colin
2011-05-01
Understanding how species and ecosystems respond to climate change has become a major focus of ecology and conservation biology. Modelling approaches provide important tools for making future projections, but current models of the climate-biosphere interface remain overly simplistic, undermining the credibility of projections. We identify five ways in which substantial advances could be made in the next few years: (i) improving the accessibility and efficiency of biodiversity monitoring data, (ii) quantifying the main determinants of the sensitivity of species to climate change, (iii) incorporating community dynamics into projections of biodiversity responses, (iv) accounting for the influence of evolutionary processes on the response of species to climate change, and (v) improving the biophysical rule sets that define functional groupings of species in global models. Published by Elsevier Ltd.
Formally verifying human–automation interaction as part of a system model: limitations and tradeoffs
Bass, Ellen J.
2011-01-01
Both the human factors engineering (HFE) and formal methods communities are concerned with improving the design of safety-critical systems. This work discusses a modeling effort that leveraged methods from both fields to perform formal verification of human–automation interaction with a programmable device. This effort utilizes a system architecture composed of independent models of the human mission, human task behavior, human-device interface, device automation, and operational environment. The goals of this architecture were to allow HFE practitioners to perform formal verifications of realistic systems that depend on human–automation interaction in a reasonable amount of time using representative models, intuitive modeling constructs, and decoupled models of system components that could be easily changed to support multiple analyses. This framework was instantiated using a patient controlled analgesia pump in a two phased process where models in each phase were verified using a common set of specifications. The first phase focused on the mission, human-device interface, and device automation; and included a simple, unconstrained human task behavior model. The second phase replaced the unconstrained task model with one representing normative pump programming behavior. Because models produced in the first phase were too large for the model checker to verify, a number of model revisions were undertaken that affected the goals of the effort. While the use of human task behavior models in the second phase helped mitigate model complexity, verification time increased. Additional modeling tools and technological developments are necessary for model checking to become a more usable technique for HFE. PMID:21572930
Novel Scientific Visualization Interfaces for Interactive Information Visualization and Sharing
NASA Astrophysics Data System (ADS)
Demir, I.; Krajewski, W. F.
2012-12-01
As geoscientists are confronted with increasingly massive datasets from environmental observations to simulations, one of the biggest challenges is having the right tools to gain scientific insight from the data and communicate the understanding to stakeholders. Recent developments in web technologies make it easy to manage, visualize and share large data sets with general public. Novel visualization techniques and dynamic user interfaces allow users to interact with data, and modify the parameters to create custom views of the data to gain insight from simulations and environmental observations. This requires developing new data models and intelligent knowledge discovery techniques to explore and extract information from complex computational simulations or large data repositories. Scientific visualization will be an increasingly important component to build comprehensive environmental information platforms. This presentation provides an overview of the trends and challenges in the field of scientific visualization, and demonstrates information visualization and communication tools in the Iowa Flood Information System (IFIS), developed within the light of these challenges. The IFIS is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to and visualization of flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, and other flood-related data for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS. 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert communities in advance to help minimize damage of floods.
NASA Astrophysics Data System (ADS)
Zimmer, J.; O'Connor, B.; Halmo, K.; Xiong, A.
2016-02-01
Nitrification is one of the processes that prevents accumulation of ammonium in aerobic near-bottom water of almost any basin-type ecosystem. Ammonium arises in part from digestive excretion as well as decomposition and diagenesis of organic matter. Ammonium inputs are especially pronounced near abundant benthic invertebrate communities (e.g., mussel or oyster beds) and where fish congregate en masse. Recent basin-scale changes in ecology of Lake Michigan have resulted in several zones of high excretion that are not accompanied by ammonium accumulation. A roller-bottle simulation of the sediment-water interface, using sand as the solid phase, is used with natural enrichments of nitrifier communities to measure empirical values for key terms in a mathematical model to describe the N-cycle process components of our closed model system. The maximum velocity of transformation is directly proportional to solid phase material in a mature system, with half-saturation values for ammonium and nitrite transformation of 207.3 and 10.8 µM respectively. These are significantly higher than ambient concentrations of 2-5 and 0.2-1.0 µM respectively for dense invertebrate communities but in line with observed values for dense fish aggregations. Thus regulation of reduced nitrogenous compounds can be very effective in these communities when there is sufficient interaction of the solid substrate with the source water. Further analysis of rate parameters and controls in the model system, and assessment of different natural and artificial solid phases for biofilm establishment and nitrification parameters is underway.
WholeCellSimDB: a hybrid relational/HDF database for whole-cell model predictions.
Karr, Jonathan R; Phillips, Nolan C; Covert, Markus W
2014-01-01
Mechanistic 'whole-cell' models are needed to develop a complete understanding of cell physiology. However, extracting biological insights from whole-cell models requires running and analyzing large numbers of simulations. We developed WholeCellSimDB, a database for organizing whole-cell simulations. WholeCellSimDB was designed to enable researchers to search simulation metadata to identify simulations for further analysis, and quickly slice and aggregate simulation results data. In addition, WholeCellSimDB enables users to share simulations with the broader research community. The database uses a hybrid relational/hierarchical data format architecture to efficiently store and retrieve both simulation setup metadata and results data. WholeCellSimDB provides a graphical Web-based interface to search, browse, plot and export simulations; a JavaScript Object Notation (JSON) Web service to retrieve data for Web-based visualizations; a command-line interface to deposit simulations; and a Python API to retrieve data for advanced analysis. Overall, we believe WholeCellSimDB will help researchers use whole-cell models to advance basic biological science and bioengineering. http://www.wholecellsimdb.org SOURCE CODE REPOSITORY: URL: http://github.com/CovertLab/WholeCellSimDB. © The Author(s) 2014. Published by Oxford University Press.
Diffuse-interface model for rapid phase transformations in nonequilibrium systems.
Galenko, Peter; Jou, David
2005-04-01
A thermodynamic approach to rapid phase transformations within a diffuse interface in a binary system is developed. Assuming an extended set of independent thermodynamic variables formed by the union of the classic set of slow variables and the space of fast variables, we introduce finiteness of the heat and solute diffusive propagation at the finite speed of the interface advancing. To describe transformations within the diffuse interface, we use the phase-field model which allows us to follow steep but smooth changes of phase within the width of the diffuse interface. Governing equations of the phase-field model are derived for the hyperbolic model, a model with memory, and a model of nonlinear evolution of transformation within the diffuse interface. The consistency of the model is proved by the verification of the validity of the condition of positive entropy production and by outcomes of the fluctuation-dissipation theorem. A comparison with existing sharp-interface and diffuse-interface versions of the model is given.
An overview of San Francisco Bay PORTS
Cheng, Ralph T.; McKinnie, David; English, Chad; Smith, Richard E.
1998-01-01
The Physical Oceanographic Real-Time System (PORTS) provides observations of tides, tidal currents, and meteorological conditions in real-time. The San Francisco Bay PORTS (SFPORTS) is a decision support system to facilitate safe and efficient maritime commerce. In addition to real-time observations, SFPORTS includes a nowcast numerical model forming a San Francisco Bay marine nowcast system. SFPORTS data and nowcast numerical model results are made available to users through the World Wide Web (WWW). A brief overview of SFPORTS is presented, from the data flow originated at instrument sensors to final results delivered to end users on the WWW. A user-friendly interface for SFPORTS has been designed and implemented. Appropriate field data analysis, nowcast procedures, design and generation of graphics for WWW display of field data and nowcast results are presented and discussed. Furthermore, SFPORTS is designed to support hazardous materials spill prevention and response, and to serve as resources to scientists studying the health of San Francisco Bay ecosystem. The success (or failure) of the SFPORTS to serve the intended user community is determined by the effectiveness of the user interface.
Li, Yan; Andrade, Jorge
2017-01-01
A growing trend in the biomedical community is the use of Next Generation Sequencing (NGS) technologies in genomics research. The complexity of downstream differential expression (DE) analysis is however still challenging, as it requires sufficient computer programing and command-line knowledge. Furthermore, researchers often need to evaluate and visualize interactively the effect of using differential statistical and error models, assess the impact of selecting different parameters and cutoffs, and finally explore the overlapping consensus of cross-validated results obtained with different methods. This represents a bottleneck that slows down or impedes the adoption of NGS technologies in many labs. We developed DEApp, an interactive and dynamic web application for differential expression analysis of count based NGS data. This application enables models selection, parameter tuning, cross validation and visualization of results in a user-friendly interface. DEApp enables labs with no access to full time bioinformaticians to exploit the advantages of NGS applications in biomedical research. This application is freely available at https://yanli.shinyapps.io/DEAppand https://gallery.shinyapps.io/DEApp.
Accurate characterization of wafer bond toughness with the double cantilever specimen
NASA Astrophysics Data System (ADS)
Turner, Kevin T.; Spearing, S. Mark
2008-01-01
The displacement loaded double cantilever test, also referred to as the "Maszara test" and the "crack opening method" by the wafer bonding community, is a common technique used to evaluate the interface toughness or surface energy of direct wafer bonds. While the specimen is widely used, there has been a persistent question as to the accuracy of the method since the actual specimen geometry differs from the ideal beam geometry assumed in the expression used for data reduction. The effect of conducting the test on whole wafer pairs, in which the arms of cantilevers are wide plates rather than slender beams, is examined in this work using finite element analysis. A model is developed to predict the equilibrium shape of the crack front and to develop a corrected expression for calculating interface toughness from crack length measurements obtained in tests conducted on whole wafer pairs. The finite element model, which is validated through comparison to experiments, demonstrates that using the traditional beam theory-based expressions for data reduction can lead to errors of up to 25%.
NASA Astrophysics Data System (ADS)
Whitestone, Jennifer J.; Geisen, Glen R.; McQuiston, Barbara K.
1997-03-01
Anthropometric surveys conducted by the military provide comprehensive human body measurement data that are human interface requirements for successful mission performance of weapon systems, including cockpits, protective equipment, and clothing. The application of human body dimensions to model humans and human-machine performance begins with engineering anthropometry. There are two critical elements to engineering anthropometry: data acquisition and data analysis. First, the human body is captured dimensionally with either traditional anthropometric tools, such as calipers and tape measures, or with advanced image acquisition systems, such as a laser scanner. Next, numerous statistical analysis tools, such as multivariate modeling and feature envelopes, are used to effectively transition these data for design and evaluation of equipment and work environments. Recently, Air Force technology transfer allowed researchers at the Computerized Anthropometric Research and Design (CARD) Laboratory at Wright-Patterson Air Force Base to work with the Dayton, Ohio area medical community in assessing the rate of wound healing and improving the fit of total contract burn masks. This paper describes the successful application of CARD Lab engineering anthropometry to two medically oriented human interface problems.
Complex restoration challenges: weeds, seeds, and roads in a forested wildland urban interface
Michelle Buonopane; Gabrielle Snider; Becky K. Kerns; Paul S. Doescher
2013-01-01
Federal policies in the US strongly emphasize reducing hazardous fuels at the Wildland Urban Interface (WUI). However, these areas present restoration challenges as they often have exotic weeds, frequent human disturbance, and the presence of roads. Understanding seed banks is important in planning for desirable post-disturbance community conditions, developing...
Coupling of snow and permafrost processes using the Basic Modeling Interface (BMI)
NASA Astrophysics Data System (ADS)
Wang, K.; Overeem, I.; Jafarov, E. E.; Piper, M.; Stewart, S.; Clow, G. D.; Schaefer, K. M.
2017-12-01
We developed a permafrost modeling tool based by implementing the Kudryavtsev empirical permafrost active layer depth model (the so-called "Ku" component). The model is specifically set up to have a basic model interface (BMI), which enhances the potential coupling to other earth surface processes model components. This model is accessible through the Web Modeling Tool in Community Surface Dynamics Modeling System (CSDMS). The Kudryavtsev model has been applied for entire Alaska to model permafrost distribution at high spatial resolution and model predictions have been verified by Circumpolar Active Layer Monitoring (CALM) in-situ observations. The Ku component uses monthly meteorological forcing, including air temperature, snow depth, and snow density, and predicts active layer thickness (ALT) and temperature on the top of permafrost (TTOP), which are important factors in snow-hydrological processes. BMI provides an easy approach to couple the models with each other. Here, we provide a case of coupling the Ku component to snow process components, including the Snow-Degree-Day (SDD) method and Snow-Energy-Balance (SEB) method, which are existing components in the hydrological model TOPOFLOW. The work flow is (1) get variables from meteorology component, set the values to snow process component, and advance the snow process component, (2) get variables from meteorology and snow component, provide these to the Ku component and advance, (3) get variables from snow process component, set the values to meteorology component, and advance the meteorology component. The next phase is to couple the permafrost component with fully BMI-compliant TOPOFLOW hydrological model, which could provide a useful tool to investigate the permafrost hydrological effect.
NASA Astrophysics Data System (ADS)
Caruso, Alice; Boano, Fulvio; Ridolfi, Luca; Chopp, David L.; Packman, Aaron
2017-05-01
Riverbed sediments host important biogeochemical processes that play a key role in nutrient dynamics. Sedimentary nutrient transformations are mediated by bacteria in the form of attached biofilms. The influence of microbial metabolic activity on the hydrochemical conditions within the hyporheic zone is poorly understood. We present a hydrobiogeochemical model to assess how the growth of heterotrophic and autotrophic biomass affects the transport and transformation of dissolved nitrogen compounds in bed form-induced hyporheic zones. Coupling between hyporheic exchange, nitrogen metabolism, and biomass growth leads to an equilibrium between permeability reduction and microbial metabolism that yields shallow hyporheic flows in a region with low permeability and high rates of microbial metabolism near the stream-sediment interface. The results show that the bioclogging caused by microbial growth can constrain rates and patterns of hyporheic fluxes and microbial transformation rate in many streams.
Biofilm growth program and architecture revealed by single-cell live imaging
NASA Astrophysics Data System (ADS)
Yan, Jing; Sabass, Benedikt; Stone, Howard; Wingreen, Ned; Bassler, Bonnie
Biofilms are surface-associated bacterial communities. Little is known about biofilm structure at the level of individual cells. We image living, growing Vibrio cholerae biofilms from founder cells to ten thousand cells at single-cell resolution, and discover the forces underpinning the architectural evolution of the biofilm. Mutagenesis, matrix labeling, and simulations demonstrate that surface-adhesion-mediated compression causes V. cholerae biofilms to transition from a two-dimensional branched morphology to a dense, ordered three-dimensional cluster. We discover that directional proliferation of rod-shaped bacteria plays a dominant role in shaping the biofilm architecture, and this growth pattern is controlled by a single gene. Competition analyses reveal the advantages of the dense growth mode in providing the biofilm with superior mechanical properties. We will further present continuum theory to model the three-dimensional growth of biofilms at the solid-liquid interface as well as solid-air interface.
Ion specific correlations in bulk and at biointerfaces.
Kalcher, I; Horinek, D; Netz, R R; Dzubiella, J
2009-10-21
Ion specific effects are ubiquitous in any complex colloidal or biological fluid in bulk or at interfaces. The molecular origins of these 'Hofmeister effects' are not well understood and their theoretical description poses a formidable challenge to the modeling and simulation community. On the basis of the combination of atomistically resolved molecular dynamics (MD) computer simulations and statistical mechanics approaches, we present a few selected examples of specific electrolyte effects in bulk, at simple neutral and charged interfaces, and on a short α-helical peptide. The structural complexity in these strongly Coulomb-correlated systems is highlighted and analyzed in the light of available experimental data. While in general the comparison of MD simulations to experiments often lacks quantitative agreement, mostly because molecular force fields and coarse-graining procedures remain to be optimized, the consensus as regards trends provides important insights into microscopic hydration and binding mechanisms.
Conceptualizing a Genomics Software Institute (GSI)
Gilbert, Jack A.; Catlett, Charlie; Desai, Narayan; Knight, Rob; White, Owen; Robbins, Robert; Sankaran, Rajesh; Sansone, Susanna-Assunta; Field, Dawn; Meyer, Folker
2012-01-01
Microbial ecology has been enhanced greatly by the ongoing ‘omics revolution, bringing half the world's biomass and most of its biodiversity into analytical view for the first time; indeed, it feels almost like the invention of the microscope and the discovery of the new world at the same time. With major microbial ecology research efforts accumulating prodigious quantities of sequence, protein, and metabolite data, we are now poised to address environmental microbial research at macro scales, and to begin to characterize and understand the dimensions of microbial biodiversity on the planet. What is currently impeding progress is the need for a framework within which the research community can develop, exchange and discuss predictive ecosystem models that describe the biodiversity and functional interactions. Such a framework must encompass data and metadata transparency and interoperation; data and results validation, curation, and search; application programming interfaces for modeling and analysis tools; and human and technical processes and services necessary to ensure broad adoption. Here we discuss the need for focused community interaction to augment and deepen established community efforts, beginning with the Genomic Standards Consortium (GSC), to create a science-driven strategic plan for a Genomic Software Institute (GSI). PMID:22675605
Integrated management of depression: improving system quality and creating effective interfaces.
Myette, Thomas L
2008-04-01
Depression is a chronic recurrent condition and is a leading cause of work disability. Improving occupational outcomes for depression will require an integrated approach that incorporates best practices from the clinical, community, and workplace systems. This article briefly reviews recent quality improvement initiatives and promising practices in each system and then shifts to the importance of systems integration. An integrated chronic care model uses a sophisticated case management process to support essential relationships, facilitate key plans, and efficiently link the three systems to optimize clinical, economic, and occupational outcomes. An expanded role for employers and their agents in the management of depression and other chronic diseases is seen as fundamental to maintaining a healthy and productive workforce. To improve occupational outcomes for depression by integrating best practices from the clinical, community, and workplace systems. After a brief review of quality improvement initiatives and promising practices in each system, an integrated chronic care model is introduced. A case management process that links critical systems, supports essential relationships, and facilitates key plans is expected to result in improvements in clinical, economic, and occupational outcomes. Employers should be more engaged with clinical and community partners in the prevention and control of depression in affected employees.
OpenFLUID: an open-source software environment for modelling fluxes in landscapes
NASA Astrophysics Data System (ADS)
Fabre, Jean-Christophe; Rabotin, Michaël; Crevoisier, David; Libres, Aline; Dagès, Cécile; Moussa, Roger; Lagacherie, Philippe; Raclot, Damien; Voltz, Marc
2013-04-01
Integrative landscape functioning has become a common concept in environmental management. Landscapes are complex systems where many processes interact in time and space. In agro-ecosystems, these processes are mainly physical processes, including hydrological-processes, biological processes and human activities. Modelling such systems requires an interdisciplinary approach, coupling models coming from different disciplines, developed by different teams. In order to support collaborative works, involving many models coupled in time and space for integrative simulations, an open software modelling platform is a relevant answer. OpenFLUID is an open source software platform for modelling landscape functioning, mainly focused on spatial fluxes. It provides an advanced object-oriented architecture allowing to i) couple models developed de novo or from existing source code, and which are dynamically plugged to the platform, ii) represent landscapes as hierarchical graphs, taking into account multi-scale, spatial heterogeneities and landscape objects connectivity, iii) run and explore simulations in many ways : using the OpenFLUID software interfaces for users (command line interface, graphical user interface), or using external applications such as GNU R through the provided ROpenFLUID package. OpenFLUID is developed in C++ and relies on open source libraries only (Boost, libXML2, GLib/GTK, OGR/GDAL, …). For modelers and developers, OpenFLUID provides a dedicated environment for model development, which is based on an open source toolchain, including the Eclipse editor, the GCC compiler and the CMake build system. OpenFLUID is distributed under the GPLv3 open source license, with a special exception allowing to plug existing models licensed under any license. It is clearly in the spirit of sharing knowledge and favouring collaboration in a community of modelers. OpenFLUID has been involved in many research applications, such as modelling of hydrological network transfer, diagnosis and prediction of water quality taking into account human activities, study of the effect of spatial organization on hydrological fluxes, modelling of surface-subsurface water exchanges, … At LISAH research unit, OpenFLUID is the supporting development platform of the MHYDAS model, which is a distributed model for agrosystems (Moussa et al., 2002, Hydrological Processes, 16, 393-412). OpenFLUID web site : http://www.openfluid-project.org
Provenance Storage, Querying, and Visualization in PBase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kianmajd, Parisa; Ludascher, Bertram; Missier, Paolo
2015-01-01
We present PBase, a repository for scientific workflows and their corresponding provenance information that facilitates the sharing of experiments among the scientific community. PBase is interoperable since it uses ProvONE, a standard provenance model for scientific workflows. Workflows and traces are stored in RDF, and with the support of SPARQL and the tree cover encoding, the repository provides a scalable infrastructure for querying the provenance data. Furthermore, through its user interface, it is possible to: visualize workflows and execution traces; visualize reachability relations within these traces; issue SPARQL queries; and visualize query results.
Hyperspectral Soil Mapper (HYSOMA) software interface: Review and future plans
NASA Astrophysics Data System (ADS)
Chabrillat, Sabine; Guillaso, Stephane; Eisele, Andreas; Rogass, Christian
2014-05-01
With the upcoming launch of the next generation of hyperspectral satellites that will routinely deliver high spectral resolution images for the entire globe (e.g. EnMAP, HISUI, HyspIRI, HypXIM, PRISMA), an increasing demand for the availability/accessibility of hyperspectral soil products is coming from the geoscience community. Indeed, many robust methods for the prediction of soil properties based on imaging spectroscopy already exist and have been successfully used for a wide range of soil mapping airborne applications. Nevertheless, these methods require expert know-how and fine-tuning, which makes them used sparingly. More developments are needed toward easy-to-access soil toolboxes as a major step toward the operational use of hyperspectral soil products for Earth's surface processes monitoring and modelling, to allow non-experienced users to obtain new information based on non-expensive software packages where repeatability of the results is an important prerequisite. In this frame, based on the EU-FP7 EUFAR (European Facility for Airborne Research) project and EnMAP satellite science program, higher performing soil algorithms were developed at the GFZ German Research Center for Geosciences as demonstrators for end-to-end processing chains with harmonized quality measures. The algorithms were built-in into the HYSOMA (Hyperspectral SOil MApper) software interface, providing an experimental platform for soil mapping applications of hyperspectral imagery that gives the choice of multiple algorithms for each soil parameter. The software interface focuses on fully automatic generation of semi-quantitative soil maps such as soil moisture, soil organic matter, iron oxide, clay content, and carbonate content. Additionally, a field calibration option calculates fully quantitative soil maps provided ground truth soil data are available. Implemented soil algorithms have been tested and validated using extensive in-situ ground truth data sets. The source of the HYSOMA code was developed as standalone IDL software to allow easy implementation in the hyperspectral and non-hyperspectral communities. Indeed, within the hyperspectral community, IDL language is very widely used, and for non-expert users that do not have an ENVI license, such software can be executed as a binary version using the free IDL virtual machine under various operating systems. Based on the growing interest of users in the software interface, the experimental software was adapted for public release version in 2012, and since then ~80 users of hyperspectral soil products downloaded the soil algorithms at www.gfz-potsdam.de/hysoma. The software interface was distributed for free as IDL plug-ins under the IDL-virtual machine. Up-to-now distribution of HYSOMA was based on a close source license model, for non-commercial and educational purposes. Currently, the HYSOMA is being under further development in the context of the EnMAP satellite mission, for extension and implementation in the EnMAP Box as EnSoMAP (EnMAP SOil MAPper). The EnMAP Box is a freely available, platform-independent software distributed under an open source license. In the presentation we will focus on an update of the HYSOMA software interface status and upcoming implementation in the EnMAP Box. Scientific software validation, associated publication record and users responses as well as software management and transition to open source will be discussed.
Van Metre, P.C.
1990-01-01
A computer-program interface between a geographic-information system and a groundwater flow model links two unrelated software systems for use in developing the flow models. The interface program allows the modeler to compile and manage geographic components of a groundwater model within the geographic information system. A significant savings of time and effort is realized in developing, calibrating, and displaying the groundwater flow model. Four major guidelines were followed in developing the interface program: (1) no changes to the groundwater flow model code were to be made; (2) a data structure was to be designed within the geographic information system that follows the same basic data structure as the groundwater flow model; (3) the interface program was to be flexible enough to support all basic data options available within the model; and (4) the interface program was to be as efficient as possible in terms of computer time used and online-storage space needed. Because some programs in the interface are written in control-program language, the interface will run only on a computer with the PRIMOS operating system. (USGS)
Space ecoliteracy- five informal education models for community empowerment
NASA Astrophysics Data System (ADS)
Venkataramaiah, Jagannatha; Jagannath, Sahana; J, Spandana; J, Sadhana; Jagannath, Shobha
Space ecoliteracy is a historical necessity and vital aspect of space age.Space Situational Awareness has taught lessons for mankind to look inward while stretching beyond cradle in human endeavours. Quality of life for every one on the only home of mankind-TERRA shall be a feasibility only after realizing Space ecoliteracy amongst all stakeholders in space quest. Objectives of Informal Environmental Education(UNESCO/UNEP/IEEP,1977) mandates awareness, attitude, knowledge, skill and participation at Individual and Community domains. Application of Space Technology at both Telecommunications and Remote Sensing domain have started making the fact that mankind has a challenge to learn and affirm earthmanship. Community empowerment focus after Earth Summit 1992 mandate of Sustainable Development has demonstrated a deluge of best practices in Agriculture,Urban, Industries and service sectors all over the globe. Further, deployment of Space technologies have proved the immense potential only after pre-empting the participatory approach at individual and community levels.Indian Space Programme with its 44th year of space service to national development has demonstrated self reliance in space technology for human development. Space technology for the most underdeveloped is a success story both in communication and information tools for quality of life. In this presentation Five Space Ecoliteracy models designed and validated since 1985 till date on informal environmental education namely 1) Ecological Environmental Studies by Students-EESS (1988): cited as one of the 20 best eco -education models by Earth Day Network,2)Community Eco Literacy Campaign-CEL,(2000): cited as a partner under Clean Up the World Campaign,UN, 3) Space Eco Literacy(2011)-an informa 8 week space eco literacy training reported at 39th COSPAR 12 assembly and 4) Space Eco Literacy by Practice(2014)- interface with formal education at institutions and 5) Space Ecoliteracy Mission as a space out reach in Popular Science are listed. Five models methodologies, design criterion and working details along with the net benefits to the community are discussed.
Frontiers in research on biodiversity and disease.
Johnson, Pieter T J; Ostfeld, Richard S; Keesing, Felicia
2015-10-01
Global losses of biodiversity have galvanised efforts to understand how changes to communities affect ecological processes, including transmission of infectious pathogens. Here, we review recent research on diversity-disease relationships and identify future priorities. Growing evidence from experimental, observational and modelling studies indicates that biodiversity changes alter infection for a range of pathogens and through diverse mechanisms. Drawing upon lessons from the community ecology of free-living organisms, we illustrate how recent advances from biodiversity research generally can provide necessary theoretical foundations, inform experimental designs, and guide future research at the interface between infectious disease risk and changing ecological communities. Dilution effects are expected when ecological communities are nested and interactions between the pathogen and the most competent host group(s) persist or increase as biodiversity declines. To move beyond polarising debates about the generality of diversity effects and develop a predictive framework, we emphasise the need to identify how the effects of diversity vary with temporal and spatial scale, to explore how realistic patterns of community assembly affect transmission, and to use experimental studies to consider mechanisms beyond simple changes in host richness, including shifts in trophic structure, functional diversity and symbiont composition. © 2015 John Wiley & Sons Ltd/CNRS.
Frontiers in research on biodiversity and disease
Johnson, Pieter T. J.; Ostfeld, Richard S.; Keesing, Felicia
2016-01-01
Global losses of biodiversity have galvanised efforts to understand how changes to communities affect ecological processes, including transmission of infectious pathogens. Here, we review recent research on diversity–disease relationships and identify future priorities. Growing evidence from experimental, observational and modelling studies indicates that biodiversity changes alter infection for a range of pathogens and through diverse mechanisms. Drawing upon lessons from the community ecology of free-living organisms, we illustrate how recent advances from biodiversity research generally can provide necessary theoretical foundations, inform experimental designs, and guide future research at the interface between infectious disease risk and changing ecological communities. Dilution effects are expected when ecological communities are nested and interactions between the pathogen and the most competent host group(s) persist or increase as biodiversity declines. To move beyond polarising debates about the generality of diversity effects and develop a predictive framework, we emphasise the need to identify how the effects of diversity vary with temporal and spatial scale, to explore how realistic patterns of community assembly affect transmission, and to use experimental studies to consider mechanisms beyond simple changes in host richness, including shifts in trophic structure, functional diversity and symbiont composition. PMID:26261049
From Community to Meta-Community Mental Health Care.
Bouras, Nick; Ikkos, George; Craig, Thomas
2018-04-20
Since the 1960s, we have witnessed the development and growth of community mental health care that continues to dominate mental health policy and practice. Several high-income countries have implemented community mental health care programmes but for many others, including mostly low- and middle-income countries, it remains an aspiration. Although community mental health care has been positive for many service users, it has also had severe shortcomings. Expectations that it would lead to fuller social integration have not been fulfilled and many service users remain secluded in sheltered or custodial environments with limited social contacts and no prospect of work. Others receive little or no service at all. In today’s complex landscape of increasingly specialised services for people with mental health problems, the number of possible interfaces between services is increasing. Together with existing uneven financing systems and a context of constant change, these interfaces are challenging us to develop effective care pathways adjusted to the needs of service users and their carers. This discussion paper reviews the developments in community mental health care over the recent years and puts forward the concept of “Meta-Community Mental Health Care”. “Meta-Community Mental Health Care” embraces pluralism in understanding and treating psychiatric disorders, acknowledges the complexities of community provision, and reflects the realities and needs of the current era of care.
From Community to Meta-Community Mental Health Care
Bouras, Nick; Ikkos, George; Craig, Thomas
2018-01-01
Since the 1960s, we have witnessed the development and growth of community mental health care that continues to dominate mental health policy and practice. Several high-income countries have implemented community mental health care programmes but for many others, including mostly low- and middle-income countries, it remains an aspiration. Although community mental health care has been positive for many service users, it has also had severe shortcomings. Expectations that it would lead to fuller social integration have not been fulfilled and many service users remain secluded in sheltered or custodial environments with limited social contacts and no prospect of work. Others receive little or no service at all. In today’s complex landscape of increasingly specialised services for people with mental health problems, the number of possible interfaces between services is increasing. Together with existing uneven financing systems and a context of constant change, these interfaces are challenging us to develop effective care pathways adjusted to the needs of service users and their carers. This discussion paper reviews the developments in community mental health care over the recent years and puts forward the concept of “Meta-Community Mental Health Care”. “Meta-Community Mental Health Care” embraces pluralism in understanding and treating psychiatric disorders, acknowledges the complexities of community provision, and reflects the realities and needs of the current era of care. PMID:29677100
BCube: A Broker Framework for Next Generation Geoscience
NASA Astrophysics Data System (ADS)
Khalsa, S. S.; Pearlman, J.; Nativi, S.
2013-12-01
EarthCube is an NSF initiative that aims to transform the conduct of research through the creation of community-guided cyberinfrastructure enabling the integration information and data across the geosciences. Following an initial phase of concept and community development activities, NSF has made awards for the development of cyberinfrastructure 'building blocks.' In this talk we describe the goals and methods for one of these projects - BCube, for Brokering Building Blocks. BCube addresses the need for effective and efficient multi-disciplinary collaboration and interoperability through the introduction of brokering technologies. Brokers, as information systems middleware, have existed for many years and are found in diverse domains and industries such as financial systems, business-to-business interfaces, medicine and the automotive industry, to name a few. However, the emergence of brokers in science is relatively new and is now being piloted with great promise in cyberinfrastructure and science communities in the U.S., Europe, and elsewhere. Brokers act as intermediaries between information systems that implement well-defined interfaces, providing a bridge between communities using different specifications. The BCube project is helping to build a truly cross-disciplinary, global platform for data providers, cyberinfrastructure developers, and data users to make data more available and interoperable through a brokering framework. Building on the GEOSS Discover and Access Broker (DAB), BCube will develop new modules and services including * Expanded semantic brokering * Business Model support for work flows * Automated metadata generation * Automated linking to services discovered via web crawling * Plug and play for most community service buses * Credential passing for seamless access to data * Ranking of search results from brokered catalogs Because facilitating cross-discipline research involves cultural and well as technical challenges, BCube is also addressing the sociological and educational components of infrastructure development. Our research is initially focused on four disciplines: hydrology, oceans, polar and weather, with an emphasis on connecting existing domain infrastructure elements to facilitate cross-domain communications.
On the origin of the electrostatic potential difference at a liquid-vacuum interface.
Harder, Edward; Roux, Benoît
2008-12-21
The microscopic origin of the interface potential calculated from computer simulations is elucidated by considering a simple model of molecules near an interface. The model posits that molecules are isotropically oriented and their charge density is Gaussian distributed. Molecules that have a charge density that is more negative toward their interior tend to give rise to a negative interface potential relative to the gaseous phase, while charge densities more positive toward their interior give rise to a positive interface potential. The interface potential for the model is compared to the interface potential computed from molecular dynamics simulations of the nonpolar vacuum-methane system and the polar vacuum-water interface system. The computed vacuum-methane interface potential from a molecular dynamics simulation (-220 mV) is captured with quantitative precision by the model. For the vacuum-water interface system, the model predicts a potential of -400 mV compared to -510 mV, calculated from a molecular dynamics simulation. The physical implications of this isotropic contribution to the interface potential is examined using the example of ion solvation in liquid methane.
NASA Astrophysics Data System (ADS)
Goldman, Amy E.; Graham, Emily B.; Crump, Alex R.; Kennedy, David W.; Romero, Elvira B.; Anderson, Carolyn G.; Dana, Karl L.; Resch, Charles T.; Fredrickson, Jim K.; Stegen, James C.
2017-09-01
The parafluvial hyporheic zone combines the heightened biogeochemical and microbial interactions indicative of a hyporheic region with direct atmospheric/terrestrial inputs and the effects of wet-dry cycles. Therefore, understanding biogeochemical cycling and microbial interactions in this ecotone is fundamental to understanding biogeochemical cycling at the aquatic-terrestrial interface and to creating robust hydrobiogeochemical models of dynamic river corridors. We aimed to (i) characterize biogeochemical and microbial differences in the parafluvial hyporheic zone across a small spatial domain (6 lateral meters) that spans a breadth of inundation histories and (ii) examine how parafluvial hyporheic sediments respond to laboratory-simulated re-inundation. Surface sediment was collected at four elevations along transects perpendicular to flow of the Columbia River, eastern WA, USA. The sediments were inundated by the river 0, 13, 127, and 398 days prior to sampling. Spatial variation in environmental variables (organic matter, moisture, nitrate, glucose, % C, % N) and microbial communities (16S and internal transcribed spacer (ITS) rRNA gene sequencing, qPCR) were driven by differences in inundation history. Microbial respiration did not differ significantly across inundation histories prior to forced inundation in laboratory incubations. Forced inundation suppressed microbial respiration across all histories, but the degree of suppression was dramatically different between the sediments saturated and unsaturated at the time of sample collection, indicating a binary threshold response to re-inundation. We present a conceptual model in which irregular hydrologic fluctuations facilitate microbial communities adapted to local conditions and a relatively high flux of CO2. Upon rewetting, microbial communities are initially suppressed metabolically, which results in lower CO2 flux rates primarily due to suppression of fungal respiration. Following prolonged inundation, the microbial community adapts to saturation by shifting composition, and the CO2 flux rebounds to prior levels due to the subsequent change in respiration. Our results indicate that the time between inundation events can push the system into alternate states: we suggest (i) that, above some threshold of inundation interval, re-inundation suppresses respiration to a consistent, low rate and (ii) that, below some inundation interval, re-inundation has a minor effect on respiration. Extending reactive transport models to capture processes that govern such dynamics will provide more robust predictions of river corridor biogeochemical function under altered surface water flow regimes in both managed and natural watersheds.
NASA Technical Reports Server (NTRS)
Picard, G.; Brucker, Ludovic; Roy, A.; Dupont, F.; Fily, M.; Royer, A.; Harlow, C.
2013-01-01
DMRT-ML is a physically based numerical model designed to compute the thermal microwave emission of a given snowpack. Its main application is the simulation of brightness temperatures at frequencies in the range 1-200 GHz similar to those acquired routinely by spacebased microwave radiometers. The model is based on the Dense Media Radiative Transfer (DMRT) theory for the computation of the snow scattering and extinction coefficients and on the Discrete Ordinate Method (DISORT) to numerically solve the radiative transfer equation. The snowpack is modeled as a stack of multiple horizontal snow layers and an optional underlying interface representing the soil or the bottom ice. The model handles both dry and wet snow conditions. Such a general design allows the model to account for a wide range of snow conditions. Hitherto, the model has been used to simulate the thermal emission of the deep firn on ice sheets, shallow snowpacks overlying soil in Arctic and Alpine regions, and overlying ice on the large icesheet margins and glaciers. DMRT-ML has thus been validated in three very different conditions: Antarctica, Barnes Ice Cap (Canada) and Canadian tundra. It has been recently used in conjunction with inverse methods to retrieve snow grain size from remote sensing data. The model is written in Fortran90 and available to the snow remote sensing community as an open-source software. A convenient user interface is provided in Python.
NASA Astrophysics Data System (ADS)
Roy, S. G.; Koons, P. O.; Gerbi, C. C.; Capps, D. K.; Tucker, G. E.; Rogers, Z. A.
2014-12-01
Sophisticated numerical tools exist for modeling geomorphic processes and linking them to tectonic and climatic systems, but they are often seen as inaccessible for users with an exploratory level of interest. We have improved the accessibility of landscape evolution models by producing a simple graphics user interface (GUI) that takes advantage of the Channel-Hillslope Integrated Landscape Development (CHILD) model. Model access is flexible: the user can edit values for basic geomorphic, tectonic, and climate parameters, or obtain greater control by defining the spatiotemporal distributions of those parameters. Users can make educated predictions by choosing their own parametric values for the governing equations and interpreting the results immediately through model graphics. This method of modeling allows users to iteratively build their understanding through experimentation. Use of this GUI is intended for inquiry and discovery-based learning activities. We discuss a number of examples of how the GUI can be used at the upper high school, introductory university, and advanced university level. Effective teaching modules initially focus on an inquiry-based example guided by the instructor. As students become familiar with the GUI and the CHILD model, the class can shift to more student-centered exploration and experimentation. To make model interpretations more robust, digital elevation models can be imported and direct comparisons can be made between CHILD model results and natural topography. The GUI is available online through the University of Maine's Earth and Climate Sciences website, through the Community Surface Dynamics Modeling System (CSDMS) model repository, or by contacting the corresponding author.
ERIC Educational Resources Information Center
Voydanoff, Patricia
2005-01-01
This article presents a broad conceptual framework that suggests ways in which community demands, resources, and strategies influence relationships between work demands, resources, and family well-being. Within-domain and boundary-spanning community demands and resources are proposed to combine with work demands and resources in relation to…
The Earth System Prediction Suite: Toward a Coordinated U.S. Modeling Capability
Theurich, Gerhard; DeLuca, C.; Campbell, T.; ...
2016-08-22
The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open-source terms or to credentialed users. Furthermore, the ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the United States. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC)more » Layer, a set of ESMF-based component templates and interoperability conventions. Our shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multiagency development of coupled modeling systems; controlled experimentation and testing; and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NAVGEM), the Hybrid Coordinate Ocean Model (HYCOM), and the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and the Goddard Earth Observing System Model, version 5 (GEOS-5), atmospheric general circulation model.« less
The Earth System Prediction Suite: Toward a Coordinated U.S. Modeling Capability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Theurich, Gerhard; DeLuca, C.; Campbell, T.
The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open-source terms or to credentialed users. Furthermore, the ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the United States. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC)more » Layer, a set of ESMF-based component templates and interoperability conventions. Our shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multiagency development of coupled modeling systems; controlled experimentation and testing; and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NAVGEM), the Hybrid Coordinate Ocean Model (HYCOM), and the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and the Goddard Earth Observing System Model, version 5 (GEOS-5), atmospheric general circulation model.« less
Leverage and Delegation in Developing an Information Model for Geology
NASA Astrophysics Data System (ADS)
Cox, S. J.
2007-12-01
GeoSciML is an information model and XML encoding developed by a group of primarily geologic survey organizations under the auspices of the IUGS CGI. The scope of the core model broadly corresponds with information traditionally portrayed on a geologic map, viz. interpreted geology, some observations, the map legend and accompanying memoir. The development of GeoSciML has followed the methodology specified for an Application Schema defined by OGC and ISO 19100 series standards. This requires agreement within a community concerning their domain model, its formal representation using UML, documentation as a Feature Type Catalogue, with an XML Schema implementation generated from the model by applying a rule-based transformation. The framework and technology supports a modular governance process. Standard datatypes and GI components (geometry, the feature and coverage metamodels, metadata) are imported from the ISO framework. The observation and sampling model (including boreholes) is imported from OGC. The scale used for most scalar literal values (terms, codes, measures) allows for localization where necessary. Wildcards and abstract base- classes provide explicit extensibility points. Link attributes appear in a regular way in the encodings, allowing reference to external resources using URIs. The encoding is compatible with generic GI data-service interfaces (WFS, WMS, SOS). For maximum interoperability within a community, the interfaces may be specialised through domain-specified constraints (e.g. feature-types, scale and vocabulary bindings, query-models). Formalization using UML and XML allows use of standard validation and processing tools. Use of upper-level elements defined for generic GI application reduces the development effort and governance resonsibility, while maximising cross-domain interoperability. On the other hand, enabling specialization to be delegated in a controlled manner is essential to adoption across a range of subdisciplines and jurisdictions. The GeoSciML design team is responsible only for the part of the model that is unique to geology but for which general agreement can be reached within the domain. This paper is presented on behalf of the Interoperability Working Group of the IUGS Commission for Geoscience Information (CGI) - follow web-link for details of the membership.
Strategies to combat poverty and their interface with health promotion.
dos Santos Oliveira, Simone Helena; Alves Monteiro, Maria Adelane; Vieira Lopes, Maria do Socorro; Silva de Brito, Daniele Mary; Vieira, Neiva Francenely Cunha; Barroso, Maria Grasiela Teixeira; Ximenes, Lorena Barbosa
2007-01-01
The population impoverishment is a social reality whose overcoming is necessary so that we can think about health as a positive concept. This study proposes a reflection on the coping strategies adopted by the Conjunto Palmeira, a Brazilian community in the Northeast, and their interface with health promotion. This community's reality is an example of overcoming social exclusion for different regions of Brazil and other countries. The history of the Conjunto and the collective strategies of empowerment for coping with poverty and search for human development are initially presented. After that, we establish the relationship of those strategies with the action fields for health promotion. Finally, we consider that the mutual responsibility of the community with its health and its relationship with the environment in which they live are means of promoting transformation towards the conquest of a worthy social space.
InSAR Scientific Computing Environment
NASA Technical Reports Server (NTRS)
Rosen, Paul A.; Sacco, Gian Franco; Gurrola, Eric M.; Zabker, Howard A.
2011-01-01
This computing environment is the next generation of geodetic image processing technology for repeat-pass Interferometric Synthetic Aperture (InSAR) sensors, identified by the community as a needed capability to provide flexibility and extensibility in reducing measurements from radar satellites and aircraft to new geophysical products. This software allows users of interferometric radar data the flexibility to process from Level 0 to Level 4 products using a variety of algorithms and for a range of available sensors. There are many radar satellites in orbit today delivering to the science community data of unprecedented quantity and quality, making possible large-scale studies in climate research, natural hazards, and the Earth's ecosystem. The proposed DESDynI mission, now under consideration by NASA for launch later in this decade, would provide time series and multiimage measurements that permit 4D models of Earth surface processes so that, for example, climate-induced changes over time would become apparent and quantifiable. This advanced data processing technology, applied to a global data set such as from the proposed DESDynI mission, enables a new class of analyses at time and spatial scales unavailable using current approaches. This software implements an accurate, extensible, and modular processing system designed to realize the full potential of InSAR data from future missions such as the proposed DESDynI, existing radar satellite data, as well as data from the NASA UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar), and other airborne platforms. The processing approach has been re-thought in order to enable multi-scene analysis by adding new algorithms and data interfaces, to permit user-reconfigurable operation and extensibility, and to capitalize on codes already developed by NASA and the science community. The framework incorporates modern programming methods based on recent research, including object-oriented scripts controlling legacy and new codes, abstraction and generalization of the data model for efficient manipulation of objects among modules, and well-designed module interfaces suitable for command- line execution or GUI-programming. The framework is designed to allow users contributions to promote maximum utility and sophistication of the code, creating an open-source community that could extend the framework into the indefinite future.
NASA Astrophysics Data System (ADS)
Elia, Mario; Lafortezza, Raffaele; Lovreglio, Raffaella; Sanesi, Giovanni
2015-09-01
The dramatic increase of fire hazard in wildland-urban interfaces (WUIs) has required more detailed fuel management programs to preserve ecosystem functions and human settlements. Designing effective fuel treatment strategies allows to achieve goals such as resilient landscapes, fire-adapted communities, and ecosystem response. Therefore, obtaining background information on forest fuel parameters and fuel accumulation patterns has become an important first step in planning fuel management interventions. Site-specific fuel inventory data enhance the accuracy of fuel management planning and help forest managers in fuel management decision-making. We have customized four fuel models for WUIs in southern Italy, starting from forest classes of land-cover use and adopting a hierarchical clustering approach. Furthermore, we provide a prediction of the potential fire behavior of our customized fuel models using FlamMap 5 under different weather conditions. The results suggest that fuel model IIIP (Mediterranean maquis) has the most severe fire potential for the 95th percentile weather conditions and the least severe potential fire behavior for the 85th percentile weather conditions. This study shows that it is possible to create customized fuel models directly from fuel inventory data. This achievement has broad implications for land managers, particularly forest managers of the Mediterranean landscape, an ecosystem that is susceptible not only to wildfires but also to the increasing human population and man-made infrastructures.
Elia, Mario; Lafortezza, Raffaele; Lovreglio, Raffaella; Sanesi, Giovanni
2015-09-01
The dramatic increase of fire hazard in wildland-urban interfaces (WUIs) has required more detailed fuel management programs to preserve ecosystem functions and human settlements. Designing effective fuel treatment strategies allows to achieve goals such as resilient landscapes, fire-adapted communities, and ecosystem response. Therefore, obtaining background information on forest fuel parameters and fuel accumulation patterns has become an important first step in planning fuel management interventions. Site-specific fuel inventory data enhance the accuracy of fuel management planning and help forest managers in fuel management decision-making. We have customized four fuel models for WUIs in southern Italy, starting from forest classes of land-cover use and adopting a hierarchical clustering approach. Furthermore, we provide a prediction of the potential fire behavior of our customized fuel models using FlamMap 5 under different weather conditions. The results suggest that fuel model IIIP (Mediterranean maquis) has the most severe fire potential for the 95th percentile weather conditions and the least severe potential fire behavior for the 85th percentile weather conditions. This study shows that it is possible to create customized fuel models directly from fuel inventory data. This achievement has broad implications for land managers, particularly forest managers of the Mediterranean landscape, an ecosystem that is susceptible not only to wildfires but also to the increasing human population and man-made infrastructures.
NASA Astrophysics Data System (ADS)
Malin, R.; Pierce, S. A.; Bass, B. J.
2012-12-01
Socio-technical approaches to complex, ill-structured decision problems are needed to identify adaptive responses for earth resource management. This research presents a hybrid approach to create decision tools and engender dialogue among stakeholders for geothermal development in Idaho, United States and El Tatio, Chile. Based on the scarcity of data, limited information availability, and tensions across stakeholder interests we designed and constructed a decision support model that allows stakeholders to rapidly collect, input, and visualize geoscientific data to assess geothermal system impacts and possible development strategies. We have integrated this decision support model into multi-touch interfaces that can be easily used by scientists and stakeholders alike. This toolkit is part of a larger cyberinfrastructure project designed to collect and present geoscientific information to support decision making processes. Consultation with stakeholders at the El Tatio geothermal complex of northern Chile—indigenous communities, local and national government agencies, developers, and geoscientists - informed the implementation of a sustained dialogue process. The El Tatio field case juxtaposes basic parameters such as pH, spring temperature, geochemical content, and FLIR imagery with stakeholder perceptions of risks due to mineral extraction and energy exploration efforts. The results of interviews and a participatory workshop are driving the creation of three initiatives within an indigenous community group; 1) microentrepreneurial efforts for science-based tourism, 2) design of a citizen-led environmental monitoring network in the Altiplano, and 3) business planning for an indigenous renewable energy cooperative. This toolkit is also being applied in the Snake River Plain of Idaho has as part of the DOE sponsored National Student Geothermal Competition. The Idaho case extends results from the Chilean case to implement a more streamlined system to analyze geothermal resource potential as well as integrate the decision support system with multi-touch interfaces which allow multiple stakeholders to view and interact with data. Beyond visual and tactile appeal, these interfaces also allow participants to dynamically update decision variables and decision preferences to create multiple scenarios and evaluate potential outcomes. Through this interactive scenario building, potential development sites can be targeted and stakeholders can interact with data to engage in substantive dialogue for related long-term planning or crisis response.
An Assessment of the Southern Wildland-Urban Interface
L. Annie Hermansen; Edward A. Macie
2005-01-01
Severe wildfires in Florida in 1998 demonstrated the complexities that the wildland-urban interface presents for a diverse group of people who live and work there. These fires cost millions of dollars in suppression costs, reduced tourism, and damaged timber, businessess, and homes. Entire communities had to be evacuated, and many elderly people and others afflicated...
Allocating fuel breaks to optimally protect structures in the wildland-urban interface
Avi Bar-Massada; Volker C. Radeloff; Susan I. Stewart
2011-01-01
Wildland fire is a major concern in the wildland-urban interface (WUI), where human structures intermingle with wildland vegetation. Reducing wildfire risk in the WUI is more complicated than in wildland areas, owing to interactions between spatial patterns of housing and wildland fuels. Fuel treatments are commonly applied in wildlands surrounding WUI communities....
Reducing fuels in the wildland urban interface: Community perceptions of agency fuels treatments
Eric Toman; Melanie Stidham; Bruce Shindler; Sarah McCaffrey
2011-01-01
Wildland fires and resulting effects have increased in recent years. Efforts are under way nationwide to proactively manage vegetative conditions to reduce the threat of wildland fires. Public support is critical to the successful implementation of fuels reduction programs, particularly at the wildland-urban interface. This study examines public acceptance of fuels...
Zhao, Zenghui; Lv, Xianzhou; Wang, Weiming; Tan, Yunliang
2016-01-01
Considering the structure effect of tunnel stability in western mining of China, three typical kinds of numerical model were respectively built as follows based on the strain softening constitutive model and linear elastic-perfectly plastic model for soft rock and interface: R-M, R-C(s)-M and R-C(w)-M. Calculation results revealed that the stress-strain relation and failure characteristics of the three models vary between each other. The combination model without interface or with a strong interface presented continuous failure, while weak interface exhibited 'cut off' effect. Thus, conceptual models of bi-material model and bi-body model were established. Then numerical experiments of tri-axial compression were carried out for the two models. The relationships between stress evolution, failure zone and deformation rate fluctuations as well as the displacement of interface were detailed analyzed. Results show that two breakaway points of deformation rate actually demonstrate the starting and penetration of the main rupture, respectively. It is distinguishable due to the large fluctuation. The bi-material model shows general continuous failure while bi-body model shows 'V' type shear zone in weak body and failure in strong body near the interface due to the interface effect. With the increasing of confining pressure, the 'cut off' effect of weak interface is not obvious. These conclusions lay the theoretical foundation for further development of constitutive model for soft rock-coal combination body.
Rapid Prototyping of Hydrologic Model Interfaces with IPython
NASA Astrophysics Data System (ADS)
Farthing, M. W.; Winters, K. D.; Ahmadia, A. J.; Hesser, T.; Howington, S. E.; Johnson, B. D.; Tate, J.; Kees, C. E.
2014-12-01
A significant gulf still exists between the state of practice and state of the art in hydrologic modeling. Part of this gulf is due to the lack of adequate pre- and post-processing tools for newly developed computational models. The development of user interfaces has traditionally lagged several years behind the development of a particular computational model or suite of models. As a result, models with mature interfaces often lack key advancements in model formulation, solution methods, and/or software design and technology. Part of the problem has been a focus on developing monolithic tools to provide comprehensive interfaces for the entire suite of model capabilities. Such efforts require expertise in software libraries and frameworks for creating user interfaces (e.g., Tcl/Tk, Qt, and MFC). These tools are complex and require significant investment in project resources (time and/or money) to use. Moreover, providing the required features for the entire range of possible applications and analyses creates a cumbersome interface. For a particular site or application, the modeling requirements may be simplified or at least narrowed, which can greatly reduce the number and complexity of options that need to be accessible to the user. However, monolithic tools usually are not adept at dynamically exposing specific workflows. Our approach is to deliver highly tailored interfaces to users. These interfaces may be site and/or process specific. As a result, we end up with many, customized interfaces rather than a single, general-use tool. For this approach to be successful, it must be efficient to create these tailored interfaces. We need technology for creating quality user interfaces that is accessible and has a low barrier for integration into model development efforts. Here, we present efforts to leverage IPython notebooks as tools for rapid prototyping of site and application-specific user interfaces. We provide specific examples from applications in near-shore environments as well as levee analysis. We discuss our design decisions and methodology for developing customized interfaces, strategies for delivery of the interfaces to users in various computing environments, as well as implications for the design/implementation of simulation models.
Application of open source standards and technologies in the http://climate4impact.eu/ portal
NASA Astrophysics Data System (ADS)
Plieger, Maarten; Som de Cerff, Wim; Pagé, Christian; Tatarinova, Natalia
2015-04-01
This presentation will demonstrate how to calculate and visualize the climate indice SU (number of summer days) on the climate4impact portal. The following topics will be covered during the demonstration: - Security: Login using OpenID for access to the Earth System Grid Fedeation (ESGF) data nodes. The ESGF works in conjunction with several external websites and systems. The climate4impact portal uses X509 based short lived credentials, generated on behalf of the user with a MyProxy service. Single Sign-on (SSO) is used to make these websites and systems work together. - Discovery: Facetted search based on e.g. variable name, model and institute using the ESGF search services. A catalog browser allows for browsing through CMIP5 and any other climate model data catalogues (e.g. ESSENCE, EOBS, UNIDATA). - Processing using Web Processing Services (WPS): Transform data, subset, export into other formats, and perform climate indices calculations using Web Processing Services implemented by PyWPS, based on NCAR NCPP OpenClimateGIS and IS-ENES2 ICCLIM. - Visualization using Web Map Services (WMS): Visualize data from ESGF data nodes using ADAGUC Web Map Services. The aim of climate4impact is to enhance the use of Climate Research Data and to enhance the interaction with climate effect/impact communities. The portal is based on 21 impact use cases from 5 different European countries, and is evaluated by a user panel consisting of use case owners. It has been developed within the European projects IS-ENES and IS-ENES2 for more than 5 years, and its development currently continues within IS-ENES2 and CLIPC. As the climate impact community is very broad, the focus is mainly on the scientific impact community. This work has resulted in the ENES portal interface for climate impact communities and can be visited at http://climate4impact.eu/ The current main objectives for climate4impact can be summarized in two objectives. The first one is to work on a web interface which automatically generates a graphical user interface on WPS endpoints. The WPS calculates climate indices and subset data using OpenClimateGIS/ICCLIM on data stored in ESGF data nodes. Data is then transmitted from ESGF nodes over secured OpenDAP and becomes available in a new, per user, secured OpenDAP server. The results can then be visualized again using ADAGUC WMS. Dedicated wizards for processing of climate indices will be developed in close collaboration with users. The second one is to expose climate4impact services, so as to offer standardized services which can be used by other portals. This has the advantage to add interoperability between several portals, as well as to enable the design of specific portals aimed at different impact communities, either thematic or national, for example.
Interface for the documentation and compilation of a library of computer models in physiology.
Summers, R. L.; Montani, J. P.
1994-01-01
A software interface for the documentation and compilation of a library of computer models in physiology was developed. The interface is an interactive program built within a word processing template in order to provide ease and flexibility of documentation. A model editor within the interface directs the model builder as to standardized requirements for incorporating models into the library and provides the user with an index to the levels of documentation. The interface and accompanying library are intended to facilitate model development, preservation and distribution and will be available for public use. PMID:7950046
EDITORIAL: Focus on the neural interface Focus on the neural interface
NASA Astrophysics Data System (ADS)
Durand, Dominique M.
2009-10-01
The possibility of an effective connection between neural tissue and computers has inspired scientists and engineers to develop new ways of controlling and obtaining information from the nervous system. These applications range from `brain hacking' to neural control of artificial limbs with brain signals. Notwithstanding the significant advances in neural prosthetics in the last few decades and the success of some stimulation devices such as cochlear prosthesis, neurotechnology remains below its potential for restoring neural function in patients with nervous system disorders. One of the reasons for this limited impact can be found at the neural interface and close attention to the integration between electrodes and tissue should improve the possibility of successful outcomes. The neural interfaces research community consists of investigators working in areas such as deep brain stimulation, functional neuromuscular/electrical stimulation, auditory prostheses, cortical prostheses, neuromodulation, microelectrode array technology, brain-computer/machine interfaces. Following the success of previous neuroprostheses and neural interfaces workshops, funding (from NIH) was obtained to establish a biennial conference in the area of neural interfaces. The first Neural Interfaces Conference took place in Cleveland, OH in 2008 and several topics from this conference have been selected for publication in this special section of the Journal of Neural Engineering. Three `perspectives' review the areas of neural regeneration (Corredor and Goldberg), cochlear implants (O'Leary et al) and neural prostheses (Anderson). Seven articles focus on various aspects of neural interfacing. One of the most popular of these areas is the field of brain-computer interfaces. Fraser et al, report on a method to generate robust control with simple signal processing algorithms of signals obtained with electrodes implanted in the brain. One problem with implanted electrode arrays, however, is that they can fail to record reliably neural signals for long periods of time. McConnell et al show that by measuring the impedance of the tissue, one can evaluate the extent of the tissue response to the presence of the electrode. Another problem with the neural interface is the mismatch of the mechanical properties between electrode and tissue. Basinger et al use finite element modeling to analyze this mismatch in retinal prostheses and guide the design of new implantable devices. Electrical stimulation has been the method of choice to activate externally the nervous system. However, Zhang et al show that a novel dual hybrid device integrating electrical and optical stimulation can provide an effective interface for simultaneous recording and stimulation. By interfacing an EMG recording system and a movement detection system, Johnson and Fuglevand develop a model capable of predicting muscle activity during movement that could be important for the development of motor prostheses. Sensory restoration is another unsolved problem in neural prostheses. By developing a novel interface between the dorsal root ganglia and electrodes arrays, Gaunt et al show that it is possible to recruit afferent fibers for sensory substitution. Finally, by interfacing directly with muscles, Jung and colleagues show that stimulation of muscles involved in locomotion following spinal cord damage in rats can provide an effective treatment modality for incomplete spinal cord injury. This series of articles clearly shows that the interface is indeed one of the keys to successful therapeutic neural devices. The next Neural Interfaces Conference will take place in Los Angeles, CA in June 2010 and one can expect to see new developments in neural engineering obtained by focusing on the neural interface.
Geospatial Data as a Service: Towards planetary scale real-time analytics
NASA Astrophysics Data System (ADS)
Evans, B. J. K.; Larraondo, P. R.; Antony, J.; Richards, C. J.
2017-12-01
The rapid growth of earth systems, environmental and geophysical datasets poses a challenge to both end-users and infrastructure providers. For infrastructure and data providers, tasks like managing, indexing and storing large collections of geospatial data needs to take into consideration the various use cases by which consumers will want to access and use the data. Considerable investment has been made by the Earth Science community to produce suitable real-time analytics platforms for geospatial data. There are currently different interfaces that have been defined to provide data services. Unfortunately, there is considerable difference on the standards, protocols or data models which have been designed to target specific communities or working groups. The Australian National University's National Computational Infrastructure (NCI) is used for a wide range of activities in the geospatial community. Earth observations, climate and weather forecasting are examples of these communities which generate large amounts of geospatial data. The NCI has been carrying out significant effort to develop a data and services model that enables the cross-disciplinary use of data. Recent developments in cloud and distributed computing provide a publicly accessible platform where new infrastructures can be built. One of the key components these technologies offer is the possibility of having "limitless" compute power next to where the data is stored. This model is rapidly transforming data delivery from centralised monolithic services towards ubiquitous distributed services that scale up and down adapting to fluctuations in the demand. NCI has developed GSKY, a scalable, distributed server which presents a new approach for geospatial data discovery and delivery based on OGC standards. We will present the architecture and motivating use-cases that drove GSKY's collaborative design, development and production deployment. We show our approach offers the community valuable exploratory analysis capabilities, for dealing with petabyte-scale geospatial data collections.
The HydroShare Collaborative Repository for the Hydrology Community
NASA Astrophysics Data System (ADS)
Tarboton, D. G.; Idaszak, R.; Horsburgh, J. S.; Ames, D. P.; Goodall, J. L.; Couch, A.; Hooper, R. P.; Dash, P. K.; Stealey, M.; Yi, H.; Bandaragoda, C.; Castronova, A. M.
2017-12-01
HydroShare is an online, collaboration system for sharing of hydrologic data, analytical tools, and models. It supports the sharing of, and collaboration around, "resources" which are defined by standardized content types for data formats and models commonly used in hydrology. With HydroShare you can: Share your data and models with colleagues; Manage who has access to the content that you share; Share, access, visualize and manipulate a broad set of hydrologic data types and models; Use the web services application programming interface (API) to program automated and client access; Publish data and models and obtain a citable digital object identifier (DOI); Aggregate your resources into collections; Discover and access data and models published by others; Use web apps to visualize, analyze and run models on data in HydroShare. This presentation will describe the functionality and architecture of HydroShare highlighting our approach to making this system easy to use and serving the needs of the hydrology community represented by the Consortium of Universities for the Advancement of Hydrologic Sciences, Inc. (CUAHSI). Metadata for uploaded files is harvested automatically or captured using easy to use web user interfaces. Users are encouraged to add or create resources in HydroShare early in the data life cycle. To encourage this we allow users to share and collaborate on HydroShare resources privately among individual users or groups, entering metadata while doing the work. HydroShare also provides enhanced functionality for users through web apps that provide tools and computational capability for actions on resources. HydroShare's architecture broadly is comprised of: (1) resource storage, (2) resource exploration website, and (3) web apps for actions on resources. System components are loosely coupled and interact through APIs, which enhances robustness, as components can be upgraded and advanced relatively independently. The full power of this paradigm is the extensibility it supports. Web apps are hosted on separate servers, which may be 3rd party servers. They are registered in HydroShare using a web app resource that configures the connectivity for them to be discovered and launched directly from resource types they are associated with.
NASA Astrophysics Data System (ADS)
Han, Xiao; Gao, Xiguang; Song, Yingdong
2017-10-01
An approach to identify parameters of interface friction model for Ceramic Matrix composites based on stress-strain response was developed. The stress distribution of fibers in the interface slip region and intact region of the damaged composite was determined by adopting the interface friction model. The relation between maximum strain, secant moduli of hysteresis loop and interface shear stress, interface de-bonding stress was established respectively with the method of symbolic-graphic combination. By comparing the experimental strain, secant moduli of hysteresis loop with computation values, the interface shear stress and interface de-bonding stress corresponding to first cycle were identified. Substituting the identification of parameters into interface friction model, the stress-strain curves were predicted and the predicted results fit experiments well. Besides, the influence of number of data points on identifying the value of interface parameters was discussed. And the approach was compared with the method based on the area of hysteresis loop.
Systems engineering interfaces: A model based approach
NASA Astrophysics Data System (ADS)
Fosse, E.; Delp, C. L.
The engineering of interfaces is a critical function of the discipline of Systems Engineering. Included in interface engineering are instances of interaction. Interfaces provide the specifications of the relevant properties of a system or component that can be connected to other systems or components while instances of interaction are identified in order to specify the actual integration to other systems or components. Current Systems Engineering practices rely on a variety of documents and diagrams to describe interface specifications and instances of interaction. The SysML[1] specification provides a precise model based representation for interfaces and interface instance integration. This paper will describe interface engineering as implemented by the Operations Revitalization Task using SysML, starting with a generic case and culminating with a focus on a Flight System to Ground Interaction. The reusability of the interface engineering approach presented as well as its extensibility to more complex interfaces and interactions will be shown. Model-derived tables will support the case studies shown and are examples of model-based documentation products.
NASA Astrophysics Data System (ADS)
Maechling, P. J.; Taborda, R.; Callaghan, S.; Shaw, J. H.; Plesch, A.; Olsen, K. B.; Jordan, T. H.; Goulet, C. A.
2017-12-01
Crustal seismic velocity models and datasets play a key role in regional three-dimensional numerical earthquake ground-motion simulation, full waveform tomography, modern physics-based probabilistic earthquake hazard analysis, as well as in other related fields including geophysics, seismology, and earthquake engineering. The standard material properties provided by a seismic velocity model are P- and S-wave velocities and density for any arbitrary point within the geographic volume for which the model is defined. Many seismic velocity models and datasets are constructed by synthesizing information from multiple sources and the resulting models are delivered to users in multiple file formats, such as text files, binary files, HDF-5 files, structured and unstructured grids, and through computer applications that allow for interactive querying of material properties. The Southern California Earthquake Center (SCEC) has developed the Unified Community Velocity Model (UCVM) software framework to facilitate the registration and distribution of existing and future seismic velocity models to the SCEC community. The UCVM software framework is designed to provide a standard query interface to multiple, alternative velocity models, even if the underlying velocity models are defined in different formats or use different geographic projections. The UCVM framework provides a comprehensive set of open-source tools for querying seismic velocity model properties, combining regional 3D models and 1D background models, visualizing 3D models, and generating computational models in the form of regular grids or unstructured meshes that can be used as inputs for ground-motion simulations. The UCVM framework helps researchers compare seismic velocity models and build equivalent simulation meshes from alternative velocity models. These capabilities enable researchers to evaluate the impact of alternative velocity models in ground-motion simulations and seismic hazard analysis applications. In this poster, we summarize the key components of the UCVM framework and describe the impact it has had in various computational geoscientific applications.
Janssen, Dennis; Mann, Kenneth A; Verdonschot, Nico
2008-11-14
In order to gain insight into the micro-mechanical behavior of the cement-bone interface, the effect of parametric variations of frictional, morphological and material properties on the mechanical response of the cement-bone interface were analyzed using a finite element approach. Finite element models of a cement-bone interface specimen were created from micro-computed tomography data of a physical specimen that was sectioned from an in vitro cemented total hip arthroplasty. In five models the friction coefficient was varied (mu=0.0; 0.3; 0.7; 1.0 and 3.0), while in one model an ideally bonded interface was assumed. In two models cement interface gaps and an optimal cement penetration were simulated. Finally, the effect of bone cement stiffness variations was simulated (2.0 and 2.5 GPa, relative to the default 3.0 GPa). All models were loaded for a cycle of fully reversible tension-compression. From the simulated stress-displacement curves the interface deformation, stiffness and hysteresis were calculated. The results indicate that in the current model the mechanical properties of the cement-bone interface were caused by frictional phenomena at the shape-closed interlock rather than by adhesive properties of the cement. Our findings furthermore show that in our model maximizing cement penetration improved the micromechanical response of the cement-bone interface stiffness, while interface gaps had a detrimental effect. Relative to the frictional and morphological variations, variations in the cement stiffness had only a modest effect on the micro-mechanical behavior of the cement-bone interface. The current study provides information that may help to better understand the load-transfer mechanisms taking place at the cement-bone interface.
EarthRef.org: Exploring aspects of a Cyber Infrastructure in Earth Science and Education
NASA Astrophysics Data System (ADS)
Staudigel, H.; Koppers, A.; Tauxe, L.; Constable, C.; Helly, J.
2004-12-01
EarthRef.org is the common host and (co-) developer of a range of earth science databases and IT resources providing a test bed for a Cyberinfrastructure in Earth Science and Education (CIESE). EarthRef.org data base efforts include in particular the Geochemical Earth Reference Model (GERM), the Magnetics Information Consortium (MagIC), the Educational Resources for Earth Science Education (ERESE) project, the Seamount Catalog, the Mid-Ocean Ridge Catalog, the Radio-Isotope Geochronology (RiG) initiative for CHRONOS, and the Microbial Observatory for Fe oxidizing microbes on Loihi Seamount (FeMO; the most recent development). These diverse databases are developed under a single database umbrella and webserver at the San Diego Supercomputing Center. All the data bases have similar structures, with consistent metadata concepts, a common database layout, and automated upload wizards. Shared resources include supporting databases like an address book, a reference/publication catalog, and a common digital archive making database development and maintenance cost-effective, while guaranteeing interoperability. The EarthRef.org CIESE provides a common umbrella for synthesis information as well as sample-based data, and it bridges the gap between science and science education in middle and high schools, validating the potential for a system wide data infrastructure in a CIESE. EarthRef.org experiences have shown that effective communication with the respective communities is a key part of a successful CIESE facilitating both utility and community buy-in. GERM has been particularly successful at developing a metadata scheme for geochemistry and in the development of a new electronic journal (G-cubed) that has made much progress in data publication and linkages between journals and community data bases. GERM also has worked, through editors and publishers, towards interfacing databases with the publication process, to accomplish a more scholarly and database friendly data publication environment, and to interface with the respective science communities. MagIC has held several workshops that have resulted in an integrated data archival environment using metadata that are interchangeable with the geochemical metadata. MagIC archives a wide array of paleo and rock magnetic directional, intensity and magnetic property data as well as integrating computational tools. ERESE brought together librarians, teachers, and scientists to create an educational environment that supports inquiry driven education and the use of science data. Experiences in EarthRef.org demonstrates the feasibility of an effective, community wide CIESE for data publication, archival and modeling, as well as the outreach to the educational community.
Generating and Visualizing Climate Indices using Google Earth Engine
NASA Astrophysics Data System (ADS)
Erickson, T. A.; Guentchev, G.; Rood, R. B.
2017-12-01
Climate change is expected to have largest impacts on regional and local scales. Relevant and credible climate information is needed to support the planning and adaptation efforts in our communities. The volume of climate projections of temperature and precipitation is steadily increasing, as datasets are being generated on finer spatial and temporal grids with an increasing number of ensembles to characterize uncertainty. Despite advancements in tools for querying and retrieving subsets of these large, multi-dimensional datasets, ease of access remains a barrier for many existing and potential users who want to derive useful information from these data, particularly for those outside of the climate modelling research community. Climate indices, that can be derived from daily temperature and precipitation data, such as annual number of frost days or growing season length, can provide useful information to practitioners and stakeholders. For this work the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) dataset was loaded into Google Earth Engine, a cloud-based geospatial processing platform. Algorithms that use the Earth Engine API to generate several climate indices were written. The indices were chosen from the set developed by the joint CCl/CLIVAR/JCOMM Expert Team on Climate Change Detection and Indices (ETCCDI). Simple user interfaces were created that allow users to query, produce maps and graphs of the indices, as well as download results for additional analyses. These browser-based interfaces could allow users in low-bandwidth environments to access climate information. This research shows that calculating climate indices from global downscaled climate projection datasets and sharing them widely using cloud computing technologies is feasible. Further development will focus on exposing the climate indices to existing applications via the Earth Engine API, and building custom user interfaces for presenting climate indices to a diverse set of user groups.
Social disorder, accidents, and municipal wildfires
Douglas S. Thomas; David T. Butry; Jeffrey P. Prestemon
2012-01-01
Societal safeguards, established by those who have shared perceptions of the importance of safety and taking preventative measures, reduce the incidence of accidents that harm people and damage property. These safeguards prevent or discourage community members from partaking in careless behaviors that often lead to accidents. Wildland urban interface communities that...
Computational Aspects of Data Assimilation and the ESMF
NASA Technical Reports Server (NTRS)
daSilva, A.
2003-01-01
The scientific challenge of developing advanced data assimilation applications is a daunting task. Independently developed components may have incompatible interfaces or may be written in different computer languages. The high-performance computer (HPC) platforms required by numerically intensive Earth system applications are complex, varied, rapidly evolving and multi-part systems themselves. Since the market for high-end platforms is relatively small, there is little robust middleware available to buffer the modeler from the difficulties of HPC programming. To complicate matters further, the collaborations required to develop large Earth system applications often span initiatives, institutions and agencies, involve geoscience, software engineering, and computer science communities, and cross national borders.The Earth System Modeling Framework (ESMF) project is a concerted response to these challenges. Its goal is to increase software reuse, interoperability, ease of use and performance in Earth system models through the use of a common software framework, developed in an open manner by leaders in the modeling community. The ESMF addresses the technical and to some extent the cultural - aspects of Earth system modeling, laying the groundwork for addressing the more difficult scientific aspects, such as the physical compatibility of components, in the future. In this talk we will discuss the general philosophy and architecture of the ESMF, focussing on those capabilities useful for developing advanced data assimilation applications.
Visualizing NetCDF Files by Using the EverVIEW Data Viewer
Conzelmann, Craig; Romañach, Stephanie S.
2010-01-01
Over the past few years, modelers in South Florida have started using Network Common Data Form (NetCDF) as the standard data container format for storing hydrologic and ecologic modeling inputs and outputs. With its origins in the meteorological discipline, NetCDF was created by the Unidata Program Center at the University Corporation for Atmospheric Research, in conjunction with the National Aeronautics and Space Administration and other organizations. NetCDF is a portable, scalable, self-describing, binary file format optimized for storing array-based scientific data. Despite attributes which make NetCDF desirable to the modeling community, many natural resource managers have few desktop software packages which can consume NetCDF and unlock the valuable data contained within. The U.S. Geological Survey and the Joint Ecosystem Modeling group, an ecological modeling community of practice, are working to address this need with the EverVIEW Data Viewer. Available for several operating systems, this desktop software currently supports graphical displays of NetCDF data as spatial overlays on a three-dimensional globe and views of grid-cell values in tabular form. An included Open Geospatial Consortium compliant, Web-mapping service client and charting interface allows the user to view Web-available spatial data as additional map overlays and provides simple charting visualizations of NetCDF grid values.
Coupling of Noah-MP and the High Resolution CI-WATER ADHydro Hydrological Model
NASA Astrophysics Data System (ADS)
Moreno, H. A.; Goncalves Pureza, L.; Ogden, F. L.; Steinke, R. C.
2014-12-01
ADHydro is a physics-based, high-resolution, distributed hydrological model suitable for simulating large watersheds in a massively parallel computing environment. It simulates important processes such as: rainfall and infiltration, snowfall and snowmelt in complex terrain, vegetation and evapotranspiration, soil heat flux and freezing, overland flow, channel flow, groundwater flow and water management. For the vegetation and evapotranspiration processes, ADHydro uses the validated community land surface model (LSM) Noah-MP. Noah-MP uses multiple options for key land-surface hydrology and was developed to facilitate climate predictions with physically based ensembles. This presentation discusses the lessons learned in coupling Noah-MP to ADHydro. Noah-MP is delivered with a main driver program and not as a library with a clear interface to be called from other codes. This required some investigation to determine the correct functions to call and the appropriate parameter values. ADHydro runs Noah-MP as a point process on each mesh element and provides initialization and forcing data for each element. Modeling data are acquired from various sources including the Soil Survey Geographic Database (SSURGO), the Weather Research and Forecasting (WRF) model, and internal ADHydro simulation states. Despite these challenges in coupling Noah-MP to ADHydro, the use of Noah-MP provides the benefits of a supported community code.
Coronal Magnetism and Forward Solarsoft Idl Package
NASA Astrophysics Data System (ADS)
Gibson, S. E.
2014-12-01
The FORWARD suite of Solar Soft IDL codes is a community resource for model-data comparison, with a particular emphasis on analyzing coronal magnetic fields. FORWARD may be used both to synthesize a broad range of coronal observables, and to access and compare to existing data. FORWARD works with numerical model datacubes, interfaces with the web-served Predictive Science Inc MAS simulation datacubes and the Solar Soft IDL Potential Field Source Surface (PFSS) package, and also includes several analytic models (more can be added). It connects to the Virtual Solar Observatory and other web-served observations to download data in a format directly comparable to model predictions. It utilizes the CHIANTI database in modeling UV/EUV lines, and links to the CLE polarimetry synthesis code for forbidden coronal lines. FORWARD enables "forward-fitting" of specific observations, and helps to build intuition into how the physical properties of coronal magnetic structures translate to observable properties.
Travis B. Paveglio; Pamela J. Jakes; Matthew S. Carroll; Daniel R. Williams
2009-01-01
The lack of knowledge regarding social diversity in the Wildland Urban Interface (WUI) or an in-depth understanding of the ways people living there interact to address common problems is concerning, perhaps even dangerous, given that community action is necessary for successful wildland fire preparedness and natural resource management activities. In this article, we...
Alexandra Urza; Peter J. Weisberg; Jeanne C. Chambers; Jessica M. Dhaemers; David Board
2017-01-01
Understanding the drivers of ecosystem responses to disturbance is essential for management aimed at maintaining or restoring ecosystem processes and services, especially where invasive species respond strongly to disturbance. In this study, we used repeat vegetation surveys from a network of prescribed fire treatments at the woodlandâshrubland interface in the...
Using structure locations as a basis for mapping the wildland urban interface
Avi Bar-Massada; Susan I. Stewart; Roger B. Hammer; Miranda H. Mockrin; Volker C. Radeloff
2013-01-01
The wildland urban interface (WUI) delineates the areas where wildland fire hazard most directly impacts human communities and threatens lives and property, and where houses exert the strongest influence on the natural environment. Housing data are a major problem for WUI mapping. When housing data are zonal, the concept of a WUI neighborhood can be captured easily in...
A Community Framework for Integrative, Coupled Modeling of Human-Earth Systems
NASA Astrophysics Data System (ADS)
Barton, C. M.; Nelson, G. C.; Tucker, G. E.; Lee, A.; Porter, C.; Ullah, I.; Hutton, E.; Hoogenboom, G.; Rogers, K. G.; Pritchard, C.
2017-12-01
We live today in a humanized world, where critical zone dynamics are driven by coupled human and biophysical processes. First generation modeling platforms have been invaluable in providing insight into dynamics of biophysical systems and social systems. But to understand today's humanized planet scientifically and to manage it sustainably, we need integrative modeling of this coupled human-Earth system. To address both scientific and policy questions, we also need modeling that can represent variable combinations of human-Earth system processes at multiple scales. Simply adding more code needed to do this to large, legacy first generation models is impractical, expensive, and will make them even more difficult to evaluate or understand. We need an approach to modeling that mirrors and benefits from the architecture of the complexly coupled systems we hope to model. Building on a series of international workshops over the past two years, we present a community framework to enable and support an ecosystem of diverse models as components that can be interconnected as needed to facilitate understanding of a range of complex human-earth systems interactions. Models are containerized in Docker to make them platform independent. A Basic Modeling Interface and Standard Names ontology (developed by the Community Surface Dynamics Modeling System) is applied to make them interoperable. They are then transformed into RESTful micro-services to allow them to be connected and run in a browser environment. This enables a flexible, multi-scale modeling environment to help address diverse issues with combinations of smaller, focused, component models that are easier to understand and evaluate. We plan to develop, deploy, and maintain this framework for integrated, coupled modeling in an open-source collaborative development environment that can democratize access to advanced technology and benefit from diverse global participation in model development. We also present an initial proof-of-concept of this framework, coupling a widely used agricultural crop model (DSSAT) with a widely used hydrology model (TopoFlow).
NASA Astrophysics Data System (ADS)
Peckham, S. D.
2013-12-01
Model coupling frameworks like CSDMS (Community Surface Dynamics Modeling System) and ESMF (Earth System Modeling Framework) have developed mechanisms that allow heterogeneous sets of process models to be assembled in a plug-and-play manner to create composite "system models". These mechanisms facilitate code reuse, but must simultaneously satisfy many different design criteria. They must be able to mediate or compensate for differences between the process models, such as their different programming languages, computational grids, time-stepping schemes, variable names and variable units. However, they must achieve this interoperability in a way that: (1) is noninvasive, requiring only relatively small and isolated changes to the original source code, (2) does not significantly reduce performance, (3) is not time-consuming or confusing for a model developer to implement, (4) can very easily be updated to accommodate new versions of a given process model and (5) does not shift the burden of providing model interoperability to the model developers, e.g. by requiring them to provide their output in specific forms that meet the input requirements of other models. In tackling these design challenges, model framework developers have learned that the best solution is to provide each model with a simple, standardized interface, i.e. a set of standardized functions that make the model: (1) fully-controllable by a caller (e.g. a model framework) and (2) self-describing. Model control functions are separate functions that allow a caller to initialize the model, advance the model's state variables in time and finalize the model. Model description functions allow a caller to retrieve detailed information on the model's input and output variables, its computational grid and its timestepping scheme. If the caller is a modeling framework, it can compare the answers to these queries with similar answers from other process models in a collection and then automatically call framework service components as necessary to mediate the differences between the coupled models. This talk will first review two key products of the CSDMS project, namely a standardized model interface called the Basic Model Interface (BMI) and the CSDMS Standard Names. The standard names are used in conjunction with BMI to provide a semantic matching mechanism that allows output variables from one process model to be reliably used as input variables to other process models in a collection. They include not just a standardized naming scheme for model variables, but also a standardized set of terms for describing the attributes and assumptions of a given model. To illustrate the power of standardized model interfaces and metadata, a smart, light-weight modeling framework written in Python will be introduced that can automatically (without user intervention) couple a set of BMI-enabled hydrologic process components together to create a spatial hydrologic model. The same mechanisms could also be used to provide seamless integration (import/export) of data and models.
Biomechanical ordering and buckling due to microbial growth confined at oil-water interfaces
NASA Astrophysics Data System (ADS)
Juarez, Gabriel; Stocker, Roman
2015-11-01
Bacteria are unicellular organisms that often exist as densely populated, surface-associated communities. Bacteria are also environmental colloids and spontaneously attach and self-assemble at liquid-liquid interfaces. Here, we present results on the growth dynamics of individual rod-shaped bacteria confined to finite oil-water interfaces of varying curvature. Through experiments using microfluidic chambers and time-lapse microscopy, we study the formation of macroscopic structures observed as adsorbed bacteria grow, divide, and self-assemble in a nematic phase due to biomechanical interactions. The continued growth at the interface leads to a jammed monolayer of cells, which then causes the interface to buckle and undergo large deformations including wrinkling and tubulation. These observations highlight the interplay between physical environment, such as confinement and interface curvature, and active biological processes, such as growth, at the scale of individual agents and shape our understanding of macroscale processes such as microbial degradation of oil in the ocean.
Supporting openEHR Java desktop application developers.
Kashfi, Hajar; Torgersson, Olof
2011-01-01
The openEHR community suggests that an appropriate approach for creating a graphical user interface for an openEHR-based application is to generate forms from the underlying archetypes and templates. However, current generation techniques are not mature enough to be able to produce high quality interfaces with good usability. Therefore, developing efficient ways to combine manually designed and developed interfaces to openEHR backends is an interesting alternative. In this study, a framework for binding a pre-designed graphical user interface to an openEHR-based backend is proposed. The proposed framework contributes to the set of options available for developers. In particular we believe that the approach of combining user interface components with an openEHR backend in the proposed way might be useful in situations where the quality of the user interface is essential and for creating small scale and experimental systems.
Estimation of the Ocean Skin Temperature using the NASA GEOS Atmospheric Data Assimilation System
NASA Technical Reports Server (NTRS)
Koster, Randal D.; Akella, Santha; Todling, Ricardo; Suarez, Max
2016-01-01
This report documents the status of the development of a sea surface temperature (SST) analysis for the Goddard Earth Observing System (GEOS) Version-5 atmospheric data assimilation system (ADAS). Its implementation is part of the steps being taken toward the development of an integrated earth system analysis. Currently, GEOS-ADAS SST is a bulk ocean temperature (from ocean boundary conditions), and is almost identical to the skin sea surface temperature. Here we describe changes to the atmosphere-ocean interface layer of the GEOS-atmospheric general circulation model (AGCM) to include near surface diurnal warming and cool-skin effects. We also added SST relevant Advanced Very High Resolution Radiometer (AVHRR) observations to the GEOS-ADAS observing system. We provide a detailed description of our analysis of these observations, along with the modifications to the interface between the GEOS atmospheric general circulation model, gridpoint statistical interpolation-based atmospheric analysis and the community radiative transfer model. Our experiments (with and without these changes) show improved assimilation of satellite radiance observations. We obtained a closer fit to withheld, in-situ buoys measuring near-surface SST. Evaluation of forecast skill scores corroborate improvements seen in the observation fits. Along with a discussion of our results, we also include directions for future work.
ERIC Educational Resources Information Center
Warner, Paul D., Ed.; Campbell, Raymond, Ed.
This document is a summary of remarks presented at a joint meeting of Agriculture and Natural Resources and Community Resource Development state leaders in 1989. The focus of the meeting was economic viability, rural extension and education, water quality, waste management, biotechnology, low-input sustainable agriculture (LISA), and rural…
NELS 2.0 - A general system for enterprise wide information management
NASA Technical Reports Server (NTRS)
Smith, Stephanie L.
1993-01-01
NELS, the NASA Electronic Library System, is an information management tool for creating distributed repositories of documents, drawings, and code for use and reuse by the aerospace community. The NELS retrieval engine can load metadata and source files of full text objects, perform natural language queries to retrieve ranked objects, and create links to connect user interfaces. For flexibility, the NELS architecture has layered interfaces between the application program and the stored library information. The session manager provides the interface functions for development of NELS applications. The data manager is an interface between session manager and the structured data system. The center of the structured data system is the Wide Area Information Server. This system architecture provides access to information across heterogeneous platforms in a distributed environment. There are presently three user interfaces that connect to the NELS engine; an X-Windows interface, and ASCII interface and the Spatial Data Management System. This paper describes the design and operation of NELS as an information management tool and repository.
Parallel Fin ORU Thermal Interface for space applications. [Orbital Replaceable Unit
NASA Technical Reports Server (NTRS)
Stobb, C. A.; Limardo, Jose G.
1992-01-01
The Parallel Fin Thermal Interface has been developed as an Orbital Replaceable Unit (ORU) interface. The interface transfers heat from an ORU baseplate to a Heat Acquisition Plate (HAP) through pairs of fins sandwiched between insert plates that press against the fins with uniform pressure. The insert plates are spread apart for ORU baseplate separation and replacement. Two prototype interfaces with different fin dimensions were built (Model 140 and 380). Interfacing surface samples were found to have roughnesses of 56 to 89 nm. Conductance values of 267 to 420 W/sq m C were obtained for the 140 model in vacuum with interface pressures of 131 to 262 kPa (19 to 38 psi). Vacuum conductances ranging from 176 to 267 W/sq m F were obtained for the 380 model at interface pressures of 97 to 152 kPa (14 and 22 psi). Correlations from several sources were found to agree with test data within 20 percent using thermal math models of the interfaces.
The use of analytical models in human-computer interface design
NASA Technical Reports Server (NTRS)
Gugerty, Leo
1991-01-01
Some of the many analytical models in human-computer interface design that are currently being developed are described. The usefulness of analytical models for human-computer interface design is evaluated. Can the use of analytical models be recommended to interface designers? The answer, based on the empirical research summarized here, is: not at this time. There are too many unanswered questions concerning the validity of models and their ability to meet the practical needs of design organizations.
A nonlinear interface model applied to masonry structures
NASA Astrophysics Data System (ADS)
Lebon, Frédéric; Raffa, Maria Letizia; Rizzoni, Raffaella
2015-12-01
In this paper, a new imperfect interface model is presented. The model includes finite strains, micro-cracks and smooth roughness. The model is consistently derived by coupling a homogenization approach for micro-cracked media and arguments of asymptotic analysis. The model is applied to brick/mortar interfaces. Numerical results are presented.
ClearTK 2.0: Design Patterns for Machine Learning in UIMA
Bethard, Steven; Ogren, Philip; Becker, Lee
2014-01-01
ClearTK adds machine learning functionality to the UIMA framework, providing wrappers to popular machine learning libraries, a rich feature extraction library that works across different classifiers, and utilities for applying and evaluating machine learning models. Since its inception in 2008, ClearTK has evolved in response to feedback from developers and the community. This evolution has followed a number of important design principles including: conceptually simple annotator interfaces, readable pipeline descriptions, minimal collection readers, type system agnostic code, modules organized for ease of import, and assisting user comprehension of the complex UIMA framework. PMID:29104966
ClearTK 2.0: Design Patterns for Machine Learning in UIMA.
Bethard, Steven; Ogren, Philip; Becker, Lee
2014-05-01
ClearTK adds machine learning functionality to the UIMA framework, providing wrappers to popular machine learning libraries, a rich feature extraction library that works across different classifiers, and utilities for applying and evaluating machine learning models. Since its inception in 2008, ClearTK has evolved in response to feedback from developers and the community. This evolution has followed a number of important design principles including: conceptually simple annotator interfaces, readable pipeline descriptions, minimal collection readers, type system agnostic code, modules organized for ease of import, and assisting user comprehension of the complex UIMA framework.
The Consumer Juggernaut: Web-Based and Mobile Applications as Innovation Pioneer
NASA Astrophysics Data System (ADS)
Messerschmitt, David G.
As happened previously in electronics, software targeted at consumers is increasingly the focus of investment and innovation. Some of the areas where it is leading is animated interfaces, treating users as a community, audio and video information, software as a service, agile software development, and the integration of business models with software design. As a risk-taking and experimental market, and as a source of ideas, consumer software can benefit other areas of applications software. The influence of consumer software can be magnified by research into the internal organizations and processes of the innovative firms at its foundation.
A Hele-Shaw-Cahn-Hilliard Model for Incompressible Two-Phase Flows with Different Densities
NASA Astrophysics Data System (ADS)
Dedè, Luca; Garcke, Harald; Lam, Kei Fong
2017-07-01
Topology changes in multi-phase fluid flows are difficult to model within a traditional sharp interface theory. Diffuse interface models turn out to be an attractive alternative to model two-phase flows. Based on a Cahn-Hilliard-Navier-Stokes model introduced by Abels et al. (Math Models Methods Appl Sci 22(3):1150013, 2012), which uses a volume-averaged velocity, we derive a diffuse interface model in a Hele-Shaw geometry, which in the case of non-matched densities, simplifies an earlier model of Lee et al. (Phys Fluids 14(2):514-545, 2002). We recover the classical Hele-Shaw model as a sharp interface limit of the diffuse interface model. Furthermore, we show the existence of weak solutions and present several numerical computations including situations with rising bubbles and fingering instabilities.
Drawert, Brian; Engblom, Stefan; Hellander, Andreas
2012-06-22
Experiments in silico using stochastic reaction-diffusion models have emerged as an important tool in molecular systems biology. Designing computational software for such applications poses several challenges. Firstly, realistic lattice-based modeling for biological applications requires a consistent way of handling complex geometries, including curved inner- and outer boundaries. Secondly, spatiotemporal stochastic simulations are computationally expensive due to the fast time scales of individual reaction- and diffusion events when compared to the biological phenomena of actual interest. We therefore argue that simulation software needs to be both computationally efficient, employing sophisticated algorithms, yet in the same time flexible in order to meet present and future needs of increasingly complex biological modeling. We have developed URDME, a flexible software framework for general stochastic reaction-transport modeling and simulation. URDME uses Unstructured triangular and tetrahedral meshes to resolve general geometries, and relies on the Reaction-Diffusion Master Equation formalism to model the processes under study. An interface to a mature geometry and mesh handling external software (Comsol Multiphysics) provides for a stable and interactive environment for model construction. The core simulation routines are logically separated from the model building interface and written in a low-level language for computational efficiency. The connection to the geometry handling software is realized via a Matlab interface which facilitates script computing, data management, and post-processing. For practitioners, the software therefore behaves much as an interactive Matlab toolbox. At the same time, it is possible to modify and extend URDME with newly developed simulation routines. Since the overall design effectively hides the complexity of managing the geometry and meshes, this means that newly developed methods may be tested in a realistic setting already at an early stage of development. In this paper we demonstrate, in a series of examples with high relevance to the molecular systems biology community, that the proposed software framework is a useful tool for both practitioners and developers of spatial stochastic simulation algorithms. Through the combined efforts of algorithm development and improved modeling accuracy, increasingly complex biological models become feasible to study through computational methods. URDME is freely available at http://www.urdme.org.
A Rigorous Sharp Interface Limit of a Diffuse Interface Model Related to Tumor Growth
NASA Astrophysics Data System (ADS)
Rocca, Elisabetta; Scala, Riccardo
2017-06-01
In this paper, we study the rigorous sharp interface limit of a diffuse interface model related to the dynamics of tumor growth, when a parameter ɛ, representing the interface thickness between the tumorous and non-tumorous cells, tends to zero. More in particular, we analyze here a gradient-flow-type model arising from a modification of the recently introduced model for tumor growth dynamics in Hawkins-Daruud et al. (Int J Numer Math Biomed Eng 28:3-24, 2011) (cf. also Hilhorst et al. Math Models Methods Appl Sci 25:1011-1043, 2015). Exploiting the techniques related to both gradient flows and gamma convergence, we recover a condition on the interface Γ relating the chemical and double-well potentials, the mean curvature, and the normal velocity.
Building a semi-automatic ontology learning and construction system for geosciences
NASA Astrophysics Data System (ADS)
Babaie, H. A.; Sunderraman, R.; Zhu, Y.
2013-12-01
We are developing an ontology learning and construction framework that allows continuous, semi-automatic knowledge extraction, verification, validation, and maintenance by potentially a very large group of collaborating domain experts in any geosciences field. The system brings geoscientists from the side-lines to the center stage of ontology building, allowing them to collaboratively construct and enrich new ontologies, and merge, align, and integrate existing ontologies and tools. These constantly evolving ontologies can more effectively address community's interests, purposes, tools, and change. The goal is to minimize the cost and time of building ontologies, and maximize the quality, usability, and adoption of ontologies by the community. Our system will be a domain-independent ontology learning framework that applies natural language processing, allowing users to enter their ontology in a semi-structured form, and a combined Semantic Web and Social Web approach that lets direct participation of geoscientists who have no skill in the design and development of their domain ontologies. A controlled natural language (CNL) interface and an integrated authoring and editing tool automatically convert syntactically correct CNL text into formal OWL constructs. The WebProtege-based system will allow a potentially large group of geoscientists, from multiple domains, to crowd source and participate in the structuring of their knowledge model by sharing their knowledge through critiquing, testing, verifying, adopting, and updating of the concept models (ontologies). We will use cloud storage for all data and knowledge base components of the system, such as users, domain ontologies, discussion forums, and semantic wikis that can be accessed and queried by geoscientists in each domain. We will use NoSQL databases such as MongoDB as a service in the cloud environment. MongoDB uses the lightweight JSON format, which makes it convenient and easy to build Web applications using just HTML5 and Javascript, thereby avoiding cumbersome server side coding present in the traditional approaches. The JSON format used in MongoDB is also suitable for storing and querying RDF data. We will store the domain ontologies and associated linked data in JSON/RDF formats. Our Web interface will be built upon the open source and configurable WebProtege ontology editor. We will develop a simplified mobile version of our user interface which will automatically detect the hosting device and adjust the user interface layout to accommodate different screen sizes. We will also use the Semantic Media Wiki that allows the user to store and query the data within the wiki pages. By using HTML 5, JavaScript, and WebGL, we aim to create an interactive, dynamic, and multi-dimensional user interface that presents various geosciences data sets in a natural and intuitive way.
FAIRDOMHub: a repository and collaboration environment for sharing systems biology research.
Wolstencroft, Katherine; Krebs, Olga; Snoep, Jacky L; Stanford, Natalie J; Bacall, Finn; Golebiewski, Martin; Kuzyakiv, Rostyk; Nguyen, Quyen; Owen, Stuart; Soiland-Reyes, Stian; Straszewski, Jakub; van Niekerk, David D; Williams, Alan R; Malmström, Lars; Rinn, Bernd; Müller, Wolfgang; Goble, Carole
2017-01-04
The FAIRDOMHub is a repository for publishing FAIR (Findable, Accessible, Interoperable and Reusable) Data, Operating procedures and Models (https://fairdomhub.org/) for the Systems Biology community. It is a web-accessible repository for storing and sharing systems biology research assets. It enables researchers to organize, share and publish data, models and protocols, interlink them in the context of the systems biology investigations that produced them, and to interrogate them via API interfaces. By using the FAIRDOMHub, researchers can achieve more effective exchange with geographically distributed collaborators during projects, ensure results are sustained and preserved and generate reproducible publications that adhere to the FAIR guiding principles of data stewardship. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
NASA Astrophysics Data System (ADS)
Kumar, Santosh; Raychowdhury, Prishati; Gundlapalli, Prabhakar
2015-06-01
Design of critical facilities such as nuclear power plant requires an accurate and precise evaluation of seismic demands, as any failure of these facilities poses immense threat to the community. Design complexity of these structures reinforces the necessity of a robust 3D modeling and analysis of the structure and the soil-foundation interface. Moreover, it is important to consider the multiple components of ground motion during time history analysis for a realistic simulation. Present study is focused on investigating the seismic response of a nuclear containment structure considering nonlinear Winkler-based approach to model the soil-foundation interface using a distributed array of inelastic springs, dashpots and gap elements. It is observed from this study that the natural period of the structure increases about 10 %, whereas the force demands decreases up to 24 % by considering the soil-structure interaction. Further, it is observed that foundation deformations, such as rotation and sliding are affected by the embedment ratio, indicating an increase of up to 56 % in these responses for a reduction of embedment from 0.5 to 0.05× the width of the footing.
Designing the user interface: strategies for effective human-computer interaction
NASA Astrophysics Data System (ADS)
Shneiderman, B.
1998-03-01
In revising this popular book, Ben Shneiderman again provides a complete, current and authoritative introduction to user-interface design. The user interface is the part of every computer system that determines how people control and operate that system. When the interface is well designed, it is comprehensible, predictable, and controllable; users feel competent, satisfied, and responsible for their actions. Shneiderman discusses the principles and practices needed to design such effective interaction. Based on 20 years experience, Shneiderman offers readers practical techniques and guidelines for interface design. He also takes great care to discuss underlying issues and to support conclusions with empirical results. Interface designers, software engineers, and product managers will all find this book an invaluable resource for creating systems that facilitate rapid learning and performance, yield low error rates, and generate high user satisfaction. Coverage includes the human factors of interactive software (with a new discussion of diverse user communities), tested methods to develop and assess interfaces, interaction styles such as direct manipulation for graphical user interfaces, and design considerations such as effective messages, consistent screen design, and appropriate color.
Kolasinski, Joanna; Nahon, Sarah; Rogers, Karyne; Chauvin, Anne; Bigot, Lionel; Frouin, Patrick
2016-02-15
Studies of organic matter fluxes in coral reefs are historically based on physical and biogeochemical approaches. It is important to link these approaches to community analysis as the abundance and behaviour of species, populations or trophic groups can have a profound effect on nutrient budgets. We determined the carbon and nitrogen isotopic compositions of coral reef organic matter sources and macro-benthic invertebrate communities using a Europa Geo 20/20 isotope ratio mass spectrometer interfaced to an ANCA-SL elemental analyzer in continuous flow mode. Isotopic ecology metrics and a mixing model were used to analyze and interpret the data. The coral reef macro-invertebrate community principally relies on detrital or recycled food sources. An increased reliance on reef nitrogen-derived sources was observed in the cold-dry season. The community food-web lengths differ noticeably across the coral reef and reflect the characteristics and origin of organic matter reservoirs. Anthropogenic and terrestrial inputs lead to a loss of biological diversity. Exclusive dominance of suspension-feeding species is observed in areas receiving direct surface riverine particulate organic matter. The accumulation of sediment organic matter in eutrophic areas leads to dominance of deposit-feeding species. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Barasona, José A.; Mulero-Pázmány, Margarita; Acevedo, Pelayo; Negro, Juan J.; Torres, María J.; Gortázar, Christian; Vicente, Joaquín
2014-01-01
Complex ecological and epidemiological systems require multidisciplinary and innovative research. Low cost unmanned aircraft systems (UAS) can provide information on the spatial pattern of hosts’ distribution and abundance, which is crucial as regards modelling the determinants of disease transmission and persistence on a fine spatial scale. In this context we have studied the spatial epidemiology of tuberculosis (TB) in the ungulate community of Doñana National Park (South-western Spain) by modelling species host (red deer, fallow deer and cattle) abundance at fine spatial scale. The use of UAS high-resolution images has allowed us to collect data to model the environmental determinants of host abundance, and in a further step to evaluate their relationships with the spatial risk of TB throughout the ungulate community. We discuss the ecological, epidemiological and logistic conditions under which UAS may contribute to study the wildlife/livestock sanitary interface, where the spatial aggregation of hosts becomes crucial. These findings are relevant for planning and implementing research, fundamentally when managing disease in multi-host systems, and focusing on risky areas. Therefore, managers should prioritize the implementation of control strategies to reduce disease of conservation, economic and social relevance. PMID:25551673
Dynamic publication model for neurophysiology databases.
Gardner, D; Abato, M; Knuth, K H; DeBellis, R; Erde, S M
2001-08-29
We have implemented a pair of database projects, one serving cortical electrophysiology and the other invertebrate neurones and recordings. The design for each combines aspects of two proven schemes for information interchange. The journal article metaphor determined the type, scope, organization and quantity of data to comprise each submission. Sequence databases encouraged intuitive tools for data viewing, capture, and direct submission by authors. Neurophysiology required transcending these models with new datatypes. Time-series, histogram and bivariate datatypes, including illustration-like wrappers, were selected by their utility to the community of investigators. As interpretation of neurophysiological recordings depends on context supplied by metadata attributes, searches are via visual interfaces to sets of controlled-vocabulary metadata trees. Neurones, for example, can be specified by metadata describing functional and anatomical characteristics. Permanence is advanced by data model and data formats largely independent of contemporary technology or implementation, including Java and the XML standard. All user tools, including dynamic data viewers that serve as a virtual oscilloscope, are Java-based, free, multiplatform, and distributed by our application servers to any contemporary networked computer. Copyright is retained by submitters; viewer displays are dynamic and do not violate copyright of related journal figures. Panels of neurophysiologists view and test schemas and tools, enhancing community support.
BioSPICE: access to the most current computational tools for biologists.
Garvey, Thomas D; Lincoln, Patrick; Pedersen, Charles John; Martin, David; Johnson, Mark
2003-01-01
The goal of the BioSPICE program is to create a framework that provides biologists access to the most current computational tools. At the program midpoint, the BioSPICE member community has produced a software system that comprises contributions from approximately 20 participating laboratories integrated under the BioSPICE Dashboard and a methodology for continued software integration. These contributed software modules are the BioSPICE Dashboard, a graphical environment that combines Open Agent Architecture and NetBeans software technologies in a coherent, biologist-friendly user interface. The current Dashboard permits data sources, models, simulation engines, and output displays provided by different investigators and running on different machines to work together across a distributed, heterogeneous network. Among several other features, the Dashboard enables users to create graphical workflows by configuring and connecting available BioSPICE components. Anticipated future enhancements to BioSPICE include a notebook capability that will permit researchers to browse and compile data to support model building, a biological model repository, and tools to support the development, control, and data reduction of wet-lab experiments. In addition to the BioSPICE software products, a project website supports information exchange and community building.
Rebuilding and new housing development after wildfire
Patricia M. Alexandre; Miranda H. Mockrin; Susan I. Stewart; Roger B. Hammer; Volker C. Radeloff
2015-01-01
The number of wildland-urban interface communities affected by wildfire is increasing, and both wildfire suppression and losses are costly. However, little is known about post-wildfire response by homeowners and communities after buildings are lost. Our goal was to characterise rebuilding and new development after wildfires across the conterminous United States. We...
University Urban Interface Study. The Pittsburgh Goals Study: A Summary.
ERIC Educational Resources Information Center
Nehnevajsa, Jiri; Coleman, Alan N.
The main purpose of this study was to determine the extent to which community consensus existed regarding a variety of major changes in Pittsburgh and the extent to which widely differing perspectives of community leaders might contribute to conflict, or at least significant difficulties, on these issues. A pragmatic secondary objective was to…
Spaces of the Hilltop: A Case Study of Community/Academic Interaction
ERIC Educational Resources Information Center
Knochel, Aaron; Selfe, Dickie
2012-01-01
The mapping imagery of the web interface is an attempt to illustrate the surprising element of the Hilltop project. The map is not "accurate." It shows real streets and highways in, around, and in-between the Ohio State University and the Hilltop community, but it is not intended to provide directions.
S. M. Stein; J. Menakis; M. A. Carr; S. J. Comas; S. I. Stewart; H. Cleveland; L. Bramwell; V. C. Radeloff
2013-01-01
Fire has historically played a fundamental ecological role in many of America's wildland areas. However, the rising number of homes in the wildland-urban interface (WUI), associated impacts on lives and property from wildfire, and escalating costs of wildfire management have led to an urgent need for communities to become "fire-adapted." We present maps...
Margaret A. Reams; Terry K. Haines; Cheryl R. Renner; Michael W. Wascom; Harish Kingre
2005-01-01
The dramatic expansion into the WildlandâUrban Interface (WUI) places property, natural assets, and human life at risk from wildfire destruction. The U.S. National Fire Plan encourages communities to implement laws and outreach programs for pre-fire planning to mitigate the risk to area residents. Starting in 2003, we surveyed the administrators of regulatory and...
NASA Astrophysics Data System (ADS)
Jones, Jeanne M.; Henry, Kevin; Wood, Nathan; Ng, Peter; Jamieson, Matthew
2017-12-01
The Hazard Exposure Reporting and Analytics (HERA) dynamic web application was created to provide a platform that makes research on community exposure to coastal-flooding hazards influenced by sea level rise accessible to planners, decision makers, and the public in a manner that is both easy to use and easily accessible. HERA allows users to (a) choose flood-hazard scenarios based on sea level rise and storm assumptions, (b) appreciate the modeling uncertainty behind a chosen hazard zone, (c) select one or several communities to examine exposure, (d) select the category of population or societal asset, and (e) choose how to look at results. The application is designed to highlight comparisons between (a) varying levels of sea level rise and coastal storms, (b) communities, (c) societal asset categories, and (d) spatial scales. Through a combination of spatial and graphical visualizations, HERA aims to help individuals and organizations to craft more informed mitigation and adaptation strategies for climate-driven coastal hazards. This paper summarizes the technologies used to maximize the user experience, in terms of interface design, visualization approaches, and data processing.
Jones, Jeanne M.; Henry, Kevin; Wood, Nathan J.; Ng, Peter; Jamieson, Matthew
2017-01-01
The Hazard Exposure Reporting and Analytics (HERA) dynamic web application was created to provide a platform that makes research on community exposure to coastal-flooding hazards influenced by sea level rise accessible to planners, decision makers, and the public in a manner that is both easy to use and easily accessible. HERA allows users to (a) choose flood-hazard scenarios based on sea level rise and storm assumptions, (b) appreciate the modeling uncertainty behind a chosen hazard zone, (c) select one or several communities to examine exposure, (d) select the category of population or societal asset, and (e) choose how to look at results. The application is designed to highlight comparisons between (a) varying levels of sea level rise and coastal storms, (b) communities, (c) societal asset categories, and (d) spatial scales. Through a combination of spatial and graphical visualizations, HERA aims to help individuals and organizations to craft more informed mitigation and adaptation strategies for climate-driven coastal hazards. This paper summarizes the technologies used to maximize the user experience, in terms of interface design, visualization approaches, and data processing.
User's Manual for the Object User Interface (OUI): An Environmental Resource Modeling Framework
Markstrom, Steven L.; Koczot, Kathryn M.
2008-01-01
The Object User Interface is a computer application that provides a framework for coupling environmental-resource models and for managing associated temporal and spatial data. The Object User Interface is designed to be easily extensible to incorporate models and data interfaces defined by the user. Additionally, the Object User Interface is highly configurable through the use of a user-modifiable, text-based control file that is written in the eXtensible Markup Language. The Object User Interface user's manual provides (1) installation instructions, (2) an overview of the graphical user interface, (3) a description of the software tools, (4) a project example, and (5) specifications for user configuration and extension.
NASA Astrophysics Data System (ADS)
Siarto, J.
2014-12-01
As more Earth science software tools and services move to the web--the design and usability of those tools become ever more important. A good user interface is becoming expected and users are becoming increasingly intolerant of websites and web applications that work against them. The Earthdata UI Pattern Library attempts to give these scientists and developers the design tools they need to make usable, compelling user interfaces without the associated overhead of using a full design team. Patterns are tested and functional user interface elements targeted specifically at the Earth science community and will include web layouts, buttons, tables, typography, iconography, mapping and visualization/graphing widgets. These UI elements have emerged as the result of extensive user testing, research and software development within the NASA Earthdata team over the past year.
Human perceptual deficits as factors in computer interface test and evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowser, S.E.
1992-06-01
Issues related to testing and evaluating human computer interfaces are usually based on the machine rather than on the human portion of the computer interface. Perceptual characteristics of the expected user are rarely investigated, and interface designers ignore known population perceptual limitations. For these reasons, environmental impacts on the equipment will more likely be defined than will user perceptual characteristics. The investigation of user population characteristics is most often directed toward intellectual abilities and anthropometry. This problem is compounded by the fact that some deficits capabilities tend to be found in higher-than-overall population distribution in some user groups. The testmore » and evaluation community can address the issue from two primary aspects. First, assessing user characteristics should be extended to include tests of perceptual capability. Secondly, interface designs should use multimode information coding.« less
NASA Technical Reports Server (NTRS)
Hansen, R. F. (Principal Investigator)
1981-01-01
The use of the wheat stress indicator model CCAD data base interface driver is described. The purpose of this system is to interface the wheat stress indicator model with the CCAD operational data base. The interface driver routine decides what meteorological stations should be processed and calls the proper subroutines to process the stations.
UIVerify: A Web-Based Tool for Verification and Automatic Generation of User Interfaces
NASA Technical Reports Server (NTRS)
Shiffman, Smadar; Degani, Asaf; Heymann, Michael
2004-01-01
In this poster, we describe a web-based tool for verification and automatic generation of user interfaces. The verification component of the tool accepts as input a model of a machine and a model of its interface, and checks that the interface is adequate (correct). The generation component of the tool accepts a model of a given machine and the user's task, and then generates a correct and succinct interface. This write-up will demonstrate the usefulness of the tool by verifying the correctness of a user interface to a flight-control system. The poster will include two more examples of using the tool: verification of the interface to an espresso machine, and automatic generation of a succinct interface to a large hypothetical machine.
Benefits of a Unified LaSRS++ Simulation for NAS-Wide and High-Fidelity Modeling
NASA Technical Reports Server (NTRS)
Glaab, Patricia; Madden, Michael
2014-01-01
The LaSRS++ high-fidelity vehicle simulation was extended in 2012 to support a NAS-wide simulation mode. Since the initial proof-of-concept, the LaSRS++ NAS-wide simulation is maturing into a research-ready tool. A primary benefit of this new capability is the consolidation of the two modeling paradigms under a single framework to save cost, facilitate iterative concept testing between the two tools, and to promote communication and model sharing between user communities at Langley. Specific benefits of each type of modeling are discussed along with the expected benefits of the unified framework. Current capability details of the LaSRS++ NAS-wide simulations are provided, including the visualization tool, live data interface, trajectory generators, terminal routing for arrivals and departures, maneuvering, re-routing, navigation, winds, and turbulence. The plan for future development is also described.
Crops in silico: A community wide multi-scale computational modeling framework of plant canopies
NASA Astrophysics Data System (ADS)
Srinivasan, V.; Christensen, A.; Borkiewic, K.; Yiwen, X.; Ellis, A.; Panneerselvam, B.; Kannan, K.; Shrivastava, S.; Cox, D.; Hart, J.; Marshall-Colon, A.; Long, S.
2016-12-01
Current crop models predict a looming gap between supply and demand for primary foodstuffs over the next 100 years. While significant yield increases were achieved in major food crops during the early years of the green revolution, the current rates of yield increases are insufficient to meet future projected food demand. Furthermore, with projected reduction in arable land, decrease in water availability, and increasing impacts of climate change on future food production, innovative technologies are required to sustainably improve crop yield. To meet these challenges, we are developing Crops in silico (Cis), a biologically informed, multi-scale, computational modeling framework that can facilitate whole plant simulations of crop systems. The Cis framework is capable of linking models of gene networks, protein synthesis, metabolic pathways, physiology, growth, and development in order to investigate crop response to different climate scenarios and resource constraints. This modeling framework will provide the mechanistic details to generate testable hypotheses toward accelerating directed breeding and engineering efforts to increase future food security. A primary objective for building such a framework is to create synergy among an inter-connected community of biologists and modelers to create a realistic virtual plant. This framework advantageously casts the detailed mechanistic understanding of individual plant processes across various scales in a common scalable framework that makes use of current advances in high performance and parallel computing. We are currently designing a user friendly interface that will make this tool equally accessible to biologists and computer scientists. Critically, this framework will provide the community with much needed tools for guiding future crop breeding and engineering, understanding the emergent implications of discoveries at the molecular level for whole plant behavior, and improved prediction of plant and ecosystem responses to the environment.
NASA Astrophysics Data System (ADS)
Huang, Y.; Liu, M.; Wada, Y.; He, X.; Sun, X.
2017-12-01
In recent decades, with rapid economic growth, industrial development and urbanization, expanding pollution of polycyclic aromatic hydrocarbons (PAHs) has become a diversified and complicated phenomenon in China. However, the availability of sufficient monitoring activities for PAHs in multi-compartment and the corresponding multi-interface migration processes are still limited, especially at a large geographic area. In this study, we couple the Multimedia Fate Model (MFM) to the Community Multi-Scale Air Quality (CMAQ) model in order to consider the fugacity and the transient contamination processes. This coupled dynamic contaminant model can evaluate the detailed local variations and mass fluxes of PAHs in different environmental media (e.g., air, surface film, soil, sediment, water and vegetation) across different spatial (a county to country) and temporal (days to years) scales. This model has been applied to a large geographical domain of China at a 36 km by 36 km grid resolution. The model considers response characteristics of typical environmental medium to complex underlying surface. Results suggest that direct emission is the main input pathway of PAHs entering the atmosphere, while advection is the main outward flow of pollutants from the environment. In addition, both soil and sediment act as the main sink of PAHs and have the longest retention time. Importantly, the highest PAHs loadings are found in urbanized and densely populated regions of China, such as Yangtze River Delta and Pearl River Delta. This model can provide a good scientific basis towards a better understanding of the large-scale dynamics of environmental pollutants for land conservation and sustainable development. In a next step, the dynamic contaminant model will be integrated with the continental-scale hydrological and water resources model (i.e., Community Water Model, CWatM) to quantify a more accurate representation and feedbacks between the hydrological cycle and water quality at even larger geographical domains. Keywords: PAHs; Community multi-scale air quality model; Multimedia fate model; Land use
Differential growth of wrinkled biofilms
NASA Astrophysics Data System (ADS)
Espeso, D. R.; Carpio, A.; Einarsson, B.
2015-02-01
Biofilms are antibiotic-resistant bacterial aggregates that grow on moist surfaces and can trigger hospital-acquired infections. They provide a classical example in biology where the dynamics of cellular communities may be observed and studied. Gene expression regulates cell division and differentiation, which affect the biofilm architecture. Mechanical and chemical processes shape the resulting structure. We gain insight into the interplay between cellular and mechanical processes during biofilm development on air-agar interfaces by means of a hybrid model. Cellular behavior is governed by stochastic rules informed by a cascade of concentration fields for nutrients, waste, and autoinducers. Cellular differentiation and death alter the structure and the mechanical properties of the biofilm, which is deformed according to Föppl-Von Kármán equations informed by cellular processes and the interaction with the substratum. Stiffness gradients due to growth and swelling produce wrinkle branching. We are able to reproduce wrinkled structures often formed by biofilms on air-agar interfaces, as well as spatial distributions of differentiated cells commonly observed with B. subtilis.
Choosing a genome browser for a Model Organism Database: surveying the Maize community
Sen, Taner Z.; Harper, Lisa C.; Schaeffer, Mary L.; Andorf, Carson M.; Seigfried, Trent E.; Campbell, Darwin A.; Lawrence, Carolyn J.
2010-01-01
As the B73 maize genome sequencing project neared completion, MaizeGDB began to integrate a graphical genome browser with its existing web interface and database. To ensure that maize researchers would optimally benefit from the potential addition of a genome browser to the existing MaizeGDB resource, personnel at MaizeGDB surveyed researchers’ needs. Collected data indicate that existing genome browsers for maize were inadequate and suggest implementation of a browser with quick interface and intuitive tools would meet most researchers’ needs. Here, we document the survey’s outcomes, review functionalities of available genome browser software platforms and offer our rationale for choosing the GBrowse software suite for MaizeGDB. Because the genome as represented within the MaizeGDB Genome Browser is tied to detailed phenotypic data, molecular marker information, available stocks, etc., the MaizeGDB Genome Browser represents a novel mechanism by which the researchers can leverage maize sequence information toward crop improvement directly. Database URL: http://gbrowse.maizegdb.org/ PMID:20627860
WIFIRE Data Model and Catalog for Wildfire Data and Tools
NASA Astrophysics Data System (ADS)
Altintas, I.; Crawl, D.; Cowart, C.; Gupta, A.; Block, J.; de Callafon, R.
2014-12-01
The WIFIRE project (wifire.ucsd.edu) is building an end-to-end cyberinfrastructure for real-time and data-driven simulation, prediction and visualization of wildfire behavior. WIFIRE may be used by wildfire management authorities in the future to predict wildfire rate of spread and direction, and assess the effectiveness of high-density sensor networks in improving fire and weather predictions. WIFIRE has created a data model for wildfire resources including sensed and archived data, sensors, satellites, cameras, modeling tools, workflows and social information including Twitter feeds. This data model and associated wildfire resource catalog includes a detailed description of the HPWREN sensor network, SDG&E's Mesonet, and NASA MODIS. In addition, the WIFIRE data-model describes how to integrate the data from multiple heterogeneous sources to provide detailed fire-related information. The data catalog describes 'Observables' captured by each instrument using multiple ontologies including OGC SensorML and NASA SWEET. Observables include measurements such as wind speed, air temperature, and relative humidity, as well as their accuracy and resolution. We have implemented a REST service for publishing to and querying from the catalog using Web Application Description Language (WADL). We are creating web-based user interfaces and mobile device Apps that use the REST interface for dissemination to wildfire modeling community and project partners covering academic, private, and government laboratories while generating value to emergency officials and the general public. Additionally, the Kepler scientific workflow system is instrumented to interact with this data catalog to access real-time streaming and archived wildfire data and stream it into dynamic data-driven wildfire models at scale.
Cavuşoğlu, M Cenk; Göktekin, Tolga G; Tendick, Frank
2006-04-01
This paper presents the architectural details of an evolving open source/open architecture software framework for developing organ-level surgical simulations. Our goal is to facilitate shared development of reusable models, to accommodate heterogeneous models of computation, and to provide a framework for interfacing multiple heterogeneous models. The framework provides an application programming interface for interfacing dynamic models defined over spatial domains. It is specifically designed to be independent of the specifics of the modeling methods used, and therefore facilitates seamless integration of heterogeneous models and processes. Furthermore, each model has separate geometries for visualization, simulation, and interfacing, allowing the model developer to choose the most natural geometric representation for each case. Input/output interfaces for visualization and haptics for real-time interactive applications have also been provided.
A COMSOL-GEMS interface for modeling coupled reactive-transport geochemical processes
NASA Astrophysics Data System (ADS)
Azad, Vahid Jafari; Li, Chang; Verba, Circe; Ideker, Jason H.; Isgor, O. Burkan
2016-07-01
An interface was developed between COMSOL MultiphysicsTM finite element analysis software and (geo)chemical modeling platform, GEMS, for the reactive-transport modeling of (geo)chemical processes in variably saturated porous media. The two standalone software packages are managed from the interface that uses a non-iterative operator splitting technique to couple the transport (COMSOL) and reaction (GEMS) processes. The interface allows modeling media with complex chemistry (e.g. cement) using GEMS thermodynamic database formats. Benchmark comparisons show that the developed interface can be used to predict a variety of reactive-transport processes accurately. The full functionality of the interface was demonstrated to model transport processes, governed by extended Nernst-Plank equation, in Class H Portland cement samples in high pressure and temperature autoclaves simulating systems that are used to store captured carbon dioxide (CO2) in geological reservoirs.
Space Generic Open Avionics Architecture (SGOAA) reference model technical guide
NASA Technical Reports Server (NTRS)
Wray, Richard B.; Stovall, John R.
1993-01-01
This report presents a full description of the Space Generic Open Avionics Architecture (SGOAA). The SGOAA consists of a generic system architecture for the entities in spacecraft avionics, a generic processing architecture, and a six class model of interfaces in a hardware/software system. The purpose of the SGOAA is to provide an umbrella set of requirements for applying the generic architecture interface model to the design of specific avionics hardware/software systems. The SGOAA defines a generic set of system interface points to facilitate identification of critical interfaces and establishes the requirements for applying appropriate low level detailed implementation standards to those interface points. The generic core avionics system and processing architecture models provided herein are robustly tailorable to specific system applications and provide a platform upon which the interface model is to be applied.
Integrated Model for E-Learning Acceptance
NASA Astrophysics Data System (ADS)
Ramadiani; Rodziah, A.; Hasan, S. M.; Rusli, A.; Noraini, C.
2016-01-01
E-learning is not going to work if the system is not used in accordance with user needs. User Interface is very important to encourage using the application. Many theories had discuss about user interface usability evaluation and technology acceptance separately, actually why we do not make it correlation between interface usability evaluation and user acceptance to enhance e-learning process. Therefore, the evaluation model for e-learning interface acceptance is considered important to investigate. The aim of this study is to propose the integrated e-learning user interface acceptance evaluation model. This model was combined some theories of e-learning interface measurement such as, user learning style, usability evaluation, and the user benefit. We formulated in constructive questionnaires which were shared at 125 English Language School (ELS) students. This research statistics used Structural Equation Model using LISREL v8.80 and MANOVA analysis.
Graeden, Ellie; Kerr, Justin; Sorrell, Erin M.; Katz, Rebecca
2018-01-01
Managing infectious disease requires rapid and effective response to support decision making. The decisions are complex and require understanding of the diseases, disease intervention and control measures, and the disease-relevant characteristics of the local community. Though disease modeling frameworks have been developed to address these questions, the complexity of current models presents a significant barrier to community-level decision makers in using the outputs of the most scientifically robust methods to support pragmatic decisions about implementing a public health response effort, even for endemic diseases with which they are already familiar. Here, we describe the development of an application available on the internet, including from mobile devices, with a simple user interface, to support on-the-ground decision-making for integrating disease control programs, given local conditions and practical constraints. The model upon which the tool is built provides predictive analysis for the effectiveness of integration of schistosomiasis and malaria control, two diseases with extensive geographical and epidemiological overlap, and which result in significant morbidity and mortality in affected regions. Working with data from countries across sub-Saharan Africa and the Middle East, we present a proof-of-principle method and corresponding prototype tool to provide guidance on how to optimize integration of vertical disease control programs. This method and tool demonstrate significant progress in effectively translating the best available scientific models to support practical decision making on the ground with the potential to significantly increase the efficacy and cost-effectiveness of disease control. Author summary Designing and implementing effective programs for infectious disease control requires complex decision-making, informed by an understanding of the diseases, the types of disease interventions and control measures available, and the disease-relevant characteristics of the local community. Though disease modeling frameworks have been developed to address these questions and support decision-making, the complexity of current models presents a significant barrier to on-the-ground end users. The picture is further complicated when considering approaches for integration of different disease control programs, where co-infection dynamics, treatment interactions, and other variables must also be taken into account. Here, we describe the development of an application available on the internet with a simple user interface, to support on-the-ground decision-making for integrating disease control, given local conditions and practical constraints. The model upon which the tool is built provides predictive analysis for the effectiveness of integration of schistosomiasis and malaria control, two diseases with extensive geographical and epidemiological overlap. This proof-of-concept method and tool demonstrate significant progress in effectively translating the best available scientific models to support pragmatic decision-making on the ground, with the potential to significantly increase the impact and cost-effectiveness of disease control. PMID:29649260
Childs, Lauren M; Held, Nicole L; Young, Mark J; Whitaker, Rachel J; Weitz, Joshua S
2012-01-01
The CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) system is a recently discovered type of adaptive immune defense in bacteria and archaea that functions via directed incorporation of viral and plasmid DNA into host genomes. Here, we introduce a multiscale model of dynamic coevolution between hosts and viruses in an ecological context that incorporates CRISPR immunity principles. We analyze the model to test whether and how CRISPR immunity induces host and viral diversification and the maintenance of many coexisting strains. We show that hosts and viruses coevolve to form highly diverse communities. We observe the punctuated replacement of existent strains, such that populations have very low similarity compared over the long term. However, in the short term, we observe evolutionary dynamics consistent with both incomplete selective sweeps of novel strains (as single strains and coalitions) and the recurrence of previously rare strains. Coalitions of multiple dominant host strains are predicted to arise because host strains can have nearly identical immune phenotypes mediated by CRISPR defense albeit with different genotypes. We close by discussing how our explicit eco-evolutionary model of CRISPR immunity can help guide efforts to understand the drivers of diversity seen in microbial communities where CRISPR systems are active. PMID:22759281
The 2017 México Tsunami Record, Numerical Modeling and Threat Assessment in Costa Rica
NASA Astrophysics Data System (ADS)
Chacón-Barrantes, Silvia
2018-03-01
An M w 8.2 earthquake and tsunami occurred offshore the Pacific coast of México on 2017-09-08, at 04:49 UTC. Costa Rican tide gauges have registered a total of 21 local, regional and far-field tsunamis. The Quepos gauge registered 12 tsunamis between 1960 and 2014 before it was relocated inside a harbor by late 2014, where it registered two more tsunamis. This paper analyzes the 2017 México tsunami as recorded by the Quepos gauge. It took 2 h for the tsunami to arrive to Quepos, with a first peak height of 9.35 cm and a maximum amplitude of 18.8 cm occurring about 6 h later. As a decision support tool, this tsunami was modeled for Quepos in real time using ComMIT (Community Model Interface for Tsunami) with the finer grid having a resolution of 1 arcsec ( 30 m). However, the model did not replicate the tsunami record well, probably due to the lack of a finer and more accurate bathymetry. In 2014, the National Tsunami Monitoring System of Costa Rica (SINAMOT) was created, acting as a national tsunami warning center. The occurrence of the 2017 México tsunami raised concerns about warning dissemination mechanisms for most coastal communities in Costa Rica, due to its short travel time.
Community-Based ECG Monitoring System for Patients with Cardiovascular Diseases.
Lin, Bor-Shyh; Wong, Alice M; Tseng, Kevin C
2016-04-01
This study aims to develop a community-based electrocardiogram (ECG) monitoring system for cardiac outpatients to wirelessly detect heart rate, provide personalized healthcare, and enhance interactive social contact because of the prevalence of deaths from cardiovascular disease and the growing problem of aging in the world. The system not only strengthens the performance of the ECG monitoring system but also emphasizes the ergonomic design of wearable devices and user interfaces. In addition, it enables medical professionals to diagnose cardiac symptoms remotely and electronically manage medical reports and suggestions. The experimental result shows high performance of the dry electrode, even in dynamic conditions. The comparison result with different ECG healthcare systems shows the essential factors that the system should possess and the capability of the proposed system. Finally, a user survey was conducted based on the unified theory of acceptance and users of technology (UTAUT) model.
A standard format and a graphical user interface for spin system specification.
Biternas, A G; Charnock, G T P; Kuprov, Ilya
2014-03-01
We introduce a simple and general XML format for spin system description that is the result of extensive consultations within Magnetic Resonance community and unifies under one roof all major existing spin interaction specification conventions. The format is human-readable, easy to edit and easy to parse using standard XML libraries. We also describe a graphical user interface that was designed to facilitate construction and visualization of complicated spin systems. The interface is capable of generating input files for several popular spin dynamics simulation packages. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Mentoring the Next Generation of Science Gateway Developers and Users
NASA Astrophysics Data System (ADS)
Hayden, L. B.; Jackson-Ward, F.
2016-12-01
The Science Gateway Institute (SGW-I) for the Democratization and Acceleration of Science was a SI2-SSE Collaborative Research conceptualization award funded by NSF in 2012. From 2012 through 2015, we engaged interested members of the science and engineering community in a planning process for a Science Gateway Community Institute (SGCI). Science Gateways provide Web interfaces to some of the most sophisticated cyberinfrastructure resources. They interact with remotely executing science applications on supercomputers, they connect to remote scientific data collections, instruments and sensor streams, and support large collaborations. Gateways allow scientists to concentrate on the most challenging science problems while underlying components such as computing architectures and interfaces to data collection changes. The goal of our institute was to provide coordinating activities across the National Science Foundation, eventually providing services more broadly to projects funded by other agencies. SGW-I has succeeded in identifying two underrepresented communities of future gateway designers and users. The Association of Computer and Information Science/Engineering Departments at Minority Institutions (ADMI) was identified as a source of future gateway designers. The National Organization for the Professional Advancement of Black Chemists and Chemical Engineers (NOBCChE) was identified as a community of future science gateway users. SGW-I efforts to engage NOBCChE and ADMI faculty and students in SGW-I are now woven into the workforce development component of SGCI. SGCI (ScienceGateways.org ) is a collaboration of six universities, led by San Diego Supercomputer Center. The workforce development component is led by Elizabeth City State University (ECSU). ECSU efforts focus is on: Produce a model of engagement; Integration of research into education; and Mentoring of students while aggressively addressing diversity. This paper documents the outcome of the SGW-I conceptualization project and describes the extensive Workforce Development effort going forward into the 5-year SGCI project recently funded by NSF.
Electrode-electrolyte interface model of tripolar concentric ring electrode and electrode paste.
Nasrollaholhosseini, Seyed Hadi; Steele, Preston; Besio, Walter G
2016-08-01
Electrodes are used to transform ionic currents to electrical currents in biological systems. Modeling the electrode-electrolyte interface could help to optimize the performance of the electrode interface to achieve higher signal to noise ratios. There are previous reports of accurate models for single-element biomedical electrodes. In this paper we develop a model for the electrode-electrolyte interface for tripolar concentric ring electrodes (TCRE) that are used to record brain signals.
Revisiting the Al/Al₂O₃ interface: coherent interfaces and misfit accommodation.
Pilania, Ghanshyam; Thijsse, Barend J; Hoagland, Richard G; Lazić, Ivan; Valone, Steven M; Liu, Xiang-Yang
2014-03-27
We study the coherent and semi-coherent Al/α-Al2O3 interfaces using molecular dynamics simulations with a mixed, metallic-ionic atomistic model. For the coherent interfaces, both Al-terminated and O-terminated nonstoichiometric interfaces have been studied and their relative stability has been established. To understand the misfit accommodation at the semi-coherent interface, a 1-dimensional (1D) misfit dislocation model and a 2-dimensional (2D) dislocation network model have been studied. For the latter case, our analysis reveals an interface dislocation structure with a network of three sets of parallel dislocations, each with pure-edge character, giving rise to a pattern of coherent and stacking-fault-like regions at the interface. Structural relaxation at elevated temperatures leads to a further change of the dislocation pattern, which can be understood in terms of a competition between the stacking fault energy and the dislocation interaction energy at the interface. Our results are expected to serve as an input for the subsequent dislocation dynamics models to understand and predict the macroscopic mechanical behavior of Al/α-Al2O3 composite heterostructures.
Transforming Collaborative Process Models into Interface Process Models by Applying an MDA Approach
NASA Astrophysics Data System (ADS)
Lazarte, Ivanna M.; Chiotti, Omar; Villarreal, Pablo D.
Collaborative business models among enterprises require defining collaborative business processes. Enterprises implement B2B collaborations to execute these processes. In B2B collaborations the integration and interoperability of processes and systems of the enterprises are required to support the execution of collaborative processes. From a collaborative process model, which describes the global view of the enterprise interactions, each enterprise must define the interface process that represents the role it performs in the collaborative process in order to implement the process in a Business Process Management System. Hence, in this work we propose a method for the automatic generation of the interface process model of each enterprise from a collaborative process model. This method is based on a Model-Driven Architecture to transform collaborative process models into interface process models. By applying this method, interface processes are guaranteed to be interoperable and defined according to a collaborative process.
Essaid, Hedeff I.
1990-01-01
A quasi three-dimensional, finite difference model, that simulates freshwater and saltwater flow separated by a sharp interface, has been developed to study layered coastal aquifer systems. The model allows for regional simulation of coastal groundwater conditions, including the effects of saltwater dynamics on the freshwater system. Vertically integrated freshwater and saltwater flow equations incorporating the interface boundary condition are solved within each aquifer. Leakage through confining layers is calculated by Darcy's law, accounting for density differences across the layer. The locations of the interface tip and toe, within grid blocks, are tracked by linearly extrapolating the position of the interface. The model has been verified using available analytical solutions and experimental results. Application of the model to the Soquel-Aptos basin, Santa Cruz County, California, illustrates the use of the quasi three-dimensional, sharp interface approach for the examination of freshwater-saltwater dynamics in regional systems. Simulation suggests that the interface, today, is still responding to long-term Pleistocene sea level fluctuations and has not achieved equilibrium with present day sea level conditions.
Rot, Gregor; Parikh, Anup; Curk, Tomaz; Kuspa, Adam; Shaulsky, Gad; Zupan, Blaz
2009-08-25
Bioinformatics often leverages on recent advancements in computer science to support biologists in their scientific discovery process. Such efforts include the development of easy-to-use web interfaces to biomedical databases. Recent advancements in interactive web technologies require us to rethink the standard submit-and-wait paradigm, and craft bioinformatics web applications that share analytical and interactive power with their desktop relatives, while retaining simplicity and availability. We have developed dictyExpress, a web application that features a graphical, highly interactive explorative interface to our database that consists of more than 1000 Dictyostelium discoideum gene expression experiments. In dictyExpress, the user can select experiments and genes, perform gene clustering, view gene expression profiles across time, view gene co-expression networks, perform analyses of Gene Ontology term enrichment, and simultaneously display expression profiles for a selected gene in various experiments. Most importantly, these tasks are achieved through web applications whose components are seamlessly interlinked and immediately respond to events triggered by the user, thus providing a powerful explorative data analysis environment. dictyExpress is a precursor for a new generation of web-based bioinformatics applications with simple but powerful interactive interfaces that resemble that of the modern desktop. While dictyExpress serves mainly the Dictyostelium research community, it is relatively easy to adapt it to other datasets. We propose that the design ideas behind dictyExpress will influence the development of similar applications for other model organisms.
Rot, Gregor; Parikh, Anup; Curk, Tomaz; Kuspa, Adam; Shaulsky, Gad; Zupan, Blaz
2009-01-01
Background Bioinformatics often leverages on recent advancements in computer science to support biologists in their scientific discovery process. Such efforts include the development of easy-to-use web interfaces to biomedical databases. Recent advancements in interactive web technologies require us to rethink the standard submit-and-wait paradigm, and craft bioinformatics web applications that share analytical and interactive power with their desktop relatives, while retaining simplicity and availability. Results We have developed dictyExpress, a web application that features a graphical, highly interactive explorative interface to our database that consists of more than 1000 Dictyostelium discoideum gene expression experiments. In dictyExpress, the user can select experiments and genes, perform gene clustering, view gene expression profiles across time, view gene co-expression networks, perform analyses of Gene Ontology term enrichment, and simultaneously display expression profiles for a selected gene in various experiments. Most importantly, these tasks are achieved through web applications whose components are seamlessly interlinked and immediately respond to events triggered by the user, thus providing a powerful explorative data analysis environment. Conclusion dictyExpress is a precursor for a new generation of web-based bioinformatics applications with simple but powerful interactive interfaces that resemble that of the modern desktop. While dictyExpress serves mainly the Dictyostelium research community, it is relatively easy to adapt it to other datasets. We propose that the design ideas behind dictyExpress will influence the development of similar applications for other model organisms. PMID:19706156
1990-11-01
to design and implement an adaptive intelligent interface for a command-and-control-style domain. The primary functionality of the resulting...technical tasks, as follows: 1. Analysis of Current Interface Technologies 2. Dejineation of User Roles 3. Development of User Models 4. Design of Interface...Management Association (FEMA). In the initial version of the prototype, two distin-t user models were designed . One type of user modeled by the system is
Properties of interfaces and transport across them.
Cabezas, H
2000-01-01
Much of the biological activity in cell cytoplasm occurs in compartments some of which may be formed, as suggested in this book, by phase separation, and many of the functions of such compartments depend on the transport or exchange of molecules across interfaces. Thus a fundamentally based discussion of the properties of phases, interfaces, and diffusive transport across interfaces has been given to further elucidate these phenomena. An operational criterion for the width of interfaces is given in terms of molecular and physical arguments, and the properties of molecules inside phases and interfaces are discussed in terms of molecular arguments. In general, the properties of the interface become important when the molecules diffusing across are smaller than the width of the interface. Equilibrium partitioning, Donnan phenomena, and electrochemical potentials at interfaces are also discussed in detail. The mathematical expressions for modeling transport across interfaces are discussed in detail. These describe a practical and detailed model for transport across interfaces. For molecules smaller than the width of the interface, this includes a detailed model for diffusion inside the interface. Last, the question of the time scale for phase formation and equilibration in biological systems is discussed.
Interaction of a sodium ion with the water liquid-vapor interface
NASA Technical Reports Server (NTRS)
Wilson, M. A.; Pohorille, A.; Pratt, L. R.; MacElroy, R. D. (Principal Investigator)
1989-01-01
Molecular dynamics results are presented for the density profile of a sodium ion near the water liquid-vapor interface at 320 K. These results are compared with the predictions of a simple dielectric model for the interaction of a monovalent ion with this interface. The interfacial region described by the model profile is too narrow and the profile decreases too abruptly near the solution interface. Thus, the simple model does not provide a satisfactory description of the molecular dynamics results for ion positions within two molecular diameters from the solution interface where appreciable ion concentrations are observed. These results suggest that surfaces associated with dielectric models of ionic processes at aqueous solution interfaces should be located at least two molecular diameters inside the liquid phase. A free energy expense of about 2 kcal/mol is required to move the ion within two molecular layers of the free water liquid-vapor interface.
NASA Astrophysics Data System (ADS)
Yang, Fan; Fang, Dai-Ning; Liu, Bin
2012-01-01
An oxidation kinetics model is developed to account for the effects of the oxidation interface curvature and the oxidation-induced volume change or Pilling-Bedworth ratio. For the oxidation of Fe-Cr-Al-Y alloy fiber, the predictions agree well with experimental results. By considering the influence of the oxidation interface curvature on oxidation rates, the evolution of fluctuant oxidation interface is predicted. We also developed the phase field method (PFM) to simulate the evolution of the interface roughness. Both the theoretical model and the PFM results show that the interface will become smooth during high temperature oxidation. Stress distribution and evolution are calculated by PFM, which indicates that the stress level decreases as the interface morphology evolves.
2011-01-01
Background Renewed interest in plant × environment interactions has risen in the post-genomic era. In this context, high-throughput phenotyping platforms have been developed to create reproducible environmental scenarios in which the phenotypic responses of multiple genotypes can be analysed in a reproducible way. These platforms benefit hugely from the development of suitable databases for storage, sharing and analysis of the large amount of data collected. In the model plant Arabidopsis thaliana, most databases available to the scientific community contain data related to genetic and molecular biology and are characterised by an inadequacy in the description of plant developmental stages and experimental metadata such as environmental conditions. Our goal was to develop a comprehensive information system for sharing of the data collected in PHENOPSIS, an automated platform for Arabidopsis thaliana phenotyping, with the scientific community. Description PHENOPSIS DB is a publicly available (URL: http://bioweb.supagro.inra.fr/phenopsis/) information system developed for storage, browsing and sharing of online data generated by the PHENOPSIS platform and offline data collected by experimenters and experimental metadata. It provides modules coupled to a Web interface for (i) the visualisation of environmental data of an experiment, (ii) the visualisation and statistical analysis of phenotypic data, and (iii) the analysis of Arabidopsis thaliana plant images. Conclusions Firstly, data stored in the PHENOPSIS DB are of interest to the Arabidopsis thaliana community, particularly in allowing phenotypic meta-analyses directly linked to environmental conditions on which publications are still scarce. Secondly, data or image analysis modules can be downloaded from the Web interface for direct usage or as the basis for modifications according to new requirements. Finally, the structure of PHENOPSIS DB provides a useful template for the development of other similar databases related to genotype × environment interactions. PMID:21554668
NASA Astrophysics Data System (ADS)
Babbar-Sebens, M.; Mukhopadhyay, S.
2014-12-01
Web 2.0 technologies are useful resources for reaching out to larger stakeholder communities and involve them in policy making and planning efforts. While these technologies have been used in the past to support education and communication endeavors, we have developed a novel, web-based, interactive planning tool that involves the community in using science-based methods for the design of potential runoff management strategies on their landscape. The tool, Watershed REstoration using Spatio-Temporal Optimization of Resources (WRESTORE), uses a democratic voting process coupled with visualization interfaces, computational simulation and optimization models, and user modeling techniques to support a human-centered design approach. The tool can be used to engage diverse watershed stakeholders and landowners via the internet, thereby improving opportunities for outreach and collaborations. Users are able to (a) design multiple types of conservation practices at their field-scale catchment and at the entire watershed scale, (b) examine impacts and limitations of their decisions on their neighboring catchments and on the entire watershed, (c) compare alternatives via a cost-benefit analysis, (d) vote on their "favorite" designs based on their preferences and constraints, and (e) propose their "favorite" alternatives to policy makers and other stakeholders. In this presentation, we will demonstrate the effectiveness of WRESTORE for designing alternatives of conservation practices to reduce peak flows in a Midwestern watershed, present results on multiple approaches for engaging with larger communities, and discuss potential for future developments.
A Smart Modeling Framework for Integrating BMI-enabled Models as Web Services
NASA Astrophysics Data System (ADS)
Jiang, P.; Elag, M.; Kumar, P.; Peckham, S. D.; Liu, R.; Marini, L.; Hsu, L.
2015-12-01
Serviced-oriented computing provides an opportunity to couple web service models using semantic web technology. Through this approach, models that are exposed as web services can be conserved in their own local environment, thus making it easy for modelers to maintain and update the models. In integrated modeling, the serviced-oriented loose-coupling approach requires (1) a set of models as web services, (2) the model metadata describing the external features of a model (e.g., variable name, unit, computational grid, etc.) and (3) a model integration framework. We present the architecture of coupling web service models that are self-describing by utilizing a smart modeling framework. We expose models that are encapsulated with CSDMS (Community Surface Dynamics Modeling System) Basic Model Interfaces (BMI) as web services. The BMI-enabled models are self-describing by uncovering models' metadata through BMI functions. After a BMI-enabled model is serviced, a client can initialize, execute and retrieve the meta-information of the model by calling its BMI functions over the web. Furthermore, a revised version of EMELI (Peckham, 2015), an Experimental Modeling Environment for Linking and Interoperability, is chosen as the framework for coupling BMI-enabled web service models. EMELI allows users to combine a set of component models into a complex model by standardizing model interface using BMI as well as providing a set of utilities smoothing the integration process (e.g., temporal interpolation). We modify the original EMELI so that the revised modeling framework is able to initialize, execute and find the dependencies of the BMI-enabled web service models. By using the revised EMELI, an example will be presented on integrating a set of topoflow model components that are BMI-enabled and exposed as web services. Reference: Peckham, S.D. (2014) EMELI 1.0: An experimental smart modeling framework for automatic coupling of self-describing models, Proceedings of HIC 2014, 11th International Conf. on Hydroinformatics, New York, NY.
LSST Resources for the Community
NASA Astrophysics Data System (ADS)
Jones, R. Lynne
2011-01-01
LSST will generate 100 petabytes of images and 20 petabytes of catalogs, covering 18,000-20,000 square degrees of area sampled every few days, throughout a total of ten years of time -- all publicly available and exquisitely calibrated. The primary access to this data will be through Data Access Centers (DACs). DACs will provide access to catalogs of sources (single detections from individual images) and objects (associations of sources from multiple images). Simple user interfaces or direct SQL queries at the DAC can return user-specified portions of data from catalogs or images. More complex manipulations of the data, such as calculating multi-point correlation functions or creating alternative photo-z measurements on terabyte-scale data, can be completed with the DAC's own resources. Even more data-intensive computations requiring access to large numbers of image pixels on petabyte-scale could also be conducted at the DAC, using compute resources allocated in a similar manner to a TAC. DAC resources will be available to all individuals in member countries or institutes and LSST science collaborations. DACs will also assist investigators with requests for allocations at national facilities such as the Petascale Computing Facility, TeraGrid, and Open Science Grid. Using data on this scale requires new approaches to accessibility and analysis which are being developed through interactions with the LSST Science Collaborations. We are producing simulated images (as might be acquired by LSST) based on models of the universe and generating catalogs from these images (as well as from the base model) using the LSST data management framework in a series of data challenges. The resulting images and catalogs are being made available to the science collaborations to verify the algorithms and develop user interfaces. All LSST software is open source and available online, including preliminary catalog formats. We encourage feedback from the community.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldman, Amy E.; Graham, Emily B.; Crump, Alex R.
The parafluvial hyporheic zone combines the heightened biogeochemical and microbial interactions indicative of a hyporheic region with direct atmospheric/terrestrial inputs and the effects of wet–dry cycles. Therefore, understanding biogeochemical cycling and microbial interactions in this ecotone is fundamental to understanding biogeochemical cycling at the aquatic–terrestrial interface and to creating robust hydrobiogeochemical models of dynamic river corridors. We aimed to (i) characterize biogeochemical and microbial differences in the parafluvial hyporheic zone across a small spatial domain (6 lateral meters) that spans a breadth of inundation histories and (ii) examine how parafluvial hyporheic sediments respond to laboratory-simulated re-inundation. Surface sediment was collected at fourmore » elevations along transects perpendicular to flow of the Columbia River, eastern WA, USA. The sediments were inundated by the river 0, 13, 127, and 398 days prior to sampling. Spatial variation in environmental variables (organic matter, moisture, nitrate, glucose, %C, %N) and microbial communities (16S and internal transcribed spacer (ITS) rRNA gene sequencing, qPCR) were driven by differences in inundation history. Microbial respiration did not differ significantly across inundation histories prior to forced inundation in laboratory incubations. Forced inundation suppressed microbial respiration across all histories, but the degree of suppression was dramatically different between the sediments saturated and unsaturated at the time of sample collection, indicating a binary threshold response to re-inundation. We present a conceptual model in which irregular hydrologic fluctuations facilitate microbial communities adapted to local conditions and a relatively high flux of CO 2. Upon rewetting, microbial communities are initially suppressed metabolically, which results in lower CO 2 flux rates primarily due to suppression of fungal respiration. Following prolonged inundation, the microbial community adapts to saturation by shifting composition, and the CO 2 flux rebounds to prior levels due to the subsequent change in respiration. Our results indicate that the time between inundation events can push the system into alternate states: we suggest (i) that, above some threshold of inundation interval, re-inundation suppresses respiration to a consistent, low rate and (ii) that, below some inundation interval, re-inundation has a minor effect on respiration. In conclusion, extending reactive transport models to capture processes that govern such dynamics will provide more robust predictions of river corridor biogeochemical function under altered surface water flow regimes in both managed and natural watersheds.« less
Goldman, Amy E.; Graham, Emily B.; Crump, Alex R.; ...
2017-09-21
The parafluvial hyporheic zone combines the heightened biogeochemical and microbial interactions indicative of a hyporheic region with direct atmospheric/terrestrial inputs and the effects of wet–dry cycles. Therefore, understanding biogeochemical cycling and microbial interactions in this ecotone is fundamental to understanding biogeochemical cycling at the aquatic–terrestrial interface and to creating robust hydrobiogeochemical models of dynamic river corridors. We aimed to (i) characterize biogeochemical and microbial differences in the parafluvial hyporheic zone across a small spatial domain (6 lateral meters) that spans a breadth of inundation histories and (ii) examine how parafluvial hyporheic sediments respond to laboratory-simulated re-inundation. Surface sediment was collected at fourmore » elevations along transects perpendicular to flow of the Columbia River, eastern WA, USA. The sediments were inundated by the river 0, 13, 127, and 398 days prior to sampling. Spatial variation in environmental variables (organic matter, moisture, nitrate, glucose, %C, %N) and microbial communities (16S and internal transcribed spacer (ITS) rRNA gene sequencing, qPCR) were driven by differences in inundation history. Microbial respiration did not differ significantly across inundation histories prior to forced inundation in laboratory incubations. Forced inundation suppressed microbial respiration across all histories, but the degree of suppression was dramatically different between the sediments saturated and unsaturated at the time of sample collection, indicating a binary threshold response to re-inundation. We present a conceptual model in which irregular hydrologic fluctuations facilitate microbial communities adapted to local conditions and a relatively high flux of CO 2. Upon rewetting, microbial communities are initially suppressed metabolically, which results in lower CO 2 flux rates primarily due to suppression of fungal respiration. Following prolonged inundation, the microbial community adapts to saturation by shifting composition, and the CO 2 flux rebounds to prior levels due to the subsequent change in respiration. Our results indicate that the time between inundation events can push the system into alternate states: we suggest (i) that, above some threshold of inundation interval, re-inundation suppresses respiration to a consistent, low rate and (ii) that, below some inundation interval, re-inundation has a minor effect on respiration. In conclusion, extending reactive transport models to capture processes that govern such dynamics will provide more robust predictions of river corridor biogeochemical function under altered surface water flow regimes in both managed and natural watersheds.« less
A 2-D Interface Element for Coupled Analysis of Independently Modeled 3-D Finite Element Subdomains
NASA Technical Reports Server (NTRS)
Kandil, Osama A.
1998-01-01
Over the past few years, the development of the interface technology has provided an analysis framework for embedding detailed finite element models within finite element models which are less refined. This development has enabled the use of cascading substructure domains without the constraint of coincident nodes along substructure boundaries. The approach used for the interface element is based on an alternate variational principle often used in deriving hybrid finite elements. The resulting system of equations exhibits a high degree of sparsity but gives rise to a non-positive definite system which causes difficulties with many of the equation solvers in general-purpose finite element codes. Hence the global system of equations is generally solved using, a decomposition procedure with pivoting. The research reported to-date for the interface element includes the one-dimensional line interface element and two-dimensional surface interface element. Several large-scale simulations, including geometrically nonlinear problems, have been reported using the one-dimensional interface element technology; however, only limited applications are available for the surface interface element. In the applications reported to-date, the geometry of the interfaced domains exactly match each other even though the spatial discretization within each domain may be different. As such, the spatial modeling of each domain, the interface elements and the assembled system is still laborious. The present research is focused on developing a rapid modeling procedure based on a parametric interface representation of independently defined subdomains which are also independently discretized.
NASA Astrophysics Data System (ADS)
Sanan, P.; Tackley, P. J.; Gerya, T.; Kaus, B. J. P.; May, D.
2017-12-01
StagBL is an open-source parallel solver and discretization library for geodynamic simulation,encapsulating and optimizing operations essential to staggered-grid finite volume Stokes flow solvers.It provides a parallel staggered-grid abstraction with a high-level interface in C and Fortran.On top of this abstraction, tools are available to define boundary conditions and interact with particle systems.Tools and examples to efficiently solve Stokes systems defined on the grid are provided in small (direct solver), medium (simple preconditioners), and large (block factorization and multigrid) model regimes.By working directly with leading application codes (StagYY, I3ELVIS, and LaMEM) and providing an API and examples to integrate with others, StagBL aims to become a community tool supplying scalable, portable, reproducible performance toward novel science in regional- and planet-scale geodynamics and planetary science.By implementing kernels used by many research groups beneath a uniform abstraction layer, the library will enable optimization for modern hardware, thus reducing community barriers to large- or extreme-scale parallel simulation on modern architectures. In particular, the library will include CPU-, Manycore-, and GPU-optimized variants of matrix-free operators and multigrid components.The common layer provides a framework upon which to introduce innovative new tools.StagBL will leverage p4est to provide distributed adaptive meshes, and incorporate a multigrid convergence analysis tool.These options, in addition to a wealth of solver options provided by an interface to PETSc, will make the most modern solution techniques available from a common interface. StagBL in turn provides a PETSc interface, DMStag, to its central staggered grid abstraction.We present public version 0.5 of StagBL, including preliminary integration with application codes and demonstrations with its own demonstration application, StagBLDemo. Central to StagBL is the notion of an uninterrupted pipeline from toy/teaching codes to high-performance, extreme-scale solves. StagBLDemo replicates the functionality of an advanced MATLAB-style regional geodynamics code, thus providing users with a concrete procedure to exceed the performance and scalability limitations of smaller-scale tools.
Space Generic Open Avionics Architecture (SGOAA) standard specification
NASA Technical Reports Server (NTRS)
Wray, Richard B.; Stovall, John R.
1994-01-01
This standard establishes the Space Generic Open Avionics Architecture (SGOAA). The SGOAA includes a generic functional model, processing structural model, and an architecture interface model. This standard defines the requirements for applying these models to the development of spacecraft core avionics systems. The purpose of this standard is to provide an umbrella set of requirements for applying the generic architecture models to the design of a specific avionics hardware/software processing system. This standard defines a generic set of system interface points to facilitate identification of critical services and interfaces. It establishes the requirement for applying appropriate low level detailed implementation standards to those interfaces points. The generic core avionics functions and processing structural models provided herein are robustly tailorable to specific system applications and provide a platform upon which the interface model is to be applied.
Christine S. Olsen; Jeffrey D. Kline; Alan A. Ager; Keith A. Olsen; Karen C. Short
2017-01-01
Expansion of the wildlandâurban interface (WUI) and the increasing size and number of wildfires has policy-makers and wildfire managers seeking ways to reduce wildfire risk in communities located near fire-prone forests. It is widely acknowledged that homeowners can reduce their exposure to wildfire risk by using nonflammable building materials and reducing tree...
Maureen C. Kennedy; Morris C. Johnson
2014-01-01
Fuel reduction treatments are implemented in the forest surrounding the wildlandâurban interface (WUI) to provide defensible space and safe opportunity for the protection of homes during a wildfire. The 2011 Wallow Fire in Arizona USA burned through recently implemented fuel treatments in the wildland surrounding residential communities in the WUI, and those fuel...
Brian Cooke; Daniel Williams; Travis Paveglio; Matthew Carroll
2016-01-01
Reducing wildfire risk to lives and property is a critical issue for policy makers, land managers, and citizens who reside in high-risk fire areas of the United States - this is especially the case in the Rocky Mountain region and other western states. In order for a wildfire risk reduction effort to be effective in a U.S. wildland-urban interface (WUI)...
Application of Interface Technology in Progressive Failure Analysis of Composite Panels
NASA Technical Reports Server (NTRS)
Sleight, D. W.; Lotts, C. G.
2002-01-01
A progressive failure analysis capability using interface technology is presented. The capability has been implemented in the COMET-AR finite element analysis code developed at the NASA Langley Research Center and is demonstrated on composite panels. The composite panels are analyzed for damage initiation and propagation from initial loading to final failure using a progressive failure analysis capability that includes both geometric and material nonlinearities. Progressive failure analyses are performed on conventional models and interface technology models of the composite panels. Analytical results and the computational effort of the analyses are compared for the conventional models and interface technology models. The analytical results predicted with the interface technology models are in good correlation with the analytical results using the conventional models, while significantly reducing the computational effort.
Diffuse-Interface Methods in Fluid Mechanics
NASA Technical Reports Server (NTRS)
Anderson, D. M.; McFadden, G. B.; Wheeler, A. A.
1997-01-01
The authors review the development of diffuse-interface models of hydrodynamics and their application to a wide variety of interfacial phenomena. The authors discuss the issues involved in formulating diffuse-interface models for single-component and binary fluids. Recent applications and computations using these models are discussed in each case. Further, the authors address issues including sharp-interface analyses that relate these models to the classical free-boundary problem, related computational approaches to describe interfacial phenomena, and related approaches describing fully-miscible fluids.
Earth System Grid II, Turning Climate Datasets into Community Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Middleton, Don
2006-08-01
The Earth System Grid (ESG) II project, funded by the Department of Energy’s Scientific Discovery through Advanced Computing program, has transformed climate data into community resources. ESG II has accomplished this goal by creating a virtual collaborative environment that links climate centers and users around the world to models and data via a computing Grid, which is based on the Department of Energy’s supercomputing resources and the Internet. Our project’s success stems from partnerships between climate researchers and computer scientists to advance basic and applied research in the terrestrial, atmospheric, and oceanic sciences. By interfacing with other climate science projects,more » we have learned that commonly used methods to manage and remotely distribute data among related groups lack infrastructure and under-utilize existing technologies. Knowledge and expertise gained from ESG II have helped the climate community plan strategies to manage a rapidly growing data environment more effectively. Moreover, approaches and technologies developed under the ESG project have impacted datasimulation integration in other disciplines, such as astrophysics, molecular biology and materials science.« less
Preparing for LISA Data: The Testbed for LISA Analysis Project
NASA Astrophysics Data System (ADS)
Finn, Lee Samuel; Benacquista, Matthew J.; Larson, Shane L.; Rubbo, Louis J.
2006-11-01
The Testbed for LISA Analysis (TLA) Project aims to facilitate the development, validation, and comparison of different methods for LISA science data analysis by the broad LISA Science Community to meet the special challenges that LISA poses. It includes a well-defined Simulated LISA Data Product (SLDP), which provides a clean interface between the modeling of LISA, the preparation of LISA data, and the analysis of the LISA science data stream; a web-based clearinghouse (at
Development of a coastal drought index using salinity data
Paul Conrads; Lisa Darby
2016-01-01
The location of the freshwater-saltwater interface in surface-water bodies is an important factor in the ecological and socio-economic dynamics of coastal communities. It influences community composition in freshwater and saltwater ecosystems, determines fisheries spawning habitat, and controls freshwater availability for municipal and industrial water intakes. These...
Daniel R. Williams; Pamela J. Jakes; Sam Burns; Antony S. Cheng; Kristen C. Nelson; Victoria Sturtevant; Rachel F. Brummel; Emily Staychock; Stephanie G. Souter
2012-01-01
Community wildfire protection planning has become an important tool for engaging wildland-urban interface residents and other stakeholders in efforts to address their mutual concerns about wildland fire management, prioritize hazardous fuel reduction projects, and improve forest health. Drawing from 13 case studies from across the United States, this article describes...
Mapping a Sustainable Future: Community Learning in Dialogue at the Science-Society Interface
ERIC Educational Resources Information Center
Barth, Matthias; Lang, Daniel J.; Luthardt, Philip; Vilsmaier, Ulli
2017-01-01
In 2015, the German Federal Ministry of Education and Research (BMBF) announced that the Science Year 2015 would focus on the "City of the Future". It called for innovative projects from cities and communities in Germany dedicated to exploring future options and scenarios for sustainable development. Among the successful respondents was…
An exploration of a fire-affected community undergoing change in New Zealand
Pamela J. Jakes; Laura Kelly; Lisa Langer
2010-01-01
In the first case study of a fire-affected community in New Zealand's rural-urban interface, researchers found evidence to support findings raised in other countries regarding evacuation, blaming behaviour and perceptions of risk. Differences were evident based on ownership tenure, including less awareness of wildfire risk and preparedness among those with shorter...
Space Generic Open Avionics Architecture (SGOAA) standard specification
NASA Technical Reports Server (NTRS)
Wray, Richard B.; Stovall, John R.
1993-01-01
The purpose of this standard is to provide an umbrella set of requirements for applying the generic architecture interface model to the design of a specific avionics hardware/software system. This standard defines a generic set of system interface points to facilitate identification of critical interfaces and establishes the requirements for applying appropriate low level detailed implementation standards to those interface points. The generic core avionics system and processing architecture models provided herein are robustly tailorable to specific system applications and provide a platform upon which the interface model is to be applied.
Young, Staci
2009-01-01
The purpose of this study was to explore how community-based case managers interface with their clients' healthcare providers and other community organizations as a function within their advocacy efforts. Case managers previously defined advocacy as occurring at individual, organizational, and community levels. The relationships they attempt to develop and maintain are consistent with case management ideology, yet this is a complex process to ensure care for vulnerable populations with many medical and socioeconomic needs. Community-based case management settings. In-depth qualitative interviews with a total of 20 nurse and social work case managers working in public housing, university-affiliated community nursing centers, local parishes, and community ministry. The case managers in this study reflected on how they interface with their clients, other healthcare providers, and community organizations on behalf of their clients. They reflect on the importance of trust and communication to facilitate this process. The advocacy work of case managers is influenced by the setting, others' perceptions of their knowledge and expertise, and power dynamics. Their ability to effectively advocate is greatly influenced by the strength of the relationships they forge. Advocacy for vulnerable clients is influenced by the existing relationship between case managers and their clients' healthcare providers. Case managers need to be persistent in their interactions with other providers to ensure that their clients have access to valuable community resources. Clear lines of communication should be established between case managers so that there is clarity around roles and expectations in service provision. Case managers should also participate in the mentoring of future health professions students so they may learn the application of advocacy work in community settings.
Finite-deformation phase-field chemomechanics for multiphase, multicomponent solids
NASA Astrophysics Data System (ADS)
Svendsen, Bob; Shanthraj, Pratheek; Raabe, Dierk
2018-03-01
The purpose of this work is the development of a framework for the formulation of geometrically non-linear inelastic chemomechanical models for a mixture of multiple chemical components diffusing among multiple transforming solid phases. The focus here is on general model formulation. No specific model or application is pursued in this work. To this end, basic balance and constitutive relations from non-equilibrium thermodynamics and continuum mixture theory are combined with a phase-field-based description of multicomponent solid phases and their interfaces. Solid phase modeling is based in particular on a chemomechanical free energy and stress relaxation via the evolution of phase-specific concentration fields, order-parameter fields (e.g., related to chemical ordering, structural ordering, or defects), and local internal variables. At the mixture level, differences or contrasts in phase composition and phase local deformation in phase interface regions are treated as mixture internal variables. In this context, various phase interface models are considered. In the equilibrium limit, phase contrasts in composition and local deformation in the phase interface region are determined via bulk energy minimization. On the chemical side, the equilibrium limit of the current model formulation reduces to a multicomponent, multiphase, generalization of existing two-phase binary alloy interface equilibrium conditions (e.g., KKS). On the mechanical side, the equilibrium limit of one interface model considered represents a multiphase generalization of Reuss-Sachs conditions from mechanical homogenization theory. Analogously, other interface models considered represent generalizations of interface equilibrium conditions consistent with laminate and sharp-interface theory. In the last part of the work, selected existing models are formulated within the current framework as special cases and discussed in detail.
2011-01-01
Background Machine learning has a vast range of applications. In particular, advanced machine learning methods are routinely and increasingly used in quantitative structure activity relationship (QSAR) modeling. QSAR data sets often encompass tens of thousands of compounds and the size of proprietary, as well as public data sets, is rapidly growing. Hence, there is a demand for computationally efficient machine learning algorithms, easily available to researchers without extensive machine learning knowledge. In granting the scientific principles of transparency and reproducibility, Open Source solutions are increasingly acknowledged by regulatory authorities. Thus, an Open Source state-of-the-art high performance machine learning platform, interfacing multiple, customized machine learning algorithms for both graphical programming and scripting, to be used for large scale development of QSAR models of regulatory quality, is of great value to the QSAR community. Results This paper describes the implementation of the Open Source machine learning package AZOrange. AZOrange is specially developed to support batch generation of QSAR models in providing the full work flow of QSAR modeling, from descriptor calculation to automated model building, validation and selection. The automated work flow relies upon the customization of the machine learning algorithms and a generalized, automated model hyper-parameter selection process. Several high performance machine learning algorithms are interfaced for efficient data set specific selection of the statistical method, promoting model accuracy. Using the high performance machine learning algorithms of AZOrange does not require programming knowledge as flexible applications can be created, not only at a scripting level, but also in a graphical programming environment. Conclusions AZOrange is a step towards meeting the needs for an Open Source high performance machine learning platform, supporting the efficient development of highly accurate QSAR models fulfilling regulatory requirements. PMID:21798025
Stålring, Jonna C; Carlsson, Lars A; Almeida, Pedro; Boyer, Scott
2011-07-28
Machine learning has a vast range of applications. In particular, advanced machine learning methods are routinely and increasingly used in quantitative structure activity relationship (QSAR) modeling. QSAR data sets often encompass tens of thousands of compounds and the size of proprietary, as well as public data sets, is rapidly growing. Hence, there is a demand for computationally efficient machine learning algorithms, easily available to researchers without extensive machine learning knowledge. In granting the scientific principles of transparency and reproducibility, Open Source solutions are increasingly acknowledged by regulatory authorities. Thus, an Open Source state-of-the-art high performance machine learning platform, interfacing multiple, customized machine learning algorithms for both graphical programming and scripting, to be used for large scale development of QSAR models of regulatory quality, is of great value to the QSAR community. This paper describes the implementation of the Open Source machine learning package AZOrange. AZOrange is specially developed to support batch generation of QSAR models in providing the full work flow of QSAR modeling, from descriptor calculation to automated model building, validation and selection. The automated work flow relies upon the customization of the machine learning algorithms and a generalized, automated model hyper-parameter selection process. Several high performance machine learning algorithms are interfaced for efficient data set specific selection of the statistical method, promoting model accuracy. Using the high performance machine learning algorithms of AZOrange does not require programming knowledge as flexible applications can be created, not only at a scripting level, but also in a graphical programming environment. AZOrange is a step towards meeting the needs for an Open Source high performance machine learning platform, supporting the efficient development of highly accurate QSAR models fulfilling regulatory requirements.
Aland, Sebastian; Lowengrub, John; Voigt, Axel
2012-10-01
Colloid particles that are partially wetted by two immiscible fluids can become confined to fluid-fluid interfaces. At sufficiently high volume fractions, the colloids may jam and the interface may crystallize. The fluids together with the interfacial colloids form an emulsion with interesting material properties and offer an important route to new soft materials. A promising approach to simulate these emulsions was presented in Aland et al. [Phys. Fluids 23, 062103 (2011)], where a Navier-Stokes-Cahn-Hilliard model for the macroscopic two-phase fluid system was combined with a surface phase-field-crystal model for the microscopic colloidal particles along the interface. Unfortunately this model leads to spurious velocities which require very fine spatial and temporal resolutions to accurately and stably simulate. In this paper we develop an improved Navier-Stokes-Cahn-Hilliard-surface phase-field-crystal model based on the principles of mass conservation and thermodynamic consistency. To validate our approach, we derive a sharp interface model and show agreement with the improved diffuse interface model. Using simple flow configurations, we show that the new model has much better properties and does not lead to spurious velocities. Finally, we demonstrate the solid-like behavior of the crystallized interface by simulating the fall of a solid ball through a colloid-laden multiphase fluid.
User's guide for GSMP, a General System Modeling Program. [In PL/I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, J. M.
1979-10-01
GSMP is designed for use by systems analysis teams. Given compiled subroutines that model the behavior of components plus instructions as to how they are to be interconnected, this program links them together to model a complete system. GSMP offers a fast response to management requests for reconfigurations of old systems and even initial configurations of new systems. Standard system-analytic services are provided: parameter sweeps, graphics, free-form input and formatted output, file storage and recovery, user-tested error diagnostics, component model and integration checkout and debugging facilities, sensitivity analysis, and a multimethod optimizer with nonlinear constraint handling capability. Steady-state or cyclicmore » time-dependence is simulated directly, initial-value problems only indirectly. The code is written in PL/I, but interfaces well with FORTRAN component models. Over the last five years GSMP has been used to model theta-pinch, tokamak, and heavy-ion fusion power plants, open- and closed-cycle magneto-hydrodynamic power plants, and total community energy systems.« less
Engineering brain-computer interfaces: past, present and future.
Hughes, M A
2014-06-01
Electricity governs the function of both nervous systems and computers. Whilst ions move in polar fluids to depolarize neuronal membranes, electrons move in the solid-state lattices of microelectronic semiconductors. Joining these two systems together, to create an iono-electric brain-computer interface, is an immense challenge. However, such interfaces offer (and in select clinical contexts have already delivered) a method of overcoming disability caused by neurological or musculoskeletal pathology. To fulfill their theoretical promise, several specific challenges demand consideration. Rate-limiting steps cover a diverse range of disciplines including microelectronics, neuro-informatics, engineering, and materials science. As those who work at the tangible interface between brain and outside world, neurosurgeons are well placed to contribute to, and inform, this cutting edge area of translational research. This article explores the historical background, status quo, and future of brain-computer interfaces; and outlines the challenges to progress and opportunities available to the clinical neurosciences community.
Watershed System Model: The Essentials to Model Complex Human-Nature System at the River Basin Scale
NASA Astrophysics Data System (ADS)
Li, Xin; Cheng, Guodong; Lin, Hui; Cai, Ximing; Fang, Miao; Ge, Yingchun; Hu, Xiaoli; Chen, Min; Li, Weiyue
2018-03-01
Watershed system models are urgently needed to understand complex watershed systems and to support integrated river basin management. Early watershed modeling efforts focused on the representation of hydrologic processes, while the next-generation watershed models should represent the coevolution of the water-land-air-plant-human nexus in a watershed and provide capability of decision-making support. We propose a new modeling framework and discuss the know-how approach to incorporate emerging knowledge into integrated models through data exchange interfaces. We argue that the modeling environment is a useful tool to enable effective model integration, as well as create domain-specific models of river basin systems. The grand challenges in developing next-generation watershed system models include but are not limited to providing an overarching framework for linking natural and social sciences, building a scientifically based decision support system, quantifying and controlling uncertainties, and taking advantage of new technologies and new findings in the various disciplines of watershed science. The eventual goal is to build transdisciplinary, scientifically sound, and scale-explicit watershed system models that are to be codesigned by multidisciplinary communities.
The Auroral Planetary Imaging and Spectroscopy (APIS) service
NASA Astrophysics Data System (ADS)
Lamy, L.; Prangé, R.; Henry, F.; Le Sidaner, P.
2015-06-01
The Auroral Planetary Imaging and Spectroscopy (APIS) service, accessible online, provides an open and interactive access to processed auroral observations of the outer planets and their satellites. Such observations are of interest for a wide community at the interface between planetology, magnetospheric and heliospheric physics. APIS consists of (i) a high level database, built from planetary auroral observations acquired by the Hubble Space Telescope (HST) since 1997 with its mostly used Far-Ultraviolet spectro-imagers, (ii) a dedicated search interface aimed at browsing efficiently this database through relevant conditional search criteria and (iii) the ability to interactively work with the data online through plotting tools developed by the Virtual Observatory (VO) community, such as Aladin and Specview. This service is VO compliant and can therefore also been queried by external search tools of the VO community. The diversity of available data and the capability to sort them out by relevant physical criteria shall in particular facilitate statistical studies, on long-term scales and/or multi-instrumental multi-spectral combined analysis.
Finite element modeling of frictionally restrained composite interfaces
NASA Technical Reports Server (NTRS)
Ballarini, Roberto; Ahmed, Shamim
1989-01-01
The use of special interface finite elements to model frictional restraint in composite interfaces is described. These elements simulate Coulomb friction at the interface, and are incorporated into a standard finite element analysis of a two-dimensional isolated fiber pullout test. Various interfacial characteristics, such as the distribution of stresses at the interface, the extent of slip and delamination, load diffusion from fiber to matrix, and the amount of fiber extraction or depression are studied for different friction coefficients. The results are compared to those obtained analytically using a singular integral equation approach, and those obtained by assuming a constant interface shear strength. The usefulness of these elements in micromechanical modeling of fiber-reinforced composite materials is highlighted.
2005-01-01
Interface Compatibility); the tool is written in Ocaml [10], and the symbolic algorithms for interface compatibility and refinement are built on top...automata for a fire detection and reporting system. be encoded in the input language of the tool TIC. The refinement of sociable interfaces is discussed...are closely related to the I/O Automata Language (IOA) of [11]. Interface models are games between Input and Output, and in the models, it is es
Revisiting the Al/Al 2O 3 Interface: Coherent Interfaces and Misfit Accommodation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pilania, Ghanshyam; Thijsse, Barend J.; Hoagland, Richard G.
We report the coherent and semi-coherent Al/α-Al 2O 3 interfaces using molecular dynamics simulations with a mixed, metallic-ionic atomistic model. For the coherent interfaces, both Al-terminated and O-terminated nonstoichiometric interfaces have been studied and their relative stability has been established. To understand the misfit accommodation at the semi-coherent interface, a 1-dimensional (1D) misfit dislocation model and a 2-dimensional (2D) dislocation network model have been studied. For the latter case, our analysis reveals an interface dislocation structure with a network of three sets of parallel dislocations, each with pure-edge character, giving rise to a pattern of coherent and stacking-fault-like regions atmore » the interface. Structural relaxation at elevated temperatures leads to a further change of the dislocation pattern, which can be understood in terms of a competition between the stacking fault energy and the dislocation interaction energy at the interface. In conclusion, our results are expected to serve as an input for the subsequent dislocation dynamics models to understand and predict the macroscopic mechanical behavior of Al/α-Al 2O 3 composite heterostructures.« less
Revisiting the Al/Al 2O 3 Interface: Coherent Interfaces and Misfit Accommodation
Pilania, Ghanshyam; Thijsse, Barend J.; Hoagland, Richard G.; ...
2014-03-27
We report the coherent and semi-coherent Al/α-Al 2O 3 interfaces using molecular dynamics simulations with a mixed, metallic-ionic atomistic model. For the coherent interfaces, both Al-terminated and O-terminated nonstoichiometric interfaces have been studied and their relative stability has been established. To understand the misfit accommodation at the semi-coherent interface, a 1-dimensional (1D) misfit dislocation model and a 2-dimensional (2D) dislocation network model have been studied. For the latter case, our analysis reveals an interface dislocation structure with a network of three sets of parallel dislocations, each with pure-edge character, giving rise to a pattern of coherent and stacking-fault-like regions atmore » the interface. Structural relaxation at elevated temperatures leads to a further change of the dislocation pattern, which can be understood in terms of a competition between the stacking fault energy and the dislocation interaction energy at the interface. In conclusion, our results are expected to serve as an input for the subsequent dislocation dynamics models to understand and predict the macroscopic mechanical behavior of Al/α-Al 2O 3 composite heterostructures.« less
Interface Management for a NASA Flight Project Using Model-Based Systems Engineering (MBSE)
NASA Technical Reports Server (NTRS)
Vipavetz, Kevin; Shull, Thomas A.; Infeld, Samatha; Price, Jim
2016-01-01
The goal of interface management is to identify, define, control, and verify interfaces; ensure compatibility; provide an efficient system development; be on time and within budget; while meeting stakeholder requirements. This paper will present a successful seven-step approach to interface management used in several NASA flight projects. The seven-step approach using Model Based Systems Engineering will be illustrated by interface examples from the Materials International Space Station Experiment-X (MISSE-X) project. The MISSE-X was being developed as an International Space Station (ISS) external platform for space environmental studies, designed to advance the technology readiness of materials and devices critical for future space exploration. Emphasis will be given to best practices covering key areas such as interface definition, writing good interface requirements, utilizing interface working groups, developing and controlling interface documents, handling interface agreements, the use of shadow documents, the importance of interface requirement ownership, interface verification, and product transition.
Mathematical analysis of a sharp-diffuse interfaces model for seawater intrusion
NASA Astrophysics Data System (ADS)
Choquet, C.; Diédhiou, M. M.; Rosier, C.
2015-10-01
We consider a new model mixing sharp and diffuse interface approaches for seawater intrusion phenomena in free aquifers. More precisely, a phase field model is introduced in the boundary conditions on the virtual sharp interfaces. We thus include in the model the existence of diffuse transition zones but we preserve the simplified structure allowing front tracking. The three-dimensional problem then reduces to a two-dimensional model involving a strongly coupled system of partial differential equations of parabolic type describing the evolution of the depths of the two free surfaces, that is the interface between salt- and freshwater and the water table. We prove the existence of a weak solution for the model completed with initial and boundary conditions. We also prove that the depths of the two interfaces satisfy a coupled maximum principle.
A New Animal Model for Developing a Somatosensory Neural Interface for Prosthetic Limbs
2008-02-12
interface for neuroprosthetic limbs . PI: Douglas J. Weber, Ph.D. University of Pittsburgh 1 10/15/2007 Scientific progress and accomplishments. We...information to the brain. A new animal model for developing a somatosensory neural interface for neuroprosthetic limbs . PI: Douglas J. Weber, Ph.D...A new animal model for developing a somatosensory neural interface for neuroprosthetic limbs . PI: Douglas J. Weber, Ph.D. University of Pittsburgh
Business Performer-Centered Design of User Interfaces
NASA Astrophysics Data System (ADS)
Sousa, Kênia; Vanderdonckt, Jean
Business Performer-Centered Design of User Interfaces is a new design methodology that adopts business process (BP) definition and a business performer perspective for managing the life cycle of user interfaces of enterprise systems. In this methodology, when the organization has a business process culture, the business processes of an organization are firstly defined according to a traditional methodology for this kind of artifact. These business processes are then transformed into a series of task models that represent the interactive parts of the business processes that will ultimately lead to interactive systems. When the organization has its enterprise systems, but not yet its business processes modeled, the user interfaces of the systems help derive tasks models, which are then used to derive the business processes. The double linking between a business process and a task model, and between a task model and a user interface model makes it possible to ensure traceability of the artifacts in multiple paths and enables a more active participation of business performers in analyzing the resulting user interfaces. In this paper, we outline how a human-perspective is used tied to a model-driven perspective.
Human-Automation Interaction Design for Adaptive Cruise Control Systems of Ground Vehicles.
Eom, Hwisoo; Lee, Sang Hun
2015-06-12
A majority of recently developed advanced vehicles have been equipped with various automated driver assistance systems, such as adaptive cruise control (ACC) and lane keeping assistance systems. ACC systems have several operational modes, and drivers can be unaware of the mode in which they are operating. Because mode confusion is a significant human error factor that contributes to traffic accidents, it is necessary to develop user interfaces for ACC systems that can reduce mode confusion. To meet this requirement, this paper presents a new human-automation interaction design methodology in which the compatibility of the machine and interface models is determined using the proposed criteria, and if the models are incompatible, one or both of the models is/are modified to make them compatible. To investigate the effectiveness of our methodology, we designed two new interfaces by separately modifying the machine model and the interface model and then performed driver-in-the-loop experiments. The results showed that modifying the machine model provides a more compact, acceptable, effective, and safe interface than modifying the interface model.
Human-Automation Interaction Design for Adaptive Cruise Control Systems of Ground Vehicles
Eom, Hwisoo; Lee, Sang Hun
2015-01-01
A majority of recently developed advanced vehicles have been equipped with various automated driver assistance systems, such as adaptive cruise control (ACC) and lane keeping assistance systems. ACC systems have several operational modes, and drivers can be unaware of the mode in which they are operating. Because mode confusion is a significant human error factor that contributes to traffic accidents, it is necessary to develop user interfaces for ACC systems that can reduce mode confusion. To meet this requirement, this paper presents a new human-automation interaction design methodology in which the compatibility of the machine and interface models is determined using the proposed criteria, and if the models are incompatible, one or both of the models is/are modified to make them compatible. To investigate the effectiveness of our methodology, we designed two new interfaces by separately modifying the machine model and the interface model and then performed driver-in-the-loop experiments. The results showed that modifying the machine model provides a more compact, acceptable, effective, and safe interface than modifying the interface model. PMID:26076406
Cognitive Task Analysis, Interface Design, and Technical Troubleshooting.
ERIC Educational Resources Information Center
Steinberg, Linda S.; Gitomer, Drew H.
A model of the interface design process is proposed that makes use of two interdependent levels of cognitive analysis: the study of the criterion task through an analysis of expert/novice differences and the evaluation of the working user interface design through the application of a practical interface analysis methodology (GOMS model). This dual…
The Virtual Brain: a simulator of primate brain network dynamics.
Sanz Leon, Paula; Knock, Stuart A; Woodman, M Marmaduke; Domide, Lia; Mersmann, Jochen; McIntosh, Anthony R; Jirsa, Viktor
2013-01-01
We present The Virtual Brain (TVB), a neuroinformatics platform for full brain network simulations using biologically realistic connectivity. This simulation environment enables the model-based inference of neurophysiological mechanisms across different brain scales that underlie the generation of macroscopic neuroimaging signals including functional MRI (fMRI), EEG and MEG. Researchers from different backgrounds can benefit from an integrative software platform including a supporting framework for data management (generation, organization, storage, integration and sharing) and a simulation core written in Python. TVB allows the reproduction and evaluation of personalized configurations of the brain by using individual subject data. This personalization facilitates an exploration of the consequences of pathological changes in the system, permitting to investigate potential ways to counteract such unfavorable processes. The architecture of TVB supports interaction with MATLAB packages, for example, the well known Brain Connectivity Toolbox. TVB can be used in a client-server configuration, such that it can be remotely accessed through the Internet thanks to its web-based HTML5, JS, and WebGL graphical user interface. TVB is also accessible as a standalone cross-platform Python library and application, and users can interact with the scientific core through the scripting interface IDLE, enabling easy modeling, development and debugging of the scientific kernel. This second interface makes TVB extensible by combining it with other libraries and modules developed by the Python scientific community. In this article, we describe the theoretical background and foundations that led to the development of TVB, the architecture and features of its major software components as well as potential neuroscience applications.
The Virtual Brain: a simulator of primate brain network dynamics
Sanz Leon, Paula; Knock, Stuart A.; Woodman, M. Marmaduke; Domide, Lia; Mersmann, Jochen; McIntosh, Anthony R.; Jirsa, Viktor
2013-01-01
We present The Virtual Brain (TVB), a neuroinformatics platform for full brain network simulations using biologically realistic connectivity. This simulation environment enables the model-based inference of neurophysiological mechanisms across different brain scales that underlie the generation of macroscopic neuroimaging signals including functional MRI (fMRI), EEG and MEG. Researchers from different backgrounds can benefit from an integrative software platform including a supporting framework for data management (generation, organization, storage, integration and sharing) and a simulation core written in Python. TVB allows the reproduction and evaluation of personalized configurations of the brain by using individual subject data. This personalization facilitates an exploration of the consequences of pathological changes in the system, permitting to investigate potential ways to counteract such unfavorable processes. The architecture of TVB supports interaction with MATLAB packages, for example, the well known Brain Connectivity Toolbox. TVB can be used in a client-server configuration, such that it can be remotely accessed through the Internet thanks to its web-based HTML5, JS, and WebGL graphical user interface. TVB is also accessible as a standalone cross-platform Python library and application, and users can interact with the scientific core through the scripting interface IDLE, enabling easy modeling, development and debugging of the scientific kernel. This second interface makes TVB extensible by combining it with other libraries and modules developed by the Python scientific community. In this article, we describe the theoretical background and foundations that led to the development of TVB, the architecture and features of its major software components as well as potential neuroscience applications. PMID:23781198
SOCR Analyses - an Instructional Java Web-based Statistical Analysis Toolkit.
Chu, Annie; Cui, Jenny; Dinov, Ivo D
2009-03-01
The Statistical Online Computational Resource (SOCR) designs web-based tools for educational use in a variety of undergraduate courses (Dinov 2006). Several studies have demonstrated that these resources significantly improve students' motivation and learning experiences (Dinov et al. 2008). SOCR Analyses is a new component that concentrates on data modeling and analysis using parametric and non-parametric techniques supported with graphical model diagnostics. Currently implemented analyses include commonly used models in undergraduate statistics courses like linear models (Simple Linear Regression, Multiple Linear Regression, One-Way and Two-Way ANOVA). In addition, we implemented tests for sample comparisons, such as t-test in the parametric category; and Wilcoxon rank sum test, Kruskal-Wallis test, Friedman's test, in the non-parametric category. SOCR Analyses also include several hypothesis test models, such as Contingency tables, Friedman's test and Fisher's exact test.The code itself is open source (http://socr.googlecode.com/), hoping to contribute to the efforts of the statistical computing community. The code includes functionality for each specific analysis model and it has general utilities that can be applied in various statistical computing tasks. For example, concrete methods with API (Application Programming Interface) have been implemented in statistical summary, least square solutions of general linear models, rank calculations, etc. HTML interfaces, tutorials, source code, activities, and data are freely available via the web (www.SOCR.ucla.edu). Code examples for developers and demos for educators are provided on the SOCR Wiki website.In this article, the pedagogical utilization of the SOCR Analyses is discussed, as well as the underlying design framework. As the SOCR project is on-going and more functions and tools are being added to it, these resources are constantly improved. The reader is strongly encouraged to check the SOCR site for most updated information and newly added models.
flexCloud: Deployment of the FLEXPART Atmospheric Transport Model as a Cloud SaaS Environment
NASA Astrophysics Data System (ADS)
Morton, Don; Arnold, Dèlia
2014-05-01
FLEXPART (FLEXible PARTicle dispersion model) is a Lagrangian transport and dispersion model used by a growing international community. We have used it to simulate and forecast the atmospheric transport of wildfire smoke, volcanic ash and radionuclides. Additionally, FLEXPART may be run in backwards mode to provide information for the determination of emission sources such as nuclear emissions and greenhouse gases. This open source software is distributed in source code form, and has several compiler and library dependencies that users need to address. Although well-documented, getting it compiled, set up, running, and post-processed is often tedious, making it difficult for the inexperienced user. Our interest is in moving scientific modeling and simulation activities from site-specific clusters and supercomputers to a cloud model as a service paradigm. Choosing FLEXPART for our prototyping, our vision is to construct customised IaaS images containing fully-compiled and configured FLEXPART codes, including pre-processing, execution and postprocessing components. In addition, with the inclusion of a small web server in the image, we introduce a web-accessible graphical user interface that drives the system. A further initiative being pursued is the deployment of multiple, simultaneous FLEXPART ensembles in the cloud. A single front-end web interface is used to define the ensemble members, and separate cloud instances are launched, on-demand, to run the individual models and to conglomerate the outputs into a unified display. The outcome of this work is a Software as a Service (Saas) deployment whereby the details of the underlying modeling systems are hidden, allowing modelers to perform their science activities without the burden of considering implementation details.
Hoekstra, Alfons G; Alowayyed, Saad; Lorenz, Eric; Melnikova, Natalia; Mountrakis, Lampros; van Rooij, Britt; Svitenkov, Andrew; Závodszky, Gábor; Zun, Pavel
2016-11-13
This discussion paper introduces the concept of the Virtual Artery as a multiscale model for arterial physiology and pathologies at the physics-chemistry-biology (PCB) interface. The cellular level is identified as the mesoscopic level, and we argue that by coupling cell-based models with other relevant models on the macro- and microscale, a versatile model of arterial health and disease can be composed. We review the necessary ingredients, both models of arteries at many different scales, as well as generic methods to compose multiscale models. Next, we discuss how this can be combined into the virtual artery. Finally, we argue that the concept of models at the PCB interface could or perhaps should become a powerful paradigm, not only as in our case for studying physiology, but also for many other systems that have such PCB interfaces.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Authors.
August, Gerald J; Winters, Ken C; Realmuto, George M; Tarter, Ralph; Perry, Cheryl; Hektner, Joel M
2004-01-01
This article examines the challenges faced by developers of youth drug abuse prevention programs in transporting scientifically proven or evidence-based programs into natural community practice systems. Models for research on the transfer of prevention technology are described with specific emphasis given to the relationship between efficacy and effectiveness studies. Barriers that impede the successful integration of efficacy methods within effectiveness studies (e.g., client factors, practitioner factors, intervention structure characteristics, and environmental and organizational factors) are discussed. We present a modified model for program development and evaluation that includes a new type of research design, the hybrid efficacy-effectiveness study that addresses program transportability. The utility of the hybrid study is illustrated in the evaluation of the Early Risers "Skills for Success" prevention program.
The Bio-Community Perl toolkit for microbial ecology.
Angly, Florent E; Fields, Christopher J; Tyson, Gene W
2014-07-01
The development of bioinformatic solutions for microbial ecology in Perl is limited by the lack of modules to represent and manipulate microbial community profiles from amplicon and meta-omics studies. Here we introduce Bio-Community, an open-source, collaborative toolkit that extends BioPerl. Bio-Community interfaces with commonly used programs using various file formats, including BIOM, and provides operations such as rarefaction and taxonomic summaries. Bio-Community will help bioinformaticians to quickly piece together custom analysis pipelines and develop novel software. Availability an implementation: Bio-Community is cross-platform Perl code available from http://search.cpan.org/dist/Bio-Community under the Perl license. A readme file describes software installation and how to contribute. © The Author 2014. Published by Oxford University Press.
A Proposed Intelligent Policy-Based Interface for a Mobile eHealth Environment
NASA Astrophysics Data System (ADS)
Tavasoli, Amir; Archer, Norm
Users of mobile eHealth systems are often novices, and the learning process for them may be very time consuming. In order for systems to be attractive to potential adopters, it is important that the interface should be very convenient and easy to learn. However, the community of potential users of a mobile eHealth system may be quite varied in their requirements, so the system must be able to adapt easily to suit user preferences. One way to accomplish this is to have the interface driven by intelligent policies. These policies can be refined gradually, using inputs from potential users, through intelligent agents. This paper develops a framework for policy refinement for eHealth mobile interfaces, based on dynamic learning from user interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Browne, S.V.; Green, S.C.; Moore, K.
1994-04-01
The Netlib repository, maintained by the University of Tennessee and Oak Ridge National Laboratory, contains freely available software, documents, and databases of interest to the numerical, scientific computing, and other communities. This report includes both the Netlib User`s Guide and the Netlib System Manager`s Guide, and contains information about Netlib`s databases, interfaces, and system implementation. The Netlib repository`s databases include the Performance Database, the Conferences Database, and the NA-NET mail forwarding and Whitepages Databases. A variety of user interfaces enable users to access the Netlib repository in the manner most convenient and compatible with their networking capabilities. These interfaces includemore » the Netlib email interface, the Xnetlib X Windows client, the netlibget command-line TCP/IP client, anonymous FTP, anonymous RCP, and gopher.« less
On the Suitability of MPI as a PGAS Runtime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daily, Jeffrey A.; Vishnu, Abhinav; Palmer, Bruce J.
2014-12-18
Partitioned Global Address Space (PGAS) models are emerging as a popular alternative to MPI models for designing scalable applications. At the same time, MPI remains a ubiquitous communication subsystem due to its standardization, high performance, and availability on leading platforms. In this paper, we explore the suitability of using MPI as a scalable PGAS communication subsystem. We focus on the Remote Memory Access (RMA) communication in PGAS models which typically includes {\\em get, put,} and {\\em atomic memory operations}. We perform an in-depth exploration of design alternatives based on MPI. These alternatives include using a semantically-matching interface such as MPI-RMA,more » as well as not-so-intuitive interfaces such as MPI two-sided with a combination of multi-threading and dynamic process management. With an in-depth exploration of these alternatives and their shortcomings, we propose a novel design which is facilitated by the data-centric view in PGAS models. This design leverages a combination of highly tuned MPI two-sided semantics and an automatic, user-transparent split of MPI communicators to provide asynchronous progress. We implement the asynchronous progress ranks approach and other approaches within the Communication Runtime for Exascale which is a communication subsystem for Global Arrays. Our performance evaluation spans pure communication benchmarks, graph community detection and sparse matrix-vector multiplication kernels, and a computational chemistry application. The utility of our proposed PR-based approach is demonstrated by a 2.17x speed-up on 1008 processors over the other MPI-based designs.« less
NASA Technical Reports Server (NTRS)
Sevener, Kathy; Chen, Zhe; Daly, Sam; Tracy, Jared; Kiser, Doug
2016-01-01
With CMC components poised to complete flight certification in turbine engines on commercial aircraft within the near future, there are many efforts within the aerospace community to model the mechanical and environmental degradation of CMCs. Direct observations of damage evolution are needed to support these modeling efforts and provide quantitative measures of damage parameters used in the various models. This study was performed to characterize the damage evolution during tensile loading of a melt infiltrated (MI) silicon carbide reinforced silicon carbide (SiC/SiC) composite. A SiC/SiC tensile coupon was loaded to a maximum global stress of 30 ksi in a tensile fixture within an SEM while observations were made at 5 ksi increments. Both traditional image analysis and DIC (digital image correlation) were used to quantify damage evolution. With the DIC analysis, microscale damage was observed at the fiber-matrix interfaces at stresses as low as 5 ksi. First matrix cracking took place between 20 and 25 ksi, accompanied by an observable relaxation in strain near matrix cracks. Matrix crack opening measurements at the maximum load ranged from 200 nm to 1.5 m. Crack opening along the fiber-matrix interface was also characterized as a function of load and angular position relative to the loading axis. This characterization was funded by NASA GRC and was performed to support NASA GRC modeling of SiC/SiC environmental degradation
MicMac GIS application: free open source
NASA Astrophysics Data System (ADS)
Duarte, L.; Moutinho, O.; Teodoro, A.
2016-10-01
The use of Remotely Piloted Aerial System (RPAS) for remote sensing applications is becoming more frequent as the technologies on on-board cameras and the platform itself are becoming a serious contender to satellite and airplane imagery. MicMac is a photogrammetric tool for image matching that can be used in different contexts. It is an open source software and it can be used as a command line or with a graphic interface (for each command). The main objective of this work was the integration of MicMac with QGIS, which is also an open source software, in order to create a new open source tool applied to photogrammetry/remote sensing. Python language was used to develop the application. This tool would be very useful in the manipulation and 3D modelling of a set of images. The main objective was to create a toolbar in QGIS with the basic functionalities with intuitive graphic interfaces. The toolbar is composed by three buttons: produce the points cloud, create the Digital Elevation Model (DEM) and produce the orthophoto of the study area. The application was tested considering 35 photos, a subset of images acquired by a RPAS in the Aguda beach area, Porto, Portugal. They were used in order to create a 3D terrain model and from this model obtain an orthophoto and the corresponding DEM. The code is open and can be modified according to the user requirements. This integration would be very useful in photogrammetry and remote sensing community combined with GIS capabilities.
Space Transportation System Payloads Data and Analysis
NASA Technical Reports Server (NTRS)
Peterson, J. D.; Craft, H. G., Jr.
1975-01-01
The background, current developments and future plans for the Space Transportation System Payloads Data and Analysis (SPDA) activities at Marshall Space Flight Center are reviewed. It is shown how the payload data bank and future planned activities will interface with the payloads community and Space Transportation System designers. The interfaces with the STS data base include NASA planning, international planning, payload design, shuttle design, user agencies planning and information, and OMB, Congress and others.
NASA Technical Reports Server (NTRS)
Clark, T. B. (Editor)
1979-01-01
The design of a solar electric power plant for a small community is reported. Topics covered include: (1) control configurations and interface requirements for the baseline power system; (2) annual small power system output; (3) energy requirements for operation of the collectors and control building; (4) life cycle costs and reliability predictions; (5) thermal conductivities and costs of receiver insulation materials; (6) transient thermal modelling for the baseline receiver/thermal transport system under normal and inclement operating conditions; (7) high temperature use of sodium; (8) shading in a field of parabolic collectors; and (9) buffer storage materials.
NASA Astrophysics Data System (ADS)
Eccher, Claudio; Ferro, Antonella; Pisanelli, Domenico M.
Ontologies are the essential glue to build interoperable systems and the talk of the day in the medical community. In this paper we present the ontology of medical therapies developed in the course of the Oncocure project, aimed at building a guideline based decision support integrated with a legacy Electronic Patient Record (EPR). The therapy ontology is based upon the DOLCE top level ontology. It is our opinion that our ontology, besides constituting a model capturing the precise meaning of therapy-related concepts, can serve for several practical purposes: interfacing automatic support systems with a legacy EPR, allowing the automatic data analysis, and controlling possible medical errors made during EPR data input.
NGDS User Centered Design Meeting the Needs of the Geothermal Community
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, Suzanne; Zheng, Sam; Patten, Kim
2013-10-15
In order to ensure the widest and greatest utility of IT and software projects designed for geothermal reservoir engineer- ing the full consideration of end users’ task and workflow needs must be evaluated. This paper describes the user-centered design (UCD) approach taken in the development of a user interface (UI) solution for the National Geothermal Data System (NGDS). This development process has been research based, highly collabora- tive, and incorporates state-of-the-art practices to ensure a quality user experience. Work is continuing on the interface, including future usability tests to further refine the interfaces as the overall system is developed.
NGDS USER CENTERED DESIGN MEETING THE NEEDS OF THE GEOTHERMAL COMMUNITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, Suzanne; Zheng, Sam Xianjun; Patten, Kim
In order to ensure the widest and greatest utility of IT and software projects designed for geothermal reservoir engineering the full consideration of end users’ task and workflow needs must be evaluated. This paper describes the user-centered design (UCD) approach taken in the development of a user interface (UI) solution for the National Geothermal Data System (NGDS). This development process has been researched based, highly collaborative, and incorporates state-of-the-art practices to ensure a quality user experience. Work is continuing on the interface, including future usability tests to further refine the interfaces as the overall system is developed.
Blind predictions of protein interfaces by docking calculations in CAPRI.
Lensink, Marc F; Wodak, Shoshana J
2010-11-15
Reliable prediction of the amino acid residues involved in protein-protein interfaces can provide valuable insight into protein function, and inform mutagenesis studies, and drug design applications. A fast-growing number of methods are being proposed for predicting protein interfaces, using structural information, energetic criteria, or sequence conservation or by integrating multiple criteria and approaches. Overall however, their performance remains limited, especially when applied to nonobligate protein complexes, where the individual components are also stable on their own. Here, we evaluate interface predictions derived from protein-protein docking calculations. To this end we measure the overlap between the interfaces in models of protein complexes submitted by 76 participants in CAPRI (Critical Assessment of Predicted Interactions) and those of 46 observed interfaces in 20 CAPRI targets corresponding to nonobligate complexes. Our evaluation considers multiple models for each target interface, submitted by different participants, using a variety of docking methods. Although this results in a substantial variability in the prediction performance across participants and targets, clear trends emerge. Docking methods that perform best in our evaluation predict interfaces with average recall and precision levels of about 60%, for a small majority (60%) of the analyzed interfaces. These levels are significantly higher than those obtained for nonobligate complexes by most extant interface prediction methods. We find furthermore that a sizable fraction (24%) of the interfaces in models ranked as incorrect in the CAPRI assessment are actually correctly predicted (recall and precision ≥50%), and that these models contribute to 70% of the correct docking-based interface predictions overall. Our analysis proves that docking methods are much more successful in identifying interfaces than in predicting complexes, and suggests that these methods have an excellent potential of addressing the interface prediction challenge. © 2010 Wiley-Liss, Inc.
Earth Science community support in the EGI-Inspire Project
NASA Astrophysics Data System (ADS)
Schwichtenberg, H.
2012-04-01
The Earth Science Grid community is following its strategy of propagating Grid technology to the ES disciplines, setting up interactive collaboration among the members of the community and stimulating the interest of stakeholders on the political level since ten years already. This strategy was described in a roadmap published in an Earth Science Informatics journal. It was applied through different European Grid projects and led to a large Grid Earth Science VRC that covers a variety of ES disciplines; in the end, all of them were facing the same kind of ICT problems. .. The penetration of Grid in the ES community is indicated by the variety of applications, the number of countries in which ES applications are ported, the number of papers in international journals and the number of related PhDs. Among the six virtual organisations belonging to ES, one, ESR, is generic. Three others -env.see-grid-sci.eu, meteo.see-grid-sci.eu and seismo.see-grid-sci.eu- are thematic and regional (South Eastern Europe) for environment, meteorology and seismology. The sixth VO, EGEODE, is for the users of the Geocluster software. There are also ES users in national VOs or VOs related to projects. The services for the ES task in EGI-Inspire concerns the data that are a key part of any ES application. The ES community requires several interfaces to access data and metadata outside of the EGI infrastructure, e.g. by using grid-enabled database interfaces. The data centres have also developed service tools for basic research activities such as searching, browsing and downloading these datasets, but these are not accessible from applications executed on the Grid. The ES task in EGI-Inspire aims to make these tools accessible from the Grid. In collaboration with GENESI-DR (Ground European Network for Earth Science Interoperations - Digital Repositories) this task is maintaining and evolving an interface in response to new requirements that will allow data in the GENESI-DR infrastructure to be accessed from EGI resources to enable future research activities by this HUC. The international climate community for IPCC has created the Earth System Grid (ESG) to store and share climate data. There is a need to interface ESG with EGI for climate studies - parametric, regional and impact aspects. Critical points concern the interoperability of security mechanism between both "organisations", data protection policy, data transfer, data storage and data caching. Presenter: Horst Schwichtenberg Co-Authors: Monique Petitdidier (IPSL), Andre Gemünd (SCAI), Wim Som de Cerff (KNMI), Michael Schnell (SCAI)
Global trends in infectious diseases at the wildlife-livestock interface.
Wiethoelter, Anke K; Beltrán-Alcrudo, Daniel; Kock, Richard; Mor, Siobhan M
2015-08-04
The role and significance of wildlife-livestock interfaces in disease ecology has largely been neglected, despite recent interest in animals as origins of emerging diseases in humans. Scoping review methods were applied to objectively assess the relative interest by the scientific community in infectious diseases at interfaces between wildlife and livestock, to characterize animal species and regions involved, as well as to identify trends over time. An extensive literature search combining wildlife, livestock, disease, and geographical search terms yielded 78,861 publications, of which 15,998 were included in the analysis. Publications dated from 1912 to 2013 and showed a continuous increasing trend, including a shift from parasitic to viral diseases over time. In particular there was a significant increase in publications on the artiodactyls-cattle and bird-poultry interface after 2002 and 2003, respectively. These trends could be traced to key disease events that stimulated public interest and research funding. Among the top 10 diseases identified by this review, the majority were zoonoses. Prominent wildlife-livestock interfaces resulted largely from interaction between phylogenetically closely related and/or sympatric species. The bird-poultry interface was the most frequently cited wildlife-livestock interface worldwide with other interfaces reflecting regional circumstances. This review provides the most comprehensive overview of research on infectious diseases at the wildlife-livestock interface to date.
Global trends in infectious diseases at the wildlife–livestock interface
Wiethoelter, Anke K.; Beltrán-Alcrudo, Daniel; Kock, Richard; Mor, Siobhan M.
2015-01-01
The role and significance of wildlife–livestock interfaces in disease ecology has largely been neglected, despite recent interest in animals as origins of emerging diseases in humans. Scoping review methods were applied to objectively assess the relative interest by the scientific community in infectious diseases at interfaces between wildlife and livestock, to characterize animal species and regions involved, as well as to identify trends over time. An extensive literature search combining wildlife, livestock, disease, and geographical search terms yielded 78,861 publications, of which 15,998 were included in the analysis. Publications dated from 1912 to 2013 and showed a continuous increasing trend, including a shift from parasitic to viral diseases over time. In particular there was a significant increase in publications on the artiodactyls–cattle and bird–poultry interface after 2002 and 2003, respectively. These trends could be traced to key disease events that stimulated public interest and research funding. Among the top 10 diseases identified by this review, the majority were zoonoses. Prominent wildlife–livestock interfaces resulted largely from interaction between phylogenetically closely related and/or sympatric species. The bird–poultry interface was the most frequently cited wildlife–livestock interface worldwide with other interfaces reflecting regional circumstances. This review provides the most comprehensive overview of research on infectious diseases at the wildlife–livestock interface to date. PMID:26195733
NASA Astrophysics Data System (ADS)
Aufdenkampe, A. K.; Mayorga, E.; Horsburgh, J. S.; Lehnert, K. A.; Zaslavsky, I.; Valentine, D. W., Jr.; Richard, S. M.; Cheetham, R.; Meyer, F.; Henry, C.; Berg-Cross, G.; Packman, A. I.; Aronson, E. L.
2014-12-01
Here we present the prototypes of a new scientific software system designed around the new Observations Data Model version 2.0 (ODM2, https://github.com/UCHIC/ODM2) to substantially enhance integration of biological and Geological (BiG) data for Critical Zone (CZ) science. The CZ science community takes as its charge the effort to integrate theory, models and data from the multitude of disciplines collectively studying processes on the Earth's surface. The central scientific challenge of the CZ science community is to develop a "grand unifying theory" of the critical zone through a theory-model-data fusion approach, for which the key missing need is a cyberinfrastructure for seamless 4D visual exploration of the integrated knowledge (data, model outputs and interpolations) from all the bio and geoscience disciplines relevant to critical zone structure and function, similar to today's ability to easily explore historical satellite imagery and photographs of the earth's surface using Google Earth. This project takes the first "BiG" steps toward answering that need. The overall goal of this project is to co-develop with the CZ science and broader community, including natural resource managers and stakeholders, a web-based integration and visualization environment for joint analysis of cross-scale bio and geoscience processes in the critical zone (BiG CZ), spanning experimental and observational designs. We will: (1) Engage the CZ and broader community to co-develop and deploy the BiG CZ software stack; (2) Develop the BiG CZ Portal web application for intuitive, high-performance map-based discovery, visualization, access and publication of data by scientists, resource managers, educators and the general public; (3) Develop the BiG CZ Toolbox to enable cyber-savvy CZ scientists to access BiG CZ Application Programming Interfaces (APIs); and (4) Develop the BiG CZ Central software stack to bridge data systems developed for multiple critical zone domains into a single metadata catalog. The entire BiG CZ Software system is being developed on public repositories as a modular suite of open source software projects. It will be built around a new Observations Data Model Version 2.0 (ODM2) that has been developed by members of the BiG CZ project team, with community input, under separate funding.
The influence of home and community attachment on firewise behavior
Gerard T. Kyle; Gene L. Theodori; James D. Absher; Jinhee Jun
2010-01-01
The purpose of this investigation was to examine the influence of residentsâ attachment to their homes and community on their willingness to adopt Firewise recommendations. Our sample was drawn from a population residing in the wildlandâurban interface where the threat of wildfire is acute. The Firewise recommendations concerned 13 activities affecting home design,...
County and municipal ordinances to protect wildland-urban interface communities
Terry Haines; Cheryl Renner; Margaret Reams
2008-01-01
The growth of residential communities within and adjacent to high-fire risk forests in the past several decades, has increased the danger to life, property and natural assets from wildfire. Under the police powers granted by the Constitution, state and local governments have the power to pass laws to protect the health, safety and welfare of their citizens. As this...
Consensus-based methodology for detection communities in multilayered networks
NASA Astrophysics Data System (ADS)
Karimi-Majd, Amir-Mohsen; Fathian, Mohammad; Makrehchi, Masoud
2018-03-01
Finding groups of network users who are densely related with each other has emerged as an interesting problem in the area of social network analysis. These groups or so-called communities would be hidden behind the behavior of users. Most studies assume that such behavior could be understood by focusing on user interfaces, their behavioral attributes or a combination of these network layers (i.e., interfaces with their attributes). They also assume that all network layers refer to the same behavior. However, in real-life networks, users' behavior in one layer may differ from their behavior in another one. In order to cope with these issues, this article proposes a consensus-based community detection approach (CBC). CBC finds communities among nodes at each layer, in parallel. Then, the results of layers should be aggregated using a consensus clustering method. This means that different behavior could be detected and used in the analysis. As for other significant advantages, the methodology would be able to handle missing values. Three experiments on real-life and computer-generated datasets have been conducted in order to evaluate the performance of CBC. The results indicate superiority and stability of CBC in comparison to other approaches.
A Cross-Cultural Test of the Work-Family Interface in 48 Countries
ERIC Educational Resources Information Center
Jeffrey Hill, E.; Yang, Chongming; Hawkins, Alan J.; Ferris, Maria
2004-01-01
This study tests a cross-cultural model of the work-family interface. Using multigroup structural equation modeling with IBM survey responses from 48 countries (N= 25,380), results show that the same work-family interface model that fits the data globally also fits the data in a four-group model composed of culturally related groups of countries,…
How should we build a generic open-source water management simulator?
NASA Astrophysics Data System (ADS)
Khadem, M.; Meier, P.; Rheinheimer, D. E.; Padula, S.; Matrosov, E.; Selby, P. D.; Knox, S.; Harou, J. J.
2014-12-01
Increasing water needs for agriculture, industry and cities mean effective and flexible water resource system management tools will remain in high demand. Currently many regions or countries use simulators that have been adapted over time to their unique system properties and water management rules and realities. Most regions operate with a preferred short-list of water management and planning decision support systems. Is there scope for a simulator, shared within the water management community, that could be adapted to different contexts, integrate community contributions, and connect to generic data and model management software? What role could open-source play in such a project? How could a genericuser-interface and data/model management software sustainably be attached to this model or suite of models? Finally, how could such a system effectively leverage existing model formulations, modeling technologies and software? These questions are addressed by the initial work presented here. We introduce a generic water resource simulation formulation that enables and integrates both rule-based and optimization driven technologies. We suggest how it could be linked to other sub-models allowing for detailed agent-based simulation of water management behaviours. An early formulation is applied as an example to the Thames water resource system in the UK. The model uses centralised optimisation to calculate allocations but allows for rule-based operations as well in an effort to represent observed behaviours and rules with fidelity. The model is linked through import/export commands to a generic network model platform named Hydra. Benefits and limitations of the approach are discussed and planned work and potential use cases are outlined.
Aland, Sebastian; Lowengrub, John; Voigt, Axel
2013-01-01
Colloid particles that are partially wetted by two immiscible fluids can become confined to fluid-fluid interfaces. At sufficiently high volume fractions, the colloids may jam and the interface may crystallize. The fluids together with the interfacial colloids form an emulsion with interesting material properties and offer an important route to new soft materials. A promising approach to simulate these emulsions was presented in Aland et al. [Phys. Fluids 23, 062103 (2011)], where a Navier-Stokes-Cahn-Hilliard model for the macroscopic two-phase fluid system was combined with a surface phase-field-crystal model for the microscopic colloidal particles along the interface. Unfortunately this model leads to spurious velocities which require very fine spatial and temporal resolutions to accurately and stably simulate. In this paper we develop an improved Navier-Stokes-Cahn-Hilliard-surface phase-field-crystal model based on the principles of mass conservation and thermodynamic consistency. To validate our approach, we derive a sharp interface model and show agreement with the improved diffuse interface model. Using simple flow configurations, we show that the new model has much better properties and does not lead to spurious velocities. Finally, we demonstrate the solid-like behavior of the crystallized interface by simulating the fall of a solid ball through a colloid-laden multiphase fluid. PMID:23214691
SBML-SAT: a systems biology markup language (SBML) based sensitivity analysis tool
Zi, Zhike; Zheng, Yanan; Rundell, Ann E; Klipp, Edda
2008-01-01
Background It has long been recognized that sensitivity analysis plays a key role in modeling and analyzing cellular and biochemical processes. Systems biology markup language (SBML) has become a well-known platform for coding and sharing mathematical models of such processes. However, current SBML compatible software tools are limited in their ability to perform global sensitivity analyses of these models. Results This work introduces a freely downloadable, software package, SBML-SAT, which implements algorithms for simulation, steady state analysis, robustness analysis and local and global sensitivity analysis for SBML models. This software tool extends current capabilities through its execution of global sensitivity analyses using multi-parametric sensitivity analysis, partial rank correlation coefficient, SOBOL's method, and weighted average of local sensitivity analyses in addition to its ability to handle systems with discontinuous events and intuitive graphical user interface. Conclusion SBML-SAT provides the community of systems biologists a new tool for the analysis of their SBML models of biochemical and cellular processes. PMID:18706080
SBML-SAT: a systems biology markup language (SBML) based sensitivity analysis tool.
Zi, Zhike; Zheng, Yanan; Rundell, Ann E; Klipp, Edda
2008-08-15
It has long been recognized that sensitivity analysis plays a key role in modeling and analyzing cellular and biochemical processes. Systems biology markup language (SBML) has become a well-known platform for coding and sharing mathematical models of such processes. However, current SBML compatible software tools are limited in their ability to perform global sensitivity analyses of these models. This work introduces a freely downloadable, software package, SBML-SAT, which implements algorithms for simulation, steady state analysis, robustness analysis and local and global sensitivity analysis for SBML models. This software tool extends current capabilities through its execution of global sensitivity analyses using multi-parametric sensitivity analysis, partial rank correlation coefficient, SOBOL's method, and weighted average of local sensitivity analyses in addition to its ability to handle systems with discontinuous events and intuitive graphical user interface. SBML-SAT provides the community of systems biologists a new tool for the analysis of their SBML models of biochemical and cellular processes.
Modeling Operations Costs for Human Exploration Architectures
NASA Technical Reports Server (NTRS)
Shishko, Robert
2013-01-01
Operations and support (O&S) costs for human spaceflight have not received the same attention in the cost estimating community as have development costs. This is unfortunate as O&S costs typically comprise a majority of life-cycle costs (LCC) in such programs as the International Space Station (ISS) and the now-cancelled Constellation Program. Recognizing this, the Constellation Program and NASA HQs supported the development of an O&S cost model specifically for human spaceflight. This model, known as the Exploration Architectures Operations Cost Model (ExAOCM), provided the operations cost estimates for a variety of alternative human missions to the moon, Mars, and Near-Earth Objects (NEOs) in architectural studies. ExAOCM is philosophically based on the DoD Architecture Framework (DoDAF) concepts of operational nodes, systems, operational functions, and milestones. This paper presents some of the historical background surrounding the development of the model, and discusses the underlying structure, its unusual user interface, and lastly, previous examples of its use in the aforementioned architectural studies.
A dynamic simulation based water resources education tool.
Williams, Alison; Lansey, Kevin; Washburne, James
2009-01-01
Educational tools to assist the public in recognizing impacts of water policy in a realistic context are not generally available. This project developed systems with modeling-based educational decision support simulation tools to satisfy this need. The goal of this model is to teach undergraduate students and the general public about the implications of common water management alternatives so that they can better understand or become involved in water policy and make more knowledgeable personal or community decisions. The model is based on Powersim, a dynamic simulation software package capable of producing web-accessible, intuitive, graphic, user-friendly interfaces. Modules are included to represent residential, agricultural, industrial, and turf uses, as well as non-market values, water quality, reservoir, flow, and climate conditions. Supplementary materials emphasize important concepts and lead learners through the model, culminating in an open-ended water management project. The model is used in a University of Arizona undergraduate class and within the Arizona Master Watershed Stewards Program. Evaluation results demonstrated improved understanding of concepts and system interactions, fulfilling the project's objectives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbante, Paolo; Frezzotti, Aldo; Gibelli, Livio
The unsteady evaporation of a thin planar liquid film is studied by molecular dynamics simulations of Lennard-Jones fluid. The obtained results are compared with the predictions of a diffuse interface model in which capillary Korteweg contributions are added to hydrodynamic equations, in order to obtain a unified description of the liquid bulk, liquid-vapor interface and vapor region. Particular care has been taken in constructing a diffuse interface model matching the thermodynamic and transport properties of the Lennard-Jones fluid. The comparison of diffuse interface model and molecular dynamics results shows that, although good agreement is obtained in equilibrium conditions, remarkable deviationsmore » of diffuse interface model predictions from the reference molecular dynamics results are observed in the simulation of liquid film evaporation. It is also observed that molecular dynamics results are in good agreement with preliminary results obtained from a composite model which describes the liquid film by a standard hydrodynamic model and the vapor by the Boltzmann equation. The two mathematical model models are connected by kinetic boundary conditions assuming unit evaporation coefficient.« less
Pore-scale modeling of phase change in porous media
NASA Astrophysics Data System (ADS)
Juanes, Ruben; Cueto-Felgueroso, Luis; Fu, Xiaojing
2017-11-01
One of the main open challenges in pore-scale modeling is the direct simulation of flows involving multicomponent mixtures with complex phase behavior. Reservoir fluid mixtures are often described through cubic equations of state, which makes diffuse interface, or phase field theories, particularly appealing as a modeling framework. What is still unclear is whether equation-of-state-driven diffuse-interface models can adequately describe processes where surface tension and wetting phenomena play an important role. Here we present a diffuse interface model of single-component, two-phase flow (a van der Waals fluid) in a porous medium under different wetting conditions. We propose a simplified Darcy-Korteweg model that is appropriate to describe flow in a Hele-Shaw cell or a micromodel, with a gap-averaged velocity. We study the ability of the diffuse-interface model to capture capillary pressure and the dynamics of vaporization/condensation fronts, and show that the model reproduces pressure fluctuations that emerge from abrupt interface displacements (Haines jumps) and from the break-up of wetting films.
NASA Astrophysics Data System (ADS)
Frickenhaus, Stephan; Hiller, Wolfgang; Best, Meike
The portable software FoSSI is introduced that—in combination with additional free solver software packages—allows for an efficient and scalable parallel solution of large sparse linear equations systems arising in finite element model codes. FoSSI is intended to support rapid model code development, completely hiding the complexity of the underlying solver packages. In particular, the model developer need not be an expert in parallelization and is yet free to switch between different solver packages by simple modifications of the interface call. FoSSI offers an efficient and easy, yet flexible interface to several parallel solvers, most of them available on the web, such as PETSC, AZTEC, MUMPS, PILUT and HYPRE. FoSSI makes use of the concept of handles for vectors, matrices, preconditioners and solvers, that is frequently used in solver libraries. Hence, FoSSI allows for a flexible treatment of several linear equations systems and associated preconditioners at the same time, even in parallel on separate MPI-communicators. The second special feature in FoSSI is the task specifier, being a combination of keywords, each configuring a certain phase in the solver setup. This enables the user to control a solver over one unique subroutine. Furthermore, FoSSI has rather similar features for all solvers, making a fast solver intercomparison or exchange an easy task. FoSSI is a community software, proven in an adaptive 2D-atmosphere model and a 3D-primitive equation ocean model, both formulated in finite elements. The present paper discusses perspectives of an OpenMP-implementation of parallel iterative solvers based on domain decomposition methods. This approach to OpenMP solvers is rather attractive, as the code for domain-local operations of factorization, preconditioning and matrix-vector product can be readily taken from a sequential implementation that is also suitable to be used in an MPI-variant. Code development in this direction is in an advanced state under the name ScOPES: the Scalable Open Parallel sparse linear Equations Solver.
Community Near-Port Modeling System (C-PORT): Briefing for ...
What C-PORT is: Screening level tool for assessing port activities and exploring the range of potential impacts that changes to port operations might have on local air quality; Analysis of decision alternatives through mapping of the likely pattern of potential pollutant dispersion and an estimated change in pollutant concentrations for user-designated scenarios; Designed primarily to evaluate the local air quality impacts of proposed port expansion or modernization, as well as to identify options for mitigating any impacts; Currently includes data from 21 US seaports and features a map-based interface similar to the widely used Google Earth; Still under development, C-PORT is designed as an easy-to-use computer modeling tool for users, such as state air quality managers and planners. This is part of our product outreach prior to model public release and to solicit for additional beta testers.
Three-dimensional electron microscopy simulation with the CASINO Monte Carlo software.
Demers, Hendrix; Poirier-Demers, Nicolas; Couture, Alexandre Réal; Joly, Dany; Guilmain, Marc; de Jonge, Niels; Drouin, Dominique
2011-01-01
Monte Carlo softwares are widely used to understand the capabilities of electron microscopes. To study more realistic applications with complex samples, 3D Monte Carlo softwares are needed. In this article, the development of the 3D version of CASINO is presented. The software feature a graphical user interface, an efficient (in relation to simulation time and memory use) 3D simulation model, accurate physic models for electron microscopy applications, and it is available freely to the scientific community at this website: www.gel.usherbrooke.ca/casino/index.html. It can be used to model backscattered, secondary, and transmitted electron signals as well as absorbed energy. The software features like scan points and shot noise allow the simulation and study of realistic experimental conditions. This software has an improved energy range for scanning electron microscopy and scanning transmission electron microscopy applications. Copyright © 2011 Wiley Periodicals, Inc.
Three-Dimensional Electron Microscopy Simulation with the CASINO Monte Carlo Software
Demers, Hendrix; Poirier-Demers, Nicolas; Couture, Alexandre Réal; Joly, Dany; Guilmain, Marc; de Jonge, Niels; Drouin, Dominique
2011-01-01
Monte Carlo softwares are widely used to understand the capabilities of electron microscopes. To study more realistic applications with complex samples, 3D Monte Carlo softwares are needed. In this paper, the development of the 3D version of CASINO is presented. The software feature a graphical user interface, an efficient (in relation to simulation time and memory use) 3D simulation model, accurate physic models for electron microscopy applications, and it is available freely to the scientific community at this website: www.gel.usherbrooke.ca/casino/index.html. It can be used to model backscattered, secondary, and transmitted electron signals as well as absorbed energy. The software features like scan points and shot noise allow the simulation and study of realistic experimental conditions. This software has an improved energy range for scanning electron microscopy and scanning transmission electron microscopy applications. PMID:21769885
Standardizing Exoplanet Analysis with the Exoplanet Characterization Tool Kit (ExoCTK)
NASA Astrophysics Data System (ADS)
Fowler, Julia; Stevenson, Kevin B.; Lewis, Nikole K.; Fraine, Jonathan D.; Pueyo, Laurent; Bruno, Giovanni; Filippazzo, Joe; Hill, Matthew; Batalha, Natasha; Wakeford, Hannah; Bushra, Rafia
2018-06-01
Exoplanet characterization depends critically on analysis tools, models, and spectral libraries that are constantly under development and have no single source nor sense of unified style or methods. The complexity of spectroscopic analysis and initial time commitment required to become competitive is prohibitive to new researchers entering the field, as well as a remaining obstacle for established groups hoping to contribute in a comparable manner to their peers. As a solution, we are developing an open-source, modular data analysis package in Python and a publicly facing web interface including tools that address atmospheric characterization, transit observation planning with JWST, JWST corongraphy simulations, limb darkening, forward modeling, and data reduction, as well as libraries of stellar, planet, and opacity models. The foundation of these software tools and libraries exist within pockets of the exoplanet community, but our project will gather these seedling tools and grow a robust, uniform, and well-maintained exoplanet characterization toolkit.
On Crowd-verification of Biological Networks
Ansari, Sam; Binder, Jean; Boue, Stephanie; Di Fabio, Anselmo; Hayes, William; Hoeng, Julia; Iskandar, Anita; Kleiman, Robin; Norel, Raquel; O’Neel, Bruce; Peitsch, Manuel C.; Poussin, Carine; Pratt, Dexter; Rhrissorrakrai, Kahn; Schlage, Walter K.; Stolovitzky, Gustavo; Talikka, Marja
2013-01-01
Biological networks with a structured syntax are a powerful way of representing biological information generated from high density data; however, they can become unwieldy to manage as their size and complexity increase. This article presents a crowd-verification approach for the visualization and expansion of biological networks. Web-based graphical interfaces allow visualization of causal and correlative biological relationships represented using Biological Expression Language (BEL). Crowdsourcing principles enable participants to communally annotate these relationships based on literature evidences. Gamification principles are incorporated to further engage domain experts throughout biology to gather robust peer-reviewed information from which relationships can be identified and verified. The resulting network models will represent the current status of biological knowledge within the defined boundaries, here processes related to human lung disease. These models are amenable to computational analysis. For some period following conclusion of the challenge, the published models will remain available for continuous use and expansion by the scientific community. PMID:24151423
Stegen, James C
2018-01-01
To improve predictions of ecosystem function in future environments, we need to integrate the ecological and environmental histories experienced by microbial communities with hydrobiogeochemistry across scales. A key issue is whether we can derive generalizable scaling relationships that describe this multiscale integration. There is a strong foundation for addressing these challenges. We have the ability to infer ecological history with null models and reveal impacts of environmental history through laboratory and field experimentation. Recent developments also provide opportunities to inform ecosystem models with targeted omics data. A major next step is coupling knowledge derived from such studies with multiscale modeling frameworks that are predictive under non-steady-state conditions. This is particularly true for systems spanning dynamic interfaces, which are often hot spots of hydrobiogeochemical function. We can advance predictive capabilities through a holistic perspective focused on the nexus of history, ecology, and hydrobiogeochemistry.
NASA Astrophysics Data System (ADS)
Longbiao, Li
2017-06-01
In this paper, the synergistic effects of temperatrue and oxidation on matrix cracking in fiber-reinforced ceramic-matrix composites (CMCs) has been investigated using energy balance approach. The shear-lag model cooperated with damage models, i.e., the interface oxidation model, interface debonding model, fiber strength degradation model and fiber failure model, has been adopted to analyze microstress field in the composite. The relationships between matrix cracking stress, interface debonding and slipping, fiber fracture, oxidation temperatures and time have been established. The effects of fiber volume fraction, interface properties, fiber strength and oxidation temperatures on the evolution of matrix cracking stress versus oxidation time have been analyzed. The matrix cracking stresses of C/SiC composite with strong and weak interface bonding after unstressed oxidation at an elevated temperature of 700 °C in air condition have been predicted for different oxidation time.
Design of Epidemia - an Ecohealth Informatics System for Integrated Forecasting of Malaria Epidemics
NASA Astrophysics Data System (ADS)
Wimberly, M. C.; Bayabil, E.; Beyane, B.; Bishaw, M.; Henebry, G. M.; Lemma, A.; Liu, Y.; Merkord, C. L.; Mihretie, A.; Senay, G. B.; Yalew, W.
2014-12-01
Early warning of the timing and locations of malaria epidemics can facilitate the targeting of resources for prevention and emergency response. In response to this need, we are developing the Epidemic Prognosis Incorporating Disease and Environmental Monitoring for Integrated Assessment (EPIDEMIA) computer system. The system incorporates software for capturing, processing, and integrating environmental and epidemiological data from multiple sources; data assimilation techniques that continually update models and forecasts; and a web-based interface that makes the resulting information available to public health decision makers. This technology will enable forecasts based on lagged responses to environmental risk factors as well as information about recent trends in malaria cases. Environmental driving variables will include a variety of remote-sensed hydrological indicators. EPIDEMIA will be implemented and tested in the Amhara Region of Ethiopia in collaboration with local stakeholders. We conducted an initial co-design workshop in July 2014 that included environmental scientists, software engineers, and participants from the NGO, academic, and public health sectors in Ethiopia. A prototype of the EPIDEMIA web interface was presented and a requirements analysis was conducted to characterize the main use cases for the public health community, identify the critical data requirements for malaria risk modeling, and develop of a list of baseline features for the public health interface. Several critical system features were identified, including a secure web-based interface for uploading and validating surveillance data; a flexible query system to allow retrieval of environmental and epidemiological data summaries as tables, charts, and maps; and an alert system to provide automatic warnings in response to environmental and epidemiological risk factors for malaria. Future system development will involve a cycle of implementation, training, usability testing, and upgrading. This innovative translational bioinformatics approach will allow us to assess the practical effectiveness of these tools as we continually improve the technologies.
Community rotorcraft air transportation benefits and opportunities
NASA Technical Reports Server (NTRS)
Gilbert, G. A.; Freund, D. J.; Winick, R. M.; Cafarelli, N. J.; Hodgkins, R. F.; Vickers, T. K.
1981-01-01
Information about rotorcraft that will assist community planners in assessing and planning for the use of rotorcraft transportation in their communities is provided. Information useful to helicopter researchers, manufacturers, and operators concerning helicopter opportunities and benefits is also given. Three primary topics are discussed: the current status and future projections of rotorcraft technology, and the comparison of that technology with other transportation vehicles; the community benefits of promising rotorcraft transportation opportunities; and the integration and interfacing considerations between rotorcraft and other transportation vehicles. Helicopter applications in a number of business and public service fields are examined in various geographical settings.
NASA Astrophysics Data System (ADS)
Hasenkopf, C. A.
2017-12-01
Increasingly, open data, open-source projects are unearthing rich datasets and tools, previously impossible for more traditional avenues to generate. These projects are possible, in part, because of the emergence of online collaborative and code-sharing tools, decreasing costs of cloud-based services to fetch, store, and serve data, and increasing interest of individuals to contribute their time and skills to 'open projects.' While such projects have generated palpable enthusiasm from many sectors, many of these projects face uncharted paths for sustainability, visibility, and acceptance. Our project, OpenAQ, is an example of an open-source, open data community that is currently forging its own uncharted path. OpenAQ is an open air quality data platform that aggregates and universally formats government and research-grade air quality data from 50 countries across the world. To date, we make available more than 76 million air quality (PM2.5, PM10, SO2, NO2, O3, CO and black carbon) data points through an open Application Programming Interface (API) and a user-customizable download interface at https://openaq.org. The goal of the platform is to enable an ecosystem of users to advance air pollution efforts from science to policy to the private sector. The platform is also an open-source project (https://github.com/openaq) and has only been made possible through the coding and data contributions of individuals around the world. In our first two years of existence, we have seen requests for data to our API skyrocket to more than 6 million datapoints per month, and use-cases as varied as ingesting data aggregated from our system into real-time models of wildfires to building open-source statistical packages (e.g. ropenaq and py-openaq) on top of the platform to creating public-friendly apps and chatbots. We will share a whirl-wind trip through our evolution and the many lessons learned so far related to platform structure, community engagement, organizational model type and sustainability.
Assessing Impacts of Climate Change on Forests: The State of Biological Modeling
DOE R&D Accomplishments Database
Dale, V. H.; Rauscher, H. M.
1993-04-06
Models that address the impacts to forests of climate change are reviewed by four levels of biological organization: global, regional or landscape, community, and tree. The models are compared as to their ability to assess changes in greenhouse gas flux, land use, maps of forest type or species composition, forest resource productivity, forest health, biodiversity, and wildlife habitat. No one model can address all of these impacts, but landscape transition models and regional vegetation and land-use models consider the largest number of impacts. Developing landscape vegetation dynamics models of functional groups is suggested as a means to integrate the theory of both landscape ecology and individual tree responses to climate change. Risk assessment methodologies can be adapted to deal with the impacts of climate change at various spatial and temporal scales. Four areas of research development are identified: (1) linking socioeconomic and ecologic models, (2) interfacing forest models at different scales, (3) obtaining data on susceptibility of trees and forest to changes in climate and disturbance regimes, and (4) relating information from different scales.
SWATMOD-PREP: Graphical user interface for preparing coupled SWAT-modflow simulations
USDA-ARS?s Scientific Manuscript database
This paper presents SWATMOD-Prep, a graphical user interface that couples a SWAT watershed model with a MODFLOW groundwater flow model. The interface is based on a recently published SWAT-MODFLOW code that couples the models via mapping schemes. The spatial layout of SWATMOD-Prep guides the user t...
Enabling the development of Community Extensions to GI-cat - the SIB-ESS-C case study
NASA Astrophysics Data System (ADS)
Bigagli, L.; Meier, N.; Boldrini, E.; Gerlach, R.
2009-04-01
GI-cat is a Java software package that implements discovery and access services for disparate geospatial resources. An instance of GI-cat provides a single point of service for querying and accessing remote, as well as local, heterogeneous sources of geospatial information, either through standard interfaces, or taking advantage of GI-cat advanced features, such as incremental responses, query feedback, etc. GI-cat supports a number of de-iure and de-facto standards, but can also be extended to additional community catalog/inventory services, by defining appropriate mediation components. The GI-cat and the SIB-ESS-C development teams collaborated in the development of a mediator to the Siberian Earth Science System Cluster (SIB-ESS-C), a web-based infrastructure to support the communities of environmental and Earth System research in Siberia. This activity resulted in the identification of appropriate technologies and internal mechanisms supporting the development of GI-cat extensions, that are the object of this work. GI-cat is actually built up of a modular framework of SOA components, that can be variously arranged to fit the needs of a community of users. For example, a particular GI-cat instance may be configured to provide discovery functionalities onto an OGC WMS; or to adapt a THREDDS catalog to the standard OGC CSW interface; or to merge a number of CDI repositories into a single, more efficient catalog. The flexibility of GI-cat framework is achieved thanks to its design, that follows the Tree of Responsibility (ToR) pattern and the Uniform Pipe and Filter architectural style. This approach allows the building of software blocks that can be flexibly reused and composed in multiple ways. In fact, the components that make up any GI-cat configuration all implement two common interfaces (i.e. IChainNode and ICatalogService), that support chaining one component to another . Hence, it would suffice to implement those interfaces (plus an appropriate factory class: the mechanism used to create GI-cat components) to support a custom community catalog/inventory service in GI-cat. In general, all the terminal nodes of a GI-cat configuration chain are in charge of mediating between the GI-cat common interfaces and a backend, so we implemented a default behavior in an abstract class, termed Accessor, to be more easily subclassed. Moreover, we identified several typical backend scenarios and provided specialized Accessor subclasses, even simpler to implement. For example, in case of a coarse-grained backend service, that responds its data all at once, a specialized Accessor can retrieve the whole content the first time, and subsequently browse/query the local copy of the data. This was the approach followed for the development of SibesscAccessor. The SIB-ESS-C case study is also noticeable because it requires mediating between the relational and the semi-structured data models. In fact, SIB-ESS-C data are stored in a relational database, to provide performant access even to huge amounts of data. The SibesscAccessor is in charge of establishing a JDBC connection to the database, reading the data by means of SQL statements, creating Java objects according to the ISO 19115 data model, and marshalling the resulting information to an XML document. During the implementation of the SibesscAccessor, the mix of technologies and deployment environments and the geographical distribution of the development teams turned out to be important issues. To solve them, we relied on technologies and tools for collaborative software development: the Maven build system, the SVN version control system, the XPlanner project planning and tracking tool, and of course VOIP tools. Moreover, we shipped the Accessor Development Kit (ADK) Java library, containing the classes needed for extending GI-cat to custom community catalog/inventory services and other supporting material (documentation, best-practices, examples). The ADK is distributed as a Maven artifact, to simplify dependency management and ease the common tasks of testing, packaging, etc. The SibesscAccessor was the first custom addition to the set of GI-cat accessors. Later, also the so-called Standard Accessors library has been refactored onto the ADK. The SIB-ESS-C case study also gave us the opportunity to refine our policies for collaborative software development. Besides, several improvements were made to the overall GI-cat data model and framework. Finally, the SIB-ESS-C development team developed a GI-cat web client by means of Web 2.0 technologies (JavaScript, XML, HTML, CSS, etc.) The client can easily be integrated in any HTML context on any web page. The web GUI allows the user to define requests to GI-cat by entering parameter strings and/or selecting an area of interest on a map. The client sends its request to GI-cat via SOAP through HTTP-POST, parses GI-cat SOAP responses and presents user-friendly information on a web page.
Cloud-based calculators for fast and reliable access to NOAA's geomagnetic field models
NASA Astrophysics Data System (ADS)
Woods, A.; Nair, M. C.; Boneh, N.; Chulliat, A.
2017-12-01
While the Global Positioning System (GPS) provides accurate point locations, it does not provide pointing directions. Therefore, the absolute directional information provided by the Earth's magnetic field is of primary importance for navigation and for the pointing of technical devices such as aircrafts, satellites and lately, mobile phones. The major magnetic sources that affect compass-based navigation are the Earth's core, its magnetized crust and the electric currents in the ionosphere and magnetosphere. NOAA/CIRES Geomagnetism (ngdc.noaa.gov/geomag/) group develops and distributes models that describe all these important sources to aid navigation. Our geomagnetic models are used in variety of platforms including airplanes, ships, submarines and smartphones. While the magnetic field from Earth's core can be described in relatively fewer parameters and is suitable for offline computation, the magnetic sources from Earth's crust, ionosphere and magnetosphere require either significant computational resources or real-time capabilities and are not suitable for offline calculation. This is especially important for small navigational devices or embedded systems, where computational resources are limited. Recognizing the need for a fast and reliable access to our geomagnetic field models, we developed cloud-based application program interfaces (APIs) for NOAA's ionospheric and magnetospheric magnetic field models. In this paper we will describe the need for reliable magnetic calculators, the challenges faced in running geomagnetic field models in the cloud in real-time and the feedback from our user community. We discuss lessons learned harvesting and validating the data which powers our cloud services, as well as our strategies for maintaining near real-time service, including load-balancing, real-time monitoring, and instance cloning. We will also briefly talk about the progress we achieved on NOAA's Big Earth Data Initiative (BEDI) funded project to develop API interface to our Enhanced Magnetic Model (EMM).
Apollo: AN Automatic Procedure to Forecast Transport and Deposition of Tephra
NASA Astrophysics Data System (ADS)
Folch, A.; Costa, A.; Macedonio, G.
2007-05-01
Volcanic ash fallout represents a serious threat to communities around active volcanoes. Reliable short term predictions constitute a valuable support for to mitigate the effects of fallout on the surrounding area during an episode of crisis. We present a platform-independent automatic procedure aimed to daily forecast volcanic ash dispersal. The procedure builds on a series of programs and interfaces that allow an automatic data/results flow. Firstly the procedure downloads mesoscale meteorological forecasts for the region and period of interest, filters and converts data from its native format (typically GRIB format files), and sets up the CALMET diagnostic meteorological model to obtain hourly wind field and micro-meteorological variables on a finer mesh. Secondly a 1-D version of the buoyant plume equations assesses the distribution of mass along the eruptive column depending on the obtained wind field and on the conditions at the vent (granulometry, mass flow rate, etc.). All these data are used as input for the ash dispersion model(s). Any model able to face physical complexity and coupling processes with adequate solving times can be plugged into the system by means of an interface. Currently, the procedure contains the models HAZMAP, TEPHRA and FALL3D, the latter in both serial and parallel versions. Parallelization of FALL3D is done at two levels one for particle classes and one for spatial domain. The last step is to post-processes the model(s) outcomes to end up with homogeneous maps written on portable format files. Maps plot relevant quantities such as predicted ground load, expected deposit thickness or visual and flight safety concentration thresholds. Several applications are shown as examples.
Penalty-Based Interface Technology for Prediction of Delamination Growth in Laminated Structures
NASA Technical Reports Server (NTRS)
Averill, Ronald C.
2004-01-01
An effective interface element technology has been developed for connecting and simulating crack growth between independently modeled finite element subdomains (e.g., composite plies). This method has been developed using penalty constraints and allows coupling of finite element models whose nodes do not necessarily coincide along their common interface. Additionally, the present formulation leads to a computational approach that is very efficient and completely compatible with existing commercial software. The present interface element has been implemented in the commercial finite element code ABAQUS as a User Element Subroutine (UEL), making it easy to test the approach for a wide range of problems. The interface element technology has been formulated to simulate delamination growth in composite laminates. Thanks to its special features, the interface element approach makes it possible to release portions of the interface surface whose length is smaller than that of the finite elements. In addition, the penalty parameter can vary within the interface element, allowing the damage model to be applied to a desired fraction of the interface between the two meshes. Results for double cantilever beam DCB, end-loaded split (ELS) and fixed-ratio mixed mode (FRMM) specimens are presented. These results are compared to measured data to assess the ability of the present damage model to simulate crack growth.
Universality of Critically Pinned Interfaces in Two-Dimensional Isotropic Random Media
NASA Astrophysics Data System (ADS)
Grassberger, Peter
2018-05-01
Based on extensive simulations, we conjecture that critically pinned interfaces in two-dimensional isotropic random media with short-range correlations are always in the universality class of ordinary percolation. Thus, in contrast to interfaces in >2 dimensions, there is no distinction between fractal (i.e., percolative) and rough but nonfractal interfaces. Our claim includes interfaces in zero-temperature random field Ising models (both with and without spontaneous nucleation), in heterogeneous bootstrap percolation, and in susceptible-weakened-infected-removed epidemics. It does not include models with long-range correlations in the randomness and models where overhangs are explicitly forbidden (which would imply nonisotropy of the medium).
NASA Astrophysics Data System (ADS)
Jarboe, N.; Minnett, R.; Constable, C.; Koppers, A. A.; Tauxe, L.
2013-12-01
The Magnetics Information Consortium (MagIC) is dedicated to supporting the paleomagnetic, geomagnetic, and rock magnetic communities through the development and maintenance of an online database (http://earthref.org/MAGIC/), data upload and quality control, searches, data downloads, and visualization tools. While MagIC has completed importing some of the IAGA paleomagnetic databases (TRANS, PINT, PSVRL, GPMDB) and continues to import others (ARCHEO, MAGST and SECVR), further individual data uploading from the community contributes a wealth of easily-accessible rich datasets. Previously uploading of data to the MagIC database required the use of an Excel spreadsheet using either a Mac or PC. The new method of uploading data utilizes an HTML 5 web interface where the only computer requirement is a modern browser. This web interface will highlight all errors discovered in the dataset at once instead of the iterative error checking process found in the previous Excel spreadsheet data checker. As a web service, the community will always have easy access to the most up-to-date and bug free version of the data upload software. The filtering search mechanism of the MagIC database has been changed to a more intuitive system where the data from each contribution is displayed in tables similar to how the data is uploaded (http://earthref.org/MAGIC/search/). Searches themselves can be saved as a permanent URL, if desired. The saved search URL could then be used as a citation in a publication. When appropriate, plots (equal area, Zijderveld, ARAI, demagnetization, etc.) are associated with the data to give the user a quicker understanding of the underlying dataset. The MagIC database will continue to evolve to meet the needs of the paleomagnetic, geomagnetic, and rock magnetic communities.
The Plate Boundary Observatory: Community Focused Web Services
NASA Astrophysics Data System (ADS)
Matykiewicz, J.; Anderson, G.; Lee, E.; Hoyt, B.; Hodgkinson, K.; Persson, E.; Wright, J.; Torrez, D.; Jackson, M.
2006-12-01
The Plate Boundary Observatory (PBO), part of the NSF-funded EarthScope project, is designed to study the three-dimensional strain field resulting from deformation across the active boundary zone between the Pacific and North American plates in the western United States. To meet these goals, PBO will install 852 continuous GPS stations, 103 borehole strainmeter stations, 28 tiltmeters, and five laser strainmeters, as well as manage data for 209 previously existing continuous GPS stations. UNAVCO provides access to data products from these stations, as well as general information about the PBO project, via the PBO web site (http://pboweb.unavco.org). GPS and strainmeter data products can be found using a variety of channels, including map searches, text searches, and station specific data retrieval. In addition, the PBO construction status is available via multiple mapping interfaces, including custom web based map widgets and Google Earth. Additional construction details can be accessed from PBO operational pages and station specific home pages. The current state of health for the PBO network is available with the statistical snap-shot, full map interfaces, tabular web based reports, and automatic data mining and alerts. UNAVCO is currently working to enhance the community access to this information by developing a web service framework for the discovery of data products, interfacing with operational engineers, and exposing data services to third party participants. In addition, UNAVCO, through the PBO project, provides advanced data management and monitoring systems for use by the community in operating geodetic networks in the United States and beyond. We will demonstrate these systems during the AGU meeting, and we welcome inquiries from the community at any time.
The Gateway Paper--proposed health reforms in Pakistan--interface considerations.
Nishtar, Sania
2006-12-01
The Gateway Paper recognizes three system interfaces as being critical to the delivery of healthcare within Pakistan. These include the federal/provincial interface, the provincial-district interface and the public-private interface. A number of gaps in each area have been highlighted. At the federal-provincial interface lack of provincial ownership of federal initiatives, gaps in provincial counterpart arrangements, ambiguities about federal and provincial roles and responsibilities, conflicts over sharing of resources and gaps in understanding provincial requirements and poor coordination have been articulated as core issues. It is envisaged that the development of a broad based mechanism to develop a consensus on national policy positions, incorporation of appropriate guidance from the provinces, giving provinces an active participatory role in decision-making, garnering their support and clearly demarcating roles and responsibilities will obviate some of these issues as would the institutionalization of a federal-provincial coordinating mechanism to review actions at both levels with regards to progress on meeting stipulating goals. At a district level poor governance, limited capacity within the system, lag in granting full district level financial and administrative autonomy, and lack of operational clarity in the rules of business have contributed to the challenge. This is compounded by inadvertent centralization of some functions within the district, which political and administrative decentralization has paradoxically created and impediments to harnessing the role of communities. The clear delineation of these issues provides a substrate, which need to be at the heart of strategic reform within the context of the recent devolution initiative. At the public-private interface the absence of locally established principles, legislative frameworks, policies and operational strategies have been contributing to the adhoc nature of public-private engagement within the country, which leads to skewed powered relationships and lack of clarity in combined models of governance. Within this context the Gateway Paper makes a strong case for developing a set of norms and ethical principles, developing legislative and policy frameworks, and specific guidelines to steer such relationships with careful attention to accountability and sustainability related parameters.
AtomPy: an open atomic-data curation environment
NASA Astrophysics Data System (ADS)
Bautista, Manuel; Mendoza, Claudio; Boswell, Josiah S; Ajoku, Chukwuemeka
2014-06-01
We present a cloud-computing environment for atomic data curation, networking among atomic data providers and users, teaching-and-learning, and interfacing with spectral modeling software. The system is based on Google-Drive Sheets, Pandas (Python Data Analysis Library) DataFrames, and IPython Notebooks for open community-driven curation of atomic data for scientific and technological applications. The atomic model for each ionic species is contained in a multi-sheet Google-Drive workbook, where the atomic parameters from all known public sources are progressively stored. Metadata (provenance, community discussion, etc.) accompanying every entry in the database are stored through Notebooks. Education tools on the physics of atomic processes as well as their relevance to plasma and spectral modeling are based on IPython Notebooks that integrate written material, images, videos, and active computer-tool workflows. Data processing workflows and collaborative software developments are encouraged and managed through the GitHub social network. Relevant issues this platform intends to address are: (i) data quality by allowing open access to both data producers and users in order to attain completeness, accuracy, consistency, provenance and currentness; (ii) comparisons of different datasets to facilitate accuracy assessment; (iii) downloading to local data structures (i.e. Pandas DataFrames) for further manipulation and analysis by prospective users; and (iv) data preservation by avoiding the discard of outdated sets.
Baradon, Tessa; Bain, Katherine
2016-07-01
The question of interfacing research and clinically generated knowledge in the field of infant mental health (IMH) with local cultural knowledge and belief systems has provoked extended discussion in recent years. This article explores convergences and divergences between current research-based, relational IMH mental health models and "community" knowledge held by a group of South African lay home visitors from a socioeconomically deprived township. These women were trained in a psychoanalytic and attachment-informed infant mental health program that promotes a relational model of infant development. They provide an intervention that supports high risk mother-infant relationships in the same locality. A two-tiered approach was taken to the analysis of the home visitor interviews and focused on the home visitors' constructed narratives of infant development posttraining as well as the personal impact of the training and work on the home visitors themselves. The study found that psychoanalytic and attachment-informed thinking about development makes sense to those operating within the local South African cultural context, but that the accommodation of this knowledge is a complex and challenging process. © 2016 Michigan Association for Infant Mental Health.
Recent developments on the Kardar-Parisi-Zhang surface-growth equation.
Wio, Horacio S; Escudero, Carlos; Revelli, Jorge A; Deza, Roberto R; de la Lama, Marta S
2011-01-28
The stochastic nonlinear partial differential equation known as the Kardar-Parisi-Zhang (KPZ) equation is a highly successful phenomenological mesoscopic model of surface and interface growth processes. Its suitability for analytical work, its explicit symmetries and its prediction of an exact dynamic scaling relation for a one-dimensional substratum led people to adopt it as a 'standard' model in the field during the last quarter of a century. At the same time, several conjectures deserving closer scrutiny were established as dogmas throughout the community. Among these, we find the beliefs that 'genuine' non-equilibrium processes are non-variational in essence, and that the exactness of the dynamic scaling relation owes its existence to a Galilean symmetry. Additionally, the equivalence among planar and radial interface profiles has been generally assumed in the literature throughout the years. Here--among other topics--we introduce a variational formulation of the KPZ equation, remark on the importance of consistency in discretization and challenge the mainstream view on the necessity for scaling of both Galilean symmetry and the one-dimensional fluctuation-dissipation theorem. We also derive the KPZ equation on a growing domain as a first approximation to radial growth, and outline the differences with respect to the classical case that arises in this new situation.
The GMOD Drupal bioinformatic server framework.
Papanicolaou, Alexie; Heckel, David G
2010-12-15
Next-generation sequencing technologies have led to the widespread use of -omic applications. As a result, there is now a pronounced bioinformatic bottleneck. The general model organism database (GMOD) tool kit (http://gmod.org) has produced a number of resources aimed at addressing this issue. It lacks, however, a robust online solution that can deploy heterogeneous data and software within a Web content management system (CMS). We present a bioinformatic framework for the Drupal CMS. It consists of three modules. First, GMOD-DBSF is an application programming interface module for the Drupal CMS that simplifies the programming of bioinformatic Drupal modules. Second, the Drupal Bioinformatic Software Bench (biosoftware_bench) allows for a rapid and secure deployment of bioinformatic software. An innovative graphical user interface (GUI) guides both use and administration of the software, including the secure provision of pre-publication datasets. Third, we present genes4all_experiment, which exemplifies how our work supports the wider research community. Given the infrastructure presented here, the Drupal CMS may become a powerful new tool set for bioinformaticians. The GMOD-DBSF base module is an expandable community resource that decreases development time of Drupal modules for bioinformatics. The biosoftware_bench module can already enhance biologists' ability to mine their own data. The genes4all_experiment module has already been responsible for archiving of more than 150 studies of RNAi from Lepidoptera, which were previously unpublished. Implemented in PHP and Perl. Freely available under the GNU Public License 2 or later from http://gmod-dbsf.googlecode.com.
The use of analytical models in human-computer interface design
NASA Technical Reports Server (NTRS)
Gugerty, Leo
1993-01-01
Recently, a large number of human-computer interface (HCI) researchers have investigated building analytical models of the user, which are often implemented as computer models. These models simulate the cognitive processes and task knowledge of the user in ways that allow a researcher or designer to estimate various aspects of an interface's usability, such as when user errors are likely to occur. This information can lead to design improvements. Analytical models can supplement design guidelines by providing designers rigorous ways of analyzing the information-processing requirements of specific tasks (i.e., task analysis). These models offer the potential of improving early designs and replacing some of the early phases of usability testing, thus reducing the cost of interface design. This paper describes some of the many analytical models that are currently being developed and evaluates the usefulness of analytical models for human-computer interface design. This paper will focus on computational, analytical models, such as the GOMS model, rather than less formal, verbal models, because the more exact predictions and task descriptions of computational models may be useful to designers. The paper also discusses some of the practical requirements for using analytical models in complex design organizations such as NASA.
NASA Technical Reports Server (NTRS)
Manouchehri, Davoud; Lindsay, Thomas; Ghosh, David
1994-01-01
NASA's Langley Research Center (LaRC) is addressing the problem of isolating the vibrations of the Shuttle remote manipulator system (RMS) from its end-effector and/or payload by modeling an RMS flat-floor simulator with a dynamic payload. Analysis of the model can lead to control techniques that will improve the speed, accuracy, and safety of the RMS in capturing satellites and eventually facilitate berthing with the space station. Rockwell International Corporation, also involved in vibration isolation, has developed a hardware interface unit to isolate the end-effector from the vibrations of an arm on a Shuttle robotic tile processing system (RTPS). To apply the RTPS isolation techniques to long-reach arms like the RMS, engineers have modeled the dynamics of the hardware interface unit with simulation software. By integrating the Rockwell interface model with the NASA LaRC RMS simulator model, investigators can study the use of a hardware interface to isolate dynamic payloads from the RMS. The interface unit uses both active and passive compliance and damping for vibration isolation. Thus equipped, the RMS could be used as a telemanipulator with control characteristics for capture and berthing operations. The hardware interface also has applications in industry.
Gortázar, C; Fernández-Calle, L M; Collazos-Martínez, J A; Mínguez-González, O; Acevedo, P
2017-10-01
Animal tuberculosis (TB), which is caused by infection with members of the Mycobacterium tuberculosis complex (MTC), is a typical multi-host infection that flourishes at the livestock-wildlife interface. TB epidemiology is well characterized in the Mediterranean woodland habitats and Atlantic regions of southwestern Europe. However, much less is known about huge regions that do not form part of the two abovementioned settings, which have a low abundance of wild reservoirs. We hypothesized that MTC would be maintained in multi- rather than single-host communities in which wildlife would make a relatively low contribution to the maintenance of TB. Between 2011 and 2015, 7729 Eurasian wild boar (Sus scrofa) and 1729 wild ruminants were sampled for culture during hunting events on unfenced sites. In addition, 1058 wild ungulates were sampled on 23 fenced hunting estates. Infection prevalence data were modeled along with official data on cattle and goat TB, on livestock distribution and management, and on wild boar abundance. The mean individual MTC infection prevalence was 4.28% in wild boar, while the cattle skin test reactor percent was 0.17%. The prevalence of MTC infection in wild ungulates (mostly wild boar) from the fenced hunting estates was 11.6%. Modeling revealed that the main driver of TB in cattle was their management (beef; communal pastures). However, wild boar abundance, the prevalence of MTC infection in wild boar and the presence of fenced hunting estates also contributed to explaining cattle TB. The model used for goat TB identified communal pastures as a risk factor. The model for the prevalence of MTC infection in wild boar included wild boar abundance and communal pastures. We conclude that the MTC maintenance host community is most likely of a multi-host nature. While cattle and communal pastures pose the main risk regarding TB, it is also necessary to consider increasing wild boar densities and specific risks owing to fenced wildlife. We infer several management implications regarding wildlife management, the wildlife sampling strategy and laboratory testing, the peculiarities of fenced hunting estates, and the wildlife-livestock interface. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Koo, Bon Joo; Kwon, Kae Kyoung; Hyun, Jung-Ho
2007-11-01
We quantified the increase in the sediment-water interface created by the burrowing activities of the resident macrofaunal community and its variation with respect to the physical conditions of the habitat on a tidal fat. We investigated environmental factors and dimensions of macrofaunal burrows with respect to tidal height and vegetation during spring and summer at three sites. A resin-casting method was used to quantify the dimensions of all burrows at each site. The dimensions of macrofaunal burrows varied both temporally and spatially and the increase in the sediment-water interface reached a maximum of 311%, ranging from 20 to 255% under different habitat conditions. The sediment-water interface depended on the duration of exposure resulting from tidal height, increased temperatures resulting from seasonality, and marsh plant density. Burrows were deeper and more expansive at both higher tidal levels and higher temperatures in summer. Burrow dimensions were sharply reduced with the disappearance of adult macrofauna in areas where the roots of the marsh plant Suaeda japonica were dense. The significance of this study lies in quantifying the burrow dimensions of the entire macrofaunal community, rather than just a single population, and confirming their spatial and temporal variation with respect to physical conditions of the habitat. Environmental factors responsible for variation in burrow dimensions are discussed.
Managing the livestock– Wildlife interface on rangelands
du Toit, Johan T.; Cross, Paul C.; Valeix, Marion
2017-01-01
On rangelands the livestock–wildlife interface is mostly characterized by management actions aimed at controlling problems associated with competition, disease, and depredation. Wildlife communities (especially the large vertebrate species) are typically incompatible with agricultural development because the opportunity costs of wildlife conservation are unaffordable except in arid and semi-arid regions. Ecological factors including the provision of supplementary food and water for livestock, together with the persecution of large predators, result in livestock replacing wildlife at biomass densities far exceeding those of indigenous ungulates. Diseases are difficult to eradicate from free-ranging wildlife populations and so veterinary controls usually focus on separating commercial livestock herds from wildlife. Persecution of large carnivores due to their depredation of livestock has caused the virtual eradication of apex predators from most rangelands. However, recent research points to a broad range of solutions to reduce conflict at the livestock–wildlife interface. Conserving wildlife bolsters the adaptive capacity of a rangeland by providing stakeholders with options for dealing with environmental change. This is contingent upon local communities being empowered to benefit directly from their wildlife resources within a management framework that integrates land-use sectors at the landscape scale. As rangelands undergo irreversible changes caused by species invasions and climate forcings, the future perspective favors a proactive shift in attitude towards the livestock–wildlife interface, from problem control to asset management.
Modeling human diseases: an education in interactions and interdisciplinary approaches.
Zon, Leonard
2016-06-01
Traditionally, most investigators in the biomedical arena exploit one model system in the course of their careers. Occasionally, an investigator will switch models. The selection of a suitable model system is a crucial step in research design. Factors to consider include the accuracy of the model as a reflection of the human disease under investigation, the numbers of animals needed and ease of husbandry, its physiology and developmental biology, and the ability to apply genetics and harness the model for drug discovery. In my lab, we have primarily used the zebrafish but combined it with other animal models and provided a framework for others to consider the application of developmental biology for therapeutic discovery. Our interdisciplinary approach has led to many insights into human diseases and to the advancement of candidate drugs to clinical trials. Here, I draw on my experiences to highlight the importance of combining multiple models, establishing infrastructure and genetic tools, forming collaborations, and interfacing with the medical community for successful translation of basic findings to the clinic. © 2016. Published by The Company of Biologists Ltd.
Heterotrophic Archaea Contribute to Carbon Cycling in Low-pH, Suboxic Biofilm Communities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Justice, Nicholas B; Pan, Chongle; Mueller, Ryan
Archaea are widely distributed and yet are most often not the most abundant members of microbial communities. Here, we document a transition from Bacteria- to Archaea-dominated communities in microbial biofilms sampled from the Richmond Mine acid mine drainage (AMD) system (pH 1.0,38 C) and in laboratory-cultivated biofilms. This transition occurs when chemoautotrophic microbial communities that develop at the air-solution interface sink to the sediment-solution interface and degrade under microaerobic and anaerobic conditions. The archaea identified in these sunken biofilms are from the class Thermoplasmata, and in some cases, the highly divergent ARMAN nanoarchaeal lineage. In several of the sunken biofilms,more » nanoarchaea comprise 10 to 25% of the community, based on fluorescent in situ hybridization and metagenomic analyses. Comparative community proteomic analyses show a persistence of bacterial proteins in sunken biofilms, but there is clear evidence for amino acid modifications due to acid hydrolysis. Given the low representation of bacterial cells in sunken biofilms based on microscopy, we infer that hydrolysis reflects proteins derived from lysed cells. For archaea, we detected 2,400 distinct proteins, including a subset involved in proteolysis and peptide uptake. Laboratory cultivation experiments using complex carbon substrates demonstrated anaerobic enrichment of Ferroplasma and Aplasma coupled to the reduction of ferric iron. These findings indicate dominance of acidophilic archaea in degrading biofilms and suggest that they play roles in anaerobic nutrient cycling at low pH.« less
Chantler, Tracey; Otewa, Faith; Onyango, Peter; Okoth, Ben; Odhiambo, Frank; Parker, Michael; Geissler, Paul Wenzel
2013-04-01
Community Engagement (CE) has been presented by bio-ethicists and scientists as a straightforward and unequivocal good which can minimize the risks of exploitation and ensure a fair distribution of research benefits in developing countries. By means of ethnographic fieldwork undertaken in Kenya between 2007 and 2009 we explored how CE is understood and enacted in paediatric vaccine trials conducted by the Kenyan Medical Research Institute and the US Centers for Disease Control (KEMRI/CDC). In this paper we focus on the role of paid volunteers who act as an interface between villagers KEMRI/CDC. Village Reporters' (VRs) position of being both with the community and with KEMRI/CDC is advantageous for the conduct of trials. However it is also problematic in terms of exercising trust, balancing allegiances and representing community views. VRs role is shaped by ambiguities related to their employment status and their dual accountability to researchers and their villages. VRs are understandably careful to stress their commitment to self-less community service since it augments their respectability at community level and opens up opportunities for financial gain and self-development. Simultaneously VRs association with KEMRI/CDC and proximity to trial participants requires them to negotiate implicit and explicit expectations for material and medical assistance in a cultural setting in which much importance is placed on sharing and mutuality. To ensure continuity of productive interactions between VRs, and similar community intermediaries, and researchers, open discussion is needed about the problematic aspects of relational ethics, issues concerning undue influence, power relations and negotiating expectations. © 2013 Blackwell Publishing Ltd.
Chantler, Tracey; Otewa, Faith; Onyango, Peter; Okoth, Ben; Odhiambo, Frank; Parker, Michael; Geissler, Paul Wenzel
2013-01-01
Community Engagement (CE) has been presented by bio-ethicists and scientists as a straightforward and unequivocal good which can minimize the risks of exploitation and ensure a fair distribution of research benefits in developing countries. By means of ethnographic fieldwork undertaken in Kenya between 2007 and 2009 we explored how CE is understood and enacted in paediatric vaccine trials conducted by the Kenyan Medical Research Institute and the US Centers for Disease Control (KEMRI/CDC). In this paper we focus on the role of paid volunteers who act as an interface between villagers KEMRI/CDC. Village Reporters’ (VRs) position of being both with the community and with KEMRI/CDC is advantageous for the conduct of trials. However it is also problematic in terms of exercising trust, balancing allegiances and representing community views. VRs role is shaped by ambiguities related to their employment status and their dual accountability to researchers and their villages. VRs are understandably careful to stress their commitment to self-less community service since it augments their respectability at community level and opens up opportunities for financial gain and self-development. Simultaneously VRs association with KEMRI/CDC and proximity to trial participants requires them to negotiate implicit and explicit expectations for material and medical assistance in a cultural setting in which much importance is placed on sharing and mutuality. To ensure continuity of productive interactions between VRs, and similar community intermediaries, and researchers, open discussion is needed about the problematic aspects of relational ethics, issues concerning undue influence, power relations and negotiating expectations. PMID:23521822
Introducing a new open source GIS user interface for the SWAT model
USDA-ARS?s Scientific Manuscript database
The Soil and Water Assessment Tool (SWAT) model is a robust watershed modelling tool. It typically uses the ArcSWAT interface to create its inputs. ArcSWAT is public domain software which works in the licensed ArcGIS environment. The aim of this paper was to develop an open source user interface ...
Tavis B. Paveglio; Cassandra Moseley; Matthew S. Carroll; Daniel R. Williams; Emily Jane Davis; A. Paige Fischer
2015-01-01
Understanding the local context that shapes collective response to wildfire risk continues to be a challenge for scientists and policymakers. This study utilizes and expands on a conceptual approach for understanding adaptive capacity to wildfire in a comparison of 18 past case studies. The intent is to determine whether comparison of local social context and community...
Rocky Mountain Research Station USDA Forest Service
2007-01-01
Large fires can result in a series of disasters for individuals and communities in the wildland-urban interface. They create significant disruptions to ongoing social processes, result in large financial losses, and lead to expensive restoration activities. By being aware of the impacts of wildland fire on local residents, fire managers can bring added value to them...
Stephanie A. Grayzeck-Souter; Kristen C. Nelson; Rachel F. Brummel; Pamela Jakes; Daniel R. Williams
2009-01-01
In 2003, the Healthy Forests Restoration Act (HFRA) called for USA communities at risk of wildfire to develop Community Wildfire Protection Plans (CWPPs) requiring local, state and federal actors to work together to address hazardous fuels reduction and mitigation efforts. CWPPs can provide the opportunity for local government to influence actions on adjacent public...
Melanie Stidham; Sarah McCaffrey; Eric Toman; Bruce Shindler
2014-01-01
Within the wildland-urban interface (WUI), wildfire risk contains both individual and collective components. The likelihood that a particular home will be threatened by wildfire in any given year is low, but at a broader scale the likelihood that a home somewhere in the WUI will be threatened is substantially higher. From a risk mitigation perspective, individuals may...
An event-based approach for examining the effects of wildland fire decisions on communities
Stephen F. McCool; James A. Burchfield; Daniel R. Williams; Matthew S. Carroll
2006-01-01
Public concern over the consequences of forest fire to wildland interface communities has led to increased resources devoted to fire suppression, fuel treatment, and management of fire events. The social consequences of the decisions involved in these and other fire-related actions are largely unknown, except in an anecdotal sense, but do occur at a variety of temporal...
Interface tension in the improved Blume-Capel model
NASA Astrophysics Data System (ADS)
Hasenbusch, Martin
2017-09-01
We study interfaces with periodic boundary conditions in the low-temperature phase of the improved Blume-Capel model on the simple cubic lattice. The interface free energy is defined by the difference of the free energy of a system with antiperiodic boundary conditions in one of the directions and that of a system with periodic boundary conditions in all directions. It is obtained by integration of differences of the corresponding internal energies over the inverse temperature. These differences can be computed efficiently by using a variance reduced estimator that is based on the exchange cluster algorithm. The interface tension is obtained from the interface free energy by using predictions based on effective interface models. By using our numerical results for the interface tension σ and the correlation length ξ obtained in previous work, we determine the universal amplitude ratios R2 nd ,+=σ0f2nd ,+ 2=0.3863 (6 ) , R2 nd ,-=σ0f2nd ,- 2=0.1028 (1 ) , and Rexp ,-=σ0fexp,- 2=0.1077 (3 ) . Our results are consistent with those obtained previously for the three-dimensional Ising model, confirming the universality hypothesis.
NASA Technical Reports Server (NTRS)
Stewart, Mark E. M.
2017-01-01
This paper presents an analysis and simulation of evaporation and condensation at a motionless liquid/vapor interface. A 1-D model equation, emphasizing heat and mass transfer at the interface, is solved in two ways, and incorporated into a subgrid interface model within a CFD simulation. Simulation predictions are compared with experimental data from the CPST Engineering Design Unit tank, a cryogenic fluid management test tank in 1-g. The numerical challenge here is the physics of the liquid/vapor interface; pressurizing the ullage heats it by several degrees, and sets up an interfacial temperature gradient that transfers heat to the liquid phase-the rate limiting step of condensation is heat conducted through the liquid and vapor. This physics occurs in thin thermal layers O(1 mm) on either side of the interface which is resolved by the subgrid interface model. An accommodation coefficient of 1.0 is used in the simulations which is consistent with theory and measurements. This model is predictive of evaporation/condensation rates, that is, there is no parameter tuning.
Nanofluidic interfaces in microfluidic networks
Millet, Larry J.; Doktycz, Mitchel John; Retterer, Scott T.
2015-09-24
The integration of nano- and microfluidic technologies enables the construction of tunable interfaces to physical and biological systems across relevant length scales. The ability to perform chemical manipulations of miniscule sample volumes is greatly enhanced through these technologies and extends the ability to manipulate and sample the local fluidic environments at subcellular, cellular and community or tissue scales. Here we describe the development of a flexible surface micromachining process for the creation of nanofluidic channel arrays integrated within SU-8 microfluidic networks. The use of a semi-porous, silicon rich, silicon nitride structural layer allows rapid release of the sacrificial silicon dioxidemore » during the nanochannel fabrication. Nanochannel openings that form the interface to biological samples are customized using focused ion beam milling. The compatibility of these interfaces with on-chip microbial culture is demonstrated.« less
Putting the Biology Back in Astrobiology: Defining Key Habitat Parameters with EJSM
NASA Astrophysics Data System (ADS)
Bowman, J. S.; Schmidt, B. E.
2010-12-01
The science surrounding missions to the outer planets has been dominated by geophysical questions. The Europa Jupiter System Mission (EJSM), however, is a search explicitly for a “habitable world”. While not a life detection mission, the presence of ice penetrating radar (IPR) and other instruments provides an opportunity to answer questions that are biological in nature. The IPR will characterize the ice structure, including any subsurface water and ice-water interfaces. If life is to be found on Europa it may be present at the first water-ice interface; water lenses within the shell closer to the Europan surface than the ice-ocean interface. IPR can confirm the presence and abundance of these putative habitats, potentially within range of future life detection missions. EJSM will also directly inform biologists by determining some ice properties and estimating its rate of overturn, constraining the flux of oxidants and thus the amount of metabolism that can be supported. Terrestrial analogues may be useful models for the Europan ice-ocean system as revealed by IPR. The underside of sea ice represents a concentrated zone of life, defined by the availability of energy, along a column thousands of meters in length. For phototrophs attachment to the underside of sea ice guarantees access to light. For heterotrophs association ensures a supply of chemical energy in the form of organic carbon. If life exists on Europa we might expect a similar scenario, in this case with chemolithotrophs using the ice as a conduit for energy. This strategy suggests that if life is to be found on Europa it may well reach its highest concentration at the uppermost ice-water interface. Similarly, within saline ice biology is strongly associated with interstitial spaces: microscale channels and pores that result from the differential freezing of saline water. Within these spaces material is concentrated, providing an environment enriched in chemical energy. Here we present several habitat parameters that can be directly assessed via IPR, and discuss biological questions that EJSM may answer in the context of terrestrial analogues with an emphasis on multiyear sea ice (MYI). Although subglacial lakes may be analogues for a biosphere deep in the Europan ocean, MYI may share more structural similarities with the Europan ice shell than grounded glacial ice. Calculations suggest that organic and inorganic materials within the interstial spaces of MYI are concentrated as much as 500 fold, possibly aiding microbial metabolism through periods of very low temperature. In a similar manner organic carbon from endogenic or exogenic sources on Europa would concentrate in these spaces, serving as a valuable electron donor or acceptor for organisms in the ice. An environment’s physical structure helps structure the community which inhabits it, thus the MYI microbial community should inform a developing model of a hypothetical Europan ecosystem. Recent applications of 454 sequencing technology to the MYI community indicates a surprising degree of diversity within this environment, similar to that of underlying seawater. These findings suggest the potential for a diverse Europan microbial ecosystem despite energy limitations imposed by a permanent ice cover.
Veach, Allison M; Dodds, Walter K; Jumpponen, Ari
2015-10-01
Woody plant encroachment has become a global threat to grasslands and has caused declines in aboveground richness and changes in ecosystem function; yet we have a limited understanding on the effects of these phenomena on belowground microbial communities. We completed riparian woody plant removals at Konza Prairie Biological Station, Kansas and collected soils spanning land-water interfaces in removal and woody vegetation impacted areas. We measured stream sediments and soils for edaphic variables (C and N pools, soil water content, pH) and bacterial (16S rRNA genes) and fungal (ITS2 rRNA gene repeat) communities using Illumina MiSeq metabarcoding. Bacterial richness and diversity decreased with distance from streams. Fungal richness decreased with distance from the stream in wooded areas, but was similar across landscape position while Planctomycetes and Basidiomycota relative abundance was lower in removal areas. Cyanobacteria, Ascomycota, Chytridiomycota and Glomeromycota relative abundance was greater in removal areas. Ordination analyses indicated that bacterial community composition shifted more across land-water interfaces than fungi yet both were marginally influenced by treatment. This study highlights the impacts of woody encroachment restoration on grassland bacterial and fungal communities which likely subsequently affects belowground processes and plant health in this ecosystem. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Proteins at the air-water interface in a lattice model
NASA Astrophysics Data System (ADS)
Zhao, Yani; Cieplak, Marek
2018-03-01
We construct a lattice protein version of the hydrophobic-polar model to study the effects of the air-water interface on the protein and on an interfacial layer formed through aggregation of many proteins. The basic unit of the model is a 14-mer that is known to have a unique ground state in three dimensions. The equilibrium and kinetic properties of the systems with and without the interface are studied through a Monte Carlo process. We find that the proteins at high dilution can be pinned and depinned many times from the air-water interface. When pinned, the proteins undergo deformation. The staying time depends on the strength of the coupling to the interface. For dense protein systems, we observe glassy effects. Thus, the lattice model yields results which are similar to those obtained through molecular dynamics in off-lattice models. In addition, we study dynamical effects induced by local temperature gradients in protein films.
NASA Astrophysics Data System (ADS)
Hur, Ji-Hyun; Park, Junghak; Kim, Deok-kee; Jeon, Sanghun
2017-04-01
We propose a model that describes the operation characteristics of a two-dimensional electron gas (2DEG) in a monolayer transition-metal dichalcogenide thin-film transistor (TFT) having trapped charges near the channel interface. We calculate the drift mobility of the carriers scattered by charged defects located in the channel or near the channel interfaces. The calculated drift mobility is a function of the 2DEG areal density of interface traps. Finally, we calculate the model transfer (ID-VG S ) and output (ID-VS D ) characteristics and verify them by comparing with the experimental results performed with monolayer MoS2 TFTs. We find the modeled results to be excellently consistent with the experiments. This proposed model can be utilized for measuring the interface-trapped charge and trap site densities from the measured transfer curves directly, avoiding more complicated and expensive measurement methods.
Computational Modeling of Interfacial Behaviors in Nanocomposite Materials
Lin, Liqiang; Wang, Xiaodu; Zeng, Xiaowei
2017-01-01
Towards understanding the bulk material response in nanocomposites, an interfacial zone model was proposed to define a variety of material interface behaviors (e.g. brittle, ductile, rubber-like, elastic-perfectly plastic behavior etc.). It also has the capability to predict bulk material response though independently control of the interface properties (e.g. stiffness, strength, toughness). The mechanical response of granular nanocomposite (i.e. nacre) was investigated through modeling the “relatively soft” organic interface as an interfacial zone among “hard” mineral tablets and simulation results were compared with experimental measurements of stress-strain curves in tension and compression tests. Through modeling varies material interfaces, we found out that the bulk material response of granular nanocomposite was regulated by the interfacial behaviors. This interfacial zone model provides a possible numerical tool for qualitatively understanding of structure-property relationships through material interface design. PMID:28983123
NASA Astrophysics Data System (ADS)
Guilyardi, E.
2003-04-01
The European Union's PRISM infrastructure project (PRogram for Integrated earth System Modelling) aims at designing a flexible environment to easily assemble and run Earth System Models (http://prism.enes.org). Europe's widely distributed modelling expertise is both a strength and a challenge. Recognizing this, the PRISM project aims at developing an efficient shared modelling software infrastructure for climate scientists, providing them with an opportunity for greater focus on scientific issues, including the necessary scientific diversity (models and approaches). The proposed PRISM system includes 1) the use - or definition - and promotion of scientific and technical standards to increase component modularity, 2) an end-to-end software environment (coupler, user interface, diagnostics) to launch, monitor and analyze complex Earth System Models built around the existing and future community models, 3) testing and quality standards to ensure HPC performance on a variety of platforms and 4) community wide inputs and requirements capture in all stages of system specifications and design through user/developers meetings, workshops and thematic schools. This science driven project, led by 22 institutes* and started December 1st 2001, benefits from a unique gathering of scientific and technical expertise. More than 30 models (both global and regional) have expressed interest to be part of the PRISM system and 6 types of components have been identified: atmosphere, atmosphere chemistry, land surface, ocean, sea ice and ocean biochemistry. Progress and overall architecture design will be presented. * MPI-Met (Coordinator), KNMI (co-coordinator), MPI-M&D, Met Office, University of Reading, IPSL, Meteo-France, CERFACS, DMI, SMHI, NERSC, ETH Zurich, INGV, MPI-BGC, PIK, ECMWF, UCL-ASTR, NEC, FECIT, SGI, SUN, CCRLE
A Novel Mental Health Crisis Service - Outcomes of Inpatient Data.
Morrow, R; McGlennon, D; McDonnell, C
2016-01-01
Northern Ireland has high mental health needs and a rising suicide rate. Our area has suffered a 32% reduction of inpatient beds consistent with the national drive towards community based treatment. Taking these factors into account, a new Mental Health Crisis Service was developed incorporating a high fidelity Crisis Response Home Treatment Team (CRHTT), Acute Day Care facility and two inpatient wards. The aim was to provide alternatives to inpatient admission. The new service would facilitate transition between inpatient and community care while decreasing bed occupancy and increasing treatment in the community. All services and processes were reviewed to assess deficiencies in current care. There was extensive consultation with internal and external stakeholders and process mapping using the COBRAs framework as a basis for the service improvement model. The project team set the service criteria and reviewed progress. In the original service model, the average inpatient occupancy rate was 106.6%, admission rate was 48 patients per month and total length of stay was 23.4 days. After introducing the inpatient consultant hospital model, the average occupancy rate decreased to 90%, admissions to 43 per month and total length of stay to 22 days. The results further decreased to 83% occupancy, 32 admissions per month and total length of stay 12 days after CRHTT initiation. The Crisis Service is still being evaluated but currently the model has provided safe alternatives to inpatient care. Involvement with patients, carers and all multidisciplinary teams is maximised to improve the quality and safety of care. Innovative ideas including structured weekly timetable and regular interface meetings have improved communication and allowed additional time for patient care.
A Novel Mental Health Crisis Service – Outcomes of Inpatient Data
McGlennon, D; McDonnell, C
2016-01-01
Introduction Northern Ireland has high mental health needs and a rising suicide rate. Our area has suffered a 32% reduction of inpatient beds consistent with the national drive towards community based treatment. Taking these factors into account, a new Mental Health Crisis Service was developed incorporating a high fidelity Crisis Response Home Treatment Team (CRHTT), Acute Day Care facility and two inpatient wards. The aim was to provide alternatives to inpatient admission. The new service would facilitate transition between inpatient and community care while decreasing bed occupancy and increasing treatment in the community. Methods All services and processes were reviewed to assess deficiencies in current care. There was extensive consultation with internal and external stakeholders and process mapping using the COBRAs framework as a basis for the service improvement model. The project team set the service criteria and reviewed progress. Results In the original service model, the average inpatient occupancy rate was 106.6%, admission rate was 48 patients per month and total length of stay was 23.4 days. After introducing the inpatient consultant hospital model, the average occupancy rate decreased to 90%, admissions to 43 per month and total length of stay to 22 days. The results further decreased to 83% occupancy, 32 admissions per month and total length of stay 12 days after CRHTT initiation. Discussion The Crisis Service is still being evaluated but currently the model has provided safe alternatives to inpatient care. Involvement with patients, carers and all multidisciplinary teams is maximised to improve the quality and safety of care. Innovative ideas including structured weekly timetable and regular interface meetings have improved communication and allowed additional time for patient care. PMID:27158159
1993-11-01
way is to develop a crude but working model of an entire system. The other is by developing a realistic model of the user interface , leaving out most...devices or by incorporating software for a more user -friendly interface . Automation introduces the possibility of making data entry errors. Multimode...across various human- computer interfaces . 127 a Memory: Minimize the amount of information that the user must maintain in short-term memory
NASA Astrophysics Data System (ADS)
Gaigeot, Marie-Pierre; Sulpizi, Marialore
2012-03-01
Liquid-solid interfaces play an important role in a number of phenomena encountered in biological, chemical and physical processes. Surface-induced changes of the material properties are not only important for the solid support but also for the liquid itself. In particular, it is now well established that water at the interface is substantially different from bulk water, even in the proximity of apparently inert surfaces such as a simple metal. The complex chemistry at liquid-solid interfaces is typically fundamental to heterogeneous catalysis and electrochemistry, and has become especially topical in connection with the search for new materials for energy production. A quite remarkable example is the development of cheap yet efficient solar cells, whose basic components are dye molecules grafted to the surface of an oxide material and in contact with an electrolytic solution. In life science, the most important liquid-solid interfaces are the water-cell-membrane interfaces. Phenomena occurring at the surface of phospholipid bilayers control the docking of proteins, the transmission of signals as well as transport of molecules in and out of the cell. Recently the development of bio-compatible materials has lead to research on the interface between bio-compatible material and lipid/proteins in aqueous solution. Gaining a microscopic insight into the processes occurring at liquid-solid interfaces is therefore fundamental to a wide range of disciplines. This special section collects some contributions to the CECAM Workshop 'Liquid/Solid interfaces: Structure and Dynamics from Spectroscopy and Simulations' which took place in Lausanne, Switzerland in June 2011. Our main aim was to bring together knowledge and expertise from different communities in order to advance our microscopic understanding of the structure and dynamics of liquids at interfaces. In particular, one of our ambitions was to foster discussion between the experimental and theoretical/computational communities. On the experimental side, surface specific techniques, such as non-linear optical spectroscopy (sum frequency generation spectroscopy (SFG) and second harmonic generation (SHG)), surface sensitive x-ray scattering, in situ scanning tunneling microscopy (STM) and infrared reflection absorption spectroscopy provide information on layers of nanometric thickness at the interface. On the other hand, it is quite clear that the experiments require theoretical modelling in order to dissect the experimental results and to rationalize the different factors that contribute to the interfacial properties. In this respect molecular dynamics simulations are a major tool. While many successes have already been achieved with molecular dynamics simulations based on empirical force fields, first principles molecular dynamics simulations are now emerging as the other major approach where structure and reactivity are treated in a consistent way. Recent progress within the past 3-5 years on efficient treatments of basis sets and long range interactions in density functional theory (DFT) indeed extend such simulation capabilities to hundreds and thousands of atoms, thus allowing realistic models for interfaces to be tackled, maintaining first principles quality. Most of these simulations bring information on the structural organization of the solvent in the interfacial region between the solid and the liquid, but very few investigate the supplementary challenge of extracting vibrational spectroscopic fingerprints of the interface and, in particular, the direct modeling of the vibrational sum frequency generation (VSFG) non-linear spectra. The present special section reports an interesting contribution from the group of R Y Shen who pioneered VSFG optical experiments. They show how VSFG measurements can be used to unravel the behavior of interfacial water on alumina Al2O3 as a function of pH. The groups of A Hodgson and C Busse respectively provide complementary experiments based on low energy electron diffraction (LEED), He atom scattering (HAS) and STM, to investigate the organization of water on metal, namely Pd(111) and Pt(111). Direct measurements of hyperpolarizabilities for non-linear spectroscopy can be made through hyper-Rayleigh scattering experiments, which are presented here by the group of P F Brevet on gold and silver nanoparticles. From the point of view of molecular dynamics simulations of interfaces, complementary levels of calculations are presented in this special section. The groups of K Leung, M-P Gaigeot, M Sulpizi and M Sprik provide theoretical investigations with DFT-based molecular dynamics simulations. Leung et al and Gaigeot et al address the hot topic issue of the reactivity of oxides surface sites and especially reliable methods to calculate pKas of these sites, with simulations taking into account both the solid and the liquid explicitly, and at the same first principles level of theory. Gaigeot, Sprik and Sulpizi furthermore combine the information on the structural organization of liquid water at the interface with quartz and alumina via pKa calculations and vibrational features (and their microscopic assignments). Mixed quantum/classical molecular dynamics (QM/MM) simulations are presented by Ishiyama and Morita for the investigation of another topical interface, i.e. the liquid-air interface. They provide the theoretical VSFG spectrum of the water-vapor interface and some understanding at the microscopic level of the experimental vibrational features. Molecular dynamics simulations based on empirical force fields have been applied to investigate hydrophobic interfaces by the groups of B Space and P Carloni. Carloni et al address salt effects at water-hydrophobic interfaces, investigating how the salts affect the structural organization of water at these interfaces. Space et al provide theoretical approximations to VSFG calculations in the special case of the carbon tetrachloride-water interface and the assignments of the experimental recorded signatures. 'More traditional' DFT static calculations can be applied to complex objects at interfaces, providing their vibrational spectra, and two papers in this special section illustrate such approaches. Ceccet et al extract first hyperpolarizability tensors from DFT calculations on aliphatic chains and simulate the related VSFG spectra. They also investigate the effect of different functionals on the final signatures. Liegeois et al investigate functionalized surfaces, mainly focusing on IR and Raman spectral features, and provide very precise vibrational assignments depending on chemisorption or physisorption of the adsorbed molecules. We are grateful to all the authors for their contributions to this special section and we hope that readers will enjoy this collection of papers and that they will find further motivation to investigate and understand the complex phenomena occurring at interfaces. Liquid-solid interfaces contents The interfacial structure of water/protonated α-Al2O3 (112¯0) as a function of pHJ Sung, Y R Shen and G A Waychunas Strain relief and disorder in commensurate water layers formed on Pd(111)F McBride, A Omer, C M Clay, L Cummings, G R Darling and A Hodgson H2O on Pt(111): structure and stability of the first wetting layer Sebastian Standop, Markus Morgenstern, Thomas Michely and Carsten Busse Effect of a thioalkane capping layer on the first hyperpolarizabilities of gold and silver nanoparticles Yara El Harfouch, Emmanuel Benichou, Franck Bertorelle, Isabelle Russier-Antoine, Christian Jonin, Noelle Lascoux and Pierre F Brevet Predicting the acidity constant of a goethite hydroxyl group from first principlesKevin Leung and Louise J Criscenti Oxide/water interfaces: how the surface chemistry modifies interfacial water properties Marie-Pierre Gaigeot, Michiel Sprik and Marialore Sulpizi Vibrational spectrum at a water surface: a hybrid quantum mechanics/molecular mechanics molecular dynamics approach Tatsuya Ishiyama, Hideaki Takahashi and Akihiro Morita A theoretical study of the sum frequency vibrational spectroscopy of the carbon tetrachloride/water interface Anthony J Green, Angela Perry, Preston B Moore and Brian Space Salt effects on water/hydrophobic liquid interfaces: a molecular dynamics study Chao Zhang and Paolo Carloni Density functional theory-based simulations of sum frequency generation spectra involving methyl stretching vibrations: effect of the molecular model on the deduced molecular orientation and comparison with an analytical approach F Cecchet, D Lis, Y Caudano, A A Mani, A Peremans, B Champagne and J Guthmuller Towards modelling the vibrational signatures of functionalized surfaces: carboxylic acids on H-Si(111) surfaces Conrard Giresse Tetsassi Feugmo, Benoît Champagne, Yves Caudano, Francesca Cecchet, Yves J Chabal and Vincent Liégeois
Thakore, Vaibhav; Molnar, Peter; Hickman, James J.
2014-01-01
Extracellular neuroelectronic interfacing is an emerging field with important applications in the fields of neural prosthetics, biological computation and biosensors. Traditionally, neuron-electrode interfaces have been modeled as linear point or area contact equivalent circuits but it is now being increasingly realized that such models cannot explain the shapes and magnitudes of the observed extracellular signals. Here, results were compared and contrasted from an unprecedented optimization based study of the point contact models for an extracellular ‘on-cell’ neuron-patch electrode and a planar neuron-microelectrode interface. Concurrent electrophysiological recordings from a single neuron simultaneously interfaced to three distinct electrodes (intracellular, ‘on-cell’ patch and planar microelectrode) allowed novel insights into the mechanism of signal transduction at the neuron-electrode interface. After a systematic isolation of the nonlinear neuronal contribution to the extracellular signal, a consistent underestimation of the simulated supra-threshold extracellular signals compared to the experimentally recorded signals was observed. This conclusively demonstrated that the dynamics of the interfacial medium contribute nonlinearly to the process of signal transduction at the neuron-electrode interface. Further, an examination of the optimized model parameters for the experimental extracellular recordings from sub- and supra-threshold stimulations of the neuron-electrode junctions revealed that ionic transport at the ‘on-cell’ neuron-patch electrode is dominated by diffusion whereas at the neuron-microelectrode interface the electric double layer (EDL) effects dominate. Based on this study, the limitations of the equivalent circuit models in their failure to account for the nonlinear EDL and ionic electrodiffusion effects occurring during signal transduction at the neuron-electrode interfaces are discussed. PMID:22695342
Liquid phase stabilization versus bubble formation at a nanoscale curved interface
NASA Astrophysics Data System (ADS)
Schiffbauer, Jarrod; Luo, Tengfei
2018-03-01
We investigate the nature of vapor bubble formation near a nanoscale-curved convex liquid-solid interface using two models: an equilibrium Gibbs model for homogenous nucleation, and a nonequilibrium dynamic van der Waals-diffuse-interface model for phase change in an initially cool liquid. Vapor bubble formation is shown to occur for sufficiently large radius of curvature and is suppressed for smaller radii. Solid-fluid interactions are accounted for and it is shown that liquid-vapor interfacial energy, and hence Laplace pressure, has limited influence over bubble formation. The dominant factor is the energetic cost of creating the solid-vapor interface from the existing solid-liquid interface, as demonstrated via both equilibrium and nonequilibrium arguments.
Modeling adsorption of cationic surfactants at air/water interface without using the Gibbs equation.
Phan, Chi M; Le, Thu N; Nguyen, Cuong V; Yusa, Shin-ichi
2013-04-16
The Gibbs adsorption equation has been indispensable in predicting the surfactant adsorption at the interfaces, with many applications in industrial and natural processes. This study uses a new theoretical framework to model surfactant adsorption at the air/water interface without the Gibbs equation. The model was applied to two surfactants, C14TAB and C16TAB, to determine the maximum surface excesses. The obtained values demonstrated a fundamental change, which was verified by simulations, in the molecular arrangement at the interface. The new insights, in combination with recent discoveries in the field, expose the limitations of applying the Gibbs adsorption equation to cationic surfactants at the air/water interface.
Software platform for rapid prototyping of NIRS brain computer interfacing techniques.
Matthews, Fiachra; Soraghan, Christopher; Ward, Tomas E; Markham, Charles; Pearlmutter, Barak A
2008-01-01
This paper describes the control system of a next-generation optical brain-computer interface (BCI). Using functional near-infrared spectroscopy (fNIRS) as a BCI modality is a relatively new concept, and research has only begun to explore approaches for its implementation. It is necessary to have a system by which it is possible to investigate the signal processing and classification techniques available in the BCI community. Most importantly, these techniques must be easily testable in real-time applications. The system we describe was built using LABVIEW, a graphical programming language designed for interaction with National Instruments hardware. This platform allows complete configurability from hardware control and regulation, testing and filtering in a graphical interface environment.
NASA Technical Reports Server (NTRS)
Rogers, Pat
1992-01-01
The Ada Runtime Environment Working Group has, since 1985, developed and published the Catalog of Interface Features and Options (CFIO) for Ada runtime environments. These interfaces, expressed in legal Ada, provide 'hooks' into the runtime system to export both functionality and enhanced performance beyond that of 'vanilla' Ada implementations. Such enhancements include high- and low-level scheduling control, asynchronous communications facilities, predictable storage management facilities, and fast interrupt response. CIFO 3.0 represents the latest release, which incorporates the efforts of the European real time community as well as new interfaces and expansions of previous catalog entries. This presentation will give both an overview of the Catalog's contents and an 'insider's' view of the Catalog as a whole.
NASA Astrophysics Data System (ADS)
Cole, M.; Alameh, N.; Bambacus, M.
2006-05-01
The Applied Sciences Program at NASA focuses on extending the results of NASA's Earth-Sun system science research beyond the science and research communities to contribute to national priority applications with societal benefits. By employing a systems engineering approach, supporting interoperable data discovery and access, and developing partnerships with federal agencies and national organizations, the Applied Sciences Program facilitates the transition from research to operations in national applications. In particular, the Applied Sciences Program identifies twelve national applications, listed at http://science.hq.nasa.gov/earth-sun/applications/, which can be best served by the results of NASA aerospace research and development of science and technologies. The ability to use and integrate NASA data and science results into these national applications results in enhanced decision support and significant socio-economic benefits for each of the applications. This paper focuses on leveraging the power of interoperability and specifically open standard interfaces in providing efficient discovery, retrieval, and integration of NASA's science research results. Interoperability (the ability to access multiple, heterogeneous geoprocessing environments, either local or remote by means of open and standard software interfaces) can significantly increase the value of NASA-related data by increasing the opportunities to discover, access and integrate that data in the twelve identified national applications (particularly in non-traditional settings). Furthermore, access to data, observations, and analytical models from diverse sources can facilitate interdisciplinary and exploratory research and analysis. To streamline this process, the NASA GeoSciences Interoperability Office (GIO) is developing the NASA Earth-Sun System Gateway (ESG) to enable access to remote geospatial data, imagery, models, and visualizations through open, standard web protocols. The gateway (online at http://esg.gsfc.nasa.gov) acts as a flexible and searchable registry of NASA-related resources (files, services, models, etc) and allows scientists, decision makers and others to discover and retrieve a wide variety of observations and predictions of natural and human phenomena related to Earth Science from NASA and other sources. To support the goals of the Applied Sciences national applications, GIO staff is also working with the national applications communities to identify opportunities where open standards-based discovery and access to NASA data can enhance the decision support process of the national applications. This paper describes the work performed to-date on that front, and summarizes key findings in terms of identified data sources and benefiting national applications. The paper also highlights the challenges encountered in making NASA-related data accessible in a cross-cutting fashion and identifies areas where interoperable approaches can be leveraged.
NASA Astrophysics Data System (ADS)
Kees, C. E.; Farthing, M. W.; Terrel, A.; Certik, O.; Seljebotn, D.
2013-12-01
This presentation will focus on two barriers to progress in the hydrological modeling community, and research and development conducted to lessen or eliminate them. The first is a barrier to sharing hydrological models among specialized scientists that is caused by intertwining the implementation of numerical methods with the implementation of abstract numerical modeling information. In the Proteus toolkit for computational methods and simulation, we have decoupled these two important parts of computational model through separate "physics" and "numerics" interfaces. More recently we have begun developing the Strong Form Language for easy and direct representation of the mathematical model formulation in a domain specific language embedded in Python. The second major barrier is sharing ANY scientific software tools that have complex library or module dependencies, as most parallel, multi-physics hydrological models must have. In this setting, users and developer are dependent on an entire distribution, possibly depending on multiple compilers and special instructions depending on the environment of the target machine. To solve these problem we have developed, hashdist, a stateless package management tool and a resulting portable, open source scientific software distribution.
Model-Based Systems Engineering in Concurrent Engineering Centers
NASA Technical Reports Server (NTRS)
Iwata, Curtis; Infeld, Samantha; Bracken, Jennifer Medlin; McGuire; McQuirk, Christina; Kisdi, Aron; Murphy, Jonathan; Cole, Bjorn; Zarifian, Pezhman
2015-01-01
Concurrent Engineering Centers (CECs) are specialized facilities with a goal of generating and maturing engineering designs by enabling rapid design iterations. This is accomplished by co-locating a team of experts (either physically or virtually) in a room with a focused design goal and a limited timeline of a week or less. The systems engineer uses a model of the system to capture the relevant interfaces and manage the overall architecture. A single model that integrates other design information and modeling allows the entire team to visualize the concurrent activity and identify conflicts more efficiently, potentially resulting in a systems model that will continue to be used throughout the project lifecycle. Performing systems engineering using such a system model is the definition of model-based systems engineering (MBSE); therefore, CECs evolving their approach to incorporate advances in MBSE are more successful in reducing time and cost needed to meet study goals. This paper surveys space mission CECs that are in the middle of this evolution, and the authors share their experiences in order to promote discussion within the community.
Model-Based Systems Engineering in Concurrent Engineering Centers
NASA Technical Reports Server (NTRS)
Iwata, Curtis; Infeld, Samatha; Bracken, Jennifer Medlin; McGuire, Melissa; McQuirk, Christina; Kisdi, Aron; Murphy, Jonathan; Cole, Bjorn; Zarifian, Pezhman
2015-01-01
Concurrent Engineering Centers (CECs) are specialized facilities with a goal of generating and maturing engineering designs by enabling rapid design iterations. This is accomplished by co-locating a team of experts (either physically or virtually) in a room with a narrow design goal and a limited timeline of a week or less. The systems engineer uses a model of the system to capture the relevant interfaces and manage the overall architecture. A single model that integrates other design information and modeling allows the entire team to visualize the concurrent activity and identify conflicts more efficiently, potentially resulting in a systems model that will continue to be used throughout the project lifecycle. Performing systems engineering using such a system model is the definition of model-based systems engineering (MBSE); therefore, CECs evolving their approach to incorporate advances in MBSE are more successful in reducing time and cost needed to meet study goals. This paper surveys space mission CECs that are in the middle of this evolution, and the authors share their experiences in order to promote discussion within the community.
Introduction into the Virtual Olympic Games Framework for online communities.
Stoilescu, Dorian
2009-06-01
This paper presents the design of the Virtual Olympic Games Framework (VOGF), a computer application designated for athletics, health care, general well-being, nutrition and fitness, which offers multiple benefits for its participants. A special interest in starting the design of the framework was in exploring how people can connect and participate together using existing computer technologies (i.e. gaming consoles, exercise equipment with computer interfaces, devices of measuring health, speed, force and distance and Web 2.0 applications). A stationary bike set-up offering information to users about their individual health and athletic performances has been considered as a starting model. While this model is in the design stage, some preliminary findings are encouraging, suggesting the potential for various fields: sports, medicine, theories of learning, technologies and cybercultural studies. First, this framework would allow participants to perform a variety of sports and improve their health. Second, this would involve creating an online environment able to store health information and sport performances correlated with accessing multi-media data and research about performing sports. Third, participants could share experiences with other athletes, coaches and researchers. Fourth, this framework also provides support for the research community in their future investigations.
Assessment of microbiota:host interactions at the vaginal mucosa interface.
Pruski, Pamela; Lewis, Holly V; Lee, Yun S; Marchesi, Julian R; Bennett, Phillip R; Takats, Zoltan; MacIntyre, David A
2018-04-27
There is increasing appreciation of the role that vaginal microbiota play in health and disease throughout a woman's lifespan. This has been driven partly by molecular techniques that enable detailed identification and characterisation of microbial community structures. However, these methods do not enable assessment of the biochemical and immunological interactions between host and vaginal microbiota involved in pathophysiology. This review examines our current knowledge of the relationships that exist between vaginal microbiota and the host at the level of the vaginal mucosal interface. We also consider methodological approaches to microbiomic, immunologic and metabolic profiling that permit assessment of these interactions. Integration of information derived from these platforms brings the potential for biomarker discovery, disease risk stratification and improved understanding of the mechanisms regulating vaginal microbial community dynamics in health and disease. Copyright © 2018 Elsevier Inc. All rights reserved.
MOtoNMS: A MATLAB toolbox to process motion data for neuromusculoskeletal modeling and simulation.
Mantoan, Alice; Pizzolato, Claudio; Sartori, Massimo; Sawacha, Zimi; Cobelli, Claudio; Reggiani, Monica
2015-01-01
Neuromusculoskeletal modeling and simulation enable investigation of the neuromusculoskeletal system and its role in human movement dynamics. These methods are progressively introduced into daily clinical practice. However, a major factor limiting this translation is the lack of robust tools for the pre-processing of experimental movement data for their use in neuromusculoskeletal modeling software. This paper presents MOtoNMS (matlab MOtion data elaboration TOolbox for NeuroMusculoSkeletal applications), a toolbox freely available to the community, that aims to fill this lack. MOtoNMS processes experimental data from different motion analysis devices and generates input data for neuromusculoskeletal modeling and simulation software, such as OpenSim and CEINMS (Calibrated EMG-Informed NMS Modelling Toolbox). MOtoNMS implements commonly required processing steps and its generic architecture simplifies the integration of new user-defined processing components. MOtoNMS allows users to setup their laboratory configurations and processing procedures through user-friendly graphical interfaces, without requiring advanced computer skills. Finally, configuration choices can be stored enabling the full reproduction of the processing steps. MOtoNMS is released under GNU General Public License and it is available at the SimTK website and from the GitHub repository. Motion data collected at four institutions demonstrate that, despite differences in laboratory instrumentation and procedures, MOtoNMS succeeds in processing data and producing consistent inputs for OpenSim and CEINMS. MOtoNMS fills the gap between motion analysis and neuromusculoskeletal modeling and simulation. Its support to several devices, a complete implementation of the pre-processing procedures, its simple extensibility, the available user interfaces, and its free availability can boost the translation of neuromusculoskeletal methods in daily and clinical practice.
A Web-based cost-effective training tool with possible application to brain injury rehabilitation.
Wang, Peijun; Kreutzer, Ina Anna; Bjärnemo, Robert; Davies, Roy C
2004-06-01
Virtual reality (VR) has provoked enormous interest in the medical community. In particular, VR offers therapists new approaches for improving rehabilitation effects. However, most of these VR assistant tools are not very portable, extensible or economical. Due to the vast amount of 3D data, they are not suitable for Internet transfer. Furthermore, in order to run these VR systems smoothly, special hardware devices are needed. As a result, existing VR assistant tools tend to be available in hospitals but not in patients' homes. To overcome these disadvantages, as a case study, this paper proposes a Web-based Virtual Ticket Machine, called WBVTM, using VRML [VRML Consortium, The Virtual Reality Modeling Language: International Standard ISO/IEC DIS 14772-1, 1997, available at ], Java and EAI (External Authoring Interface) [Silicon Graphics, Inc., The External Authoring Interface (EAI), available at ], to help people with acquired brain injury (ABI) to relearn basic living skills at home at a low cost. As these technologies are open standard and feature usability on the Internet, WBVTM achieves the goals of portability, easy accessibility and cost-effectiveness.
Accelerator controls at CERN: Some converging trends
NASA Astrophysics Data System (ADS)
Kuiper, B.
1990-08-01
CERN's growing services to the high-energy physics community using frozen resources has led to the implementation of "Technical Boards", mandated to assist the management by making recommendations for rationalizations in various technological domains. The Board on Process Control and Electronics for Accelerators, TEBOCO, has emphasized four main lines which might yield economy in resources. First, a common architecture for accelerator controls has been agreed between the three accelerator divisions. Second, a common hardware/software kit has been defined, from which the large majority of future process interfacing may be composed. A support service for this kit is an essential part of the plan. Third, high-level protocols have been developed for standardizing access to process devices. They derive from agreed standard models of the devices and involve a standard control message. This should ease application development and mobility of equipment. Fourth, a common software engineering methodology and a commercial package of application development tools have been adopted. Some rationalization in the field of the man-machine interface and in matters of synchronization is also under way.
A Formal Model of Partitioning for Integrated Modular Avionics
NASA Technical Reports Server (NTRS)
DiVito, Ben L.
1998-01-01
The aviation industry is gradually moving toward the use of integrated modular avionics (IMA) for civilian transport aircraft. An important concern for IMA is ensuring that applications are safely partitioned so they cannot interfere with one another. We have investigated the problem of ensuring safe partitioning and logical non-interference among separate applications running on a shared Avionics Computer Resource (ACR). This research was performed in the context of ongoing standardization efforts, in particular, the work of RTCA committee SC-182, and the recently completed ARINC 653 application executive (APEX) interface standard. We have developed a formal model of partitioning suitable for evaluating the design of an ACR. The model draws from the mathematical modeling techniques developed by the computer security community. This report presents a formulation of partitioning requirements expressed first using conventional mathematical notation, then formalized using the language of SRI'S Prototype Verification System (PVS). The approach is demonstrated on three candidate designs, each an abstraction of features found in real systems.
CTserver: A Computational Thermodynamics Server for the Geoscience Community
NASA Astrophysics Data System (ADS)
Kress, V. C.; Ghiorso, M. S.
2006-12-01
The CTserver platform is an Internet-based computational resource that provides on-demand services in Computational Thermodynamics (CT) to a diverse geoscience user base. This NSF-supported resource can be accessed at ctserver.ofm-research.org. The CTserver infrastructure leverages a high-quality and rigorously tested software library of routines for computing equilibrium phase assemblages and for evaluating internally consistent thermodynamic properties of materials, e.g. mineral solid solutions and a variety of geological fluids, including magmas. Thermodynamic models are currently available for 167 phases. Recent additions include Duan, Møller and Weare's model for supercritical C-O-H-S, extended to include SO2 and S2 species, and an entirely new associated solution model for O-S-Fe-Ni sulfide liquids. This software library is accessed via the CORBA Internet protocol for client-server communication. CORBA provides a standardized, object-oriented, language and platform independent, fast, low-bandwidth interface to phase property modules running on the server cluster. Network transport, language translation and resource allocation are handled by the CORBA interface. Users access server functionality in two principal ways. Clients written as browser- based Java applets may be downloaded which provide specific functionality such as retrieval of thermodynamic properties of phases, computation of phase equilibria for systems of specified composition, or modeling the evolution of these systems along some particular reaction path. This level of user interaction requires minimal programming effort and is ideal for classroom use. A more universal and flexible mode of CTserver access involves making remote procedure calls from user programs directly to the server public interface. The CTserver infrastructure relieves the user of the burden of implementing and testing the often complex thermodynamic models of real liquids and solids. A pilot application of this distributed architecture involves CFD computation of magma convection at Volcan Villarrica with magma properties and phase proportions calculated at each spatial node and at each time step via distributed function calls to MELTS-objects executing on the CTserver. Documentation and programming examples are provided at http://ctserver.ofm- research.org.
Atomistic calculations of interface elastic properties in noncoherent metallic bilayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mi Changwen; Jun, Sukky; Kouris, Demitris A.
2008-02-15
The paper describes theoretical and computational studies associated with the interface elastic properties of noncoherent metallic bicrystals. Analytical forms of interface energy, interface stresses, and interface elastic constants are derived in terms of interatomic potential functions. Embedded-atom method potentials are then incorporated into the model to compute these excess thermodynamics variables, using energy minimization in a parallel computing environment. The proposed model is validated by calculating surface thermodynamic variables and comparing them with preexisting data. Next, the interface elastic properties of several fcc-fcc bicrystals are computed. The excess energies and stresses of interfaces are smaller than those on free surfacesmore » of the same crystal orientations. In addition, no negative values of interface stresses are observed. Current results can be applied to various heterogeneous materials where interfaces assume a prominent role in the systems' mechanical behavior.« less
AccessMRS: integrating OpenMRS with smart forms on Android.
Fazen, Louis E; Chemwolo, Benjamin T; Songok, Julia J; Ruhl, Laura J; Kipkoech, Carolyne; Green, James M; Ikemeri, Justus E; Christoffersen-Deb, Astrid
2013-01-01
We present a new open-source Android application, AccessMRS, for interfacing with an electronic medical record system (OpenMRS) and loading 'Smart Forms' on a mobile device. AccessMRS functions as a patient-centered interface for viewing OpenMRS data; managing patient information in reminders, task lists, and previous encounters; and launching patient-specific 'Smart Forms' for electronic data collection and dissemination of health information. We present AccessMRS in the context of related software applications we developed to serve Community Health Workers, including AccessInfo, AccessAdmin, AccessMaps, and AccessForms. The specific features and design of AccessMRS are detailed in relationship to the requirements that drove development: the workflows of the Kenyan Ministry of Health Community Health Volunteers (CHVs) supported by the AMPATH Primary Health Care Program. Specifically, AccessMRS was designed to improve the quality of community-based Maternal and Child Health services delivered by CHVs in Kosirai Division. AccessMRS is currently in use by more than 80 CHVs in Kenya and undergoing formal assessment of acceptability, effectiveness, and cost.
Scientific Workflow Management in Proteomics
de Bruin, Jeroen S.; Deelder, André M.; Palmblad, Magnus
2012-01-01
Data processing in proteomics can be a challenging endeavor, requiring extensive knowledge of many different software packages, all with different algorithms, data format requirements, and user interfaces. In this article we describe the integration of a number of existing programs and tools in Taverna Workbench, a scientific workflow manager currently being developed in the bioinformatics community. We demonstrate how a workflow manager provides a single, visually clear and intuitive interface to complex data analysis tasks in proteomics, from raw mass spectrometry data to protein identifications and beyond. PMID:22411703
NASA Technical Reports Server (NTRS)
Neupert, Werner M.
1991-01-01
The interface is described between NASA HQ, NASA Goddard, and the rocket Principal Investigators. The proposal selection process is described along with the cycle time to flight, constraints imposed by science objectives on operations, campaign modes, and coordination with ground based facilities. There were questions about the success rate of proposals and the primary sources of funding for the payloads program from the branches of the science divisions in OSSA, especially space physics, astrophysics, Earth sciences, and solar system exploration. The presentation is given in the form of viewgraphs.
Interfacial Micromechanics in Fibrous Composites: Design, Evaluation, and Models
Lei, Zhenkun; Li, Xuan; Qin, Fuyong; Qiu, Wei
2014-01-01
Recent advances of interfacial micromechanics in fiber reinforced composites using micro-Raman spectroscopy are given. The faced mechanical problems for interface design in fibrous composites are elaborated from three optimization ways: material, interface, and computation. Some reasons are depicted that the interfacial evaluation methods are difficult to guarantee the integrity, repeatability, and consistency. Micro-Raman study on the fiber interface failure behavior and the main interface mechanical problems in fibrous composites are summarized, including interfacial stress transfer, strength criterion of interface debonding and failure, fiber bridging, frictional slip, slip transition, and friction reloading. The theoretical models of above interface mechanical problems are given. PMID:24977189
User interface for ground-water modeling: Arcview extension
Tsou, Ming‐shu; Whittemore, Donald O.
2001-01-01
Numerical simulation for ground-water modeling often involves handling large input and output data sets. A geographic information system (GIS) provides an integrated platform to manage, analyze, and display disparate data and can greatly facilitate modeling efforts in data compilation, model calibration, and display of model parameters and results. Furthermore, GIS can be used to generate information for decision making through spatial overlay and processing of model results. Arc View is the most widely used Windows-based GIS software that provides a robust user-friendly interface to facilitate data handling and display. An extension is an add-on program to Arc View that provides additional specialized functions. An Arc View interface for the ground-water flow and transport models MODFLOW and MT3D was built as an extension for facilitating modeling. The extension includes preprocessing of spatially distributed (point, line, and polygon) data for model input and postprocessing of model output. An object database is used for linking user dialogs and model input files. The Arc View interface utilizes the capabilities of the 3D Analyst extension. Models can be automatically calibrated through the Arc View interface by external linking to such programs as PEST. The efficient pre- and postprocessing capabilities and calibration link were demonstrated for ground-water modeling in southwest Kansas.
A locomotive-track coupled vertical dynamics model with gear transmissions
NASA Astrophysics Data System (ADS)
Chen, Zaigang; Zhai, Wanming; Wang, Kaiyun
2017-02-01
A gear transmission system is a key element in a locomotive for the transmission of traction or braking forces between the motor and the wheel-rail interface. Its dynamic performance has a direct effect on the operational reliability of the locomotive and its components. This paper proposes a comprehensive locomotive-track coupled vertical dynamics model, in which the locomotive is driven by axle-hung motors. In this coupled dynamics model, the dynamic interactions between the gear transmission system and the other components, e.g. motor and wheelset, are considered based on the detailed analysis of its structural properties and working mechanism. Thus, the mechanical transmission system for power delivery from the motor to the wheelset via gear transmission is coupled with a traditional locomotive-track dynamics system via the wheel-rail contact interface and the gear mesh interface. This developed dynamics model enables investigations of the dynamic performance of the entire dynamics system under the excitations from the wheel-rail contact interface and/or the gear mesh interface. Dynamic interactions are demonstrated by numerical simulations using this dynamics model. The results indicate that both of the excitations from the wheel-rail contact interface and the gear mesh interface have a significant effect on the dynamic responses of the components in this coupled dynamics system.
Labiosa, Bill; Forney, William M.; Hearn,, Paul P.; Hogan, Dianna M.; Strong, David R.; Swain, Eric D.; Esnard, Ann-Margaret; Mitsova-Boneva, D.; Bernknopf, R.; Pearlstine, Leonard; Gladwin, Hugh
2013-01-01
Land-use land-cover change is one of the most important and direct drivers of changes in ecosystem functions and services. Given the complexity of the decision-making, there is a need for Internet-based decision support systems with scenario evaluation capabilities to help planners, resource managers and communities visualize, compare and consider trade-offs among the many values at stake in land use planning. This article presents details on an Ecosystem Portfolio Model (EPM) prototype that integrates ecological, socio-economic information and associated values of relevance to decision-makers and stakeholders. The EPM uses a multi-criteria scenario evaluation framework, Geographic Information Systems (GIS) analysis and spatially-explicit land-use/land-cover change-sensitive models to characterize changes in important land-cover related ecosystem values related to ecosystem services and functions, land parcel prices, and community quality-of-life (QoL) metrics. Parameters in the underlying models can be modified through the interface, allowing users in a facilitated group setting to explore simultaneously issues of scientific uncertainty and divergence in the preferences of stakeholders. One application of the South Florida EPM prototype reported in this article shows the modeled changes (which are significant) in aggregate ecological value, landscape patterns and fragmentation, biodiversity potential and ecological restoration potential for current land uses compared to the 2050 land-use scenario. Ongoing refinements to EPM, and future work especially in regard to modifiable sea level rise scenarios are also discussed.
Xenbase: Core features, data acquisition, and data processing.
James-Zorn, Christina; Ponferrada, Virgillio G; Burns, Kevin A; Fortriede, Joshua D; Lotay, Vaneet S; Liu, Yu; Brad Karpinka, J; Karimi, Kamran; Zorn, Aaron M; Vize, Peter D
2015-08-01
Xenbase, the Xenopus model organism database (www.xenbase.org), is a cloud-based, web-accessible resource that integrates the diverse genomic and biological data from Xenopus research. Xenopus frogs are one of the major vertebrate animal models used for biomedical research, and Xenbase is the central repository for the enormous amount of data generated using this model tetrapod. The goal of Xenbase is to accelerate discovery by enabling investigators to make novel connections between molecular pathways in Xenopus and human disease. Our relational database and user-friendly interface make these data easy to query and allows investigators to quickly interrogate and link different data types in ways that would otherwise be difficult, time consuming, or impossible. Xenbase also enhances the value of these data through high-quality gene expression curation and data integration, by providing bioinformatics tools optimized for Xenopus experiments, and by linking Xenopus data to other model organisms and to human data. Xenbase draws in data via pipelines that download data, parse the content, and save them into appropriate files and database tables. Furthermore, Xenbase makes these data accessible to the broader biomedical community by continually providing annotated data updates to organizations such as NCBI, UniProtKB, and Ensembl. Here, we describe our bioinformatics, genome-browsing tools, data acquisition and sharing, our community submitted and literature curation pipelines, text-mining support, gene page features, and the curation of gene nomenclature and gene models. © 2015 Wiley Periodicals, Inc.
Analysis and meta-analysis of single-case designs: an introduction.
Shadish, William R
2014-04-01
The last 10 years have seen great progress in the analysis and meta-analysis of single-case designs (SCDs). This special issue includes five articles that provide an overview of current work on that topic, including standardized mean difference statistics, multilevel models, Bayesian statistics, and generalized additive models. Each article analyzes a common example across articles and presents syntax or macros for how to do them. These articles are followed by commentaries from single-case design researchers and journal editors. This introduction briefly describes each article and then discusses several issues that must be addressed before we can know what analyses will eventually be best to use in SCD research. These issues include modeling trend, modeling error covariances, computing standardized effect size estimates, assessing statistical power, incorporating more accurate models of outcome distributions, exploring whether Bayesian statistics can improve estimation given the small samples common in SCDs, and the need for annotated syntax and graphical user interfaces that make complex statistics accessible to SCD researchers. The article then discusses reasons why SCD researchers are likely to incorporate statistical analyses into their research more often in the future, including changing expectations and contingencies regarding SCD research from outside SCD communities, changes and diversity within SCD communities, corrections of erroneous beliefs about the relationship between SCD research and statistics, and demonstrations of how statistics can help SCD researchers better meet their goals. Copyright © 2013 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mueller, A. H.; Suvorova, N. A.; Irene, E. A.; Auciello, O.; Schultz, J. A.
2003-04-01
The interface formation between sputtered barium strontium titanate (BST) films and both Si and SiO2 substrate surfaces has been followed using real-time spectroscopic ellipsometry and the mass spectrometry of recoiled ions. In both substrates an intermixed interface layer was observed and subcutaneous Si oxidation occurred. A model for the interface formation is proposed in which the interface includes an SiO2 film on Si, and an intermixed film on which is pure BST. During the deposition of BST the interfaces films were observed to change in time. Electrical characterization of the resulting metal-BST interface capacitors indicates that those samples with SiO2 on the Si surface had the best electrical characteristics.
Development of a simulated smart pump interface.
Elias, Beth L; Moss, Jacqueline A; Shih, Alan; Dillavou, Marcus
2014-01-01
Medical device user interfaces are increasingly complex, resulting in a need for evaluation in clinicallyaccurate settings. Simulation of these interfaces can allow for evaluation, training, and use for research without the risk of harming patients and with a significant cost reduction over using the actual medical devices. This pilot project was phase 1 of a study to define and evaluate a methodology for development of simulated medical device interface technology to be used for education, device development, and research. Digital video and audio recordings of interface interactions were analyzed to develop a model of a smart intravenous medication infusion pump user interface. This model was used to program a high-fidelity simulated smart intravenous medication infusion pump user interface on an inexpensive netbook platform.
Social identity and youth aggressive and delinquent behaviors in a context of political violence.
Merrilees, Christine E; Cairns, Ed; Taylor, Laura K; Goeke-Morey, Marcie C; Shirlow, Peter; Cummings, E Mark
2013-10-01
The goal of the current study was to examine the moderating role of in-group social identity on relations between youth exposure to sectarian antisocial behavior in the community and aggressive behaviors. Participants included 770 mother-child dyads living in interfaced neighborhoods of Belfast. Youth answered questions about aggressive and delinquent behaviors as well as the extent to which they targeted their behaviors toward members of the other group. Structural equation modeling results show that youth exposure to sectarian antisocial behavior is linked with increases in both general and sectarian aggression and delinquency over one year. Reflecting the positive and negative effects of social identity, in-group social identity moderated this link, strengthening the relationship between exposure to sectarian antisocial behavior in the community and aggression and delinquency towards the out-group. However, social identity weakened the effect for exposure to sectarian antisocial behavior in the community on general aggressive behaviors. Gender differences also emerged; the relation between exposure to sectarian antisocial behavior and sectarian aggression was stronger for boys. The results have implications for understanding the complex role of social identity in inter-group relations for youth in post-accord societies.
Placing Evidence-Based Interventions at the Fingertips of School Social Workers.
Castillo, Humberto López; Rivers, Tommi; Randall, Catherine; Gaughan, Ken; Ojanen, Tiina; Massey, Oliver Tom; Burton, Donna
2016-07-01
Through a university-community collaborative partnership, the perceived needs of evidence-based practices (EBPs) among school social workers (SSWs) in a large school district in central Florida was assessed. A survey (response rate = 83.6%) found that although 70% of SSWs claim to use EBPs in their everyday practice, 40% do not know where to find them, which may partially explain why 78% of respondents claim to spend 1 to 4 h every week looking for adequate EBPs. From this needs assessment, the translational model was used to address these perceived needs. A systematic review of the literature found 40 tier 2 EBPs, most of which (23%) target substance use, abuse, and dependence. After discussion with academic and community partners, the stakeholders designed, discussed, and implemented a searchable, online, password-protected, interface of these tier 2 EBPs, named Evidence-Based Intervention Toolkit (eBIT). Lessons learned, future directions, and implications of this "one-stop shop" for behavioral health are discussed.
Mathos, Kimberly K; Pollard, Robert Q
2016-02-01
There are relatively few counselors, psychologists, psychiatrists, and social workers who specialize in serving people who are Deaf, Deafblind or hard of hearing in the United States. Professionals that serve minority populations are often an insular group. They tend to network most often with fellow professionals who understand the language and cultural needs of their service population. Such specialized behavioral health providers rarely have the opportunity to interface with "mainstream" program planners, funders and administrators. Consequently, new recovery agendas, best practice models and community reintegration ideas are only slowly integrated into the care of persons who are Deaf, Deafblind or hard of hearing. We describe the development and implementation of a task force comprised of "front line" providers, administrators, county government officials, advocates and consumers that has made strides toward effective change in a local behavioral health care system. Methods employed, successes, barriers and other reflections on the task force's efforts also are described.
Placing Evidence-based Interventions at the Fingertips of School Social Workers
Castillo, Humberto López; Rivers, Tommi; Randall, Catherine; Gaughan, Ken; Ojanen, Tiina; Massey, Oliver “Tom”; Burton, Donna
2015-01-01
Through a university-community collaborative partnership, the perceived needs of evidence-based practices (EBP) among school social workers (SSW) in a large school district in central Florida was assessed. A survey (response rate = 83.6%) found that although 70% of SSW claim to use EBP in their everyday practice, 40% do not know where to find them, which may partially explain why 78% of respondents claim to spend 1 to 4 hours every week looking for adequate EBP. From this needs assessment, the translational model was used to address these perceived needs. A systematic review of the literature found forty Tier 2 EBP, most of which (23%) target substance use, abuse, and dependence. After discussion with academic and community partners, the stakeholders designed, discussed, and implemented a searchable, online, password-protected, interface of these Tier 2 EBP, named eBIT (evidence-Based Intervention Toolkit). Lessons learned, future directions, and implications of this “one-stop shop” for behavioral health are discussed. PMID:26659382
A case study of data integration for aquatic resources using semantic web technologies
Gordon, Janice M.; Chkhenkeli, Nina; Govoni, David L.; Lightsom, Frances L.; Ostroff, Andrea C.; Schweitzer, Peter N.; Thongsavanh, Phethala; Varanka, Dalia E.; Zednik, Stephan
2015-01-01
Use cases, information modeling, and linked data techniques are Semantic Web technologies used to develop a prototype system that integrates scientific observations from four independent USGS and cooperator data systems. The techniques were tested with a use case goal of creating a data set for use in exploring potential relationships among freshwater fish populations and environmental factors. The resulting prototype extracts data from the BioData Retrieval System, the Multistate Aquatic Resource Information System, the National Geochemical Survey, and the National Hydrography Dataset. A prototype user interface allows a scientist to select observations from these data systems and combine them into a single data set in RDF format that includes explicitly defined relationships and data definitions. The project was funded by the USGS Community for Data Integration and undertaken by the Community for Data Integration Semantic Web Working Group in order to demonstrate use of Semantic Web technologies by scientists. This allows scientists to simultaneously explore data that are available in multiple, disparate systems beyond those they traditionally have used.
A microstructural model of motion of macro-twin interfaces in Ni-Mn-Ga 10 M martensite
NASA Astrophysics Data System (ADS)
Seiner, Hanuš; Straka, Ladislav; Heczko, Oleg
2014-03-01
We present a continuum-based model of microstructures forming at the macro-twin interfaces in thermoelastic martensites and apply this model to highly mobile interfaces in 10 M modulated Ni-Mn-Ga martensite. The model is applied at three distinct spatial scales observed in the experiment: meso-scale (modulation twinning), micro-scale (compound a-b lamination), and nano-scale (nanotwining in the concept of adaptive martensite). We show that two mobile interfaces (Type I and Type II macro-twins) have different micromorphologies at all considered spatial scales, which can directly explain their different twinning stress observed in experiments. The results of the model are discussed with respect to various experimental observations at all three considered spatial scales.
Hybrid 2-D and 3-D Immersive and Interactive User Interface for Scientific Data Visualization
2017-08-01
visualization, 3-D interactive visualization, scientific visualization, virtual reality, real -time ray tracing 16. SECURITY CLASSIFICATION OF: 17...scientists to employ in the real world. Other than user-friendly software and hardware setup, scientists also need to be able to perform their usual...and scientific visualization communities mostly have different research priorities. For the VR community, the ability to support real -time user
NASA Astrophysics Data System (ADS)
Isakson, Marcia; Camin, H. John; Canepa, Gaetano
2005-04-01
The reflection coefficient from a sand/water interface is an important parameter in modeling the acoustics of littoral environments. Many models have been advanced to describe the influence of the sediment parameters and interface roughness parameters on the reflection coefficient. In this study, the magnitude and phase of the reflection coefficient from 30 to 160 kHz is measured in a bistatic experiment on a smoothed water/sand interface at grazing angles from 5 to 75 degrees. The measured complex reflection coefficient is compared with the fluid model, the elastic model and poro-elastic models. Effects of rough surface scattering are investigated using the Bottom Response from Inhomogeneities and Surface using Small Slope Approximation (BoRIS-SSA). Spherical wave effects are modeled using plane wave decomposition. Models are considered for their ability to predict the measured results using realistic parameters. [Work supported by ONR, Ocean Acoustics.
Reilly, T.E.; Frimpter, M.H.; LeBlanc, D.R.; Goodman, A.S.
1987-01-01
Sharp interface methods have been used successfully to describe the physics of upconing. A finite-element model is developed to simulate a sharp interface for determination of the steady-state position of the interface and maximum permissible well discharges. The model developed is compared to previous published electric-analog model results of Bennett and others (1968). -from Authors